
The

Foreword, Bill Gates
General Editor, Ray Duncan

ZTE (USA) 1007, Page 1

The

Encyclopedia

ZTE (USA) 1007, Page 2

Published by
Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 I
editor, Ray Duncan.

p. em.
Includes indexes.
1. MS-DOS (Computer operating system) I. Duncan, Ray, 1952-
11. Microsoft Press.
QA76.76.063M74
005.4'46--dc19
ISBN 1-55615-174-8

1988 87-21452
CIP

Printed and bound in the United States of America.

123456789RMRM321098

Distributed to the book trade in the
United States by Harper & Row.

Distributed to the book trade in
Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and Top View® are registered trademarks of International Business Machines Corporation.
GW-BASIC®, Microsoft®, MS®, MS-DOS®, SOFTCARD®, and XENIX® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum.
Pages 5, 11, 42: Intel4004, 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from Popular Electronics, January 1975 Copyright© 1975 Ziff Communications Company.
Page 13: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission of The Seattle Times Copyright© 1983.
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright© 1981, 1982, 1984. All rights reserved.
Page 21: "Big IBM's Little Computer" Copyright © 1981 by The New York Times Company. Reprinted by
permission.
"IBM Announces New Microcomputer System" Reprinted with permission of Info World Copyright© 1981.
"IBM really gets personal" Reprinted with permission of Personal Computing Copyright© 1981.
"Personal Computer from IBM" Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
"IBM's New Line Likely to Shake up the Market for Personal Computers" Reprinted by permission of The Wall
Street Journal Copyright© Dow Jones & Company, Inc. 1981. All Rights Reserved.
Page 36: "Irresistible DOS 3.0" and "The Ascent of DOS" Reprinted from PC Tech journal,
December 1984 and October 1986. Copyright © 1984, 1986 Ziff Communications Company.
"MS-DOS 2.00: A Hands-On Tutorial" Reprinted by permission of PC World from Volume 1, Issue 3, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107.

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi Ikeda.

ZTE (USA) 1007, Page 3

Encyclopedia Staff

Editor-in-Chlef: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee1 Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kern, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown

Director of Production: Christopher D. Banks

Publisher: Min S. Yee

...

ZTE (USA) 1007, Page 4

Contributors

Ray Duncan, General Editor Duncan received a B.A. in Chemistry from the University of Califor-
nia, Riverside, and an M.D. from the University of California, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He
has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr. Dobb·s
journal, and Sojtalk!PC, and is the author of the Microsoft Press book Advanced MS-DOS. He is the
founder of Laboratory Microsystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Bostwick Bostwick holds a B.S. in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systems for applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer ofiBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

Robert A Byers Byers is the author of the bestselling Everyman "s Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc.

Thorn Hogan During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer, a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmers Sourcebook.

jim Kyle Kyle has 23 years' experience in computing. Since 1967, he has been a systems program-
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently MIS Administrator for BTl Systems, Inc., the OEM Division ofBancTec Inc., manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine's CLMFORUM on CompuServe since early 1985.

Gordon Letwin Letwin is Chief Architect, Systems Software, Microsoft Corporation. He is the author
of Inside OS/2, published by Microsoft Press.

Charles Petzold Petzold holds an M.S. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2. 0, a contributing editor to PC Magazine, and a frequent contributor to the Microsoft Systems
journal.

Chip Rabinowitz Rabinowitz has been a programmer for 11 years. He is presently chief program­
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986.

Contributors Vii

ZTE (USA) 1007, Page 5

Jim TomUn Tomlin holds a B.S. and an M.S. in Mathematics. He has programmed at Boeing,
Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, whkh specializes in PC systems programming and industrial machine vision applications.

Richard Wilton Wilton has programmed extensively in PL/1, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer's Guide to PC & PS/2 Video Systems, published
by Microsoft Press. ·

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

William Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor
Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newell Ralph Ryan
John Butler Kaamel Kermaani TaniNewell Karl Schulmeisters
Chuck Carroll Adrian King David Norris RajenShah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw
David Chell James Landowski BobO'Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka
Mike Courtney Thomas Lennon Larry Osterman Jon Smirl
Mike Dryfoos DanLipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Suni!Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold SteveZeck

Viii The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 6

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development ofMS-DOS

Section II: Programming in the MS-DOS Environment

Part A: Structure of MS-DOS

Article 1:
Article 2:
Article 3:

An Introduction to MS-DOS 51
The Components of MS-DOS 61
MS-DOS Storage Devices 85

Part B: Programming for MS-DOS

Article 4: Structure of an Application Program 107
Article 5: Character Device Input and Output 149
Article 6: Interrupt-Driven Communications 167
Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279
Article 9: Memory Management 297
Article 10: The MS-DOS EXEC Function 321

Part C: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385
Article 13: Hardware Interrupt Handlers 409
Article 14: Writing MS-DOS Filters 429
Article 15: Installable Device Drivers 447

Part D: Directions ofMS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

xiii

XV

xvii

1

47

Contents ix

ZTE (USA) 1007, Page 7

Section lll: User. Commands

Introduction 725

User commands are listed in alphabetic order. This section includes ANSI.SYS,
BATCH, CONFIG.SYS, DRIVER.SYS,_ EDLIN, RAMDRIVE.SYS, and VDISK.SYS.

723

Section IV: Programming Utilities 961

Introduction 963

CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
LIB 980
LINK 987
MAKE 999
MAPSYM 1004
MASM 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054
CodeView 1157

Section V: System Calls

Introduction 1177

System calls are listed in numeric order.

Appendixes

Appendix A:
AppendixB:
AppendixC:
AppendixD:
AppendixE:
AppendixF:
AppendixG:
AppendixH:
Appendix I:
Appendix]:
AppendixK:
AppendixL:
AppendixM:
AppendixN:
AppendixO:

MS-DOS Version 3.3 1433
Critical Error Codes 1459
Extended Error Codes 1461
ASCII and IBM Extended ASCII Character Sets 1465
EBCDIC Character Set 1469
ANSI.SYS Key and Extended Key Codes 1471
File Control Block (FCB) Structure 1473
Program Segment Prefix (PSP) Structure 1477
8086/8088/80286/80386 Instruction Sets 1479
Common MS-DOS Filename Extensions 1485
Segmented (New) .EXE File Header Format 1487
Intel Hexadecimal Object File Format 1499
8086/8088 Software Compatibility Issues 1507
An Object Module Dump Utility 1509
IBM PC BIOS Calls 1513

X The MS-DOS Encyclopedia

1175

1431

ZTE (USA) 1007, Page 8

Indexes 1531

Subject 1533
Commands and System Calls 1565

Contents xi

ZTE (USA) 1007, Page 9

I
!
'

Foreword

Microsoft's MS-DOS is the most popular piece of software in the world. It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications- the largest set of applications in any computer environment. As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur­
thering Microsoft's original vision- a computer for every desktop and in every home. The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applic:;ttions is incredible, but Microsoft has been committed to meet­
ing this challenge since the release of MS-DOS in 1981. The true measure of our success
in this effort is MS-DOS's continued prominence in the microcomputer industry.

Since MS-DOS's creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DO$ reestablishes its position as the foundation
for new applications as well as for old. To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM's deci­
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel8080 microprocessor. This technolog­
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com­
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in­
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort- each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this beqmse different manu­
facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually
every personal computer manufacturer-Radio Shack, Commodore, Apple, and doz~ns
of others- to build Microsoft BASIC into its machines. For the first time, one common lan­
guage cut across all hardware vendor lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli­
cations from one vendor's machine to another.

Most machines produced during this early period did not have a built-in disk drive.
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market. A standard disk operating system that could accommodate these develop­
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CP/M-80, Digital Research's 8080 DOS.

Foreword Xiii

ZTE (USA) 1007, Page 10

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs. It was important that software designed for
the new 16-bit machines have this same advantage. No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard- a standard that would be the software
industry's lifeblood. The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for IBM, is not the key point here. The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft's BASIC had prevailed on the 8-bit systems.

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer "Man of the Year." MS­
DOS was integral to this acceptance and popularity, and we have continued to adapt
MS-DOS to support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile.

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers. The length of this book is many
times greater than the source listing of the first version of MS-DOS- evidence of the
growing complexity and sophistication of the operating system. The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor. MS-DOS will continue to play an integral part iri this effort. Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi­
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno­
vative graphical user interface, and communication subsystems. MS-DOS version 3, which
runs in real mode on 80286~based and 80386-based machines, is a vital link in the Family
API of OS/2. Users will continue to benefit from our commitment to improved operating­
system performance and usability as the future unfolds.

Bill Gates

XiV The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 11

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information. MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines.

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit. The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers. We have therefore been free to bypass elemen­
tary subjects such as the number of bits in a byte a:nd the interpretation of hexadecimal
numbers. Instead, we have emphasized detailed technical explanations, working code ex­
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, and install­
able device drivers. We have commissioned definitive articles on the relocatable object
modules generated by Microsoft language translators, the operation of the Microsoft Ob­
ject Linker, and terminate-and-stay-resident utilities. We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain­
ing, illustrated account of the origins of Microsoft's standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS seryices, commands, directives, and utilities. In many instances, the manu­
scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are
timely and trustworthy. In a work of this size, however, it is inevitable that errors and omis­
sions will occur. If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow programmers. To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information. ·

Ray Duncan

Preface XV

ZTE (USA) 1007, Page 12

Introduction

The MS-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system. Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information oriall the
MS-DOS commands, utilities, and system calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content. Special typographic conven­
tions are also used to clarify the material.

Organization of the Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes. Each
section has a unique internal organization; explanatory introductions are included where
appropriate.

Section I, The Development of MS-DOS, presents the history of Microsoft's standard­
setting operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotations are included.

Section II, Programming in the MS-DOS Environment, is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools. Each part contains several articles by acknowledged experts on these
topics. The articles include numerous figures, tables, and programming examples that pro­
vide detail about the subject.

Section III, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, includingANSI.SYS, BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN,
RAMDRIVE.SYS, and VDISK.SYS. Each command is presented in a structure that allows
the experienced user to quickly review syntax and restrictions on variables; the less­
experienced user can refer to the detailed discussion of the command and its uses.

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and Code View
debuggers. Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefore included to create a corp.­
prehensive reference.

Introduction XVii

ZTE (USA) 1007, Page 13

u;()atesto 'fhe MS-DOS Ericyclop~dhL · ..
Periqdic~lly,th<i·s~f~fTheMS7DO~Enf;'yctopedia~"WillpublisB~pd~te~'tol1taining._ ·-·
cfarifica~i()ns_.o): cOJ!~diqns to the i11formatimi pr~s~n~ed_ie•_thiscurf~nt·~q1ti09··.'fo 0b~, · .. •t~tn ~f1for!hadof1 ~Bc)tit r~c~ivi~g these ~pd31t<~$,-piease c~~ckt~e if)f>ro¢ti~te bpxcmthe

. b~sibessrepiy, ca:rd.ln th~baFk .of:this boC>k; or send Youtn~rn~ ~n<:l a~klte,$~1:(): l\1S~I)<)s ·.'·
. Ell.cy~l<:>pedia pf>date Information;· clojvncrosoft'~r~ss; lq011 NE ~6tb?\VaY~Bof 9"7017, ·
l{~dfi1c)t1d,WA98Q73;:97i7. ·.· ; (

0

; : ······ <.\ "~

nrillet~ti J3oard:ser\TiC:e · · .,,,\ .<• ·· ..
···Microsoft·PressJs--spdnsorinff~lJtille~iO:~oar~ cihMCllWaiJf~rpo~firig'In4re~~lvingc0f~ ..

·recti oris and .comments. fqrThe .ys.,D_os,E_ncy(;{opeai(J;,'f:otl~(;!.t!J.i~ $t:!Kv~ce; lpg 611. to·MCI •
:Mailand; a£terreceivingthe·P.r9n1pt/fy_pe\ · , · · ·· " . /'>; · c.·5

~IEW.·<Ent~t;. . <:: .. }"·' " :·.'3.:i,.:; :i(!··,. ;:•·· ·•· ••
"'j~f:: J3uikt~n iloa/dit~/rte:~rqili~t;iil~~ dis~I~y2~1)r~¥~~~ .. i.< .. C:-. ;~ .. ;-,,~

:.· ··:o:, • /.,· ·.. -:· .. :" • ··';"",.·:·>"'o'·_,", o"("e< •," • "'}r-·,~·.-i' ""'· ··:~~:·:·-') • • '0•:,·.~~ ,:·',
,M:SPRESS.' ''<Ent:et>.' · C~<'iC' >,:'· ... ·. '' · '. ·· ,·.,;;: .::.- ... ;:::c·:·:: ,,;. <'i,: . ' . \'':

·•-·•, t~. co~ri~dt-~oih~ ~fi~~~~dftPr~g~l)~ti~ti~,~~isci.':1,if~~kltfi~l~Ml~{~~Jgi~~b~~ff,Ri~~sv
bulkt.in. .l:>oards wilLb~, displayecksi¢ply~ho6se MSPress+JO$l?JYCJ1't()'¢'ritertlie~h-" ·
cydopedi~'sbtill,etin..b(?ard. · . /·. :: '.· · i .·-•·--·--·~--·-•.·: __ ...• _ •.. · .. i. ~:%-~ . /;;t- \ ... _._. ··- ·n ;: ·· · .·.··.

. >-~ .>. . . ~<:;~·;'~<''> ·F "':\.:! :.:> . "<r·.. . {:::/--~·',:<+ .

' ~vf!~li,tl.t~~l)~w~41)~~~k§~~~·, .. ~ ?.(~/;. :.-;- ·>:. ,.
·.·_.Micro~oft·J>resshas (Zreateda_set ~fValu'~~le,;tiin~~~iBg@tri~~~~d~.~t~~{(~Theft!s-hos •.
·-· EncycloP£!dia:Theycontainthe'r<)utirte~·~t}~fl.ipctioha,l"~r,6gr,awst~t~r~}l}~t~~·t!froug;!f-·\
· -·. 'outtrlis• book ••.•.••. _.tnousar1Cls of lines of:exec~tabl~ g{)g~Yp?nvf?:~l¢iltly·9f~~'pized1 ,tne~e·

disk&w1Hsave youhoursoftyp1ngtirn~.ap~lallo)Yypu:~ti~t~rtB5in~th~-~d#ei{llll1~diaylr
The companion disk$ ate only available ~ir,~<W~ffq~Mi~ro~oftb~~s{'f'tr()rder/us~ tl1e ... · .

-;f¥ii~~rrt~~~ec~tJ~}~6~t~kd;;~~bt~§!f{r;f~t!!~i~JK&i~.i~Ji0{~at~~~~:stid:·--· ·-
. foreign order:s, ·to;, 1\1iFfqsoft Press; Axtfi:. ¢C>mRapJ{)n bisk:pffe1',·:2!$>f92oilfA.v~:-.• ~.E·:, Box ·
3011; Bothell, WA 98041:3o1J. Pleasespecify·5~25~r~9hqf3.'?Lirlch (6i'ip~t.:P~yl#entm~stb~­
in us: funds. You may pay By·checkQr~tn'on~yorder (payable'tOM!~ro~8fth~ss),:pr by

. American Express, VISA,; orMaster(;ard; ple~~ei11c;lud~ your tr~(!ircard';null1?~i an(l ex-.
piration date. All domestic orders are shipped 2nq: dayair 1Jpon receipt of ord~r by

, Microsoft. · · ··· · · · · · c > •/ ··
C:A residents s% plus loca(optio~ tax;CJ7.5o/o,FL 6~; MA5%,1\1N 6~,;~<5·~;21!5~,~~:4% plUs local
option tax,WAState 7.8o/o.

~" . .':'_;.. _; ..

xvi The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 14

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan­
guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase l and the numerall in both text and
program listings.

1

Cross-references appear in the form SECTION NAME: PART NAME, CoMMAND NAME, OR IN­
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple­
mentation of MS-DOS. If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter> is included in a
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control~C, Control-Z, and so
forth when the resulting code is the true reference. Thus, an article might reference the
Control-Chandler but state that it is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (h in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash- for example, 07 -OAH.

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page. The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages.

Introduction xix
ZTE (USA) 1007, Page 15

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functions are listed in individual entries. This section, like the User Com­
mands and Programming Utilities sections, presents a quick review of usage for the ex­
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

The book includes two indexes- one organized by subject and one organized by com­
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com­
mand or system call.

Program listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles. Most of these
programs are complete utilities; some are routines that can be incorporated into function­
ing programs. Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 2.0.

The functional programs and larger routines are also available on disk. Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume.

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text.

xviii The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 16

ZTE (USA) 1007, Page 17

ZTE (USA) 1007, Page 18

ZTE (USA)1007, Page 18

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected- so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft's decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin­
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft's decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac­
complishments; and in this respect the roots of MS-DOS reach farther back, to four hard­
ware and software developments of the 1970s: Microsoft's disk-based and stand-alone
versions of BASIC, Digital Research's CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard­
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de­
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section L· The Development of MS-DOS 3

ZTE (USA) 1007, Page 19

1975

HOW TO "READ" FM TUNER SPECIFICATIONS

f!}pJ!}~~~£!f!!!~~
PROJECT BREAKTHROUGH I

Worlds First Minicomputer Kit
to Rival Commercial Models ...

"ALTAIR 8800" SAVE OVER $1000

ALSO IN THIS ISSUE•.
• An Under-$90 Scientific Calculator ProJect

• CCD's-TV Camera Tube Successor?
• Thyrlstor-C~ntrolled Photoflashers

TEST REPORTS 1

Technics 200 Spea~er System
Pioneer RT·lOUOpen·Reel Recorder
Tram Diamond·40 CB AM Transceiver
Edmund Scientific "Kirlian• Photo Kit
Hewlett-Packard 5381 Frequency Counter

The january 1975 cover of Popular
ElectroniCs magazine, featuring the
machine that caught the imaginations
of thousands of like-minded electron­
ics enthusiasts - among them, Paul
Allen and Bill Gates.

Although it was too limited to serve as the central processor for a general-purpose compu­
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc­
tion set were concerned. Thus Traf-0-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon­
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

6 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 20

[5li<"EiVlJJ

[sTl'--rop]

[1'11-E'T'bf'J

~
t>~h·~:r to_~'! \•~
"'"'"''/ J,~ ~
c~c..r~c\'..e<' o"" ~~~
7-er·o

~(2.(,1M\ "-boo= ~ "'"""'~ \,_:.>
-zero ('- L'r t<> /

S •~rle. v.._,:,evb ks . c:; ><,~ fV voria-if{
'2 b ~re;. "{tve t~ ""-.L...
'-t r..~h 'fW<! tw. v{).l..-e.,
< f2e. p-e <Lt -for € .. c.L, V<O.r ;,; C.)>.

r~r~?k ~~~~~> '2. b ~+>< t .. -qit.,j
va.l>-

~pv•-h .f,r -e~vl.. o.,yay'
low<,f /,.,~f tfr'.. .Q.. .s-1•~

Frc..e. sr<>-ev (st.,...., k '" kre)
1\'>o<+ C'(.Ge-..t .51-c.Y e ... ~ry
st ... c\'- 1

bo+f~<"'> of s~<..c/(. I ~1' loc«t..,d•r sfN:q5

{ <-U.. '7 jiC ¢.-

C..V..c('ew\- s-\-"''j "'So..'l.e.
sit\ 1N G-.S

"'-'11-.o.s+ ""'"tl.,,.:./bca..{t-~.

Loading Software

Software from :1ITS will be pro­
vided in a checksummed format.
There will be a bootstrap loader
tt'lat you key in manually (less than
25 bytes). This will read a check­
SUII loader (the 'bin' loader) which
will be about 120 bytes .

ror audio cassette loading the
bootstrap and checksum loaders will
be lonser. All of this will be ex­
plained in detail in a cover package
that will go out with all software.

For loading non-checksumtned
paper tapes here is a short proogram:

STKLOC: 011 GETNEll
(2 bytes-Hl lov byte of

Gt'I'HEW address
12 high byte of

GCTHEY address)

START: LXI H ,0
GETNEW: LXI SP, STJ<LOC

IH <flag-input channel>
RAL ;get input ready bit
RHZ ;ready?
IN <data-input channel>

CHGLOC: CPI <01.13 = IHX 8>
RNZ
INR A
STA CHGLOC
P.ET

(22 bytes)

Punch a paper tape with leader,
a 0143 start byte, the byte to be
stored at loc o, the byte to be
stored at 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. :~ake
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI ... 376.

1976

On the left, Bill Gates's original handwritten notes describing memory configuration for Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in the july 1975 edition of the
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair- the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section I: The Development of MS-DOS 7

ZTE (USA) 1007, Page 21

I ,,

/ 1975

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night's destination of the starship Enterprise. The photograph
clearly shows the input switches on the front panel of the cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first "personal" computer to appear in an environ­
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair's combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

4 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 22

1975

Intel's 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced. At the bottom left is ~he 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-0-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built. The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language- and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf -0-Data to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma­
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section L The Development of MS-DOS 5

ZTE (USA) 1007, Page 23

1975

HOW TO "READ" FM TUMER SPECIFICATIOMS

&lit~~L~~£tl!!i£~
PROJECT BREAKTHROUGH I

World's First Minicomputer Kit
to Rival Commercial Models ...

"ALTAIR 8800'" SAVE OVER $1000

ALSO IM THIS ISSUE: .
• An Under-$90 scientific Calculator ProJect

• CCD's-TV Camera Tube Successor?
• Thyristor-Controlled Photoflashers

TEST REPORTS •
Technics 200 Speaker System
Pioneer RT-1011 Open· Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific "Kirlian• Photo Kit
Hewlett-Packard 5381 Frequency Counter

The january 1975 cover of Popular
ElectroniCs magazine, featuring the
machine that caught the imaginations
of thousands of/ike-minded electron­
ics enthusiasts - among them, Paul
Allen and Bill Gates.

Although it was too limited to serve as the central processor for a general-purpose compu­
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc­
tion set were concerned. Thus Traf-0-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon­
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

6 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 24

[511<"E'IVIJJ

[sTl'-mP]

[Fil£-rbPJ

[r..eMSTZ..)

~
,~.,·~:r +• ~x1),~

b-1.11"\':l.~, h..-.k ~
c~c..rac::-\--e<" o~o<~ 1,~
"Z-er-o

"- ~~ ~·-\ <t bee -f;u. 'e'"-<-~ I , _.:. >
-z_e.,... ('-L'r-~-es) .

S •~rLe. v<>.r:•<>--6 k.s . b 1.-r,i"j fV vo,,aJ~
':2 b 't-Ie;. flve fl.,;, "~
Lf 1.~k' 1~ t~.u. vo.l~.
<~p-ea.,+ -for e .. cJ.., ""'-' ;,J~ >
Arr-"1 ,,._;,"'bU._>

~~ ~~~ h,::1·:J
l ""' ~- L,j

~r-eo.As .f,r -e~cJ... """""'('
low<lt 1.,~-r ,.... .(1_ s-la~

F~ 5r<>-ev (H • .,..., k '" k.re)
t'V>o•t N.dl.t 5-jaol' e..,-try
St<>.c\'- I

brtrM o-f s:J-.._c{::.; f~i' loe.rlwvfor stn;q5

{.-= "'Jji<' <.12--

Cu.r<-e"'-\- _s.-\·,-,',J '< Sa-'J-'2.-
Sii'Z 1tJ G--.S

~r-,1w.s+ "-'a.tl.,,.:./o<a..{c:-;...,.

--v---·s s~ ttLlbvo> f..,.- s1;:r4
-rc.--bk I'-d...' li~"t- O'"'l;t colLcc:-tu-
(>. -{o.r -;.{r1r,'15 kJI-,,~ ~trel'\.1-t {V\ 4/C l?fl-5\C

o::K'tm:R !Cfr£S/ JULY, 1975

Loading Software

Software from :-!ITS will be pro•
vided in a checksummed format.
There will be a bootstrap loader
t!'lat you key in manually (less than
25 bytes). This will read a check­
sua loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex ...
plained in detail in a cover package
that will go out with all software.

For loading non-checksUift1lleci
paper tapes here is a short program:

STKLOC: OW GETNEII
(2 bytes-Ml low bvte of

GE:TNtil address
N2 high byte of

GETNEW address)

START: LXI !1,0
GET~CW: LXI SP, ST!<'LOC

IN <flag-input cf,annel>
RAL ;get input ready bit
RNZ ;ready?
IN <data-input channel>

CHGLOC: CPI <0113 = IHY. B)o
RNZ
INR A
STA CHGLOC
P.ET

(22 bytes)

Punch a paper tape wi'th leader,
a 043 start byte, the byte to be
stored at loe 0, the byte to be
stored at 1 1 - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. :Q.ke
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI - 376.

1976

On the left, Bill Gates's original handwritten notes describing memory configuration/or Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in the july 1975 edition of the
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair- the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section 1: The Development of MS-DOS 7

ZTE (USA) 1007, Page 25

I II''
I' : ·,
,I,,

1977-1978

Microsoft, 1978, Albuquerque,
New Mexico. Top row, left to right:
Steve Wood, Bob Wallace, jim Lane.
Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this versiori of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft's entry into the business of languages for per­
sonal computers- not only for the MITS Altair, but also for such companies as Data
Terminals Cotporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file­
management scheme called the FAT, or file allocation table that used a linked list for man­
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
"chained" references pointing to the actual storage locations on disk. Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit .operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con­
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

8 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 26

CP/M

Only one company sets the pace with
software for microprocessors.

MACR0'80 PACKAGE axrelocotob~ooem­
THAT'S MICROSOFr.

b!er f"biJ hOS·o,compJete_ ~ foctlily including liP.,
IRPC. REP£.43'. lOcal voriobles ond EXITM. L!Sfing cOntrOl ond
""""'ionclossemblfhavebeeng<eol1yonhoncod;Aro~N>r

··plus -lheos.semblef1Sf"'¢N1wice osfostos PfeV!OOS~ons.
1he ~0 Package, inc~-.lding MICfOaclfs Ltr'lking Looder
ond Ctoss Reference Program, rna., I10'W' be purchased sepor­
aretytrom H)!~J'RAN-80. Single copy $200 .'v1onuol 515. (.1VtACRQ..
80 i5 included in FOi<l'RAN-80. Version 3.t)

.Whether ifs BASIC. F(Jf<iRAN. or
C030l. '!he lorgest-se!!1ng rni­
crocornputer systerns use soft­
wore by Mtcrosoft:

M!IASIC- NEW RELEASE 1>lenew""'on50MilASIC>n­
~ .br'l9 vonoble norres. vonob!e length records. ovnomic string
space O!locotio~. V\tfiLEN.JEt\'0. orQtected fik.""S. ord ctlaining Wlih COM"·
lv'ON \~SOISfv!lvANStcorripahb!e 0.JrM6AS!Cdocumentoltonhos
been comple!e!y !'e't..ril'.en cno iS srgruf1can!ty irnpro.red Single CQPII. 5350.
Nto,"'UQ!· $20

RodtGSnock.Tekttorl~X.NCR.
Apple, CcrTlf'!'10001e. C)l')­

lel. 6s1hngs, Exls>nsys. lrrl·
SOl C'hoScren!!frc:. Cro·

rnerrco. N:.OS. l<!o~.

EDIT-80 PACKAGE (CP! M version only)l>le '"'"'' tc~ """"'
on !he l'l'lOfket. No mOle seo;ctung fl">roogh Iiies or crypt!C cornrnonc:i& 71'\iS rcndom
occess. !ire·Ciienled editcr 1$ SlffiliOf to !hose used en Iorge corr.puters !1ke lhe PDP·
~0. Also includes FtCOM. 1he h1e cornpore uh!ity. v.rt11Ch oi!OWS corr.paroon at source
ond Oinaryflles. Single cop.J. $120 Manual: $10

, ANSI74 COB0l-80,,,""'""''1Col<>wilnlu:""'''ed'>AM"''"'C<ed"t~cctc"'
.accEPT/DSPI.AY. <;C'P'1 and EXTEND S.tQie COPY. $750 Manual· $20

M'".lslek. Notrono1.
i<cck'Neil. ond

rnor.yuthers:

PREVIEW OF UPCOMING PRODUCTS An eoeo;z.so !YISC cOm,tter suo·
port1ng the same !eot'..tes os Cl."' interore!er. the 10"1g-crnoJfed 8080/Z·/33 A>1. Interpre­
ter. and o e<:mpiete set ti ~we:"nS. S<Jftwate ptodl,.l(% fOl' both u·e 8006 ono Z8!YJO

Ail sottwor.: <J~i~?bk~ ct si•;g!<~··GOJY1 p1ice~ or OF.M/
Deeter agreement pncos

1978

A Microsoft advertisement from the
january 1979 issue of Byte magazine
mentioning some products and the
machines they ran on. In the lower
right corner is an announcement of
the company's move to Bellevue,
Washington.

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced "Midas" or "My DOS"). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor­
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system. At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele­
gated to the back room. As Allen describes it, "Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that."

In the volatile microcomputer era of 1976 through 1978, both users and developers of per­
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft's Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section 1: The Development of MS-DOS 9

ZTE (USA) 1007, Page 27

1978

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair's Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall;released its Control Program/Monitor, or CP/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M's history is that the software was developed several
years before its release date- actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall's
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build
a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu­
ter and the disk drive while Kildall worked on the software portion- the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap­
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat­
ing systems.

Digital Research's CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output- disk I/0, screen display, print requests, and so on- CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv­
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re­
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

10 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 28

The8086

The 16-bit Inte/8086 chip, introduced in 1978.
Much faster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte of memory.

1978

When Intel released the 8-bit 8080 chip in 197 4, the Altair was still a year in the future.
The 8080 was designed not to make computing a part of everyday life but to make house­
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086's full16-bit buses made it fast­
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080's 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me­
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson's operating system for the 8086 and, through Paterson's
work, on the first reieased version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen's
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple II users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal- more than one voice in the trade press warned that industry invest­
ment in 8-bit equipment and software was too great to successfully introduce a new stan­
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I: The Development of MS-DOS 11

ZTE (USA) 1007, Page 29

1979-1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer

·Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his emptoyer, Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, "all its instructions
worked on both 8 and 16 bits, and you didn't have to do everything through the accumu­
lator. It was also real fast-it could do a 16-bitADD in three clocks."

After the seminar, Paterson-again with Brock's support-began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on'Seattle Computer's new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital's represen­
tative said December 1979, which meant, according to Paterson's diary, "we'll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we'll be
able to switch to a real operating system."

Early in June, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates' ten-by-ten foot
booth, and Paterson had been invited by Paul Allen tQ show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track oftlisk files- the FAT devel­
oped for Stand-alone BASIC- that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys­
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft­
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson's major goals for the new operating system. To achieve this compatibility, the sys­

. tern he developed mimicked CP/M-80's functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 30

....

1980

GO 16-BIT NOW- WE HAVE MADE IT EASY

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte.

8086
8 Mhz. 2-card CPU Set

WITH 86-DOS@J $595
ASSEMBLED, TESTED, GUARANTEED

W1th our 2-card 8086 CPU set you can upgrade your ZBO 8·
bit S-100 system to ru':lthree limes as fast by swappmg the
CPUs. If you use our 16-bit memory. it will run five times as
last. Up to 64K of your static B·bit memory may be used in the
BOSS's 1-megabyte addressing range. A switch allows either 4
or 8 Mhz. operation. Memory access requirements at 4 Mhz.
exceed 500 nsec.

The EPROM monitor allows you to display, alter, and
search memory, do inputs and outputs, and boot your disk.
Debugging aids include register display and change, single
stepping, and execute with breakpoints.

The set includes a serial port with programmable baud rate,
four mdependenl programmable 16-bil timers (two may be
combined lor a lime-of-day clock), a parallel in and parallel out
port, and an interrupt controller with 15 inputs. External power
may be applied to the timers to maintain the clock dunng
system power-oft time. Total power: 2 amps at + BV ,less than
100 ma. at + 16V and at ·16V.

86-DOS'·. our $195 8086 single user disk operatmg
sy~tem, is provided without addilional charge. It allows
functions such as console I 0 of characters and str~ngs. and
random or sequencia! reading and wntingto named disk hies.
Whtle 11 has a different format from CP M, •t perlorms similar
cans plus some extensions (CP"M IS a registered trademark of
O•g•tal Research Corporat1on).lts construction allows relat•ve­
ly easy cont,guration of I 0 to differenl hardware. D•rectly
supported are the Tarbell and Cromemco disk controllers.

The 86·005 •• package includes an 8086 restdent as­
sembler, a Z80 to 8086 source code lranslator, a ut•lity lo read
l•les wntten in CP M and convert them to the 86-00S format, a
11ne ed•tor. and d1sk ma1ntenance uhlit•es. Of S1gn1hcance to
Z80 users •s the ab•lity of the translator to accept Z80 source

8/16 16-BIT MEMORY
Th•s board was des•gned for the 1980s. lt1s conl•gured as

16K by 8 blls when accessed by an 8-b•t processor and
configured 8K by 16 bitS when used w•th a 16-blt processor
The conf•gurat•on switchmg •s automatic and •s done by the
card sampling the ··s•xteen request" s•gnat sent out by all S·
100 IEEE 16-bit CPU boards. The card has all the h•gh no1se
•mmuMy features of our welt known PLUS RAM cards as well
as ""extended addressing··. Extended address•ng •s a replace­
ment for bank select. II makes use of a total of 24 address hnes
10 g•vf' <1 d•rectly addressable range of over 16 megabytes.
(For older systems, a sw•tch w•ll cause the card to •gnore the
top 8 address lines.) Th1s card ensures that your memory
board purchase will not soon be obsolete. It •s guaranteed to
run w•thout wa•t states w1th our 8086 CPU set us1ng an 8 Mhz
ctock. Sh1pped from stock. Pnces: 1-4,$280: s-g. S260. 10-up.
$240

code wrmen for CP M. translate th1s to 8086 source code.
assemble the source code, and then run the program on th~
8086 processor under 86·005. Th•s al!ows the converston of
any Z80 program, for wh•ch source code is ava•lable.to run on
the much higher perlormance 8086.

BASIC-86 by Microsoft is available lor the 8086 at S350
Several f•rms are work•ng on apphcaiiOn programs Can lor
current software status.

All software licensed lor use on a smgle computer only
Non·d•sclosure agreements requlfed. Shippmg from stock to
one week. Bank cards, personal checks. COOs okay There •s
a 1 0-day return privilege. AU boards are guaranteed one year
- both parts and tabor. Sh1pped prepa•d by a~r m US and
Canada. Fore•gn purchases must be prepa•d 1n US funds
Also add $10 per board lor overseas atr sh•pment

Jt eottle Computer Products,lnc. ~ 1114 lnduslry Orr,e. Seanle. WA 98188

(2061 575-1830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I: The Development of MS-DOS 13

ZTE (USA) 1007, Page 31

,:
I,
I : ~
(
I'
I
I.
I

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten­
tion to the possibility of developing a low-end workstation for a market it knew well: busi­
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM's interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro­
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles- typically four or five years- and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One ofiBM's solutions-the one outlined by Sams's group-was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques­
tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel's 8086 chip instead? At the end
of this meeting- the first of many- Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April1981, ·provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft's BASIC had been
designed to run as a stand-alone product, it was unique in that respect- the other lan­
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development afDigital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM- approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

That state of indecision, then, was Microsoft's situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen; and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates's eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, "Kay and I were just sitting there at
night and Paul was on the couch. Kay said, 'Got to do it, got to do it.' It was only 20 more K

14 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 32

I' ··:)•

1980

of code at most- actually, it turned out to be 12 more K on top ofthe 400. It wasn't that big
a deal, and once Kay said it, it was obvious. We'd always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit."

At that point, Gates and Allen began looking again at Microsoft's proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson's 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM's new computer, the more
possible- even preferable- the idea became.

Allen's first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP's operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, "If I was awake, I was thinking about
the project."

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ­
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86~DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson's
86-DOS- not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT)- arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%-inch disks, so Microsoft needed to de­
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I: The Development of MS-DOS 15

ZTE (USA) 1007, Page 33

I

I
1:
lji
j,l
il
l'i

r .!
I!
:!

1980-1981

16

Paul Allen and
Bill Gates (1982).

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC:-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format-different from Paterson's 8-inch
format-was an added challenge. Paterson's ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system's startup
messages to changes in EDLIN, the line editor he had written for his own use. Throughout
this process, IBM's security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, ~hroughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 34

1980-1981

Bob O'Rear's sketch of
the steps involved in
moving 86-DOS to the
IBM prototype.

Section I: The Development of MS-DOS 17
ZTE (USA) 1007, Page 35

1980-1981

18

r;-S" l'f~IIIOq~-;r-J<f5to'
~ ~ ~ ~ ~ ~~"'"''""'<~dddd

Part of Bob 0 'Rear's "laundry" list of operating-system changes and corrections for early April1981. Around
this time, interim beta copies were shipped to IBM for testing.

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 36

''My own IBM computer.
Imagine thaf'

Presenting the IBM of
Personal Computers.

JU*>I"prr----------------------------'----.
l'"'""t;';.JJ ..
"'P~•rh
fl<:"'-"';1)

~~;~·t..:': ,...,,.,.,r
ll),tl ''Dad, can I use

the IBM computer
q;, -j£ I] tonight?''

~~~~ l"oo<M"""""' ool"""lgr.<pW",f""''"""'"'"''"~wiUdl"""' 
\2 

phc:nomcnon. It what makes a computer tick-and what it can do. lbcy 
"....i 1~ 1 SUI'lS when your can take the same word processing program you use r<-.... ~............,""'~ son asks to 10 cn:alc: bUSineSs reports to wrtu: and Wit book reports 

\,;: ~ bo!TUI'o' (aodkamhowtotypeinthc:proccss}Yourkidsmight ( l~ .:-"- ,.;,,o, ~g«~"oomp"~"mu'""""'"'""'~"lng 

I 1 when your their own programs in BASIC~ Pa.o;cal. 
daughter Ultimalely, a.n IBM Personal Computer can be one 

~-.......; Wllllllito ofthcbestlnvestmc:ntsyoumakt:inyourfamlly':>futurc. 
to use your metal racquet. Sometimes yoo let them. Often And one of the least expcn51ve. Starting at ]e55 than 
you don't. But when they start asking to use your IBM Sl600' therc:!s a system that, with the addition of one 
Personal CompUiet, it'll better to say yo. simple device, hooks up to your home 1V and uses your 

Because learning about computers is a subject your audio cas.o;cnc recorder. 
kids can study and enjoy at home. 1b introduce your family to the IBM Personal 

It's also a fact that the IBM Personal Computer can Computer, visit any Computefl..alld& store Of Scars 
be as useful in your home :15 it is in yourollke.Th help Busine55Sy~emsCcnter. Or see it all at one of our IBM 
plan the: family budget, for ifl5tance. Or to compute Product Center.;. (The IBM National Accounts DivisiOn 
anything from interest paid to calories consumed. You 
can even lap directly into the Dow jones dala bank with 
your telephone and an ine'lpensive adapter. 

But as surely as an IBM Personal Computer 
can help you, it can also help your children. 
Because just by playing games or drawing 

will serve business customers who want to purehasc in 
qllantity.) 

And remember. When your kids ask to usc your 
IDM Pcr.;onal Computer, let !hem. But just make 

sure you can get it back. After all your son's 

still wearing that tie.==-~==- .=:• 
~~F~E. 

1981 

The 1981 debut of the 
IBM Personal 
Computer. 

In spite of such difficulties, however, the new operating system ran on the prototype for 
the first time in February 1981. In the six months that followed, the system was continually 
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM 
Personal Computer on which it appeared, had become a functional product for home 
and office use. 

Section 1· The Development o

...•. ;.~ 

ZTE (USA) 1007, Page 37



'11.11·'·1'' 
"'I 

'll•.!,i : il 
.1 1,1 

.[l1 ;I 
11 •, 

': :1 

1981 

Versionl 

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi­
sioned as a final model for 16-bit computer systems. According to Bill Gates, "Basically, 
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file 
system and everything ... the key thing [in developing version 1.0] was my saying, 'Look, 
we can come out with a subset first and just go upward from that.'" 

This first version- Gates's subset of MS-DOS-was actually a good compromise be­
tween the present and the future in two important respects: It enabled Microsoft to meet 
the development schedule for IBM and it maintained program-translation compatibility 
with CP/M. 

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of 
assembly-language source code and ran in 8 KB of memory. In addition to utilities such 
as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file, 
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and 
character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in­
cluding the application~program interface and the disk-file and memory managers. The 
third file, COMMAND.COM, was the external command processor-the part ofMS-DOS 
most visible to the user. 

To take advantage of the existing base of languages and such popular applications as 
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan­
ically translate source code for the 8080 to run on the 8086. And because of this link, 
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating 
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames 
and three-character extensions, and it had the same conventions for identifying disk drives 
in command prompts. For the most part, MS-DOS also used the same command language, 
offered the same file services, and had the same general structure as CP/M. The resem­
blance was even more striking at the programming level, with an almost one-to-one cor­
respondence between CP/M and MS-DOS in the system calls available to application 
programs. 

New Features 

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextriCably 
bonded to the IBM PC. Hoping to create a product that would be successful over the long 
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate 
changes and new directions in the hardware technology- disks, memory boards, even 
microprocessors- on which it depended. The first steps toward this independence from 

20 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 38



IBMAnnouncesNewMicrocomputerSystem 
It's Officia~ One surprise ,---=-----=-------_J'-'""-""'-""--'--------, 

PERSONAL 
COMPUTER 
FROM IBM 
The mainframer's lang .. 
awaited entry into the personal 
computinc market aims lor 
corporate as well as home 
users. 
With uncharacteristic but resounding fan­
fare, 18M ended the summer's most popular 
guessing game for the industry by introduc­
ing its Personal Computer. Highly compa· 
rable to offerings from arch-contenders Ap­
ple and Radio Shack. the machine repre· 
sentsseveralnewtacksfortheleadingeom­
puter manufacturer as it attempts to hitch its 
wagon to one of the fastest growing seg­
ments of the industry. 

The computer, which is designed to 

appeal to home users as well as corporate 
professionals, ranges in price from Sl ,565 
for a bare-bones configuration to $6,300 for 
the full-blown modcl.ll will be sold through 

OUTLOOK 

IBM really gets personal. 

Sears and Computcrland computer retail 
Slorcs as well as directly to large corporate 
and educational users. IBM says, pointing 
out that it has set up a special national mar­
keting team to handle such volume orders. 

Donald Esrridgc, !he aniculatc di­
rector of IBM's cnuy systems business who 
braved sttobes and movie lighLS at the ma­
chine's Waldorf-Astoria introduction, de­
clines to say how many personnel have been 
dedicated to the national marlccting effort, 
but says it will be selling in volumes of 20 
machines or more. Several weeks after the 
unveiling, he said response so far had been 
''very, very good,'' with orders being taken 
but no deliveries to be made before this 
month. 

In addition to the game of Adven­
ture. which Estridge said has been thor­
oughly exercised by his Boca Raton, Aa., 
sr.aff, IBM has decked out the machine with 
an array of packaged applications programs 
lhat are ell.pccted to make it attractive to the 
corporate user. 

Among lhese are the: popular Visi­
Calc spreadsheet package from Personal 
Software, accounting packages from Man­
agement Science America's Peachtree Soft­
ware operation. and Information Unlimit· 
ed's EasyWriter word processing system. 
Although IBM wouldn't say, more indepen­
dently developed packages are cenain to be 
offered for the computer as well as packages 

modubl:or)fora display. (1bl: machine isf'uUy FCC 
certified for home: opaation as a class 8 
computing device.) 

IBMlscognizantofthe:f:actthatthisminimally 
configured machine probably won't last a serious 
computerist long before he: wants to expand. The 
company offers upgraded versions iJf the machine, 
and will sc:U them in different configutallons. for 
c:xamplc:,thefimllistsamoretypkalconligural:ion 
for home or sdlool as 64k d malo mc:mory, one disk 

continued on page 17 

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal 
Computer. 

1981 

Section I: The Development of MS-DOS 21 

ZTE (USA) 1007, Page 39



1981 

,~~~ onltlew'"""'"'"'"'''' ~ lhop&l10"""''"'.""·'"" 
trJie'J)feteronmanyproc:eSSOfS 
andoperatingsystems,thus 
assuringlhatappllcalloopro­
gramscreatedwith BASCOM 
have,andwillcontinuetohave, 
thebroadestp:~SSiblamarll.et. 

lrtdustry'sheSIIancyovera 
serioust6-bitsol!ware 
commitment has flnany been 
btoken:andsecond,the 
capabill~esollhet6-bil 
processorsaref1nanybeing 
puttosomereallyexci\lnguses. 

A16-bllprocessorgJVes 
software designers many 
advantageslnherent~an 

enhancedlnstructionsei.For 
e~ample. we'vetakenaclvan­
tageolthee~pandedaddress· 
ing~nourMS·UNK.ahnkerlor 
PascatorFORTRAN programs 
lhatareuptoamegabyteinsize. 
ln96Kolmemory.lheMicrosofl 
80B6BAStCinterpretercan 
executea64Kprogram.almost 
doublelhesizee~ecutabteon 
an 8-blt run\lme. Appi1C8tions 
pi'ograms can be more sophis­
~catedll'ltheirleatures,human 
engineenngtactors,andin 
solvingproblemslhatlrivolve 
largeramountsoldata. 
Thel~ernumberolreg­

istersWI!hthe8086/808Spro­
cessorsalsomeansthatcom· 

I 
tasking environment 
imponantleatufeso!MS-OOS 
includeerrorrecovery,devic:e 
indepefldimti/Q.andbuilt·in 
variabtetength~iskreadsancl 

~~::::~~=!~,~ 
IBM Personal Computer wiU 
no doubt become an industry 
standard. 

Nowthatthet6·llllsoftware 
barrier has been crossed and 
thetechnk:alcapabiU\Iesolthe 
16-bitprocessorsarebeing 
apprecialed. MicrOsoft e~pectS 
toseemanyt6-tilpersonal 
computers.ll"s an industry move 

~~~~~-~::!~·:n~~ 
o!IBM,I\Should soonbeintun

Microsoft
COBOL
Passes GSA
Validation

Mtcrosofttsatwayscon­
cernedaboutstand&dsloratl
tis products The UMed States
government. the largest user
otcomputereqUipmentand
sortwaremthewo~d.hasde·
veJopedtestslorcornphance
Wllhandimptemenlabonol
standardslorcomptlers Tesllng
olcomptlers,calledvall11atton.
tsperformedbygovemment tn·
spectors.whoareindependent
ofsoltwaredevelopels

MK:fOSOIISubmltledds
COBOLcomptler(under\he
CP/M operating system) lor
validation. The General
SeMcesAdministratKJn(GSA)
pefformedthevabdab011tests
andvahdatedMtClOSOII COBOL
asalow·tnterme(fla\etmptemen­
tationolthet974ANStstandard
!OJ" COBOL

Why IS Microsoft concerned
aboutstan~rds.andwhydtd

we submrtMtcrosoftCOBOL
torvabdatton? Mike Orr, COBOL
productmanager.olleredthe
loiiOWIIlgreasons·
(con~nuedonbadl)

A page from Microsoft's third-quarter
reportfor 1981.

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device­
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files: To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con­
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application's portion of the memory space. It includes, among other things, the file­
name, the extensiqn, and information about the size and starting location of the file
on disk.)

Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap­
plication did not have to be modified if new devices were added to the system. From the

22 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 40

1981

user's point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/0 only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi­
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys­
tem maintained file lengths to the exact size in bytes and could be relied on to support logi­
cal records of any size desired.

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro­
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of

· which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND. COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

_Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM's phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces­
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk.

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table-the
FAT- that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al­
location map -a list of sixteen 1 KB allocation units where successive parts of the file
were stored-an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I- The Development of MS-DOS 23

ZTE (USA) 1007, Page 41

I.

I
I
I
I
I

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS's
ability to find and load even very long files was extremely rapid compared with CP/M's.

Two other important features- the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor_:_ provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli­
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap­
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre­
sponding sectors automatically.

Another innovative feature ofMS-DOS version 1.0 was the division of the command pro­
cessor, COMMAND. COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTO EXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND. COM to include commonly requested func­
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND. COM
that could be overwritten by any application requiring more memory. To maintain the in­
tegrity of the functions for the user, the resident part of COMMAND. COM was given the
job of checking the transient portion for damage when an application terminated. If neces­
sary, this resident portion would then load a new copy of its transient partner into memory.

EaseofUse

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel­
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing.

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to. in­
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin­
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications.

24 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 42

'
0

0

0

Package Contents

1 dislotette, with the followinq files:
COMMAND • COM
MSDOS.COM
EDLIN.COM
OEBUG.COM
FILCOM.COM

1 MS-oos Disk Operating System Manual

System Requirements

The MS-OOS Operating Syatem requires 8K bytes of memory.

0

0

0

Introduction

Features and Benefits of MS-oos
Using This Manual
Syntax Notation
Ms-oos s.tructure and Characteristics

Chapter 1
1.1
1.2
1.3

Chapter 2

2.1
2.2
2.3
2.3.1
2.3.2

Chapter l

3.1
3.2
3.2.1
3,2.2
3.3

General Ms-oos Commands
Control Function Charllcters
Special Edi tinq Collll'llands
Disk EJ:Crors

COMMAND.COM

Prompt
Filenames
Co~~U~~ands

Internal Co!IIJIIands
External Commands

EDLIN

Involdng EDLIN
Commands

Command Parameters
Interline Coromands

Error Messages

Chapter 4 DEBUG

4 .1 Invoking O&BUG
4.2 Co~~~~~~<~nds
4. 2 .1 Co!IUIIand Pa~:ametera
4.2.2 Cornmand Descriptions
4.3 Error Messaqes

Chapter 5 FILCOM

5.1 Involdnq FILCOM
5.2 Colflll\ands
5.2.1 Filenames
5.2.2 switches
5.3 &xafllples

ChapteJ: 6 Instructions for Sinqle Disk Drive Use:te

Two pages from Microsoft's MS-DOS version 1.0 manual. On the left, the system's requirements- 8 KB of
memory; on the right, the 118-page manual's complete table of contents.

1981

In a further attempt to safeguard data, MS-DOS also trapped hard errors- such as critical
hardware errors- that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem­
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them-a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature- one visible with the DIR command- was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Development of MS-DOS 25

ZTE (USA) 1007, Page 43

1''1'

'jl
I

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added. to MS-DOS to help IBM. IBM wanted to run
scripts- sequences of commands or other operations-one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex­
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and SofTech Microsystem's p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the Info World bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con­
cern was compatibility: To what extent was Microsoft's new operating system compatible
with the existing s~andard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that "our most optimistic view of
the number of machines using MS-DOS wouldn't have matched what really ended up
happening."

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM's name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC- in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the "CP/M Record Player"-presumably in
anticipation of a vast inventory of CP/M applications for the new computer-and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 44

'I:_:·
I .. •

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM's machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard for a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be
the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM's new operating system.

An operating system by any other name ...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson's
"Quick and Dirty Operating System" for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM's version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac­
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
oftrademarked Software Bus products, another of which was a product called SB-80,
Lifeboat's version of CP/M-80. ·

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as
COMPAQ-DOS and Zenith's Z-DOS.

Given this confusing host of names for a product it believed could become the industry
standard, Microsoft finally took the lead and, as developer, insisted that the operating sys­
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft's business­
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section 1: The Development of MS-DOS 27

ZTE (USA) 1007, Page 45

I
I

I
I
I i

I.

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS's biggest competitor.

Giv~~ the uncertain outcome of this two-horse race, some other software developers
chose to ~ait and see which way the hardware manufacturers would jump. For their part,
th{! hardware manufacturers were confronting the issue of compatibility between operat­
ing systems. Specifically, they needed to be convinced that MS-DOS was not .a maverick­
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

• First, one of Microsoft's goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

• Second, translation was possible only for software written in 8080 or 280 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502.

• Third, many applications were written in a high-levellanguage, rather than in assem­
bly language.

• Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto­
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86in its compatibility with existing-and appropriate­
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to iriclude both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines- although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so.

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft's list of MS-DOS custom­
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of1983 the technical supe­
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to makeMS-DOS the pri­
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and "dramatically" better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 46

MS-DOS

Standard Operating System for 8086 Micros

MS·DOS is a diSk operating system !rom Mocrosoft lor
80861808Bmicroprocessors.lnternaiiOnaiBus•nessMachmes
Corp. chose M5·DOS (called IBM Per50nat Computer DOS) to
be Its operating system of choice tor Its Personal Computer.
Microsoft's agreements with IBM and several other major
compu1ermanufacturersindlcatethatend·usersyst&ms

What Makes MS-OOS Important?

All of Microsoft's languages (BASIC lnt&rpreter, BASIC
Compiler. FORTRAN, COBOL, Pascal) are available
Immediately under M5·005. Users Of MS·OOS,are assured
that their operating systam wilt be the l1rst that Microsoft wiLl
support when any new products or major relenes are
announced.lnaddition,the8·bltverslonso1Microsolt'5
tanguagesareupwardcompatlbtewiththe16·bitverslona.
Thus, application p10grams wrillen In 8-bit Microsoft
lal'lguages can be rul'l under MS-005 with Utile or no
modificatlon.Microsoflwantstoencourageboththe
transporting of8·blt to 16·bil GOIIware, and tl'le development ol
new16·bltsoltware.

Here are the major features that make M5·005 the operating
system people want to use on 80B6 machil'les:

• E11y Convenlon from 8080 to 8088

MS.005 allows" much lf&O$portab1Uty of8·blt machine
language software as Is poaslble. MS.COS emulates
system calls to CP/M-80. By &Imply running assembly
tanguageaourcecodelhroughthelntetcorweraion
program, almost all 8080 programs wltt worll without
modllicetlon. In most ceaes. a converSion to MS.OOS is
easier thal'l conversion to other operating systems.

• DhlcelndeP*ndenti/D

M5·00S slmplllles 110 to different devices on the UNIX
concept. A alngte set of 1/0 calls lraats all devices atike
tromtheuser'aperspectiva.Therelsnoneedtorewrite
programs when 11 new device is added to the syslem.
Simply OPEN the device and READ or WRITE. Also,
devlceindependentiiOusuresthatdlflerentcontrot
charaeters(speciflcetlyTAB)erehandledthesameby
the different devices.

The Future of MS·DOS

Mlcroaott plans to et~hance MS-OOS. The additional
addressingspaceolthe8086proeessormakesmultl·taskinga
par1icularlyattractlveenhaneement.Anupwardmigratlonpath
to the X EN IX operatil'lg system through XENIX compatible
aystemcalls,"pipes,"and'1orking"llanotherpltiMed
enhancement.

Additional MS~DOS Features and Benefits

• WrltttnEnU,.Iyln8086AuemblyLtnguagt

ThlaprovidesslgnlliearllspeedlmprOYtlmefllsover
opere\lngsystemslhatarelargelytranslatedlromthelr8·
bi\COU11!6rplrta.

•F••tEtfleltn!FIIeS!rucluno

The formal ellminatea !he need for "extents." minimizes
acceutothedireclorytreck,andprovideslorduplicale
directorylnlormallonandverUyalterwrite.

• No NMd to Log In Oltkt

Aslongesno llle lscurrenllyopen,therels no need to
log In a new disk by typing connot-e. This greatly
improvesuaabllilylorsingladisksystamusersandlor
peopltwhollketoatorathelrdataonseparatedisketles.

• No Phytlelll Flle/Ditk Sire Um!biUon

UnlikeusersofoperatlngsystemsthatarehmltedtoB
megabytes. MS·DOS users would not have to break e 24
megabyteharddisklntothreesepa~atedrives

runnong M5·00S w1U be w•dely available 1n the near future.
making M5·005 the stal'ldard low-end operat•ng system lor
8086 micros. Why IS MS·DOS becoming popular? MS·DOS IS

animportantadvance•nmicrocomputeroperatingsystems

• AdolanctdErrotRe-eoveryProcedurea

M5·00S doesn't simp.ly lade away when errors occur. II
adiskerroroccursatanytimeduringanyprogram.MS·
DOS will retry the operation three times. II the opera lion
cannot be completed auccesslully, MS-OOS will return
anerrormessage,thenwaltfortheusertoentera
response.Theusercananemptrecoveryratherthan
reboottheoperatingsystem.

• Complete Pro;ram Retocatablllty

MS-005 15 a truly retocatable operating system. Not only
cantheMicrosoltreloeatablelinkingtoaderprovtdelor
separale segments. but also the COMMAND program il'l
MS-005 relocates the modules during loading rather
!han loading them to preset addresses. Thus, M5·DOS
does not h!We the 641(program space limllation Of other
operat1ngsystems.

• Powertut, Flulble File Chanc•rt•tlc:a

MS-005 has no practical limit on file or disk site. M5·
DOS usea4·byle XENIX OS compatible logical po,nter&
lorll!eandd1Skcapacityupto4glgabytes

Withll'l a single diskette. the user ol M5-005 can have
lil8$ ol dillerenttogical record lengths. MS·DOS 11

deslgnedtobtockal'lddeblock ltsownphys•calsectors:
128 is not a sacreo t~umber in MS·OOS.

M5-D05 remembers the exact end oil lie marker. Thus.
:-t..:~uldnneopenalllewithelogicalrecordtengthotMr

!han the physical record length, M5·D05 remembers
exaetlywherethelileendslothebyte,ratherthan
rotmdedto128bytes.Thisalleviatestheneedlorlorcmg
Contro:-Z'sorthetikeattheendolafile.

Plans tor M5·005 also include disk bullenng. graph1cs and
cursorpositiomng,kan,,support,mulh·userandharOd•sk
support,anonetwork•ng.

1981-1982

• No Overhud lor Non·1Z8-Byte Phy11cel Seclora

Onedoesnothavetoworryaboutdlllerentphysical
sector si:., when wflting a BIOS.

• Tlme/OI!tSiampt

Thisallev!ates.lorinstance,theneedtorecompilealileil
thotimeontherelocatablellleismorerecentthanonthe
sourcelile.

• LlfeboatA .. oclatea

TheworiO'slargestindapendentdlstributorol
microcomputer software has chosen to support M5·005
asitslow-end16·bitoperatingsystem.Recogni:ingthe
impor1ant migrotiol'l path from the 8·blt level to XENlX
O.S. Liteboat will be ottering a wide range ol software for
thO M5·D05 environment

• 100'/oiBMCompetlbl•
IBM is offering GOftware running under MS·COS. IBM has
announced Microsoft BASIC al'ld Microsoft Pascal. along
wilhaccounting,flnanclalptannlng,andwordprocessing
software running under M5·00S.

Mlcrosolt,lnc.
10800NEEighth,5u!te819
Bellevue.WA98004
206-455-8080 Tetex328945

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS.

Section I: The Development of MS-DOS 29

ZTE (USA) 1007, Page 47

1982-1983

Version2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided tO IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan­
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft's UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS- one closer to the operating system Microsoft had envisioned from the start­
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib­
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. Themajor design issue
confronting the developers, as well as the most visible example of its difference from ver­
sions 1.0, 1.1, and 1.25, was the introduction of<~; hierarchical file system to handle the file­
management needs of the XT's fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file­
management system implemented in XENIX, and it was the MS-DOS team's choice for
handling files on the XT's fixed disk.

I

30 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 48

1982-1983

The MS-DOS Jersion 1.0 manual next to the version 2.0 manual.

Partitioning, IBM's initial choice, had the advantages of familiarity, size, and ease of imple­
mentation. Many small-system users- particularly software developers- were already
familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel­
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub­
stantial growth in the storage capacity of disk-based media. Second, partitioning de­
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even­
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
l.x, and was based on a root, or main, directory under which the user could create a sys­
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden­
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which .could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions l.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM's
request, decided to use the backslash as the separator instead. Although the backslash

Section L The Development of MS-DOS 31
ZTE (USA) 1007, Page 49

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did im:roduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati­
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to th~ new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services.

Versions l.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac­
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when­
ever an MS-DOS program opened a file. All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure- different
from an PCB-so that the program never had to deal directly with information about the
file's location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten­
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program's input and out­
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND. COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

lnstallable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM's approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de­
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it-the BIOS

32 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 50

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde­
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer's operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version
ofMS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, IO.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list- this time, of device drivers- that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre­
viously installed driver- for example, the ANSI.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM's request, version 2.0 of MS-DOS also possessed the undocumented ability to per­
form rudimentary background processing- an interim solution to a growing awareness of
the potentials of multitasking.

Background print spooling was sufficient to meet the needs of most people in most situa­
tions, so the print spooler, PRINT. COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT. COM would be in­
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, an:d print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section L· The Development of MS-DOS 33

ZTE (USA) 1007, Page 51

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel­
oped. On the left, the
original IBM PC (ver­
sion l.OofMS-DOS);
on the right, the IBM
PCIXT(version 2.0).

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM-whether for a fixed disk or a floppy- was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de­
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code.
Though it maintained its compatibility with versions l.x,it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

34

/

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined- if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi­
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 52

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require­
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half­
height 51f4-inch drives, would employ a slightly different disk-controller architecture. Be­
cause of these differences from the standard PC line, IBM's immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys­
tem, because the larger storage capacity of the 20-megabyte disk stretched the size lim ita-·
tions for the file allocati:on table as it worked in version 2.0.

However, IBM's primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop­
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile ...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree­
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro­
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country's huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi's
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer's support for
MS-DOS.

Section L· The Development of MS-DOS 35

ZTE (USA) 1007, Page 53

;

'i

1983

[)()Sl.O

Irresistible
DOS 3.0
{nJemaJiona/ support,ft!Nharing capa­
bilities, and marry other jeaJuTes in DOS
3.0 result In a siiJn!fo:anlly enbanad
operating system.

The Ascent
of DOS

!herefore.:..Ktesoonl,a
WmwnoiiMBolllllfiiO<y.
OOS).IIlSupotdlycompol~

...,hDOSl.lbutdoeonoiR­
II,one~bcln,ithoiOOS

Olswbstan•llllyi>Jacr.~
S30ttq~>ln:s~lw.36KB<ll

~~:;:'~
rmemarybc96KS-ori!SKB

lhafiuddisll.
lltcauschsU.Chzlbeenift.

e Hands On: ()penning Syncms

MS-DOS 2.00: A
Hands-On Tutorial

A/,.,..,lht•---~~~o(t!MIBMI'tlftl..alCootr·
PJ~UTXTr•obbtdlhtht«<li..n~f• ... iu~mriitrz.tht
IAuu wnio1r o(Mimlu:ft'r Did! DpmUing Syut"'
(OOSl.OO},iltlrol....d""tM-M,_,.rk.c.,
~t>tUIIJiotoo/1/Mc..p.obt/irin""""'bWro..ll
I'CNSm"fott•""'"'/IOrlhtf/owo(UIIlbttW<tJitht
PC'•ptO<m«<mdptl'iplmg{<k~.'Tim·•tick!OJotf
•<Jouw,,_of~•WnWMlllr,tspocU~~y
thr~rtr-o~r,,.dfi/<ltfi)"UmaMntwb..tcb(ik

__ .._

E..,. bdoeo- II>< Lnm .., of changn, MS-DOS '"*'
ontofthcbn!bu,,for!l>tPC.ForS..O..,,..,,,.uoof
thiopad<O&ttombi""a~cdi<ar,olilo·koepin&•YII<m,
b.mhprom,;ns.alink<randdcbugpmarom.andmuch
........ M~UO(ftlO\I<IID<IIydlo:JUrfO<to/rhi•pado
Mosrcfthtirtim<~lpONintheapplocOiion$cmir<HI•
mmtofoprepada&<dprosr•m.Thet~pQiw<>lll
~insopc-r....,.,foraamplo,ron:l,u~-<>•ny
OOSeornmonck bcoidn fORMAT ond.COPV. Some
IIKniDI><honlwchpn:><n,.ngondll<>d•bout•du<e­
!OryltldcopyC<>It>nWI<Iouoin&wtldcotdomgloNI
dl.o~•m.

"Thton:l«~mpUitr....,.,onlheooMrh.ond.,lw
-.!thtrn.on .. llootinafotncwondinoctmill8com.
mondoandproctdlltn.OOS..,...onl.OOpromisnJObc
• .,;....,btingpod:*"'forthnt~~>m,and.<onoidmngoll
thencwfmumyougtrfOtonlySISO,iowouldbcobaf..
pin•<twi<ctkcp<i..,.

TheforntcfFilol
DOSl.OOuriliznot=-.,n.u:oumllili"&l)'<ttm.tnthi•
l)'po!oflm"Fff'""IIIOOI,orbu<,llil"f<IOryholclo•
cmainnurnbtrollii<LSom<olthoselilna,.,r..mRI""
dirro;tarin:chcro .. aauallroubdi,...ooriuofohe....,.
dorraoryandanct~~~,.inlilnltld<ubdorrccorinot.:,.,..

r=cdoodtatnatically,OOSIS
suppllodoni'MI~

~a>"''J''*diOII'c>Jrwlo·
•<k<ldi>hii<!Suscd&JrPf"''ouf

~o..erasonrorthe
lnJI<elsihalrnonypMIS

the op:nling 'l'll•m appear 10

been"""lllcnintheCian­
...,..Abo,lnlldloltheiiCIW<nll
upponprom!oedl<>tDOSJ.IIIol·

inmllcd,lndudlnsN•slur-

"""'"""""

A sample of the reviews that appeared
with each new version of MS-DOS.

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs.
Several wanted a networking capability, adding weight to IBM's request, but a more urgent
need for many- a need not shared by IBM at the time-was support for international
products. SpecifiCally, these manufacturers needed a version of MS-DOS that could be sold
in other countries- a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats. ·

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file.

36 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 54

NEC PC-9800 Series Personal Computer

"<{?01?f MS-OOS 11•-;• •~ 3. 10
Copyright 1981,1985 Microsoft Corp. I NEC Corporation

~Of.JiW!Ji3J1il?:"t't"
~$;1ft;!:, "h 1/ ;/ r 1-'71-:/(J) NECD!C • SYS "t't"

CCMMND.N -~ .. 3/ 3. 10

A>D!R IW

1-'717 A' (J)-;"{:Z.:7(J);T,IJ~-L>.7~JL·t<l: KAlAl RYU
-;" { 1.-':7 r IJ t;l: A'¥B!N -

CHKDSK EXE COPY2 COM ~ij~~ ~ ~
FC EXE FIND EXE FORMAT EXE
MORE COM SPEED COM SWITCH COM

20 @1(1)7.,. 1 Jvf.li<l) I? ll:t".
3604480 1<1 1-:QiW!Ji'iJjjl?:"t't".

R [:Q>tJ:] ~MS-DOS

ATTR!B EXE
D!SKCOPY COM.
KEY COM
SYS EXE

BACKUP EXE
MOUSE SYS
LABEL EXE
SORT COM

<

1983

A Kanji screen with
the MS-DOS copyright
message.

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo­
grams) arose. The difficulty with Kanji -is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char­
acters, however, sometimes use one byte, sometimes two. This variability creates prob­
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus­
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ­
ence between their version of the operating system and IBM's introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver­
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM's.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages. Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji.

Section 1- The Development of MS-DOS 3 7

ZTE (USA) 1007, Page 55

I

I j

I

I
i
I

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance­
and difficulty- of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter­
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re­
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro­
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordS tar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver­
sion of MS-DOS had to continue supporting CP/M-style calls.

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version l.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft's own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made iteasy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2.0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems-requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be al::>le to detect which version of the operating system the user was running.
For versions l.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM's upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone's best interest.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 56

·.·
-~.'

1983-1984

Version3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project,
"there was a very long period of time between 2.1 and 3.0-almost a year and a half. Dur­
ing that time, we believed we understood all the problems involved in making DOS a net­
working product. [But] as time progressed, we realized that we didn't fully understand it,
either from a compatibility standpoint or from an operating-system standpqint. We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short."

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and'; in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0
All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage­
ment, and logical device independence at the network level. Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 3.0 supported the AT's larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft's other OEM
customers as version 3.05.

Section I: The Development of MS-DOS 39

ZTE (USA) 1007, Page 57

I

1983-1984

RoW\

R.CJWI

c.
N~>xrsr c.

/FIAIOE.,t.y f:-­
@E')(tfZ~y-r--

Aaron Reynolds's diagram of version 3. O's network support, sketched out to enable him to add the fail option
to Interrupt 24 and find all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagram pinned to his office wall simply because "it was so much work
to put together. "

40 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 58

J ~lRO~LL
GLoSE:

.l>tR

TRAr'SPATH C

Section I: The Development of MS-DOS

1983-1984

{JiR.

{)Wf'o

41

ZTE (USA) 1007, Page 59

1983-1984

The Intel 80286 micro­
processor, the chip at
the heart of the IBM
PCJ4.T, which is shown
beside it. Version 3.0 of
MS-DOS, developedfor
this machine, offered
support for networks
and the PCJ4.T's 1.2-
megabyte floppy disk
drive and built-in
CMOS clock.

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net­
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS-DOS 1.0 used FCBs, requests in version 2.0 used
file handles. However, the version 2.0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 1.0. The redirected input and
output in version 2.0 further complicated the file-system requests. When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this
redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of I/0 calls that could be called directly by both FCB calls and handle
calls. The look-alike calls for CP/M-compatible character I/0 were included as part of the
set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the ISO Open System Intercon­
nect model Microsoft was using for networking. The ISO model describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physical link- plugging into the network- at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data. Th,e layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware.

On the IBM PC network, the transport layer and the server functions were handled by
IBM's Network Adapter card and the task of MS-DOS was to support this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3.0 did not provide this general-purpose
networking software, it did provide the basic support for IBM's networking hardware.

The support for IBM consisted of redirector and sharer software. MS-DOS used an ap­
proach to networking in which remote requests were routed by a redirector that was able

42 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 60

1984

to interact with the transport layer of the network. The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-level file I/0 code, the operating sys­
tem determined whether the call was local or remote. A local call would be allowed to fall
through to the local file 1/0 code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local.

Version3.1

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place
in version 3.0 when it was delivered to IBM, but the redirector itself wasn't ready. Version
3.1, completed by Zbikowski and Reynolds and released three months later,. completed this
network support and made it available in the form of Microsoft Networks for use on non­
IBM network cards.

Microsoft Networks was built on the concept of "services" and "consumers." Services
were provided by a file server, which was part of the Networks application and ran on a
computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk.
The requesting programs- the consumers- did not need any knowledge of the remote
machine, not even what type of file system it had.

This ability to pass a high-level request to a remote server without having to know the
details of the server's file structure allowed another level of generalization of the system.
In MS-DOS 3.1, different types of file systems could be accessed on the same network. It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files.

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

• First were the MS-DOS-compatible programs. These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any M5-DOS machine without problems.

• Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines.

• Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor­
mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.

Section l· The Development of MS-DOS 43

ZTE (USA) 1007, Page 61

I,,

1986

Network concerns

The file-accessmodule was changed in version 3.0 to simplify file management on the
network, but this did not solve all the problems. For instance, MS-DOS still needed to han­
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it. One of the functions of the server was to keep track of all open files
on the network, and it ran into difficulties when an FCB was opened 50 or 100 times and •
never closed. To solve this problem, Microsoft introduced an FCB cache inversion 3.1 that
allowed only four FCBs to be open at any one time. If a fifth FCB was opened, the least re­
cently used one was dosed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure.

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning- and generated new problems-with networking. One problem concerned
printers on the network. Commonly, networks are used to allow several people to share a
printer. The network could easily accommodate a program that would open the printer,
write to it, and close it again. Some programs, however, would try to use the direct IBM
BIOS interface to access the printer. To handle this situation, Microsoft's designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out tt-).e ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most
types of printer output on the network in a transp?-rent manner.

Version3.2

44

In January 1986, Microsoft released another revision of MS-DOS, version 3.2, which
supported 31/z-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacturers
·of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 62

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment. Not only has it "taught" millions of personal computers
"how to think," it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 ofMS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users. In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story
of MS-DOS will, of course, remain even longer. For this operating system has earned its
place in microcomputing history.

joAnne Woodcock

Section L· The Development of MS-DOS 45

ZTE (USA) 1007, Page 63

ZTE (USA) 1007, Page 64

ZTE (USA) 1007, Page 64

Part A
Structure of MS-DOS

ZTE (USA) 1007, Page 65

Article 1: An Introduction to MS-DOS

Articlel
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

• Storage management
• Processing management
• Security
• Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments. The general charac­
teristics ofthe three categories are listed in Table 1-1.

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional
ROM Operating Operating
Monitor System Environment

Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk
Programs on ROM Disk Disk
Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular
hardware configuration and provides a program with basic- and often direct- access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additional features such as a file system and log­
ical access to peripherals. (Logical access to peripherals allows applications to run in a
hardware-independent manner.) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution.
MS-DOS is a traditional operating system.

An operating environment is built on top of a traditional operating system. The operating
environment provides additional services, such as common menu and forms support, that

Section II· Programming in the MS-DOS Environment 51

ZTE (USA) 1007, Page 66

,.,1 I
'I 1:'.

1 'II
i. i

·I '
i!i

li

'li
II
·'

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent. Microsoft
Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

• The operating-system loader
• The MS-DOS BIOS
• The MS-DOS kernel
• The user interface (shell)
• Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF MS-oos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved. (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps.) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS-MSDOS.SYS and IO.SYS
(IBMDOS.COM and IBMBIO.COM with PC-DOS)- from conventional disk files into mem­
ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS's tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRuc­
TURE oF Ms-oos: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution. This loader is different from the ROM
loader and the operating-system loader.)

The MS-DOS BIOS

52

The MS-DOS BIOS, loaded from the file IO.SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel ap.d the hardware. An
application performs input and output by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly. See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers.
(A device driver is a specialized program that provides support for a specific device such as

The MS-DOS Encyclopedia

\

ZTE (USA) 1007, Page 67

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur­
ing system initialization as a result of DEVICE directives in the system's configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: lnstallable
Device Drivers; USER COMMANDS: coNFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

• Process control
• Memory management
• Peripheral support
• A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta­
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few "hooks" that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is "idle," and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple­
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it
is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53

ZTE (USA) 1007, Page 68

I'

j

''

I
I
I
I
I
I
I
I

I
:I
\'I•

'II'

:,1.1 !i
,!

I·'· 1'1;

; ·Ill
' 1,,11

, I 1:

d
II

,i'
~ i

Part A: Structure of MS-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable-size memory blocks. The
two basic memory"management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool.
Many programs perform their own memory management by using a local memory pool, or
heap- an additional memory block allocated from the operating system that the applica­
tion program itself divides into blocks for use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Memory M~nagement.

Peripheral support

The operating system provides peripheral support to programs through a set of operating­
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices-and
block devices in general- have the greatest number of features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system.

The file system

The file system is one of the largest portions of an operating system. A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS: MS-DOS
Storage Devices.

The file allocation information can take various forms, depending on the operating sys­
tem, but all forms basically track the space used by files and the space available for new
data. The directory contains a list of the files stored on the device, their sizes, and informa­
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS-DOS uses a
particular allocation method called a file allocation table (FAT) and a hierarchical directory

54 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 69

L

r1.!!''
i

Article 1: An Introduction to MS-DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE oF Ms-oos:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These
device "files" can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such
files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys­
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND. COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro­
gram terminates, control returns to the shell, which prompts the user for another com­
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem­
ory space versus speed and flexibility. Early microcomputer-based operating systems pro­
vided a minimal number of resident shell commands because of limited memory space;
modern operating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND. COM. Because
these programs are stored as executable files on disk, they are essentially the same as ap­
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running). See USER COMMANDS.

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See THE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum­
marized in the following table.

Section !1- Programming in the MS-DOS Environment 55

ZTE (USA) 1007, Page 70

::.:

Part A: Structure of MS-DOS

56

Version

PC-DOS 1.0

PC-DOS 1.1
MS-DOS 1.25
MS-DOS/PC-DOS 2.0

PC-DOS 2.1
MS-DOS 2.11

MS-DOS/PC-DOS 3.0

MS-DOS/PC-DOS 3.1
MS-DOS/PC-DOS 3.2

MS-DOS/PC-DOS 3.3

Date

1981

1982
1982
1983

1984

1984
1986

1987

Special Characteristics

First operating system for the IBM PC
Record-oriented files

Double-sided-disk support
First OEM release of MS-DOS
Operating system for the IBM PC/XT

UNIX/XENIX-like file system
Installable device drivers
Byte-oriented files
Support for fixed disks

Operating system for the IBM PCjr
Internationalization support

2.0x bug fixes
Operating system for the IBM PC/AT

Support for 1.2MB floppy disks
Support for large fixed disks
Support for file and record locking
Application control of print spooler

Support forMS Networks
3.5-inch floppy-disk support

Disk track formatting support added to
device drivers

Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32MB

PC-DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions l.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the lntel8080 (the predecessor of the 8086). These ver­
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks. Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS.

Although they retained compatibility with versions l.x, MS-DOS and PC-DOS versions 2.x
represented a major change. In addition to providing support for fixed disks, the new ver­
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file­
handle access instead of FCBs. (A file handle is a 16-bit number used to reference an inter­
nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table.) The UNIX/XENIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records. Applications can read or write
1 to 65535 bytes in a single operation, starting at any byte offset within the file. Filenames

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 71

Article 1: An Introduction to MS-DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.
Installable device drivers were another major enhancement.

MS-DOS and PC-DOS versions 3.x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-locking
and record-locking functions. Network support was added by providing hooks for a redi­
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system. It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera­
tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel8086-compatible microproces­
sor. See Specific Hardware Requirements below.

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program. The RAM must start at ad­
dress OOOO:OOOOH and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family -1 MB.

The final requirement for MS-DOS is a set of devices supported by device drivers, includ­
ing at least one block device, one character device, and a clock device. The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the character
device is usually a keyboard/display combination for interaction with the user; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub­
multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
components include

• An 8086-family microprocessor
• Memory
• Peripheral devices
• A ROM BIOS (PC-DOS only)

The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, including the Intel8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40.

Section Il- Programming in the MS-DOS Environment 57

ZTE (USA) 1007, Page 72

I

I

I
''II I'

Part A: Structure of MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timer; and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Hardware Interrupt Handlers.
MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS. Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088).

The 80386 adds further instructions and a third mode called virtual86 mode. The 80386
instructions operate in either a 16-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386.

Memory requirements

58

At a minimum, MS-DOS versions l.x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is
1MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.
MS-DOS <;an use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters.)

PC-DOS has the same minimum memory requireme~ts but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include

Base Address

AOOO:OOOOH
BOOO:OOOOH
B800:0000H
C800:0000H
FOOO:OOOOH

Size (bytes)

10000H (64 KB)
1000H(4KB)
4000H (16 KB)
4000H (16 KB)
10000H (64 KB)

Description

EGA video buffer
Monochrome video buffer
Color/graphics video buffer
Fixed-disk ROM
PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro­
processor for an interrupt vector table- that is, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 73

t. ..

Article 1: An Introduction to MS-DOS

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS-DOS system:

Device Name

CON
PRN
AUX
CLOCK$
Varies (A-E)

Description

Console input and output
Printer output
Auxiliary input and output
Date and time support
One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.
However, most MS-DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos:
Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a "bit
bucket"- that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end-of-file marker. One common use for the NUL device is as the redirected
output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file's menus and displays.

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
IO.SYS file loaded at initialization. PC-DOS, on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou­
tines used by the device drivers found in IBMBIO.COM (the PC-DOS version of IO.SYS).
The support provided by a PC ROM BIOS includes

• Power-on self test (POST)
• Bootstrap loader
• Keyboard
• Displays (monochrome and color/graphics adapters)
• Serial ports 1 and 2
• Parallel printer ports 1, 2, and 3
• Clock
• Print screen

Section II: Programming in the MS-DOS Environment 59

ZTE (USA) 1007, Page 74

I:

I

I
i

,I

I
I' "
I!
'!' r
'I
i

,, I
:' i

iJ I

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit
for additional ROMs. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs. (The fixed-disk ROM also includes an additional loader routine that
allows the system to start from the fixed disk.)

Summary

60

MS~DOS is a widely accepted traditional operating system. Its consistent and well-defined
interface makes it one of the easier operating systems to adapt and program.

MS-DOS is also a growing operating system- each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver­
sion has included more support for different devices, from 5.25-inch floppy disks to high­
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become
more sophisticated, MS-DOS too will continue to evolve.

Willian: Wong

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 75

iii. ...

Article 2: The Components ofMS-DOS

Article 2
The Components of MS-DOS

MS-DOS is a modular operating system consisting of multiple components with special­
ized functions. When MS-DOS is copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, when it is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module

MS-DOSBIOS
MS-DOS kernel
MS-DOS shell

MS-DOS Fllename

IO.SYS
MSDOS.SYS
COMMAND. COM

PC-DOS Fllename

IBMBIO.COM
IBMDOS.COM
COMMAND. COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial­
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-nos: An Introduction to MS-DOS. The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS-that is, no modifications are made by the OEM. The shell is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND. COM, is supplied by Microsoft.

The MS-DOS BIOS

The file IO.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into IO.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section II: Programming in the MS-DOS Environment 61

ZTE (USA) 1007, Page 76

. I

II. ' I

Pari :A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa­
tion module created by the OEM. The device drivers appear first in IO.SYS because they
remain resident after IO.SYS is initialized; the MS-DOS BIOS initialization routine and
SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$, and the driver
for one block device. The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel.

Device driver code can be split between IO.SYS and ROM. For example, most MS-DOS sys­
tems and all PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations.)

The IO.SYS file is an absolute program image and does not contain relocation information.
The routines in IO.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, IO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Structure of an Application
Program. Larger IO.SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside
the first 64 KB.

The MS-DOS kernel

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi­
tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programs in a hardware-independent manner and, in turn, is iso­
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

• File and directory management
• Character device input and output
• Time and date support

It also provides the following non-device-related functions:

• Memory management
• Task and environment management
• Country-specific co~iguration

62 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 77

··.t ..

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS-DOS
reserves Interrupts 20H through 3FH for this purpose. The MS-DOS interrupts are

Interrupt

20H
21H
22H
23H
24H
25H
26H
27H
28H-2EH
2FH
30H-3FH

Name

Terminate Program
MS-DOS Function Calls
Terminate Routine Address
Control-C Handler Address
Critical Error Handler Address
Absolute Disk Read
Absolute Disk Write
Terminate and Stay Resident
Reserved
Multiplex
Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The CP/M interface was provided in MS-DOS version 1.0
solely to assist in movement of CP/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively.)

MS-DOS version 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG.SYS file. CONFIG.SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de­
vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG.SYS.

The MS-.DOS shell

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized. It provides the interface
between the kernel and the user. The default MS-DOS shell, COMMAND. COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented.

COMMAND. COM is a replaceable shell. A number of commercial products can be used
as COMMAND. COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND. COM or by using
the SHELL command in CONFIG.SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section Il- Programming in the MS-DOS Environment 63

ZTE (USA) 1007, Page 78

i
I
I
I I
I ,

i
I

I
I

I
I

II
ll
II
q
I
I

'I
, I

, !'.I
~.~~I· ,.I

'lir.!'

Part A: Structure of MS-DOS

COMMAND. COM can execute a set of internal (built-in) commands, load and execute
programs, or interpret batch files. Most of the internal commands support file and direc­
tory operations and manipulate the program environment segment maintained by
COMMAND.COM. The programs executed by COMMAND. COM are .COM or .EXE files
loaded from a block device. The batch (.BAT) files supported by COMMAND. COM pro­
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands. In particular, when it is first loaded by
MS-DOS, COMMAND. COM searches for the batch file AUTOEXEC.BAT and interprets it, if
found, before taking any other action. COMMAND. COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter­
rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-oos: Exception Handlers.

COMMAND.COM's split personality

COMMAND. COM is a conventional .COM application with a slight twist. Ordinarily, a
.COM program is loaded into a single memory segment. COMMAND. COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in low memory. The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated
and the resident portion of COMMAND. COM regains control of the system. The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND. COM continues its normal
operation.

This "split personality" exists because MS-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND.COM, which contains the
built~ in commands and batch~file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional
RAM and allows larger application programs to be run.

Command execution

64

COMMAND. COM interprets commands by first checking to see if the specified command
matches the name of an internal command. If so, it executes the command; otherwise, it
searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM
or .EXE program is found, COMMAND. COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMAND. COM itself interprets .BAT files.
If no file is found, the message Bad command or file name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name to be preceded by a full pathname. If a path is not
explicitly specified, the COMMAND.COM search mechanism uses the contents of the

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 79

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com­
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted. For example, the PATH
specification

PATH C:\BIN;D:\BIN;E:\

causes COMMAND. COM to search the current directory, then C: \BIN, then D: \BIN, and
finally the root directory of drive E. COMMAND. COM searches each directory for a match­
ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS. An environment is a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable==value

that provide such information as the current search path used by COMMAND. COM to find
executable files, the location of COMMAND.COM itself, and the format of the user prompt.
The end of the set of strings is marked by a null string- that is, a single zero byte. A
specific environment is associated with each program in memory through a pointer con­
tained at offset 2CH in the 256-byte program segment prefix (PSP). The maximum size of
an environment is 32 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of
the new program's environment are provided to MS-DOS by the initiating program- one
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program's
environment. The default environment provided to the new program is a copy of the
initiating program's environment.

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program's environment, because MS-DOS provides a pointer
to this environment only to the new program. Any changes made to the new program's en­
vironment during program execution are invisible to the initiating program because a
child program's environment is always discarded when the child program terminates.

The system's master environment is normally associated with the shell COMMAND. COM.
COMMAND. COM creates this set of environment strings within itself from the contents
of the CONFIG.SYS and AUTOEXEC.BAT files, using the SET, PATH, and PROMPT com­
mands. See USER COMMANDS: AUTOEXEC.BAT; coNFIG.sYs. In MS-DOS version 3.2, the
initial size of COMMAND. COM's environment can be controlled by loading
COMMAND. COM with the IE parameter, using the SHELL directive in CONFIG.SYS.
For example, placing the line

SHELL=COMMAND.COM /E:2048 /P

Section 11- Programming in the MS-DOS Environment 65

ZTE (USA) 1007, Page 80

I
I
I
I

I
I

I I
I I

I.
I

I I i

I! i
j; i

lj

.J lj ,,,

I' II

I 'i
I I

I
I
I

it : l
'I''

'I I 11

,,,! .lill'l

Part A: Structure of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND. COM's environment to 2 KB. (The /P
option prevents COMMAND. COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted.)

The SET command is used to displ.ay or change the COMMAND. COM environment con­
tents. SET with no parameters displays the list of all the environment strings in the envi­
ronment. A typical listing might show the following settings:

COMSPEC=A:\COMMAND.COM
PATH=C:\;A:\;B:\
PROMPT=$p $d t_ng

TMP=C:\TEMP

The following is a dump of the environment segment containing the previous environment
example:

0 2 3 4 5 6 7 8 9 A B c D E F
0000 43 4F 4D 53 50 45 43 3D-41 3A SC 43 4F 4D 4D 41 COMSPEC=A:\COMMA
0010 4E 44 2E 43 4F 4D 00 50-41 54 48 3D 43 3A SC 3B ND.COM.PATH=C:\;
0020 41 3A SC 3B 42 3A SC 00-50 52 4F 4D 50 54 3D 24 A:\;B:\.PROMPT=$
0030 70 20 20 24 64 20 20 24-74 24 SF 24 6E 24 67 00 p $d t_ng.

0040 54 4D 50 3D 43 3A SC 54-45 4D 50 00 00 00 00 00 TMP=C:\TEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a .BAT extension that contain MS-DOS user and batch com­
mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: BATCH. Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE.BAT <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the
screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND.COM one line at a time. In addition to the stan­
dard MS-DOS commands, COMMAND. COM's batch-file interpreter supports a number of
special batch commands:

Command

ECHO*
FOR*

Meaning

Display a message.
Execute a command for a list of files.

66 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 81

Command

GOTO*
IF*
PAUSE
REM
SHIFT*

Meaning

Transfer control to another point.
Conditionally execute a command.
Wait for any key to be pressed.
Insert comment line.
Access more than 10 parameters.

• MS-DOS versions 2.0 and later

Article 2: The Components of MS-DOS

Execution of a batch file can be terminated before completion by pressing Ctrl-C or
Ctrl-Break, causing COMMAND. COM to display the prompt

Terminate batch job? (Y/N)

1/0 redirection

1/0 redirection was introduced with MS-DOS version 2.0. The redirection facility is imple­
mented within COMMAND.COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H). COMMAND.COM uses these func­
tions to provide both redirection at the command level and a UNIX/XENIX-like pipe
facility.

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and output file handles. The in­
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the
special characters>,>>, and<. Standard output (default= CON) is redirected using> and
>>followed by the name of a file or character device. The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist­
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device. See also PRO­
GRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Writing MS-DOS
Filters.

The redirection facility can also be used to pass information from one program to an­
other through a "pipe." A pipe in MS-DOS is a special file created by COMMAND.COM.
COMMAND.COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar CD, separates the pro­
gram names. Multiple program names can be piped together in the same command line:

C>DIR *·* : SORT : MORE <Enter>

This command is equivalent to

C>DIR *·* >PIPED <Enter>
C>SORT < PIPED > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section Jl- Programming in the MS-DOS Environment 67

ZTE (USA) 1007, Page 82

I I

I II I
I I
! I

'II I: ~~·I I ,,

I ' ji! I

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper­
ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations. This section discusses the complete process normally asspciated with MS-DOS
versions 2.0 and later. (MS-DOS versions l.x use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a "cold boot" or a "warm boot." On IBM-compatible
machines, a cold boot is performed when the computer is first turned on or when a hard­
ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter­
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time. For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:

MS-DOS Storage Devices. The body of MS-DOS is contained in two files: IO.SYS and
MSDOS.SYS (IBMBIO.COM and IBMDOS.COM with PC-DOS). IO.SYS contains the
Microsoft system initialization module, SYSINIT, which configures MS-DOS using either
default values or the specifications in the CONFIG.SYS file, if one exists, and then starts up
the shell program (usually COMMAND. COM, the default). COMMAND. COM checks for an
AUTO EXEC. BAT file and interprets the file if found. (Other shells might not support such
batch files.) Finally, COMMAND. COM prompts the user for a command. (The standard
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

68

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:OOOOH, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine. (This has nothing to do with MS-DOS;
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS
occupies the address space from FOOO:OOOOH to this jump instruction. Figure 2-1 shows the
location of the ROM BIOS within the 1MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 83

.----------,....- FFFF:OOOFH(l MB)

ROM BIOS ,.._ FFFF:OOOOH

1----------i....- FOOO:OOOOH

Other ROM and RAM

1----------l....- Top of RAM
(AOOO:OOOOH for IBM PC)

Free RAM

~.-______ __.,.._ OOOO:OOOOH

Figure 2-1. Memory layout at startup.

Article 2: The Components of MS-DOS

The initialization routine in the ROM BIOS-the POST procedure- typically deter­
mines what devices are installed and operational and checks conventional memory (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB). The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera­
tion. First, it initializes the interrupt vector table at the beginning of memory and any inter­
rupt controllers that reference the table. The interrupt vector table area is located from
OOOO:OOOOH to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem­
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou­
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done
before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is running; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BlOSs are installed
by scanning the memory from AOOO:OOOOH to FOOO:OOOOH for a particular sequence of sig­
nature bytes. If additional ROM BlOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT's fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a boatable

Section I1- Programming in the MS-DOS Environment 69

ZTE (USA) 1007, Page 84

Part A: Structure of MS-DOS

,.---------, ~ FFFF:OOOFH(I MB)

ROM BIOS ~ FFFF:OOOOH

1--------i ~ FOOO:OOOOH

Other ROM and RAM

1----------1 ~ Top of RAM
(AOOO:OOOOH for IBM PC)

Free RAM

1--R-O_M_B_IO-S-ta-bl-es---f ~ 0000:0600H
1-----------1 ~ 0000:0400H

Interrupt vectors

'------------' ~ OOOO:OOOOH

Figure 2-2. The interrupt vector table and the ROM BIOS table.

disk in it. If there is not, the routine then invokes the ROM associated with another boot­
able device to see if that device contains a boo table disk. This procedure is repeated until
a boatable disk is found or until all boatable devices have been checked without success,
in which case ROM BASIC is enabled.

Boatable devices can be detected by a number of proprietary means. The IBM PC ROM
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family
short or long jump at the beginning of the sector and for AA55H in the last word of the sec­
tor. This signature indicates that the sector contains the operating-system loader. Data
disks- those disks not set up with the MS-DOS system files- usually cause the ROM
loader routine to display a message indicating that the disk is not a boatable system disk.
The customary recovery procedure is to display a message asking the user to insert
another disk (with the operating system files on it) and press a key to try the load opera­
tion again. The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure.

When it finds a boatable device, the ROM loader routine loads the operating-system loader
and transfers control to it. The operating-system loader then uses the ROM BIOS services
through the interrupt table to load the next part of the operating system into low memory.

Before it can proceed, the operating-system loader must know something about the con­
figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data
structure that contains this information. This structure, known as the BIOS parameter
block (BPB), is located in the same sector as the operating-system loader. From the con­
tents of the BPB, the operating-system loader calculates the location of the root directory

70 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 85

I

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

ROM BIOS tables

Interrupt vectors

+- FFFF:OOOFH(l MB)

+- FFFF:OOOOH

+- FOOO:OOOOH

+- TopofRAM
(AOOO:OOOOH for IBM PC)

+- Arbitrary location

+- 0000:0600H

+- 0000:0400H

+- OOOO:OOOOH

Figure 2-3. A loaded boot sector.

Boot sector +- First sector on the disk

Reserved
(optional)

FAT#l

FAT#2

Root directory

IO.SYS

MSDOS.SYS

File data area

Figure 2-4. Boot-disk configuration.

Article 2: The Components of MS-DOS

Section II: Programming in the MS-DOS Environment 71

ZTE (USA) 1007, Page 86

l
I

I
I

. I

I

I
I
I
I
I

I
!

I I
I
I

II
:'II

I i
II
i I I

i .,1

Part:A:•.Structure of MS-DOS

72

for the boot disk so that it can verify that the first two entries in the root directory are
IO.SYS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
loader usually does not check the file allocation table [FAT] to see ifiO.SYS and
MSDOS.SYS are actually stored in contiguous sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF Ms-nos: MS-DOS Storage Devices.

Next, the operating-system loader reads the sectors containing IO.SYS and MSDOS.SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5). (An alterna­
tive method is to take advantage of the operating-system loader's final jump to the entry
point in IO.SYS and include routines in IO.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating-system loader
transfers control to IO.SYS, passing the identity of the boot device. The operating-system
loader is no longer needed and its RAM is made available for other purposes .

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

MSDOS.SYS

IO.SYS

ROM BIOS tables

Interrupt vectors

._ FFFF:OOOFH(l MB)

._ FOOO:OOOOH

._ TopofRAM
(AOOO:OOOOH for IBM PC)

._ Arbitrary location

._ SYSINIT

._ MS-DOS BIOS (resident device drivers)

._ 0000:0600H

._ 0000:0400H

._ OOOO:OOOOH

Figure 2-5. IO.SYS and MSDOS.SYS loaded.

The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 87

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded IO.SYS
and MSDOS.SYS and transferred control to the beginning of IO.SYS. To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load­
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to IO.SYS, however, MS-DOS imposes its standards.

The IO.SYS file is divided into three modules:

• The resident device drivers
• The basic MS-DOS BIOS initialization module
• The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the IO.SYS file,
before the initialization modules.

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created IO.SYS. On IBM-compatible machines, it then

. examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust­
ment usually entails removing those drivers that have no corresponding installed hard­
ware. The initialization routine may also modify internal tables within the device drivers.
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with system initialization. The first step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of IO.SYS, which contains the resident device drivers. This move over­
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou­
tine, which are no longer needed. The resulting memory layout is shown in Figure 2-6.

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel. This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH.

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver to set up vectors for any external hardware interrupts used by the
device. Each block-device driver returns a pointer to a BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF Ms-oos:
MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section IL- Programming tn the MS-DOS Environment 73

ZTE (USA) 1007, Page 88

! ,(.

! 'I
I'
I I

I:
I·

I

i
i

rl
il
I I

,:r

I
i

II
I

i.

Part A: Structure of MS-DOS

74

ROM BIOS

Other ROM and RAM

SYSINIT

Free RAM

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

~ FFFF:OOOFH(l MB)

~ FOOO:OOOOH

~ TopofRAM
(AOOO:OOOOH for ffiM PC)

~ Resident device drivers

~ 0000:0600H

~ 0000:0400H

~. OOOO:OOOOH

Figure 2-6. SYSINIT and MSDOS.SYS relocated.

The kernel initialization routine's final operation before returning to SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS~DOS is now com­
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIG .SYS file in the root directory of the boot
drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these struc­
tures are allocated following the MS-DOS kernel (Figure 2-7).

Then SYSINIT processes the CONFIG.SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is
loaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI­
RONMENT: CusTOMIZING MS-oos: Installable Device Drivers.

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 89

ROM BIOS

Other ROM and RAM

SYSINIT

'

Free RAM

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.,__ FFFF:OOOFH(l MB)

.,__ FOOO:OOOOH

.,__ TopofRAM
(AOOO:OOOOH for IBM PC)

.,__ Resident device drivers

.,__ 0000:0600H

.,__ 0000:0400H

.,__ OOOO:OOOOH

Article 2: The Components of MS-DOS

Figure 2-7. Tables allocated and installable device drivers loaded.

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
device driver initialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character­
device drivers supersede resident character-device drivers with the same name; installable
block-device drivers cannot supersede resident block-drivers and are assigned drive letters
following those of the resident block-device drivers.

Section II: Programming in the MS-DOS Environment 75

ZTE (USA) 1007, Page 90

ParGA:' StrUCture of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX. The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to LPTl); the standard auxiliary port
is AUX (which defaults to COMl). Installable device drivers with these names will replace
any resident versions.

Starting the shell
SYSINIT's last function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING
FORMs-nos: The MS-DOS EXEC Function. The SHELL statement in CONFIG .SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND. COM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8).

COMMAND.COM

COMMAND. COM consists of three parts:

• A resident portion
• An initialization module
• A transient portion

The resident portion contains support for termination of programs started by
COMMAND. COM and presents critical-error messages. It is also responsible for re­
loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran­
sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG.SYS file, if any. See USER
COMMANDS: COMMAND. Next, it processes the AUTOEXEC.BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. the relocated transient portion then displays
the MS-DOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes
it. Commands are divided into three categories:

• Internal commands
• Batch files
• External commands

Internal commands are routines contained within COMMAND. COM and include opera­
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran­
sient portion. Internal commands consist of a keyword, sometimes followed by a list of ·
command-specific parameters.

76 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 91

l

ROM BIOS

Other ROM and RAM

SYSINIT

.

Free RAM

COMMAND.COM
(transient)

COMMAND. COM
(initialization)

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

,..__ FFFF:OOOFH(l MB)

,..__ FOOO:OOOOH

,..__ Top of RAM
(AOOO:OOOOH for IBM PC)

,..__ Resident device drivers

,..__ 0000:0600H

,..__ 0000:0400H

,..__ OOOO:OOOOH

Article 2: The Components of MS-DOS

Figure 2-8. COMMAND. COM loaded.

Section IL- Programming in the MS-DOS Environment 77

------------....... ZTE (USA) 1007, Page 92

Part A: Structure of MS-DOS

78

ROM BIOS

Other ROM and RAM

COMMAND.COM
(transient)

Free RAM

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOSBIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.__ FFFF:OOOFH(l MB)

.__ FOOO:OOOOH

.__ TopofRAM
(AOOO:OOOOH for IBM PC)

.__ Resident device drivers

.__ 0000:0600H

.__ 0000:0400H

.__ OOOO:OOOOH

Figure 2-9. COMMAND. COM after relocation.

Batch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: BATCH.

External commands, which are actually executable programs, are stored in separate
files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Struc­
ture of an Application Program. These programs are invoked with the name of the file
without the extension. (MS-DOS versions 3.x allow the complete pathname of the external
command to be specified.)

The MS-DOS Encyclopedia ZTE (USA) 1007, Page 93

Article 2: The Components of MS-DOS

External commands are loaded by COMMAND. COM by means of the MS-DOS EXEC func­
tion. The EXEC function loads a program into the free memory area, also called the tran­
sient program area (TPA), and then passes it control. Control returns to COMMAND. COM
when the new program terminates. Memory used by the program is released unless it is a
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: CusTOMIZING Ms-oos: Terminate-and-Stay-Resident Utilities.

After a program terminates, the resident portion of COMMAND. COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion's memory space. The validity check is done by computing a check­
sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND. COM file.

Just as COMMAND. COM uses the EXEC function to load and execute a program, pro­
grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active task- the last one executed- ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi­
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND. COM. RAM-resident programs that remain in memory after they have termi­
nated are the exception. In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is still in effect.

A custom shell program

The SHELL directive in the CONFIG.SYS file can be used to replace the system's default
shell, COMMAND. COM, with a custom shell. Nearly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions.
For example, the program in Figure 2-11 can be used to make any application program
appear to be a shell program- if the application program terminates, SHELL. COM
restarts it, giving the appearance that the application program is the shell program.

SHELL. COM sets up the segment registers for operation as a .COM file and reduces the
program segment size to less than 1 KB. It then initializes the segment values in the param­
eter table for the EXEC function, because .COM files cannot set up segment values within a
program. The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL. COM prints a
message if the EXEC operation fails. The loop continues forever and SHELL. COM will
never return to the now-discarded SYSINIT that started it.

Section II: Programming in the MS-DOS Environment 79

ZTE (USA) 1007, Page 94

I)' ,I

•!'
I'

.I
I Part A: Structure of MS-DOS

80

ROM BIOS

Other ROM and RAM

COMMAND.COM
(transient)

Free RAM

Program#3
(active)

Program#2

Program#!

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.._ FFFF:OOOFH(l MB)

.._ FOOO:OOOOH

.._ TopofRAM
(AOOO:OOOOH for IBM PC)

.._ Resident device drivers

.._ 0000:0600H

.._ 0000:0400H

.._ OOOO:OOOOH

Figure 2-10. Multiple programs loaded.

The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 95

r
{~

I
ii ;r
·t

f:;
I,

Article 2: The Components of MS-DOS

SHELL.ASM A simple program to run an application as an
MS-DOS shell program. The program name and
startup parameters must be adjusted before
SHELL is assembled.

Written by William wong

To create SHELL.COM:

stderr
cr
lf
cseg

start

start

C>MASM SHELL;
C>LINK SHELL;
C>EXE2BIN SHELL.EXE SHELL.COM

equ 2 standard error
equ Odh ASCII carriage return
equ Oah ASCII line feed
segment para public 'CODE'

Set up DS, ES, and SS:SP to run as .COM

assume cs:cseg
proc far
mov ax,cs set up segment registers
add ax,10h AX = segment after PSP
mov ds,ax
mov ss,ax set up stack pointer
mov sp,offset stk
mov ax, offset shell
push cs push original cs
push ds push segment of shell

push ax push offset of shell

ret jump to shell
endp

Main program running as .COM

CS, DS, SS = cseg
Original CS value on top of stack

assume cs:cseg,ds:cseg,ss:cseg
seg_size equ (((offset last) - (offset start)) + 10fh)/16
shell proc near

pop es ES segment to shrink
mov
mov

int
mov
mov

bx,seg_size
ah,4ah
21h
cmcL.seg,ds
fcb1_seg,ds

mov fcb2_seg,ds

BX new segment size
AH modify memory block
free excess memory
setup segments in
parameter block for EXEC

mov dx,offset main_loop
mov ax,2523h ; AX= set Control-Chandler

Figure 2-11. A simple program to run an application as an MS-DOS shell. (more)

Section II: Programming in the MS-DOS Environment 81

ZTE (USA) 1007, Page 96

I
I

'II 1,1
i

II
li
.'i
i'l
lj

/'.
'i

! ' I :
iII
, I

I: ,.,f

Part A: Structure of MS-DOS

82

int 21h
dx,offset
ax,2524h
21h

; set handler to DS:DX

mov
mov

int

main_loop

main_loop:
push ds
push es
mov
mov
mov
mov
mov
int
mov
mov
pop
pop
jnc
mov
mov

cs:stk_seg,ss
cs:stk_off,sp
dx,offset pgm_name
bx,offset par_blk

ax,4b00h
21h
ss,cs:stk_seg
sp,cs:stk_off

es
ds
main_loop
dx,offset loact_msg
cx,loact_msg_length

AX = set critical error handler
set handler to DS:DX
Note: OS is equal to CS

save segment registers

save stack pointer

AX = EXEC/run program
carry = EXEC failed
restore stack pointer

restore segment registers

loop if program run

call print display error message

mov ah,08h AH = read without echo

int 21h wait for any character

jmp main_loop

shell endp

Print string

DS:DX

ex

print

print

address of string

size

proc near
mov ah,40h
mov bx,stderr

int 21h

ret
endp

Message strings

loact_msg db cr,lf

execute forever

AH = write to file
BX = file handle
print string

db 'Cannot load program. ',cr,lf
db 'Press any key to try again. ',cr,lf

loact_msg_length equ $-load_msg

Program data area

0

0

stack segment pointer
save area during EXEC

stk_seg dw
stk_off dw
pgm_name db '\NEWSHELL.COM',O ; any program will do

Figure 2-11. Continued.

The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 97

Article 2: The Components of MS-DOS

par_.blk dw 0 use current environment

dw offset cmd-line command-line address

cmd-seg dw 0 fill in at initialization

dw offset fcb1 default FCB #1

fcb1_seg dw 0 fill in at initialization

dw offset fcb2 default FCB #2
fcb2_seg dw 0 fill in at initialization

cmd-line db O,cr actual command line

fcb1 db 0

db 11 dup (' ')

db 25 dup (0)

fcb2 db 0

db 11 dup (' ')

db 25 dup (0)

dw 200 dup (0) program stack area

stk dw 0
last equ $ last address used

cseg ends

end start

Figure 2-11. Continued.

SHELL. COM is very short and not too smart. It needs to be changed and rebuilt if the name
of the application program changes. A simple extension to SHELL-call it XSHELL­
would be to place the name of the application program and any parameters in the com­
mand line. XSHELL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function. The CONFIG.SYS line for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAM2 PARAM3

SHELL. COM does not set up a new environment but simply uses the one passed to it.

William Wong

Section !1- Programming in the MS-DOS Environment 83

ZTE (USA) 1007, Page 98

Article 3: MS-DOS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file­
system support that is part ofthe MS-DOS kernel. The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in IO.SYS and installable block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: STRUCTURE oF Ms-oos: The Components of MS-DOS; CusTOMIZING
Ms-oos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver. Information
about the number of heads, tracks, and so on is required only for those partitioning pro­
grams that allocate logical devices along these boundaries. See Layout of a Partition below.

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving on to the logical layout of the file sys­
tem. The scheme examined is for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

• Physical device layout
• Logical device layout
• Logical block layout
• MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device. A partitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one. Each logical device

Section II: Programming in the MS-DOS Environment 85

ZTE (USA) 1007, Page 99

I '
I

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PRoGRAMMING FORMs-nos: File and Record Management; Disk Directo­
ries and Volume Labels.

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag­
netic media such as floppy or fixed disks. Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAM disks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer's power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its contents are not lost when the computer's power is turned off). Second, tliey are
usually not portable.

Physical disks

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material. The disk is rotated in the drive at high
speeds- approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term "fixed" refers to the fact that the medium is built permanently
into the drive, notto the motion of the medium.) Fixed disks are also referred to as "hard"
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium. The regions act like small bar magnets with
north and south poles. The magnetic regions of the medium can be logically oriented
toward one or the other of these poles-orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli­
ably capable of flux reversal. Higher densities of these regions yield higher-capacity disks.
The flux density of a particular system depends on the drive mechanics, the characteris­
tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

86 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 100

Article 3: MS-DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding.
Each technique offers double the data encoding density of the previous one. The associ­
ated control logic is more complex for the denser techniques.

Tracks
A read/write head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circular fashion around the disk (Figure 3-1). Standard 5.25-
inch floppy disks contain either 40 (0-39) or 80 (0-79) tracks per side. Like-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track. For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer
media usually use one of two types of concentric rings. The first type keeps the same num­
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc­
ity (CAY). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter. This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLY).

Sector

'\,~/

Figure 3-1. The physical layout of a CAV 9-sector, 5.25-inch floppy disk.

Most MS-DOS computers use CAY disks, although a CLY disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the flux density of the medium and a CAY disk must maintain the same number
of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,
the sectors on or near the perimeter do not use the full capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLY disks (such as CD ROMs) usually have slower access times than CAY disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track. Thus, CAY disks are preferred for MS-DOS systems.

Section II: Programming in the MS-DOS Environment 87
ZTE (USA) 1007, Page 101

Part A: Structure of MS-DOS

Heads
Simple disk systems use a single disk, or platter, and use one or two sides of the platter;
more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor. The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter. (Performance
can be increased by increasing the number of heads to as many as one head per track,
elimina.ting the positioning mechanism. However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of
a single platter, whereas the term cylinder refers to the number of like-numbered tracks on
a device (Figure 3-2).

cylinder

Side 3, track 7

Figure 3-2. Tracks and cylinders on a fixed-disk system.

Sectors
Each track is divided into equal-size portions called sectors. The size of a sector is a power
of 2 and is usually greater than 128 bytes- typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and
the medium. Hard-sectored disks are implemented using a series of small holes near the

88 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 102

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft­
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per­
formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple­
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a
disk drive built for use with soft-sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.
The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec­
tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To
access a particular sector, the disk drive controller hardware moves all heads to the speci­
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen­
tations. The first method, used with floppy disks, employs an "open-loop" servomecha­
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed
position.) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly- the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second method-a "closed-loop" servomechanism that
reserves one side of one platter for positioning information. This information, which indi­
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled. Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly. This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller. Because the "servo platter" usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving
CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency).

Section II: Programming in the MS-DOS Environment 89

ZTE (USA) 1007, Page 103

/
I

P;1rt A:<Stq.Jcture of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3). The underlying
pie is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track. This staggering of sectors is called skewing or, more com-.
manly, interleaving. A 2-to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave
means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction

Figure 3-3. A 3:1 interleave.

One approach to improving fixed-disk performance is to decrease the interleave ratio.
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,
provided the disk controller can process at that speed. The normal interleave for an IBM
PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail­
able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS­
based computers all have a 1:1 interleave ratio.

Layout of a.partition

For several reasons, large physical block devices such as fixed disks are often logically par­
titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow
a device to be shared among different operating systems. Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MB restriction (important for
large fixed disks). MS-DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of
the disk. This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table.)

90 The MS-DOS Encyclopedia
ZTE (USA) 1007, Page 104

i,.

Article 3: MS-DOS Storage Devices

[

Partition 1

l Partition 3 I
Partition 2

~~~artition4 

Figure 3-4. A partitioned disk. 

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con­
tains the partition table and a bootstrap program capable of checking the partition table 
for a boatable partition, loading the boatable partition's boot sector, and transferring con­
trol to it The partition table, located at the end of the first physical sector of the disk, can 
contain a maximum of four entries: 

Offset From 
Start of Sector Size (bytes) Description 

OlBEH 16 Partition #4 
OlCEH 16 Partition #3 
01DEH 16 Partition #2 
01EEH 16 Partition #1 
01FEH 2 Signature: AA55H 

The partitions are allocated in reverse order. Each 16-byte entry contains the following 
information: 

Offset From 
Start of Entry 

OOH 
01H 

Size (bytes) 

1 
1 

Description 

Boot indicator 
Beginning head 

(more) 

Section II: Programming in the MS-DOS Environment 91 

ZTE (USA) 1007, Page 105



Part A: Structure of MS-DOS 

Offset From 
Start of Entry Size (bytes) Description 

02H 1 Beginning sector 
03H 1 Beginning cylinder 
04H 1 System indicator 
05H 1 Ending head 
06H 1 Ending sector 
07H 1 Ending cylinder 
08H 4 Starting sector (relative to beginning 

of disk) 
OCH 4 Number of sectors in partition 

The boot indicator is zero for a nonbootable partition and SOH for a boatable (active) parti­
tion. A fixed disk can have only one boatable partition. (When setting a boatable partition, 
partition programs such as FDISK reset the boot indicators for all other partitions to zero.) 
See USER COMMANDS: FDISK. 

The system indicators are 

Code 

OOH 
01H 
04H 

Meaning 

Unknown 
MS-DOS, 12-bit FAT 
MS-DOS, 16-bit FAT 

Each partition's boot sector is located at the start of the partition, which is specified in 
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor­
mation, stored in the partition table in this order, is loaded into the DX and CX registers by 
the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting 
sector of the partition relative to the beginning of the disk is also indicated. The ending 
head, sector, and cylinder numbers, also included in the partition table, specify the last ac­
cessible sector for the partition. The total number of sectors in a partition is the difference 
between the starting and ending head and cylinder numbers times the number of sectors 
per cylinder. 

MS-DOS versions 2.0 through 3.2 allow only one.MS-DOS partition per partitioned device. 
Various device drivers have been implemented that use a different partition table that 
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS parti­
tions are usually accessible only by means of an installable device driver that knows about 
this change. (Even with additional MS-DOS partitions, a fixed disk can have only one boot­
able partition.) 

92 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 106



Article 3: MS-DOS Storage Devices 

Layout of a file system 

Block devices are accessed on a sector basis. The MS-DOS kernel, through the device 
driver, sees a block device as a logical fixed-size array of sectors and assumes that the array 
contains a valid MS-DOS file system. The device driver, in turn, translates the logical sector 
requests from MS-DOS into physical locations on the block device. 

The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT 
program. See USER COMMANDS: FORMAT. The general layout for the file system is shown 
in Figure 3-5. 

OEM identification, BIOS parameter block, Loader routine 
Reserved area 

File allocation table (FAT) #1 

Possible additional copies of FAT 

Root disk directory 

---[ ---------==-~ 
Files area __j 

Figure 3-5. The MS-DOS file system. 

The boot sector is always at the beginning of a partition. It contains the OEM identifica­
tion, a loader routine, and a BIOS parameter block (BPB) with information about the 
device, and it is followed by an optional area of reserved sectors. See The Boot Sector 
below. The reserved area has no specific use, but an OEM might require a more complex 
loader routine and place it in this area. The file allocation tables (FATs) indicate how the 
file data area is allocated; the root directory contains a fixed number of directory entries; 
and the file data area contains data files, subdirectory files, and free data sectors. 

Section II: Programming in the MS-DOS Environment 93 

ZTE (USA) 1007, Page 107



Part A: Structure of MS-DOS 

All the areas just described-the boot sector, the FAT, the root directory, and the file data 
area-are of fixed size; that is, they do not change after FORMAT sets up the medium. 
The size of each of these areas depends on various factors. For instance, the size of the FAT 
is proportional to the file data area. The root directory size ordinarily depends on the type 
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can 
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and 
some implementations of FORMAT allow the number of directory entries to be specified.) 

The file data area is allocated in terms of clusters. A cluster is a fixed number of con­
tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually 
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are 
possible. Commonly used MS-DOS cluster sizes are 

Disk Type Sectors/Cluster 

Single-sided floppy disk 1 
Double-sided floppy disk 2 
PC/AT fixed disk 4 
PC/XT fixed disk . 8 
Otl)er fixed disks 16 
Other fixed disks 32 

• Assumes 512 bytes per sector. 

Bytes/Cluster• 

512 
1024 
2048 
4096 
8192 

16384 

In general, larger cluster sizes are used to support larger fixed disks. Although smaller clus­
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for 
random and sequential access, especially if the clusters for a single file are not sequentially 
allocated. 

The file allocation table contains one entry per cluster in the file data area. Doubling the 
sectors per cluster will also halve the number of FAT entries for a given partition. See The 
File Allocation Table below. · 

The boot sector 

The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some 
other fields useful to device drivers. The BPB describes a number of physical parameters 
of the device, as well as the location and size of the other areas on the device. The device 
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter­
mine how the disk is configured. 

Figure 3-7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot sec­
tor shown in Figure 3-7 would be E9H 2CH OOH if a long jump were used instead of a short 
one (as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, are a 
fixed signature used by the loader routine to verify that the sector is a valid boot sector. 

94 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 108



l 

Article 3: MS-DOS Storage Devices 

OOH 

03H 

OBH 

ODH 

OEH 

lOH 

llH 

13H 

15H 

16H 

ISH 

lAH 

lCH 

lEH 

E9 XX XX or EB XX 90 

OEM name and version (8 bytes) 

Bytes per sector (2 bytes) 

Sectors per allocation unit (1 byte) 

Reserved sectors, starting at 0 (2 bytes) 

Number of FATs (1 byte) 

Number of root-directory entries (2 bytes) 

Total sectors in logical volume (2 bytes) 

Media descriptor byte 

Number of sectors per FAT (2 bytes) 

Sectors per track (2 bytes) 

Number of heads (2 bytes) 

Number of hidden sectors (2 bytes) 

Loader routine 

l 
BPB 

J 

Figure 3-6. Map of the boot sector of an MS-DOS disk. Bytes OBH through 17H are the BIOS parameter block 
(BPB). 

The BPB information contained in bytes OBH through 17H indicates that there are 

512 bytes per sector 
2 sectors per cluster 
1 reserved sector (for the boot sector) 
2 FATs 

112 root directory entries 
1440 sectors on the disk 
F9H media descriptor 

3 sectors per FAT 

Section Jl- Programming in the MS-DOS Environment 95 

--------------.... ZTE (USA) 1007, Page 109



' !I 

Part A: Structure of MS-DOS 

0 2 3 4 5 6 7 8 9 A B c D E F 
0000 EB 2D 90 20 20 20 20 20 k-. 

0010 00 02 00 00 00 00 00 .p . . y .......... 

0020 00 OA 00 00 DF 02 25 02-09 2A FF 50 F6 OA 02 FA •••• _. % •• * . Pv .. z 

0030 B8 co 07 8E D8 BC 00 7C-33 CO 8E DO 8E CO FB FC 8@ .. X<. :3@.P.@{: 

0180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu 

0190 72 65 OD OA OD OA 4E 6F-6E 2D 53 79 73 74 65 6D re .... Non-System 

01AO 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 65 72 disk or disk er 
01BO 72 6F 72 OD OA 52 65 70-6C 61 63 65 20 61 6E 64 ror .. Replace and 

01CO 20 70 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w 
01DO 68 65 6E 20 72 65 61 64-79 OD OA 00 00 00 00 00 hen ready ....... 
01EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 •• 0. 0 0 0 ••••••••• 

01FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA •••••••• 0 •• 0. 0 0 * 

Figure 3-7. Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted. 

Additional information immediately after the BPB indicates that there are 9 sectors per 
track, 2 read/write heads, and 0 hidden sectors. 

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to 
indicate the type of medium currently in a drive. IBM-compatible media have the follow­
ing descriptors: 

Descriptor Media Type MS-DOS Versions 

OF8H Fixed disk 2,3 
OFOH 3.5-inch, 2-sided, 18 sector 3.2 
OF9H 3.5-inch, 2-sided, 9 sector 3.2 
OF9H 5.25-inch, 2-sided, 15 sector 3.x 
OFCH 5.25-inch, 1-sided, 9 sector 2.x, 3.x 
OFDH 5.25-inch, 2-sided, 9 sector 2.x, 3.x 
OFEH 5.25-inch, 1-sided, 8 sector l.x, 2.x, 3.x 
OFFH 5.25-inch, 2-sided, 8 sector l.x (except 1.0), 2, 3 
OFEH 8-inch, 1-sided, single-density 
OFDH 8-inch, 2-sided, single-density 
OFEH 8-inch, 1-sided, double-density 
OFDH 8-inch, 2-sided, double-density 

96 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 110



Article 3: MS-DOS Storage Devices 

The file allocation table 

The file allocation table provides a map to the storage locations of files on a disk by indi­
cating which clusters are allocated to each file and in what order. To enable MS-DOS to 
locate a file, the file's directory entry contains its beginning FAT entry number. This FAT 
entry, in turn, contains the entry number of the next cluster ifthe file is larger than one 
cluster or a last-cluster number if there is only one cluster associated with the file. A file 
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links. 
(The set of links for a particular file is called a chain.) 

Additional copies of the FAT are used to provide backup in case of damage to the first, 
or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are 
arranged sequentially after the boot sector, with some possible intervening reserved area. 
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs. 
It also compares all FATs when a disk is first accessed, to make sure they match. 

MS-DOS supports two types ofF AT: One uses 12-bit links; the other, introduced with 
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit 
links. 

The first two entries of a FAT are always reserved and are filled with a copy of the media 
descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown 
in the following dumps ofthe first 16 bytes of the FAT: 

12-bitFAT: 

F9 FF FF 03 40 00 FF 6F-00 07 FO FF 00 00 00 00 

16-bitFAT: 

FS FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF 

The remaining FAT entries have a one-to-one relationship with the clusters in the file data 
area. Each cluster's use status is indicated by its corresponding FAT value. (FORMAT in­
itially marks the FAT entry for each cluster as free.) The use status is one of the following: 

12-bit 16-bit Meaning 

OOOH OOOOH Free cluster 
001H 0001H Unused code 
FFO-FF6H FFFO-FFF6H Reserved 
FF7H FFF7H Bad cluster; cannot be used 
FF8-FFFH FFF8-FFFFH Last cluster of file 
All other values All other values Link to next cluster in file 

Section II: Programming in the MS-DOS Envi ZTE (USA) 1007, Page 111



Part A: Structure of MS-DOS 

98 

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is 
found by scanning the FAT from the beginning to find the first zero value. Bad clusters are 
ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain. 

FATentry: 0 2 3 4 5 6 7 8 9 

n1 +n 
FFDH FFFH 003H 005H FF7H 006H FFFH OOOH OOOH OOOH 
(4093) (4095) (3) (5) (4087) (6) (4095) (0) (0) (0) co ntinues ... 

'--- Unused; available cluste r 

'-- Unusable 

'--- Unused; not available 

- -D1sk IS double s1ded, double-density 

Figure 3-8. Space allocation in the FAT for a typical MS-DOS disk. 

Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first 
allocatable link number, associated with the first available cluster in the file data area, is 2, 
which is the number assigned to the first physical cluster in the file data area. Figure 3-9 
shows the relationship of files, FAT entries, and clusters in the file data area. 

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries; 
the difference is simply in the storage and access methods. Because the 8086 is specifically 
designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit 
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11). 

Special considerations 
The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can 
occur. One tradeoff is having a partially filled cluster at the end of a file. This situation 
leads to an efficiency problem when a large cluster size is used, because an entire cluster is 
allocated, regardless of the number of bytes it contains. For example, ten 100-byte files on a 
disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus­
ters use only 10 KB- a difference of 150 KB, or 15 times less storage used by the smaller 
cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty 
(and therefore slowness) of moving through a large file that has a long linked list of many 
small clusters. Therefore, the nature of the data must be considered: Large database appli­
cations work best with a larger cluster size; a smaller cluster size allows many small text 
files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily 
sets the cluster size.) 

The MS-DOS Encyclopedia ZTE (USA) 1007, Page 112



Article 3: MS-DOS Storage Devices 

12-bitFAT: 

Reserved 003H FFFH 007H OOOH 

I I~ ~ ~ ~ 
F9 FF FF 03 

t:J 
FF [_9 07 [J 00 00 

004H 006H FFFH 

16bitFAT; 

Reserved 

0003H 0004H FFFFH 0006H 0007H FFFFH OOOOH 
I 111111111111111 
F8 FF FF FF 03 00 04 00 FF FF 06 00 07 00 FF FF 00 00 

FAT entry; 0 1 2 3 4 5 6 7 8 

12-bitFAT: 
continues ... 

16-bitFAT: 

Directory entry 

File data area Corresponding FAT entry 

FILEl. TXT 2 

FILEl. TXT 3 

FILEl. TXT 4 

FILE2. TXT 5 

FILE2. TXT 6 

FILE2. TXT 7 

Unused (available) 8 

Figure 3-9. Correspondence between the FAT and the file data area. 

Section II: Programming in the MS7DOS Environment 99 
ZTE (USA) 1007, Page 113



i 
I 
I 
I 
I 

I 
I 

:.I 
ill 
'II 

,il 
:i f 
:i! i 
'1'1' i' ;jl ',,I 

'il 
Part A: Structure of MS-DOS 

---- Obtain the next link number from a 12-bit FAT 

current entry number 
, Parameters: 

ax 

ds:bx address of FAT. (must be contiguous) 

Returns: 
ax = next link number 

Uses: ax, bx, ex 

next12 proc near 
add bx,ax ds:bx = partial index 

shr ax, 1 ax = offset/2 

carry = no shift needed 

pushf save carry 

add bx,ax ds:bx = next cluster number index 

100 

mov ax, [bx] ax = next cluster number 

popf carry = no shift needed 

jc shift skip if using top 12 bits 

and ax,Offfh ax lower 12 bits 

ret 

shift: mov cx,4 ex shift count 

shr ax,cl ax top 12 bits in lower 

ret 
next12 endp 

Figure 3-10. Assembly-language routine to access a 12-bit FAT. 

----Obtain the next link number from a 16-bit FAT 

Parameters: 

ax 
ds:bx 

Returns: 

current entry number 
address of FAT (must be contiguous) 

ax next link number 

Uses: ax, bx, ex 

next16 proc near 

add ax, ax ax = word offset 

add bx,ax ds:bx = next link number 

mov ax, [bx] ax = next link number 

ret 

next16 endp 

Figure 3-11. Assembly-language routine to access a 16-bit FAT. 

The MS-DOS Encyclopedia 

12 bits 

index 

ZTE (USA) 1007, Page 114



1 

Article 3: MS-DOS Storage Devices 

Problems with corrupted directories or FATs, induced by such events as power failures 
and programs running wild, can lead to greater problems if not corrected. The MS-DOS 
CHKDSK program can detect and fix some of these problems. See USER COMMANDS: 
CHKDSK. For example, one common problem is dangling allocation lists caused by the 
absence of a directory entry pointing to the start of the list. This situation often results 
when the directory entry was not updated because a file was not closed before the com­
puter was turned off or restarted. The effect is relatively benign: The data is inaccessible, 
but this limitation does not affect other file allocation operations. CHKDSK can fix this 
problem by making a new directory entry and linking it to the list. 

Another difficulty occurs when the file size in a directory entry does not match the file 
length as computed by traversing the linked list in the FAT. This problem can result in 
improper operation of a program and in error responses from MS-DOS. 

A more complex (and rarer) problem occurs when the directory entry is properly set up 
but all or some portion of the linked list is also referenced by another directory entry. The 
problem is grave, because writing or appending to one file changes the contents of the 
other file. This error usually causes severe data and/or directory corruption or causes the 
system to crash. 

A similar difficulty occurs when a linked list terminates with a free cluster instead of a 
last-cluster number. If the free cluster is allocated before the error is corrected, the 
problem eventually reverts to the preceding problem. An associated difficulty occurs if a 
link value ofl or a link value that exceeds the size of the FAT is encountered. 

In addition to CHKDSK, a number of commercially available utility programs can be used 
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially 
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially 
in the file data area and, of course, in the FAT. 

The root directory 

Directory entries, which are 32 bytes long, are found in both the root directory and the 
subdirectories. Each entry includes a filename and extension, the file's size, the starting 
FAT entry, the time and date the file was created or last revised, and the file's attributes. 
This structure resembles the format of the CP/M-style file control blocks (FCBs) used by 
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels. 

The MS-DOS file-naming convention is also derived from CP/M: an eight-character file­
name followed by a three-character file type, each left aligned and padded with spaces if 
necessary. Within the limitations of the character set, the name and type are completely 
arbitrary. The time and date stamps are in the same format used by other MS-DOS func­
tions and reflect the time the file was last written to. 

Figure 3-12 shows a dump of a 512-byte directory sector containing 16 directory entries. 
(Each entry occupies two lines in this example.) The byte at offset OABH, containing a 
lOH, signifies that the entry starting at OAOH is for a subdirectory. The byte at offset 160H, 
containing OE5H, means that the file has been deleted. The byte at offset 8BH, containing 

Section 11- Programming in the MS-DOS Environment 101 

ZTE (USA) 1007, Page 115



Part A: Structure of MS-DOS 

the value 08H, indicates that the directory entry beginning at offset 80H is a volume label. 
Finally the zero byte at offset lEOH marks the end of the directory, indicating that the sub­
sequent entries in the directory have never been used and therefore need not be searched 
(versions 2.0 and later). 

0000 

0010 
0020 

0030 

0040 
0050 

0060 
0070 

0080 

0090 

OOAO 
OOBO 

ooco 
OODO 

OOEO 
OOFO 

0100 

0110 
0120 

0130 
0140 

0150 
0160 
0170 

0180 

0190 

01AO 
01BO 

01CO 

01DO 
01EO 

01FO 

0 2 3 4 5 6 7 8 9 A B C D E F 
49 4F 20 20 20 20 20 20-53 59 53 27 00 00 00 00 

00 00 00 00 00 00 59 53-89 OB 02 00 D1 12 00 00 
4F 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 

00 00 00 00 00 00 41 49-52 OA 07 00 C9 43 00 00 

41 4E 53 49 20 20 20 20-53 59 53 20 00 00 00 00 
00 00 00 00 00 00 41 49-52 OA 18 00 76 07 00 00 

58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 00 

00 00 00 00 00 00 F7 7D-38 09 23 02 84 OB 01 00 
4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 00 

00 00 00 00 00 00 BC 20-2A 09 00 00 00 00 00 00 

4C 4F 54 55 53 20 20 20-20 iO 20 10 00 00 00 00 
00 00 00 00 00 00 EO 0A-E1 06 A6 01 00 00 00 00 

4C 54 53 4C 4F 41 44 20-43 4F 4D 20 00 00 00 00 
00 00 00 00 00 00 EO 0A-E1 06 A7 01 AO 27 00 00 

4D 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 

00 00 00 00 00 00 46 19-32 OD B1 01 79 04 00 00 
58 Sft 41 4C 4B 20 20 20-48 4C 50 20 00 00 00 00 

00 00 00 00 00 00 CS 6D-73 07 A3 02 AF 88 00 00 
54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 00 00 

00 00 00 00 00 00 05 61-65 OC 39 01 EB 20 00 00 
43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 

00 00 00 00 00 00 41 49-52 OA 27 00 55 3F 00 00 
ES 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 

00 00 00 00 00 00 9C B2-85 OB 42 01 80 SF 01 00 
47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9A 01 SB 08 00 00 

4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9D 01 60 01 00 00 
50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9E 01 49 01 00 00 
00 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 

F6 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 

Figure 3-12. Hexadecimal dump of a 512-byte directory sector. 

IO SYS' .... 

...... YS .... Q ••. 

MSDOS SYS' .... 
...... AIR ... IC .. 

ANSI SYS ... . 

...... AIR ... v .. . 
XTALK EXE ... . 

. • . • • • w}B .# .... . 
LABEL 

....... *.D .. R .. 

LOTUS 

...... '.a.&.a .. . 
LTSLOAD COM ... . 
• • • • • • I ,a, I • I o • 

MCI-SF XTK ... . 
...... F.2.1.y .. . 

XTALK HLP ... . 

...... Ems.#./ .. . 
TX COM ... . 
. . . . . . . ae. 9.h .. 

COMMAND COM .... 
...... AIR.' .U? .. 

e23 EXE .... 

....... 2 .. B.·-·. 
GD DRV ... . 

...... '.a ... [ .. . 
KB DRV ... . 
, o o o o o I ,a,, o I,,, 

PR DRV .... 

...... '.a ... I ... 

The sector shown in Figure 3-12 is actually an example of the first directory sector in the 
root directory of a boatable disk. Notice that IO.SYS and MSDOS.SYS are the first two files 
in the directory and that the file attribute byte (offset OBH in a directory entry) has a 
binary value of 00100111, indicating that both files have hidden (bit 1 = 1), system (bit 0 = 1), 
and read-only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for 
possible backup. 

102 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 116



Article 3: MS-DOS Storage Devices 

The root directory can optionally have a special type of entry called a volume label, iden­
tified by an attribute type of 08H, that is used to identify disks by name. A root directory 
can contain only one volume label. The root directory can also contain entries that point to 
subdirectories; such entries are identified by an attribute type of lOH and a file size of zero. 
Programs that manipulate subdirectories must do so by tracing through their chains of 
clusters in the FAT. 

Two other special types of directory entries are found only within subdirectories. These 
entries have the filenames • and •• and correspond to the current directory and the parent 
directory of the current directory. These special entries, sometimes called directory 
aliases, can be used to move quickly through the directory structure. 

The maximum pathname length supported by MS-DOS, excluding a drive specifier but 
including any filename and extension and subdirectory name separators, is 64 characters. 
The size of the directory structure itself is limited only by the number of root directory 
entries and the available disk space. 

The file area 

The file area contains subdirectories, file data, and unallocated clusters. The area is 
divided into fixed~size clusters and the use for a particular cluster is specified by the corre­
sponding FAT entry. 

Other MS-DOS Storage Devices 

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic­
tape drives and CD ROM drives. Tape drives are most often used for archiving and for 
sequential transaction processing and therefore are not discussed here. 

CD ROMs are compact laser discs that hold a massive amount of information- a single 
side of a C:Q ROM can hold almost 500 MB of data. However, there are some drawbacks to 
current CO ROM technology. For instance, data cannot be written to them- the informa­
tion is placed on the compact disk at the factory when the disk is made and is available ori 
a read-only basis. In addition, the access time for a CD ROM is much slower than for most 
magnetic-disk systems. Even with these limitations, however, the ability to hold so much 
information makes CD ROM a good method for storing large amounts of static information. 

William Wong 

Section II: Programming in the MS-DOS Environment 103 

ZTE (USA) 1007, Page 117



PartB 
Programming for MS-DOS 

l ZTE (USA) 1007, Page 118



' l
,, 

Article 4: Structure of an Application Program 

Article4 
Structure of an Application Program 

Planning an MS-DOS application program requires serious analysis of the program's size. 
This analysis can help the programmer determine which of the two program styles sup­
ported by MS-DOS best suits the application. The .EXE program structure provides a large 
program with benefits resulting from the extra 512 bytes (or more) of header that preface 
all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program 
structure does not burden a small program with the overhead of these extra header bytes. 

Because .COM programs start their lives as .EXE programs (before being converted by 
EXE2BIN) and because several aspects of application programming under MS-DOS 
remain similar regardless of the program structure used, a solid understanding of .EXE 
structures is beneficial even to the programmer who plans on writing only .COM pro­
grams. Therefore, we'll begin our discussion with the structure and behavior of .EXE 
programs and then look at differences between .COM programs and .EXE programs, 
including restrictions on the structure and content of .COM programs. 

The .EXE Program 

The .EXE program has several advantages over the .COM program for application design. 
Considerations that could lead to the choice of the .EXE format include 

• Extremely large programs 
• Multiple segments 
• Overlays 
• Segment and far address constants 
• Longcalls 
• Possibility of upgrading programs to MS OS/2 protected mode 

The principal advantages of the .EXE format are provided by the file header. Most 
important, the header contains information that permits a program to make direct seg­
ment address references- a requirement if the program is to grow beyond 64 KB. 

The file header also tells MS-DOS how much memory the program requires. This informa­
tion keeps memory not required by the program from being allocated to the program­
an important consideration if the program is to be upgraded in the future to run efficiently 
under MS OS/2 protected mode. 

Before discussing the .EXE program structure in detail, we'll look at how .EXE programs 
behave. 

Section II: Programming in the MS-DOS Environment 107 

ZTE (USA) 1007, Page 119



I 

I 
I 

!i 
I 

Part B: Programming for MS-DOS 

Giving control to the .EXE program 

Figure 4-1 gives an example of how a .EXE program might appear in memory when 
MS-DOS first gives the program control. The diagram shows Microsoft's preferred pro­
gram segment arrangement. 

Any segments with class 
.... SP 

STACK 

All segments Any segments with class 

declared BSS 
as part of group Any DGROUP segments 

DGROUP not shown elsewhere 

Any segments with class 
BEGDATA 

Any segments with class names 
ending with CODE 

Start segment 
and start of ... 

1 
program image Program segment prefix (PSP) 
(load module) 

- 1 .... DS,ES 

Figure 4-1. The·.EXE program: memory map diagram with register pointers. 

Before transferring control to the .EXE program, MS-DOS initializes various areas of 
memory and several of the microprocessor's registers. The following discussion explains 
what to expect from MS-DOS before it gives the .EXE program control. 

The program segment prefix 

The program segment prefix (PSP) is not a direct result of any program code. Rather, this 
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all .EXE 
and .COM programs when they are loaded into memory. Although the PSP does contain 
several fields of use to newer programs, it exists primarily as a remnant of CP/M­
Microsoft adopted the PSP for ease in porting the vast number of programs available under 
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP. 

PSP.OOOOH (Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family 
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The 
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm 
Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping 
to this vector. This method of termination should not be used in newer programs. See 
Terminating the .EXE Program below. 

PSP:0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word 
at offset 02H into the PSP. It contains the segment address of the paragraph following the 
block of memory allocated to the program. This address should be used only to determine 
the size or the end of the memory block allocated to the program; it must not be con­
sidered a pointer to free memory that the program can appropriate. In most cases this ad­
dress will not point to free memory, because any free memory will already have been 

108 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 120



Article 4: Structure of an Application Program 

xOH x!H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

OxH 

lxH 
... address Prev critical error address Reserved ... 

2xH 

3xH 

4xH ... Reserved 

SxH !NT 21H and RETF 

OCDH 

6xH 

7xH 
e 

8xH 
Command tail and default disk transfer area (DT A) (continues through OFFH) ... 

un I 
Figure 4-2. The program segment prefix (PSP). 

allocated to the program unless the program was linked using the /CPARMAXALLOC 
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block 
of memory only as big as the program requires. Well-behaved programs should acquire 
additional memory only through the MS-DOS function calls provided for that purpose. 

PSP:0005H (MS-DOS Function Call [old BDOS] Vector) Offset 05H is also a hand-me­
down from CP/M. This location contains an 8086-family far (intersegment) call instruction 
to MS-DOS's function request handler. (Under CP/M, this address was the Basic Disk Oper­
ating System [BDOS] vector, which served a similar purpose.) This vector should not be 
used to call MS-DOS in newer programs. The System Calls section of this book explains 
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup­
port CP/M-style programs and therefore honors only the CP/M-style functions (00- 24H) 
through it. 

PSP:OOOAH-0015H (Parent's 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses 
offsets OAH through 15H to save the contents of three program-specific interrupt vectors. 
MS-DOS must save these vectors because it permits any program to execute another pro­
gram (called a child process) through an MS-DOS function call that returns control to the 
original program when the called program terminates. Because the original program 
resumes executing when the child program terminates, MS-DOS must restore these three 

Section II: Programming in the MS-DOS Environment 109 
ZTE (USA) 1007, Page 121



', l 

Part B: Programming for MS-DOS 

interrupt vectors for the original program in case the called program changed them. The 
three vectors involved include the program termination handler vector (Interrupt 22H), 
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler 
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors 
in the child program's PSP as doubleword fields beginning at offsets OAH for the program 
termination handler vector, OEH for the Control-C/Control-Break handler vector, and 12H 
for the critical error handler vector. 

PSP.002CH (Segment Address of Environment) Under MS-DOS versions 2.0 and later, the 
word at offset 2CH contains one of the most useful pieces of information a program can 
find in the PSP- the segment address of the first paragraph of the MS-DOS environment. 
This pointer enables the program to search through the environment for any configuration 
or directory search path strings placed there by users with the SET command. 

PSP:0050H (New MS-DOS Call Vector) Many programmers disregard the contents of offset 
SOH. The location co'nsists simply of an INT 21H instruction followed by a RETF. A .EXE 
program can call this location using a far call as a means of accessing the MS-DOS function 
handler. Of course, the program can also simply do an INT 21H directly,, which is smaller 
and faster than calling SOH. Unlike calls to offset OSH, calls to offset SOH can request the 
full range of MS-DOS functions. 

PSP:005CH (Default File Control Block 1) and PSP:006CH (Default File Control Block 2) 
MS-DOS parses the first two parameters the user enters in the command line following the 
program's name. If the first parameter qualifies as a valid (limited) MS-DOS filename 
(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes 
offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for 
the specified file. If the second parameter also qualifies as a valid MS-DOS filename, 
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for 
the second specified file. If the user specifies a directory path as part of either filename, 
MS-DOS initializes only the drive code in the associated FCB. Many programmers no 
longer use this feature, because file access using FCBs does not support directory paths 
and other newer MS-DOS features. 

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset 
SCH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB. Similarly, 
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of 
the command tail and default disk transfer area (DTA). (The command tail and default 
DTA are described below.) To use the contents of both default FCBs, the program should 
copy the FCBs to a pair of 37-byte fields located in the program's data area. The program 
can use the first FCB without moving it only after relocating the second FCB (if necessary) 
and only by performing sequential reads or writes when using the first FCB. To perform 
random reads and writes using the first FCB, the programmer must either move the first 
FCB or change the default DTA address. Otherwise, the first FCB's random record field will 
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FOR Ms-oos: File and Record Management. 

110 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 122



Article 4: Structure of an Application Program 

PSP·OOBOH (Command Tail and Default DTA) The default DTA resides in the entire sec­
ond half (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record 
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited 
this location from CP/M. (MS-DOS provides a function the program can call to change the 
address MS-DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 21H: Func­
tion lAH.) Because the default DTA serves no purpose until the program performs some 
file activity that requires it, MS-DOS places the command tail in this area for the program 
to examine. The command tail consists of any text the user types following the program 
name when executing the program. Normally, an ASCII space (20H) is the first character 
in the command tail, but any character MS-DOS recognizes as a separator can occupy this 
position. MS-DOS stores the command-tail text starting at offset 81H and always places an 
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length 
of the command tail at offset 80H. This length includes all characters except the final ODH. 
For example, the command line 

C>DOIT WITH CLASS <Enter> 

will result in the program DOlT being executed with PSP:0080H containing 

OB 20 57 49 54 48 20 43 4C 41 53 53 OD 
len sp W I T H sp C L A S S cr 

The stack 

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs 
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to 

supply its own stack. (Figure 4-1 shows the program's stack as the top box in the diagram.) 

Microsoft's high-level-language compilers create a stack themselves, but when writing in 
assembly language the programmer must specifically declare one or more segments with 
the STACK combine type. If the programmer declares multiple stack segments, possibly in 
different source modules, the linker combines them into one large segment. See Control­
ling the .EXE Program's Structure below. 

Many programmers declare their stack segments as preinitialized with some recognizable 
repeating string such as *STACK This makes it possible to examine the program's stack in 
memory (using a debugger such as DEBUG) to determine how much stack space the pro­
gram actually used. On the other hand, if the stack is left as uninitialized memory and 
linked at the end of the .EXE program, it will not require space within the .EXE file. (The 
reason for this will become more apparent when we examine the structure of a .EXE file.) 

Note: When multiple stack segments have been declared in different .ASM files, the 
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci­
fied in all the source modules, but the initialization data from all modules is overlapped 
module by module at the high end of the combined segment. 

An important difference between .COM and .EXE programs is that MS-DOS preinitializes 
a .COM program's stack with a termination address before transferring control to the pro­
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply 
execute an 8086-family RET instruction as a means of terminating. 

Section JL- Programming in the MS-DOS Environment 111 

ZTE (USA) 1007, Page 123



'i 

Part B: Programming for MS-DOS 

Note: In the assembly-language files generated for a Microsoft C program or for programs 
in most other high-level-languages, the compiler's placement of a RET instruction at the 
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS 
does not place any return address on the stack. The compiler places the RET at the end of 
main because main does l).Ot receive control directly from MS-DOS. A library initializa­
tion routine receives control from MS-DOS; this routine then calls main. When main per­
forms the RET, it returns control to a library termination routine, which then terminates 
back to MS-DOS in an approved manner. 

Preallocated memory 

While loading a .EXE program, MS-DOS performs several steps to determine the initial 
amount of memory to be allocated to the program. First, MS-DOS reads the two values the 
linker places near the start of the .EXE header: The first value, MINALLOC, indicates the 
minimum amount of extra memory the program requires to start executing; the second 
value, MAXALLOC, indicates the maximum amount of extra memory the program would 
like allocated before it starts executing. Next, MS-DOS locates the largest free block of 
memory available. If the size of the program's image within the .EXE file combined with 
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns 
an error to the process trying to load the program. If that process is COMMAND. COM, 
COMMAND.COM then displays a Program too big to fit in memory error message and 
terminates the user's execution request. If the block exceeds the program's MINALLOC 
requirement, MS-DOS then compares the memory block against the program's image 
combined with the MAXALLOC request. If the free block exceeds the maximum memory 
requested by the program, MS-DOS allocates only the maximum request; otherwise, it 
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads 
the program's image from the .EXE file into memory following the PSP. 

This process ensures that the extra memory allocated to the program will immediately 
follow the program's image. The same will not necessarily be true for any memory 
MS-DOS allocates to the program as a result of MS-DOS function calls the program per­
forms during its execution. Only function calls requesting MS-DOS to increase the initial 
allocation can guarantee additional contiguous memory. (Of course, the granting of such 
increase requests depends on the availability of free memory following the initial 
allocation.) 

Programmers writing .EXE programs sometimes find the lack of keywords or compiler/ 
assembler switches that deal with MINALLOC (and possibly MAXALLOC) confusing. The 
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC 
to the total size of all uninitialized data and/ or stack segments linked at the very end of the 
program. The MINALLOC field allows the compiler to indicate the size of the initialized 
data fields in the load module without actually including the fields themselves, resulting in 
a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program 
must be coded and linked in such a way as to place all uninitialized data fields at the end 
of the program. Microsoft high-level-language compilers handle this automatically; 
assembly-language programmers must give LINK a little help. 

112 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 124



1 

Article 4: Structure of an Application Program 

Note: Beginning and even advanced assembly-language programmers can easily fall into 
an argument with the assembler over field addressing when attempting to place data fields 
after the code in the source file. This argument can be avoided if programmers use the 
SEGMENT and GROUP assembler directives. See Controlling the .EXE Program's Struc­
turebelow. 

No reliable method exists for the linker to determine the correct MAXALLOC value 
required by the .EXE program. Therefore, LINK uses a "safe" value of FFFFH, which 
causes MS-DOS to allocate all of the largest block of free memory- which is usually all 
free memory-to the program. Unless a program specifically releases the memory for 
which jt has no use, it denies multitasking supervisor programs, such as IBM's Top View, 
any memory in which to execute additional programs-hence the rule that a well­
behaved program releases unneeded memory during its initialization. Unfortunately, this 
memory conservation approach provides no help if a multitasking supervisor supports the 
ability to load several programs into memory without executing them. Therefore, pro­
grams that have correctly established MAXALLOC values actually are well-behaved 
programs. 

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch 
to permit specification of the maximum amount of memory required by the program. The 
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to 
be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:l) forces 
MS-DOS to allocate only MINALLOC extra paragraphs to the program. In addition, 
Microsoft supplies a program called EXEMOD with most of its languages. This program 
permits modification of the MAXALLOC field in the headers of existing .EXE programs. 
See Modifying the .EXE File Header below. 

The registers 

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers 
before transferring control to a .EXE program. MS-DOS determines most of the original 
register values from information the linker places in the .EXE file header at the start of the 
.EXEfile. 

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg­
ments declared with the STACK combine type and sets the SP register to the offset from SS 
of the byte immediately after the combined stack segments. (If no stack segment is 
declared, MS-DOS sets SS:SP to CS:OOOO.) Because in the 8086-family architecture a stack 
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of 
the stack. Therefore, if the programmer declares stack segments when writing an assem­
bly-language program, the program will not need to initialize the SS and SP registers. 
Microsoft's high-level-language compilers handle the creation of stack segments automati­
cally. In both cases, the linker determines the initial SS and SP values and places them in 
the header at the start of the .EXE program file. 

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES 
registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of 

Section 11· Programming in the MS-DOS Environment 113 

ZTE (USA) 1007, Page 125



Part B: Programming for MS-DOS 

114 

the PSP. It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to 
tell the program the address of the PSP; second, most programs start by examining the 
command tail within the PSP. Because the program starts without DS pointing to the data 
segments, the program must initialize DS and (optionally) ES to point to the data segments 
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE 
programs can do this easily because they can make direct references to segments, as 
follows: 

MOV AX,SEG DATA_SEGMENT_QR_GROUP_NAME 
MOV DS,AX 
MOV ES,AX 

High-level-language programs need not initialize and maintain DS and ES; the compiler 
and library support routines do this. 

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and AL to reflect the 
validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS-DOS sets 
AL to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier; 
otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier 
placed inthe second FCB at PSP:006CH. 

When MS-DOS analyzes the first two command-line parameters fol·lowing the program 
name in order to build the first and second FCBs, it treats any character followed by a 
colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through 
z ), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it 
subtracts 40H from the character, regardless of its original value. This converts the drive 
prefix letters A through Z to the drive codes OlH through lAH, as required by the two 
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB. 

This process does not actually preclude invalid drive specifications from being placed in 
the FCBs. For instance, MS-DOS will accept the drive prefix ! : and place a drive code of 
OElH in the FCB (! = 21H; 21H-40H = OElH). However, MS-DOS will then check the drive 
code to see if it represents an existing drive attached to the computer and will pass a value 
of OFFH to the program in the appropriate register (AL or AH) if it does not. 

As a side effect of this process, M5-DOS accepts@: as a valid drive prefix because the 
subtraction of 40H converts the @ character ( 40H) to OOH. MS-DOS accepts the OOH value 
as valid because a OOH drive code represents the current default drive. MS-DOS will leave 
the FCB's drive code set to OOH rather than translating it to the code for the default drive 
because the MS-DOS function calls that use FCBs accept the OOH code. 

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program's 
entry point. Programs developed using high-level-language compilers usually receive con­
trol at a library initialization routine. A programmer writing an assembly-language pro­
gram using the Microsoft Macro Assembler (MASM) can declare any label within the 

The MS-DOS Encyclopedia ZTE (USA) 1007, Page 126



l 

Article 4: Structure of an Application Program 

program as the entry point by placing the label after the END statement as the last line of the 
program: 

END ENTRY_PQINT_LABEL 

With multiple source files, only one of the files should have a label following the END 
statement. If more than one source file has such a label, LINK uses the first one it encoun­
ters as the entry point. 

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when 
the program receives control from MS-DOS. Once again, high-level-language program­
mers can ignore this fact-the compiler and library support routines deal with the situa­
tion. However, assembly-language programmers should keep this fact in mind. It may give 
needed insight sometime in the future when a program functions at certain times and 
not at others. 

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to 
some predictable but undocumented state. For instance, some debuggers may predictably 
set BP to zero before starting program execution. However, a program must not rely on 
such debugger actions, because MS-DOS makes no such promises. Situations like this 
could account for a program that fails when executed directly under MS-DOS but works 
fine when executed using a debugger. 

Terminating the .EXE program 

After MS-DOS has given the .EXE program control and it has completed whatever task 
it set out to perform, the program needs to give control back to MS-DOS. Because of 
MS-DOS's evolution, five methods of program termination have accumulated- not 
including the several ways MS-DOS allows programs to terminate but remain resident 
in memory. 

Before using any of the termination methods supported by MS-DOS, the program should 
always close any files it had open, especially those to which data has been written or 
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files 
opened using handles. However, good programming practice dictates that the program 
not rely on the operating system to close the program's files. In addition, programs written 
to use shared files under MS-DOS versions 3.0 and later should release any file locks before 
closing the files and terminating. 

The Terminate Process with Return Code function 

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with 
Return Code function ( 4CH) is recommended for programs running under MS-DOS ver­
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro­
gram, regardless of its structure or segment register settings. The Terminate Process with 
Return Code function call simply consists of the following: 

MOV 
MOV 
INT 

AH,4CH 
AL,RETURN_CODE 
21H 

;load the MS-DOS function code 
;load the termination code 
;call MS-DOS to terminate program 

Section II: Programming in the MS-DOS Environment 115 

ZTE (USA) 1007, Page 127



I .I ! 
id: , I 

Part B: Programming for MS-DOS 

116 

The example loads the AH register with the Terminate Process with Return Code function 
code. Then it loads the AL register with a return code. Normally, the return code repre­
sents the reason the program terminated or the result of any operation the program 
performed. 

A program that executes another program as a child process can recover and analyze the 
child program's return code if the child process used this termination method. Likewise, 
the child process can recover the RETURN_ CODE returned by any program it executes as 
a child process. When a program is terminated using this method and control returns to 
MS-DOS, a batch (.BAT) file can be used to test the terminated program's return code 
using the IF ERRORLEVEL statement. 

Only two general conventions have been adopted for the value of RETURN_ CODE: 
First, a RETURN_CODE value of OOH indicates a normal no-error termination of the 
program; second, increasing RETURN_ CODE values indicate increasing severity of con­
ditions under which the program terminated. For instance, a compiler could use the 
RETURN_ CODE OOH if it found no errors in the source file, OlH if it found only warning 
errors, or 02H if it found severe errors. 

If a program has no need to return any special RETURN_ CODE values, then the following 
instructions will suffice to terminate the program with a RETURN_CODE of OOH: 

MOV AX,4COOH 
INT 21H 

Apart from being the approved termination method, Terminate Process with Return Code 
is easier to use with .EXE programs than any other termination method because all other 
methods require that the CS register point to the start of the PSP when the program termi­
nates. This restriction causes problems for .EXE programs because they have code seg­
ments with segment addresses different from that of the PSP. 

The only problem with Terminate Process with Return Code is that it is not available under 
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible 
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the 
approved termination method when available but still remain pre-2.0 compatible. See The 
Warm Boot/Terminate Vector below. 

TEXT SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

TERM... VECTOR DD ? 

ENTRY_pROC PROC FAR 

;save pointer to termination vector in PSP 

MOV WORD PTR CS:TERM...VECTOR+O,OOOOh ;save offset of Warm Boot vector 
MOV WORD PTR CS:TERM...VECTOR+2,DS ;save segment address of PSP 

Figure 4-3. Terminating properly under any MS-DOS version. (more) 

The MS-DOS Encyclopedia ZTE (USA) 1007, Page 128



L 

Article 4: Structure of an Application Program 

;***** Place main task here ***** 

;determine which MS-DOS version is active, take jump if 2.0 or later 

MOV 
INT 
OR 
JNZ 

AH, 30h 
21h 
AL,AL 
TEruL0200 

;terminate under pre-2.0 MS-DOS 

;load Get MS-DOS Version Number function code 
;call MS-DOS to get version number 
;see if pre-2.0 MS-DOS 
;jump if 2.0 or later 

JMP CS:TERM_.VECTOR ;jump to Warm Boot vector in PSP 

;terminate under MS-DOS 2.0 or later 

TEruL0200: 
MOV AX,4C00h 

INT 21h 

ENTRY_PROC ENDP 

TEXT END.S 

END ENTRY_PROC 

Figure 4-3. Continued. 

The Terminate Program interrupt 

;load MS-DOS termination function code 
;and return code 
;call MS-DOS to terminate 

;define entry point 

Before MS-DOS version 2.0, terminating with an approved method meant executing 
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was 
replaced as the approved termination method for two primary reasons: First, it did not 
provide a means whereby programs could return a termination code; second, CS had 
to point to the PSP before the INT 20H instruction was executed. 

The restriction placed on the value of CS at termination did not pose a problem for .COM 
programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro­
gram, on the other hand, executes with CS pointing to various code segments of the pro­
gram, and the value of CS cannot be changed arbitrarily when the program is ready to 
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro­
gram interrupt from directly within their own code segments. Instead, they usually use 
the termination method discussed next. 

The Warm Boot/Terminate vector 

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE 
program can use to terminate: Offset OOH within the PSP contains an INT 20H instruction 
to which the program can jump in order to terminate. MS-DOS adopted this technique to 
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was 
referred to as the Warm Boot vector because the CP/M operating system was always 
reloaded from disk (rebooted) whenever a program terminated. 

Section IL- Programming in the MS-DOS Environment 117 

ZTE (USA) 1007, Page 129



Part B: programming for MS-DOS 

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location 
terminates a program in the same manner as an INT 20H included directly within the pro­
gram, but with one important difference: By jumping to PSP:OOOOH, the program sets the 
CS register to point to the beginning of the PSP, thereby satisfying the only restriction 
imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func­
tion 4CH gave an example of how a .EXE program can terminate via PSP:OOOOH. The ex­
ample first asks MS-DOS for its version number and then terminates via PSP:OOOOH only 
under versions of MS-DOS earlier than 2.0. Programs can also use PSP:OOOOH under 
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is 
preferred under the later MS-DOS versions. 

The RET instruction 

The other popular method used by CP/M programs to terminate involved simply execut­
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot 
vector onto the stack before giving the program control. MS-DOS provides this support 
only for .COM-style programs; it does not push a termination address onto the stack 
before giving .EXE programs control. 

The programmer who wants to use the RET instruction to return to MS-DOS can use the 
variation of the Figure 4-3 listing shown in Figure 4-4. 

TEXT SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

ENTRY_FROC PROC FAR ;make proc FAR so RET will be FAR 

;Push pointer to termination vector in PSP 
PUSH DS ;push PSP's segment address 
XOR AX,AX ;ax = 0 = offset of Warm Boot vector in PSP 
PUSH AX ;push Warm Boot vector offset 

;***** Place main task here ***** 

;Determine which MS-DOS version is active, take jump if 2.0 or later 

MOV 

INT 

OR 

JNZ 

AH,30h 
21h 

AL,AL 

TEruL0200 

;load Get MS-DOS Version Number function code 

;call MS-DOS to get version number 
;see if pre-2.0 MS-DOS 

;jump if 2.0 or later 

;Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR) 

RET ;pop PSP:OOH into CS:IP to terminate 

Figure 4-4. Using RET to return control to MS-DOS. 

118 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 130



l 

Article 4: Structure of an Application Program 

;Terminate under MS-DOS 2.0 or later 
TERM-.0200: 

MOV AX,4C00h 

INT 21h 

ENTRY_PROC ENDP 

·TEXT ENDS 

END ENTRY_PROC 

Figure 4-4. Continued. 

The Terminate Process function 

;AH = MS-DOS Terminate Process with Return Code 
;function code, AL =return code of OOH 
;call MS-DOS to terminate 

;declare the program's entry point 

The final method for terminating a .EXE program is Interrupt 21H Function OOH (Termi­
nate Process). This method maintains the same restriction as all other older termination 
methods: CS must point to the PSP. Because of this restriction, .EXE programs typically 
avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs 
executing under versions of MS-DOS earlier than 2.0. 

Terminating and staying resident 

A .EXE program can use any of several additional termination methods to return con-
trol to MS-DOS but still remain resident within memory to service a special event. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Terminate-and­
Stay-Resident Utilities. 

Structure of the .EXE files 

So far we've examined how the .EXE program looks in memory, how MS-DOS gives the 
program control of the computer, and how the program should return control to MS-DOS. 
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it 
into memory. Figure 4-5 shows the general structure of a .EXE file. 

The file header 

Unlike .COM program files, .EXE program files contain information that permits the 
.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces­
sors. The linker places all this extra information in a header at the start of the .EXE file. 
Although the .EXE file structure could easily accommodate a header as small as 32 bytes, 
the linker never creates a header smaller than 512 bytes. (This minimum header size corre­
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains 
the following information, which MS-DOS reads into a temporary work area in memory 
for use while loading the .EXE program: 

00-0JH (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to 
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes 
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH 5AH 

Section II: Programming in the MS-DOS Environment 119 

ZTE (USA) 1007, Page 131



Part B: Programming for MS-DOS 

xOH x!H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

UseReloc 

Thl Ofs at ISH 

(offset is from 

start of file) 

Use Header 

Paras at 08H 

(load module 1Jo- ~-----.,--------_:===============-----1 
always starts on A 

_Program image _ 
paragraph boundary) - - - - .i. - - - - - - - - A - - - - -

(load .odule) Use Last Pa e Size at 02H Final 512-byte page as 
Endoffile IJo-

1 

'-----

Figure 4-5. Structure of a .EXEfi/e. 

indicated by File Pages at 04H 
~ 

(ASCII characters M and Z). If either or both of the signature bytes contain other values, 
MS-DOS assumes the file contains a .COM program, regardless of the extension. The 
reverse is not necessarily true- that is, MS-DOS does not accept the file as a .EXE pro­
gram simply because the file begins with a .EXE signature. The file must also pass several 
other tests. 

\ 

02-03H (Last Page Size) The word at this location indicates the actual number of bytes 
in the final 512-byte page of the file. This word combines with the following word to deter-
mine the actual size of the file. \ 

04-05H (File Pages) This word contains a count of the total number of 512-byte pages 
required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H; 
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last 
Page Size, 02-03H) is used to determine the number of valid bytes inthe final512-byte 
page. Thus, if the file contains 1024 bytes, the Last Page Size word contains OOOOH because 
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page 
Size word contains OOOlH because the final page contains only a single valid byte (the 
1025th byte).· 

06-07H (Relocation Items) This word gives the number of entries that exist in the reloca­
tion pointer table. See Relocation Pointer Table below. 

120 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 132



I 
l 

Article 4: Structure of an Application Program 

08-09H (Header Paragraphs) This word gives the size of the .EXE file header in 16-byte 
paragraphs. It indicates the offset ofthe program's compiled/assembled and linked image 
(the load module) within the .EXE file. Subtracting this word from the two file-size words 
starting at 02H and 04H reveals the size of the program's image. The header always spans 
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte 
header and a 513-byte program image, then the file's total size is 1025 bytes. As discussed 
before, the Last Page Size word (02-03H) will contain 0001H and the File Pages word 
(04-05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs 
word (08-09H) will contain 32 (0020H). (That is, 32 paragraphs times 16 bytes per para­
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total 
file size, the size of the program's image can.be determined-in this case, 513 bytes. 

OA -OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs 
the program requires to begin execution in addition to the memory required to hold 
the program's image. MINALLOC normally represents the total size of any uninitialized 
data and/ or stack segments linked at the end of the program. LINK excludes the 
space reserved by these fields from the end of the .EXE file to avoid wasting disk space. 
If not enough memory remains to satisfy MINALLOC when loading the program, MS­
DOS returns an error to the process trying to load the program. If the process is 
COM~AND.COM, COMMAND. COM then displays a Program too big to fit in memory 
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE 
File Header below. 

OC -ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs 
the program would like allocated to it before it begins execution. MAXALLOC indicates 
additional memory desired beyond that required to hold the program's image. MS-DOS 
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para­
graphs are not available, the program receives the largest memory block available- at 
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field 
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained 
heap, for example. 

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets 
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory 
it has available to the program. To make the program compatible with multitasking super­
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum 
number of extra paragraphs the program desires. The EXEMOD utility can also be used 
to alter this field. 

Note: If both MINALLOC and MAXALLOC have been set to OOOOH, MS-DOS loads the 
program as high in memory as possible. LINK sets these fields to OOOOH if the /HIGH 
switch was used; the EXEMOD utility can also be used to modify these fields. 

OE-OFH (Initial SS Value) This word contains the paragraph address of the stack segment 
relative to the start of the load module. At load time, MS-DOS relocates this value by adding 
the program's start segment address to it, and the resulting value is placed in the SS regis­
ter before giving the program control. (The start segment corresponds to the first segment 
boundary in memory following the PSP.) 

Section II- Programming in the MS-DOS Environment 121 

ZTE (USA) 1007, Page 133



Part B: Programming for MS-DOS 

122 

10-llH (Initial SP Value) This word contains the absolute value that MS-DOS loads 
into the SP register before giving the program control. Because MS-DOS always loads pro­
grams starting on a segment address boundary, and because the linker knows the size of 
the stack segment, the linker is able to determine the correct SP offset at link time; there­
fore, MS-DOS does not need to adjust this value at load time. The EXEMOD utility can be 
used to alter this field. 

12-13H (Complemented Checksum) This word contains the one's complement of the 
summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this 
word when they load a .EXE program; however, future versions might not. When LINK 
generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE 
header) by treating the entire file as a long sequence of 16-bit words. During this addition, 
LINK gives the Complemented Checksum word (12-13H) a temporary value ofOOOOH. If 
the file consists of an odd number of bytes, then the final byte is treated as a word with a 
high byte of OOH. Once LINK has totaled all words in the .EXE file, it performs a one's 
complement operation on the total and records the answer in the .EXE file header at 
offsets 12-13H. The validity of a .EXE file can then be s:hecked by performing the same 
word-totaling process as LINK performed. The total should be FFFFH, because the total 
will include LINK's calculated complemented checksum, which is designed to give the file 
the FFFFH total. 

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This 
is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic­
titious file contained the bytes 8CH C8H 8EH D8H BAH lOH B4H, then the file's total 
would be calculated using C88CH + D88EH +lOBAR+ OOB4H = 1B288H. (Overflow past 16 
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then 
the B288H total would have been FFFFH instead. 

14-15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into 
the IP register in order to transfer control to the program. Because MS-DOS always loads 
programs starting on a segment address boundary, the linker can calculate the correct IP 
offset from the initial CS register value at link time; therefore, MS-DOS does not need 
to adjust this value at load time. 

16-17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to 
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro­
gram control. MS-DOS adjusts this value in the same manner as the initial SS value before 
loading it into the CS register. 

18-19H (Relocation Table Offset) This word gives the offset from the start of the file to 
the relocation pointer table. This word must be used to locate the relocation pointer table, 
because variable-length information pertaining to program overlays can occur before the 
table, thus causing the position of the table to vary. 

1A -JBH (Overlay Number) This word is normally set to OOOOH, indicating that the .EXE 
file consists of the resident, or primary, part of the program. This number changes only in 
files containing programs that use overlays, which are sections of a program that remain 

The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 134



Article 4: Structure of an Application Program 

on disk until the program actually requires them. These program sections are loaded into 
memory by special overlay managing routines included in the run-time libraries supplied 
with some Microsoft high-level-language compilers. 

The preceding section of the header (00-lBH) is known as the formatted area. Optional 
information used by high-level-language overlay managers can follow this formatted area. 
Unless the program in the .EXE file incorporates such information, the relocation pointer 
table immediately follows the formatted header area. 

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words 
within the .EXE program image that Ms-DOS must adjust before giving the program con­
trol. These words consist of references made by the program to the segments that make up 
the program. MS-DOS must adjust these segment address references when it loads the pro­
gram, because it can load the program into memory starting at any segment address 
boundary. 

Each pointer in the table consists of a doubleword. The first word contains an offset from 
the segment address given in the second word, which in turn indicates a segment address 
relative to the start of the load module. Together, these two words point to a third word 
within the load module that must have the start segment address added to it. (The start seg­
ment corresponds to the segment address at which MS-DOS started loading the program's 

.EXEFile 

r----------. End of file 

Rel Seg Ref=003CH 
Abs Seg Ref=25D1H 

Load module 

Relocation pointer 
0002H:OOOSH -

Relocation pointer table ~ 0002H:OOOSH 
+ 2595H 

Memory 

003C~~ 
_. +2595H Rel Seg Ref=003CH 

2SD1H--J Abs Seg Ref=25D1H 

"Start Seg" 
Load module 

Fonnatted header area 
2597H:OOOSH- 2595H ... 

Program segment prefix 

St art offile 

Figure 4-6. The .EXEfile relocation procedure. 

Section II: Programming in the MS-DOS Environment 123 

ZTE (USA) 1007, Page 135



I 

Part B: Programming for MS-DOS 

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS 
performs for each relocation table entry. 

The load module 

The load module starts where the .EXE header ends and consists of the fully linked image 
of the program. The load module appears within the .EXE file exactly as it would appear in 
memory if MS-DOS were to load it at segment address OOOOH. The only changes MS-DOS 
makes to the load module involve relocating any direct segment references. 

Although the .EXE file contains distinct segment images within the load module, it pro­
vides no information for separating those individual segments from one another. Existing 
versions of MS-DOS ignore how the program is segmented; they simply copy the load 
module into memory, relocate any direct segment references, and give the program 
control. 

Loading the .EXE program 

So far we've covered all the characteristiCs of the .EXE program as it resides in memory 
and on disk. We've also touched on all the steps MS-DOS performs while loading the .EXE 
program from disk and executing it. The following list recaps the .EXE program loading 
process in the order in which MS-DOS performs it: 

1. MS-DOS reads the formatted area of the header (the first 1BH bytes) from the .EXE 
file into a work area. 

2. MS-DOS determines the size of the largest available block of memory. 
3. MS-DOS determines the size of the load module using the Last Page Size (offset 

02H), File Pages (offset 04H), and Header Paragraphs (offset OBH) fields from the 
header. An example of this process is in the discussion of the Header Paragraphs 
field. 

4. MS-DOS adds the MINALLOC field (offset OAH) in the header to the calculated load­
module size and the size of the PSP (lOOH bytes). If this total exceeds the size of the 
largest available block, MS-DOS terminates the load process and returns an error to 
the calling process. If the calling process was COMMAND. COM, COMMAND. COM 
then displays a Program too big to fit in memory error message. 

5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated 
load-module size and the size of the PSP. If the memory block found earlier exceeds 
this calculated total, MS-DOS allocates the calculated memory size to the program 
from the memory block; if the calculated total exceeds the block's size, MS-DOS 
allocates the entire block. 

6. If the MINALLOC and MAXALLOC fields both contain OOOOH, MS-DOS uses the 
calculated load-module size to determine a start segment. MS-DOS calculates the 
start segment so that the load module will load into the high end of the allocated 
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal 
case), MS-DOS establishes the start segment as the segment following the PSP. 

7. MS-DOS loads the load module into memory starting at the start segment. 

124 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 136



L, 

Article 4: Structure of an Application Program 

8. MS-DOS reads the relocation pointers into a Work area and relocates the load mod­
ule's direct segment references, as shown in Figure 4-6. 

9. MS-DOS builds a PSP in the first 1 OOH bytes of the allocated memory block. While 
building the two FCBs within the PSP, MS-DOS determines the initial values for the 
AL and AH registers. 

10. MS-DOS sets the SS and SP registers to the values in the header after the start seg­
ment is added to the SS value. 

11. MS-DOS sets the DS andES registers to point to the beginning of the PSP. 
12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in 

the header after adding the start segment to the CS value. 

Controlling the .EXE program's structure 

We've now covered almost every aspect of a completed .EXE program. Next, we'll discuss 
how to control the structure of the final .EXE program from the source level. We'll start by 
covering the statements provided by MASM that permit the programmer to define the 
structure of the program when programming in assembly language. Then we'll cover the 
five standard memory models provided by Microsoft's C and FORTRAN compilers (both 
version 4.0), which provide predefined structuring over which the programmer has 
limited control. 

The MASM SEGMENT directive 

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and 
end of a program segment. Program segments contain collections of code or data that have 
offset addresses relative to the same common segment address. 

In addition to the required segment name, the SEGMENT directive has three optional 
parameters: 

segname SEGMENT [align] [combine] ['class'] 

With MASM, the contents of a segment can be defined at one point in the source file and 
the definition can be resumed as many times as necessary throughout the remainder of 
the file. When MASM encounters a SEGMENT directive with a segname it has previously 
encountered, it simply resumes the segment definition where it left off. This occurs regard­
less of the combine type specified in the SEGMENT directive- the combine type influ­
ences only the actions of the linker. See The combine Type Parameter below. 

The align type parameter 
The optional align parameter lets the programmer send the linker an instruction on how 
to align a segment within memory. In reality, the linker can align the segment only in rela­
tion to the start of the program's load module, but the result remains the same because 
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE 
align type creates a special exception, as discussed below.) 

The following alignment types are permitted: 

BYTE This align type instructs the linker to start the segment on the byte immediately 
following the previous segment. BYTE alignment prevents any wasted memory between 
the previous segment and the BYTE-aligned segment. 

Section Jlo Programming in the MS-DOS Environment 125 

ZTE (USA) 1007, Page 137



. I' 
, I , 

Part B: Programming for MS-DOS 

126 

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might 
not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many 
as 15 bytes behind the start of the segment. This means that the segment size should not 
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer­
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

Another possible concern is execution speed on true 16-bit 8086-family microprocessors. 
When using non-8088 microprocessors, a program can actually run faster if the instruc­
tions and word data fields within segments are aligned on word boundaries. This permits 
the 16-bit processors to fetch full words in a single memory read, rather than having to per­
form two single-byte reads. The EVEN directive tells MASM to align instructions and data 
fields on word boundaries; however, MASM can establish this alignment only in relation to 
the start of the segment, so the entire segment must start aligned on a word or larger 
boundary to guarantee alignment of the items within the segment. 

WORD This align type instructs the linker to start the segment on the next word bound­
ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in 
which the least significant bit contains a zero). WORD alignment permits alignment of data 
fields and instructions within the segment on word boundaries, as discussed for the BYTE 
alignment type. However, the linker may have to waste 1 byte of memory between the pre­
vious segment and the word-aligned segment in order to position the new segment on a 
word boundary. 

Another minor disadvantage to WORD alignment is that the 8086-family segment registers 
might not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many as 
14 bytes behind the start of the segment. This means that the segment size should not be 
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer­
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

PARA This align type instructs the linker to start the segment on the next paragraph 
boundary. The segments default to PARA if no alignment type is specified. Paragraph 
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end­
ing in zero (OOOOH, OOlOH, 0020H, and so forth). Paragraph alignment ensures that the 
segment begins on a segment register addressing boundary, thus making it possible to ad­
dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA 
alignment has the same advantages as WORD alignment. The only real disadvantage to 
PARA alignment is that the linker may have to waste as many as 15 bytes of memory 
between the previous segment and the paragraph-aligned segment. 

PAGE This align type instructs the linker to start the segment on the next page boundary. 
Page boundaries occur every 256 bytes and consist of all addresses in which the low 
address byte equals zero (OOOOH, OlOOH, 0200H, and so forth). PAGE alignment ensures 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 138



Article 4: Structure of an Application Program 

only that the linker positions the segment on a page boundary relative to the start of the 
load module. Unfortunately, this does not also ensure alignment of the segment on an 
absolute page within memory, because MS-DOS only guarantees alignment of the entire 
load module on a paragraph boundary. 

When a programmer declares pieces of a segment with the same name in different source 
modules, the align type specified for each segment piece influences the alignment of that 
specific piece -of the segment. For example, assume the following two segment declara­
tions appear in different source modules: 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '123' 

_DATA ENDS 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '456' 

_DATA ENDS 

The linker starts by aligning the first segment piece located in the first object module on a 
paragraph boundary, as requested. When the linker encounters the second segment piece 
in the second object module, it aligns that piece on the first paragraph boundary following 
the first segment piece. This results in a 13-byte gap between the first segment piece and 
the second. The segment pieces must exist in separate source modules for this to occur. If 
the segment pieces exist in the same source module, MASM assumes that the second seg­
ment declaration is simply a resumption of the first and creates an object module with 
segment declarations equivalent to the following: 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '123' 
DB '456' 

-DATA ENDS 

The combine type parameter 
The optional combine parameter allows the programmer to send directions to the linker 
on how to combine segments with the same segname occurring in different object mod­
ules. If no combine type is specified, the linker treats such segments as if each had a dif­
ferent segname. The combine type has no effect on the relationship of segments with 
different segnames. MASM and LINK both support the following combine types: 

PUBLIC This combine type instructs the linker to concatenate multiple segments having 
the same segname into a single contiguous segment. The linker adjusts any address refer­
ences to labels within the concatenated segments to reflect the new position of those 
labels relative to the start of the combined segment. This combine type is useful for ac­
cessing code or data in different source modules using a common segment register value. 

STACK This combine type operates similarly to the PUBLIC combine type, except for 
two additional effects: The STACK type tells the linker that this segment comprises part of 
the program's stack and initialization data contained within STACK segments is handled 
differently than in PUBLIC segments. Declaring segments with the STACK combine type 
permits the linker to determine the initial SS and SP register values it places in the .EXE 

Section II: Programming in theMS-DOS Environment 127 

4 

ZTE (USA) 1007, Page 139



Part B: Programming for MS-DOS 

file header. Normally, a programmer would declare only one STACK segment in one of the 
source modules. If pieces of the stack are declared in different source modules, the linker 
will concatenate them in the same fashion as PUBLIC segments. However, initialization 
data declared within any STACK segment is placed at the high end of the combined STACK 
segments on a module-by-module basis. Thus, each successive module's initialization data 
overlays the previous module's data. At least one segment must be declared with the 
STACK combine type; otherwise, the linker will issue a warning message because it can­
not determine the program's initial SS and SP values. (The warning can be ignored if the 
program itself initializes SS and SP.) 

COMMON This combine type instructs the linker to overlap multiple segments having 
the same segname. The length of the resulting segment reflects the length of the longest 
segment declared. If any code or data is declared in the overlapping segments, the data 
contained in the final segments linked replaces any data in previously loaded segments. 
This combine type is useful when a data area is to be shared by code in different source 
modules. 

MEMORY Microsoft's LINK treats this combine type the same as it treats the PUBLIC 
type. MASM, however, supports the MEMORY type for compatibility with other linkers 
that use Intel's definition of a MEMORY combine type. 

AT address This combine type instructs LINK to pretend that the segment will reside at 
the absolute segment address. LINK then adjusts all address references to the segment in 
accordance with the masquerade. LINK will not create an image of the segment in the 
load module, and it will ignore any data defined within the segment. This behavior is con­
sistent with the fact that MS-DOS does not support the loading of program segments into 
absolute memory segments. All programs must be able to execute from any segment ad­
dress at which MS-DOS can find available memory. The SEGMENT AT address combine 
type is useful for creating templates of various areas in memory outside the program. For 
instance, SEGMENT AT OOOOH could be used to create a template of the 8086-family inter­
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed 
by LINK and not by MASM (which places the data in the object module), it is possible to 
use .OBJ files generated by MASM with another linker that supports ROM or other absolute 
code generation should the programmer require this specialized capability. 

The class type parameter 
The class parameter provides the means to organize different segments into classifications. 
For instance, here are three source modules, each with its own separate code and data 
segments: 

;Module "A"' 

A-DATA SEGMENT PARA PUBLIC 'DATA' 
;Module "A" data fields 
A-DATA ENDS 
A-CODE SEGMENT PARA PUBLIC 'CODE' 
;Module "A" code 
A-CODE ENDS 

END 

128 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 140



Article 4: Structure of an Application Program 

;Module "B" 

B_DATA SEGMENT PARA PUBLIC 'DATA' 

;Module "Bn data fields 

B_DATA ENDS 

B-CODE SEGMENT PARA PUBLIC 'CODE' 

;Module "B" code 
B_CODE ENDS 

END 

;Module "Cu 

C_DATA SEGMENT PARA PUBLIC 'DATA' 
;Module ncn data fields 
C_DATA ENDS 
C_CODE SEGMENT PARA PUBLIC 'CODE' 
;Module "C" code 
C_CODE ENDS 

END 

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown 
above, the linker organizes the segments as it encounters them. If the programmer speci­
fies the modules to the linker in alphabetic order, the linker produces the following 
segment ordering: 

A_DATA 

lLCODE 
B_DATA 
B_CODE 
C_DATA 
C_CODE 

However, if the programmer specifies the class types shown in the sample source mod­
ules, the linker organizes the segments by classification as follows: 

'DATA' class: 

'CODE' class: 

lLDATA 
B_DATA 
C_DATA 

lLCODE 
B_CODE 
C_CODE 

Notice that the linker still organizes the classifications in the order in which it encounters 
the segments belonging to the various classifications. To completely control the order in 
which the linker organizes the segments, the programmer must use one of three basic 
approaches. The preferred method involves using the /DOSSEG switch with the linker. 
This produces the segment ordering shown in Figure 4-1. The second method involves 
creating a special source module that contains empty SEGMENT-ENDS blocks for all the 
segments declared in the various other source modules. The programmer creates the list 
in the order the segments are to be arranged in memory and then specifies the .OBJ file for 
this module as the first file for the linker to process. This procedure establishes the order 
of all the segments before LINK begins processing the other program modules, so the 

Section II- Programming in the MS-DOS Environment 129 

ZTE (USA) 1007, Page 141



Part B: Programming for MS-DOS 

130 

programmer can declare segments in these other modules in any convenient order. For 
instance, the following source module rearranges the result of the previous example so 
that the linker places the 'CODE' class before the 'DATA' class: 

lLCODE SEGMENT PARA PUBLIC 'CODE' 

lLCODE ENDS 
B_CODE SEGMENT PARA PUBLIC 'CODE' 
B_CODE ENDS 
C_CODE SEGMENT PARA PUBLIC 'CODE' 
C_CQDE ENDS 

lLDATA SEGMENT PARA PUBLIC 'DATA' 

lLDATA ENDS 
B_DATA SEGMENT PARA PUBLIC 'DATA' 
B__DATA ENDS 
C__DATA SEGMENT PARA PUBLIC 'DATA' 
C__DATA ENDS 

END 

Rather than creating a new module, the third method places the same segment ordering 
list shown above at the start of the first module containing actual code or data that the 
programmer will be specifying for the linker. This duplicates the approach used by 
Microsoft's newer compilers, such as C version 4.0. 

The ordering of segments within the load module has no direct effect on the linker's 
adjustment of address references to locations within the various segments. Only the 
GROUP directive and the SEGMENT directive's combine parameter affect address 
adjustments performed by the linker. See The MASM GROUP Directive below. 

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object 
file in alphabetic order regardless of their order in the source file. These older versions can 
limit efforts to control segment ordering. Upgrading to a new version of the assembler is 

·the best solution to this problem. 

Ordering segments to shrink the .EXE file 
Correct segment ordering can significantly decrease the size of a .EXE program as it 
resides on disk. This size-reduction ordering is achieved by placing all uninitialized data 
fields in their own segments and then controlling the linker's ordering of the program's 
segments so that the uninitialized data field segments all reside at the end of the program. 
When the program modules are assembled, MASM places information in the object mod­
ules to tell the linker about initialized and uninitialized areas of all segments. The linker 
then uses this information to prevent the writing of uninitialized data areas that occur at 
the end of the program image as part of the resulting .EXE file. To account for the memory 
space required by these fields, the linker also sets the MINALLOC field in the .EXE file 
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC 
field to reallocate this missing space when loading the program. 

The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 142



Article 4: Structure of an Application Program 

The MASM GROUP directive 

The MASM GROUP directive can also have a strong impact on a .EXE program. However, 
the GROUP directive has no effect on the arrangement of program segments within mem­
ory. Rather, GROUP associates program segments for addressing purposes. 

The GROUP directive has the following syntax: 

grpname GROUP segname,segname,segname, ... 

This directive causes the linker to adjust all address references to labels within any speci­
fied segname to be relative to the start of the declared group. The start of the group is de­
termined at link time. The group starts with whichever of the segments in the GROUP list 
the linker places lowest in memory. 

That the GROUP directive neither causes nor requires contiguous arrangement of the 
grouped segments creates some interesting, although not necessarily desirable, possi­
bilities. For instance, it permits the programmer to locate segments not belonging to the 
declared group between segments that do belong to the group. The only restriction im­
posed on the declared group is that the last byte of the last segment in the group must 
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment 
arrangement: 

l 
64KB 

maximum 

j 

---- LABEL_C ... 

i t LABEL_B ... 

Offset to 
LABEL B 

Offsetto + -
~-----

LABlEL_C t LABEL_A ... 

Offset to 

LABlL_A 

SEGMENT_C 
(listed with GROUP directive) 

SEGMENT_B 
(not listed with GROUP directive) 

SEGMENT_A 
(listed with GROUP directive) 

Figure 4-7. Noncontiguous segments in the same GROUP 

Warning: One of the most confusing aspects of the GROUP directive relates to MASM's 
OFFSET operator. The GROUP directive affects only the offset addresses generated by 
such direct addressing instructions as 

MOV AX,FIELD_LABEL 

but it has no effect on immediate address values generated by such instructions as 

MOV AX,OFFSET FIELD_LABEL 

Section II: Programming in the MS-DOS Environment 131 

ZTE (USA) 1007, Page 143



Part B: Programming for MS-OOS 

Using the OFFSET operator on labels contained within grouped segments requires the 
following approach: 

MOV AX,OFFSET GROUP_NAME:FIELD_LABEL 

The programmer must explicitly request the offset from the group base, because MASM 
defines the result of the OFFSET operator to be the offset of the label from the start of its 
segment, not its group. 

Structuring a small program with SEGMENT and GROUP 

132 

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc­
tives, we'll put both directives to work structuring a skeleton program. The program, 
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A, 
MODULE_B, and MODULE_ C), each using the following four program segments: 

Segment Definition 

The code or program text segment _TEXT 
_DATA The standard data segment containing preinitialized data fields the pro­

gram might change 
CONST The constant data segment containing constant data fields the program 

will not change 
_BSS The "block storage segment/space" segment containing uninitialized data 

fields• 

• Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as 
"block started at symbol," which reflects an equally appropriate, although somewhat more elaborate, defini­
tion of the abbreviation. Other common translations of BSS, such as "blank static storage," misrepresent the 
segment name, because blanking of BSS segments does not occur- the memory contains undetermined 
values when the program begins execution. 

;Source Module MODULE-A 

;Predeclare all segments to force the linker's segment ordering ************** 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 
_TEXT ENDS 

_DATA SEGMENT WORD PUBLIC 'DATA' 
_DATA ENDS 

CONST SEGMENT WORD PUBLIC 'CONST' 
CONST ENDS 

_BSS SEGMENT WORD PUBLIC 'BSS' 
_BSS ENDS 

Figure 4-8. Structuring a .EXE program: MODULE_A. 

The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 144



Article 4: Structure of an Application Program 

STACK 
STACK 

SEGMENT PARA STACK 'STACK' 

ENDS 

DGROUP GROUP _DATA,CONST,_BSS,STACK 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_A DB 'Constant A' ;declare a MODULE_A constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA_FIELD_A DB 'Data A' ;declare a MODULE_A preinitialized field 

_DATA ENDS 

;Uninitialized data fields ***********************************~*************** 

_BSS SEGMENT WORD PUBLIC 'BSS' 

BSS_FIELD_A DB 5 DUP(?) ;declare a MODULE_A uninitialized field 

_BSS ENDS 

;Program text **************************************************************** 

_TEXT 

PROC_A 

PROC_A 

-TEXT 

SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

EXTRN 
EXTRN 

PROC 

CALL 
CALL 

MOV 
IN 'I' 

ENDP 

ENDS 

PROC_B:NEAR 
PROC_C:NEAR 

NEAR 

PROC_B 
PROC_C 

AX,4COOH 
21H 

;label is in _TEXT segment (NEAR) 
;label is in _TEXT segment (NEAR) 

;call into MODULE_B 
;call into MODULE_C 

;terminate (MS-DOS 2.0 or later only) 

Figure 4-8. Continued. (more) 

Section II: Programming in the MS-DOS Environment 133 

ZTE (USA) 1007, Page 145



Part B: Programming for MS.DOS 

;Stack *********************************************************************** 

STACK SEGMENT PARA STACK 'STACK' 

ow 
STAC!LBASE 

128 DUP(?) 

LABEL WORD 

STACK ENDS 

END PROC_A 

Figure 4-8. Continued. 

;Source Module MODULE-B 

;declare some space to use as stack 

;declare PROC-A as entry point 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_B DB 'Constant B.' ;declare a MODULE-B constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_j)ATA SEGMENT WORD PUBLIC 'DATA' 

DATA....FIELD_B DB 'Data B' ;declare a MODULE_B preinitialized field 

_j)ATA ENDS 

;Uninitialized data fields'*************************************************** 

-BSS SEGMENT WORD PUBLIC 'BSS' 

BSSJIELD_B DB 5 DUP (?) ;declare a MODULE_B uninitialized field 

_BSS ENDS 

;Program text **************************************************************** 

DGROUP GROUP _j)ATA,CONST,_BSS 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-9. Structuring a .EXE program: MODULE_B. (more) 

134 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 146



Article 4: Structure of an Application Program 

PUBLIC PROC_B ;reference in MODULE_A 
PROC_B PROC NEAR 

RET 

PROC_B ENDP 

_TEXT ENDS 

END 

Figure 4-9. Continued. 

;Source Module MODULE_C 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_C DB 'Constant C' ;declare a MODULE_C constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA-FIELD_C DB 'Data C' ;declare a MODULE_C preinitialized field 

_DATA ENDS 

;Uninitialized data fields *************************************************** 

_BSS SEGMENT WORD PUBLIC 'BSS' 

BSS.J'IELD_C DB 5 DUP (?) ;declare a MODULE_C uninitialized field 

_Bss ENDS 

;Program text **************************************************************** 

DGROUP GROUP _DATA,CONST,_BSS 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-10. Structuring a .EXEprogram: MODULE_ C. (more) 

Section II: Programming in the MS-DOS Environment 135 

------------...... ZTE (USA) 1007, Page 147



Part B: Programming for MS-DOS 

PUBLIC PROC_C ;referenced in MODULE-A 
PROC_C PROC NEAR 

RET 

PROC_C ENDP 

_TEXT ENDS 

END 

·Figure 4-10. Continued. 

This example creates a small memory model program image, so the linked program can 
have only a single code segment and a single data segment- the simplest standard form 
of a .EXE program. See Using Microsoft's Contemporary Memory Models below. 

In addition to declaring the four segments already discussed, MODULE_ A declares a 
STACK segment in which to define a block of memory for use as the program's stack and 
also defines the linking order of the five segments. Defining the linking order leaves the 
programmer free to declare the segments in any order when defining the segment con­
tents- a necessity because the assembler has difficulty assembling programs that use 
forward references. 

With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com­
mands can be made into a batch file: 

MASM STRUCA; 
MASM STRUCB; 
MASM STRUCC; 
LINK STRUCA+STRUCB+STRUCC/M; 

These commands will assemble and link all the .ASM files listed, producing the memory 
map report file STRUCA.MAP shown in Figure 4-11. 

Start Stop Length Name 

OOOOOH OOOOCH OOOODH _TEXT 

OOOOEH 0001FH 00012H _DATA 

00020H 0003DH 0001EH CONST 

0003EH 0004EH 00011H _BSS 

OOOSOH 0014FH 00100H STACK 

Origin Group 
0000:0 DGROUP 

Address Publics by Name 

OOOO:OOOB 
OOOO:OOOC 

PROC_B 
PROC_C 

Class 

CODE 
DATA 
CONST 
BSS 
STACK 

Figure 4-11. Structuring a .EXE program: memory map report. 

136 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 148



L 

Article 4: Structure of an Application Program 

Address Publics by Value 

OOOO:OOOB PROC_B 
OOOO:OOOC PROC_C 

Program entry point at 0000:0000 

Figure 4-11. Continued. 

The above memory map report represents the memory diagram shown in Figure 4-12. 

Absolute 
address Size in bytes 

00150H ... 

STACK STACK(A) 
Class 

256 

00050H ... 
0004FH ... 
0004AH ... 
00049H ... 
00044H ... 
00043H ... 
0003EH ... 
00034H ... 
0002AH ... 
00020H ... 
OOOIAH ... 
OOOI4H ... 
OOOOEH ... 
OOOODH ... 
OOOOCH ... 

DGROUP OOOOBH ... 
addressing ... OOOOOH ... 

- -- --
- -- -- PARA align gap 

- -- - - -- --- BSS (C) 

- -- - -- BSS -
WORD align gap 

- -- - - - Class - BSS (B) 

-DGROUP-
WORD align gap - - ---

Group - BSS (A) 

- - CONST-
CONST(C) 

-- --
-- - - - - Class - CONST(B) 

-- - -- CONST(A) 

- - - - - - DATA - DATA (C) 

- -- -- - Class - DATA (B) 

DATA(A) --- - -
WORD align gap 

--- - CODE - - - TEXT(C) 

-- - - Class - - - TEXT(B) 

TEXT(A) 

I 

5 i 
5 15 

1 321 
5 

10 ; 
10 30 

10 ~ 
6 ; 
6 18 

6 ~ 

+ 
13 

11 ~ 
base 

Figure 4-12. Structure of the sample .EXE program. 

Using Microsoft's contemporary memory models 

Now that we've analyzed the various aspects of designing assembly-language .EXE pro­
grams, we can look at how Microsoft's high-level-language compilers create .EXE pro­
grams from high-level-language source files. Even assembly-language programmers will 
find this discussion of interest and should seriously consider using the five standard 
memory models outlined here. 

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the 
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code 
generator currently available. These newer compilers generate code based on three to five 

Section n Programming in the MS-DOS Environment 137 

ZTE (USA) 1007, Page 149



I i 

I 

'i' 
i i 

I' 

Part B: Programming for MS-DOS 

138 

of the following standard programmer-selectable program structures, referred to as mem­
ory models. The discussion of each of these memory models will center on the model's 
use with the Microsoft C Compiler and will close with comments regarding any differences 
for the Microsoft FORTRAN Compiler. 

Small ( C compiler switch MS) This model, the default, includes only a single code seg­
ment and a single data segment. All code must fit within 64 KB, and all data must fit within 
an additional 64 KB. Most C program designs fall into this category. Data can exceed the 
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far 
addressing, and the linker to place far and huge data items into separate segments. The 
data-size-threshold switch described for the compact model is ignored by the Microsoft C 
Compiler when used with a small model. The C compiler uses the default segment name 
_TEXT for all code and the default segment name_ DATA for all non-far/huge data. 
Microsoft FORTRAN programs can generate a semblance of this model only by using the 
!NM (name module) and /AM (medium model) compiler switches in combination with the 
near attribute on all subprogram declarations. 

Medium (C and FORTRAN compiler switch !AM) This model includes only a single data 
segment but breaks the code into multiple code segments. All data must fit within 64 KB, 
but the 64 KB restriction on code size applies only on a module-by-module basis. Data can 
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to 
use far addressing, and the linker to place far and huge data items into separate segments. 
The data-size-threshold switch described for the compact model is ignored by the 
Microsoft C Compiler when used with a medium model. The compiler uses the default seg­
ment name _DATA for all non-far/huge data and the template module_TEXT to create 
names for all code segments. The module element of module_TEXT indicates where the 
compiler is to substitute the name of the source module. For example, if the source module 
HELPFUNC.C is compiled using the medium model, the compiler creates the code seg­
ment HELPFUNC_ TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports 
the medium model. 

Compact (C compiler switch lAC) This model includes only a single code segment but 
breaks the data into multiple data segments. All code must fit within 64 KB, but the data is 
allowed to consume all the remaining available memory. The Microsoft C Compiler's op­
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into 
additional data segments, leaving the smaller items in the default segment for faster access. 
Individual data items within the program cannot exceed 64 KB under the compact model 
without being explicitly declared huge. The compiler uses the default segment name 
_TEXT for all code segments and the template module#_DATA to create names for all data 
segments. The module element indicates where the compiler is to substitute the source 
module's name; the # element represents a digit that the compiler changes for each addi­
tional data segment required to hold the module's data. The compiler starts with the digit 5 
and counts up. For example, if the name of the source module is HELPFUNC.C, the com­
piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate 
a semblance of this model only by using the /NM (name module) and /AL (large model) 
compiler switches in combination with the near attribute on all subprogram declarations. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 150



Article 4: Structure of an Application Program 

Large ( C and FORTRAN compiler switch !AL) This model creates multiple code and data 
segments. The compiler treats data in the same manner as it does for the compact model 
and treats code in the same manner as it does for the medium model. The Microsoft 
FORTRAN Compiler version 4.0 directly supports the large model. 

Huge ( C and FORTRAN compiler switch !AH) Allocation of segments under the huge 
model follows the same rules as for the large model. The difference is that individual data 
items can exceed 64 KB. Under the huge model, the compiler generates the necessary 
code to index arrays or adjust pointers across segment boundaries, effectively transforming 
the microprocessor's segment-addressed memory into linear-addressed memory. This 
makes the huge model especially useful for porting a program originally written for a pro­
cessor that used linear addressing. The speed penalties the program pays in exchange for 
this addressing freedom require serious consideration. If the program actually contains 
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best 
to avoid using the huge model by explicitly declaring those few data items as huge using 
the huge keyword within the source module. This prevents penalizing all the non-huge 
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly 
supports the huge model. 

Figure 4-13 shows an example of the segment arrangement created by a large/huge model 
program. The example assumes two source modules: MSCA.C and MSCB.C. Each source 
module specifies enough data to cause the compiler to create two extra data segments for 
that module. The diagram does not show all the various segments that occur as a result of 
linking with the run-time library or as a result of compiling with the intention of using the 
Code View debugger. 

Groups Classes 

STACK 

BSS 
DGROUP 

CONST 

DATA 

FAR_BSS 

FAR_DATA 

CODE 

Segments 

STACK 

c_common 

_BSS 

CONST 

_DATA 

FAR_BSS 

MSCB6 DATA 

~SCBS DATA 

MSCA6_DATA 

MSCAS_DATA 

TEXT 

MSCB_TEXT 

MSCA_TEXT 

<1111 SMCLH: Program stack 

<1111 SM: All uninitialized global items, CLH: Empty 

<1111 SMCLH: All uninitialized non-far/huge items 

<1111 SMCLH: Constants (floating point constraints, segment addresses, etc.) 

<1111 SMCLH: All items that don't end up anywhere else 

<1111 SM: Nonexistent, CLH: All uninitialized global items 

<1111 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 SC: All code, MLH: Run-time library code only 

<1111 SC: Nonexistent, MLH: MSCB.C Code 

<1111 SC: Nonexistent, MLH: MSCA.C Code 

S = Small model 
M =Medium model 
C = Compact model 

L = Large model 
H = Huge model 

Figure 4-13. General structure of a Microsoft C program. 

Section II: Programming in the MS-DOS Environment 139 

ZTE (USA) 1007, Page 151



Part B: Programming for MS-DOS 

Note that if the program declares an extremely large number of small data items, it can 
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory 
model specified. This occurs because the data items all fall below the data-size-threshold 
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment. 
Lowering the data size threshold or explicitly using the far attribute within the source 
modules eliminates this problem. 

Modifying the .EXE file header 
With most of its language compilers, Microsoft supplies a utility program called EXEMOD. 
See PROGRAMMING UTILITIES: EXEMOD. This utility allows the programmer to display 
and modify certain fields contained within the .EXE file header. Following are the header 
fields EXEMOD can modify (based on EXEMOD version 4.0): 

MAXALLOC This field can be modified by using EXEMOD's /MAX switch. Because 
EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be 
used to modify the MAXALLOC field in existing .EXE programs that contain the default 
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS's allocating 
all free memory to them. EXEMOD's /MAX switch functions in an identical manner to 
LINK's /CPARMAXALLOC switch. 

MINALLOC This field can be modified by using EXEMOD's /MIN switch. Unlike the case 
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC. 
MINALLOC normally represents uninitialized memory and stack space the linker has com­
pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value 
within a .EXE program written by someone else. If a program requires some minimum 
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in­
creased to ensure that the program will have this extra memory before receiving control. If 
this is done, the program will not have to verify that MS-DOS allocated enough memory to 
meet program needs. Of course, the same result can be achieved without EXEMOD by 
declaring this minimum extra memory as an uninitialized field at the end of the program. 

Initial SP Value This field can be modified by using the /STACK switch to increase or 
decrease the size of a program's stack. However, modifying the initial SP value for pro­
grams developed using Microsoft language compiler versions earlier than the following 
may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version 
3.3. Other language compilers may have the same restriction. The /STACK switch can also 
be used with programs developed using MASM, provided the stack space is linked at the 
end of the program, but it would probably be wise to change the size of the STACK seg­
ment declaration within the program instead. The linker also provides a /STACK switch 
that performs the same purpose. 

Note: With the /H switch set, EXEMOD displays the current values of the fields within 
the .EXE header. This switch should not be used with the other switches. EXEMOD also 
displays field values if no switches are used. 

140 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 152



Article 4: Structure of an Application Program 

Warning: EXEMOD also functions correctly when used with packed .EXE files created 
using EXEPACK or the /EXEPACK linker switch. However, it is important to use the 
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in 
the packing method may result in incompatibilities between EXEMOD and nonassociated 
linker/EXEPACK versions. 

Patching the .EXE program using DEBUG 

Every experienced programmer knows that programs always seem to have at least one 
unspotted error. If a program has been distributed to other users, the programmer will 
probably need to provide those users with corrections when such bugs come to light. One 
inexpensive updating approach used by many large companies consists of mailing out 
single-page instructions explaining how the user can patch the program to correct the 
problem. 

Program patching usually involves loading the program file into the DEBUG utility sup­
plied with MS-DOS, storing new bytes into the program image, and then saving the pro­
gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory 
and then save it back to disk in . EXE format. The programmer must trick DEBUG into 
patching .EXE program files, using the procedure outlined below. See PROGRAMMING 
UTILITIES: DEBUG. 

Note: Users should be reminded to make backup copies of their program before attempt­
ing the patching procedure. 

1. Rename the .EXE file using a filename extension that does not have special meaning 
for DEBUG. (Avoid .EXE, .COM, and .HEX.) For instance, MYPROG.BIN serves well as 
a temporary new name for MYPROG.EXE because DEBUG does not recognize a file 
with a .BIN extension as anything special. DEBUG will load the entire image of 
MYPROG.BIN, including the .EXE header and relocation table, into memory starting 
at offset 100H within a .COM-style program segment (as discussed previously). 

2. Locate the area within the load module section of the .EXE file image that requires 
patching. The previous discussion of the .EXE file image, together with compiler/ 
assembler listings and linker memory map reports, provides the information neces­
sary to locate the error within the .EXE file image. DEBUG loads the file image start­
ing at offset 100H within a .COM-style program segment, so the programmer must 
compensate for this offset when calculating addresses within the file image. Also, the 
compiler listings and linker memory map reports provide addresses relative to the 
start of the program image within the .EXE file, not relative to the start of the file 
itself. Therefore, the programmer must first check the information contained in the 
.EXE file header to determine where the load module (the program's image) starts 
within the file. 

3. Use DEBUG's E (Enter Data) or A (Assemble Machine Instructions) command to 
insert the corrections. (Normally, patch instructions to users would simply give an 
address at which the user should apply the patch. The user need not know how to 
determine the address.) 

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors) 
command to write the corrected image back to disk under the same filename, pro­
vided the patch has not increased the size of the program. If program size has 

Section JL- Programming in the MS-DOS Environment 141 
ZTE (USA) 1007, Page 153



Part B: Programming for MS-DOS 

increased, first change the appropriate size fields in the .EXE header at the start of the 
file and use the DEBUG R (Display or Modify Registers) command to modify the BX 
and CX registers so that they contain the file image's new size. Then use the W com­
mand to write the image back to disk under the same name. 

5. Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then 
rename the file to the original .EXE filename extension . 

. EXE summary 

To summarize, the .EXE program and file structures provide considerable flexibility in the 
design of programs, providing the programmer with the necessary freedom to produce 
large-scale applications. Programs written using Microsoft's high-level-language compilers 
have access to five standardized program structure models (small, medium, compact, 
large, and huge). These standardized models are excellent examples of ways to structure 
assembly-language programs. 

The .COM Program 

The majority of differences between .COM and .EXE programs exist because .COM 
program files are not prefaced by header information. Therefore, .COM programs do not 
benefit from the features the .EXE header provides. 

The absence of a header leaves MS-DOS with no way of knowing how much memory the 
.COM program requires in addition to the size ofthe program's image. Therefore, MS-DOS 
must always allocate the largest free block of memory to the .COM program, regardless of 
the program's true memory requirements. As was discussed for .EXE programs, this allo­
cation of the largest block of free memory usually results in MS-DOS's allocating all 
remaining free memory- an action that can cause problems for multitasking supervisor 
programs. 

The .EXE program header also includes the direct segment address relocation pointer 
table. Because they lack this table, .COM programs cannot make address references to the 
labels specified in SEGMENT directives, with the exception of SEGMENT AT address 
directives. If a .COM program did make these references, MS-DOS would have no way of 
adjusting the addresses to correspond to the actual segment address into which MS-DOS 
loaded the program. See Creating the .COM Program below. 

The .COM program structure exists primarily to support the vast number of CP/M pro­
grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding 
the 512 bytes or more of .EXE header information onto small, simple programs that often 
do not exceed 512 bytes by themselves. 

The .COM program structure has another advantage: Its memory organization places the 
PSP within the same address segment as the rest of the program. Thus, it is easier to access 
fields within the PSP in .COM programs. 

142 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 154



Article 4: Structure of an Application Program 

Giving control to the .COM program 

After allocating the largest block of free memory to the .COM program, MS-DOS builds 
a PSP in the lowest lOOH bytes of the block. No difference exists between the PSP MS-DOS 
builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro­
grams, MS-DOS determines the initial values for the ALand AH registers at this time and 
then loads the entire .COM-file image into memory immediately following the PSP. 
Because .COM files have no file-size header fields, MS-DOS relies on the size recorded in 
the disk directory to determine the size of the program image. It loads the program exactly 
as it appears in the file, without checking the file's contents. 

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If 
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH 
+ 1 (OOOOH) to establish an initial stack; if less than 64 KB are available for allocation to the 
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In 
either case, MS-DOS then pushes a single word of OOOOH onto the program's stack for 
use in terminating the program. 

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP's 
segment address and the IP register to OlOOH. This means that the program's entry point 
must exist at the very start of the program's image, as shown in later examples. 

Figure 4-14 shows the overall structure of. a .COM program as it receives control from 
MS-DOS. 

.COM program memory image 

SP=FFFEH* 
()()HI OOH I 

Remaining free memory 
within first 64 KB allocated 

to .COM program 
(provided a full64 KB was available) 

64KB* 

I 
.. COM program image ~ 

.COM program image from file 

~ IP=OlOOH 
Program segment prefix 

~ CS,DS,ES,SS 

*The SP and 64 KB values are dependent upon 
MS-DOS having 64 KB or more of memory 
available to allocate to the .COM program 
at load time. 

1 
Figure 4-14. The. COM program: memory map diagram with register pointers. 

Section IL- Programming in the MS-DOS Environment 143 

ZTE (USA) 1007, Page 155



Part B: Programming for MS-DOS 

Terminating the .COM program 

A .COM program can use all the termination methods described for .EXE programs but 
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function 
( 4CH) as the preferred method. If the .COM program must remain compatible with ver­
sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods, 
including those described as difficult to use from .EXE programs, because .COM programs 
execute with the CS register pointing to the PSP as required by these methods. 

Creating the .COM program 

A .COM program is created in the same manner as a .EXE program and then converted 
using the MS-DOS EXE2BIN utility. See PROGRAMMING UTILITIES: EXE2BIN. 

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot 
exceed 64 KB minus IOOH bytes for the PSP minus 2 bytes for the zero word initially 
pushed on the stack. 

Next, only a single segment- or at least a single addressing group- should exist within 
the program. The following two examples show ways to structure a .COM program to sat­
isfy both this restriction and MASM's need to have data fields precede program code in the 
source file. 

COMPROG1.ASM (Figure 4-15) declares only a single segment (COMSEG), so no special 
considerations apply when using the MASM OFFSET operator. See The MASM GROUP 
Directive above. COMPROG2.ASM (Figure 4-16) declares separate code (CSEG) and data 
(DSEG) segments, which the GROUP directive ties into a common addressing block. 
Thus, the programmer can declare data fields at the start of the source file and have the 
linker place the data fields segment (DSEG) after the code segment ( CSEG) when it links 
the program, as discussed for the .EXE program structure. This second example simulates 
the program structuring provided under CP/M by Microsoft's old Macro-80 (M80) macro 
assembler and Link-80 (180) linker. The design also expands easily to accommodate 
COMMON or other additional segments. 

COMSEG SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG 
ORG 01 OOH 

BEGIN: 
JMP START ;skip over data fields 

;Place your data fields here. 

START: 
;Place your program text here. 

MOV AX,4COOH ;terminate (MS-DOS 2.0 or later only) 
!NT 21H 

COMSEG ENDS 
END BEGIN 

Figure 4-15. . COM program with data at start. 

144 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 156



Article 4: Structure of an Application Program 

CSEG SEGMENT BYTE PUBLIC 'CODE' ;establish segment order 
CSEG ENDS 
DSEG SEGMENT BYTE PUBLIC 'DATA' 
DSEG ENDS 

COMGRP GROUP CSEG,DSEG ;establish joint address base 
DSEG SEGMENT 
;Place your data fields here. 
DSEG ENDS 
CSEG SEGMENT 

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP 
ORG 01 OOH 

BEGIN: 
;Place your program text here. Remember to use 
;OFFSET COMGRP:LABEL whenever you use OFFSET. 

MOV AX,4COOH ;terminate (MS-DOS 2.0 or later only) 
INT 21H 

CSEG ENDS 
END BEGIN 

Figure 4-16 .. COM program with data at end. 

These examples demonstrate other significant requirements for producing a functioning 
.COM program. For instance, the ORG OJOOH statement in both examples tells MASM to 
start assembling the code at offset lOOH within the encompassing segment. This corre­
sponds to MS-DOS's transferring control to the program at IP = OlOOH. In addition, the 
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a 
parameter to the END statement. Together, these factors satisfy the requirement that .COM 
programs declare their entry point at offset lOOH. If any factor is missing, the MS-DOS 
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM 
file. Specifically, if a .COM program declares an entry point (as a parameter to the END 
statement) that is at neither offset OlOOH nor offset OOOOH, EXE2BIN rejects the .EXE file 
when the programmer attempts to convert it. If the program fails to declare an entry point 
or declares an entry point at offset OOOOH, EXE2BIN assumes that the .EXE file is to be 
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE 
file to a non-.COM binary file, it does not strip the extra lOOH bytes the linker places in 
front of the code as a result of the ORG OJOOH instruction. Thus, the program actually 
begins at offset 200H when MS-DOS loads it into memory, but all the program's address 
references will have been assembled and linked based on the lOOH offset. As a result, the 
program- and probably the rest of the system as well- is likely to crash. 

A .COM program also must not contain direct segment address references to any segments 
that make up the program. Thus, the .COM program cannot reference any segment labels 
or reference any labels as long (FAR) pointers. (This rule does not prevent the program 
from referencing segment labels declared using the SEGMENT AT address directive.) 
Following are various examples of direct segment address references that are not per­
mitted as part of .COM programs: 

Section II: Programming in the MS-DOS En
ZTE (USA) 1007, Page 157



i: 

': 
It 

:I' 
I:; 

I 
i 

,I I I, 

Part B: Programming for MS-DOS 

PROC_A PROC FAR 
PROC_A ENDP 

CALL PROC_A ;intersegment call 
JMP PROC_A ;intersegment jump 

or 

EXTRN PROC_A:FAR 

CALL PROC_A ;intersegment call 
JMP PROC_A ;intersegment jump 

or 

MOV AX,SEG SEG_A ;segment address 
DD LABEL_A ;segment:offset pointer 

Finally, .COM programs must not declare any segments with the STACK combine type. If 
a program declares a segment with the STACK combine type, the linker will insert initial 
SS and SP values into the .EXE file header, causing EXE2BIN to reject the .EXE file. A .COM 
program does not have explicitly declared stacks, although it can reserve space in a non­
STACK combine type segment to which it can initialize the SP register after it receives 
control. The absence of a stack segment will cause the linker to issue a harmless warning 
message. 

When the program is assembled and linked into a .EXE file, it must be converted into a 
binary file with a .COM extension by using the EXE2BIN utility as shown in the following 
example for the file YOURPROG.EXE: 

C>EXE2BIN YOURPROG YOURPROG.COM <Enter> 

It is not necessary to delete or rename a .EXE file with the same filename as the .COM 
file before trying to execute the .COM file as long as both remain in the same directory, 
because MS-DOS's order of execution is .COM files first, then .EXE files, and finally .BAT 
files. However, the safest practice is to delete a .EXE file immediately after converting it to 
a .COM file in case the .COM file is later renamed or moved to a different directory. If a 
.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash 
the system. 

Patching the .COM program using DEBUG 

As discussed for .EXE files, a programmer who distributes software to users will probably 
want to send instructions on how to patch in error corrections. This approach to software 
updates lends itself even better to .COM files than it does to .EXE files. 

For example, because .COM files contain only the code image, they need not be renamed 
in order to read and write them using DEBUG. The user need only be instructed on how to 
load the .COM file into DEBUG, how to patch the program, and how to write the patched 
image back to disk. Calculating the addresses and patch values is even easier, because no 
header exists in the .COM file image to cause complications. With the preceding excep­
tions, the details for patching .COM programs remain the same as previously outlined for 
.EXE programs. 

146 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 158



Article 4: Structure of an Application Program 

.COM summary 

To summarize, the .COM program and file structures are a simpler but more restricted 
approach to writing programs than the .EXE structure because the programmer has only a 
single memory model from which to choose (the .COM program segment model). Also, 
.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so 
the .COM program structure is well suited to small programs for which adding 512 bytes 
of header would probably at least double the file's size. 

Summary of Differences 

The following table summarizes the differe~ces between .COM and .EXE programs . 

Maximum size 

Entry point 
CS ~tentry 

IP at entry 

DS at entry 
ES at entry 
SS at entry 
SPat entry 

Stack at entry 

Stack size 

Subroutine calls 
Exit method 

Size of file 

.COM program 

65536 bytes minus 256 bytes 
for PSP and 2 bytes for stack 

PSP:0100H 
PSP 

OlOOH 

PSP 
PSP 
PSP 
FFFEH or top word in available 

memory, whichever is lower 
Zero word 

65536 bytes minus 256 bytes 
for PSP and size of executable 
code and data 

NEAR 
Interrupt 21H Function 4CH 

preferred; NEAR RET if 
MS-DOS versions l.x 

Exact size of program 

. EXE program 

No limit 

Defined by END statement 
Segment containing program's 

entry point 
Offset of entry point within its 

segment 
PSP 
PSP 
Segment with STACK attribute 
End of segment defined with 

STACK attribute 
Initialized or uninitialized, 

depending on source 
Defined in segment with 

STACK attribute 

NEAR or FAR 
Interrupt 21H Function 4CH 

preferred; indirect jump 
to PSP:OOOOH if MS-DOS 
versions l.x 

Size of program plus header (at 
least 512 extra bytes) 

Section Jl- Programming in the MS-DOS Environment 147 

-------· ZTE (USA) 1007, Page 159



Part B: Programming for MS-DOS 

Which format the programmer uses for an application usually depends on the program's 
intended size, but the decision can also be influenced by a program's need to address mul­
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR­
MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler) 
are designed as .EXE programs. The ultimate decision is, of course, the programmer's. 

Keith Burgoyne 

148 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 160



l 

I 

L
f. 

.. 

Article 5: Character Device Input and Output 

Article 5: 
Character Device Input and Output 

All functional computer systems are composed of a central processing unit (CPU), some 
memory, and peripheral devices that the CPU can use to store data or communicate with 
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard 
(for input), the display (for output), and one or more disk drives (for nonvolatile storage). 
Additional devices such as printers, modems, and pointing devices extend the function­
ality of the computer or offer alternative methods of using the system. 

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or 
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com­
munications ports. 

The distinction between block and character devices is not always readily apparent, but 
in general, block devices transfer information in chunks, or blocks, and character devices 
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by 
a drive letter assigned when the device's controlling software, the device driver, is loaded. 
A character device, on the other hand, is identified by a logical name (similar to a filename . 
and subject to many of the same restrictions) built into its device driver. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Installable Device Drivers. 

Background Information 

Versions l.x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices 
with a fixed set of device drivers loaded during system initialization from the hidden file 
IO.SYS (or IBMBIO.COM with PC-DOS). These versions of MS-DOS offered application 
programs a high degree of input/output device independence by allowing character 
devices to be treated like files, but they did not provide an easy way to augment the built-in 
set of drivers if the user wished to add a third-party peripheral device to the system. 

With the release of MS-DOS version 2.0, the hardware flexibility of the system was tremen­
dously enhanced. Versions 2.0 and later support ins'tallable device drivers that can reside in 
separate files on the disk and can be linked into the operating system simply by adding a 
DEVICE directive to the CONFIG.SYS file on the startup disk. See USER COMMANDS: 
CONFIG.SYS: DEVICE. A well-defined interface between installable drivers and the MS-DOS 
kernel allows such drivers to be written for most types of peripheral devices without the 
need for modification to the operating system itself. 

The CONFIG.SYS file can contain a number of different DEVICE commands to load sepa­
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on. Each 
driver, in turn, is specialized for the hardware characteristics of the device it supports. 

Section ll- Programming in the MS-DOS Environment 149 

ZTE (USA) 1007, Page 161



Part B: Programming for MS-DOS 

When the system is turned on or restarted, the installable device drivers are added to the 
chain, or linked list, of default device drivers loaded from IO.SYS during MS-DOS initializa­
tion. Thus, the need for the system's default set of device drivers to support a wide range of 
optional device types and features at an excessive cost of system memory is avoided. 

One important distinction between block and character devices is that MS-DOS always 
adds new block-device drivers to the tail of the driver chain but adds new character-device 
drivers to the head of the chain. Thus, because MS-DOS searches the chain sequentially 
and uses the first driver it finds that satisfies its search conditions, any existing character­
device driver can be superseded by simply installing another driver with an identicallogi-
. cal device name. 

This article covers some of the details of working with MS-DOS character devices: display­
ing text, keyboard input, and other basic character 1/0 functions; the definition and use of 
standard input and output; redirection of the default character devices; and the use of the 
IOCTL function (Interrupt 21H Function 44H) to communicate directly with a character­
device driver. Much of the information presented in this article is applicable only to 
MS-DOS versions 2.0 and later . 

. Accessing Character Devices 

Application programs can use either of two basic techniques to access character devices in 
a portable manner under MS-DOS. First, a program can use the handle-type function calls 
that were added to MS-DOS in version 2.0. Alternatively, a program can use the so-called 
"traditional" character-device functions that were present in versions l.x and have been 
retained in the operating system for compatibility. Because the handle functions are more 
powerful and flexible, they are discussed first. 

A handle is a 16-bit number returned by the operating system whenever a file or device is 
opened or created by passing a name to MS-DOS Interrupt 21H Function 3CH (Create File 
with Handle), 3DH (Open File with Handle), 5AH (Create Temporary File),-or 5BH (Create 
New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH 
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the 
computer's memory and the file or device. 

During an open or create function call, MS-DOS searches the device-driver chain sequen­
tially for a character device with the specified name (the extension is ignored) before 
searching the disk directory. Thus, a file with the same name as any character device in the 
driver chain-for example, the file NUL. TXT- cannot be created, nor can an existing file 
be accessed if a device in the chain has the same name. 

The second method for accessing character devices is through the traditional MS-DOS 
character input and output functions, Interrupt 21H Functions OlH through OCH. These 
functions are designed to communicate directly with the keyboard, display, printer, and 
serial port. Each of these devices has its own function or group of functions, so neither 

150 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 162



Article 5: Character Device Input and Output 

names nor handles need be used. However, in MS-DOS versions 2.0 and later, these func­
tion calls are translated within MS-DOS to make use of the same routines that are used by 
the handle functions, so the traditional keyboard and display functions are affected by l/0 
redirection and piping. 

Use of either the traditional or the handle-based method for character device l/0 results 
in highly portable programs that can be used on any computer that runs MS-DOS. A third, 
less portable access method is to use the hardware-specific routines resident in the read­
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func­
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral 
device's adapter directly, bypassing the system software altogether. Although these latter 
hardware-dependent methods cannot be recommended, they are admittedly sometimes 
necessary for performance reasons. 

The Basic MS-DOS Character Devices 

Every MS-DOS system supports at least the following set of logical character devices 
without the need for any additional installable drivers: 

Device 

CON 
PRN 
AUX 
CLOCK$ 
NUL 

Meaning 

Keyboard and display 
System list device, usually a parallel port 
Auxiliary device, usually a serial port 
System real-time clock 
"Bit-bucket" device 

These devices can be opened by name or they can be addressed through the "traditional" 
function calls; strings can be read from or written to the devices according to their capabili­
ties on any MS-DOS system. Data written to the NUL device is discarded; reads from the 
NUL device always return an end-of-file condition. 

PC-DOS and compatible implementations of MS-DOS typically also support the following 
logical character-device names: 

Device 

COM1 
COM2 
LPTl 
LPT2 
LPT3 

Meaning 

First serial communications port 
Second serial communications port 
First parallel printer port 
Second parallel printer port 
Third parallel printer port 

Section lL Programming in the MS-DOS Environment 151 

ZTE (USA) 1007, Page 163



.It Part B: Programming for MS-DOS 

In such systems, PRN is an alias for LPTl and AUX is an alias for COMl. The MODE com­
mand can be used to redirect an LPT device to another device. See USER COMMANDS: 
MODE. 

As previously mentioned, any of these default character-device drivers can be superseded 
by a user-installed device driver_.:_ for example, one that offers enhanced functionality or 
changes the device's apparent characteristics. One frequently used alternative character­
device driver is ANSI.SYS, which replaces the standard MS-DOS CON device driver and 
allows ANSI escape sequences to be used to perform tasks such as clearing the screen, 
controlling the cursor position, and selecting character attributes. See USER COMMANDS: 
ANSI.SYS. 

The standard devices 

Under MS-DOS versions 2.0 and later, each program owns five previously opened handles 
for character devices (referred to as the standard devices) when it begins executing. These 
handles can be used for input and output operations without further preliminaries. The 
five standard devices and their associated handles are 

Standard Device Name Handle Default Assignment 

Standard input (stdin) 0 CON 
Standard output (stdout) 1 CON 
Standard error (stderr) 2 CON 
Standard auxiliary (stdaux) 3 AUX 
Standard printer (stdprn) 4 PRN 

The standard input and standard output handles are especially important because they are 
subject to I/0 redirection. Although these handles are associated by default with the CON 
device so that read and write operations are implemented using the keyboard and video 
display, the user can associate the handles with other character devices or with files by 
using redirection parameters in a program's command line: 

Redirection 

<file 
>file 
»file 
pl:p2 

Result 

Causes read operations from standard input to obtain data from file. 
Causes data written to standard output to be placed in file. 
Causes data written to standard output to be appended to file. 
Causes data written to standard output by program pi to appear as the 

standard input of program p2. 

This ability to redirect I/0 adds great flexibility and power to the system. For example, 
programs ordinarily controlled by keyboard entries can be run with "scripts" from files, 
the output of a program can be captured in a file or on a printer for later inspection, and 
general-purpose programs (filters) can be written that process text streams without regard 
to the text's origin or destination. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusTOMIZING Ms-oos: Writing MS-DOS Filters. 

152 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 164



I 
I 

Article 5: Character Device Input and Output 

Ordinarily, an application program is not aware that its input or output has been redi­
rected, although a write operation to standard output will fail unexpectedly if standard 
output was redirected to a disk file and the disk is full. An application can check for the 
existence ofi/0 redirection with an IOCTL (Interrupt 21H Function 44H) call, but it can­
not obtain any information about the destination of the redirected handle except whether 
it is associated with a character device or with a file. 

Raw versus cooked mode 
MS-DOS associates each handle for a character device with a mode that determines how 
I/0 requests directed to that handle are treated. When a handle is in raw mode, characters 
are passed between the application program and the device driver without any filtering or 
buffering by MS-DOS. When a handle is in cooked mode, MS-DOS buffers any data that is 
read from or written to the device and takes special actions when certain characters are 
detected. 

During cooked mode input, MS-DOS obtains characters from the device driver one at a 
time, checking each character for a Control-C. The characters are assembled into a string 
within an internal MS-DOS buffer. The input operation is terminated when a carriage 
return (ODH) or an end-of-file mark (lAH) is received or when the number of characters 
requested by the application have been accumulated. If the source is standard input, lone 
linefeed characters are translated to carriage-return/linefeed pairs. The string is then 
copied from the internal MS-DOS buffer to the application program's buffer, and control 
returns to the application program. 

During cooked mode output, MS-DOS transfers the characters in the application pro­
gram's output buffer to the device driver one at a time, checking after each character for 
a Control-C pending at the keyboard. If the destination is standard output and standard 
output has not been redirected, tabs are expanded to spaces using eight-column tab stops. 
Output is terminated when the requested number of characters have been written or when 
an end-of-file mark (lAH) is encountered in the output string. 

In contrast, during raw mode input or output, data is transferred directly between the 
application program's buffer and the device driver. Special characters such as carriage 
return and the end-of-file mark are ignored, and the exact number of characters in the ap­
plication program's request are always read or written. MS-DOS does not break the strings 
into single-character calls to the device driver and does not check the keyboard buffer for 
Control-C entries during the I/0 operation. Finally, characters read from standard input 
in raw mode are not echoed to standard output. 

As might be expected from the preceding description, raw mode input or output is usu­
ally much faster than cooked mode input or output, because each character is not being 
individually processed by the MS-DOS kernel. Raw mode also allows programs to read 
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for 
example, Control-C, Control-P, and Control-S). (If BREAK is on, MS-DOS will still check for 
Control-C entries during other function calls, such as disk operations, and transfer control 

Section IL- Programming in the MS-DOS Environment 153 

ZTE (USA) 1007, Page 165



Part B: Programming for MS-DOS 

to the Control-C exception handler if a Control-C is detected.) A program can use the 
MS-DOS IOCTL Get and Set Device Data services (Interrupt 21H Function 44H Subfunc­
tions OOH and OlH) to set the mode for a character-device handle. See IOCTL below. 

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was 
obtained from a previous open operation and affects only the 1/0 operations requested 
by the program that owns the handle. However, when a program uses IOCTL to select raw 
or cooked mode for one of the standard device handles, the selection has a global effect 
on the behavior of the system because those handles are never closed. Thus, some of the 
"traditional" keyboard input functions might behave in unexpected ways. Consequently, 
programs that change the mode on a standard device handle should save the handle's 
mode at entry and restore it before performing a final exit to MS-DOS, so that the opera­
tion of COMMAND. COM and other applications will not be disturbed. Such programs 
should also incorporate custom critical error and Control-C exception handlers so that the 
programs cannot be terminated unexpectedly. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: CusTOMIZING Ms-oos: Exception Handlers. 

The keyboard 
Among the MS-DOS Interrupt 21H functions are two methods of checking for and receiv­
ing input from the keyboard: the traditional method, which uses MS-DOS character input 
Functions OlH, 06H, 07H, 08H, OAH, OBH, and OCH (Table 5-1); and the handle method, 
which uses Function 3FH. Each of these methods has its own advantages and disadvan­
tages. See SYSTEM CALLS. 

Table 5-1. Traditional MS-DOS Character Input Functions. 

Read Multiple Ctrl-C 
Function Name Characters Echo Check 

OlH Character Input with Echo No Yes Yes 
06H Direct Console 1/0 No No No 
07H Unfiltered Character Input 

Without Echo No No .No 
08H Character Input Without Echo No No Yes 
OAH Buffered Keyboard Input Yes Yes Yes 
OBH Check Keyboard Status No No Yes 
OCH Flush Buffer, Read Keyboard * * * 

•varies depending on function (from above) called in the AL register. 

The first four traditional keyboard input calls are really very similar. They all return a char­
acter in the AL register; they differ mainly in whether they echo that character to the dis­
play and whether they are sensitive to interruption by the user's entry of a Control-C. Both 
Functions 06H and OBH can be used to test keyboard status (that is, whether a key has 
been pressed and is waiting to be read by the program); Function OBH is simpler to use, 
but Function 06H is immune to Control-C entries. 

154 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 166



Article 5: Character Device Input and Output 

Function OAH is used to read a "buffered line" from the user, meaning that an entire line is 
accepted by MS-DOS before control returns to the program. The line is terminated when 
the user presses the Enter key or when the maximum number of characters (to 255) speci­
fied by the program have been received. While entry of the line is in progress, the usual 
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and 
compatibles) are active; only the final, edited line is delivered to the requesting program. 

Function OCH allows a program to flush the type-ahead buffer before accepting input. 
This capability is important for occasions when a prompt must be displayed unexpectedly 
(such as when a critical error occurs) and the user could not have typed ahead a valid 
response. This function should also be used when the user is being prompted for a critical 
decision (such as whether to erase a file), to prevent a character that was previously 
pressed by accident from triggering an irrecoverable operation. Function OCH is unusual 
in that it is called with the number of one of the other keyboard input functions in register 
AL. After any pending input has been discarded, Function OCH simply transfers to the 
other specified input function; thus, its other parameters (if any) depend on the function 
that ultimately will be executed. 

The primary disadvantage of the traditional function calls is that they handle redirected 
input poorly. If standard input has been redirected to a file, no way exists for a program 
calling the traditional input functions to detect that the end of the file has been reached­
the input function will simply wait forever, and the system will appear to hang. 

A program that wishes to use handle-based I/0 to get input from the keyboard must use 
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH. Ordinarily, the pro­
gram can employ the predefined handle for standard input (0), which does not need to be 
opened and which allows the program's input to be redirected by the user to another file 
or device. If the program needs to circumvent redirection and ensure that its input is from 
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the 
handle obtained from that open operation instead of the standard input handle. 

A program using the handle functions to read the keyboard can control the echoing of 
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the 
IOCTL Get and Set Device Data services (default= cooked mode). To test the keyboard 
status, the program can either issue an IOCTL Check Input Status call (Interrupt 21H Func­
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt 
21H Function OBH). 

The primary advantages of the handle method for keyboard input are its symmetry with 
file operations and its graceful handling of redirected input. The handle function also 
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard 
Input function allows a maximum of 255 characters to be read at a time. This considera­
tion is important for programs that are frequently used with redirected input and output 
(such as filters), because reading and writing larger blocks of data from files results in 
more efficient operation. The only real disadvantage to the handle method is that it is 
limited to MS-DOS versions 2.0 and later (although this is no longer a significant 
restriction). 

Section II: Programming in the MS-DOS Environment 155 

ZTE (USA) 1007, Page 167



i 

,], :' 

Part B: Programming for MS-DOS 

Role ofthe ROM BIOS 

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard­
ware interrupt (09H) that is serviced by a routine in the ROM BIOS. The ROM BIOS inter­
rupt handler reads I/0 ports assigned to the keyboard controller and translates the key's 
scan code into an ASCII character code. The result of this translation depends on the cur­
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control, 
or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address 
0000:0417H that gives the current status of each of these modifier keys.) 

After translation, both the scan code and the ASCII code are placed in the ROM BIOS's 
32-byte (16-character) keyboard input buffer. In the case of "extended" keys such as the 
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the 
information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed 
as a first-in/first-out queue. Because of the method used to determine when the buffer is 
empty, one position in the buffer is always wasted; the maximum number of characters 
that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are 
discarded and a warning beep is sounded. 

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that 
allows programs to test keyboard status, determine whether characters are waiting in the 
type-ahead buffer, and remove characters from the buffer. See Appendix 0: IBM PC BIOS 
Calls. Its use by application programs should ordinarily be avoided, however, to prevent 
introducing unnecessary hardware dependence. 

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the 
BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware­
dependent work. Thus, calls to MS-DOS for keyboard input by an application program are 
subject to two layers of translation: The Interrupt 21H function call is converted by the 
MS-DOS kernel to calls to the CON driver, which in turn remaps the request onto a ROM 
BIOS call that obtains the character. 

Keyboard programming examples 
1 

Example: Use the ROM BIOS keyboard driver to read a character from the keyboard. The 
character is not echoed to the display. 

mov 
int 

ah,OOh 

16h 

subfunction OOH = read character 

; transfer to ROM BIOS 

; now AH = scan code, AL = character 

Example: Use the MS-DOS traditional keyboard input function to read a character from 
the keyboard. The character is not echoed to the display. The input can be interrupted 
with a Ctrl-C keystroke. 

mov ah,08h 

int 21h 

156 The MS-DOS Encyclopedia 

function 08H = character input 

without echo 
transfer to MS-DOS 

now AL = character 

ZTE (USA) 1007, Page 168



I 
i 

l
i 

'•-

Article 5: Character Device Input and Output 

Example: Use the MS-DOS traditional Buffered Keyboard Input function to read an entire 
line from the keyboard, specifying a maximum line length of 80 characters. All editing 
keys are active during entry, and the input is echoed to the display. 

kbuf db 
db 
db 

mov 
mov 
mov 
mov 
int 

80 
0 

80 dup (0) 

dx,seg kbuf 
ds,dx 
dx,offset kbuf 
ah,Oah 
21h 

maximum length of read 
actual length of read 
keyboard input goes here 

set DS:DX = address of 
keyboard input buffer 

function OAH = read buffered line 
transfer to MS-DOS 
terminated by a carriage return, 
and kbuf+1 = length of input, 
not including the carriage return 

Example: Use the MS-DOS handle-based Read File or Device function and the standard 
input handle to read an entire line from the keyboard, specifying a maximum line length 
of 80 characters. All editing keys are active during entry, and the input is echoed to the dis­
play. (The input will not terminate on a carriage return as expected if standard input is in 
raw mode.) 

kbuf db 80 dup (0) 

mov dx,seg kbuf 
mov ds,dx 
mov dx,offset kbuf 
mov cx,80 
mov bx,O 
mov ah,3fh 
int 21h 
jc error 

The display 

buffer for keyboard input 

set DS:DX = address of 
keyboard input buffer 

CX = maximum length of input 
standard input handle = 0 
function 3FH = read file/device 
transfer to MS-DOS 
jump if function failed 
otherwise AX = actual 
length of keyboard input, 
including carriage-return and 
linefeed, and the data is 
in the buffer 'kbuf' 

The output half of the MS-DOS logical character device CON is the video display. On IBM 
PCs and compatibles, the video display is an "option" of sorts that comes in several forms. 
IBM has introduced five video subsystems that support different types of displays: the 
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced 
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics 
Array (MCGA). Other, non-IBM-compatible video subsystems in common use include the 
Hercules Graphics Card and its variants that support downloadable fonts. 

Section II- Programming in the MS-DOS Environment 157 

ZTE (USA) 1007, Page 169



Part B: Programming for MS-DOS 

Two portable techniques exist for writing text to the video display with MS-DOS function 
calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out­
put), 06H (Direct Console I/0), and 09H (Display String). The handle method is supported 
by Function 40H (Write File or Device) and is available only in MS~DOS versions 2.0 and 
later. See SYSTEM CALLS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H. All these calls 
treat the display essentially as a "glass teletype" and do not support bit-mapped graphics. 

Traditional Functions 02H and 06H are similar. Both are called with the character to be 
displayed in the DL register; they differ in that Function 02H is sensitive to interruption by 
the user's entry of a Control-C, whereas Function 06H is immune to Control-C but cannot 
be used to output the character OFFH (ASCII rubout). Both calls check specifically for car­
riage return (ODH), linefeed (OAH), and backspace (08H) characters and take the appro­
priate action if these characters are detected. 

Because making individual calls to MS-DOS for each character to be displayed is inefficient 
and slow, the traditional Display String function (09H) is generally used in preference to 
Functions 02H and 06H. Function 09H is called with the address of a string that is termi­
nated with a dollar-sign character ($); it displays the entire string in one operation, regard­
less of its length. The string can contain embedded control characters such as carriage 
return and linefeed. 

· To use the handle method for screen display, programs must call the MS-DOS Write File 
or Device service, Interrupt 21H Function 40H. Ordinarily, a program should use the pre­
defined handle for standard output (1) to send text to the screen, so that any redirection 
requested by the user on the program's command line will be honored. If the program 
needs to circumvent redirection and ensure that its output goes to the screen, it can either 
use the predefined handle for standard error (2) or explicitly open the CON device with 
Interrupt 21H Function 3DH and use the resulting handle for its write operations. 

The handle technique for displaying text has several advantages over the traditional 
calls. First, the length of the string to be displayed is passed as an explicit parameter, so 
the string need not contain a special terminating character and the $ character can be dis­
played as part of the string. Second, the traditional calls are translated to handle calls 
inside MS-DOS, so the handle calls have less internal overhead and are generally faster. 
Finally, use of the handle Write File or Device function to display text is symdetric with 
the methods the program must use to access its files. In short, the traditional functions 
should be avoided unless the program must be capable of running under. MS-DOS ver­
sions 1.x. 

Controlling the screen 

158 

One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen­
control capabilities. The default CON driver has no built-in routines to support cursor 
placement, screen clearing, display mode selection, and so on. 

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the 
file ANSI.SYS. This driver contains most of the screen-control capabilities needed by text­
oriented application programs. The driver is installed by adding a DEVICE directive to the 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 170



I 
I 
! 
I 
I 

! 

Article 5: Character Device Input and Output 

CONFIG.SYS file and restarting the system. When ANSI.SYS is active, a program can 
position the cursor, inquire about the current cursor position, select foreground and 
background colors, and clear the current line or the entire screen by sending an escape 
sequence consisting of the ASCII Esc character (lBH) followed by various function­
specific parameters to the standard output device. See USER COMMANDS: ANSI.SYS. 

Programs that use the ANSI.SYS capabilities for screen control are portable to any MS-DOS 
implementation that contains the ANSI.SYS driver. Programs that seek improved perfor­
mance by calling the ROM BIOS video driver or by assuming direct control of the hard­
ware are necessarily less portable and usually require modification when new PC models 
or video subsystems are released. 

Role of the ROM BIOS 

The video subsystems in IBM PCs and compatibles use a hybrid of memory-mapped and 
port-addressed I/0. A range of the machine's memory addresses is typically reserved for a 
video refresh buffer that holds the character codes and attributes to be displayed on the 
screen; the cursor position, display mode, palettes, and similar global display char­
acteristics are governed by writing control values to specific I/0 ports. 

The ROM BIOS of IBM PCs and compatibles contains a primitive driver for the MDA, CGA, 
EGA, VGA, and MCGA video subsystems. This driver supports the following functions: 

• Read or write characters with attributes at any screen position. 
• Query or set the cursor position. 
• Clear or scroll an arbitrary portion of the screen. 
• Select palette, background, foreground, and border colors. 
• Query or set the display mode ( 40-column text, SO-column text, all-points-addressable 

graphics, and so on). 
• Read or write a pixel at any screen coordinate. 

These functions are invoked by a program through software Interrupt lOH. See Appendix 
0: IBM PC BIOS Calls. In PC-DOS-compatible implementations of MS-DOS, the display 
portions of the MS-DOS CON and ANSI.SYS drivers use these ROM BIOS routines. Video 
subsystems that are not IBM compatible either must contain their own ROM BIOS or must 
be used with an installable device driver that captures Interrupt lOH and provides appro­
priate support functions. 

Text-only application programs should avoid use of the ROM BIOS functions or direct 
access to the hardware whenever possible, to ensure maximum portability between 
MS-DOS systems. However, because the MS-DOS CON driver contains no support for bit­
mapped graphics, graphically oriented applications usually must resort to direct control 
of the video adapter and its refresh buffer for speed and precision. 

Section II: Programming in the MS-DOS Environment 159 

ZTE (USA) 1007, Page 171



PartB:·Programming for MS-DOS 

Display programming examples 

Example: Use the ROM BIOS Interrupt lOH function to write an asterisk character to the 
display in text mode. (In graphics mode, BL must also be set to the desired foreground 
color.) 

mov ah,Oeh sub function OEH = write character 

in teletype mode 
mov al, '*' AL = character to display 
mov bh,O select display page 0 
int 10h transfer to ROM BIOS video driver 

Example: Use the MS-DOS traditional function to write an asterisk character to the dis­
play. If the user's entry of a Control-C is detected during the output and standard output is 
in cooked mode, MS-DOS calls the Control-C exception handler whose address is found 
in the vector for Interrupt 23H. 

mov 

mov 

int 

ah,02h 
dl, I* I 

21h 

function 02H = display character 
DL = character to display 

transfer to MS-DOS 

Example: Use the MS-DOS traditional function to write a string to the display. The output 
is terminated by the $ character and can be interrupted when the user enters a Control-C if 
standard output is in cooked mode. 

msg db 'This is a test message','$' 

mov dx,seg msg DS:DX = address of text 

mov ds,dx to display 

mov dx,offset msg 

mov ah,09h function 09H = display string 
int 21h transfer to MS-DOS 

Example: Use the MS-DOS handle-based Write File or Device function and the predefined 
handle for standard output to write a string to the display. Output can be interrupted by the 
user's entry of a Control-C if standard output is in cooked mode. 

msg db 
msg_len equ 

mov 

mov 

'This is a test message' 

$-msg 

dx,seg msg 

ds,dx 

DS:DX = address of text 

to display 
mov dx,offset msg 

mov 

mov 

mov 
int 

cx,msg_len 

bx, 1 
ah,40h 

21h 

160 The MS-DOS Encyclopedia 

ex = length of text 

BX = handle for standard output 
function 40H = write file/device 

transfer to MS-DOS 

ZTE (USA) 1007, Page 172



Article 5: Character Device Input and Output 

The serial communications ports 

Through version 3.2, MS-DOS has built-in support for two serial communications ports, 
identified as COMl and COM2, by means of three drivers named AUX, COMl, and COM2. 
(AUX is ordinarily an alias for COMl.) 

The traditional MS-DOS method of reading from and writing to the serial ports is through 
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS-DOS 
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func­
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux­
iliary device. A program can use the predefined handle for the standard auxiliary device 
(3) with Functions 3FH and 40H, or it can explicitly open the COMl or COM2 devices with 
Interrupt 21H Function 3DH and use the handle obtained from that open operation to 
perform read and write operations. 

MS-DOS support for the serial communications port is inadequate in several respects for 
high-performance serial I/0 applications. First, MS-DOS provides no portable way to test 
for the existence or the status of a particular serial port in a system; if a program "opens" 
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the 
program may simply hang. Similarly, if the serial port exists but no character has been 
received and the program attempts to read a character, the program will hang until one is 
available; there is no traditional function call to check if a character is waiting as there is 
for the keyboard. 

MS-DOS also provides no portable method to initialize the communications adapter to a 
particular baud rate, word length, and parity. An application must resort to ROM BIOS 
calls, manipulate the hardware directly, or rely on the user to configure the port properly 
with the MODE command before running the application that uses it. The default settings 
for the serial port on PC-DOS-compatible systems are 2400 baud, no parity, 1 stop bit, and 
8 databits. See USER COMMANDS: MODE. 

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and 
compatibles, however, is that it is not interrupt driven. Accordingly, when baud rates above 
1200 are selected, characters can be lost during time-consuming operations performed by 
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk 
sector. Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial port 
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not 
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not 
usually improve matters. 

Because of all the problems just described, telecommunications application programs 
commonly take over complete control of the serial port and supply their own interrupt 
handler and internal buffering for character read and write operations. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Interrupt-Driven 
Communications. 

Section II: Programming in the MS-DOS Environment 161 

ZTE (USA) 1007, Page 173



Part B: Programming for MS-DOS 

Serial port programming examples 

Example: Use the ROM BIOS serial port driver to write a string to COMl. 

msg db 
msg_len equ 

mov 

mov 

mov 
mov 

mov 
L1: mov 

mov 
int 

inc 
loop 

'This is a test message' 

$-msg 

bx,seg msg DS:BX address of message 
ds,bx 

bx,offset msg 
cx,msg_len ex = length of message 
dx,O DX = 0 for eOM1 
al, [bx) get next character into AL 
ah,01h sub function 01H = output 
14h transfer to ROM BIOS 
bx bu.mp pointer to output string 
L1 and loop until all chars. sent 

Example: Use the MS-DOS traditional function for auxiliary device output to write a string 
toCOMl. 

msg db 
msg_len equ 

mov 

mov 
mov 

mov 
L1: mov 

mov 

int 

inc 
loop 

'This is a test message' 
$-msg 

bx,seg msg set DS:BX 
ds,bx 
bx, offset msg 
cx,msg_len set ex = 
dl, [bx) get next 
ah,04h function 
21h transfer 

address of message 

length of message 

character into DL 

04H = auxiliary output 

to MS-DOS 
bx bump pointer to output string 
L1 and loop until all chars. sent 

Example: Use the MS-DOS handle-based Write File or Device function and the predefined 
handle for the standard auxiliary device to write a string to COMl. 

msg db 
msg_len equ 

mov· 

mov 

mov 
mov 
mov 

mov 

int 

jc 

'This is a test message' 

$-msg 

dx,seg msg 
ds,dx 

dx, offset msg 
cx,msg_len 

bx,3 
ah,40h 

21h 
error 

DS:DX address of message 

ex = length of message 

BX = handle for standard aux. 

function 40H = write file/device 
transfer to MS-DOS 

jump if write operation failed 

162 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 174



Article 5: Character Device Input and Output 

The parallel port and printer 

Most MS-DOS implementations contain device drivers for four printer devices: LPTl, LPT2, 
LPT3, and PRN. PRN is ordinarily an alias for LPTl and refers to the first parallel output 
port in the system. To provide for list devices that do not have a parallel interface, the LPT 
devices can be individually redirected with the MODE command to one of the serial com­
munications ports. See USER COMMANDS: MODE. 

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be 
accessed with either traditional or handle-based function calls. The traditional function 
call is Interrupt 21H Function OSH, which accepts a character in DL and sends it to the 
physical device currently assigned to logical device name LPTl. 

A program can perform handle-based output to the printer with Interrupt 21H Function 
40H (Write File or Device). The predefined handle for the standard printer ( 4) can be used 
to send strings to logical device LPTl. Alternatively, the program can issue an open oper­
ation for a specific printer device with Interrupt 21H Function 3DH and use the handle 
obtained from that open operation with Function 40H. This latter method also allows 
more than one printer to be used at a time from the same program. 

Because the parallel ports are assumed to be output only, no traditional call exists for 
input from the parallel port. In addition, no portable method exists to test printer port 
status under MS-DOS; programs that wish to avoid sending a character to the printer 
adapter when it is not ready or not physically present in the system must test the adapter's 
status by making a call to the ROM BIOS printer driver (by means of software Interrupt 
17H; see Appendix 0: IBM PC BIOS Calls) or by accessing the hardware directly. 

Parallel port programming examples 

Example: Use the ROM BIOS printer driver to send a string to the first parallel printer port. 

msg db 
msg:._len equ 

'This is a test message' 
$-msg 

L1: 

mov bx, seg msg 
mov ds, bx 
mov bx,offset msg 
mov 
mov 
mov 
mov 
int 
inc 
loop 

cx,msg_len 
dx,O 
al, [bx] 
ah,OOh 
17h 
bx 
L1 

DS:BX = address of message 

ex = length of message 
DX = 0 for LPT1 
get next character into AL 
subfunction OOH = output 
transfer to ROM BIOS 
bump pointer to output string 
and loop until all chars. sent 

Section I1- Programming in the MS-DOS Environment 163 

ZTE (USA) 1007, Page 175



'! 

Part B: Programming for MS-DOS 

Example: Use the traditional MS-DOS function call to send a string to the first parallel 
printer port. 

msg db 
msg_len equ 

mov 
mov 

mov 
mov 

11: mov 

mov 

int 
inc 

loop 

'This is a test message' 

$-msg 

bx,seg msg DS:BX address of message 

ds,bx 
bx,offset msg 
cx,msg_len ex = length of message 

dl, [bx] get next character into D1 

ah,OSh function OSH = printer output 

21h transfer to MS-DOS 

bx bump pointer to output string 

11 ., and loop until all chars. sent 

Example: Use the handle-based MS-DOS Write File or Device call and the predefined 
handle for the standard printer to send a string to the system list device. 

msg db 
msg_len equ 

mov 
mov 

mov 
mov 

mov 

mov 

int 
jc 

IOCTL 

'This is a test message' 
$-msg 

dx,seg msg 

ds,dx 
dx,offset msg 
cx,msg_len 

bx,4 
ah,40h 

21h 
error 

DS:DX address of message 

ex = length of message 

BX = handle for standard printer 
function 40H = write file/device 

transfer to MS-DOS 
jump if write operation failed 

In versions 2.0 and later, MS-DOS has provided applications with the ability to communi­
cate directly with device drivers through a set of subfunctions grouped under Interrupt 
21H Function 44H (IOCTL). See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The 
IOCTL subfunctions that are particularly applicable to the character I/0 needs of appli­
cation programs are 

Sub function 

.OOH 
OlH 
02H 

164 The MS-DOS Encyclopedia 

Name 

Get Device Data 
Set Device Data 
Receive Control Data from Character Device 

(more) 

ZTE (USA) 1007, Page 176



Article 5: Character Device Input and Output 

Subfunctlon Name 

03H 
06H 
07H 
OAH 
OCH 

Send Control Data to Character Device 
Check Input Status 
Check Output Status 
Check if Handle is Remote (version 3.1 or later) 
Generic I/O Control for Handles: Get/Set Output Iteration Count 

Various bits in the device information word returned by Subfunction 00H can be tested 
by an application to determine whether a specific handle is associated with a character 
device or a file and whether the driver for the device can process control strings passed by 
Subfunctions 02H and 03H. The device information word also allows the program to test 
whether a character device is the CLOCKS, standard input, standard output, or NUL device 
and whether the device is in raw or cooked mode. The program can then use Subfunction 
01H to select raw mode or cooked mode for subsequent I/O performed with the handle. 

Subfunctions 02H and 03H allow control strings to be passed between the device driver 
and an application; they do not usually result in any physical I/O to the device. For exam­
ple, a custom device driver might allow an application program to configure the serial port 
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi­
larly, the custom driver might respond to Subfunction 02H by passing the application a 
series of bytes that defines the current configuration and status of the serial port. 

Subfunctions 06H and 07H can be used by application programs to test whether a device is 
ready to accept an output character or has a character ready for input. These subfunctions 
are particularly applicable to the serial communications ports and parallel printer ports 
because MS-DOS does not supply traditional function calls to test their status. 

Subfunction OAH can be used to determine whether the character device associated 
with a handle is local or remote — that is, attached to the computer the program is running 
on or attached to another computer on a local area network. A program should not or­
dinarily attempt to distinguish between local and remote devices during normal input and 
output, but the information can be useful in attempts to recover from error conditions. 
This subfunction is available only if Microsoft Networks is running. 

Finally, Subfunction OCH allows a program to query or set the number of times a device 
driver tries to send output to the printer before assuming the device is not available. 

IOCTL programming examples 
Example: Use IOCTL Subfunction 00H to obtain the device information word for the stan­
dard input handle and save it, and then use Subfunction 01H to place standard input into 
raw mode. 

info dw ? ; save device information word here 

(more) 

Section II; Programming in the MS-DOS Environment 165 

ZTE (USA) 1007, Page 177



fl 
I 

I 
I 

Part B: Programming for MS-DOS 

mov 

mov 

int 
mov 

or 
mov 
mov 

int 

ax,4400h 

bx,O 
21h 

info,dx 

dl,20h 

dh,O 
ax,4401h 

21h 

AH = function 44H, IOCTL 
AL = subfunction OOH, get device 

information word 

BX = handle for standard input 

transfer to MS-DOS 
save device information word 

(assumes DS = data segment) 

set raw mode bit 
and clear DH as MS-DOS requires 

AL = subfunction 01H, set device 

information word 
(BX still contains handle) 

transfer to MS-DOS 

Example: Use IOCTL Subfunction 06H to test whether a character fs ready for input on the 
first serial port. The function returns AL = OFFH if a character is ready and AL = OOH if not. 

mov ax,4406H 

mov bx,3 

int 21h 

or al,al 

jnz ready 

166 The MS-DOS Encyclopedia 

AH = function 44H, IOCTL 

AL = subfunction 06H, get 

input status 

BX = handle for standard aux 

transfer to MS-DOS 

test status of AUX driver 

jump if input character ready 

else no character is waiting 

jim Kyle 
Chip Rabinowitz 

ZTE (USA) 1007, Page 178



' 

l 

Article 6: Interrupt~Driven Communications 

Article6 
Interrupt-Driven Communications 

In the earliest days of personal-computer communications, when speeds were no faster 
than 300 bits per second, primitive programs that moved characters to and from the 
remote system were adequate. The PC had time between characters to determine what it 
ought to do next and could spend that time keeping track of the status of the remote 
system. 

Modern data-transfer rates, however, are four to eight times faster and leave little or no 
time to spare between characters. At 1200 bits per second, as many as three characters can 
be lost in the time required to scroll the display up one line. At such speeds, a technique to 
permit characters to be received and simultaneously displayed becomes necessary. 

Mainfram~ systems have long made use of hardware interrupts to coordinate such 
activities. The processor goes about its normal activity; when a peripheral device needs 
attention, it sends an interrupt request to the processor. The processor interrupts its activ­
ity, services the request, and then goes back to what it was doing. Because the response is 
driven by the request, this type of processing is known as interrupt-driven. It gives the 
effect of doing two things at the same time without requiring two separate processors. 

Successful telecommunication with PCs at modern data rates demands an interrupt-driven 
routine for data reception. This article discusses in detail the techniques for interrupt­
driven communications and culminates in two sample program packages. 

The article begins by establishing the purpose of communications programs and then 
discusses the capability of the simple functions provided by MS-DOS to achieve this goal. 
To see what must be done to supplement MS-DOS functions, the hardware (both the 
modem and the serial port) is examined. This leads to a discussion of the method MS-DOS 
has provided since version 2.0 for solving the problems of special hardware interfacing: 
the installable device driver. 

With the background established, alternate paths to interrupt-driven communications are 
discussed- one following recommended MS-DOS techniques, the other following stan­
dard industry practice- and programs are developed for each. 

Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM 
PC family. MS-DOS systems not totally compatible with this architecture may require sub­
stantially different approaches at the detailed level, but the same general principles apply. 

Purpose of Communications Programs 

The primary purpose of any communications program is communicating- that is, trans­
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for 

Section 11- Programming in the MS-DOS Environment 167 
ZTE (USA) 1007, Page 179



Part B: Programming for MS-DOS 

transmission to a remote computer via phone lines and, conversely, converting informa­
tion received from the remote computer into a display on the video screen (or data in a 
file). 

Some years ago, the most abstraCt form of all communications programs was dubbed a 
modem engine, by analogy to Babbage's analytical engine or the inference-engine model 
used in artificial-intelligence development. The functions of the modem engine are com­
mon to all kinds of communications programs, from the simplest to the most complex, 
and can be described in a type of pseudo-C as follows: 

The Modern Engine Pseudocode 

DO { IF (input character is available) 
senct_it_to_rernote; 

IF (remote character is available) 
use_it_locally; 

UNTIL (tolct_to_stop); 

The essence of this modem-engine code is that the absence of an input character, or of a 
character from the remote computer, does not hang the loop in a wait state. Rather, the 
engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking. 

Of course, at times it is desirable to halt the continuous action of the modem engine. For 
example, when receiving a long message, it is nice to be able to pause and read the mes­
sage before the lines scroll into oblivion. On the other hand, taking too long to study the 
screen means that incoming characters are lost. The answer is a technique called flow con­
trol, in which a special control character is sent to shut down transmission and some other 
character is later sent to start it up again. 

Several conventions for flow control exist. One of the most widespread is known as 
XON/XOFF, from the old Teletype-33 keycap legends for the two control codes involved. 
In the original use, XOFF halted the paper tape reader and XON started it going again. In 
mid-1967, the General Electric Company began using these signals in its time-sharing com­
puter services to control the flow of data, and the practice rapidly spread throughout the 
industry. 

The sample program named ENGINE, shown later in this article, is an almost literal imple­
mentation of the modem-engine approach. This sample represents one extreme of sim­
plicity in communications programs. The other sample program, CTERM.C, is much more 
complex, but the modem engine is still at its .heart. 

Using Simple MS~DOS Functions 

Because MS-DOS provides, among its standard service functions, the capability of sending 
output to or reading input from the device named AUX (which defaults to COM1, the first 

168 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 180



Article 6: Interrupt-Driven Communications 

serial port on most machines), a first attempt at implementing the modem engine using 
MS-DOS functions might look something like the following incomplete fragment of 
Microsoft Macro Assembler (MASM) code: 

;Incomplete (and Unworkable) Implementation 

LOOP: MOV AH,OBh read keyboard, no echo 
INT 21h 
MOV DL,AL set up to send 
MOV AH,04h send to AUX device 
INT 21h 
MOV AH,03h read from AUX device 
INT 21h 
MOV DL,AL set up to send 
MOV AH,02h send to screen 
INT 21h 
JMP LOOP keep doing it 

The problem with this code is that it violates the keep-looking principle both at the key­
board and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard 
character is available, so no data from the AUX port can be read until a key is pressed 
locally. Similarly, Function 03H waits for a character to become available from AUX, so no 
more keys can be recognized locally until the remote system sends a character. If nothing 
is received, the loop waits forever. 

To overcome the problem at the keyboard end, Function OBH can be used to determine if 
a key has been pressed before an attempt is made to read one, as shown in the following 
modification of the fragment: 

; Improved, (but Still Unworkable) Implementation 

LOOP: MOV AH,OBh test keyboard for char 
INT 21h 
OR AL,AL test for zero 
JZ RMT no char avail, skip 
MOV AH,OBh have char, read it in 
INT 21h 
MOV DL,AL set up to send 
MOV AH,04h send to AUX device 
INT 21h 

RMT: 
MOV AH,03h read from AUX device 
INT 21h 
MOV DL,AL set up to send 
MOV AH,02h send to screen 
INT 21h 
JMP LOOP keep doing it 

This code permits any input from AUX to be received without waiting for a local key to 
be pressed, but if AUX is slow about providing input, the program waits indefinitely before 
checking the keyboard again. Thus, the problem is only partially solved. 

Section IL· Programming in the MS-DOS Environment 169 

~ 

ZTE (USA) 1007, Page 181



Part B: Programming for MS-DOS 

MS-DOS, however, simply does not provide any direct method of making the required 
tests for AUX or, for that matter, any of the serial port devices. That is why communications 
programs must be treated differently from most other types of programs under MS-DOS 
and why such programs must be intimately involved with machine details despite all 
accepted principles of portable program design. 

The Hardware Involved 

Personal-computer communications require at least two distinct pieces of hardware (sepa­
rate devices, even though they are often combined on a single board). These hardware 
items are the serial port, which converts data from the computer's internal bus into a bit 
stream for transmission over a single external line, and the modem, which converts the bit 
stream into a form suitable for telephone-line (or, sometimes, radio) transmission. 

The modem 
The modem (a word coined from MOdulator-DEModulator) is a device that converts a 
stream of bits, represented as sequential changes of voltage level, into audio frequency sig­
nals suitable for transmission over voice-grade telephone circuits (modulation) and con­
verts these signals back into a stream of bits that duplicates the original input (demodu­
lation). 

Specific characteristics of the audio signals involved were established by AT&T when that 
company monopolized the modem industry, and those characteristics then evolved into 
de facto standards when the monopoly vanished. They take several forms, depending on 
the data rate in use; these forms are normally identified by the original Bell specification 
number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard). 

The data rate is measured in bits per second (bps), often mistermed baud or even "baud 
per second." A baud measures the number of signals per second; as with knot (nautical 
miles per hour), the time reference is built in. If one signal change marks one bit, as is true 
for the Bell103 standard, then baud and bps have equal values. However, they are not 
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200 
bps uses two tone streams, each operating at 600 baud, to transmit data at 1200 bits per 
second. 

For accuracy, this article uses bps, rather than baud, except where widespread industry 
misuse of baud has become standardized (as in "baud rate generator"). 

Originally, the modem itself was a box connected to the computer's serial port via a cable. 
Characteristics of this cable, its connectors, and its signals were standardized in the 1960s 
by the Electronic Industries Association (EIA), in Standard RS232C. Like the Bell standards 
for modems, RS232C has survived almost unchanged. Its characteristics are listed in 
Table 6-1. 

170 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 182



Article 6: Interrupt-Driven Communications 

Table 6-1. RS232C Signals. 

DB25Pin 232 Name Description 

1 Safety Ground 
2 BA TXD Transmit Data 
3 BB RXD Receive Data 
4 CA RTS Request To Send 
5 CB CTS Clear To Send 
6 cc DSR Data Set Ready 
7 AB GND Signal Ground 
8 CF DCD Data Carrier Detected 

20 CD DTR Data Terminal Ready 
22 CE RI Ring Indicator 

With the increasing popularity of personal computers, internal modems that plug into the 
PC's motherboard and combine the modem and a serial port became available. 

The first such units were manufactured by Hayes Corporation, and like Bell and the EIA, 
they created a standard. Functionally, the internal modem is identical to the combination 
of a serial port, a connecting cable, and an external modem. 

The serial port 

Each serial port of a standard IBM PC connects the rest of the system to a type INS8250 
Universal Asynchronous Receiver Transmitter (DART) integrated circuit (I C) chip devel­
oped by National Semiconductor Corporation. This chip, along with associated circuits in 
the port, 

1. Converts data supplied via the system data bus into a sequence of voltage levels on 
the single TXD output line that represent binary digits. 

2. Converts data received as a sequence of binary levels on the single RXD input line 
into bytes for the data bus. 

3. Controls the modem's actions through the DTR and RTS output lines. 
4. Provides status information to the processor; this information comes from the 

modem, via the DSR, DCD, CTS, and RI input lines, and from within the DART itself, 
which signals data available, data needed, or error detected. 

The word asynchronous in the name of the IC comes from the Bell specifications. When 
computer data is transmitted, each bit's relationship to its neighbors must be preserved; 
this can be done in either of two ways. The most obvious method is to keep the bit stream 
strictly synchronized with a clock signal of known frequency and count the cycles to iden­
tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or 
sometimes bisync for binary synchronous. The second method, first used with mechanical 
teleprinters, marks the start of each bit group with a defined start bit and the end with one 
or more defined stop bits, and it defines a duration for each bit time. Detection of a start bit 

Section IL· Programming in the MS-DOS Environment 171 

------------.... ZTE (USA) 1007, Page 183



.I 

,, 
i( 
1:! 

~ 
.~ 
~ 
il 
~ 
~ 

~ 
~ 

· ti I I I" 

ll 

Part B: Programming for MS-DOS 

marks the beginning of a received group; the signal is then sampled at each bit time until 
the stop bit is encountered. This method is known as asynchronous (or just asynch) and is 
the one used by the standard IBM PC. 

The start bit is, by definition, exactly the same as that used to indicate binary zero, and the 
stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a 
one signal is called MARK, from terms used in the teleprinter industry. 

During transmission, the least significant bit of the data is sent first, after the start bit. A 
parity bit, if used, appears as the most significant bit in the data group, before the stop bit 
or bits; it cannot be distinguished from a databit except by its position. Once the first stop 
bit is sent, the line remains in MARK (sometimes called idling) condition until a new start 
bit indicates the beginning of another group. 

In most PC uses, the serial port transfers one 8-bit byte at a time, and the term word speci­
fies a 16-bit quantity. In the UART world, however, a word is the unit of information sent by 
the chip in each chunk. The word length is part of the control information set into the chip 
during setup operations and can be 5, 6, 7, or 8 bits. This discussion follows UART conven­
tions and refers to words, rather than to bytes. 

One special type of signal, not often used in PC-to-PC communications but sometimes 
necessary in communicating with mainframe systems, is a BREAK. The BREAK is an all­
SPACE condition that extends for more than one word time, including the stop-bit time. 
(Many systems require the BREAK to last at least 150 milliseconds regardless of data rate.) 
Because it cannot be generated by any normal data character transmission, the BREAK is 
used to interrupt, or break into, normal operation. The IBM PC's 8250 UART can generate 
the BREAK signal, but its duration must be determined by a program, rather than by the 
chip. 

The 8250 UART architecture 

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits, 
and status circuits. Because these areas are closely related, some terms used in the follow­
ing descriptions are, of necessity, forward references to subsequent paragraphs. 

The major parts of the receiver are a shift register and a data register called the Received 
Data Register. The shift register assembles sequentially received data into word-parallel 
form by shifting the level of the RXD line into its front end at each bit time and, at the same 
time, shifting previous bits over. When the shift register is full, all bits in it are moved over 
to the data register, the shift register is cleared to all zeros, and the bit in the status circuits 
that indicates data ready is set. If an error is detected during receipt of that word, other bits 
in the status circuits are also set. 

Similarly, the major parts of the transmitter are a holding register called the Transmit 
Holding Register and a shift register. Each word to be transmitted is transferred from the 

172 The MS-DOS Encyclopedia ZTE (USA) 1007, Page 184



/ 

Article 6: Interrupt-Driven Communications 

data bus to the holding register. If the holding register is not empty when this is done, the 
previous contents are lost. The transmitter's shift register converts word-parallel data into 
bit -serial form for transmission by shifting the most significant bit out to the TXD line once 
each bit time, at the same time shifting lower bits over and shifting in an idling bit at the 
low end of the register. When the last data bit has been shifted out, any data in the holding 
register is moved to the shift register, the holding register is filled with idling bits in case 
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit 
Holding Register is empty is set to indicate that another word can be transferred. The 
parity bit, if any, and stop bits are added to the transmitted stream after the last databit 
of each word is shifted out. 

The control circuits establish three communications features: first, line control values, 
such as word length, whether or not (and how) parity is checked, and the number of stop 
bits; second, modem control values, such as the state of the DTR and RTS output lines; and 
third, the rate at which data is sent and received. These control values are established by 
two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers. They 
are the Line Control Register (LCR), the Modem Control Register (MCR), and the 16-bit 
BRG Divisor Latch, addressed as BaudO and Baudl. 

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro­
grammable Baud Rate Generator (PBRG), a major part ofthe control circuits. The PBRG 
can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the 
IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported. 
How the LCR and the MCR establish their control values, how the PBRG is programmed, 
and how interrupts are enabled are discussed later. 

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status 
registers) the conditions in the receive and transmit circuits, any errors that are detected, 
and any change in state of the RS232C input lines from the modem. When any status regis­
ter's content changes, an interrupt request, if enabled, is generated to notify the rest of the 
PC system. This approach lets the PC attend to other matters without having to continually 
monitor the status of the serial port, yet it assures immediate action when something does 
occur. 

The 8250 programming interface 

Not all the registers mentioned in the preceding section are accessible to programmers. 
The shift registers, for example, can be read from or written to only by the 8250's internal 
circuits. There are 10 registers available to the programmer, and they are accessed by only 
seven distinct addresses (shown in Table 6-2). The Received Data Register and the 
Transmit Holding Register share a single address (a read gets the received data; a write 
goes to the holding register). In addition, both this address and that of the Interrupt Enable 
Register (IER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register 
called the Divisor Latch Access Bit (DLAB) determines which register is addressed at any 
specific time. 

Section II: Programming in the MS-DOS Environment 173 
ZTE (USA) 1007, Page 185



Part B: Programming for MS-DOS 

In the IBM PC, the seven addresses used by the 8250 are selected by the low 3 bits 
port number (the higher bits select the specific port). Thus, each serial port occupies 
positions in the address space. However, only the lowest address used- the one in 
the low 3 bits are all 0-need be remembered in order to access all eight addresses. 

Because of this, any serial port in the PC is referred to by an address that, in .. ~._,_ ... ._."''~u' 
notation, ends with either 0 or 8: The COM1 port normally uses address 03F8H, and 
uses 02F8H. This lowest port address is usually called the base port address, and each 
addressable register is then referenced as an offset from this base value, as shown in 
Table6-2. 

Table 6-2. 8250 Port Offsets from Base Address. 

Offset Name 

If DLAB bit in LCR = 0: 
OOH DATA 

01H IER 

If DLAB bit in LCR = 1: 
OOH BaudO 
01H Baud1 

Not affected by DLAB bit: 
02H liD 
03H LCR 
04H MCR 
05H LSR 
06H ·'MSR 

The control circuits 

Description 

Received Data Register if 
read from, Transmit Holding 
Register if written to 

Interrupt Enable Register 

BRG Divisor Latch, low byte 
BRG Divisor Latch, high byte 

Interrupt Identifier Register 
Line Control Register 
Modem Control Register 
Line Status Register 
Modem Status Register 

The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG), 
the Line Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En­
able Register (IER). 

The PBRG establishes the bit time used for both transmitting and receiving data by divid­
ing an external clock signal. To select a desired bit rate, the appropriate divisor is loaded 
into the PBRG's 16-bit Divisor Latch by setting the Divisor Latch Access Bit (DLAB) in the 
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then 
writing the divisor into BaudO and Baudl. After the bit rate is selected, DLAB is changed 
back to 0, to permit normal operation of the DATA registers and the IER. 

17 4 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 186



Article 6: Interrupt-Driven Communications 

With the 1.8432 MHz external DART clock frequency used in standard IBM systems, 
divisor values (in decimal notation) for bit rates between 45.5 and 38400 bps are listed in 
Table 6-3. These speeds are established by a crystal contained in the serial port (or internal 
modem) and are totally unrelated to the speed of the processor's clock. 

Table 6-3. Bit Rate Divisor Table for 8250/IBM. 

BPS Divisor 

45.5 2532 
so 2304 
75 1536 

110 1047 
134.5 857 
150 768 
300 384 
600 192 

1200 96 
1800 64 
2000 58 
2400 48 
4800 24 
9600 12 

19200 6 
38400 3 

The remaining control circuits are the Line Control Register, the Modem Control Register, 
and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1, 
transmission of the BREAK signal, parity generation, the number of stop bits, and the word 
length sent and received, as shown in Table 6-4. 

Table 6-4. 8250 Line Control Register Bit Values. 

Bit Name Binary Meaning 

Address Control: 
7 DLAB Oxxxx:xxx Offset 0 refers to DATA; 

offset 1 refers to IER 
1xxxx:xxx Offsets 0 and 1 refer to 

BRG Divisor Latch 

BREAK Control: 
6 SETBRK xOxxxxxx Normal DART operation 

x1xxxxxx Send BREAK signal 

(more) 

Section !1- Programming in the MS-DOS Environment . 175 

ZTE (USA) 1007, Page 187



I' 
I' 

Part B: Programming for MS-DOS 

Table 6-4. Continued. 

Bit 

Parity Checking: 
5,4,3 

Stop Bits: 
2 

Word Length: 
1,0 

Name 

GENPAR 

XSTOP 

WD5 
WD6 
WD7 
WD8 

Binary 

xxxx:Oxxx 
xx001xxx 
xxOllxxx 
xx101xxx 
xxl11xxx 

xxxxxOxx 
xxxxx1xx 

xxxxxxOO 
xxxxxx01 
xxxxxx10 
xxxxxx11 

Meaning 

No parity bit 
Parity bit is ODD 
Parity bit is EVEN 
Parity bit is 1 
Parity bit is 0 

Only 1 stop bit 
2 stop bits 

(1.5 ifWL = 5) 

Word length = 5 
Word length = 6 
Word length = 7 
Word length = 8 

Two bits in the MCR (Table 6-5) control output lines DTR and RTS; two other MCR bits 
(OUTland OUT2) are left free by the DART to be assigned by the user; a fifth bit (TEST) 
puts the DART into a self-test mode of operation. The upper 3 bits have no effect on the 
UART. The MCR can be both read from and written to. 

Both of the user-assignable bits are defined in the IBM PC. OUTl is used by Hayes internal 
modems to cause a power-on reset of their circuits; OUT2 controls the passage of UART­
generated interrupt request signals to the rest of the PC. Unless OUT2 is set to 1, interrupt 
signals from the DART cannot reach the rest of the PC, even though all other controls are 
properly set. This feature is documented, but obscurely, in the IBM Technical Reference 
manuals and the asynchronous-adapter schematic; it is easy to overlook when writing an 
interrupt-driven program for these machines. 

Table 6-5. 8250 Modem Control Register Bit Values. 

Name Binary Description 

TEST xxx1xxxx Turns on DART self-test configuration. 
OUT2 xxxx1xxx Controls 8250 interrupt signals (User2 Output). 
OUTl xxxxx1xx Resets Hayes 1200b internal modem (User1 Output). 
RTS xxxxxx1x Sets RTS output to RS232C connector. 
DTR xxxxxxx1 Sets DTR output to RS232C connector. 

176 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 188



Article 6: Interrupt-Driven Communications 

The 8250 can generate any or all of four classes of interrupts, each individually enabled or 
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6--6). 
Thus, setting the IER to OOH disables all the UART interrupts within the 8250 without 
regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com­
mands. The IER can be both read from and written to. Only the low 4 bits have any effect 
on the UART. 

Table 6-6. 8250 Interrupt Enable Register Constants. 

Binary 

xxxx1xxx 
xxxxx1xx 
xxxxxx1x 
xxxxxxx1 

Action 

Enable Modem Status Interrupt. 
Enable Line Status Interrupt. 
Enable Transmit Register Interrupt. 
Enable Received Data Ready Interrupt. 

The status circuits 

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status 
Register (MSR), the Interrupt Identifier (liD) Register, and the interrupt-request generation 
system. 

The 8250 includes circuitry that detects a received BREAK signal and also detects three 
classes of data-reception errors. Separate bits in the LSR (Table 6-7) are set to indicate that 
a BREAK has been received and to indicate any of the following: a parity error (if lateral 
parity is in use), a framing error (incoming bit= 0 at stop-bit time), or an overrun error 
(word not yet read from receive buffer by the time the next word must be moved into it). 

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the 
Transmit Holding Register, and the Received Data Register; the most significant bit of the 
LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect. 

Table 6-7. 8250 Line Status Register Bit Values. 

Bit Binary Meaning 

7 Oxxx:xxxx Always zero 
6 x1xxxxxx Transmit Shift Register empty 
5 xx1xxxxx Transmit Holding Register empty 
4 xxx1xxxx BREAK received 
3 xxxx1xxx Framing error 
2 xxxxx1xx Parity error 
1 xxxxxx1x Overrun error 
0 xxxxxxx1 Received data ready 

Section IL- Programming in the MS-DOS Environment 177 

ZTE (USA) 1007, Page 189



I 
! I' I . 

Part B: Programming for MS-DOS 

CLRGS: 

MOV DX,03FDh clear LSR 

IN AL,DX 

MOV DX,03F8h clear RX reg 

IN AL,DX 

MOV DX,03FEh clear MSR 

IN AL,DX 

MOV DX,03FAh IID reg 
IN AL,DX 

IN AL,DX repeat to be sure 

TEST AL, 1 int pending? 
JZ CLRGS yes, repeat 

Note: This code does not completely set up the IBM serial port. Although it fully programs 
the 8250 itself, additional work remains to be done. The system interrupt vectors must be 
changed to provide linkage to the interrupt service routine (ISR) code, and the 8259 
Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt 
requests from the DART channels. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: CusTOMIZING Ms-nos: Hardware Interrupt Handlers. 

Device Drivers 

All versions of MS-DOS since 2.0 have permitted the installation of user-provided device 
drivers. From the standpoint of operating-system theory, using such drivers is the proper 
way to handle generic communications interfacing. The following paragraphs are intended 
as a refresher and to explain this article's departure from standard device-driver terminol­
ogy. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: 
Installable Device Drivers. 

An installable device driver consists of (1) a driver header that links the driver to 
others in the chain maintained by MS-DOS, tells the system the characteristics of this spe­
cific driver, provides pointers to the two major routines contained in the driver, and (for a 
character-device driver) identifies the driver by name; (2) any data and storage space the 
driver may require; and (3) the two major code routines. 

The code routines are called the Strategy routine and the Interrupt routine in normal 
device-driver descriptions. Neither has any connection with the hardware interrupts dealt 
with by the drivers presented in this article. Because of this, the term Request routine is 
used instead of Interrupt routine, so that hardware interrupt code can be called an 
interrupt service routine (ISR) with minimal chances for confusion. 

MS-DOS communicates with a device driver by reserving space for a command packet 
of as many as 22 bytes and by passing this packet's address to the driver with a call to the 
Strategy routine. All data transfer between MS-DOS and the driver, in both directions, 
occurs via this command packet and the Request routine. The operating system places a 
command code and, optionally, a byte count and a buffer address into the packet at the 
specified locations, then calls the Request routine. The driver performs the command 
and returns the status (and sometimes a byte count) in the packet. 

180 The MS-DOS Encyclopedia 
ZTE (USA) 1007, Page 190



L 

Article 6: Interrupt-Driven Communications 

Two Alternative Approaches 

Now that the factors involved in creating interrupt-driven communications programs have 
been discussed, they can be put together into practical program packages. Doing so brings 
out not only general principles but also minor details that make the difference between 
success and failure of program design in this hardware-dependent and time-critical area. 

The traditional way: Going it alone 

Because MS-DOS provides no generic functions suitable for communications use, virtually 
all popular communications programs provide and install their own port driver code, and 
then remove it before returning to MS-DOS, This approach entails the creation of a com­
munications handler for each program and requires the "uninstallation" of the handler on · 
exit from the program that uses it. Despite the extra requirements, most communications 
programs use this method. 

The alternative: Creating a communications device driver 

Instead of providing temporary interface code that must be removed from the system 
before returning to the command level, an installable device driver can be built as a 
replacement for COMx so that every program can have all features. However, this 
approach is not compatible with existing terminal·programs because it has never been a 
part of MS-DOS. 

Comparison of the two methods 

The traditional approach has several advantages, the most obvious being that the driver 
code can be fully tailored to the needs of the program. Because only one program will 
ever use the driver, no general cases need be considered. 

However, if a user wants to keep communications capability available in a terminate-and­
stay-resident (TSR) module for background use and also wants a different type of commu­
nications program running in the foreground (not, of course, while the background task is 
using the port), the background program and the foreground job must each have its own 
separate driver code. And, because such code usually includes buffer areas, the duplicated 
drivers represent wasted resources. 

A single communications device driver that is installed when the system powers up and 
that remains active until shutdown avoids wasting resources by allowing both the back­
ground and foreground tasks to share the driver code. Until such drivers are common, 
however, it is unlikely that commercial software will be able to make use of them. In addi­
tion, such a driver must either provide totally general capabilities or it must include control 
interfaces so each user program can dynamically alter the driver to suit its needs. 

At this time, the use of a single driver is an interesting exercise rather than a practical 
application, although a possible exception is a dedicated system in which all software is 
either custom designed or specially modified. In such a system, the generalized driver 
can provide significant improvement in the efficiency of resource allocation. 

Section Il- Programming in the MS-DOS Environment 181 

ZTE (USA) 1007, Page 191



I 
:1 

Part B: Programming for MS-DOS 

A Device-Driver Program Package 

Despite the limitations mentioned in the preceding section, the first of the two complete 
packages in this article uses the concept of a separate device driver. The driver handles all 
hardware-dependent interfacing and thus permits extreme simplicity in all other modules 
of the package. This approach is presented first because it is especially well suited for in­
troducing the concepts of communications programs. However, the package is not merely 
a tutorial device: It includes some features that are not available in most commercial 
programs. 

The package itself consists of three separate programs. First is the device driver, which 
becomes a part of MS-DOS via the CONFIG.SYS file. Second is the modem engine, which 
is the actual terminal program. (A functionally similar component forms the heart of every 
communications program, whether it is written in assembly language or a high-level lan­
guage and regardless of the machine or operating system in use.) Third is a separately exe­
cuted support program that permits changing such driver characteristics as word length, 
parity, and baud rate. 

In most programs that use the traditional approach, the driver and the support program 
are combined with the modem engine in a single unit and the resulting mass of detail 
obscures the essential simplicity of each part. Here, the parts are presented as separate 
modules to emphasize that simplicity. 

The device driver: COMDVR.ASM 

The device driver is written to augment the default COMl and COM2 devices with other 
devices named ASYl and ASY2 that use the same physical hardware but are logically sepa­
rate. The driver (COMDVR.ASM) is implemented in MASM and is shown in the listing in 
Figure 6-1. Although the driver is written basically as a skeleton, it is designed to permit 
extensive expansion and can be used as a general-purpose sample of device-driver 
source code. 

The code 

1 : Title COMDVR Driver for IBM COM Ports 
2 Jim Kyle, 1987 
3 Based on ideas from many sources ..... . 
4 : including Mike Higgins, CLM March 1985; 
5 : public-domain INTBIOS program from BBS's; 
6 : COMBIOS.COM from CIS Programmers' SIG; and 
7 ADVANCED MS-DOS by Ray Duncan. 
8 Subttl MS-DOS Driver Definitions 

9 : 

10 Comment* This comments out the Dbg macro .... . 

11 Dbg 
12 

Macro Ltr1,Ltr2,Ltr3 used only to debug driver .. . 
Local Xxx 

13 Push Es save all regs used 

Figure 6-1. COMDVR.ASM. 

182 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 192



14 

15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
3"7 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 
51 

52 

53 

54 

55 
56 
57 
58 

59 
60 

61 

62 

63 

64 

Xxx: 

Push 

Push 

Les 

Mov 

Mov 

Stosw 

Mov 

Stosw 

Mov 

Stosw 

Cmp 

Jb 

X or 

Mov 

Pop 

Pop 

Pop 

Endm 

* 

DevChr Equ 

DevBlk Equ 

Device Equ 

DevNon Equ 

DevOTB Equ 

DevOCR Equ 

DevX32 Equ 

DevSpc Equ 

DevClk Equ 

DevNul Equ 

DevSto Equ 

DevSti Equ 

StsErr Equ 

StsBsy Equ 

StsDne Equ 

ErrWp Equ 

ErrUu Equ 

ErrDnr Equ 

ErrUc Equ 

ErrCrc Equ 

ErrBsl Equ 

ErrSl Equ 

ErrUm Equ 

ErrSnf Equ 

ErrPop Equ 

ErrWf Equ 

Article 6: Interrupt-Driven Communications 

Di 

Ax 

Di,Cs:Dbgptr 

Ax,Es:[di] 

Al,Ltr1 

get pointer to CRT 

move in letters 

Al, Ltr2 

Al,Ltr3 

Di,1600 

Xxx 

Di,Di 

top 10 lines only 

Word Ptr Cs:Dbgptr,Di 

Ax 

Di 

Es 

asterisk ends commented-out region 

Device Type Codes 

BOOOh 
OOOOh 
4000h 

2000h 

2000h 

OBOOh 
0040h 

0010h 

OOOBh 
0004h 

0002h 

0001h 

this is a character device 

this is a block (disk} device 

this device accepts IOCTL requests 

non-IBM disk driver (block only} 

MS-DOS 3.x out until busy supported (char} 

MS-DOS 3.x open/close/rm supported 

MS-DOS 3.2 functions supported 

accepts special interrupt 29H 

this is the CLOCK device 

this is the NUL device 

this is standard output 

this is standard input 

Error Status BITS 

8000h 

0200h 

0100h 

general error 

device busy 

request completed 

Error Reason values for lower-order bits 

0 

2 

3 
4 

5 

6 

7 

8 

9 

10 

write protect error 

unknown unit 

drive not ready 

unknown command 

cyclical redundancy check error 

bad drive request structure length 

seek error 

unknown media 

sector not found 

printer out of paper 

write fault 

\ 

Figure 6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 183 
ZTE (USA) 1007, Page 193



I 
I 
I 
I 
I 
I 
I 
I 

,,1 

It 

I 

I , 1,

1 

!i 

II 

Part B: Programming for MS-DOS 

184 

65 

66 

67 
68 

69 

70 

71 

72 
73 

74 

75 

76 
77 
78 

79 
80 

81 

82 

83 

ErrRf 

ErrGf 

Pack 

Len 

Prtno 

Code 

stat 

Dosq 

Devq 

Media 

X fer 

Xseg 

Count 

Sector 

Pack 

Equ 

Equ 

11 

12 

read fault 

general failure 

Structure of an I/0 request packet header. 

Struc 

Db 

Db 

Db 

Ow 

Dd 

Dd 

Db 

Ow 

Ow 

ow 

Ow 

Ends 

? 

? 

? 

? 

? 

? 

? 

? 

length of record 

unit code 

command code 

return status 

(unused MS-DOS queue link pointer) 

(unused driver queue link pointer) 

media code on read/write 

xfer address offset 

xfer address segment 

transfer byte count 

starting sector value (block only) 

84 Subttl IBM-PC Hardware Driver Definitions 

85 page 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 
98 

99 
100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

PIC-.b 
PIC_e 

EOI 

RxBuf 

Baud1 

IntEn 

Intid 

Lctrl 

Mctrl 

Lstat 

Mstat 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Dlab Equ 

SetBrk Equ 

StkPar Equ 

EvnPar Equ 

GenPar Equ 

Xstop Equ 

Wd8 Equ 

Wd7· 

Wd6 

xsre 

xhre 

Equ 

Equ 

Equ 

Equ 

Figure 6-1. Continued. 

The MS-DOS Encyclopedia 

8259 data 

020h 

021h 

020h 

port for EOI 

port for Int enabling 

EOI control word 

8250 port offsets 

OF8h 

RxBuf+1 

RxBuf+1 

RxBuf+2 

RxBuf+3 

RxBuf+4 

RxBuf+5 

RxBuf+6 

base address 

baud divisor high byte 

interrupt enable register 

interrupt identification register 

line control register 

modem control register 

line status register 

modem status register 

8250 LCR constants 

10000000b 

01000000b 

00100000b 

00010000b 

00001000b 

00000100b 

00000011b 

00000010b 

00000001b 

divisor latch access bit 

send break control bit 

stick parity control bit 

even parity bit 

generate parity bit 

extra stop bit 

word length 8 

word length 

word length 

7 

6 

8250 LSR constants 

01000000b xmt SR empty 

00100000b ; xmt HR empty 

(more) 

ZTE (USA) 1007, Page 194



Article 6: Interrupt-Driven Communications 

BrkRcv Equ 00010000b break received 
FrmErr Equ 00001000b framing error 

ParErr Equ 00000100b parity error 

OveRun Equ 00000010b overrun error 

rdta Equ 00000001b received data ready 
AnyErr Equ BrkRcv+FrmErr+ParErr+OveRun 

8250 MCR constants 
LpBk Equ 00010000b UART out loops to in (test) 
Usr2 Equ 00001000b Gates 8250 interrupts 
Usr1 Equ 00000100b aux user1 output 
SetRTS Equ 00000010b sets RTS output 
SetDTR Equ 00000001b sets DTR output 

8250 MSR constants 

CDlvl Equ 1 OOOOOOOb carrier detect level 
Rilvl Equ 01000000b ring indicator level 
DSRlvl Equ 00100000b DSR level 
CTSlvl Equ 00010000b CTS level 
CDchg Equ 00001000b Carrier Detect change 
Richg Equ 00000100b Ring Indicator change 
DSRchg Equ 00000010b DSR change 
CTSchg Equ 00000001b CTS change 

8250 IER constants 
s_Int Equ 00001000b enable status interrupt 
E_Int Equ 00000100b enable error interrupt 
X_Int Equ 00000010b enable transmit interrupt 
!Lint Equ 00000001b enable receive interrupt 
Allint Equ 00001111b enable all interrupts 

116 

117 
118 

119 

120 

121 
122 

123 
124 

125 

126 
127 

128 
129 

1 30 
131 

132 

133 
134 

135 
136 
137 

138 
139 
140 

141 
142 

143 

144 
145 

146 
147 
148 

149 

150 
151 
152 

153 
154 

155 
156 
157 

158 

159 
1 60 

161 
162 

163 
164 

1 65 
166 

Subttl Definitions for THIS Driver 
page 

Linidl Equ 

LinXof Equ 
LinDSR Equ 

LinCTS Equ 

Badinp Equ 
LostDt Equ 

OffLin Equ 

Figure 6-J. Continued. 

Bit definitions for the output status byte 

( this driver only ) 
Offh if all bits off, xmitter is idle 

1 output is suspended by XOFF 

2 output is suspended until DSR comes on again 
4 output is suspended until CTS comes on again 

Bit definitions for the input status byte 

this driver only ) 

1 

2 

4 

input line errors have been detected 

receiver buffer overflowed, data lost 
device is off line now 

Bit definitions for the special characteristics words 
( this driver only ) 

InSpec controls how input from the UART is treated 

/ 

(more) 

Section II: Programming in the MS-DOS Environment 185 

ZTE (USA) 1007, Page 195



,Iii 

Part B: Programming for MS-DOS 

167 
168 
169 
170 
171 
172 
173 
174 
175 
176 

InEpc Equ 

OutDSR Equ 
OutCTS Equ 
OutXon Equ 
OutCdf Equ 
OutDrf Equ 

Unit Struc 
Port Dw 

0001h ; errors translate to codes with parity bit on 

OutSpec controls how output to the UART is treated 

0001h 
0002h 
0004h 
0010h 
0020h 

? 

DSR is used to throttle output data 
CTS is used to throttle output data 
XON/XOFF is used to throttle output data 
carrier detect is off-line signal 
DSR is off-line signal 

each unit has a structure defining its state: 
I/O port address 

177 
178 

179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
1 90 
191 
192 
1 93 
1 94 
195 

Vect Dw ? interrupt vector offset (NOT interrupt number!) 

1 96 

Isradr Dw 
OtStat Db 

InStat Db 

InSpec Dw 
OutSpec Dw 
Baud Dw 
Ifirst Dw 
Iavail Dw 
Ibuf Dw 
Ofirst Dw 
Oavail Dw 
Obuf Dw 
Unit Ends 

? offset to interrupt service routine 
Wd8 default LCR bit settings during INIT, 

output status bits after 
Usr2+SetRTS+SetDTR MCR bit settings during INIT, 

InEpc 
Outxon 
96 
0 

0 

? 

0 

0 

? 

input status bits after 
special mode bits for INPUT 
special mode bits for OUTPUT 
current baud rate divisor value (1200 b) 
offset of first character in input buffer 
offset of next available byte 
pointer to input buffer 
offset of first character in output buffer 
offset of next avail byte in output buffer 
pointer to output buffer 

1 97 
198 

Beginning of driver code and data 

199 Driver Segment 
200 Assume Cs:driver, ds:driver, es:driver 
201 Org 0 drivers start at 0 

202 

Async2: 

Dw 
Dw 
Dw 
Dw 
Db 

Async2,-1 
DevChr + Devioc 
Strtegy 
Request1 
'ASY1 

pointer to next device 
character device with IOCTL 
offset of Strategy routine 
offset of interrupt entry point 
device 1 name 

203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 

215 
216 
217 

Dw 
Dw 
Dw 
Dw 
Db 

-1,-1 

Devchr + Devioc 
Strtegy 
Request2 

pointer to next device: MS-DOS fills in 
character device with IOCTL 

'ASY2 

;dbgptr Dd ObOOOOOOOh 

offset of Strategy routine 
offset of interrupt entry point 2 
device 2 name 

Following is the storage area for the request packet pointer 

Figure 6-1. Continued. 

186 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 196



218 

219 

220 
221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

PackHd Dd 

Asy_baudt 

0 

baud rate 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

DW 

Dw 

Dw 

Dw 

Dw 

Dw 

Article 6: Interrupt-Driven Communications 

conversion table 

50,2304 ; first value is desired baud rate 

75,1536 second is divisor register value 

110, 1047 

134, 857 

150, 786 

300, 384 

600, 1 92 

1200, 96 

1800, 64 

2000, 58 

2400, 48 

3600, 32 

4800, 24 

7200, 16 

9600, 12 

238 table of structures 
239 ASY1 defaults to the COM1 port, INT OCH. vector, XON, 

240 no parity, 8 databits, 1 stop bit, and 1200 baud 

241 Asy_tab1 : 
Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf> 

242 

243 
244 ASY2 defaults to the COM2 port, INT OBH vector, XON, 

245 no parity, 8 databits, 1 stop bit, and 1200 baud 

246 Asy_tab2: 
247 <2f8h,2ch,asy2isr,,,,,,,,in2buf,,,out2buf> Unit 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

Bufsiz Equ 

Bufmsk 

In1buf Db 

Out1buf Db 

In2buf Db 

Out2buf Db 

Asy_funcs: 
Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Bufsiz-1 ; mask for calculating offsets modulo bufsiz 
256 ; input buffer size 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Following is a table of offsets to all the driver functions 

I nit 0 initialize driver 

Mchek 1 media check (block only) 

BldBPB 2 build BPB (block only) 

I oct lin 3 IOCTL read 

Read 4 read 

Ndread 5 nondestructive read 

Rxstat 6 input status 

In flush 7 flush input buffer 

Write 8 write 

Write 9 write with verify 

Figure 6-1. Continued. (more) 

Section !l- Programming in the MS-DOS Environment 187 
ZTE (USA) 1007, Page 197



I! 

,·I I 

Part B: Programming for MS-DOS 

269 Dw Txstat 10 output status 
270 Dw Txflush 11 flush output buffer 
271 Dw Ioctlout 12 IOCTL write 
272 Following are not used in this driver ..... 
273 Dw Zexit 13 open (3.x only, not used) 
274 Dw Zexit 14 close (3.x only, not used) 
275 Dw Zexit 15 rem med (3 .x only, not used) 
276 Dw Zexit 1 6 out until bsy (3.x only, not used) 
277 Dw Zexit 17 
278 Dw Zexit 18 
279 Dw Zexit 1 9 generic IOCTL request ( 3. 2 only) 
280 Dw Zexit 20 
281 Dw Zexit 21 
282 Dw Zexit 22 
283 Dw Zexit 23 get logical drive map (3.2 only) 
284 Dw Zexit 24 set logical drive map (3.2 only) 
285 
286 
287 

Subttl Driver Code 
Page 

288 
289 The Strategy routine itself: 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
31 9 

Strtegy Proc 
dbg 

Mov 
Mov 
Ret 

Strtegy Endp 

Request1: 
Push 
Lea 
Jmp 

Request2: 
Push 
Lea 

Gen_request: 
dbg 
Pushf 
Cld 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Push 

Figure 6-1. Continued. 

188 The MS-DOS Encyclopedia 

Far 
'S', 'R', I I 

Word Ptr CS:PackHd,BX 
Word Ptr CS:PackHd+2,ES 

store the offset 
store the segment 

async1 has been requested 

Si save SI 
Si,Asy_tab1 get the device unit table address 

Short Gen-request 

Si 
Si ,Asy_tab2 

'R', 'R',' r 

Ax 
Bx 
Cx 
Dx 
Di 
Bp 
Ds 
Es 
Cs 

async2 has been requested 
save SI 
get unit table two's address 

save all regs 

set DS cs 

(more) 

ZTE (USA) 1007, Page 198



Pop 
Les 
Lea 
Mev 
Cbw 
Add 
Add 
Jmp 

Ds 
Bx,PackHd 
Di,Asy_funcs 
Al,es:code[bx] 

Ax, Ax 
Di,ax 
[di] 

320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 

Exit from driver request 

354 

ExitP Proc 

Bsyexit: 

Mchek: 
BldBPB: 

Mev 
Jmp 

Zexit: Xor 
Exit: Les 

ExitP 

Or 
Mev 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Popf 
Pop 
Ret 
Endp 

Far 

Ax,StsBsy 
Short Exit 

Ax,Ax 
Bx,PackHd 
Ax,StsDne 
Es:Stat[Bx],Ax 

Es 
Ds 
Bp 
Di 
Dx 
ex 
Bx 
Ax 

Si 

355 Subttl Driver Service Routines 

356 Page 
357 
358 Read data from device 

359 
360 Read: 

'R' I'd', I ' 

Cx,Es:Count[bx] 
Di,Es:Xfer[bx] 
Dx,Es:Xseg[bx] 

Bx 
Es 
Es,Dx 

Article 6: Interrupt-Driven Communications 

get packet pointer 
point DI to jump table 

command code 

double to word 

go do it 

get packet pointer 

set return status 
restore registers 

get requested nbr 
get target pointer 

save for count fixup 

361 
362 
363 
364 
365 
366 
367 
368 
369 
370 

dbg 
Mev 
Mev 
Mev 
Push 
Push 
Mev 
Test 
Je 
Add 

InStat[si],Badinp Or LostDt 

No_lerr 

Sp,4 

no error so far ... 

error, flush SP 

Figure 6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 189 

ZTE (USA) 1007, Page 199



·li •I' I,,,·, 

i! 
" ,. 
; 

Part B: Programming for MS-DOS 

371 
372 
373 

And 
Mov 
Jmp 

InStat[si],Not ( Badinp Or LostDt ) 

374 
375 
376 
377 

378 
379 
380 
381 
382 
383 
384 
385 
386 

No_lerr: 

Call 
Or 
Jnz 
Stosb 
Loop 

Got_all: 
Pop 
Pop 
Sub 
Mov 
Jmp 

Ax,ErrRf 
Exit 

Get_in 

Ah,Ah 
Got_all 

No_lerr 

Es 
Bx 
Di,Es:Xfer[bx] 
Es:Count[bx],Di 
Zexit 

; error, report it 

go for one 

none to get now 

store it 
go for more 

calc number stored 
return as count 

387 Nondestructive read from device 

388 
389 Ndread: 

390 
391 
392 
393 
394 Ndget: 

395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
41 6 
417 
418 
419 
420 

Rxstat: 

Rxful: 

Inflush: 

Mov 
Cmp 
Jne 
Jmp 

Push 
Mov 
Mov 
Pop 
Mov 
Jmp 

Di,ifirst[si] 
Di,iavail[si] 
Ndget 
Bsyexit 

Bx 
Bx,ibuf[si] 
Al, [bx+di] 
Bx 
Es: media [bx], al 

Zexit 

Input status request 

Mov Di,ifirst[si] 
Cmp Di,iavail[si] 

Jne Rxful 
Jmp Bsyexit 

Jmp Zexit 

Input flush request 

Mov Ax,iavail[si] 
Mov Ifirst[si],ax 

Jmp Zexit 

Output data to device 

Figure 6-1. Continued. 

190 The MS-DOS Encyclopedia 

buffer empty 

return char 

buffer empty 

have data 

(more) 

ZTE (USA) 1007, Page 200



421 Write: 

422 

423 
424 
425 

426 
427 Wlup: 

428 

429 

430 

431 
432 

433 

434 

435 
436 

437 

438 

Wwait: 

dbg 

Mev 
Mev 

Mev 
Mev 

Mev 
Inc 

Call 

Cmp 

Jne 
Call 

Loop 

Jmp 

'W', 'r'' • ' 
cx,es:count[bx] 

Di,es:xfer[bx] 

Ax,es:xseg[bx] 

Es,ax 

Al,es: [di] 

Di 

Put_out 

Ah,O 

Wwait 
Start_output 

Wlup 

Zexit 

Article 6: Interrupt-Driven Communications 

get the byte 

put away 

wait for room! 

get it going 

439 Output status request 

440 
441 Txstat: 

442 

443 

444 
445 

446 
447 
448 Txroom: 

449 

Mev 

Dec 

And 
Cmp 

Jne 
Jmp 

Jmp 

Ax,ofirst[si] 

Ax 
Ax,bufmsk 
Ax,oavail[si] 

Txroom 
Bsyexit 

Zexit 

buffer full 

room exists 

450 

451 
IOCTL read request, return line parameters 

452 
453 I oct lin: 

454 
455 

456 

457 

458 
459 
460 

461 

462 
463 

464 

465 

Doiocin: 

Mev 
Mev 

Mev 

Mev 
Cmp 

Je 

MOV 

Jmp 

Mev 

MOV 

Mev 

466 Getport: 

467 

468 
469 
470 
471 

In 
Stos 

Inc 
Loop 

Cx,es:count[bx] 
Di,es:xfer[bx] 

Dx,es:xseg[bx] 

Es,dx 

Cx,10 
Doiocin 
Ax,errbsl 

Exit 

Dx,port[si] 

Dl,Lctrl 

Cx,4 

Al,dx 
Byte Ptr [DI] 

Dx 
Get port 

base port 
line status 
LCR, MCR, LSR, MSR 

Figure 6-1. Continued. (more) 

Section Jl- Programming in the MS-DOS Environment 191 

ZTE (USA) 1007, Page 201



Part B: Programming for MS-DOS 

472 
473 
474 

475 

476 

477 
478 

479 

480 

481 
482 

483 
484 

485 
486 
487 

488 
489 

490 
491 

492 

Mov 

Stos 
Mov 

Stos 

Mov 
Mov 

Mov 

Mov 

Baudcin: 
Cmp 

Je 
A<;ld 
Loop 

Yesinb: 
Mov 

Mov 
Stos 

Jmp 

Flush 

493 Txflush: 
Mov 
Mov 

Jmp 

Ax,InSpec[si] spec 

word Ptr [DI] 

Ax,OutSpec[si] out 

Word Ptr [DI] 

Ax, bauci[si] baud 

Bx,di 
Di,offset Asy__baudt+2 

Cx,15 

[di],ax 

Yesinb 

Di,4 
Baudcin 

Ax,-2[di] 

Di,bX 
Word Ptr [DI] 

Zexit 

output buffer request 

Ax,oavail[si] 

Ofirst[si],ax 

Zexit 

in flags 

flags 

rate 

494 

495 
496 
497 

498 

499 

500 
501 

502 
503 

504 
505 

506 
507 

508 

509 
510 

511 
512 

513 
514 

515 

516 

517 
518 

519 

520 
521 

IOCTL request: change line parameters for this driver 

Ioctlout: 
Mov 

Mov 
Mov 
Mov 
Cmp 

Je 
Mov 

Jmp 

Doiocout: 
Mov 

Mov 
Mov 

Inc 

Or 
out 

Clc 

Jnc 
Inc 

Mov 

Or 

. 522 out 

Figure 6-1. Continued. 

192 The MS-DOS Encyclopedia 

cx,es:count[bx] 

Di,es:xfer[bx] 
Dx,es:xseg[bx] 

Es,dx 
cx,10 
Doiocout 
Ax,errbsl 

Exit 

ox,port[si] 

Dl,Lctrl 
Al, es: [di] 

Di 
Al,Dlab 

Dx,al 

$+2 

Dx 
Al,es: [di] 

Al,Usr2 

Dx,al 

base port 

line ctrl 

set baud 

mdm ctrl 

Int Gate 

ZTE (USA) 1007, Page 202



Article 6: Interrupt-Driven Communications 

523 Add Iii,3 skip LSR,MSR 

524 Mov Ax,es: [di] 

525 Add Di,2 

526 Mov InSpec[si],ax 

527 Mov Ax,es: [di] 

528 Add Di,2 

529 Mov OutSpec[si],ax 

530 Mov Ax,es: [di] ; set baud 

531 Mov Bx,di 

532 Mov Di,offset Asy--.baudt 

533 Mov Cx,15 

534 Baudcout: 

535 Cmp [di] ,ax 

536 Je Yesoutb 

537 Add Di,4 

538 Loop Baudcout 

539 

540 Mov Dl,Lctrl line ctrl 

541 In Al,dx get LCR data 

542 And Al,not Dlab strip 

543 Clc 

544 Jnc $+2 

545 Out Dx,al put back 

546 Mev Ax,ErrUm "unknown media" 

547 Jmp Exit 

548 

549 Yesoutb: 

550 Mov Ax,2 [di] get divisor 

551 Mov Baud[si] ,ax save to report later 

552 Mev Dx,port[si] set divisor 

553 Out D~,a1 

554 Clc 

555 Jnc $+2 

556 Inc Dx 

557 Mev Al,ah 

558 Out Dx,al 

559 Clc 

560 Jnc $+2 

561 Mev Dl,Lctrl line ctrl 

562 In Al,dx get LCR data 

563 And Al,not Dlab strip 

564 Clc 

565 Jnc $+2 

566 Out Dx,al put back 

567 Jmp Zexit 

568 
569 Subttl Ring Buffer Routines 

570 Page 

571 

572 Put_out Proc Near puts AL. into output ring buffer 

573. Push Cx 

Figure6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 193 

ZTE (USA) 1007, Page 203



Part B: Programming for MS-DOS 

574 Push Di 

575 Pushf 

576 Cli 

577 Mov Cx,oavail[si] put ptr 

578 Mov Di,cx 

579 Inc Cx bump 

580 And Cx,bufmsk 

581 Cmp Cx,ofirst[si] overflow? 

582 Je Poerr yes, don't 

583 Add Di,obuf[si] no 

584 Mov [di],al put in buffer 

585 Mov Oavail[si],cx 

586 dbg 1 P 1 
I 

1
0

1 
I ' ' 

587 Mov Ah,O 

588 Jmp Short Po ret 

589 Poerr:. 

590 Mov Ah, -1 

591 Poret: 
592 Popf 

593 Pop Di 

594 Pop Cx 

595 Ret 

596 Put_out Endp 

597 
598 Get_out Proc Near gets next character from output ring buffer 

599 Push Cx 

600 Push Di 

601 Pushf 

602 Cli 

603 Mov Di,ofirst[si] get ptr 

604 Cmp Di,oavail[si] put ptr 

605 Jne Ngoerr 

606 Mov Ah,-1 empty 

607 Jmp Short Go ret 

608 Ngoerr: 

609 dbg 'g' I 
1 0 1 

I ' ' 
610 Mov Cx,di 

611 Add Di,obuf[si] 

612 Mov Al, [di] get char 

613 Mov Ah,O 

614 Inc Cx bump ptr 

615 And Cx,bufmsk wrap 

616 Mov Ofirst[si],cx 

617 Goret: 
618 Popf 

619 Pop Di 

620 Pop Cx 

621 Ret 

622 Get_out Endp 

623 

624 Put_in Proc Near puts the char from AL into input ring buffer 

Figure 6-1. Continued. (more) 

194 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 204



Article 6: Interrupt-Driven Communications 

625 Push ex 

626 Push Di 

627 Pushf 
628 eli 
629 Mov Di,iavail[si] 

630 Mov ex,di 

631 Inc ex 

632 And ex,bufmsk 

633 emp ex,ifirst[si] 

634 Jne Npierr 

635 Mov Ah,-1 

636 Jmp Short Piret 

637 Npierr: 
638 Add Di,ibuf[si] 

639 Mov [di],al 

640 Mov Iavail[si],cx 

641 dbg 1 P 1 
f I i' I I ' 

642 Mov Ah,O 

643 Piret: 
64'4 Popf 
645 Pop Di 

646 Pop ex 

647 Ret 
648 Put_in Endp 

649 
650 Get_in Proc Near gets one from input ring buffer into AL 

651 Push ex 

652 Push Di 

653 Pushf 

654 eli 

655 Mov Di,ifirst[si] 

656 emp Di,iavail[si] 

657 Je Gierr 

658 Mov ex,di 

659 Add Di,ibuf[si] 

660 Mov Al, [di] 

661 Mov Ah,O 

662 dbg 'g' I IiI I I ' 
663 Inc ex 

664 And ex,bufmsk 

665 Mov Ifirst[si],cx 

666 Jmp Short Giret 

667 Gierr: 

668 Mov Ah,-1 

669 Giret: 
670 Popf 

671 Pop Di 

672 Pop ex 

673 Ret 
674 Get_in Endp 
675 

Figure6-1. Continued. (more) 

Section 11- Programming in the MScDOS 

ZTE (USA) 1007, Page 205



Part B: Programming for MS-DOS 

676 Subttl Interrupt Dispatcher Routine 

677 Page 

678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 

Asy1isr: 
Sti 
Push 
Lea 
Jmp 

Asy2isr: 
Sti 
Push 
Lea 

Int_serve: 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Pop 

699 Int_exit: 

700 dbg 

701 
702 
703 
704 

Mov 
Mov 
In 
Cmp 

705 Je 
706 Jmp 
707 IntJnodem: 
708 dbg 

709 
710 
711 
712 
713 
714 
715 
71 6 
717 
718 
71 9 

720 
721 
722 
723 
724 
725 
726 

Msdsr: 

Dsroff: 

Mov 
In 
Test 
Jnz 
Test 

Jz 
Or 

Test 
Jnz 
Test 
Jz 
Or 

Test 

Jz 
Or 
Jmp 

Figure 6-1. Continued. 

196 The MS-DOS Encyclopedia 

Si 
si,asy_tab1 
Short Int_serve 

Si 
Si,asy_tab2 

Ax save all regs 

Bx 
ex 
Dx 
Di 
Ds 
Cs set DS cs 
Ds 

I I I I 1 X', ' ' 
Dx,Port[si) 
Dl,Intid 

base address 
check Int ID 

Al,Dx 
Al,OOh dispatch filter 

IntJnodem 
IntJno_no 

'M', 'S', I ' 
Dl,Mstat 
Al,dx 
Al,CDlvl ., 

read MSR content 
carrier present? 

Msdsr yes, test for DSR 
OutSpec[si],OutCdf ; no, is CD off line? 

Msdsr 
InStat[si],OffLin 

Al,DSRlvl 
Dsron 

; DSR present? 
; yes, handle it 

OutSpec[si],OutDSR 

Dsroff 
OtStat[si),LinDSR 

OutSpec[si) ,OutDrf 

Mscts 
InStat[si],OffLin 
Short Mscts 

no, is DSR throttle? 

yes, throttle down 

is DSR off line? 

yes, set flag 

(more) 

ZTE (USA) 1007, Page 206



727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 

Dsron: 

Mscts: 

Test 
Jz 
X or 
Call 

Test 
Jnz 
Test 
Jz 
Or 
Jmp 

739 Ctson: 
740 
741 
742 
743 

Test 
Jz 
X or 
Jmp 

744 Int__mo_no: 

745 
746 

Cmp 
Jne 

747 Int_txmit: 
748 
749 
750 
751 
752 

dbg 
Int_exit 1: 

Call 
Int_exit2: 

Jmp 
7 53 Int_tx_no: 
754 
755 

Cmp 
Jne 

756 Int_receive: 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 

Isq: 

dbg 
Mov 
In 
Test 
Jz 
Cmp 
Jne 
Or 
Jmp 

Cmp 
Jne 
Test 

Jz 
X or 
Jmp 

773 Int_rec_no: 
774 
775 

Cmp 
Jne 

776 Int_rxstat: 
777 dbg 

Figure6-1. Continued. 

Article 6: Int~rrupt-Driven Communications 

OtStat[si],LinDSR 
Mscts 
OtStat[si],LinDSR 
Start_output 

throttled for DSR? 

yes, clear it out 

Al,CTSlvl ; CTS present? 
Ctson ; yes, handle it 
OutSpec[si),OutCTS no, is·CTS throttle? 
Int_exit2 

OtStat[si],LinCTS 
Short Int_exit2 

OtStat[si],LinCTS 
Int_exit2 
OtStat[si),LinCTS 
Short Int_exit1 

Al,02h 
Int_tx_no 

'T', 'x',' ' 

Start_output 

Int_exit 

Al,04h 
Int_rec_no 

'R' 1 
1

X
1 

1
1 1 

yes, shut it down 

throttled for CTS? 

yes, clear it out 

try to send another 

Dx,port[si) 
Al,dx ; take char from 8250 
OutSpec[si] ,OutXon ; is XON/XOFF enabled? 
Stuff_in no 
Al, 'S' And 01FH ; yes, is this XOFF? 
Isq no, check for XON 
OtStat[si),LinXof; yes, disable output 
Int_exit2 don't store this one 

Al, 'Q' And 01FH is this XON? 
Stuff_in no, save it 
OtStat[si),LinXof ; yes, waiting? 
Int_exit2 no, ignore it 
OtStat(si),LinXof; yes, clear the XOFF bit 
Int_exit1 and try to resume xmit 

Al,06h 
Int_done 

'E', 'R', I ' 

Section /l- Programming in the MS-DOS Envlron1rlfirlf •. 

(more) 

ZTE (USA) 1007, Page 207



Part B: Programming for MS-DOS 

778 

779 
780 

781 
782 

783 
784 

785 

786 
787 
788 

789 

790 

Mov 

In 
Test 

Jz 
And 

Or 
Stuff_in: 

Call 

Cmp 
Je 

Or 
Int_exit3: 

Jmp 

791 Nocode: 

792 Or 

Jmp 793 
794 Int_done: 

795 Clc 

796 

797 

798 
799 

800 
801 

802 

803 
804 

805 
806 

807 

808 
809 

810 
811 

812 
813 

814 

815 
816 

817 

818 
819 

820 
821 

822 

823 
824 

825 

Jnc 
Mov 

Out 
Pop 

Pop 
Pop 

Pop 

Pop 
Pop 

Pop 
I ret 

Start_output 

Test 

Jnz 
Mov 

Mov 

In 

Test 

Jz 
Call 
Or 

Jnz 

Mov 

Out 
dbg 

Dont_start: 

ret 
Start_output 

Dl,Lstat 

Al,dx 
InSpec[si],InEpc ; return them as codes? 

no, just set error alarm Nocode 
Al,AnyErr 

Al,080h 

; yes, mask off all but error bits 

Put_in 

Ah,O 
Int_exit3 

put input char in buffer 

did it fit? 

yes, all OK 
InStat[si],LostDt ; no, set DataLost bit 

Int_exit 

InStat[si],Badinp 
Int_exit3 

$+2 
Al,EOI 
PIC-.b,Al 

Ds 
Di 

Dx 
ex 
Bx 

Ax 

Si 

Proc Near 

all done now 

restore regs 

OtStat[si],Linidl ; Blocked? 
Dont_start 

Dx,port[si] 

Dl,Lstat 

Al,Dx 
Al,xhre 
Dont_start 

Get_out 

Ah,Ah 
Dont_start 

Dl,RxBuf 
Dx,al 
I 5 I 1 1 0 1 1 I I 

Endp 

yes, no output 

no, check UART 

empty? 

no 
yes, anything waiting? 

no 
yes, send it out 

826 Subttl Initialization Request Routine 

827 Page 

828 

Figure 6-1. Continued. 

198 The MS-DOS Encyclopedia 

.,\ 
~1 

(more) 

ZTE (USA) 1007, Page 208



Article 6: Interrupt-Driven Communications 

829 Init: Lea Di,$ release rest ... 
830 Mov Es:Xfer[bx],Di 
831 Mov Es:Xseg[bx],Cs 
832 
833 Mov Dx,Port[si] base port 
834 Mov Dl,Lctrl 
835 Mov Al,Dlab enable divisor 
836 Out Dx,Al 
837 Clc 
838 Jnc $+2 
839 Mov Dl,RxBuf 
840 Mov Ax,Baud[si] set baud 
841 Out Dx,Al 
842 Clc 
843 Jnc $+2 
844 Inc Dx 
845 Mov Al,Ah 
846 Out Dx,Al 
847 Clc 
848 Jnc $+2 
849 
850 Mov Dl,Lctrl set LCR 
851 Mov Al,OtStat[si] from table 
852 Out Dx,Al 
853 Mov OtStat[si],O clear status 
854 Clc 
855 Jnc $+2 
856 Mov Dl,IntEn IER 
857 Mov Al,Allint enable ints in 8250 858 Out Dx,Al 
859 Clc 
860 Jnc $+2 
861 Mov Dl,Mctrl set MCR 
862. Mov Al,InStat[si] from table 
863 Out Dx,Al 
864 Mov InStat[si],O clear status 0
S6S 
866 ClRgs: Mov Dl,Lstat clear LSR .. 867 In Al,Dx 
868 Mov Dl,RxBuf clear RX reg 
869 In Al,Dx 

.· 870 Mov Dl,Mstat clear MSR 
871 In Al,Dx 
872 Mov Dl,Intid IID reg ·. ,.,.873 

In Al,Dx 
~ 

: In Al,Dx 
Test Al, 1 int pending? 
Jz ClRgs yes, repeat 

Cli 

X or Ax,Ax set int vee 

Continued. 
(more) 

Section Il· Programming in the MS-DOS Environment 

ZTE (USA) 1007, Page 209



I 
. j: 
. ' 
I: 
! ; 

Part B: Programming for MS-DOS 

880 Mov 
881 Mov 
882 Mov 
883 Stosw 
884 Mov 
885 

886 In 
887 And 
888 Clc 
889 Jnb 

890 Out 
891 Sti 
892 
893 Mov 
894 Out 
895 
896 dbg 
897 Jmp 
898 

899 Driver Ends 

900 End 

Figure 6-1. Continued. 

Es,Ax 
Di,Vect[si] 

Ax,IsrAdr[si] 

Es: [di],cs 

Al,PIC_e 

Al,OE7h 

$+2 
PIC_e,Al 

Al,EOI 

PIC-b,Al 

'D I, I If I I ' 
Zexit 

from table 

get 8259 

com1/2 mask 

now send EOI just in case 

driver installed 

The first part of the driver source code (after the necessary MASM housekeeping details 
in lines 1 through 8) is a commented-out macro definition (lines 10 through 32). This 
niacro is used only during debugging and is part of a debugging technique that requires 
no sophisticated hardware and no more complex debugging program than the venerable 
DEBUG.COM. (Debugging techniques are discussed after the presentation of the driver 
program itself.) 

Definitions 
The actual driver source program consists of three sets of EQU definitions (lines 34 
through 194), followed by the modular code and data areas (lines 197 through 900). The 
first set of definitions (lines 34 through 82) gives symbolic names to the permissible values 
for MS-DOS device-driver control bits and the device-driver structures. 

The second set of definitions (lines 84 through 145) assigns names to the ports and bit 
values that are associated with the IBM hardware-both the 8259 PIC and the 8250 DART. 
The third set of definitions (lines 147 through 194) assigns names to the control values and 
structures associated with this driver. 

The definition method used here is recommended for all drivers. To move this driver from 
the IBM architecture to some other hardware, the major change required to the program 
would be reassignment of the port addresses and bit values in lines 84 through 145. 

The control values and structures for this specific driver (defined in the third EQU set) 
provide the means by which the separate support program can modify the actions of each 
of the two logical drivers. They also permit the driver to return status information to both 

200 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 210



Article 6: Interrupt-Driven Communications 

the support program and the using program as necessary. Only a few features are imple­
mented, but adequate space for expansion is provided. The addition of a few more defini­
tions in this area and one or two extra procedures in the code section would do all that is 
necessary to extend the driver's capabilities to such features as automatic expansion of 
tab characters, case conversion, and so forth, should they be desired. 

Headers and structure tables 
The driver code itself starts with a linked pair of device-driver header blocks, one for 
ASYJ (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following 
the headers, in lines 215 through 236, are a commented-out space reservation used by the 
debugging procedure (line 215), the pointer to the command packet (line 219), and the 
baud-rate conversion table (lines 221 through 236). 

The conversion table is followed by structure tables containing all data unique to ASYJ 
(lines 239 through 242) and ASY2 Clines 244 through 247). After the structure tables, 
buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer 
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a 
name (at line 249) so that it can be changed by editing a single line of the program. 

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be 
able to hold at least 2 seconds' worth of data (240 bytes at 1200 bps) to avoid data loss dur­
ing writes to disk. Whatever size is chosen sho~ld be a power of 2 for simple pointer arith­
metic and, if video display is intended, should not be less than 8 bytes, to prevent losing 
characters when the screen scrolls. 

If additional ports are desired, more headers can be added after line 213; corresponding 
structure tables for each driver, plus matching pairs of buffers, would also be necessary. 
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets 
of all request routines in the driver; its use is discussed below. 

Strategy and Request routines 
With all data taken care of, the program code begins at the Strategy routine (lines 289 
through 296), which is used by both ports. This code saves the command packet address 
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS. 

The Request routines (lines 298 through 567) are also shared by both ports, but the two 
drivers are distinguished by the address placed into the SI register. This address points to 
the structure table that is unique to each port and contains such data as the port's base 
address, the associated hardware interrupt vector, the interrupt service routine offset 
within the driver's segment, the base offsets of the input and output buffers for that port, 
two pointers for each of the buffers, and the input and output status conditions (including 
baud rate) for the port. The only difference between one port's driver and the other's is 
the data pointed to by SI; all Request routine code is shared by both ports. 

Each driver's Request routine has a unique entry point (at line 298 for ASYJ and at line 303 
for ASY2) that saves the original content of the SI register and then loads it with the ad­
dress of the structure table for that driver. The routines then join as a common stream at 
line 307 ( Gen_ request). 

Section II: Programming tn the MS-DOS Environment 201 
ZTE (USA) 1007, Page 211



J{! 

I 
I): 

Part B: Programming for MS-DOS 

This common code preserves all other registers used (lines 309 through 318), sets DS 
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-: 
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code 
to calculate an offsetinto a table of addresses Clines 324 through 326), and performs an in­
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the 
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453, 
500, or 829). 

Although the device-driver specifications for MS-DOS version 3.2list command request 
codes ranging from 0 to 24, not all are used. Earlier versions of MS-DOS permitted only 0 
to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3.1) codes. In this driver, all24 codes are 
accounted for; those not implemented in this driver return a DONE and NO ERROR status 
to the caller. Because the Request routine i.s called only by MS-DOS itself, there is no check 
for invalid codes. Actually, because the header attribute bits are not set to specify that 
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273 
through 284) could be saved by omitting the entries. They are included only to show 
how nonexistent commands can be accommodated. 

Immediately following the dispatch indexed jump, at lines 329 through 353 within the 
same PROC declaration, is the common code used by all Request routines to store status 
information in the command packet, restore the registers, and return to the caller. The 
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an error 
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant 
code but also improve readability of the code by providing unique single labels for BUSY, 
NO ERROR, and ERROR return conditions. 

All of the Request routines, except for the /nit code at line 829, immediately follow the 
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such 
as read data in or write data out. The Read routine (lines 360 through 385) is typical: First, 
the requested byte count and user's buffer address are obtained from the command 
packet. Next, the pointer to the command packet is saved with a PUSH instruction, so that 
the ES and BX registers can be used for a pointer to the port's input buffer. 

Before the Get_ in routine that actually accesses the input buffer is called, the input status 
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the 
status flag, flush the saved pointers from the stack, and jump to the error-return exit from 
the driver. If no error exists, line 375 calls Get_ in to access the input buffer and lines 376 
and 377 determine whether a byte was obtained. If a byte is found, it is stored in the user's 
buffer by line 378, and line 379 loops back to get another byte until the requested count 
has been obtained or until no more bytes are available. In practice, the count is an upper 
limit and the loop is normally broken when data runs our. 

No matter how it happens, control eventually reaches the Got_ all routine and lines 381 
and 382, where the saved pointers to the command packet are restored from the stack. 
Lines 383 and 384 adjust the count value in the packet to reflect the actual n.umber of bytes 
obtained. Finally, line 385 jumps to the normal, no-error exit from the driver. 

202 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 212



Article 6: Interrupt-Driven Communications 

Buffering 
Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively, 
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the 
end of the buffer, the pointer returns to the buffer's beginning. Two pointers are used here 
for each buffer, one to put data into it and one to get data out. The get pointer always 
points to the next byte to be read; the put pointer points to where the next byte will be 
written, just past the last byte written to the buffer. 

If both pointers point to the same byte, the buffer is empty; the next byte to be read has 
not yet been written. The full-buffer condition is more difficult to test for: The put pointer 
is incremented and compared with the get pointer; if they are equal, doing a write would 
force a false buffer-empty condition, so the buffer must be full. 4 
All buffer manipulation is done via four procedures (lines 569 through 674). Put_ out 
(lines 572 through 596)writes a byte to the driver's output buffer or returns a buffer-full 
indication by setting AH to OFFH. Get_ out Clines 598 through 622)gets a byte from the 
output buffer or returns OFFH in AH to indicate that no byte is available. Put_ in (lines 624 
through 648) and Get_ in Clines 650 through 674) do exactly the same as Put_ out and 
Get_ out; but for the input buffer. These procedures are used both by the Request routines 
and by the hardware interrupt service routine (ISR). 

Interrupt service routines 
The most complex part of this driver is the ISR (lines 676 through 806), which decides 
which of the four possible services for a port is to be performed and where. Like the 
Request routines, the ISR provides unique entry points for each port Cline 679 for ASYl and 
line 685 for ASY2); these entry points first preserve the SI register and then load it with the 
address of the port's structure table. With SI indicating where the actions are to be per­
formed, the two entries then merge at line 690 into common code that first preserves all 
registers to be used by the ISR Clines 690 through 698) and then tests for each of the four 
possible types of service and performs each requested action. 

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because 
the resulting information is not used by this driver (although it could be used to prevent 
attempts to transmit while off line), these ISR options cari be removed so that only the 
Transmit and Receive interrupts are serviced. To do this, Alllnt (at line 145) should be 
changed from the OR of all four bits to include only the transmit and receive bits (03H, 
or OOOOOOllB). 

The transmit and receive portions of the ISR incorporate XON/XOFF flow control (for 
transmitted data only) by default. This control is done at the ISR level, rather than in the 
using program, to minimize the time required to respond to an incoming XOFF signal. 
Presence of the flow-control decisions adds complexity to what would otherwise be 
extremely simple actions. 

Flow control is enabled or disabled by setting the OutSpec word in the structure table 
with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Func­
tion 44H). When flow control is enabled, any XOFF character (llH) that is received halts 
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input 

Section IL- Programming in the MS-DOS Environment 203 

ZTE (USA) 1007, Page 213



Part B: Programming for MS-DOS 

buffer to be sent on to any program, although all patterns other than XOFF and XON are 
passed through by the driver. When flow control is disabled, the driver passes all patterns 
in both directions. For binary file transfer, flow control must be disabled. 

The transmit action is simple: The code merely calls the Start_ output procedure at line 
750. Start_ output is described in detail below. 

The receive action is almost as simple as transmit, except for the flow-control testing. First, 
the ISR takes the received byte from the DART (lines 758 and 759) to avoid any chance of 
an overrun error. The ISR then tests the input specifier (at line 760) to determine whether 
flow control is in effect. If it is not,. processing jumps directly to line 784 to store the 
received byte in the input buffer with Put_ in (line 785). 

If flow control is active, however, the received byte is compared with the XOFF character 
(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored. If 
the byte is not XOFF, it is compared with XON (lines 766 through 768). If it is not XON 
either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled. 
Regardless, the XON byte itself is ignored. 

When control reaches Stuff_ in at line 784, Put_ in is called to store the received byte in 
the input buffer. If there is no room for it, a lost -databit is set in the input status flags (line 
788); otherwise, the receive routine is finished. 

If the interrupt was a line-status action, the LSR is read Clines 776 through 779). If the input 
specifier so directs, the content is converted to an IBM PC extended graphics character by 
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte .. 
Otherwise, the Line Status interrupt merely sets the generic Badlnp error bit in the input 
status flags, which can be read with the IOCTL Read function of the driver. 

When all ISR action is complete, lines 794 through 806 restore machine conditions to those 
existing at the time of the interrupt and return to the interrupted procedure. 

The Start_output routine 
Start_ output (lines 808 through 824) is a routine that, like the four buffer procedures, is 
used by both the Request routines and the ISR. Its purpose is to initiate transmission of a 
byte, provided that output is not blocked by flow control, the DART Transmit Holding 
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine 
uses the Get_ out buffer routine to access the buffer and determine whether a byte is avail­
able. If all conditions are met, the byte is sent to the DART holding register by lines 819 
and820. 

The Initialization Request routine 
The Initialization Request routine Clines 829 through 897) is critical to successful operation 
of the driver. This routine is placed last in the package so that it can be discarded as soon · 
as it has served its purpose by installing the driver. It is essential to clear each register of 
the 8250 by reading its contents before enabling the interrupts and to loop through this 

204 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 214



Article 6: Interrupt-Driven Communications 

action until the 8250 finally shows no requests pending. The strange Clc jnc $+ 2 
sequence that appears repeatedly in this routine is a time delay required by high-speed 
machines (6 MHz and up) so that the 8250 has time to settle before another access is 
attempted; the delay does no harm on slower machines. 

Using COMDVR 

The first step in using this device driver is assembling it with the Microsoft Macro Assem­
bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert 
the .EXE file into a binary image file with the EXE2BIN utility. Finally, include the line 
DEVICE=COMDVR.SYS in the CONFIG.SYS file so that COMDVR will be installed when 
the system is restarted. 

Note: The number and colon at the beginning of each line in the program listings in this 
article are for reference only and should not be included in the source file. 

Figure 6-2 shows the sequence of actions required, assuming that EDLIN is used for 
modifying (or creating) the CONFIG.SYS file and that all commands are issued from the 
root directory of the boot drive. 

Creating the driver: 

C>MASM COMDVR; <Enter> 
C>LINK COMDVR; <Enter> 
C>EXE2BIN COMDVR.EXE COMDVR.SYS <Enter> 

Modifying CONFIG.SYS (Az =press Ctrl-Z): 

C>EDLIN CONFIG.SYS <Enter> 
*#I <Enter> 
*DEVICE=COMDVR.SYS <Enter> 
*AZ <Enter> 
*E <Enter> 

Figure 6-2. Assembling, linking, and installing COMDVR. 

Because the devices installed by COMDVR do not use the standard MS-DOS device names, 
no conflict occurs with any program that uses conventional port references. Such a pro­
gram will not use the driver, and no problems should result if the program is well behaved 
and restores all interrupt vectors before returning to MS-DOS. 

Device-driver debugging techniques 

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more 
difficult than normal program checking because the debugging program, DEBUG.COM or 
DEBUG.EXE, itself uses MS-DOS functions to display output. When these functions are 
being checked, their use by DEBUG destroys the data being examined. And because 
MS-DOS always saves its return address in the same location, any call to a function from 
inside the operating system usually causes a system lockup that can be cured only by 
shutting the system down and powering up again. 

Section II: Programming in the MS-DOS Environment 205 

ZTE (USA) 1007, Page 215



Part B: Programming for MS-DOS 

One way to overcome this difficulty is to purchase costly debugging tools. An easier 
way is to bypass the problem: Instead of using MS-DOS functions to track program opera­
tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of 
COMDVR.ASM). 

This macro is invoked with a three-character parameter string at each point in the pro­
gram a progress report is desired. Each invocation has its own unique three-character 
string so that the sequence of actions can be read from the screen. When invoked, DBG 
expands into code that saves all registers and then writes the three-character string to 
video RAM. Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used: 
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer. 

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points 
to location BOOO:OOOOH; to use a CGA or EGA (in CGA mode), the location should be 
changed to B800:0000H. 

Most of the frequently used Request routines, such as Read and Write, have calls to DBG 
as their first lines (for example, lines 361 and 422). As shown, these calls are commented 
out, but for debugging, the source file should be edited so that all the calls and the macro 
itself are enabled. 

With DBG active, the top 10 lines of the display are overwritten with a continual sequence 
of reports, such as RR Tx, put directly into video RAM. Because MS-DOS functions are not 
used, rio interference with the driver itself can occur. 

Although this technique prevents normal use of the system during debugging, it greatly 
simplifies the problem of knowing what is happening in time-critical areas, such as hard­
ware interrupt service. In addition, all invocations of DBG in the critical areas are in con­
ditional code that is executed only when the driver is working as it should. 

Failure to display the pi message, for instance, indicates that the received-data hardware 
interrupt is not being serviced, and absence of go after an Ix report shows that data is not 
being sent out as it should. 

Of course, once debugging is complete, the calls to DBG should be deleted or commented 
out. Such calls are usually edited out of the source code before release. In this case, they 
remain to demonstrate the technique and, most particularly, to show placement of the calls 
to provide maximum information with minimal clutter on the screen. 

A simple modem engine 

The second part of this package is the modem engine itself (ENGINE.ASM), shown in the 
listing in Figure 6-3. The main loop of this program consists of only a dozen lines of code 
Clines 9 through 20). Of these, five (lines 9 through 13) are devoted to establishing initial 
contact between the program and the serial-port driver and two (lines 19 and 20) are for 
returning to command level at the program's end. 

Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro­
gram as far as the main loop is concerned. Four of these lines are calls to subroutines that 

206 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 216



Article 6: Interrupt-Driven Communications 

get and put data from and to the console and the serial port; the fifth is the JMP that closes 
the loop. This structure underscores the fact that a basic modem engine is simply a data­
transfer loop. 

TITLE engine 

CODE SEGMENT PUBLIC 'CODE' 
2 
3 

4 
5 

6 
7 

8 
9 

ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE 

ORG 01 OOh 

10 

11 

START: mov 
mov 
int 

12 mov 

13 jc 
14 alltim: call 

15 

16 
17 

18 

19 

20 

21 
22 
23 

24 

25 

26 
27 

28 

29 

quit: 

call 

call 

call 

jmp 
mov 

int 

getmdm proc 
mov 

mov 

mov 

mov 

int 

jc 
mov 

30 ret 
31 getmdm endp 

32 

33 

34 

35 

36 
37 

38 
39 

40 

41 

42 

43 

44 
45 

46 

getkbd proc 
mov 

mov 

int 

inc 

jnz 
mov 

int 

crop 

je 
mov 

inc 

crop 

jne 

dx,offset devnm 

ax,3d02h 

21h 
handle, ax 

quit 

getmdm 

put crt 

getkbd 
putmdm 

all tim 

ah,4ch 

21h 

cx,256 
bx,handle 

dx,offset mbufr 

ax,3F00h 

21h 

quit 
mdlen,ax 

kblen,O 

ah, 11 

21h 
al 

nogk 

ah,7 

21h 

al,3 
quit 

kbufr,al 

kblen 

al,13 

nogk 

open named device (ASY1) 

save the handle 

main engine loop 

come here to quit 

get input from modem 

get input from keyboard 

first zero the count 

key pressed? 

no 
yes, get it 

was it Ctrl-C? 

yes, get out 

no, save it 

was it Enter? 

no 

Figure 6-3. ENGINE.ASM. (more) 

Section JL· Programming in the MS-DOS Environment 207 

ZTE (USA) 1007, Page 217



Part B: Programming for MS-DOS 

47 
48 
49 
50 

51 
52 

53 

54 
55 

56 
57 
58 
59 

60 

61 
62 

63 
64 

65 
66 
67 
68 

69 
70 
71 

72 

73 
74 
75 
76 
77 
78 
79 
80 

81 

82 

nogk: 
getkbd 

putmdm 

nopm: 
putmdm 

put crt 

nope: 

put crt 

devnm 

handle 
kblen 

mdlen 

mbufr 

kbufr 

CODE 

mov 

inc 

ret 
endp 

proc 
mov 

jcxz 

mov 
mov 

mov 

int 

jc 

ret 

endp 

proc 
mov 
jcxz 
mov 

mov 
mov 

int 
jc 

ret 

endp 

db 
dw 
dw 

clw 

db 

db 

ENDS 
END 

Figure 6-3. Continued. 

byte ptr kbufr+1,10 yes, add LF 

kblen 

cx,kblen 

nopm 
bx,handle 

dx,offset kbufr 
ax,4000h 

21h 

quit 

cx,mdlen 
nope 
bx, 1 

dx,offset mbufr 

ah,40h 

21h 
quit 

'ASY1 I ,0 

0 

0 

0 
256 dup (0) 

80 dup (0) 

START 

put output to modem 

put output to CRT 

miscellaneous data and buffers 

Because the details of timing and data conversion are handled by the driver code,· each 
of the four subroutines is- to show just how simple the whole process is-essentially a 
buffered interface to the MS-DOS Read File or Device or Write File or Device routine. 

For example, the getmdm procedure (lines 22 through 31) asks MS-DOS to read a max­
imum of 256 bytes from the serial device and then stores the number actually read in a 
word named mdlen. The driver returns immediately, without waiting for data, so the nor­
mal number of bytes returned is either 0 or 1. If screen scrolling causes the loop to be 
delayed, the count might be higher, but it should never exceed about a dozen characters. 

When called, the putcrt procedure Clines 63 through 72) checks the value in mdlen. If 
the value is zero, putcrt does nothing; otherwise, it asks MS-DOS to write that number of 
bytes from mbufr (where getmdm put them) to the display, and then it returns. 

208 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 218



Article 6: Interrupt-Driven Communications 

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbujr, and posts a 
count in kblen; putmdm checks kblen and, if the count is not zero, sends the required 
number of bytes from kbufr to the serial device. 

Note that getkbd does not use the Read File or Device function, because that would wait 
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS 
functions that test keyboard status (OBH) and read a key without echo (07H). In addition, 
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in 
kbufr immediately behind Enter and kblen is set to 2. 

A Ctrl-C keystroke ends program operation; it is detected i.n getkbd Cline 41) and causes 
immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE 
uses only permanently resident routines, there is no need for any uninstallation before 
returning to the MS-DOS command prompt. 

ENGINE.ASM is written to be used as a .COM file. Assemble and link it the same as 
COMDVR.SYS (Figure 6-2) but use the extension COM instead of SYS; no change to 
CONFIG.SYS is needed. 

The driver-status utility: CDVUTL.C 

The driver-status utility program CDVUTL.C, presented in Figure 6-4, permits either of 
the two drivers (ASYl and ASY2) to be reconfigured after being installed, to suit different 
needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word 
length, parity, and number of stop bits can be changed; each change is made indepen­
dently, with no effect on any of the other characteristics. Additionally, flow control can be 
switched between two types of hardware handshaking- the software XON/XOFF control 
or disabled-and error reporting can be switched between character-oriented and 
message-oriented operation. 

1 

2 

I* cdvutl.c - COMDVR Utility 

* Jim Kyle- 1987 

3 : * for use with COMDVR.SYS Device Driver. 

4 : *I 
5 

6 
7 

8 

9 : 

10 

#include 

#include 
#include 

#include 

<stdio.h> I* 
<conio.h> I* 
<stdlib.h> I* 
<dos.h> I* 

i/o definitions *I 
special console i/o *I 
mise definitions *I 
defines intdos () *I 

11 

12 

I* the following define the driver status bits 

13 #define HWINT Ox0800 

14 #define o_DTR Ox0200 

15 #define o_RTS Ox0100 

16 
17 #define mLPG Ox0010 
18 #define m_PE Ox0008 

Figure 6-4. CDVUTL.C 

I* 
I* 
I* 

I* 
I* 

MCR, 
MCR, 

MCR, 

LCR, 

LCR, 

first word, HW Ints gated 

first word, output DTR 

first word, output RTS 

first word, parity ON 

first word, parity EVEN 

*I 
*I 
*I 

*I 
*I 

(more) 

Section II: Programming in the MS-DOS Environment 209 

ZTE (USA) 1007, Page 219



Part B: Programming for MS-DOS 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
37 

38 

39 

40 

41 

42 

43 

44 

45 

46 
47 

48 

49 

50 

51 

52 

53 
54 

55 

56 

57 

58 

59 

60 

61 
62 

63 

64 

65 

66 
67 

68 

69 

#define llL.XS Ox0004 I* LCR, first word, 2 stop bits 

#define m_WL Ox0003 I* LCR, first word, wordlen mask 

#define i_CD Ox8000 I* MSR, 2nd word, Carrier Detect 

#define i_RI Ox4000 I* MSR, 2nd word, Ring Indicator 

#define i_DSR Ox2000 I* MSR, 2nd word, Data Set Ready 

#define i_CTS Ox1000 I* MSR, 2nd word, Clear to Send 

#define l_SRE Ox0040 I* LSR, 2nd word, Xmtr SR Empty 

#define l_HRE Ox0020 I* LSR, 2nd word, Xmtr HR Empty 

#define l_BRK Ox0010 I* LSR, 2nd word, Break Received 

#define l_ER1 Ox0008 I* LSR, 2nd word, FrmErr 

#define l_ER2 Ox0004 I* LSR, 2nd word, ParErr 

#define l_ER3 Ox0002 I* LSR, 2nd word, OveRun 

#define l_RRF Ox0001 I* LSR, 2nd word, Rcvr DR Full 

I* now define CLS string for ANSI. SYS *I 
#define CLS "\033[2J" 

FILE * dvp; 

union REGS rvs; 

int iobf [ 5 ]; 

main {) 

cputs ( "\nCDVUTL - COMDVR Utility Version 1. 0 - 1987\n" ) ; 

disp {) ; I* do dispatch loop 

disp {) I* dispatcher; infinite 

( int c, 

u; 

u = 1; 
while ( 1 ) 

{ cputs ( "\r\n\tCommand (? for help): " ) ; 

switch { tolower ( c = getche {))) I* dispatch 

case '1' : I* select port 1 

fclose ( dvp ) ; 

dvp = fopen ( "ASY1", "rb+" ); 

u = 1; 
break; 

case '2' 

fclose 

I* select port 2 

dvp = fopen ( "ASY2", "rb+" ); 

u = 2; 

break; 

case 'b' 
if ( iobf [ 4 ] == 300 

iobf [ 4 l = 1200; 

I* set baud rate 

loop 

Figure 6-4. Continued. 

210 The MS-DOS Encyclopedia 

*I 
*I 

*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 

*I 

*I 

*I 

*I 

*I 

(more) 

ZTE (USA) 1007, Page 220



70 

71 
72 

73 
74 

75 

76 
77 

78 

79 

80 

81 

82 

83 
84 

85 

86 
87 

88 

89 
90 

91 

92 

93 
94 

95 

96 
97 

98 

99 

100 

101 
102 

103 
104 

105 

106 
107 

108 center 

109 center 

110 center 

111 center 

112 center 

113 center 

114 

115 

11 6 
117 

118 

119 

120 

Article 6: Interrupt-Driven Communications 

else 
if ( iobf [ 4 ) == 1200 

iobf [ 4 ) = 2400; 

else 
_if ( iobf [ 4 ) == 2400 

iobf [ 4 ) = 9600; 

else 
iobf [ 4 300; 

iocwr (); 

break; 

case 'e' 
iobf [ 0 
iocwr (); 

break; 

I* set parity even 

:= ( ITLPG + ITLPE ); 

case 'f' 
if ( iobf [ 3 J == 1 ) 

iobf [ 3 J = 2; 

else 
if ( iobf [ 3 ) 2 ) 

iobf [ 3 J = 4; 

else 
if ( iobf [ 3 ) == 4 ) 

iobf [ 3 ) = 0; 

else 
iobf [ 3 1; 

iocwr (); 

break; 

I* toggle flow control 

case 'i' 
iobf [ 0 

iocwr (); 

break; 

I* initialize MCRILCR to 8N1 

( HWINT + o_DTR + o_RTS + m_WL ); 

case '?' 
cputs ( CLS ) ; 

center (."COMMAND LIST \n" 

"1 select port 1 

"2 select port 2 

"B set BAUD rate 

"E set parity to EVEN 

"F toggle FLOW control 
"I INITIALIZE ints, etc. 

continue; 

case 'l' : 

iobf [ 0 

iocwr (); 

break; 

"- 1; 

I* 
I* 
) ; 

L 

N 

0 

R 

s 
Q 

I* 

this help list 

clear the display 

toggle word LENGTH .. 
set parity to NONE .. 
set parity to ODD - .. 
toggle error REPORTS" 

toggle STOP bits .. 
QUIT .. 

toggle word length 

*I 

*I 

*I 

*I 
*I 

) ; 

) ; 

) ; 

) ; 

) ; 

); 

*I 

Figure 6-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 211 

ZTE (USA) 1007, Page 221



Part B: Programming for MS-DOS 

121 

122 

123 

124 

125 

case 'n' : 
iobf [ 0 
iocwr (); 

break; 

case 'o' 

iobf [ 0 
iobf [ 0 
iocwr (); 
break; 

case 'r' 

iobf [ 2 

iocwr (); 
break; 

case 's' 

iobf [ 0 
iocwr (); 
break; 

case 'q' 
fclose 

exit ( 0 

I* set parity off 
&=- ( mLPG + mLPE ); 

I* set parity odd 

:= ITLPG; 

&=- mLPE; 

I* toggle error reports 
A= 1; 

I* toggle stop bits 
A- llLXS; 

dvp ) ; 

) ; I* break the loop, get 

cputs ( CLS ) ; I* clear the display 
center ( "CURRENT COMDVR STATUS" ) ; 

out 

126 

12( 

128 
129 

130 
131 
132 

133 

134 

135 

136 
137 

138 

139 

140 
141 

142 

143 
144 

145 

146 
147 

148 
149 

report ( u, dvp ); I* report current status 

150 

151 
center ( s ) char * s; I* centers a string on CRT 

int i ; 
152 

153 
154 

155 

156 
157 

158 

for ( i 80- strlen ( s ); i > 0; i -= 2 ) 

159 

160 

161 
162 

163 
164 

165 

166 

167 

putch ' ' ) ; 
cputs ( s ) ; 

cputs ( "\r\n" ); 

iocwr () 

rvs X ax Ox4403; 
rvs X bx fileno 
rvs X ex 1 0; 
rvs X dx ( int ) 

intdos ( & rvs, & rvs 

168 char* onoff ( x ) int x 

( dvp ) ; 

iobf; 
); 

1 69 return ( x ? " ON" : " OFF" ) ; 

170 

171 

Figure 6-4. Continued. 

212 TheMS-DOSEncyclopedia 

I* IOCTL Write to COMDVR 

*I 

*I 

*I 

*I I 
*I 

*I 

*I 

*I 

(more) 

ZTE (USA) 1007, Page 222



Article 6: Interrupt-Driven Communications 

172 
'173 

174 

175 
176 

177 

178 

179 

180 
181 

182 

183 

184 
185 

186 

report ( unit ) int unit 

char temp [ 80 J; 
rvs X 

rvs X 

rvs X 

rvs X 

intdos .( 

sprintf 

cputs 

187 cputs 

188 cputs 

18.9 cputs 
190 cputs 

1 91 cputs 

192 cputs 

193 cputs 
194 

195 cputs 

1 96 cputs 
1 97 ·· cputs 

1 98 cputs 

1 99 cputs 

200 cputs 
201 cputs 

202 cputs 

203 cputs 

204 

205 

206 
207 

208 

209 

210 

211 

212 

213 

cputs 

cputs 
cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

ax Ox4402; 

bx fileno ( dvp ) ; 

.. ex 1 0; 

dx ( int ) iobf; 

& rvs, & rvs ) ; I* use IOCTL Read to get 

( temp, "\nDevice ASY%d\t%·d BPS, %d-c-%c\r\n\n", 

unit, iobf 4 ), I* baud rate 

5 + ( iobf 0 J & ITLWL ) ' I* word length 

( iobf [ 0 & ITLPG ? 

( iobf [ 0 & ITLPE ? 'E' : '0' ) : 'N' ) ' 
iobf [ 0 J & I1LXS ? '2' : '1' ) ) ; I* stop bits 

temp ) ; 

"Hardware Interrupts are" ); 

on off ( iobf [ 0 J & HWINT ) ) ; 
.. 
' Data Terminal Rdy" ) ; 

onoff ( iobf [ 0 J & o_j)TR ) ) ; 

.. Rqst To Send" ); 
' 

on off ( iobf [ 0 J & o_RTS ) ) ; 

".\r\n" ) ; 

11 Carrier Detect" ) ; 

onoff ( iobf [ 1 J & i_CD ) ) ; 

.. 
' Data Set Rdy" ) ; 

onoff ( iobf [ 1 J & L.DSR ) ) ; 

.. 
' 

Clear to Send" ) ; 

onoff ( iobf [ 1 J & i_CTS ) ) ; 

.. Ring Indicator" ) ; 
' 

on off ( iobf 

".\r\n" ); 

l_SRE & iobf 

LJlRE & iobf 

LJ3RK & iobf 

1.--ER 1 & iobf 

l.--ER2 & iobf 

l.--ER3 & iobf 

l_RRF & .iobf 

"\b\b.\r\n" 

[ 1 J 

) ; 

& i_RI ) ) ; 

? "Xmtr SR Empty, " : "" ) ; 

? "Xmtr HR Empty, " : "" ); 

? "Break Receiv-ed, " : "" ).; 

? ''Framing Error, '' : '''' ); 
? ''Parity Error, '' : '''' ); 
? ''Overrun Error, '' : '''' ); 
? "Rcvr DR Full, '' :·'''' ); 

214 cputs ( "Reception errors " ) ; 

215 if ( iobf [ 2 ) == 1 ) 
216 cputs ( "are encoded as graphics in buffer" ); 

217 else 
218 cputs ( "set failure flag" ); 

219 cputs ( ". \r\n" ) ; 

220 
221 cputs ("Outgoing Flow Control"); 

222 if ( iobf [ 3 ) & 4 ) 

data· *I 

*I 
*I 

*I 

Figure 6-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 213 

ZTE (USA) 1007, Page 223



Part B: Programming for MS-DOS 

223 cputs ( "by XON and XOFF" ) ; 

224 else 
225 if ( iobf [ 3 ) & 2 ) 

226 cputs ( "by RTS and CTS" '); 
227 else 

228 if ( iobf [ 3 J & 1 ) 

229 cputs ( "by DTR and DSR" ) ; 

230 else 

231 cputs "disabled" ) ; 

232 cputs ( ".\r\n" ); 
233 
234 

235 !*end of cdvutl.c *I 

Figure 6-4. Continued. 

Although CDVUTL appears complicated, most of the complexity is concentrated in the 
routines that map driver bit settings into on-screen display text. Each such mapping 
requires several lines of source code to generate only a few words of the display report. 
Table 6-10 summarizes the functions found in this program. 

Table 6-10. CDVUTL Program Functions. 

Lines 

42-45 
47-150 

152-158 
160-166 
168-170 
172-233 

Name 

main() 
disp() 
center() 
iocwr() 
ono.ff() 
report() 

Description 

Conventional entry point. 
Main dispatching loop. 
Centers text on CRT. 
Writes control string to driver with IOCTL Write. 
Returns pointer to ON or OFF. 
Reads driver status and reports it on display. 

The long list of #define operations at the start of the listing (lines 11 through 33) helps. 
make the bitmapping comprehensible by assigning a symbolic name to each significant bit 
in the four UART registers. 

The main() procedure of CDVUTL displays a banner line and then calls the dispatcher 
· routine, disp(), to start operation. CDVUTL makes no use of either command-line parame­
ters or the environment, so the usual argument declarations are omitted. 

Upon entry to disp(), the first action is to establish the default driver as ASYl by setting 
u = 1 and opening ASYl (line 50); the program then enters an apparent infinite loop 
(lines 51 through 149). 

With each repetition, the loop first prompts for a command (line 52) and then gets the 
next keystroke and uses it to control a huge switch() statement (lines 53 through 145). If 
no case matches the key pressed, the switch() statement does nothing; the program sim­
ply displays a report of all current conditions at the selected driver Clines 146 through 148) 
and then closes the loop back to issue a new prompt and get another keystroke. 

214 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 224



.Article 6: Interrupt-Driven Communications 

However, if the key pressed matches one of the cases in the switch() statement the corre­
spo~ding command is executed. The digits 1 Cline 55) and 2 (line 61) select th~ driver to 
be affected. The ? key Cline 105) causes the list of valid command keys to be displayed. 
The q key (line 142) causes the program to terminate by calling exit( 0) and is the only 
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTL 
control string to modify corresponding attributes of the driver and then send the string to 
the driver by using the MS-DOS IOCTL Write function (Interrupt 21H Function 44H Sub­
function 03H) via function iocwr() (lines 160 through 166). 

After the command is executed (except for the q command, which terminates operation 
of CDVUTL and returns to MS-DOS command level, and the ? command, which displays 
the command list), the report() function Clines 172 through 233) is called (at line 148) to 4 
display all of the driver's attributes, including those just changed. This function issues an 
IOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through 
178) to get new status information into the control string and then uses a sequence of bit 
filtering (lines 179 through 232) to translate the obtained status information into words for 
display. 

The special console I/0 routines provided in Microsoft C libraries have been used exten­
sively in this routine. Other compilers may require changes in the names of such library 
routines as getch or dosint as well as in the names of #include files Clines 6 through 9). 

Each o{ the actual command sequences changes only a few bits in one of the 10 bytes of 
the command string and then writes the string to the driver. A full-featured communica­
tions program might make several changes at one time-for example, switching from 
7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre­
vent losing any bytes with values of llH or 13H while performing a binary file transfer with 
error-correcting protocol. In such a case, the program could make all required changes to 
the control string before issuing a single IOCTL Write to put them into effect. 

The Traditional Approach 

Because the necessary device driver has never been a part of MS-DOS, most communica­
tions programs are written to provide and install their own port driver code and remove it 
before returning to MS-DOS. The second sample program package in this article illustrates 
this approach. Although the major part of the package is written in Microsoft C, three 
assembly-language modules are required to provide the hardware interrupt service rou­
tines, the exception handler, and faster video display. They are discussed first. 

The hardware ISR module 

The first module is a handler to service UART interrupts. Code for this handler, including 
routines to install it at entry and remove it on exit, appears in CHl.ASM, shown in Figure 
6-5. 

Section II: Programming in the MS-DOS Environment 215 

ZTE (USA) 1007, Page 225



Part B: Programming for MS-DOS 

1 

2 
TITLE CH1 .ASM 

3 CH1 .ASM -- support file for CTERM.C terminal emulator 
4 set up to work with COM2 
5 for use with Microsoft C and SMALL model only ... 
6 

7 

8 

9 

10 
11 

12 
13 
14 
15 
16 

_TEXT segment 
_TEXT ends 
_DATA segment 
_DATA ends 
CONST segment 
CONST ends 

'-BSS segment 
_BSS ends 

DGROUP GROUP 

byte public 'CODE' 

byte public 'DATA' 

byte public 'CONST' 

byte public 'BSS' 

CONST, _BSS, _DATA 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37. 

38 
39 
40 
41 
42 
43 
44 

assume cs:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

_TEXT segment 

public _i_ID,_rdmdm,_Send_Byte,_wrtmdm,_set_mdm,_u_m 

\ 45 
46 

47 
48 

49 
50 
51 

bport EQU 
getiv EQU 
putiv EQU 
imrmsk EQU 
oiv_o DW 
oiv_s DW 

bLpp DW 
bf_gp DW 
bf_bg DW 
bf_fi DW 

in_bf DB 

b_last EQU 

bcLdv DW 
DW 

DW 
DW 
DW 
DW 
DW 
DW 

_set_mdm proc 

PUSH 
MOV 
PUSH 

Figure 6-5. CHl.ASM 

216 The MS-DOS Encyclopedia 

02F8h 
350Bh 
250Bh 
00001000b 

0 
0 

in_bf 
in_bf 
in_bf 

b-last 

512 DUP (?) 

$ 

0417h 
0300h 
0180h 
OOCOh 
0060h 
0030h 
0018h 
OOOCh 

near 
BP 
BP,SP 
ES 

COM2 base address, use 03F8H for COM1 
COM2 vectors, use OCH for COM1 

COM2 mask, use 00000100b for COM1 
old int vector save space 

put pointer (last used) 
get pointer (next to use) 
start of buffer 
end of buffer 

input buffer 

address just past buffer end 

baud rate divisors (0=110 bps) 
code 1 150 bps 
code 2 300 bps 
code 3 600 bps 
code 4 1200 bps 
code 5 2400 bps 
code 6 4800 bps 
code 7 9600 bps 

replaces BIOS 'init' function 

establish stackframe pointer 
save registers 

(more) 

ZTE (USA) 1007, Page 226



52 

53 
54 

55 

56 

57 
58 

59 
60 

61 
62 

63 

64 
65 

66 

67 
68 

69 
70 
71 

72 

73 
74 
75 
76 
77 
78 
79 
80 
81 

82 

PUSH 

MOV 
MOV 

MOV 

MO)l 
MOV 
MOV 

OUT 

MOV 
MOV 

ROL 

AND 

MOV 
ADD 

MOV 
MOV 

OUT 

MOV 

MOV 

OUT 

MOV 
AND 

MOV 

OUT 
MOV 

MOV 

OUT 

POP 
POP 

MOV 

POP 

83 RET 
84 _set_mdm endp 

85 

86 
87 
88 
89 
90 
91 

92 
93 
94 

95 

96 
97 
98 
99 

100 

101 

102 

_wrtmdm proc 

_sencL.Byte: 

PUSH 
MOV 

PUSH 

PUSH 

MOV 

MOV 

MOV 
MOV 

MOV 

OUT 
MOV 

MOV 

CALL 

JNZ 

MOV 

DS 

AX,CS 
DS,AX 
ES,AX 
AH, [BP+4] 

DX,BPORT+3 

AL,BOh 

DX,AL 
DL,AH 

CL,4 

DL,CL 
DX,00001110b 
DI,OFFSET bcL.dv 

DI,DX 
DX,BPORT+1 
AL, [DI+1] 

DX,AL 
DX,BPORT 

AL, [DI] 

DX,AL 

AL,AH 
AL,00011111b 

DX,BPORT+3 

DX,AL 
DX,BPORT+2 

AL, 1 

DX,AL 

DS 
ES 
SP,BP 

BP 

near 

BP 

BP,SP 

ES 

DS 
AX,CS 

DS,AX 

ES,AX 
DX,BPORT+4 

AL,OBh 

DX,AL 
DX,BPORT+6 

BH,30h 
w_tmr 

w_out 

DX,BPORT+5 

Article 6: Interrupt-Driven Communications 

point them to CODE segment 

get parameter passed by C 
point to Line Control Reg 

set DLAB bit (see text) 

shift param to BAUD field 

mask out all other bits 

make pointer to true divisor 

set to high byte first 

put high byte into UART 

then to low byte 

now use rest of parameter 

to set Line Control Reg 

Interrupt Enable Register 

Receive type only 

restore saved registers 

write char to modem 
name used by main program 

set up pointer and save regs 

establish DTR, RTS, and OUT2 

check for on line, CTS 

timed out 
check for UART ready 

Figure 6-5. Continued. (more) 

Section II: Programming in the MS-DOS Environment 217 

ZTE (USA) 1007, Page 227



Part B: Programming for MS-DOS 

103 

104 

105 
106 

107 

108 
109 

110 

111 

112 

MOV 

CALL 

JNZ 
MOV 

MOV 

OUT 
w_out: POP 

POP 

MOV 

POP 
113 RET 

11 4 _wrtmdm endp 
115 
116 

117 

118 

119 

120 

121 
122 

123 
124 

125 

126 
127 

128 

129 

130 
131 
132 

133 
134 

135 
136 
137 

138 
139 

_rdmdm proc 

PUSH 

MOV 

PUSH 

PUSH 
MOV 

MOV 

MOV 
MOV 

MOV 

CMP 

JZ 
INC 

CMP 

JNZ 

MOV 
noend: MOV 

MOV 

INC 
nochr: POP 

POP 
MOV 

POP 
RET 

1 4 0 _rdmdm endp 
141 

142 

143 
144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

w_tmr proc 

MOV 
w_tm1: SUB 

w_tm2: IN 

MOV 

AND 

CMP 

JZ 

LOOP 

DEC 

JNZ 

OR 

Figure 6-5. Continued. 

218 The MS-DOS Encyclopedia 

BH,20h 
w_tmr 

w_out 

D:X:,BPORT 
AL, (BP+4] 

D:X:,AL 

DS 

ES 
SP,BP 

BP 

near 

BP 
BP,SP 

ES 

DS 
AX,CS 

DS,AX 

ES,AX 

AX,OFFFFh 
BX,bf_gp 

BX,bf_pp 

nochr 

BX 
BX,bf_fi 

noend 

BX, bL.bg 

AL, (BX] 
bf_gp,BX 

AH 

DS 
ES 

SP,BP 

BP 

near 

BL, 1 
cx,cx 
AL,DX 

AH,AL 

AL,BH 

AL,BH 
w_tm3 

w_tm2 

BL 
w_tm1 

BH,BH 

timed out 

send out to UART port 
get char passed from C 

restore saved regs 

reads byte from buffer 

set up ptr, save regs 

set for EOF flag 

use "get" ptr 
compare to "put" 
same, empty 

else char available 

at end of bfr? 

no 

yes, set to beg 
get the char 

update "get" ptr 
zero AH as flag 

restore regs 

wait timer, double loop 
set up inner loop 

check for requested response 
save what came in 

mask with desired bits 

then compare 

got it, return with ZF set 
else keep trying 

until double loop expires 

timed out, return NZ 

(more) 

ZTE (USA) 1007, Page 228



154 w_tm3: RET 

155 w_tmr endp 

156 

Article 6: Interrupt-Driven Communications 

157 ; hardware interrupt service routine 

158 rts_m: CL+ 
159 

160 

161 
162 

163 

164 

165 

166 
167 

168 

169 
170 

171 

172 

173 

174 

175 

176 
177 

178 
179 

180 

181 

182 

183 
184 

185 

186 
187 

188 

189 

190 
191 

192 

193 

194 

195 

196 
197 

198 

199 

200 
201 

202 

203 

204 

PUSH 

PUSH 

PUSH 
PUSH 

PUSH 

PUSH 

POP 

MOV 

IN 
MOV 

INC 
CMP 

JNZ 

MOV 

nofix: MOV 
MOV 

MOV 

OUT 

POP 

POP 

POP 
POP 

POP 

IRET 

im1 : 

proc 
PUSH 

MOV 

PUSH 

PUSH 

MOV 
MOV 

MOV 

MOV 

MOV 

OUT 

MOV 

IN 

MOV 

TEST 

JNZ 

CMP 

JNZ 
MOV 

IN 

DS 

AX 
BX 

ex 
DX 

cs 
DS 
DX,BPORT 

AL,DX 
BX,bf_pp 

BX 
BX,bf_fi 

no fix 
BX,bL.bg 

[BX] ,AL 
bf_pp,BX 

AL,20h 

20h,AL 

DX 

ex 
BX 

AX 

DS 

near 
BP 
BP,SP 

ES 
DS 

AX,CS 

DS,AX 

ES,AX 
DX,BPORT+1 

AL,OFh 

DX,AL 

DX,BPORT+2 

AL,DX 

AH,AL 

AL, 1 

imS 

AH,O 

im2 
DX,BPORT+6 

AL,DX 

save all regs 

set DS same as CS 

grab the char from UART 

use "put" ptr 
step to next slot 

past end yet? 

no 
yes, set to begin 
put char in buffer 

update "put" ptr 

send EOI to 8259 chip 

restore regs 

install modem service 

save all regs used 

set DS,ES=CS 

Interrupt Enable Reg 

enable all ints now 

clear junk from UART 

read IID reg of UART 

save what came in 

anything pending? 

no, all clear now 

yes, Modem Status? 

no 
yes, read MSR to clear 

Figure 6-5. Continued. (more) 

Section IL· Programming in the MS-DOS Environment 219 

ZTE (USA) 1007, Page 229



Part B: Programming for MS-DOS 

205 
206 

207 
208 

209 

210 
211 

212 

213 

214 

215 
216 

217 

218 
219 

220 

221 

222 

223 

224 
225 

226 

227 
228 

229 

230 
231 

232 

233 

234 

235 

236 
237 

238 
239 

240 

241 

242 

243 

244 
245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

irn2: 

irn3: 

irn4: 

irn5: 

CMP 

JNZ 
CMP 
JNZ 
MOV 

IN 

CMP 

JNZ 
MOV 

IN 

JMP 

MOV 

MOV 

OUT 

MOV 
MOV 

OUT 
MOV 

INT 

MOV 

MOV 
MOV 

MOV 
INT 

IN 

AND 

OUT 
MOV 

OUT 

POP 

POP 

MOV 
POP 
RET 

endp 

proc 
PUSH 

MOV 

IN 
OR 

OUT 

PUSH 
PUSH 

MOV 

MOV 
MOV 

MOV 

MOV 

OUT 

Figure 6-5. Continued. 

220 The MS-DOS Encyclopedia 

AH,2 
irn3 
AH,4 

irn4 

DX,BPORT 
AL,DX 

AH,6 

irn1 

DX,BPORT+5 
AL,DX 

irn1 

DX,BPORT+4 

AL,OBh 

DX,AL 
AL, 1 

DX,BPORT+1 
DX,AL 

AX,GETIV 
21h 
oiv_o,BX 

oiv_s,ES 

DX,OFFSET rts_m 

AX,PUTIV 

21h 

AL,21h 
AL,NOT IMRMSK 

21h,AL 

AL,20h 

20h,AL 
DS 

ES 

SP,BP 

BP 

near 

BP 

BP,SP 

AL,21h 

AL,IMRMSK 

21h,AL 
ES 

DS 

AX,CS 

DS,AX 

ES,AX 

AL,O 

DX,BPORT+1 

DX,AL 

Transmit HR empty? 
no (no action needed) 
Received Data Ready? 
no 

yes, read it to clear 

Line Status? 
no, check for more 

yes, read LSR to clear 

then check for rnor.e 

set up working conditions 

DTR, RTS, OUT2 bits 

enable RCV interrupt only 

get old int vector 

save for restoring later 

set in new one 

now enable 8259 PIC 

then send out an EOI 

restore regs 

uninstall modern service 

save registers 

disable COM int in 8259 

set same as CS 

disable UART ints 

(more) 

ZTE (USA) 1007, Page 230



Article 6: Interrupt-Driven Communications 

256 MOV DX,oiv_o ;·restore original vector 
257 MOV DS,oiv_s 

258 MOV AX,PUTIV 

259 INT 21h 
260 PO.P DS restore registers 

261 POP ES 
262 MOV SP,BP 

263 POP BP 

264 RET 

265 _u_m endp 

266 
267 _TEXT ends 
268 
269 END 

Figure6-5. Continued. 

The routines in CH1 are set up to work only with port COM2; to use them with COM1, the 
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to 
match the COM1 values. Also, as presented, this code is for use with the Microsoft C small 
memory model only; for use with other memory models, the C compiler manuals should 
be consulted for making the necessary changes. See also PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure of an Application Program. 

The parts of CH1 are listed in Table 6-11, as they occur in the listing. The leading under­
score that is part of the name for each of the six functions is supplied by the C compiler; 
within the C program that calls the function, the underscore is omitted. 

Table 6-11. CHl Module Functions. 

lines 

1-26 
27-46 
48-84 

86-114 
87 

116-140 

142-155 

157-182 

184-240 
242-265 

Name 

_set_mdm 

_wrtmdm 
_Send_Byte 
_rdmdm 

w_tmr 

rts_m 

_i_m 

_u_m 

Description 

Administrative details. 
Data areas. 
Initializes UART as specified by parameter passed 

from C. 
Outputs character to UART. 
Entry point for use if flow control is added to system. 
Gets character from buffer where ISR put it, or signals 

that no character available. 
Wait timer; internal routine used to prevent infinite 

wait in case of problems. 
Hardware ISR; installed by _i_m and removed by 

_u_m. 
Installs ISR, saving old interrupt vector. 
Uninstalls ISR, restoring saved interrupt vector. 

Section IL- Programming in the MS-DOS Environment 221 

ZTE (USA) 1007, Page 231



Part B: Programming for MS-DOS 

For simplest operation, the ISR used in this example (unlike the device driver) services 
only the received-data interrupt; the other three types of IRQ are disabled at the UART. 
Each time a byte is received by the UART, the ISR puts it into the buffer. The_ rdmdm 
code, when called by the C program, gets a byte from the buffer if one is available.If not, 
_rdmdm returns the C EOF code ( -1) to indicate that no byte can be obtained. 

To send a byte, the C program can call either _Send_Byte or _wrtmdm; in the package 
as shown, these are alternative names for the same routine. In the more complex program 
from which this package was adapted, _Send_Byte is called when flow control is desired 
and the flow-control routine calls_ wrtmdm. To implement flow control, line 87 should be 
deleted from CH1.ASM and a control function named Send_Byte() should be added to the 
main C program. Flow-control tests must occur in Send_Byte(); _wrtmdm performs the 
actual port interfacing. 

To set the modem baud rate, word length, and parity, _set_mdm is called from the C 
program, with a setup parameter passed as an argument. The format of this parameter is 
shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function OOH 
(Initialization). 

Table 6-12. set_mdm() Parameter Coding. 

Binary Meaning 

OOO:xxxxx Set to 110 bps 
001xxxxx Set to 150 bps 
010xxxxx Set to 300 bps 
Ollxxxxx Set to 600 bps 
100xxxxx Set to 1200 bps 
101xxxxx Set to 2400 bps 
110xxxxx Set to 4800 bps 
111xxxxx Set to 9600 bps 
xxxx:Oxxx No parity 
xxx01xxx ODD Parity 
xxxllxxx EVEN Parity 
xxxxx:Oxx 1 stop bit 
xxxxx1xx 2 stop bits (1.5 ifWL = 5) 
xxxxxxOO Word length = 5 
xxxxxx01 Word length = 6 
xxxxxx10 Word length = 7 
xxxxxx11 Word length = 8 

The CHl code provides a 512-byte ring buffer for incoming data; the buffer size should be 
adequate for reception at speeds up to 2400 bps without loss of data during scrolling. 

222 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 232



Article 6: Interrupt-Driven Communications 

The exception-handler module 

For the ISR handler of CHl to be usable, an exception handler is needed to prevent return 
of control to MS-DOS before _u_m restores the ISR vector to its original value. If a pro­
gram using this code returns to MS-DOS without calling_u_m, the system is virtually cer­
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer 
in memory. 

A replacement exception handler (CHlA.ASM), including routines for installation, access, 
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with 
Microsoft C (again, the small memory model only). 

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart­
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING 
Ms-oos: Exception Handlers. 

1 

2 
TITLE CH1A.ASM 

3 CH1A.ASM -- support file for CTERM.C terminal emulator 

4 this set of routines replaces Ctrl-CICtrl-BREAK 
5 

6 

7 : 

8 

9 

10 

11 

12 

13 
14 

15 

16 

17 

_TEXT 

_TEXT 
_DATA 

_DATA 

CONST 

CONST 
_BSS 

_BSS 

usage: void set_int(), rst_int(); 

int broke(); I* boolean if BREAK 
for use with Microsoft C and SMALL model only ... 

segment byte public 'CODE' 

ends 
segment byte public 'DATA' 

ends 
segment byte public 'CONST' 

ends 

segment byte public 'BSS' 

ends 

18 DGROUP GROUP CONST, _BSS, _DATA 

*I 

19 

20 
ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

21 _DATA SEGMENT BYTE PUBLIC 'DATA' 
22 

23 
24 

OLDINT1B DD 

25 _DATA ENDS 
26 
27 _TEXT SEGMENT 

28 

0 ; storage for original INT 1BH vector 

29 
30 

PUBLIC _set_int,_rst_int,_broke 

31 myint1b: 
32 

33 
mov 

iret 

word ptr cs:brkflg,1Bh make it nonzero 

Figure 6-6. CHIA.ASM. (more) 

Section II: Programming in the MS-DOS Environment 223 

ZTE (USA) 1007, Page 233



Part B: Programming for MS-DOS 

34 

35 
36 
37 

38 
39 
40 

41 

42 

43 

44 
45 

46 
47 

48 

49 

50 

51 

52 
53 
54 

55 
56 
57 

58 

59 
60 
61 

62 

63 

64 

65 
66 

67 

68 

69 
70 

71 

72 
73 

74 

75 
76 

77 

78 

79 

myint23: 

mov 

iret 

brkflg dw 

_broke proc 
xor 

xchg 

ret 
_broke endp 

word ptr cs:brkflg,23h make it nonzero 

0 

near 

ax, ax 
ax,cs:brkflg 

flag that BREAK occurred 

returns 0 if no break 

prepare to reset flag 
·return current flag value 

_set_int proc near 

_set_int 

mov ax,351bh ; get interrupt vector for 1BH 

int 21h ; (don't need to save for 23H) 
mov word ptr oldint1b,bx save offset in first word 

mov 

push 
mov 

mov 

lea 
mov 

int 
mov 

mov 

lea 
mov 

int 
pop 

ret 
endp 

word ptr oldint1b+2,es save segment in second word 

ds 
ax,cs 
ds,ax 
dx,myint1b 

ax,251bh 
21h 

ax,cs 

ds,ax 

dx,myint23 

ax,2523h 
21h 

ds 

save our data segment 
set DS to CS for now 

DS:DX points to new routine 
set interrupt vector 

set DS to CS for now 

DS:DX points to new routine 
set interrupt vector 

restore data segment 

_rst_int proc near 

push 

lds 
mov 

int 

pop 

ret 
_rst_int endp 

_TEXT ends 

END 

ds 
dx,oldint1b 

ax,251bh 
21h 

ds 

save our data segment 

DS:DX points to original 

set interrupt vector 

restore data segment 

Figure 6-6. Continued. 

The three functions in CHlA are _set_int, which saves the old vector value for Interrupt 
lBH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt 
23H (Control-CHandler Address) to internal ISR code; _rst_int, which restores the 

224 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 234



Article 6: Interrupt-Driven Communications 

original value for the Interrupt lBH vector; and_broke, which returns the present value of 
an internal flag (and always clears the flag, just in case it had been set). The internal flag is 
set to a nonzero value in response to either of the revectored interrupts and is tested from 
the main C program via the _broke function. 

The video display module 

The final assembly-language module (CH2.ASM) used by the second package is shown 
in Figure 6-7. This module provides convenient screen clearing and cursor positioning via 
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou­
tines that call its functions. In the original, more complex program (DT115.EXE, available 
from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod­
ule provided windowing capability in addition to improved display speed. 

1 

2 
TITLE CH2.ASM 

3 CH2.ASM -- support file for CTERM.C terminal emulator 
4 for use with Microsoft C and SMALL model only ... 
5 

6 _TEXT segment byte public 'CODE' 
7 _TEXT ends 
8 _DATA segment byte public 'DATA' 
9 _DATA ends 

10 CONST segment byte public 'CONST' 
11 CONST ends 
12 -BSS segment byte public 'BSS' 
13 -BSS ends 
14 
15 

1 6 
17 

18 
19 

20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 
31 
32 
33 
34 
35 

DGROUP GROUP CONST, _BSS, _DATA 

assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

_TEXT segment 

public __ cls, __ color, __ deol, __ i_v, __ key, __ wrchr, __ wrpos 

atrib DB 
_colr DB 
v___bas DW 
v_ulc OW 
v_lrc DW 
v_col DW 

__ key proc 

PUSH 
MOV 
INT 
MOV 
JZ 
MOV 

0 

0 

0 

0 

184Fh 
0 

near 
BP 
AH, 1 
16h 
AX,OFFFFh 
keyOO 
AH,O 

attribute 
color 
video segment 
upper left corner cursor 
lower right corner cursor 
current col/row 

get keystroke 

check status via BIOS 

none ready, return EOF 
have one, read via BIOS 

Figure6-7. CH2.ASM. (more) 

Section II: Programming in the MS-DOS Environment 225 

ZTE (USA) 1007, Page 235



Part B: Programming for MS-DOS 

36 

37 

38 

39 
40 

41 
42 

43 

44 

45 
46 

47 

48 

49 

50 

51 

52 

53 
54 

55 
56 
57 

58 
59 

60 

61 
62 

63 

64 

65 

66 
67 
68 

69 
70 

71 

72 

73 
74 

75 

76 
77 

78 

79 

80 

81 
82 

83 
84 

85 

86 

INT 

keyOO: POP 
RET 

_key endp 

_wrchr proc 

PUSH 

MOV 

MOV 

CMP 
JNB 

CMP 

JNZ 
DEC 

MOV 

CMP 

JB 

JMP 

notbs: CMP 
JNZ 
MOV 

ADD 

AND 
MOV 

CMP 

JA 

JMP 

notht: CMP 

JNZ 

MOV 

INC 
CMP 

JBE 

CALL 
MOV 

noht1: MOV 

JMP 

notlf: CMP 

JNZ 
CALL 

JMP 

ck_cr: CMP 

JNZ 

MOV 

MOV 

JMP 

Figure 6-7. Continued. 

226 The MS-DOS Encyclopedia 

16h 

BP 

near 
BP 

BP,SP 

AL, [BP+4] ; get char passed by C 
AL,' I 

prchr ; printing char, go do it 

AL,S 

notbs 
BYTE PTR v_col process backspace 

AL,byte ptr v_col 

AL,byte ptr v_ulc 
nxt_c 

norml 

step to next column 

AL,9 

notht 
AL,byte ptr v_col 

AL,S 

AL,OFSh 
byte ptr v_col,AL 

AL,byte ptr v_lrc 
nxt_c 

SHORT 

AL, OAh 

notlf 

norml 

AL,byte ptr v_col+1 

AL 
AL,byte ptr v_lrc+1 

noht1 

scrol 
AL,byte ptr v_lrc+1 
byte ptr v_col+1,AL 

SHORT norml 

process HTAB 

process li~efeed 

AL,OCh 
ck_cr 
_cls 

SHORT 

process formfeed 

ignor 

AL,ODh 

ignor ignore all other CTL chars 

AL,byte ptr v_ulc ; process CR 
byte ptr v_col,AL 

SHORT norml 

(more) 

ZTE (USA) 1007, Page 236



87 

88 
89 

90 
91 

92 

93 

94 

95 

96 
97 

98 

99 

100 

101 
102 

103 
104 

105 

106 
107 

108 

109 
110 

prchr: MOV. 

PUSH 

XOR 
MOV 

PUSH 
MOV 

PUSH 

CALL 
MOV 

nxt_c: INC 

MOV 

CMP 

JLE 

MOV 
PUSH 

CALL 
POP 

MOV 

PUSH 

CALL 
POP 

norml: CALL 

ignor: MOV 
POP 

111 RET 
112 _wrchr endp 

113 

114 

115 

116 

117 

118 

119 
120 

121 

122 

123 

124 

125 

126 
127 

128 

129 

130 
131 

132 

133 
134 

135 

136 
137 

proc 

PUSH 
MOV 

MOV 
MOV 

MOV 

POP 

RET 

endp 

_wrpos proc 

PUSH 

MOV 

MOV 
MOV 

MOV 

MOV 

MOV 

PUSH 
INT 

POP 
MOV 

MOV 

POP 

AH,_colr 

AX 

AH,AH 

Article 6: Interrupt-Driven Communications 

process printing char 

AL,byte ptr v_col+1 

AX 
AL,byte ptr v_col 

AX 

wrtvr 

SP,BP 
BYTE PTR v_col 

AL,byte ptr v_col 

AL,byte ptr v_lrc 

norml 

AL,ODh 
AX 
_wrchr 

AX 

AL, OAh 

AX 
_wrchr 

AX 
set_cur 

SP,BP 

BP 

near 

BP 
BP,SP 

AX,OBOOOh 
v__bas,AX 

SP,BP 

BP 

near 

BP 

BP,SP 
DH, [BP+4] 

DL, [BP+6] 
v_col,DX 

BH,atrib 

AH,2 

BP 

10h 

BP 
AX,v_col 

SP,BP 

BP 

advance to next column 

went off end, do CR/LF 

establish video base segment 

mono, B800 for CGA 
could be made automatic 

set cursor position 

row from C program 

col from C program 

cursor position 

attribute 

return cursor position 

Figure 6-7. Continued. (more) 

Section IL- Programming in the MS-DOS Environment 227 

ZTE (USA) 1007, Page 237



Part B: Programming for MS-DOS 

138 RET 
139 _wrpos endp 
140 

141 set_cur proc near set cursor to v_col 
142 PUSH BP 
143 MOV BP,SP 
144 MOV DX,v_col use where v_col says 
145 MOV BH,atrib 
146 MOV AH,2 
147 PUSH BP 
148 INT 10h 
149 POP BP 
150 MOV AX,v_col 
151 MOV SP,BP 
152 POP BP 
153 RET 
154 set_cur endp 
155 
156 _color proc near _color(fg, bg) 

157 PUSH BP 
158 MOV BP,SP 
159 MOV AH, [BP+6] background from c 
160 MOV AL, [BP+4] foreground from c 
1 61 MOV CX,4 
162 SHL AH,CL 
1 63 AND AL,OFh 
164 OR AL,AH pack up into 1 byte 
165 MOV _colr,AL store for handler's use 
1 66 XOR AH,AH 
167 MOV SP,BP 
168 POP BP 
169 RET 
170 _color endp 
171 

172 scrol proc near scroll CRT up by one line 
173 PUSH BP 
174 MOV BP,SP 
175 MOV AL,1 count of lines to scroll 
176 MOV cx,v_ulc 

177 MOV DX,v_lrc 

178 MOV BH,_colr 

179 MOV AH,6 
180 PUSH BP 
181 INT 10h use BIOS 
182 POP BP 
183 MOV SP,BP 
184 POP BP 
185 RET 
186 scrol endp 
187 

188 _cls proc near clear CRT 

Figure 6-7. Continued. (more) 

228 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 238



l 
I 

189 
190 

191 
1 92 

193 

194 

1 95 

1 96 
197 

1 98 

199 

200 
201 

202 

203 
204 

205 
206 
207 

208 

209 
210 

211 

212 
213 

214 

215 

216 
217 

218 

219 

220 

221 
222 

223 

224 

225 

226 

227 

228 

_cls 

PUSH 
MOV 

MOV 

MOV 
MOV 

MOV 

MOV 

MOV 

PUSH 

INT 

POP 
CALL 

MOV 

POP 
RET 

endp 

_deol proc 

PUSH 

MOV 

MOV 
MOV 

PUSH 
MOV 

XOR 

PUSH 
MOV 

deol1: 

deol2: 

CMP 

JA 

PUSH 
CALL 

POP 
INC 

JMP 

MOV 

MOV 

POP 

RET 

229 _deol endp 

230 

231 
232 

233 

234 

235 

236 

237 

238 

239 

wrtvr proc 

PUSH 
MOV 

MOV 
MOV 

MOV 

MOV 

MUL 

XOR 

BP 

BP,SP 

AL,O 
CX,v_ulc 

v_col,CX 
DX,v_lrc 

BH,_colr 

AH,6 

BP 

10h 

BP 
set_cur 

SP,BP 
BP 

near 
BP 

BP,SP 
AL, I I 

AH,_colr 

AX 

Article 6: Interrupt-Driven Communications 

flags CLS to BIOS 

set to HOME 

use BIOS scroll up 

cursor to HOME 

delete to end of line 

; set up blanks 

AL,byte ptr v_col+1 

AH,AH 

AX 
AL,byte ptr v_col 

AL,byte ptr v_lrc 

deol2 

AX 

wrtvr 
AX 

AL 

deol1 

AX,v_col 

SP,BP 

BP 

near 

BP 

BP,SP 

DL, [BP+4] 

DH, [BP+6] 

BX, [BP+8] 

AL,80 

DH 

DH,DH 

set up row value 

at RH edge 

current location 

write a blank 

next column 

do it again 

return cursor position 

write video RAM (col, row, char/atr) 

set up arg ptr 

column 
row 

char/atr 

calc offset 

Figure 6-7. Continued. (more) 

Section II: Programming in the MS-DOS Environment 229 

ZTE (USA) 1007, Page 239



Part B: Programming for MS-DOS 

240 ADD AX,DX 

241 ADD AX,AX adjust bytes to words 
242 PUSH ES save seg reg 
243 MOV DI,AX 

244 MOV AX,v_bas set up segment 
245 MOV ES,AX 
246 MOV AX,BX get the data 
247 STOSW put on screen 
248 POP ES restore regs 

249 MOV SP,BP 
250 POP BP 

251 RET 

252 wrtvr endp 

253 

254 _TEXT ends 

255 
256 END 

Figure6-7. Continued. 

The sample smarter terminal emulator: CTERM.C 

Given the interrupt handler (CHI), exception handler (CHlA), and video handler (CH2), a 
simple terminal emulation program (CTERM.C) can be presented. The major functions of 
the program are written in Microsoft C; the listing is shown in Figure 6-8. 

I* Terminal Emulator ( cterm. c) 

2 * Jim Kyle, 1987 

3 * 
4 

5 

6 
7 

8 

9 

* Uses files CH1, CH1A, and CH2 for MASM support ... 

10 

11 

12 
13 

14 

15 

1 6 
17 

18 

1 9 

20 
21 

22 

#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <dos.h> 

#include <string.h> 

#define BRK 'C 1 _I@ I 

#define ESC I (I_ I@ I 

#define XON 'Q'-'@' 

#define XOFF Is I_ I@ I 

#define True 1 
#define False 0 

#define Is-Function_Key(C) 

static char capbfr [ 4096 ]; 

23 static int wh, 

24 ws; 

Figure 6-8. CTERM.C. 

230 The MS-DOS Encyclopedia 

I* special console i/o 

I* mise definitions 

I* defines intdos () 

I* control characters 

(C) ESC 

I* capture buffer 

*I 
*I 
*I 

*I 

*I 

(more) 

ZTE (USA) 1007, Page 240


