
DEBUG:N

Finally, to execute the program CLEAN. COM, type

-G <Enter>

The result is the sa.me as if the CLEAN.COM program had been run from the MS-DOS
command level with the entry

C>CLEAN MYFILE.DAT <Enter>

except that the program is executing under the control of DEBUG and within DEBUG's
memory buffer.

Section IV· Programming Utilities 1041

ZTE (USA) 1007, Page 1051

DEBUG:O

DEBUG:O
Output to Port

Purpose

Writes 1 byte to an input/output (I/O) port.

Syntax

0 port byte

where:

port
byte

Description

is an I/0 port address from 0 through FFFFH.
is a value from 0 through OFFH to be written to the I/0 port.

The Output to Port (O) command writes 1 byte of data to the specified I/O port address.
The data value must be in the range OOH through OFFH.

Warning: The 0 command should be used with caution because it directly accesses the
computer hardware and no error checking is performed. Attempts to write to some port
addresses, such as those for ports connected to peripheral device controllers, ~imers, or the
system's interrupt controller, may cause the system to crash or damage data stored on disk.

Example

To write the value C8H to I/0 port lOAH, type

-o 10A cs <Enter>

1042 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1052

DEBUG:P
Proceed Through Loop or Subroutine

Purpose

Executes a loop, repeated string instruction, software interrupt, or subroutine call
to completion.

Syntax

P [=address] [number]

where:

address is the location of the first instruction to be executed.
number is the number of instructions to execute.

Description

DEBUG:P

The Proceed Through Loop or Subroutine (P) command transfers control from DEBUG
to the target program. The program executes without interruption until the loop, repeated
string instruction, software interrupt, or subroutine call at address is completed or until
the specified number of machine instructions have been executed. Control then returns
to DEBUG, and the contents of the target program's registers and the status of the flags are
displayed.

If the address parameter does not include an explicit segment, DEBUG uses the target pro­
gram's CS register; if address is omitted entirely, execution begins at the address specified
by the target's CS:IP registers. The address parameter must be preceded by an equal sign
(=) to distinguish it from number.

If the instruction at address is not a loop, repeated string instruction, software interrupt,
or subroutine call, the P command functions just like the Trace Program Execution (T)
command. The optional number parameter specifies the number of instructions to be
executed before control returns to DEBUG. If number is omitted, DEBUG executes only
one instruction. After each instruction is executed, DEBUG displays the contents of the
target program's registers, the status of the flags, and the next instruction to be executed.

Warning: The P command cannot be used to trace through ROM.

Example

Assume that the target program's location CS:l43FH contains a CALL instruction. To
execute the subroutine that is the destination of CALL and then return control to
DEBUG, type

-p =143F <Enter>

Section IV: Programming Utilities 1043

ZTE (USA) 1007, Page 1053

DEBUG:Q

DEBUG:Q
Quit

Purpose

Ends a DEBUG session.

Syntax

Q

Description

The Quit (Q) command terminates the DEBUG program and returns control to MS-DOS or
the command shell that invoked DEBUG. Any changes to a program or other file that were
not saved on disk with the Write File or Sectors (W) command are lost.

Example

To exit DEBUG, type

-Q <Enter>

1044 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1054

DEBUG:R

DEBUG:R.
Display or Modify Registers

Purpose

Displays the contents of one or all registers and the status of the CPU flags and allows
them to be modified.

Syntax

R [register]

where:

register is the two-character name of an Intel 8086/8088 register from the following
list:

Description

AX BX CX DX SP BP SI DI

DS ES SS CS IP PC

or the character F, which specifies the CPU flags.

The Display or Modify Registers (R) command displays the target program's register con­
tents and the status of the CPU flags and allows them to be modified.

If R is entered without a register parameter, the contents of all registers and the status of
the CPU flags are displayed, followed by a disassembly of the machine instruction cur­
rently pointed to by the target program's CS:IP registers.

If register is included in the R command line, the contents of the specified register are dis­
played; then DEBUG prompts with a colon character(:) for a new value. The value is en­
tered by typing one to four hexadecimal digits and then pressing the Enter key. Pressing
the Enter key without entering any values leaves the register contents unchanged.

Note: The register name PC is not fully supported in some versions of DEBUG, so the
register name IP should be used instead.

Specifying the character F instead of a register name causes DEBUG to display the status of
the program's CPU flags as two-character codes from the following list:

Flag Name

Overflow
Direction
Interrupt

Value HSet (1)

OV (Overflow)
DN(Down)
EI (Enabled)

Value H Clear (0)

NV (No Overflow)
UP(Up)
DI (Disabled)

(more)

Section IV: Programming Utilities 1045

ZTE (USA) 1007, Page 1055

DEBUG:R

Flag Name Value If Set (1) ValuelfClear(O)

Sign NG (Minus) PL(Plus)
Zero ZR(Zero) NZ (Not Zero)
AuxCarry AC (Aux Carry) NA (No Aux Carry)
Parity PE(Even) PO(Odd)
Carry CY(Carry) NC (No Carry)

After displaying the flag values, DEBUG displays a hyphen(-) prompt on the same line.
Any or all flags can then be altered by typing one or more codes (in any order and op­
tionally separated by spaces) from the list above and pressing the Enter key. Pressing the
Enter key without entering any codes leaves the status of the flags unchanged.

Examples

To display the contents of the target program's CPU registers and the status of the CPU
flags, followed by the disassembled mnemonic for the next instruction to be executed
(pointed to by CS:IP), type

-R <Enter>

This produces a display in the following format:

AX=OOOO BX=OOOO CX=OOA1 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=19A5 ES=19A5 SS=19A5 CS=19A5 IP=0100 NV UP EI PL NZ NA PO NC
19A5:0100 BF8000 MOV DI,0080

To display the value of the target program's BX register, type

-R BX <Enter>

If BX contains 0200H, for example, DEBUG displays that value and then issues a prompt in
the form of a colon:

BX 0200

The contents of BX can then be altered by typing a new value and pressing the Enter key
or left unchanged by pressing the Enter key alone.

To set the direction and carry flags, first type

-R F <Enter>

DEBUG displays the flag values, followed by a hyphen(-) prompt:

NV UP EI PL NZ NA PO NC -

The direction and carry flags can then be set by entering

-DN CY <Enter>

1046 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1056

Messages

bfError
Bad flag: An invalid code for a CPU flag was entered.

brError
Bad register: An invalid register name was entered.

dfError

DEBUG:R

Double flag: Two values for the same CPU flag were entered in the same command.

Section IV: Programming Utilities 1047

ZTE (USA) 1007, Page 1057

DEBUG:S

DEBUG:S
Search Memory

Purpose

Searches memory for a pattern of 1 or more bytes.

Syntax

S range list

where:

range

list

Description

specifies the starting and ending addresses or the starting address and length
of the area to be searched.
is 1 or more consecutive byte values and/ or a string to be searched for.

The Search Memory (S) command searches a designated range of memory for a specified
list of consecutive byte values and/or a text string. The starting address of each set of
matching bytes is displayed. The contents of the searched area are not altered.

The range parameter specifies the starting and ending addresses or the starting address
and length in bytes of the area to be searched. If a segment is not included in range,
DEBUG uses DS. If a segment is specified for the starting address, DEBUG uses the same
segment for the ending address. If a starting address and length in bytes is specified, the
starting address plus the length minus 1 cannot exceed FFFFH.

The list parameter specifies one or more consecutive hexadecimal byte values and/or a
string to be searched for, separated by spaces, commas, or tab characters. Strings must be

I

enclosed within single or double quotation marks, and case is significant within a string.

Examples

To search for the string Copyright in the area of memory from DS:OOOOH through
DS:1FFFH, type

-P 0 1FFF 'Copyright' <Enter>

or

-P 0 L2000 "Copyright" <Enter>

If matches are found, DEBUG displays the starting address of each:

20A8:0910
20A8:094F
20A8:097C

1048 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1058

I
l

I

DEBUG:S

To search for the byte sequence 3BH 06H in the area of memory from CS:OlOOH through
CS:12AOH, type

-S CS:100 12AO 3B 06 <Enter>

or

-S CS:100 111A1 3B 06 <Enter>

Section IV.· Programming Utilities 1049

ZTE (USA) 1007, Page 1059

DEBUG:T

DEBUG:T
Trace Program Execution

Purpose

Executes one or more instructions, displaying the CPU status after each instruction.

Syntax

T [=address] [number]

where:

address is the location of the first instruction to be executed.
number is the number of machine instructions to be executed.

Description

The Trace Program Execution (T) command executes one or more instructions, starting at
the specified address, and after each instruction displays the contents of the CPU registers,
the status of the flags, and the instruction pointed to by CS:IP.

Warning: The T command should not be used to execute any instructions that change
the contents of the Intel8259 interrupt mask (ports 20H and 21H on the IBM PC and com­
patibles) or to trace calls made to MS-DOS through Interrupt 21H. The Go (G) command
should be used instead.

The address parameter points to the first instruction to be executed. If address does not
include a segment, DEBUG uses the target program's CS register; if address is omitted en­
tirely, execution begins at the address specified by the target program's CS:IP registers. If
address is included, it must be preceded by an equal sign (=) to distinguish it from
number.

The number parameter specifies the hexadecimal number of instructions to be executed
before the DEBUG prompt is redisplayed (default= 1). Pressing Ctrl-C or Ctrl-Break inter­
rupts execution of a sequence ofT instructions. Consecutive instructions can then be exe­
cuted individually by entering T commands with no parameters. Pressing Ctrl-S suspends
execution and pressing any key then resumes the trace.

Note: The T command can be used to trace through ROM.

Example

To execute one instruction at location CS:lAOOH and then return control to DEBUG, dis­
playing the contents of the CPU registers and the status of the flags, type

-T =1 AO 0 <Enter>

1050 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1060

DEBUG:U
Disassemble (Unassemble) Program

Purpose

Disassembles machine instructions into assembly-language mnemonics.

·Syntax

U[range]

where:

DEBUG:U

range specifies the starting and ending addresses or the starting address and length
of the machine code to be disassembled.

Description

The Disassemble (Unassemble) Program (U) command translates machine instructions
into assembly-language mnemonics.

The range parameter specifies the starting and ending addresses or starting address and
length in bytes of the machine instructions to be disassembled. If range does not specify a
segment, DEBUG uses CS. Note that if the starting address does not fall on an 8086 instruc­
tion boundary, the disassembly will be incorrect.

If range does not include a length or ending address, 32 (20H) bytes of memory are dis­
assembled beginning at the specified starting address. If range is omitted, 32 bytes of
memory are disassembled, starting at the address following the last instruction dis­
assembled by the previous U command. If a U command has not been used before
and range is omitted, disassembly begins at the address specified by the target
program's CS:IP registers.

Note: The actual number of bytes displayed may vary slightly from the amount specified
in range or from the default of 32 bytes because the length of instructions may vary. Also,
the U command does not understand instructions specific to the 80186, 80286, and 80386
microprocessors. It displays such instructions as DBs.

Successive 32-byte fragments of code can be disassembled by entering additional U com­
mands without parameters.

Example

To disassemble 8 bytes of machine instructions starting at CS:OlOOH, type

-U 100 107 <Enter>

or

-U 100 18 <Enter>

Section IV.· Programming Utilities 1051

ZTE (USA) 1007, Page 1061

DEBUG:W

DEBUG:W
Write File or Sectors

Purpose

Writes a file or individual sectors to disk.

·.syntax

W[address]

or

W address drive start number

where:

address is the first memory location of the data to be written.
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive

C, and so on).
start is the number of the first logical sector to write (0-FFFFH).
number is the number of consecutive sectors to be written (0-FFFFH).

Description

The Write File or Sectors (W) command transfers a file or individual sectors from memory
to the disk.

When the W command is entered without parameters or with only an address, the number
of bytes specified by the contents of registers BX:CX is written from memory into the file
named in the most recently used Name File or Command-Tail Parameters (N) command or
the first file specified in the DEBUG command line if the N command has not been used.
Files with a .EXE or .HEX extension cannot be written with the DEBUG W command.

Note: If a Trace Program Execution (T), Go (G), or Proceed Through Loop or Subroutine
(P) command has been used or the contents of the BX or CX registers have been changed,
the contents of BX:CX must be restored before theW command is used.

When address is not included in the command line, the target program's CS:0100H is
assumed.

TheW command can also be used to bypass the MS-DOS file system and directly access
logical sectors on the disk. The memory address (address), disk drive number (drive),
starting logical sector number (start), and number of sectors to be written (number) must
all be provided in the command line in hexadecimal format. The W command should not
be used to write sectors on network drives.

Warning: Extreme caution must be used with theW command. The disk's file structure
can easily be damaged if the wrong parameters are entered.

1052 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1062

DEBUG:W

Example

Assume that the interactive Assemble Machine Instructions (A) command was used to
create a program in DEBUG's memory buffer that is 32 (20H) bytes long, beginning at
offset OlOOH. This program can be written to the file QUICK. COM by using the DEBUG
Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write
File or Sectors (W) commands sequentially. First, use the N command to specify the name
of the file to be written:

-N QUICK.COM <Enter>

Next, use the R command to set registers BX and CX to the length to be written. Register
BX contains the upper, or most significant half, of the length, whereas register CX contains
the lower, or least significant half. Type

-R ex <Enter>

DEBUG displays the contents of register CX and prompts with a colon (:). Enter the
length after the prompt:

:20 <Enter>

To use the R command again to set register BX to zero, type

-R BX <Enter>

followed by

:0 <Enter>

Finally, to create the disk file QUICK. COM and write the program into it, type

-W <Enter>

DEBUG responds:

Writing 0020 bytes

Messages

EXE and HEX files cannot be written
Files with a .EXE or .HEX extension cannot be written to disk with the W command.

Writing nnnn bytes 4
After a successful write operation, DEBUG displays in hexadecimal format the number of
bytes written to disk.

Section IV: Programming Utilities 1053

ZTE (USA) 1007, Page 1063

SYMDEB

SYMDEB
Symbolic Debugger

Purpose

The Symbolic Debugger (SYMDEB) allow1; a file to be loaded, examined, altered, and writ­
ten back to disk. If the file contains a program, the program can be disassembled, modi­
fied, traced one instruction at a time, or executed at full speed with breakpoints. SYMDEB
can also be used to read, modify, and write absolute disk sectors.

The SYMDEB utility is supplied with the Microsoft Macro Assembler (MASM) versions 4.0
and earlier. This documentation describes SYMDEB version 4.0.

Syntax

SYMDEB

or

SYMDEB [options] [symfile [symfile . ..]] [filename [parameter . ..]]

where:

symfile

filename
parameter
options

Description ·

is the name of a symbol file created wi~h the MAPSYM utility
(extension= .SYM).
is the name of the binary or executable program file to be debugged.
is a command-line parameter required by the program being debugged.
is one or more of the following switches. Switches can be either upper­
case or lowercase and can be preceded by a dash (-) instead of a forward
slash(/).

/I
!K
IN

IS

/"commands''

(IBM) specifies that the computer is IBM compatible.
enables the interactive breakpoint key (Scroll Lock).
enables the use of nonmaskable interrupt break sys­
tems on IBM-compatible computers (requires special
hardware).
enables the Screen Swap (\) command on IBM-com­
patible computers (the /I switch is also required).
specifies one or more SYMDEB commands, separated
by semicolons and enclosed in quotation marks.

The SYMDEB commands and capabilities are a superset of those in DEBUG. SYMDEB is
also able to load and interpret special symbol files that correlate line numbers, symbols,
and memory addresses. With the aid of such files, SYMDEB enables the user to specify

1054 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1064

SYMDEB

addresses with labels, variable names, and expressions, rather than only with absolute
hexadecimal addresses. SYMDEB's command repertoire also includes I/0 redirection
commands, floating-point number entry and display commands, and source-code display
capabilities that are not present in DEBUG.

The SYMDEB command line typically includes the filename parameter, which is the
name of an executable program (with the extension .COM or .EXE) to be loaded into
SYMDEB's memory buffer. Files with the extension .EXE are loaded in a manner compat­
ible with the MS-DOS loader. Files with the extension .HEX are converted to binary images
and loaded at the internally specified address. All other files are assumed to be direct
memory images and are read directly into memory starting at offset lOOH. If SYMDEB is
entered by itself, no file information is read into memory. An appropriate program seg­
ment prefix (PSP) is synthesized at the head of SYMDEB's buffer for use by the target pro­
gram; the PSP includes a command tail at offset SOH and default file control blocks (FCBs)
at offsets 5CH and 6CH, constructed from the optional parameters following filename. If
necessary, contents of the file are relocated so that the file is ready to execute.

The command line can also contain the names of one or more symfiles, symbol files that
contain symbol and line-number information for the object modules that constitute the
program being debugged. A symbol file is created with the MAPSYM utility from a map
file produced by the Microsoft Object Linker (LINK). A symbol file always has the exten­
sion .SYM. See PROGRAMMING UTILITIES: MAPSYM; LINK.

The four command-line switches /I, /K, IN, and /S provide SYMDEB with information
about the computer on which the utility is running. The /I switch is used when the com­
puter is IBM compatible; this causes SYMDEB to take full advantage of special hardware
features such as the 8259 Programmable Interrupt Controller or the memory-mapped
video display. The /K switch enables the interactive breakpoint key (Scroll Lock), which
can then be pressed at any time to interrupt a program that is being traced under the con­
trol of SYMDEB.

Note: The /K switch is not necessary on an IBM PC/AT, because the Sys Req key is always
active as an interactive break key.

The IN switch enables the use of the nonmaskable interrupt as a breakpoint signal on
IBM-compatible computers; this interrupt is triggered by hardware-assisted debugging
packages such as Periscope and Atron Corporation's Software Probe. The /S switch en­
ables the Screen Swap (\) command, which allows the output from the program being
traced to be maintained and displayed on demand on a virtual screen separate from the
SYMDEB commands and messages.

Note: The /I, IN, and /S switches are unnecessary on personal computers built by IBM
Corporation; SYMDEB automatically enables the capabilities provided by those switches
when SYMDEB finds the IBM copyright notice in the machine's ROM.

After SYMDEB and any files named in the command line are loaded, SYMDEB displays its
special prompt character, a hyphen(-), and awaits a command. SYMDEB commands con­
sist of one or two letters, usually followed by one or more parameters. SYMDEB treats

Section IV: Programming Utilities 1055

ZTE (USA) 1007, Page 1065

:~J:II ·i
b·li
fli:
1':!
tlii
~~~~.: 

SYMDEB 

uppercase and lowercase characters equivalently except when they are contained in 
strings enclosed within single or double quotation marks. SYMDEB does not execute 
commands until the Enter key is pressed. 

The SYMDEB commands discussed in this section are 

Command Action 

A Assemble machine instructions. 
BC Clear breakpoints. 
BD Disable breakpoints. 
BE Enable breakpoints. 
BL List breakpoints. 
BP Set breakpoints. 
c Compare memory areas. 
D Display memory. 
DA Display ASCII. 
DB Display bytes. 
DD Display doublewords. 
DL Display long reals. 
DS Display short reals. 
DT Display 10-byte reals. 
DW Display words. 
E Enter data. 
EA Enter ASCII string. 
EB Enter bytes. 
ED Enter doublewords. 
EL Enter long reals. 
ES Enter short reals. 
ET Enter 10-byte reals. 
EW Enter words. 
F Fill memory. 
G Go execute program. 
H Perform hexadecimal arithmetic. 
I Input from port. 
K Perform stack trace. 
L Load file or sectors. 
M Move (copy) data. 
N Name file or command-tail parameters. 
0 Output to port. 
p Proceed through loop or subroutine. 
Q Quit debugger. 
R Display or modify registers. 
s Search memory. 

1056 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1066



.Command Action 

S+ Enable source display mode. 
S- Disable source display mode. 
S& Enable source and machine code display mode. 
T Trace program execution. 
U Disassemble (unassemble) program. 
V View source code. 
W Write file or sectors. 
X Examine symbol map. 
XO Open symbol map. 
Z Set symbol value. 
< Redirect SYMDEB input. 
> Redirect SYMDEB output. 

Redirect SYMDEB input and output. 
Redirect target program input. 
Redirect target program output. 
Redirect target program input and output. 

\ Swap screen. 
Display source line. 
Help or evaluate expression. 
Escape to shell. 
Enter comment. 

SYMDEB 

One or more SYMDEB commands, separated by semicolons and enclosed in double 
quotation marks, can be included in the original SYMDEB command line in the form 
/"commands" (for example, /"r;d;q"). These commands, which must precede the filename 
of the program being debugged, are carried out immediately when SYMDEB is loaded. 
(This is a convenient way to invoke SYMDEB and execute a series of batch commands.) 

The parameters for a SYMDEB command include symbols; line numbers; addresses; 
ranges; and 8-bit, 16-bit, 32-bit, or floating-point values, expressions, and lists. Multiple 
parameters can be separated by spaces, tabs, or commas. 

A symbol is a name that represents a register, an absolute value, a segment address, or a 
segment offset. A symbol consists of one or more characters but always begins with a let­
ter, an underscore(_), a question mark(?), an at sign(@), or a dollar sign($). The names 
of the various 8086/8088/80286 registers and CPU flags are built into SYMDEB and can be 
used at any time. Other symbols can be used only when one or more symbol files have 
been loaded in conjunction with the program to be debugged. 

Note: SYMDEB regards symbols whose spellings differ only in case as the same symbol. 
A unique symbol name that does not conflict with programming instructions, register 
names, or hexadecimal numbers should always be used. 

In MASM programs, symbols must be declared PUBLIC in the source code in order to be 
accessible during debugging (except for segment and group names, which are PUBLIC by 
default). In programs compiled with the current versions of Microsoft C, FORTRAN, 

Section IV: Programming Utilities 1057 

ZTE (USA) 1007, Page 1067



SYMDEB 

and Pascal, all symbols are passed through for debugging if the proper compilation switch 
is used; however, familiarity with the compiler's particular naming conventions is neces­
sary (for example, the Microsoft C Compiler adds an underscore character to the beginning 
of every symbol). 

A line number is a combination of decimal numbers, filenames, and symbols that specifies 
a unique line of text in a program source file. Line numbers always start with a dot charac­
ter (.) and take one of the following forms: 

. (jilename:]linenumber 
. +displacement 
.-displacement 
.symbol[ +displacement] 
.symbol[ -displacement] 

,, 

The second and third variations specify a line relative to the current line number; the 
fourth and fifth specify a line number relative to a designated symbol. Line numbers can 
be used only with programs developed with compilers that generate line-number informa­
tion. Programs developed with MASM or an incompatible compiler cannot generate line 
numbers. 

An address identifies a unique location in memory. An address can be a simple offset or a 
complete address consisting of two 16-bit values in the form segment:offset. Each compo­
nent can be a valid symbol (including CS, DS, ES, or SS, in the case of segments), a 16-bit 
hexadecimal number in the range 0 through FFFFH, or a symbol plus or minus a displace­
ment. When the segment portion of an address is absent, the segment specified in the 
previous instance of the same command is used; if no segment was previously specified, 
SYMDEB uses DS unless an A, G, L, P, T, U, or W command is used, in which case SYMDEB 
uses CS. 

A range specifies an area of memory or a number of data items and can be expressed as 
either two addresses or a starting address and a length. A length is represented by the letter 
L followed by a hexadecimal value in the range 0 through FFFFH. The meaning of the 
length varies with the SYMDEB command used: The length can signify a number of bytes, 
words, doublewords, real numbers, machine instructions, or source-code lines. If a com­
mand requires a range and the ending address is not supplied, SYMDEB usually assumes 
128 bytes. 

A value represents an integral number and is a combination of one or more digits. The 
default base for values is hexadecimal, except in the case of floating-point numbers, but 
other bases can be used by appending a radix character (Y for binary, 0 or Q for octal, T 
for decimal, H for hexadecimal) in either uppercase or lowercase. For example, the follow­
ing values are equivalent: 

0040 
0040H 
0064t 

OlOOQ 
01000 
1000000Y 

1058 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1068



SYMDEB 

Doubleword (32-bit) values are entered as two hexadecimal integers separated by a colon 
character (:). Real numbers are always entered in decimal radix, with or without a decimal 
point or exponent. Leading zeros can be omitted. 

An expression is a ·combination of symbols, numeric constants, and operators that evalu­
ates to an 8-, 16-, or 32-bit value. An expression can be used in place of a simple value in 
any command. Unary address operators use DS as the default segment for addresses. Ex­
pressions are evaluated in order of operator precedence; operators with equal precedence 
are evaluated from left to right. Parentheses can be used to override the normal operator 
precedence. 

The available unary operators, listed in order of precedence from highest to lowest, are 

Operator Meaning 

+ 

NOT 
SEG 
OFF 
BY 
wo 
DW 
POI 
PORT 
WPORT 

Unary plus 
Unary minus 
One's (bitwise) complement 
~Segment address of operand 
Offset of operand 
Low-order byte from specified address 
Low-order word from specified address 
Doubleword from specified address 
Pointer from specified address (same as DW) 
Byte input from specified port 
Word input from specified port 

The available binary operators, listed in order of precedence from highest to lowest, are 

Operator Meaning 

• Multiplication 
I Integer division 
MOD Modulus 

Segment override 
+ Addition 

Subtraction 
AND Bitwise Boolean AND 
XOR Bitwise Boolean Exclusive OR 
OR Bitwise Boolean Inclusive OR 

A list is composed of one or more values, expressions, or strings, separated by spaces or 
commas. A string is one or more ASCII characters, enclosed within single or double quota­
tion marks. Case is significant within a string. If the same type of quote character that is 
used to delimit the string occurs inside the string, the character must be doubled inside the 
string in order to be interpreted correctly (for example,"A ""quoted"" word"). 

Section IV: Programming Utilities 1059 

4 

ZTE (USA) 1007, Page 1069



SYMDEB 

In a few cases, SYMDEB displays a specific and informative error message in response to 
an invalid command. In general, though, SYMDEB responds in a generic fashion, pointing 
to the approximate location of the error with a caret character ("), followed by the word 
Error. For example: 

-D CS:100,CS:80 <Enter> 

"' Error 

SYMDEB maintains a set of virtual CPU registers and flags for a program being debugged. 
These registers can be examined and modified with SYMDEB commands. When a pro­
gram is first loaded for debugging, the virtual registers are initialized with the following 
values: 

Register .COM Program .EXE Program 

AX Valid drive code Valid drive code 
BX Upper half of program size Upper half of program size 
ex Lower half of program size Lower half of program size 
DX Zero Zero 
SI Zero Zero 
DI Zero Zero 
BP Zero Zero 
SP FFFEH or top of available Size of stack segment 

memory minus 2 
IP lOOH Offset of entry point within target 

program's code segment 
cs PSP Base of target program's code segment 
DS PSP PSP 
ES PSP PSP 
ss PSP Base of target program's stack segment 

Note: SYMDEB checks the first three parameters in the command line. If the second and 
third parameters are filenames, SYMDEB checks any drive specifications with those file­
names to verify that they designate valid drives. Register AX contains one of the following 
codes: 

Code 

OOOOH 

OOFFH 
FFOOH 
FFFFH 

Meaning 

The drives specified with the second and third filenames are both valid, or 
only one filename was specified in the command line. 

The drive specified with the second filename is invalid. 
The drive specified with the third filename is invalid. 
The drives specified with the second and third filenames are both invalid. 

1060 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1070



SYMDEB 

Before SYMDEB transfers control to the target program, it saves the actual CPU registers 
and then loads them with the current values of the virtual registers; conversely, when con­
trol reverts to SYMDEB from the target program, the returned register contents are stored 
back into the virtual register set for inspection and alteration by the SYMDEB user. 

Examples 

To prepare the program CLEAN.ASM for debugging with SYMDEB, declare all vital labels, 
procedures, and variable names in the source program PUBLIC. To assemble the program, 
type 

C>MASM CLEAN; <Enter> 

This produces the relocatable object module CLEAN.OBJ. Then, to link the object module, 
type 

C>tiNK /MAP CLEAN; <Enter> 

This results in the executable program file CLEAN.EXE and the map file CLEAN.MAP. 

Note: The /MAP switch must be used even if a map file is specified in the command line. 
Finally, to create the symbol information file required by SYMDEB, type 

C>MAPSYM CLEAN <Enter> 

At this point, begin symbolic debugging by typing 

C>SYMDEB CLEAN.SYM CLEAN.EXE <Enter> 

Any run-time command-line parameters required by the CLEAN program may be placed 
in the SYMDEB command line after the filename CLEAN.EXE. 

To prepare the program SHELL.C for debugging with SYMDEB, first compile the program 
with the switches that disable optimization and cause line-number information to be writ­
ten to the relocatable object module: 

C>MSC /Zd /Od SHELL; <Enter> 

Next, to convert the object module to an executable program and create a map file with 
line-number information, type 

C>LINK /MAP /LI SHELL; <Enter> 

To create the symbol information file required by SYMDEB for symbolic debugging, type 

C>MAPSYM SHELL <Enter> 

To begin debugging, type 

C>sYMDEB SHELL.SYM SHELL.EXE <Enter> 

Section IV: Programming Utilities 1061 

ZTE (USA) 1007, Page 1071



SYMDEB 

To use the SYMDEB utility to inspect or modify memory or to read, modify, and write 

absolute disk sectors, type 

C>SYMDEB <Enter> 

Message 

File not found 
The filename supplied as the first parameter in the SYMDEB command line cannot be 
found. ,. 

1062 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1072



SYMDEB:A 

SYMDEB:A 
Assemble Machine Instructions 

Purpose 

Al~ows entry of assembler mnemonics and translates them into executable machine code. 

·syntax 

A[address] 

where: 

address is the starting location for the assembled machine code. 

Description 

The Assemble Machine Instructions (A) command accepts assembly-language statements, 
rather than hexadecimal values, for the Intel 8086/8088, 80186, and 80286 (running in real 
mode) microprocessors and the Intel 8087 and 80287 math coprocessors and assembles 
each statement into executable machine language. 

The address parameter specifies the location where entry of assembly-language mne­
monics,will begin. If address is omitted, SYMDEB uses the last address generated by the 
previous A command; if there was no previous A command, SYMDEB uses the current 
value of the target program's CS:IP registers. 

After the user enters an A command, SYMDEB prompts for each assembly-language state­
ment by displaying the address (a segment and an offset) in which the assembled code will 
be stored. When the user presses the Enter key, SYMDEB translates the assembly-language 
statement and stores each byte of the resulting machine instruction sequentially in mem­
ory (overwriting any existing information), beginning at the displayed address. SYMDEB 
then displays the address following the last byte of the machine instruction to prompt the 
user to enter the next assembled instruction. The user can terminate assembly mode by 
pressing the Enter key in response to the address prompt. 

The assembly-language statements accepted by the SYMDEB A command have some 
slight syntactic differences and restrictions compared with the Microsoft Macro Assembler 
programming statements. These differences can be summarized as follows: 

• All numbers are assumed to be hexadecimal integers unless otherwise specified with 
a radix character suffix. 

• Segment overrides must be specified by preceding the entire instruction with CS:, 
DS:, ES:, or SS:. 

• File control directives (NAME, PAGE, TITLE, and so forth), macro definitions, record 
structures, and conditional assembly directives are not supported by SYMDEB. 

Section IV.· Programming Utilities 1063 

ZTE (USA) 1007, Page 1073



SYMDEB:A 

• When the data type (word or byte) is not implicit in the instruction, the type must be 
specified by preceding the operand with BYTE PTR (or BY), WORD PTR (or WO), 
DWORD PTR (or DW), QWORD PTR (or QW), or TBYTE PTR (or TB). 

• In a string operation, the size of the string must be specified with a B (byte) or W 
(word) added to the string instruction mnemonic (for example, LODSB or LODSW). 

• The DB and DW instructions accept a parameter of the type list and assemble byte 
and word values directly into memory. 

• The WAIT or FWAIT opcodes for 8087/80287 assembler statements are not generated 
by the system and must be coded explicitly. (Note: 8087/80287 instructions can be as­
sembled if the system is not equipped with a math coprocessor, but the system will 
crash if an attempt is made to execute them.) 

• Addresses must be enclosed in square brackets to be differentiated from immediate 
operands. 

• Repeat prefixes such as REP, REPZ, and REPNZ can be entered either alone on a line 
preceding the statement they affect or on the same line immediately preceding the 
statement. 

• The assembler will generate the optimal form (SHORT, NEAR, or FAR) for jumps or 
calls, depending on the destination address, but these can be overridden if the 
operand is preceded with a NEAR (orNE) or FAR prefix. 

• The mnemonic for a FAR RETURN is RETF. 

Examples 

To begin assembling code at address CS:OlOOH, type 

-A 100 <Enter> 

To assemble the instruction sequence 

LODS WORD PTR [SI) 
XCHG BX,AX 
JMP [BX) 

beginning at address CS:OlOOH, the following dialogue would take place: 

-A 100 <Enter> 
1983:0100 LODSW <Enter> 
1983:0101 XCHG BX,AX <Enter> 
1983:0103 JMP [BX) <Enter> 
1983:0105 <Enter> 

To continue assembling at the last address generated by a previous A command 
(1983:0105H in the preceding example), type 

-A <Enter> 

1064 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1074



SYMDEB:BC 
Clear Breakpoints 

Purpose 

Per~anently removes sticky breakpoints. 

·syntax 

or 

BC list 

where: 

• represents all sticky breakpoints. 

SYMDEB:BC 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Clear Breakpoints (BC) command permanently clears the sticky breakpoints pre­
viously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in mem­
ory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command, 
which remains in effect only while the G command executes. 

If an asterisk character ( •) follows the BC command, SYMDEB deletes all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BC command, SYMDEB selectively deletes sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP 
command. The List Breakpoints (BL) command can be used to display all current sticky 
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces. 

Sticky breakpoints can be temporarily disabled with the Disable Breakpoints (BD) com­
mand and subsequently re-enabled with the Enable Breakpoints (BE) command. 

Examples 

To clear sticky breakpoints 0, 4, and 8, type 

-Be 0 4 8 <Enter> 

To clear all sticky breakpoints, type 

-Be * <Enter> 

Section IV: Programming Utilities 1065 

ZTE (USA) 1007, Page 1075



SYMDEB:BC 

Messages 
Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 

through 9. 

Breakpoint list or'*' expected! 
The BC command was entered without parameters. 

1066 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1076



SYMDEB:BD 
Disable Breakpoints 

Purpose 

Temporarily disables sticky breakpoints. 

Syntax 

BD• 

or 

BD list 

where: 

* represents all sticky breakpoints. 

SYMDEB:BD 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Disable Breakpoints (BD) command temporarily disables the sticky breakpoints 
previously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in 
memory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) com­
mand, which remains in effect only while the G command executes. 

If an asterisk character ( *) follows the BD command, SYMDEB disables all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BD command, SYMDEB selectively disables sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP 
command. The List Breakpoints (BL) command can be used to display all current sticky 
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces. 

Sticky breakpoints disabled with the BD command can be re-enabled with the Enable 
Breakpoints (BE) command. The Clear Breakpoints (BC) command can be used to per­
manently delete a sticky breakpoint. 

Examples 

To disable sticky breakpoints 0, 4, and 8, type 

-BD 0 4 8 <Enter> 

To disable all sticky breakpoints, type 

-BD * <Enter> 

Section IV: Programming Utilities 1067 

ZTE (USA) 1007, Page 1077



SYMDEB:BD 

Messages 
Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 

through9. 

Breakpoint list or'*' expected! 
The BD command was entered without parameters. 

1068 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1078



SYMDEB:BE 
Enable Breakpoints 

Purpose 

Enables disabled sticky breakpoints. 

Syntax 

or 

BE list 

where: 

* represents all sticky breakpoints. 

SYMDEB:BE 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Enable Breakpoints (BE) command enables the sticky breakpoints disabled with the 
Disable Breakpoints (BD) command. A sticky breakpoint remains in memory throughout 
a SYMDEB session, unlike a breakpoint set with the Go (G) command, which remains in 
effect only while the G command executes. 

If an asterisk (•) character follows the BE command, SYMDEB enables all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BE command, SYMDEB selectively enables sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the Set 
Breakpoints (BP) command. The List Breakpoints (BL) command can be used to display 
all current sticky breakpoint locations and numbers. Breakpoint numbers should be sepa­
rated by spaces. 

Examples 

To enable sticky breakpoints 0, 4, and 8, type 

-BE 0 4 8 <Enter> 

To enable all sticky breakpoints, type 

-BE * <Enter> 

Section IV: Programming Utilities 1069 

ZTE (USA) 1007, Page 1079



SYMDEB:BE 

Messages 
Bad breakpoint number! (0~9) 
A sticky breakpoint number i~ the command line was not an integer in the range 0 

through 9. 

Breakpoint list or '•' expected! 
The BE command was entered without parameters. 

1070 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1080



SYMDEB:BL 
List Breakpoints 

Purpose 

Displays information about all sticky breakpoints. 

·syntax 

BL 

Description 

SYMDEB:BL 

The List Breakpoints (BL) command lists the current status of each sticky breakpoint 
created with the Set Breakpoints (BP) command. A sticky breakpoint remains in memory 
throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command, which 
remains in effect only while the G command executes. 

The BL command lists each sticky breakpoint number, its status code, its address in the 
target program, the number of passes remaining, and the initial number of passes speci­
fied with the BP command (in parentheses). If source display mode was selected with the 
Enable Source Display Mode (S+) command, SYMDEB also displays the source-file name 
and the line number that corresponds to each breakpoint location. Breakpoint status 
codes are 

e Enabled 
d Disabled 
v Virtual 

(A virtual breakpoint is a sticky breakpoint set at a symbol contained in a .EXE file that has 
not yet been loaded into SYMDEB.) 

Example 

To view the current status of all breakpoints, type 

-BL <Enter> 

If the BP commands 

-BPO _TEXT:_main <Enter> 
-BP1 _TEXT:_printf <Enter> 

were previously entered, the BL command displays 

0 e 456E:0010 [_TEXT:_main) dump.C:32 
1 e 456E:0612 [_TEXT:_printf) 

Section IV: Programming Utilities 1071 

ZTE (USA) 1007, Page 1081



SYMDEB:BP 

SYMDEB:BP 
Set Breakpoints 

Purpose 

Sets sticky breakpoint locations within the.program being debugged. 

Syntax 

BP[ n] address [ passcount] ["commands"] 

where: 

n 
address 
passcount 

"commands" 

Description 

is the sticky breakpoint number (0-9). 
is the location of the breakpoint in the target program. 
is the number of times the instruction at address should be executed 
before the breakpoint is taken. 
is one or more SYMDEB commands, separated by semicolons. The entire 
list must be enclosed in double quotation marks. (Limit = 30 characters.) 

The Set Breakpoints (BP) command sets a sticky breakpoint in the program being 
debugged. A sticky breakpoint remains in memory throughout a SYMDEB session, unlike 
·a breakpoint set with the Go (G) command, which remains in effect only while the G 
command executes. When the target program reaches the breakpoint, execution of the 
program is suspended and control returns to SYMDEB. SYMDEB displays the contents of 
the registers and flags, followed by a prompt so that the user can enter more commands. 

The optional n parameter associates an integer in the range 0 through 9, called the break­
point number, with the sticky breakpoint location. If n is omitted, the next available 
breakpoint number is used. No space is allowed between BP and n. 

The address parameter must point to the first byte of a machine instruction in the pro­
gram. This parameter may be a symbol, a literal address, or a source-code line number. If 
a segment is not included, SYMDEB uses the target program's CS register. 

The optional passcount parameter is the number of times execution should pass through 
the specified location before the break is taken and control is returned to SYMDEB. The 
value of passcount must be a hexadecimal number in the range 0 through FFFFH 
(default= 0). 

The optional"commands" parameter is one or more SYMDEB commands with their 
associated parameters. Each command must be separated from the others by a semicolon 
character(;) and the entire list enclosed in double quotation marks("). A maximum of 30 
characters can be specified within the quotation marks. The commands are executed 
whenever the break is taken. 

1072 The MS-DOS Encyclopedta 

ZTE (USA) 1007, Page 1082



SYMDEB:BP 

Examples 

To set a sticky breakpoint at location next_file in the target program and dump the con­
tents of memory locations DS:OOOOH through DS:OOFFH when the breakpoint is reached, 
type 

-BP NEXT_FILE "DB DS:O L100" <Enter> 

To associate the breakpoint number 4 with the location CS:4230H in the program being 
debugged and pass the breakpoint 16 (lOH) times before suspending execution of the pro­
gram, type 

-BP4 CS:4230 10 <Enter> 

Messages 

Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 
through9. 

Breakpoint command too long! 
The "commands" parameter exceeded 30 characters. 

Breakpoint error! 
The BP command was entered without an address parameter. 

Breakpoint redefined! 
A new address was assigned to an existing breakpoint number, or an attempt was made to 
create a breakpoint with the same address as an existing breakpoint. 

Duplicate breakpoint ignored! 
An attempt was made to change an existing breakpoint to a breakpoint already specified 
in the breakpoint list. 

Too many breakpoints! 
No more sticky breakpoints are available. 

Section IV: Programming Utilities 1073 

ZTE (USA) 1007, Page 1083



SYMDEB:C 

SYMDEB:C 
Compare Memory Areas 

Purpose 

Compares two areas of memory and reports any differences. 

Syntax 

C range address 

where: 

range specifies the starting and ending addresses or the starting address and length 
of the first area of memory to be compared. 

address poirits to the beginning of the second area of memory to be compared. 

Description 

The Compare Memory Areas (C) command compares the contents of two areas of mem­
ory. The location and contents of any differing bytes are listed in the following form: 

addressl bytel byte2 address2 

If no differences are found, the SYMDEB prompt returns. 

The range parameter specifies the first through last addresses or the starting address and 
length in bytes of the first area of memory to be compared. 

The address parameter points to the beginning of the second area of memory to be com­
pared, which is the same size as range. If a segment is not included in either range or 
address, SYMDEB uses DS. 

Example 

To compare the 64 bytes beginning at CS:CEOOH with the 64 bytes beginning at 
CS:CFOAH, type 

-C CS:CEOO,CE3F CS:CFOA <Enter> 

or 

-C CS:CEOO L40 CS:CFOA <Enter> 

If any differences are found, SYMDEB displays them in the following format: 

2124:CE06 00 FF 2124:CF10 

107 4 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1084



SYMDEB:D 
Display Memory 

Purpose 

Displays the contents of an area of memory. 

Syntax 

D [range] 

where: 

SYMDEB:D 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Memory (D) command displays the contents of a specified range of memory 
addresses in the same format used in the most recent Display command (DA, DB, DD, DL, 
DS, DT, or DW). If no Display command has previously been entered, the memory is dis­
played in hexadecimal bytes and their ASCII equivalents (the DB format). 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and the hexadecimal number of data items to be displayed. When range does not include 
a segment, SYMDEB uses DS. 

The size in bytes of each item and the default value for the length depend on the type of 
Display command used: the Display Byte (DB), Display Doubleword (DD), and Display 
Word (DW) commands default to a length of 128 (SOH) bytes; Display ASCII (DA) displays 
128 bytes or up to a null byte, whichever is smaller; Display Short Reals (DS), Display Long 
Reals (DL), and Display 10-Byte Reals (DT) default to the display of one floating-point 
number. 

If a Display command has not previously been used and range is omitted from a D com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a D command, the 
display starts at the memory address following the last address displayed by the most re­
cent Display command. 

Examples 

Assume that the only Display commands used during this SYMDEB session are D and-DB. 
To display the contents of the 128 bytes of memory beginning at offset 100H in the pro­
gram's DGROUP, type 

-D DGROUP:0100 <Enter> 

Section IV: Programming Utilities ·1075 

ZTE (USA) 1007, Page 1085



SYMDEB:D 

SYMDEB displays the contents of the range of memory addresses in the following format: 

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device . .. '9 ... : 

7F00:0110 39 08 20 08 00 81 39 04-1B SB 32 4A 42 BD 11 44 9. ... 9 .. [2JB=.D 

7F00:0120 2E 26 45 AF 11 47 B3 11-48 AS 11 4C BS 11 4E D3 .&E/.G3.H%.L8.NS 

7F00:0130 11 50 DF 11 51 AB 11 54-DF 1E 56 37 11 SF 9F 16 .P:....Q+.T_.V7._ .. 

7F00:0140 24 co 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $@ ... NOTA .. ERROR 

7F00:0150 4C 45 56 45 4C 85 08 05-45 58 49 53 54 18 08 00 LEVEL ... EXIST ... 

7F00:0160 03 44 49 52 03 91 oc 06-52 45 4E 41 4D 45 01 co .DIR .... RENAME.@ 

7FOO: 0170 OF 03 52 45 4E 01 co OF-05 45' 52 41 53 45 01 68 .. REN.@ .. ERASE.h 

To view the next 128 bytes of memory, type 

-D <Enter> 

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH. 

1076 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1086



SYMDEB:DA 
Display ASCII 

Purpose 

Displays the contents of memory in ASCII format. 

Syntax 

DA[range] 

where: 

SYMDEB:DA 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display ASCII (DA) command displays the contents of a specified range of memory 
addresses in ASCII format. 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed in ASCII format or the starting address followed by the length of the area, ex­
pressed by an L and a hexadecimal number of bytes. When range does not include a 
segment, SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DA com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DA command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. 

When a range is not explicit in a DA command, the display terminates after 128 bytes or 
when a null (zero) byte is encountered. If a range is specified, the entire range is dis­
played, including any null bytes, with nonprinting characters displayed as period (.) 
characters. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory (or less if a null byte was encountered) represented as an ASCII string. 

See also PROGRAMMING UTILITIES: SYMDEB:EA. 

Examples 

If memory beginning at location 7F00:0100H contains the characters This is a test string 
followed by a null (zer'o) byte, the command 

-oA 7F00:0100 <Enter> 

Section IV: Programming Utilities 1077 

ZTE (USA) 1007, Page 1087



SYMDEB:DA 

produces the following display: 

7F00:0100 This is a test string 

To view additional memory in the same format, type 

-o <Enter> 

1078 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1088



SYMDEB:DB 
Display Bytes 

Purpose 

SYMDEB:DB 

Displays the contents of memory as hexadecimal bytes and their equivalent ASCII 
characters. 

Syntax 

DB[range] 

where: 

range 

Description 

specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

The Display Bytes (DB) command displays the contents of a specified range of memory 
addresses as hexadecimal bytes and their ASCII character equivalents. This is the default 
format for the Display Memory (D) command. 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of bytes. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DB com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DB command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DB command, the display ter­
minates after 128 bytes. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory represented as hexadecimal values separated by spaces (except the 
eighth and ninth values, which are separated by a dash), followed by their ASCII character 
equivalents (if any). In the ASCII section, nonprinting characters are displayed as periods. 

See also PROGRAMMING UTILITIES: SYMDEB:EB. 

Examples 

To display the contents of the 128 bytes of memory beginning at 7F00:0100H, type 

-DB 7F00:0100 <Enter> 

Section TV.· Programming Utilities 1079 

ZTE (USA) 1007, Page 1089



:.1\.li ,. 

'.·'1 I! 
,;1 
1 ~ 

1
11 

,.; 

SYMDEB:DB 

The contents of the range of memory addresses are displayed in the following format: 

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device . .. '9 . .. : 

7F00:0110 39 08 20 08 oo 81 39 04-1B SB 32 4A 42 BD 11 44 9. ... 9 .. [2JB=.D 

7F00:0120 2E 26 45 AF 11 47 B3 11-48 AS 11 4C BB 11 4E 03 .&E/.G3.H%.L8.NS 

7F00:0130 11 50 DF 11 51 AB 11 54-DF 1E 56 37 11 SF 9F 1 6 .P_.Q+.T_.V7 ._ .. 

7F00:0140 24 co 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $@ ••• NOTA .. ERROR 

7F00:0150 4C 45 56 45 4C 85 08 05-45 58 49 53 54 18 08 00 LEVEL ... EXIST ... 

7F00:0160 03 44 49 52 03 91 oc 06-52 45 4E 41 4D 45 01 co .DIR .... RENAME.@ 

7F00:0170 OF 03 52 45 4E 01 co OF-05 4'5 52 41 53 45 01 68 .. REN.@ .. ERASE.h 

To view the next 128 bytes of memory, type 

-o <Enter> 

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH. 

1080 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1090



SYMDEB:DD 
Display Doublewords 

Purpose 

Displays the contents of memory in hexadecimal doubleword format. 

Syntax 

DD[range] 

where: 

SYMDEB:DD 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Doublewords (DD) command displays the contents of a specified range of 
memory addresses 4 bytes at a time, as if they were FAR memory pointers (offset followed 
by segment in reverse byte order). 

The range parameter specifies the starting and ending addresses of the memory to be dis­
played or the starting address followed by the length of the area, expressed by an L and a 
hexadecimal number of doublewords. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DD com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DD command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DD command, 32 doublewords 
(128 bytes) are displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory represented as 4 paired 16-bit segments and offsets. The 4 bytes that 
make up the segment and offset of each doubleword pointer are displayed in reverse order 
from their actual storage in memory. 

See also PROGRAMMING UTILITIES: SYMDEB:ED. 

Examples 

To see how DD represents the 4 bytes that make up a doubleword, first type 

-DB 100 <Enter> 

Section IV: Programming Utilities 1081 

ZTE (USA) 1007, Page 1091



SYMDEB:DD 

This produces the following output: 

3929:0100 CF OB 90 00 33 OE C3 OE-F2 OE 06 OF 39 OF 49 OF 0 ... 3.C.r ... 9.I. 

Then type 

-oo 100 <Enter> 

This produces the following output: 

3929:0100 0090:0BCF 0EC3:0E33 OF06:0EF2 OF49:0F39 

Notice that DD switches the order of the first 2 bytes in a 4-byte set and designates them as 
the offset; then it switches the order of the second 2 bytes in the 4-byte set and designates 
them as the segment address. 

To display the contents of the first 128 (80H) bytes of the system interrupt vector table, 
which is based at address OOOO:OOOOH, type 

-oo 0:0 <Enter> 

This produces the following output: 

0000:0000 2075:0302 0070:01FO 16F3:2C1B 0070:01FO 
0000:0010 0070:01FO FOOO:FF54 F000:9805 F000:9805 
0000:0020 OAE3:0395 16F3:2BAO F000:9805 F000:9805 
0000:0030 0972:0840 F000:9805 FOOO:EF57 0070:01FO 
0000:0040 OAE3:0306 FOOO:F840 FOOO:F841 0070:0043 
0000:0050 FOOO:E739 FOOO:F859 FOOO:E82E FOOO:EF02 
0000:0060 FOOO:E76C 0070:0ADD FOOO:FE6E 1078:3BEC 
0000:0070 FOOO:FF53 FOOO:FOE4 0000:0522 FOOO:OOOO 

To view the next 128 bytes of memory in the same format, type 

-o <Enter> 

SYMDEB displays the contents of memory addresses 0000:0080H through OOOO:OOFFH. 

1082 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1092



SYMDEB:DL 
Display Long Reals 

Purpose 

Displays the contents of memory as long (64-bit) floating-point numbers. 

·syntax 

DL[range] 

where: 

SYMDEB:DL 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Long Reals (DL) command displays the contents of a specified range of mem­
ory addresses 8 bytes at a time, as hexadecimal values and their decimal equivalents. The 
hexadecimal values are formatted as 64-bit floating-point numbers. The decimal values 
have the form 

+:-o.decimaldigitsE+ :-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum of 
16 decimaldigits, this, in turn, is followed by the designator of the mantissa (E) and the 
mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the memory to be dis­
played or the starting address followed by the length of the area, expressed by an L and a 
hexadecimal number of 8-byte values. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DL 
command, the display starts at the address specified in the target program's CS:IP regis­
ters. If a Display command has previously been used and range is omitted from a DL com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DL command, 
one 64-bit floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
8 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:EL. 

Section IV: Programming Utilities 1083 

ZTE (USA) 1007, Page 1093



SYMDEB:DL 

Examples 

Assume that the memory beginning at location DS:OlOOH contains the value 6.624 * lQ-27 

(Planck's constant, in erg-seconds) as a 64-bit floating-point number. The command 

-oL 100 <Enter> 

produces the following output: 

43E8:0100 SF A2 20 73 75 66 80 3A +0,6624E-26 

To view the next 8 bytes of memory in the same format, type 

-o <Enter> 

1084 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1094



SYMDEB:DS 
Display Short Reals 

Purpose 

Displays the contents of memory as short (32-bit) floating-point numbers. 

·syntax 

DS [range] 

where: 

SYMDEB:DS 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Short Reals CDS) command displays the contents of a specified range of mem­
ory addresses 4 bytes at a time, as hexadecimal values and their decimal equivalents. The 
hexadecimal values are formatted as 32-bit floating-point numbers. The decimal values 
have the form 

+:-o.decimaldigitsE+:-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum 
of 16 decimaldigits (only the first 7 digits are significant); this, in turn, is followed by the 
designator of the mantissa (E) and the mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of 4-byte values. When range does not include a segment, 
SYMDEB uses DS. . 

If a Display command has not previously been used and range is omitted from a DS 
command, the display starts at the address specified in the target program's CS:IP regis-

. ters. If a Display command has previously been used and range is omitted from a DS com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DS command, one 
32-bit floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
4 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:Es. 

Section IV: Programming Utilities 1085 

ZTE (USA) 1007, Page 1095



SYMDEB:DS 

Examples 
Assume that the memory beginning at location 43E8:0100H contains the value 6.02 •10+

2
3 

(Avogadro's number) as a 32-bit floating-point number. The command 

-os 43~8:100 <Enter> 

produces the following output: 

43E8:0100 F9 F4 FE 66 +0.6020000172718952E+24 

To view the next 4 bytes of memory in the same format, type 

-o <Enter> 

1086 The MS-DOS Encycloper,fia 

ZTE (USA) 1007, Page 1096



SYMDEB:DT 
Display 10-Byte Reals 

Purpose 

Displays the contents of memory as 10-byte (80-bit) floating-point numbers. 

·syntax 

DT[range] 

where: 

SYMDEB:DT 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display 10-Byte Reals (DT) command displays the contents of a specified range of 
memory addresses 10 bytes at a time, as hexadecimal values and their decimal equivalents. 
The hexadecimal values are formatted as 80-bit floating-point numbers. (This format is 
ordinarily used by the Intel 8087 math coprocessor only for intermediate results during 
chained floating-point calculations.) The decimal value has the form 

+l-O.decimaldigitsE+l-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum of 
16 decimaldigits, this, in turn, is followed by the designator of the mantissa (E) and the 
mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of 10-byte values. When range does not include a segment, 
SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DT 
command, the display starts at the address specified in the target program's CS:IP regis­
ters. If a Display command has previously been used and range is omitted from a DT com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DT command, one 
10-byte floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
10 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:ET. 

Section IV.· Programming Utilities 1087 

ZTE (USA) 1007, Page 1097



SYMDEB:DT 

Examples 

Assume that the memory beginning at location DS:OlOOH contains the value 2.99 •10+10 

(the speed of light in centimeters per second) as an 80-bit floating-point number. The 
command 

-oT 1 00 <Enter> 

produces the following output: 

43E8:0100 00 00 00 00 60 B9 CS DE 21 40 +0.299E+11 

To view the next 10 bytes of memory in the same format, type 

-o <Enter> 

1088 The MS-DOS encyclopedia 

ZTE (USA) 1007, Page 1098



I 
SYMDEB:DW 
Display Words 

Purpose 

SYMDEB:DW 

Displays the contents of memory as 2-byte (16-bit) words. 

Syntax 

DW[range] 

where: 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Word (DW) command displays the contents of a specified range of memory 
addresses 2 bytes at a time, as 16-bit hexadecimal integers. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of words of memory to be displayed. When range does not in­
clude a segment, SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DW com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DW command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DW command, 64 words 
are displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 16 
bytes of memory represented as eight 4-digit hexadecimal numbers. The 2 bytes that make 
up each word are displayed in reverse order from their actual storage in memory. That is, 
the first byte in a 2-byte word is displayed after the second byte. 

See also PROGRAMMING UTILITIES: SYMDEB:Ew. 

Examples 

To display the contents of the 64 words of memory beginning at DS:0080H in word format, 
type 

-ow 80 <Enter> 

Section IV: Programming Utilities 1089 

ZTE (USA) 1007, Page 1099



SYMDEB:DW 

This produces the following output: 

1FEE:0080 6977 646E 776F 5C73 696C 0062 494C 3D42 

1FEE:0090 3A63 6D5C 6373 6C5C 6269 633B 5C3A 6977 

1FEE:OOAO 646E 776F 5C73 696C 0062 4D54 3D 50 3A63 

1FEE:OOBO 745C 6D65 0070 4554 504D 633D 5C3A 6574 

1FEE:OOCO 706D 4400 4149 3D4C 3A63 645C 6169 006C 

1FEE:OODO 4350 3346 3D32 3A63 665C 726F 6874 705C 

1FEE:OOEO 3363 0032 4350 3350 3D32 3A63 665C 726F 

1FEE:OOFO 6874 705C 756C 3373 0032 5255 3146 3D30 

To view the next 64 words of memory in the same format, type 

-D <Enter> 

SYMDEB displays the contents of memory addresses lFEE:OlOOH through 1FEE:017FH. 

1090 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1100



SYMDEB:E 
Enter Data 

Purpose 

Enters data into memory. 

·syntax 

E address [list] 

where: 

is the first memory location for storage. 

SYMDEB:E 

address 
list is the data to be placed into successive bytes of memory, starting at address. 

Description 

The Enter Data (E) command enters into memory one or more data items, using the same 
format as the most recent Enter command (EA, EB, ED, EL, ES, ET, or EW). If no Enter 
command has previously been used, the data can be entered as either hexadecimal values 
or ASCII strings (the EA or EB format). Any data previously stored at the specified loca­
tions is lost. If SYMDEB displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter must meet the requirements of the last Enter command used. All 
SYMDEB Enter commands are described in alphabetic order on the following pages. If list 
is included in the command line, the changes are made unless an error is detected in the 
command line. If list is omitted from the command line, the current contents of address 
are displayed, followed by a period(.), and the user is prompted for new data. If no value 
is entered and the Enter key is pressed, the original value remains unchanged and the En­
ter command is terminated. 

Examples 

The following two examples assume that no previous Enter commands have been used or 
that the most recent Enter command was EA or EB. 

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:1FB3H, type 

-E 1FB3 00 OD OA <Enter> 

Section IV: Programming Utilities 1091 

ZTE (USA) 1007, Page 1101



SYMDEB:E 

If the command 

-E 2C3 ABC <Enter> 

is entered and the last Enter command used was EA or EB, the value BCH is stored at · 
DS:2C3H, and the leading 'A' character on the hexadecimal number 'ABC' is ignored. 

1092 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1102



SYMDEB:EA 
Enter ASCII String 

Purpose 

Enters an ASCII string or hexadecimal byte values into memory. 

Syntax 

EA address [list] 

where: 

address 
list 

Description 

is the first memory location for storage. 
is one or more ASCII strings or hexadecimal byte values. 

SYMDEB:EA 

The Enter ASCII String (EA) command enters data into successive memory bytes. The data 
can be entered as either hexadecimal byte values or ASCII strings. Any data previously 
stored at the specified locations is lost. If SYMDEB displays an error message, no changes 
are made. The EA command functions exactly like the Enter Bytes (EB) command. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter is one or more ASCII strings and/or hexadecimal byte values, separated 
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must 
be enclosed within single or double quotation marks, and case is significant within a 
string. 

If list is included in the command line, the changes are made unless an error is detected in 
the command line. If list is omitted from the command line, the user is prompted byte by 
byte for new data, starting at address. The current contents of a byte are displayed, fol­
lowed by a period. A new value for that byte can be entered as one or two hexadecimal 
digits (extra characters are ignored), or the contents can be left unchanged. To display the 
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac-
ter(-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi- 4 
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte 
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing 
the spacebar or entering any data. 

Text strings can be used only as part of the list parameter in an EA command line; they 
cannot be entered in response to an address prompt. 

Section IV.· Programming Utilities 1093 

ZTE (USA) 1007, Page 1103



SYMDEB:EA 

Example 
To store the string MAIN MENU into memory beginning at address ES:OC14H, type 

-EA ES:C14 "MAIN MENU" <Enter> 

1094 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1104



SYMDEB:EB 
Enter Bytes 

Purpose 

Enters hexadecimal byte values or ASCII strings into memory. 

Syntax 

EB address [list] 

where: 

address 
list 

Description 

is the first memory location for storage. 
is one or more hexadecimal byte values or ASCII strings. 

SYMDEB: EB 

The Enter Bytes (EB) command enters data into successive memory bytes. The data can 
be entered as either hexadecimal byte values or ASCII strings. Any data previously stored· 
at the specified locations is lost. If SYMDEB displays an error message, no changes are 
made. The EB command functions exactly like the Enter ASCII String (EA) command. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter is one or more hexadecimal byte values and/or ASCII strings, separated 
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must 
be enclosed within single or double quotation marks, and case is significant within a 
string. 

If list is included in the command line, the changes are made unless an error is detected in 
the command line. If list is omitted from the command line, the user is prompted byte by 
byte for new data, starting at address. The current contents of a byte are displayed, fol­
lowed by a period. A new value for the byte can be entered as one or two hexadecimal 
digits (extra characters are ignored), or the contents can be left unchanged. To display the 
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac­
ter(-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi­
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte 
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing 
the spacebar or entering any data. 

Text strings can be used only as part of the list parameter in an EB command line; they 
cannot be entered in response to an address prompt. 

Section IV: Programming Utilities 1095 

ZTE (USA) 1007, Page 1105



SYMDEB:EB 

Examples 

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:lFB3H, type 

-EB 1FB3 00 OD OA <Enter> 

To store the string MAIN MENU into memory beginning at address ES:OC14H, type 

-EB ES:C14 "MAIN MENU" <Enter> 

1096 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1106



SYMDEB:ED 

SYMDEB:ED 
Enter Doublewords 

Purpose 
Enters hexadecimal doubleword values into memory. 

Syntax 

ED address[value] 

where: 

address is the first memory location for storage. 
value is a doubleword (32-bit) hexadecimal value. 

Description 

The Enter Doublewords (ED) command enters into memory 32-bit hexadecimal double­
word values in the form of FAR memory pointers (offset followed by segments in reverse 
byte order). Any data previously stored at the specified locations is lost. If SYMDEB dis­
plays an error message, no changes are made. 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses DS. 

The value parameter is one doubleword value, entered as two 16-bit hexadecimal words 
separated by a colon character(:). Each value is entered in the form segment: offset. The 
offset portion is stored at address, and the segment portion is stored at address+ 2, both in 
reverse byte order. For example, a value of AABB:CCDDH would be stored in memory as 
DDH, CCH, BBH, and AAH, starting at address. Multiple values cannot be used in an ED 
command line; SYMDEB ignores any values after the first value. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed, followed by a period. 
The user can then enter a new doubleword value and press the Enter key or leave the con­
tents unchanged by pressing the Enter key alone, which also terminates the ED command. 
If a new vaiue is entered, SYMDEB increments address and displays the next doubleword 
value. 

Example 

To store the doubleword value F000:1392H at the address DS:0200H, type 

-ED 200 F000:1392 <Enter> 

Section IV: Programming Utilities 1097 

ZTE (USA) 1007, Page 1107



SYMDEB:EL 

SYMDEB:EL 
Enter Lortg Reals 

Purpose 

Enters 64-bit floating-point numbers into 1,11emory. 

Syntax 

EL address[value] 

where: 

address is the first memory location for storage. 
value is a 64-bit floating-point decimal number. 

Description 

The Enter Long Reals (EL) command enters into memory 64-bit floating-point numbers 
in decimal format. Any data previously stored at the specified memory locations is lost. If 
SYMDEB displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an EL command line; 
SYMDEB ignores any values after the first value. 

The 64-bit floating-point decimal value must be entered in the form 

[+ :-Jdecimaldigits[E[+: -]mantissa] 

where: 

+ : - is the sign of the long floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. · 
mantissa is the decimal mantissa value. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed. The user can enter a 
new value and press the Enter key or leave the contents unchanged by pressing the Enter 
key alone, which also terminates the EL command. If a new value is entered and the Enter 
key is pressed, SYMDEB increments address and displays the next long real number. 

1098 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1108



SYMDEB:EL 

Example 

To store an approximation of the value pi (1t) in the form of a 64-bit floating-point number 
at address DS:0020H, type 

-EL 20 +0.3141592653589793E+1 <Enter> 

or 

-EL 20 3.141592653589793 <Enter> 

Section IV: Programming Utilities 1099 

ZTE (USA) 1007, Page 1109



SYMDEB:ES 

SYMDEB:ES 
Enter Short Reals 

Purpose 

Enters 32-bit floating-point numbers into memory. 

Syntax 

ES address [value] 

where: 

address is the first memory location for storage. 
value is a 32-bit floating-point decimal number. 

Description 

The Enter Short Reals (ES) command enters into memory 32-bit floating-point numbers 
in decimal format. Any data previously stored at the specified locations is lost. If SYMDEB 
displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an ES command line; 
SYMDEB ignores any values after the first value. 

The 32-bit floating-point decimal value must be entered in the form 

· [+ :-Jdecimaldigits[E[+ :-]mantissa] 

where: 

+ : - is the sign of the short floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. 
mantissa is the decimal mantissa value. 

Note: For short floating-point values, the last nine decimaldigits are not significant. This 
can be demonstrated by using the Display Short Reals (DS) command to check the new 
value in memory. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed. The user can then enter 
a new value and press the Enter key or leave the contents unchanged by pressing the 

1100 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1110



SYMDEB:ES 

Enter key alone, which also terminates the ES command. If a new value is entered and the 
Enter key is pressed, SYMDEB increments address and displays the next short floating­
point number. 

Example 

To store an approximation of the value pi (1t) in the form of a 32-bit floating-point number 
at address DS:0020H, type 

-ES 20 +0.31415927E+1 <Enter> 

or 

-ES 20 3.1415927 <Enter> 

Section IV: Programming Utilities 1101 

ZTE (USA) 1007, Page 1111



SYMDEB:ET 

SYMDEB:ET 
Enter 10-Byte Reals 

Purpose 

Enters 10-byte (80-bit) floating-point numbers into memory. 

Syntax 

ET address[value] 

where: 

address 
value 

Description 

is the first memory location for storage. 
is an 80-bit floating-point decimal number. 

The Enter 10-Byte Reals (ET) command enters into memory 10-byte (80-bit) floating-point 
numbers in decimal format. Any data previously stored at the specified locations is lost. If 
SYMDEB displays an error message, no changes are made. (This 10-byte format is ordinar­
ily used by the Intel 8087 math coprocessor only for intermediate results during chained 
floating-point calculations.) 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses OS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an ET command line; 
SYMDEB ignores any values after the first value. 

The 10-byte floating-point decimal value must be entered in the form 

[+ l-ldecimaldigits[E[+ l-lmantissa] 

where: 

+ l - is the sign of the 1 0-byte floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. 
mantissa is the decimal mantissa value. 

·If value is omitted from the command, SYMDEB prompts the user for new data, starting at 
address. The current contents are displayed. The user can enter a new value and press the 
Enter key or leave the contents unchanged by pressing the Enter key alone, which also ter­
minates the ET command. If a new value is entered and the Enter key is pressed, SYMDEB 
increments address and displays the next 10-byte floating-point number. 

1102 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1112



SYMDEB:ET 

Example 

To store an approximation of the value pi (1t) in the form of an 80-bit floating-point num­
ber at address DS:0020H, type 

-ET 20 +0.31415926535897932384E+1 <Enter> 

or 

-ET 20 3.1415926535897932384 <Enter> 

Section IV.· Programming Utilities 1103 

ZTE (USA) 1007, Page 1113



SYMDEB:EW 

SYMDEB:EW 
Enter Words 

Purpose 

Enters word values into memory. 

Syntax 

EW address[value] 

where: 

address is the first memory location for storage. 
value is a word (16-bit) hexadecimal value. 

Description 

The Enter Words (EW) command enters into memory 16-bit hexadecimal word values. 
Any data previously stored at the specified locations is lost. If SYMDEB displays an error 
message, no changes are made. 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses DS. 

The value parameter is one word value in the range 0 through FFFFH. The value is stored 
in reverse byte order. For example, a value of AABBH would be stored in memory as BBH 
and AAH, starting at address. Multiple values cannot be used in anEW command line; 
SYMDEB ignores any values after the first value. 

If value is omitted from the command line, SYMDEB prompts the user word by word for 
new data, starting at address. The current contents are displayed, followed by a period. 
The user ca~ enter a new word value as one to four hexadecimal digits and press the Enter 
key or leave the contents unchanged by pressing the Enter key alone, which also termi­
nates the EW command. If a new value is entered, SYMDEB increments address and dis­
plays the next word value. 

Example 

To store the word value 1355H at the address DS:1COOH, type 

-EW 1C00 1355 <Enter> 

1104 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1114



SYMDEB:F 
Fill Memory 

Purpose 

Stores a repetitive data pattern into an area of memory. 

·syntax 

F range list 

where: 

SYMDEB:F 

range specifies the starting and ending addresses or the starting address and length 
of memory to be filled. 

list is the data to be used to fill memory. 

Description 

The Fill Memory (F) command fills an area of memory with the data from a list. The data 
can be entered in either hexadecimal or ASCII format. Any data previously stored at the 
specified locations is lost. If SYMDEB displays an error message, no changes are made. 

The range parameter specifies the starting and ending addresses or the starting address 
and hexadecimal length in bytes of the area of memory to be filled. If range does not in­
clude an explicit segment, SYMDEB uses OS. 

The list parameter is one or more hexadecimal byte values and/or strings, separated by 
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation 
marks, and case is significant within a string. 

If the area to be filled is larger than the data list, the list is repeated as often as necessary to 
fill the area. If the data list is longer than the area of memory to be filled, the list is trun­
cated to fit. 

Examples 

To fill the area of memory from DS:OB10H through DS:OB4FH with the value OESH, type 

-F B10 B4F E8 <Enter> 

or 

-F B10 L40 E8 <Enter> 

To fill the 16 bytes of memory beginning at address CS:1FAOH by replicating the 2-byte 
sequence ODH OAH, type 

-F CS:1FAO 1FAF OD OA <Enter> 

or 

-F CS:1FAO L10 OD OA <Enter> 

Section IV: Programming Utilities 1105 

ZTE (USA) 1007, Page 1115



SYMDEB:F 

To fill the area of memory from ES:OBOOH through ES:OBFFH by replicating the text string 
BUFFER, type 

-F ES:BOO BFF "BUFFER" <Enter> 

or 

-F ES:BOO 1100 "BUFFER" <Enter> 

1106 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1116



l , 
I 
l 

SYMDEB:G 

SYMDEB:G 
Go 

Purpose 

Transfers execution control from SYMDEB to the target program being debugged. 

Syntax 

G[=address] [breakO[ ... break9]] 

where: 

address 
breakO ... break9 

Description 

is the location at which to begin execution. 
specify from 1 to 10 breakpoints. 

The Go (G) command transfers control from SYMDEB to the target program. If no break­
points are set, the program will execute until it crashes or until it reaches a normal ter­
mination, in which case the message Program terminated normally is displayed and 
control returns to SYMDEB. (After this message has been displayed, it may be necessary 
to reload the program before it can be executed again.) 

The address parameter can be any location in memory. If no segment is specified, 
SYMDEB uses the target program's CS register. If address is omitted, SYMDEB transfers to 
the current address in the target program's CS:IP registers. An equal sign (=) must precede 
address to distinguish it from the breakpoints breakO ... break9. 

The parameters breakO ... break9 specify from 1 to 10 breakpoints that can be set as part 
of the G command. Breakpoints can be placed in any order, because execution stops at the 
first breakpoint address encountered, regardless of the position of that breakpoint in the 
list. Each of the breakpoint addresses must contain the first byte of an 8086 opcode. 
SYMDEB installs breakpoints by replacing the first byte of the machine instruction at each 
breakpoint address with an Interrupt 03H instruction (opcode OCCH). If the program en­
counters a breakpoint, program execution is suspended and control returns to SYMDEB. 
SYMDEB then restores the original machine code in the breakpoint locations, displays the 
contents of the current registers and flags and the instruction pointed to by CS:IP, and 4 
issues the standard SYMDEB prompt. If the target program executes to completion and ter­
minates without encountering any of the breakpoints or is halted by some means other 
than a breakpoint, the Interrupt 03H instructions are not replaced with the original 
machine code and the Load File or Sectors (L) command must be used to reload the origi-
nal program. 

The G command requires that the target program's SS:SP registers point to a valid stack 
that has at least 6 bytes of stack space available. When the G command is executed, it 

Section IV: Programming Utilities 1107 

ZTE (USA) 1007, Page 1117



SYMDEB:G 

pushes the target program's flags and CS and IP registers onto the stack and then transfers 
control to the program with an IRET instruction. Thus, if the target program's stack is not 
valid or is too small, the system may crash. 

The G command also recognizes any sticky breakpoints set with the Set Breakpoint (BP) 
command. These sticky breakpoints are not counted as part of the transient breakpoints 
specified in the G command line and are not removed after a breakpoint has been 
encountered. 

Examples 

To begin execution of the program in SYMDEB's buffer at location CS:llOAH, setting 
breakpoints at CS:12FCH and CS:1303H, type 

-G =110A 12FC 1303 <Enter> 

To resume execution of the program following a breakpoint, type 

-G <Enter> 

To begin execution at the label main, setting breakpoints at the procedures fopen() and 
printf(), type 

-G =_main _fopen _printf <Enter> 

Messages 

Program terminated normally 
The program being debugged executed successfully without encountering any break­
points and performed a normal termination with Interrupt 20H, Interrupt 21H Function 
OOH, or Interrupt 21H Function 4CH. If any breakpoints were set, the original program 
should be reloaded with the Load File or Sectors (L) command. 

Too many breakpoints! 
More than 10 breakpoints were specified in a Go (G) command. Enter the command again 
with 10 or fewer breakpoints. 

1108 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1118



SYMDEB:H 

SYMDEB:H 
Perform Hexadecimal Arithmetic 

Purpose 

Displays the sum and difference of two hexadecimal numbers. 

Syntax 

H valuel value2 

where: 

valuel and value2 are any two hexadecimal numbers in the range 0 through FFFFH. 

Description 

The Perform Hexadecimal Arithmetic (H) command displays the sum and difference of 
two 16-bit hexadecimal numbers- that is, the result of the operations valuel+value2 and 
valuel-value2. If value2 is greater than valuel, SYMDEB displays their difference as a 
two's complement hexadecimal number. This command is convenient for performing 
quick calculations of addresses and other values during an interactive debugging session. 

Examples 

To display the sum and difference of the values 4B03H and 104H, type 

~H 4B03 104 <Enter> 

This produces the following display: 

4C07 49FF 

If the addition produces an overflow, the four least significant digits are displayed: For 
example, the command line 

-H FFFF 2 <Enter> 

produces the following display: 

0001 FFFD 

If value2 is greater than valuel, the difference is displayed in two's complement form. For 
example, the command line 

-H 1 2 <Enter> 

produces the following display: 

0003 FFFF 

Section IV: Programming Utilities 1109 

ZTE (USA) 1007, Page 1119



:·,.,11 :j 
.!/ 

ill 'i! 

SYMDEB: I 

SYMDEB:I 
Input from Port 

Purpose 

Reads and displays 1 byte from an input/output (1/0) port. 

Syntax 

I port 

where: 

port is a 16-bit I/0 port address in the range 0 through FFFFH. 

Description 

The Input from Port (I) command performs a read operation on the specified I/0 port 
address and displays the data as a two-digit hexadecimal number. 

Warning: This command must be used with caution because it involves direct access to 
the computer hardware and no error checking is performed. Input operations directed to 
the ports assigned to some peripheral device controllers may interfere with the proper 
operation of the system If no device has been assigned to the specified I/O port or if the 
port is write-only, the value that will be displayed by an I command is unpredictable. 

Example 

To read and display the contents of I/0 port lOAH, type 

-I 10A <Enter> 

An example of the result of this command is 

FF 

1110 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1120



l 
I 

SYMDEB:K 
Perform Stack Trace 

Purpose 

Displays the current stack frame. 

·syntax 

K[number] 

where: 

number is the number of parameters supplied to the current procedure. 

Description 

SYMDEB:K 

The Perform Stack Trace (K) command displays the contents of the current stack frame. 
The first line of the display shows the name of the current procedure, parameters to the 
procedure, and the filename and line number of the call to the procedure. The subsequent 
lines tr.ace the flow of execution that led to the current procedure. 

In cases where SYMDEB cannot determine the number of parameters for a procedure by 
inspection of the stack frame (for example, if the number of parameters sent to a proce­
dure varies), the number option can be used in the command to force the display of one 
or more parameters. 

The K command can be used only on procedures that follow the calling conventions used 
by Microsoft high-level-language compilers. 

Examples 

Assume that a breakpoint has been set within the C library printj() routine, that the 
breakpoint has been reached, and that the SYMDEB prompt has reappeared. The 
command 

-K <Enter> 

produces the following output: 

_TEXT:_printf(OOD4,0000,0000) from .dump.C:108 
_TEXT:_dump_para(OOOO,ODOO,OFB8) from .dump.C:92 
_TEXT:_dump_rec(OFB8,0001,0000,0000) from .dump.C:61 
_TEXT:.Jnain(?) 

In this example, the breakpointed procedure printf() was called by the routine 
dump_para() with three parameters. Dump_para() was called by dump_rec(), which in 
turn was called by main(). Because SYMDEB cannot determine the depth of the stack 

Section IV: Programming Utilities 1111 

ZTE (USA) 1007, Page 1121



SYMDEB:K 

frame for the routine main(), it displays no parameters for it. The display of at least two 
parameters for every procedure can be forced by the command 

-K 2 <Enter> 

which produces the following example display: 

_TEXT:_printf(OOD4,0000,0000) from .dump.C:108 

_TEXT:_dump_para(OOOO,OOOO,OFB8) from .dump.C:92 
_TEXT:_dump_rec(0FB8,0001,0000,0000) from .dump.C:61 

_TEXT:_main(0002,1044) 

From a knowledge of C conventions, it follows that the first parameter for main() is argc, 
or the number of tokens in the command line that invoked the program being debugged; 
the second parameter is the offset within DGROUP of argv, or an array of pointers to 
each token. 

1112 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1122



SYMDEB:L 
Load File or Sectors 

Purpose 

Loads a file or individual sectors from a disk. 

Syntax 

L[address] 

or 

L address drive start number 

where: 

SYMDEB:L 

address is the starting address in memory that data read from a disk is placed into. 
drive is the decimal number (0-3) of the disk to read (0 = drive A, 1 = drive B, 

2 =drive C, 3= drive D). 
start is the hexadecimal number of the first sector to load (0-FFFFH). 
number is the hexadecimal number of consecutive sectors to load (0-FFFFH). 

Description 

The Load File or Sectors (L) command loads a file or individual sectors from a disk. 

When the L command is entered without parameters or with an address alone, the file 
specified in the SYMDEB command line or with the most recent Name File or Command­
Tail Parameters (N) command is loaded from the disk into memory. If no segment is speci­
fied in address, SYMDEB uses CS. If the file's extension is .EXE, the file is placed in 
SYMDEB's target program buffer at the load address specified in the .EXE file's header; if 
the file's extension is .COM, the file is loaded at offset 100H. (If for some reason an address 
is entered for a .EXE or .COM file and the address is anything but lOOH, an error message is 
displayed; if the address is 100H, it will be ignored.) If the file has a .HEX extension, the 
.HEX file's starting address is added to address before loading the file. If address is not 
specified, the .HEX file is placed at its own starting address. The length of the file or, in 
the case of a .EXE file, the actual length of the prog~am (the length of the file minus the 
header) is placed in the target program's BX and CX registers, with the most significant 16 
bits in register BX. 

The L command can also be used to bypass the MS-DOS file system and obtain direct 
access to logical sectors on the disk. The memory address (address), disk drive number 
(drive), starting logical sector number (start), and number of sectors to read (number) 
must all be specified in the command line. 

Note: The L command should not be used to access logical sectors on network drives. 

Section IV· Programming Utilities 1113 

ZTE (USA) 1007, Page 1123



SYMDEB:L 

Examples 

To load the file specified in the SYMDEB command line or in the most recent N command 
into SYMDEB's target program buffer, type 

-L <Enter> 

To load eight sectors from drive B, starting at logical sector 0, to memory location CS:OlOOH 
in SYMDEB's memory buffer, type 

-L 190 1 0 8 <Enter> 

Messages 

Disk error reading disk X 
A hardware-related disk error, such as a checksum error or seek incomplete, was encoun­
tered during the execution of an L command. 

File not found 
The file specified in the most recent N command cannot be found. 

1114 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1124



\ 
i 

I 
! 

SYMDEB:M 
Move (Copy) Data 

Purpose 

Copies the contents of one area of memory to another. 

·Syntax 

M range address 

where: 

SYMDEB:M 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be copied. 

address is the first byte of the destination of the copy operation. 

Description 

The Move (Copy) Data (M) command copies data from one location in memory to another 
without altering the data in the original location. If the source and destination areas over­
lap, the data is copied in the correct order so that the resulting copy is correct; the data in 
the original location is changed only when the two areas overlap. 

The range parameter specifies the starting and ending addresses or the starting address 
and length of the memory to be copied. The address parameter is the first byte in which 
the copy will be placed. If range does not contain an explicit segment, SYMDEB uses DS; 
if address does not contain a segment, SYMDEB uses the same segment used for range. 

Example 

To copy the data in locations DS:0800H through DS:08FFH to locations DS:0900H through 
DS:09FFH, type 

-M 800 8FF 900 <Enter> 

or 

-M 800 L100 900 <Enter> 

Section IV: Programming Utilities 1115 

ZTE (USA) 1007, Page 1125



SYMDEB:N 

SYMDEB:N 
Name File or Command-Tail Parameters 

Purpose 

Inserts parameters into the simulated program segment prefix (PSP). 

Syntax 

N parameter [parameter . .. ] 

where: 

parameter is a filename or switch to be placed into the simulated PSP. 

Description 

The Name File or Command-Tail Parameters (N) command is used to enter one or more 
parameters into the simulated PSP that is built at the base of the buffer holding the pro­
gram to be debugged. The N command can also be used before the Load File or Sectors (L) 
and Write File or Sectors (W) commands to name a file to be read from a disk or written 
to a disk. 

The count of the characters following the N command is placed at DS:0080H in the simu­
lated PSP and the characters themselves are copied into the PSP starting at DS:0081H. The 
string is terminated by a carriage return (ODH), which is not included in the count. If the 
second and third parameters follow the naming conventions for MS-DOS files, they are 
parsed into the default file control blocks (FCBs) in the simulated PSP, at offset 5CH and 
offset 6CH, respectively. Note that this is different from theN command in DEBUG, which 
loads the first and second parameters into the default FCBs. (Switches and other filenames 
specified as parameters are stored in the PSP starting at offset 81H along with the rest of 
the command line but are not parsed into the default FCBs.) 

If the N command line contains only one filename, any parameters placed in the default 
FCBs by a previous N command are destroyed. If the drive included with the second file­
name parameter is invalid, the AL register is set to OFFH. If the drive included with the 
third filename parameter is invalid, the AH register is set to OFFH. The existence of a file 
specified with the N command is not verified until it is loaded with the L command. 

The filename at DS:0081H specifies the file that is read or written by a subsequent L or W 
command. 

Example 

Assume that SYMDEB was started without specifying the name of a target program in the 
command line. To load the program CLEAN.COM for execution under the control of 

1116 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1126



SYMDEB:N 

SYMDEB and include the parameter MYFILE.DAT in the simulated PSP's command tail 
. and FCB, use the N and L commands together as follows: 

-N CLEAN.COM MYFILE.DAT <Enter> 
-L <Enter> 

To execute the program CLEAN. COM, type 

-G <Enter> 

The net effect is the same as if the CLEAN.COM program had been run from the MS-DOS 
command level with the command line 

C>CLEAN MYFILE.DAT <Enter> 

except that the program is executing under the control of SYMDEB and within SYMDEB's 
memory buffer. 

Section IV.· Programming Utilities 1117 

ZTE (USA) 1007, Page 1127



SYMDEB:O 

SYMDEB:O 
Output to Port 

Purpose 

Writes 1 byte to an input/output (I/0) port. 

Syntax 
0 port byte 

where: 

port 
byte 

is a 16-bit I/0 port address in the range 0 through FFFFH. 
is a value to be written to the I/0 port (0-0FFH). 

Description 

The Output to Port ( 0) command writes 1 byte of data to the specified I/0 port address. 
The data value must be in the range OOH through OFFH. 

Warning: This command must be used with caution because it involves direct access to 
the computer hardware and no error checking is performed. Attempts to write to some 
port addresses, such as those for ports connected to peripheral device controllers, timers, 
or the system's interrupt controller, may cause the system to crash or may even result in 
damage to data stored on disk. 

Example 

To write the value C8H to I/0 port lOAH, type 

-0 10A C8 <Enter> 

I 

1118 TheMS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1128



I 
I 

l 
I 

SYMDEB:P 

SYMDEB:P 
Proceed Through Loop or Subroutine 

Purpose 

Executes a loop, string instruction, software interrupt, or subroutine to completion. 

Syntax 

P[=address] [number] 

where: 

address is the location of the first instruction to be executed. 
number is the number of instructions to execute. 

Description 

The Proceed Through Loop or Subroutine (P) command transfers control to the target pro­
gram. The program executes without interruption until the loop, repeated string instruc­
tion, software interrupt, or subroutine call at address is completed or until the specified 
number of machine instructions have been executed. Control then returns to SYMDEB 
and the current contents of the target program's registers and flags are displayed. 

Warning: The P command should not be used to execute any instruction that changes the 
contents of the Intel8259 interrupt mask (ports 20H and 21H on the IBM PC and compat­
ibles) and cannot be used to trace through ROM. Use the Go (G) command instead. 

If the address parameter does not contain a segment, SYMDEB uses the target program's 
CS register; if address is omitted, execution begins at the current address specified by the 
target's CS:IP registers. The address parameter must be preceded by an equal sign ( =) to 
distinguish it from number. 

The number parameter specifies the number of instructions to be executed before control 
returns to SYMDEB. If number is omitted, one instruction is executed. 

When the Enable Source Display Mode (S+) command is selected, the P command oper­
ates directly on source-code lines, passing over function or procedure calls. (The S+ com­
mand can be used only with programs created by high-level-language compilers that 
insert line-number information into object modules.) 

When source display mode is disabled with the S- command or when the program being 
debugged does not have a .SYM file or has been created with the Microsoft Macro Assem­
bler (MASM) or with a compiler that does not support line numbers in relocatable object 
modules, the P command behaves like the Trace Program Execution (T) command except 
that when P encounters a loop, repeated string instruction, software interrupt, or sub­
routine call, it executes it to completion and then returns to the instruction following the 

Section IV: Programming Utilities 1119 

ZTE (USA) 1007, Page 1129



SYMDEB:P 

call. For example, if the user wants to trace the first three instructions in a program and if 
the second instruction is a subroutine call, a P3 command executes the first instruction, 
goes to the second instruction, identifies it as a CALL instruction, jumps to the subroutine 
and executes the entire subroutine, comes back and executes the third instruction, and 
then stops. A T3 command, on the other hand, executes the first instruction, executes the 
second, executes the first instruction of the subroutine as its third instruction, and then 

. stops. If the instruction at address is not a loop, repeated string instruction, software inter­
rupt, or subroutine call, the P command functions just like the T command. After each 
instruction is executed, SYMDEB displays the current contents of the target program's 
registers and flags and the next instruction to be executed. 

Examples 

Assume that the program being debugged was compiled with Microsoft C, a .SYM file was 
loaded with the executable program to provide line-number information, and source-code 
display has been enabled with the S+ command. To execute the machine instructions cor­
responding to the next four lines of source code, type 

-P 4 <Enter> 

Assume that the target program was created with MASM and location CS:143FH contains a 
CALL instruction. To execute the subroutine that is the destination of CALL at full speed 
and then return control to SYMDEB, type 

-P =143F <Enter> 

1120 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1130



l 
i 
l 
l 
l 

SYMDEB:Q 
Quit 

Purpose 

Ends a SYMDEB session. 

Syntax 

Q 

Description 

SYMDEB:Q 

The Quit (Q) command terminates the SYMDEB program and returns control to MS-DOS 
or the command shell that invoked SYMDEB. Any changes made to a program or other file 
that were not previously saved to disk with the Write File or Sectors (W) command are lost 
when the Q command is used. 

Example 

To exit SYMDEB, type 

-Q <Enter> 

Section IV:· Programming Utilities 1121 

ZTE (USA) 1007, Page 1131



SYMDEB:R 

SYMDEB:R 
Display or Modify Registers 

Purpose 

Displays one or all registers and allows a register to be modified. 

Syntax 

R 

or 

R register[[=] value] 

where: 

register 

value 

Description 

is the two-character name of an Intel 8086/8088 register from the following 
list: 

AX BX CX DX SP BP SI DI 
DS ES SS CS IP PC 

or the character F, to indicate the CPU flags. 

is an optional equal sign preceding value. 
is a 16-bit integer (0-FFFFH) that will be assigned to the specified register. 

The Display or Modify Registers (R) command allows the target program's register con­
tents and CPU flags to be displayed and modified. 

If R is entered without a register parameter, the current contents of all registers and CPU 
flags are displayed, followed by a disassembly of the machine instruction currently 
pointed to by the target program's CS:IP registers. 

A register can be assigned a new value in a single command by entering both register and 
value parameters,. optionally separated by an equal sign ( = ). If a register is named but no 
value is supplied, SYMDEB displays the current contents of the specified register and then 
prompts with a colon character (:) for a new value to be placed in the register. The user 
can enter the value in any valid radix or as an expression and then press the Enter key. If 
no radix is appended to the new value, hexadecimal is assumed. If the user presses the En­
ter key alone in response to the prompt, no changes are made to the register contents. 

Note: The PC register name is not supported properly in some versions of SYMDEB, so the 
IP register name should always be used instead . 

."·,. 

1122 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1132



SYMDEB:R 

Flag Name Value If Set (1) Value If Clear (0) 

Overflow OV (Overflow) NV (No Overflow) 
Direction DN(Down) UP(Up) 
Interrupt EI (Enabled) DI (Disabled) 
Sign NG (Minus) PL(Plus) 
Zero ZR(Zero) NZ (Not Zero) 
AuxCarry AC (Aux Carry) NA (No Aux Carry) 
Parity PE(Even) PO(Odd) 
Carry CY(Carry) NC (No Carry) 

After displaying the current flag values, SYMDEB again displays its prompt(-). Any or all 
of the individual flags can then be altered by typing one or more two-character flag codes 
(in any order and optionally separated by spaces) from the list above and then pressing 
the Enter key. If the user responds to the prompt by pressing the Enter key without enter­
ing any codes, no changes are made to the status of the flags. 

Examples 

To display the current contents of the target program's CPU registers and flags, followed 
by the disassembled mnemonic for the next instruction to be executed (pointed to by 
CS:IP), type 

-R <Enter> 

This produces the following display: 

AX=OOOO BX=OOOO CX=OOA1 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO 
DS=19A5 ES=19A5 SS=19A5 CS=19A5 IP=0100 NV UP EI PL NZ NA PO NC 
19A5:0100 BF8000 MOV DI,0080 

If the source display mode is enabled, the R command displays the following: 

AX=OOOO BX=1044 CX=OOOO DX=0102 SP=103C BP=OOOO SI=OOEA DI=115E 
DS=2143 ES=2143 SS=2143 CS=1F6E IP=0010 NV UP EI PL ZR NAPE NC 
32: int argc; 
_TEXT:Jllain: 
1F6E:0010 55 PUSH BP ;BRO 

This format includes the source code that corresponds to the next instruction to be 
executed. 

To set the contents of register AX to FFFFH without displaying its current value, type 

-R AX=FFFF <Enter> 

or 

-R AX -1 <Enter> 

Section IV: Programming Utilities 1123 

ZTE (USA) 1007, Page 1133



SYMDEB:R 

To display the current value of the target program's BX register, type 

-R BX <Enter> 

IfBX contains 200H, for example, SYMDEB displays that value and then issues a prompt in 
the form of a colon: 

BX 0200 

The contents of BX can then be altered by typing a new value and pressing the Enter key, 
or the contents can be left unchanged by pressing the Enter key alone. 

To set the direction and carry flags, first type 

-R F <Enter> 

SYMDEB displays the current flag values, followed by a prompt in the form of a hyphen 
character(-). For example: 

NV UP EI PL NZ NA PO NC -

The direction and carry flags can then be set by entering 

-DN CY <Enter> 

on the same line as the prompt. 

Messages 

Bad Flag! 
An invalid code for a CPU flag was entered. 

Bad Register! 
An invalid register name was entered. 

Double Flag! 
Two values for the same CPU flag were entered in the same command. 

1124 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1134



I 

l 
I 

SYMDEB:S 
Search Memory 

Purpose 

Searches memory for a pattern of one or more bytes. 

·syntax 

S range list 

where: 

SYMDEB:S 

range is the starting and ending address or the starting address and length in bytes of 
the area to be searched. 

list is one or more byte values or a string to be searched for. 

Description 

The Search Memory (S) command searches a designated range of memory for a sequence 
of byte values or text strings and displays the starting address of each set of matching 
bytes. The contents of the searched area are not altered. 

The range parameter specifies the starting and ending address or the starting address and 
length in bytes of the area to be searched. If a segment is not included in range, SYMDEB 
uses DS. If a segment is specified only for the starting address, SYMDEB uses the same seg­
ment for the ending address. If a starting address and length in bytes are specified, the 
starting address plus the length less 1 cannot exceed FFFFH. 

The list parameter is one or more hexadecimal byte values and/or strings separated by 
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation 
marks, and case is significant within a string. 

Examples 

To search for the string Copyright in the area of memory from DS:OOOOH through 
DS:1FFFH, type 

-s 0 1FFF 'Copyright' <Enter> 

or 

-s 0 12000 "Copyright" <Enter> 

If a match is found, SYMDEB displays the address of each occurrence: 

20A8:0910 
20A8: 094F 
20A8:097C 

Section IV: Programming Utilities 1125 

ZTE (USA) 1007, Page 1135



SYMDEB:S 

To search for the byte sequence 3BH 06H in the area of memory from CS:OlOOH through 

CS:12AOH, type 

-S CS:100 12A0 3B 06 <Enter> 

or 

-S CS:100 L11A1 3B 06 <Enter> 

1126 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1136



SYMDEB:S+ 
Enable Source Display Mode 

Purpose 

Displays source-code lines, rather than machine instructions. 

Syntax 

S+ 

Description 

SYMDEB:S+ 

The Enable Source Display Mode (S+) command affects the display format of certain 
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution 
(T), and Display or Modify Registers (R). The S+ command causes source code, rather than 
disassembled machine instructions, to be displayed by those commands. 

The S+ command is useful only if the program being debugged was created with a high­
level-language compiler capable of placing line-number information into the relocatable 
object modules processed by the Microsoft Object Linker (LINK). When debugging 
Microsoft Macro Assembler (MASM) programs or programs generated by language com­
pilers that do not pass line-number information to LINK, the S+ command has no effect. 

Example 

To enable the display of source-code statements during debugging, type 

-S+ <Enter> 

Section IV.· Programming Utilities 1127 

ZTE (USA) 1007, Page 1137



SYMDEB:S-

SYMDEB:S-
Disable Source Display Mode 

Purpose 

Displays disassembled machine instructions, rather than source-code lines. 

Syntax 

s-
Description 

The Disable Source Display Mode (S-) command affects the display format of certain 
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution 
(T), and Display or Modify Registers (R). The S- command causes disassembled machine 
instructions, rather than source code, to be displayed by those commands. By default, 
SYMDEB displays disassembled machine instructions when debugging Microsoft Macro 
Assembler (MASM) programs or programs generated by language compilers that do not 
pass line-number information to the Microsoft Object Linker (LINK). 

Example 

To disable the display of source-code statements during debugging, type 

-s- <Enter> 

1128 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1138



I 

\ 

I 
I 

SYMDEB:S& 

SYMDEB:S& 
Enable Source and Machine Code Display Mode 

Purpose 

Displays both source-code lines and disassembled machine instructions. 

Syntax 

S& 

Description 

The Enable Source and Machine Code Display Mode (S&) command affects the display 
format of certain SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace 
Program Execution (T), and Display or Modify Registers (R). The S& command causes 
both the disassembled machine instructions and the corresponding source-code lines to 
be displayed by those commands. 

The S& command is useful only if the program being debugged was created with a high­
level-language compiler capable of placing line-number information into the relocatable 
object modules processed by the Microsoft Object Linker (LINK). When debugging 
Microsoft Macro Assembler (MASM) programs or programs generated by language com­
pilers that do not pass line-number information to LINK, the S& command has no effect. 

Example 

To enable the display of both source-code statements and disassembled machine-code 
statements during debugging, type 

-S& <Enter> 

Section IV: Programming Utilities 1129 

ZTE (USA) 1007, Page 1139



SYMDEB:T 

SYMDEB:T 
Trace Program Execution 

Purpose 

Executes one or more machine instructions in single-step mode. 

Syntax 

T[ =address] [number] 

where: 

address is the location of the first instruction to be executed. 
number is the number of machine instructions to be executed. 

Description 

The Trace Program Execution (T) command executes one or more machine instructions, 
starting at the specified address. If source display mode has been enabled with the S+ 
command, each trace operation executes the machine code corresponding to one source 
statement and displays the lines from the source code. If source display mode has been 
disabled with the S- command, each trace operation executes an individual machine in­
struction and displays the contents of the CPU registers and flags after execution. 

Warning: The T command should not be used to execute any instruction that changes the 
contents of the Intel 8259 interrupt mask (ports 20H and 21H on the IBM PC and compat­
ibles). Use the Go (G) command instead. 

The address parameter points to the first instruction to be executed. If address does not 
include a segment, SYMDEB uses the target program's CS register; if address is omitted 
entirely, execution is begun at the current address specified by the target program's CS:IP 
registers. The address parameter must be preceded by an equal sign (=) to distinguish it 
from number. 

The number parameter specifies the hexadecimal number of source-code statements 
or machine instructions to be executed before the SYMDEB prompt is displayed again 
(default= 1). If source display mode is enabled, the number parameter is required. Execu­
tion of a sequence of instructions using the T command can be interrupted at any time by 
pressing Ctrl-C or Ctrl-Break and can be paused by pressing Ctrl-S (pressing any key 
resumes the trace). 

Examples 

To execute one instruction at location CS:lAOOH and then return control to SYMDEB, 
displaying the contents of the CPU registers and flags, type 

-T =1A00 <Enter> 

1130 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1140



SYMDEB:T 

Consecutive instructions can then be executed by entering repeated T commands with no 
parameters. 

If source display mode has been enabled with a previous S+ command, to begin execution 
at the label main and continue through the machine code corresponding to four source­
code statements, type 

-T =_main 4 <Enter> 

Section IV.· Programming Utilities 1131 

ZTE (USA) 1007, Page 1141



SYMDEB:U 

SYMDEB:U 
Disassemble (Unassemble) Program 

Purpose 

Disassembles machine instructions into assembly-language mnemonics. 

Syntax 

U[range] 

where: 

range 

Description 

specifies the starting and ending addresses or the starting address and the 
number of instructions of the machine code to be disassembled. 

The Disassemble (Unassemble) Program (U) command translates machine instructions 
into their assembly-language mnemonics. 

The range parameter specifies the starting and ending addresses or the starting address 
and number of machine instructions to be disassembled. If range does not include an 
explicit segment, SYMDEB uses CS. Note that the resulting disassembly will be incorrect if 
the starting address does not fall on an 8086 instruction boundary. 

If range does not include the number of machine instructions to be executed or an ending 
address, eight instructions are disassembled. If range is omitted completely, eight instruc­
tions are disassembled starting at the address following the last instruction disassembled 
by the previous U command, if a U command has been used; if no U command has been 
used, eight instructions are disassembled starting at the address specified by the current 
value of the target program's CS:IP registers. 

The display format for the U command depends on the current source display mode set­
ting and on whether the program was developed with a compatible high-level-language 
compiler. If the source display mode setting is S- or the program was developed with the 
Microsoft Macro Assembler (MASM) or a noncompatible high-level-language compiler, the 
display contains only the address and the disassembled equivalent of each instruction 
within range. (For 8-bit immediate operands, SYMDEB also displays the ASCII equivalent 
as a comment following a semicolon.) If the setting is S+ or S& and a compatible symbol 
file containing line-number information was loaded with the program being debugged, 
the display contains both the source-code lines and their corresponding disass~mbled 
machine instructions. 

Note: The 80286 instructions that are considered privileged when the microprocessor is 
running in protected mode are not supported by SYMDEB's disassembler. 

1132 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1142



Examples 

To disassemble four machine instructions starting at CS:0100H, type 
··---, 

-u 100 L4 <Enter> 

This produces the following display: 

44DC:0100 EC 
44DC:0101 880200 
44DC:0104 E86102 
44DC:0107 57 

IN AL,DX 
MOV AX,0002 
CALL 0368 
PUSH DI 

SYMDEB:U 

Successive eight-instruction fragments of machine code can be disassembled by entering 
additional U commands without parameters. 

When a program is being debugged with a symbol file that contains line-number informa­
tion and source display mode has been enabled, disassembled machine code is accom­
panied by the corresponding source code: 

43: if (argc != 2) 
28A5:0031 837E0402 CMP Word Ptr [8P+04],+02 
28A5:0035 7503 JNZ _main+2A (003A) 

28A5:0037 E91400 JMP _main+3E (004E) 
44: { fprintf(stderr,"\ndump: wrong number of parameters\n"); 
28A5:003A 883600 MOV AX,0036 
28A5:003D 50 PUSH AX 
28A5:003E 88F600 MOV AX,OOF6 
28A5:0041 50 PUSH AX 
28A5:0042 E8AC04 CALL _fprintf 
28A5:0045 83C404 ADD SP,+04 
45: return (1); 
28A5:0048 880100 MOV AX, 0001 
28A5:0048 E9AA00 JMP _main+E8 (00F8) 

Section IV: Programming Utilities 1133 

ZTE (USA) 1007, Page 1143



SYMDEB:V 

SYMDEB:V 
View Source Code 

Purpose 

Displays lines from the source-code file for the program being debugged. 

Syntax 

V address [length] 

or 

V [ .soun;efile: linenumber] 

where: 

address 
length 
.sourcefile 

linen umber 

Description 

is the location of an executable instruction in the target program. 
is an ending address or the number of source-code lines. 
is the base name of the source file of the program being debugged, pre­
ceded by a period (.). 
is the first literal line number of .sourcefile to be displayed. 

The View Source Code (V) command displays lines of source code for the program being 
debugged, beginning at the location specified by address. If address does not include a 
segment, SYMDEB uses the target program's CS register. 

The optional length parameter can be an ending address or an L followed by a hexadeci­
mal number of source-code lines. If length is not specified, eight lines of source code are 
displayed. 

If the .sourcefile parameter is specified, followed by a colon character (:) and a line num­
ber, eight lines of source code are displayed, starting at linenumber. If the V command is 
entered without parameters after the .sourcefile:linenumber parameter has been speci­
fied, eight lines are displayed from the current source file, beginning with the line after the 
last line displayed with the V command. The .sourcefile parameter must be the name of a 
high-level-language source file in the current directory. Pathnames and extensions are not 
supported. The length option cannot be used with the .sourcefile parameter. 

Warning: Specifying a file that does not exist in the current directory may cause the sys­
tem to crash. 

The V command can be used only with programs created by a high-level-language com­
piler that is capable of placing line-number information into the relocatable object modules 
processed by the Microsoft Object Linker (LINK). The current source display mode setting 
(S-, S+, or S&) has no effect on the V command. 

1134 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1144



SYMDEB:V 

_! 

Examples 

Assume that the program DUMP.EXE is being debugged with the aid of the symbol file 
DUMP.SYM and that the source file DUMP.C is available in the current directory. To display 
eight lines of source code beginning at the label_ main, type 

-v _main <Enter> 

This produces the following output: 

32: int argc; 
33: char *argv[]; 
34: 

35: FILE *dfile; 
36: int status = 0; 
37: int file_rec = 0; 
38: long file_ptr = OL; 
39: char file_buf[REC_SIZE]; 

I* control block for input file *I 
I* status returned from file read *I 
I* file record number being dumped *I 
I* file byte offset for current rec- *I 
I* data block from file *I 

To view eight lines of source code from the file DUMP.C, beginning with line 20, type 

-V .DUMP:20 <Enter> 

Message 

Source file for filename (cr for none)? 
The current directory does not contain the source file specified with the .sourcefile 
parameter. Enter the correct filename or press Enter to indicate no source file. 

Section IV: Programming Utilities 1135 

ZTE (USA) 1007, Page 1145



SYMDEB:W 

SYMDEB:W 
Write File or Sectors 

Purpose 

Writes a file or individual sectors to disk. 

Syntax 

W[address] 

or 

W address drive start number 

where: 

address is the first location in memory of the data to be written. 
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive 

C, 3 =drive D). 
start is the number of the first logical sector to be written (0- FFFFH). 
number is the number of consecutive sectors to be written (0- FFFFH). 

Description 

The Write File or Sectors (W) command transfers a file or individual sectors from memory 
to disk. 

When the W command is entered without parameters or with an address alone, the num­
ber of bytes specified by the contents of registers BX:CX are written from memory to the 
file named by the most recent Name File or Command-Tail Parameters (N) command or to 
the first file specified in the SYMDEB command line if the N command has not been used. 

Note: If a Go (G), Proceed Through Loop or Subroutine (P), or Trace Program Execution 
(T) command was previously used or the contents of the BX or CX registers were changed, 
BX:CX must be restored before theW command is used. 

When address is not included in the command line, SYMDEB uses the target program's 
CS:OlOOH. Files with a .EXE or .HEX extension cannot be written with the W command. 

The W command can also be used to bypass the MS-DOS file system and obtain direct 
access to logical sectors on the disk. To use the W command in this way, the memory 
address (address), disk unit number (drive), starting logical sector number (start), and 
number of sectors to be written (number) must all be provided in the command line in 
hexadecimal format. 

Warning: Extreme caution should be used with the W command. The disk's file structure 
can easily be damaged if the command is entered incorrectly. The W command should not 
be used to write logical sectors to network drives. ' 

1136 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1146



SYMDEB:W 

Example 

Assume that the interactive Assemble Machine Instructions (A) command was used to 
create a program in SYMDEB's memory buffer that is 32 (20H) bytes long, beginning at 
offset 100H. This program can be written into the file QUICK. COM by sequential use of 
the Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write 
File or Sectors (W) commands. First, use the N command to specify the name of the file to 
be written: 

-N QUICK.COM <Enter> 

Next, use the R command to set registers BX and ex to the length to be written. Register 
BX contains the upper-half or most significant part of the length; register ex contains the 
lower half or least significant part. Type 

-R CX <Enter> 

SYMDEB displays the current contents of register CX and issues a colon character(:) 
prompt . Enter the length after the prompt: 

:20 <Enter> 

To use the R command again to set the BX register to zero, type 

-R BX <Enter> 

Then type 

:0 <Enter> 

To create the disk file QUICK. COM and write the program into it, type 

-W <Enter> 

SYMDEB responds: 

Writing 0020 bytes 

Messages 

EXE and HEX files cannot be written 
Files with a .EXE or .HEX extension cannot be written to disk with the W command. 

Writingnnnn bytes 
After a successful write operation, SYMDEB displays in hexadecimal format the number of ~ 
bytes written to <li>k. ~ 

Section IV: Programming Utilities 1137 

ZTE (USA) 1007, Page 1147



SYMDEB:X 

SYMDEB:X 
Examine Symbol Map 

Purpose 

Displays names and addresses in the symbpl maps. 

Syntax 

X(•] 

or 

X? [map!] [segment:] [symbol] 

where: 

map! 

segment: 

symbol 

Description 

is the name of a symbol file, without the .SYM extension, followed by an 
exclamation point (!). 
is the name of a segment within the currently open or specified map, followed 
by a colon character(:). 
is a symbol name within the specified segment. 

The Examine Symbol Map (X) command displays the addresses and names of symbols in 
the currently open symbol maps. (SYMDEB maintains a symbol map for each symbol file 
specified in the SYMDEB command line.) 

If the X command is followed by the asterisk wildcard character (• ), the map names, 
segment names, and segment addresses for all currently loaded symbol maps are dis­
played. If X is entered alone, the information is displayed only for the active symbol map. 

Information from the symbol maps can be displayed selectively by following the X? com­
mand with.the map!, segment:, and symbol parameters. The three parameters may be 
used individually or in combination, but at least one parameter must be specified. 

The map! parameter must be terminated by an exclamation point and consists of the 
name, without the extension, of a previously loaded symbol file. If map! is omitted, 
SYMDEB uses the currently open symbol map. If more than one .SYM file is specified 
in the command line, the one with the same name as the program being debugged is 
opened first. 

The segment: parameter must be terminated with a colon; it is the name of a segment 
declared within the specified or currently open symbol map. 

The symbol parameter is the name of a label, variable, or other object within the specified 
segment. 

Any or all parameters can consist of or include the asterisk wildcard character. For exam­
ple, X?• displays everything in the current map. 

1138 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1148



I 
i. 

I 
I 
l 

I 

SYMDEB:X 

,r 

Examples 

Assume that the program DUMP.EXE is being debugged with the symbol file DUMP.SYM. 
If the following is typed 

-X <Enter> 

SYMDEB displays: 

[456E DUMP) 
[456E _TEXT) 

4743 DGROUP 

This indicates that the program contains one executable code segment (named _TEXT), 
which is loaded at segment 456EH, and one NEAR DATA group and segment (named 
DGROUP), which is loaded at segment 4743H. 

To display the addresses of all procedures in the same example program whose names 
begin with the character J, type 

-X? _TEXT:_F* <Enter> 

This produces the following listing: 

_TEXT: (456E) 

0428 _fclose 

0528 _fread 
19AD _flushall 

04CB _fopen 

OACB _fflush 

04F1 _fprintf 
OBC2 _free 

Note: Unlike the Microsoft C Compiler, SYMDEB is not case sensitive. 

Section IV: Programming Utilities 1139 

ZTE (USA) 1007, Page 1149



SYMDEB:XO 

SYMDEB:XO 
Open Symbol Map 

Purpose 

Selects the active symbol map and/or segment. 

Syntax 

XO [map!] [segment] 

where: 

map! is the name of a symbol file, without the .SYM extension, followed by an 
exclamation point(!). 

segment is the name of the segment that will become the active segment in the current 
symbol map. 

Description 

The Open Symbol Map (XO) command selects the active symbol map and/or the active 
segment within the current symbol map to be used during debugging. 

The optional map! parameter must be terminated by an exclamation point and must be 
the name, without the extension, of a symbol file specified in the original SYMDEB com­
mand line. If map! is omitted, no changes are made to the active symbol map. 

The optional segment parameter must be the name of a segment within the current or 
specified symbol map. All segments in the active symbol map are accessible; the active 
segment is searched first for symbols specified in other SYMDEB commands. If segment is 
omitted and a new active symbol map is specified, the segment with the smallest address 
in the new active symbol map will become the active segment. 

Examples 

Assume that the program SHELL.EXE has been loaded with the two symbol files 
SHELL.SYM and VIDEO.SYM. To use the information loaded from VIDEO.SYM as the 
active symbol map for debugging, type 

-XO VIDEO! <Enter> 

Subsequent entry of the command 

-XO _TEXT <Enter> 

causes the segment_ TEXT within the symbol map VIDEO to be searched first for symbol 
names. 

Message 

Symbol not found 
The Specified symbol map or segment does not exist. 

1140 The MS-DOS Encyclopedia . 

ZTE (USA) 1007, Page 1150



SYMDEB:Z 
Set Symbol Value 

Purpose 

Assigns a value to a symbol. 

Syntax 

Z [map!] symbol value 

where: 

SYMDEB:Z 

map! is the name of a symbol file, without the .SYM extension, followed by an ex­
clamation point(!). 

symbol 

value 

Description 

is an existing symbol name in the active symbol map or in the symbol map 
specified by map!. 
is the new address of symbol (0-FFFFH). 

The Set Symbol Value (Z) command allows the address associated with a name in one of 
the loaded symbol maps to be overridden by a new value. 

Note that altering the address of a symbol at debugging time will not affect other addresses 
or values that were derived from the value of the same symbol at compilation or assembly 
time. 

The optional map! parameter must be terminated by an exclamation point and must be 
the name, without the extension, of a symbol file specified in the original SYMDEB com­
mand line. If map! is omitted, SYMDEB uses the active symbol map. 

The symbol parameter specifies the name of a label, variable, or other object in map! or 
the active symbol map. 

The value parameter specifies a new address to be associated with symbol. 

To debug programs created with older versions of FORTRAN and Pascal (Microsoft ver­
sions earlier than 3.3 or IBM versions earlier than 2.0), the user must start SYMDEB, locate 
the first procedure of the program being debugged, and then use the Z command to set 4 
the address of DGROUP to the current value of the DS register. (Later versions of 
FORTRAN and Pascal do this by default.) 

Section IV: Programming Utilities 1141 

ZTE (USA) 1007, Page 1151



SYMDEB:Z 

( 

Examples 

To change the segment address for the symbol DGROUP to 5000H, type 

-z DGROUP 5000 <Enter> 

The actual data associated with the label DGROUP must be moved to the new address 
before debugging can continue. 

To change the segment address for the symbol CODE in the inactive symbol map COUNT 
to OFOOH, type 

-z COUNT! CODE FOO <Enter> 

1142 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1152



SYMDEB:< 
Redirect SYMDEB Input 

Purpose 

Redirects input to SYMDEB. 

Syntax 

<device 

where: 

device is the name of any MS-DOS device or file. 

Description 

SYMDEB: < 

The Redirect SYMDEB Input (<)command causes SYMDEB to read its commands from 
the specified text file or character device, rather than from the keyboard (CON). 

The device parameter specifies the name of any MS-DOS device or file from which com­
mands will be read. If the device parameter is a filename, the file must be an ASCII text 
file and each command in the file must be on a separate line. 

If input will be taken from a terminal attached to one of the serial communications ports 
(AUX, COMl, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

When SYMDEB commands are redirected from a file, the last entry in the file must be 
either the < CON command, which restores the keyboard as the input device, or the Quit 
(Q) command. Otherwise, SYMDEB will lock and the system will have to be restarted. 

Examples 

Assume that the text file FILL. TXT contains the following SYMDEB commands: 

F CS:0100 L100 00 

D CS:0100 L100 

R 

Q 

To process FILL.TXT during a SYMDEB session (which in turn exits SYMDEB with the 
Quit [QJ command), type 

-< FILL.TXT ·<Enter> 

Section IV Programming Utilities 1143 

ZTE (USA) 1007, Page 1153



SYMDEB:< 

Assume that the text file SEARCH. TXT contains the following SYMDEB commands: 

S BUFFER L2000 "error" 
< CON 

r 
l 

To process SEARCH. TXT during a SYMDEB session and return control to the console, type 

-< SEARCH.TXT <Enter> 

1144 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1154



SYMDEB:> 

SYMDEB:> 
Redirect SYMDEB Output 

Purpose 

Redirects SYMDEB's output to a device or file. 

Syntax 

>device 

where: 

device is the name of any MS-DOS device or file. 

Description 

The Redirect SYMDEB Output (>) command causes SYMDEB to send all its messages to 
the specified device or file, rather than to the video display (CON). This is useful for creat­
ing a record of a debugging session that can be viewed later with an editor or listed on a 
printer. 

After SYMDEB output is redirected, commands typed on the keyboard are not echoed to 
the video display. Therefore, the user must know in advance which commands to use and 
which parameters to supply. 

The device parameter specifies the name of an MS-DOS device or file to receive 
SYMDEB's output. If output will be redirected to one of the serial communications ports 
(AUX, COM1, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Output can be restored to the video display by entering the > CON command or by ter­
minating SYMDEB with the Quit (Q) command. 

Examples 

To cause SYMDEB to send all prompts and messages to the file SESSION.TXT, type 

-> SESSION.TXT <Enter> 

After this command, new commands are still accepted by SYMDEB, but the keypresses 
are not echoed to the screen until the command 

-> CON <Enter> 

is entered or SYMDEB is terminated with the Quit ( Q) command. 

To cause SYMDEB to send all its prompts and messages to the standard printing device, 
PRN,type 

-> PRN <Enter> 

Section IV.· Programming Utilities 1145 

ZTE (USA) 1007, Page 1155



SYMDEB: = 

SYMDEB: = 

Redirect SYMDEB Input and Output 

Purpose 

Redirects both input and output for SYMDEB. ,. 

Syntax 

=device 

where: 

device is the name of any MS-DOS device. 

Description 

The Redirect SYMDEB Input and Output ( =) command causes SYMDEB to read its 
commands from and send its output to the specified device, rather than reading from the 
keyboard and sending output to the video display (CON). This command is especially use­
ful for debugging programs that run in graphics mode; the SYMDEB commands can be en­
tered on a terminal attached to the computer's serial port while the graphics program has · 
the full use of the system's video display. 

The device parameter specifies the name of any MS-DOS device. If input and output will 
be redirected to one of the serial communications ports (AUX, COM1, or COM2), the port 
must be properly configured with the MODE command before the SYMDEB session is 
started. 

Input and output can be restored to the standard settings with the = CON command. 

Example 

To redirect SYMDEB's input and output to the first serial communications port (COM1), 
type 

-= COM1 <Enter> 

1146 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1156



SYMDEB:{ 
Redirect Target Program Input 

Purpose 

Redirects input to the program being debugged. 

Syntax 

{device 

where: 

device 

Description 

is the name of any MS-DOS device or file. 

SYMDEB:{ 

The Redirect Target Program Input({) command causes read operations by the program 
being debugged to be taken from the specified file or device when the program is exe­
cuted, rather than from the keyboard (CON). 

The device parameter specifies the name of an MS-DOS device or file from which the 
target program will read. If the device parameter is a filename, the file must be an ASCII 
text file and each command in the file must be on a separate line. 

If input will be taken from a terminal attached to one of the serial communications ports 
(AUX, COMl, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Example 

To cause input for the program being debugged to be taken from the file TEST. TXT, type 

-{ TEST.TXT <Enter> 

Section IV Programming Utilities 1147 

ZTE (USA) 1007, Page 1157



SYMDEB:] 

SYMDEB:} 
Redirect Target Program Output 

Purpose 

Redirects the output of the program being debugged. 

Syntax 

} device 

where: 

device is the name of any MS-DOS device or file. 

Description 

The Redirect Target Program Output(}) command causes write operations by the pro­
gram being debugged to be redirected to the specified device or file when the program is 
executed, rather than to the video display (CON). This is useful for capturing the output of 
a program in a file for later listing on a printer. 

The device parameter specifies the name of an MS-DOS device or file to receive the target 
program's output. If output will be redirected to one of the serial communications ports 
(AUX, COM1, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Example 

To send the output from the program being debugged to the file SESSION.TXT, type 

-) SESSION.TXT <Enter> 

1148 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1158



I 

I 

I 

SYMDEB:-

SYMDEB:-
Redirect Target Program Input and Output 

Purpose 

Redirects both input and output for the program being debugged. 

Syntax 

-device 

where: 

device 

Description 

is the name of any MS-DOS device. 

The Redirect Target Program Input and Output (-) command causes all read and write 
operations by the program being debugged to be redirected to the specified character 
device. 

The device parameter specifies the name of an MS-DOS device that the target program 
will read from and write to. If input and output are redirected to one of the serial commu­
nications ports (AUX:, COM1, or COM2), the port must be properly configured with the 
MODE command before the SYMDEB session is started. 

Example 

To redirect input and output for the program being debugged to the first serial communi­
cations port (COM1), type 

-- COM1 <Enter> 

Section IV: Programming Utilities 1149 

ZTE (USA) 1007, Page 1159



SYMDEB: \ 

SYMDEB: \ 
Swap Screen 

Purpose 

Exchanges the SYMDEB display for the taq:~~t program's display. 

Syntax 

\ 

Description 

The Swap Screen(\) command causes the SYMDEB status display to be exchanged for the 
virtual screen used by the program being debugged. After the program's output has been 
inspected on the virtual screen, the SYMDEB display can be restored by pressing any key. 
This command is useful for debugging programs that perform direct screen access or run 
in graphics mode. 

Note: Any information on the display when SYMDEB was invoked will also appear on the 
virtual screen. When SYMDEB is terminated, the current display is set to match the virtual 
screen. 

The Swap Screen command is available only if the IS switch (or the /1 switch, if the com­
puter is IBM compatible) preceded the names of the symbol and program files in the origi­
nal SYMDEB command line. 

Example 

To exchange the SYMDEB status display for the virtual screen of the program being 
debugged, type 

-\ <Enter> 

To restore the SYMDEB display, press any key. 

1150 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1160



SYMDEB: 

SYMDEB:. 
Display Source Line 

Purpose 

Displays the current source-code line. 

Syntax 

Description 

The Display Source Line (.) command displays the line from the source-code file that 
corresponds to the machine instruction currently pointed to by the target program's CS:IP 
registers. 

The • command is independent of the current Source Display Mode status (S+, S-, or S&). 
However, if the program being debugged was not created with a high-level-language com­
piler that inserts line numbers into the object modules, the • command has no effect. 

Example 

To display the source-code line corresponding to the next instruction to be executed, type 

<Enter> 

This produces output in the following form: 

56: printf( '\nDump of file: %s ', argv[1] ); 

Section IV: Programming Utilities 1151 

ZTE (USA) 1007, Page 1161



SYMDEB:? 

SYMDEB:? 
Help or Evaluate Expression 

Purpose 

Displays the help screen or the value of an expression. 

Syntax 

? [expression] 

where: 

expression 

Description 

is any valid combination of symbols, addresses, numbers, and operators. 

When ? is entered alone, a help screen summarizing all valid SYMDEB commands, opera­
tors, and types is displayed. 

When? is followed by the expression parameter, expression is evaluated and the value is 
displayed. The expression parameter can include any valid combination of symbols, ad­
dresses, numbers, and operators. 

The form and content of the resulting display depends on the type of expression entered. 
If expression is a symbol or an address (optionally including operators), the value is 
shown first as a FAR address pointer in the form segment:offset, then as a 32-bit hexadeci­
mal number representing the value's physical location in memory (followed by its decimal 
equivalent in parentheses), and finally as the physical location's ASCII character equiva­
lents displayed as a string enclosed in quotation marks (which have no practical value if 
expression is an address or symbol). 

If expression includes numbers (interpreted as signed hexadecimal values unless a radix is 
specified) and operators, the resulting value is shown first as a 16-bit hexadecimal value, 
then as a 32-bit hexadecimal value (followed by its decimal equivalent in parentheses), 
and finally as the value's ASCII character equivalents displayed as a string enclosed in 
quotation marks. 

(The ASCII characters within the string are displayed as dots if their value is less than 20H 
[32] or greater than 7EH [126].) 

Examples 

Assume that the pointer array argv in the program DUMP.C is located at address 
4743:029CH. The command 

-? _argv+4 <Enter> 

produces the following display: 

4743:02AOh 00047600 (292560) 

1152 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1162



SYMDEB:? 

To display the result of an exclusive OR operation between the values OFCH and 14H, type 

-? FC XOR 14 <Enter> 

SYMDEB displays 

OOEBh OOOOOOEB (232) 

Section IV: Programming Utilities 1153 

ZTE (USA) 1007, Page 1163



SYMDEB:! 

SYMDEB:! 
Escape to Shell 

Purpose 

Invokes the MS-DOS command processor. 

Syntax 

![command] 

where: 

command 

Description 

-:-

is the name of any MS-DOS command, program, or batch file and its re­
quired parameters. 

The Escape to Shell (!) command loads a copy of the system's command processor 
(COMMAND. COM), optionally passing it i:he name of a program or batch file to be exe­
cuted. This allows MS-DOS functions such as listing or copying files to be carried out 
without losing the context of the debugging session. 

If the! command is entered alone, an additional·copy of COMMAND. COM gains control 
and displays the system prompt. Control can be returned to SYMDEB by leaving the new 
shell with the EXIT command. 

If the ! character is followed by a command parameter that specifies any valid MS-DOS 
command, program name, or batch-file name, the specified command is executed imme­
diately and control returns directly to SYMDEB. 

The SYMDEB statement connector (;) cannot be used on the same line as the ! command; 
all text encountered after this command is passed to COMMAND. COM and is interpreted 
as an MS-DOS command line. 

Example 

To list the files in the current directory, type 

1154 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1164



SYMDEB:! 

Messages 

COMMAND.COM not found! 
SYMDEB could not find COMMAND. COM because it was not present in the directory 
location specified in the environment block's COMSPEC variable. 

Not enough memory! 
Free memory in the transient program area (TPA) is insufficient to execute the requested 
command or program. This is a common occurrence when debugging a large program 
with symbol files. 

Section TV.· Programming Utilities 1155 

ZTE (USA) 1007, Page 1165



SYMDEB:• 

SYMDEB:* 
Enter Comment 

Purpose 

Allows insertion of a comment that will be ignored by SYMDEB's command interpreter. 

Syntax 

•text 

where: 

text is any ASCII text up to and including a carriage return. 

Description 

The Enter Comment (•) command causes the remainder of the text on that line to be 
ignored, thereby providing a means of commenting a SYMDEB debugging session. 
SYMDEB echoes any text following the asterisk to the screen or redirected output device, 
providing the user with a convenient way to comment program output redirected to a file 
or a printer. A maximum of 78 characters can be included on each comment line. Com­
ment lines are also useful for documenting lines within a text file that SYMDEB will use as 
redirected input for the program being debugged. 

Example 

To echo the reminder Errors in program output start here: to the screen or redirected out­
put device, type 

-•Errors in program output start here: <Enter> 

A line in a text file that will be used by SYMDEB for redirected input to the program being 
debugged may be "commented out" by inserting an asterisk at the beginning of the line. 
For example: 

*EB CS: 1200 90 

1156 The MS-DOS Encyclopedia 

' \ 

ZTE (USA) 1007, Page 1166



Code View 

Code View 
Window-Oriented Debugger 

Purpose 

Allows the controlled execution of an assembly-language program or high-level-language 
program for debugging purposes. Both source code and the corresponding unassembled 
machine code can be displayed as program execution is traced. In addition, watch vari­
ables, CPU registers and flags, and program output can be examined in separate debug­
ging windows. Code View is supplied with the Microsoft Macro Assembler (MASM), c 
Compiler, Pascal Compiler, and FORTRAN Compiler. This documentation describes 
Code View version 2.0. 

Syntax 

CV [options] exe_file [pqrameters] 

where: 

.exe_file 

parameters 

options 

is the name of the executable file containing the program to be debugged 
(default extension = .EXE). 
is one or more filenames or switches required by the program being 
debugged. 
is one or more switches from the following list. Switches can be either 
uppercase or lowercase and can be preceded by a dash (-) instead of a 
forward slash (/). 

/2 
/43 

/B 

/Ccommands 

!D 

Allows the use of two video displays for debugging. 
Enables 43-line display mode. (An IBM-compatible 
computer with an enhanced graphics adapter [EGA] 
and an enhanced color display is required for this 
option.) 
Forces the attached monitor to use two shades of color 
when displaying information. 
Executes the specified list of startup commands when 
CodeView is invoked. If the list of startup commands 
contains any spaces, the entire list must be enclosed in ~ 
double quotation marks ("). Commands in the list must 
be separated by a semicolon character(;). 
Turns off nonmaskable interrupt trapping and Intel 
8259 interrupt trapping. (This switch prevents system 
crashes on some IBM-compatible machines that do 
not support certain IBM-specific interrupt trapping 
functions.) 

(more) 

Section IV.· Programming Utilities 1157 

ZTE (USA) 1007, Page 1167



Code View 

Description 

IE 

IF 

/I 

IM 
/P 

IR 
/S 

IT 

/W 

Stores the symbolic information of the program in 
expanded memory. 
Enables the screen-flipping method of switching 
between the debugging display and the virtual output 
display. Screen flipping is the default method for 
IBM-compatible computers with color/graphics 
adapters. 
Enables nonmaskable interrupt trapping and Intel 
8259 interrupt trapping on computers that are not 
IBM-compatible. 
Disables mouse support within Code View. 
Enables palette register restore mode, which allows 
non-IBM EGAs to restore the proper colors upon return 
from the virtual output screen. 
Enables Intel 80386 debugging registers. 
Enables the screen-swapping method of switching 
between the debugging display and the virtual output 
display. Screen swapping is the default method for 
IBM-compatible computers with monochrome 
adapters. 
Disables window mode. This switch is necessary for 
some non-IBM computers or when a sequential debug­
ging session is desired. 
Enables window mode. This switch allows Code View 
to operate in multiple windows on the same screen; 
(This option is not the default for some computers.) 

Code View is a window-oriented menu-driven debugger that allows tracing and debugging 
of high-level-language programs and assembly-language programs. In general, any valid C, 
FORTRAN, BASIC, Pascal, or MASM source code can be debugged with Code View. 

To prepare a program for debugging under Code View, the program must be compiled and 
linked so that the resulting executable file has the extension .EXE and contains line­
number information, a symbol table, and executable code. (To a limited extent, text files 
and .COM files can also be examined under Code View.) During the debugging session, 
the program source file must remain in the current directory if source-code display is 
desired. 

The Code View screen contains four windows that display information about the pro­
gram being debugged: the display window, whieh contains program source code and (if 
requested) the unassembled machine code corresponding to the source code; the dialog 
window, where line-oriented commands similar (and in some cases identical) to SYMDEB 
can be entered and viewed (see PROGRAMMING UTILITIES: SYMDEB); the register win­
dow (optional), which contains the current status of the microprocessor's registers and 
flags; and the watch window (optional), which contains program variables or memory 

/. 

1158 The MS-DOS Encyclopedia 

' ' 

ZTE (USA) 1007, Page 1168



Code View 

locations to be examined during program execution. Code View also provides a virtual 
output screen (stored internally) that contains all display output generated during the 
Code View session. 

A typical Code View debugging screen looks like this: 

window 

Next 

Pull-down menu 

; Get file nue 
IIIOU ; Set SI to start 
•ou bJ,B¥fE PfR lsi+ll ; Put the nu•ber 
IIIOV BYTE PTR [si+bx+2l,B: Put 8 at end to 

; (8 overrides 
•ou di,BAh ; Load llnefeed 

Register 
window 

lcrosoft (H) CodeVIew (R) Version 2.BB 
) Copyright nicrosoft Corp. 198&, 1987, All rights reserved. 

Dialog window Scroll bars 

The Code View display. 

Display window commands 

Commands that control the display window are available in nine pull-down menus whose 
names appear in a menu bar near the top of the screen. Commands can be selected with 
the keyboard or the mouse. Commands are selected with the keyboard by pressing the Alt 
key, pressing the first letter in the menu name, and then pressing the first letter of the com­
mand. Commands are selected with the mouse by pulling down the menu with the mouse 
pointer, highlighting the command, and then releasing the mouse button. Commands with 
.small double arrows to the left of the command name are currently active. The Code View 
menus and commands are described below. 

File menu 
The File menu includes commands that manipulate the current source or program file. To 
select the File menu with the keyboard, press Alt-F. 

Command 

Open ... 

DOS Shell 
Exit 

Action 

Opens the specified source file, include file, or text file in the display 
window. 

Exits to the shell temporarily. Type exit to return to Code View. 
Ends the current Code View session. 

Section IV: Programming Utilities 1159 

ZTE (USA) 1007, Page 1169



Code View 

View menu 
The View menu includes commands that select source or assembly modes and commands 
that select the debugging screen or the virtual output screen. To select the View menu with 
the keyboard, press Alt-V. 

Command 

Source 

Mixed 

Assembly 

Registers 
Output 

Search menu 

Action 

Displays only the high-level-language or assembly-language source code 
corresponding to the program being debugged. 

Displays both the unassembled machine code and the source code 
corresponding to the program being debugged. 

Displays only the unassembled machine code corresponding to the 
program being debugged. 

Displays or removes the optional register window. 
Replaces the debugging screen with the virtual output screen. Press any 

key to return to the debugging screen. 

The Search menu includes commands that search through text files for text strings and 
through executable code for labels. To select the Search menu with the keyboard, press 
Alt-S. 

Command 

Find ... 

Next 

Previous 

Label. .. 

Run menu 

Action 

Searches the current source file or other text file for the specified 
expression. 

Searches forward through the file for the next match of the last 
expression specified with the Find ... command. 

Searches backward through the file for the next match of the last 
expression specified with the Find ... command. 

Searches the executable code for the specified procedure name or 
program label. 

The Run menu includes commands that run the program being debugged. To select the 
Run menu with the keyboard, press Alt-R. 

Command 

Start 
Restart 
Execute 
Clear Breakpoints 

1160 The MS-DOS Encyclopedia 

Action 

Runs the program at full speed from the first instruction. 
Reloads the program and moves to the first instruction. 
Runs the program at reduced speed from the current instruction. 
Clears all breakpoints. 

ZTE (USA) 1007, Page 1170



Code View 

Watch menu 
The Watch menu includes commands that add watch statements to and delete watch state­
ments from the watch window. Watch statements describe expressions or areas of memory 
to be examined during program execution. To select the Watch menu with the keyboard, 
press Alt-W. 

Command 

Add Watch ... 

Watchpoint ... 

Tracepoint ... 

Delete Watch ... 
Delete All Watch 

Options menu 

Action 

Adds the specified watch-expression statement to the watch 
window. 

Adds the specified watchpoint statement to the watch window. A 
watchpoint is a conditional breakpoint that is taken when the 
expression becomes nonzero (true). 

Adds the specified tracepoint statement to the watch window. A 
tracepoint is a conditional breakpoint that is taken when a given 
expression or range of memory changes. 

Deletes the specified statement from the watch window. 
Deletes all statements from the watch window. 

The Options menu contains commands that affect the general behavior of Code View. To 
select the Options menu with the keyboard, press Alt-O. 

Command Action 

Flip/Swap When on (the default), enables screen swapping or screen flipping 
(whichever option Code View was started with); when off, disables 
swapping or flipping. Either method can be used to display the 
Code View virtual output screen. 

Bytes Coded When on (the default), displays the instructions, instruction addresses, 
and the bytes for each instruction; when off, displays only the 
instructions. 

Case Sense When on, causes Code View to assume that symbol names are case sensi-
tive; when off, causes Code View to assume that symbol names are not 
case sensitive. This option is on by default for C programs and off by 
default for FORTRAN, BASIC, and assembly programs. 

386 When on, allows instructions that reference 32-bit instructions to be as-
sembled and executed and the register window to display 32-bit values. 
When off, does not allow lntel80386 instructions and registers to be 
supported. 

Language menu 
The Language menu contains commands that select the language-dependent expression 
evaluator or instruct Code View to select it for you. To select the Language menu with the 
keyboard, press Alt-L. 

Section IV: Programming Utilities 1161 

ZTE (USA) 1007, Page 1171



Code View 

Command 

Auto 

Basic 

c 

Fortran 

Calls menu 

Action 

Forces Code View to select the expression evaluator of the source file 
being loaded, based on the extension of the source file. 

Uses a BASIC expression evaluator to determine the value of source-level 
expressions. 

Uses a C expression evaluator to determine the value of source-level 
expressions. 

Uses a FORTRAN expression evaluator to determine the value of source­
level expressions. 

The Calls menu is different from other menus in that its contents vary depending on the 
status of the program. The Calls menu lists the names of specific routines that will be dis­
played on the screen when that routine name is selected. Routine names in the Calls menu 
can be selected by typing the number displayed immediately to the left of a routine name. 
The cursor will move to the line at which the selected routine was last executing. 

The current value of each parameter, if any, is shown in parentheses following the name 
of the routine in the Calls menu. The menu expands to accommodate the parameters of 
the widest line. Parameters are shown in the current radix (default= decimal). If the 
program contains more active routines than will fit on the screen or if the routine parame­
ters are too wide, the menu expands to the left and right. 

To select the Calls menu with the keyboard, press Alt-C. 

Help menu 
The Help menu lists the major topics in the Code View "linked-list" help system. For help, 
pull down the Help menu and then select the topic of interest. To select the Help menu 
with the keyboard, press Alt-H. 

Command 

Intra to Help 
Keyboard/Mouse 
Run commands 
Display cmds. 
Watch/Break 

MemoryOps 
System cmds. 
About Code View 

1162 The MS-DOS Encyclopedia 

Action 

Displays information about the "linked-list" help system. 
Displays information about keyboard and mouse commands. 
Displays information about Run commands. 
Displays information about Display commands. 
Displays information about setting, listing, and deleting watch-

points and breakpoints. 
Displays information about viewing and modifying memory. 
Displays information about system and environment commands. 
Displays information about the current Code View version, time, 

and date. 

ZTE (USA) 1007, Page 1172



) 

Code View 

Key commands 

Code View supports a variety of function keys and key combinations that modify the active 
window. 

Key 

Fl 
F2 
F3 

F4 
F5 

F6 
F7 

F8 
F9 
FlO 

Ctrl+G 

. Ctrl+T 

Action 

Displays the introductory help screen. 
Displays or removes the register window. 
Changes the display in the display window to source, mixed, or assembly 

mode. 
Displays the virtual output screen (press any key to return). 
Executes to the next breakpoint or to the end of the program if no break­

point is encountered. 
Toggles between the display window and the dialog window. 
Sets a temporary breakpoint on the line. containing the cursor and exe~ 

cutes to that line (or the next breakpoint). 
Executes a trace command, stepping through program calls if present. 
Sets or clears a breakpoint on the line containing the cursor. 
Executes the next source line (in source mode) or the next instruction 

(in assembly mode), stepping over program calls if present. 
Increases the size of the display window or the dialog window, whichever 

is active. 
Decreases the size of the display window or the dialog window, whichever 

is active. 

Dialog window commands 

After Code View and the specified executable file are loaded, Code View displays its special 
prompt character (>) at the bottom of the dialog window and awaits a dialog command. 
Code View dialog commands consist of one, two, or three characters, usually followed by 
one or more parameters. Code View treats uppercase and lowercase characters the same 
except when they are contained in strings enclosed within single or double quotation 
marks. The default radix for dialog command parameters is 10 (decimal). Dialog com­
mands are ·executed when the Enter key is pressed. 

A detailed explanation of Code View dialog commands and parameters is not presented 4 
in this entry. Code View dialog commands and parameters are similar to SYMDEB com-
mands and parameters. See PROGRAMMING UTILITIES: SYMDEB. Additional information 
about using Code View dialog commands and parameters can be found in the Code View 
documentation supplied with the Microsoft Macro Assembler (MASM), C Compiler, Pascal 
Compiler, and FORTRAN Compiler. A sample debugging session using Code View dialog 
commands and window commands is documented in this book. See PROGRAMMING IN 
THE MS-DOS ENVIRONMENT: PROGRAMMING TooLS: Debugging in the MS-DOS 
Environment. 

Section IV: Programming Utilities 1163 

ZTE (USA) 1007, Page 1173



Code View 

The dialog commands available with Code View are as follows: 

Command Syntax Action 

! [command) Escape to shell. 
Pause redirected file execution. 

# #number Set display window tabs. 

* •comment Echo comment to output device. 
Display current source line. 

I /[searchtext) Search for regular expression. 
7 7 Display 8087 registers. 

:[:) ... [:) Delay redirected file execution. 
< <device Redirect dialog window input. 

=device Redirect dialog window input and output. 
> [T) > [>) device Redirect dialog window output. 
? ? expression[,jormat) Evaluate expression. 
@ @ Redraw screen. 
A A[address] Assemble machine instructions. 
BC BC [•][list] Clear breakpoints. 
BD BD [*] [list] Disable breakpoints. 
BE BE[*] [list] Enable breakpoints. 
BL BL List breakpoints. 
BP BP [address [passcount] Set breakpoints. 

["cmds"]] 
c C range address Compare memory areas. 
D D [range] Display (dump) memory. 
DA DA[range] Display ASCII. 
DB DB [range] Display bytes. 
DD DD[range] Display doublewords. 
DI Dl[range] Display integers. 
DL DL[range] Display long reals. 
DS DS [range] Display short reals. 
DT DT[range] Display 10-byte reals. 
DU DU[range] Display unsigned integers. 
DW DW[range] Display words. 
E E address [list] Enter data. 
EA EA address [list] Enter ASCII string. 
EB EB address [list] Enter bytes. 
ED ED address [value] Enter doublewords. 
EI EI address [list] Enter integers. 
EL EL address [value] Enter long reals. 
ES ES address [value] Enter short reals. 
ET ET address [value] Enter 1 Ocbyte reals. 

(more) 

1164 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1174



/ 
Code View 

Command Syntax Action 

EU EU address [value] Enter unsigned integers. 
EW EW address [value] Enter words. 
F F range list Fill memory. 
G G [breakpoint] Go execute program. 
H H Display help screen. 
I I port Input from port. 
K K[number] Perform stack trace. 
L L [parameters] Reload program. 
M M range address Move (copy) data. 
N N[radix] Change current radix. 
0 0 port byte Output to port. 
0 0 Display all options. 
03 03[+:-J Toggle Intel 80386 option. 
OB OB[+:-J Toggle bytes coded option. 
oc OC[+:-J Toggle case-sense option. 
OF OF[+:-J Toggle flip/swap option. 
p P [count] Step through program (over calls). 
Q Q Quit debugger. 
R R [register [value]] Display or modify registers. 
RF RF[jlags] Display or modify flags. 
s S range list Search memory. 
s s Display current display mode. 
S+ S+ Display source code. 
s- s- Display assembly language. 
S& S& Display source code and assembly 

language. 
T T [count] Trace program execution (through calls). 
TP TP [type] range Set memory-tracepoint statement. 
TP? TP? expression[,jormat] Set tracepoint-expression statement. 
u U[range] Disassemble (unassemble) program. 
USE USE [language] Switch expression evaluators. 
v V [.[jilename:]linenumber] View source code. 
w w List watchpoints and tracepoints. 
w W[type] range Set memory-watch statement. 
W? W? expression[,jormat] Set watch-expression statement. 
WP? WP? expression[,jormat] Set watchpoint. 
X X[?[module!] Examine program symbols. 

[ routine.Jsymbol: • J 
y Y [*][list] Delete watch statements. 
\ \ Display virtual output screen. 

Section IV: Programming Utilities 1165 

ZTE (USA) 1007, Page 1175



Code View 

Examples 

To prepare the source file SHELL.C for debugging with Code View, first compile the source 
file with the switches that disable optimization and cause symbol-table and line-number 
information to be written to the relocatable object module: 

C>MSC /Zi /Od SHELL; <Enter> 

Next, to convert the object module to an executable program and prepare it for Code View, 
type 

C>LINK /CO SHELL; <Enter> 

To begin debugging, type 

C>CV SHELL <Enter> 

To start Code View in 43-line mode with TEST.EXE as the executable file and INFO.DAT as 
the command-tail parameter, type 

C>CV /43 TEST INFO.DAT <Enter> 

In both examples the source file corresponding to the specified executable file must be in 
the current directory if source-code display is desired. 

Messages 

Argument to IMAG/DIMAG must be simple type 
An invalid parameter to an IMAG or DIMAG function, such as an array with no subscripts, 
was specified. 

Array must have subscript 
An array without any subscripts was specified in an expression, such as !ARRAY+ 2. A 
correct example is !ARRAY[ 1] + 2. 

Bad address 
An invalid address was specified. For example, an address containing hexadecimal char­
acters might have been specified when the radix is decimal. 

Bad breakpoint command 
An invalid breakpoint number was specified with the BC, BD, or BE dialog command. The 
breakpoint number must be in the range 0 through 19. 

Bad flag 
An invalid flag mnemonic was specified with the RF dialog command. 

Bad format string 
An invalid format specifier was used following an expression. Expressions used with the 
? , W?, WP?, and TP? dialog commands can have format specifiers set off from the expres­
sion by a comma. The valid format specifiers are c, d, e, E, f, g, G, i, o, s, u, x, and X. Some 
format specifiers can be preceded by the prefix h (to specify a 2-byte integer) or l (to spec­
ify a 4-byte integer). 

1166 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1176



Code View 

Bad integer or real constant 
An invalid numeric constant was specified in an expression. 

Bad intrinsic function 
An invalid intrinsic function name was specified in an expression. 

Badly formed type 
The type information in the symbol table of the file being debugged is incorrect. This is a 
serious problem. Note the circumstances of the failure and notify Microsoft Corporation. 

Bad radix (use 8, 10, or 16) 
An invalid radix was specified with the N dialog command. Use an octal, decimal, or 
hexadecimal radix. 

Bad register 
An invalid register name was specified with the R dialog command. Use AX, BX, ex, DX, 
SP, BP, SI, Dl, DS, ES, SS, CS, or IP. If your machine is equipped with an Intel80386 micro­
processor, use EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, DS, ES, FS, GS, SS, CS, or IP. 

Bad subscript 
An invalid subscript expression was specified for an array, such as /ARRAY (3.3) or 
/ARRAY ((3,3)). The correct expression for this example (in BASIC or FORTRAN) is 
/ARRAY (3,3). 

Bad type cast 
Incompatible types of operands were specified in an expression. 

Bad type (use one of 'ABDILSTUW') 
An invalid type was used in a Display (D, DA, DB, DF, DU, DW, DD, DS, DL, or DT) dialog 
command. The valid types are ASCII (A), byte (B), integer (I), unsigned (U), word (W), 
doubleword (D), short real (S), long real (L), and 10-byte real (T). 

Breakpoint# or '•' expected 
The BC, BD, or BE dialog command was entered without a parameter. 

Cannot cast complex constant component into REAL 
An incompatible real or imaginary component was specified in a COMPLEX constant. 
Both real and imaginary components must be compatible with type REAL. 

Cannot cast IMAG/DIMAG argument to COMPLEX 
An irivalid parameter was specified with an IMAG or DIMAG function. IMAG and DIMAG 
parameters must be simple numeric types. 

Cannot use struct or union as scalar 
A struct or union variable was used as a scalar value in a C expression. Such variables must 
be followed by a file specifier or preceded by the address-of(&) operator. 

Can't find .filename 
Code View could not find the executable file specified in the command line. 

Section IV: Programming Utilities 1167 

ZTE (USA) 1007, Page 1177



Code View 

Character constant too long 
A character constant that is too long for the FORTRAN expression evaluator was specified. 
The limit is 126 bytes. 

Character too big for current radix 
A radix that is larger than the current Code View radix was specified in a constant. Use the 
N dialog command to change the radix. 

Constant too big 
An unsigned constant number larger than 4,294,967,295 (FFFFFFFFH) was specified. 

CPU not an 80386 
The 386 option was selected but a machine without an Intel80386 microprocessor is 
being used. 

Divide by zero 
An expression in a parameter of a dialog command attempted to divide by zero. 

EMMerror 
Code View failed to use the Expanded Memory Manager (EMM) correctly. This is a serious 
problem. Note the circumstances of the failure and notify Microsoft Corporation. 

EMM hardware error 
The Expanded Memory Manager (EMM) routines reported a hardware error. Check your 
expanded memory board for defects. 

EMM memory not found 
The /E option was used but expanded memory has not been installed. Install software 
that accesses the memory according to the Lotus/InteVMicrosoft Expanded Memory 
Specification (LIM EMS). 

EMM software error 
The Expanded Memory Manager (EMM) routines reported a software error. Reinstall the 
EMM software. 

Expression too complex 
An expression given as a dialog-command parameter is too complex. 

Extra input ignored 
Too many parameters were specified with a command. Code View evaluates the valid 
parameters and ignores the rest. In this situation, Code View often does not evaluate the 
parameters as intended. 

Flip/Swap option off- application output lost 
The program being debugged is writing to the screen, but the output cannot be displayed 
because the flip/swap option has been disabled. 

Floating point error 
This is a serious problem. Note the circumstances of the failure and notify Microsoft 
Corporation. 

1168 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1178



Code View 

Illegal instruction 
This message usually indicates that a machine instruction attempted to divide by zero. 

Index out of bound 
A subscript value was specified that is outside the bounds declared for the array. 

Insufficient EMM memory 
Expanded memory is insufficient to hold the program's symbol table. 

Internal debugger error 
This is a serious problem. Note the circumstances of the failure and notify Microsoft 
Corporation. 

Invalid argument 
An invalid Code View expression was specified as a parameter. 

Invalid executable f"tle format- please relink~T 
The executable file was not linked with the version dUNK 'released with this version of 
the Code View debugger. Relink with the appropriate v~rston of LINK. 

Invalid option 
An invalid switch was specified with the 0 command. 

Missing'"' 
A string specified as a parameter to a dialog command did not have a closing double 
quotation mark. 

Missing'(' 
A parameter to a dialog command was specified as an expression containing a right 
parenthesis but no left parenthesis. 

Missing')' 
A parameter to a dialog command was specified as an expression containing a left 
parenthesis but no right parenthesis. 

Missing']' 
A parameter to a dialog command was specified as an expression containing a left bracket 
but no right bracket, or a regular expression was specified with a right bracket but no left 
bracket. 

Missing '(' in complex constant 
An opening parenthesis of a complex constant in an expression was expected but was not 
found. 

Missing ')' in complex constant 
A closing parenthesis of a complex constant in an expression was expected but was not 
found. 

Missing ')' in substring 
A closing parenthesis of a substring expression was expected but was not found. 

Section IV: Programming Utilities 1169 

ZTE (USA) 1007, Page 1179



Code View 

Missing '(' to intrinsic 
An opening parenthesis for an intrinsic function was expected but was not found. 

Missing ')' to intrinsic 
A closing parenthesis for an intrinsic function was expected but was not found. 

No closing single quote 
A character was specified in an expression used as a dialog-command parameter, but the 
closing single quotation mark is missing. 

No code at this line number 
A breakpoint was set on a source line that does not correspond to machine code. (In other 
words, the source line does not contain an executable statement.) For example, the line 
might be a data declaration or a comment. 

No free EMM memory.ha · Ues 
Code View could not firid an ?tvailable EMM handle. Expanded Memory Manager (EMM) 
software allocates a fixed.mlmber of memory handles (usually 256) to be used for specific 
tasks. · 

No match of regular expression 
No match was found for the regular expression specified with the Search (S) dialog com­
mand or with the Find ... command from the Searcl'\ menu. 

No previous regular expression 
The Previous command was selected from the Search menu, but Code View found no 
previous match for the last regular expression specified. 

No source lines at this address 
The address specified as a parameter for the V dialog command does not have any source 
lines. For example, it could be an address in a library routine or an assembly-language 
module. 

No such file/directory 
The specified file or directory does not exist. 

No symbolic information 
The executable file specified is not in the Code View format. The program cannot be 
debugged in source mode unless the file is created in the Code View format. The program 
can be debugged in assembly mode. 

Not an executable file 
The file specified to be debugged when Code View started is not an executable file with a 
.EXE or .COM extension. 

Not a text file 
An attempt was made to load a file with the Open ... command from the File menu or 
with the V dialog command, but the file is not a text file. Code View determines if a file is a 
text file by checking the first.l28 bytes for characters that are not in the ASCII ranges 9 
through 13 and 20 through 126. 

1170 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1180



Code View 

Not enough space 
The ! dialog command or the DOS Shell command from the File menu was chosen, but 
free memory is insufficient to execute COMMAND. COM. Because memory is released by 
code in the FORTRAN startup routines, this error always occurs if the ! command is used 
before executing any code. Use any of the code-execution dialog commands (T, P, or G) to 
execute the FORTRAN startup code; then try the ! command again. This message also 
occurs with assembly-language programs that do not specifically release memory. 

Object too big 
A TP? dialog command was entered with a data object (such as an array) that is larger than 
128 bytes. 

Operand types incorrect for this operation 
An operand in a FORTRAN expression had a type incompatible with the operation 
applied to it. For example, if Pis declared as CHARACTER P (10), then ? P+5 would pro­
duce this error, because a character array cannot be an operand of an arithmetic operator. 

Operator must have a struct/union type 
One of the C member-selection operators ( -, >, or .) was used in an expression that does 
not reference an element of a structure or union. 

Operator needs lvalue 
An expression was specified that does not evaluate to a memory location in an operation 
that requires one. (An lvalue is an expression that refers to a memory location.) For exam­
ple, buffer (count) is correct; it represents a symbol in memory. However, I .EQV: 10 
is invalid because it evaluates to TRUE or FALSE instead of to a single memory location. 

Overlay not resident 
An attempt was made to unassemble machine code from a function that is currently not in 
memory. 

Program terminated normally (exitcode) 
The program terminated execution normally. The number displayed in parentheses is the 
exit code returned to MS-DOS by the program. 

Radix must be between 2 and 36 inclusive 
A radix that is outside the allowable range was specified. 

Register variable out of scope 
An attempt was made to specify a register variable by using the period (.) operator and a 
routine name. 

Regular expression too complex 
The regular expression specified is too complex for Code View to evaluate. 

Regular expression too long 
The regular expression specified is too long for Code View to evaluate. 

Restart program to debug 
The program being debugged has executed to the end. 

Section IV: Programming Utilities 1171 

ZTE (USA) 1007, Page 1181



Code View 

Simple variable cannot have argument 
A parameter to a simple variable was specified in an expression. For example, given the 
declaration INTEGER NUM, the expression NUM(l) is not allowed. 

Substring range out of bound 
A character expression exceeded the length specified in the CHARACTER statement. 

Syntax error 
An invalid command line was specified for a.dialog command, or an invalid assembly­
language instruction was entered with the A dialog command. 

Too few array bounds given 
The bounds specified in an array subscript do not match the array declaration. For exam­
ple, given the array declaration INTEGER IARRAY(3, 4), the expression !ARRAY(/) would 
produce this error message. 

Too many array bounds given 
The bounds specified in an array subscript do not match the array declaration. For exam­
ple, given the array declaration INTEGER IARRAY(3, 4), the expression !ARRAY (1,3,]) 
would produce this error message. 

Too many breakpoints 
An attempt was made to specify more than 20 breakpoints; Code View permits only 20. 

Too many files 
Too few file handles were specified for Code View to operate correctly. Specify more files 
in your CONFIG.SYS file. 

Type clash in function argument 
The type of an actual parameter does not match the corresponding formal parameter, or a 
subroutine that uses alternate returns was called and the values of the return labels in the 
actual parameter list are not 0. 

Type conversion too complex 
An attempt was made to typecast an element of an expression in a type other than the sim­
ple types or with more than one level of indirection. An example of a complex type would 
be typecasting to a struct or union type. An example of two levels of indirection is char**. 

Unable to open file 
A file specified in a command parameter or in response to a prompt cannot be opened. 

Unknown symbol 
An identifier that is not in Code View's symbol table was specified, or a local variable was 
used in a parameter when not in the routine where the variable is defined, or a subroutine 
that uses alternate returns was called and the values of the return labels in the parameter 
list are not 0. 

Unrecognized option option 
Valid options: /B /C<command> /D /E /F /1 /M /P /R /SIT /W /43 /2 
An invalid switch was entered when starting Code View. 

1172 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1182



Code View 

Usage: cv [options] file [arguments] 
An executable file was not specified when starting Code View. 

Video mode changed without /S option 
The program changed video modes (either to or from graphics modes) when screen 
swapping was not specified. Use the IS option to specify screen swapping when debug­
ging graphics programs. Debugging can be continued after receiving this message, but the 
output screen of the debugged program may be damaged. 

Warning: packed file 
Code View was started with a packed file as the executable file. The program cannot be 
debugged in source mode because all symbolic information is stripped from a file when it 
is packed with LINK's /EXEPACK option or the EXEPACK utility. Try to debug the pro­
gram in assembly mode. (The packing routines at the start of the program might make 
this difficult.) 

Wrong number of function arguments 
An incorrect number of parameters was specified when evaluating a function in a 
Code View expression. 

Section IV: Programming Utilities 1173 

ZTE (USA) 1007, Page 1183



ZTE (USA) 1007, Page 1184

Remeee eee. ee eset
z : : Crearsecseoeemegaaee

Sere

Beeraa
SeeTecra

aoSe

Tena

Saat

seee

 
ZTE (USA) 1007, Page 1184



ZTE (USA) 1007, Page 1185

 

 

  

 

 

 
 

 
  

 

 

  

 

 

 

 

 

 
  

 

 

 

 

 

  

 

   

  

 

  
 

 

 

 

 
  

 

 

 

 

 

  

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eeCae

  
ZTE (USA) 1007, Page 1185



ZTE (USA) 1007, Page 1186

 
ZTE (USA) 1007, Page 1186



System Calls Introduction 

Introduction 

All versions of MS-DOS include operating-system services that provide the programmer 
with hardware-independent tools for handling such tasks as file management, device input 
and output, memory allocation, and getting and setting system-management information 
such as the date and time~ The majority of these services, collectively called the MS-DOS 
system calls, are invoked through Interrupt 21H. A few others are called using Interrupts 
20H through 27H and 2FH. This section includes descriptions of these system-management 
services, with details relevant to all releases of MS-DOS through version 3.2. 

Use of the Interrupt 21H system calls, rather than hardware-specific routines, helps ensure 
that a program will run on any computer running an appropriate version of MS-DOS. 
Likewise, because new releases of MS-DOS attempt to maintain compatibility with earlier 
versions, use of the calls increases the likelihood that a program will remain usable for 
more than a single major or minor release of the operating system. 

The MS-DOS Interrupt 21H system calls are invoked as follows: 

AH 
AL 
Other registers 
Execute Interrupt 21H 

Version Differences 

= function number 
= subfunction code (if required) 
= additional function-specific information 

With MS-DOS versions 2.0 and later, considerable overlap occurs in the way in which 
many system services, such as file and character device I/0, can be carried out. This over­
lap is a result of the manner in which MS-DOS has developed since it was first released. 

The earliest version of MS-DOS, 1.0, included a relatively small set of Interrupt 21H system 
calls designed primarily for CP/M compatibility. These calls, numbered OOH through 2DH, 
relied on the use of file control blocks (FCBs) in an application's memory space for infor­
mation on open files. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAM­
MING FOR Ms-oos: File and Record Management; Appendix G: File Control Block (FCB) 
Structure. The FCB-based system calls in MS-DOS do not support hierarchical file struc­
tures, nor do they support redirection of input and output. As a result, many of these sys­
tem calls have been superseded in later releases of MS-DOS. The CP/M-style calls are no 
longer recommended and should not be used unless program compatibility with versions 

l.x is required. · 4 
Beginning with version 2.0, MS-DOS introduced the concept of handles -16-bit numbers 
returned by the operating system after a successful open or create.call. The handles can 

Section V: System Calls 1177 

ZTE (USA) 1007, Page 1187



System Calls Introduction 

subsequently be used by an application program to reference an open file or device, 
eliminating redundancy and unnecessary overhead. These handles are also used inter­
nally by MS-DOS to keep track of open files and devices. The operating system keeps all 
such handle-related information in its own memory space. Handles offer full support for 
the hierarchical file system introduced in version 2.0 of MS-DOS and thus allow the pro­
grammer to access any file stored in any directory or subdirectory on a block device. 
Because of the increased flexibility offered by the handle-related system function calls, 
these services are recommended over the earlier FCB-based calls, which perform similar 
tasks but for the current directory only. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FORMs-nos: File and Record Management. 

Another advantage of using the system calls introduced in versions 2.0 and later is that 
these calls set the carry flag when an operational error occurs and return an error code in 
AX that indicates the nature of the error; the error can then be investigated further by call­
ing Function 59H (Get Extended Error Information). The earlier system calls (OOH through 
2DH) generally simply return OFFH (255) in ALto indicate an error or OOH to indicate that 
the call was completed successfully. 

Format of Entries 

Entries in this section are arranged in hexadecimal order, with decimal equivalents in 
parentheses. Each entry is organized as follows: 

• Hexadecimal interrupt and/or function number (decimal equivalent in parentheses) 
• Interrupt or function name (similar to, but not always the same as, the name used in 

MS-DOS documentation) 
• Version dependencies 
• Interrupt or function purpose 
• Register contents needed to call 
• Register contents on return 
• Notes for programmers 
• Related functions 
• Program example 

The format of these entries is designed to give programmers ready reference to specific 
information, such as register contents, as well as more detailed notes on the use and appli­
cation of each system call. For further information on the use of the system calls, see 
PROGRAMMING IN THE MS-DOS ENVIRONMENT. 

The assembly-language examples in this section use the Cmacros capability introduced 
with the Windows Software Development Kit. Cmacros, a set of assembly-language macros 
defined in the file CMACROS.INC, are useful because they provide a simplified interface to 
the function and segment conventions of high-levellanguages such as Microsoft C and 
Microsoft Pascal. 

1178 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1188



System Calls Introduction 

Advantages to using Cmacros for assembly-language programming include transparent 
support for memory models and symbolic names for function arguments and local vari­
ables. Cmacros exist for code and data segment declarations (sBegin and sEnd), storage 
allocation (staticX,_ globalX, externX, and labelX), function declarations (cProc, parmX, 
localX, cBegin and cEnd), function calls (cCall, Save, and Arg), special definitions 
(DejX, RegPtr, and FarPtr), and error control (errnz and errn$). Of these, only sBegin, 
sEnd, cProc, parmX, localX, cBegin, and cEnd are used in the examples in this section. 

Two additional macros that support functions not found in CMACROS.INC are loadCP and 
loadDP. These macros, included in the file CMACROSX.INC listed below, allow pointers 
previously declared with staticX, globalX, parmX, DejX and localX to be loaded into 
registers without regard to the memory model in use -loadCP and loadDP generate 
code to load either the offset portion or the full segment: offset of the address, depending 
on the memory model. 

CMACROSX. INC 

This file includes supplemental macros for two macros included 

in CMACROS.INC: parmCP and parmDP. When these macros are used, 
CMACROS.INC allocates either 1 or 2 words to the variables 

associated with these macros, depending on the memory model in 

use. However, parmCP and parmDP provide no support for automatically 

adjusting for different memory models-additional program code 

needs to be written to compensate for this. The loadCP and loadDP 

macros included in this file can be used to provide additional 
flexibility for overcoming this limit. 

For example, "parmDP pointer" will make space (1 word in small 

and middle models and 2 words in compact, large, and huge models) 
for the data pointer named "pointer". The statement 

"loadDP ds,bx,pointer" can then be used to dynamically place the 

value of "pointer" into DS:BX, depending on the memory model. 

In small-model programs, this macro would generate the instruction 
"mov dx,pointer" (it is assumed that DS already has the right 

segment value); in large-model programs, this macro would generate 

the statements "mov ds,SEG_pointer" and "mov dx,OFF_pointer". 

checkDS macro segmt 
diffcount = 0 

irp d,<ds,DS,Ds,dS> 

ifdif <segmt>,<d> 

diffcount = diffcount+1 

endif 

endm 

if diffcount EQ 4 
it_is_DS 

else 
it_is_DS 

endif 

endm 

0 

Allow for all spellings 

of "ds". 

(more) 

Section V.· System Calls 1179 

ZTE (USA) 1007, Page 1189



System Calls Introduction 

1180 

checkES macro segmt 

diffcount = 0 
irp d,<es,ES,Es,eS> 

ifdif <segmt>,<d> 
diffcount = diffcount+1 

endif 

endm 
if diffcount EQ 4 

it_is-ES 0 

else 
it_is-ES 

endif 

endm 

loadDP macro segmt,offst,dptr 
checkDS segmt 
if sizeD 

if it_is_DS 
lds offst,dptr 

else 
checkES segmt 
if it_is-ES 

les offst,dptr 

else 
mov offst,OFF_&dptr 
mov segmt,SEG_&dptr 

endif 

endif 
else 

mov offst,dptr 
if it_is_DS EQ 0 

push ds 
pop segmt 

endif 
end if 

endm 

loadCP macro segmt,offst,cptr 

if sizeC 
checkDS segmt 
if it_is_DS 

lds offst,cptr 

else 
checkES 
if it_is-ES 

les offst,cptr 

else 
mov segmt,SEG_&cptr 
mov offst,OFF_&cptr 

endif 

endif 

else 

The MS-DOS Encyclopedia 

Allow for all spellings 

of "es". 

<-- Large data model 

<-- Small data model 

If "segmt" is not DS, 

move ds to segmt. 

<-- Large code model 

(more) 

ZTE (USA) 1007, Page 1190



System Calls Introduction 

push cs 
pop segmt 

<-- Small code model 

mov offst,cptr 
endif 

endm 

The following example program demonstrates the use of Cmacros in an assembly­
language program: 

memS 
?PLM 
?WIN 

include 
include 

sBegin 
assumes 

0 

0 

0 

cmacros.inc 
cmacrosx.inc 

CODE 
CS,CODE 

;Small memory model 
;C calling conventions 
;Disable Windows support 

;Start of code segment 
;Required by MASM 

;Microsoft C function syntax: 

int addnums(firstnum, secondnum) 
int firstnum, secondnum; 

;Returns firstnum + secondnum 

cProc addnums,PUBLIC 
parmW firstnum 

;Start of addnums functions 
;Declare parameters 

parmW 
cBegin 

cEnd 

secondnum 

mov ax,firstnum 
add ax,secondnum 

sEnd CODE 
end 

A simple C program to call this function would be 

main() 

printf("The sum is %d",addnums(12,33)); 

Contents by Functional Group 

Although distinguishing between FCB-based and handle-based system calls provides a 
broad and very generalized means of categorizing these services, the more common and 
useful approach is to group the calls by the type of task they perform. The following list 
groups the Interrupt 21H system calls and Interrupts 20H, 22H through 27H, and 2FH by 
type of service. 

Section V: System Calls 1181 

ZTE (USA) 1007, Page 1191



System Calls Introduction \ 

Function Purpose 

Character Input 
01H Character Input with Echo 
03H Auxiliary Input 
06H Direct Console 1/0 
07H Unfiltered Character Input Without Echo 
08H Character Input Without Echo 
OAH Buffered Keyboard Input 
OBH Check Keyboard Status 
OCH Flush Buffer, Read Keyboard 

Character Output 
02H Character Output 
04H Auxiliary Output 
05H Print Character 
06H Direct Console 1/0 
09H Display String 

Disk Management 
ODH Disk Reset 
OEH Select Disk 
19H Get Current Disk 
1BH Get Default Drive Data 
1CH Get Drive Data 
2EH Set/Reset Verify Flag 
36H Get Disk Free Space 
54H Get Verify Flag 

File Management 
OFH Open File with FCB 
10H Close File with FCB 
llH Find First File 
12H Find Next File 
13H Delete File 
16H Create File with FCB 
17H Rename File 
1AH Set DTA Address 
23H Get File Size 
2FH Get DTA Address 
3CH Create File with Handle 
3DH Open File with Handle 
3EH Close File 

(more) 

1182t The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1192



.Function Purpose 

File Management (continued) 

41H Delete File 
43H Get/Set File Attributes 
45H Duplicate File Handle 
46H Force Duplicate File Handle 
4EH Find First File 
4FH Find Next File 
56H Rename File _ 
57H Get/Set Date/Time of File 
5AH Create Temporary File 
5BH Create New File 
5CH Lock/Unlock File Region 

Information Management 
14H Sequential Read 
15H Sequential Write 
21H Random Read 
22H 
24H 
27H 
28H 
3FH 
40H 
42H 
Interrupt 25H 
Interrupt 26H 

Random Write 
Set Relative Record 
Random Block Read 
Random Block Write 
Read File or Device 
Write File or Device 
Move File Pointer 
Absolute Disk Read 
Absolute Disk Write 

Directory Management 
39H Create Directory 
3AH Remove Directory 
3BH Change Current Directory 
47H Get Current Directory 

Process Management 
OOH Terminate Process 
31H Terminate and Stay Resident 
4BH Load and Execute Program (EXEC) 
4CH Terminate Process with Return Code 
4DH Get Return Code of Child Process 
59H Get Extended Error Information 
Interrupt 20H 
Interrupt 27H 

Terminate Program 
Terminate and Stay Resident 

System Calls Introduction 

(more) 

Section V.· System Calls 1183 

ZTE (USA) 1007, Page 1193



System Calls Introduction 

Function Purpose 

Memory Management 
48H Allocate Memory Block 
49H Free Memory Block 
4AH Resize Memory Block 
58H Get/Set Allocation Strategy 

Miscellaneous System Management 
25H Set Interrupt Vector 
26H Create New Program Segment Prefix 
29H Parse Filename 
2AH GetDate 
2BH 
2CH 
2DH 
30H 
33H 
34H 
35H 
38H 
44H 
5EH 
5FH 
62H 
63H 
Interrupt 22H 
Interrupt 23H 
Interrupt 24H 
Interrupt 2FH 

1184 The MS-DOS Encyclopedia 

Set Date 
Get Time 
Set Time 
Get MS-DOS Version Number 
Get/Set Control-C Check Flag 
Return Address of InDOS Flag 
Get Interrupt Vector 
Get/Set Current Country 
IOCTL 
Network Machine Name/Printer Setup 
Get/Make Assign List Entry 
Get Program Segment Prefix Address 
Get Lead Byte Table (version 2.25 only) 
Terminate Routine Address 
Control-C Handler Address 
Critical Error Handler Address 
Multiplex Interrupt 

ZTE (USA) 1007, Page 1194



Interrupt 20H 

Interrupt 20H (32) 1.0 and later 

Terminate Program 

Interrupt 20H is one of several methods that a program can use to perform a final exit. It 
informs the operating system that the program is completely finished and that the memory 
the program occupied can be released. 

To Call 

CS = segment address of program segment prefix (PSP) 

Returns 

Nothing 

Programmer's Notes 

• In response to an Interrupt 20H call, MS-DOS takes the following actions: 
- Restores the termination handler vector (Interrupt 22H) from PSP:OOOAH. 

Restores the Control-C vector (Interrupt 23H) from PSP:OOOEH. 
With MS-DOS versions 2.0 and later, restores the critical error handler vector (Inter­
rupt 24H) from PSP:0012H. 

- Flushes the file buffers. 
- Transfers to the termination handler address. 

The termination handler releases all memory blocks allocated to the program, includ­
ing its environment block and any dynamically allocated blocks that were not pre­
viously explicitly released; closes any files opened with handles that were not 
previously closed; and returns control to the parent process (usually 
COMMAND. COM). 

• If the program is returning to COMMAND.COM, control transfers first to 
COMMAND. COM's resident portion, which reloads COMMAND. COM's transient 
portion (if necessary) and passes control to it. If a batch file is in progress, the next 
line of the batch file is then fetched and interpreted; otherwise, a prompt is issued for 
the next user command. 

• Any files that have been written by the program using FCBs should be closed before 
using Interrupt 20H; otherwise, data may be lost. 

• For those programmers who have been with MS-DOS since its earliest incarnations, 
Interrupt 20H is the traditional way to exit from an application program. However, 
under versions 2. 0 and later, the preferred methods of termination are Interrupt 21H 
Function 31H (Terminate and Stay Resident) and Interrupt 21H Function 4CH (Termi­
nate Process with Return Code). 

Section V.· System Calls 1185 

ZTE (USA) 1007, Page 1195



Interrupt 20H 

Example 

;************************************************************; 

Perform a final exit. 

;************************************************************; 
int 20H ; Transfer to MS-DOS. 

1186 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1196



Interrupt 21H (33) 
Function OOH (0) 
Terminate Process 

Interrupt 21H Function OOH 

1.0 and later 

Function OOH flushes all file buffers to disk, terminates the current process, and releases 
the memory used by the process. 

To Call 

AH =OOH 
CS = segment of program's program segment prefix (PSP) 

Returns 

Nothing 

Programmer's Notes 

• The following interrupt vectors are restored from the PSP of the terminated program: 

PSPOffset Vector for Interrupt 

Interrupt 22H (terminate routine) 
Interrupt 23H (Control-Chandler) 

OAH 
OEH 
12H Interrupt 24H (critical error handler) (versions 2.0 and later.) 

• All file buffers are written to disk and all handles are closed. Control is then trans­
ferred to Interrupt 22H (Terminate Routine Address). 

• Any file that has changed in length and was opened with an FCB should be closed 
before Function OOH is called. If such a file is not dosed, its length, date, and time are 
not recorded correctly in the directory. 

• With versions 3.x of MS-DOS, restoring the default memory-allocation strategy used 
by MS-DOS is advisable if that strategy has been changed with Function 58H (Get/Set 
Allocation Strategy). Any global flags, such as the break and verify flags, that affect 
system behavior and that have been changed by the process should also be restored 
to their original values. 

• Function OOH performs exactly the same processing as Interrupt 20H (Terminate 
Program). ' 

• Function OOH is obsolete with MS-DOS versions 2.0 and later. Function 31H (Termi­
nate and Stay Resident) and Function 4CH (Terminate Process with Return Code) are 
preferred; both enable the terminating process to pass a return code to the calling 
process and do not require that CS contain the PSP address. 

Section V: System Calls 1187 

ZTE (USA) 1007, Page 1197



Interrupt 21H Function OOH 

Related Functions 
31H (Terminate and Stay Resident) 
4CH (Terminate Process with Return Code) 

Example 
None 

1188 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1198



Interrupt 21H (33) 
Function OlH (1) 
Character Input with Echo 

Interrupt 21H Function OlH 

1.0 and later 

Function OlH waits for a character from standard input, echoes it to standard output, and 
returns the character in the AL register. 

To Call 

AH =OlH 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function OlH reads input from the keyboard. With 
versions 2.0 and later, Function OlH reads a character from standard input, which 
defaults to the keyboard but can be redirected to another device or to a file. Whether 
or not input has been redirected, the character is echoed to standard output. 

• Function OlH waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available from standard input, and then calling Function OlH if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
OlH must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• The carriage-return character (ODH) echoes a carriage return but not a linefeed. 
Likewise, the linefeed character (OAH) does not echo a carriage return. 

• With MS-DOS versions 2.0 and later, Function OlH cannot detect an end-of-file condi­
tion if input has been redirected. 

• Interrupt 23H (Control-CHandler Address) is called if Control-C (03H) is the input 
character and (with versions 2.0 and later) input is not redirected. 

• With MS-DOS version 2.0 and later, if standard input has been redirected to come 
from a file, Break must be enabled for Interrupt 23H to be called when Control-C 
(03H) is the input character. 

• Alternative character input functions are 06H (Direct Console I/0), 07H (Unfiltered 
Character Input Without Echo), and 08H (Character Input Without Echo). The four 
functions are related as follows: 

Section V.· System Calls 1189 

ZTE (USA) 1007, Page 1199



Interrupt 21H Function OlH 

Waits Echoes to Acts on 
Function for Input StdOutput Control-C 

01H yes yes yes 
06H no no no 
07H yes no no 
08H yes no yes 

Depending on whether Control-C needs to be filtered, Function 06H, 07H, or 08H can 
be used to handle character display separately from character input. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function OlH. 

Related Functions 

06H (Direct Console I/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function 01H: Character Input with Echo 

int read_kbd_echo() 

Returns a character from standard input 

after sending it to standard output. 

;************************************************************; 

cProc read_kbd_echo,PUBLIC 

cBegin 

cEnd 

mov 

int 
mov 

ah,01h 

21h 

ah,O 

· 1190 The MS-DOS Encyclopedia 

Set function code. 
Wait for character. 

Character is in AL, so clear high 

byte. 

ZTE (USA) 1007, Page 1200



Interrupt 21H (33) 
Function 02H (2) 
Characte.r Output 

Function 02H sends a character to standard output. 

To Call 

AH =02H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

Interrupt 21H Function 02H 

1.0 and later 

• With versions l.x of MS~DOS, Function 02H sends a character to the active display. 
With MS-DOS versions 2.0 and later, Function 02H sends the character to standard 
output. By default, the output is sent to the active display, but it can be redirected to 
another device or to a file. 

• With all versions of MS-DOS, displaying a backspace (08H) moves the cursor back 
one position but does not erase the. character at the new position. 

• If a Control-Cis detected after the character is sent, Interrupt 23H (Control-CHandler 
Address) is called. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 02H. 

Related Functions 

06H (Direct Console 1/0) 
09H (Display String) 
40H (Write File or Device) 

Example 

;************************************************************; 

Function 02H: Character Output 

int disp_ch(c) 

char c; 

Returns 0. 

;************************************************************; 

(more) 

Section V: System Calls 1191 

ZTE (USA) 1007, Page 1201



Interrupt 21H Function 02H 

cProc disp_ch,PUBLIC 

parmB c 
cBegin 

mov dl,c Get character into DL. 

mov ah,02h Set function code. 

int 21h Send character. 

xor ax, ax Return 0. 

cEnd 

1192 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1202



Interrupt 21H (33) 
Function 03H (3) 
Auxiliary Input 

Interrupt 21H Function 03H 

1.0 and later 

Function 03H waits for a character from the standard auxiliary device and returns the 
character in the AL register. 

To Call 

AH =03H 

Returns 

AL = 8-bit character code 

· Programmer's Notes 

• With versions 1.x of MS-DOS, Function 03H reads a character from the first serial port. 
With versions 2.0 and later, Function 03H reads from the standard auxiliary device 
(AUX), which defaults to COMl. 

• Function 03H waits for input until a character is available from the standard auxiliary 
device. 

• Function 03H is not interrupt driven and does not buffer characters received from the 
standard auxiliary device. As a result, it may not be fast enough for some telecom­
munications applications and data may be lost. 

• A program cannot perform error detection using Function 03H. On IBM PCs and com­
patibles, error detection is available through the ROM BIOS Interrupt 14H. Another 
option is to drive the communications controller directly. 

• Function 03H does not ensure that auxiliary input is connected and working, nor does 
it perform any error checking or set up the auxiliary input device. On IBM PCs and 
compatibles, the standard auxiliary device, normally COM1, is set to 2400 baud, no 
parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with the 
MS-DOS MODE command. 

• Some auxiliary input devices do not support 8-bit data transmission. This transmission 
parameter is a characteristic of the device and the communication parameters to 
which it is set; it is independent of Function 03H. 

• If a Control-Cis detected at the console, Interrupt 23H (Control-CHandler Address) 
is called. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device), which han­
dles strings as well as single characters, should be used in preference to Function 03H. 

Related Functions 

04H (Auxiliary Output) 
3FH (Read File or Device) 

Section V: System Calls 1193 

ZTE (USA) 1007, Page 1203



Interrupt 21H Function 03H 

Example 

1194 

;************************************************************; 

Function 03H: Auxiliary Input 

int aux_in () 

Returns next character from AUX device. 

;************************************************************; 

cProc aux_in,PUBLIC 

cBegin 

cEnd 

mov 
int 
mov 

ah,03h 
21h 

ah,O 

The MS-DOS Encyclopedia 

Set function code. 
Wait for character from AUX. 
Character is in AL 
so clear high byte. 

ZTE (USA) 1007, Page 1204



Interrupt 21H (33) 
Function 04H ( 4) 
Auxiliary Output 

Interrupt 21H Function 04H 

1.0 and later 

Function 04H sends a character to the standard auxiliary device. 

To Call 

AH =04H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 04H sends a character to the first serial port. 
With versions 2.0 and later, Function 04H sends the character to the standard auxiliary 
device (AUX), which defaults to COMl. 

• Function 04H does not ensure that auxiliary output is connected and working, nor 
does it perform any error checking or set up the auxiliary output device. On IBM PCs 
and compatibles, the standard auxiliary device, normally COMl, is set to 2400 baud, 
no parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with 
the MS-DOS MODE command. 

• Function 04H does not return the status of auxiliary output, nor does it return an error 
code if the auxiliary output device is not ready for data. If the device is busy, Function 
04H waits until it is available. 

• Interrupt 23H (Control-CHandler Address) is called if a Control-Cis detected at 
the console. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device), which man­
ages strings as well as single characters, should be used in preference to Function 
04H. 

Related Functions 

03H (Auxiliary Input) 
40H (Write File or Device) 

Section V: System Calls 1195 

ZTE (USA) 1007, Page 1205



Interrupt 21H Function 04H 

Example 

;***********************************************************~; 

1196 

Function 04H: Auxiliary Output 

int aux_out(c) 

char c; 

Returns 0. 

;************************************************************; 

cProc aux_out,PUBLIC 

parmB c 
cBegin 

mov dl,c Get character into DL. 

mov ah,04h Set function code. 

int 21h Write character to AUX. 

xor ax, ax Return 0. 

cEnd 

The MScDOS Encyclopedia 

ZTE (USA) 1007, Page 1206



Interrupt 21H (33) 
Function 05H (5) 
Print Character 

Function 05H sends a character to the standard printer. 

To Call 

AH =05H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

Interrupt 21H Function 05H 

1.0 and later 

• With versions l.x of MS-DOS, Function 05H sends a character to the first parallel port 
(LPTl). With versions 2.0 and later, Function 05H sends the character to the standard 
printer (PRN), which defaults to LPTl unless LPTl has been reassigned with the MS­
DOS MODE command. If redirection is in effect, calls to this function send output to 
the device currently assigned to LPTl. 

• Function 05H does not return the status of the standard printer, nor does it return an 
error code if the standard printer is not ready for characters. If the printer is busy or off 
line, Function 05H waits until it is available. MS-DOS does, however, perform error 
checking during the print operation and send any error messages to the standard error 
device (normally the display). 

• If a Control-Cis detected at the console, Interrupt 23H (Control-CHandler Address) 
is called. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 05H. 

Related Function 

40H (Write File or Device) 

Example 

;************************************************************; 

Function OSH: Print Character 

int print_ch(c) 

char c; 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1197 

ZTE (USA) 1007, Page 1207



Interrupt 21H Function 05H 

cProc print_ch,PUBLIC 

parmB c 

cBegin 

mov dl,c 

mov ah,05h 

int 21h 

xor ax, ax 

cEnd 

1198 The MS-DOS Encyclopedia 

Get character into DL. 

Set function code. 
Write character to standard printer. 

Return 0. 

ZTE (USA) 1007, Page 1208



Interrupt 21H (33) 
Function 06H ( 6) 
Direct Console I/0 

Interrupt 21H Function 06H 

1.0 and later 

Function 06H reads a character from standard input or writes a character to standard 
output. 

To Call 

AH =06H 

For character input: 

DL =FFH 

For character output: 

DL = 00-FEH (8-bit character code) 

Returns 

If DL was OFFH on call and a character was ready: 

Zero flag is clear. 

AL = 8-bit character code 

If DL was OFFH on call and no character was ready: 

Zero flag is set. 

Programmer's Notes 

• With MS-DOS versions l.x, Function 06H reads a character from the keyboard or 
sends a character to the display. With versions 2.0 and later, input and output can be 
redirected; Function 06H reads from the device currently assigned to standard input 
or sends to the device currently assigned to standard output. 

• Function 06H allows all possible characters and control codes with values between 
OOH and OFEH to be read or written with standard input and output and with no filter­
ing by the operating system. The rubout character (OFFH, 255 decimal), however, 
cannot be output with Function 06H; Function 02H (Character Output) should be used 
instead. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 

06H must be called twice. 

Alt -0 and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 4 
character; the second byte completes the key code. To read these characters, Function 

Section V: System Calls 1199 

ZTE (USA) 1007, Page 1209



Interrupt 21H Function 06H 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• If Function 06H is an input request and a Control-C is read, the character is returned 
as any other character would be. Interrupt 23H (Control-CHandler Address) is not 
called. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) and Function 
40H (Write File or Device) should be used in preference to Function 06H. 

Related Functions 

OlH (Character Input with Echo) 
02H (Character Output) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
09H (Display String) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 
40H (Write File or Device) 

Example 

;************************************************************; 

cProc 
parmB 

cBegin 

cEnd 

Function 06H: Direct Console I/0 

int con_io(c) 

char c; 

Returns meaningless data if c is not OFFH, 

otherwise returns next character from 

standard input. 

;************************************************************; 

con_io,PUBLIC 

c 

mov dl,c Get character into DL. 
mov ah,06h Set function code. 
int 21h This function does NOT wait in 

input case (c = OFFH)! 
mov ah,O Return the contents of AL. 

1200 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1210



Interrupt 21H (33) 
Function 07H (7) 
Unfiltered Character Input Without Echo 

Interrupt 21H Function 07H 

1.0 and later 

Function 07H waits for a character from standard input. It does not echo the character to 
standard output, and it ignores Control-C characters. 

To Call 

AH =07H 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 07H reads input from the keyboard. With 
versions 2.0 and later, Function 07H reads a character from standard input. Standard 
input defaults to the keyboard but can be redirected to another device or to a file. 

• Function 07H waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available from standard input, and then calling Function 07H if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
07H must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• Interrupt 23H (Control-CHandler Address) is not called if a Control-Cis read. Func­
tion 07H simply passes the character back through the AL register. If Control-C check­
ing is required, Function 08H (Character Input Without Echo) should be used instead. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 07H. 

Related Functions 

OlH (Character Input with Echo) 
06H (Direct Console 1/0) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Section V: System Calls 1201 

ZTE (USA) 1007, Page 1211



Interrupt 21H Function 07H 

Example 

1202 

;************************************************************; 

Function 07H: Unfiltered Character Input 

Without Echo 

int con_in () 

Returns next character. from standard input. 

;************************************************************: 

cProc con_in,PUBLIC 

cBegin 

cEnd 

mov 
int 

mov 

ah,07h 

21h 

ah,O 

The MS-DOS Encyclopedia 

Set function code. 

Wait for character, no echo. 
Clear high byte. 

ZTE (USA) 1007, Page 1212



I 
l 
I 
l 

Interrupt 21H (33) 
Function OSH (8) 
Character Input Without Echo 

Interrupt 21H Function OSH 

1.0 and later 

Function 08H waits for a character from standard input. The character is not echoed to 
standard output. · 

To Call 

AH =08H 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 08H reads input from the keyboard. With 
versions 2.0 and later, Function 08H reads a character from standard input. Standard 
input defaults to the keyboard but can be redirected to another device or to a file. 

• Function 08H waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available, and then calling Function 08H if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
08H must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A process can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• If a Control-Cis read and (with versions 2.0 and later) input has not been redirected, 
Interrupt 23H (Control-CHandler Address) is called. To read the Control-C character 
as data, Function 07H (Unfiltered Character Input Without Echo) should be used. 

• Interrupt 23H ( Control-C Handler Address) is called if Control-C is the input character, 
Break is enabled, and (with versions 2.0 and later) standard input has been redirected 
to come from a file. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 08H. 

Related Functions 

01H (Character Input with Echo) 
06H (Direct Console 1/0) 
07H (Unfiltered Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Section V: System Calls 1203 

ZTE (USA) 1007, Page 1213



Interrupt 21H Function OSH 

Example 

cProc 

cBegin 

cEnd 

;************************************************************; 

Function 08H: Unfiltered Character Input Without Echo 

int reacLkbd () 

Returns next character fro~, standard input. 

;************************************************************; 

reacLkbd,PUBLIC 

mov 
int 
mov 

ah,08h 

21h 

ah,O 

Set function code. 

Wait for character, no echo. 
Clear high byte. 

1204 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1214



Interrupt 21H (33) 
Function 09H (9) 
Display String 

Interrupt 21H Function 09H 

1.0 and later 

Function 09H sends a string of characters to standard output. The string must end with the 
dollar-sign character ($). All characters up to, but not including, the $ are displayed. 

To Call 

AH 
DS:DX 

=09H 
= segment: offset of string to display 

Returns 

Nothing 

Programmer's Notes 

• With MS-DOS versions l.x, Function 09H sends the string to the display. With versions 
2.0 and later, the string is written to standard output. By default, standard output is 
sent to the display, but it can be redirected to another device or to a file. 

• The string can include any valid ASCII characters, including control codes. Sending a 
dollar sign with this function, however, is not possible. 

• Depending on the device currently serving as standard output, characters other than 
the normally displayable ASCII characters (20H to 7FH) may or may not be displayed. 
On IBM PCs and most compatibles, extensions to the displayable ASCII character set 
(character codes 80H to FFH) appear as foreign or graphics characters. 

• Display begins at the current cursor position on standard output. After the string is 
completely displayed, the cursor position is updated to the location immediately 
following the string. 

On IBM PCs and compatibles, if the end of a line is reached before the string is com­
pletely displayed, a carriage return and linefeed are issued and the next character is 
displayed in the first position of the following line. If the cursor reaches the bottom 
right corner of the display before the complete string has been sent, the display is 
scrolled up one line. 

• Control characters are often included in the string to be sent. The following sample 
fragment of code contains carriage returns and linefeeds: 

rnsg db 'Resident part of TSR.COM installed' 
db Odh, Oah 
db 'Copyright (c) 19xx Foo Software, Inc. . 
db Odh, Oah, Oah, Oah 
db • $. 

• If a Control-Cis detected, Interrupt 23H (Control-CHandler Address) is called. 

Section V:· System Calls 1205 

ZTE (USA) 1007, Page 1215



Interrupt 21H Function 09H 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 09H. 

Related Functions 

02H (Character Output) 
06H (Direct Console 1/0) 
40H (Write File or Device) 

Example 

1206 

cProc 
parmDP 
cBegin 

cEnd 

;**************~*********************************************; 

Function 09H: Display String 

int disp_str(pstr) 

char *pstr; 

Returns 0. 

;*********************************************************~**; 

disp_str,PUBLIC,<ds,di> 

pstr 

loadDP ds,dx,pstr 
mov ax,0900h 

push ds 
pop es 

mov 
mov 
repne 
dec 

di,dx 
cx,Offffh 
scasb 
di 

DS:DX = pointer to string. 
Prepare to· write dollar-terminated 
string to standard output, but 
first replace the 0 at the end of 
the string with '$'. 
Set ES equal to DS. 
(MS-C does not require ES to be 
saved.) 

ES:DI points at string. 
Allow string to be 64KB long. 

Look for 0 at end of string. 
Scasb search always goes 1 byte too 
far. 

mov byte ptr [di], '$' ; Replace 0 with dollar sign. 
int 21 h Have MS-DOS print string. 
mov 
xor 

[di],al 
ax, ax 

Restore 0 terminator. 
Return 0. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1216



Interrupt 21H (33) 
Function OAH (10) 
Buffered Keyboard Input 

Interrupt 21H Function OAH 

1.0 and later 

Function OAH collects characters from standard input and places them in a user-specified 
memory buffer. Input is accepted until either a carriage return (ODH) is encountered or the 
buffer is filled to one character less than its capacity. The characters are echoed to stan­
dard output. 

To Call 

AH 
DS:DX 

=OAH 
=segment: offset of input buffer 

Returns 

Nothing 

Programmer's Notes 

• With MS-DOS versions l.x, Function OAH reads a string from the keyboard. With 
versions .2.0 and later, calls to this function read a string from standard input, which 
defaults to the keyboard but can be redirected to another device or to a file. The 
MS-DOS editing keys are active during input with this function. 

• The buffer pointed to by DS:DX must have the following format: 

Byte Contents 

0 Maximum number of characters to read (1-255); this value must be set 
by the process before Function OAH is called. 

1 Count of characters read (does not include the carriage return); 
this value is set by Function OAH before returning to the process. 

2-(n+2) Actual string of characters read, including the carriage return; n = 
number of bytes read. 

• The first byte of the buffer must contain the maximum number of characters the 
program will accept, including the carriage return at the end. Because the last byte 
must be a carriage return, the maximum number of bytes this function will actually 
read is 254. The carriage return is not included in the character count returned by 
MS-DOS in the second byte of the buffer. 

• If the buffer fills to 1 byte less than its capacity, succeeding characters are ignored and 
a beep is sounded for each keypress until a carriage return is received. 

• If a Control-Cis detected and (with versions 2.0 and later) input has not been redi­
rected, Interrupt 23H (Control-CHandler Address) is called. 

• With versions 2.0 and later, if standard input has been redirected to come from a file, 
Break must be enabled for Interrupt 23H (Control-CHandler Address) to be called 
when Control-C is the input character. 

Section V: System Calls 1207 

ZTE (USA) 1007, Page 1217



Interrupt 21H Function OAH 

• With MS-DOS versions 2.0 and later, if input is redirected, an end-of-file condition 
goes undetected by Function OAH. 

Related Functions 

OlH (Character Input with Echo) 
06H (Direct Console 1/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Example 

1208 

cProc 
parmDP 

parmB 
cBegin 

cEnd 

;************************************************************; 

Function OAH: Buffered Keyboard Input 

int read-str(pbuf,len) 

char *pbuf; 
int len; 

Returns number of bytes read into buffer. 

Note: pbuf must be at least len+3 bytes long. 

;************************************************************; 

read-str,PUBLIC,<ds,di> 

pbuf 

len 

loadDP ds,dx,pbuf 
mov al,len 

inc al 
mov di,dx 

mov [di],al 

mov ah,Oah 
int 21h 

mov al, [di+1] 

mov ah,O 

mov bx,ax 

mov [bx+di+2], ah 

DS:DX = pointer to buffer. 
AL = len. 

Add 1 to allow for CR in buf. 

Store max length into buffer. 
Set function code. 

Ask MS-DOS to read string. 

Return number of characters read. 

Store 0 at end of buffer. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1218



Interrupt 21H (33) 
Function OBH (11) 
Check Keyboard Status 

Interrupt 21H Function OBH 

1.0 and later 

Function OBH returns a value in AL that indicates whether a character is available from 
standard input. 

To Call 

AH =OBH 

Returns 

AL =OOH 
FFH 

no character available 
one or more characters available 

Programmer's Notes 

• With MS-DOS versions l.x, Function OBH checks the type-ahead buffer for a char­
acter. With versions 2.0 and later, if input has been redirected, Function OBH checks 
standard input for a character. If input has not been redirected, the function checks 
the type-ahead buffer. 

• Function OBH does not indicate how many characters are available; it merely indicates 
whether at least one character is available. 

• If the available character is Control-C, Interrupt 23H (Control-CHandler Address) is 
called. 

• Function OBH does not remove characters from standard input. Thus, if a character is 
present, repeated calls return OFFH in AL until all characters in the buffer are read, 
either with one of the character-input functions (OlH, 06H, 07H, 08H, or OAH) or with 
Function 3FH (Read File or Device) using the handle for standard input (0). 

Related Functions 

06H (Direct Console I/0) 
44H Subfunction 06H (IOCTL: Check Input Status) 

Example 

;************************************************************; 

Function OBH: Check Keyboard Status 

int key_ready () 

Returns 1 if key is ready, 0 if not. 

;************************************************************; 

(more) 

Section V.· System Calls 1209 

ZTE (USA) 1007, Page 1219



Interrupt 21H Function OBH 

1210 

cProc 

cBegin 

cEnd 

key_ready,PUBLIC 

mov 

int 

and 

ah,Obh 

21h 
ax,0001h 

The MS-DOS Encyclopedia 

Set function code. 
Ask MS-DOS if key is available. 

Keep least significant bit only. 

ZTE (USA) 1007, Page 1220



Interrupt 21H (33) 
Function OCH (12) 
Flush Buffer, Read Keyboard 

Interrupt 21H Function OCH 

1.0 and later 

Function OCH clears the standard-input buffer and then performs one of the other 
keyboard input functions (OlH, 06H, 07H, 08H, OAH). 

To Call 

AH =OCH 
AL = input function number to execute 

If ALis 06H: 

DL =FFH 

If ALis OAH: 

DS:DX 

Returns 

= segment:offset of buffer to receive input 

If AL was OlH, 06H, 07H, or 08H on call: 

AL = 8-bit ASCII character from standard input 

If AL was OAH on call: 

Nothing 

Programmer's Notes 

• With versions 1.x of MS-DOS, Function OCH empties the type-ahead buffer before 
executing the input function specified in AL. With versions 2.0 and later, if input has 
been redirected to a file, Function OCH does nothing before carrying out the input 
function specified in AL; if input was not redirected, the type-ahead buffer is flushed. 

• A function number other than 01H, 06H, 07H, 08H, or OAH in AL simply flushes the 
standard-input buffer and returns control to the calling program. 

• If AL contains OAH; DS:DX must point to the buffer in which MS-DOS is to place the 
string read from the keyboard. 

• Because the buffer is flushed before the input function is carried out, any Control-C 
characters pending in the buffer are discarded. If subsequent input is a Control-C, 
however, Interrupt 23H (Control-CHandler Address) is called if (in versions 2.0 and 
later) standard input has not been redirected to come from a file. 

• With versions 2.0 and later, if standard input has been redirected to come from a file 4 
and, after the buffer is flushed, subsequent input is a Control-C character, Interrupt 
23H ( Control-C handler address) is called only if Break is enabled. 

• This function exists to defeat the type-ahead feature if necessary- for example, to 
obtain input at a critical prompt the user may not have anticipated. 

Section V: System Calls 1211 

ZTE (USA) 1007, Page 1221



Interrupt 21H Function OCH 

Related Functions 

01H (Character Input with Echo) 
06H (Direct Console I/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function OCH: Flush Buffer, Read Keyboard 

int flush_kbd() 

Returns 0 .. 

;************************************************************; 

cProc flush_kbd,PUBLIC 
cBegin 

cEnd 

mqv 
int 
xor 

ax,OcOOh 
21h 

ax, ax 

1212 The MS-DOS Encyclopedia 

Just flush type-ahead buffer. 
Call MS-DOS. 
Return 0. 

ZTE (USA) 1007, Page 1222



Interrupt 21H (33) 
Function ODH (13) 
Disk Reset 

Interrupt 21H Function ODH 

1.0 and later 

Function ODH writes to disk all internal MS-DOS file buffers in memory that have been 
modified since the last write. All buffers are then marked as "free." 

To Call 

AH =ODH 

Returns 

Nothing 

Programmer's Notes 

• Function ODH ensures that the information stored on disk matches changes made by 
write requests to file buffers in memory. 

• Function ODH does not update the disk directory. The application must issue Func­
tion 10H (Close File with FCB) or Function 3EH (Close File) to update directory infor­
mation correctly. 

• Function ODH should be part of Control-C interrupt-handling routines so that the 
system is left in a known state when an application is terminated. 

• Disk Reset calls can be issued after particularly important disk write calls, such as 
transactions in an accounting application. Repeated use of this function, however, 
degrades system performance by defeating the MS-DOS buffering scheme. 

Related Functions 

lOH (Close File with FCB) 
3EH (Close File) 

Example 
;************************************************************; 

Function ODH: Disk Reset 

int reset_disk() 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1213 

ZTE (USA) 1007, Page 1223



Interrupt 21H Function ODH 

1214 

cProc 

cBegin 

cEnd 

reset_disk,PUBLIC 

mov 

int 

xor 

ah,Odh 

21h 

ax, ax 

The MS-DOS Encyclopedia 

Set function code. 

Ask MS-DOS to write all dirty file 

buffers to the disk. 
Return 0. 

ZTE (USA) 1007, Page 1224



Interrupt 21H (33) 
Function OEH (14) 
Select Disk 

Interrupt 21H Function OEH 

1.0 and later 

Function OEH sets the default disk drive to the drive specified in the DL register. The 
default is the disk drive MS-DOS chooses for file access when a filename is specified 
without a drive designator. A successful call to this function returns the number of logical 
(not physical) drives in the system. 

To Call 

AH =OEH 
DL = drive number (0 = drive A, 1 = drive B, 2 = drive C, and so on) 

Returns 

AL = number of logical drives in the system 

Programmer's Notes 

• The value used as a drive number is the ASCII value of the uppercase drive letter 
minus the ASCII value of the uppercase letter A ( 41H); thus, 0 = drive A, 1 = drive B, 
and soon. 

• A logical drive is defined as any block-oriented device; this category includes floppy­
disk drives, RAMdisks, tape devices, fixed disks (which can be partitioned into more 
than one logical drive), and network drives. 

• The maximum numbers of drive designators available for each MS-DOS version are as 
follows: 

MS-DOS Version 

l.x 
2.x 
3.x 

Number of Designators 

16 
63 
26 

Values 

0 through OFH 
0 through 3FH 
0 through 19H 

Drive letters should be limited to A through P (0 through OFH) to ensure that an 
application runs on all versions of MS-DOS. 

• With versions ofMS-DOS earlier than 3.0 running on IBMPCs and compatibles with 
one floppy-disk drive, Function OEH returns 02H as the drive count, because the 
single physical drive is equivalent to the two logical drives A and B. MS-DOS versions 
3.0 and later return a minimum value of 05H in AL. 

• On IBM PCs and compatibles, the number of physical floppy-disk drives in a system 
can be obtained from the ROM BIOS with Interrupt llH (Equipment Determination). 

Section V: System Calls 1215 

ZTE (USA) 1007, Page 1225



Interrupt 21H Function OEH 

Related Function 

19H (Get Current Disk) 

Example 

1216 

cProc 
parrnB 

cBegin 

cEnd 

;************************************************************; 

Function OEH: Select Disk 

int select_drive(drive_ltr) 

char drive_ltr; 

Returns number of logical drives present in system. 

;************************************************************; 

select_drive,PUBLIC 

drive_ltr 

rnov dl,drive_ltr 

and dl,not 20h 

sub dl, 'A' 

rnov ah,Oeh 

int 21h 

cbw 

; Get new drive letter. 

Make sure letter is uppercase. 
Convert drive letter to number, 

'A' = 0, 'B' = 1, etc. 
Set function code. 

Ask MS-DOS to set default drive. 
Clear high byte of return value. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1226



Interrupt 21H (33) 
Function OFH (15) 
Open File with FCB 

Interrupt 21H Function OFH 

1.0 and later 

Function OFH opens the file named in the file control block (FCB) pointed to by DS:DX. 

To Call 

AH 
DS:DX 

Returns 

=OFH 
= segment: offset of an unopened FCB 

If function is successful: 

AL =OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• MS-DOS provides several types of file services: FCB file services, which are relatively 
compatible with the CP/M methods of file handling; extended FCB file services, which 
take advantage of both CP/M compatibility and MS-DOS extensions; and handle, or 
"stream-oriented," file services, which are more compatible with UNIX/XENIX and 
support pathnames (MS-DOS versions 2.0 and later). 

• Function OFH does not support pathnames and so is capable of opening files only in 
the current directory of the specified drive. 

• Function OFH does not create a new file if the specified file does not already exist. 
Function 16H (Create File with FCB) is used to create new files with FCBs. 

• Function OFH must use an unopened FCB-that is, one in which all but the drive­
designator, filename, and extension fields are zero. If the call is successful, the func­
tion fills in the file size and date fields from the file's directory entry. In MS-DOS 
versions 2.0 and later, the function also fills in the time field. 

• If the file is opened on the default drive (the drive number in the FCB is set to 0), 
MS-DOS fills in the actual drive code. Thus, at some later point in processing, the 
default drive can be changed and MS-DOS will still have the drive number in the FCB 
for use in accessing the file. It will therefore continue to use the correct drive. 

• If Function OFH is successful, MS-DOS sets the current-block field to 0; that is, the file 
pointer is at the beginning of the file. It also sets the record size to 128 bytes (the 4 
system default). 

• If a record size other than 128 is needed, the record size field of the FCB should be 
changed after the file is successfully opened and before attempting any I/0. 

Section V.· System Calls 1217 

ZTE (USA) 1007, Page 1227



Interrupt 21H Function OFH 

• In a network running under MS-DOS version 3.1 or later, files are opened by Function 
OFH with the share code set to compatibility mode and the access code set to read/ 
write. 

• If Function OFH returns an error code (OFFH) in the AL register, the attempt to open 
the file was not successful. Possible causes for the failure are 

File was not found. 
File has the hidden or system attribute and a properly formatted extended FCB was 
not used. 
Filename was improperly specified in the FCB. 
SHARE is loaded and the file is already open by another process in a mode other 
than compatibility mode. 

• With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to determine why the attempt to open the file failed. 

• MS-DOS passes the first two command-tail parameters into default FCBs located at 
offsets 5CH and 6CH in the program segment prefix (PSP). Many applications 
designed to run as .COM files take advantage of one or both of these default FCBs. 

• With MS-DOS versions 2.0 and later, Function 3DH (Open File with Handle) should be 
used in preference to Function OFH. 

Related Functions 

10H (Close File with FCB) 
16H (Create File with FCB) 
3CH (Create File with Handle) 
3DH (Open File with Handle) 
3EH (Close File) 
59H (Get Extended Error Information) 
5AH (Create Temporary File) 
5BH (Create New File) 

Example 

;************************************************************; 

Function OFH: Open File, FCB-based 

int FCB_open(uXFCB,recsize) 

char *UXFCB; 
int recsize; 

Returns 0 if file opened OK, otherwise returns -1 , 

Note: uXFCB must have the drive and filename 

fields (bytes 07H through 12H) and the extension 
flag (byte OOH) set before the call to FCB_open 
(see Function 29H) . 

;************************************************************: 

1218 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1228



cProc FCB_open 1 PUBLIC 1 ds 
parmDP puXFCB 
parmW recsize 
cBegin 

loadDP ds.1 dx 1 puXFCB 
mov ah 1 0fh 
int 21h 
add dx 1 7 

mov bx 1 dx 
mov dx 1 recsize 
mov [bx+Oeh) 1 dx 
xor dx 1 dx 
mov [bx+20h) 1 dl 
mov [bx+21h) 1 dx 
mov [bx+23h) 1 dx 
cbw 

cEnd 

Interrupt 21H Function OFH 

Pointer to unopened extended FCB. 

Ask MS-DOS to open an existing file. 

Advance pointer to start of regular 
FCB. 

BX = FCB pointer. 

Get record size parameter. 
Store record size in FCB. 

Set current-record 

and relative-record 

fields to 0. 

Set return value to 0 or -1. 

Section V· System Calls 1219 

ZTE (USA) 1007, Page 1229



Interrupt 21H Function lOH 

Interrupt 2ill (33) 
Function lOH (16) 
Close File with FCB 

1.0 and later 

Function lOH flushes filecrelated information to disk, closes the file named in the file con­
trol block (FCB) pointed to by DS:DX, and updates the file's directory entry. 

To Call 
AH . = lOH 
DS:DX = segment:offset of previously opened FCB 

Returns 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• A successful call to Function lOH flushes to disk all MS-DOS internal buffers associ­
ated with the file and updates the directory entry and file allocation table (FAT). The 
function thus ensures that correct information is contained in the copy of the file on 
disk. 

• Because MS-DOS versions l.x and 2.x do not always detect a disk change, an error 
can occur if the user changes disks between the time the file is opened and the time 
it is closed. In the worst case, the FAT and the directory of the newly inserted disk 
may be damaged. 

• With MS-DOS versions 2.0 and later, Function 3EH (Close File) should be used in 
preference to Function lOH. 

Related Functions 

OFH (Open File with FCB) 
3EH (Close File) 

1220 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1230



Example 

cProc 
parrnDP 

cBegin 

cEnd 

Interrupt 21H Function lOH 

;************************************************************; 

Function 10H: Close file, FCB-based 

int FCB_close(oXFCB) 

char *oXFCB; 

Returns 0 if file closed OK, otherwise 
returns -1 . 

;************************************************************; 

FCB_close,PUBLIC,ds 
poXFCB 

loadDP ds,dx,poXFCB 

rnov ah, 1 Oh 
int 21h 
cbw 

Pointer to opened extended FCB. 
Ask MS-DOS to close file. 

Set return value to 0 or -1. 

Section V: System Calls 1221 

ZTE (USA) 1007, Page 1231



Interrupt 21H Function llH 

Interrupt 21H (33) 
Function llH (17) 
Find First File 

1.0 and later. 

Function llH searches the current directory for the first file that matches a specified name 
and extension. 

To Call 

AH 
DS:DX 

= llH 
= segment:offset of unopened file control block (FCB) 

Returns 

If function is successful: 

AL = OOH 

Disk transfer area(DTA) contains unopened FCB of same type (normal or extended) as 
searchFCB. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• If necessary, Function lAH (Set DTA Address) should be used before Function llH is 
called, to set the location of the DTA in which the results of the search will be placed. 

• With MS-DOS versions 1.0 and later, the wildcard character? is allowed in the 
filename. With MS-DOS versions 3.0 and later, both wildcard characters(? and•) are 
allowed in filenames. Pathnames are not supported. 

• With MS-DOS versions 2.0 and later, the attribute field of an extended FCB can be 
used to search for files with the hidden, system, subdirectory, or volume-label attri­
butes. In such a search, specifying either the normal (OOH) or volume-label (08H) 
attribute restricts MS-DOS to files with the given attribute. Specifying any combina­
tion of the hidden (02H), system (04H), and subdirectory (lOH) attributes, however, 
causes MS-DOS to search both for normal files and for those that match the specified 
attributes. 

• For a normal FCB, Function llH places the drive number in the first byte of the DTA 
and fills the succeeding 32 bytes with the directory entry. 

For an extended FCB, Function llH fills in the first 7 bytes of the DTA as follows: the 
first byte contains OFFH, indicating an extended FCB; the second through sixth bytes 
contain OOH, as required by MS-DOS; the seventh byte contains the value of the at­
tribute byte in the search FCB. The next 33 bytes contain the drive number and direc­
tory information, as for a normal FCB. 

1222 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1232



Interrupt 21H Function llH 

• As with other FCB functions, the number 0 can be used to indicate the default drive. 
MS-DOS fills in the actual drive number and continues to use that drive for calls to 
Function 12H (Find Next File) that use the same FCB, regardless of any subsequent 
selection of a 9ifferent default drive. 

• The FCB with the initial file specifications must remain unmodified if Function 12H is 
used to continue the search. 

• Error reporting in Function llH is incomplete. An error return (OFFH in the AL regis­
ter) does not always mean that the file does not exist. Other possibilities include 
- Filename in the FCB was improperly specified. 
- If an extended FCB was used, no files match the attributes given. 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about the error. 

• With MS-DOS versions 2.0 and later, Functions 4EH (Find First File) and 4FH (Find 
Next File) should be used in preference to Functions llH and 12H. 

Related Functions 

12H (Find Next File) 
lAH (Set DTA Address) 
4EH (Find First File) 
4FH (Find Next File) 

Example 

;************************************************************; 

Function 11H: Find First File, FCB-based 

int FCB_first(puXFCB,attrib) 

char *puXFCB; 

char attrib; 

Returns 0 if match found, otherwise returns -1 . 

Note: The FCB must have the drive and 
filename fields (bytes 07H through 12H) and 

the extension flag (byte OOH) set before 
the call to FCB_first (see Function 29H) . 

;************************************************************; 

(more) 

Section V: System Calls 1223 

ZTE (USA) 1007, Page 1233



Interrupt 21H Function llH 

cProc FCB_first,PUBLIC,ds 
parmDP puXFCB 
parmB attrib 
cBegin 

loadDP ds,dx,puXFCB 
mov bx,dx 
mov al,attrib 
mov [bx+6),al 

Pointer to unopened extended FCB. 
BX points at FCB, too. 
Get search attribute. 
Put attribute into extended FCB 
area. 

mov byte ptr [bx],Offh; Set flag for extended FCB. 

mov ah, 11h 

int 21h 

cbw 

cEnd 

1224 The MS-DOS Encyclopedia 

Ask MS-DOS to find 1st matching 
file in current directory. 
If match found, directory entry can 
be found at DTA address. 
Set return value to 0 or -1 . 

ZTE (USA) 1007, Page 1234



Interrupt 21H (33) 
Function 12H (18) 
Find Next File 

Interrupt 21H Function 12H 

1.0 and later 

Function 12H searches the current directory for the next file that matches a specified 
filename and extension. The function assumes a previous successful call to Function llH 
(Find First File) with the same file control block (FCB). 

To Call 

AH 
DS:DX 

Returns 

= 12H 
= segment: offset of search FCB 

If function is successful: 

AL = OOH 

Disk transfer area (DTA) contains unopened FCB of same type (normal or extended) as 
searchFCB. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Function 12H assumes that a successful call to Function llH (Find First File) has been 
completed with the same FCB. The FCB specifies the search pattern. This function 
also assumes that the wildcard character ? appears at least once in the filename or 
extension specified. 

• An error (indicated by OFFH returned in register AL) does not necessarily mean that 
a file matching the file specification does not exist in the current directory. MS-DOS 
relies on certain information that appears in the search FCB initialized by Function 
llH, so it is important not to alter that FCB either between calls to Functions llH and 
12H or between subsequent calls to Function 12H. 

• If drive code 0 (the default drive) was used in the call to Function llH, MS-DOS has 
already filled in the actual drive number for the current directory. MS-DOS continues 
to use that drive for all calls to Function 12H that use the same FCB, regardless of the 
default drive in effect at the time of the call. 

• With MS-DOS versions 2.0 and later, Functions 4EH (Find First File) and 4FH (Find 
Next File) should be used in preference to Functions llH and 12H. 

Section v··system Calls 1225 

ZTE (USA) 1007, Page 1235



Interrupt 21H Function 12H 

Related Functions 

llH (Find First File) 
lAH (Set DTA Address) 
4EH (Find First File) 
4FH (Find Next File) 

Example 

1226 

cProc 

parmDP 
cBegin 

cEnd 

;************************************************************; 

Function 12H: Find Next File, FCB-based 

int FCB~next(puXFCB) 

char *puXFCB; 

Returns 0 if match found, otherwise returns -1 . 

Note: The FCB must have the drive and 

filename fields (bytes 07H through 12H) and 

the extension flag (byte OOH) set before 
the call to FCB_next (see Function 29H) . 

;************************************************************; 

FCB_next,PUBLIC,ds 

puXFCB 

loadDP ds,dx,puXFCB 
mov ah, 12h 

int 21h 

cbw 

Pointer to unopened extended FCB. 
Ask MS-DOS to find next matching 

file in current directory. 

If match found, directory entry can 

be found at DTA address. 
Set return value to 0 or -1 . 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1236



Interrupt 21H (33) 
Function 13H (19) 
Delete File 

Interrupt 21H Function 13H 

1.0 and later 

Function 13H deletes all files matching a specified name and extension from the current 
directory. 

To Call 

= 13H AH 
DS:DX = segment: offset of an unopened file control block (FCB) 

Returns 

If function is successful: 

AL =OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• The wildcard character? can be used to match any character or sequence of charac-
ters in specifying the filename and extension. 

• Open files must not be deleted. 
• Function 13H does not support pathnames. 
• An error (indicated by OFFH returned in register AL) does not necessarily mean that 

the filename specified does n:ot exist in the current directory. Other possible causes 
for an error include 
- Filename in the FCB is improperly specified. 
- File is a read-only, hidden, or system file and an extended FCB with the appropri-

ate attribute byte was not used. 
Program attempted to delete a volume label and the label does not exist or a prop­
erly formatted extended FCB was not used. 

- In networking environments, file is locked or access rights are insufficient for 
deletion. 

• MS-DOS removes file allocation table (FAT) mapping for the file or files deleted by 
this function and flushes the FAT to disk to ensure that the disk contains a correct 
table. The first character of the filename in the directory entry is replaced by the value 

• Because the function does not physically erase data, use of Function 13H alone is not 
sufficient in security-critical applications that strictly prohibit viewing the data. 

OE5H, indicating a deleted file. 4 
Section V.· System Calls 1227 

ZTE (USA) 1007, Page 1237



Interrupt 21H Function 13H 

• On networks running under MS-DOS versions 3.1 and later, the user must have Create 
access rights to the directory containing the file to be deleted. 

• Because Function 13H deletes all files matching a given file specification, a conser­
vative approach is to use a combination of Functions UH (Find First File) and 12H 
(Find Next File) to build a list of files matching the file specification and then obtain 
confirmation from the user before deleting the files in the list. 

• With MS-DOS versions 2.0 and later, Function 41H (Delete File) should be used in 
preference to Function 13H. 

Related Function 

41H (Delete File) 

Example 

;************************************************************; 

Function 13H: Delete File(s), FCB-based 

int FCB_delete(uXFCB) 

char *uXFCB; 

Returns 0 if file(s) were deleted OK, otherwise 
returns -1. 

Note: uXFCB must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte DOH) set before 
the call to FCB_delete (see Function 29H) . 

;************************************************************; 

cProc FCB_delete,PUBLIC,ds 
parmDP puXFCB 
cBegin 

loadDP ds,dx,puXFCB 
mov ah, 13h 
int 21 h 
cbw 

cEnd 

1228 The MS-DOS Encyclopedia 

Pointer to unopened extended FCB. 
Ask MS-DOS to delete file(s). 

Return value of 0 or -1 . 

ZTE (USA) 1007, Page 1238



Interrupt 21H (33) 
Function 14H (20) 
Sequential Read 

Interrupt 21H Function 14H 

1.0 and later 

Function 14H reads the next sequential block of data from a file and places the data in the 
current disk transfer area (DTA). 

To Call 

= 14H AH 
DS:DX = segment:offset of a previously opened file control block (PCB) 

Returns 

AL =OOH read successful 
01H end of file encountered; no data in record 
02H DTA too small (segment wrap error); read canceled 
03H end of file; partial record read 

If AL = OOH or 03H: 

DTA contains data read from file. 

Programmer's Notes 

• If necessary, Function lAH (Set DTA Address) should be used to set the base address 
of the DTA before Function 14H is called. The default DTA is 128 bytes and is located 
at offset 80H of the program segment prefix (PSP). If record sizes larger than 128 bytes 
will be used, the program must change the DTA address to point to a buffer of ade­
quate size. 

• The read process begins at the current position in the file. When the read is complete, 
Function 14H increments the current-block and current-record fields of the FCB. 

• The size of the record loaded into the DTA is specified in the record size field of the 
FCB. The default is 128 bytes, set by Function OFH (Open File with FCB) or Function 
16H (Create File with FCB). If the record size is not 128 bytes, the application must set 
the record size correctly before issuing any reads. 

• Function OFH does not fill in the current-record field of the FCB when opening a file, 
so this field must be explicitly set (usually to zero) before the first call to Function 
14H. The record pointer, which includes the current-block and current-record fields of 
the FCB, is incremented when Function 14H is successfully completed. 

• Function 14H deals with fixed-length records only. Buffering logic must be added to 
an application if variable-length records are to be manipulated. 

• The block of data to be read can be chosen by changing the current-block and 
current-record fields of the FCB. 

Section V.· System Calls 1229 

ZTE (USA) 1007, Page 1239



Interrupt 21H Function 14H 

• Partial records read at the end of a file are padded with zeros to the requested record 
length. 

• On networks running under MS-DOS version 3.1 or later, the user must have Read 
access rights to the directory containing the file to be read. 

• With MS~DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 14H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
21H (Random Read) 
27H (Random Block Read) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function 14H: Sequential Read, FCB-based 

int FCB_sread(oXFCB) 

char *OXFCB; 

Returns 0 if record read OK, otherwise 
returns error code 1, 2, or 3. 

;************************************************************; 

cProc FCB_sread,PUBLIC,ds 
parmDP poXFCB 
cBegin 

cEnd 

loadDP ds,dx,poXFCB 
mov ah, 14h 

int 21h 

Pointer to opened extended FCB. 
Ask MS-DOS to read next record, 
placing it at DTA. 

cbw Clear high byte for return value. 

1230 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1240



Interrupt 21H Function 15H 

Interrupt 21H (33) 
Function 15H (21) 
Sequential Write 

1.0 and later 

Function 15H writes the next sequential block of data from the disk transfer area (DTA) to 
a specified file. 

To Call 

AH 
DS:DX 

= 15H 
= segment: offset of a previously opened file control block (FCB) 

DTA contains data to write. 

Returns 

AL =OOH 
01H 
02H 

block written successfully 
disk full; write canceled 
DTA too small (segment wrap error); write canceled 

Programmer's Notes 

• If necessary, the calling process should set the DTA address with Function lAH (Set 
DTA Address) to point to the data to be written before issuing a call to Function 15H. 
The default address of the DTA is offset SOH in the program segment prefix (PSP). 

• The FCB must already have been filled in by a call to Function OFH (Open File with 
FCB) before Function 15H is called. 

• The location of the block to be written is given by the current-block and current­
record fields of the FCB. If the write is successful, Function 15H increments the 
current-block and current-record fields. 

• 

• 
• 

• 
• 

The size of the record written by Function 15H is determined by the value in the 
record size field of the FCB. The default value is 128, set by Function OFH (Open File 
with FCB) or Function 16H (Create File with FCB). A process must set the record size 
in the FCB correctly before issuing any writes. 
Function 15H deals with fixed-length records only. Buffering logic must be added to 
an application if variable-length records are to be manipulated. 
Function 15H performs a logical, but not necessarily physical, write operation. If less 
than one sector is being written, MS-DOS moves the record from the DTA to an appro­
priate MS-DOS internal buffer. When a full sector of data has been buffered, MS-DOS 
flushes the buffer to disk. Function ODH (Disk Reset) or Function lOH (Close File with 
FCB) can be used to flush data to disk before a full sector is buffered. 4 
On networks running under MS-DOS versions 3.1 and later, the user must have Write 
access to the directory containing the file to be written to. 
With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 15H. 

Section V: System Calls 1231 

ZTE (USA) 1007, Page 1241



Interrupt 21H Function 15H 

Related Functions 

14H (Sequential Read) 
lAH (Set DTA Address) 
22H (Random Write) 
28H (Random Block Write) 
40H (Write File or Device) 

Example 

1232 

;************************************************************; 

Function 15H: Sequential Write, FCB-based 

int FCB_swrite(oXFCB) 
char *oXFCB; 

Returns 0 if record read OK, otherwise 

returns error code 1 or 2. 

;************************************************************; 

cProc FCB_swrite,PUBLIC,ds 

parmDP poXFCB 

cBegin 

cEnd 

loadDP ds,dx,poXFCB 
mov ah, 15h 

int 21h 

Pointer to opened extended FCB. 
Ask MS-DOS to write next record 
from DTA to disk file. 

cbw Clear high byte for return value. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1242



Interrupt 21H (33) 
Function 16H (22) 
Create File with PCB · 

Interrupt 21H Function 16H 

1.0 and later 

Function 16H creates a directory entry in the current directory for a specified file and 
opens the file for use. If the file already exists, it is opened and truncated to zero length. 

To Call 

= 16H AH 
DS:DX = segment: offset of an unopened file control block (FCB) 

Returns 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Before creating a new directory entry for the specified file, Function 16H searches 
the current directory for a matching filename. If a match is found, the existing file is 
opened, but its length is set to 0. In effect, this action erases an existing file and 
replaces it with a new, empty file of the same name. 

If a matching filename is not found and the directory has room for a new entry, the 
file is created and opened, and its length is set to 0. 

• An extended file control block (FCB) can be used to create a file with a special 
attribute, such as hidden. Before the Create File call is issued, the attribute byte must 
be set appropriately. 

• A value of OFFH returned in the AL register can indicate one of several errors: 
- Filename was improperly specified in the FCB. 
- File with the same name exists but is a read-only, hidden, system, or (in MS-DOS 

versions 3.x and networks) locked file. 
- Disk is full. 
- Current working directory is the root directory, and it is full. 
- User does not have the appropriate access rights to create a file in this directory 

(in MS-DOS versions 3.x and networks). 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about an error. 

• Upon successful completion of Function 16H, MS-DOS has 
- Created and opened the file specified in the FCB. 

Section V.· System Calls 1233 

ZTE (USA) 1007, Page 1243



Interrupt 21H Function 16H 

- Filled in the date and time fields of the FCB with the current date and time. 
- Set file size to zero. 
All other changes made to the FCB are similar to those made by Function OFH (Open 
File with FCB). 

• Pathnames and wildcard characters (? and •) are not supported by Function 16H. 
• With MS-DOS versions 2.0 and later, Function 16H has been superseded by Functions 

3CH (Create File with Handle), 5AH (Create Temporary File), and 5BH (Create New 
File). 

Related Functions 

OFH (Open File with FCB) 
3CH (Create File with Handle) 
3DH (Open File with Handle) 
5AH (Create Temporary File) 
5BH (Create New File) 

Example 

1234 

cProc 
parmDP 

parmW 
cBegin 

cEnd 

;************************************************************; 

Function 16H: Create File, FCB-based 

int FCB_create(uXFCB,recsize) 

char *uXFCB; 
int recsize; 

Returns 0 if file created OK, otherwise 
returns -1 . 

Note: uXFCB must have the drive and filename 

fields (bytes 07H through 12H) and the 

extension flag (byte OOH) set before the 
call to FCB_create (see Function 29H) . 

;************************************************************; 

FCB_create,PUBLIC,ds 

puXFCB 

recsize 

loadDP ds,dx,puXFCB Pointer to unopened extended FCB. 
mov ah,16h Ask MS-DOS to create file. 
int 21h 

add dx,7 Advance pointer to start of regular 

FCB. 
mov bx,dx BX = FCB pointer. 
mov dx, rec:1i~e Get record size parameter. 
mov [bx+Oeh,, dx Store record size in FCB. 
xor dx,dx 

mov [bx+2 Oh) , dl Set current-record 
mov [bx+21h) ,dx and relative-record 
mov [bx+23h), dx fields to 0. 
cbw Set return value to 0 or -1. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1244



Interrupt 21H (33) 
Function 17H (23) 
Rename File 

Interrupt 21H Function 17H 

1.0 and later 

Function 17H renames one or more files in the current directory. 

To Call 

= 17H AH 
DS:DX = segment:offset of modified file control block (FCB) in the following nonstan­

dard format: 

Returns 

Byte(s) 

OOH 
01-0SH 
09-0BH 
OCH-10H 
11H-18H 
19H-1BH 
11CH-24H 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

Contents 

Drive number 
Old filename (padded with blanks, if necessary) 
Old file extension (padded with blanks, if necessary) 
Zeroed out 
New filename (padded with blanks, if necessary) 
New file extension (padded with blanks, if necessary) 
Zeroed out 

• The wildcard character ? can be used in specifying both the old and the new file­
names, but its meaning differs in each case. A wildcard character in the old filename 
matches any single character or sequence of characters in the directory entry. A 
wildcard character in the new filename, however, indicates that the corresponding 
character or characters in the original filename are not to change. 

• With MS-DOS versions 2.0 and later, Function 17H views subdirectory entries as files. 
These subdirectory entries can be renamed using this function and an extended FCB 

4 with the appropriate attribute byte. 
• A value of OFFH returned in the AL register can indicate one of several errors: 

- Old filename is improperly specified in the FCB. 
- File with the new filename already exists in the current directory. 

Section v.- System Calls 1235 

ZTE (USA) 1007, Page 1245



Interrupt 21H Function 17H 

Old file is a read-only file. 
With M$-DOS versions 3.1 and later in a networking environment, the user has in­
sufficient access rights to the directory. 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about the cause of an error. 

• With MS-DOS versions 2.0 and later, Function 56H (Rename File) should be used in 
preference to Function 17H. 

Related Function 

56H (Rename File) 

Example 

1236 

;************************************************************; 

Function 17H: Rename File(s), FCB-based 

int FCB_rename(uXFCBold,uXFCBnew) 
char *uXFCBold,*uXFCBnew; 

Returns 0 if file(s) renamed OK, otherwise 
returns -1. 

Note: Both uXFCB's must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte DOH) set before 
the call to FCB_rename (see Function 29H). 

;************************************************************; 

cProc FCB_rename,PUBLIC,<ds,si,di> 
parmDP puXFCBold 
parmDP puXFCBnew 
cBegin 

cEnd 

loadDP es,di,puXFCBold ES:DI = Pointer to uXFCBold. 
mov dx, di Save offset in DX. 
add di,7 Advance pointer to start of regular 

FCBold. 
loadDP ds,si,puXFCBnew 
add si,B 

add di,11h 
mov ex, Obh 
rep movsb 
push es 
pop ds 
mov ah,17h 
int 21h 
cbw 

DS:SI = Pointer to uXFCBnew. 
Advance pointer to'filename field 
FCBnew. 
Copy name from FCBnew into FCBold 
at offset 11H: 
DI points 11H bytes into old FCB. 
Copy OBH bytes, moving new 
name into old FCB. 
Set DS to segment of FCBold. 

Ask MS-DOS to rename old 
file(s) to new name(s). 

Set return flag to 0 or -1 . 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1246



Interrupt 21H (33) 
Function 19H (25) 
Get Current Disk 

Function 19H returns the code for the current disk drive. 

To Call 

AH = 19H 

Returns 

AL = drive code (0 = drive A, 1 = drive B, 2 = drive C, and so on) 

Programmer's Note 

Interrupt 21H Function 19H 

1.0 and later 

• The drive code returned by Function 19H is zero-based, meaning that drive A = 0, 
drive B = 1, and so on. This value is unlike the drive code used in file control blocks 
(FCBs) and in some other MS-DOS functions, such as 1CH (Get Drive Data) and 36H 
(Get Disk Free Space), in which 0 indicates the default rather than the current drive. 

Related Function 

OEH (Select Disk) 

Example 

;************************************************************; 

Function 19H: Get Current Disk 

int cur_drive () 

Returns letter of current "logged" disk. 

;************************************************************; 

cProc cur_drive,PUBLIC 

cBegin 

cEnd 

mov 

int 
add 
cbw 

ah,19h 

21h 
al, 'A' 

Set function code. 
Get number of logged disk. 
Convert number to letter. 
Clear the high byte of return value. 

Section V: System Calls 1237 

ZTE (USA) 1007, Page 1247



Interrupt 21H Function lAH 

Interrupt 21H (33) 
Function lAH (26) 
Set DTA Address 

1.0 and later 

Function lAH specifies the location of the disk transfer area (DTA) to be used for file con­
trol block (FCB) disk I/0 operations. 

To Call 

AH 
DS:DX 

=1AH 
= segment: offset of DTA 

Returns 

Nothing 

Programmer's Notes 

• If an application does not specify a disk transfer area, MS-DOS uses a default buffer at 
offset 80H in the program segment prefix (PSP). 

• The DTA specified must be large enough to accommodate the amount of data to be 
transferred in a single block. The default record size for FCB file operations is 128 
bytes; this value can be changed after a file is successfully opened or created by alter­
ing the record size field in the FCB. If the DTA is too small for the record size used by 
the program, other code or data may be damaged. 

• The location of the DTA must be far enough from the top of the segment that contains 
it to avoid errors caused by segment wrap (data wrapping from the end of the segment 
to the beginning), which will cause the disk transfer to be terminated. Thus, for exam­
ple, if records of 128 bytes are to be read, the highest location acceptable for the DTA 
is DS:FF80H. 

• The DTA is used by all FCB-based read and write functions. In addition, any applica­
tion using the following functions must also set up a DTA for use as a scratch area in 
directory searches: 
- llH (Find First File) 
- 12H (Find Next File) 
- 4EH (Find First File) 
- 4FH (Find Next File) 

Related Function 

2FH (Get DTA Address) 

1238 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1248



Example 

cProc 
parrnD 

cBegin 

cEnd 

Interrupt 21H Function lAH 

;************************************************************; 

Function 1AH: Set DTA Address 

int set_DTA(pDTAbuffer) 

char far *pDTAbuffer; 

Returns 0. 

;************************************************************; 

set_DTA,PUBLIC,ds 
pDTAbuffer 

lds 
rnov 

int 
xor 

dx,pDTAbuffer 
ah,1ah 

21h 

ax, ax 

DS:DX = pointer to buffer. 
Set function code. 

Ask MS-DOS to change DTA address. 
Return 0. 

Section V: System Calls 1239 

ZTE (USA) 1007, Page 1249



Interrupt 21H Function lBH 

Interrupt 21H (33) 
Function lBH (27) 
Get Default Drive Data 

Function lBH returns information about the disk in the default drive. 

To Call 

AH =lBH 

Returns 

If function is successful: 

AL = number of sectors per cluster (allocation unit) 
= number of bytes per sector 
= number of clusters 

1.0 and later 

ex 
DX 
DS:BX = segment: offset of the file allocation table (FAT) identification byte 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• If Function lBH returns OFFH in the AL register, the current drive was invalid or a disk 
error occurred. The most likely causes of the latter are 
- Drive door was open. 
- Disk was not ready. 
- Medium was bad. 
- Disk was unformatted. 

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter­
rupt 24H has not been revectored to a critical error handler controlled by the program 
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error 
code OFFH is returned to the program. An application should check the AL register 
for a value of OFFH before assuming it has information on the default drive. 

• Possible values of the FAT ID byte (for IBM-compatible media) are the following: 

Value 

OFFH 
OFEH 
OFDH 
OFCH 

Medium 

Double-sided, 8 sectors/track, 40 tracks/side 
Single-sided, 8 sectors/track, 40 tracks/side 
Double-sided, 9 sectors/track, 40 tracks/side 
Single-sided, 9 sectors/track, 40 tracks/side 

1240 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1250



Interrupt 21H Function lBH 

Value Medium 

OF9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/ 
track, 80 tracks/side 

OFSH 
OFOH 

Fixed disk 
Others 

• With MS-DOS versions l.x, Function lBH returns a pointer in DS:BX for the actual 
memory image of the FAT. In MS-DOS versions 2.0 and later, the function returns a 
pointer in DS:BX for a copy of the FAT identification byte; the contents of memory 
beyond the identification byte are not necessarily the FAT memory image. If access 
to the FAT is necessary, Interrupt 25H (Absolute Disk Read) can be used to read it 
into memory. 

• The FAT ID byte is not enough to identify a drive completely in MS-DOS versions 2.0 
and later. In these versions of MS-DOS, Function 36H (Get Disk Free Space) should be 
used in preference to Function lBH to avoid the ambiguity caused by the FAT iden­
tification byte. 

• With MS-DOS versions 3.2 and later, additional drive information can be obtained by 
inspecting the BIOS parameter block (BPB) obtained with Function 44H (IOCTL) 
Subfunction ODI-i: (Generic 1/0 Control for Block Devices) minor code 60H (Get 
Device Parameters). 

• With MS-DOS versions 2.0 and later, Function 1CH (Get Drive Data) provides the same 
types of information as Function lBH, but for a disk in a drive other than the default 
drive. 

Related Functions 

1CH (Get Drive Data) 
36H (Get Disk Free Space) 
44H(IOCTL) 

Example 

See SYSTEM CALLS: INTERRUPT 21H: Function ICH. 

Section V: System Calls 1241 

ZTE (USA) 1007, Page 1251



Interrupt 21H Function lCH 

Interrupt 21H (33) 
Function lCH (28) 
Get Drive Data 

Function 1CH returns information about the disk in a specified drive. 

To Call 

AH = 1CH 
DL = drive code (0 = default drive, 1 = drive A, 2 = drive B, 

3 = drive C, and so on) 

Returns 

If function is successful: 

= number of sectors per cluster (allocation unit) 
= number of bytes per sector 
= number of clusters 

2.0 and later 

AL 
ex 
DX 
DS:BX = segment:offset of the file allocation table (FAT) identification byte 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Function 1CH is not available with MS-DOS versions 1.x. 
• If the function returns OFFH in the AL register, the drive code was invalid or a disk 

error occurred. The most likely causes of the latter are 
- Drive door was open. 
- Disk was not ready. 
- Medium was bad. 
- Disk was unformatted. 

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter­
rupt 24H has not been revectored to a critical error handler controlled by the program 
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error 
code OFFH is returned to the program. An application should check the AL register 
for a value of OFFH before assuming it has information on the specified drive. 

• Possible values of the FAT ID byte (for IBM-compatible media) are the following: 

Value 

OFFH 
OFEH 

Medium 

Double-sided, 8 sectors/track, 40 tracks/ side 
Single-sided, 8 sectors/track, 40 tracks/side 

1242 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1252



1 
I 
I 
I 

l 
I 

Interrupt 21H Function lCH 

Value 

OFDH 
OFCH 

Medium 

Double-sided, 9 sectors/track, 40 tracks/side 
Single-sided, 9 sectors/track, 40 tracks/side 

OF9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/ 
track, 80 tracks/side 

OF8H Fixed disk 
OFOH Others 

• The contents of memory beyond the identification byte pointed to by DS:BX are not 
necessarily the FAT memory image. If access to the FAT is necessary, Interrupt 25H 
(Absolute Disk Read) can be used to read it into memory. 

• The FAT ID byte is not enough to identify a drive completely. To avoid the ambiguity 
caused by the FAT identification byte, Function 36H (Get Disk Free Space) should be 
used in preference to Function 1CH. 

• With MS-DOS versions 3.2 and later, additional drive information can be obtained by 
inspecting the BIOS parameter block (BPB) obtained with Function 44H (IOCTL) 
Subfunction ODH (Generic I/0 Control for Block Devices) minor code 60H (Get 
Device Parameters). 

Related Functions 

lBH (Get Default Drive Data) 
36H (Get Disk Free Space) 
44H(IOCTL) 

Example 

;**************·****************~*****************************; 

Function 1CH: Get Drive Data 

Get information about the disk in the specified 
drive. Set drive_ltr to binary 0 for default drive info. 

int get_drive_data(drive_ltr, 

pbytes_per_sector, 

psectors_per_cluster, 

pclusters_per_drive) 

int drive_ltr; 

int *pbytes_per_sector; 

int *psectors_per_cluster; 

int *pclusters_per_drive; 

Returns -1 for invalid drive, otherwise returns 

the disk's type (from the 1st byte of the FAT). 

;************************************************************; 

(more) 

Section V: System Calls 1243 

ZTE (USA) 1007, Page 1253



Interrupt 21H Function lCH 

1244 

cProc 

parmB 
parmDP 

parmDP 

parmDP 

cBegin 

gdd: 

gddx: 

cEnd 

get_drive_data,PUBLIC,<ds,si> 

drive_ltr 
pbytes_per_sector 

psectors_per_cluster 
pclusters_per_drive 

mov 

mov 
or 

jz 
and 
sub 

mov 

int 
cbw 

cmp 

je 
mov 

mov 

loadDP 
mov 

loadDP 
mov 

mov 

loadDP 
mov 

mov 

si,ds 
dl,drive_ltr 

dl,dl 

gdd 

dl,not 20h 
dl, 'A'-1 

ah, 1ch 
21h 

al,Offh 
gddx 

bl, [bx] 

Save DS in SI to use later. 

Get drive letter. 
Leave 0 alone. 

Convert letter to uppercase. 
Convert to drive number: 'A' 

'B' = 2, etc. 

Set function code. 
Ask MS-DOS for data. 

Extend AL into AH. 

Bad drive letter? 
If so, exit with error code -1 . 

Get FAT ID byte from DS:BX. 

ds,si Get back original DS. 
ds,si,pbytes_per_sector 

[si], ex ; Return bytes per sector. 
ds,si,psectors_per_cluster 

ah,O 

[si],ax ; Return sectors per cluster. 
ds,si,pclusters_per_drive 

[si],dx Return clusters per drive. 
al,bl ; Return FAT ID byte. 

The MS-DOS Encyclopedia 

1, 

ZTE (USA) 1007, Page 1254



l 

Interrupt 21H (33) 
Function 21H (33) 
Random Read 

Function 21H reads a selected record from disk into memory. 

To Call 

=21H 

Interrupt 21H Function 21H 

1.0 and later 

AH 
DS:DX = segment:offset of previously opened file control block (FCB) 

Returns 

AL =OOH 
OlH 
02H 
03H 

If AL = OOH or 03H: 

record read successfully 
end of file; no record read 
DTA too small (segment wrap error); read canceled 
end of file; partial record transferred 

DTA contains data read from file. 

Programmer's Notes 

• Function 21H reads the record into the current disk transfer area (DTA). Unless the 
128-byte default DTA (at offset SOH in the program segment prefix) is adequate, Func­
tion lAH (Set DTA Address) should be used to set the DTA address before Function 
21H is called. The program must ensure that the buffer pointed to by the DTA address 
is large enough to hold the records to be transferred. 

• The relative-record field in the FCB must be set to the record number to be read. Num­
bering begins with record OOH; thus, the value 06H in the relative-record field would 
indicate the seventh record, not the sixth. 

• Function 21H sets the current-block and current-record fields to match the relative­
record field before transferring the data to the DTA. 

• Unlike Function 27H (Random Block Read), Function 21H does not increment the 
current-block, current-record, or relative-record fields. 

• The record length read is determined by the record size field of the FCB. 
• If a partial record is read and the end of file is encountered, the remainder of the 

record is filled out to the requested length with zero bytes. 
• On networks running under MS-DOS version 3.1 or later, the user must have Read 

access rights to the directory containing the file to be read. 
• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 

used in preference to Function 21H. 

Section V.· System Calls 1245 

ZTE (USA) 1007, Page 1255



Interrupt 21H Function 21H 

Related Functions 

14H (Sequential Read) 
lAH (Set DTA Address) 
22H (Random Write) 
24H (Set Relative Record) 
27H (Random Block Read) 
3FH (Read File or Device) 

Example 

1246 

cProc 
parrnDP 
parrnD 
cBegin 

cEnd 

;************************************************************; 

Function 21H: Random File Read, FCB-based 

int FCB_rread(oXFCB,recnurn) 
char *oXFCB; 
long recnurn; 

Returns 0 if record read OK, otherwise 
returns error code 1, 2, or 3. 

;************************************************************; 

FCB_rread,PUBLIC,ds 
poXFCB 
recnurn 

loadDP ds,dx,poXFCB 
rnov bx,dx 
rnov ax,word ptr 
rnov [bx+28h], ax 
rnov ax,word ptr 
rnov [bx+2ah], ax 
rnov ah,21h 

int 21h 
cbw 

; Pointer to opened extended FCB. 
; BX points at FCB, too. 

(recnurn) Get low 16 bits of record 
number and store in FCB. 

(recnurn+2) Get high 16 bits of record 
number and store in FCB. 

Ask MS-DOS to read recnurn'th 
record, placing it at DTA. 

Clear high byte of return value. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1256



Interrupt 21H (33) 
Function 22H (34) 
Random Write 

Interrupt 21H Function 22H 

1.0 and later 

Function 22H writes data from the current disk transfer area (DTA) to a specified record 
location in a file. 

To Call 

=22H AH 
DS:DX = segment: offset of previously opened file control block (FCB) 

DTA contains data to write. 

Returns 

AL =OOH 
01H 

record written successfully 
disk full 

02H DTA too small (segment wrap error); write canceled 

Programmer's Notes 

• Before calling Function 22H, the program must set the disk transfer area (DTA) ad­
dress appropriately with a call to Function lAH (Set DTA Address), if necessary, and 
place the data to be written in the DTA. 

• The relative-record field in the FCB must be set to the record number that is to be writ­
ten. Numbering begins with record OOH; thus, the value 06H in the relative-record 
field would indicate the seventh record, not the sixth. 

• Function 22H sets the current-block and current-record fields to match the relative­
record field before writing the data from the DTA. . 

• Unlike Function 28H (Random Block Write), Function 22H does not increment the 
current-block, current-record, or relative-record fields. 

• The record size field determines the record length written by the function. 
• If a record is written beyond the current end of file, the data between the old end of 

file and the beginning of the new record is uninitialized. 
• The file that is written to cannot have the read-only attribute. 
• Information is written logically, but not always physically, to disk at the time Function 

22H is called. The contents of the DTA are written immediately to disk only if they 
constitute a sector's worth of information. If less than a sector is written, it is trans­
ferred from the DTA to an MS-DOS buffer and is not physically written' to disk until 
one of the following occurs: 
- A full sector of information is ready. 
- The file is closed. 
- Function ODH (Disk Reset) is issued. 

Section V: System Calls 1247 

ZTE (USA) 1007, Page 1257



Interrupt 21H Function 22H 

• On networks running under MS-DOS version 3.1 or later, the user must have Write 
access rights to the directory containing the file to be written to. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 22H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
21H (Random Read) 
24H (Set Relative Record) 
28H (Random Block Write) 
40H (Write File or Device) 

Example 

1248 

cProc 

parmDP 

parmD 

cBegin 

cEnd 

;************************************************************; 

Function 22H: Random File Write, FCB-based 

int FCB_rwrite(oXFCB,recnum) 

char *oXFCB; 

long recnum; 

Returns 0 if record read OK, otherwise 

returns error code 1 or 2. 

;***************************************************~********; 

FCB_rwrite,PUBLIC,ds 

poXFCB 

recnum 

loadDP ds,dx,poXFCB 
mov bx,dx 
mov ax,word ptr 

mov [bx+28h],ax 
mov ax,word ptr 
mov {bx+2ah],ax 

mov ah,22h 

int 21h 

cbw 

; Pointer to opened extended FCB. 

; BX points at FCB, too. 

(recnum) Get low 16 bits of record 

number and store in FCB. 
(recnum+2) Get high 16 bits of record 

number and store in FCB. 
Ask MS-DOS to write DTA to 

recnum'th record of file. 

Clear high byte for return value. 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1258



Interrupt 21H (33) 
Function 23H (35) 
Get File Size 

Interrupt 21H Function 23H 

1.0 and later 

Function 23H searches the current directory for a specified file and returns the size of the 
file in records. 

To Call 

=23H AH 
DS:DX = segment:offset of unopened file control block (FCB) with record size field set 

appropriately 

Returns 

If function is successful: 

AL =OOH 

FCB relative-record field contains number of records, rounded upward if necessary. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• The record size field in the FCB can be set to 1 to find the number of bytes in the file. 
• The number of records is the file size divided by the record size. If there is a remain­

der, the record count is rounded upward. The result stored in the relative-record field 
may, therefore, contain a value that is llarger than the number of complete records in 
the file. 

• Because record numbers are zero based and this function returns the number of 
records in a file in the relative-record field of the FCB, Function 23H can be used to 
position the file pointer to the end of file. 

• With MS-DOS versions 2.0 and later, Function 42H (Move File Pointer) should be used 
in preference to Function 23H. 

Related Function 

42H (Move File Pointer) 

Section V.· System Calls 1249 

ZTE (USA) 1007, Page 1259



Interrupt 21H Function 23H 

Example 

cProc 
parmDP 
parmW 
cBegin 

nr_exit: 

cEnd 

;************************************************************: 

Function 23H: Get File Size, FCB-based 

long FCB_nrecs(uXFCB,recsize) 
char *ilXFCB; 
int recsize; 

Returns a long -1 if file not found, otherwise 
returns the number of records of size recsize. 

Note: uXFCB must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte OOH) set before 
the call to FCB_nrecs (see Function 29H) . 

:************************************************************: 

FCB_nrecs,PUBLIC,ds 

puXFCB 
recsize 

loadDP ds,dx,puXFCB 
mov bx, dx 
mov ax,recsize 
mov [bx+15h],ax 
mov ah,23h 

int 21 h 

Pointer to unopened extended FCB. 
Copy FCB pointer into BX. 
Get record size 
and store it in FCB. 
Ask MS-DOS for file size (in 
records) . 

cbw If AL = OFFH, set AX to -1. 
cwd Extend to long. 
or 
js 
mov 

mov 

dx,dx 
nr_exit 

[bx+2bh], al 

ax, [bx+28h] 
mov dx, [bx+2ah] 

Is DX negative? 
If so, exit with error flag. 
Only low 24 bits of the relative­
record field are used, so clear the 
top 8 bits. 
Return file length in DX:AX. 

1250 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1260



Interrupt 21H (33) 
Function 24H (36) 
Set Relative Record 

Interrupt 21H Function 24H 

1.0 and later 

Function 24H sets the relative-record field of a file control block (PCB) to match the file 
position indicated by the current-block and current-record fields of the same PCB. 

To Call 

AH 
DS:DX 

Returns 

=24H 
= segment:offset of previously opened PCB 

AL =OOH 

Relative-record field is modified in PCB. 

Programmer's Notes 

• The AL register is a] ways set to OOH by Function 24H. Thus, any preexisting informa­
tion in the AL register is lost. 

• Before Function 24H is called, the program must open the PCB with Function OFH 
(Open File with PCB) or with Function 16H (Create File with PCB). 

• The entire relative-record field ( 4 bytes) of the PCB must be initialized to zeros before 
calling Function 24H. If this is not done, any value in the high-order byte of the high­
order word remaining from previous reads or writes might not be overwritten and the 
resulting relative-record number will be invalid. · 

• Function 24H is normally used in changing from sequential to random 1/0. Sequential 
1/0, performed by Functions 14H (Sequential Read} and 15H (Sequential Write), sets 
the current-block and current-record fields of the PCB. Random 1/0 uses the relative­
record field, which is set by Function 24H to match the current file position as 
recorded in the current-block and current-record fields. 

After the file pointer is set, any of the following functions can be used to access data at 
the record pointed to by the relative-record field: 
- 21H (Random Read) 
- 22H (Random Write) 
- 27H (Random Block Read) 
- 28H (Random Block Write) 

• With MS-DOS versions 2.0 and later, Function 42H (Move File Pointer) should be used 
in preference to Function 24H. 

Related Function 

42H (Move File Pointer) 

Section V: System Calls 1251 

ZTE (USA) 1007, Page 1261



Interrupt 21H Function 24H 

Example 

1252 

;************************************************************; 

Function 24H: Set Relative Record 

int FCB_set_rrec(oXFCB) 

char *oXFCB; 

Returns 0. 

;************************************************************; 

cProc FCB_set_rrec,PUBLIC,ds 
parmDP poXFCB 
cBegin 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 
mov bx,dx ; BX points at FCB, too. 
mov byte ptr [bx+2bh],O ; Zero high byte of high word of 

; relative-record field. 
mov ah,24h Ask MS-DOS to set relative record 

to current record. 
int 21h 

xor ax, ax Return 0. 
cEnd 

The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1262



Interrupt 21H (33) 
Function 25H (37) 
Set Interrupt Vector 

Interrupt 21H Function 25H 

1.0 and later 

Function 25H sets an address in the interrupt vector table to point to a specified interrupt 
handler. 

To Call 

AH 
AL 
DS:DX 

Returns 

=25H 
= interrupt number 
= segment: offset of interrupt handler 

Nothing 

Programmer's Notes 

• When Function 25H is· called, the 4-byte address in DS:DX is placed in the correct 
position in the interrupt vector table. 

• Function 25H is the recommended method for initializing or changing an interrupt 
vector. A vector in the interrupt vector table should never be changed directly. 

• Before Function 25H is used to change an interrupt vector, the address of the current 
interrupt handler should be read with Function 35H (Get Interrupt Vector) and then 
saved for restoration before the program terminates. 

Related Function 

35H (Get Interrupt Vector) 

Example 

;************************************************************; 

Function 25H: Set Interrupt Vector 

typedef void (far *FCP) () ; 

int set_vector(intnum,vector) 

int intnum; 

FCP vector; 

Returns 0. 

;************************************************************; 

Section V.· System Calls 1253 

ZTE (USA) 1007, Page 1263



Interrupt 21H Function 25H 

cProc set_vector,PUBLIC,ds 

parmB intnum 

parmD vector 
cBegin 

lds dx,vector 

mov al,intnum 

mov ah,25h 

int 21h 

xor ax, ax 

cEnd 

1254 The MS-DOS Encyclopedia 

Get vector segment:offset into 

DS:DX. 
Get interrupt number into AL. 
Select "set vector" function. 

Ask MS-DOS to change vector. 

Return 0. 

ZTE (USA) 1007, Page 1264



Interrupt 21H Function 26H 

Interrupt 21H (33) 
Function 26H (38) 
Create New Program Segment Prefix 

1.0 and later 

Function 26H creates a new program segment prefix (PSP) at a specified segment address. 

To Call 

AH =26H 
DX = segment address of the PSP to create 

Returns 

Nothing 

Programmer's Notes 

• Function 26H copies the current PSP to the address indicated by DX. Note that DX 
contains a segment address, not an absolute address. 

• After the copy is made, the memory size information located at offset 06H in the new 
PSP is adjusted to match the amount of memory available to the riew PSP. In addition, 
the current contents of the interrupt vectors for Interrupt 22H (Terminate Routine Ad­
dress), Interrupt 23H (Control-CHandler Address), and Interrupt 24H (Critical Error 
Handler Address) are saved starting at offset OAH of the new PSP. 

• A .COM file can be loaded into memory immediately after the new PSP and execu­
tion can begin at that location. A .EXE file cannot be loaded and executed in this 
manner. 

• With MS-DOS versions 2.0 and later, Function 4BH (Load and Execute Program) 
should be used in preference to Function 26H. Function 4BH can be used to load 
.COM files, .EXE files, or overlays. 

Related Function 

4BH (Load and Execute Program) 

Example 

;************************************************************; 

Function 26H: Create New Program Segment Prefix 

int create_psp(pspseg) 
int pspseg; 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1255 

ZTE (USA) 1007, Page 1265



Interrupt 21H Function 26H 

1256 

cProc 
parrnW 
cBegin 

cEnd 

create_psp,PUBLIC 

pspseg 

rnov 
rnov 
int 
xor 

dx,pspseg 
ah,26h 

21h 
ax, ax 

The MS-DOS Encyclopedia 

Get segment address of new PSP. 
Set function.code. 
Ask MS-DOS to create new PSP. 

Return 0. 

ZTE (USA) 1007, Page 1266



Interrupt 21H (33) 
Function 27H (39) 
Random Block Read · 

., Interrupt 21H Function 27H 

1.0 and later 

Function 27H reads one or more records into memory, placing the records in the current 
disk transfer area (DTA). 

To Call 

=27H 
= number of records to read 

AH 
ex 
DS:DX = segment: offset of previously opened file control block (FeB) 

Returns 

AL =OOH read successful 
OlH end of file; no record read 
02H DTA too small (segment wrap error); no record read 
03H end of file; partial record read 

If AL is OOH or 03H: 

ex = number of records read 

DTA contains data read from file. 

Programmer's Notes 

• The DTA address should be set with Function lAH (Set DTA Address) before Function 
27H is called. If the DTA address has not been set, MS-DOS uses a default 128-byte 
DTA at offset SOH in the program segment prefix (PSP). 

• Function 27H reads the number of records specified in ex sequentially, starting at 
the file location indicated by the relative-record and record size fields in the FeB. If 
ex = 0, no records are read. 

• The record length used by Function 27H is the value in the record size field of the 
FeB. Unless a new value is placed in this field after a file is opened or created, 
MS-DOS uses a default record length of 128 bytes. 

• Function 27H is similar to Function 21H (Random Read); however, Function 27H can 
read more than one record at a time and updates the relative-record field of the FeB 
after each call. Successive calls to this function thus read sequential groups of records 
from a file, whereas successive calls to Function 21H repeatedly read the same record. 

• Possible alternative causes for end-of-file (OlH) errors include 
- Disk removed from drive since file was opened. 
- Previous open failed. 

With MS-DOS versions 3.0 and later, more detailed information on the error can be 
obtained by calling Function 59H (Get Extended Error Information). 

Section V: System Calis 1257 

ZTE (USA) 1007, Page 1267



Interrupt 21H Function 27H 

• On networks running under MS-DOS version 3.1 or later, the user must have Read 
access rights to the directory containing the file to be read. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 27H. 

Related Functions 

14H (Sequential Read) 
lA.H (Set DTA Address) 
21H (Random Read) 
24H (Set Relative Record) 
28H (Random Block Write) 
3FH (Read File or Device) 

Example 

1258 

;************************************************************; 

Function 27H: Random File Block Read, FCB-based 

int FCB_rblock(oXFCB,nrequest,nactual,start) 

char *OXFCB; 
int nrequest; 

int *nactual; 
long start; 

Returns read status 0, 1, 2, or 3 and sets 

nactual to number of records actually read. 

If start is -1, the relative-record field is 

not changed, causing the block to be read starting 

at the current record. 

;************************************************************; 

cProc FCB_rblock,PUBLIC,<ds,di> 

parmDP poXFCB 
parmW nrequest 

parmDP pnactual 

parmD start 

cBegin 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 

mov di,dx ; DI points at FCB, too. 
mov ax,word ptr {start) ; Get long value of start. 

mov bx,word ptr (start+2) 

mov ex, ax 
and cx,bx 

inc ex 
jcxz rb_skip 

mov [di+28h], ax 

The MS-DOS Encyclopedia 

; Is start= -1? 

If so, don't change relative-record 

field. 

Otherwise, seek to start record. 

(more) 

ZTE (USA) 1007, Page 1268



mov 
ib_skip: 

mov 

mov 

int 
loadDP 
mov 

cbw 
cEnd 

[di+2ah] ,bx 

cx,nrequest 
ah,27h 

21h 
ds,bx,pnactual 
[bx] ,ex 

Interrupt 21H Function 27H 

ex = number of records to read. 
Get MS-DOS to read ex records, 
placing them at DTA. 

DS:BX = address of nactual. 

Return number of records read. 
Clear high byte. 

Section V: System Calls 1259 

ZTE (USA) 1007, Page 1269



Interrupt 21H Function 28H 

Interrupt 21H (33) 
Function 28H (40) 
Random Block Write 

1.0 and later 

Function 28H writes one or more records from the current disk transfer area (DTA) 
to a file. 

To Call 

=28H AH 
ex 
DS:DX 

= number of records to write 
= segment:offset of previously opened file control block (FeB) 

DTA contains data to write. 

Returns 

AL =OOH 
OlH 

write successful 
disk full 

02H DTA too small (segment wrap error); write canceled 

If AL is OOH or; OlH: 

ex = number of records written 

Programmer's Notes 

• Data to be written must be placed in the DTA before Function 28H is called. Unless 
the DTA address has been set with Function lAH (Set DTA Address), MS-DOS uses a 
default 128-byte DTA at offset SOH in the program segment prefix (PSP). 

• Function 28H writes the number of records indicated in ex, beginning at the location 
specified in the relative-record field of the file control block (FeB). If Function 28H is 
called with ex= 0, the file is truncated or extended to the size indicated by the record­
size and relative-record fields of the FeB. 

• The record length used by Function 28H is the value in the record size field of the 
FeB. Unless a .new value is assigned after a file is opened or created, MS-DOS uses a 
default record length of 128 bytes. 

• Function 28H is similar to Function 22H (Random Write); however, Function 28H can 
write more than one record at a time and updates the relative-record field of the FeB 
after each call. Successive calls to this function thus write sequential groups of records 
to a file, whereas successive calls to Function 22H repeatedly write the same record. 

1260 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1270



Interrupt 21H Function 28H 

• Possible alternative causes for disk full (01H) errors include 
- Disk removed from drive since file was opened. 
- Previous open failed. 

In MS-DOS versions 3.0 and later, more detailed information on the error can be 
obtained by calling Function 59H (Get Extended Error Information). 

• Information is written logically, but not always physically, to disk at the time Function 
28H is called. The contents of the DTA are written immediately to disk only if they 
constitute a full sector of information. If less than a sector is written, it is transferred 
from the DTA to an MS-DOS buffer and is not physically written to disk until one of 
the following occurs: 

A full sector of information is ready. 
- The file is closed. 
- Function ODH (Disk Reset) is issued. 

• On networks running under MS-DOS version 3.1 or later, the user must have Write 
access rights to the directory containing the file to be written to. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 28H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
22H (Random Write) 
24H (Set Relative Record) 
27H (Random Block Read) 
40H (Write File or Device) 

Example 

;************************************************************; 

Function 28H: Random File Block Write, FCB-based 

int FCB_wblock(oXFCB,nrequest,nactual,start) 

char *oXFCB; 

int nrequest; 

int *nactual; 

long start; 

Returns write status of 0, 1, or 2 and sets 

nactual to number of records actually written. 

If start is -1, the relative-record field is 

not changed, causing the block to be written 

starting at the current record. 

;************************************************************; 

(more) 

Section V· System Calls 1261 

ZTE (USA) 1007, Page 1271



Interrupt 21H Function 28H 

1262 

cProc 
parmDP 
parmW 
parmDP 
parmD 
cBegin 

FCB_wblock,PUBLIC,<ds,di> 

poXFCB 
nrequest 
pnactual 

start 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 
mov di,dx ; DI points at FCB, too. 
mov ax,word ptr (start) ; Get long value of start. 

mov bx,word ptr (start+2) 
mov ex, ax ; Is start = -1? 

and cx,bx 

inc ex 

jcxz 

mov 
mov 

wb_skip 

[di+28h],ax 
[di+2ah],bx 

If so, don't change relative-record 

field. 
Otherwise, seek to start record. 

wb_skip: 
ex = number of records to write. 
Get MS-DOS to write ex records 

from DTA to file. 

mov 
mov 
int 
loadDP 

mov 
cbw 

cEnd 

cx,nrequest 

ah,28h 
21h 
ds,bx,pnactual 
ds:[bx],cx 

The MS-DOS Encyclopedia 

DS:BX = address of nactual. 
Return number of records written. 

Clear high byte. 

ZTE (USA) 1007, Page 1272



Interrupt 21H Function 29H 

Interrupt 2m (33) 
Function 29H ( 41) 

1.0 and later 

Parse Filename 

Function 29H examines a string for a valid filename irt the form drivejilename.ext. If 
the string represents a valid filename, the function creates an unopened file control block 
(FCB) for it. 

To Call 

AH =29H 
AL =code to control parsing, as follows (bits 0-3 only): 

DS:SI 
ES:DI 

Returns 

AL 

DS:SI 
ES:DI 

Bit 

0 

1 

2 

3 

Value 

0 
1 
0 

1 

0 

1 

0 

1 

Meaning 

Stop parsing if file separator is found. 
Ignore leading separators (parse off white space). 
Set drive number field in FCB to 0 (current drive) if 

string does not include a drive identifier. 
Set drive as specified in the string; leave unaltered if 

string does not include a drive identifier. 
Set filename field in the FCB to blanks (20H) if string 

does not include a filename. 
Leave filename field unaltered if string does not 

include a filename. 
Set extension field in FCB to blanks (20H) if string 

does not include a filename extension. 
Leave extension field unaltered if string does not 

include a filename extension. 

= segment:offset of string to parse 
= segment:offset of buffer for unopened FCB 

= OOH string does not contain wildcard characters 
OlH string contains wildcard characters 
FFH drive specifier invalid 

= segment:offset of first byte following the parsed string 
= segment: offset of unopened FCB 

Section V.· System Calls 1263 

ZTE (USA) 1007, Page 1273



Interrupt 21H Function 29H 

Programmer's Notes 

• Bits 0 through 3 of the byte in the AL register control the way the text string is parsed; 
bits 4 through 7 are not used and must be 0. 

• After MS-DOS parses the string, DS:SI points to the first byte following the parsed 
string. If DS:SI points to an earlier byte, MS-DOS did not parse the entire string. 

• If Function 29H encounters the MS-DOS wildcard character • (match all remaining 
characters) in a filename or extension, the remaining bytes in the corresponding FCB 
field are set to the wildcard character ? (match one character). For example, the string 
DOS•.D• would be converted to DOS????? in the filename field and D?? in the exten­
sion field of the FCB. 

• With MS-DOS versions l.x, the following characters are filename separators: 

:. ; , =+space tab/"[] 

With MS-DOS versions 2.0 and later, the following characters are filename separators: 

: . ; , = + space tab 

• The following characters are filename terminators: 

/"[]<>: 
All filename separators 
Any control character 

• If the string does not contain a valid filename, ES:DI + 1 points to an ASCII blank 
character (20H). 

• Function 29H cannot parse pathnames. 

Related Functions 

None 

Example 

;************************************************************; 

Function 29H: Parse Filename into FCB 

int FCB-parse(uXFCB,name,ctrl) 
char *uXFCB; 

char *name; 

int ctrl; 

Returns -1 if error, 

0 if no wildcards found, 

1 if wildcards found. 

;************************************************************; 

1264 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1274



cProc 
parmDP 
parmDP 
parmB 
cBegin 

cEnd 

Interrupt 21H Function 29H 

FCB_parse,PUBLIC,<ds,si,di> 
puXFCB 
pname 
ctrl 

loadDP 
push 
xor 

es,di,puXFCB 
di 
ax, ax 

Pointer to unopened extended FCB. 
Save DI. 

Fill all 22 (decimal) words of the 
extended FCB with zeros. 

cld Make sure direction flag says UP. 
mov cx,22d 
rep stosw 

pop di ; Recover DI. 
mov byte ptr [di],Offh; Set flag byte to mark this as an 

; extended FCB. 
add di,7 Advance pointer to start of regular 

FCB. 
loadDP 
mov 
mov 
int 
cbw 

ds,si,pname 
al,ctrl 
ah,29h 
21h 

Get pointer to filename into DS:SI. 
Get parse control byte. 
Parse filename, please. 

Set return parameter. 

Section V: System Calls 1265 

ZTE (USA) 1007, Page 1275



Interrupt 21H Function 2AH 

Interrupt 21H (33) 
Function 2AH ( 42) 
Get Date 

1.0 and later 

Function 2AH returns the current system date-year, month, day, and day of the week­
in binary form. 

To Call 

AH =2AH 

Returns 

AL = day of the week (0 = Sunday, 1 = Monday, 2 = Tuesday, and so on; 
MS-DOS versions 1.10 and later) 

ex = year (1980 through 2099) 
DH = month (1 through 12) 
DL = day (1 through 31) 

Programmer's Note 

• Years outside the range 1980-2099 cannot be returned by Function 2AH. 

Related Functions 

2BH (Set Date) 
2CH (Get Time) 
2DH (Set Time) 

Example 

;**********************************************~*************; 

Function 2AH: Get Date 

long get_date(pdow,pmonth,pday,pyear) 

char *pdow,*pmonth,*pday; 

int *pyear; 

Returns the date packed into a long: 

low byte = day of month 
next byte = month 

next word = year. 

;************************************************************; 

1266 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1276



Interrupt 21H Function 2AH 

c::Proc get_date,PUBLIC,ds 

parmDP pdow 

parmDP pmonth 

parmDP pday 
parmDP pyear 
cBegin 

mov ah,2ah Set function code. 
int 21h Get date info from MS-DOS. 
loadDP ds,bx,pdow DS:BX = pointer to dow. 

mov [bx] ,al Return·dow. 
loadDP ds,bx,pmonth DS:BX = pointer to month. 

mov [bx] ,dh Return month. 

loadDP ds,bx,pday DS:BX =pointer to day. 
mov [bx] ,dl Return day. 

loadDP ds,bx,pyear DS:BX =.pointer to year. 

mov [bx] ,ex Return year. 

mov ax,dx Pack day, month, 

mov dx,cx ... and year into return value. 

cEnd 

Section V.· System Calls 1267 

ZTE (USA) 1007, Page 1277



Interrupt 21H Function 2BH 

Interrupt 2m (33) 
Function 2BH (43) 
Set Date 

1.0 and later 

Function 2BH accepts binary values for the year, month, and day of the month and stores 
them in the system's date counter as the number of days since January 1, 1980. 

To Call 

AH = 2BH 
ex = year (1980 through 2099) 
DH =month (1 through 12) 
DL = day (1 through 31) 

Returns 

AL =OOH 
FFH 

system date updated 
invalid date specified 

Programmer's Note 

• The year must be a 16-bit value in the range 1980 through 2099. Values outside this 
range are not accepted. In addition, supplying only the last two digits of the year 
causes an error. 

Related Functions 

2AH (Get Date) 
2CH (Get Time) 
2DH (Set Time) 

Example 

;***********************.*************************************; 

Function 2BH: Set Date 

int set_date(rnonth,day,year) 
char rnonth,day; 
int year; 

Returns 0 if date was OK, -1 if not. 

;************************************************************; 

1268 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1278



Interrupt 21H Function 2BH 

cProc set_date,PUBLIC 

parmB month 
parmB day 
parmW year 
cBegin 

mov dh,month Get new month. 
mov dl,day Get new day. 
mov cx,year Get new year. 
mov ah,2bh Set function code. 
int 21h Ask MS-DOS to change date. 
cbw Return 0 or -1. 

cEnd 

Section V: System Calls 1269 

ZTE (USA) 1007, Page 1279



Interrupt 21H Function 2CH 

Interrupt 21H (33) 
Function 2CH (44) 
Get Time 

1.0 and later 

Function 2CH reports the current system time- hours (based on a 24-hour clock), 
minutes, seconds, and hundredths of a second- in binary form. 

To Call 

AH =2CH 

Returns 

CH = hours (0 through 23) 
CL = minutes (0 through 59) 
DH = seconds (0 through 59) 
DL = hundredths of second (0 through 99) 

Programmer's Note 

• The accuracy of the time returned by Function 2CH depends on the accuracy of the 
system's timekeeping hardware. On systems unable to resolve time to the hundredth 
of a second, the DL register may contain either OOH or an approximate value calcu­
lated by an MS-DOS algorithm. 

Related Functions 

2AH (Get Date) 
2BH (Set Date) 
2DH (Set Time) 

Example 

:************************************************************; 

Function 2CH: Get Time 

long get_time(phour,pmin,psec,phund) 

char *phour,*pmin,*psec,*phund; 

Returns the time packed into a long: 

low byte = hundredths 

next byte = seconds 

next byte = minutes 

next byte = hours. 

;************************************************************; 

1270 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1280



Interrupt 21H Function 2CH 

cProc get_time,PUBLIC,ds 
parmDP phour 
parmDP pmin 
parmDP psec 

parmDP phund 

cBegin 

mov ah,2ch Set function code. 
int 21h Get time from MS-DOS. 
loadDP ds,bx,phour DS:BX = pointer to hour. 
mov [bx] ,ch Return hour. 
loadDP ds,bx,pmin DS:BX = pointer to min. 
mov [bx] ,cl Return min. 
loadDP ds,bx,psec DS:BX = pointer to sec. 
mov [bx] ,dh Return sec. 
loadDP ds,bx,phund DS:BX = pointer to hund. 
mov [bx] ,dl Return hund. 
mov ax,dx Pack seconds, hundredths, ... 
mov dx,cx ... minutes, and hour into 

return value. 
cEnd 

Section V: System Calls 1271 

ZTE (USA) 1007, Page 1281



Interrupt 21H Function 2DH 

Interrupt 21H (33) 
Function 2DH ( 45) 
Set Time 

1.0 and later 

Function 2DH accepts binary values for the hour (based on a 24-hour clock), minute, 
second, and hundredths of a second and stores them in the operating system's time 
counter. 

To Call 

AH =2DH 
CH = hours (0 through 23) 
CL = minutes (0 through 59) 
DH = seconds (0 through 59) 
DL = hundredths of second (0 through 99) 

Returns 

AL = OOH 
FFH 

time successfully updated 
invalid tiine specified 

Programmer's Note 

• On systems that are unable to resolve the time to the hundredth of a second, the DL 
register should be set to OOH before Function 2DH is called. 

Related Functions 

2AH (Get Date) 
2BH (Set Date) 
2CH (Get Time) 

Example 

:************************************************************; 

Function 2DH: Set Time 

int set_time(hour,min,sec,hund) 

char hour,min,sec,hund; 

Returns 0 if time was OK, -1 if not. 

;************************************************************; 

1272 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1282



Interrupt 21H Function 2DH 
.; 

cProc set_time,PUBLIC 
·parmB hour 
parmB min 
parmB sec 
parmB hund 
cBegin 

mov ch,hour Get new hour. 
mov cl,min Get new minutes. 
mov dh,sec Get new seconds. 
mov dl,hund Get new hundredths. 
mov ah,2dh Set function code. 
int 21h Ask MS-DOS to change time. 
cbw Return 0 or -1. 

cEnd 

Section V: System Calls 1273 

ZTE (USA) 1007, Page 1283



Interrupt 21H Function 2EH 

Interrupt 21H (33) 
Function 2EH ( 46) 
Set/Reset Verify Flag 

1.0 and later 

Function 2EH turns the internal MS-DOS verify flag on or off, thus determining whether 
MS-DOS verifies disk write operations. 

To Call 

AH = 2EH 
AL = OOH turn verify off 

01H turn verify on 
DL = OOH (MS-DOS versions l.x and 2.x only) 

Returns 

Nothing 

Programmer's Notes 

• If the verify flag is on, MS-DOS requests any block-device driver to verify each sector 
written. If the driver does not support read-after-write verification, the verify flag has 
no effect. 

• Function 54H (Get Verify Flag) can be used to check the current setting of the verify 
flag. 

• Verifying data slows disk access during write operations. Because disk errors are rare, 
the default setting of the verify flag is off. 

• Verification can be controlled at the user level with the MS-DOS VERIFY command. 

Related Function 

54H (Get Verify Flag) 

Example 

;************************************************************; 

Function 2EH: Set/Reset Verify Flag 

int set_verify(newvflag) 

char newvflag; 

Returns 0. 

;************************************************************; 

127 4 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 1284



cProc set_verify,PUBLIC 
parrnB newvflag 
cBegin 

rnov al,newvflag 
rnov al),2eh 
int 21h 
xor ax, ax 

cEnd 

Get new value of verify flag. 
Set function code. 
Ask MS-DOS to store flag. 
Return 0. 

Interrupt 21H Function 2EH 

Section V.· System Calls 1275 

ZTE (USA) 1007, Page 1285



Interrupt 21H Function 2FH 

Interrupt 21H (33) 
Function 2FH ( 47) 
Get DTA Address 

Function 2FH returns the current disk transfer area (DTA) address. 

To Call 

AH =2FH 

Returns 

ES:BX = segment:offset of current DTA address 

Programmer's Notes 

2.0 and later 

• Function 2FH returns the base address of the current DTA. MS-DOS has no way of 
knowing the size of the buffer at that address; the program must ensure that the buffer 
pointed to by the DTA address is large enough to hold any records transferred to it. 

• The current DTA address can be set with Function lAH (Set DTA Address). If the DTA 
address is not set, MS-DOS uses a default buffer of 128 bytes located at offset SOH in 
the program segment prefix (PSP). 

Related Function 

lAH (Set DTA Address) 

Example 

cProc 

cBegin 

cEnd 

;*********.***************************************************; 

Function 2FH: Get DTA Address 

char far *get-DTA() 

\ 
Returns a far pointer to the DTA buffer. 

;************************************************************; 

get_DTA,PUBLIC 

mov ah,2fh 

int 21h 

mov ax,bx 

mov dx,es 

Set function code. 

Ask MS-DOS for current DTA address. 

Return offset, in AX. 

Return segment in DX. 

1276 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1286



Interrupt 21H Function 30H 

Interrupt 21H (33) 
Function 30H ( 48) 
Get MS-DOS Version Number 

2.0 and later 

Function 30H returns the major and minor version numbers for MS-DOS versions 2.0 and 
later. 

To Call 

AH =30H 
AL =OOH 

Returns 

AL 
AH 
BH 

= major version number (for example, 3 for MS-DOS version 3.x) 
=minor version number (for example, OAH for MS-DOS version x.lO) 
=original equipment manufacturer's (OEM's) serial number (OEM 

BL:CX 
dependent- usually OOH for PC-DOS, OFFH or other values for MS-DOS) 

= 24-bit user serial number (optional; OEM dependent) 

Programmer's Notes 

• With MS-DOS versions l.x, Function 30H returns OOH in the AL register; the value 
returned in AH is variable and not representative of the actuall.x minor version 
number. 

• Function 30H supplies the MS-DOS version number to an application program that 
might require features of the operating system that are not available in all versions. If 
an application attempts to use such features with the wrong version of MS-DOS, the 
results are unpredictable. 

Applications requiring MS-DOS version 2.0 or later should use Function 30H to check 
for versions l.x. Because versions l.x do not contain predefined handles for displaying 
error messages, Function 02H (Character Output) or Function 09H (Display String) 
must be used with those versions. Similarly, applications running under versions l.x 
cannot terminate through a call to Function 4CH (Terminate Process with Return 
Code). 

Related Functions 

None 

Section V.· System Calls 1277 

ZTE (USA) 1007, Page 1287



Interrupt 21H Function 30H 

Example 

1278 

;************************************************************; 

Function 30H: Get MS-DOS Version Number 

int DOS_version() 

Returns number of MS-DOS version, with 
major version in high byte, 

minor version in low byte. 

;************************************************************; 

cProc DQS_version,PUBLIC 

cBegin 

cEnd 

mov 

int 
xchg 

ax,3000H 

21h 

al,ah 

The MS-DOS Encyclopedia 

Set function code and clear AL. 

Ask MS-DOS for version number. 

Swap major and minor numbers. 

ZTE (USA) 1007, Page 1288



Interrupt 21H (33) 
Function 31H ( 49) 
Terminate and Stay Resident 

Interrupt 21H Function 31H 

2.0 and later 

Function 31H terminates a program and returns control to the parent process (usually 
COMMAND. COM) but keeps the terminated program resident in memory. 

To Call 

AH =31H 
AL = return code 
DX = number of paragraphs of memory to be reserved for cu~rent process 

Returns 

Nothing 

Programmer's Notes 

• The following interrupt vectors are restored from the program segment prefix (PSP) 
of the terminated program: 

PSPOffset 

OAH 
OEH 
12H 

Vector for Interrupt 

Interrupt 22H (terminate routine) 
Interrupt 23H (Control-Chandler) 
Interrupt 24H (critical error handler) (versions 2.0 and later.) 

• The minimum amount of memory a process can reserve is 6 paragraphs (60H bytes), 
which constitutes the initial portion of the process's PSP (including the reserved 
areas). 

• The amount of memory required by the program is not necessarily the same as the 
size of the file that holds the program on disk. The program must allow for its PSP and 
stack in the amount of memory reserved; on the other hand, the memory occupied by 
code and data used only during program initialization frequently can be discarded as 
a side effect of the Function 31H call. 

Before Function 31H is called, memory allocated to the terminating process's environ­
ment block should be released by loading ES with the segment value at offset 2CH in 
the PSP (the segment address of the environment) and calling Function 49H (Free 
Memory Block). 

4 • The terminating process should return a completion code in the AL register. If the 
program terminates normally, the return code should be OOH. A return code of OlH or 
greater usually indicates that termination was caused by an error encountered by 
the process. 

Section V.· System Calls 1279 

ZTE (USA) 1007, Page 1289



Interrupt 21H Function 31H 

The parent process can retrieve the return code with Function 4DH (Get Return Code 
of Child Process). If control returns to COMMAND. COM, the return code can be 
tested with an ERRORLEVEL statement in a batch file. 

• After terminating the current process, MS-DOS attempts to set the program's memory 
allocation to the amount specified in DX. 

• Function 31H is most often used for memory-resident utilities and subroutine libraries 
that can be accessed using interrupts. 

• This function is preferable to Interrupt 27H (Terminate and Stay Resident) because it 
allows programs that are larger than 64 KB to remain resident, allows the terminating 
program to pass a return code to the parent process, and does not require that the CS 
register contain the PSP address. 

Related Functions 

48H (Allocate Memory Block) 
49H (Free Memory Block) 
4AH (Resize Memory Block) 
4BH (Load and Execute Program) 
4CH (Terminate Process with Return Code) 
4DH (Get Return Code of Child Process) 

Example 

cProc 
parmB 

parmw 
cBegin 

cEnd 

;************************************************************; 

Function 31H: Terminate and Stay Resident 

void keep_process(exit_code,nparas) 

int exit_code,nparas; 

Does NOT return! 

;************************************************************: 

keep_process,PUBLIC 
exit_code 

nparas 

mov al,exit_code 

mov dx,nparas 

mov ah,31h 

int 21h 

Get return code. 

Set DX to number of paragraphs the 
program wants to keep. 

Set function code. 

Ask MS-DOS to keep process. 

1280 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1290



Interrupt 21H (33) 
Function 33H (51) 
Get/Set Control-C Check Flag 

Function 33H gets or sets the status of the Control-C check flag. 

To Call 

AH =33H 
AL =OOH 

01H 

If ALis 01H: 

DL =OOH 
01H 

Returns 

AL = OOH 
FFH 

get current Control-C check flag 
set Control-C check flag to value in DL 

set Control-C check flag to off 
set Control-C check flag to on 

flag set successfully 
code in AL on call not OOH or 01H 

If AL was OOH on call: 

DL =OOH 
01H 

Control-C check flag off 
Control-C check flag on 

Programmer's Notes 

Interrupt 21H Function 33H 

2.0 and later 

• If the Control-C check flag is off, MS-DOS checks for a Control-C entered at the key­
board only during servicing of the character I/0 functions, 01H through OCH. If the 
Control-C check flag is on, MS-DOS also checks for user entry of a Control-C during 
servicing of other functions, such as file and record operations. 

• The state of the Control-C check flag affects all programs. If a program needs to 
change the state of Control-C checking, it should save the original flag and restore it 
before terminating. 

Related Functions 

None 

Section V.· System Calls 1281 

ZTE (USA) 1007, Page 1291



Interrupt 21H Function 33H 

Example 

cProc 

parmB 

parmB 

cBegin 

cEnd 

;************************************************************; 

Function 33H:. Get/Set Control-C Check Flag 

int controlC(func,state) 
int func,state; 

Returns current state of Control-C flag. 

;************************************************************; 

controlC,PUBLIC 

func 

state 

mbv al,func 

mov dl,state 

mov ah,33h 

int 21h 

mov al,dl 

cbw 

Get set/reset function. 

Get new value if present. 
MS-DOS Ac check function. 

Call MS-DOS. 

Return current state. 
Clear high byte of return value. 

1282 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1292



Interrupt 21H (33) 
Function 34H (52) 
Return Address of InDOS Flag 

Interrupt 21H Function 34H 

2.0 and later 

Function 34H returns the address of the InDOS flag, which reflects the current state of 
Interrupt 21H function processing. 

Note: Microsoft cannot guarantee that the information in this entry will be valid for future 
versions of MS-DOS. 

To Call 

AH =34H 

Returns 

ES:BX = segment: offset of InDOS flag 

Programmer's Notes 

• The InDOS flag is a byte within the MS-DOS kernel. The value in InDOS is incre­
mented when MS-DOS begins execution of an Interrupt 21H function and decre­
mented when MS-DOS's processing of that function is completed. Thus, the value 
of InDOS is zero only when no Interrupt 21H processing is occurring. 

• The InDOS flag is one of the elements used in terminate-and-stay-resident (TSR) pro­
grams to determine when the TSR can be executed safely. 

Related Functions 

None 

Example 

;************************************************************; 

Function 34H: Get Return Address of InDOS Flag 

char far *inDOS_ptr() 

Returns a far pointer to the MS-DOS inDOS flag. 

;************************************************************; 

cProc inDOS_ptr,PUBLIC 

cBegin 

cEnd 

rnov 
int 

rnov 
rnov 

ah,34h 

21h 

ax,bx 

dx,es 

InDOS flag function. 

Call MS-DOS. 
Return offset in AX. 

Return segment in DX. 

Section V: System Calls 1283 

ZTE (USA) 1007, Page 1293



Interrupt 21H Function 35H 

Interrupt 21H (33) 
Function 35H (53) 
Get Interrupt Vector 

2.0 and later 

Function 35H returns the address stored in the interrupt vector table for the handler 
associated with the specified interrupt. 

To Call 

AH =35H 
AL = interrupt number 

Returns 

ES:BX = segment: offset of handler for interrupt specified in AL 

Programmer's Note 

• Interrupt vectors should always be read with Function 35H and set with Function 25H 
(Set Interrupt Vector). Programs should never attempt to read or change interrupt 
vectors directly in memory. 

Related Function 

25H (Set Interrupt Vector) 

Example 

cProc 
parmB 

cBegin 

cEnd 

;************************************************************; 

Function 35H: Get Interrupt Vector 

typedef void (far *FCP) (); 
FCP get_vector(intnum) 

int intnum; 

Returns a far code pointer that is the 

segment:offset of the interrupt vector. 

;************************************************************; 

get_vector,PUBLIC 

intnum 

mov al,intnum 

mov ah,35h 

int 21h 

mov ax,bx 
mov dx,es 

Get interrupt number into AL. 

Select "get vector" function. 

Call MS-DOS. 

Return vector offset. 

Return vector segment. 

1284 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1294



Interrupt 21H (33) 
Function 36H (54) 
Get Disk Free Space 

Interrupt 21H Function 36H 

2.0 and later 

Function 36H returns disk-storage information for the specified drive. 

To Call 

AH =36H 
DL = drive specification (0 = default drive, 1 = drive A, 2 = drive B, and so on) 

Returns 

If function is successful: 

AX = number of sectors per cluster 
BX = number of clusters available 
ex = number of bytes per sector 
DX = number of clusters on drive 

If function is not successful: 

AX =FFFFH 

Programmer's Notes 

invalid drive number in DL 

• The AX register should be checked for a value of FFFFH (error) before information 
returned by this function is used. 

• The number of bytes of free storage remaining on the disk can be calculated by 
multiplying available clusters times sectors per cluster times bytes per sector (BX • 
AX•CX). 

• Function 36H regards "lost" clusters (clusters that are allocated in the file allocation 
table [FA11 but do not belong to a file) as being in use and subtracts them from the 
amount of available storage, exactly as if they were allocated to a file. 

• With MS-DOS versions 2.0 and later, Function 36H should be used in preference to the 
FCB Functions 1BH (Get Default Drive Data) and 1CH (Get Drive Data). 

Related Functions 

1BH (Get Default Drive Data) 
1CH (Get Drive Data) 

Section V: System Calls 1285 

ZTE (USA) 1007, Page 1295



Interrupt 21H Function 36H 

Example 

cProc 

parmB 

cBegin 

fsp: 

cEnd 

;***********************************~************************; 

Function 36H: Get Disk Free Space 

long free_space{drive_ltr) 

char drive_ltr; 

Returns the number of bytes free as 
a long integer. 

;************************************************************; 

free_space,PUBLIC 

drive_ltr 

mov dl,drive_ltr 

or dl,dl 

jz fsp 

and dl,not 20h 

sub dl, 'A'-1 

mov ah,36h 

int 21h 

mul ex 
mul bx 

Get drive letter. 

Leave 0 alone. 

Convert letter to uppercase. 

Convert to drive number: 'A' 1, 
'B' = 2, etc. 

Set function code. 

Ask MS-DOS to get disk information. 

Bytes/sector • sectors/cluster 

* free clusters. 

1286 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1296



Interrupt 21H (33) 
Function 38H (56) 
Get/Set Current Country: Get Current Country 

Interrupt 21H Function 38H 

2.0 and later 

Function 38H includes two subfunctions that either get or set country data, depending on 
the value in the DX register when the function is called. 

With MS-DOS versions 2.0 and later, if DX contains any value other than FFFFH, the Get 
Current Country subfunction is invoked. Information on date, currency, and other country­
specific formats is then returned in a buffer specified by the calling program. The country 
code is usually the same as the country's international telephone prefix. 

To Call 

AH =38H 

With MS-DOS versions 2.x: 

AL 
DS:DX 

= OOH current country 
= segment:offset of 32-byte buffer 

With MS-DOS versions 3.x: 

AL = OOH current country 
01-FEH country code between 1 and 254 
FFH country code of 255 or greater, specified in BX 

BX 
DS:DX 

Returns 

=·country code if AL = FFH 
= segment: offset of 34-byte buffer 

If function is successful: 

Carry flag is clear. 

=country code (MS-DOS version 3.x only) BX 
DS:DX = segment:offset of buffer containing country information 

If function is not successful: 

Carry flag is set. 

AX = error code: 
02H invalid country code 

Section V· System Calls 1287 

ZTE (USA) 1007, Page 1297



Interrupt 21H Function 38H 

Programmer's Notes 

• With MS-DOS versions 2.x, the Get Current Country subfunction returns the following 
information for the current country in the 32-byte country-data buffer (ASCIIZ format 
is an ASCII character string ending in a zero byte): 

Offset 

OOH 

02H 
04H 
06H 
08H 

Type 

Word 

ASCIIZ 
ASCIIZ 
ASCIIZ 
24 bytes 

Description 

Date format: 
0 = United States (m/d/y) 
1 =Europe (d/m/y) 
2 =Japan (y/m/d) 

Currency symbol 
Character used as thousands separator 
Character used as decimal separator 
Reserved 

• With MS-DOS versions 3.x, the Get Current Country subfunction returns the following 
information for the specified country in the 34-byte country-data buffer: 

Offset Type 

OOH Word 

02H ASCIIZ 

07H ASCIIZ 
09H ASCIIZ 
OBH ASCIIZ 
ODH ASCIIZ 
OFH Byte 

10H Byte 

1288 TheMS-DOS Encyclopedia 

Description 

Date format: 
0 = United States (m/d/y) 
1 =Europe (d/m/y) 
2 =Japan (y/m/d) 

Currency symbol (5 bytes, as opposed to 2 in versions 2.x 
ofMS-DOS) 

Character used as thousands separator 
Character used as decimal separator 
Character used as date separator 
Character used as time separator 
Position of currency symbol; possible values are 

OOH Currency symbol precedes value with 
no space 

01H Currency symbol follows value with 
no space 

02H Currency symbol precedes value with 
one space 

03H Currency symbol follows value with 
one space 

Number of decimal places in currency 

(more) 

ZTE (USA) 1007, Page 1298



Interrupt 21H Function 38H 

Offset Type Description 

llH Byte Time format (OOH = 12-hour clock; 01H = 24-hour clock) 
12H Dword Case-mapping call address (See Programmer's Notes 

below.) 
16H ASCIIZ Character used as separator in data lists 
18H 10bytes Reserved 

• The case-mapping call address (MS-DOS versions 3.x only) is the segment:offset 
of a FAR procedure that performs country-specific mapping on ASCII characters in 
the range SOH through OFFH. The character to be mapped must be placed in the AL 
register before the call is made. If the character has an uppercase value, that value is 
returned in AL. If the character has no such value, AL is unchanged. 

• Function 59H (Get Extended Error Information) provides further information on any 
error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Function 

38H (Set Current Country subfunction) 

Example 

cProc 
parmB 

parmDP 
cBegin 

cc_ok: 

cEnd 

;************************************************************; 

Function 38H: Get/Set Current Country Data 

int country_info(country,pbuffer) 

char country,*pbuffer; 

Returns -1 if the "country" code is invalid. 

;************************************************************; 

country_info,PUBLIC,ds 

country 

pbuffer 

mov al,country 

loadDP ds,dx,pbuffer 

mov ah,38h 

int 21h 

jnb cc_ok 

mov ax,-1 

Get country code. 

Get buffer pointer (or -1). 

Set function code. 

Ask MS-DOS to get country 

information. 

Branch if country code OK. 

Else return -1 . 

Section V.· System Calls 1289 

ZTE (USA) 1007, Page 1299



Interrupt 21H Function 38H 

Interrupt 21H (33) 
Function 38H (56) 
Get/Set Current Country: Set Current Country 

3.0 and later 

Function 38H includes two subfunctions that either get or set country data, depending 
on the value in the DX register when the function is called. 

With MS-DOS versions 3.0 and later, the Set Current Country subfunction is invoked if 
Function 38H is called with DX = FFFFH (-1). This subfunction selects the country for 
which subsequent calls to Get Current Country will return information. The country code 
used with this function is usually the same as the country's international telephone prefix. 

To Call 

AH =38H 
AL = country code for a code less than 255 

FFH for country code of 255 or greater, specified in BX 
BX = country code if AL = FFH 
DX = FFFFH (-1) 

Returns 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
02H 

Programmer's Notes 

invalid country code 

• MS-DOS normally uses the country code associated with the current KEYBxx 
keyboard driver file, if any. Otherwise, the default country code is OEM dependent. 

• Function 59H (Get Extended Error Information) provides further information on any 
error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Function 

38H (Get Current Country subfunction) 

Example 

See Function 38H Subfunction Get Current Country for example. 

1290 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 1300



I 

I 
\. 

I 
I 

I 
I 
I 

Interrupt 21H (33) 
Function 39H (57) 
Create Directory 

Function 39H creates a subdirectory using the specified path. 

To Call 

AH 
DS:DX 

Returns 

=39H 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
05H access denied 

Programmer's Notes 

• The path must be a null-terminated ASCII string (ASCIIZ). 

Interrupt 21H Function 39H 

2.0 and later 

• MS-DOS places the current directory (.) and parent directory( •• ) entries in all new 
directories. 

• Function 39H returns error code 05H (access denied) in the following cases: 
- File or directory with the same name already exists in the specified path. 
- Parent directory is the root directory and the root directory is full. 
- Path specifies a device. 
- Program is running on a network under MS-DOS version 3.1 or later and the user 

does not have Create access to the parent directory. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

3AH (Remove Directory) 
3BH (Change Current Directory) 
47H (Get Current Directory) 

Section V.· System Calls 1291 

ZTE (USA) 1007, Page 1301



Interrupt 21H Function 39H 

Example 

1292 

;****************************************************-********; 

Function 39H: Create Directory 

int make_dir(pdirpath) 
char *pdirpath; 

Returns 0 if directory created OK, 
otherwise returns error code. 

;************************************************************; 

cProc make_dir,PUBLIC,ds 

parmDP pdirpath 
cBegin 

mct__err: 

cEnd 

loadDP ds,dx,pdirpath 
mov ah, 39h 
int 21h 
jb md__err 

xor ax,ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 
Set function code. 
Ask MS-DOS to make new subdirectory. 
Branch on error. 
Else return 0. 

ZTE (USA) 1007, Page 1302



Interrupt 21H (33) 
Function 3AH (58) 
Remove Directory 

Function 3AH removes (deletes) the specified subdirectory. 

To Call 

AH 
DS:DX 

Returns 

=3AH 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
05H access denied 
lOH current directory was specified 

Programmer's Notes 

• The path musi: be a null-terminated ASCII string (ASCIIZ). 

Interrupt 21H Function 3AH 

2.0 and later 

• Function 3AH returns error code 05H (access denied) in the following cases: 
- Directory is not empty. 
- Root directory was specified. 
- Current directory was specified. 
- Path does not specify a valid directory. 
- Directory is malformed (. and .. not first two entries). 
- User has insufficient access rights on a network running under MS-DOS version 3.1 

or later. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

39H (Create Directory) 
3BH (Change Current Directory) 
47H (Get Current Directory) 

Section V: System Calls 1293 

ZTE (USA) 1007, Page 1303



Interrupt 21H Function 3AH 

Example 

1294 

;************************************************************; 

Function 3AH: Remove Directory 

int remove_dir(pdirpath) 

char *pdirpath; 

Returns 0 if directory was removed, 

otherwise returns error code. 

;************************************************************; 

cProc remove_dir,PUBLIC,ds 

parmDP pdirpath 

cBegin 

rcLerr: 

cEnd 

loadDP 

mov 

int 

jb 

xor 

ds,dx,pdirpath 

ah,3ah 

21h 
rcLerr 

ax, ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 

Set function code. 
Ask MS-DOS to delete subdirectory. 

Branch on error. 

Else return 0. 

ZTE (USA) 1007, Page 1304



Interrupt 21H (33) 
Function 3BH (59) 
Change Current Directory 

Interrupt 21H Function 3BH 

2.0 and later 

Function 3BH changes the current directory to the specified path. 

To Call 

AH 
DS:DX 

Returns 

=3BH 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
· 03H path not found 

Programmer's Notes 

• The path must be a null-terminated ASCII string (ASCIIZ). 
• Before a call to Function 3BH, Function 47H (Get Current Directory) can be used 

to determine the current directory so that the original directory can be restored later 
(for example, on termination of the program). 

• Function 3BH can be used with programs that rely on either FCB-based or handle­
based calls. It is the only method of changing the current directory that is supported 
byMS-DOS. 

• The path string is limited to a total of 64 characters, including separators. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

39H (Create Directory) 
3AH (Remove Directory) 
47H (Get Current Directory) 

Section V: System Calls 1295 

ZTE (USA) 1007, Page 1305



Interrupt 21H Function 3BH 

Example 

1296 

;************************************************************: 

Function 3BH: Change Current Directory 

int change_dir(pdirpath) 
char *pdirpath; 

Returns 0 if directory was changed, 
otherwise returns error code. 

;************************************************************; 

cProc change_dir,PUBLIC,ds 
parmDP pdirpath 
cBegin 

cd....err: 
cEnd 

loadDP 
mov 
int 
jb 
xor 

ds,dx,pdirpath 
ah, 3bh 
21h 
cd....err 
ax, ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 
Ask MS-DOS to move to 
different directory. 
Branch on error. 
Else return 0. 

ZTE (USA) 1007, Page 1306



Interrupt 21H (33) 
Function 3CH (60) 
Create File with Handle 

Interrupt 21H Function 3CH 

2.0 and later 

Function 3CH creates a file, assigns it the attributes specified, and returns a 16-bit handle 
for the file. If the named file already exists, Function 3CH opens it and truncates it to zero 
length. 

To Call 

AH 
ex 
DS:DX 

Returns 

=3CH 
=attribute 
= segment:offset of ASCIIZ pathname 

If function is successful: 

Carry flag is clear. 

AX = handle number 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
04H too many open files 
05H access denied 

Programmer's Notes 

• Function 3CH is preferable to Function 16H (Create File with FCB) for creating a file 
because it supports full pathnames. Function 16H should be used only if compatibility 
with versions 1.x of MS-DOS is required. 

• The pathname must be a null-terminated ASCII string (ASCIIZ). 
• Bits 0 through 2 of the 2-byte file attribute in CX determine whether the file is normal, 

read-only, hidden, or system. The attribute codes are 
- OOH normal file 
- OlH read-only file 
- 02H hidden file 

~~~~ 4 Bits 3 through 5 are associated with volume labels, subdirectories, and archive files. 
The volume and subdirectory bits are invalid for Function 3CH and must be set to 0.
Bits 6 through 15 should be set to 0 to ensure future compatibility.

Section V: System Calls 1297

ZTE (USA) 1007, Page 1307

Interrupt 21H Function 3CH

Values can be combined to set several file attributes. For example, if Function 3CH is
called with CX = 0003H, the file created is a read-only hidden file.

• Because Function 3CH truncates an existing file to zero length, any information pre­
viously in the file is lost. Alternative functions that protect against such loss include
the following:

Function 3DH (Open File with Handle) or Function 4EH (Find First File), which
can be used to check for the previous existence of the file before Function 3CH is
called

·Function 5AH (Create Temporary File), which creates a file in the specified sub­
directory and gives it a unique name assigned by MS-DOS
Function 5BH (Create New File), which is similar to Function 3CH but fails if it
finds a file that matches the specified pathname

• After creating a file, Function 3CH sets the position of the file pointer to 0. Thus, the
next read or write operation takes place at the beginning of the file.

• Function 3CH returns error code 04H (too many open files) if no handle is currently
available. With MS-DOS versions 3.2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Error code 05H (access denied) is returned if the file is to be created in the root direc­
tory and the root is full or if a read-only file with the same name already exists in the
specified subdirectory.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file specified.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FCB)
43H (Get/Set File Attributes)
5AH (Create Temporary File)
5BH (Create New File)

Example

;**;

Function 3CH: Create File with Handle

int create(pfilepath,attr)

char *pfilepath;
int attr;

Returns -1 if file was not created,

otherwise returns file handle.

;**;

1298 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 1308

cProc create,PUBLIC,ds
parmDP pfilepath
parmW attr
cBegin

loadDP ds; dx, pfilepath
mov cx,attr
mov ah,3ch
int 21h
jnb cr_ok

mov ax, -1
cr_ok:

cEnd

Interrupt 21H Function 3CH

Get pointer to pathname.
Get new file's attribute.

Ask MS-DOS to make a new file.

Branch if MS-DOS returned handle.
Else return -1.

Section V.· System Calls 1299

ZTE (USA) 1007, Page 1309

Interrupt 21H Function 3DH

Interrupt 21H (33)
Function 3DH (61)
Open File with Handle

2.0 and later

Function 3DH opens the specified file and returns a 16-bit handle number for subsequent
access to the file.

To Call

AH =3DH

With versions 2.x of MS-DOS:

AL = file-access code:

Bits

3-7
0-2

Value

00000
000
001
010

DS:DX = segment: offset of ASCIIZ pathname

With versions 3.x of MS-DOS:

AL = file-access, file-sharing, and inheritance codes:

Bits Value

7 (inherit bit) 0
1

4-6 (sharing mode; 000
file access granted 001
to other processes) 010

011
100

3 0
0-2 (access code; 000

file usage) .001
010

DS:DX = segment: offset of ASCIIZ pathname

1300 The MS-DOS Encyclopedia

Meaning

Reserved
Read-only access
Write-only access
Read/write access

Meaning

Child process inherits file
Child process does not inherit

file
Compatibility mode
Deny read/write access
Oeny write access
Deny read access
Deny none
Reserved
Read-only access
Write-only access
Read/write access

ZTE (USA) 1007, Page 1310

Interrupt 21H Function 3DH

Returns

If function is successful:

Carry flag is clear.

AX = handle number

If function is not successful:

Carry flag is set.

AX = error code:
02H file not found
03H path not found
04H too many open files
05H access denied
OCH invalid access code

Programmer's Notes

• Function 3DH is preferable to Fu?ction OFH (Open File with FCB) because it allows
the use of pathnames. Function OFH should be used only if compatibility with ver­
sions l.x of MS-DOS is required.

• Function 3DH opens any file matching the pathname in DS:DX, including hidden and
system files.

• The pathname must be a null-terminated ASCII string(ASCIIZ).
• Function 3DH returns error code 04H (too many open files) if no handle is currently

available. With MS-DOS versions 3.2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Function 3DH returns error code 05H (access denied) if the pathname specifies a
directory or volume label or if read/write access was requested for a read-only file.

Function 3DH returns error code OCH (invalid access code) if bits 0-2 in AL contain
any value other than 000, 001, or 010.

• With MS-DOS versions 2.x, only bits 0-2 of the byte in AL are meaningful; they should
contain the type of access allowed for the file. Bits 3-7 should always be zero.

With MS-DOS versions 3.0 and later, networking capabilities require bits 4-7, as well
as 0-2, to be set. (Bit 3 is reserved and should be 0.)

Bit 7, the inherit bit, should be set to indicate whether child processes created by the
current process with Function 4BH (Load and Execute Program) either can (0) or can­
not (1) inherit the file. When a process inherits a file, it also inherits the access and
sharing modes.

Section V.· System Calls 1301

ZTE (USA) 1007, Page 1311

Interrupt 21H Function 3DH

Bits 4-6 are called the "sharing code"; they indicate the type of access other users on
the network can have to the file. The five sharing modes and the conditions under
which they pertain are as follows:
- mode 000 (compatibility). Allows other programs running on the same machine

unlimited access to the file. Programs running on other machines cannot access
the file across the network unless it has the read-only attribute. An attempt to open
the file in compatibility mode fails if the file has already been opened with any
other sharing mode.

- 001 (deny read and write access). Provides exclusive access to the file. Any subse­
quent attempts by others (including the current process) to open the file fail. This
mode fails if the file has already been opened in compatibility mode or for read or
write access, even by the current process.

- 010 (deny write access). Allows other processes to open the file for read-only ac­
cess. This mode fails if the file has already been opened in compatibility mode or
for write access by any other process.

- 011 (deny read access). Allows other processes to open the file for write-only ac­
cess. This mode fails if the file has already been opened in compatibility mode or
for read access by any other process.

- 100 (deny none). Similar to compatibility mode, but does not allow other processes
to open the file in compatibility mode. This mode fails if the file has already been
opened in compatibility mode by any other process.

• When the file is opened, the position of the file pointer is set to 0. Function 42H
(Move File Pointer) can be used to change its position.

• With MS-DOS versions 3.0 and later, if this function fails because of a file-sharing
error, the operating system issues an Interrupt 24H (Critical Error Handler Address)
with error code 02H (drive not ready). Function 59H (Get Extended Error Informa­
tion) must be used to find the extended error code specifying the type of sharing
violation that occurred.

Related Functions

OFH (Open File with FCB)
3EH (Close File)
3FH (Read File or Device)
40H (Write File or Device)
42H (Move File Pointer)
43H (Get/Set File Attributes)
57H (Get/Set Date/Time of File)

1302 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1312

Example

cProc
parmDP

parmB

cBegin

op_ok:

cEnd

Interrupt 21H Function 3DH

;**;

Function 3DH: Open File 1-1i th Handle

int open(pfilepath,mode)

char *pfilepath; int mode;

Modes:

0: Read

1 : Write

2: Read/Write

Returns -1 if file was not opened,
otherwise returns file handle.

;**;

open,PUBLIC,ds
pfilepath

mode

loadDP ds,dx,pfilepath
mov al,mode
mov ah,3dh
int 21h

jnb op_ok

mov ax,-1

Get pointer to pathname.
Get read/write mode.

Request MS-DOS to open the
existing file.

Branch if MS-DOS returned handle.
Else return -1.

Section V.· System Calls 1303

ZTE (USA) 1007, Page 1313

Interrupt 21H Function 3EH

Interrupt 21H (33)
Function 3EH (62)
Close File

Function 3EH closes the file referenced by the specified handle.

To Call

AH = 3EH
BX = handle number

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
06H invalid handle number

Programmer's Notes

2.0 and later

• The handle in BX must be one that was returned by a successful call to one of the
following functions:
- 3CH (Create File with Handle)
- 3DH (Open File with Handle)
- 5AH (Create Temporary File)
- SBH (Create New File)

• If the file has been modified, truncated, or extended, Function 3EH updates the cur­
rent date, time, and file size in the directory entry.

• All internal MS-DOS buffers for the file, including directory and file allocation table
(FAT) buffers, are flushed to disk.

• With MS-DOS versions 3.0 and later, a program must remove all file locks in effect
before it closes a file. The result of closing a file with active locks is unpredictable.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

1304 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 1314

Related Functions

lOH (Close File with FCB)
3CH (Create File with Handle)
3DH (Open File with Handle)
5AH (Create Temporary File)
5BH (Create New File)

Example

Interrupt 21H Function 3EH

!**;

cProc
parmW
cBegin

cl_ok:

cEnd

Function 3EH: Close File

int close(handle)
int handle;

Returns -1 if file was not closed,
otherwise returns 0.

;**;

close, PUBLIC
handle

mov bx,handle Get handle.
mov ah,3eh Set function codes.
int 21h Ask MS-DOS to close handle.
mov al,O
jnb cl_ok Branch if no error.
mov al,-1 Else return -1.

cbw Extend result.

Section V.· System Calls 1305

ZTE (USA) 1007, Page 1315

