
Article 6: Interrupt-Driven Communications

25
26 static int I,
27 waitchr 0,
28 vflag = False,

29 capbp,,

30
31

32
33
34
35

36
37
38

39
40
41
42
43
44
45
46
47
48
49

int

capbc,
Ch,
Want_7-Bit = True,
ESC_Seq_State = 0;

_ex ,
_cy,
_atr Ox07,
_pag 0,
oldtop 0,
oldbot Ox184f;

FILE * in_file = NULL;
FILE * cap_file = NULL;

#include "cterm.h"

int Wants_To-Abort ()
{ return broke ();

I* escape sequence state variable

I* white on black

I* start with keyboard input

I* external declarations, etc.

I* checks for interrupt of script

50 void

51
52
53
54
55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73
74
75

main (argc, argv) int argc
char* argv [);

char * cp,

I* main routine

* addext ();
if (argc > 1) I* check for script filename

in_file = fopen (addext (argv [1), ".SCR"), "r");
if (argc > 2) I* check for capture filename

cap_file = fopen (addext (argv [2), ".CAP"), "w");

set_int (); I* install· CH1 module
Set_Vid (); I* get video setup
cls (); I* clear the screen
cputs ("Terminal Emulator"); I* tell who's working
cputs ("\r\n< ESC for local commands >\r\n\n");
Want_7-Bit = True;
ESC_Seq_State = 0;

Init_Comm (); I*
while (1)

(if ((Ch = kb_file ()) > 0
{ if (Is_Function_Key (Ch

{ if (docmd () < 0)
break;

else
Send-Byte (Ch & Ox7F);

set

))

up drivers, etc.

I* main loop

I* check local

I* command

I* else send it

*I

*I

*I

*I

*I

*I

*I

*I
*I
*I
*I

*I·
*I
*I

*I

*I

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 231

ZTE (USA) 1007, Page 241

Part B: Programming for MS-DOS

if ((Ch = Read_Modem ()) >= 0) I* check remote
{ if (Want_7-Bit)

Ch &= Ox7F; I* trim off high bit
switch ESC_Seq_State I* state machine

case 0 I* no Esc sequence
switch (Ch

case ESC I* Esc char received
ESC_Seq_State

break;

default :

1;

if (Ch == waitchr

waitchr = 0;
if (Ch == 12)

cls () ;

else

I* wait if required

I* clear screen on FF

*I

*I
*I

*I

*I

*I

76

77

78
79

80

81

82

83
84

85

86
87

88

89

90
91

92

93

94
95

96
97

98
99

if (Ch ! = 127) I* ignore rubouts *I

100
101
102

103

104
105

106

107

108
109

110

111
112

113

114
115

116

117
118

119

120

121

122

123

124
125

126

Figure 6-8. Continued.

{ putchx ((char) Ch); I* handle all others *I
put-cap ((char) Ch) ;

break;

case 1 : I* ESC -- process any escape sequences here
switch (Ch)

case 'A' : I* VT52 up
I* nothing but stubs here

ESC_Seq_State 0;
break;

case 'B' I* VT52 down

ESC_Seq_State 0;
break;

case 'C' I* VT52 left

ESC_Seq_State 0;
break;

case 'D' I* VT52 right

ESC_Seq_State 0;
break;

case 'E' I* VT52 Erase CRT
cls () ; I* actually do this one

*I

*I
*I

*I

*I

*I

*I
*I

232 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 242

Article 6: Interrupt-Driven Communications

ESC_Seq_State

break;

case 'H'

0;

locate 0, 0) ;
ESC_Seq_State = 0;

break;

case 'j'
deos ();
ESC_Seq_State

break;

0;

I* VT52 horne cursor

I* VT52 Erase to EOS

127

128
129

130

131

132

133
134

135

136
137

138

139
140

141
142

143

144

145

146
147

148

149

150

151

152

153

154
155

156

case ' [' I* ANSI.SYS -VT100 sequence
ESC_Seq_State = 2;

break;

default :
putchx (ESC); I* pass thru all others

putchx ((char) Ch) ;
ESC_Seq_State 0;

break;

case 2 :
ESC_Seq_State 0;

I* ANSI 3.64 decoder

I* not implemented

if (broke ()) I* check CH1A handlers

{ cputs ("\r\n***BREAK***\r\n") ;

157 break;

158

159
160 if { cap_file

161 cap_flush ();

1 62 Terrn_Comm () ;

163 rst_int ();

164 exit (0);

165

166
1 67 docrnd ()

168 FILE* getfil ();

169
170

171

172

int wp;

wp = True;
if (! in_file : : vflag)

cputs ("\r\n\tCommand: ");

173 else

174

175

176

wp = False;
Ch = toupper (kbd_wait ());

if (wp)

177 putchx ((char) Ch) ;

I* end of main loop

I* save any capture

I* restore when done

I* restore break handlers

I* be nice to MS-DOS

I* local command shell

I* ask for command

I* get response

*I

*I

*I

*I

*I
*I

*I

*I
*I

*I
*I
*I

*I

*I

*I

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 233

ZTE (USA) 1007, Page 243

.-·

Part B: Programming for MS-DOS

178

179

180

181
182

183

184

185

186
187
188

189

190
191

1 92

193
194

195

196

197

198
199
200

201
202

203

204
205

206
207

208

209

210
211

212

213
214

215

21 6
217

218

219

220
221

222

223

224

225

226
227

switch (Ch

case 'S' :
if (wp)

I* and act on it

cputs ("low speed\r\n") ;

Set-Baud (300);
break;

case 'D'
if (wp)

cputs ("elay (1-9 sec) : ") ;
Ch = kbd_wait ();

if (wp)
putchx ((char) Ch) ;

Delay (1 000 * (Ch - 1 0 1
)) ;

if (wp)

putchx (1 \n 1
) ;

break;

case 'E'
if (wp)

cputs ("ven Parity\r\n");
Set_Farity (2);

break;

case 'F'
if (wp)

cputs ("ast speed\r\n");
Set_Baud (1200);

break;

case 'H'
if (wp)

{ cputs
cputs

cputs

cputs
cputs

cputs

cputs

cputs

cputs
cputs

cputs

cputs

break;

case 'N'
if (wp

"\r\n\tVALID COMMANDS:\r\n");
"\tD delay 0-9 seconds.\r\n");

"\tE

"\tF
"\tN

"\tO

"\tQ
"\tR

"\tS
"\tU

"\tV

"\tW

even parity.\r\n");

(fast) 1200-baud.\r\n");
no parity.\r\n");

odd parity.\r\n");

quit, return to DOS.\r\n");

reset modem.\r\n");

(slow) 300-baud.\r\n");
use script file.\r\n");

verify file input.\r\n");

wait for char.");

Figure 6-8. Continued.

234 The MS-DOS Encyclopedia

*I

(more)

ZTE (USA) 1007, Page 244

228 cputs ("o Parity\r\n" ~;

229 Set_Parity 1) ;

230 break;

231
232 case '0'

233 if (wp)
234 cputs ("dd Parity\r\n") ;

235 Set_Parity (3);

236 break;

237
238 case 'R'

239 if (wp)
240 cputs ("ESET cornin Port\r\n") ;

241

242

243

In i t_Corrun () ;

break;

244 case 'Q'

245 if (wp)

246

247

248

249

cputs ("-QUIT Corrunand\r\n");

Ch = (- 1) ;

break;

250 case 'U'
251 if (in_file && ! vflag

252 putchx ('U') ;

cputs ("se file: ");

getfil ();

cputs ("File");

Article 6: Interrupt-Driven Communications

253

254

255

256 cputs (in_file ? "Open\r\n" "Bad\r\n") ;

257 waitchr = 0;

258 break;

259
260 case 'V'

261

262

263

264

if (wp)

{ cputs

cputs

"erify flag toggled");

vflag ? "OFF\r\n"

265 vflag = vflag ? False : True;

266 break;

267
268 case 'W'

269 if { wp
270 cputs { "ait for: <") ;
2T1 waitchr = kbcLwait ();

272 if (waitchr == ' ')
273

274

275

276

277

278

waitchr = O;
if (wp)

{ if (waitchr

putchx ((char) waitchr);

else

cputs ("no wait");

"ON\r\n");

Figure 6-8. Continued. (more)

Section /1· Programming in the MS-DOS Environment 235

ZTE (USA) 1007, Page 245

Part B: Programming for MS-DOS

279
280
281
282

cputs (">\r\n") ;

break;

283 default :
284 if (wp
285 { cputs ("Don't know ") ;
286 putchx ((char) Ch) ;

287 cputs ("\r\nUse 'H' command for Help. \r\n") ;

288
289
290

Ch = '?';

291
292
293
294

if (wp)
{ cputs

I* if window open

while

295

"\r\n[any key]\r");
Read-Keyboard () == EOF I* wait for response

296 return Ch
297
298
299 kbd__wai t () I* wait for input
300 int c

301
302

while ((c = kb_file ()) (- 1))

303 return c & 255;

kb_file () I* input from kb or
int
if (

c
in_file I* USING SCRIPT

c = Wants_To_Abort () ; I* use first as flag
if (waitchr && ! c)

c = (- 1) ; I* then for char
else

if (c :: (c = getc (in_file)) == EOF :: c == 26
fclose (in_file);

else

cputs ("\r\nScript File Closed\r\n");
in_file NULL;
waitchr
c = (-

0;
) ;

file

304
305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323

·324

if (c == '\n'
c = (- 1) ;

if (c == '\\')
c = esc ();

I* ignore LFs in file

325
326
327
328
329

if (vflag && c != (- 1))
{ putchx ' {') ;

putchx
putchx

(char) c) ;
'}') ;

Figure 6-8. Continued.

236 The MS-DOS Encyclopedia

I* process Esc sequence

I* verify file char

*I

*I

*I

*I

*I
*I

*I

*I

*I

*I

(more)

ZTE (USA) 1007, Page 246

330
331

332

333
334

335

336
337

338

339
340

341

342
343
344

345

346
347

348

349

350

351

352

353
354

355

356
357

358
359

360
361

362

363

364

365 :

366
367

368

369

370
371

372

373

374

375

376

377

378

379

380

Article 6: Interrupt-Driven Communications

else
c = Read_Keyboard ();

return (c);

esc ()

{ int c
c = getc (in_file) ;

switch toupper

case 'E' :

c = ESC;
break;

case 'N'
C ='I \n I i·

break;

case 'R'
c = '\r';
break;

case 'T'
C = I \t I i

break;

case '"' :

c))

c = getc (in_file) & 31;

break;

return (c) ;

FILE * getfil ()
{ char fnm [20];

getnam (fnm, 15);

if (! (strchr (fnm,

strcat (fnm, ".SCR");

)))

I* USING CONSOLE

I* if not using file

I* script translator

I* control chars in file

I* get the name

return (in_file = fopen (fnm, "r"));

void getnam (b, s) char * b; I* take input to buffer

int s ;
while (s -- > 0

if ((* b = (char) kbcLwait ()) != '\r')

putchx (* b ++);
else

break ;

putchx ('\n') ;

*I
*I

*I

*I

*I

*I

Figure 6-8. Continued. (more)

Section 11· Programming in the MS-DOS Environment 237

ZTE (USA) 1007, Page 247

Part B: Programming for MS-DOS

381
382
383
384
385

* b 0;

char * addext b,
e) char * b,

386 * e;
387 static char bfr [20];

388 if (strchr (b, '.'))
389 return (b);
390
391
392
393
394
395
396
397

398
399

strcpy
strcat
return

bfr, b) ;
bfr, e) ;
bfr) ;

void put_cap (c) char c ;
(if (cap_file && c != 13

fputc (c, cap_file);

void cap_flush ()
{ if (cap_file)

{ fclose (cap_file);
cap_file = NULL;

I* add default EXTension

I* strip out CRs
I* use MS-DOS buffering

I* end Capture mode 400
401
402
403
404
405

cputs ("\r\nCapture file closed\r\n");

406
407
408
409
410

I* TIMER SUPPORT STUFF (IBMPCIMSDOS) *I
static long timr;

411 static union REGS rgv
412

413 long getmr ()
414 { long now

415 rgv.x.ax Ox2c00;
416 intdos (& rgv, & rgv);
417 now= rgv.h.ch;
418 now *= 60L;
419
420
421
422
423
424
425
426

now +=
now *=
now +=
now *=
now +=

return

rgv.h.cl;
60L;
rgv.h.dh;
100L;
rgv.h.dl;
(10L * now) ;

427 void Delay (n) int n ;
428 { long wakeup ;
429 wakeup = getmr () + (long) n;
430 while (getmr () < wakeup)
431

Figure 6-8. Continued.

238 The MS-DOS Encyclopedia

I* timeout register

I* msec since midnite

I* hours

I* to minutes

I* plus min

I* to seconds

I* plus sec

I* to 11100

I* plus 11100

I* msec value

I* sleep for n rnsec

I* wakeup time

I* now sleep

*I

*I
*I

*I

*I

*I

*I
*I
*I
*I
*I
*I
*I
*I

*I

*I

*I

(more)

ZTE (USA) 1007, Page 248

Article 6: Interrupt-Driven Communications

432
433
434
435
436
437
438
439
440
441
442
443

void Start_Timer (n) int n

timr = g~tmr () + (long n *
I* set timeout for n sec

1000L;

Timer_Expired () I* if timeout return 1 else return 0
(return (getmr () > timr);
}

Set_Vid ()
{ _i_v ();

444 return 0;
445
446
447
448

void locate
col;

row, col) int row ,

449 _cy = row % 25;
450 _ex = col % 80;
451
452
453
454
455
456
457

_wrpos (row, col);

void deal ()
{ _deal ();

4S8 void deos ()
459 deal ();
460
461
462
463
464
465
466

if (_cy < 24)

{ rgv.x.ax
rgv.x.bx
rgv.x.cx

Ox0600;
(_atr << 8) ;
(_cy + 1) << 8;

rgv.x.dx Ox184F;
int86 (Ox10, & rgv, & rgv);

467 locate (_cy, _ex);
468
469
470
471

472
473
474
475

void cls ()
{ _cls ();

void cursor (yn) int yn ;
rgv.x.cx = yn ? Ox0607 : Ox2607;

476 rgv.x.ax = Ox0100;
477 int86 (Ox10, & rgv, & rgv);
478
479

480 void revvid (yn) int yn ;
481 { if (yn)
482 _atr =_color (8, 7);

I* initialize video

/* use ML from CH2.ASM

/* use ML from CH2.ASM

I* if not last, clear

I* use ML

I* ON/OFF

I* black on white

*I

*I

*I

*I

*I

*I

*I

*I

*I

Figure 6-8. Continued. (more)

Section IL- Programming in the MS-DOS Environment 239

ZTE (USA) 1007, Page 249

Part B: Programming for MS-DOS

483 else
484
485
486
487
488

_atr _color (15, 0);

putchx (c) char c
{ if (c == '\n'

489 putch ('\r');
490 putch (c);
491 return c ;
492
493
494
495
496
497
498
499
500
501
502

ReacLKeyboard ()

int c ;

if (kbhit ())
return (getch ()) ;

return (EOF);

I* MODEM SUPPORT
503 static char mparm,
504 wrk [80];
505
506
507

508

void Init_Comm ()

static int ft 0;
if (ft ++ == 0

509 i_m ();
510
511
512
513
514

Set_Farity (1);
Set_Baud (1200) ;

#define B1200 Ox80
515 #define B300 Ox40
516

Set_Baud (n) int n ;

if (n == 300)

I* white on black

I* put char to CRT

I* get keyboard character
returns -1 if none present

I* no char at all

*I

I* initialize comm port stuff
I* firstime flag

I* 8,N, 1

I* 1200 baud

I* baudrate codes

I* n is baud rate 517

518
519
520

mparm = (mparm & Ox1F) + B300;
else

521 if (n == 1200)
522 mparm = (mparm & Ox1F) + B1200;
523 else
524
525
526

return 0;
sprintf (wrk, "Baud rate
cputs (wrk) ;

527 set_mdm (mparm);
528 return n ;
529
530
531
532

#define PAREVN Ox18
#define PARODD 0x10

533 #define PAROFF OxOO

Figure 6-8. Continued.

240 The MS-DOS Encyclopedia

I* invalid speed
%d\r\n", n) ;

I* MCR bits for commands

*I

*I

*I

*I

*I
*I

*I
*I

*I

*I

*I

*I

(more)

ZTE (USA) 1007, Page 250

534 #define STOP2 Ox40
535 #define WORDS Ox03
536 #define WORD7 Ox02
537 #define WORD6 Ox01
53S
539
540

Set_Parity (n) int n

{ static int mmode;
541 if (n ==

mmode = (WORDS
else

if (n -- 2
mmode = (WORD7

else
if (n -- 3

mmode = (WORD7
else

return 0;

PAROFF) ;

PAREVN) ;

PARODD) ;

542
543
544
545

546
547
54S
549
550
551
552

mparm = mparm & OxEO) + mmode;
sprintf (wr~, "Parity is %s\r\n",

553

554 cputs (wrk);
555 set_mdm (mparm);
556 return n ;
557
55S

559 Write_Modem (c) char c
560
561
562
563

wrtmdm c) ;
return (1) ;

564 Read-Modem ()
565
566
567

return (rdmdm ());

Article 6: Interrupt-Driven Communications

I* n is parity code

I* off *I

I* on and even *I

I* on and odd *I

I* invalid code *I

n == "OFF" :

n == 2? "EVEN" : "ODD")));

I* return 1 if ok, else 0 *I

I* never any error *I

I* from int bfr *I

56S
569
570

void Term_Comm ()
u_m ();

I* uninstall comm port drivers *I

571

572 I* end of cterm.c *I

Figure 6-8. Continued.

CTERM features file-capture capabilities, a simple yet effective script language, and a
number of stub (that is, incompletely implemented) actions, such as emulation of the VT52
and vnoo series terminals, indicating various directions in which it can be developed.

The names of a script file and a capture file can be passed to CTERM in the command line.
If no filename extensions are included, the default for the script file is .SCR and that for the
capture file is .CAP. If extensions are given, they override the default values. The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section II: Programming in the MS-DOS Environment 241

ZTE (USA) 1007, Page 251

Part B: Programming for MS-DOS

The functions included in CTERM.C are listed and summarized in Table 6-13.

Table 6-13. CTERM.C Functions.

lines Name Description

1-5 Program documentation.
7-11 Include files.
12-20 Definitions.
22-43 Global data areas.
45 External prototype declaration.
47-49 Wants_ To_ Abort() Checks for Ctrl-Break or Ctrl-C being pressed.
52-165 main() Main program loop; includes modem engine and

sequential state machine to decode remote
commands.

167-297 docmd() Gets, interprets, and performs local (console or
script) command.

299-304 kbd_wait() Waits for input from console or script file.
306-334 kb_file() Gets keystroke from console or script; returns EOF

if no character available.
336-362 esc() Translates script escape sequence.
364-370 getfil() Gets name of script file and opens the file.
372-382 getnam() Gets string from console or script into designated

buffer.
384-393 addext() Checks buffer for extension; adds one if none

given.
395-398 put_ cap() Writes character to capture file if capture in effect.
400-406 cap_flush() Closes capture file and terminates capture mode if

capture in effect.
408-411 Timer data locations.
413-425 getmt() Returns time since midnight, in milliseconds.
427-432 Delay() Sleeps n milliseconds.
434-436 Start_ Timet() Sets timer for n seconds.
438-440 Timer_ Expired() Checks timer versus clock.
442-445 Set_Vid() Initializes video data.
447-452 locate() Positions cursor on display.
454-456 deol() Deletes to end of line.
458-468 deos() Deletes to end of screen.
470-472 cls() Clears screen.
474-478 cur sot() Turns cursor on or off.
480-485 revvid() Toggles inverse/normal video display attributes.
487-492 putchx() Writes char to display using putch() (Microsoft C

library).

(more)

242 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 252

Article 6: Interrupt-Driven Communications

Table6-13. Continued.

lines Name Description

494-500 Read_Keyboard() Gets keystroke from keyboard.
502-504 Modem data areas.
506-512 Init_Comm() Installs ISR and so forth and initializes modem.
514-515 Baud-rate definitions.
517-529 Set_ Baud() Changes bps rate of UART.
531-537 Parity, WL definitions.
539-557 Set_ Parity() Establishes UART parity mode.
559-562 Write_ Modem() Sends character to UART.
564-566 Read_Modem() Gets character from ISR's buffer.
568-570 Term_Comm() Uninstalls ISR and so forth and restores original

vectors.

·For communication with the console, CTERM uses the special Microsoft C library func­
tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much
of the code may require editing if used with other compilers. CTERM also uses the func­
tion prototype file CTERM.H, listed in Figure 6-9, to optimize function calling within the
program.

I* CTERM.H - function prototypes for CTERM.C *I
int Wants_To_Abort(void);

void rnain(int ,char* *);

int docrnd(void);
int kbd_wait(void);

int kb_file(void);

int esc (void) ;

FILE *getfil(void);

void getnarn (char *, int) ; ·

char *addext(char *,char*);

void put_cap(char);
void cap_flush(void);

long getrnr(void);

void Delay(int);
void Start_Tirner(int);

int Timer-Expired (void);

int Set_Vid(void);

void locate(int ,int);
void deol(void);

void deos(void);

void cls (void) ;

void cursor(int);

void revvid(int);

int putchx(char);

Figure 6-9. CTERM.H. (more)

Section II: Programming in the MS-DOS Environment 243

4

ZTE (USA) 1007, Page 253

Part B: Programming for MS-DOS

int Read_Keyboard(void);
void Init_Comm(void);

int Set_Baud(int) ;
int Set_Parity(int);

int Write_Modem(char);
int Read_Modem(void);

void Term_Comm(void);

I* CH1 .ASM functions - modem interfacing *I
void L..m (void) ;
void set_mdm(int);

void wrtmdm(int);

void Send_Byte(int);

int rdmdm(void);
void u_m (void) ;

I* CH1A.ASM functions - exception handlers *I
void set_int (void) ;
void rst_int (void) ;

int broke (void) ;

I* CH2.ASM functions - video interfacing •I
void _i_v(void);

int _wrpos(int, int);
void _deol(void);

void _cls(void);

int _color(int, int);

Figure 6-9. Continued.

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CTERM opens the corresponding files. Next, the program installs the exception handler
Cline 60), initializes the video handler (line 61), clears the display (line 62), and announces
its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159).

This loop is functionally the same as that used in ENGINE, but it has been extended to
detect an Esc from the keyboard as signalling the start of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog­
nize incoming escape sequences, such as the VT52 or VT100 codes. To specify a local com­
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local
command desired. After the local command has been selected, press any key (such as
Enter or the spacebar) to continue. To get a listing of all the commands available, press
Esc-H.

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from
either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input. Otherwise,

244 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 254

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given.

To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translated according to the following rules:

Character

E ore
Norn
Ror r
Tort
A

Interpretation

Translates to Esc.
Translates to Linefeed.
Translates to Enter (CR).
Translates to Tab.
Causes the next character input to be converted into a control character.

Any other character, including another \ , is not translated at all.

When the Esc character is detected from either the console or a script file, the docmd()
function (lines 167 through 297) is called to prompt for and decode the next input charac­
ter as a command and to perform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character

D

E
F
H
N
0
Q
R
s
u
v
w

Action

Delay 0-9 seconds, then proceed. Must be followed by a decimal
digit that indicates how long to delay.

Set EVEN parity.
Set (fast) 1200 baud.
Display list of valid commands.
Set no parity.
Set ODD parity.
Quit; return to MS~DOS command prompt.
Reset modem.
Set (slow) 300 baud.
Use script file (CTERM prompts for filename).
Verify file input. Echoes each script-file byte.
Wait for character; the next input character is the one that must be

matched.

Any other character input after an Esc and the resulting Command prompt generates the
message Don't know X (where X stands for the actual input character) followed by the
prompt Use 'H' command for Help.

Section 11- Programming in the MS-DOS Environment 245

ZTE (USA) 1007, Page 255

Part B: Programming for MS-DOS

If input is taken from a script and the V flag is off, docmd() performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let­
ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu­
tion of the local commands are accomplished much as in CDVUTL, by way of a large
switch() statement (lines 178 through 290).

Although the listed commands are only a subset of the features available in CDVUTL for
the device-driver program, they are more than adequate for creating useful scripts. The
predecessor of CTERM (DT115.EXE), which included the CompuServe B-Protocol file­
transfer capability but had no additional commands, has been in use since early 1986 to

handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files. In conjunction with an auto-dialing modem, DT115.EXE
handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM are put together by assembling the three handlers
with MASM, compiling CTERM with Microsoft C, and linking all four object modules into
an executable file. Figure 6-10 shows the complete sequence and also the three ways of
using the finished program.

Compiling:

C>MASM CH1; <Enter>
C>MASM CH1A; <Enter>
C>MASM CH2; <Enter>
C>MSC CTERM; <Enter>

Linking:

C>LINK CTERM+CH1+CH1A+CH2; <Enter>

Use:
(no files)

C>CTERM <Enter>

or
(script only)

C>CTERM scriptfile <Enter>

or

C>CTERM scriptfile capturefile <Enter>

Figure 6-10. Putting CTERM together and using it.

246 The MS-DOS Encyclopedia

jim Kyle
Chip Rabinowitz

ZTE (USA) 1007, Page 256

Article 7: File and Record Management

Article7
File and Record Management

The core of most application programs is the reading, processing, and writing of data
stored on magnetic disks. This data is organized into files, which are identified by name;
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard to the hardware characteristics of the disk device. Thus, applica­
tions can concern themselves solely with the form and content of the data, leaving the
details of the data's location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files.
(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well.) This article discusses the MS-DOS function calls that
allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect or change the information (such as
attributes and date and time stamps) associated with disk filenames in disk directories.
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels.

Historical Perspective

Current versions of MS-DOS provide two overlapping sets of file and record management
services to support application programs: the handle functions and the file control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: INTERRUPT 21H. The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programmers in converting the many
existing CP/M application programs to the 16-bit MS-DOS environment; consequently,
MS-DOS versions l.x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives.

Accordingly, MS-DOS version 2.0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to
use and more flexible than their FCB counterparts and fully support a hierarchical (tree­
like) directory structure. The handle functions also allow character devices, such as the

Section II: Programming in the MS-DOS Environment 247

ZTE (USA) 1007, Page 257

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver­
sion 3.0 introduced additional handle functions, enhanced some of the existing handle
functions for use in network environments, and provided improved error reporting for
all functions.

The handle functions, which offer far more capability and performance than the FCB
functions, should be used for all new applications. Therefore, they are discussed first in
this article.

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Operation

Create file.
Create new file.
Create temporary file.
Open file.
Close file.
Delete file.
Rename file.
Perform sequential read.
Perform sequential write.
Perform random record read.
Perform random record write.
Perform random block read.
Perform random block write.
Set disk transfer area address.
Get disk transfer area address.
Parse filename.
Position read/write pointer.
Set random record number.
Get file size.
Get/Set file attributes.
Get/Set date and time stamp.
Duplicate file handle.
Redirect file handle.

248 The MS-DOS Encyclopedia

Handle
Function

3CH
5BH
5AH
3DH

·3EH
41H
56H
3FH
40H
3FH
40H

42H

42H
43H
57H
45H
46H

FCB
Function

16H

OFH
lOH
13H
17H
14H
15H
21H
22H
27H
28H
lAH
2FH
29H

24H
23H

ZTE (USA) 1007, Page 258

Article 7: File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:path\filename.ext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filename.ext identifies the file itself. If drive
and/or path is omitted, MS-DOS assumes the default disk drive and current directory.
Examples of acceptable pathnames include

C: \PAYROLL\ TAXES.DAT
LETTERS\MEMO.TXT
BUDGET.DAT

Pathnames can be hard-coded into a program as part of its data. More commonly, how­
ever, they are entered by the user at the keyboard, either as a command-line parameter or
in response to a prompt from the program. If the pathname is provided as a command­
line parameter, the application program must extract it from the other information in the
command line: Therefore, to allow a program to distinguish between pathnames and
other parameters when the two are combined in a command line, the other parameters,
such as switches, usually begin with a slash(/) or dash (-) character.

All handle functions that use a pathname require the name to be in the form of an ASCIIZ
stri~g-that is, the name must be terminated by a null (zero) byte. If the pathname is
hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path­
name is obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters
and, if the open or create operation is successful, returns a 16-bit handle, or identification
code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

The total number of handles for simultaneously open files is limited in two ways. First, the
per-process limit is 20 file handles. The process's first five handles are always assigned to
the standard devices, which default to the CON, AUX, and PRN character devices:·

Handle Service

0 Standard input
1 Standard output
2 Standard error
3 Standard auxiliary
4 Standard list

Default

Keyboard (CON)
Video display (CON)
Video display (CON)
First communications port (AUX)
First parallel printer port (PRN)

Section 11· Programming in the MS-DOS Environment 249

ZTE (USA) 1007, Page 259

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,
when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused. '

In addition to the per-process limit of 20 file handles, there is a system-wide limit.
MS-DOS maintains an internal table that keeps track of all the files and devices opened
with file handles for all currently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file. The size of this table, which is setwhen MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta­
neously. The default limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process limit.

To increase the size of MS-DOS's internal handle table, the statement FILES=nnn can be
included in the CONFIG.SYS file. (CONFIG.SYS settings take effect the next time the sys­
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2.x
and 255 in versions 3.x. See USER COMMANDS: CONFIG.SYS: FILES.

Error handling and the handle functions

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear. If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register. The program should check the carry flag after each opera­
tion and take whatever action is appropriate when an error is encountered. Table 7-2lists
the most frequently encountered error codes for file and record I/0 (exclusive of network
operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code

02
03
04
05
06
11
12
13
15
17
18

Error

File not found
Path not found
Too many open files (no handles left)
Access denied
Invalid handle
Invalid format
Invalid access code
Invalid data
Invalid disk drive letter
Not same device
No more files

The error codes used by MS-DOS in versions 3.0 and later are a superset of the MS-DOS
version 2.0 error codes. See APPENDIX B: CRITICAL ERROR CoDEs; APPENDIX C: ExTENDED
ERRoR CoDEs. Most MS-DOS version 3 error diagnostics relate to network operations,
which provide the program with a greater chance for error than does a single-user system.

250 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 260

Article 7: File and Record Management

Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files.

Under MS-DOS versions 3.x, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a
failed handle function. The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record I/0 operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function

3CH
5AH
5BH

Name

Create File with Handle (versions 2.0 and later)
Create Temporary File (versions 3.0 and later)
Create New File (versions 3.0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register. The; possible
attribute values are

Code Attribute

OOH Normal file
OlH Read-only file
02H Hidden file
04H System file

Files with more tban one attribute can be created by combining the values listed above.
For example, to create a file that has both the read-only and system attributes, the value
05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for
subsequent access to the new file and sets the file read/write pointer to the beginning of
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX.

Function 3CH is the only file-creation function available under MS-DOS versions 2.x. It
must be used with caution, however, because if a file with the specified name already
exists, Function 3CH will open it and truncate it to zero length, eradicating the previous
contents of the file. This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call.

Section /1- Programming in the MS-DOS Environment 251

ZTE (USA) 1007, Page 261

Part B: Programming for MS-DOS

Under MS-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases
because it will fail if a file with the same name already exists. In networking environments,
this function can be used to implement semaphores, allowing the synchronization of pro­
grams running in different network nodes.

Function 5AH is used to create a temporary work file that is guaranteed to have a unique
name. This capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volume on a server. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file. MS-DOS generates a name for the
created file that is a sequence of alphanumeric characters derived from the current time.
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the
file's handle in AX. The program must save the filename so that it can delete the file later, if
necessary; the file created with Function 5AH is not destroyed when the program exits.

Example: Create a file named MEMO. TXT in the \LETTERS directory on drive C using
Function 3CH. Any existing file with the same name is truncated to zero length and
opened.

fname db 'C:\LETTERS\MEMO.TXT',O

fhandle dw ?

mov dx,seg fname DS:DX = address of

mov ds,dx pathname for file

mov dx,offset fname

xor ex, ex ex = normal attribute
mov ah,3ch Function 3CH = create
int 21h transfer to MS-DOS

jc error jump if create failed
mov fhandle,ax else save file handle

Example: Create a temporary file using Function 5AH and place it in the \TEMP directory
on drive C. MS-DOS appends the filename it generates to the original path in the buffer
named fname. The resulting file specification can be used later to delete the file.

fname db

db

fhandle dw

'C:\TEMP\'
13 dup (0)

252 The MS-DOS Encyclopedia

generated ASCIIZ filename
; is appended by MS-DOS

(more)

ZTE (USA) 1007, Page 262

Article 7: File and Record Management

mov dx,seg fname DS:DX = address of
mov ds,dx path for temporary file
mov dx,offset fname
xor ex, ex ex = normal attribute

mov a!),Sah Function SAH = create

temporary file

int 21h transfer to MS-DOS

jc error jump if create failed
mov fhandle,ax else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file
in the current or specified directory. When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL
register. This access code includes the read/write permissions, the file-sharing mode, and ...
an inheritance flag. The bits of the access code are assigned as follows:

Bit(s)

0-2
3
4-6
7

Description

Read/write permissions (versions 2.0 and later)
Reserved
File-sharing mode (versions 3.0 and later)
Inheritance flag (versions 3.0 and later)

The read/write permissions field of the access code specifies how the file will be used and
can take the following values:

Bits 0-2 Description

000 Read permission desired
001 Write permission desired
010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file's attribute
byte in the disk directory. For example, if the program attempts to open an existing file
that has the read-only attribute when the permissions field of the access code byte is set to
write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-mode field of the access code byte is important in a networking environment.
It determines whether other programs will also be allowed to open the file and, if so,
what operations they will be allowed to perform. Following are the possible values of the
file-sharing mode field:

Section !1- Programming in the MS-DOS Environment 253

ZTE (USA) 1007, Page 263

Part B: Programming for MS-DOS

Bits 4-6 Description

000 Compatibility mode. Other programs can open the file and perform read or
write operations as long as no process specifies any sharing mode other than
compatibility mode.

001 Deny all. Other programs cannot open the file.
010 Deny write. Other programs cannot open the file in compatibility mode or

with write permission.
011 Deny read. Other programs cannot open the file in compatibility mode or with

read permission.
100 Deny none. Other programs can open the file and perform both read and

write operations but cannot open the file in compatibility mode.

When file-sharing support is active (that is, SHARE.EXE has previously been loaded),
the result of any open operation depends on both the contents of the permissions and file­
sharing fields of the access code byte and the permissions and file-sharing requested by
other processes that have already successfully opened the file.

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle. If the inheritance bit is cleared, the child can use the inherited handle to
access the file without performing its own open operation. Subsequent operations per­
formed by the child process on inherited file handles also affect the file pointer associated
with the parent's file handle. If the inheritance bit is set, the child process does not inherit
the handle.

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry
flag and returns an error code in AX.

Example: Copy the first parameter from the program's command tail in the program
segment prefix (PSP) into the array jname and append a null character to form an ASCIIZ
filename. Attempt to open the file with compatibility sharing mode and read/write access.
If the file does not already exist, create it and assign it a normal attribute.

cmdtail equ

fname db

SOh
64 dup (?)

fhandle dw ?

254 The MS-DOS Encyclopedia

; PSP offset of command tail

assume that DS already

contains segment of PSP

(more)

ZTE (USA) 1007, Page 264

label1:

label2:

label3:

label4:

mov
mov
mov
mov
cld

lodsb
or
jz

lodsb
cmp
jz

cmp
jz
cmp
jz
stosb
lodsb
jmp

xor
stosb

mov
mov
mov
mov
int
jnc

cmp
jnz

xor
mov
int
jc

mov

Closing a file

si,cmdtail
di,seg fname
es,di
d,i,offset fname

al,al
error

al,20h
label1

al,Odh
label3
al,20h
label3

label2

al,al

dx,seg fname
ds,dx
dx,offset fname
ax,3d02h
21h
label4

ax,2
error

ex, ex
ah,3ch
21h
error

fhandle,ax

Article 7: File and Record Management

prepare to copy filename ...
DS:SI = command tail
ES:DI = buffer to receive
filename from command tail

safety first!

check length of command tail

jump, command tail empty

scan off leading spaces
get next character
is it a space?
yes, skip it

look for terminator
quit if return found

quit if space found
else copy this character
get next character

store final NULL to
create ASCIIZ string

now open the file ...
DS:DX = address of
pathname for file

Function 3DH = open r/w
transfer to MS-DOS
jump if file found

error 2 = file not found
jump if other error
else make the file ...
CX = normal attribute
Function 3CH = create
transfer to MS-DOS
jump if create failed

save handle for file

Function 3EH (Close File) closes a file created or opened with a file handle function. The
program must place the handle of the file to be closed in BX. If a write operation was per­
formed on the file, MS-DOS updates the date, time, and size in the file's directory entry.

Section 11- Programming in the MS-DOS Environment 255

ZTE (USA) 1007, Page 265

Part B: Programming for MS-DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk
and causes the disk's file allocation table (FAT) to be updated if necessary.

Good programming practice dictates that a program close files as soon as it finishes
using them. This practice is particularly important when the file size has been changed, to
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the
user. A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles.

Reading and writing with handles

Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle. Before calling Function 3FH, the program must set
the DS:DX registers to point to the beginning of a data buffer large enough to hold the
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX.
The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer.

If the read operation succeeds, the data is read, beginning at the current position of the
file read/write pointer, to the specified location in memory. MS-DOS then increments its
internal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reached is that the length returned is less than the length
requested. In contrast, when Function 3FH is used to read from a character device that is
not in raw mode, the read will terminate at the requested length or at the receipt of a car­
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PRoGRAMMING FORMs-nos: Character Device Input and Output. If the
read operation fails, MS-DOS returns with the carry flag set and an error code in AX.

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle
previously obtained from an open or cre~te operation. Before calling Function 40H, the
program must set DS:DX to point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the number of bytes to write in CX. The number of bytes
to write can be a maximum of 65535.

If the write operation is successful, MS-DOS puts the number of bytes written in AX and
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets
the carry flag and returns an error code in AX.

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it to disk when the internal
buffer is full, when the file is closed, or when a call to Interrupt 21H Function ODH (Disk
Reset) is issued.

Note: If the destination of the write operation is a disk file and the disk is full, the only
indication to the calling program is that the length returned in AX is not the same as the
length requested in CX. Disk full is not returned as an error with the carry flag set.

A special use of the Write function is to truncate or extend a file. If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location .of
the file read/write pointer.

256 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 266

Article 7: File and Record Management

Example: Open the file MYFILE.DAT, create the file MYFILE.BAK, copy the contents of
the .DAT file into the .BAK file using 512-byte reads and writes, and then close both files.

file1

file2

handle1

handle2

buff

loop:

db 'MYFILE.DAT',O

db 'MYFILE.BAK',O

dw ?
dw ?

db 512 dup (?)

mov dx, seg file1
mov ds, dx

mov

mov

int

jc
mov

mov

mov

mov

int

jc
mov

mov
mov

mov

mov

int

jc

or

jz

mov

mov

mov

mov

int

jc

cmp

jne

jmp

dx, offset file1

ax,3d00h

21h

error
handle1,ax

dx,offset file2

cx,O
ah,3ch

21h

error
handle2,ax

dx,offset buff

cx,512
bx,handle1

ah,3fh

21h

error
ax, ax
done

dx,offset buff

ex, ax
bx,handle2

ah,40h

21h

error

ax, ex
error

loop

handle for MYFILE.DAT
handle for MYFILE.BAK

buffer for file I/O

open MYFILE.DAT ...

DS:DX = address of filename

Function 3DH = open (read-only)

transfer to MS-DOS
jump if open failed

save handle for file

create MYFILE.BAK ...

DS:DX = address of filename

ex = normal attribute
Function 3eH = create

transfer to MS-DOS

jump if create failed
save handle for file

read MYFILE.DAT

DS:DX = buffer address

ex = length to read
BX = handle for MYFILE.DAT

Function 3FH = read

transfer to MS-DOS

jump if read failed

were any bytes read?

no, end of file reached

write MYFILE.BAK

DS: DX = buffer address.

ex = length to write

BX = handle for MYFILE.BAK

Function 40H = write

transfer to MS-DOS

jump if write failed

was write complete?

jump if disk full

continue to end of file

(more)

Section II: Programming in the MS-DOS Environment 257

ZTE (USA) 1007, Page 267

Part B: Programming for MS-DOS

done: now close files ...

mov bx,handle1 handle for MYFILE.DAT

mov ah,3eh Function 3EH = close file

int 21h transfer to MS-DOS

jc error jump if close failed

mov bx,handle2 handle for MYFILE.BAK

mov ah,3eh Function 3EH = close file

int 21h transfer to MS-DOS

jc error jump if close failed

Positioning the read/write pointer

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle. The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
inAL:

Mode

00
01
02

Significance

·Supplied offset is relative to beginning of file.
Supplied offset is relative to current position of read/write pointer.
Supplied offset is relative to end of file.

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
file pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX.

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a value in DX:AX that represents the
offset of the end-of-file position relative to the beginning of the file.

Example: Assume that the file MYFILE.DAT was previously opened and its handle is
saved in the variable fhandle. Position the file pointer 32768 bytes from the beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw

buff db

?

512 dup (?)

258 The MS-DOS Encyclopedia

handle from previous open

; buffer for data from file

(more)

ZTE (USA) 1007, Page 268

mov

mov
mov

mov

mov

int

jc

mov

mov

mov

mov
int

jc

cmp
jne

cx,O
dx,32768

bx,fhandle

al,O

ah,42h
21h

error

dx,offset buff

cx,512

bx,fhandle
ah,3fh

21h

error
ax,512

error

Article 7: File and Record Management

position the file pointer ...
ex high part of file offset
DX low part of file offset
BX handle for file

AL positioning mode

Function 42H = position

transfer to MS-DOS

jump if function cal.l failed

now read 512 bytes from file

DS:DX = address of buffer
ex= length of 512 bytes

BX = handle for file

Function 3FH = read

transfer to MS-DOS

jump if read failed
was 512 bytes read?

jump if partial rec. or EOF

Example: Assume that the file MYFILE.DAT was previously opened and its handle is saved
in the variable jhandle. Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file. The returned offset, which is relative to the begin­
ning of the file, is the file's size.

fhandle dw ?

mov cx,O

mov dx,O

mov bx,fhandle

mov al,2

mov ah,42h

int 21h

jc error

Other handle operations

handle from previous open

position the file pointer

to the end of file ...

ex high part of offset

DX = low part of offset
BX = handle for file

AL = positioning mode

Function 42H = position

transfer to MS-DOS

jump if function call failed

if call succeeded, DX:AX ·

now contains the file ~ize

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file,
read or change a file's attributes, read or change a file's date and time stamp, and duplicate
or redirect a file handle. The first three of these are "file-handle-like" because they use an
ASCIIZ string to specify the file; however, they do not return a file handle.

Section II: Programming in the MS-DOS Environment 259

ZTE (USA) 1007, Page 269

Part B: Programming for MS-DOS

Renaming a file

Function 56H (Rename File) renames an existing file and/or moves the file from one loca-.
tion in the hierarchical file structure to another. The file to be renamed cannot be a hidden
or system file or a subdirectory and must not be currently open by any process; attempting
to rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its
directory entry; it moves a file by removing its current directory entry and creating a new
entry in the target directory that refers to the same file. The location of the file's actual
data on the disk is not changed.

Both the current and the new filenames must be ASCIIZ strings and can include a drive
and path specification; wildcard characters (• and ?) are not permitted in the filenames.
The program calls Function 56H with the address of the current pathname in the DS:DX
registers and the address of the new pathname in ES:DI. If the path elements of the two
strings are not the same and both paths are valid, the file "moves" from the source direc­
tory to the target directory. If the paths match but the filenames differ, MS-DOS simply
modifies the directory entry to reflect the new filename.

If the function succeeds, MS-DOS returns to the calling program with the carry flag clear.
The function fails if the new filename is already in the target directory; in that case,
MS-DOS sets the carry flag and returns an error code in AX.

Example: Change the name of the file MYFILE.DAT to MYFILE.OLD. In the same opera­
tion, move the file from the \WORK directory to the \BACKUP directory.

file1 db

file2 db

mov

mov
mov

mov

mov

mov

int

jc

Deleting a file

'\WORK\MYFILE.DAT',O

'\BACKUP\MYFILE.OLD',O

dx,seg file1 DS:DX =

ds,dx
es,dx
dx,offset file1
di,offset file2 ES:DI =

ah,56h Function

21h transfer

error jump if

old filename

new filename

56H = rename

to MS-DOS

rename failed

Function 41H (Delete File) effectively deletes a file from a disk. Before calling the function,
a program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be
deleted. The supplied pathname cannot specify a subdirectory or a read-only file, and the
file must not be currently open by any process.

260 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 270

Article 7: File and Record Management

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its
·directory entry with a special character (OE5H), making the entry subsequently unrecog­
nizable. MS-DOS then updates the disk's FAT so that the clusters that previously belonged
to the file are "free" and returns to the program with the carry flag clear. If the delete
function fails, MS-DOS sets the carry flag and returns an error code in AX.

The actual contents of the clusters assigned to the file are not changed by a delete opera­
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C.

fname db

mov
mov
mov
mov
int
jc

'C:\WORK\MYFILE.DAT',O

dx,seg fname
ds,dx
dx,offset fname
ah,41h
21h
error

DS:DX address of filename

Function 41H = delete
transfer to MS-DOS
jump if delete failed

Getting/setting file attributes

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file.
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file. To read the attributes, the program must setAL to zero; to set
the attributes, it must setAL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOS reads or sets the attribute byte in the file's directory
entry and returns with the carry flag clear and the file's attribute in CX. If the function
fails, MS-DOS sets the carry flag and returns an error code in AX.

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of a file. It also should not be used on a file that is currently open by any process.

Example: Change the attributes of the file MYFILE.DAT in the \BACKUP directory on
drive C to read-only. This prevents the file from being accidentally deleted from the disk.

fname db

mov
mov

mov
mov
mov

'C:\BACKUP\MYFILE.DAT',O

dx,seg fname

ds,dx
dx,offset fname

ex, 1
al, 1

DS:DX address of filename

ex = attribute (read-only)
AL = mode (0 = get, 1 = set)

(more)

Section II: Programming in the MS-DOS Environment 261

ZTE (USA) 1007, Page 271

Part B: Programming for MS-DOS

mov

int

jc

ah,43h

21h

error

Getting/setting file date and time

Function 43H = get/set attr

transfer to MS-DOS

jump if set attrib. failed

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp
of an open file. To set the time and date to a particular value, the program must call Func­
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob­
tained from a previous open or create operation) in BX, and the value 1 in AL. To read the
time and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the ex register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is returned
cleared; if the function fails, MS-DOS returns the carry flag set and an error code in AX.

The formats used for the file time and date are the same as those used in disk directory
entries and FCBs. See Structure of the File-Control Block below.

The main uses of Function 57H are to force the time and date entry for a file to be updated
when the file has not been changed and to circumvent MS-DOS's modification of a file
date and time when the file has been changed. In the latter case, a program can use this
function withAL = 0 to obtain the file's previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with AL = 1 before
closing the file.

Duplicating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when
the file has been modified. Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this is a relatively slow procedure and in a network environment can cause the program
to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to
duplicate the original handle of the file to be updated, can protect data added to a disk file
before the file is closed. To use Function 45H, the program must put the handle to be
duplicated in BX. If the operation is successful, MS-DOS clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
error code in AX.

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. This forces the desired update of the disk directory and FAT. The orig­
inal handle remains open and the program can continue to use it for file read and write
operations.

Note: While the second handle is open, moving the read/write pointer associated with
either handle moves the pointer associated with the other.

262 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 272

Article 7: File and Record Management

Example: Assume that the file MYFILE.DAT was previously opened and the handle for
that file has been saved in the variable jhandle. Duplicate the handle and then close the
duplicate to ensure that any data recently written to the file is saved on the disk and that
the directory entry for the file is updated accordingly.

fhandle dw

mov
mov

int

jc

mov

mov
int

jc

mov

bx,fhandle
ah,45h

21h

error

bx,ax

ah,3eh
21h

error
bx,fhandle

; handle from previous open

duplicate the handle ...

BX = handle for file

Function 45H = dup handle
transfer to MS-DOS

jump if function call failed

now close the new handle ...
BX = duplicated handle

Function 3EH = close

transfer to MS-DOS

jump if close failed

replace closed handle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle- in
other words, to refer to the same file or device at the same file read/write pointer location.
The handle is then said to be redirected.

The most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function. In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro­
gram. In such cases, Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-nos: Writing MS-DOS Filters.

Using the FCB Functions·

A file control block is a data structure, located in the application program's memory space,
that contains relevant information about an open disk file: the disk drive, the filename and
extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the
application program.

Section /1- Programming in the MS-DOS Environment 263

ZTE (USA) 1007, Page 273

Part B: Programming for MS-DOS

MS-DOS moves data to and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the
control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP). See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FORMs-nos: Structure of an Application Program.

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers. However, under MS-DOS versions 3.0 and later,
when file-sharing support (SHARE.EXE) is loaded, MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files. If the
application attempts to open too many FCBs, MS-DOS simply closes the least recently used
FCBs to keep the total number within a limit.

The CONFIG.SYS file directive FCBS allows the user to control the allowed maximum
number of FCBs and to specify a certain number of FCBs to be protected against automatic
closure by the system. The default values are a maximum of four files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system. See USER
COMMANDS: CONFIG.SYS: FCBS.

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCB file and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk. For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro­
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps. The FCB structure is shown in Table 7-3.

Table7-3. Structure of a Normal File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description

Program OOH 1 Drive identifier
Program 01H 8 Filename
Program 09H 3 File extension
MS-DOS OCH 2 Current block number
Program OEH 2 Record size (bytes)
MS-DOS JOH 4 File size (bytes)
MS-DOS 14H 2 Date stamp
MS-DOS 16H 2 Timestamp
MS-DOS 18H 8 Reserved
MS-DOS 20H 1 Current record number
Program 21H 4 Random record number

264 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 274

Article 7: File and Record Management

Drive identifier: Initialized by the application to designate the drive on which the file to
be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a value of 1 or greater.

Filename: Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters. A device
name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters.

Current block number: Initialized to zero by MS-DOS when the file is opened. The block
number and the record number together make up the record pointer during sequential file
access.

Record size: The size of a record (in bytes) as used by the program. MS-DOS sets this field
to 128 when the file is opened or created; the program can modify the field afterward to
any desired record size. If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program's own code or data.

File size: The size of the file in bytes. MS-DOS initializes this field from the file's directory
entry when the file is opened. The first 2 bytes ofthis 4-byte field are the least significant
bytes of the file size.

Date stamp: The date of the last write operation on the file. MS-DOS initializes this field
from the file's directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Date Format

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Content:

Bits Contents

0-4 Day of month Cl-31)
5-8 Month (1-12)
9-15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field
from the file's directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Section II: Programming in the MS-DOS Environment 265

ZTE (USA) 1007, Page 275

Part B: Programming for MS-DOS

Bit:

Content:

Bits

0-4
5-10

11-15

Time Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Contents

Number of 2-second increments (0-29)
Minutes (0-59)
Hours (0-23)

0

Current record number: Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127; thus, there
are 128 records per block. The beginning of a file is record 0 of block 0.

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,
only the first 3 bytes of this field are used. MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but not after random record reads and writes
(Functions 21H and 22H).

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex­
tended FCB are simply prefixed to the normal FCBformat (Table 7-4). The first byte of
an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes
of the file being manipulated. The remainder of an extended FCB has exactly the same
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func­
tion call that accepts a normal FCB.

Table 7-4. Structure of an Extended File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description

Program OOH 1 Extended FCB flag = OFFH
MS-DOS 01H 5 Reserved
Program 06H 1 File attribute byte
Program 07H 1 Drive identifier
Program 08H 8 Filename

(more)

266 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 276

Article 7: File and Record Management

Table 7-4. Continued.

Offset Size
Maintained by (bytes) (bytes) Description

Program 10H 3 File extension
MS-DOS 13H 2 Current block number
Program 15H 2 Record size (bytes)
MS-DOS 17H 4 File size (bytes)
MS-DOS lBH 2 Date stamp
MS-DOS 1DH 2 Timestamp
MS-DOS 1FH s Reserved
MS-DOS 27H 1 Current record number
Program 2SH 4 Random record number

Extended PCB flag: When OFFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of a normal FCB (37 bytes).

File attribute byte: Must be initialized by the application when an extended FCB is used to
open or create a file. The bits of this field have the following significance:

Bit Meaning

0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
5 Archive
6 Reserved
7 Reserved

FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the default FCBs, the default DTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSPOffset
(bytes) Size (bytes) Description

5CH 16 Default FCB #1 .
6CH 20 Default FCB #2
SOH 1 Length of command tail
81H 127 Command-tail text
SOH 128 Default disk transfer area (DTA)

Section II: Programming in the MS-DOS Environment 267

ZTE (USA) 1007, Page 277

Part B: Programming for MS-DOS

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets 5CH and 6CH. (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names.) MS-DOS then sets the initial DTA address for the
program to PSP:0080H.

For several reasons, the default FCBs and the DTA are often moved to another location
within the program's memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs overlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict. Finally, unless either the command
tail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail.

Function lAH (Set DTA Address) is used to alter the DTA address. It is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the same until another call to Function lAH, regardless of other file and record
management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the original address can be restored later.

Parsing the filename

Before a file can be opened or created with the PCB function calls, its drive, filename, and
extension must be placed within the proper fields of the PCB. The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or
by prompting the user and reading it in with one of the several function calls for charac'ter
device input.

MS-DOS automatically parses the first two parameters in the program's command tail into
the default FCBs at PSP:005CH and PSP:006CH. It does not, however, attempt to differenti­
ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to
the application program. If the filenames were preceded by any switches, the program
itself has to extract the filenames directly from the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends.

After a filename has been located, Function 29H (Parse Filename) can be used to test it
for invalid characters and separators and to insert its various components into the proper
fields in an FCB. The filename must be a string in the standard form drivejilename.ext.
Wildcard characters are permitted in the filename and/or extension; asterisk (*) wildcards
are expanded to question mark (?) wildcards.

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37 -byte buffer that will become the PCB for the file, and AL must hold
the parsing control code. See SYSTEM CALLS: INTERRUPT 21H: Function 29H.

268 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 278

Article 7: File and Record Management

If a drive code is not included in the filename, MS-DOS inserts the drive number of the
current drive into the FCB. Parsing stops at the first terminator character encountered in
the filename. Terminators include the following:

; , = + I " [) : < > : space tab

If a colon character(:) is not in the proper position to delimit the disk drive identifier or if
a period (.) is not in the proper position to delimit the extension, the character will also be
treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC.

If an invalid drive is specified in the filename, Function 29H returns OFFH in AL; if the
filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename ..

'Note that this function simply parses the filename into the FCB. It does not initialize any
other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists.

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor­
mation when a function fails. Typically, an FCB function returns a zero in AL if the func­
tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program
is left to its own devices to determine the cause of the error. Under MS-DOS versions 3.x,
however, a failed FCB function call can be followed by a call to Interrupt 21H Function
59H (Get Extended Error Information). Function 59H will return the same descriptive
codes for the error, including the error locus and a suggested recovery strategy, as would
be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/
write operations. The function is called with DS:DX pointing to a valid, unopened FCB.
MS-DOS searches the current directory for the specifed filename. If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero­
length file; if the filename is not found, MS-DOS creates a new file and opens it. Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File.

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it
returns OFFH in AL. This function will not ordinarily fail unless the file is being created in
the root directory and the directory is full.

Warning.:- To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file.

Section II- Programming in the MS-DOS Environment 269

ZTE (USA) 1007, Page 279

Part B: Programming for MS-DOS

Opening a file

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain­
ing the name of the file to be opened. If the specified file is found in the current directory,
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns withAL set
to OOH; if the file is not found, MS-DOS returns withAL set to OFFH, indicating an error.

When the file is opened, MS-DOS

• Sets the drive identifier (offset OOH) to the actual drive (01 = A, 02 = B, and so on).
• Sets the current block number (offset OCH) to zero.
• Sets the file size (offset 10H) to the value found in the directory entry for the file.
• Sets the record size (offset OEH) to 128.
• Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc­

tory entry for the file.

The program may need to adjust the FCB-change the record size and the random record
pointer, for example- before proceeding with record operations.

Example: Display a prompt and accept a filename from the user. Parse the filename into
. an FCB, checking for an illegal drive identifier or the presence of wildcards. If a valid,
unambiguous filename has been entered, attempt to open the file. Create the file if it does
not already exist.

kbuf db

prompt db

myfcb db

mov

mov

mov

mov

mov

int

mov

mov

int

mov

mov

mov

int

or

jnz

64, 0, 64 dup (0)

Odh,Oah, 'Enter filename: $'
37 dup (0)

dx,seg prompt
display the prompt ...

DS:DX = prompt address
ds,dx

es,dx
dx,offset

ah,09h
21h

dx,offset

ah,Oah

21h

si,offset

di,offset

ax,2900h

21h

al,al

error

prompt

kbuf

Function 09H = print string

transfer to MS-DOS

now input filename ...

DS:DX = buffer address

Function OAH = enter string

transfer to MS-DOS

parse filename into FCB ...

kbuf+2 ; DS:SI = address of filename

myfcb ES:DI = address of feb

Function 29H = parse name

transfer to MS-DOS

jump if bad drive or

wildcard characters in name

270 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 280

mov
mov

int
or

jz

mov

mov

int

or

jnz

proceed:

Closing a file

dx,offset myfcb

ah,Ofh
21h

al,al

proceed

dx,offset myfcb
ah,16h

21h
al,al

error

Article 7: File and Record Management

try to open file ...
DS:DX = FCB address

Function OFH = open file

transfer to MS-DOS
check status

jump if open successful

else create file ...

DS:DX = FCB address
Function 16H =create

transfer to MS-DOS

did create succeed?

jump if create failed

file has been opened or

created, and FCB is valid

for read/write operations ...

Function lOH (Close File with FCB) closes a file previously opened with an FCB. As usual,
the function is called with DS:DX pointing to the FCB of the file to be closed. MS-DOS
updates the directory, if necessary, to reflect any changes in the file's size and the date and
time last written.

If the operation succeeds, MS-DOS returns OOH in AL; if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time. MS-DOS increments the
current record and current block numbers after each file access so that they point to the
beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in
the file, without sequentially reading all records up to that point in the file. The program
must set the random record number field of the FCB appropriately before the read or write
is requested. This method is useful in database applications, in which a program must
manipulate fixed-length records.

Random block operations combine the features of sequential and random record access
methods. The program can set the record number to point to any record within a file, and
MS-DOS updates the record number after a read or write operation. Thus, sequential
operations can easily be initiated at any file location. Random block operations with a
record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,
that the DTA be large enough for the specified record size, and that the DTA address be
previously set with Function lAH if the default DTA in the program's PSP is not being
used.

Section 11- Programming in the MS-DOS Environment 271

ZTE (USA) 1007, Page 281

Part B: Programming for MS-DOS

MS-DOS reports the success or failure of any FCB-related read operation (sequential,
random record, or random block) with one of four return codes in register AL:

Code

OOH
OlH
02H
03H

Meaning

Successful read
End of file reached; no data read into DTA
Segment wrap (DTA too close to end of segment); no data read into DTA
End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three
return codes in register AL:

Code

OOH
OlH
02H

Meaning

Suc:cessful write
Disk full; partial or no write
Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter­
rupt 21H Function ODH (Disk Reset) is issued.

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file to the current
DTA address, which must point to an area at least as large as the record size specified in
the file's FCB. After each read operation, MS-DOS updates the FCB block and record num­
bers (offsets OCH and 20H) to point to the next record.

Sequential access: writing

Function 15H (Sequential Write) writes records sequentially from memory into the file.
The length written is specified by the record size field (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to point to the next record.

Random record access: reading

Function 21H (Random Read) reads a specific record from a file. Before requesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA
address must also have been previously set with Function lAH to point to a buffer of
adequate size if the default DTA is not large enough.

272 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 282

Article 7: File and Record Management

After the read, MS-DOS sets the current block and current record number fields (offsets
OeH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record
access, it must continue to update the random record field of the FeB before each random
record read or write operation.

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FeB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written.

After the write, MS-DOS sets the current block and current record number fields (offsets
oeH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. If the program wants to continue with random record access, it
must continue to update the random record field of the FeB before each random record
read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FeB (offsets OEH and 21H) and
must put the number of records to be read in ex. The DTA address must have already been
set with Function lAH to point to a buffer large enough to contain the group of records to
be read if the default DTA was not large enough. The program can then issue the Function
27H call with DS:DX p<Dinting to the FeB for the file.

I
After the random block read operation, MS-DOS resets the ~eB random record pointer
(offset 21H) and the current block and current record number fields (offsets OeH and 20H)
to point to the beginning of the next record not read and returns the number of records
actually read in ex.

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in ex,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of read operation (Function 3FH).

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random record pointer fields in the FeB (offsets OEH and 21H). If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function lAH. When Function 28H is called,
DS:DX must point to the FeB for the file and ex must contain the number of records to
be written.

After the random block write operation, MS-DOS resets the FeB random record pointer
(offset 21H) and the current block and current record number fields (offsets oeH and 20H)
to point to the beginning of the next block of data and returns the number of records
actually written in ex.

Section 11- Programming in the MS-DOS Environment 273

ZTE (USA) 1007, Page 283

Part B: Programming for MS-DOS

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of write operation (Function 40H).

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset
21H) multiplied by the contents ofthe record size field (offset OEH).

Example: Open the file MYFILE.DAT and create the file MYFILE.BAK on the current disk
drive, copy the contents of the .DAT file into the .BAK file using 512-byte reads and writes,
and then close both files.

fcb1

fcb2

buff

loop:

db 0
db 'MYFILE

db 'DAT'

db 25 dup (0)

db 0

db 'MYFILE

db 'BAK'

db 25 dup (0)

db 512 dup (?)

mov dx,seg fcb1

mov ds, dx
mov

mov

int

or

jnz

mov

mov

int

or
jnz

dx, offset fcb1
ah,Ofh

21h
al,al

error

dx,offset fcb2
ah,16h

21h

al,al

error

drive = default

8 character filename

3 character extension
remainder of fcb1

drive = default

8 character filename

3 character extension

remainder of fcb2

buffer for file I/O

open MYFILE. DAT ...

DS:DX = address of FCB

Function OFH = open

transfer to MS-DOS
did open succeed?

jump if open failed

create MYFILE.BAK ...

DS:DX = address of FCB

Function 16H =create
transfer to MS-DOS

did create succeed?

jump if create failed

set record length to 512
mov word ptr fcb1+0eh,512

mov word ptr fcb2+0eh,512

mov

mov

int

mov

mov

int
or

jnz

dx,offset buff

ah,1ah

21h

dx, offset fcb1

ah,14h

21h
al,al

done

set DTA to our buffer ...

DS:DX =buffer address
Function 1AH = set DTA

transfer to MS-DOS

read MYFILE.DAT
DS:DX = FCB address

Function 14H =seq. read

transfer to MS-DOS

was read successful?

no, quit

write MYFILE.BAK ...

27 4 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 284

Article 7: File and Record Management

mov dx,offset fcb2 DS:DX = FCB address
mov ah,15h Function 15H = seq. write
int 21h transfer to MS-DOS

or al,al was write successful?

jnz e.rror jump if write failed

jmp loop continue to end of file

done: now close files ...

mov dx,offset fcb1 DS:DX = FCB for MYFILE.DAT

mov ah,10h Function 10H = close file

int 21h transfer to MS-DOS

or al,al did close succeed?

jnz error jump if close failed

mov dx,offset fcb2 DS:DX = FCB for MYFILE.BAK

mov ah,10h Function 10H = close file

int 21h transfer to MS-DOS

or al,al did close succeed?

jnz error jump if close failed

Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file. Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters. An additional FCB function allows the size or existence of a
file to be determined without actually opening the file.

Renaming a file

Function 17H (Rename File) renames a file (or files) in the current directory. The file to be
renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro­
gram must create a special FCB that contains the drive code at offset OOH, the old filename
at offset OlH, and the new filename at offset llH. Both the current and the new filenames
can contain the ? wildcard character.

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS
searches the current directory for the old filename. If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no matching filename, changes the
directory entry for the old filename to reflect the new filename. If the old filename field of
the special FCB contains any wildcard characters, MS-DOS renames every matching file.
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns
OFFH. The error condition may indicate either that no files were renamed or that at least
one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Rename all the files with the extension .ASM in the current directory of the
default disk drive to have the extension .COD.

Section 11· Programming in the MS-DOS Environment 275

ZTE (USA) 1007, Page 285

Part B: Programming for MS-DOS

renfcb db 0 default drive

' db '????????' wildcard filename

db 'ASM' old extension

db 5 dup (0) reserved area

db '????????' wildcard filename

db 'COD' new extension

db 15 dup (0) remainder of FCB

mov dx,seg renfcb DS:DX = address of

mov ds,dx "special" FCB

mov dx,offset renfcb

mov ah, 17h Function 17H = rename
int 21h transfer to MS-DOS

or al,al did function succeed?

jnz error jump if rename failed

Deleting a file

Function 13H (Delete File) deletes a file from the current directory. The file should not be
currently open by any process. If the file to be deleted has special attributes, such as read­
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB.

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted. The filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name. If at least one file matches the FCB
and is deleted, MS-DOS returns OOH in AL; if no matching filename is found, it returns
OFFH.

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions llH and 12H) to inspect candidate
filenames. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR
Ms-oos: Disk Directories and Volume Labels. The files can then be deleted individually.

Example: Delete all the files in the current directory of the current disk drive that have
the extension .BAK and whose filenames have A as the first character.

delfcb db 0 default drive

db 'A???????' wildcard filename

db 'BAK' extension

db 25 dup (0) remainder of FCB

(more)

276 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 286

Article 7: File and Record Management

mov dx,seg delfcb DS:DX = FCB address

mov ds,dx

mov dx,offset delfcb
mov ah,13h Function 13H = delete

int 21h transfer to MS-DOS

or al,al did function succeed?

jnz error jump if delete failed

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function llH (Find First File) to simply test for the
existence of a file. Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the
DS:DX registers to point to the FCB.

When Function 23H returns, AL contains OOH if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call. This method is not any faster than simply opening the file, but it does avoid the over­
head of closing the file afterward (which is necessary in a networking environment).

Summary

MS-DOS supports two distinct but overlapping sets of file and record management
services. The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file
is opened or created. The filenames can include a full path specifying the file's location in
the hierarchical directory structure. The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file's read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section II: Programming in the MS-DOS Environment 277

ZTE (USA) 1007, Page 287

Part B: Programming for MS-DOS

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program's memory space, to specify the name and location of
the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica­
tion to hold other information about the file, such as the current read/write file pointer,
while that file is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOS version 2.0 and do not have room to hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci-
fied drive. ·

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
environments because they do not support file sharing and locking. Consequently, it is
strongly recommended that the handle-related file and record functions be used ex­
clusively in all new applications.

278 The MS-DOS Encyclopedia

Robert Byers
Code by Ray Duncan

ZTE (USA) 1007, Page 288

Article 8: Disk Directories and Volume Labels

ArticleS
Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk. Directories are ac­
cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions.

MS-DOS versions l.x support only one directory on each disk. Versions 2.0 and later,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
describe the location in the directory hierarchy in which the name appears. This specifica­
tion, or path, is created by concatenating a disk drive specifier (for example, A: or C:), the

C:\ (root directory)

subdirectory ALPHA
subdirectory BETA
file Fll-El.COM
file Fll-E2.COM

I
I

C:\ALPHA

subdirectory
subdirectory
subdirectory GAMMA
subdirectory DELTA
file Fll-E3.COM

I
I

C:\ALPHA\GAMMA

subdirectory
subdirectory
file FILE5.COM

I
C:\ALPHA \DELTA

subdirectory
subdirectory

I
C:\BETA

subdirectory
subdirectory
subdirectory EPSILON
file FILE4.COM

I
C:\BETA \EPSILON

subdirectory
subdirectory
file FILEl.COM

Figure 8-1. Typical hierarchical directory structure (MS-DOS versions 2.0 and later).

Section II: Programming in the MS-DOS Environment 279

ZTE (USA) 1007, Page 289

Part B: Programming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally
the name of the file or directory. For example, in Figure 8-1, the complete pathname for
FILE5.COM is C: \ALPHA\ GAMMA \FILE5.COM. The two instances of FILEl.COM, in the
root directory and in the directory EPSILON, are distinguished by their pathnames:
C: \FILEl.COM in the first instance and C: \BETA \EPSILON\FILE1.COM in the second.

Note: If no drive is specified, the current drive is assumed. Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative to
the current directory. For example, if the current directory is C: \BETA\ EPSILON, the
specification \FILEl.COM indicates the file FILEl.COM in the root directory and the
specification FILEl.COM indicates the file FILE1.COM in the directory C: \BETA \EPSILON.
See Figure 8-1.

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip­
ulating directory contents and maintaining the links between directories. This article
provides that information.

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con­
tains a name and descriptive information. In MS-DOS versions l.x, each name must be a
filename; in versions 2.0 and later, volume labels and directory names can also appear
in directory entries.

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a directory for a name, the search must proceed linearly from the first
name in the directory. In MS-DOS versions l.x, a directory search continues until the spec­
ified name is found or until every entry in the directory has been examined. In versions 2.0
and later, the search continues until the specified name is found or until a null directory
entry (that is, one whose first byte is zero) is encountered. This null entry indicates the
logical end of the directory.

Adding and deleting directory entries

MS-DOS deletes a directory entry by marking it with OE5H in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus­
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends
the new entry to the list.

280 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 290

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter­
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated later, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory).

Directory Format

The root directory is created by the MS-DOS FORMAT program. See USER COMMANDS:
FORMAT. The FORMAT program places the root directory immediately after the disk's file
allocation tables (FATs). FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks. In contrast, the size
of subdirectories is limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRuc­
TURE OF Ms-nos: MS-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,
date and time stamps, and information that describes the file's size and physical location
on the disk (Figure 8-2). The fields are formatted as described in the following paragraphs.

OBH OCH 16H 18H lAH lCH lFH

Name (ReseJVed) Starting cluster File size

Figure 8-2. Format of a directory entry.

The name field (bytes 0-0AH) contains an 11-byte name unless the first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section IL- Programming in the MS-DOS Environment 281

ZTE (USA) 1007, Page 291

Part B: Programming for MS-DOS

followed by a 3-byte extension), or an 11-byte volume label. Names less than 8 bytes and
extensions less than 3 bytes are padded to the right with blanks so that the extension al­
ways appears in bytes 08-0AH of the name field. The first byte of the name field can con­
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value

0
5

OE5H

Meaning

Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)
First character of name to be displayed as the character represented by OE5H

(MS-DOS version 3.2)
Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly created directory. The name • (an ASCII period) is an alias for the name of
the current directory; the name •• (two ASCII periods) is an alias for the directory's parent
directory- that is, the directory in which the entry containing the name of the current
directory is found.

The attribute field (byte OBH) is an 8-bit field that describes the way MS-DOS processes
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri­
bute of that directory entry; more than one of the bits can be set at a time.

Bit 7 6 5 4 3 2 0

Figure 8-3. Format of the attribute field in a directory entry.

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function 3DH
(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory
searches- that is, in directory searches that do not specifically request that hidden entries
be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to
a file used by the operating system. Like the hidden bit, the system bit excludes a directory
entry from normal directory searches. The volume label bit (bit 3) is set to 1 to indicate that
the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when
the directory entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the current directory (.) and the parent
directory (••). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to. Simply opening and closing a file is not sufficient to update the
archive bit in the file's directory entry.

The time and date fields (bytes 16-17H and 18-19H) are initialized by MS-DOS when
the directory entry is created. These fields are updated whenever a file is written to. The
formats of these fields ar~ shown in Figures 8-4 and 8-5.

282 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 292

Bit 15 10

Hours (0-23) Minutes (0-59)

4

Article 8: Disk Directories and Volume Labels

2-second
increments (0-29)

0

Figure 8-4. Format of the time field in a directory entry.

Bit 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5. Format of the date field in a directory entry.

The starting cluster field (bytes 1A -lBH) indicates the disk location of the first cluster
assigned to the file. This cluster number can be used as an entry point to the file allocation
table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with
the aid of the information in the disk's BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field
contains the starting cluster number of the directory itself. For the .. entry (the alias for the
parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero.

The file size field (bytes lC-lFH) is a 32-bit integer that indicates the file size in bytes.

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape. In computer environments where many different volumes
might be used, the operating system can uniquely identify each volume by initializing it
with a volume label.

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of
directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc­
tory entry, the name field contains an 11-byte string specifying a name for the disk volume.
A volume label can appear only in the root directory of a disk, and only one volume label
can be present on any given disk.

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch
to initialize a disk with a volume label. In versions 3.0 and later, the LABEL command can
be used to create, update, or delete a volume label. Several commands can display a disk's
volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section Il· Programming in the MS-DOS Environment 283

ZTE (USA) 1007, Page 293

Part B: Programming for MS-DOS

In MS-DOS versions 2.x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In MS-DOS versions 3.x, however, the
SHARE command examines a disk's volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation.
Removable disk volumes should therefore be assigned unique volume names if they are
to contain shared files.

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu­
late directories and their contents (Table 8-1). The routines can be broadly grouped into
two categories: those that use a modified file control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions llH, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR
Ms-nos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H.

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interrupt 21H function is called. The calling program ini­
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOS service routine in DS:DX. The functions that use pathnames expect all path­
names to be in ASCIIZ format- that is, the last character of the name must be followed
by a zero byte.

Names in pathnames passed to Interrupt 21H functions can be separated by either a back­
slash(\) or a forward slash(/). (The forward slash is the separator character used in path­
names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS
and C: \MSP\SOURCE\ROSE.PAS are equivalent when passed to an Interrupt 21H function.
The forward slash can thus be used in a pathname in a program that must run on both MS­
DOS and UNIX!XENIX. However, the MS-DOS comand processor (COMMAND. COM)
recognizes only the backslash as a pathname separator character, so forward slashes can­
not be used as separators in the command line.

Table 8-1. MS-DOS Functions for Accessing Directories.

Function

Find First File

Find Next File

Call With

AH= llH
DS:DX = pointer to

unopened FCB
INT21H

AH= 12H
DS:DX = pointer to

unopened FCB
INT21H

284 The MS-DOS Encyclopedia

Returns

AL = 0 (directory entry
found) or OFFH (not found)

DTA updated (if directory
entry found)

AL = 0 (directory entry
found) or OFFH (not found)

DTA updated (if directory
entry found)

Comment

If default not satisfac­
tory, DTA must be
set before using
this function.

Use the same FCB
for Function llH and
Function 12H.

(more)

ZTE (USA) 1007, Page 294

Article 8: Disk Directories and Volume Labels

Table 8-1. Continued.

Function Call With Returns Comment

Rename File AH= 17H AL = 0 (file renamed) or
DS:DX = pointer to OFFH (no directory entry

modified FCB or duplicate filename)
INT21H

Get File Size AH=23H AL = 0 (directory entry
DS:DX = pointer to found) or OFFH (not found)

unopened FCB FCB updated with number
INT21H of records in file

Create Directory AH=39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT21H

Remove Directory AH=3AH Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT21H

Change Current AH=3BH Carry flag set (if error)
Directory DS:DX = pointer to AX= error code (if error)

ASCIIZ pathname
INT21H

Get/Set File AH=43H Carry flag set (if error) Cannot be used to
Attributes AL = 0 (get attributes) AX= error code (if error) modify the volume

1 (set attributes) ex = attribute field from label or subdirectory
ex= attributes (if AL = 1) directory entry (if called bits.
DS:DX = pointer to withAL= 0)

ASCIIZ pathname
INT21H

Get Current AH=47H Carry flag set (if error)
Directory DS:SI = pointer to AX = error code (if error)

64-byte buffer Buffer updated with
DL = drive number pathname of current
INT21H directory

Find First File AH=4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be

ASCIIZ pathname DTAupdated set before using
ex = file attributes to this function.

match
INT21H

Find Next File AH=4FH Carry flag set (if error)
INT21H AX= error code (if error)

DTAupdated
(more)

Section II: Programming in the MS-DOS Environment 285

ZTE (USA) 1007, Page 295

Part B: Programming for MS-DOS

Table 8-1. Continued.

Function

Rename File

Get/Set Date/Time
of File

Call With

AH= 56lf
DS:DX = pointer to

ASCIIZ pathname
ES:DI = pointer to

new ASCIIZ pathname
INT21H

AH= 57H
AL = 0 (get date/time)

1 (set date/time)
BX=handle
CX = time (if AL = 1)
DX = date (if AL = 1)

INT21H

Searching a directory

Returns

Carry flag set (if error)
AX= error code (if error)

Carry flag set (if error)
AX = error code (if error)
ex = time (if AL = O)
DX = date (if AL = 0)

Comment

Two pairs of Interrupt 21H functions are available for directory searches. Functions llH
and 12H use FCBs to transfer filenames to MS-DOS; these functions are available in all ver­
sions of MS-DOS, but they cannot be used with pathnames. Functions 4EH and 4FH sup­
port pathnames, but these functions are unavailable in MS-DOS versions l.x. All four
functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked. When Function 12H or 4FH is used, the current DTA must
be the same as the DTA for the preceding call to Function llH or 4EH.

The Interrupt 21H directory search functions are designed to be used in pairs. The Find
First File functions return the first matching directory entry in the current directory (Func­
tion llH) or in the specified directory (Function 4EH). The Find Next File functions
(Functions 12H and 4FH) can be called repeatedly after a successful call to the corre­
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the name originally specified to the Find First File
function. A directory search can thus be summarized as follows:

call "find first file" function

while (matching directory entry returned

call "find next file" function

Wildcard characters

This search strategy is used because name specifications can include the wildcard charac­
ters?, which matches any single character, and • (see below). When one or more wildcard
characters appear in the name specified to one of the Find First File functions, only the
nonwildcard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOOl, F002, and so on; the specification
FOO?????.??? matches F004.COM, FOOBAR.EXE, and FOONEWBAK, as well as FOOl and
F002; the specification ????????.TXT matches all files whose extension is .TXT; the speci­
fication????????.??? matches all files in the directory.

286 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 296

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character *, which matches any remaining
characters in a filename or extension. MS-DOS expands the * wildcard character inter­
nally to question marks. Thus, for example, the specification FOO * is the same as
FOO?????; the specification FOO *·*is the same as FOO?????.???; and, of course, the spec­
ification*·* is the same as????????.???.

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, although the format is different for the two pairs of functions:
Functions llH and 12H return a copy of the 32-byte directory entry- including the cluster
number-in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number. See SYSTEM CALLS: INTERRUPT 21H: Function
4EH.

The attribute field of a directory entry can be examined using Function 43H (Get/Set File
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's
time or date. However, unlike the other functions discussed here, Function 57H is in­
tended only for files that are being actively used within an application- that is, Function
57H can be called to examine the file's time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, or 5BH).

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directory entry. Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid­
den or system files, subdirectories, and the volume label. Related Function 56H (Rename
File) also changes the name field of a filename but cannot rename a volume label or a hid­
den or system file. However, it can be used to move a directory entry from one directory to
another. (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H.)

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time ofFile) can be used
to modify specific fields in a directory entry. Function 43H can mark a directory entry as a
hidden or system file, although it cannot modify the volume label or subdirectory bits.
Function 57H, as noted above, can be used only with a previously opened file; it provides
a way to read or update a file's time and date stamps without writing to the file itself.

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories- that is, directory
entries with the subdirectory bit set to l; (Interrupt 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory. (The
subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories.

Se.ction I1- Programming in the MS-DOS Environment 287

ZTE (USA) 1007, Page 297

Part B: Programming for MS-DOS

Specifying the current directory

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the
current directory in use by MS-DOS to a user-supplied buffer. The converse operation, in
which a new current directory can be specified to MS-DOS, is performed by Function 3BH
(Change Current Directory).

Programming examples: Searching for files

The subroutines in Figure 8-6 below illustrat,e Functions 4EH and 4FH, which use path
specifications passed as ASCIIZ strings to search for files. Figure 8-7 applies these assem­
bly-language subroutines in a simple C program that lists the attributes associated with
each entry in the current directory. Note how the directory search is performed in the
WHILE loop in Figure 8-7 by using a global wildcard file specification (•.•) and by repeat­
edly executing FindNextFile() until no further matching filenames are found. (See Pro­
gramming Example: Updating a Volume Label for examples of the FCB-related search
functions, llH and 21H.)

TITLE 'DIRS.ASM'

Subroutines for DIRDUMP.C

ARG1
ARG2

EQU

EQU

[bp + 4]
[bp + 6]

stack frame addressing for C arguments

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

void SetDTA(DTA);

char *DTA;

;--

PUBLIC _setOTA

_SetDTA PROC near

push bp
mov bp,sp

mov dx,ARG1 OS:DX -> DTA

mov ah, 1Ah AH = INT 21H function number
int 21h pass OTA to MS-DOS

Figure 8-6. Subroutines illustrating Interrupt 21H Functions 4EH and 4FH.

288 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 298

Article 8: Disk Directories and Volume Labels

pop bp
ret

_SetDTA ENDP

;--

int GetCurrentDir(*path);
char *path;

PUBLIC _GetCurrentDir
_GetCurrentDir PROC near

push bp
mov bp,sp
push si

mov si,ARG1
xor dl,dl
mov ah,47h
int 21h
jc L01

xor ax, ax

L01: pop si
pop bp
ret

_GetCurrentDir ENDP

I* returns error code *I
I* pointer to buffer to contain path *I

DS:SI ->buffer
DL = 0 (default drive number)
AH = INT 21H function number
call MS-DOS; AX = error code
jump if error

no error, return AX 0

·--'

int FindFirstFile(path, attribute); I* returns·error code *I
char *path;
int attribute;

·--'

PUBLIC _FindFirstFile
_FindFirstFile PROC near

push bp
mov bp,sp

mov dx,ARG1
mov cx,ARG2
mov ah,4Eh

int 21h
jc L02

FigureB-6. Continued.

DS:DX -> path

ex = attribute
AH = INT 21H function number
call MS-DOS; AX = error code
jump if error

(more)

Section II: Programming in the MS-DOS Environment 289

ZTE (USA) 1007, Page 299

Part B: Programming for MS-DOS

L02:

xor

pop

ret

_FindFirstFile ENDP

ax, ax no error, return AX 0

bp

;--~---------------

; int FindNextFile(); I* returns error code *I

;--

PUBLIC _FindNextFile

_FindNextFile PROC near

push bp

mov bp,sp

mov ah,4Fh AH = INT 21H function number
int 21h call MS-DOS; AX = error code

jc L03 jump if error

xor ax, ax if no error, set AX 0

L03: pop bp

ret

_FindNextFile ENDP

_TEXT ENDS

_!lATA SEGMENT word public 'DATA'

CurrentDir DB 64 dup(?)

DTA DB 64 dup (?)

_DATA ENDS

END

FigureB-6. Continued.

290 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 300

Article 8: Disk Directories and Volume Labels

I* DIRDUMP.C *I

#define AllAttributes Ox3F I* bits set for all attributes *I

main()

static char CurrentDir[64];
int ErrorCode;
int FileCount = 0;

struct

char
char
int
int
long
char

reserved[21];
attrib;

time;
date;
size;
name[13];
DTA;

I* display current directory name •I

ErrorCode = GetCurrentDir(CurrentDir) ;
if(ErrorCode)

printf("\nError %d: GetCurrentDir", ErrorCode) ;
exit (1) ;

printf("\nCurrent directory is \\%s", CurrentDir) ;

I* display files and attributes *I

SetDTA (&DTA) ; I* pass DTA to MS-DOS *I

ErrorCode = FindFirstFile("*·*", AllAttributes);

while(!ErrorCode

printf("\n%12s ", DTA.name) ;
ShowAttributes(DTA.attrib);
++FileCount;

ErrorCode = FindNextFile();

I• display file count and exit *I

printf("\nCurrent directory contains %d files\n", FileCount);

return(0);

Figure 8-7. The complete DIRDUMP.C program. (more)

Section Jl- Programming in the MS-DOS Environment 291

ZTE (USA) 1007, Page 301

Part B: Programming for MS-DOS

ShowAttributes(a)
int a;

int i;

int mask= 1;

static char *AttribName[]

};

11 read-only "
"hidden ",

"system ",

"volume ",

"subdirectory ",

"archive "

for(i=O; i<6; i++

if(a & mask
printf(AttribName[i] };

mask= mask<< 1;

Figure 8-7. Continued.

I* test each attribute bit *I

I* display a message if bit is set *I

Programming example: Updating a volume label

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to
search for, rename, create, or delete a volume label in MS-DOS versions 2.0 and later.

TITLE 'VOLS.ASM'

C-callable routines for manipulating MS-DOS volume labels.
Note: These routines modify the current DTA address.

ARG1

DGROUP

_TEXT

EQU [bp + 4] ; stack frame addressing

GROUP -DATA

SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP

Figure 8-8. Subroutines for manipulating volume labels.

292 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 302

Article 8: Disk Directories and Volume Labels

;---

char *GetVolLabel(); I* returns pointer to volume label name *I

;---

_Get Vol Label

L01:

L02:

_GetVolLabel

PUBLIC _GetVolLabel
PROC

push
mov
push
push

call
mov
mov
int
test
jnz

mov
mov
call
mov
jmp

xor

pop

near

bp
bp,sp
si
di

SetDTA ; pass DTA address to MS-DOS
dx,offset DGROUP:ExtendedFCB
ah,11h AH = INT 21H function number
21h ; Search for First Entry
al,al
L01

; label found so make a copy
si,offset DGROUP:DTA + 8
di,offset DGROUP:VolLabel
CopyName
ax,offset DGROUP:VolLabel
short L02

return the copy's address

ax, ax no label, return 0 (null pointer)

di
pop si
pop bp
ret

ENDP

;---

int RenameVolLabel(label);
char *label;

I* returns error code *I
I* pointer to new volume label name *I

;---

PUBLIC _RenameVolLabel
_RenameVolLabel PROC near

push bp
mov bp,sp
push si
push di

Figure8-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 293

ZTE (USA) 1007, Page 303

Part B: Programming for MS-DOS

mov

mov

call

si,offset DGROUP:VolLabel ; DS:SI -> old volume name
di,offset DGROUP:Name1

CopyName ; copy old name to FCB

mov si,ARG1

mov di,offset DGROUP:Name2

call

mov

mov
int

xor

pop

CopyName

dx,offset

ah,17h

21h
ah,ah

di

pop si
pop bp

ret

; copy new name into FCB

DGROUP:ExtendedFCB ; DS:DX -> FCB

AH = INT 21H function number
rename
AX = OOH (success) or OFFH (failure)

restore registers and return

-RenameVolLabel ENDP

;---

int NewVolLabel(label);

char •label;
I• returns error code •I
I• pointer to new volume label name *I

PUBLIC _NewVolLabel

_NewVolLabel PROC

push
mov

push
push

mov
mov

call

mov

mov

int
xor

pop

pop

pop

ret

_NewVolLabel ENDP

Figure 8-8. Continued.

294 The MS-DOS Encyclopedia

near

bp
bp,sp

si

di

si,ARG1
di,offset DGROUP:Name1

CopyName ; copy new name to FCB

dx,offset

ah,16h

21h
ah,ah

di

si

bp

DGROUP:ExtendedFCB

AH = INT 21H function number

create directory entry
AX = OOH (success) or OFFH (failure)

restore registers and return

(more)

ZTE (USA) 1007, Page 304

Article 8: Disk Directories and Volume Labels

;---

; int DeleteVolLabel(); I* returns error code *I

;----------------7--

PUBLIC -DeleteVolLabel
_DeleteVolLabel PROC near

push bp
mov bp, sp
push si
push di

mov
mov

si,offset DGROUP:VolLabel
di,offset DGROUP:Name1

call

mov
mov
int
xor

pop
pop

CopyName ; copy current volume name to FCB

dx,offset
ah,13h
21h
ah,ah

di
si

DGROUP:ExtendedFCB

AH = INT 21H function number
delete directory entry
AX = OOH (success) or OFFH (failure)

restore registers and return

pop bp
ret

_DeleteVolLabel ENDP

;---

miscellaneous subroutines

;---

SetDTA

SetDTA

PROC

push
push

mov
mov

int

pop

near

ax
dx

dx,offset
ah,1Ah
21h

dx
pop ax
ret

ENDP

preserve registers used

DGROUP:DTA
AH

; DS:DX -> DTA
INT 21H function number

set DTA

restore registers and return

Figure 8-8. Continued. (more)

Section IL Programming in the MS-DOS Environment 295

ZTE (USA) 1007, Page 305

Part B: Programming for MS-DOS

CopyName PROC near

push ds

pop es

mov ex, 11

L11: lodsb

test al,al

jz L12

stosb

loop L11

L12: mov al, . .
rep stosb

ret

CopyName ENDP

_TEXT ENDS

_DATA SEGMENT word public

VolLabel DB 11 dup(O),O

ExtendedFCB DB OFFh

DB 5 dup(O)

DB 1000b

DB 0

Name1 DB 11 dup('?')

DB 5 dup (0)

Name2 DB 11 dup(O)

DB 9 dup(O)

DTA DB 64 dup (0)

_DATA ENDS

END

Figure 8-8. Continued.

296 The MS-DOS Encyclopedia

'DATA'

Caller: SI -> ASCIIZ source

DI -> destination

ES = DGROUP

length of name field

copy new name into FCB

.. until null character is reached

pad new name with blanks

must be OFFH for extended FCB

(reserved)
attribute byte (bit 3 1)

default drive ID
global wildcard name

(unused)
second name (for renaming entry)

(unused)

Richard Wilton

ZTE (USA) 1007, Page 306

Article 9: Memory Management

Article9
Memory Management

Personal computers that are MS-DOS compatible can be outfitted with as many as three
kinds 9f random-access memory (RAM): conventional memory, expanded memory, and
extended memory.

All MS-DOS machines have at least some conventional memory, but the presence of ex-
panded or extended memory depends on the installed hardware options and the model of 4
microprocessor on which the computer is based. Each storage class has its own capabil-
ities, characteristics, and limitations. Each also has its own management techniques, which
are the subject of this chapter.

Conventional Memory

Conventional memory is the term for the up to 1 MB of memory that is directly addressable
by an lntel8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in
real mode (8086-emulation mode). Physical addresses for references to conventional
memory are generated by a 16-bit segment register, which acts as a base register and holds
a paragraph address, combined with a 16-bit offset contained in an index register or in the
instruction being executed.

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
the bottom 640 KB or less of the conventional memory space. The memory space above
the 640 KB mark is partitioned among ROM (read-only memory) chips on the system
board that contain various primitive device handlers and test programs and among RAM
and ROM chips on expansion boards that are used for input and output buffers and for ad­
ditional device-dependent routines.

The bottom 640 KB of memory administered by MS-DOS is divided into three zones
(Figure 9-1):

• The interrupt vector table
• The operating system area
• The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000-
003FFH); its address and length are hard-wired into the processor and cannot be changed.
Each doubleword position in the table is called an interrupt vector and contains the seg­
ment and offset of an interrupt handler routine for the associated hardware or software in­
terrupt number. Interrupt handler routines are usually built into the operating system,

Section Jl- Programming in the MS-DOS Environment 297

ZTE (USA) 1007, Page 307

Part B: Programming for MS-DOS

.----R0_M_B_IO-S----, IOOOOOH (I MB)

additional ROM code
on expansion boards,
memory-mapped I/0

buffers

Transient
program area

MS-DOSand
its buffers, tables,
and device drivers

Interrupt vector table

AOOOOH (640 KB)

Boundary varies

00400H (I KB)

OOOOOH

Figure 9-1. A diagram showing conventional memory in an IBM PC-compatible MS-DOS system. The bottom
1024 bytes of memory are used for the interrupt vector table. The memory above the vector table, up to the 640
KB boundary, is available for use by MS-DOS and the programs that run under its control. The top 384 KB are
used for the ROM BIOS, other device-control and diagnostic routines, and memory-mapped input and output.

but in special cases application programs can contain handler routines of their own.
Vectors for interrupt numbers that are not used for software linkages or by some hardware
device are usually initialized by the operating system to point to a simple interrupt return
(IRET) instruction or to a routine that displays an error message.

The operating-system area begins immediately above the interrupt vector table and
holds the operating system proper, its tables and buffers, any additional installable device
drivers specified in the CONFIG.SYS file, and the resident portion of the COMMAND. COM
command interpreter. The amount of memory occupied by the operating-system area
varies with the version of MS-DOS being used, the number of disk buffers, and the number
and size of installed device drivers.

The transient program area (TPA) is the remainder of RAM above the operating-system
area, extending to the 640 KB limit or to the end of installed RAM (whichever is smaller).
External MS-DOS commands (such as CHKDSK) and other programs are loaded into the
TPA for execution. The transient portion of COMMAND. COM also runs in this area.

The TPA is organized into a structure called the memory arena, which is divided into por­
tions called arena entries (or memory blocks). These entries are allocated in paragraph
(16-byte) multiples and can be as small as one paragraph or as large as the entire TPA.
Each arena entry is preceded by a control structure called an arena entry header, which
contains information indicating the size and status of the arena entry.

298 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 308

Article 9: Memory Management

MS-DOS inspects the arena entry headers whenever a function requesting a memory­
block allocation, modification, or release is issued; when a program is loaded and exe­
cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi­
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to
the calling process .. Ifthat process is COMMAND.COM, COMMAND.COM then displays
the message Memory allocation error and halts the system.

MS-DOS support for conventional memory management

The MS-DOS kernel supports three memory-management functions, invoked with Inter­
rupt 21H, that operate on the TPA:

• Function 48H (Allocate Memory Block)
• Function 49H (Free Memory Block)
• Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command
processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries
as they are needed. See SYSTEM CALLS: INTERRUPT 21H: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-Management Functions.

Function Name

Allocate Memory Block

Free Memory Block

Resize (Allocated)
Memory Block

Get/Set Allocation
Strategy*

• MS-DOS versions 3.x only.

Cali With

AH=48H
BX = paragraphs needed

AH=49H
ES = segment of block to

release
AH=4AH
BX = new size of block in

paragraphs
ES = segment of block to

resize
AH= 58H
AL = OOH (get strategy)

OlH (set strategy)
If setting:
BX = strategy:

OOH = first fit
OlH = best fit
02H = last fit

Returns

AX = segment of allocated
block

If failed:
BX = size of largest available

block in paragraphs
nothing

If failed:
BX = maximum size

for block in paragraphs

If getting:
AX = strategy code

Section IL- Programming in the MS-DOS Environment 299

ZTE (USA) 1007, Page 309

Part B: Programming for MS-DOS

When the MS-DOS kernel receives a memory-allocation request, it inspects the chain of
arena entry headers to find a free arena entry that can satisfy the request. The memory
manager can use any of three allocation strategies:

• First fit-the arena entry at the lowest address that is large enough to satisfy the
request

• Best fit-the smallest available arena entry that satisfies the request, regardless of its
position

• Last fit-the arena entry at the highest address that is large enough to satisfy the
request

If the arena entry selected is larger than the size needed to fulfill the request, the arena
entry is divided and the program is given an arena entry exactly the size it requires. A new
arena entry header is then created for the remaining portion of the original arena entry; it
is marked "unowned" and can be used to satisfy subsequent allocation calls.

Research on allocation strategies has demonstrated that the first -fit approach is most
efficient, and this is the default strategy used by MS-DOS. However, in MS-DOS versions
3.0 and later, an application program can select a different strategy for the memory man­
ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS:
INTERRUPT 21H: Function 58H.

Using the me1n:or~-management functions

When a program begins executing; it already owns two arena entries allocated on its
behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). The first entry holds
the program's environment and is just large enough to contain this information; the second
entry (called the program block in this article) contains the program's PSP, code, data, and
stack.

The amount of memory MS-DOS allocates to the program block for a newly loaded tran­
sient program depends on its type (.COM or .EXE). Under typical conditions, a .COM pro­
gram is allocated all of the first arena entry that is large enough to hold the contents of its
file, plus 256 bytes for the PSP and at least 2 bytes for the stack. Because the TP A is seldom
fragmented into more than one arena entry before a program is loaded, a .COM program
usually ends up owning all the memory in the system that does not belong to the operat­
ing system itself-memory divided between a relatively small environment and a com­
paratively immense program block.

The amount of memory allocated to a .EXE program, on the other hand, is controlled
by two fields called MINALLOC and MAXALLOC in the .EXE program file header. The
MINALLOC field tells the MS-DOS loader how many paragraphs of memory, in addition to
the memory required to hold the initialized code and the data present in the file, must be
available for the program to execute at all. The MAXALLOC field contains the maximum
number of excess paragraphs, if available, to allocate to the program.

300 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 310

Article 9: Memory Management

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para­
graphs, corresponding to 1MB. Consequently, a .EXE program is typically allocated all of
available memory when it is loaded, as is a .COM file. Although it is possible to set the
MAXALLOC field to other, smaller values with the linker's /CPARMAXALLOC switch or
with the EXEMOD utility supplied with Microsoft language compilers, few programmers
bother to do so.

In short, when a program begins executing, it usually owns all of available memory­
frequently much more memory than it needs. If the program wants to be well behaved in
its use of memory and, possibly, load child programs as well, it should immediately release
any extra memory. In assembly-language programs, the extra memory is released by call­
ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program's
PSP in the ES register and the number of paragraphs of memory to retain for the program's
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as
Microsoft C, excess memory is released by the run-time library's startup module.

_TEXT segment para public 'CODE'

org 1 DOh

assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT

main proc near

mov sp,offset

mov bx,offset
mov cl,4
shr bx,cl
inc bx
mov ah,4ah
int 21h
jc error

main endp

stk

stk

entry point from MS-DOS
CS = DS = ES = SS = PSP

first move our stack
to a safe place ...

now release extra memory ...
calculate paragraphs to keep
(divide offset of end of
program by 16 and round up)

Fxn 4AH = resize mem block

transfer to MS-DOS
jump if resize failed

otherwise go on with work ...

(more)

Figure 9-2. An example of a . COM program releasing excess memory after it receives control from MS-DOS.
Interrupt 21H Function 4AH is called with the segment address of the program~ PSP in register ES and the
number of paragraphs of memory to retain in register BX.

Section II: Programming in the MS-DOS Environment 301

ZTE (USA) 1007, Page 311

Part B: Programming for MS-DOS

stk
dw

equ

_TEXT ends

end

64 dup (?)

$

main

Figure 9-2. Continued.

_TEXT segment word public 'CODE'

base of new stack area

defines program entry point

; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far

mov ax,_DATA
mov ds,ax

mov ax,es
mov bx,ss
sub bx,ax
add bx,stksize/16
inc bx
mov ah,4ah
int 21h
jc error

main endp

_TEXT ends

_DATA segment word public 'DATA'

_DATA ends

entry point from MS-DOS
CS _TEXT segment,

DS ES = PSP

set DS our data segment

give back extra memory ...
let AX = segment of PSP base
and BX = segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack
round up

Fxn 4AH = resize memory block
transfer to MS-DOS
jump if resize failed

static & variable data

(more)

Figure 9-3. An example of a .EXE program releasing excess memory after it receives control from MS-DOS.
This particular code sequence depends on the segment order shown. When a .EXE program is linked from
many different object modules, other techniques may be needed to determine the amount of memory occupied
by the program at run time.

302 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 312

Article 9: Memory Management

STACK segment para stack 'STACK'

db stksize dup (?)

STACK ends

end main defines program entry point

Figure 9-3. Continued.

Later, if the transient program needs additional memory for a buffer, table, or other work
area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired
number of paragraphs. If a sufficiently large block of memory is available, MS-DOS creates 4
a new arena entry of the requested size and returns a pointer to its base in the form of a
segment address in the AX register. If an arena entry of the requested size cannot be cre-
ated, MS-DOS returns an error code in the AX register and the size in paragraphs of the
largest available block of memory in the BX register. The application program can inspect
this value to determine whether it can continue in a degraded fashion with a smaller
amount of memory.

When a program finishes using an allocated arena entry, it should promptly call Interrupt
21H Function 49H to release it. This allows MS-DOS to collect small blocks of freed mem­
ory into contiguous arena entries and reduces the chance that future allocation requests by
the same program will fail because of memory fragmentation. In any case, all arena entries
owned by a program are released when the program terminates with Interrupt 20H or
with Interrupt 21H Function OOH or 4CH.

A program skeleton demonstrating the use of dynamic memory allocation services is
shown in Figu~e 9~4.

mov
mov
int
jc
mov

mov
mov
int
jc
mov

bx,800h
ah,48h
21h
error
bufseg,ax

dx,offset file1
ax,3d00h
21h
error
handle1,ax

800H paragraphs = 32 KB
Fxn 48H = allocate block
transfer to MS-DOS
jump if allocation failed
save segment of block

open working file ...
DS:DX = filename address
Fxn 3DH = open, read only

transfer to MS-DOS
jump if open failed
save handle for work file

(more)

Figure 9-4. A skeleton example of dynamic memory allocation. The program requests a 32 KB memory block,
uses it to copy its working file to a backup file, and then releases the memory block. Note the use of ASSUME
directives to force the assembler to generate proper segment overrides on references to variables containingfile
handles.

Section II: Programming in the MS-DOS Environment 303

ZTE (USA) 1007, Page 313

Part B: Programming for MS-DOS

create backup file ...
mov dx,offset file2 DS:DX = filename address
mov cx,O ex = attribute (normal)
mov ah,3ch Fxn 3CH = create file
int 21h transfer to MS-DOS

jc error jump if create failed
mov handle2,ax save handle for backup file

push ds set ES = our data segment

pop es

mov ds,bufseg set DS:DX allocated block

xor dx,dx

assume ds:NOTHING,es:_DATA ; tell assembler

next.: read working file ...

mov bx,handle1 handle for work file
mov cx,8000h try to read 32 KB
mov ah,3fh Fxn 3FH = read
int 21h transfer to MS-DOS
jc error jump if read failed
or ax, ax was end of file reached?
jz done yes, exit this loop

now write backup file ...
mov ex, ax set write length = read length
mov bx,handle2 handle for backup file
mov ah,40h Fxn 40H = write
int 21h transfer to MS-DOS
jc error jump if write failed
cmp ax, ex was write complete?
jne error no, disk must be full
jmp next transfer anothe.r record

done: push es restore DS data segment
pop ds

assume ds:_DATA,es:NOTHING tell assembler

mov
mov

int

jc

mov

. mov
int

jc

es,bufseg

ah,49h

21h

error

bx,handle2

ah,3eh

21h

error

Figure 9-4. Continued.

304 The MS-DOS Encyclopedia

release allocated block ...

segment base of block

Fxn 49H = release block
transfer to MS-DOS

(should never fail)

now close backup file ...

handle for backup file

Fxn 3EH = close

transfer to MS-DOS

jump if close failed

(more)

ZTE (USA) 1007, Page 314

Article 9: Memory Management

file1 db 'MYFILE.DAT',O name of working file

file2 db 'MYFILE.BAK',O name of backup file

handle1 dw ? handle for working file
handle2 dw ? handle for backup file

bufseg dw ? segment of allocated block

Figure 9-4. Continued.

Expanded Memory

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint
effort of Lotus Development Corporation and Intel Corporation and was announced at the
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica­
tions running on 8086/8088-based personal computers, or on 80286/80386-based com­
puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing
such programs with much larger amounts of fast random-access storage. The EMS version
3.2, modified from 3.0 to add support for multitasking operating systems, was released
shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMS is a functional definition of a bank-switched memory subsystem; it consists of
user-installable boards that plug into the IBM PC's expansion bus and a resident driver pro­
gram called the Expanded Memory Manager (EMM) that is provided by the board manu­
(acturer. As much as 8 MB of expanded memory can be installed in a single machine.
Expanded memory is made available to application software in 16 KB pages, which are
mapped by the EMM into a contiguous 64 KB area called the page frame somewhere
above the conventional memory area used by MS-DOS {0-640 KB). An application pro­
gram can thus access as many as four 16 KB expanded memory pages simultaneously. The
location of the page frame is user configurable so that it will not conflict with other hard­
ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Manager provides a hardware-independent interface between
application programs and the expanded memory board(s). The EMM is supplied by the.
board manufacturer in the form of an installable character-device driver and is linked into
MS-DOS by a DEVICE directive added to the CONFIG.SYS file on the system startup disk.

Internally, the EMM is divided into two distinct components that can be referred to as the
driver and the manager. The driver portion mimics some of the actions of a genuine in­
stallable device driver, in that it includes Initialization and Output Status subfunctions and
a valid device header. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZ­
ING Ms-nos: Installable Device Drivers.

Section IL- Programming in the MS-DOS Environment 305

ZTE (USA) 1007, Page 315

Part B: Programming for MS-DOS

1MB

EMS page frame {
(four 16 KB pages)

640KB

00400H

0

Conventional memory

ROM BIOS etc.

Transient program area

MS-DOS

Interrupt vector table

Expanded memory
8MB

-:--, -

0

Figure 9-5. A sketch of the relationship of expanded memory to conventional memory; 16 KB pages of
expanded memory are mapped into a 64 KB area, called the page frame, above the 640 KB boundary. The
location of the page frame can be configured by the user to eliminate conflicts with ROMs or 1/0 buffers on
expansion boards.

The second, and major, element of the EMM is the true interface between application soft­
ware and the expanded memory hardware. Several classes of services provide

• Status of the expanded memory subsystem
• Allocation of expanded memory pages
• Mapping of logical pages into physical memory
• Deallocation of expanded memory pages
• Support for multitasking operating systems
• Diagnostic routines

Application programs communicate with the EMM directly by means of a software inter­
rupt (Interrupt 67H). The MS-DOS kernel does not take part in expanded memory
manipulations and does not use expanded memory for its own purposes.

306 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 316

Article 9: Memory Management

Checking for expanded memory

Before it attempts to use expanded memory for storage, an application program must
establish that the EMM is present and functional, and then it must use the manager portion
of the EMM to check the status of the memory boards themselves. There are two methods
a program can use to test for the existence of the EMM.

The first method is to issue an Open File or Device request (Interrupt 21H Function 3DH)
using the guaranteed device name of the EMM driver: EMMXXXXO. If the open operation
succeeds, one of two conditions is indicated- either the driver is present or a file with the
same name exists in the current directory of the default disk drive. To rule out the latter
possibility, the application can issue IOCTL Get Device Information (Interrupt 21H Func- 4
tion 44H Subfunction OOH) and Check Output Status (Interrupt 21H Function 44H Subfunc-
tion 07H) requests to determine whether the handle returned by the open operation is
associated with a file or with a device. In either case, the handle that was obtained from
the open function should then be closed (Interrupt 21H Function 3EH) so that it can be
reused for another file or device.

The second method of testing for the driver is to use the address that is found in the vector
for Interrupt 67H to inspect the device header of the presumed EMM. (The contents of
the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is
present, the name field at offset OAH of the device header contains the string EMMXXXXO.
This method is nearly foolproof, and it avoids the relatively high overhead of an MS-DOS
open function. However, it is somewhat less well behaved because it involves inspection
of memory that does not belong to the application.

The two methods of testing for the existence of the EMM are illustrated in Figures 9-6 and
9-7.

attempt to "open" EMM ...
mov dx,seg emm_name DS:DX = address of name
mov ds,dx of EMM
mov dx,offset emm_name
mov ax,3d00h Fxn 3DH, Mode= OOH

= open, read-only
int 21 h transfer to MS-DOS
jc error jump if open failed

open succeeded, make sure
it was not a file ...

(more)

Figure 9-6. Testing for the presence of the Expanded Memory Manager with the MS-DOS Open File or Device
(interrupt 21H Function 3D H) and IOCTL (Interrupt 21H Function 44H) functions.

Section /1· Programming in the MS-DOS Environment 307,

ZTE (USA) 1007, Page 317

Part B: Programming for MS-DOS

mov bx,ax

mov ax,4400h

int 21h

jc error
and dx,80h
jz error

mov ax,4407h

int 21h

jc error
or al,al

jz error

mov ah,3eh
int 21h

jc error

e!T11lLname db 'EMMXXXXO',O

Figure 9-6. Continued.

e!T11lLint equ

mov

mov

int

67h

al,elT11TLint

ah,35h

21h

BX = handle from open
Fxn 44H Subfxn DOH

= IOCTL Get Device Information
transfer to MS-DOS
jump if IOCTL call failed
Bit 7 = 1 if character device
jump if it was a file

EMM is present, make sure

it is available ...

(BX still contains handle)

Fxn 44H Subfxn 07H

= IOCTL Get Output Status
transfer to MS-DOS
jump if IOCTL call failed
test device status
if AL = 0 EMM is not available

now close handle ...
(BX still contains handle)

Fxn 3EH = Close
transfer to MS-DOS
jump if close failed

guaranteed device name for EMM

EMM software interrupt

first fetch contents of

EMM interrupt vector ...
AL = EMM int number

Fxn 35H = get vector

transfer to MS-DOS

now ES:BX = handler address

assume ES:OOOO points

to base of the EMM ...

(more)

Figure 9-7. Testing for the presence of the Expanded Memory Manager by inspecting the name field in the
device driver header.

308 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 318

Article 9: Memory Management

mov di,10 ES:DI =address of name
field in device header

mov si,seg emm_name DS:SI =address of
mov ds,si expec\ed EMM driver name
mov si,offset emm_name
mov cx,B length of name field
cld
repz cmpsb compare names ...
jnz error jump if driver absent

emm_name db 'EMMXXXXO' guaranteed device name for EMM

Figure 9-7. Continued.

Using expanded memory

After establishing that the EMM is present, the application program can bypass MS-DOS
and communicate with the EMM directly by means of software Interrupt 67H. The calling
sequence is as follows:

mov ah,function AH selects EMM function

Load other registers with
values specific to the
requested service

int 67h Transfer to EMM

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the
DX register is used to hold an expanded memory "handle." Some EMM functions also use
other registers (chiefly ALand BX) to pass such information as logical and physical page
numbers. Table 9-2 summarizes the services available from the EMM.

Upon return from an EMM function call, the AH register contains zero if the function was
successful; otherwise, AH contains an error code with the most significant bit set (Table
9-3). Other values are typically returned in the ALand BX registers or in a user-specified
buffer.

Section II: Programming in the MS-DOS Environment 309

ZTE (USA) 1007, Page 319

U
J

T
ab

le
 9

-2
.

S
u

m
m

a
ry

 o
f t

h
e

S
of

tw
ar

e
In

te
rf

ac
e

to
 A

p
p

li
ca

ti
on

 P
ro

gr
am

s
P

ro
vi

d
ed

 b
y

 th
e

E
M

M
. *

"0

.....

.
.,

0
::I

F
u

n
ct

io
n

C

al
l

~

"0

N
am

e
A

ct
io

n

W
it

h

R
et

ur
ns

C

om
m

en
ts

....

;;;l

a'6

"'
....

~
G

et
 M

an
ag

er

T
es

t w
he

th
er

 th
e

A
H

=
4

0
H

A

H
=

st
at

u
s

T
hi

s
ca

ll
 is

 u
se

d
af

te
r

th
e

pr
og

ra
m

 h
as

 e
st

ab
li

sh
ed

, w
it

h
3

6
S

ta
tu

s
ex

pa
nd

ed
 m

em
or

y
on

e
of

 th
e

te
ch

ni
qu

es
 p

re
se

nt
ed

 in
 F

ig
ur

es
 9

-6
 a

n
d

 9
-7

,
i3

0
so

ft
w

ar
e

an
d

 h
ar

dw
ar

e
th

at
 th

e
EM

M
 is

 p
re

se
nt

.
Jg.

"'
i5

'
~

ar
e

fu
nc

ti
on

al
.

....

<!d

E::

Q

G
et

 P
ag

e
O

bt
ai

n
th

e
se

gm
en

t
A

H
=

4
1

H

A
H

=
st

at
u

s
T

h
e

pa
ge

 fr
am

e
is

 d
iv

id
ed

 in
to

 fo
ur

 1
6

K
B

 p
ag

es
 th

at
 a

re

6
.g

0

\%
..

F
ra

m
e

S
eg

m
en

t
ad

dr
es

s
o

f t
h

e
EM

M
 p

ag
e

B
X

 =
 s

eg
m

en
t o

f p
ag

e
us

ed
 to

 m
ap

 lo
gi

ca
l e

xp
an

de
d

m
em

or
y

pa
ge

s
in

to
 th

e
V

l

~S
·

fr
am

e.

fr
am

e,
 i

f A
H

 =
 O

O
H

ph

ys
ic

al
 m

em
or

y
sp

ac
e

of
 th

e
80

86
/8

08
8

pr
oc

es
so

r.

G
et

 E
xp

an
de

d
O

bt
ai

n
th

e
nu

m
be

r
A

H
=

4
2

H

A
H

=
st

at
u

s
T

h
e

ap
pl

ic
at

io
n

n
ee

d
 n

ot
 h

av
e

al
re

ad
y

ac
qu

ir
ed

 a
n

 E
M

M

M
em

or
y

P
ag

es

of
 lo

gi
ca

l e
xp

an
de

d
B

X
 =

 u
na

ll
oc

at
ed

 E
M

M

ha
nd

le
 to

 u
se

 th
is

 fu
nc

ti
on

.
m

em
or

y
pa

ge
s

pr
es

en
t

pa
ge

s,
 if

 A
H

 =
 O

OH

in
 th

e
sy

st
em

 a
n

d
 th

e
O

X
 =

 to
ta

l E
M

M
 p

ag
es

 in

nu
m

be
r o

f p
ag

es
 th

at
 a

re

sy
st

em

no
t a

lr
ea

dy
 a

ll
oc

at
ed

.

A
ll

oc
at

e
O

bt
ai

n
an

 E
M

M
 h

an
dl

e
A

H
=

4
3

H

A
H

=
 s

ta
tu

s
T

hi
s

fu
nc

ti
on

 is
 e

qu
iv

al
en

t t
o

a
fi

le
-o

pe
n

fu
nc

ti
on

 fo
r

th
e

E
xp

an
de

d
an

d
 a

ll
oc

at
e

lo
gi

ca
l

B
X

 =
 lo

gi
ca

l p
ag

es

O
X

=
 h

an
dl

e,
 i
f A

H
 =

EM

M
. T

he
 h

an
dl

e
re

tu
rn

ed
 is

 a
na

lo
go

us
 to

 a
 fi

le
 h

an
dl

e
M

em
or

y
pa

ge
s

to
 b

e
co

nt
ro

ll
ed

 b
y

to
 a

ll
oc

at
e

OO
H

an
d

 o
w

ns
 a

 c
er

ta
in

 n
um

be
r

o
f E

M
M

 p
ag

es
. T

h
e

ha
nd

le

th
at

 h
an

dl
e.

m

us
t b

e
us

ed
 w

it
h

ev
er

y
su

bs
eq

ue
nt

 re
qu

es
t t

o
m

ap

m
em

or
y

an
d

m
us

t b
e

re
le

as
ed

 b
y

 a
 c

lo
se

 o
pe

ra
ti

on
 w

h
en

th

e
ap

pl
ic

at
io

n
is

 f
in

is
he

d.

T
hi

s
fu

nc
ti

on
 c

an
 fa

il
be

ca
us

e
ei

th
er

 th
e

av
ai

la
bl

e
EM

M

ha
nd

le
s

or
 th

e
EM

M
 p

ag
es

 h
av

e
b

ee
n

 e
xh

au
st

ed
.

F
un

ct
io

n
42

H
 c

an
 b

e
ca

ll
ed

 b
y

th
e

ap
pl

ic
at

io
n

to

de
te

rm
in

e
th

e
ac

tu
al

 n
um

be
r o

f p
ag

es
 a

va
ila

bl
e.

M
ap

 M
em

or
y

M
ap

 o
n

e
o

f t
h

e
lo

gi
ca

l
A

H
=

4
4

H

A
H

=
 s

ta
tu

s
T

h
e

lo
gi

ca
l p

ag
e

nu
m

be
r m

us
t b

e
in

 th
e

ra
ng

e
0

-n
-1

,

pa
ge

s
o

f e
xp

an
de

d
A

L
=

 p
hy

si
ca

l p
ag

e
w

he
re

 n
 i

s
th

e
nu

m
be

r o
f l

og
ic

al
 p

ag
es

 p
re

vi
ou

sl
y

m
em

or
y

as
si

gn
ed

 to
 a

(0

-3
)

al
lo

ca
te

d
to

 t
he

 E
M

M
 h

an
dl

e
w

it
h

F
un

ct
io

n
43

H
.

ha
nd

le
 o

nt
o

on
e

o
f t

h
e

B
X

 =
 lo

gi
ca

l p
ag

e
T

o
ac

ce
ss

 t
h

e
m

em
or

y
af

te
r i

t h
as

 b
ee

n
 m

ap
pe

d
to

 a

fo
ur

 p
hy

si
ca

l p
ag

es

(0
 ..

. n
-1

)
w

it
hi

n
th

e
E

M
M

's
pa

ge

O
X

=
 E

M
M

 h
an

dl
e

ph
ys

ic
al

 p
ag

e,
 t

h
e

ap
pl

ic
at

io
n

al
so

 n
ee

ds
 th

e
se

gm
en

t o
f

fr
am

e.

th
e

E
M

M
's

pa
ge

 fr
am

e,
 w

hi
ch

 c
an

 b
e

ob
ta

in
ed

 w
it

h
F

un
ct

io
n

41
H

.

~
-
-
-

ZTE (USA) 1007, Page 320

R
el

ea
se

 H
an

dl
e

D
ea

ll
oc

at
e

th
e

lo
gi

ca
l

A
H

=
4

5
H

A

H
=

st
at

u
s

T
hi

s
fu

nc
ti

on
 is

 t
he

 e
qu

iv
al

en
t o

f a
 c

lo
se

 o
pe

ra
ti

on
 o

n

an
d

 M
em

or
y

pa
ge

s
o

f e
xp

an
de

d
D

X
 =

 E
M

M
 h

an
dl

e
a

fi
le

.
It

 n
ot

if
ie

s
th

e
EM

M
 t

ha
t t

he
 a

pp
li

ca
ti

on
 w

il
l n

ot
 b

e
m

em
or

y
cu

rr
en

tl
y

m
ak

in
g

fu
rt

he
r

us
e

o
f t

he
 d

at
a

it
 m

ay
 h

av
e

st
or

ed
 w

it
hi

n
as

si
gn

ed
 to

 a
 h

an
dl

e
ex

pa
nd

ed
 m

em
or

y
pa

ge
s.

an

d
 th

en
 re

le
as

e
th

e
ha

nd
le

 it
se

lf
 fo

r
re

us
e.

G
et

E
M

M

R
et

ur
n

th
e

ve
rs

io
n

A
H

=
4

6
H

A

H
=

st
at

u
s

T
h

e
re

tu
rn

ed
 v

al
ue

 is
 t

h
e

ve
rs

io
n

o
f t

h
e

EM
M

 w
it

h
w

hi
ch

V

er
si

on

nu
m

be
r

o
f t

h
e

EM
M

A

L
=

 E
M

M
 v

er
si

on
,

th
e

dr
iv

er
 c

om
pl

ie
s.

 T
h

e
ve

rs
io

n
nu

m
be

r i
s

en
co

de
d

as

so
ft

w
ar

e.

if
A

H
=

O
O

H

B
C

D
, w

it
h

th
e

in
te

ge
r p

ar
t i

n
th

e
u

p
p

er
 4

 b
it

s
an

d
 th

e
fr

ac
ti

on
al

 p
ar

t i
n

th
e

lo
w

er
 4

 b
its

.

Sa
ve

 M
ap

pi
ng

Sa

ve
 t

he
 c

on
te

nt
s

o
f t

h
e

A
H

=
4

7
H

A

H
 =

st
at

us

T
hi

s
fu

nc
ti

on
 is

 d
es

ig
ne

d
fo

r
us

e
b

y
 in

te
rr

up
t h

an
dl

er
s

C
on

te
xt

ex

pa
nd

ed
 m

em
or

y
pa

ge
-

D
X

 =
 E

M
M

 h
an

dl
e

an
d

 re
si

de
nt

 d
ri

ve
rs

 o
r u

ti
li

ti
es

 th
at

 m
us

t a
cc

es
s

ex
pa

nd
ed

m

ap
pi

ng
 re

gi
st

er
s

o
n

m

em
or

y.
 T

h
e

ha
nd

le
 s

up
pl

ie
d

to
 t

he
 fu

nc
ti

on
 is

 th
e

th
e

ex
pa

nd
ed

 m
em

or
y

ha
nd

le
 th

at
 w

as
 a

ss
ig

ne
d

to
 t

h
e

in
te

rr
up

t h
an

dl
er

 d
ur

in
g

bo
ar

ds
, a

ss
oc

ia
ti

ng
 th

os
e

it
s

in
it

ia
li

za
ti

on
 s

eq
ue

nc
e,

 n
ot

 to
 th

e
pr

og
ra

m
 th

at
 w

as

co
nt

en
ts

 w
it

h
a

sp
ec

if
ic

in

te
rr

up
te

d.

E
M

M
ha

nd
le

.
~
 " 5·

R
es

to
re

R

es
to

re
 t

h
e

co
nt

en
ts

A

H
=

4
8

H

A
H

=
st

at
u

s
U

se
 o

f t
hi

s
fu

nc
ti

on
 m

us
t b

e
ba

la
nc

ed
 b

y
a

pr
ev

io
us

 c
al

l
;:!

M

ap
pi

ng

o
f a

ll
 e

xp
an

de
d

m
em

or
y

D
X

 =
 E

M
M

 h
an

dl
e

to
 E

M
M

 F
un

ct
io

n
47

H
. I

t a
ll

ow
s

an
 in

te
rr

up
t h

an
dl

er
 o

r a

;; ~

C
on

te
xt

ha

rd
w

ar
e

pa
ge

-m
ap

pi
ng

re

si
de

nt
 d

ri
ve

r t
ha

t u
se

d
ex

pa
nd

ed
 m

em
or

y
to

 r
es

to
re

 th
e

..,
re

gi
st

er
s

to
 th

e
va

lu
es

m

ap
pi

ng
 c

on
te

xt
 to

 it
s

st
at

e
at

 th
e

po
in

t o
f i

nt
er

ru
pt

io
n.

~
 S!

as
so

ci
at

ed
 w

it
h

th
e

gi
ve

n
~

ha
nd

le
.

~

~-
G

et
 N

um
be

r o
f

R
et

ur
n

th
e

nu
m

be
r

o
f

A
H

=
4

B
H

A

H
=

st
at

u
s

If
 th

e
nu

m
be

r o
f h

an
dl

es
 r

et
ur

ne
d

is
 z

er
o,

 n
on

e
o

f t
he

;:;· So

E

M
M

H
an

dl
es

ac

ti
ve

 E
M

M
 h

an
dl

es
.

B
X

 =
 n

um
be

r
of

E
M

M

ex
pa

nd
ed

 m
em

or
y

is
 i

n
 u

se
. T

h
e

nu
m

be
r

of
 ac

tiv
e

EM
M

<I>

ha

nd
le

s,
 i

f A
H

 =

ha
nd

le
s

ne
ve

r
ex

ce
ed

s
25

5.

~
OO

H
~

6
A

 s
in

gl
e

pr
og

ra
m

 c
an

 m
ak

e
se

ve
ra

l a
ll

oc
at

io
n

re
qu

es
ts

r;·

~
an

d
 th

er
ef

or
e

o
w

n
 s

ev
er

al
 E

M
M

 h
an

dl
es

.
i'b

~

~
:s:

<:
;

G
et

 P
ag

es

R
et

ur
n

th
e

nu
m

be
r

A
H

=
4

C
H

A

H
 =

st
at

us

T
h

e
nu

m
be

r o
f p

ag
es

 r
et

ur
ne

d
if

 th
e

fu
nc

ti
on

 is
 s

uc
ce

ss
-

(1
)

~-
8

;:!

O
w

ne
d

by

o
f l

og
ic

al
 e

xp
an

de
d

D
X

 =
 E

M
M

 h
an

dl
e

B
X

 =
 lo

gi
ca

l p
ag

es
,

fu
l i

s
al

w
ay

s
in

 th
e

ra
ng

e
1-

51
2.

 A
n

EM
M

 h
an

dl
e

ne
ve

r
...

~
H

an
dl

e
m

em
or

y
pa

ge
s

al
lo

ca
te

d
if

A
H

=
O

O
H

ha

s
ze

ro
 p

ag
es

 o
f m

em
or

y
al

lo
ca

te
d

to
 it

.
'<

:
<I>

:s:

~

to
 a

 s
pe

ci
fi

c
ha

nd
le

.
"' ::l ~

\.
)J

• E

M
M

 F
un

ct
io

ns
 4

9H
 a

n
d

 4
A

H
 (

no
t l

is
te

d)
 w

er
e

de
fi

ne
d

in
 E

M
S

ve
rs

io
n

3.
0

an
d

 a
re

 "
re

se
rv

ed
"

in
 la

te
r E

M
S

ve
rs

io
ns

.
,~

,....

..
g

,....
..

(m
or

e)

~

ZTE (USA) 1007, Page 321

uo

.....

N
 ~

<I>
 ~ 6 ~ ~ ~

Q
. ~ I:>
.

iS'

T
ab

le
 9

-2
.

C
on

ti
nu

ed
.

F
u

n
ct

io
n

N

am
e

G
et

 P
ag

es
 fo

r
A

ll
H

an
dl

es

G
et

/S
et

P

ag
e

M
ap

A
ct

io
n

R
et

ur
n

an
 a

rr
ay

 th
at

.
co

nt
ai

ns
 a

ll
 th

e
ac

ti
ve

ha

nd
le

s
an

d
 th

e
nu

m
be

r
o

f l
og

ic
al

 e
xp

an
de

d
m

em
or

y
pa

ge
s

as
so

ci
­

at
ed

 w
it

h
ea

ch
 h

an
dl

e.

Sa
ve

 o
r s

et
 th

e
co

nt
en

ts

o
f t

h
e

EM
M

 p
ag

e­
m

ap
pi

ng
 re

gi
st

er
s

o
n

 th
e

ex
pa

nd
ed

 m
em

or
y

bo
ar

ds
.

C
al

l
W

it
h

A
H

=
4

D
H

D

I
=

 o
ff

se
t o

f a
rr

ay

to
 re

ce
iv

e
·i

nf
or

m
at

io
n

ES
 =

 a
rr

ay
 s

eg
m

en
t

A
H

=
4

E
H

A

L
=

 s
ub

fu
nc

ti
on

nu

m
be

r
D

S:
SI

 =
 a

rr
ay

ho

ld
in

g
m

ap
pi

ng

in
fo

rm
at

io
n

(S
ub

fu
nc

­
ti

on
s

01
H

,0
2H

)
E

S:
D

I
=

 a
rr

ay
 to

re

ce
iv

e
in

fo
rm

a­
ti

on
 (S

ub
fu

nc
­

ti
on

s
O

O
H

, 0
2H

)

R
e

tu
rn

s

A
H

=
st

at
u

s
B

X
 =

 n
um

be
r o

f a
ct

iv
e

E
M

M
ha

nd
le

s

If
 A

H
 =

 O
O

H
, a

rr
ay

 is

fi
ll

ed
 i

n
as

 d
es

cr
ib

ed
 in

co

m
m

en
ts

 c
ol

um
n

A
H

=
st

at
u

s
A

L
=

 b
yt

es
 in

 p
ag

e­
m

ap
pi

ng
 a

rr
ay

(S

ub
fu

nc
ti

on
 0

3H
)

A
rr

ay
 p

oi
nt

ed
 to

 b
y

E

S:
D

I
re

ce
iv

es
 m

ap
pi

ng

in
fo

rm
at

io
n

fo
r S

ub
­

fu
nc

ti
on

s
OO

H
an

d
 0

2H

C
o

m
m

en
ts

T
h

e
ar

ra
y

is
 fi

ll
ed

 in
 w

it
h

do
ub

le
w

or
d

en
tr

ie
s.

 T
h

e
fi

rs
t

w
or

d
o

f e
ac

h
en

tr
y

co
nt

ai
ns

 a
 h

an
dl

e;
 t

he
 s

ec
on

d
w

or
d

co
nt

ai
ns

 th
e

nu
m

be
r o

f p
ag

es
 a

ss
oc

ia
te

d
w

it
h

th
at

 h
an

dl
e.

T

h
e

va
lu

e
re

tu
rn

ed
 in

 B
X

 g
iv

es
 th

e
nu

m
be

r o
f v

al
id

do

ub
le

w
or

d
en

tr
ie

s
in

 th
e

ar
ra

y.

B
ec

au
se

 2
55

 is
 t

he
 m

ax
im

um
 n

um
be

r o
f E

M
M

 h
an

dl
es

,
th

e
ar

ra
y

n
ee

d
 n

ot
 b

e
la

rg
er

 th
an

 1
02

0
by

te
s.

S
ub

fu
nc

ti
on

s:

O
O

H
 =

 g
et

 m
ap

pi
ng

 re
gi

st
er

s
in

to
 a

rr
ay

O

lH
 =

 s
et

 m
ap

pi
ng

 re
gi

st
er

s
fr

om
 a

rr
ay

02

H
 =

 g
et

 a
n

d
 s

et
 m

ap
pi

ng
 re

gi
st

er
s

in
 o

n
e

op
er

at
io

n
03

H
 =

 r
et

ur
n

ne
ed

ed
 si

ze
 o

f p
ag

e-
m

ap
pi

ng
 a

rr
ay

T
hi

s
fu

nc
ti

on
 w

as
 a

dd
ed

 in
 E

M
M

 v
er

si
on

 3
.2

 a
n

d
 is

de

si
gn

ed
 to

 s
up

po
rt

 m
ul

ti
ta

sk
in

g.
 I

t s
ho

ul
d

no
t o

rd
in

ar
il

y
b

e
u

se
d

 b
y

ap
pl

ic
at

io
n

pr
og

ra
m

s.

T
h

e
co

nt
en

t o
f t

h
e

ar
ra

y
is

 h
ar

dw
ar

e
an

d
 E

M
M

 s
of

tw
ar

e
de

pe
nd

en
t.

 I
n

ad
di

ti
on

 to
 th

e
co

nt
en

ts
 o

f t
h

e
pa

ge
­

m
ap

pi
ng

 re
gi

st
er

s,
 i

t m
ay

 c
on

ta
in

 o
th

er
 in

fo
rm

at
io

n
th

at

is
 n

ec
es

sa
ry

 to
 re

st
or

e
th

e
ex

pa
nd

ed
 m

em
or

y
su

bs
ys

te
m

to

 it
s

pr
ev

io
us

 s
ta

te
.

~ ~ f Jg'

0'

.... !

ZTE (USA) 1007, Page 322

Article 9: Memory Management

Table 9-3. The Expanded Memory Manager (EMM) Error Codes.

Error Code Significance

OOH
SOH

81H
82H
83H
84H
85H
86H
87H

88H

89H
8AH

8BH
8CH
8DH

8EH

8FH

Function was successful.
Internal error in the EMM software. Possible causes include an error in the

driver itself or damage to its memory image.
Malfunction in the expanded memory hardware.
EMMisbusy.
Invalid expanded memory handle.
Function requested by the application is not supported by the EMM.
No more expanded memory handles available.
Error in save or restore of mapping context.
Allocation request specified more logical pages than are available in the

system; no pages were allocated.
Allocation request specified more logical pages than are currently avail­

able in the system (the request does not exceed the physical pages that
exist, but some are already allocated to other handles); no pages were
allocated.

Zero pages cannot be allocated.
Logical page requested for mapping is outside the range of pages assigned

to the handle.
Illegal physical page number' in mapping request (not in the range 0-3).
Save area for mapping contexts is full.
Save of mapping context failed because save area already contains a con­

text associated with the requested handle.
Restore of mapping context failed because save area does not contain a

context for the requested handle.
Subfunction parameter not defined.

An application program that uses expanded memory should regard that memory as a
system resource, such as a file or a device, and use only the documented EMM services to
allocate, access, and release expanded memory pages. Here is the general strategy that
can be used by such a program:

1. Establish the presence of the EMM by one of the two methods demonstrated in
Figures 9-6 and 9-7.

2. After the driver is known to be present, check its operational status with EMM
Function 40H.

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser­
vices the application will request are available.

4. Obtain the segment of the page frame used by the EMM with EMM Function 41H.
5. Allocate the desired number of expanded memory pages with EMM Function 43H. If

the allocation is successful, the EMM returns a handle in DX that is used by the appli­
cation to refer to the expanded memory pages it owns. This step is exactly analogous

Section II: Programming in the MS-DOS Environment 313

ZTE (USA) 1007, Page 323

Part B: Programming for MS-DOS

to opening a file and using the handle obtained from the open function for subse­
quent read/write operations on the file.

6. If the requested number of pages is not available, query the EMM for the actual num­
ber of pages available (EMM Function 42H) and determine whether the program can
continue.

7. After successfully allocating the number of expanded memory pages needed, use
EMM Function 44H to map logical pages in and out of the physical page ,frame, to store
and retrieve data in expanded memory.

8. When finished using the expanded memory pages, release them by calling EMM
Function 45H. Otherwise, the pages will not be available for use by other programs
until the system is restarted.

A program skeleton that illustrates this general approach to the use of expanded memory
is shown in Figure 9c8.

mov
int

ah,40h
67h

or ah,ah
jnz

mov
int

error

ah,46h
67h

or ah, ah
jnz
cmp
jb

mov
int

exror
al,30h
error

ah,41h
67h

or ah,ah
jnz
mov

mov
int

error
page_frame,bx

ah,42h
67h

or ah,ah
jnz
mov

mov

error
total_pages,dx
avail_pages,bx

or bx, bx
jz error

mov ah,43h

test EMM status

jump if bad status from EMM

check EMM version

jump if couldn't get version
make sure at least ver. 3.0
jump if wrong EMM version

get page frame segment

jump if failed to get frame
save segment of page frame

get no. of available pages

jump if get pages error
save total EMM pages
save available EMM pages

abort if no pages available

try to allocate EMM pages

(more)

Figure 9-8. A program skeleton for the use of expanded memory. This code assumes that the presence of the
Expanded Memory Manager has already been verified with one of the techniques shown in Figures 9-6
and9-7.

314 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 324

Article 9: Memory Management

mov bx,needed_pages

int 67h if allocation is successful
or ah,ah
jnz

· mov

mov

mov

mov
mov

int

error

elllllLhandle,dx

bx,log_page
al,phys_page

dx,elllllLhandle

ah,44h
67h

or ah,ah

jnz error

mov dx,elllllLhandle

mov ah,45h

int 67h

or ah,ah
jnz error

Figure 9-8. Continued.

jump if allocation failed

save handle for allocated pages

now we are ready for other

processing using EMM pages

map in EMM memory page ...

BX <- EMM logical page number
AL <- EMM physical page (0-3)

EMM handle for our pages

Fxn 44H = map EMM page

jump if mapping error

program ready to terminate,

give up allocated EMM pages ...
handle for our pages

EMM Fxn 45H = release pages

jump if release failed

An interrupt handler or resident driver that uses the EMM follows the same general
procedure outlined in steps 1 through 8, with a few minor variations. It may need to
acquire an EMM handle and allocate pages before the operating system is fully functional;
in particular, the MS-DOS services Open File or Device (Interrupt 21H Function 3DH),
IOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function
35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod­
ified version of the "get interrupt vector" technique to test for the existence of the EMM,
fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter­
rupt 21H Function 35H.

A device driver or interrupt handler typically owns its expanded memory pages on a
permanent basis (until the system is restarted) and never deallocates them. Such a pro­
gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H)
the EMM's page-mapping context (the EMM pages mapped into the page frame at the
time the device driver or interrupt handl~r takes control of the system) so that use of the
expanded memory by a foreground program will not be disturbed.

Section II- Programming in the MS-DOS Environment 315

ZTE (USA) 1007, Page 325

Part B: Programming for MS-DOS

The EMM relies heavily on the good behavior of application software to avoid the corrup­
tion of expanded memory. If several applications that use expanded memory are running
under a multitasking manager, such as Microsoft Windows, and one or more of those appli­
cations does not abide strictly by the EMM's conventions, the data stored in expanded
memory can be corrupted.

Extended Memory

Extended memory is that storage at addresses above 1 MB (100000H) that can be accessed
by an 80286 or 80386 microprocessor running in protected mode. IBM PC/ AT-compatible
machines can (theoretically) have as much as 15MB of extended memory installed, in
addition to the usual1 MB of conventional memory address space. Unlike expanded mem­
ory, extended memory is linearly addressable: The address of each memory cell is fixed,
so no special manager program is required.

Protected-mode operating systems, such as Microsoft XENIX and MS OS/2, can use ex­
tended memory for execution of programs. MS-DOS, on the other hand, runs in real mode
on an 80286 or 80386, and programs running under its control cannot ordinarily execute
from extended memory or even address that memory for storage of data.

To provide some access to extended memory for real-mode programs, IBM PC/AT­
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5)
that allow the amount of extended memory present to be determined (Interrupt 15H Func­
tion 88H) and that transfer blocks of data between conventional memory and extended

Table 9-4. IBM PC/AT ROM BIOS Interrupt 15H Functions for
Access to Extended Memory.

Interrupt 15H Function

Move Extended Memory Block

Obtain Size of Extended
Memory

Call With

AH=87H*
ex= length (words)
ES:SI =address of block

move descriptor
table

AH=88H

• Table 9-5 shows the descriptor table format used by Function 87H.

316 The MS-DOS Encyclopedia

Returns

Carry flag = 0 if successful
1 if error

AH =status:
OOHnoerror
01H RAM parity error
02H exception inter-

rupterror
03H gate address line

. 20 failed
AX= kilobytes of memory

installed above 1 MB

ZTE (USA) 1007, Page 326

Article 9: Memory Management

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks
(RAMdisks) and by other programs that wish to use extended memory for fast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS
Interrupt 15H Function 87H (Move Extended Memory Block).

·Bytes

00-0FH
10-11H
12-14H
15H
16-17H
18-19H
1A-1CH
1DH
1E-1FH
20-ZFH

Contents

Zero
Segment length in bytes (2• CX -1 or greater)
24-bit source address
Access rights byte (93H)
Zero
Segment length in bytes (2 * CX -1 or greater)
24-bit destination address
Access rights byte (93H)
Zero
Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used
by the CPU while it is running in protected mode; the zero bytes at offsets 0-0FH and
20-2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-
bit address is a linear address in the range 000000-FFFFFFH (not a segment and offset),
with the least significant byte first and the most significant byte last.

Programmers should use these ROM BIOS routines with caution. Data stored in extended
memory is volatile; it is lost if the machine is turned off. The transfer of data to or from
extended memory involves a switch from real mode to protected mode and back again.
This is a relatively slow process on 80286-based machines; in some cases it is only margin­
ally faster than actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com­
patibility Box of MS OS/2, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOS funCtions is that they do not make any attempt
to arbitrate between two or more programs or device drivers that are using extended
memory for temporary storage. For example, if an application program and an installed
RAMdisk driver attempt to put data in the same area of extended memory, no error is
returned to either program, but the data belonging to one or both may be destroyed.

Figure 9-9 demonstrates the use of the ROM BIOS routines to transfer a block of data from
extended memory to conventional memory.

Section 11- Programming in the MS-DOS Environment 317

ZTE (USA) 1007, Page 327

Part B: Programming for MS-DOS

bmdt db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

buff db SOh dup (0)

mov dx,10h
mov ax,O
mov bx,seg buff
mov ds,bx
mov bx,offset buff
mov cx,80h
mov si, seg bmdt

mov es,si
mov si,offset bmdt
call getblk
or ah,ah
jnz error

getblk proc near

mov es: [si+10h),cx
mov es: [si+18h),cx

block move descriptor table
dummy descriptor
GDT descriptor
source segment descriptor
destination segment descriptor
BIOS es segment descriptor

BIOS ss segment descriptor

buffer to receive data

DX:AX = source extended memory
address 100000H (1 MB)
DS:BX = destination conventional
memory address

ex = length to move (bytes)
ES:SI = block move descriptor table

get block from extended memory
test status
jump if block move failed

transfer block from extended
memory to real memory
call with
DX:AX extended memory address
DS:BX destination buffer

ex length (bytes)

ES:SI block move descriptor table

returns
AH 0 if transfer OK

store length in descriptors

store access rights bytes
mov byte ptr es: [si+15h),93h
mov byte ptr es: [si+1dh),93h

(more)

Figure 9-9. Demonstration of a block move from extended memory to conventional memory using the ROM
BIOS routine. The procedure getblk accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset of a block move descriptor table. The
extended-memory address is a linear 32-bit address, of which only the lower 24 bits are significant; the
conventional-memory address is a segment and offset. The getblk routine converts the destination segment
and offset to a linear address, builds the appropriate fields in the block move descriptor table, invokes the ROM
BIOS routine to perform the transfer, and returns the status in the AH register.

318 TheMS-DOSEncyclopedia

ZTE (USA) 1007, Page 328

mov es: [si+12h], a·x
mov es: [si+14h],dl

mov ax,ds
mov dx·, 16

mul dx
add ax,bx
adc dx,O
mov es: [si+1ah],ax
mov es: [si+1ch],dl

shr cx,1
mov ah, 87h
int 15h

ret

Figure 9-9. Continued.

Summary

Article 9: Memory Management

source (extended memory) address

destination (conv memory) address
segment* 16

+ offset -> linear address

convert length to words
Fxn 87H = block move
transfer to ROM BIOS

back to caller

Personal computers that run MS-DOS can support as many as three different types of fast,
random-access memory (RAM). Each type has specific characteristics and requires differ­
ent techniques for its management.

Conventional memory is the term used for the 1 MB of linear address space that can be ac­
cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run­
ning in real mode. MS-DOS and the programs that execute under its control run in this
address space. MS-DOS provides application programs with services to dynamically allo- ·
cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can be installed in a PC and used for electronic
disks, disk caching, and storage of application program data. The memory is made avail­
able in 16 KB pages and is administered by a driver program called the Expanded Memory
Manager, which provides allocation, mapping, deallocation, and multitasking support.

Extended memory refers to the memory at addresses above 1 MB that can be accessed by
an 80286cbased or 80386-based microprocessor running in protected mode; it is not avail­
able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended
memory can be installed; however, the ROM BIOS services to access the memory are
primitive and slow, and no manager is provided to arbitrate between multiple programs
that attempt to use the same extended memory addresses for storage.

Ray Duncan

Section II: Programming in the MS-DOS Environment 319

ZTE (USA) 1007, Page 329

ZTE (USA) 1007, Page 330ZTE (USA) 1007, Page 330

Article 10: The MS-DOS EXEC Function

Article tO
The MS-DOS EXEC Function

The MS-DOS system loader, which brings .COM or .EXE files from disk into memory and
executes them, can be invoked by any program with the MS-DOS EXEC function (Inter­
rupt 21H Function 4BH). The default MS-DOS command interpreter, COMMAND. COM,
uses the EXEC function to load and run its external commands, such as CHKDSK, as well
as other application programs. Many popular commercial programs, such as databases and 4
word processors, use EXEC to load and run subsidiary programs (spelling checkers, for
example) or to load and run a second copy of COMMAND. COM. This allows a user to run
subsidiary programs or enter MS-DOS commands without losing his or her current
working context.

When EXEC is used by one program (called the parent) to load and run another (called
the child), the parent can pass certain information to the child in the form of a set of strings
called the environment, a command line, and two file control blocks. The child program
also inherits the parent program's handles for the MS-DOS standard devices and for any
other files or character devices the parent has opened (unless the open operation was per­
foimed with the "noninheritance" option). Any operations performed by the child on
inherited handles, such as seeks or file I/0, also affect the file pointers associated with the
parent's handles. A child program can, in turn, load another program, and the cycle can be
repeated until the system's memory area is exhausted.

Because MS-DOS is not a multitasking operating system, a child program has complete
control of the system until it has finished its work; the parent program is suspended. This
type of processing is sometimes called synchronous execution. When the child termi­
nates, the parent regains control and can use another system function call (Interrupt 21H
Function 4DH) to obtain the child's return code and determine whether the program ter­
minated normally, because of a critical hardware error, or because the user entered a
Control-C.

In addition to loading a child program, EXEC can also be used to load subprograms and
overlays for application programs written in assembly language or in a high-level language
that does not include an overlay manager in its run-time library. Such overlays typically
cannot be run as self-contained programs; most require "helper" routines or data in the
application's root segment.

The EXEC function is available only with MS-DOS versions 2.0 and later. With MS-DOS
versions l.x, a parent program can use Interrupt 21H Function 26H to create a program
segment prefix for a child but must carry out the loading, relocation, and execution of the
child's code and data itself, without any assistance from the operating system.

Section II: Programming in the MS-DOS Environment 321

ZTE (USA) 1007, Page 331

Part B: Programming for MS-DOS

How EXEC Works

When the EXEC function receives a request to execute a program, it first attempts to locate
and open the specified program file. If the file cannot be found, EXEC fails immediately
and returns an error code to the caller.

If the file exists, EXEC opens the file, determines its size, and inspects the first block of the
file. If the first 2 bytes of the block are the ASCII characters MZ, the file is assumed to con­
tain a .EXE load module, and the sizes of the program's code, data, and stack segments are
obtained from the .EXE file header. Otherwise, the entire file is assumed to be an absolute
load image (a .COM program). The actual filename extension (.COM or .EXE) is ignored
in this determination.

At this point, the amount of memory needed to load the program is known, so EXEC
attempts to allocate two blocks of memory: one to hold the new program's environment
and one to contain the program's code, data, and stack segments. Assuming that enough
memory is available to hold the program itself, the amount actually allocated to the pro­
gram varies with its type. Programs of the .COM type are usually given all the free mem­
ory in the system (unless the memory area has previously become fragmented), whereas
the amount assigned to a .EXE program is controlled by two fields in the file header,
MINALLOC and MAXALLOC, that are set by the Microsoft Object Linker (LINK). See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Structure
of an Application Program; PRoGRAMMING ToOLs: The Microsoft Object Linker; PROGRAM­
MING UTILITIES: LINK.

EXEC then copies the environment from the parent into the memory allocated for child's
environment, builds a program segment prefix (PSP) at the base of the child's program
memory block, and copies into the child's PSP the command tail and the two default file
control blocks passed by the parent. The previous contents of the terminate (Interrupt
22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors are saved in the
new PSP, and the terminate vector is updated so that control will return to the parent
program when the child terminates or is aborted.

The actual code and data portions of the child program are then read from the disk file
into the program memory block above the newly constructed PSP. If the child is a .EXE
program, a relocation table in the file header is used to fix up segment references within
the program to reflect its actual load address.

Finally, the EXEC function sets up the CPU registers and stack according to the program
type and transfers control to the program. The entry point for a .COM file is always offset
lOOH within the program memory block (the first byte following the PSP). The entry point
for a .EXE file is specified in the file header and can be anywhere within the program. See
also PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos:
Structure of an Application Program.

When EXEC is used to load and execute an overlay rather than a child program, its opera­
tion is much simpler than described above. For an overlay, EXEC does not attempt to allo­
cate memory or build a PSP or environment. It simply loads the contents of the file at the

322 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 332

Article 10: The MS-DOS EXEC Function

address specified by the calling program and performs any necessary relocations (if the
· overlay file has a .EXE header), using a segment value that is also supplied by the caller.
EXEC then returns to the program that invoked it, rather than transferring control to the
code in the newly loaded file. The requesting program is responsible for calling the
overlay at the appropriate location .

. Using EXEC to Load a Program

When one program loads and executes another, it must follow these steps:

1. Ensure that enough free memory is available to hold the code, data, and stack of the
child program.

2. Set up the information to be passed to EXEC and the child program.
3. Call the MS-DOS EXEC function to run the child program.
4. Recover and examine the child program's termination and return codes.

Making memory available

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is
loaded. (The infrequent exceptions to this rule occur when the transient program area
is fragmented by the presence of resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.)
Therefore, before a program can load another program, it must free any memory it does
not need for its own code, data, and stack.

The extra memory is released with a call to the MS-DOS Resize Memory Block function
(Interrupt 21H Function 4AH). In this case, the segment address of the parent's PSP is
passed in the ES register, and the BX register holds the number of paragraphs of memory
the program must retain for its own use. If the prospective parent is a .COM program, it
must be certain to move its stack to a safe area if it is reducing its memory allocation to less
than 64 KB.

Preparing parameters for EXEC

When used to load and execute a program, the EXEC function must be supplied with two
principal parameters:

• The address of the child program's pathname
• The address of a parameter block

The parameter block, in turn, contains the addresses of information to be passed to the
child program.

The program name

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program; if a dtive..specifier is not present, the default drive is used.

Section II: Programming in the MS-DOS Environment 323

ZTE (USA) 1007, Page 333

Part B: Programming for MS-DOS

The parameter block

The parameter block contains the addresses of four data items (Figure 10-1):

• The environment block
• The command tail
• The two default file control blocks (FCBs)

The position reserved in the parameter block for the pointer to an environment is only
2 bytes and contains a segment address, because an environment is always paragraph
aligned (its address is always evenly divisible by 16); a value of OOOOH indicates the parent
program's environment should be inherited unchanged. The remaining three addresses
are all doubleword addresses in the standard Intel format, with an offset value in the lower
word and a segment value in the upper word.

To Call

AH
AL

DS:DX
ES:BX

Returns

=4BH
= OOH load and execute child process

03H load overlay
= segment: offset of ASCI!Z pathname for an executable program file
= segment:offset of parameter block

If function is successful:
Carry flag is clear.
Other registers are preserved if MS-DOS version 3.0 or later, destroyed if MS-DOS
versions 2.x.

If function is not successful:
Carry flag is set.

AX = error code

Parameter Block Format

Offset Contents

If AL = OOH (load and execute program):

OOH Segment pointer of the environment to be passed
02H Offset of command-line tail for the new PSP
04H Segment of command-line tail for the new PSP
06H Offset of first file control.block, to be copied into new PSP at offset 5CH
08H Segment of first file control block
OAH Offset of second file control block, to be copied into new PSP at offset 6CH
OCH Segment of second file control block

If AL = 03H (load overlay):

OOH Segment address where overlay is to be loaded
02H Relocation factor to apply to loaded image

Figure 10-1. Synopsis of calling conventions for the MS-DOS EXEC junction (Interrupt 21H Function 4BH),
which can be used to load and execute child processes or overlays.

324 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 334

Article 10: The MS-DOS EXEC Function

The environment
An environment always begins on a paragraph boundary and is composed of a series of
null-terminated (ASCIIZ) strings of the form:

name=variable

The end of the entire set of strings is indicated by an additional null byte.

If the environment pointer in the parameter block supplied to an EXEC call contains zero,
the child simply acquires a copy of the parent's environment. The parent can, however,
provide a segment pointer to a different or expanded set of strings. In either case, under
MS-DOS versions 3.0 and later, EXEC appends the child program's fully qualified path­
name to its environment block. The maximum size of an environment is 32 KB, so very
large amounts of information can be passed between programs by this mechanism.

The original, or master, environment for the system is owned by the command processor
that is loaded when the system is turned on or restarted (usually COMMAND. COM).
Strings are placed in the system's master environment by COMMAND. COM as a result of
PATH, SHELL, PROMPT, and SET commands, with default values always present for the
first two. For example, if an MS-DOS version 3.2 system is started from drive C and a PATH
command is not present in the AUTO EXEC. BAT file nor a SHELL command in the
CONFIG.SYS file, the master environment will contain the two strings:

PATH=
COMSPEC=C:\COMMAND.COM

These specifications are used by COMMAND. COM to search for executable "external"
commands and to find its own executable file on the disk so that it can reload its transient
portion when necessary. When the PROMPT string is present (as a result of a previous
PROMPT or SET PROMPT command), COMMAND.COM uses it to tailor the prompt dis­
played to the user.

0 2 3 4 5 6 7 8 9 A B c D E F 0123456789ABCDEF

0000 43 4F 4D 53 50 45 43 3D 43 3A SC 43 4F 4D 4D 41 COMSPEC=C:\COMMA
0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=$p
0020 24 SF 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d thhh$
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT

0040 48 3D 43 3A SC 53 59 53 54 45 4D 3B 43 3A SC 41 H=C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A sc 57 53 3B 43 3A SC 45 54 48 45 SM;C:\WS;C:\ETHE
0060 52 4E 45 54 3B 43 3A sc 46 4F 52 54 48 sc 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A SC 46 4F 52 54 48 sc 31; C:\FORTH\
0080 50 43 33 31 sc 46 4F 52 54 48 2E 43 4F 4D 00 PC31\FORTH.COM.

Figure 10-2. Dump of a typical environment under MS-DOS version 3.2. This particular example contains
the default COM SPEC parameter and two relatively complex PATH and PROMPT control strings that were set
up by entries in the user's AUTOEXECfile. Note the two null bytes at offset 73H, which indicate the end of the
environment. These bytes are followed by the pathname of the program that owns the environment.

Section Il· Programming in the MS-DOS Environment 325

ZTE (USA) 1007, Page 335

Part B: Programming for MS-DOS

Other strings in the environment are used only for informational purposes by transient
programs and do not affect the operation of the operating system proper. For example,
the Microsoft C Compiler and the Microsoft Object Linker look in the environment for
INCLUDE, LIB, and TMP strings that specify the location of include files, library files, and
temporary working files. Figure 10-2 contains a hex dump of a typical environment block.

The command tall
The command tail to be passed to the child program takes the form of a byte indicating
the length of the remainder of the command tail, followed by a string of ASCII characters
terminated with an ASCII carriage return (ODH); the carriage return is not included in the
length byte. The command tail can include switches, filenames, and other parameters that
can be inspected by the child program and used to influence its operation. It is copied
into the child program's PSP at offset SOH.

When COMMAND. COM uses EXEC to run a program, it passes a command tail that
includes everything the user typed in the command line except the name of the program
and any redirection parameters. 1/0 redirection is processed within COMMAND. COM
itself and is manifest in the behavior of the standard device handles that are inherited
by the child program. Any other program that uses EXEC to run a child program must try
to perform any necessary redirection on its own and must supply an appropriate com­
mand tail so that the child program will behave as though it had been loaded by
COMMAND. COM.

The default file control blocks
The two default FCBs pointed to by the EXEC parameter block are copied into the child
program's PSP at offsets 5CH and 6CH. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PRoGRAMMING FOR Ms-oos: File and Record Management.

Few of the currently popular application programs use FCBs for·file and record 1/0
because FCBs do not support the hierarchical directory structure. But some programs do
inspect the default FCBs as a quick way to isolate the first two switches or other parame­
ters from the command tail. Therefore, to make its own identity transparent to the child
program, the parent should emulate the action of COMMAND. COM by parsing the first
two parameters of the command tail into the default FCBs. This can be conveniently ac­
complished with the MS-DOS function Parse Filename (Interrupt 21H Function 29H).

If the child program does not require one or both of the default FCBs, the corresponding
address in the parameter block can be initialized to point to two dummy FCBs in the appli­
cation's memory space. These dummy FCBs should consist of 1 zero byte followed by 11
bytes containing ASCII blank characters (20H).

326 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 336

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters, it can invoke the
EXEC function by issuing Interrupt 21H with the registers set as follows:

AH
AL
DS:DX
ES:BX

=4BH
= OOH (EXEC subfunction to load and execute program)
= segment: offset of program pathname
= segment: offset of parameter block

Upon return from the software interrupt, the parent must test the carry flag to determine
whether the child program did, in fact, run. If the carry flag is clear, the child program was
successfully loaded and given control. If the carry flag is set, the EXEC function failed, and
the error code returned in AX can be examined to determine why. The usual reasons are

• The specified file could not be found.
• The file was found, but not enough memory was free to load it.

Other causes are uncommon and can be symptoms of more severe problems in the
system as a whole (such as damage to disk files or to the memory image of MS-DOS). With
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can
be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In gener.al, supplying either an invalid address for an EXEC parameter block or invalid
addresses within the parameter block itself does not cause a failure of the EXEC function,
but may result in the child program behaving in unexpected ways.

Special considerations

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP
can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently,
before issuing the EXEC call, the parent must push onto the stack the contents of any regis­
ters that it needs to preserve, and then it must save the stack segment and offset in a loca­
tion that is addressable with the CS segment register. Upon return, the stack segment and
offset can be loaded into SS:SP with code segment overrides, and then the other registers
can be restored by popping them off the stack. With MS-DOS versions 3.0 and later, regis­
ters are preserved across an EXEC call in the usual fashion.

Note: The code segments of Windows applications that use this technique should be
given the IMPURE attribute.

In addition, a bug in MS-DOS version 2.0 and in PC-DOS versions 2.0 and 2.1 causes an
arbitrary doubleword in the parent's stack segment to be destroyed during an EXEC call.
When the parent is a .COM program and SS = PSP, the damaged location falls within the
PSP and does no harm; however, in the case of a .EXE parent where DS = SS, the affected
location may overlap the data segment aqd cause aberrant behavior or even a crash after
the return from EXEC. This bug was fixed in MS-DOS versions 2.11 and later and in
PC-DOS versions 3.0 and later.

Section /1- Programming in the MS-DOS Environment 327

ZTE (USA) 1007, Page 337

Part B: Programming for MS-DOS

Examining the child program's return codes

If the EXEC function succeeds, the parent program can call Interrupt 21H Function 4DH
(Get Return Code of Child Process) to learn whether the child executed normally to com­
pletion and passed back a return code or was terminated by the operating system because
of an external event. Function 4DH returns·

AH = termination type:
OOH Child terminated normally (that is, exited via Interrupt 20H or Interrupt

21H Function OOH or Function 4CH).
OlH Child was terminated by user's entry of a Ctrl-C.
02H Child was terminated by critical error handler (either the user responded

with A to the Abort, Retry, Ignore prompt from the system's default Inter­
rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS
with action code = 02H in register AL).

03H Child terminated normally and stayed resident (that is, exited via Interrupt
21H Function 31H or Interrupt 27H).

AL = return code:
Value passed by the child program in register AL when it terminated with Interrupt
21H Function 4CH or 31H.
OOH if the child terminated using Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function OOH.

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse­
quent call to Function 4DH, without an intervening EXEC call, does not necessarily return
any useful information. Additionally, if Function 4DH is called without a preceding suc­
cessful EXEC call, the returned values are meaningless.

Using COMMAND.COM with EXEC

An application program can "shell" to MS-DOS- that is, provide the user with an MS-DOS
prompt without terminating- by using EXEC to load and execute a secondary copy of
COMMAND. COM with an empty command tail. The application can obtain the location of
the COMMAND. COM disk file by inspecting its own environment for the COMSPEC string.
The user returns to the application from the secondary command processor by typing exit
at the COMMAND.COM prompt.

Batch-file interpretation is carried out by COMMAND. COM, and a batch (.BAT) file can­
not be called using the EXEC function directly. Similarly, the sequential search for .COM,
.EXE, and .BAT files in all the locations specified in the environment's PATH variable is a
function of COMMAND. COM, rather than of EXEC. To execute a batch file or search the
system path for a program, an application program can use EXEC to load and execute a
secondary copy of COMMAND.COM to use as an intermediary. The application finds the
location of COMMAND. COM as described in the preceding paragraph, but it passes a
command tail in the form:

!C program parameter1 parameter2 ...

328 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 338

I

Article 10: The MS-DOS EXEC Function

where program is the .EXE, .COM, or .BAT file to be executed. When program termi­
nates, the secondary copy of COMMAND. COM exits and returns control to the parent.

A parent and child example

The source programs PARENT.ASM in Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate
how one program uses EXEC to load another.

name

title

parent

'PARENT demonstrate EXEC call'

PARENT.EXE --- demonstration of EXEC to run process

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction OOH)

to load and execute a child process named CHILD.EXE,

then displays CHILD's return code.

Ray Duncan, June 1987

stdin equ 0 standard input

stdout equ 1 standard output

stderr equ 2 standard error

stksize equ 128 size of stack

cr equ Odh ASCII carriage return

lf equ Oah ASCII line feed

DGROUP group _DATA,_ENVIR,_STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:-DATA,ss:_STACK

stk_seg dw original ss contents

stk_ptr dw ? original SP contents

main proc far entry point from MS-DOS

mov ax,-DATA set DS our data segment

mov ds,ax

now give back extra memory
so child has somewhere to run ...

Figure 10-3. PARENT.ASM, source code for PARENT.EXE. (more)

Section II: Programming in the MS-DOS Environment 32Q

ZTE (USA) 1007, Page 339

Part B: Programming for MS-DOS

mov ax,es
mov bx,ss
sub bx,ax
add bx,stksize/16
mov ah,4ah
int 21h
jc main1

mov dx,offset DGROUP:msg1
mov cx,msg1_len
call pmsg

push ds
mov stk_seg,ss
mov stk_ptr,sp

mov ax,ds
mov es,ax
mov dx,:>ffset DGROUP:cname
mov bx,offset DGROUP:pars
mov ax,4b00h
int 21h

eli
mov ss,stk_seg
mov sp,stk_ptr
sti
pop ds

jc main2

mov ah,4dh
int 21h
xchg al,ah
mov bx,offset DGROUP:msg4a
call b2hex
mov al,ah
mov bx,offset DGROUP:msg4b
call b2hex
mov dx,offset DGROUP:msg4
mov cx,msg4_len
call pmsg

mov ax,4c00h
int 21h

Figure 10-3. Continued.

330 The MS-DOS Encyclopedia

let AX = segment of PSP base
and BX = segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack
fxn 4AH = modify memory block

display parent message ...
DS:DX = address of message
ex = length of message

save parent's data segment
save parent's stack pointer

now EXEC the child process ...
set ES DS

DS:DX = child pathname
ES:BX = parameter block
function 4BH subfunction OOH
transfer to MS-DOS

(for bug in some early 8088s)
restore parent's stack pointer

(for bug in some early 8088s)
restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded,
convert and display child's
termination and return codes ...
fxn 4DH = get return code
transfer to MS-DOS
convert termination code

get back return code
and convert it

DS:DX = address of message
ex = length of message
display it

no error, terminate program
with return code = 0

(more)

ZTE (USA) 1007, Page 340

main1: mov

call
mov

mov

call

jmp

main2: mov

call

mov

mov

call

main3: mov

int

main endp

b2hex proc

push

shr
shr

shr
shr

call
mov

pop

and

call
mov

ret

b2hex endp

ascii proc

add
cmp

jle

add

ascii2: ret

ascii endp

pmsg proc

bx,offset DGROUP:msg2a

b2hex
dx,offset DGROUP:msg2
cx,msg2_len

pmsg
main3

bx,offset DGROUP:msg3a

b2hex

dx,offset DGROUP:msg3
cx,msg3_len

pmsg

ax,4c01h

21h

near

ax
al, 1

al, 1

al, 1
al, 1

ascii
[bx) ,al

ax
al,Ofh

ascii

[bx+1) ,al

near
al, '0'
al, '9'
ascii2

al' 'A'-' 9 '-1

near

Article 10: The MS-DOS EXEC Function

convert error code

display message 'Memory
resize failed ... '

convert error code

display message 'EXEC

call failed ... '

error, terminate program

with return code = 1

end of main procedure

convert byte to hex ASCII
call with AL binary value

BX addr to store string

become first ASCII character

store it

isolate lower 4 bits, which

become the second ASCII character

store it

convert value 00-0FH in AL
into a "hex ASCII" character

jump if in range 00-09H,

offset it to range OA-OFH,

return ASCII char. in AL

displays message on standard output

call with DS:DX address,
ex length

Figure 10-3. Continued. (more)

Section II: Programming in the MS-DOS Environment 331

ZTE (USA) 1007, Page 341

Part B: Programming for MS-DOS

mov

mov

int

ret

pmsg endp

_TEXT ends

_J)ATA segment

en arne db

pars dw

dd

dd

dd

tail db
db

fcb1 db

db
db

fcb2 db

db

db

msg1 db
msg1_len equ

msg2 db
msg2a db
msg2_len equ

msg3 db

msg3a db

msg3_len equ

msg4 db
db

msg4a db
msg4b db
msg4_len equ

_J)ATA ends

bx,stdout

ah,40h

21h

para public 'DATA'

'CHILD.EXE',O

_ENVIR

tail
fcb1

fcb2

fcb1-tail-2
'dummy command

0
11 dup (' ')

25 dup (0)

0

11 dup (' ')

25 dup (0)

tail', cr

BX = standard output handle
function 40H = write file/device

transfer to MS-DOS
back to caller

static & variable data segment

pathname of child process

segment of environment block
long address, command tail

long address, default FCB #1

long address, default FCB #2

command tail for child

copied into default FCB #1 in

child's program segment prefix

copied into default FCB #2 in

child's program segment prefix

cr,lf, 'Parent executing! ',cr,lf
$-msg1

cr,lf, 'Memory resize failed, error code='
'xxh.',cr,lf
$-msg2

cr,lf, 'EXEC call failed, error code='
'xxh.',cr,lf
$-msg3

cr,lf, 'Parent regained control!'

cr,lf, 'Child termination type='

'xxh, return code='

'xxh.',cr,lf
$-msg4

J:NVIR segment para public 'DATA' example environment block

to be passed to child

Figure 10-3. Continued.

332 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 342

db
db

'PATH=', 0
'PROMPT=p_ng',O

Article 10: The MS-DOS EXEC Function

; basic PATH, PROMPT,
; and COMSPEC strings

db 'COMSPEC=C:\COMMANO.COM',O

db 0 ; extra null terminates block

_ENVIR ends

_STACK segment para stack 'STACK'

db stksize dup (?)

_STACK ends

end main
Figure 10-3. Continued.

name
title

child
'CHILD process'

defines program entry point

CHILD.EXE --- a simple process loaded by PARENT.EXE
to demonstrate the MS-DOS EXEC call, Subfunction DOH.

Ray Duncan, June 1987

stdin equ 0

stdout equ 1

stderr equ 2

cr equ Odh

lf equ Oah

DGROUP group _DATA, STACK

_TEXT segment byte public 'CODE'

standard input
standard output
standard error

ASCII carriage return
ASCII linefeed

; executable code segment

assume cs:_TEXT,ds:-DATA,ss:STACK

main proc far entry point from MS-DOS

mov ax,-DATA set OS our data segment

mov ds, ax

; display child message ...

Figure 10-4. CHIID.ASM, source code for CHIID.EXE. (more)

Section II: Programming in the MS-DOS Environment 333

ZTE (USA) 1007, Page 343

Part B: Programming for MS-DOS

mov dx,offset msg

mov cx,msg_len

mov bx, stdout

mov ah,40h

int 21h

jc main2

mov ax,4c00h

int 21h

ma.in2: mov ax,4c01h

int 21h

main endp

_TEXT ends

_DATA segment para public 'DATA'

DS:DX = address of message

ex length of message
BX = standard output handle
AH = fxn 40H, write file/device

transfer to MS-DOS
jump if any error

no error, terminate child
with return code = 0

error, terminate child
with return code = 1

end of main procedure

; static & variable data segment

msg db cr,lf, 'Child executing! ',cr,lf
msg_len equ $-msg

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main defines program entry point

Figure 10-4. Continued.

PARENT.ASM can be assembled and linked into the executable program PARENT.EXE
with the following commands:

C>MASM PARENT; <Enter>

C>LINK PARENT; <Enter>

Similarly, CHILD.ASM can be assembled and linked into the file CHILD.EXE as follows:

C>MASM CHILD; <Enter>

C>LINK CHILD; <Enter>

When PARENT.EXE is executed with the command

C>PARENT <Enter>

334 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 344

Article 10: The MS-DOS EXEC Function

PARENT reduces the size of its main memory block with a call to Interrupt 21H Function
4AH, to maximize the amount of free memory in the system, and then calls the EXEC func­
tion to load and execute CHILD.EXE.

CHILD.EXE runs exactly as though it had been loaded directly by COMMAND. COM.
CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H
Function 40H to display a message on standard output, and then terminates using Interrupt
21H Function 4CH, passing a return code of zero.

When PARENT.EXE regains control, it first checks the carry flag to determine whether
the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and
terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to
COMMAND. COM to indicate an error.

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE's termination
type and return code, which it converts to ASCII and displays. PARENT then terminates
using Interrupt 21H Function 4CH and passes a return code of zero to COMMAND. COM
to indicate success. COMMAND. COM in turn receives control and displays a new user
prompt.

Using EXEC to Load Overlays

Loading overlays with the EXEC function is much less complex than using EXEC to run
another program. The main program, called the root segment, must carry out the follow­
ing steps to load and execute an overlay:

1. Make a memory block available to receive the overlay.
2. Set up the overlay parameter block to be passed to the EXEC function.
3. Call the EXEC function to load the overlay.
4. Execute the code within the overlay by transferring to it with a far call.

The overlay itself can be constructed as either a memory image (.COM) or a relocatable
(.EXE) file and need not be the same type as the root program. In either case, the overlay
should be designed so that the entry point (or a pointer to the entry point) is at the begin­
ning of the module after it is loaded. This allows the root and overlay modules to be main­
tained separately and avoids a need for the root to have "magical" knowledge of addresses
within the overlay.

To prevent users from inadvertently running an overlay directly from the command line,
overlay files should be assigned an extension other than .COM or .EXE. The most conve­
nient method relates overlays to their root segment by assigning them the same filename
but an extension such as .OVL or .OVl, .OV2, and so on.

Making memory available
If EXEC is to load a child program successfully, the parent must release memory. In
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the

Section II: Programming in the MS-DOS Environment 335

ZTE (USA) 1007, Page 345

Part B: Programming for MS-DOS

root segment is a .COM program and has not explicitly released extra memory, the root
segment program need only ensure that the system contains enough memory to load the
overlay and that the overlay load address does not conflict with its own code, data, or
stack areas.

If the root segment program was loaded from a .EXE file, no straightforward way exists
for it to determine unequivocally how much memory it already owns. The simplest course
is for the program to release all extra memory, as discussed earlier in the section on load­
ing a child program, and then use the MS-DOS memory allocation function (Interrupt 21H
Function 48H) to obtain a new block of memory that is large enough to hold the overlay.

Preparing overlay parameters

When it is used to load an overlay, the EXEC function requires two major parameters:

• The address of the pathname for the overlay file
• The address of an overlay parameter block

As for a child program, the pathname for the overlay file must be an unambiguous ASCIIZ
file specification (again, no wildcard characters), and it must include an explicit extension.
As before, if a path and/or drive are not included in the pathname, the current directory
and default drive are used.

The overlay parameter block contains the segment address at which the overlay should be
loaded and a fixup value to be applied to any relocatable items within the overlay file. If
the overlay file is in .EXE format, the fixup value is typically the same as the load address; if
the overlay is in memory-image (.COM) format, the fixup value should be zero. The EXEC
function does not attempt to validate the load address or the fixup value or to ensure that
the load address actually belongs to the calling program.

Loading and executing the overlay

After the root segment program has prepared the filename of the overlay file and the
overlay parameter block, it can invoke the EXEC function to load the overlay by issuing an
Interrupt 21H with the registers set as follows:

AH
AL
DS:DX
ES:BX

=4BH
= 03H (EXEC subfunction to load overlay)
= segment:offset of overlay file pathname
= segment: offset of overlay parameter block

Upon return from Interrupt 21H, the root segment must test the carry flag to determine
whether the overlay was loaded. If the carry flag is clear, the overlay file was located and
brought into memory at the requested address. The overlay can then be entered by a far
call and should exit back to the root segment with a far return.

If the carry flag is set, the overlay file was not found or some other (probably severe) sys­
tem problem was encountered, and the AX register contains an error code. With MS-DOS

336 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 346

Article 10: The MS-DOS EXEC Function

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information
about the EXEC failure. An invalid load address supplied in the overlay parameter block
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting
message Memory Allocation Error, System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figure 10-5 and OVERLAY.ASM in Figure 10-6 demon­
strate the use of EXEC to load a program overlay. The program ROOT.EXE is executable
from the MS-DOS prompt; it represents the root segment of an application. OVERLAY is
constructed as a .EXE file (although it is named OVERLAY.OVL because it cannot be run
alone) and represents a subprogram that can be loaded by the root segment when and
if it is needed.

name root

title 'ROOT demonstrate EXEC overlay'

ROOT.EXE --- demonstration of EXEC for overlays

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 03H)

to load an overlay named OVERLAY.OVL, calls a routine

within the OVERLAY, then recovers control and terminates.

Ray Duncan, June 1987.

stdin equ 0

stdout equ

stderr equ 2

stksize equ 128

cr equ Odh

lf equ Oah

DGROUP group _DATA,_STACK

_TEXT segment byte public 'CODE'

standard input

standard output

standard error

size of stack

ASCII carriage return

ASCII linefeed

; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw

stk_ptr dw
?

?

original SS contents
original SP contents

Figure 10-5. ROOT.ASM, source code for ROOT.EXE. . (more)

Section II: Programming in the MS-DOS Environment 337 .

ZTE (USA) 1007, Page 347

Part B: Programming for MS-DOS

main proc far

mov ax,_DATA

mov ds,ax

mov ax,es
mov bx,ss

sub bx,ax
add bx,stksize/16

mov ah,4ah

int 21h

jc main1

mov dx,offset DGROUP:msg1

mov cx,msg1_len

call pmsg

mov bx,1000h

mov ah,48h

int 21h

jc main2

mov pars,ax

mov pars+2,ax

mov word ptr entry+2,ax

push ds

mov stk_seg,ss

mov stk_ptr,sp

mov ax,ds

mov es,ax
mov dx,offset DGROUP:oname

mov bx,offset DGROUP:pars

mov ax,4b03h

int 21h

eli

mov ss,stk_seg

mov sp,stk_ptr

sti

pop ds

jc main3

Figure 10-5. Continued.

338 The MS-DOS Encyclopedia

entry point from MS-DOS

set DS our data segment

now give back extra memory
AX = segment of PSP base

BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack

fxn 4AH = modify memory block

transfer to MS-DOS

jump if resize failed

display message 'Root

segment executing ... '
DS:DX = address of message

ex = length of message

allocate memory for overlay
get 64 KB (4096 paragraphs)

fxn 48H, allocate mem block

transfer to MS-DOS
jump if allocation failed

set load address for overlay

set relocation segment for overlay

set segment of entry point

save root's data segment

save root's stack pointer

now use EXEC to load overlay

set ES = DS

DS:DX = overlay pathname

ES:BX =parameter block

function 4BH, subfunction 03H

transfer to MS-DOS

(for bug in some early 8088s)

restore root's stack pointer

(for bug in some early 8088s)

restore OS = our data segment

jum~ if EXEC failed

otherwise EXEC succeeded ...

(more)

ZTE (USA) 1007, Page 348

main1:

main2:

main3:

main4:

main

b2hex

push

call
pop

mov

mov

call

mov
int

mov

call

mov

mov

call
jmp

mov

call

mov
mov

call

jmp

mov
call

mov

mov

call

mov

int

endp

proc

IJUSh
shr

shr

shr

shr

call
mov

pop

ds

dword ptr entry

ds

dx,offset DGROUP:msgS
cx,msgS_len

pmsg

ax,4c00h

21h

bx,offset DGROUP:msg2a

b2hex

dx,offset DGROUP:msg2
cx,msg2_len

pmsg

main4

bx,offset DGROUP:msg3a

b2hex

dx,offset DGROUP:msg3
cx,msg3_len

pmsg

main4

bx,offset DGROUP:msg4a

b2hex
dx,offset DGROUP:msg4
cx,msg4_len

pmsg

ax,4c01h

21h

near

ax

al, 1

al, 1

al, 1

al, 1

ascii

[bx],al

ax

Article 10: The MS-DOS EXEC Function

save our data segment
now call the overlay

restore our data segment

display message that root
segment regained control ...

DS:DX = address of message
ex = length of message

display it

no error, terminate program

with return code = 0

convert error code

display message 'Memory

resize failed ... '

convert error code

display message 'Memory

allocation failed ... '

convert error code

display message 'EXEC

call failed ... '

error, terminate program

with return code. = 1

end of main procedure

convert byte to hex ASCII

call with AL = binary value

BX = addr to store string

become first ASCII character

store it

Figure 10-5. Continued. (more)

Section 11- Programming in the MS-DOS Environment 339

ZTE (USA) 1007, Page 349

Part B: Programming for MS-DOS

and
call

mov

ret

b2hex endp

ascii proc

add

cmp

jle
add

ascii2: ret
ascii endp

pmsg proc

mov

mov
int

ret

pmsg endp

_TEXT ends

_DATA segment

on arne db

pars dw

dw

entry dd

msg1 db
msg1_len equ

msg2 db

msg2a db
msg2_len equ

msg3 db

msg3a db
msg3_len equ

al,Ofh

ascii
[bx+1],al

near
al, I 0 I

al, '9'
ascii2
al, 'A'-'9'-1

near

bx,stdout

ah,40h

21h

para public 'DATA'

'OVERLAY.OVL',O

0

0

0

isolate lower 4 bits, which

become the second ASCII character

store it

convert value 00-0FH in AL

into a "hex ASCII" character

jump if in range 00-09H,

offset it to range OA-OFH,

return ASCII char. in AL.

displays message on standard output

call with DS:DX address,
ex length

BX = standard output handle

function 40H = write file/device

transfer to MS-DOS

back to caller

static & variable da·ta segment

pathname of overlay file

load address (segment) for file

relocation (segment) for file

entry point for overlay

cr,lf, 'Root segment executing! ',cr,lf

$-msg1

cr,lf, 'Memory resize failed, error code='

'xxh. ',cr,lf
$-msg2

cr,lf, 'Memory allocation failed, error code='

'xxh.',cr,lf
$-msg3

Figure 10-5. Continued.

340 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 350

Article 10: The MS-DOS EXEC Function

msg4
·msg4a

db

db
msg4_len equ

msg5 db
msgS_len equ

_DATA ends

cr,lf, 'EXEC call failed, error code='
'xxh.',cr,lf
$-msg4

cr,lf, 'Root segment regained control! ',cr,lf
$-msg5

_STACK segment para stack 'STACK'

db stksize dup (?)

_STACK ends

end main defines program entry point

Figure 10-5. Continued.

name

title

overlay

'OVERLAY segment'

OVERLAY.OVL ---a simple overlay segment

loaded by ROOT.EXE to demonstrate use of

the MS-DOS EXEC call Subfunction 03H.

The overlay does not contain a STACK segment

because it uses the ROOT segment's stack.

Ray Duncan, June 1987

stdin equ 0 standard
stdout equ 1 standard

stderr equ 2 standard

input

output

error

cr equ Odh ASCII carriage
lf equ Oah ASCII line feed

return

_TEXT segment byte public 'CODE' executable code segment

assume cs:_TEXT,ds:_DATA

ovlay proc far entry point from root segment

mov ax,_DATA set DS local data segment
mov ds,ax

Figure 10-6. OVERLAY.ASM, sourcecodeforOVERLAY.OVL. (more)

Section 11· Programming in the MS-DOS Environment 341

ZTE (USA) 1007, Page 351

Part B: Programming for MS-DOS

mov dx,offset msg
mov cx,msg_len

mov bx,stdout
mov ah,40h
int 21h

ret

ovlay endp

_TEXT ends

_])ATA segment para public 'DATA'

display overlay message ...
DS:DX = address of message
ex = length of message
BX = standard output handle
AH = fxn 40H, write file/device
transfer to MS-DOS

return to root segment

end of ovlay procedure

; static & variable data segment

msg db
msg_len equ

cr,lf, 'Overlay executing! ',cr,lf
$-msg

_J)ATA ends

end

Figure 10-6. Continued.

ROOT.ASM can be assembled and linked into the executable program ROOT.EXE with the
following commands:

C>MASM ROOT; <Enter>
C>LINK ROOT; <Enter>

OVERLAY.ASM can be assembled and linked into the file OVERLAY.OVL by typing

C>MAsM OVERLAY; <Enter>
C>LINK OVERLAY,OVERLAY.OVL; <Enter>

The Microsoft Object Linker will display the message

Warning: no stack segment

but this message can be ignored.

When ROOT.EXE is executed with the command

C>ROOT <Enter>

it first shrinks its main memory block with a call to Interrupt 21H Function 4AH and then
allocates a separate block for the overlay with Interrupt 21H Function 48H. Next, ROOT
calls the EXEC function to load the file OVERLAY.OVL into the newly allocated memory
block. If the EXEC function fails, ROOT displays an error message and terminates with
Interrupt 21H Function 4CH, passing a nonzero return code to COMMAND. COM to indi­
cate an error. If the EXEC function succeeds, ROOT saves the contents of its DS segment
register and then enters the overlay through an indirect far call.

342 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 352

Article 10: The MS-DOS EXEC Function

The overlay resets the DS segment register to point to its own data segment, displays a
inessage using Interrupt 21H Function 40H, and then returns. Note that the main pro­
cedure of the overlay is declared with the far attribute to force the assembler to generate
the opcode for a far return.

When ROOT regains control, it restores the DS segment register to point to its own data
segment again and displays an additional message, also using Interrupt 21H Function 40H,
to indicate that the overlay executed successfully. ROOT then terminates using Interrupt
21H Function 4CH, passing a return code of zero to indicate success, and control returns
to COMMAND. COM.

Ray Duncan

Section II: Programming in the MS-DOS Environment 343

ZTE (USA) 1007, Page 353

ZTE (USA) 1007, Page 354ZTE (USA) 1007, Page 354

Parte
Customizing MS-DOS

ZTE (USA) 1007, Page 355

ZTE (USA) 1007, Page 356ZTE (USA) 1007, Page 356

Article 11: Terminate-and-Stay-Resident Utilities

Article 11
Terminate-and-Stay~Resident Utilities

The MS-DOS Terminate and Stay Resident system calls (Interrupt 21H Function 31H and
Interrupt 27H) allow the programmer to install executable code or program data in a
reserved block of RAM, where it resides while other programs execute. Global data, inter­
rupt handlers, and entire applications can be made RAM-resident in this way. Programs
that use the MS-DOS terminate-and-stay-resident capability are commonly known as
TSR programs or TSRs.

This article describes how to install a TSR in RAM, how to communicate with the resident
program, and how the resident program can interact with MS-DOS. The discussion pro­
ceeds from a general description of the MS-DOS functions useful to TSR programmers to
specific details about certain MS-DOS structural elements necessary to proper functioning
of a TSR utility and concludes with two programming examples.

Note: Microsoft cannot guarantee that the information in this article will be valid for fu­
ture versions of MS-DOS.

Structure of a Terminate-and-Stay-Resident Utility

The executable code and data in TSRs can be separated into RAM-resident and transient
portions (Figure 11-1). The RAM-resident portion of a TSR contains executable code and
data for an application that performs some useful function on demand. The transient por­
tion installs the TSR; that is, it initializes data and interrupt handlers contained in the RAM­
resident portion of the program and executes an MS-DOS Terminate and Stay Resident
function call that leaves the RAM-resident portion in memory and frees the memory used
by the transient portion. The code in the transient portion of a TSR runs when the .EXE or
.COM file containing the program is executed; the code in the RAM-resident portion runs
only when it is explicitly invoked by a foreground program or by execution of a hardware
or software interrupt.

TSRs can be broadly classified as passive or active, depending on the method by which
control is transferred to the RAM-resident program. A passive TSR executes only when
another program explicitly transfers control to it, either through a software interrupt or by
means of a long JMP or CALL. The calling program is not interrupted by the TSR, so the
status of MS-DOS, the system BIOS, and the hardware is well defined when the TSR pro­
gram starts to execute.

In contrast, an active TSR is invoked by the occurrence of some event external to the
currently running (foreground) program, such as a sequence of user keystrokes or a pre­
defined hardware interrupt. Therefore, when it is invoked, an active TSR almost always

Section II: Programming in the MS-DOS Environment 347

ZTE (USA) 1007, Page 357

Part C: Customizing MS-DOS

Higher addresses

Initialization code and data
Transient portion
(executed when .EXE file runs)

Application code and data

>- RAM-resident portion

Monitor routines

Lower addresses
Program segment prefix

Figure 11-1. Organization of a TSR program in memory.

interrupts some other program and suspends its execution. To avoid disrupting the inter­
rupted program, an active TSR must monitor the status of MS-DOS, the ROM BIOS, and
the hardware and take control of the system only when it is safe to do so.

Passive TSRs are generally simpler in their construction than active TSRs because a passive
TSR runs in the context of the calling program; that is, when the TSR executes, it assumes
that it can use the calling program's.program segment prefix (PSP), open files, current
directory, and so on. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAM­
MING FOR Ms-oos: Structure of an Application Program. It is the calling program's respon­
sibility to ensure that the hardware and MS-DOS are in a stable state before it transfers
control to a passive TSR.

An active TSR, on the other hand, is invoked asynchronously; that is, the status of the
hardware, MS-DOS, and the executing foreground program is indeterminate when the
event that invokes the TSR occurs. Therefore, active TSRs require more complex code. The
RAM-resident portion of an active TSR must contain modules that monitor the operating
system to determine when control can safely be transferred to the application portion of
the TSR. The monitor routines typically test the status of keyboard input, ROM BIOS inter­
rupt processing, hardware interrupt processing, and MS-DOS function processing. The
TSR activates the application (the part of the RAM-resident portion that performs the TSR's
main task) only when it detects the appropriate keyboard input and determines that the
application will not interfere with interrupt and MS-DOS function processing.

Keyboard input
An active TSR usually contains a RAM-resident module that examines keyboard input
for a predetermined keystroke sequence called a "hot-key" sequence. A user executes the
RAM-resident application by entering this hot-key sequence at the keyboard.

The technique used in the TSR to monitor keyboard input depends on the keyboard
hardware implementation. On computers in the IBM PC and PS/2 families, the keyboard
coprocessor generates an Interrupt 09H for each keypress. Therefore, a TSR can monitor
user keystrokes by installing an interrupt handler (interrupt service routine, or ISR) for
Interrupt 09H. This handler can thus detect a specified hot-key sequence.

348 The MS-DOS Encyclopedia

'
.I
I

ZTE (USA) 1007, Page 358

Article 11: Terminate-and-Stay-Resident Utilities

ROM BIOS interrupt processing

The ROM BIOS routines in IBM PCs and PS/2s are not reentrant. An active TSR that calls
the ROM BIOS must ensure that its code does not attempt to execute a ROM BIOS function
that was already being executed by the foreground process when the TSR program took
control of the system.

The IBM ROM BIOS routines are invoked through software interrupts, so an active TSR
can monitor the status of the; ROM BIOS by replacing the default interrupt handlers with
custom interrupt handlers that intercept the appropriate BIOS interrupts. Each of these in­
terrupt handlers can maintain a status flag, which it increments before transferring control
to the corresponding ROM BIOS routine and decrements when the ROM BIOS routine has
finished executing. Thus, the TSR monitor routines can test these flags to determine when
non-reentrant BIOS routines are executing.

Hardware interrupt processing

The monitor routines of an active TSR, which may themselves be executed as the result of 4
a hardware interrupt, should not activate-the application portion of the TSR if any other
hardware interrupt is being processed. On IBM PCs, for example, hardware interrupts are
processed in a prioritized sequence determined by an Intel 8259A Programmable Inter-
rupt Controller. The 8259A does not allow a hardware interrupt to execute if a previous
interrupt with the same or higher priority is being serviced. All hardware interrupt
handlers include code that signals the 8259A when interrupt processing is completed.
(The programming interface to the 8259A is described in IBM's Technical Reference
manuals and in Intel's technical literature.)

If a TSR were to interrupt the execution of another hardware interrupt handler before the
handler signaled the 8259A that it had completed its interrupt servicing, subsequent hard­
ware interrupts could be inhibited indefinitely. Inhibition of high-priority hardware inter­
rupts such as the timer tick (Interrupt OSH) or keyboard interrupt (Interrupt 09H) could
cause a system crash. For this reason, an active TSR must monitor the status of all hardware
interrupt processing by interrogating the 8259A to ensure that control is transferred to the
RAM-resident application only when no other hardware interrupts are being serviced.

MS-DOS function processing

Unlike the IBM ROM BIOS routines, MS-DOS is reentrant to a limited extent. That is, there
are certain times when MS-DOS's servicing of an Interrupt 21H function call invoked by a
foreground process can be suspended so that the RAM-resident application can make an
Interrupt 21H function call of its own. For this reason, an active TSR must monitor operat­
ing system activity to determine when it is safe for the TSR application to make its calls
toMS-DOS.

Section II: Programming in the MS-DOS Environment 349

ZTE (USA) 1007, Page 359

Part C: Customizing MS-DOS

MS-DOS Support for Terminate-and-Stay-Resident
Programs

Several MS-DOS system calls are useful for supporting terminate-and-stay-resident
utilities. These are listed in Table 11-1. See SYSTEM CALLS.

Table 11-1- MS-DOS Functions Useful in TSR Programs.

Function Name

Terminate and
Stay Resident

Terminate and
Stay Resident

Set Interrupt
Vector

Get Interrupt
Vector

Set PSP Address

Get PSP Address

Set-Extended
Error Information

Call With

AH=31H
AL = return code
DX = size of resident program

(in 16-byte paragraphs)
INT21H

CS= PSP
DX = size of resident program

(bytes)
INT27H

AH=25H
AL = interrupt number
DS:DX = address of interrupt

handler
INT21H

AH=35H
AL = interrupt number
INT21H

AH=50H
BX = PSP segment
INT21H

AH=51H
INT21H

Returns

Nothing

Nothing

Nothing

ES:BX =address' of
interrupt handler

Nothing

BX= PSP segment

AX= 5DOAH Nothing
DS:DX =address of 11-word data structure:

word 0: register AX
as returned by Function 59H

word 1: register BX
word 2: register ex
word 3: register DX
word 4: register SI
word 5: register DI
word 6: register DS
word 7: register ES
words 8-0AH: reserved; should be 0

INT21H

350 The MS-DOS Encyclopedia

Comment

Preferred over Interrupt
27H with MS-DOS
versions 2.x and later

Provided for com­
patibility with
MS-DOS versions 1.x

MS-DOS versions 3.1
and later

(more)

ZTE (USA) 1007, Page 360

Table 11-1. Continued.

Function Name

Get Extended
Error Information

Set Disk
Transfer Area
Address

Get Disk
Transfer Area
Address

Get InDOS Flag
Address

Call With

-AH=59H
BX=O
INT21H

AH= lAH
DS:DX =address ofDTA
INT21H

AH=2FH
INT21H

AH=34H
INT21H

Terminate-and-stay-resident functions

Article 11: Terminate-and-Stay-Resident Utilities

Returns

AX = extended error
code

BH = error class
BL = suggested action
CH = error locus
Nothing

ES:BX = address of
currentDTA

ES:BX = address of
lnDOSflag

Comment

MS-DOS provides two mechanisms for terminating the execution of a program while leav­
ing a portion of it resident in RAM. The preferred method is to execute Interrupt 21H Func­
tion 31H.

Interrupt 21H Function 31H

When this Interrupt 21H function is called, the value in OX specifies the amount of RAM
(in paragraphs) that is to remain allocated after the program terminates, starting at the
program segment prefix (PSP). The function is similar to Function 4CH (Terminate
Process with Return Code) in that it passes a return code in AL, but it differs in that open
files are not automatically closed by Function 31H.

Interrupt 27H

When Interrupt 2m is executed, the value passed in OX specifies the number of bytes of
memory required for the RAM-resident program. MS-OOS converts the value passed in OX
from bytes to paragraphs, sets AL to zero, and jumps to the same code that would be exe­
cuted for Interrupt 21H Function 31H. Interrupt 27H is less flexible than Interrupt 21H
Function 31H because it limits the size of the program that can remain resident in RAM to
64 KB, it requires that CS point to the base of the PSP, and it does not pass a return code.
Later versions of MS-OOS support Interrupt 27H primarily for compatibility with versions
l.x.

TSRRAM management

In addition to the RAM explicitly allocated to the TSR by means of the value in OX, the
RAM allocated to the TSR's environment remains resident when the installation portion
of the TSR program terminates. (The paragraph address of the environment is found at

Section IL· Programming in the MS-DOS Environment 351

ZTE (USA) 1007, Page 361

Part C: Customizing MS-DOS

offset 2CH in the TSR's PSP.) Moreover, if the installation portion of a TSR program has
used Interrupt 21H Function 48H (Allocate Memory Block) to allocate additional RAM, this
memory also remains allocated when the program terminates. If the RAM-resident pro­
gram does not need this additional RAM, the installation portion of the TSR program
should free it explicitly by using Interrupt 21H Function 49H (Free Memory Block) before
executing Interrupt 21H Function 31H.

Set and Get Interrupt Vector functions

Two Interrupt 21H function calls are available to inspect or update the contents of a
specified 8086-family interrupt vector. Function 25H (Set Interrupt Vector) updates the
vector of the interrupt number specified in the AL register with the segment and offset
values specified in DS:DX. Function 35H (Get Interrupt Vector) performs the inverse
operation: It copies the current vector of the interrupt number specified in AL into the
ES:BX register pair.

Although it is possible to manipulate interrupt vectors directly, the use of Interrupt 21H
Functions 25H and 35H is generally more convenient and allows for upward compatibility
with future versions of MS-DOS.

Set and Get PSP Address functions

MS-DOS uses a program's PSP to keep track of certain data unique to the program, includ­
ing command-line parameters and the segment address of the program's environment. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure
of an Application Program. To access this information, MS-DOS maintains an internal vari­
able that always contains the location of the PSP ass()ciated with the foreground process.
When a RAM-resident application is activated, it should use Interrupt 21H Functions 50H
(Set Program Segment Prefix Address) and 51H (Get Program Segment Prefix Address) to
preserve the current contents of this variable and to update the variable with the location
of its own PSP. Function 50H (Set Program Segment Prefix Address) updates an internal
MS-DOS variable that locates the PSP currently' in use by the foreground process. Function
51H (Get Program Segment Prefix Address) returns the contents of the internal MS-DOS
variable to the caller.

Set and Get Extended Error Information functions

In MS-DOS versions 3.1 and later, the RAM-resident program should preserve the fore­
ground process's extended error information so that, if the RAM-resident application
encounters an MS-DOS error, the extended error information pertaining to the foreground
process will still be available and can be restored. Interrupt 21H Functions 59H and
5DOAH provide a mechanism for the RAM-resident program to save and restore this
information during execution of a TSR application.

Function 59H (Get Extended Error Information), which became available in version 3.0,
returns detailed information on the most recently detected MS-DOS error. The inverse
operation is performed by Function 5DOAH (Set Extended Error Information), which can
be used only in MS-DOS versions 3.1 and later. This function copies extended error
information to MS-DOS from a data structure defined in the calling program.

352 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 362

Article 11: Terminate-and-Stay-Resident Utilities

Set and Get Disk Transfer Area Address functions

·Several MS-DOS data transfer functions, notably Interrupt 21H Functions 21H, 22H, 27H,
and 28H (the Random Read and Write functions) and Interrupt 21H Functions 14H and 15H
(the Sequential Read and Write functions), require a program to specify a disk transfer area
(DTA). By default, a program's DTA is located at offset SOH in its program segment prefix.
If a RAM-resident application calls an MS-DOS function that uses a DTA, the TSR should
save the DTA address belonging to the interrupted program by using Interrupt 21H Func­
tion 2FH (Get Disk Transfer Area Address), supply its own DTA address to MS-DOS using
Interrupt 21H Function lAH (Set Disk Transfer Area Address), and then, before terminat­
ing, restore the interrupted program's DTA.

The MS-DOS idle interrupt (Interrupt 28H)

Several of the first 12 MS-DOS functions (01H through OCH) must wait for the occurrence
of an expected event such as a user keypress. These functions contain an "idle loop" in
which looping continues until the event occurs. To provide a mechanism for other system
activity to take place while the idle loop is executing, these MS-DOS functions execute an
Interrupt 28H from within the loop.

The default MS-DOS handler for Interrupt 28H is only an IRET instruction. By supplying
its own handler for Interrupt 28H, a TSR can perform some useful action at times when
MS-DOS is otherwise idle. Specifically, a custom Interrupt 28H handler can be used to
examine the current status of the system to determine whether or not it is safe to activate
the RAM-resident application.

Determining MS-DOS Status

A TSR can infer the current status of MS-DOS from knowledge of its internal use of stacks
and from a-pair of internal status flags. This status information is essential to the proper
execution of an active TSR because a RAM-resident application can make calls to MS-DOS
only when those calls will not disrupt an earlier call made by the foreground process.

MS-DOS internal stacks

MS-DOS versions 2. 0 and later may use any of three internal stacks: the I/0 stack
(IOStack), the disk stack (DiskStack), and the auxiliary stack (AuxStack). In general,
IOStack is used for Interrupt 21H Functions 01H through OCH and DiskStack is used for
the remaining Interrupt 21H functions; AuxStack is normally used only when MS-DOS has
detected a critical error and subsequently executed an Interrupt 24H. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Handlers. Specifically,
MS-DOS's internal stack use depends on which MS-DOS function is being executed and
on the value of the critical error flag.

The critical error flag
The critical error flag (ErrorMode) is a 1-byte flag that MS-DOS uses to indicate whether
or not a critical error has occurred. During normal, errorless execution, the value of the

Section IL· Programming in the MS-DOS Environment 353

ZTE (USA) 1007, Page 363

Part C: Customizing MS-DOS

critical error flag is zero. Whenever MS-DOS detects a critical error, it sets this flag to a
nonzero value before it executes Interrupt 24H. If an Interrupt 24H handler subsequently
invokes an MS-DOS function by using Interrupt 21H, the nonzero value of the critical error
flag tells MS-DOS to use its auxiliary stack for Interrupt 21H Functions OlH through OCH
instead of using the 1/0 stack as it normally would.

In other words, when control is transferred to MS-DOS through Interrupt 21H, the function
. number and the critical error flag together determine MS-DOS stack use for the function.
Figure 11-2 outlines the internal logic used on entry to an MS-DOS function to select which
stack is to be used during processing of the function. As stated above, for Functions OlH
through OCH, MS-DOS uses IOStack if the critical error flag is zero and AuxStack if the
flag is nonzero. For function numbers greater than OCH, MS-DOS usually uses DiskStack,
but Functions 50H, 51H, and 59H are important exceptions. Functions 50H and 51H use
either IOStack (in versions 2.x) or the stack supplied by the calling program (in versions
3.x). In version 3.0, Function 59H uses either IOStack or AuxStack, depending on the
value of the critical error flag, but in versions 3.1 and later, Function 59H always uses
AuxStack.

MS-DOS versions 2.x
if (FunctionNumber >= 01H and FunctionNumber <= OCH)

or
FunctionNumber = SOH
or
FunctionNumber S1H

then if ErrorMode 0
then use IOStack
else use AuxStack

else ErrorMode = 0
use DiskStack

MS-DOS version 3.0
if FunctionNumber = SOH

or
FunctionNumber = S1H
or
FunctionNumber = 62H

then use caller's stack

else if (FunctionNumber >= 01H and FunctionNumber <= OCH)
or
Function Number = S9H

then if ErrorMode = 0
then use IOStack
else use AuxStack

else ErrorMode = 0
use DiskStack

Figure 11-2. Strategy for use of MS-DOS internal stacks.

354 The MS-DOS Encyclopedia

(more)

-I

ZTE (USA) 1007, Page 364

.,

MS-DOS versions 3.1 and later
if FunctionNurnber = 33H

or
FunctionNurnber = SOH

or

FunctionNurnber = 51H

or

FunctionNurnber = 62H

then use caller's stack

Article 11: Terminate-and-Stay-Resident Utilities

else if (FunctionNurnber >= 01H and FunctionNurnber <= OCH)

then if ErrorMode = 0

then use IOStack

else use AuxStack

else if FunctionNurnber = 59H

then use AuxStack

else ErrorMode = 0

use DiskStack

Figure 11-2. Continued.

This scheme makes Functions 01H through OCH reentrant in a limited sense, in that a
substitute critical error (Interrupt 24H) handler invoked while the critical error flag
is nonzero can still use these Interrupt 21H functions. In this situation, because the
flag is nonzero, AuxStack is used for Functions OlH through OCH instead of IOStack.
Thus, if IOStatk is in use when the critical error is detected, its contents are preserved
during the handler's subsequent calls to these functions.

The stack-selection logic differs slightly between MS-DOS versions 2 and 3. In versions
3.x, a few functions- notably 50H and 51H-avoid using any of the MS-DOS stacks.
These functions perform uncomplicated tasks that make minimal demands for stack
space, so the calling program's stack is assumed to be adequate for them.

The InDOS flag

InDOS is a 1-byte flag that is incremented each time an Interrupt 21H function is invoked
and decremented when the function terminates. The flag's value remains nonzero as long
as code within MS-DOS is being executed. The value of InDOS does not indicate which
internal stack MS-DOS is using.

Whenever MS-DOS detects a critical error, it zeros InDOS before it executes Interrupt 24H.
This action is taken to accommodate substitute Interrupt 24H handlers that do not return
control to MS-DOS. If InDOS were not zeroed before such a handler gained control, its
value would never be decremented and would therefore be incorrect during subsequent
calls to MS-DOS.

The address of the 1-byte InDOS flag can be obtained from MS-DOS by using Interrupt
21H Function 34H (Return Address of InDOS Flag). In versions 3.1 and later, the 1-byte crit­
ical error flag is located in the byte preceding InDOS, so, in effect, the address of both

Section II: Programming in the MS-DOS Environment 355

ZTE (USA) 1007, Page 365

Part C: Customizing MS-DOS

flags can be found using Function 34H. Unfortunately, there is no easy way to find the
critical error flag in other versions. The recommended technique is to scan the MS-DOS
segment, which is returned in the ES register by Function 34H, for one of the following
sequences of instructions:

test ss: [CriticalErrorFlag),OFFH ; (versions 3.1 and later)
jne NearLabel
push ss: [NearWord)
int 28H

or

cmp ss: [CriticalErrorFlag),OO ; (versions earlier than 3.1)

jne NearLabel
int 28H

When the TEST or CMP instruction has been identified, the offset of the critical error flag
can be obtained from the instruction's operand field.

The Multiplex Interrupt

The MS-DOS multiplex interrupt (Interrupt 2FH) provides a general mechanism for a
program to verify the presence of a TSR and communicate with it. A program communi­
cates with a TSR by placing an identification value in AH and a function number in AL and
issuing an Interrupt 2FH. The TSR's Interrupt 2FH handler compares the value in AH to its
own predetermined ID value. If they match, the TSR's handler keeps control and performs
the function specified in the AL register. If they do not match, the TSR's handler relin­
quishes control to the previously installed Interrupt 2FH handler. (Multiplex ID values OOH
through 7FH are reserved for use by MS-DOS; therefore, user multiplex numbers should be
in the range 80H through OFFH.)

The handler in the following example recognizes only one function, corresponding to
AL = OOH. In this case, the handler returns the value OFFH in AL, signifying that the han­
dler is indeed resident in RAM. Thus, a program can detect the presence of the handler by
executing Interrupt 2FH with the handler's ID value in AH and OOH in AL.

mov ah,MultiplexiD
mov al,OOH
int 2FH
cmp al,OFFH
je Alreadyinstalled

To ensure that the identification byte is unique, its value should be determined at the
time the TSR is installed. One way to do this is to pass the value to the TSR program as a
command-line parameter when the TSR program is installed. Another approach is to place
the identification value in an environment variable. In this way, the value can be found in
the environment of both the TSR and any other program that calls Interrupt 2FH to verify
the TSR's presence.

356 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 366

Article 11: Terminate-and-Stay-Resident Utilities

In practice, the multiplex interrupt can also be used to pass information to and from a
RAM-resident program in the CPU registers, thus providing a mechanism for a program to
share control or status information with a TSR.

TSR Programming Examples

One effective way to become familiar with TSRs is to examine functional programs.
Therefore, the subsequent pages present two examples: a simple passive TSR and a more
complex active TSR.

HELLO.ASM

The "bare-bones" TSR in Figure 11-3 is a passive TSR. The RAM-resident application, which
simply displays the message Hello, World, is invoked by executing a software interrupt.
This example illustrates the fundamental interactions among a RAM-resident program,
MS-DOS, and programs that execute after the installation of the RAM-resident utility.

Name: hello

Description:. This RAM-resident (terminate-and-stay-resident) utility
displays the message "Hello, World" in response to a
software interrupt.

Comments:

TSRint
STDOUT

RESIDENT_TEXT

TSRAction

Assemble and link to create HELLO.EXE.

Execute HELLO.EXE to make resident.

Execute INT 64h to display the message.

EQU
EQU

64h

SEGMENT byte public 'CODE'
ASSUME cs:RESIDENT_TEXT,ds:RESIDENT_DATA

PROC far

sti enable interrupts

push ds preserve registers
push ax
push bx
push ex
push dx

Figure 11-3. HELLO.ASM, a passive TSR. (more)

Section II: Programming in the MS-DOS Environment 357

ZTE (USA) 1007, Page 367

Part C: Customizing MS-DOS

TSRAction

RESIDENT_TEXT

RESIDENT_DATA

Message

RESIDENT-DATA

TRANSIENT_TEXT

HelloTSR PROC

Install this

Terminate and

mov

mov

mov
mov

mov

dx,seg RESIDENT-DATA

ds,dx
dx,offset Message

cx,16
bx,STDOUT

DS:DX -> message

ex length

BX = file handle
mov ah,40h AH = INT 21H function 40H

(Write File)
int 21h display the message

pop dx restore registers and exit
pop ex
pop bx

pop ax

pop ds

iret

ENDP

ENDS

SEGMENT word public 'DATA'

DB ODh,OAh, 'Hello, World',ODh,OAh

ENDS

SEGMENT para public 'TCODE'

ASSUME cs:TRANSIENT_TEXT,ss:TRANSIENT_STACK

far

TSR's

mov

mov

mov

mov

mov

int

stay

mov

At entry: CS:IP -> SnapTSR

SS:SP -> stack
DS,ES -> PSP

interrupt handler

ax,seg RESIDENT_TEXT

ds,ax

dx,offset RESIDENT_TEXT:TSRAction

al,TSRint
ah,25h

21h

resident

dx,cs DX = paragraph address of start of
transient portion (end of resident
portion)

mov ax,es ES PSP segment

sub dx,ax DX = size of resident portion

Figure 11-3. Continued.

358 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 368

mov ax,3100h

int 21h

HelloTSR ?NDP

TRANSIENT_TEXT ENDS

Article 11: Terminate-and-Stay-Resident Utilities

AH = INT 21H function number (TSR)
AL = OOH (return code)

TRANSIENT_STACK SEGMENT word stack 'TSTACK'

DB SOh dup(?)

TRANSIENT_STACK ENDS

END HelloTSR

Figure 11-3. Continued.

The transient portion of the program (in the segments TRANSIENT_ TEXT and
TRANSIENT_STACK) runs only when the file HELLO.EXE is executed. This installation
code updates an interrupt vector to point to the resident application (the procedure
TSRAction) and then calls Interrupt 21H Function 31H to terminate execution, leaving the
segments RESIDENT_ TEXT and RESIDENT_DATA in RAM.

The order in which the code and data segments appear in the listing is important. It
ensures that when the program is executed as a .EXE file, the resident code and data are
placed in memory at lower addresses than the transient code and data. Thus, when Inter­
rupt 21H Function 31H is called, the memory occupied by the transient portion of the pro­
gram is freed without disrupting the code and data in the resident portion.

The RAM containing the resident portion of the utility is left intact by MS-bOS during
subsequent execution of other programs. Thus, after the TSR has been installed, any pro­
gram that issues the software interrupt recognized by the TSR (in this example, Interrupt
64H) will transfer control to the routine TSRAction, which uses Interrupt 21H Function
40H to display a simple message on standard output.

Part of the reason this example is so short is that it performs no error checking A truly reli­
able version of the program would check the version of MS-DOS in use, verify that the pro­
gram was not already installed in memory, and chain to any previously installed interrupt
handlers that use the same interrupt vector. (The next program, SNAP.ASM, illustrates
these techniques.) However, the primary reason the program is small is that it makes the
basic assumption that MS-DOS, the ROM BIOS, and the hardware interrupts are all stable
at the time the resident utility is executed.

SNAP.ASM

The preceding assumption is a reliable one in the case of the passive TSR in Figure 11-3,
which executes only when it is explicitly invoked by a software interrupt. However, the
situation is much more complicated in the case of the active TSR in Figure 11-4. This

Section IL- Programming in the MS-DOS Environment 359

ZTE (USA) 1007, Page 369

Part C: Customizing MS-DOS

program is relatively long because it makes no assumptions about the stability of the
operating environment. Instead, it monitors the status of MS-DOS, the ROM BIOS, and the
hardware interrupts to decide when the RAM-resident application can safely execute.

Name: snap

Description: This RAM-resident (terminate-and-stay-resident) utility

produces a video "snapshot" by copying the contents of the
video regeneration buffer to a disk file. It may be used

in SO-column alphanumeric video modes on IBM PCs and PS/2s.

Comments:

MultiplexiD

TSRStackSize

KB_FLAG

KBins

KBCaps

KBNum

KBScroll

KBAlt
KBCtl

KBLeft
KBRight

SCEnter

CR

LF

TRUE
FALSE

Assemble and link to create SNAP.EXE.

Execute SNAP.EXE to make resident.

Press Alt-Enter to dump current contents of video buffer
to a disk file.

EQU OCAh unique INT 2FH ID value

EQU 1 OOh resident stack size in bytes

EQU 17h offset of shift-key status flag
ROM BIOS keyboard data area

EQU SOh bit masks for KB-FLAG
EQU 40h

EQU 20h

EQU 10h

EQU s
EQU 4

EQU 2
EQU

EQU 1Ch

EQU ODh

EQU OAh

EQU -1

EQU 0

PAGE

in

·--'

; RAM-resident routines

·--'

RESIDENT_GROUP GROUP RESIDENT_TEXT,RESIDENT_DATA,RESIDENT_STACK

Figure 11-4. SNAP.ASM, a video snapshot TSR. (more)

360 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 370

· Article 11: Terminate-and-Stay-Resident Utilities

RESIDENT_TEXT SEGMENT byte public 'CODE'

ASSUME cs:RESIDENT_GROUP,ds:RESIDENT_GROUP

--
; System verification routines

;--

VerifyDOSState PROC

push

push
push

lds

mov

lds

mov

xor
crop

rcl

cmp

pop

pop
pop

ret

VerifyDOSState ENDP

VerifyintState PROC

push

near

ds
bx

ax

Returns: carry flag set if MS-DOS
is busy

preserve these registers

bx,cs:ErrorModeAddr

ah, [bx] ; AH ErrorMode flag

bx, cs: InDOSAddr

al, [bx]

bx,bx

bl,cs:IniSR28

bl,01h

bx,ax

ax

bx

ds

near

ax

AL InDOS flag

BH = DOH, BL = OOH

carry flag set if INT 28H handler

is running
BL = 01H if INT 28H handler is running

carry flag zero if AH

and AL <= BL
restore registers

DOH

Returns: carry flag set if hardware

or ROM BIOS unstable

preserve AX

Verify hardware interrupt status by interrogating Intel 8259A Programmable

Interrupt Controller

L10:

mov

out
jmp

in

ax,00001011b

20h,al

short L10

al,20h

AH = 0
AL = OCW3 for Intel 8259A (RR = 1,

RIS = 1)

request 8259A's in-service register

wait a few cycles

AL = hardware interrupts currently

being serviced (bit = 1 if in-service)

Figure 11-4. Continued. (more)

Section IL- Programming in the MS-DOS Environment 361

ZTE (USA) 1007, Page 371

Part C: Customizing MS-DOS

Verify status

L11:

VerifyintState

VerifyTSRState

L20:

cmp

jc

of ROM

xor

cmp

jc

cmp

jc

cmp

jc

cmp

pop

ret

ENDP

PROC

rol

erne

jc

ror

jc

call

jc

call

ret

VerifyTSRState ENDP

PAGE

ah,al

L11

BIOS interrupt

al,al

al,cs:IniSR5

L11

al,cs:IniSR9

L11

al,cs:IniSR10

L11

al,cs:IniSR13

ax

near

cs: HotFlag, 1

L20

cs :ActiveTSR, 1

L20

VerifyDOSState

L20

VerifyintState

exit if any hardware interrupts still

being serviced

handlers

; AL = OOH

;~ exit if currently in INT 05H handler

exit if currently in INT 09H handler

exit if currently in INT 10H handler

set carry flag if currently in
INT 13H handler

restore AX and return

Returns: carry flag set if TSR
inactive

carry flag set if (HotFlag TRUE)

carry flag set if (HotFlag FALSE)
exit if no hot key

carry flag set if (ActiveTSR TRUE)

exit if already active

exit if MS-DOS unstable

set carry flag if hardware or BIOS

unstable

;--
; System monitor routines

;--

ISRS PROC far INT 05H handler
(ROM BIOS print screen)

inc cs:IniSRS increment status flag

Figure 11-4. Continued. (more)

362 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 372

\

ISRS

ISR8

L30:

L31:

ISR8

ISR9

pushf

eli

call

dec
iret

ENDP

PROC

pushf

eli

call

cmp

jne

inc

sti

call

jc

mov

call
mov

dec

iret

ENDP

PROC

push

push

push

push

pop

in

pushf

eli

call

.;

cs:PreviSRS

cs:IniSRS

far

cs:PreviSR8

cs:IniSRS,O
L31

cs:IniSR8

VerifyTSRState

L30

Article 11: Terminate-and-Stay-Resident Utilities

chain to previous INT OSH handler

decrement status flag

INT 08H handler (timer tick, IRQO)

chain to previous handler

exit if already in this handler

increment status flag·

interrupts are ok

jump if TSR is inactive

byte ptr cs:ActiveTSR,TRUE

TSRapp

byte ptr cs:ActiveTSR,FALSE

cs:IniSRS

far

ds
ax

bx

cs
ds

al,60h

ds:PreviSR9

INT 09H handler

(keyboard interrupt IRQ1)

preserve these registers

DS -> RESIDENT_GROUP

AL = current scan code

simulate an INT

let previous handler execute

Figure 11-4. Continued. (more)

Section 11- Programming in the MS-DOS Environment 363

ZTE (USA) 1007, Page 373

Part C: Customizing MS-DOS

mov
or
jnz

inc
sti

ah,ds:IniSR9
ah,ds:HotFlag
143

ds:IniSR9

Check scan code sequence

cmp
je

ds:HotSeq1en,O
140

mov bx,ds:Hotindex

if already in this handler
or currently processing hot key ..

jump to exit

increment status flag
now interrupts are ok

jump if no hot sequence to match

cmp al, [bx+HotSequence] test scan code sequence
jne 141 ; jump if no match

inc bx

cmp
jb

; Check shift-key state

140: push
mov
mov
mov
pop

and
cmp
jne

bx,ds:HotSeq1en
142

ds
ax,40h
ds,ax
al,ds: [KB_FLAG]

ds

al,ds:HotKBMask
al,ds:HotKBFlag
142

Set flag when hot key is found

jump if not last scan code to match

DS -> ROM BIOS data area
AH = ROM BIOS shift-key flags

A1 = flags AND "don't care" mask

jump if shift state does not match

mov byte ptr ds:HotFlag,TRUE

141:

142:

143:

xor

mov
dec

pop

bx,bx

ds:Hotlndex,bx
ds:IniSR9

bx
pop ax
pop ds
iret

ISR9 ENDP

Figure 11-4. Continued.

364 The MS-DOS Encyclopedia

reinitialize index

update index into sequence
decrement status flag

restore registers and exit

(more)

ZTE (USA) 1007, Page 374

ISR10

ISR10

ISR13

ISR13

ISR1B

ISR1B

ISR23

ISR23

ISR24

PROC

inc

pu.shf
eli
call

dec
iret

ENDP

PROC

inc

pushf
eli
call

pushf
dec
popf

sti
ret

ENDP

PROC

far

cs:IniSR10

cs:PreviSR10

cs:IniSR10

far

cs:IniSR13

cs:PreviSR13

cs:IniSR13

2

far

Article 11: Terminate-and-Stay-Resident Utilities

INT 10H handler (ROM BIOS video I/0)

increment status flag

chain to previous INT 10H handler

decrement status flag

INT 13H handler
(ROM BIOS fixed disk I/O)
increment status flag

chain to previous INT 13H handler

preserve returned flags
decrement status flag
restore flags register

enable interrupts
simulate IRET without popping flags

; INT 1BH trap (ROM BIOS Ctrl-Break)

mov byte ptr cs:Trap1B,TRUE
iret

ENDP

PROC far ; INT 23H trap (MS-DOS Ctrl-C)

mov byte ptr cs:Trap23,TRUE
iret

ENDP

PROC far ; INT 24H trap (MS-DOS critical error)

mov byte ptr cs:Trap24,TRUE

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 365

ZTE (USA) 1007, Page 375

Part C: Customizing MS-DOS

xor al,al AL = OOH (MS-DOS 2.x):

cmp cs:MajorVersion,2 ; ignore the error

je LSO

L50:

ISR24

ISR28

L60:

L61 :

ISR28

ISR2F

mov

iret

ENDP

PROC

pushf

eli

call

cmp

jne

inc

call

jc

mov

call
mov

dec

iret

ENDP

PROC

cmp

je

jmp

Figure 11-4. Continued.

366 The MS-DOS Encyclopedia

al,3

far

cs:PreviSR28

cs:IniSR28,0

L61

cs:IniSR28

VerifyTSRState

L60

AL = 03H (MS-DOS 3.x):
fail the MS-DOS call in which

the critical error occurred

INT 28H handler
(MS-DOS idle interrupt)

chain to previous INT 28H handler

exit if already inside this handler

increment status flag

jump if TSR is inactive

byte ptr cs:ActiveTSR,TRUE

TSRapp
byte ptr cs:ActiveTSR,FALSE

cs:IniSR28

far

ah,MultiplexiD

L70

cs:PreviSR2F

; decrement status flag

INT 2FH handler
(MS-DOS multiplex interrupt)

Caller: AH = handler ID
AL = function number

Returns for function 0: AL = OFFH

for all other functions: nothing

jump if this handler is requested

chain to previous INT 2FH handler

(more)

ZTE (USA) 1007, Page 376

L70: test
jnz

al,al

MultiplexiRET

Function 0: get installed state

mov al,OFFh

MultiplexiRET: iret

ISR2F ENDP

PAGE

Article 11: Terminate-and-Stay-Resident Utilities

jump if reserved or undefined function

AL = OFFH (this handler is installed)

return from interrupt

Auxint21--sets ErrorMode while executing INT 21H to force use of the

AuxStack instead of the IOStack.

Auxint21 PROC near Caller: registers for INT 21H

Returns: registers from INT 21H

push ds

push bx
lds bx,ErrorModeAddr

inc byte ptr [bx] ErrorMode is now nonzero

pop bx

pop ds

int 21h perform MS-DOS function

push ds

push bx

lds bx,ErrorModeAddr

dec byte ptr [bx] restore ErrorMode

pop bx

pop ds

ret

Auxint21 ENDP

Int21v PROC near perform INT 21H or Auxint21,

depending on MS-DOS version

cmp DOSVersion,30Ah

jb LBO jump if earlier than 3.1

int 21h versions 3.1 and later

ret

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 367

ZTE (USA) 1007, Page 377

Part C: Customizing MS-DOS

L80:

Int21v

call

ret

ENDP

PAGE

Auxint21 versions earlier than 3.1

;--
; RAM-resident application

;--

TSRapp PROC near

; Set up a safe stack

push ds save previous DS on previous stack

push cs

pop ds DS -> RESIDENT_GROUP

mov PrevSP,sp save previous SS:SP

mov PrevSS,ss

mov ss,TSRSS SS:SP -> RESIDENT_STACK

mov sp,TSRSP

push es preserve remaining registers

push ax
push bx
push ex
push dx
push si
push di
push bp

cld clear direction flag

Set break and critical error traps

mov cx,NTrap
mov si,offset RESIDENT_GROUP:StartTrapList

L90: lodsb

mov

push

mov

int

mov
mov

Figure 11-4. Continued.

368 The MS-DOS Encyclopedia

AL = interrupt number

DS:SI -> byte past interrupt number

byte ptr [si],FALSE ; zero the trap flag

ax
ah,35h

21h

[si+1],bx
[si+3], es

preserve AX

INT 21H function 35H

(get interrupt vector)
ES:BX =previous interrupt vector

save offset and segment
.. of previous handler

(more)

ZTE (USA) 1007, Page 378

Article 11: Terminate-and-Stay-Resident Utilities

pop ax AL = interrupt number
mov dx, [si+S] DS:DX -> this TSR' s trap
mov ah, 2.5h INT 21H function 25H
int 21h (set interrupt vector)
aQ.d si,7 DS:SI -> next in list

loop L90

Disable MS-DOS break checking during disk I/0

mov ax,3300h AH INT 21H function number
AL OOH (request current break state)

int 21h DL current break state

mov PrevBreak,dl preserve current state

xor dl,dl DL = OOH (disable disk I/O break
checking)

mov ax,3301h AL = 01H (set break state)

int 21h

Preserve previous extended error information

cmp
jb

push
xor
mov
call

DOSVersion,30Ah
L91

ds
bx,bx
ah,59h
Int21v

mov cs:PrevExtErrDS,ds

pop ds
mov
mov

PrevExtErrAX,ax
PrevExtErrBX,bx

mov PrevExtErrCX,cx
mov PrevExtErrDX,dx
mov PrevExtErrSI,si
mov PrevExtErrDI,di
mov PrevExtErrES,es

; Inform MS-DOS about current PSP

L91: mov ah,51h

call Int21v

mov PrevPSP,bx

mov bx,TSRPSP

mov ah,50h
call Int21v

Figure 11-4. Continued.

jump if MS-DOS version earlier
than 3.1
preserve DS
BX = OOH (required for function 59H)
INT 21H function 59H
(get extended error info)

preserve error information
in data structure

INT 21H function 51H (get PSP address)

BX = foreground PSP

preserve previous PSP

BX = resident PSP
INT 21H function SOH (set PSP address)

(more)

Section II: Programming in the MS-DOS Environment 369

ZTE (USA) 1007, Page 379

Part C: Customizing MS-DOS

Inform MS-DOS about current DTA (not really necessary in this application
because DTA is not used)

mov

int

mov
mov

push

mov
mov

mov

int
pop

Open a file, write to

mov

int

mov

mov

mov
int

jc

push

mov

int

pop

cmp
jne

mov
cmp

jbe

cmp

jne

mov

L92: push

mov

xor

mov

mov

Figure 11-4. Continued.

370 The MS-DOS Encyclopedia

ah,2Fh

21h

PrevDTAoffs,bx

PrevDTAseg,es

ds

ds,TSRPSP
dx,80h

ah, 1Ah

21h

ds

it, and close it

ax,OE07h

10h

INT 21H function 2FH
(get DTA address) into ES:BX

preserve DS

DS:DX -> default DTA at PSP:0080H

INT 21H function 1AH
(set DTA address)

restore DS

AH = INT 10H function number
(write teletype)

AL = 07H (bell character)

emit a beep

dx,offset RESIDENT_GROUP:SnapFile

ah, 3Ch INT 21 H function 3CH

(create file handle)
cx,O

21h

L94

file at tribute

jump if file not opened

push file handle ax

ah,OFh
10h

INT 10H function OFH (get video status)

AL video mode number

bx

ah,80
L93

dx,OB800h

al,3

L92

al,7

L93

dx,OBOOOh

ds

ds,dx

dx,dx

cx,80*25*2
ah,40h

AH

BX
number of character columns

file handle

jump if not 80-column mode

DX = color video buffer segment

jump if color alphanumeric mode

jump if not monochrome mode

DX monochrome video buffer segment

DS:DX -> start of video buffer

ex = number of bytes to write

INT 21H function 40H (write file)

(more)

ZTE (USA) 1007, Page 380

Article 11: Terminate-and-Stay-Resident Utilities

int 21h

pop ds

L93: mov ah,3Eh INT 21H function 3EH (close file)
in:t 21h

mov ax,OEO?h emit another beep

int 10h

; Restore previous DTA

L94: push ds preserve OS
lds dx,PrevDTA DS:DX -> previous DTA
mov ah, 1Ah INT 21H function 1AH (set DTA address)
int 21h

pop ds

Restore previous PSP

mov bx,PrevPSP BX = previous PSP
mov ah,SOh INT 21H function

call Int21v (set PSP address)

Restore previous extended error information

mov ax,DOSVersion

ax,30Ah

SOH

cmp

jb

cmp
jae

L95 jump if MS-DOS version earlier than 3.1

ax,OAOOh

L95 jump if MS OS/2-DOS 3.x box

mov dx,offset RESIDENT_GROUP:PrevExtErrinfo

mov ax, SDOAh

int 21h (restore. extended error information)

; Restore previous MS-DOS break checking

L95: mov

mov

int

dl,PrevBreak

ax,3301h

21h

DL previous state

Restore previous break and critical error traps

L96:

mov

mov

push

lads

lds

mov

int
Figure 11-4. Continued.

cx,NTrap
si,offset RESIDENT_GROUP:StartTrapList

ds ; preserve DS

byte ptr cs: [si] ; AL = interrupt number

dx, cs: [si+1]

ah,25h

21h

ES:SI -> byte past interrupt number

DS:DX -> previous handler

INT 21H function 25H

(set interrupt vector)
(more)

Section II: Programming in the MS-DOS Environment 371

ZTE (USA) 1007, Page 381

Part C: Customizing MS-DOS

add
loop

pop

Restore all registers

pop

pop

pop
pop
pop

pop

pop

pop

mov

mov

pop

Finally, reset status

TSRapp

RESIDENT_TEXT

RESIDENT_DATA

ErrorModeAddr

InDOSAddr

NISR

StartiSRList
IniSRS

PreviSRS

IniSR8
PreviSR8

IniSR9

PreviSR9

IniSR10

mov

ret

ENDP

ENDS

SEGMENT

DD

DD

DW

DB
DB

DD

DW

DB

DB
DD

DW

DB

DB

DD

DW

DB
DB

Figure 11-4. Continued.

3 72 The MS-DOS Encyclopedia

si,7 DS:SI -> next in list
L96

ds restore DS

bp

di
si

dx
ex

bx

ax

es

ss,PrevSS SS:SP -> previous stack
sp,PrevSP

ds restore previous DS

flag and return

byte ptr cs:HotFlag,FALSE

word public 'DATA'

?

?

address of MS-DOS ErrorMode flag

address of MS-DOS InDOS flag

(EndiSRList-StartiSRList)/8 ; number of installed ISRs

05h
FALSE

INT number

flag

? address of previous handler
offset RESIDENT_GROUP:ISRS

08h

FALSE
?

offset RESIDENT_GROUP:ISR8

09h
FALSE

?

offset RESIDENT_GROUP:ISR9

1 Oh

FALSE

(more)

ZTE (USA) 1007, Page 382

PreviSR1 0

IniSR13
PreviSR13

IniSR28

PreviSR28

IniSR2F

PreviSR2F

EndiSRList

TSRPSP

TSRSP

TSRSS
PrevPSP

PrevSP

PrevSS

Hot Index

HotSeqLen

Hot Sequence

EndHotSeq

HotKBFlag

HotKBMask

HotFlag

ActiveTSR

DOSVersion

MajorVersion

DD

DW

DB

DB
DD
DW

DB

DB
DD
DW

DB

DB

DD
ow

LABEL

DW

DW

DW

DW
DW

DW

DW
ow

DB
LABEL

DB

DB
DB

DB

LABEL

DB
DB

Article 11: Terminate-and-Stay-Resident Utilities

?

offset RESIDENT_GROUP:ISR10

13h

FALSE

?

offset RESIDENT_GROUP:ISR13

28h

FALSE

?

offset RESIDENT_GROUP:ISR28

2Fh

FALSE

?

offset RESIDENT_GROUP:ISR2F

BYTE

? ; resident PSP
TSRStackSize ; resident SS:SP

seg RESIDENT-STACK

?

?

?

previous PSP
; previous SS:SP

0 ; index of next scan code in sequence

EndHotSeq-HotSequence ; length of hot-key sequence

SCEnter

BYTE

KBAlt

; hot sequence of scan codes

; hot value of ROM BIOS KB_FLAG

{KBins OR KBCaps OR KBNum OR KBScroll) XOR OFFh
FALSE

FALSE

WORD

?

?

minor version number

major version number

; The following data is used by the TSR application:

NT rap

StartTrapList

Trap1B
PreviSR1B

DW

DB

DB

DD

DW

DB

Figure 11-4. Continued.

{EndTrapList-StartTrapList)/8

1Bh

FALSE

?

offset RESIDENT_GROUP:ISR1B

23h

number of traps

(more)

Section Il· Programming in the MS-DOS Environment 373

ZTE (USA) 1007, Page 383

Part C: Customizing MS-DOS

Trap23
PreviSR23

Trap24
PreviSR24

EndTrapList

PrevBreak

PrevDTA

DB
DD
ow

DB
DB
DD
DW

LABEL

DB

LABEL
PrevDTAoffs DW
PrevDTAseg ow

PrevExtErrinfo LABEL
PrevExtErrAX DW
PrevExtErrBX DW
PrevExtErrCX DW
PrevExtErrDX ow
PrevExtErrSI DW
PrevExtErrDI DW
PrevExtErrDS ow
PrevExtErrES DW

DW

SnapFile DB

RESIDENT_DATA ENDS

FALSE
?
offset

24h
FALSE
?
offset

BYTE

?

DWORD

?.

BYTE
?

?

?

?

?

?

RESIDENT_GROUP:ISR23

RESIDENT_GROUP:ISR24

previous break-checking flag

previous DTA address

previous extended error information

3 dup(O)

'\snap.img' output filename in root directory

RESIDENT-STACK SEGMENT word stack 'STACK'

DB TSRStackSize dup(?)

RESIDENT-STACK ENDS

PAGE

;--

; Transient installation routines

;--

TRANSIENT_TEXT SEGMENT para public 'TCODE'
ASSUME cs:TRANSIENT_TEXT,ds:RESIDENT_DATA,ss:RESIDENT_STACK

InstallSnapTSR PROC

Figure 11-4. Continued.

374 TheMS-DOSEncyclopedia

far At entry: CS:IP -> InstallSnapTSR
SS:SP -> stack
DS,ES -> PSP

(more)

ZTE (USA) 1007, Page 384

Article 11: Terminate-and-Stay-Resident Utilities
.;

Save PSP segment

mov ax,seg RESIDENT_DATA

mov ds,ax DS -> RESIDENT_DATA

mov TSRPSP,es save PSP segment

Check the MS-DOS version

call GetDOSVersion AH major version number
A1 minor version number

Verify that this TSR is not already installed

1100:

Before executing INT 2FH in MS-DOS versions 2.x, test whether INT 2FH
vector is in use. If so, abort if PRINT.COM is using it.

(Thus, in MS-DOS 2.x, if both this program and PRINT.COM are used,

this program should be made resident before PRINT.COM.)

crop
ja

mov

int

mov
or

jnz

push

mov

mov

mov

mov

int
pop

jmp

mov

int

crop

je

ah,2

1101

ax,352Fh

21h

ax,es
ax,bx

1100

ds
ax,252Fh

jump,if version 3.0 or later

AH =· INT 21 H function number

A1 = interrupt number

ES:BX = INT 2FH vector

jump if current INT 2FH vector ..
.. is nonzero

; AH = INT 21H function number

; A1 = interrupt number
dx,seg RESIDENT_GROUP

ds,dx
dx,offset RESIDENT_GROUP:MultiplexiRET

21h

ds
short 1103

ax,OFFOOh

2Fh

ah,OFFh

1101

point INT 2FH vector to IRET

jump to install this TSR

look for PRINT.COM:
if resident, AH = print queue length;

otherwise, AH is unchanged

if PRINT.COM is not resident

use multiplex interrupt

mov al, 1

call FatalError abort if PRINT.COM already installed

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 375

ZTE (USA) 1007, Page 385

Part C: Customizing MS-DOS

L1 01: mov

xor

int

test

jz

cmp
jne

mov

call

L102: mov

call

ah,MultiplexiD

al,al
2Fh

al,al
L103

al,OFFh

L102

al,2
FatalError

al,3

FatalError

AH = multiplex interrupt ID value

AL = OOH
multiplex interrupt

jump if ok to install

jump if not already installed

already installed

; can't install

; Get addresses of InDOS and ErrorMode flags

L103: call GetDOSFlags

; Install this TSR's interrupt handlers

push

mov

mov

L104: lodsb

push

mov

int

mov

mov

pop

push

mov

mov
mov

mov

int
pop

add

loop

Free the environment

pop
push

mov

Figure 11-4. Continued.

376 The MS-DOS Encyclopedia

es preserve PSP segment

cx,NISR

si,offset StartiSRList

ax

ah,35h
21h

[si+1],bx

[si+3],es

ax

ds
dx, [si+S]

AL = interrupt number

DS:SI -> byte past interrupt number
preserve AX

INT 21H function 35H

ES:BX = previous interrupt vector
save offset and segment

of previous handler

AL = interrupt number

preserve DS

bx,seg RESIDENT_GROUP

ds,bx

ah,25h

21h

ds

si,7
L104

es

es

es,es: [2Ch]

DS:DX ->this TSR's handler

INT 21H function 25H

(set interrupt vector)
restore DS

DS:SI -> next in list

ES = PSP segment
preserve PSP segment

ES = segment of environment

(more)

ZTE (USA) 1007, Page 386

rnov ah,49h

int 21h

Terminate and stay resident

pop ax
rnov dx,cs

sub dx,ax

rnov ax,3100h

int 21h

InstallSnapTSR ENDP

GetDOSVersion PROC near

ASSUME ds:RESIDENT_DATA

rnov ah,30h

int 21h
crop al,2

jb L11 0

xchg ah,al

rnov DOSVersion,ax

ret

L110: rnov al,OOh
call FatalError

GetDOSVersion ENDP
GetDOSFlags PROC near

ASSUME ds:RESIDENT_DATA

Get InDOS address from MS-DOS

push es

rnov

int

ah,34h

21h

Article 11: Terminate-and-Stay-Resident Utilities

INT 21H function 49H

(free memory block)

AX = PSP segment

DX = paragraph address of start of
transient portion (end of resident
portion)

DX size of resident portion

AH

AL

INT 21H function number

OOH (return code)

Caller: DS
ES

Returns: AH

seg RESIDENT_DATA

PSP

major version

AL minor version

INT 21H function 30H:
(get MS-DOS version)

jump if versions 1 .x

AH = major version

AL = minor version
save with major version in
high-order byte

abort if versions 1 .x

Caller:

Returns:

Destroys:

DS = seg RESIDENT_DATA

InDOSAddr -> InDOS
ErrorModeAddr -> ErrorMode

AX,BX,CX,DI

INT 21H function number

ES:BX -> InDOS

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 377

ZTE (USA) 1007, Page 387

Part C: Customizing MS-DOS

mov word ptr InDOSAddr,bx
mov word ptr InDOSAddr+2,es

Determine ErrorMode address

L120:

L121:

L122:

mov

mov
cmp
jb

cmp
jae

dec
mov
jmp

mov
xor

mov

repne
jne

word ptr ErrorModeAddr+2,es assume ErrorMode is
in the same segment
as InDOS

ax,DOSVersion
ax,30Ah
L120

ax,OAOOh
L120

bx

jump if MS-DOS version earlier
than 3.1

or MS OS/2-DOS 3.x box

in MS-DOS 3.1 and later, ErrorMode
word ptr ErrorModeAddr,bx
short L125

; is just before InDOS

cx,OFFFFh
di,di

scan MS-DOS segment for ErrorMode

ex = maximum number of bytes to scan
ES:DI -> start of MS-DOS segment

ax,word ptr cs:LF2 AX= opcode for INT 28H

scasb scan for first byte of fragment
L126 jump if not found

cmp
jne

ah,es: [di]
L122

inspect second byte of opcode
jump if not !NT 28H

L123:

L124:

L125:

mov
cmp
jne

mov
jmp

mov
cmp
jne

mov

mov

pop
ret

Figure 11-4. Continued.

378 The MS-DOS Encyclopedia

ax,word ptr cs:LF1 +
ax,es: [di] [LF1-LF2]
L123

ax, es: [di] [(LF1-LF2) +2]
short L 124

ax,word ptr cs:LF3 +
ax,es: [di] [LF3-LF4]
L121

ax, es: [di] [(LF3-LF4) +2]

word ptr ErrorModeAddr,ax

es

AX = opcode for CMP

jump if opcode not CMP

AX = offset of ErrorMode
in DOS segment

AX opcode for TEST

jump if opcode not TEST

AX offset of ErrorMode

(more)

ZTE (USA) 1007, Page 388

Article 11: Terminate-and-Stay-Resident Utilities

; Come here if address of ErrorMode not found

L126: mov
call

al,04h
FatalError

; Code fragments for scanning for ErrorMode flag

LFnear
LFbyte
LFword

LF1:

LF2:

LF3:

LF4:

GetDOSFlags

FatalError

LABEL near
LABEL byte
LABEL . word

cmp ss:LFbyte,O
jne LFnear
int

test
jne
push
int

ENDP

PROC

28h

ss:LFbyte,OFFh
LFnear
ss:LFword

28h

near

dummy labels for addressing

MS-DOS versions earlier than 3.1
CMP ErrorMode,O

MS-DOS versions 3.1 and later
TEST ErrorMode,OFFH

Caller: AL
ES

message number
PSP

ASSUME ds:TRANSIENT_DATA

push ax ; save message number on stack

mov bx,seg TRANSIENT-DATA
mov ds,bx

Display the requested message

mov bx,offset MessageTable
xor ah,ah AX = message number
shl ax,1 AX= offset into MessageTable

add
mov
mov

int

pop
or

jz

bx,ax
dx, [bx]
ah,09h
21h

ax
al,al

L130

Terminate (MS-DOS 2.x and later)

mov
int

ah,4Ch
21h

DS:BX -> address of message
DS:DX -> message
INT 21H function 09H (display string)

display error message

AL message number

jump if message number is zero
(MS-DOS versions 1 .x)

INT 21H function 4CH
(terminate process with return code)

Figure 11~4. Continued. (more)

Section 11- Programming in the MS-DOS Environment 379

ZTE (USA) 1007, Page 389

Part C: Customizing MS-DOS

; Terminate (MS-DOS 1.x)

L130 PROC far

push es push PSP:ODODH

xor ax, ax
push ax

ret far return (jump to PSP:DDDOH)

L13D ENDP

FatalError ENDP

TRANSIENT_TEXT ENDS

PAGE

Transient data segment

TRANSIENT-DATA SEGMENT word. public 'DATA'

MessageTable DW

DW

DW

DW
DW

MessageD DB
Message1 DB
Message2 DB
Message3 DB

Message4 DB

TRANSIENT_DATA ENDS

MessageD

Message1

Message2
Message3
Message4

MS-DOS version error
PRINT.COM found in MS-DOS 2.x

already installed

can't install

can't find flag

CR,LF, 'TSR requires. MS-DOS 2.0 or later version',CR,LF, '$'

CR,LF, 'Can' 't install TSR: PRINT.COM active',CR,LF, '$'

CR,LF, 'This TSR is already installed',CR,LF, '$'

CR,LF, 'Can' 't install this TSR',CR,LF, '$'

CR,LF, 'Unable to locate MS-DOS ErrorMode flag',CR,LF, '$'

END InstallSnapTSR

Figure 11-4. Continued.

When installed, the SNAP program monitors keyboard input until the user types the
hot-key sequence Alt-Enter. When the hot-key sequence is detected, the monitoring rou­
tine waits until the operating environment is stable and then activates the RAM-resident
application, which dumps the current contents ofthe computer's video buffer into the file
SNAP.IMG. Figure 11-5 is a block diagram of the RAM-resident and transient components
of this TSR.

380 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 390

Higher addresses
Transient data

lnstal/SnapTSR
Initialization code and data

RAM-resident stack

RAM-resident data

TSRapp
RAM-resident application

ISR2F
INT 2FH (multiplex interrupt) handler

ISR28
INT 28H (DOS idle interrupt) handler

ISR24
INT 24H (critical error) handler

ISR23
INT, 23H (Control-C) handler

ISRIB
INT lBH (Control-Break) handler

ISR13
INT 13H (BIOS fixed-disk 1/0) handler

ISRJO
INT lOH (BIOS video 1/0) handler .

ISR9
INT 09H (keyboard interrupt) handler

ISRB
INT 08H (timer interrupt) handler

ISR5

Lower addresses
INT 05H (BIOS print screen) handler

Article 11: Terminate-and-Stay-Resident Utilities

T 'RANSIENT _DATA segment

T 'RANSIENT _TEXT segment

SIDENT_STACK segment

SIDENT_DATA segment

RE

RE

~ RESIDENT _TEXT segment

Figure 11-5. Block structure of the TSR program SNAP.EXE when loaded into memory. (Compare with
Figure 11-1.)

Installing the program

When SNAP.EXE is run, only the code in the transient portion of the program is executed.
The transient code performs several operations before it finally executes Interrupt 21H
Function 31H (Terminate and Stay Resident). First it determines which MS-DOS version is
in use. Then it executes the multiplex interrupt (Interrupt 2FH) to discover whether the
resident portion has already been installed. If an MS-DOS version earlier than 2.0 is in use
or if the resident portion has already been installed, the program aborts with an error
message.

Otherwise, installation continues. The addresses of the InDOS and critical error flags are
saved in the resident data segment. The interrupt service routines in the RAM-resident por­
tion of the program are installed by updating all relevant interrupt vectors. The transient
code then frees the RAM occupied by the program's environment, because the resident

Section II: Programming in the MS-DOS Environment 381

ZTE (USA) 1007, Page 391

Part C: Customizing MS-DOS

portion of this program never uses the information contained there. Finally, the transient
portion of the program, which includes the TRANSIENT_ TEXT and TRANS!ENT_DATA
segments, is discarded and the program is terminated using Interrupt 21H Function 31H.

Detecting a hot key

The SNAP program detects the hot-key sequence (Alt-Enter) by monitoring each keypress.
On IBM PCs and PS/2s, each keystroke generates a hardware interrupt on IRQl (Interrupt
09H). The TSR's Interrupt 09H handler compares the keyboard scan code corresponding to
each keypress with a predefined sequence. The TSR's handler also inspects the shift-key
status flags maintained by the ROM BIOS Interrupt 09H handler. When the predetermined
sequence of keypresses is detected at the same time as the proper shift keys are pressed,
the handler sets a global status flag (HotFlag).

Note how the TSR's handler transfers control to the previous Interrupt 09H ISR before it
performs its own work. If the TSR's Interrupt 09H handler did not chain to the previous
handler(s), essential system processing of keystrokes (particularly in the ROM BIOS
Interrupt 09H handler) might not be performed.

Activating the application

The TSR monitors the status of HotFlag by regularly testing its value within a timer-tick
handler. On IBM PCs and PS/2s, the timer-tick interrupt occurs on IRQO (Interrupt 08H)
roughly 18.2 times per second. This hardware interrupt occurs regardless of what else the
system is doing, so an Interrupt 08H ISR a convenient place to check whether HotFlag has
been set.

As in the case of the Interrupt 09H handler, the TSR's Interrupt 08H handler passes control
to previous Interrupt 08H handlers before it proceeds with its own work. This procedure is
particularly important with Interrupt 08H because the ROM BIOS Interrupt 08H handler,
which maintains the system's time-of-day clock and resets the system's Intel8259A Pro­
grammable Interrupt Controller, must execute before the next timer tick can occur. The
TSR's handler therefore defers its own work until control has returned after previous
Interrupt 08H handlers have executed.

The only function of the TSR's Interrupt 08H handler is to attempt to transfer control to the
RAM-resident application. The routine VerifyTSRState performs this task. It first examines
the contents of HotFlag to determine whether a hot-key sequence has been detected. If
so, it examines the state of the MS-DOS InDOS and critical error flags, the current status of
hardware interrupts, and the current status of any non-reentrant ROM BiOS routines that
might be executing.

If HotFlag is nonzero, the InDOS and critical error flags are both zero, no hardware inter­
rupts are currently being serviced, and no non-reentrant ROM BIOS code has been inter­
rupted, the Interrupt 08H handler activates the RAM-resident utility. Otherwise, nothing
happens until the next timer tick, when the handler executes again.

While HotFlag is nonzero, the Interrupt 08H handler continues to monitor system status
until MS-DOS, the ROM BIOS, and the hardware interrupts are all ina stable state. Often

382 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 392

Article 11: Terminate-and-Stay-Resident Utilities

•. --

the system status is stable at the time the hot-key sequence is detected, so the RAM-
. resident application runs immediately. Sometimes, however, system activities such as
prolonged disk reads or writes can preclude the activation of the RAM-resident utility for
several seconds after the hot-key sequence has been detected. The handler could be
designed to detect this situation (for example, by decrementing HotF!ag on each timer
tick) and return an error status or display a message to the user.

A more serious difficulty arises when the MS-DOS default command processor
(COMMAND. COM) is waiting for keyboard input. In this situation, Interrupt 21H Function
OlH (Character Input with Echo) is executing, so InDOS is nonzero and the Interrupt 08H
handler can never detect a state in which it can activate the RAM-resident utility. This
problem is solved by providing a custom handler for Interrupt 28H (the MS-DOS idle inter­
rupt), which is executed by Interrupt 21H Function OlH each time it loops as it waits for a
keypress. The only difference between the Interrupt 28H handler and the Interrupt 08H
handler is that the Interrupt 28H handler can activate the RAM-resident application when
the value of InDOS is 1, which is reasonable because InDOS must have been incremented
when Interrupt 21H Function OlH started to execute.

The interrupt service routines for ROM BIOS Interrupts 05H, 10H, and 13H do nothing
more than increment and decrement flags that indicate whether these interrupts are being
processed by ROM BIOS routines. These flags are inspected by the TSR's Interrupt 08H
and 28H handlers.

Executing the RAM-resident application

When the RAM-resident application is first activated, it runs in the context of the program
that was interrupted; that is, the contents of the registers, the video display mode, the cur­
rent PSP, and the current DTA all belong to the interrupted program. The resident applica­
tion is responsible for preserving the registers and updating MS-DOS with its PSP and DTA
values.

The RAM-resident application preserves the previous contents of the CPU registers on
its own stack to avoid overflowing the interrupted program's stack. It then installs its own
handlers for Control-Break (Interrupt lBH), Control-C (Interrupt 23H), and critical error
(Interrupt 24H). (Otherwise, the interrupted program's handlers would take control if the
user pressed Ctrl-Break or Ctrl-C or if an MS-DOS critical error occurred.) These handlers
perform no action other than setting flags that can be inspected later by the RAM-resident
application, which could then take appropriate action.

The application uses Interrupt 21H Functions 50H and 51H to update MS-DOS with the
address of its PSP. If the application is running under MS-DOS versions 2.x, the critical
error flag is set before Functions 50H and 51H are executed so that Au:x:Stack is used for
the call instead of IOStack, to avoid corrupting IOStack in the event that InDOS is 1.

The application preserves the current extended error information with a call to Interrupt
21H Function 59H. Otherwise, the RAM-resident application might be activated immedi­
ately after a critical error occurred in the interrupted program but before the interrupted

Section II: Programming in the MS-DOS Environment 383

ZTE (USA) 1007, Page 393

Part C: Customizing MS-DOS

program had executed Function 59H and, if a critical error occurred in the TSR applica­
tion, the interrupted program's extended error information would inadvertently be
destroyed.

This example also shows how to update the MS-DOS default DTA using Interrupt 21H
Functions lAH and 2FH, although in this case this step is not necessary because the DTA
is never used within the application. In practice, the DTA should be updated only if the
RAM-resident application includes calls to Interrupt 21H functions that use a DTA
(Functions llH, 12H, 14H, 15H, 21H, 22H, 27H,·28H, 4EH,and 4FH).

After the resident interrupt handlers are installed and the PSP, DTA, and extended error
information have been set up, the RAM-resident application can safely execute any Inter­
rupt 21H function calls except those that use IOStack (Functions OlH through OCH). These
functions cannot be used within a RAM-resident application even if the application sets
the critical error flag to force the use of the auxiliary stack, because they also use other
non-reentrant data structures such as input/output buffers. Thus, a RAM-resident utility
must rely either on user-written console input/output functions or, as in the example, on
ROM BIOS functions.

The application terminates by returning the interrupted program's extended error infor­
mation, DTA, and PSP to MS-DOS, restoring the previous Interrupt lBH, 23H, and 24H
handlers, and restoring the previous CPU registers and stack.

Richard Wilton

384 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 394

Article12
Exception Handlers

Article 12: Exception Handlers

Exceptions are system events directly related to the execution of an application program;
they ordinarily cause the operating system to abort the program. Exceptions are thus dif­
ferent from errors, which are minor unexpected events (such as failure to find a file on
disk) that the program can be expected to handle appropriately. Likewise, they differ from
external hardware interrupts, which are triggered by events (such as a character arriving at
the serial port) that are not directly related to the program's execution.

The computer hardware assists MS-DOS in the detection of some exceptions, such as an
attempt to divide by zero, by generating an internal hardware interrupt. Exceptions related
to peripheral devices, such as an attempt to read from a disk drive that is not ready or does
not exist, are called critical errors. Instead of causing a hardware interrupt, these excep- 4
tions are typically reported to the operating system by device drivers. MS-DOS also sup-
ports a third type of exception, which is triggered by the entry of a Control-C or Control-
Break at the keyboard and allows the user to signal that the current program should be
terminated immediately.

MS-DOS contains built-in handlers for each type of exception and so guarantees a
minimum level of system stability that requires no effort on the part of the application
programmer. For some applications, however, these default handlers are inadequate. For
example, if a communications program that controls the serial port directly with custom
interrupt handlers is terminated by the operating system without being given a chance to
turn off serial-port interrupts, the next character that arrives on the serial line will trigger
an interrupt for which a handler is no longer present in memory. The result will be a sys­
tem crash. Accordingly, MS-DOS allows application programs to install custom exception
handlers so that they can shut down operations in an oi:derly way when an exception
occurs.

This article examines the default exception handlers provided by MS-DOS and discusses
methods programmers can use to replace those routines with handlers that are more
closely matched to specific application requirements.

Overview

Two major exception handlers of importance to application programmers are supported
under all versions of MS-DOS. The first, the Control-C exception handler, terminates the
program and is invoked when the user enters a Ctrl-C or Ctrl-Break keystroke; the address

Section IL- Programming in the MS-DOS Environment 385

ZTE (USA) 1007, Page 395

Part C: Customizing MS-DOS

of this handler is found in the vector for Interrupt 23H. The second, the critical error
exception handler, is invoked if MS-DOS detects a critical error while servicing an 1/0
request. (A critical error is a hardware error that makes normal completion of the request
impossible.) This exception handler displays the familiar Abort, Retry, Ignore prompt;
its address is saved in the vector for Interrupt 24H.

When a program begins executing, the addresses in the Interrupt 23H and 24H vectors
usually point to the system's default Control-C and critical error handlers. If the program is
a child process, however, the vectors might point to exception handlers that belong to the
parent process, if the immediate parent is not COMMAND. COM. In any case, the applica­
tion program can install its own custom handler for Control-C or critical error exceptions
simply by changing the address in the vector for Interrupt 23H or Interrupt 24H so that the
vector points to the application's own routine. When the program performs a final exit by
means of Interrupt 21H Function OOH (Terminate Process), Function 31H (Terminate and
Stay Resident), Function 4CH (Terminate Process with Return Code), Interrupt 20H (Ter­
minate Process), or Interrupt 27H (Terminate and Stay Resident), MS-DOS restores the pre­
vious contents of the Interrupt 23H and 24H vectors.

Note that Interrupts 23H and 24H never occur as externally generated hardware interrupts
in an MS-DOS system. The vectors for these interrupts are used simply as storage areas for
the addresses of the exception handlers.

MS-DOS also contains default handlers for the Control-Break event detected by the ROM
BIOS in IBM PCs and compatible computers and for some of the Intel microprocessor ex­
ceptions that generate actual hardware interrupts. These exception handlers are not re­
placed by application programs as often as the Control-C and critical error handlers. The
interrupt vectors that contain the addresses of these handlers are not restored by MS-DOS
when a program exits.

The address of the Control-Break handler is saved in the vector for Interrupt lBH and is
invoked by the ROM BIOS whenever the Ctrl-Break key combination is detected. The
default MS-DOS handler normally flushes the keyboard input buffer and substitutes
Control-C for Control-Break, and the Control-Cis later handled by the Control-C exception
handler. The default handlers for exceptions that generate hardware interrupts either abort
the current program (as happens with Divide by Zero) or bring the entire system to a halt
(as for a memory parity error).

The Control-C Handler

The vector for Interrupt 23H points to code that is executed whenever MS-DOS detects a
Control-C character in the keyboard input buffer. When the character is detected, MS-DOS
executes a software Interrupt 23H.

In response to Interrupt 23H, the default Control-C exception handler aborts the current
process. Files that were opened with handles are closed (FCB-based files are not), but no

386 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 396

Article 12: Exception Handlers

. other cleanup is performed. Thus, unsaved data can be left in buffers, some files might
not be processed, and critical addresses, such as the vectors for custom interrupt handlers,
might be left pointing into free RAM. If more complete control over process termination is
wanted, the application should replace the default Control-C handler with custom code.
See Customizing Control-C Handling below.

The Control-Break exception handler, pointed to by the vector for Interrupt lBH, is closely
related to the Control-C exception handler in MS-DOS systems on the IBM PC and close
compatibles but is called by the ROM BIOS keyboard driver on detection of the Ctrl-Break
keystroke combination. Because the Control-Break exception is generated by the ROM
BIOS, it is present only on IBM PC-compatible machines and is not a standard feature of
MS-DOS. The default ROM BIOS handler for Control-Break is a simple interrupt return­
in other words, no action is taken to handle the keystroke itself, other than converting the
Ctrl-Break scan code to an extended character and passing it through to MS-DOS as normal
keyboard input.

To account for as many hardware configurations as possible, MS-DOS redirects the ROM
BIOS Control-Break interrupt vector to its own Control-Break handler during system
initialization. The MS-DOS Control-Break handler sets an internal flag that causes the
Ctrl-Break keystroke to be interpreted as a Ctrl-C keystroke and thus causes Interrupt 23H
to occur.

Customizing Control-C handling

The exception handlers most often neglected by application programmers- and most
often responsible for major program failures- are the default exception handlers invoked
by the Ctrl-C and Ctrl-Break keystrokes. Although the user must be able to recover from a
runaway condition (the reason for Ctrl-C capability in the first place), any exit from a com­
plex program must also be orderly, with file buffers flushed to disk, directories and in­
dexes updated, and so on. The default Control-C and Control-Break handlers do not
provide for such an orderly exit.

The simplest and most direct way to deal with Ctrl-C and Ctrl-Break keystrokes is to install
new exception handlers that do nothing more than an IRET and thus take MS-DOS out of
the processing loop entirely. This move is not as drastic as it sounds: It allows an applica­
tion to check for and handle the Ctrl-C and Ctrl-Break keystrokes at its convenience when
they arrive through the normal keyboard input functions and prevents MS-DOS from
terminating the program unexpectedly.

The following example sets the Interrupt 23H and Interrupt lBH vectors to point to an
IRET instruction. When the user presses Ctrl-C or Ctrl-Break, the keystroke combination
is placed into the keyboard buffer like any other keystroke. When it detects the Ctrl-C or
Ctrl-Break keystroke, the executing program should exit properly (if that is the desired
action) after an appropriate shutdown procedure.

To install the new exception handlers, the following procedure (set_int) should be called
while the main program is initializing:

Section IL- Programming in the MS-DOS Environment 387

ZTE (USA) 1007, Page 397

Part C: Customizing MS-DOS

_DATA segment para public 'DATA'
oldint1b dd 0 original INT 1BH vector
oldint23 dd
.....DATA ends

0 ; original INT 23H vector

_TEXT segment byte public 'CODE'
assume cs:_TEXT,ds:......DATA,es:NOTHING

myint1b: handler for Ctrl-Break

myint23: ; handler for Ctrl-C

iret

set_int proc near

mov ax,351bh ; get current contents of
int 21h ; Int 1BH vector and save
mov word ptr oldint1b,bx
mov word ptr oldint1b+2,es

mov ax,3523h ; get current contents of
int 21h ; Int 23H vector and save
mov word ptr oldint23,bx
mov word ptr oldint23+2,es

push ds save our data segment
push cs let DS point to our
pop ds code segment
mov dx,offset myint1b

mov ax,251bh set interrupt vector 1BH
int 21h to point to new handler
mov dx,offset myint23
mov ax,2523h set interrupt vector 23H
int 21h to point to new handler
pop ds restore our data segment
ret back to caller

set_int endp
_TEXT ends

it

it

The application can use the following routine to restore the original contents of the vectors
pointing to the Control-C and Control-Break exception handlers before making a final exit
back to MS-DOS. Note that, although MS-DOS restores the Interrupt 23H vector to its pre­
vious contents, the application must restore the Interrupt lBH vector itself.

rest_int proc
push

near

ds ; save our data segment
mov dx,word ptr oldint23
mov ds,word ptr oldint23+2

mov ax,2523h restore original contents
int 21h of Int 23H vector
pop
push
mov
mov
mov
int
pop
ret

rest_int endp

ds
ds
dx,word
ds,word
ax,251Bh
21h

ds

388 The MS-DOS Encyclopedia

restore our data segment
then save it again

ptr oldint1B
ptr oldint1B+2

restore original contents
of Int 1BH vector

get back our data segment
return to caller

ZTE (USA) 1007, Page 398

Article 12: Exception Handlers

The preceding example simply prevents MS-DOS from terminating an application when a
Ctrl-C or Ctrl-Break keystroke is detected. Program termination is still often the ultimate
goal, but after a more orderly shutdown than is provided by the MS-DOS default Control-C
handler. The following exception handler allows the program to exit more gracefully:

myint1b:
iret

myint23:

call safe_shut_down

Control-Break exception handler
do nothing
Control-C exception handler
release interrupt vectors,
close files, etc.

jmp program_exit_point

Note that because the Control-Break handler is invoked by the ROM BIOS keyboard driver
and MS-DOS is not reentrant, MS-DOS services (such as closing files and terminating with
return code) cannot be invoked during processing of a Control-Break exception. In con­
trast, any MS-DOS Interrupt 21H function call can be used during the processing of a
Control-C exception. Thus, the Control-Break handler in the preceding example does
nothing, whereas the Control-C handler performs orderly shutdown of the application.

Most often, however, neither a handler that does nothing nor a handler that shuts down
and terminates is sufficient for processing a Ctrl-C (or Ctrl-Break) keystroke. Rather than
simply prevent Control-C processing, software developers usually prefer to have a Ctrl-C
keystroke signal some important action without terminating the program. Using methods
similar to those above, the programmer can replace Interrupts lBH and 23H with a routine
like the following:

myint1b:
myint23:

call
iret

; Control-Break exception handler
; Control-C exception handler

control_c_happened

Notes on processing Control-C

The preceding examples assume the programmer wants to treat Control-C and Control­
Break the same way, but this is not always desirable. Control-C and Control-Break are not
the same, and the difference between the two should be kept in mind: The Control-Break
handler is invoked by a keyboard-input interrupt and can be called at any time; the
Control-C handler is called only at "safe" points during the processing of MS-DOS Interrupt
21H functions. Also, even though MS-DOS restores the Interrupt 23H vector on exit from a
program, the application must restore the previous contents of the Interrupt lBH vector
before exiting. If this interrupt vector is not restored, the next Ctrl-Break keystroke will
cause the machine to attempt to execute an undetermined piece of code or data and will
probably crash the system.

Although it is generally desirable to take control of the Control-C and Control-Break inter­
rupts, control should be retained only as long as necessary. For example, a RAM-resident
pop-up application should take over Control-C and Control-Break handling only when it is
activated, and it should restore the previous contents of the Interrupt lBH and Interrupt
23H vectors before it returns control to the foreground process.

Section II: Programming in the MS-DOS Environment 389

ZTE (USA) 1007, Page 399

Part C: Customizing MS-DOS

The Critical Error Handler

When MS-DOS detects a critical error- an error that prevents successful completion of
an 1/0 operation- it calls the exception handler whose address is stored in the vector for
Interrupt 24H. Information about the operation in progress and the nature of the error is
passed to the exception handler in the CPU registers. In addition, the contents of all the
registers at the point of the original MS-DOS call are pushed onto the stack for inspection
by the exception handler.

The action of MS-DOS's default critical error handler is to present a message such as

Error type error action device

Abort, Retry, Ignore?

This message signals a hardware error from which MS-DOS cannot recover without user
intervention. For example, if the user enters the command

C>DIR A: <Enter>

but drive A either does not contain a disk or the disk drive door is open, the MS-DOS criti­
cal error handler displays the message

Not ready error reading drive A
Abort, Retry, Ignore?

I (Ignore) simply tells MS-DOS to forget that an error occurred and continue on its way.
(Of course, if the error occurred during the writing of a file to disk, the file is generally
corrupted; if the error occurred during reading, the data might be incorrect.)

R (Retry) gives the application a second chance to access the device. The critical error
handler returns information to MS-DOS that says, in effect, "Try again; maybe it will work
this time." Sometimes, the attempt succeeds (as when the user closes an open drive door),
but more often the same or another critical error occurs.

A (Abort) is the problem child of Interrupt 24H. If the user responds with A, the applica­
tion is terminated immediately. The directory structure is not updated for open files,
interrupt vectors are left pointing to inappropriate locations, and so on. In many cases, re­
starting the system is the only safe thing to do at this point.

Note: Beginning with version 3.3, an F (Fail) option appears in the message displayed by
MS-DOS's default critical error handler. When Fail is selected, the current MS-DOS func­
tion is terminated and an error condition is returned to the calling program. For example,
if a program calls Interrupt 21H Function 3DH to open a file on drive A but the drive door
is open, choosing F in response to the error message causes the function call to return
with the carry flag set, indicating that an error occurred but processing continues.

390 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 400

Article 12: Exception Handlers

Like the Control-C exception handler, the default critical error exception handler can and
·should be replaced by an application program when complete control of the system is
desired. The program installs its own handler simply by placing the address of the new
handler in the vector for Interrupt 24H; MS-DOS restores the previous contents of the Inter­
rupt 24H vector when the program terminates.

Unlike the Control-C handler, however, the critical error handler must be kept within
carefully defined limits to preserve the stability of the operating system. Programmers
must rigidly adhere to the structure described in the following pages for passing informa­
tion to and from an Interrupt 24H handler.

Flags

cs

lP

ES

DS

BP

Dl

SI

DX

ex

BX

AX

Flags

cs

lP

1-...,

Flags and CS:IP pushed on stack
by original Interrupt 21H call

+-- SP on entry to Interrupt 21H handler !\

1-<'

Registers at point of
original Interrupt 21H call

Return address from
Interrupt 24H handler

I _..I +-- SP on entry to Interrupt 24H handler

Figure 12-1. The stack contents at entry to a critical error exception handler.

Section II: Programming in the MS-DOS Environment 391

ZTE (USA) 1007, Page 401

Part C: Customizing MS-DOS

Mechanics of critical error handling

MS-DOS critical error handling has two components: the exception handler, whose ad­
dress is saved in the Interrupt 24H vector and which can be replaced by an application
program; and an internal routine inside MS-DOS. The internal routine sets up the informa­
tion to be passed to the exception handler on the stack and in registers and, in turn, calls
the exception handler itself. The internal routine also responds to the values returned by
the critical error handler when that handler executes an IRET to return to the MS-DOS
kernel.

Before calling the exception handler, MS-DOS arranges the stack (Figure 12-1 on the pre­
ceding page) so the handler can inspect the location of the error and register contents at
the point in the original MS-DOS function call that led to the critical error.

When the critical error handler is called by the internal routine, four registers may contain
important information: AX, Dl, BP, and SI. (With MS-DOS versions 1.x, only the AX and DI
registers contain significant information.) The information passed to the handler in the
registers differs somewhat, depending on whether a character device or a block device is
causing the error.

Block-device (disk-based) errors

If the critical error handler is entered in response to a block-device (disk-based) error,
registers BP:SI contain the segment:offset of the device driver header for the device caus­
ing the error and bit 7 (the high-order bit) of the AH register is zero. The remaining bits of
the AH register contain the following information (bits 3 through 5 apply only to MS-DOS
versions 3.1 and later):

Bit Value Meaning

0 0 Read operation
1 Write operation

1-2 Indicate the affected disk area:
00 MS-DOS
01 File allocation table
10 Root directory
11 Files area

3 0 Fail response not allowed
1 Fail response allowed

4 0 Retry response not allowed
1 Retry response allowed

5 0 Ignore response not allowed
1 Ignore response allowed

6 0 Undefined

The AL register contains the designation of the drive where the error occurred; for exam­
ple, AL = OOH (drive A), AL = OlH (drive B), and so on.

392 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 402

Article 12: Exception Handlers

The lower half of the DI register contains the following error codes (the upper half of this
register is undefined):

Error Code

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
OFH

Meaning

Write-protected disk
Unknown unit
Drive not ready
Invalid command
Data error (CRC)
Length of request structure invalid
Seek error
Non-MS-DOS disk
Sector not found
Printer out of paper
Write fault
Read fault
General failure
Invalid disk change (version 3.0 or later)

Note: With versions 1.x, the only valid error codes are OOH, 02H, 04H, 06H, 08H, OAH,
andOCH.

Before calling the critical error handler for a disk-based error, MS-DOS tries from one to
five times to perform the requested read or write operation, depending on the type of
operation. Critical disk errors result only from Interrupt 21H operations, not from failed
sector-read and sector-write operations attempted with Interrupts 25H and 26H.

Character-device errors

If the critical error handler is called from the MS-DOS kernel with bit 7 of the AH register
set to 1, either an error occurred on a character device or the memory image of the file allo­
cation table is bad (a rare occurrence). Again, registers BP:SI contain the segment and
offset of the device driver header for the device causing the critical error. The exception
handler can inspect bit 15 of the device attribute word at offset 04H in the device header to
confirm that the error was caused by a character device- this bit is 0 for block devices
and 1 for character devices. See also PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-oos: Installable Device Drivers.

If the error was caused by a character device, the lower half of the DI register contains
error codes as described above and the contents of the AL register are undefined. The
exception handler can inspect the other fields of the device header to obtain the logical
name of the character device; to determine whether that device is the standard input,
standard output, or both; and so on.

Critical error processing

The critical error exception handler is entered from MS-DOS with interrupts disabled.
Because an MS-DOS system call is already in progress and MS-DOS is not reentrant, the

Section II: Programming in the MS-DOS Environment 393

ZTE (USA) 1007, Page 403

Part C: Customizing MS-DOS

handler cannot request any MS-DOS system services other than Interrupt 21H Functions
01 through OCH (character 1/0 functions), Interrupt 21H Function 30H (Get MS-DOS Version
Number), and Interrupt 21H Function 59H (Get Extended Error Information). These func­
tions use a special stack so that they can be called during error processing.

In general, the critical error handler must preserve all but the AL register. It must not
change the contents of the device header pointed to by BP:SI. The handler must return to
the MS-DOS kernel with an IRET, passing an action code in register AL as follows:

Value in AL Meaning

OOH Ignore
01H Retry
02H Terminate process
03H Fail current system call

These values correspond to the options presented by the MS-DOS default critical error
handler. The default handler prompts the user for input, places the appropriate return
information in the AL register, and immediately issues an IRET instruction.

Note: Although the Fail option is displayed by the MS-DOS default critical error handler
in versions 3.3 and later, the Fail option inside the handler was added in version 3.1.

With MS-DOS versions 3.1 and later, if the handler returns an action code in AL that is not
allowed for the error in question (bits 3 through 5 of the AH register at the point of call),
MS-DOS reacts according to the following rules:

If Ignore is specified by AL == OOH but is not allowed because bit 5 of AH == 0, the response .
defaults to Fail (AL == 03H).

If Retry is specified by AL == 01H but is not allowed because bit 4 of AH = 0, the response
defaults to Fail (AL == 03H).

If Fail is specified by AL == 03H but is not allowed because bit 3 of AH == 0, the response
defaults to Abort.

Custom critical error handlers

Each time it receives control, COMMAND. COM restores the Interrupt 24H vector to point
to the system's default critical error handler and displays a prompt to the user. Conse­
quently, a single custom handler cannot terminate and stay resident to provide critical
error handling services for subsequent application programs. Each program that needs
better critical error handling than MS-DOS provides must contain its own critical error
handler.

Figure 12-2 contains a simple critical error handler, INT24.ASM, written in assembly lan­
guage. In the form shown, INT24.ASM is no more than a functional replacement for the
MS-DOS default critical error handler, but it can be used as the basis for more sophisticated
handlers that can be incorporated into application programs.

394 The MS-DOS Encyclopedia

/

ZTE (USA) 1007, Page 404

I

Article 12: Exception Handlers

INT24.ASM contains three routines:

Routine Action

get24 Saves the previous contents of the Interrupt 24H critical error handler vec­
tor and stores the address of the new critical error handler into the vector.

res24

int24.

Restores the address of the previous critical error handler, which was
saved by a call to get24, into the Interrupt 24 vector.

Replaces the MS-DOS critical error handler.

A program wishing to substitute the new critical error handler for the system's default han­
dler should call the get24 routine during its initialization sequence. If the program wishes
to revert to the system's default handler during execution, it can accomplish this with a call
to the res24 routine. Otherwise, a call to res24 (and the presence of the routine itself in
the program) is not necessary, because MS-DOS automatically restores the Interrupt 24H
vector to its previous value when the program exits, from information
stored in the program segment prefix (PSP).

The replacement critical error handler, int24, is simple. First it saves all registers; then it
displays a message that a critical error has occurred and prompts the user to enter a key
selecting one of the four possible options: Abort, Retry, Ignore, or Fail. If an illegal key is
entered, the prompt is displayed again; otherwise, the action code corresponding to the
key is extracted from a table and placed in the AL register, the other registers are restored,
and control is returned to the MS-DOS kernel with an IRET instruction.

Note that the handle read and write functions (Interrupt 21H Functions 3FH and 40H),
which would normally be preferred for interaction with the display and keyboard, cannot
be used in a critical error handler.

cr
lf

name int24
title INT24 Critical Error Handler

INT24.ASM - Replacement critical error handler
by Ray Duncan, September 1 987

equ
equ

Odh
Oah

ASCII carriage return
ASCII linefeed

DGROUP group _DATA

_DATA segment word public 'DATA'

save24 dd 0 ; previous contents of Int 24H
; critical error handler vector

Figure 12-2. INT24.ASM, a replacement Interrupt 24H handler. (more)

Section II: Programming in the MS-DOS Environment 395

ZTE (USA) 1007, Page 405

Part C: Customizing MS-DOS

prompt db

db

; prompt message used by
; critical error handler

cr,lf, 'Critical Error Occurred: '
'Abort, Retry, Ignore, Fail? $'

keys db 'aArRiifF'

$-keys keys_len equ

codes db 2,2,1,1,0,0,3,3

_DATA ends

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP

public get24

get24 proc near

push ds

push es

mov ax,3524h
int 21h

mov word ptr save24,bx

possible user response keys
(both cases of each allowed)

codes returned to MS-DOS kernel

for corresponding response keys

set Int 24H vector to point

to new critical error handler

save segment registers

get address of previous
INT 24H handler and save it

mov word ptr save24+2,es

push cs
pop ds
mov dx,offset

mov ax,2524h

int 21h

pop es
pop ds
ret

get24 endp

public res24

res24 proc near

push ds

Figure 12-2. Continued.

396 The MS-DOS Encyclopedia

; set DS:DX to point to
; new INT 24H handler

_TEXT:int24

then call MS-DOS to

set the INT 24H vector

restore segment registers

and return to caller

restore original contents

of Int 24H vector

save our data segment

(more)

ZTE (USA) 1007, Page 406

Article 12: Exception Handlers
.;

lds dx,save24 put address of old handler

mov ax,2524h back into INT 24H vector

int 21h

pop ds restore data segment

ret and return to caller

res24 endp

This is the replacement critical error handler. It
prompts the user for Abort, Retry, Ignore, or Fail and
returns the appropriate code to the MS-DOS kernel.

int24

int24a:

proc far

push bx
push ex
push dx
push si
push di
push bp
push ds
push es

mov ax,DGROUP

mov ds,ax

mov es,ax
mov dx,offset prompt

mov ah,09h

int 21h

mov ah,01h
int 21h

mov di,offset keys

mov cx,keys_len

cld
repne scasb
jnz int24a

mov al, [di+keys_len-1]

entered from MS-DOS kernel

save registers

display prompt for user
using function 09H (print string

terminated by $ character)

get user's response
function 01H = read one character

look up code for response key

prompt again if bad response

set AL = action code for MS-DOS
according to key that was entered:
0 = ignore, 1 = retry, 2 = abort, 3

pop es ; restore registers

pop ds
pop bp
pop di

pop si

fail

Figure 12-2. Continued. (more)

Section II: Programming in the MS-DOS Environment 397

ZTE (USA) 1007, Page 407

Part C: Customizing MS-DOS

pop dx

pop ex

pop bx
iret exit critical error handler

int24 endp

~TEXT ends

end

Figure 12-2. Continued.

Hardware-generated Exception Interrupts·

Intel reserved the vectors for Interrupts OOH through 1FH (Table 12-1) for exceptions
generated by the execution of various machine instructions. Handling of these chip­
dependent internal interrupts can vary from one make of MS-DOS machine to another;
some such differences are mentioned in the discussion.

Table 12-1. Intel Reserved Exception Interrupts.

Interrupt
Number

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
10H
ll-1FH

Definition

Divide by Zero
Single-Step
Nonmaskable Interrupt (NMI)
Breakpoint Trap
Overflow Trap
BOUND Range Exceeded*
Invalid Opcode *
Coprocessor not Available t
Double-Fault Exception t
Coprocessor Segment Overrun t
Invalid Task State Segment (TSS) t
Segment not Presentt
Stack Exception t
General Protection Exception t
Page Fault*
(Reserved)
Coprocessor Errort
(Reserved)

• The 80186, 80286, and 80386 microprocessors only.
tThe 80286 and 80386 microprocessors only.
*The 80386 microprocessor only.

398 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 408

Article 12: Exception Handlers

Note: A number of these reserved exception interrupts generally do not occur in MS-DOS
because they are generated only when the 80286 or 80386 microprocessor is operating in
protected mode. The following discussions do not cover these interrupts.

Divide by Zero (Interrupt OOH)

An Interrupt OOH occurs whenever a DIV or IDIV operation fails to terminate within a
reasonable period of time. The interrupt is triggered by a mathematical anomaly: Division

. by zero is inherently undefined. To handle such situations, Intel built special processing
into the DIVand IDlY instructions to ensure that the condition does not. cause the pro­
cessor to lock up. Although the assumption underlying Interrupt OOH is an attempt to
divide by zero (a condition that will never terminate), the interrupt can also be triggered
by other error conditions, such as a quotient that is too large to fit in the designated register
(AX orAL).

The ROM BJOS handler for Interrupt OOH in the IBM PC and close compatibles is a simple
IRET instruction. During the MS-DOS startup process, however, MS-DOS modifies the in­
terrupt vector to point to its own handler- a routine that issues the warning message
Divide by Zero and aborts the current application. This abort procedure can leave the
computer and operating system in an extremely unstable state. If the default handler is
used, the system should be restarted immediately and an attempt should be made to find
and eliminate the cause of the error. A better approach, however, is to provide a replace­
ment handler that treats Interrupt OOH much as MS-DOS treats Interrupt 24H.

Single-Step (Interrupt OlH)

If the trap flag (bit 8 of the microprocessor's 16-bit flags register) is set, Interrupt OlH
occurs at the end of every instruction executed by the processor. By default, Interrupt OlH
points to a simple IRET instruction, so the net effect is as if nothing happened. However,
debugging programs, which are the only applications that use this interrupt, modify the
interrupt vector to point to their own handlers. The interrupt can then be used to allow a
debugger to single-step through the machine instructions of the program being debugged,
as DEBUG does with its T (Trace) command.

Nonmaskable Interrupt, or NMI (Interrupt 02H)

In the hardware architecture of IBM PCs and close compatibles, Interrupt 02H is invoked
whenever a memory parity error is detected. MS-DOS provides no handler, because this
error, as a hardware-related problem, is in the domain of the ROM BIOS.

In response to the Interrupt 02H, the default ROM BIOS handler displays a message and
locks the machine, on the assumption that bad memory prevents reliable system opera­
tion. Many programmers, however, prefer to include code that permits orderly shutdown
of the system. Replacing the ROM BIOS parity trap routine can be dangerous, though,
because a parity error detected in memory means the contents of RAM are no longer reli­
able- even the memory locations containing the NMI handler itself might be defective.

Section IL- Programming in the MS-DOS Environment 399

ZTE (USA) 1007, Page 409

Part C: Customizing MS-DOS

Breakpoint Trap (Interrupt 03H)

Interrupt 03H, which is used in conjunction with Interrupt 01H for debugging, is invoked
by a special1-byte opcode (OCCH). During a debugging session, a debugger modifies the
vector for Interrupt 03H to point to its own handler and then replaces 1 byte of program
opcode with the OCCH opcode at any location where a breakpoint is needed.

When a breakpoint is reached, the OCCH opcode triggers Interrupt 03H and the debugger
regains control. The debugger then restores the original opcode in the program being
debugged and issues a prompt so that the user can display or alter the contents of memory
or registers. The use oflnterrupt 03H is illustrated by DEBUG and SYMDEB's breakpoint
capabilities.

Overflow Trap (Interrupt 04H)

If the overflow bit (bit 11) in the microprocessor's flags register is set, Interrupt 04H occurs
when the INTO (Interrupt on Overflow) instruction is executed. The overflow bit can be
set during prior execution of any arithmetic instruction (such as MUL or IMUL) that can
produce an overflow error.

The ROM BIOS of the IBM PC and close compatibles initializes the Interrupt 04H vector to
point to an IRET, so this interrupt becomes invisible to the user if it is executed. MS-DOS
does not have its own handler for Interrupt 04H. However, because the Intel microproces­
sors also include JO (Jump if Overflow) and JNO (Jump if No Overflow) instructions,
applications rarely need the INTO instruction and, hence, seldom have to provide their
own Interrupt 04H handlers.

BOUND Range Exceeded (Interrupt 05H)

Interrupt 05H is generated on 80186, 80286, and 80386 microprocessors if a BOUND
instruction is executed to test the value of an array index and the index falls outside the
limits specified by the instruction's operand. The exception handler is expected to alter
the index so that it is correct-when the handler performs an interrupt return (IRET), the
CPU reexecutes the BOUND instruction that caused the interrupt.

On IBM PC/AT-compatible machines, the ROM BIOS assignment of the PrtSc (print screen)
routine to Interrupt 05H is in conflict with the CPU's use of Interrupt 05H for BOUND
exceptions.

Invalid opcode (Interrupt 06H)

Interrupt 06H is generated by the 80186, 80286, and 80386 microprocessors if the current
instruction is not a valid opcode-for example, if the machine tries to execute a data
statement.

On IBM PC/ATs, Interrupt 06H simply points to an IRET instruction. The ROM BIOS rou­
tines of some IBM PC/AT-compatibles, however, provide an interrupt handler that reports
an unexpected software Interrupt 06H and asks if the user wants to continue. A Y re­
sponse causes the interrupt handler to skip over the invalid opcode. Unfortunately,
because the succeeding opcode is often invalid as well, the user may have the feeling of
being trapped in a loop.

400 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 410

Article 12: Exception Handlers

Extended Error Information

Under MS-DOS versions l.x, the operating system provided limited information about
errors that occurred during calls to the Interrupt 21H system functions. For example, if a
program called Function OFH to open a file, there were only two possible results: On
return, the AL register either contained OOH for a successful open or OFFH for failure. No
further detail was available from the operating system. Although some of these early sys­
tem calls (such as the read and write functions) returned somewhat more information,
the l.x versions of MS-DOS were essentially limited to success/failure return codes.

Beginning with version 2.0 and the introduction of the handle concept, additional error
information became available. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
PRoGRAMMING FORMs-nos: File and Record Management. For example, if a program
attempts to open a file with Interrupt 21H Function 3DH (Open File with Handle), it can
check the status of the carry flag on return to detect whether an error occurred. If the
carry flag is not set, the call was successful and the AX register contains the file handle.
If the carry flag is set, the AX register contains one of the following possible error codes:

Error Code

01H
02H
03H
04H
05H
OCH

Meaning

Invalid function code
File not found
Path not found
Too many open files (no more handles available)
Access denied ·
Invalid access code

In some circumstances, however, even these error codes do not provide enough infor­
mation. Therefore, beginning with version 3.0, MS-DOS made extended error information
available through Interrupt 21H Function 59H (Get Extended Error Information). This
function can be called after any other Interrupt 21H function fails, or it can be called from a
critical error handler. The extended error codes, briefly described below, maintain com­
patibility with the MS-DOS versions 2.x error returns and are grouped as follows:

Error Code Error Group

OOH No error encountered.
01-12H MS-DOS versions 2.x and 3.x Interrupt 21H errors. These error codes are

identical to those returned in the AX register by Functions 38H through
57H if the carry flag is set on return from the function call.

13-1FH MS-DOS versions 2.x and 3.x Interrupt 24H errors. These error codes are
13H (19) greater than the codes passed to a critical error handler in the
lower half of the DI register; that is, if the critical error handler receives
error code 04H (CRC error), Interrupt 21H Function 59H returns 17H.

20-58H Extended error codes, many related to networking and file sharing, for
MS-DOS versions 3.0 and later.

Section II: Programming in the MS-DOS Environment 401

ZTE (USA) 1007, Page 411

Part C: Customizing MS-DOS

Note: The contents of the CPU registers (except CS:IP and SS:SP) are destroyed by a call
to Function 59H. Also, as mentioned earlier, this function is available only with MS-DOS
versions 3.x, even though it maintains compatibility with error returns in versions 2.x.

On return, Function 59H provides the extended error code in the AX register, the error
class (type) in the BH register, a code for the suggested corrective action in the BL register,
and the locus of the error in the CH register. These values are defined in the following
paragraphs. With MS-DOS or PC-DOS versions 3.x, if an error 22H (invalid disk change)
occurs and if the capability is supported by the system's block-device drivers, ES:DI points
to an ASCIIZ volume label that designates the disk to be inserted in the drive before the
operation is retried.

Error Code (AX register). This value is defined as follows:

Value in AX Meaning

Interrupt 21H errors (MS-DOS versions 2.0 and later):
OlH Invalid function number
02H File not found
03H Path not found
04H Too many open files (no handles available)
05H Access denied
06H Invalid handle
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH
llH
12H

Memory control blocks destroyed
Insufficient memory
Invalid memory-block address
Invalid environment
Invalid format
Invalid access code
Invalid data
Reserved
Invalid disk drive specified
Attempt to remove the current directory
Not same device
No more files

Interrupt 24H errors (MS-DOS versions 2.0 and later):
13H Attempt to write on write-protected disk
14H Unknown unit
15H
16H
17H
18H
19H

Drive not ready
Invalid command
Data error based on cyclic redundancy check (CRC)
Length of request structure invalid
Seek error

402 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 412

Article 12: Exception Handlers

Value in AX Meaning

Interrupt 24H errors (continued)

lAH Unknown media type (non-MS-DOS disk)
lBH Sector not found
1 CH Printer out of paper
lOH Write fault
lEH Read fault
lFH General failure

MS-DOS versions 3.x extended errors:
20H Sharing violation
21H Lock violation
22H Invalid disk change
23H FCB unavailable
24H Sharing buffer exceeded
25H-31H Reserved
32H Network request not supported
33H Remote computer not listening
34H Duplicate name on network
35H Network name not found
36H Network busy
37H Device no longer exists on network
38H Net BIOS command limit exceeded
39H Error in network adapter hardware
3AH Incorrect response from network
3BH Unexpected network error
3CH Incompatible remote adapter
3DH Print queue full
3EH Queue not full
3FH Not enough room for print file
40H Network name deleted
41H Access denied
42H Incorrect network device type
43H Network name not found
44H Network name limit exceeded
45H Net BIOS session limit exceeded
46H Temporary pause
47H Network request not accepted
48H Print or disk redirection paused
49H -4FH Reserved
50H File already exists
51H Reserved

(more)

Section /1· Programming in the MS-DOS Environment 403

I
ZTE (USA) 1007, Page 413

Part C: Customizing MS-DOS

Value in AX Meaning

MS-DOS versions 3.x extended errors (continued)

52H Cannot make directory
53H Failure on Interrupt 24H
54H Out of structures
55H Already assigned
56H Invalid password
57H Invalid parameter
58H Network write fault

Locus (CH register). This value provides information on the location of the error:

Value inCH

OlH
02H
03H
04H
05H

Meaning

Location unknown
Block device; generally caused by a disk error
Network
Serial device; generally caused by a timeout from a character device
Memory; caused by an error in RAM

Error Class (BH register). This value gives the general category of the error:

ValueinBH

OlH
02H

03H
04H

05H

06H

07H

08H
09H

OAH

Meaning

Out of resource; out of storage space or 1/0 channels.
Temporary situation; expected to clear, as in a file or record lock- gener­

ally occurs only in a network environment.
Authorization; a problem with permission to access the requested device.
Internal error in system software; generally reflects a system software bug

rather than an application or system failure.
Hardware failure; a serious hardware-related problem not the fault of the

user program.
System failure; a serious failure of the system software, not directly the

fault of the application-generally occurs if configuration files are
missing or incorrect.

Application-program error; generally caused by inconsistent function
requests from the user program.

File or item not found.
File or item of invalid format or type detected, or an otherwise unsuitable

or invalid item requested.
File or item interlocked by the system.

(more)

404 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 414

Article 12: Exception Handlers

Value in BH Meaning

OBH Media failure; generally occurs with a bad disk in a drive, a bad spot on the
disk, or the like.

OCH Aiready exists; generally occurs when application tries to declare a
machine name or device that already exists.

ODH Unknown.

Suggested Action (BL register). One of the most useful returns from Function 59H, this
value suggests a corrective action to try:

Value in BL Meaning

OlH

02H
03H

04H

05H

06H
07H

Retry a few times before prompting the user to choose Ignore for the
program to continue or Abort to terminate.

Pause for a few seconds between retries and then prompt user as above.
Ask user to reenter the input. In most cases, this solution applies when an

incorrect drive specifier or filename was entered. Of course, if the value
was hard-coded into the program, the user should not be prompted for
input.

Clean up as well as possible, then abort the application. This solution
applies when the error is destructive enough that the application cannot
safely proceed, but the system is healthy enough to try an orderly shut­
down of the application.

Exit from the application as soon as possible, without trying to close files
and clean up. This means something is seriously wrong with either the
application or the system.

Ignore; error is informational.
Prompt user to perform some action, such as changing floppy disks in a

drive and then retry.

Function 59H and older system calls
The Interrupt 21H functions- primarily the FCB-related file and record calls- that return
OFFH in the AL register to indicate that an error has occurred but provide no further infor­
mation about the type of error include

Function

OFH
lOH
llH
12H

Name

Open File with FCB
Close File with FCB
Find First File
Find Next File

(more)

Section II: Programming in the MS-DOS Environment 405

ZTE (USA) 1007, Page 415

Part C: Customizing MS-DOS

Function Name

13H
16H
17H
23H

Delete File
Create File with FCB
Rename File
Get File Size

These function calls now exist only to maintain compatibility with MS-DOS versions l.x.
The preferred choices are the handle-style calls available in MS-DOS versions 2.0 and later,
which offer full path support and much better error reporting. See also SYSTEM CALLS.

If the older calls must be used, the program can use Function 59H to obtain more detailed
information under MS-DOS version 3.0 or later. For example:

myfcb db 0 drive = default
db 'MYFILE filename, 8 chars
db 'DAT' extension, 3 chars
db 25 dup (0) remainder of FCB

mov dx,seg myfcb DS:DX FCB
mov ds,dx
mov dx,offset myfcb
mov ah,Ofh function OFH =Open FCB

int 21 h transfer to MS-DOS
or al, al test status
jz success jump, open succeeded

open failed, get
extended error info

mov
mov
int
or
jz

cmp
jz
cmp
jz
cmp
jz

bx,O
ah,59h
21h
ax, ax
success

bl,01h
retry
bl,04h
cleanup
bl,OSh
panic

BX = OOH for ver. 2.x-3.x
function 59H = Get Info
transfer to MS-DOS
really an error?
no error, jump

test recommended actions

if BL 01H retry operation

if BL 04H clean up and exit

if BL OSH exit immediately

Function 59H and newer system calls

The function calls listed below were added in MS-DOS versions 2.0 and later. These calls
return with the carry flag set if an error occurs; in addition, the AX register contains an
error value corresponding to error codes OlH through 12H of the extended error return
codes:

406 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 416

Article 12: Exception Handlers

Function Name

MS-DOS versions 2.0 and later:
38H Get/Set Current Country
39H Create Directory
3AH Remove Directory
3BH Change Current Directory
3CH Create File with Handle
3DH Open File with Handle
3EH Close File
3FH Read File or Device
40H Write File or Device
41H Delete File
42H Move File Pointer
43H Get/Set File Attributes
44H IOCTL (I/O Control for Devices)
45H Duplicate File Handle
46H Force Duplicate File Handle
47H Get Current Directory
48H Allocate Memory Block
49H Free Memory Block
4AH Resize Memory Block
4BH Load and Execute Program (EXEC)
4EH Find First File
4FH Find Next File
56H Rename File
57H Get/Set Date/Time of File

MS-DOS versions 3.0 and later:
58H Get/Set Allocation Strategy
5AH Create Temporary File
5BH Create New File
5CH Lock/Unlock File Region

MS-DOS versions 3.1 and later:
5EH Network Machine Name/Printer Setup
5FH Get/Make Assign List Entry

Although these newer functions have much better error reporting than the older FCB
functions, Function 59H is still useful. Regardless of the version of MS-DOS that is running,
the error code returned in the AX register from an Interrupt 21H function call is always in
the range 0-12H. If a program is running under MS-DOS versions 3.x and wants to obtain
one or more of the more specific error codes in the range 20-58H, the program must

Section /1- Programming in the MS-DOS Environment 407

ZTE (USA) 1007, Page 417

Part C: Customizing MS-DOS

follow the failed Interrupt 21H call with a subsequent call to Interrupt 21H Function 59H.
The program can then use the code returned by Function 59H in the BL register as a guide
to the action to take in response to the error. For example:

myfile db

mov
mov

mov

mov

int

jnc

mov

mov

int
or

jz

cmp

jz

'MYFILE.DAT',O ; ASCIIZ filename

dx,seg myfile

ds,dx
dx,offset my file
ax,3d02h

21h

success

bx,O
ah,59h

21h
ax, ax
success

bl,01h

retry

DS:DX = ASCIIZ filename

open, read/write
transfer to MS-DOS

jump, open succeeded

open failed, get

extended error info
BX = OOH for ver. 2.x-3.x

function 59H = Get Info

transfer to MS-DOS

really an error?
no error, jump

test recommended actions

if BL = 01H retry operation

If the standard critical error handler is replaced with a customized critical handler,
Function 59H can also be used to obtain more detailed information about an error inside
the handler before either returning control to the application or aborting. The value in the
BL register should be used to determine the appropriate action to take or the message to
display to the user.

408 The MS-DOS Encyclopedia

jim Kyle
Chip Rabinowitz

ZTE (USA) 1007, Page 418

Article 13: Hardware Interrupt Handlers

Article13
Hardware Interrupt Handlers

Unlike software interrupts, which are service requests initiated by a program, hardware
interrupts occur in response to electrical signals received from a peripheral device such as
a serial port or a disk controller, or they are generated internally by the microprocessor
itself. Hardware interrupts, whether external or internal to the microprocessor, are given
prioritized servicing by the Intel CPU architecture.

The 8086 family of microprocessors (which includes the 8088, 8086, 80186, 80286,
and 80386) reserves the first 1024 bytes of memory (addresses OOOO:OOOOH through
0000:03FFH) for a table of 256 interrupt vectors, each a 4-byte far pointer to a specific
interrupt service routine (ISR) that is carried out when the corresponding interrupt is pro-

4
cessed. The design of the 8086 family requires certain of these interrupt vectors to be used
for specific functions (Table 13-1). Although Intel actually reserves the first 32 interrupts,
IBM, in the original PC, redefined usage of Interrupts 05H to 1FH. Most, but not all, of
these reserved vectors are used by software, rather than hardware, interrupts; the
redefined IBM uses are listed in Table 13-2.

Table 13-1. Intel Reserved Exception Interrupts.

Interrupt
Number

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH

Definition

Divide by zero
Single step
Nonmaskable interrupt (NMI)
Breakpoint trap
Overflow trap
BOUND range exceeded*
Invalid opcode *
Coprocessor not availablet
Double-fault exception t
Coprocessor segment overrun t
Invalid task state segment (TSS)t
Segment not presentt
Stack exception t
General protection exception t
Page fault*

(more)

Section II: Programming in the MS-DOS Environment 409

ZTE (USA) 1007, Page 419

Part C: Customizing MS-DOS

Table 13-1. Continued.

Interrupt
Number

OFH
lOH

Definition

(Reserved)
Coprocessor errort

• The 80186, 80286, and 80386 microprocessors only. · ·
tThe 80286 and 80386 microprocessors only.
:!:The 80386 microprocessor only.

Table 13-2. IBM Interrupt Usage.

Interrupt
Number Definition

05H Print screen
06H Unused
07H Unused
08H Hardware IRQO (timer~tick) *
09H Hardware IRQl (keyboard)
OAH Hardware IRQ2 (reserved) t
OBH Hardware IRQ3 (COM2)
OCH Hardware IRQ4 (COMl)
ODH Hardware IRQ5 (fixed disk)
OEH Hardware IRQ6 (floppy disk)
OFH Hardware IRQ7 (printer)
lOH Video service
llH Equipment information
12H Memory size
13H Disk 1/0 service
14H Serial-port service
15H Cassette/ network service
16H Keyboard service
17H Printer service
18H ROM BASIC
19H Restart system
lAH Get/Set time/ date
lBH Control-Break (user defined)
lCH Timer tick (user defined)
lDH Video parameter pointer
lEH Disk parameter pointer
lFH Graphics character table

• IRQ = Interrupt request line.
t See Table 13-4.

410 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 420

Article 13: Hardware Interrupt Handlers

Nestled in the middle of Table 13-2 are the eight hardware interrupt vectors (08-0FH) IBM
· implemented in the original PC design. These eight vectors provide the maskable inter­
rupts for the IBM PC-family and close compatibles. Additional IRQ lines built into the IBM
PC/AT are discussed under The IRQ Levels below.

The conflicting uses of the interrupts listed in Tables 13-1 and 13-2 have created com­
patibility problems as the 8086 family of microprocessors has developed. For complete
compatibility with IBM equipment, the IBM usage must be followed even when it conflicts
with the chip design. For example, a BOUND error occurs if an array index exceeds the
specified upper and lower limits (bounds) of the array, causing an Interrupt 05H to be
generated. But the 80286 processor used in all AT-class computers will, if a BOUND error
occurs, send the contents of the display to the printer, because IBM uses Interrupt 05H for
the Print Screen function.

Hardware Interrupt Categories

The 8086 family of microprocessors can handle three types of hardware interrupts. First
are the internal, microprocessor-generated exception interrupts (Table 13-1). Second is the
nonmaskable interrupt, or NMI (Interrupt 02H), which is generated when the NMI line
(pin: 17 on the 8088 and 8086, pin 59 on the 80286, pin B8 on the 80386) goes high (active).
In the IBM PC family (except the PCjr and the Convertible), the nonmaskable interrupt is
designated for memory parity errors. Third are the maskable interrupts, which are usually
generated by external devices.

Maskable interrupts are routed to the main processor through a chip called the 8259A
Programmable Interrupt Controller (PIC). When it receives an interrupt request, the PIC
signals the microprocessor that an interrupt needs service by driving the interrupt request
(INTR) line of the main processor to high voltage level. This article focuses on the mask­
able interrupts and the 8259A because it is through the PIC that external 1/0 devices (disk
drives, serial communication ports, and so forth) gain access to the interrupt system.

Interrupt priorities in the 8086 family

The Intel microprocessors have a built-in priority system for handling interrupts that
occur simultaneously. Priority goes to the internal instruction exception interrupts, such as
Divide by Zero and Invalid Opcode, because priority is determined by the interrupt num­
ber: Interrupt OOH takes priority over all others, whereas the last possible interrupt, OFFH,
would, if present, never be allowed to break in while another interrupt was being serviced.
However, if interrupt service is enabled (the microprocessor's interrupt flag is set), any
hardware interrupt takes priority over any software interrupt (INT instruction).

The priority sequencing by interrupt number must not be confused with the priority
resolution performed by hardware external to the microprocessor. The numeric priority
discussed here applies only to interrupts generated within the 8086 family of microproces­
sor chips and is totally independent of system interrupt priorities established for compo­
nents external to the microprocessor itself.

Section II: Programming in the MS-DOS Environment 411

ZTE (USA) 1007, Page 421

Part C: Customizing MS-DOS

Interrupt service routines

For the most part, programmers need not write hardware-specific program routines to
service the hardware interrupts. The IBM PC BIOS routines, together with MS-DOS ser­
vices, are usually sufficient. In some cases, however, MS-DOS and the ROM BIOS do not
provide enough assistance to ensure adequate performance of a program. Most notable in
this category is communications software, for which programmers usually must access the
8259A and the 8250 Universal Asynchronous Receiver and Transmitter (UART) directly.·
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos:
Interrupt -Driven Communications.

Characteristics of Maskable Interrupts

Two major characteristics distinguish maskable interrupts from all other events that can
occur in the system: They are totally unpredictable, and they are highly volatile. In gener­
al, a hardware interrupt occurs when a peripheral device requires the full attention of the
system and data will be irretrievably lost unless the system responds rapidly.

All things are relative, however, and this is especially true of the speed required to service
an interrupt request. For example, assume that two interrupt requests occur at essentially
the same time. One is from a serial communications port receiving data at 300 bps; the
other is from a serial port receiving data at 9600 bps. Data from the first serial port will not
change for at least 30 milliseconds, but the second serial port must be serviced within one
millisecond to avoid data loss.

Unpredictability

Because maskable interrupts generally originate in response to external physical events,
such as the receipt of a byte of data over a communications line, the exact time at which
such an interrupt will occur cannot be predicted. Even the timer interrupt request, which
by default occurs approximately 18.2 times per second, cannot be predicted by any pro­
gram that happens to be executing when the interrupt request occurs.

Because of this unpredictability, the system must, if it allows any interrupts to be recog­
nized, be prepared to service all maskable interrupt requests. Conversely, if interrupts can­
not be serviced, they must all be disabled. The 8086 family of microprocessors provides
the Set Interrupt Flag (STI) instruction to enable maskable interrupt response and the
Clear Interrupt Flag (CLI) instruction to disable it. The interrupt flag is also cleared auto­
matically when a hardware interrupt response begins; the interrupt handler should ex­
ecute STI as quickly as possible to allow higher priority interrupts to be serviced.

Volatility

As noted earlier, a maskable interrupt request must normally be serviced immediately to
prevent loss of data, but the concept of immediacy is relative to the data transfer rate of the
device requesting the interrupt. The rule is that the ~urrently available unit of data must be
processed (at least to the point of being stored in a buffer) before the next such item can

412 TheMS-DOSEncyclopedia

ZTE (USA) 1007, Page 422

Article 13: Hardware Interrupt Handlers

arrive. Except for such devices as disk drives, which always require immediate response,
interrupts for devices that receive data are normally much more critical than interrupts
for devices that transmit data.

The problems imposed by data volatility during hardware interrupt service are solved by
establishing service priorities for interrupts generated outside the microprocessor chip it­
self. Devices with the slowest transfer rates are assigned lower interrupt service priorities,
and the most time-critical devices are assigned the highest priority of interrupt service.

Handling Maskable Interrupts

The microprocessor handles all interrupts (maskable, nonmaskable, and software) by
pushing the contents of the flags register onto the stack, disabling the interrupt flag, and
pushing the current contents of the CS:IP registers onto the stack.

The microprocessor then takes the interrupt number from the data bus, multiplies it by 4 4
(the size of each vector in bytes), and uses the result as an offset into the interrupt vector
table located in the bottom 1 KB (segment OOOOH) of system RAM. The 4-byte address
at that location is then used as the new CS:IP value (Figure 13-1).

Push flags

PushCS:IP

Get address of ISR
from table;

place in CS:IP

Process interrupt

IRET

Restore CS:IP, flags

Figure 13-1. General interrupt sequence.

Section 11- Programming in the MS-DOS Environment 413

ZTE (USA) 1007, Page 423

Part C: Customizing MS-DOS

External devices are assigned dedicated interrupt request lines (IRQs) associated with the
8259A. See The IRQ Levels below. When a device requires attention, it sends a signal to
the PIC via its IRQ line. The PIC, which functions as an "executive secretary" for the exter­
nal devices, operates as shown in Figure 13-2. It evaluates the service request and, if appro­
priate, causes the microprocessor's INTR line to go high. The microprocessor then checks
whether interrupts are enabled (whether the interrupt flag is set). If they are, the flags are
pushed onto the stack, the interrupt flag is disabled, and CS:IP is pushed onto the stack.

DEVICE

Signals request

8259A

Place INT num­
ber on data bus

MICROPROCESSOR

~
I Acknowledge I

<(INTA INT

Figure 13-2. Maskable interrupt service.

414 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 424

Article 13: Hardware Interrupt Handlers

The microprocessor acknowledges the interrupt request by signaling the 8259A via the
interrupt acknowledge (INTA) line. The 8259A then places the interrupt number on the
data bus. The microprocessor gets the interrupt number from the data bus and services
the interrupt. Before issuing the IRET instruction, the interrupt service routine must issue
an end-of-interrupt. (EO I) sequence to the 8259A so that other interrupts can be processed.
This is done by sending 20H to port 20H. (The similarity of numbers is pure coincidence.)
The EOI sequence is covered in greater detail elsewhere. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Interrupt-Driven Communications.

The 8259A Programmable Interrupt Controller

The 8259A (Figure 13-3) has a number of internal components, many of them under soft­
ware control. Only the default settings for the IBM PC family are covered here.

Three registers influence the servicing of maskable interrupts: the interrupt request regis­
ter (IRR), the in-service register (ISR), and the interrupt mask register (IMR).

The IRR is used to keep track of the devices requesting attention. When a device causes
its IRQ line to go high to signal the 8259A that it needs service, a bit is set in the IRR that
corresponds to the interrupt level of the device.

The ISR specifies which interrupt levels are currently being serviced; an ISR bit is set when
an interrupt has been acknowledged by the CPU (via INTA) and the interrupt number has
been placed on the data bus. The ISR bit associated with a particular IRQ remains set until
an EOI sequence is received.

The IMR is a read/write register (at port 21H) that masks (disables) specific interrupts.
When a bit is set in this register, the corresponding IRQ line is masked and no servicing for
it is performed until the bit is cleared. Thus, a particular IRQ can be disabled while all
others continue to be serviced.

The fourth major block in Figure 13-3, labeled Priority resolver, is a complex logical circuit
that forms the heart of the 8259A. This component combines the statuses of the IMR, the
ISR, and the IRR to determine which, if any, pending interrupt request should be serviced
and then causes the microprocessor's INTR line to go high. The priority resolver can be
programmed in a number of modes, although only the mode used in the IBM PC and close
compatibles is described here.

Section ll- Programming in the MS-DOS Environment 415

ZTE (USA) 1007, Page 425

Part C: Customizing MS-DOS

DATA BUS

CONTROL BUS

lNTA

Control logic

INTERNAL BUS

In-service ~
register (ISR)

Priority resolver

Interrupt mask register
(IMR)

lNT

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I

~IRQO

+--+-IRQl
I

+--:TIRQ2
Interrupt request ~ IRQ3

I
register (IRR) ~ IRQ4

~IRQ5
I IRQ6 ~

~IRQ?

Figure 13-3. Block diagram of the 8259A Programmable Interrupt Controller.

The IRQ levels

When two or more unserviced hardware interrupts are pending, the 8259A determines
which should be serviced first. The standard mode of operation for the PIC is the fully
nested mode, in which IRQ lines are prioritized in a fixed sequence. Only IRQ lines with
higher priority than the one currently being serviced are permitted to generate new
interrupts.

416 The MS-DOS Encyclopedia

IRQ
lines

ZTE (USA) 1007, Page 426

i)

1
··-·---.. ---
t
I
l

'':":

Article 13: Hardware Interrupt Handlers

The highest priority is IRQO, and the lowest is IRQ7. Thus, if an Interrupt 09H (signaled
by IRQ1) is being serviced, only an Interrupt 08H (signaled by IRQO) can break in. All
other interrupt requests are delayed until the Interrupt 09H service routine is completed
and has issued an EOI sequence.

Eight-level designs

The IBM PC, PCjr, and PC/XT (and port-compatible computers) have eight IRQ lines to
the PIC chip-IRQO through IRQ7. These lines are-mapped into interrupt vectors for
Interrupts 08H through OFH (that is, 8 + IRQ level). These eight IRQ lines and their associ­
ated interrupts are listed in Table 13-3.

Table 13-3. Eight-Level Interrupt Map.

ffiQLine Interrupt Description

IRQO 08H Timer tick, 18.2 times per second
IRQ1 09H Keyboard service required
IRQ2 OAH 1/0 channel (unused on IBM PC/XT)
IRQ3 OBH COM1 service required
IRQ4 OCH COM2 service required
IRQ5 ODH Fixed-disk service required
IRQ6 OEH Floppy-disk s~rvice required
IRQ7 OFH Data request from parallel printer*

• This request cannot be reliably generated by older versions of the IBM Monochrome/Printer Adapter and
compatibles. Printer drivers that depend on this signal foFoperation with these cards are subject to failure.

Sixteen-level designs

In the IBM PC/AT, 8 more IRQ levels have been added by using a second 8259A PIC (the
"slave") and a cascade effect, which gives 16 priority levels.

The cascade effect is accomplished by connecting the INT line of the slave to the IRQ2 line
of the first, or "master," 8259A instead of to the microprocessor. When a device connected
to one of the slave's IRQ lines makes an interrupt request, the INT line of the slave goes
high and causes the IRQ2 line of the master 8259A to go high, which, in turn, causes the
INT line of the master to go high and thus interrupts the microprocessor.

The microprocessor, ignorant of the second 8259A's presence, simply generates an inter­
rupt acknowledge signal on receipt of the interrupt from the master 8259A. This signal ini­
tializes both 8259As and also causes the master to turn control over to the slave. The slave
then completes the interrupt request.

On the IBM PC/AT, the eight additional IRQ lines are mapped to Interrupts 70H through
77H (Table 13-4). Because the eight additional lines are effectively connected to the master

Section 11· Programming in the MS-DOS Environment 417

ZTE (USA) 1007, Page 427

Part C: Customizing MS-DOS

8259A's IRQ2line, they take priority over the master's IRQ3 through IRQ7 events. The
cascade effect is graphically represented in Figure 13-4.

Table 13-4. Sixteen-Level Interrupt Map.

mQllne Interrupt Description

IRQO 08H Timer tick, 18.2 times per second
IRQ1 09H Keyboard service required
IRQ2 OAH INT from slave 8259A:
IRQ8 70H Real-time clock service
IRQ9 71H Software redirected to IRQ2
IRQ10 72H Reserved
IRQ11 73H Reserved
IRQ12 74H Reserved
IRQ13 75H Numeric coprocessor
IRQ14 76H Fixed-disk controller
IRQ15 77H Reserved
IRQ3 OBH COM2 service required
IRQ4 OCH COMl service required
IRQ5 ODH Data request from LPT2
IRQ6 OEH Floppy-disk service required
IRQ7 OFH Data request from LPT1

DATA BUS

CONTROL BUS

INT

Slave 8259A Master 8259A

IRQ2

Figure 13-4. A graphic representation of the cascade effect for IRQ priorities.

418 TheMS-DOSEncyclopedia

ZTE (USA) 1007, Page 428

Article 13: Hardware Interrupt Handlers

Note: During the INTA sequence, the corresponding bit in the ISR register of both 8259As
is set, so two EO Is must be issued to complete the interrupt service- one for the slave and
one for the master.

Programming for the Hardware Interrupts

Any program that modifies an interrupt vector must restore the vector to its original condi­
tion before returning control to MS-DOS (or to its parent process). Any program that totally
replaces an existing hardware interrupt handler with one of its own must perform all the
handshaking and terminating actions of the original- re-enable interrupt service, signal
EOI to the interrupt controller, and so forth. Failure to follow these rules has led to many
hours of programmer frustration. See also PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: CusTOMIZING MS-Dos: Exception Handlers.

When an existing interrupt handler is completely replaced with a new, customized rou- 4
tine, the existing vector must be saved so it can be restored later. Although it is possible to
modify the 4-byte vector by directly addressing the vector table in low RAM (and many
published programs have followed this practice), any program that does so runs the risk
of causing system failure when the program is used with multitasking or multiuser en­
hancements or with future versions of MS-DOS. The only technique that can be recom-
mended for either obtaining the existing vector values or changing them is to use the
MS-DOS functions provided for this purpose: Interrupt 21H Functions 25H (Set Interrupt
Vector) and 35H (Get Interrupt Vector).

After the existing vector has been saved, it can be replaced with a far pointer to the
replacement routine. The new routine must end with an IRET instruction. It should also
take care to preserve all microprocessor registers and conditions at entry and restore
them before returning.

A sample replacement handler
Suppose a program performs many mathematical calculations of random values. To
prevent abnormal termination of the program by the default MS-DOS Interrupt OOH han­
dler when a DIV or IDIV instruction is attempted and the divisor is zero, a programmer
might want to replace the Interrupt OOH (Divide by Zero) routine with one that informs the
user of what has happened and then continues operation without abnormal termination.
The .COM program DIVZERO.ASM (Figure 13-5) does just that. (Another example is in­
cluded in the article on interrupt-driven communications. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Interrupt-Driven Communications.)

Section II: Programming in the MS-DOS Environment 419

ZTE (USA) 1007, Page 429

Part C: Customizing MS-DOS

name
title

divzero

'DIVZERO - Interrupt OOH Handler'

DIVZERO.ASM: Demonstration Interrupt OOH Handler

To assemble, link, and convert to COM file:

cr
lf

eos

_TEXT

entry:

intmsg

divmsg

par1

par2

par3

par4

oldintO

intflag

oldip

C>MASM DIVZERO; <Enter>

C>LINK DIVZERO; <Enter>
C>EXE2BIN DIVZERO.EXE DIVZERO.COM. <Enter>

C>DEL DIVZERO.EXE <Enter>

equ Odh ASCII carriage return
equ Oah ASCII line feed
equ '$' end of string marker

segment word public 'CODE'

assume cs:_TEXT,ds:-TEXT,es:-TEXT,ss:-TEXT

org 100h

jmp start ; skip over data area

db 'Divide by Zero Occurred! ',cr,lf,eos

db 'Dividing ' message used by demo
db 'OOOOh' dividend goes here
db ' by '
db '00h' divisor goes here
db ' equals '
db '00h' quotient here

db ' remainder '
db 'OOh' and remainder here
db cr,lf,eos

dd ? save old Int OOH vector

db 0 nonzero if divide by

zero interrupt occurred

dw 0 save old IP value

The routine 'intO' is the actual divide by zero

interrupt handler. It gains control whenever a

divide by zero or overflow occurs. Its action

is to set a flag and then increment the instruction

pointer saved on the stack so that the failing

(more)

Figure 13-5. The Divide by Zero replacement handler, DIVZERO.ASM. This code is specific to 80286 and
80386 microprocessors. (See Appendix M· 8086/8088 Software Compatibility Issues.)

420 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 430

~ ..

Article 13: Hardware Interrupt Handlers

divide will not be reexecuted after the IRET.

In this particular case we can call MS-DOS to
display a message during interrupt handling

because the application triggers the interrupt

intentionally. Thus, it is known that MS-DOS or

other interrupt handlers are not in control

at the point of interrupt.

intO: pop cs:oldip capture instruction pointer

push ax
push bx

push ex
push dx

push di

push si
push ds
push es

push cs set DS cs
pop ds

mov ah,09h ; print error message

mov dx,offset _TEXT:intmsg

int 21h

add oldip,2 bypass instruction causing

divide by zero error

mov intflag, 1 set divide by 0 flag

pop es restore all registers

pop ds
pop si
pop di
pop dx
pop ex
pop bx

pop ax

push cs:oldip restore instruction pointer

iret return from interrupt

The code beginning at 'start' is the application

program. It alters the vector for Interrupt OOH to

point to the new handler, carries out some divide

Figure 13-5. Continued.

Section II: Programming in the MS-DOS Environment

(more)

421

ZTE (USA) 1007, Page 431

Part C: Customizing MS-DOS

operations (including one that will trigger an

interrupt) for demonstration purposes, restores
the original contents of the Interrupt OOH vector,

and then terminates.

start: mov
int

ax,3500h

21h

get current contents

of Int OOH vector

save segment:offset
of previous Int OOH handler

mov word ptr oldintO,bx
mov word ptr oldint0+2,es

mov

mov

int

mov
mov

call

mov

mov

call

mov

mov

call

mov

mov

call

lds

mov

int

mov

int

dx,offset intO

ax,2500h

21h

ax,20h

bx, 1
divide

ax,1234h

bx,Seh
divide

ax,5678h

bx,7fh

divide

ax, 20h

bx,O

divide

dx,oldintO

ax,2500h

21h

ax,4c00h

21h

install new handler ...

DS:DX = handler address

call MS-DOS to set

Int OOH vector

now our handler is active,

carry out some test divides.

test divide

divide by 1

test divide

divide by SEH

test divide
divide by 127

test divide
divide by 0
(triggers interrupt)

demonstration complete,

restore old handler

DS:DX = handler address

call MS-DOS to set

Int OOH vector

final exit to MS-DOS

with return code = 0

The routine 'divide' carries out a trial division,

displaying the arguments and the results. It is

Figure 13-5. Continued.

422 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 432

Article 13: Hardware Interrupt Handlers

called with AX dividend and BL divisor.

divide proc

push

push

mov

call

mov

mov

call

pop

near

ax

bx

di,offset par1

wtoa

ax,bx
di,offset par2

btoa

bx

pop ax

div

cmp
jne

push

mov

call

pop

xchg
mov

call

mov

bl

intflag, 0
nodiv

ax
di,offset par3

btoa

ax

ah,al

di,offset par4

btoa

ah,09h

mov dx,offset divmsg

int 21h

nodiv: mov
ret

divide endp

wtoa proc

push

mov

call

add

intflag, 0

near

ax

al,ah

btoa

di,2

save arguments

convert dividend to

ASCII for display

convert divisor to

ASCII for display

restore arguments

perform the division

divide by zero detected?

yes, skip display

no, convert quotient to

ASCII for display

convert remainder to

ASCII for display

show arguments, results

clear divide by a· flag

and return to caller

convert word to hex ASCII

call with AX = binary value

DI = addr for string

returns AX, CX, DI destroyed

save original value

convert upper byte

increment output address

Figure 13-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 423

ZTE (USA) 1007, Page 433

Part C: Customizing MS-DOS

pop ax

call

ret

wtoa endp

btoa proc

rnov

rnov

shr

call

rnov

rnov

and

call

rnov

ret

btoa endp

ascii proc

add

crnp

jle

add

ascii2: ret

ascii endp

_TEXT ends

end

btoa

near

ah,al

cx,4

al,cl

ascii

[di],al

al,ah

al,Ofh

ascii
[di+1],al

near

al, I 0 I

al, '9'
ascii2

al, 'A'-'9'-1

entry

Figure 13-5. Continued.

Supplementary handlers

convert lower byte

return to caller

convert byte to hex ASCII

call with AL binary value

DI addr to store

returns AX, ex destroyed

save lower nibble

shift right 4 positions

to get upper nibble

convert 4 bits to ASCII

store in output string

get back lower nibble

blank out upper one

convert 4 bits to ASCII

store in output string

back to caller

convert AL bits 0-3 to

ASCII {0 ... 9,A ... F)

and return digit in AL

"fudge factor" for A-F

return to caller

string

In many cases, a custom interrupt handler augments, rather than replaces, the existing
routine. The added routine might process some data before passing the data to the exist­
ing routine, or it might do the processing afterward. These cases require slightly different
coding for the handler.

If the added routine is to process data before the existing handler does, the routine need
only jump to the original handler after completing its processing. This jump can be done

424 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 434

Article 13: Hardware Interrupt Handlers

indirectly, with the same pointer used to save the original content of the vector for restor­
ation at exit. For example, a replacement Interrupt 08H handler that merely increments an
internal flag at each timer tick can look something like the following:

myflag dw

oldintB dd

myintB:

mov

int

mov
mov

mov

mov

mov
mov

int

inc

jmp

?

?

ax,3508h

21h
word ptr oldintB,bx

word ptr oldint8+2,es
dx,seg myintB

ds,dx

dx,offset myintB

ax,2508h

21h

cs:myflag

dword ptr cs: [oldint8]

variable to be incremented

on each timer-tick interrupt

contains address of previous
timer-tick interrupt handler

get the previous contents
of the Interrupt OBH vector ...

AH = 35H {Get Interrupt Vector)

AL = Interrupt number {08H)

save the address of
the previous Int OBH Handler

put address of the new
interrupt handler into DS:DX

and call MS-DOS to set vector

AH 25H {Set Interrupt Vector)

AL = Interrupt number {08H)

this is the new handler
for Interrupt OBH

increment variable on each
timer-tick interrupt

then chain to the

previous interrupt handler

The added handler must preserve all registers and machine conditions, except those
machine conditions it will modify, such as the value of myflag in the example (and the
flags register, which is saved by the interrupt action), and it must restore those registers
and conditions before performing the jump to the original handler.

A more complex situation arises when a replacement handler does some processing after
the original routine executes, especially if the replacement handler is not reentrant. To
allow for this processing, the replacement handler must prevent nested interrupts, so that
even if the old handler (which is chained to the replacement handler by a CALL instruc­
tion) issues an EOI, the replacement handler will not be interrupted during postprocess­
ing. For example, instead of using the preceding Interrupt 08H example routine, the
programmer could use the following code to implement myflag as a semaphore and
use the XCHG instruction to test it:

Section II: Programming in the MS-DOS Environment 425

ZTE (USA) 1007, Page 435

Part C: Customizing MS-DOS

myint8:

mov

xchg

push

pushf

call

pop

or

jnz

mov

myint8x:

iret

ax,1
cs:myflag,ax

ax

dword ptr cs:oldint8

ax
ax, ax

myint8x

cs:myflag,O

this is the new handler

for Interrupt 08H

test and set interrupt­

handling-in-progress semaphore

save the semaphore

simulate interrupt, allowing

; ·'the previous handler for the

Interrupt 08H vector to run

get the semaphore back

is our interrupt handler

already running?

yes, skip this one

now perform our interrupt

processing here ...

clear the interrupt-handling­

in-progress flag

; return from interrupt

Note that an interrupt handler of this type must simulate the original call to the interrupt
routine by first doing a PUSHF, followed by a far CALL via the saved pointer to execute the
original handler routine. The flags register pushed onto the stack is restored by the IRET
of the original handler. Upon return from the original code, the new routine can preserve
the machine state and do its own processing, finally returning to the caller by means
of its own IRET.

The flags inside the new routine need not be preserved, as they are automatically restored
by the IRET instruction. Because of the nature of interrupt servicing, the service routine
should not depend on any information in the flags register, nor can it return any informa­
tion in the flags register. Note also that the previous handler (invoked by the indirect
CALL) will almost certainly have dismissed the interrupt by sending an EOI to the 8259A
PIC. Thus, the machine state is not the same as in the first myint8 example.

To remove the new vector and restore the original, the program simply replaces the new
vector (in the vector table) with the saved copy. If the substituted routine is part of an
application program, the original vector must be restored for every possible method of
exiting from the program (including Control-Break, Control-C, and critical-error Abort
exits). Failure to observe this requirement invariably results in system failure. Even though
the system failure might be delayed for some timl after the exit from the offending pro­
gram, when some subsequent program overlays the interrupt handler code the crash
will be imminent.

426 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 436

Article 13: Hardware Interrupt Handlers

Summary
Hardware interrupt handler routines, although not strictly a part of MS-DOS, form an
integral part of many MS-DOS programs and are tightly constrained by MS-DOS require­
ments. Routines of this type play important roles in the functioning of the IBM personal
computers, and, with proper design and programming, significantly enhance product
reliability and performance. In some instances, no other practical method exists for
meeting performance requirements.

jim Kyle
Chip Rabinowitz

Section JL- Programming in the MS-DOS Environment 427

ZTE (USA) 1007, Page 437

ZTE (USA) 1007, Page 438ZTE (USA) 1007, Page 438

Article 14: Writing MS-DOS Filters

Article14
Writing MS-DOS Filters

A filter is, essentially, a program that operates on a stream of characters. The source and
destination of the character stream can be files, another program, or almost any character
device. The transformation applied by the filter to the character stream can range from an
operation as simple as substituting a character set to an operation as elaborate as gener­
ating splines from sets of coordinates.

The standard MS-DOS package includes three simple filters: SORT, which alphabetically
sorts text on a line-by-line basis; FIND, which searches a text stream to match a specified
string; and MORE, which displays text one screenful at a time. This article describes how
filters work and how new ones can be constructed. See also USER COMM.i\.NDS: FIND;
MORE; SORT.

System Support for Filters

The operation of a filter program relies on two features that appeared in MS-DOS version
2.0: standard devices and redirectable 1/0.

The standard devices are represented by five handles that are originally established when
the system is initialized. Each process inherits these handles from its immediate parent.
Thus, the standard device handles are already opened when a process acquires control of
the system,· and the process can use the handles with Interrupt 21H Functions 3FH and
40H for read and write operations without further preliminaries. The default assignments
of the standard device handles are

Handle Name Default Device

0 stdin (standard input) CON
1 stdout (standard output) CON
2 stderr (standard error) CON
3 stdaux (standard auxiliary) AUX
4 stdlst (standard list) PRN

The CON device is assigned by default to the system's keyboard and video display. AUX
is assigned by default to COMl (the first physical serial port), and PRN is assigned by
default to LPTl (the first physical parallel printer port); in some systems these assign­
ments can be altered with the MODE command. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PRoGRAMMING FOR Ms-Dos: Character Device Input and Output; USER
COMMANDS: MODE; CTTY.

Section II: Programming in the MS-DOS Environment 429

ZTE (USA) 1007, Page 439

Part C: Customizing MS-DOS

When a program is executed by entering its name at the system (COMMAND. COM)
prompt, the user can redirect either or both of the standard input and standard output han­
dles from their default device (CON) to another file, a character device, or a process. This
redirection is accomplished by including one of the special characters<,>,>>, or: in the
command line, in the following form:

Redirection

<file

I
<device

>device

>file

»file

p1:p2

Result

Contents of the specified file are used instead of the keyboard as the pro­
gram's standard input.

Program takes its standard input from the named device instead of from
the keyboard.

Program sends its standard output to the named device instead of to the
video display.

Program sends its standard output to the specified file instead of to the
video display.

Program appends its standard output to the current contents of the speci­
fied file instead of to the video display.

Standard output of program pl is routed to become the standard input of
program p2 (output of pl is said to be piped to p2).

For example, the command

C>SORT < MYFILE.TXT > PRN <Enter>

causes the SORT filter to read its input from the file MYFILE.TXT, sort the lines alpha­
betically, and write resulting text to the character device PRN (the logical name for the
system's list device).

The redirection requested by the <, >, > >, or : characters takes place at the level of
COMMAND. COM and is invisible to the program it affects. Such redirection can also be
put into effect by another process. See Using a Filter as a Child Process below.

Note that if a program "goes around" MS-DOS to perform its input and output, either by
calling ROM BIOS functions or by manipulating the keyboard or video controller directly,
redirection commands placed in the program's command line do not have the expected
effect.

How Filters Work

By convention, a filter program reads its text from standard input arid writes the results of
its operations to standard output. When the end of the input stream is reached, the filter
simply terminates, optionally writing an end-of-file mark (lAH) to the output stream. As a
result, filters are both flexible and simple. ·

Filter programs are flexible because they do not know, and do not care, about the source
of the data they process or the destination of their output. Any redirection that the user

430 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 440

Article 14: Writing MS-DOS Filters

specifies in the command line is invisible to the filter. Thus, any character device that has
a logical name within the system (CON, AUX, COM1, COM2, PRN, LPT1, LPT2, LPT3, and
so on), any file on any block device (local or network) known to the system, or any other
program can supply a filter's input or accept its output. If necessary, several functionally
simple filters can be concatenated with pipes to perform very complex operations.

Although flexible, filters are also simple because they rely on their parent process to
supply standard input and standard output handles that have already been appropriately
redirected. The parent is responsible for opening or creating any necessary files, checking
the validity of logical character device names, and loading and executing the preceding or
following process in a pipe. The filter need only concern itself with the transformation it
will apply to the data; it can leave the 1/0 details to the operating system and to its parent.

Building a Filter .

Creating a new filter for MS-DOS is a straightforward process. In its simplest form, a filter 4
need only use the handle-oriented read (Interrupt 21H Function 3FH) and write (Interrupt
21H Function 40H) functions to get characters or lines from standard input and send them
to standard output, performing any desired alterations on the text stream on a character­
by-character or line-by-line basis.

Figures 14-1 through 14-4 contain template character-oriented and line-oriented filters
in both assembly language and C. The C version of the character filter runs much faster
than the assembly-language version, because the C run-time library provides hidden
blocking and deblocking (buffering) of character reads and writes; the assembly-language
program actually makes two calls to MS-DOS for each character processed. (Of course, if
buffering is added to the assembly-language version it will be both faster and smaller than
the C filter.) The C and assembly-language versions of the line-oriented filter run at
roughly the same speed.

name protoc

title 'PROTOC.ASM --- template character filter'

PROTOC.ASM: a template for a character-oriented filter.

Ray Duncan, June 1987

stdin equ 0 .standard input

stdout equ 1 standard output

stderr equ 2 standard error

cr equ Odh ASCII carriage return

lf equ Oah ASCII line feed

Figure 14-1. Assembly-language template for a character-oriented filter (file PROTOC. ASM). (more)

Section II: Programming in the MS-DOS Environment 431

ZTE (USA) 1007, Page 441

Part C: Customizing MS-DOS

DGROUP group _DATA, STACK 'automatic data group'

_TEXT segment byte public 'CODE'

main

main1:

assume cs:_TEXT,ds:DGROUP,ss:STACK

proc far entry point from MS-DOS

mov ax,DGROUP set DS - our data segment
rnov ds, ax

mov
mov
mov
mov
int
jc
cmp
jne

call

; read a character from standard input
dx,offset DGROUP:char ; address to place character
ex, 1 length to read = 1
bx, stdin handle for standard input
ah,3fh function 3FH =read from file or device
21 h transfer to MS-DOS
main3
ax, 1
main2

translt

error, terminate
any character read?
end of file, terminate program

translate character if necessary

now write character to standard output
mov dx,offset DGROUP:char ; address of character
mov ex, 1 length to write = 1
mov bx,stdout handle for standard output
mov ah,40h function 40H =write to file or device
int 21 h transfer to MS-DOS
jc
cmp
jne
jmp

main3
ax, 1

main3
main1

error, terminate
was character written?
disk full, terminate program
go process another character

main2: mov
int

ax,4c00h
21h

end of file reached, terminate
program with return code = 0

main3: mov
int

main endp

ax,4c01h
21h

error or disk full, terminate
program with return code = 1

end of main procedure

Perform any necessary translation on character from input,
stored in 'char'. Template action: leave character unchanged.

translt proc near

ret template action: do nothing

translt endp

Figure 14-1. Continued.

432 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 442

I

.I
r
l

Article 14: Writing MS-DOS Filters

_TEXT ends

_DATA segment word public 'DATA'

char db 0 ; temporary storage for input character

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main defines program entry point

Figure 14-1. Continued.

I*
PROTOC.C: a template for a character-oriented filter.

Ray Duncan, June 1987

*I

#include <stdio.h>

main(argc,argv)

int argc;
char *argv [];

char ch;

while I* read a character *I (ch=getchar()) !=EOF

ch=translate(ch);

putchar (ch);
I* translate it if necessary

I* write the character *I

exit(O); I* terminate at end of file

I*
Perform any necessary translation on character from

input file. Template action just returns same character.

int translate(ch)

char ch;
return (ch);

Figure 14-2. C template for a character-oriented filter (file PROTOC.C).

*I

*I

Section II: Programming in the MS-DOS Environment 433

ZTE (USA) 1007, Page 443

Part C: Customizing MS-DOS

name
title

protol

'PROTOL. ASM template line filter'

PROTOL.ASM: a template for a line-oriented filter.

Ray Duncan, June 1987

stdin

stdout

stderr

cr

lf

DGROUP

_TEXT

main

main1:

equ 0 standard input

equ 1 standard output
equ 2 standard error

equ Odh ASCII carriage return
equ Oah ASCII line feed

group _DATA, STACK 'automatic data group'

segment byte public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:DGROUP,ss:STACK

proc far entry point from MS-DOS

mov ax,DGROUP set DS ES our data segment
mov ds, ax
mov es, ax

mov

mov
mov

mov

int

jc
or

jz

call

or

jz

; read a line from standard input

dx,offset DGROUP:input ; address to place data
cx,256 max length to read= 256

bx,stdin
ah,3fh

21h

main3

ax, ax
main2

translt
ax, ax
main1

handle for standard input

function 3FH = read from file or device

transfer to MS-DOS

if error, terminate

any characters read?

end of file, terminate program

translate line if necessary

anything to output after translation?
no, get next line

now write line to standard output

mov dx,offset DGROUP:output ; address of data
mov

mov

mov

int

jc

ex, ax
bx,stdout

ah,40h

21h

main3

length to write

handle for standard output

function 40H = write to file or device

transfer to MS-DOS

if error, terminate

Figure 14-3. Assembly-language template for a line-oriented filter (file PROTOL.ASM).

434 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 444

Article 14: Writing MS-DOS Filters

cmp ax, ex was entire line written?

jne main3 disk full, terminate program
jmp main1 go process another line

main2: mov ax,4c00h end of file rea.ched, terminate

int 21h program with return code = 0

main3: mov ax,4c01h error or disk full, terminate

int 21h program with return code

main endp end of main procedure

Perform any necessary translation on line stored in

'input' buffer, leaving result in 'output' buffer.

Call with: AX length of data in 'input' buffer.

Return: AX= length to write to standard output.

Action of template routine is just to copy the line.

translt proc near

= 1

mov

mov

; just copy line from input to output

si,offset DGROUP:input

di,offset DGROUP:output

mov cx,ax
rep movsb

ret return length in AX unchanged

translt endp

_TEXT ends

_DATA segment word public 'DATA'

input db 256 dup (?) storage for input line

output db 256 dup (?) storage for output line

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main defines program entry point

Figure 14-3. Continued.

Section II: Programming in the MS-DOS Environment. 435

ZTE (USA) 1007, Page 445

Part C: Customizing MS-DOS

I*
PROTOL.C: a template for a line-oriented filter.

Ray Duncan, June 1987.

*I

#include <stdio.h>

static char input[256];

static char output[256];

main(argc,argv)
int argc;

char *argv[];

while(gets(input) !=NULL)

I* buffer for input line *I
I* buffer for output line *I

I* get a line from input stream *I
I* perform any necessary translation

and possibly write result *I
if (translate()) puts(output);

*I

exit (0); I* terminate at end of file *I

Perform any necessary translation on input line, leaving

the resulting text in output buffer. Value of function

is 'true' if output buffer should be written to standard output

by main routine, 'false' if nothing should be written.

translate()

{ strcpy{output,input);

return(1);
I* template action is copy input *I
I* line and return true flag *I

Figure 14-4. C template for a line-oriented filter (file PROTOL.C).

Each of the four template filters can be assembled or compiled, linked, and run exactly as
they are shown in Figures 14-1 through 14-4. Of course, in this form they function like an
incredibly slow COPY command.

To obtain a filter that does something useful, a routine that performs some modification
of the text stream that is flowing by must be inserted between the reads and writes. For
example, Figures 14-5 and 14-6 contain the assembly-language and C source code for a
character-oriented filter named LC. This program converts all uppercase input characters
(A-Z) to lowercase (a-z) output, leaving other characters unchanged. The only difference
between LC and the template character filter is the translation subroutine that operates
on the text stream.

436 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 446

name

title

Article 14: Writing MS-DOS Filters

lc
'LC.ASM --- lowercase filter'

LC.ASM: a simple character-oriented filter to translate
all uppercase {A-Z) to lowercase {a-z).

Ray Duncan, June 1987

stdin
stdout
stderr

cr
lf

DGROUP

_TEXT

main

main1:

equ 0 standard input
equ 1 standard output

equ 2 standard error

equ Odh ASCII carriage return

equ Oah ASCII linefeed

group _DATA, STACK 'automatic data group'

segment byte public 'CODE'

assume cs:_TEXT,ds:DGROUP,ss:STACK

proc

mov
mov

mov
mov
mov
mov
int
jc
cmp
jne

call

far

ax,DGROUP
ds,ax

entry point from MS-DOS

set DS our data segment

; read a character from standard input
dx,offset DGROUP:char ; address to place character
ex, 1 length to read = 1
bx,stdin handle for standard input
ah,3fh function 3FH =·read from file or device
21h transfer to MS-DOS
main3
ax, 1
main2

translt

error, terminate·
any character read?
end of file, terminate program

translate character if necessary

now write character to standard output
mov dx,offset DGROUP:char ; address of character
mov ex, 1 length to write = 1
mov bx,stdout handle for standard output
mov ah,40h function 40H =write to file or device
int 21h transfer to MS-DOS
jc
cmp
jne
jmp

main3
ax, 1

main3
main1

error, terminate
was character written?
disk full, terminate program
go process another character

Figure 14-5. Assembly-language source code for the LC filter (file LC. ASM). (more)

Section II: Programming in the MS-DOS Environment 437

ZTE (USA) 1007, Page 447

Part C: Customizing MS-DOS

main2: mov ax,4c00h end of file reached, terminate
int 21h program with return code = 0

main3: mov ax,4c01h error or disk full, terminate
int 21h program with return code = 1

main endp end of main procedure

Translate uppercase {A-Z) characters t6"corresponding

characters {a-z). Leave other characters unchanged. lowercase

translt

transx:

translt

_TEXT

_DATA

char

_DATA

STACK

STACK

proc

crop

jb
crop

ja
add

ret

endp

ends

near

byte ptr char, 'A'
transx

byte ptr char, 'Z'

transx

byte ptr char, 'a'-'A'

segment word public 'DATA'

db 0 ; temporary storage for input character

ends

segment para stack 'STACK'

dw 64 dup (?)

ends

end main defines program entry point

Figure 14-5. Continued.

I*
LC: a simple character-oriented filter to translate

all uppercase {A-Z) to lowercase {a-z) characters.

Usage: LC [< source] [> destination]

Figure 14-6. C source code for the LC filter (file LC.C).

438 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 448

Article 14: Writing MS-DOS Filters

Ray Duncan, June 1987

*I

#include <stdio.n>

main(argc,argv)

int argc;

char *argv[];

char ch;

while

I* read a character *I
(ch=getchar()) != EOF)

ch=translate(ch);

putchar(ch);

exit (0);

I*

I* perform any necessary

character translation *I
I* then write character *I

I* terminate at end of file *I

Translate characters A-Z to lowercase equivalents

*I

int translate(ch)

char ch;
if (ch >= 'A' && ch <= 'Z') ch += 'a'-'A';

return (ch);

Figure 14-6. Continued.

As another example, Figure 14-7 contains the C source code for a line-oriented filter called
FIND. This simple filter is invoked with a command line in the form

FIND "pattern" < source > destination

FIND searches the input stream for lines containing the pattern specified in the command
line. The line number and text of any line containing a match is sent to standard output,
with any tabs expanded to eight-column tab stops.

I*
FIND.C Searches text stream for a string.

Usage: FIND "pattern" [< source] [> destination]

by Ray Duncan, June 1987

*I

#include <stdio.h>

Figure 14-7. C source code for a new FIND filter (file FIND.C). (more)

Section /l- Programming in the MS-DOS Environment 439

ZTE (USA) 1007, Page 449

Part C: Customizing MS-DOS

#define TAB

#define BLANK

'\x09'

'\x20'

#define TAB_WIDTH 8

static char input[256];
static char output[256];

static char pattern[256];

main(argc,argv)

int argc;

char *argv[];
int line=O;

I* ASCII tab character (AI) *I
I* ASCII space character *I

I* columns per tab stop *I

I* buffer for line from input *I
I* buffer for line to output *I
I* buffer for search pattern *I

I* initialize line variable *I

if argc < 2) I* was search pattern supplied? *I
puts("find: missing pattern.");

exit(1); I* abort if not *I

strcpy(pattern,argv[1]); I* save copy of string to find

strupr(pattern); I* fold it to uppercase *I
while (
(

gets(input) != NULL I* read a line from input *I
line++; I* count lines *I
strcpy(output,input); I* save copy of input string *I
strupr(input); I* fold input to uppercase *I

I* if line contains pattern *I
if(strstr(input,pattern))

*I

I* write it to standard output *I
writeline(line,output);

exit(O); I* terminate at end of file *I

I*
WRITELINE: Write line number and text to standard output,

expanding any tab characters to stops defined by TAB_WIDTH.

*I

writeline(line,p)

int line;

char *p;
int i=O; I* index to original line text •I
int col=O;

printf("\n%4d: ",line);
while(p[i] !=NULL)

I* actual output column counter *I
I* write line number *I
I* while end of line not reached *I

if(p[i]==TAB) I* if current char tab, expand it

{ do putchar (BLANK) ;
while ((++col % TAB_WIDTH) ! = 0);

else I• otherwise just send character *I

Figure 14-7. Continued.

440 The MS-DOS Encyclopedia

putchar(p[i]);

col++; I* count columns *I

*I

(more)

ZTE (USA) 1007, Page 450

Article 14: Writing MS-DOS Filters

i++; I* advance through output line */

Figure 14-7. Continued.

This sample FIND filter differs from the FIND filter supplied by Microsoft with MS-DOS in
several respects. It is not case sensitive, so the pattern "foobar" will match "FOOBAR",
"FooBar", and so forth. Second, this filter supports no switches; these are left as an ex­
ercise for the reader. Third, unlike the Microsoft version of FIND, this program always
reads from standard input; it is not able to open its own files.

Using a Filter as a Child Process

Instead of incorporating all the code necessary to do the job itself, an application program
can load and execute a filter as a child process to carry out a specific task. Before the child ~
filter is loaded, the parent must arrange for the standard input and standard output handles
that will be inherited by the child to be attached to the files or character devices that will
supply the filter's input and receive its output. This redirection is accomplished with the
following steps using Interrupt 21H functions:

1. The parent process uses Function 45H (Duplicate File Handle) to create duplicates of
its standard input and standard output handles and then saves the duplicates.

2. The parent opens (with Function 3DH) or creates (with Function 3CH) the files or
devices that the child process will use for input and output.

3. The parent uses Function 46H (Force Duplicate File Handle) to force its own standard
device handles to track the new file or device handles acquired in step 2.

4. The parent uses Function 4BOOH (Load and Execute Program [EXEC]) to load and
execute the child process. The child inherits the redirected standard input and stan­
dard output handles and uses them to do its work. The parent regains control after
the child filter terminates.

5. The parent uses the duplicate handles created in step 1, together with Function 46H
(Force Duplicate File Handle), to restore its own standard input and standard output
handles to their original meanings.

6. The parent closes (with Function 3EH) the duplicate handles created in step 1,
because they are no longer needed.

It might seem as though the parent process could just as easily close its own standard input
and standard output (handles 0 and 1), open the input and output files needed by the child,
load and execute the child, close the files upon regaining control, and then reopen the
CON device twice. Because the open operation always assigns the first free handle, this
approach would have the desired effect as far as the child process is concerned. However,
it would throw away any redirection that had been established for the parent process by its
parent. Thus, the need to preserve any preexisting redirection of the parent's standard

Section II: Programming in the MS-DOS Environment 441

ZTE (USA) 1007, Page 451

Part C: Customizing MS-DOS

input and standard output, along with the desire to preserve the parent's usual output
channel for informational messages right up to the actual point of the EXEC call, is the
reason for the elaborate procedure outlined above in steps 1 through 6.

The program ~XECSORT.ASM in Figure 14-8 demonstrates this redirection of input and
output for a filter run as a child process. The parent, which is called EXECSORT, saves
duplicates of its current standard input and standard output handles and then redirects
those handles respectively to the files MYFILE.DAT (which it opens) and MYFILE.SRT
(which it creates). EXECSORT then uses Interrupt 21H Function 4BH (EXEC) to run the
SORT.EXE filter that is supplied with MS-DOS (this file must be in the current drive and
directory for the demonstration to work correctly).

name
title

.sall

execsort

'EXECSORT --- demonstrate EXEC of filter'

EXECSORT.ASM --- demonstration of use of EXEC to run the SORT

filter as a child process, redirecting its input and output.

This program requires the files SORT.EXE and MYFILE.DAT in

the current drive and directory.

Ray Duncan, June 1987

Figure 14-8. Assembly-language source code demonstrating use of a filter as a child process. This code redi­
rects the standard input and standard output handles to files, invokes the EXEC junction (Interrupt 21H Func­
tion 4BH) to run the SORT.EXE program, and then restores the original meaning of the standard input and
standard output handles (file EXECSORT.ASM).

442 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 452

_TEXT

stk_seg

stk_ptr

main

Article 14: Writing MS-DOS Filters

segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:DGROUP,ss:_STACK

dw

dw

proc

mov

mov

mov

mov

sub

add

mov
int

jerr

mov

mov

int
jerr

mov

mov

mov

int
jerr

mov

mov

mov

int

jerr

mov

mov

int

jerr

mov

?

far

ax,DGROUP

ds,ax

ax,es
bx,ss
bx,ax
bx,stksize/16

ah,4ah

21h

main1

bx,stdin

ah,45h

21h
main1

oldin,ax

dx,offset DGROUP:infile

ax,3d00h

21h
main1

bx,ax

cx,stdin

ah,46h

21h

main1

bx, stdout

ah,45h

21h

main1

oldout,ax

original ss contents

original SP contents

entry point from MS-DOS

set DS our data segment

now give back extra memory so
child SORT has somewhere to run ...

let AX = segment of PSP base

and BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack
fxn 4AH = modify memory block

transfer to MS-DOS
jump if resize block failed

prepare stdin and stdout
handles for child SORT process

dup the handle for stdin

transfer to MS-DOS

jump if dup failed

save dup'd handle

now open the input file

mode = read-only

transfer· to MS-DOS

jump if open·failed

force stdin handle to

track the input file handle

transfer to MS-DOS

jump if force dup failed

dup the handle for stdout

transfer to MS-DOS

jump if dup failed

save dup'd handle

mov dx,offset dGROUP:outfile ; now create the output file

Figure 14-8. Continued. (more)

Section /1· Programming in the MS-DOS Environment 443

ZTE (USA) 1007, Page 453

Part C: Customizing MS-DOS

mov cx,O
mov ah~3ch
int 21h
jerr main1

mov bx,ax
mov cx,stdout
mov ah,46h
int 21h
jerr main1

push ds
mov stLseg, ss

mov stk_ptr,sp

mov ax,ds
mov es,ax
mov dx,offset

mov bx,offset

mov ax, 4b00h
int 21h

eli
mov ss,stk_seg

mov· sp,stk_ptr

sti

pop ds

jerr main1

mov bx,oldin
mov cx,stdin
mov ah,46h

int 21h
jerr main1

mov bx,oldout
mov cx,stdout

mov ah,46h

int 21h

jerr main1

mov bx,oldin

mov ah,3eh

int 21h

Figure 14-8. Continued.

444 The MS-DOS Encyclopedia

OGROUP:cname

OGROUP:pars

normal attribute

transfer to MS-OOS

jump if create failed

force stdout handle to

track the output file handle

transfer to MS-OOS

·jump if force dup failed

now EXEC the child SORT,

which will inherit redirected

stdin and stdout handles

save EXECSORT's data segment

save EXECSORT's stack pointer

set ES = OS

OS:OX = child pathname

EX:BX = parameter block
function·4BH, subfunction OOH

transfer to MS-OOS

(for bug in some early 8088s)

restore execsort's stack pointer

(for bug in some early 8088s)

restore OS = our data segment

jump if EXEC failed

restore original meaning of

standard input handle for
this process

jump if force dup failed

restore original meaning

of standard output handle
for this process

jump if force dup failed

close dup'd handle of

original stdin

transfer to MS-OOS

(more)

ZTE (USA) 1007, Page 454

jerr

mov

mov

int
jerr

mov

mov

mov
mov

int
jerr

mov

int

main1: mov

int

main endp

_TEXT ends

~DATA segment

infile db

outfile db

oldin dw

oldout dw

cname db

pars dw

dd

dd

dd

tail db

msg1 db
msg1_len equ

_DATA ends

main1

bx,oldout

ah,3eh
21h

main1

dx,offset DGROUP:msg1
cx,msg1_len

bx,stdout

ah,40h

21h
main1

ax,4c00h

21h

ax,4c01h

21h

para public 'DATA'

'MYFILE.DAT', 0
'MYFILE.SRT', 0

?

?

'SORT.EXE',O

0

tail
-1

-1

O,cr

Article 14: Writing MS-DOS Filters

jump if close failed

close dup'd handle of
original stdout

transfer to MS-DOS
jump if close failed

display success message
address of message

message length

handle for standard output

fxn 40H = write file or device

transfer to MS-DOS

no error, terminate program

with return code = 0

error, terminate program

with return code = 1

end of main procedure

static & variable data segment

input file for SORT filter

output file for SORT filter

dup of old stdin handle

dup of old stdout handle

pathname of child SORT process

segment of environment block

(0 =inherit parent's)

long address, command tail

long address, default FCB #1

(-1 = none supplied)

long address, default FCB #2

(-1 = none supplied)

empty command tail for child

cr,lf, 'SORT was executed as child. ',cr,lf

$-msg1

Figure 14-8. Continued. (more)

Section II· Programming in the MS-DOS Environment 445

ZTE (USA) 1007, Page 455

Part C: Customizing MS-DOS

_STACK segment para stack 'STACK'

db stksize dup (?)

_STACK ends

end main defines program entry point

Figure 14-8. Continued.

The MS-DOS SORT program reads the file MYFILE.DAT via its standard input handle, sorts
the file alphabetically, and writes the sorted data to MYFILE.SRT via its standard output
handle. When SORT terminates, MS-DOS closes SORT's inherited handles for standard in­
put and standard output, which forces an update of the directory entries for the associated
files. The program EXECSORT then resumes execution, restores its own standard input
and standard output handles (which are still open) to their original meanings, displays a
success message on standard output, and exits to MS-DOS.

Ray Duncan

446 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 456

Article 15: Installable Device Drivers

Article15
Installable Device Drivers

The software that runs on modern computer systems is, by convention, organized into
layers with varied degrees of independence from the underlying computer hardware. The
purpose of this layering is threefold:

• To minimize the impact on programs of differences between hardware devices or
changes in the hardware.

• To allow the code for common operations to be centralized and optimized.
• To ease the task of moving programs and their data from one machine to another.

The top and most hardware-independent layer is usually the transient, or application,
program, which performs a specific job and deals with data in terms of files and records 4
within those files .. Such programs are called transient because they are brought into RAM
for execution when needed and are discarded from memory when their job is finished.
Examples of such programs are Microsoft Word, various programming tools such as the
Microsoft Macro Assembler (MASM) and the Microsoft Object Linker (LINK), and even
some of the standard MS-DOS utility programs such as CHKDSK and FORMAT.

The middle layer is the operating-system kernel, which manages the allocation of system
resources such as memory and disk storage, provides a battery of services to application
programs, and implements disk directories and the other housekeeping details of disk
storage. The MS-DOS kernel is brought into memory from the file MSDOS.SYS (or
IBMDOS.COM with PC-DOS) when the system is turned on orrestarted and remains fixed
in memory until the system is turned off. The system's default command processor,
COMMAND. COM, and system manager programs such as Microsoft Windows bridge the
categories of application program and operating system: Parts of them remain resident in
memory at all times, but they rely on the MS-DOS kernel for services such as file 1/0. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF Ms-oos: Components
ofMS-DOS.

The modules in the lowest layer are called device drivers. These drivers are the com­
ponents of the operating system that manage the controller, or adapter, of a peripheral
device- a piece of hardware that the computer uses for such purposes as storage or com­
municating with the outside world. Thus, device drivers are responsible for transferring
data between a peripheral device and the computer's RAM memory, where other pro­
grams can work on it. Drivers shield the operating-system kernel from the need to deal
with hardware 1/0 port addresses, operating characteristics, and the peculiarities of a par­
ticular peripheral device, just as the kernel, in turn, shields application programs from
the details of file management.

Section II: Programming in the MS-DOS Environment 447

ZTE (USA) 1007, Page 457

Part C: Customizing MS-DOS

In MS-DOS versions l.x, device drivers were integrated into the operating system and
could be extended or replaced only by patching the files that contained the operating sys­
tem itself. Because every third-party peripheral manufacturer evolved a different method
of modifying these files to get its product to work, conflicts between products from differ­
ent manufacturers were frequent and expansion of a PC with new disk drives and other
devices (especially fixed disks) was often a chancy proposition.

In MS-DOS versions 2.0 and later, there is a clean separation between device drivers and
the MS-DOS kernel. Device drivers have a straightforward structure and are interfaced to
the kernel through a simple and clearly defined scheme that consists of far calls, function
codes, and data packets. Given adequate information about the hardware, a programmer
can write a new device driver that follows this structure and interface for almost any con­
ceivable peripheral device; such a driver can subsequently be installed and used without
any changes to the underlying operating system.

This article explains the anatomy, operation, and creation of drivers for MS-DOS versions
2.0 and later. Device drivers for versions l.x are not discussed further here.

Resident and Installable Drivers

Every MS-DOS system contains built-in device drivers for the console (keyboard and video
display), the serial port, the parallel printer port, the real-time clock, and at least one disk
storage device (the system boot device). These drivers, known as the resident drivers, are
loaded as a set from the file IO.SYS (or IBMBIO.COM with PC-DOS) when the system is
turned on or restarted.

Drivers for additional peripheral devices occupy individual files on the disk. These drivers,
called installable drivers, are loaded and linked into the system during its initialization as
a result of DEVICE directives in the CONFIG.SYS file. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF Ms-oos: Components of MS-DOS. Examples of
such drivers are the ANSI.SYS and RAMDISK.SYS files included with MS-DOS version 3.2.
In all other respects, installable drivers have the same structure and relationship to the
MS-DOS kernel as the resident drivers. All drivers in the system are chained together so
that MS-DOS can rapidly search the entire set to find a specifiC block or character device
when an 1/0 operation is requested.

Device drivers as a whole are categorized into two groups: block-device drivers and
character-device drivers. A driver's membership in one of these two groups determines
how the associated device is viewed by MS-DOS and what functions the driver itself must
support.

Character-device drivers

Character-device drivers control peripheral devices, such as a terminal or a printer, that
perform input and output one character (or byte) at a time. Each character-device driver

448 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 458

Article 15: Installable Device Drivers

ordinarily supports a single hardware unit. The device has a one-character to eight­
character logical name that can be used by an application program to "open" the device
for input or output as though it were a file. The logical name is strictly a means of identify­
ing the driver to MS-DOS and has no physical equivalent on the device (unlike a volume
label for block devices).

The three resident character-device drivers for the console, serial port, and printer carry
the logical device names CON, AUX, and PRN, respectively. These three drivers receive
special treatment by MS-DOS that allows application programs to address the associated
devices in three different ways:

• They can be opened by name for input and output (like any other character device).
• They are supported by special-purpose MS-DOS function calls (Interrupt 21H Func­

tions 01-0CH).
• They are assigned to default handles (standard input, standard output, standard error,

standard auxiliary, and standard list) that need not be opened to be used.

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos:
Character Device Input and Output.

Other character devices can be supported by simply installing additional character-device
drivers. The only significant restrictibn on the total number of devices that can be sup­
ported, other than the memory required to hold" the drivers, is that each driver must have a
unique logical name. When MS-DOSreceives an open request for a character device, it
searches the chain of device drivers in order from the last driver loaded to the first. Thus, if
more than one driver uses the same logical name, the last driver to be loaded supersedes
any others and receives all I/0 requests addressed to that logical name. This behavior can
be used to advantage in some situations. For example, it allows the more powerful
ANSI.SYS display driver to supersede the system's default console driver, which does not
support cursor positioning and character attributes.

The MS-DOS kernel's buffering and filtering of the characters that pass between it and
a character-device driver are affected by whether MS-DOS regards the device to be in
cooked mode or raw mode. During cooked mode input, MS-DOS requests characters one
at a time from the driver and places them in its own internal buffer, echoing each character
to the screen (if the input device is the keyboard) and checking each character for a
Control-C (03H) or a Return (ODH). When either the number of characters requested' by
the application program has been received or a Return is detected, the input is terminated
and the data is copied from MS-DOS's internal buffer into the requesting program's buffer.
When a Control-C is detected, MS-DOS aborts the input operation and transfers to the rou­
tine whose address is stored in the Interrupt 23H (Control-CHandler Address) vector. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Han­
dlers. Similarly, during output in cooked mode, MS-DOS checks between each character
for a Control-C pending at the keyboard and aborts the output operation if one is detected.

Section II: Programming in the MS-DOS Environment 449

ZTE (USA) 1007, Page 459

Part C: Customizing MS-DOS

In raw mode, the exact number of bytes requested by the application program is read or
written, without regard to any control characters such as Return or Control-C. MS-DOS
passes the entire 1/0 request to the driver in a single operation, instead of breaking the
request into single-character reads or writes, and the characters are transferred directly to
or from the requesting program's buffer.

The mode for a specific device can be queried by an application program with the IOCTL
Get Device Data function (Interrupt 21H Function 44H Subfunction OOH); the mode can be
selected with the Set Device Data function: (Interrupt 21H Function 44H Subfunction 01H).
See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The driver itself is not usually aware
of its mode and the mode does not affect its operation.

Block-Device Drivers

Block-device drivers control peripheral devices that transfer data in chunks rather than 1
byte at a time. Block devices are usually randomly addressable devices such as floppy- or
fixed-disk drives, but they can also be sequential devices such as magnetic-tape drives. A
block driver can support more than one physical unit and can also map two or more logical
units onto a single physical unit, as with a partitioned fixed disk.

MS-DOS assigns single-letter drive identifiers (A, B, and so forth) to block devices, instead
of logical names. The first letter assigned to a block -device driver is determined solely by
the driver's position in the chain of all drivers- that is, by the number of units supported
by the block drivers loaded before it; the total number of letters assigned to the driver is .
determined by the number of logical drive units the driver supports.

MS-DOS does not associate a mode (cooked or raw) with block-device drivers. A block­
device driver always reads or writes exactly the number of sectors requested (barring hard­
ware or addressing errors) and never filters or otherwise manipulates the contents of the
blocks being transferred.

Structure of an MS-DOS Device Driver

A device driver has three major components (Figure 15-1):

• The device header
• The Strategy routine (Strat)
• The Interrupt routine (/ntr)

The device header

The device header (Figure 15-2) always lies at the beginning of the driver. It contains a link
to the next driver in the chain, a word (16 bits) of device attribute flags, offsets to the exe­
cutable Strategy and Interrupt routines for the device, and the logical device name if it is a
character device such as PRN or COM1 or the number of logical units if it is a block device.

450 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 460

'
,-1'-.... i

I Initialization

Media Check

BuildBPB

IOCTL Read and Write

Status

Read

Write, WriteNerify
Interrupt routine Output Until Busy

Flush Buffers

Device Open

Device Close

Check if Removable

Generic IOCTL

Get/Set Logical Device

Strategy routine

Device-driver header

Figure 15-1. General structure of an MS-DOS instal/able device driver.

Offset
OOH

02H

04H

06H

08H

OAH

12H

Link to next driver, offset

Link to next driver, segment

Device attribute word

Offset, Strategy entry point

· Offset, Interrupt entry point

Logical name (8 bytes) if character device
or

Number of units (1 byte) followed by
7 bytes of reserved· space if block device

Article 15: Installable Device Drivers

Figure 15-2. Device header. The offsets to the Strat and Intr routines are offsets from the same segment used to
point to the device header.

The device attribute flags word (Table 15-1) defines whether a driver controls a character
or a block device, which of the optional subfunctions added in MS-DOS versions 3.0 and
3.2 are supported by the driver, and, in the case of block drivers, whether the driver sup­
ports IBM-compatible disk media. The least significant 4 bits of the device attribute flags
word control whether MS-DOS should use the driver as the standard input, standard out­
put, clock, or NUL device; each of these 4 bits should be set on only one driver in the
system at a time.

Section IL- Programming in the MS-DOS Environment 451

ZTE (USA) 1007, Page 461

Part C: Customizing MS-DOS

Table 15-1. Device Attribute Word in Device Header.

Bit Setting

15 * 1 if character device, 0 if block device
14* 1 ifiOCTL Read and Write supported
13 * 1 if non-IBM format (block device)

1 if Output Until Busy supported (character device)
12 0 (reserved) _..
11 * 1 if Open/Close/Removable Media supported (versions 3.0 and later)
10 0 (reserved)
9 0 (reserved)
8 0 (reserved)
7 0 (reserved)
6* 1 if Generic IOCTL and Get/Set Logical Drive supported (version 3.2)
5 0 (reserved)
4 1 if special fast output function for CON device supported
3 1 if current CLOCK device
2 1 if current NUL device
1 · 1 if current standard output (stdout)
0 1 if current standard input (stdin)

• Only bits 6, 11, and 13-15 have significance on block devices; the remainder should be zero.

The information in the device header is ordinarily used only by the MS-DOS kernel and
is not available to application programs. However, the IOCTL subfunctions Get and Set
Device Data (Interrupt 21H Function 44H Subfunctions OOH and 01H) can be used to in­
spect or modify some of the bits in the device attribute flags word. Note that there is not a
one-to-one correspondence between the bits defined for those functions and the bits in
the device header. For example, in the device information word used by the IOCTL sub­
functions, bit 7 indicates a block or character device; in the device attribute word of the
device header, bit 15 indicates a block or character device.

The Strategy routine (Strat)

MS-DOS calls the driver's Strategy routine as the first step of any operation, passing it the
segment and offset of a data structure called a request header in registers ES:BX. The Strat­
egy routine saves this pointer for subsequent processing by the Interrupt routine and
returns to MS-DOS ..

A request header is essentially a small buffer used for private communication between
MS-DOS and the device driver. Both MS-DOS and the device driver read and write infor­
mation in the request header.

The first 13 bytes of a request header are the same for all device-driver functions and are
therefore referred to as the static portion of the header. The number and contents of the
subsequent bytes vary according to the type of operation being requested by the MS-DOS

452 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 462

Article 15: Installable Device Drivers

kernel (Figure 15-3). The request header's most important component is the command
code passed in its third byte; this code selects a driver function such as Read or Write.
Other information passed to the driver in the request header includes unit numbers,
transfer addresses, and sector or byte counts.

OOH
OIH

02H

03H

05H

ODH

OEH

IOH

12H

14H

Request header length

Block-device unit number

Command code (driver subfunction)

Returned status

Reserved

Media ID byte

Offset of data to be transferred

Segment of data to be transferred

Byte/sector count

Starting sector number

Static portion
of request header

Variable portion
of request header

Figure 15-3. A typical driver request header. The bytes following the static portion are the format used for
driver Read, Write, Write with Verify, IOCTL Read, and IOCTL Write operations.

The Interrupt routine (lntr)

The last and most complex part of a device driver is the Interrupt routine, which is called
by MS-DOS immediately after the call to the Strategy routine. The bulk of the Interrupt
routine is a collection of functions or subroutines, sometimes called command-code rou­
tines, that carry out each of the various operations the MS-DOS kernel requires a driver to
support.

When the Interrupt routine receives control from MS-DOS, it saves any affected registers,
examines the request header whose address was previously passed in the call to the Strat­
egy routine, determines which command-code routine is needed, and branches to the
appropriate function. When the operation is completed, the Interrupt routine stores the
status (Table 15-2), error (Table 15-3), and any other applicable information into there­
quest header, restores the previous contents of the affected registers, and returns to the
MS-DOS kernel.

Section II: Programming in the MS-DOS Environment 453

ZTE (USA) 1007, Page 463

Part C: Customizing MS-DOS

Table 15-2. The Request Header Status Word.

Bits

15
12-14
9
8
0-7

Meaning

Error
Reserved
Busy
Done
Error code if bit 15 = 1

Table 15-3. Device-Driver Error Codes.*

Code Meaning

OOH Write-protect violation
01H Unknown unit
02H Drive not ready
03H Unknown command
04H CRCerror
05H Bad drive request structure length
06H Seek error
07H Unknown media
08H Sector not found
09H Printer out of paper
OAH Write fault
OBH Read fault
OCH General failure
ODH Reserved
OEH Reserved
OFH Invalid disk change (versions 3.x)

• Returned in bits 0-7 of the request header status word.

The Interrupt routine's name is misleading in that it is never entered asynchronously as a
hardware interrupt. The division of function between the Strategy and Interrupt routines is
present for symmetry with UNIX/XENIX and MS OS/2 drivers but is essentially meaning­
less in single-tasking MS-DOS because there is never more than one I/0 request in
progress at a time.

The command-code functions

A total of twenty command codes are defined for MS-DOS device drivers. The command
codes and the names of their associated Interrupt routines are shown in the following list:

454 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 464

.i
r

l
Code

0
1
2
3
4
5
6
7
8
9

10
11
12

Routine

Init (initialization)
Media Check (block devices only)
Build BIOS Parameter Block (block devices only)
IOCTLRead
Read (Input)
Nondestructive Read (character devices only)
Input Status (character devices only)
Flush Input Buffers (character devices only)
Write (Output)
Write with Verify
Output Status (character devices only)
Flush Output Buffers (character devices only)
IOCTL Write

13 * Device Open
14 * Device Close
15* Removable Media (block devices only)
16* Output Until Busy (character devices only)
19t Generic IOCTL Request
23t Get Logical Device (block devices only)
24 t Set Logical Device (block devices only)

• MS-DOS versions 3.0 and later
t MS-DOS version 3.2

Article 15: Installable Device Drivers

Functions 0 through 12 must be supported by a driver's Interrupt section under all versions
of MS-DOS. Drivers tailored for versions 3.0 and 3.1 can optionally support an additional4
functions defined under those versions of the operating system and drivers designed for
version 3.2 can support 3 more, for a total of 20. MS-DOS inspects the bits in the device at~
tribute word of the device header to determine which of the optional version 3.x functions
a driver supports, if any.

As noted in the list above, some of the functions are relevant only for character drivers,
some only for block drivers, and some for both. In any case, there must be an executable
routine present for each function, even if the routine does nothing but set the done flag in
the status word of the request header. The general requirements for each function routine
are described below.

The Init function
The Init (initialization) function (command code 0) for a driver is called only once, when
the driver is loaded (Figure 15-4). Init is responsible for checking that the hardware device
controlled by the driver is present and functional, performing any necessary hardware in­
itialization (such as a reset on a printer or a seek to the home track on a disk device), and
capturing any interrupt vectors that the driver will need later.

Section II: Programming in the MS-DOS Environment 455

ZTE (USA) 1007, Page 465

Part C: Customizing MS-DOS

The Init function is passed a pointer in the request header to the text of the DEVICE line
in CONFIG .SYS that caused the driver to be loaded,....- specifically, the address of the next
byte after the equal sign (=). The line is read-only and is terminated by a linefeed or
carriage-return character; it can be scanned by the driver for switches or other parameters
that might influence the driver's operation. (Alphabetic characters in the line are folded to
uppercase.) With versions 3.0 and later, block drivers are also passed the drive number
that will be assigned to their first unit (0 =A, 1 = B, and so on).

OOH

OlH

02H

03H

OSH

ODH

OEH

lOH

12H

14H

16H

Driver called with

Request header length

Command code

Reserved

Offset of CONFIG.SYS
line loading drivert

Segment of CONFIG.SYS
line loading driver t

First unit number *t

* Block-device drivers only
t Points to the character after DEVICE=
t MS-DOS 3.0 and later only

OOH
OIH

02H

03H

OSH

ODH

OEH

lOH

12H

14H

16H

Figure 15-4. biitialization request header(command code 0).

Driver returns

Status

Reserved

Units supported*

Offset of free memory
above driver

Segment of free memory
above driver

Offset of
BPB pointer array*

Segment of
BPB pointer array*

When it returns to the kernel, the Init function must set the done flag in the status word
of the request header and return the address of the start of free memory after the driver
(sometimes called the break address). This address tells the kernel where it can build cer­
tain control structures of its own associated with the driver and then load the next driver.
The Init routine of a block-device driver must also return the number of logical units
supported by the driver and the address of a BPB pointer array.

The number of units returned by a block driver is used to assign device identifiers. For
example, if at the time the driver is loaded there are already drivers present for four block
devices (drive codes 0-3, corresponding to drive identifiers A through D) and the driver
being initialized supports four units, it will be assigned the drive numbers 4 through 7

456 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 466

Article 15: Installable Device Drivers

(corresponding to the drive names E through H). (Although there is also a field in the
device header for the number of units, it is not inspected by MS-DOS; rather, it is set by
MS-DOS from the information returned by the Init function.)

The BPB pointer array is an array of word offsets to BIOS parameter blocks. See The Build
BIOS Parameter Block Function below; PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: STRUCTURE OF Ms-oos: MS-DOS Storage Devices. The array must contain one entry
for each unit defined by the driver, although all entries can point to the same BPB to con­
serve memory. During the operating-system boot sequence, MS-DOS scans all the BPBs
defined by all the units in all the resident block-device drivers to determine the largest
sector size that exists on any device in the system; this information is used to set MS-DOS's
cache buffer size. Thus, the sector size in the BPB of any installable block driver must be
no larger than the largest sector size used by the resident block drivers.

If the Init routine finds that its hardware device is missing or defective, it can bypass the
installation of the driver completely by returning the following values in the request
header:

Item Value

Number of units 0
Address of free memory Segment and offset of the driver's own device header

A character-device driver must also clear bit 15 of the device attribute word in the device
header so that MS-DOS will load the next driver in the same location as the one that just
terminated itself.

The operating-system services that can be invoked by the Init routine are very limited.
Only MS-DOS Interrupt 21H Functions 01-0CH (various character input and output ser­
vices), 25H (Set Interrupt Vector), 30H (Get MS-DOS Version Number), and 35H (Get Inter­
rupt Vector) can be called by the Init code. These functions assist the driver in configuring
itself for the version of the host operating system it is to run under, capturing vectors for
hardware interrupts, and displaying informational or error messages.

The amount of RAM required by a device driver can be reduced by positioning the Init
routine at the end of the driver and returning that routine's starting address as the location
of the first free memory.

The Media Check function
The Media Check function (command code 1) is used orily in block-device drivers. It is
called by the MS-DOS kernel when there is a pending drive access call other than a simple
file read or write (for example, a file open, close, rename, or delete), passing the media ID
byte (Figure 15-5) for the disk that MS-DOS assumes is in the drive:

Section II: Programming in the MS-DOS Environment 457

ZTE (USA) 1007, Page 467

Part C: Customizing MS-DOS

Description

OF9H
OFCH
OFDH
OFEH
OFFH
OF9H
OFOH
OF8H

Medium

5.25-inch double-sided, 15 sectors
5.25-inch single-sided, 9 sectors
5.25-inch double-sided, 9 sectors
5.25-inch single-sided, 8 sectors
5.25-inch double-sided, 8 sectors
3.5-inch double-sided, 9 sectors
3.5-inch double-sided, 18 sectors
Fixed disk

The function returns a code indicating whether the medium has been changed since the
last transfer:

Code

-1
0
1

OOH

OlH

02H

03H

05H

ODH

OEH

OFH

llH

Meaning

Medium changed
Don't know if medium changed
Medium not changed

Driver called with

Request header length

Unit number

Command code

Reserved

Media ID byte

* MS-DOS 3.0 and later only

OOH

OIH
02H

03H

05H

ODH

OEH

OFH

llH

Figure 15-5. Media Check request header(command code 1).

458 The MS-DOS Encyclopedia

Driver returns

Status

Reserved

Media change code

Offset of volume label
(if error OFH)*

Segment of volume label
(if error OFH)*

ZTE (USA) 1007, Page 468

Article 15: Installable Device Drivers

If the Media Check routine asserts that the disk has not been changed, MS-DOS bypasses
rereading the FAT and proceeds with the disk access. If the returned code indicates that
the disk has been changed, MS-DOS invalidates all buffers associated with the drive,
including buffers containing data waiting to be written (this data is simply lost), performs
a Build BPB call, and then reads the disk's FAT and directory.

The action taken by MS-DOS when Don't know is returned depends on the state of its
internal buffers. If data that needs to be written out is present in the buffers associated with
the drive, MS-DOS assumes that no disk change has occurred. If the buffers are empty or
have all been previously flushed to the disk, MS-DOS assumes that the disk was changed
and proceeds as described above for the Medium changed return code.

If bit 11 of the device attribute word is set (that is, the driver supports the optional Open/
Close/Removable Media functions), the host system is MS-DOS version 3.0 or later, and
the function returns the Medium changed code (-1), the function must also return the
segment and offset of the ASCIIZ volume label for the previous disk in the drive. (If
the driver does not have the volume label, it can return a pointer to the ASCIIZ string
NO NAME) If MS-DOS determines that the disk was changed with unwritten data still
present in the buffers, it issues a critical error OFH (Invalid Disk Change). Application
programs can trap this critical error and prompt the user to replace the original disk.

In character-device drivers, the Media Change function should simply set the done flag in
the status word of the request header and return.

The Build BIOS Parameter Block function
The Build BPB function (command code 2) is supported only on block devices. MS-DOS
calls this function when the Medium changed code has been returned by the Media
Check routine or when the Don't know code has been returned and there are no dirty
buffers (buffers that have not yet been written to disk). Thus, a call to this function indi­
cates that the disk has been legally changed.

The Build BPB call receives a pointer to a one-sector b4ffer in the request header (Figure
15-6). If the non-IBM-format bit (bit 13) in the device attribute word in the device header is
zero, the buffer contains the first sector of the disk's FAT, with the media ID byte in the first
byte of the buffer. In this case, the contents of the buffer should not be modified by the
driver. However, if the non-IBM-format bit is set,. the buffer can be used by the driver as
scratch space.

The Build BPB function must return the segment and offset of a BIOS parameter block
(Table 15-4) for the disk format indicated by the media ID byte and set the done flag in the
status word of the request header. The information in the BPB is used by the kernel to
interpret the disk structure and is also used by the driver itself to translate logical sector
addresses into physical track, sector, and head addresses. If bit 11 of the device attribute
word is set (that is, the driver supports the optional Open/Close/Removable Media func­
tions) and the host system is MS-DOS version 3.0 or later, this routine should also read the
volume label from the disk and save it.

Section II: Programming in the MS-DOS Environment 459

ZTE (USA) 1007, Page 469

Part C: Customizing MS-DOS

OOH
OIH

02H

03H

OSH

ODH
OEH

IOH

12H

14H

)

Driver called with

Request header length

Unit number

Command code

Reserved

Media ID byte

Offset of FAT buffer
or scratch area

Segment of FAT buffer
or scratch area

OOH
OlH

02H
03H

OSH

ODH
OEH

lOH

12H

14H

Figure 15-6. Build BPB request header (command code 2).

Table 15-4. Format of a BIOS Parameter Block (BPB).

Bytes Contents

Bytes per sector
Sectors per allocation unit (must be power of 2)
Number of reserved sectors (starting at sector 0)
Number of file allocation tables (FATs)
Maximum number of root-directory entries
Total number of sectors in medium
Media ID byte
Number of sectors occupied by a single FAT
Sectors per track (versions 3.0 and later)
Number of heads (versions 3.0 and later)

Driver returns

Status

Reserved

Offset of BIOS
parameter block

Segment of BIOS
parameter block

00-0lH
02H
03-04H
05H
o6-07H
08-09H
OAH
OB-OCH
OD-OEH
OF-lOH
11-12H
13-14H
15-18H

Number of hidden sectors (versions 3.0 and later)
High-order word of number of hidden sectors (version 3.2)
If bytes 8-9 are zero, total number of sectors in medium (version 3.2)

In character-device drivers, the Build BPB function should simply set the done flag in the
status word of the request header and return.

460 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 470

Article 15: Installable Device Drivers

The Read, Write, and Write with Verify functions
The Read (Input) function (command code 4) transfers data from the device into a speci­
fied memory buffer. The Write (Output) function (command code 8) transfers data from a
specified memory buffer to the device. The Write with Verify function (command code 9)
works like the Write function but, if feasible, also performs a read-after-write verification
that the data was transferred correctly. The MS-DOS kernel calls the Write with Verify
function, instead of the Write function, whenever the system's global verify flag has
been turned on with the VERIFY command or with Interrupt 21H Function 2EH (Set
Verify Flag).

All three of these driver functions are called by the MS-DOS kernel with the address and
length of the buffer for the data to be transferred. In the case of block -device drivers, the
kernel also passes the drive unit code, the starting logical sector number, and the media
ID byte for the disk (Figure 15-7).

OOH
OlH
02H

03H

05H

ODH

OEH

lOH

12H

14H

16H

ISH

Driver called with

Request header length

Unit number*

Command code

Reserved

Media ID byte*

Offset of data

Segment of data

Bytes/sectors requested

Starting sector number*

* Block-device drivers only

OOH

OlH

02H

03H

05H

ODH

OEH

IOH

12H

14H

16H

ISH

t MS-DOS 3.0 and later, command codes 4, S, and 9 only

Driver returns

Status

Reserved

Bytes/sectors transferred

Offset of volume label
(if error OFH)* t

Segment of volume label
(if error OFH)* t

Figure 15-7. The request header for IOCTL Read (command code 3), Read (command code 4), Write (com­
mand code 8), Write with Verify (command code 9), IOCTL Write (command code 12), and Output Until
Busy (command code 16).

Section II: Programming in the MS-DOS Environment 461

ZTE (USA) 1007, Page 471

Part C: Customizing MS-DOS

The Read and Write functions must perform the requested 1/0, first translating each logical
sector number for a block device into a physical track, head, and sector with the aid of the
BIOS parameter block. Then the functions must return the number of bytes or sectors
actually transferred in the appropriate field of the request header and also set the done
flag in the request header status word. If an error is encountered during an operation, the
functions must set the done flag, the error flag, and the error type in the status word and
also report the number of bytes or sectors successfully transferred before the error; it is not
sufficient to simply report the error.

Under MS-DOS versions 3.0 and later, the Read and Write functions can optionally use the
reference count of open files maintained by the driver's Device Open and Device Close
functions, together with the media ID byte, to determine whether the medium has been
illegally changed. If the medium was changed with files open, the driver can return the
error code OFH and the segment and offset of the volume label for the correct disk so that
the user can be prompted to replace the disk.

The Nondestructive Read function
The Nondestructive Read function (command code 5) is supported only on character
devices. It allows MS-DOS to look ahead in the character stream by one character and is

· used to check for Control-C characters pending at the keyboard.

The function is called by the kernel with no parameters other than the command code
itself (Figure 15-8). It must set the done bit in the status word of the request header and
also set the busy bit in the status word to reflect whether the device's input buffer is empty
(busy bit = 1) or contains at least one character (busy bit = 0). If the latter, the function must
also return the next character that would be obtained by a kernel call to the Read function,
without removing that character from the buffer (hence the term nondestructive).

In block-device drivers, the Nondestructive Read function should simply set the done flag
in the status word of the request header and return.

Driver called with Driver returns
OOH

Request header length
OOH

OlH OlH

02H
Command code

02H

03H 03H
Status

05H 05H

Reserved Reserved

ODH ODH Character

Figure 15-8. The Nondestructive Read request header.

462 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 472

Article 15: Installable Device Drivers

The Input Status and Output Status functions
The Input Status and Output Status functions (command codes 6 and 10) are defined only
for character devices. They are called with no parameters in the request header other than
the command code itself and return their results in the busy bit of the request header
status word (Figure 15-9). These functions constitute the driver-level support for the ser­
vices the MS-DOS kernel provides to application programs by means of Interrupt 21H
Function 44H Subfunctions 06H and 07H (Check Input Status and Check Output Status).

MS-DOS calls the Input Status function to determine whether there are characters waiting
in a type-ahead buffer. The function sets the done bit in the status word of the request
header and sets the busy bit to 0 if at least one characteJ.\is already ih the input buffer or to
1 if no characters are in the buffer and a read request would wait on a character from the
physical device. If the character device does not have a type-ahead buffer, the Input Status
routine should always return the busy bit set to 0 so that MS-DOS will not wait for some­
thing to arrive in the buffer before calling the Read function.

Driver called with Driver returns
OOH

Request header length
OOH

OlH OIH

02H
Command code

02H
03H 03H

Status

05H 05H

Reserved Reserved

ODH ODH

Figure 15-9. The request header for Input Status (command code 6), Plush Input Buffers (command code 7),
Output Status (command code 10), and Flush Output Buffers (command code 11).

MS-DOS uses the Output Status function to determine whether a write operation is
already in progress for the device. The function must set the done bit and the busy bit (0
if the device is idle and a write request would start immediately; 1 if a write is already in
progress and a new write request would be delayed) in the status word of the request
header.

In block-device drivers, the Input Status and Output Status functions should simply set the
done flag in the status word of the request header and return.

The Flush Input Buffer and Flush Output Buffer functions
The Flush Input Buffer and Flush Output Buffer functions (command codes 7 and 11) are
defined only for character devices. They simply terminate any read (for Flush Input) or
write (for Flush Output) operations that are in progress and empty the associated buffer.
The Flush Input Buffer function is used by MS-DOS to discard characters waiting in the
type-ahead queue. This driver action corresponds to the MS-DOS service provided to
application programs by means of Interrupt 21H Function OCH (Flush Buffer, Read
Keyboard).

Section II: Programming in the MS-DOS Environment 463

4

ZTE (USA) 1007, Page 473

Part C: Customizing M5-DOS

These functions are called with no parameters in the request header other than the
command code itself (see Figure 15-9) and return only the status word.

In block-device drivers, the Flush Buffer functions have no meaning. They should simply
set the done flag in the status word of the request header and return.

The IOCTL Read and IOCTL Write functions
The IOCTL (1/0 Control) Read and IOCTL Write functions (command codes 3 and 12)
allow control information to be passed directly between a device driver and an application
program. The IOCTL Read and Write driver functions are called by the MS-DOS kernel
only if the IOCTL flag (bit 14) is set in the device attribute word of the device header.

The. MS-DOS kernel passes the address and length of the buffer that contains or will
receive the IOCTL information (see Figure 15-7). The driver must return the actual count
of bytes transferred and set the done flag in the request header status word. Any error
code returned by the driver is ignored by the kernel.

IOCTL Read and IOCTL Write operations are typically used to configure a driver or device
or to report driver or device status and do not usually result in the transfer of data to or
from the physical device. These functions constitute the driver support for the services
provided to application programs by the MS-DOS kernel through Interrupt 21H Function
44H Subfunctions 02H, 03H, 04H, and 05H (Receive Control Data from Character Device,
Send Control Data to Character Device, Receive Control Data from Block Device, and Send
Control Data to Block Device).

The Device Open and Device Close functions
The Device Open and Device Close functions (command codes 13 and 14) are supported
only in MS-DOS versions 3.0 and later and are called only if the open/close/removable
media flag (bit 11) is set in the device attribute word of the device header. The Device
Open and Device Close functions have no parameters in the request header other than the
unit code for block devices and return nothing except the done flag and, if applicable, the
error flag and number in the request header status word (Figure 15-10).

Driver called with Driver returns
OOH

Request header length
OOH

OlH
Unit number*

OlH

02H
Command code

02H
03H 03H

Status

OSH OSH

Reserved Reserved

ODH ODH
* Block-device drivers only

Figure 15-10. The request header for Device Open (command code 13), Device Close (command code 14), and
Removable Media (command code 15).

464 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 474

Article 15: Installable Device Drivers

Each Interrupt 21H request by an application to open or create a file or to open a character
device for input or output results in a Device Open call by the kernel to the corresponding
device driver. Similarly, each Interrupt 21H call by an application to close a file or device
results in a Device Close call by the kernel to the appropriate device driver. These Device
Open and Device Close calls are in addition to any directory read or write calls that may
be necessary. · ·

On block devices, the Device Open and Device Close functions can be used to manage
local buffering and to maintain a reference count of the number of open files on a device.
Whenever this reference count is decremented to zero, all files on the disk have been
closed and the driver should flush any internal buffers so that data is not lost, as the user
may be about to change disks. The reference count can also be used together with the
media ID byte by the Read and Write functions to determine whether the disk has been
changed while files are still open.

The reference count should be forced to zero when a Media Check call that returns the
Medium changed code is followed by a Build BPB call, to provide for those programs 4
that use FCBs to open files and then never close them. This problem does not arise with
programs that use the handle functions for file management, because all handles are
always closed automatically by MS-DOS on behalf of the program when it terminates.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: File
and Record Management.

On character devices, the Device Open and Device Close functions can be used to send
hardware-dependent initialization and post-I/O strings to the associated device (for exam­
ple, a reset sequence or formfeed character to precede new output and a formfeed to fol­
low it). Although these strings can be written directly by an application using ordinary
write function calls, they can also be previously passed to the driver by application pro­
grams with IOCTL Write calls (Interrupt 21H Function 44H Subfunction 05H), which in
turn are translated by the MS-DOS kernel into driver command code 12 (IOCTL Write)
requests. The latter method makes the driver responsible for sending the proper control
strings to the device each time a Device Open or Device Close is executed, but this
method can be used only with drivers specifically written to support it.

The Removable Media function
The Removable Media function (command code 15) is defined only for block devices. It
is supported in MS-DOS versions 3.0 and later and is called by MS-DOS only if the open/
close/ removable media flag (bit 11) is set in the device attribute word of the device header.
This function constitutes the driver-level support for the service provided to application
programs by MS-DOS by means oflnterrupt 21H Function 44H Subfunction 08H (Check If
Block Device Is Removable).

The only parameter for the Removable Media function is the unit code (see Figure 15-10).
The function sets the done bit in the request header status word and sets the busy bit to 1 if
the disk is not removable or to 0 if the disk is removable. This information can be used by
MS-DOS to optimize its accesses to the disk and to eliminate unnecessary FAT and direc­
tory reads.

Section II: Programming in the MS-DOS Environment 465

ZTE (USA) 1007, Page 475

Part C: Customizing MS-DOS

In character-device drivers, the Removable Media function should simply set the done flag
in the status word of the request header and return.

The Output Until Busy function
The Output Until Busy function (command code 16) is defined only for character devices
under MS-DOS versions 3.0 and later and is called by the MS-DOS kernel only if the corre­
sponding flag (bit 13) is set in the device attribute word of the device header. This function
is an optional driver-optimization function included specifically for the benefit of back­
ground print spoolers driving printers that have internal memory buffers. Such printers can
accept data at a rapid rate until the buffer is full.

The Output Until Busy function is called with the address and length of the data to be
written to the device (see Figure 15-7). It transfers data continuously to the device until the
device indicates that it is busy or until the data is exhausted. The function then must set the
done flag in the request header status word and return the actual number of bytes trans­
ferred in the appropriate field of the request header.

For this function to return a count of bytes transferred that is less than the number of bytes
requested is not an error. MS-DOS will adjust the address and length of the data passed in
the next Output Until Busy function request so that all characters are sent.

In block-device drivers, the Output Until Busy function should simply set the done flag in
the status word of the request header and return.

The Generic IOCTL function
The Generic IOCTL function (command code 19) is defined under MS-DOS version 3.2
and is called only if the 3.2-functions-supported flag (bit 6) is set in the device attribute
word of the device header. This driver function corresponds to the MS-DOS generic IOCTL
service supplied to application programs by means of Interrupt 21H Function 44H Sub­
functions OCH (Generic I/0 Control for Handles) and ODH (Generic I/0 Control for Block
Devices).

In addition to the usual information in the static portion of the request header, the Generic
IOCTL function is passed a category (major) code, a function (minor) code, the contents
of the SI and DI registers at the point of the IOCTL call, and the segment and offset of a
data buffer (Figure 15-11). This buffer in turn contains other information whose format
depends on the major and minor IOCTL codes passed in the request header. The driver
must interpret the major and minor codes in the request header and the contents of the ad­
ditional buffer to determine which operation it will carry out and then set the done flag in
the request header status word and return any other applicable information in the request
header or the data buffer.

Services that can be invoked by the Generic IOCTL function, if the driver supports them,
include configuring the driver for nonstandard disk formats, reading and writing entire
disk tracks of data, and formatting and verifying tracks. The Generic IOCTL function has
been designed to be open-ended so that it can be used to easily extend the device driver
definition in future versions of MS-DOS.

466 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 476

OOH
OlH

02H

03H

05H

ODH

OEH

OFH

llH

13H

15H

Driver called with

Request header length

Unit number*

Command code

Reserved

Category (major) code

Function (minor) code

SI register contents

DI register contents

Offset of generic
IOCTL data packet

Segment of generic
IOCTL data packet

* Block-device drivers only

Figure 15-11. Generic IOCTL request header.

Article 15: Installable Device Drivers

Driver returns
OOH

OlH

02H

03H

Status
05H

Reserved

ODH

OEH

OFH

llH

13H

15H

The Get Logical Device and Set Logical Device functions
The Get and Set Logical Device functions (command codes 23 and 24) are defined only for
block devices under MS-DOS version 3.2 and are called only if the 3.2-functions-supported
flag (bit 6) is set in the device attribute word of the device header. They correspond to the
Get and Set Logical Drive Map services supplied by MS-DOS to application programs by
means of Interrupt 21H Function 44H Subfunctions OEH and OFH.

The Get and Set Logical Device functions are called with a drive unit number in the
request header (Figure 15-12). Both functions return a status word for the operation in the
request header; the Get Logical Device function also returns a unit number.

The Get Logical Device function is called to determine whether more than one drive letter
is assigned to the same physical device. It returns a code for the last drive letter used to ref­
erence the device (1 = A, 2 = B, and so on); if only one drive letter is assigned to the device,
the returned unit code should be 0.

The Set Logical Device function is called to inform the driver of the next logical drive iden­
tifier that will be used to reference the device. The unit code passed by the MS-DOS kernel
in this case is zero based relative to the logieal drives supported by this particular driver.
For example, if the driver supports two logical floppy-disk-drive units (A and B), only one
physical disk drive exists in the system, and Set Logical Device is called with a unit number
of 1, the driver is being informed that the next read or write request from the MS-DOS
kernel will be directed to drive B.

Section II: Programming in the MS-DOS Environment 467

ZTE (USA) 1007, Page 477

Part C: Customizing MS-DOS

Driver called with Driver returns
OOH OOH
OlH

Request header length
OlH

Unit number Last device referenced*
02H 02H
03H

Command code
03H

Status
05H 05H

Reserved Reserved

ODH ODH
* Get Logical Device (Command code 23) only

Figure 15-12. Get Logical Device and Set Logical Device request header.

In character-device drivers, the Get Logical Device and Set Logical Device functions should
simply set the done flag in the status word of the request header and return.

The Processing of a Typical 1/0 Request

An application program requests an 1/0 operation from MS-DOS by loading registers with
the appropriate values and addresses and executing a software Interrupt 21H. MS-DOS
inspects its internal tables, searches the chain of device headers if necessary, and deter­
mines which device driver should receive the 1/0 request.

MS-DOS then creates a request header data packet in a reserved area of memory. Disk 1/0
requests are transformed from file and record information into logical sector requests by
MS-DOS's interpretation of the disk directory and file allocation table. (MS-DOS locates
these disk structures using the information returned by the driver from a previous Build
BPB call and issues additional driver read requests, if necessary, to bring their sectors into
memory.)

After the request header is prepared, MS-DOS calls the device driver's Strategy entry point,
passing the address of the request header in registers ES:BX. The Strategy routine saves the
address of the request header and performs a far return to MS-DOS.

MS-DOS then immediately calls the device driver's Interrupt entry point. The Interrupt
routine saves all registers, retrieves the address of the request header that was saved by the
Strategy routine, extracts the command code, and branches to the appropriate function to
perform the operation requested by MS-DOS. When the requested function is complete,
the Interrupt routine sets the done flag in the status word and places any other required
information into the request header, restores all registers to their state at entry, and per­
forms a far return.

468 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 478

I
ctionJFH,

e or Device
Interrupt 21H Fun

ReadFil

I
ategy, then
e, passing
command

ead (Input)

Calls to driver Str
Interrupt routin

request header with
code4,R

I
s issued to
requesting

Device command
adapter I/0 ports,
read sector at phy sica! track,

head, and sec tor number

I

Application program

MS-DOS kernel

Device driver

Physical device

Article 15: Installable Device Drivers

I
Read statu s returned
in carry fla g and AX register

J
Status re
kernel in r

turned to MS-DOS
equest header;
din buffer data place

indicated b y kernel

I
Data trans£ erred from

memory device to

J
Figure 15-13. The processing of a typical I/0 request from an application program.

MS-DOS translates the driver's returned status into the appropriate carry flag status,
register values, and (possibly) error code for the MS-DOS Interrupt 21H function that was
requested and returns control to the application program. Figure 15-13 sketches this entire
flow of control and data.

Note that a single Interrupt 21H function request by an application program can result in
many operation requests by MS-DOS to the device driver. For example, if the application
invokes Interrupt 21H Function 3DH (Open File with Handle) to open a file, MS-DOS may
have to issue multiple sector read requests to the driver while searching the directory for
the filename. Similady, an application program's request to write a string to the screen in
cooked mode with Interrupt 21H Function 40H (Write File or Device) will result in a write
request to the driver for each character in the string, because MS-DOS filters the characters
and polls the keyboard for a pending Control-C between each character output.

Writing Device Drivers

Device drivers are traditionally coded in assembly language, both because of the rigid
structural requirements and because of the need to keep driver execution speed high and
memory overhead low. Although MS-DOS versions 3.0 and later are capable of loading

Section II: Programming in the MS-DOS"Environment 469

ZTE (USA) 1007, Page 479

Part C: Customizing MS-DOS

drivers in .EXE format, versions 2.x can load only pure memory-image device drivers that
do not require relocation. Therefore, drivers are typically written as though they were
.COM programs with an "origin" of zero and converted with EXE2BIN to .BIN or .SYS files
so that they will be compatible with any version of MS-DOS (2.0 or later). See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FORMs-nos: Structure of an
Application Program.

The device header must be located at the beginning of the file (offset 0). Both words in the
header's link field should be set to -1, thus allowing MS-DOS to fix up the link field when
the driver is loaded during system initialization so that it points to the next driver in the
chain. When a single file contains more than one driver, the offset portion of each header
link field should point to the next header in that file, all using the same segment base of
zero, and only the link field of the last header in the file should be set to -1, -1.

The device attribute word must reflect the device-driver type (character or block) and the
bits that indicate support for the various optional command codes must have appropriate
values. The device header's offsets to the Strategy and Interrupt routines must be relative
to the same segment base as the device header itself. If the driver is for a character device,
the name field should be filled in properly with the device's logical name, which can be
any legal eight -character uppercase filename padded with spaces and without a colon.
Duplication of existing character-device names or existing disk-file names should be
avoided (unless a resident character-device driver is being intentionally superseded).

The Strategy and Interrupt routines for the device are called by MS-DOS by means of an
intersegment call (CALL FAR) and must return to MS-DOS with a far return. Both routines
must preserve all CPU registers and flags. The MS-DOS kernel's stack has room for 40 to 50
bytes when the driver is called; if the driver makes heavy use of the stack, it should switch
to an internal stack of adequate depth.

The Strategy routine is, of course, very simple. It need only save the address of the request
header that is passed to it in registers ES:BX and exit back to the kernel.

The logic of the Interrupt routine is necessarily more complex. It must save the CPU reg­
isters and flags, extract the command code from the request header whose address was
previously saved by the Strategy routine, and dispatch the appropriate command-code
function. When that function is finished, the Interrupt routine must ensure that the appro­
priate status and other information is placed in the request header, restore the CPU regis­
ters and flags, and return control to the kernel.

Although the interface between the MS-DOS kernel and the command-code routines is
fairly simple, it is also strict. The command-code functions must behave exactly as they are
defined or the system will behave erratically. Even a very subtle discrepancy in the action
of a driver function can have unexpectedly large global effects. For example, if a block
driver Read function returns an error but does not return a correct value for the number of
sectors successfully transferred, the MS-DOS kernel will be misled in its attempts to retry
the read for only the failing sectors and disk data might be corrupted.

470 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 480

Article 15: Installable Device Drivers

Example character driver: TEMPLATE

Figure 15-14 contains the source code for a skeleton character-device driver called
TEMPLATE.ASM. This driver does nothing except display a sign-on message when it is
loaded, but it demonstrates all the essential driver components, including the device
header, Strategy routine, and Interrupt routine. The command-code functions take no
action other than to set the done flag in the request header status word.

name template
title 'TEMPLATE --- installable driver template'

TEMPLATE.ASM: A program skeleton for an installable

device driver (MS-DOS 2.0 or later)

The driver command-code routines are stubs only and have
no effect but to return a nonerror "Done" status.

Ray Duncan, July 1987

_TEXT segment byte public 'CODE'

assume cs:_TEXT,ds:_TEXT,es:NOTHING

org 0

MaxCmd equ 24

cr equ Odh

lf equ Oah

earn equ '$'

Header:

dd -1

dw Oc840h

dw Strat

dw Intr

db 'TEMPLATE'

RHPtr dd ?

maximum allowed command code
12 for MS-DOS 2.x
1 6 for MS-DOS 3. 0-3.1

24 for MS-DOS 3.2-3.3

ASCII carriage return

ASCII line feed

end-of-message signal

device driver header

link to next device driver

device attribute word

"Strategy" routine entry point
"Interrupt" routine entry point

logical device name

pointer to request header, passed

by MS-DOS kernel to Strategy routine

Figure 15-14. TEMPLATE.ASM, the source file for the TEMPLATE.SYS driver. (more)

Section JL- Programming in the MS-DOS Environment 471

ZTE (USA) 1007, Page 481

Part C: Customizing MS-DOS

Dispatch: Interrupt routine command-code

dispatch table

dw I nit 0 initialize driver

dw MediaChk 1 media check on block device

dw BuildBPB ; 2 build BIOS parameter block

dw IoctlRd 3 I/0 control read

dw Read 4 read (input) from device

dw NdRead 5 nondestructive read

dw InpStat 6 return current input status

dw InpFlush 7 flush device input buffers

dw Write 8 write (output) to device

dw WriteVfy 9 write with verify

dw Out Stat 10 return current output status

dw OutFlush 11 flush output buffers

dw IoctlWt 12 I/0 control write

dw DevOpen 13 device open (MS-DOS 3.0+)

dw DevClose 14 device close (MS-DOS 3.0+)

dw RernMedia 15 removable media (MS-DOS 3. 0+)

dw OutBusy 1 6 output until busy (MS-DOS 3.0+)

dw Error 17 not used

dw Error 18 not used

dw GeniOCTL 1 9 g,eneric IOCTL (MS-DOS 3. 2+)

dw Error 20 not used

dw Error 21 not used

dw Error 22 not used

dw GetLogDev 23 get logical device (MS-DOS 3.2+)

dw SetLogDev 24 set logical device (MS-DOS 3.2+)

Strat proc far device driver Strategy routine,

called by MS-DOS kernel with

ES:BX = address of request header

save pointer to request header

mov word ptr cs: [RHPtr],bx

mov word ptr cs: [RHPtr+2],es

ret ; back to MS-DOS kernel

Strat endp

Intr proc far

push ax

push bx

push ex

push dx

push ds

Figure 15-14. Continued.

472 The MS-DOS Encyclopedia

device driver Interrupt routine,
called by MS-DOS kernel immediately

after call to Strategy routine

save general registers

(more)

ZTE (USA) 1007, Page 482

push

push
push

push

push

pop

les

mov

xor
cmp

jle

call

jmp

Intr1: shl

call

les

Intr2: or
mov

pop
pop

pop

pop

pop

pop
pop

pop

pop

ret

es

di

si
bp

cs

ds

di, [RHPtr]

bl,es: [di+2]

bh,bh
bx,MaxCmd

Intr1

Error

Intr2

Article 15: Installable Device Drivers

make local data addressable

by setting DS = CS

let ES:DI = request header

get BX command code

make sure it's valid

jump, function code is ok

set error bit, "Unknown Command" code

bx,1 ; form index to dispatch table

; and branch to command-code routine
word ptr [bx+Dispatch]

di, [RHPtr]

ax,0100h
es: [di+3], ax

bp

si
di

es
ds

dx

ex
bx

ax

ES:DI = address of request header

merge Done bit into status and

store status into request header

restore general registers

return to MS-DOS kernel

Command-code routines are called by the Interrupt routine

via the dispatch table with ES:DI pointing to the request

header. Each routine should return AX = OOH if function was

completed successfully or AX = 8000H + error code if
function failed.

MediaChk proc near function 1 Media Check

xor ax,ax
ret

MediaChk endp

Figure 15-14. Continued. (more)

Section II: Programming in the MS-DOS Environment 473

ZTE (USA) 1007, Page 483

Part C: Customizing MS-DOS

BuildBPB proc near function 2 Build BPB

xor ax, ax

ret

BuildBPB endp

IoctlRd proc near function 3 I/O Control Read

xor ax, ax

ret

IoctlRd endp

Read proc near function 4 Read (Input)

xor ax, ax

ret

Read endp

NdRead proc near function 5 Nondestructive Read

xor ax, ax

ret

NdRead endp

InpStat proc near function 6 Input Status

xor ax, ax

ret

InpStat endp

InpFlush proc near function 7 Flush Input Buffers

xor ax, ax

ret

InpFlush endp

Figure 15-14. Continued. (more)

474 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 484

Article 15: Installable Device Drivers

Write proc near function 8 Write (Output)

xor ax, ax
ret

Write endp

WriteVfy proc near function 9 Write with Verify

xor ax, ax
ret

WriteVfy endp

OutStat proc near function 10 Output Status

xor ax, ax

ret

Out Stat endp

OutFlush proc near function 11 Flush Output Buffers

xor ax, ax
ret

OutFlush endp

IoctlWt proc near function 12 I/O Control Write

xor ax, ax

ret

IoctlWt endp

DevOpen proc near function 13 Device Open

xor ax, ax

ret

DevOpen endp

Figure 15-14. Continued. (more)

Section IL- Programming in the MS-DOS Environment 475

ZTE (USA) 1007, Page 485

Part C: Customizing MS-DOS

DevClose proc near function 14 Device Close

xor ax, ax
ret

DevClose endp

RemMedia proc near function 15 Removable Media

xor ax, ax

ret

RemMedia endp

OutBusy proc near function 1 6 Output Until Busy

xor ax, ax

ret

OutBusy endp

GeniOCTL proc near function 19 Generic IOCTL

xor ax, ax
ret

GeniOCTL endp

GetLogDev proc near function 23 Get Logical Device

xor ax, ax

ret

GetLogDev endp

SetLogDev proc near function 24 Set Logical Device

xor ax, ax

ret

SetLogDev endp
Figure 15-14. Continued.

(more)

476 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 486

Error proc

mov
ret

near

ax,8003h

Error endp

I nit proc near

push es
push di

mov ah,9
mov dx,offset Ident
int 21h

pop di
pop es

Article 15: Installable Device Drivers

bad command code in request header

error bit + "Unknown Command" code

function 0 = initialize driver

save address of request header

display driver sign-on message

restore request header address

; set address of free memory
; above driver (break address)

mov word ptr es: [di+14],offset Init
mov word ptr es: [di+16],cs

xor
ret

Init endp

I dent

ax, ax ; return status

cr,lf,lf db
db 'TEMPLATE Example Device Driver'

db cr,lf,eom

Intr endp

_TEXT ends

end

Figure 15-14. Continued.

TEMPLATE.ASM can be assembled, linked, and converted into a loadable driver with the
following commands:

C>MASM TEMPLATE; <Enter>

C>LINK TEMPLATE; <Enter>
C>EXE2BIN TEMPLATE.EXE TEMPLATE.SYS <Enter>

The Microsoft Object Linker (LINK) will display the warning message No Stack Segment;
this message can be ignored. The driver can then be installed by adding the line

DEVICE=TEMPLATE.SYS

Section II: Programming in the MS-DOS Environment 477

ZTE (USA) 1007, Page 487

Part C: Customizing MS-DOS

to the CONFIG.SYS file and restarting the system. The fact that the TEMPLATE.SYS
driver also has the logical character-device name TEMPLATE allows the demonstration of
an interesting MS-DOS effect: After the driver is installed, the file that contains it can no
longer be copied, renamed, or deleted. The reason for this limitation is that MS-DOS
always searches its list of character-device names first when an open request is issued,
before it inspects the disk directory. The only way to erase the TEMPLATE.SYS file is to
modify the CONFIG.SYS file to remove the associated DEVICE statement and then restart
the system.

For a complete example of a character-device driver for interrupt-driven serial communica­
tions, See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR MS-oos:
Interrupt-Driven Communications.

Example block driver: TINYDISK

Figure 15-15 contains the source code for a simple 64 KB virtual disk (RAMdisk) called
TINYDISK.ASM. This code provides a working example of a simple block-device driver.
When its Initialization routine is called by the kernel, TINYDISK allocates itself 64 KB of
RAM and maps a disk structure onto the RAM in the form of a boot sector containing a
valid BPB, a FAT, a root directory, and a files area. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: STRUCTURE OF Ms-oos: MS-DOS Storage Devices.

name tinydisk
title TINYDISK example block-device driver

TINYDISK.ASM ~-- 64 KB RAMdisk

Ray Duncan, July 1987
Example of a simple installable block-device driver.

_TEXT segment public 'CODE'

assume cs:_TEXT,ds:_TEXT,es:-TEXT

org 0

MaxCmd equ 12 max driver command code
(no MS-DOS 3.x functions)

cr equ Odh ASCII carriage return
lf equ Oah ASCII line feed
blank equ 020h ASCII space code
eom equ '$' end-of-message signal

Secsize equ 512 bytes/sector, IBM-compatible media

Figure 15-15. TINYDJSK.ASM, the source file for the TINYDISK.SYS driver. (more)

478 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 488

Header dd
dw

dw
dw

db
db

RHPtr dd

Secseg dw

Xfrsec dw

Xfrcnt dw

Xfrreq dw

Xfraddr dd

Array dw

Bootrec equ

jmp

nop

db

BPB dw

db
dw

db

dw

dw

db

dw

-1

0
Strat

Intr

7 dup (0)

?

0

0

0

0

BPB

$

$

'MS 2. 0'

Secsize

1

32

128

Of8h

Article 15: Installable Device Drivers

device-driver header

link to next driver in chain
device attribute word

"Strategy" routine .entry point

"Interrupt" routine entry point
number of units, this device

reserved area (block-device drivers)

segment:offset of request header

segment base of sector storage

current sector for transfer

sectors successfully transferred

number of sectors requested

working address for transfer

array of pointers to BPB

for each supported unit

phony JMP at start of

boot sector; this field

must be 3 bytes

OEM identity field

BIOS Parameter Block (BPB)

OOH - bytes per sector
02H - sectors per cluster

03H - reserved sectors

OSH - number of FATs

06H - root directory entries

08H - sectors = 64 KB/secsize
OAH - media descriptor

OBH - sectors per FAT

Bootrec_len equ $-Bootrec

Strat proc far RAMdisk strategy routine

save address of request header

mov word ptr cs:RHPtr,bx
mov word ptr cs: [RHPtr+2),es

ret ; back to MS-DOS kernel

Strat endp

Figure 15-15. Continued. (more)

Section 11- Programming in the MS-DOS Environment 479

ZTE (USA) 1007, Page 489

Part C: Customizing MS-DOS

Intr proc far

push ax
push bx
push ex
push dx
push ds
push es
push di
push si
push bp

mov
mov

les

mov

ax,cs
ds,ax

di, (RHPtr]

bl,es: (di+2]
xor bh,bh

cmp
jle
mov
jmp

bx,MaxCmd
Intr1
ax,8003h
Intr3

RAMdisk interrupt routine

save general registers

make local data addressable

ES:DI = request header

get command code

make sure it's valid
jump, function code is ok
set Error bit and
"Unknown Command" error code

Intr1 : shl bx,1 form index to dispatch table and

call

les

Intr3: or
mov

Intr4: pop
pop
pop
pop
pop
pop
pop
pop
pop
ret

Intr endp

branch to command-code routine
word ptr (bx+Dispatch]

di, (RHPtr]

ax,0100h
es: (di+3],ax

bp
si
di

es
ds
dx
ex
bx
ax

should return AX = status

restore ES:DI = request header

merge Done bit into status and store
status into request header

restore general registers

return to MS-DOS kernel

Figure 15-15. Continued.

480 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 490

Article 15: Installable Device Drivers

Dispatch:

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

I nit

MediaChk
BuildBPB
Dummy
Read
Dummy
Dummy
Dummy
Write
Write
Dummy
Dummy
Dummy

MediaChk proc near

command-code dispatch table
all command-code routines are
entered with ES:DI pointing
to request header and return
the operation status in AX

0 initialize driver
media check on block device

2 build BIOS parameter block
3 I/0 control read

5

6

7

8

9
10
11
12

read (input) from device
nondestructive read
return current input status
flush device input buffers
write (output) to device
write with verify
return current output status
flush output buffers
I/O control write

command code 1 = Media Check

return "not changed" code
mov byte ptr es: [di+Oeh],1

xor
ret

MediaChk endp

ax, ax

BuildBPB proc near

; and success status

command code 2 = Build BPB

put BPB address in request header
mov word ptr es: [di+12h],offset BPB
mov word ptr es: [di+14h],cs

xor
ret

BuildBPB endp

Read proc

call

Read1: mov
cmp
je
mov
call

ax, ax

near

Setup

ax,Xfrcnt
ax,Xfrreq
Read2
ax,Xfrsec
Mapsec

Figure 15-15. Continued.

; return success status

command code 4 = Read (Input)

set up transfer variables

done with all sectors yet?

jump if transfer completed
get next sector number
and map it

(more)

Section IL· Programming in the MS-DOS Environment 481

ZTE (USA) 1007, Page 491

Part C: Customizing MS-DOS

Read2:

Read

Write

Write1:

Write2:

mov
mov

les
mov

mov

cld

rep

push

pop

inc

add
inc
jmp

xor

les
mov

mov

ret

endp

proc

call

mov

cmp

je

mov

call

lds
mov

cld

ax,es
si,di
di,Xfraddr

ds,ax
cx,Secsize

movsb

cs
ds
Xfrsec

ES:DI =requester's buffer
DS:SI = RAMdisk address

transfer logical sector from
RAMdisk to requestor

restore local addressing

advance -sector number

advance transfer address
word ptr Xfraddr,Secsize

Xfrcnt

Read1

ax, ax
di,RHPtr

bx,Xfrcnt
es: [di+12h],bx

near

Setup

ax,Xfrcnt
ax,Xfrreq

Write2

ax,Xfrsec

Mapsec
si,Xfraddr

cx,Secsize

; count sectors transferred

all sectors transferred

return success status

put actual transfer count
into request header

command code 8

command code 9
Write (Output)

Write with Verify

set up transfer variables

done with all sectors yet?

jump if transfer completed

get next sector number
and map it

transfer logical sector from

requester to RAMdisk
rep movsb

push

pop
inc

add

inc
jmp

xor

les

cs
ds

Xfrsec

restore local addressing

advance sector number

advance transfer address
word ptr Xfraddr,Secsize

Xfrcnt

Write1

ax, ax
di,RHPtr

; count sectors transferred

all sectors transferred

return success status

put actual transfer count

Figure 15-15. Continued.

482 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 492

r
I
' '

Write

Dummy

Dummy

mov

mov

ret

endp

proc

xor
ret

endp

Article 15: Installable Device Drivers

bx,Xfrcnt into request header
es: [di+12h] ,bx

near called for unsupported functions

ax, ax return success flag for all

Mapsec proc near map sector number to memory address
call with AX logical sector no.

mov

mul

add

di,Secsize/16

di

ax,Secseg

rnov es, ax

xor

ret

di,di

return ES:DI memory address

paragraphs per sector

* logical sector number
+ segment base of sector storage

now ES:DI points to sector

Mapsec endp

Setup

Setup

proc

push

push

mov

mov

mov

near

es

di

ax,es: [di+14h]

Xfrsec,ax
ax,es: [di+12h]

mov Xfrreq,ax

set up for read or write

call ES:DI = request header

extracts address, start, count

save request header address

starting sector number

sectors requested

les di,es: [di+Oeh] ; requester's buffer address

mov word ptr Xfraddr,di

mov word ptr Xfraddr+2,es

mov

pop

Xfrcnt,O

di

pop es

ret

endp

initialize sectors transferred count

; restore request header address

Figure 15-15. Continued. (more)

Section JL- Programming in the MS-DOS Environment 483

ZTE (USA) 1007, Page 493

Part C: Customizing MS-DOS

I nit

I nit

Format

proc near command code 0
on entry ES:DI

Initialize driver
request header

mov

add
ax,cs
ax,Driver_len
Secseg,ax
ax,1000h

calculate segment base for sector
storage and save it

mov
add add 1000H paras (64 KB) and
mov es: [di+10h],ax set address of free memory
mov word ptr es: [di+Oeh],O

call Format format the RAMdisk

call Signon display driver identification

les di,cs:RHPtr restore ES:DI = request header
set logical units = 1

mov byte ptr es: [di+Odh],1
; set address of BPB array

mov word ptr es: [di+12h],offset Array
mov word ptr es: [di+14h],cs

xor
ret

endp

proc

mov
xor
mov
xor
cld
rep

mov

call
mov
mov

ax, ax ; return success status

near format the RAMdisk area

es,Secseg first .zero out RAMdisk
di,di
cx,8000h 32 K words 64 KB
ax, ax

stosw

ax,O get address of logical
Mapsec sector zero

si,offset Bootrec
cx,Bootrec_len

rep movsb and copy boot record to

mov ax, word ptr BPB+3

call Mapsec get address of 1st FAT
mov al,byte ptr BPB+Oah
mov es:[di],al ; put media ID byte into
mov word ptr es: [di+1],-1

mov ax,word ptr BPB+3

add ax, word ptr BPB+Obh

it

sector

it

call Mapsec ; get address of 1st directory sector

Figure 15-15. Continued.

484 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 494

Article 15: Installable Device Drivers

mov si,offset Volname
mov cx,Volname_len

rep movsb

ret

Format endp

Signon proc near

les di,RHPtr
mov al,es: [di+22]

add al, 'A'
mov drive,al

mov ah,30h
int 21h

cmp al,2

ja Signon1
mov Ident1,eom

Signon1:

mov ah,09H
mov dx,offset I dent
int 21h

ret

Signon endp

I dent db cr,lf,lf
db 'TINYDISK 64 KB

db cr,lf

;

copy volume label to it

done with formatting

driver identification message

let ES:DI = request header

get drive code from header,

convert it to ASCII, and

store into sign-on message

get MS-DOS version

jump if version 3.0 or later
version 2.x, don't print drive

print sign-on message
Function 09H = print string

DS:DX = address of message

transfer to MS-DOS

back to caller

driver sign-on message
RAMdisk'

Ident1 db 'RAMdisk will be drive '
Drive db 'X: I

db cr,lf,eom

Vol name db 'DOSREF_DISK' volume label for RAMdisk
db 08h attribute byte
db 1 0 dup (0) reserved area
dw 0 time = 00:00
dw Of01h date = August 1, 1987
db 6 dup (0) reserved area

Volname_len equ $-volname

Driver_len dw (($-header)/16)+1 driver size in paragraphs

_TEXT ends

end

Figure 15-15. Continued.

Section 11· Programming in the MS-DOS Environment 485

ZTE (USA) 1007, Page 495

Part C: Customizing MS-DOS

Subsequent driver Read and Write calls by the kernel to TINYDISK function as though they
were transferring sectors to and from a physical storage device but actually only copy data
from one area in memory to another. A programmer can learn a great deal about the oper­
ation of block-device drivers and MS-DOS's relationship to those drivers (such as the order
and frequency of Media Change, Build BPB, Read, Write, and Write With Verify calls) by
inserting software probes into TINYDISK at appropriate locations and monitoring its
behavior.

TINYDISK.ASM can be assembled, linked, and converted into a loadable driver with the
following commands:

C>MASM TINYDISK; <Enter>
C>LINK TINYDISK; <Enter>
C>EXE2BIN TINYDISK.EXE TINYDISK.SYS <Enter>

The linker will display the warning message No Stack Segment; this message can be
ignored; The driver can then be installed by adding the line

DEVICE=TINYDISK.SYS

to the CONFIG.SYS file and restarting the system. When it is loaded, TINYDISK displays a
sign-on message and the drive letter that it was assigned if it is running under MS-DOS ver­
sion 3.0 or later. (If the host system is MS-DOS version 2.x, this information is not provided
to the driver.) Files can then be copied to the RAMdisk as though it were a small but
extremely fast disk drive.

Ray Duncan

486 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 496

PartD
Directions of MS-DOS

ZTE (USA) 1007, Page 497

ZTE (USA) 1007, Page 498ZTE (USA) 1007, Page 498

Article 16: Writing Applications for Upward Compatibility

Article16
Writing Applications for
Upward Compatibility

One of the major concerns of the designers of Microsoft OS/2 was that it be backwardly
compatible- that is, that programs written to run under MS-DOS versions 2 and 3 be able
to run on MS OS/2. A major concern for present application programmers is that their pro­
grams run not only on current versions of MS-DOS (and MS OS/2) but also on future ver­
sions of MS-DOS. Ensuring such upward compatibility involves both hardware issues and
operating-system issues.

Hardware Issues

A basic requirement for ensuring upward compatibility is hardware-independent code. If
you bypass system services and directly program the hardware- such as the system inter­
rupt controller, the system clock, and the enhanced graphics adapter (EGA) registers­
your application will not run on future versions of MS-DOS.

Protected mode compatibility

The 80286 and the 80386 microprocessors can operate in two incompatible modes: real
mode and protected mode. When either chip is operating in real mode, it is perceived by
the operating system and programs as a fast 8088 chip. Applications written for the 8086
and 8088 run the same on the 80286 and the 80386-only faster. They cannot, however,
take advantage of 80286 and 80386 features unless they can run in protected mode.

Following the guidelines below will minimize the work necessary to convert a real mode
program to protected mode and will also allow a program to use a special subset of the
MS OS/2 Applications Program Interface (API)-Family API. A binary program (.EXE)
that uses the family API can run in either protected mode or real mode under MS OS/2 and
subsequent systems, but it can run only in real mode under MS-DOS version 3.

Family API

The Family API requires that the application use a subset of the MS OS/2 Dynamic Link
System API. Special tools link the application with a special library that implements the
subset MS OS/2 system services in the MS-DOS version 3 environment. Many of these ser­
vices are implemented by calling the appropriate Interrupt 21H subfunction; some are

· implemented in the special library itself.

Section /1· Programming in the MS-DOS Environment 489

ZTE (USA) 1007, Page 499

Part D: Directions of MS-DOS

When a Family API application is loaded under MS OS/2 protected mode, MS OS/2 ignores
the special library code and loads only the application itself. MS OS/2 then provides the
requested services in the normal fashion. However, MS-DOS version 3loads the entire
package- the application and the special library-because the Family API .EXE file is
constructed to look like an MS-DOS 3 .EXE file.

Linear vs segmented memory

The protected mode and the real mode of the 80286 and the 80386 are compatible except
in the area of segmentation. The 8086 has been described as a segmented machine, but it
is actually a linear memory machine with offset registers. When a memory address is gen­
erated, the value in one of the "segment" registers is multiplied by 16 and added as a
displact;ment to the offset value supplied by the instruction's addressing mode. No length
information is associated with each "segment"; the "segment" register supplies only a
20-bit addressing offset. Programs routinely use this by computing a 20-bit address and
then decomposing it into a 16-bit "segment" value and a 16-bit displacement value so that
the address can be referenced.

The protected mode of the 80286 and the 80386, however, is truly segmented. A value
placed in a segment register selects an entry from a descriptor table; that entry contains
the addressing offset, a segment length, and permission bits. On the 8086, the so-called
segment component of an address is multiplied by 16 and added to the offset component,
producing a 20-bit physical address. Thus, if you take an address in the segment: offset
form, add 4 to the segment value, and subtract 64 (that is, 4 * 16) from the offset value, the
new address references exactly the same location as the old address. On the 80286 and
the 80386 in protected mode, however, segment values, called segment selectors, have no
direct correspondence to physical addresses. In other words, in 8086 mode, the two
address forms

100016:034516

and

100416:030516

reference the same memory location, but in protected mode these two forms reference
totally different locations.

Creating segment values

This architectural difference gives rise to the most common cause of incompatibility- the
program performs addressing arithmetic to compute "segment" values. Any program that
uses the 20-bit addressing scheme to create or to compute a value to be loaded in a seg­
ment register cannot be converted to run in protected mode. To be protected mode com­
patible, a program must treat the 8086's so-called segments as true segments.

To create a program that does this, write according to the following guidelines:

1. Do not generate any segment values. Use only the segment values supplied by
MS-DOS calls and those placed in the segment registers when MS-DOS loaded your
program. The exception is "huge objects"-memory objects larger than 64 KB. In

490 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 500

__________________ Ar_t..::..ic..::..le:.._l::..:6..::..: W'i..::_:::ri::..:tin~g Applications for Upward Compatibility

this case, MS OS/2 provides a base segment number and a "segment offset value."
The returned segment number selects the first 64 KB of the object and the segment
number, plus the segment offset value address the second 64 KB of the object. Like­
wise, the returned segment value plus N *(segment offset value) selects theN+ 1
64 KB piece of the huge object. Write real mode code in this same fashion, using
4096 as the segment offset value. When you convert your program, you can substitute
the value provided by MS OS/2.

2. Do not address beyond the allocated length of a segment.
3. Do not use segment registers as scratch registers by placing general data in them.

Place only valid segment values, supplied by MS-DOS, in a segment register. The one
exception is that you can place a zero value in a segment register, perhaps to indicate
"no address." You can place the zero in the segment register, but you cannot reference
memory using that register; you can only load/store or push/pop it.

4. Do not use CS: overrides on instructions that store into memory. It is impossible to
store into a code segment in protected mode.

CPU speed

Because various microprocessors and machine configurations execute at different speeds,
a program should not contain timing loops that depend on CPU speed. Specifically, a pro­
gram should not establish CPU speed during initialization and then use that value for tim-
ing loops because the preemptive scheduling of MS OS/2 and future operating systems 4
can "take away" the CPU at any time for arbitrary and unpredictable lengths of time. (In
any case, time should not be wasted in a timing loop when other processes could be using
system resources.)

Program timing

BIOS

Programs must measure the passage of time carefully. They can use the system clock-tick
interrupt while directly interfacing with the user, but no clock ticks will be seen by real
mode programs when the user switches the screen interface to another program.

It is recommended that applications use the time-of-day system interface to determine
elapsed time. To facilitate conversion to MS OS/2 protected mode, programs should encap­
sulate time-of-day or elapsed-time functions into subroutines.

Avoid BIOS interrupt interfaces except for Interrupt lOH (the screen display functions)
and Interrupt 16H (the keyboard functions). Interrupt lOH functions are contained in the
MS OS/2 VIO package, and l!lterrupt 16H functions are in the MS OS/2 KBD package.
Other BIOS interrupts provide functions that are available under MS OS/2 only in con­
siderably modified forms.

Special operations

Uncommon, or special, operations and instructions can produce varied results, depending
on the microprocessor. For example, when a "divide by 0" trap is taken on an 8086, the
stack frame points to the instruction after the fault; when such action is taken on the 80286
and 80386, the return address points to the instruction that caused the fault. The effect of

Section Jl- Programming in the MS-DOS Environment 491

ZTE (USA) 1007, Page 501

Part D: Directions of MS-DOS

pushing the SP register is different between the 80286 and the 80386 as well. See Appen­
dix M: 8086/8088 Software Compatibility Issues. Write your program to avoid these
problem areas.

Operating-System Issues

Basic to.writing programs that will run on future operating systems is writing code that is
not version specific. Incorporating special version-specific features in a program will vir­
tually ensure that the program will be incompatible with future versions of MS-DOS and
MSOS/2.

Following the guidelines below will not necessarily ensure your program's compatibility,
but it will facilitate converting the program or using the Family API to produce a dual­
mode binary program.

Filenames

MS-DOS versions 2 and 3 silently truncate a filename that is longer than eight characters
or an extension that is longer than three characters. MS-DOS generates no error message
when performing this task. In real mode, MS OS/2 also silently truncates a filename or ex­
tension that exceeds the maximum length; in protected mode, however, it does not.
Therefore, a real mode application program needs to perform this truncating function.
The program should check the length of the filenames that it generates or that it obtains
from a user and refuse names that are longer than the eight-character maximum. This pre­
vents improperly formatted names from becoming embedded in data and control files- a
situation that could cause a protected mode version of the application to fail when it pre­
sents that invalid name to the operating system.

When you convert your program to protected mode API, remove the length-checking
code; MS OS/2 will check the length and return an error code as appropriate. Future file
systems will support longer filenames, so it's important that protected mode programs sim­
ply present filenames to the operating system, which is then responsible for judging their
validity.

Other MS-DOS version 2 and 3 elements have fixed lengths, including the current directory
path. To be upwardly compatible, your program should accept whatever length is provided
by the user or returned from a system call and rely on MS OS/2 to return an error message
if a length is inappropriate. The exception is filename length in real mode non-Family API
programs: These programs should enforce the eight-character maximum because MS-DOS
versions 2 and 3 fail to do so.

File truncation

Files are truncated by means of a zero-length write under MS-DOS versions 2 and 3; under
MS OS/2 in protected mode, files are truncated with a special API. File truncation opera­
tions should be encapsulated in a special routine to facilitate conversion to MS 0~/2 pro­
tected mode or the Family API.

492 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 502

Article 16: Writing Applications for Upward Compatibility

File searches

MS-DOS versions 2 and 3 never close file-system searches (Find First File/Find Next File).
The returned search contains the information necessary for MS-DOS to continue the
search later, and if the search is never continued, no harm is done.

MS OS/2, however, retains the necessary search continuation information in an internal
structure of limited size. For this reason, your program should not depend on more than
about 10 simultaneous searches and it should be able to close searches when it is done. If
your program needs to perform more than about 10 searches simultaneously, it should be
able to close a search, restart it later, and advance to the place where the program left off,
rather than depending on MS OS/2 to continue the search.

MS OS/2 further provides a Find Close function that releases the internal search infor­
mation. Protected mode programs should use this call at the end of every search se­
quence. Because MS-DOS versions 2 and 3 have no such call, your program should call a
dummy procedure by this name at the appropriate locations. Then you can convert your
program to the protected mode API or to the Family API without reexamining your
algorithms.

Note: Receiving a "No more files" return code from a search does not implicitly close the
search; all search closes must be explicit.

The Family API allows only a single search at a time. To circumvent this restriction, code
two different Find Next File routines in your program- one forMS OS/2 protected mode
and one for MS-DOS real mode- and use the Family API function that determines the
program's current environment to select the routine to execute.

MS-DOS calls

A program that uses only the Interrupt 21H functions listed below is guaranteed to work
in the Compatibility Box of MS OS/2 and will be relatively easy to modify forMS OS/2
protected mode.

Function Name

ODH Disk Reset
OEH Select Disk
19H Get Current Disk
1AH Set DTA Address
25H Set Interrupt Vector
2AH Get Date
2BH Set Date
2CH Get Time
2EH Set/Reset Verify Flag
2FH Get DTA Address

(more)

Section II: Programming in the MS-DOS Environment 493

ZTE (USA) 1007, Page 503

Part D: Directions of MS-DOS

FCBs

Function

30H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
54H
56H
57H
59H
5AH
5BH
5CH

Name

Get MS-DOS Version Number
Get/Set Control-C Check Flag
Get Interrupt Vector
Get Disk Free Space
Get/Set Current Country
Create Directory
Remove Directory
Change Current Directory
Create File with Handle
Open File with Handle
Close File
Read File or Device
Write File or Device
Delete File
Move File Pointer
Get/Set File Attributes
IOCTL (all subfunctions)
Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory Block
Free Memory Block
Resize Memory Block
Load and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File
Find Next File
Get Verify Flag
Rename File
Get/Set Date/Time of File
Get Extended Error Information
Create Temporary File
Create New File
Lock/Unlock File Region

FCBs are not supported in MS OS/2 protected mode. Use handle-based calls instead.

494 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 504

Article 16: Writing Applications for Upward Compatibility

Interrupt calls

MS-DOS versions 2 and 3 use an interrupt-based interface; MS OS/2 protected mode uses
a procedure-call interface. Write your code to accommodate this difference by encap­
sulating the interrupt -based interfaces into individual subroutines that can then easily be
modified to use the MS OS/2 procedure-call interface.

System call register usage

The MS OS/2 procedure-call interface preserves all registers except AX and FLAGS. Write
your program to assume that the contents of AX and the contents of any register modified
by MS-DOS version 2 and 3 interrupt interfaces are destroyed at each system call, regard­
less of the success or failure of that call.

Flush/Commit calls

Seeks

Your program should issue Flush/Commit calls where necessary- for example, after
writing out the user's work file- but no more than necessary. Because MS OS/2 is multi­
tasking, the floppy disk that contains the files to be flushed may not be in the drive. In
such a case, MS OS/2 prompts the user to insert the proper floppy disk. As a result, too
frequent flushes could generate a great many Insert disk messages and degrade the
system's usability.

Seeks to negative offsets and to devices also create compatibility issues.

To negative offsets

Your program should not attempt to seek to a negative file location. A negative seek offset
is permissible as long as the sum of the seek offset and the current file position is positive.
MS-DOS versions 2 and 3 allow seeking to a negative offset as long as you do not attempt to
read or write the file at that offset. MS OS/2 and subsequent systems return an error code
for negative net offsets.

On devices

Your program should not issue seeks to devices (such as AUX, COM, and so on). Doing so
produces an error under MS OS/2.

Error codes

Because future releases of the operating system may return new error codes to system
calls, you should write code that is open-ended about error codes- that is, write your pro­
gram to deal with error codes beyond those currently defined. You can generally do this
by including special handling for any codes that require special treatment, such as "File not
found," and by taking a generic course of action for all other errors. The MS OS/2 pro­
tected mode API and the Family API have an interface that contains a message describing
the error; this message can be displayed to the user. The interface also returns error
classification information and a recommended action.

Section II: Programming in the MS-DOS Environment 495

ZTE (USA) 1007, Page 505

Part D: Directions of MS-DOS

Multitasking concerns

Multitasking is a feature of MS OS/2 and will be a feature of all future versions of MS-DOS.
The following guidelines apply to all programs, even to those written for MS-DOS version
3, because they may run in compatibility mode under MS OS/2.

Disabling interrupts

Do not disable interrupts, typically with the CLI instruction. The consequences of doing so
depend on the environment.

In real mode programs under MS OS/2, disabling interrupts works normally but has a
negative impact on the system's ability to maintain proper system throughput. Communi­
cations programs or networking applications might lose data. In a future version of real
modeMS OS/2-80386, the operating system will disregard attempts to disable interrupts.

Protected mode programs under MS OS/2 can disable interrupts only in special Ring 2
segments. Disabling interrupts for longer than 100 microseconds might cause communica­
tions programs or networking applications to lose data or break connection. A future
80386-specific version of MS OS/2 will ignore attempts to disable interrupts in protected
mode programs.

Measuring system resources

Do not attempt to measure system resources by exhausting them, and do not assume that
because a resource is available at one time it will be available later. Remember: System
resources are being shared with other programs.

For example, it is common for an MS-DOS version 3 application to request 1 MB of mem­
ory. The system cannot fulfill this request, so it returns the largest amount of memory
available. The application then requests that amount of memory. Typically, applications do
not even check for an error code from the second request. They routinely request all avail­
able memory because their creators knew that no other application could be in the system
at the same time. This practice will work in real mode MS OS/2, although it is inefficient
because MS OS/2 must allocate memory to a program that has no effective use for it. How­
ever, this practice will not work under MS OS/2 protected mode or under the Family API.

Another typical resource-exha,ustion technique is opening files until an open is refused
and then closing unneeded file handles. All applications, even those that run only in an
MS OS/2 real mode environment, must use only the resources they need and not waste
system resources; in a multitasking environment, other programs in the system usually
need those resources.

Sharing rules

Because multiple programs can run under MS OS/2 simultaneously and because the
system can be networked, conflicts can occur when two programs try to access the same
file. MS OS/2 handles this situation with special file-sharing support. Although programs

496 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 506

Article 16: Writing Applications for Upward Compatibility

ignorant of file-sharing rules can run in real mode, you s~1ould explicitly specify file­
sharing rules in your program. This will reduce the number of file-access conflicts the user
will encounter.

Miscellaneous guidelines

Do not use undocumented features of MS-DOS or undocumented fields such as those in
the Find First File buffer. Also, do not modify or store your own values in such areas.

Maintain at least 2048 free bytes on the stack at all times. Future releases of MS-DOS may
require extra stack space at system call and at interrupt time.

Print using conventional handle writes to the LPT device(s). For example:

fd = open ("LPT1 ");
write(fd, data, datalen);

Do not use Interrupt 17H (the IBM ROM BIOS printer services), writes to the stdprn han­
dle (handle 3), or special-purpose Interrupt 21H functions such as 05H (Printer Output).
These methods are not supported under MS OS/2 protected mode or in the Family API.

Do not use the MS-DOS standard handles stdaux and stdprn (handles 3 and 4); these
handles are not supported in MS OS/2 protected mode. Use only stdin (handle 0), stdout
(handle 1), and stderr (handle 2). Do use these latter handles where appropriate and avoid
opening the CON device directly. Avoid Interrupt 21H Functions 03H (Auxiliary Input) and
04H (Auxiliary Output), which are polling operations on stdaux.

Summary

A tenet of MS OS/2 design was flexibility: Each component was constructed in anticipa­
tion of massive changes in a future release and with an eye toward existing versions of
MS-DOS. Writing applications that are upwardly and backwardly compatible in such an
environment is essential- and challenging. Following the guidelines in this article will
ensure that your programs function appropriately in the MS-DOS/OS/2 operating­
system family.

Gordon Letwin

Section 11· Programming in the MS-DOS Environment 497

ZTE (USA) 1007, Page 507

ZTE (USA) 1007, Page 508ZTE (USA) 1007, Page 508

Article17
Windows

Article 17: Windows

Microsoft Windows is an operating environment that runs under MS-DOS versions 2.0
and later. The current version of Windows, version 2.0, requires either a fixed disk or tvvo
double-sided floppy-disk drives, at least 320 KB of memory, and a video display board
and monitor capable of graphics and a screen resolution of at least 640 (horizontal) by 200
(vertical) pixels. A fixed disk and 640 KB of memory provide the best environment for run­
ning Windows; a mouse or other pointing device is optional but recommended.

For the user, Windows provides a multitasking, graphics-based windowing environment
for running programs. In this environment, users can easily switch among several pro­
grams and transfer data between them. Because programs speciaily designed to run under
Windows usually have a consistent user interface, the time spent learning a new program
is greatly diminished. Furthermore, the user can carry out command functions using only
the keyboard; only the mouse, or some combination of the two. In some cases, Windows
(and Windows applications) provides several different ways to execute the same
command.

For the program developer, Windows provides a wealth of high-level routines that make
it easy to incorporate menus, scroll bars, and dialog boxes (which contain controls, such as
push buttons and list boxes) into programs. Windows' graphics interface is device inde- ·
pendent, so programs developed for Windows work with every video display adapter and
printer that has a Windows driver (usually supplied by the hardware manufacturer). Win­
dows also includes features that facilitate the translation of programs into foreign lan­
guages for international markets.

When Windows is running, it shares responsibility for managing system resources with
MS-DOS. Thus, programs that run under Windows continue to use MS-DOS function calls
for all file input and output and for executing other programs, but they do not use MS-DOS
for display or printer output, keyboard or mouse input, or memory management. Instead,
they use functions provided by Windows.

Program Categories

Programs that run under Windows can be divided into three categories:

1. Programs specially designed for the Windows environment. Examples of such pro­
grams include Clock and Calculator, which come with Windows. Microsoft Excel is
also specially designed for Windows. Other programs of this type (such as Aldus's
Pagemaker) are available from software vendors other than Microsoft. Programs in
this category cannot run under MS-DOS without Windows.

2. Programs designed to run under MS-DOS but that can usually be run in a window
along with programs designed specially for Windows. These programs do not require

Section II: Programming in the MS-DOS Environment 499

ZTE (USA) 1007, Page 509

Part D: Directions of MS-DOS

large amounts of memory, do not write directly to the display, do not use graphics,
and do not alter the operation of the keyboard interrupt. They cannot use the mouse,
the Windows application-program interface (such as rp.enus and dialog boxes), or
the graphics services that Windows provides. MS-DOS utilities, such as EDLIN and
CHKDSK, are examples of programs in this category.

3. Programs designed to run under MS-DOS but that require large amounts of memory,
write directly to the display, use graphics, or alter the operation of the keyboard inter­
rupt. When Windows runs such a progr~m, it must suspend operation of all other
programs running in Windows and allow the program to use the full screen. In some
cases, Windows cannot switch back to its normal display until the program termi­
nates. Microsoft Word and Lotus 1-2-3 are examples of programs in this category.

The programs in categories 2 and 3 are sometimes called standard applications. To run
one of these programs in Windows, the user must create a PIF file (Program Information
File) that describes how much memory the program requires and how it uses the com­
puter's hardware.

Although the ability to run existing MS-DOS programs under Windows benefits the user,
the primary purpose of Windows is to provide an environment for specially designed pro­
grams that take full advantage of the Windows interface. This discussion therefore concen­
trates almost exclusively on programs written for the Windows 2.0 environment.

The Windows Display

Figure 17-1 shows a typical Windows display running several programs that are included
with the retail version of Windows 2.0.

The display is organized as a desktop, with each program occupying one or more rect­
angular windows that, unlike the tiled (juxtaposed) windows typical of earlier versions,
can be overlapped. Only one program is active at any time- usually the program that is
currently receiving keyboard input. Windows displays the currently active program on top
of (overlying) the others. Programs such as CLOCK and TERMINAL that are not active
continue to run normally, but do not receive keyboard input.

The user can make another program active by pressing and releasing (clicking) the mouse
button when the mouse cursor is positioned in the new program's window or by pressing
either the Alt-Tab or Alt-Esc key combination. Windows then brings the new active pro­
gram to the top.

Most Windows programs allow their windows to be moved to another part of the display
or to be resized to occupy smaller or larger areas. Most of these programs can also be max­
imized to fill the entire screen or minimized- generally as a small icon displayed at the
hottom of the screen- to occupy a small amount of display space.

500 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 510

iCountry=1
iDate=O
iCun·ency=O
iDigits=2
iTime=D
ilzero=O
s1159=AI1
s2359=PI1
sCurrency=$
slhousand= ~
sDecimal=.
sDate=­
sTime=:
slist=,
dialog= yes

[ports]
; To output to a file make an entry in t
; filename .PRN followed by an equal sign
; The filename will appear in the Contro
; any printer may then be connected to t
; be done to this file.

Figure 17-1. A typical Windows display.

Parts of the window

Article 17: Windows

Figure 17-2 shows the Windows NOTEPAD program, with the different parts of the win­
dow identified. NOTEPAD is a small ASCII text editor limited to files of 16 KB. The various
parts of the NOTEPAD window (similar to all Windows programs) are described in this
section.

Title bar (or caption bar). The title bar identifies the program and, if applicable, the data
file currently loaded into the program. For example, the NOTEPAD window shown in
Figure 17-2 on the next page has the file WIN.INI loaded into memory. Windows uses dif­
ferent title-bar colors to distinguish the active window from inactive windows. The user
can move a window to another part of the display by pressing the mouse button when the
mouse pointer is positioned anywhere on the title bar and dragging (moving) the mouse
while the button is pressed.

System-menu icon. When the user clicks a system-menu icon with the mouse (or presses
Alt-Spacebar), Windows displays a system menu like that shown in Figure 17-3. (Most Win­
dows programs have identical system menus.) The user selects a menu item in one of
several ways: clicking on the item; moving the highlight bar to the item with the cursor­
movement keys and then pressing Enter; or pressing the letter that is underlined in the
menu item (for example, n for Mi!J:imize).

The keyboard combinations (Alt plus function key) at the right of the system menu are
keyboard accelerators. Using a keyboard accelerator, the user can select system-menu
options without first displaying the system menu.

Section 11· Programming in the MS-DOS Environment 501

ZTE (USA) 1007, Page 511

Part D: Directions of MS-DOS

System-menu

1
iCount~y=1
iDate=O
iCu~~ency=O
iDigits=2
iTime=O
ilze~o=O
s1159=AM
s2359=PM
sCur.,.ency=$
slhousand;;,
sDecimal=.
sDate=­
sTime=:
slist=,
dialog=yes

[po~ts]

Title bar Minimize

; To output to a file rnake an entry in this section of the form
; filename.PRtl followed by an equal sign.
; The filenaiTie will appear in the Control Panel Connections dialog and
; any printer may theri be connected to this file and all printing will
; be done to this file.

Icons

Maximize
icon

Client
area

Scroll
bars

Figure 17-2. The Windows NOTEPAD program, with different parts of the display labeled.

The six options on the standard system menu are

• Restore: Return the window to its previous position and size after it has been
minimized or maximized.

• Move: Allow the window to be moved with the cursor-movement keys.
• Size: Allow the window to be resized with the cursor-movement keys.
• Minimize: Display the window in its iconic form.
• Maximize: Allow the window to occupy the full screen.
• Close: End the program.

Windows displays an option on the system menu in grayed text to indicate that the option
is not currently valid. In the system menu shown in Figure 17-3, for example, the Restore
option is grayed because the window is not in a minimized or maximized form.

Minimize Alt+F9
Maximize Alt+F1 0

.Close Alt•F4

Figure 17-3. A system menu, displayed either when the user clicks the system-menu icon (top left corner) or
presses Aft-Spacebar.

502 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 512

Article 17: Windows

·~Restore icon

Figure 17-4. The restore icon, which replaces the maximize icon when a window is expanded to fill
the entire screen.

Minimize icon. When the user clicks on the minimize icon with the mouse, Windows
displays the program in its iconic form.

Maximize icon. Clicking on the maximize icon expands the window to fill the full screen.
Windows then replaces the maximize icon with a restore icon (shown in Figure 17-4).
Clicking on the restore icon restores the window to its previous size and position.

Programs that use a window of a fixed size (such as the CALC.EXE calculator program
included with Windows) do not have a maximize icon.

Menu bar. The menu bar, sometimes called the program's main or top-level menu, dis­
plays keywords for several sets of commands that differ from program to program.

When the user clicks on a main-menu item with the mouse or presses the Alt key and the
underlined letter in the menu text, Windows displays a pop-up menu for that itbm. The
pop-up menu for NOTEPAD's keyword File is shown in Figure 17-5. Items are selected
from a pop-up menu in the same way they are selected from the system menu.

A Windows program can display options on the menu in grayed text to indicate that they
are not currently valid. The program can also display checkmarks to the left of pop-up
menu items to indicate which of several options have been selected by the user.

In addition, items on a pop-up menu can be followed by an ellipsis (...) to indicate that
selecting the item invokes a dialog box that prompts the user for additional information­
more than can be provided by the menu.

Client area. The client area of the window fs where the program displays data. In the case
of the NOTEPAD program shown in Figure 17-2, the client area displays the file currently
being edited. A program's handling of keyboard and mouse input within the client area
depends on the type of work it does.

Scroll bars. Programs that cannot display all the data in a file within the client area of the
window often have a horizontal scroll bar across the bottom and a vertical scroll bar down
the right edge. Both types of scroll bars have a small, boxed arrow at each end to indicate
the direction in which to scroll. In the NOTEPAD window in Figure 17-2, for example,
clicking on the up arrow of the vertical scroll bar moves the data within the window down

£ile Edit .S.earch ..
fipen •••
.S.aue
Saue .O.s •••
l'.r:int

Exit
About Notepad •••

Figure 17-5. The NOTEPAD program's pop-up file menu.

Section II: Programming in the MS-DOS Environment 503

ZTE (USA) 1007, Page 513

Part D: Directions of MS-DOS

one line. Clicking on the shaded part of the vertical scroll bar above the thumb (the box
near the middle) moves the data within the client area of the window down one screen;
clicking below the thumb moves the data up one screen. The user can also drag the thumb
with the mouse to move to a relative position within the file.

Windows programs often include a keyboard interface (generally relying on the cursor­
movement keys) to duplicate the mouse-based scroll-bar commands.

Window border. The window border is a thick frame surrounding the entire window. It is
segmented into eight sections that represent the four sides and four corners of the window.
The user can change the size of a window by dragging the window border with the
mouse. Dragging a corner section moves two adjacent sides of the border.

When a program is maximized to fill the full screen, Windows does not draw the window
border. Programs that use a window of a fixed size do not have a window border either.

Dialog boxes
When a pop-up menu is not adequate for all the command options a program requires, the
program can display a dialog box. A dialog box is a pop-up window that contains various
controls in the form of push buttons, check boxes, radio buttons, list boxes, and text and
edit fields. Programmers can also design their own controls for use in dialog boxes. A user
fills in a dialog box and then clicks on a button, such as OK, or presses Enter to indicate
that the information can be processed by the program.

Most Windows programs use a dialog box to open an existing data file and load it into the
program. The program displays the dialog box when the user selects the Open option on
the File pop-up menu. The sample dialog box shown in Figure 17-6 is from the NOTEPAD
program.

The list box displays a list of all valid disk drives, the subdirectories of the current direc­
tory, and all the filenames in the current directory, including the filename extension used
by the program. (NOTEPAD uses the extension .TXT for its data files.) The user can scroll
through this list box and change the current drive or subdirectory or select a filename with
the keyboard or the mouse. The user can also perform these actions by typing the name
directly intO the edit field.

Open File Hame:

IICIIED

Eiles in C:\WIH2

LETTER. TXT ...
READ11E. TXT
TODD. TXT
UPDATE. TXT
[-A-1 -[-8-1
[-C-1 ...

-
[llpen -;--

""" -1 Cancel "] --
-

~
,_

Edit
field

Push
buttons

List box

Figure 17-6. A dialog box from the NOTEPAD program, with parts labeled.

504 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 514

l
I

Check
boxes

Terroinal Settings

Text size ® large 0 Sroall

lines in Buffer: @I]
T.t:anslation: ~1111!1!~~~~~-ffl

OK

Figure 17-7. A dialog box from the TERMINAL program, with parts labeled.

Article 17: Windows

Clicking the Open button (or pressing Enter) indicates to NOTEPAD that a file has been
selected or that a new drive or subdirectory has been chosen (in this case, the program
displays the files on the new drive or subdirectory). Clicking the Cancel button (or press­
ing Esc) tells NOTEPAD to close the dialog box without loading a new file.

Figure 17-7 shows a different dialog box-this one from the Windows TERMINAL com­
munications program. The check boxes turn options on (indicated by an X) and off. The
circular radio buttons allow the user to select from a set of mutually exclusive options.

Another, simple form of a dialog box is called a message box. This box displays one or 4
more lines of text, an optional icon such as an exclamation point or an asterisk, and one
or more buttons containing the words OK, Yes, No, or Cancel. Programs sometimes use
message boxes for warnings or error messages.

The MS-DOS Executive

Within Windows, the MS-DOS Executive program (shown in Figure 17-8) serves much the
same function as the COMMAND. COM program in the MS-DOS environment.

The top of the MS-DOS Executive client area displays all valid disk drives. The current
disk drive is highlighted. Below or to the right of the disk drives is a display of the full path
of the current directory. Below this is an alphabetic listing of all subdirectories in the cur­
rent directory, followed by an alphabetic listing of all files in the current directory. Sub­
directory names are displayed in boldface to distinguish them from filenames.

The user can change the current drive by clicking on the disk drive with the mouse or by
pressing Ctrl and the key corresponding to the disk drive letter.

To change to one of the parent directories, the user double-clicks (clicks the mouse button
twice in succession) on the part of the text string corresponding to the directory name.
Pressing the Backspace key moves up one directory level toward the root directory. The
user can also change the current directory to a child subdirectory by double-clicking on
the subdirectory name in the list or by pressing the Enter key when the cursor highlight is
on the subdirectory name. In addition, the menu also contains an option for changing the
current directory.

Section II: Programming in the MS-DOS Environment 505

ZTE (USA) 1007, Page 515

Part D: Directions of MS-DOS

Eile l!iew Special
AI IBI ID lol JEJ JFJ JGJ I
C :AT DRJUE C \WINDOWS

1Roli!M'f3 KERNEL.EXE WIN. IN!
CALENDAR.EXE MODERN.FON WIN200.BIN
CLIPBRD .EXE MSDOS .EXE WIN200.0Ul
CLOCK.EXE MSDOSD.EXE WINDATA.BIN
CONTROL.EXE NOTEPAD .EXE WINOLDAP .loJOD
CDURA .FDN PAINT.EXE WR ITE.EXE
COURB .FON REUERSJ.EXE
COURC .FON ROI1AN.FDN
COURD .FON SCRIPT .FON
COURE .FON SPOOLER .EXE
DDE.EXE TERMINALEXE
EGA.FON TMSRA.FON
EI1AIL TRM HISRB. FON
GDI.EXE TMSRC .FON
HELUA .FON HISRD .FON
HELUB .FON TMSRE .FON
HELUC.FON WJN.CNF
HELUD .FON WJN.COI1
~~~~-~---~~-~~--

' ~ 

Figure 17-8. The MS-DOS Executive. 

The user can run a program by double-clicking on the program filename, by pressing the 
Enter key when the highlight is on the program name, or by selecting it from a menu. 

Other menu options allow the user to display the file and subdirectory lists in a variety 
of ways. A long format includes the same information displayed by the MS-DOS DIR com­
mand, or the user can choose to display a select group of files. Menu options also enable 
the user to specify whether the files should be listed in alphabetic order by filename, by 
filename extension, or by date or size. 

The remaining options on the MS-DOS Executive menu allow the user to run programs; 
copy, rename, and delete files; format a floppy disk; change a volume name; make a 
system disk; create a subdirectory; and print a text fil~. 

Other Windows Programs 

Windows 2.0 also includes a number of application and utility programs. The application 
programs are CALC (a calculator), CALENDAR, CARDFILE (a database arranged as a 
series of index cards), CLOCK, NOTEPAD, PAINT (a drawing and painting program), 
REVERS! (a game), TERMINAL, and WRITE (a word processor). 

The utility programs include 

CLIPBRD. This program displays the current contents of the Clipboard, which is a storage 
facility that allows users to transfer data from one program to another. 

506 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 516



Article 17: Windows 

CONTROL. The Control Panel utility allows the user to add or delete font files and printer 
drivers and to change the following: current printer, printer output port, communications 
parameters, date and time, cursor blink rate, screen colors, border width, mouse double­
click time and options, and country-specific information, such as time and date formats. 
The Control Panel stores much of this information in the file named WIN.INI (Windows 
Initialization), so the information is available to other Windows programs. 

PIFEDIT. The PIF editor allows the user to create or modify the PIFs that contain infor­
mation about standard applications that have not been specially designed to run under 
Windows. This information allows Windows to adjust the environment in which the 
program runs. 

SPOOLER. Windows uses the print-spooler utility to print files without suspending the 
operation of other programs. Most printer-directed output from Windows programs goes 
to the print spooler, which then prints the files while other programs run. SPOOLER 
enables the user to change the priority of print jobs or to cancel them. 

The Structure of Windows 

When programs run under MS-DOS, they make requests of the operating system through 
MS-DOS software interrupts (such as Interrupt 21H), through BIOS software interrupts, or 
by directly accessing the machine hardware. 

When programs run under Windows, they use MS-DOS function calls only for file input 
and output and (more rarely) for executing other programs. Windows programs do not use 
MS-DOS function calls for memory management, keyboard input, display or printer out­
put, or RS232 communications. Nor do Windows programs use BIOS routines or direct 
access to the hardware. 

Instead, Windows provides application programs with ;1ccess to more than 450 functions 
that allow programs to create and manipulate windows on the display; use menus, dialog 
boxes, and scroll bars; display text and graphics within the client area of a window; use 
the printer and RS232 communications port; and allocate memory. 

The Windows modules 

The functions provided by Windows are largely handled by three main modules named 
KERNEL, GDI, and USER. The KERNEL module is responsible for scheduling and multi­
tasking, and it provides functions for memory management and some file I/0. The GDI 
module provides Windows' Graphics Device Interface functions, and the USER module 
does everything else. 

The USER and GDI modules, in turn, call functions in various driver modules that are also 
included with Windows. Drivers control the display, printer, keyboard, mouse, sound, 
RS232 port, and timer. In most cases, these driver modules access ,the hardware of the com­
puter directly. Windows includes different driver files for various hardware configurations. 
Hardware manufacturers can also develop Windows drivers specifically for their products. 

Section Il- Programming in the MS-DOS Environment 507 

ZTE (USA) 1007, Page 517



Part D: Directions of MS-DOS 

A block diagram showing the relationships of an application program, the KERNEL, USER, 
and GDI modules, and the driver modules is shown in Figure 17-9. The figure shows each 
of these modules as a separate file-KERNEL, USER, and GDI have the extension .EXE; 
the driver files have the extension .DRV. Some program developers install Windows with 
these modules in separate files, as in Figure 17-9, but most users install Windows by 
running the SETUP program included with Windows. 

SETUP combines most of these modules into two larger files called WIN200.BIN and 
WIN200.0VL. Printer drivers are a little different from the other driver files, however, 
because the Windows SETUP program does not include them in WIN200.BIN and 
WIN200.0VL. The name of the driver file identifies the printer. For example, IBMGRX.DRV 
is a printer driver file for the IBM Personal Computer Graphics Printer. 

Windows 
application 
program 

GDI.EXE 

USER.EXE 

KERNEL.EXE 

c___n_rs_P_L_A_Y_._n_R_v_--...J~ Display 

....__Prin_·_t_er_dri_·v_er __ __,~ Printer 

KEYBOARD.DRV ~ Keyboard 

c___M_o_u_s_E_._n_R_v __ _j~ Mouse 

....__s_o_UND __ ._n_R_v __ __,~ Sound hardware 

....__c_o_MM __ .n_R_v __ __,~ RS-2~2 hardware 

..__s_Y_s_T_E_M_.n_R_v_---'~ Timer hardware 

MS-DOS file I/0 

Memory management 

Figure 17-9. A simplified block diagram showing the relationships of an application program, Windows 
modules (GDI, USER, and KERNEL), driver modules, and system hardware. 

508 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 518



\ 

Article 17: Windows 

The diagram in Figure 17-9 is somewhat simplified. In reality, a Windows application 
program can also make direct calls to the KEYBOARD.DRV and SOUND.DRV modules, 
and USER.EXE calls the DISPLAY.DRV and printer driver modules directly. The GDI.EXE 
module and driver modules can also call routines in KERNEL.EXE, and drivers sometimes 
call routines in SYSTEM.DRV. 

Also, Figure 17-9 omits the various font files provided with Windows, the WIN.INI file 
that contains Windows initialization information and user preferences, and the files 
WINOLDAP.MOD and WINOLDAP.GRB, which Windows uses to run standard MS-DOS 
applications. 

Libraries and programs 

The USER.EXE, GDI.EXE, and KERNEL.EXE files, all driver files with the extension .DRV, 
and all font files with the extension .FON are called Windows libraries or, sometimes, 
dynamic link libraries to distinguish them from Windows programs. Programs and 
libraries both use a file format called the New Executable format. 

From the user's perspective, a Windows program and a Windows library are very differ­
ent. The user cannot run a Windows library directly: Windows loads a part of a library into 
memory only when a program needs to use a function that the library provides. 

The user can also run multiple instances of the same Windows program. Windows uses 
the same code segments for the different instances but creates a unique data segment for 
each. Windows never runs multiple instances of a Windows library. 

From the programmer's perspective, a Windows program is a task that creates and 
manages windows on the display. Libraries are modules that assist the task. A programmer 
can write additional library modules, which one or more programs can use. For the devel­
oper, one important distinction between programs and libraries is that a Windows library 
does not have its own stack; instead, the library uses the stack of the program that calls 
the routine in the library. 

The New Executable format used for both programs arid libraries gives Windows much 
more information about the module than is provided by the current MS-DOS .EXE format. 
In particular, the module contains information that allows Windows to make links be­
tween program modules and library modules when a program is run. 

When a module (such as a library) contains functions that can be called from another 
module (such as a program), the functions are said to be exported from the module that 
contains them. Each exported function in a module is identified either by a name (gener­
ally the name of the function) or by an ordinal (positive) number. A list of all exported 
functions in a module is included in the New Executable format header section of the 
module. 

Conversely, when a module (such as a program) contains code that calls a function in 
another module (such as a library), the function is said to be imported to the module that 
makes the call. This call appears in the .EXE file as an unresolved reference to an external 
function. The New Executable format identifies the module and the function name or 
ordinal number that the call references. 

Section II: Programming in the MS-DOS Environment 509 

ZTE (USA) 1007, Page 519



Part D: Directions of MS-DOS 

When Windows loads a program or a library into memory, it must resolve all calls the 
module makes to functions in other modules. Windows does this by inserting the ad­
dresses of the functions into the code-a process called dynamic linking. 

For example, many Windows programs use the function TextOut to display text in the 
client area. In the code segment of the program's .EXE file, a call to TextOut appears as an 
unresolved far (intersegment) call. The code segment's relocation table shows that this call 
is to an imported function in the GDI module identified by the ordinal number 33. The 
header section of the GDI module lists TextOut as an exported function with the ordinal 
number 33. When Windows loads the program, it resolves all references to TextOut by 
inserting the address of the function into the program's code segment in each place 
where TextOut is called. 

Although Windows programs reference many functions that are exported from the stan­
dard Windows libraries, Windows programs also often include at least one exported func­
tion, called a window function. While the program is running, Windows calls this function 
to pass messages to the program's window. See The Structure of a Windows Program 
below. 

Memory Management 

Windows' memory management is based on the segmented-memory architecture of 
the Intel 8086 family of microprocessors. The memory space controlled by Windows is 
divided into segments of various lengths. Windows uses separate segments for nearly 
everything kept in memory- such as the code and data segments of programs and 
libraries- and for resources, such as fonts and bitmaps. 

Windows programs and libraries contain one or more code segments, which are usually 
both movable and discardable. Windows can move a code segment in memory in order to 
consolidate free memory space. It can also discard a code segment from memory and later 
reload the code segment from the program's or library's .EXE file when it is needed again. 
This capability is called demand loading. 

Windows programs usually contain only one data segment; Windows libraries are limited 
to one data segment. In most cases, Windows can move data segments in memory. How­
ever, it cannot usually discard data segments, because they can contain data that changes 
after the program begins executing. When a user runs multiple copies of a program, the 
different instances share the same code segments but have separate data segments. 

The use of movable and discardable segments allows Windows to run several large 
programs in a memory space that might be inadequate for even one of the programs if the 
entire program were kept in memory, as is typical under MS-DOS without Windows. The 
ability of Windows to use memory in this way is called memory overcommitment. 

The moving and discarding of code segments requires Windows to make special provi­
sions so that intersegment calls continue to reference the correct address when a code 

510 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 520



Article 17: Windows 

segment is moved. These provisions are another part of dynamic linking. When Windows 
resolves a far call from one code segment to a function in another code segment that is 
movable and discardable, the call actually references a fixed area of memory. This fixed 
area of memory contains a small section of code called a thunk. If the code segment con­
taining the function is currently in memory, the thunk simply jumps to the function. If the 
code segment with the function is not currently in memory, the thunk calls a loader that 
loads the segment into memory. This process is called dynamic loading. When Windows 
moves or discards a code segment, it must alter the thunks appropriately. 

Windows and Windows programs generally reference data structures stored in Windows' 
memory space by using 16-bit unsigned integers known as handles. The data structure that 
a handle references can be movable and discardable, so when Windows or the Windows 
program needs to access the data directly, it must lock the handle to cause the data to 
become fixed in memory. The function that locks the segment returns a pointer to the 
program. 

During the time the handle is locked, Windows cannot move or discard the data. The data 
can then be referenced directly with the pointer. When Windows (or the Windows pro­
gram) finishes using the data, it unlocks the segment so that it can be moved (or in some 
cases discarded) to free up memory space if necessary. 

Programmers can choose to allocate nonmovable data segments, but the practice is not 
recommended, because Windows cannot relocate the segments to make room for seg­
ments required by other programs. 

The Structure of a Windows Program 

During development, a Windows program includes several components that are combined 
later into a single executable file with the extension .EXE for execution under Windows. 
Although the Windows executable file has the same .EXE filename extension as MS-DOS 
executable files, the format is different. Among other things, the New Executable format 
includes Windows-specific information required for dynamic linking and the discarding 
and reloading of the program's code segments. 

Programmers generally use C, Pascal, or assembly language to create applications specially 
designed to run under Windows. Also required are several header files and development 
tools, which are included in the Microsoft Windows Software Development Kit. 

The Microsoft Windows Software Development Kit 

The Windows Software Development Kit contains reference material, a special linker 
(LINK4), the Windows Resource Compiler (RC), special versions of the SYMDEB and 
Code View debuggers, header files, and several programs that aid development and testing. 
These programs include 

• DIALOG: Used for creating dialog boxes. 
• ICONEDIT: Used for creating a program's icon, customized cursors, and bitmap 

images. 

Section 11· Programming in the MS-DOS Environment 511 

ZTE (USA) 1007, Page 521



Part D: Directions of MS-DOS 

• FONT EDIT: Used for creating customized fonts derived from an existing font file 
with the extension .FNT. 

• HEAPWALK: Used for displaying the organization of code and data segments in 
Windows' memory space and for testing programs under low memory conditions. 

• SHAKER: Used for randomly allocating memory to force segment movement and 
discarding. SHAKER tests a program's response to movement in memory and is useful 
for exposing program bugs involving pointers to unlocked segments. 

The Windows Software Development Kit als·o provides several include and header files 
that contain declarations of all Windows functions, definitions of many macro identifiers 
that the programmer can use, and structure definitions. Import libraries included in the 
kit allow LINK4 to resolve calls to Windows functions and to prepare the program's .EXE 
file for dynamic linking. 

Work with the Windows Software Development Kit requires one of the following com­
pilers or assemblers: 

• Microsoft C Compiler version 4.0 or later 
• Microsoft Pascal Compiler version 3.31 or later 
• Microsoft Macro Assembler version 4.0 or later 

Other software manufacturers also provide compilers that are suitable for compiling 
Windows programs. 

Components of a Windows program 

The discussion in this section is illustrated by a program called SAMPLE, which displays 
the word Windows in its client area. In response to a menu selection, the program 

Figure 17-10. A display produced by the example program SAMPLE. 

512 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 522



IT Article 17: Windows 

displays this text in any of the three vector fonts- Script, Modern, and Roman- that are 
included with Windows. Sometimes also called stroke or graphics fonts, these vector fonts 
are defined by a series of line segments, rather than by the pixel patterns that make up the 
more common raster fonts. The SAMPLE program picks a font size that fits the client area. 

Figure 17-10 shows several instances of this program running under Windows. 

Five separate files go into the making of this program: 

1. Source-code file: This is the main part of the program, generally written in C, Pascal, 
or assembly language. The SAMPLE program was written in C, which is the most 
popular language for Windows programs because of its flexibility in using pointers 
and structures. The SAMPLE.C source-code file is shown in Figure 17-11. 

I* SAMPLE.C -- Demonstration Windows Program *I 

#include <windows.h> 
#include "sample.h" 

long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ; 

int PASCAL WinMain (hinstance, hPrevinstance, lpszCmdLin~, nCmdShow) 
HANDLE hinstance, hPrevinstance 
LPSTR 
int 

lpszCmdLine 
nCmdShow 

WNDCLASS 
HWND 

wndclass 
hWnd ; 

MSG msg ; 
static char szAppName [] = "Sample" ; 

1*---------------------------*1 
I* Register the Window Class *I 
1*---------------------------*1 

if (!hPrevinstance) 

wndclass.style 
wndclass.lpfnWndProc 
wndclass.cbClsExtra 
wndclass.cbWndExtra 
wndclass.hinstance 
wndclass.hicon 
wndclass.hCursor 
wndclass.hbrBackground 
wndclass.lpszMenuName 
wndclass.lpszClassName 

CS_HREDRAW CS_VREDRAW 

WndProc 
0 ; 
0 ; 
hinstance 
NULL ; 
LoadCursor (NULL, IDC-ARROW) 
GetStockObject (WHITE_BRUSH) 

szAppName 
szAppName 

RegisterClass (&wndclass) ; 

Figure 17-11. The SAMPLE.C source code. (more) 

Section II: Programming in the MS-DOS Environment 513 

ZTE (USA) 1007, Page 523



Part D: Directions of MS-DOS 

hWnd 

1*----------------------------------*1 
I* Create the window and display it *I 
1*----------------------------------*1 

CreateWindow (szAppName, "Demonstration Windows Program", 
WS_OVERLAPPEDWINDOW, 

(int) CW_USEDEFAULT, 0, 

(int) CW_USEDEFAULT, 0, 
NULL, NULL, hinstance, NULL) 

ShowWindow (hWnd, nCmdShow) 

UpdateWindow (hWnd) ; 

l*----------------------------------------------*1 
I* Stay in message loop until a WM_QUIT message *I 
l*----------------------------------------------*1 

while (GetMessage (&msg, NULL, 0, 0)) 
{ 

TranslateMessage (&msg) ; 

DispatchMessage (&msg) ; 
) 

return msg.wParam ; 

long FAR PASCAL WndProc (hWnd, iMessage, wParam, lParam) 

HWND hWnd ; 
unsigned 

WORD 

LONG 

iMessage 
wParam 

lParam 
{ 

PAINTSTRUCT 

HFONT 

ps ; 

hFont 

hMenu HMENU 

static short xClient, yClient, nCurrentFont = IDM_SCRIPT ; 
static BYTE cFamily [] { FF_SCRIPT, FF_MODERN, FF_ROMAN 

static char *szFace (] = { ''Script'', ''Modern'', ''Roman" 

switch (iMessage) 

l*---------------------------------------------*1 
I* WM_COMMAND message: Change checkmarked font *I 
l*---------------------------------------------*1 

case WM_COMMAND: 

hMenu = GetMenu (hWnd) 

CheckMenuitem (hMenu, nCurrentFont, MF_UNCHECKED) 
nCurrentFont = wParam 

CheckMenuitem (hMenu, nCurrentFont, MF_CHECKED) 

InvalidateRect (hWnd, NULL, TRUE) ; 

break 

Figure 17-11. Continued. 

514 The MS-DOS Encyclopedia 

(more) 

ZTE (USA) 1007, Page 524



Article 17: Windows 

l•--------------------------------------------•1 
I* WM_SIZE message: Save dimensions of window *I 

l•--------------------------------------------•1 

cas!= WM_SIZE: 

xClient 

yClient 

break ; 

LOWORD (lParam) 
HIWORD (lParam) 

l•-----------------------------------------------•1 
I* WM_PAINT message: Display "Windows" in Script •I 

l•-----------------------------------------------•1 

case WM_PAINT: 

BeginPaint (hWnd, &ps) ; 

hFont = CreateFont (yClient, xClient I 8, 
0, 0, 400, 0, 0, 0, OEM_CHARSET, 
OUT_STROKE_FRECIS, OUT_STROKE_PRECIS, 

DRAFT_QUALITY, (BYTE) VARIABLE_FITCH 

cFamily [nCurrentFont- IDM-SCRIPT], 
szFace [nCurrentFont- IDM-SCRIPT]) 

hFont = SelectObject (ps.hdc, hFont) 
TextOut (ps.hdc, 0, 0, "Windows", 7) 

DeleteObject (SelectObject (ps.hdc, hFont)) 

EndPaint (hWnd, &ps) ; 

break ; 

1•---------------------------------------•1 
I* WM_DESTROY message: Post Quit message •I 
1•---------------------------------------•1 

case WM_DESTROY: 

PostQuitMessage (0) 

break ; 

1•---------------------------------------•1 
I* Other messages: Do default processing *I 

1•---------------------------------------•1 

default: 
return DefWindowProc (hWnd, iMessage, wParam, lParam) 

return OL 

Figure 17-11. Continued. 

Section II: Programming in the MS-DOS Environment 515 

ZTE (USA) 1007, Page 525



Part D: Directions of MS-DOS 

2. Resource script: The resource script is an ASCII file that generally has the extension 
.RC. This file contains definitions of menus, dialog boxes, string tables, and keyboard 
accelerators used by the program. The resource script can also reference other files 
that contain icons, cursors, bitmaps, and fonts in binary form, as well as other read­
only data defined by the programmer. When a program is running, Windows loads 
resources into memory only when they are needed and in most cases can discard 
them if additional memory space is required. 

SAMPLE.RC, the resource script for the SAMPLE program, is shown in Figure 17-12; it 
contains only the definition of the menu used in the program. 

#include "sample.h" 

Sample MENU 
BEGIN 

POPUP "&Typeface" 
BEGIN 

END 
END 

MENUITEM "&Script", IDM_SCRIPT, CHECKED 
MENUITEM "&Modern", IDM_MODERN 
MENUITEM "&Roman", IDM_ROMAN 

Figure 17-12. The resource script for the SAMPLE program. 

3. Header (or include) file: This file, with the extension .H, can contain definitions of 
constants or macros, as is customary in C programming. For Windows programs, the 
header file also reconciles constants used in both the resource script and the pro­
gram source-code file. For example, in the SAMPLE.RC resource script, each item in 
the pop-up menu (Script, Modern, and Roman) also includes an identifier­
IDM_SCRIPT, IDM_MODERN, and IDM_ROMAN, respectively. These identifiers 
are merely numbers that Windows uses to notify the program of the user's selection 
of a menu item. The same names are used to identify the menu selection in the C 
source-code file. And, because both the resource compiler and the source-code com­
piler must have access to these identifiers, the header file is included in both the 
resource script and the source-code file. 

The header file for the SAMPLE program, SAMPLE.H, is shown in Figure 17-13. 

#define IDM_SCRIPT 1 
#define IDM-MODERN 2 
#define IDM_ROMAN 3 

Figure 17-13. The SAMPLE.H header file. 

4. Module-definition file: The module-definition file generally has a .DEF extension. 
The Windows linker uses this file in creating the executable .EXE file. The module­
definition file specifies various attributes of the program's code and data segments, 
and it lists all imported and exported functions in the source-code file. In large pro­
grams that are divided into multiple code segments, the module-definition file allows 
the programmer to specify different attributes for each code segment. 

516 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 526



Article 17: Windows 

The module-definition file for the SAMPLE program is named SAMPLE.DEF and is 
shown in Figure 17-14. 

NAME SAMPLE 

DESCRIPTION 'Demonstration Windows Program' 

STUB 'WINSTUB.EXE' 

CODE MOVABLE 

DATA MOVABLE MULTIPLE 

HEAP SIZE 1024 

STACKSIZE 4096 

EXPORTS WndProc 

Figure 17-14. The SAMPLE.DEF module-definition file. 

5. Make file: To facilitate construction of the executable file from these different com­
ponents, Windows programmers often use the MAKE program to compile only those 
files that have changed since the last time the program was linked. To do this, the 
programmer first creates an ASCII text file called a make file. By convention, the 
make file has no extension. 

The make file for the SAMPLE program is named SAMPLE and is shown in Figure 
17-15. The programmer can create the SAMPLE.EXE executable file by executing 

C>MAKE SAMPLE <Enter> 

A make file often contains several sections, each beginning with a target filename, 
followed by a colon and one or more dependent filenames, such as 

sample.obj : sample.c sample.h 

If either or both the SAMPLE.C and SAMPLE.H files have a later creation time than 
SAMPLE.OBJ, then MAKE runs the program or programs listed immediately below. 
In the case of the SAMPLE make file, the program is the C compiler, and it compiles 
the SAMPLE.C source code: 

cl -c -Gsw -W2 -Zdp sample.c 

Thus, if the programmer changes only one of the several files used in the develop­
ment of SAMPLE, then running MAKE ensures that the executable file is brought up 
to date, while carrying out only the required steps. 

sample.obj : sample.c sample.h 
cl -c -Gsw -W2 -Zdp sample.c 

sample.res : sample.rc sample.h 

rc -r sample.rc 

sample.exe : sample.obj sample.def sample.res 

link4 sample, /align:16, /map /line, slibw, sample 

rc sample.res 

mapsym sample 

Figure 17-15. The make file for the SAMPLE program. 

Section IL· Programming in the MS-DOS Environment 517 

ZTE (USA) 1007, Page 527



Part D: Directions of MS-DOS 

Construction of a Windows program 

The make file shows the steps that create a program's .EXE file from the various 
components: 

1. Compiling the source-code file: 

cl -c -Gsw -W2 -Zdp sample.c 

This step uses the CL.EXE C compiler to create a .OBJ object-module file. The com­
mand line switches are 
- -c: Compiles the program but does not link it. Windows programs must be linked · 

with Windows' LINK4linker, rather than with the LINK program the C compiler 
would normally invoke. 

- -Gsw: Includes two switches, -Gs and -Gw. The -Gs switch removes stack checks 
from the program. The -Gw switch inserts special prologue and epilogue code in 
all far functions defined in the program. This special code is required for Win­
dows' memory management. 

- -W2: Compiles with warning level2. This is the highest warning level, and it causes 
the compiler to display messages for conditions that may be acceptable in normal C 
programs but that can cause serious errors in a Windows program. 
-Zdp: Includes two switches, -Zd and -Zp. The -Zd switch includes line numbers 
in the .OBJ file-helpful for debugging at the source-code level. The -Zp switch 
packs structures on byte boundaries. The -Zp switch is required, because data 
structures used within Windows are in a packed format. 

2. Compiling the resource script: 

rc -r sample.rc 

This step runs the resource compiler and converts the ASCII .RC resource script into a 
binary .RES form. The -r switch indicates that the resource script should be compiled 
but the resources should not yet be added to the program's .EXE file. 

3. Linking the program: 

link4 sample, /align:16, /map /line, slibw, sample 

This step uses the special Windows linker, LINK4. The first parameter listed is the 
name of the .OBJ file. The /align: 16 switch instructs LINK4 to align segments in the 
.EXE file on 16-byte boundaries. The /map and /line switches cause LINK4 to create a 
.MAP file that contains program line numbers- again, useful for debugging source 
code. Next, slibw is a reference to the SLIBW.LIB file, which is an import library that 
contains module names and ordinal numbers for all Windows functions. The last 
parameter, sample, is the program's module-definition file, SAMPLE.DEF. 

4. Adding the resources to the .EXE file: 

rc sample.res 

518 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 528



Article 17: Windows 

This step runs the resource compiler a second time, using the compiled resource file, 
SAMPLE.RES. This time, the resource compiler adds the resources to the .EXE file. 

Module Program Header or 
definition file source code include files Resource script 

(.DEF) (.C, .PAS, or .ASM) (.Hor .INC) (.RC) 

~ I 
t ... 

Cor Pascal RC.EXE 
Compiler or 

Resource compiler 
Macro Assembler 

~ 
Object module Libraries Compiled resources 

(.OBJ) (.Lm) (.RES) 

~ I 
... ... 
LINK4.EXE 

Window linker 

I ~ t 

Map file Executable 

(.MAP) without resources 
(.EXE) 

~ t 
MAPSYM.EXE RC.EXE 

Converts map file Resource compiler 
to symbol file 

t t 

Symbol file Executable 
(.SYM) (.EXE) 

Figure 17-16. A block diagram showing the creation of a Windows .EXEfile. 

Section II: Programming in the MS-DOS Environment 519 

ZTE (USA) 1007, Page 529



Part D: Directions of MS-DOS 

5. Creating a symbol (.SYM) file from the linker's map (.MAP) file: 

mapsym sample 

This step is required for symbolic debugging with SYMDEB. 

Figure 17-16 on the preceding page shows how the various components of a Windows pro-
gram fit into the creation of a .EXE file. · 

Program initialization 

The SAMPLE.C program shown in Figure 17-11 contains some code that appears in almbst 
every Windows program. The statement 

#include <windows.h> 

appears at the top of every Windows source-code file written in C. The WINDOWS.H file, 
provided with the Microsoft Windows Software Development Kit, contains templates for 
all Windows functions, structure definitions, and #define statements for many mnemonic 
identifiers. 

Some of the variable names in SAMPLE.C may look unusual to C programmers because 
they begin with a prefix notation that denotes the data type of the variable. Windows 
programmers are encouraged to use this type of notation. Some of the more common 
prefixes are 

Prefix 

i or n 
w 

dw 
h 
sz 
lpsz 
lpfn 

Data Type 

Integer (16-bit signed integer) 
Word (16-bit unsigned integer) 
Long (32-bit signed integer) 
Doubleword (32-bit unsigned integer) 
Handle (16-bit unsigned integer) 
Null-terminated string 
Long pointer to null-terminated string 
Long pointer to a function 

The program's entry point (following some startup code) is the WinMain function, 
which is passed the following parameters: a handle to the current instance of the 
program (hlnstance), a handle to the most recent previous instance of the program 
(hPrevlnstance), a long pointer to the program's command line (lpszCmdLine), and a 
number (nCmdShow) that indicates whether the program should initially be displayed as a 
normally sized window or as an icon. 

The first job SAMPLE performs in the WinMain function is to register a window class- a 
structure that describes characteristics of the windows that will be created in the class. 
These characteristics include background color, the type of cursor to be displayed in the 
window, the window's initial menu and icon, and the window function (the structure 
member called lpfnWndProc). 

520 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 530



Article 17: Windows 

Multiple instances of a program can share the same window class, so SAMPLE registers the 
window class only for the first instance of the program: 

if (!hPrevinstance) 

wndclass.style 

wndclass.lpfnWndProc 
wndclass.cbClsExtra 

wndclass.cbWndExtra 
wndclass.hlnstance 

wndclass.hlcon 
wndclass.hCursor 

wndclass.hbrBackground 

wndclass.lpszMenuName 

CS_HREDRAW CS_VREDRAW 

WndProc 

0 ; 
0 ; 

hlnstance 

NULL ; 
LoadCursor (NULL, IDC_ARROW) 

GetStockObject (WHITE_BRUSH) 

szAppName 

wndclass.lpszClassName = szAppName 

RegisterClass (&wndclass) ; 
) 

The SAMPLE program then creates a window using the CreateWindow call, displays it to 
the screen by calling ShowWindow, and updates the client area by calling UpdateWindow: 

hWnd = CreateWindow (szAppName, "Demonstration Windows Program", 
WS_OVERLAPPEDWINDOW, 

(int) CW_USEDEFAULT,O, 

(int) CW_USEDEFAULT,O, 

NULL, NULL, hinstance, NULL) 

ShowWindow (hWnd, nCmdShow) ; 

UpdateWindow (hWnd) ; 

The first parameter to Create Window is the name of the window class. The second param­
eter is the actual text that appears iri the window's title bar. The third parameter is the style 
of the window- in this case, the WINDOWS.H identifier WS_OVERLAPPEDWINDOW. 
The WS_OVERLAPPEDWINDOW is the most common window style. The fourth through 
seventh parameters specify the initial position and size of the window. The identifier 
CW _USEDEFAULT tells Windows to position and size the window according to the default 
rules. 

After creating and displaying a Window, the SAMPLE program enters a piece of code 
called the message loop: 

while (GetMessage (&msg, NULL, 0, 0)) 
( 

TranslateMessage (&msg) 
DispatchMessage (&msg) ; 

return msg.wParam ; 

This loop continues to execute until the GetMessage call returns zero. When that happens, 
the program instance terminates and the memory required for the instance is freed. 

Section II: Programming in the MS-DOS Environment 521 

ZTE (USA) 1007, Page 531



Part D: Directions of MS-DOS 

The Windows messaging system 

Interactive programs written for the normal MS-DOS environment generally obtain user 
input only from the keyboard, using either an MS-DOS or a ROM BIOS software interrupt 
to check for keystrokes. When the user types something, such programs act on the key~ 
stroke and then return to wait for the next keystroke. 

Programs written for Windows, however, can receive user input from a variety of sources, 
including the keyboard, the mouse, the Windows timer, menus, scroll bars, and controls, 
such as buttons and edit boxes. 

Moreover, a Windows program must be informed of other events occurring within the 
system. For instance, the user of a Windows program might choose to make its window 
smaller or larger. Windows must make the program aware of this change so that the pro­
gram can adjust its screen output to fit the new window size. Thus, for example, if a Win­
dows program is minimized as an icon and the user maximizes its window to fill the full 
screen, Windows must inform the program that the size of the client area has changed 
and needs to be re-created. 

Windows carries out this job of keeping a program informed of other events through the 
use of formatted messages. In effect, Windows sends these messages to the program. The 
Windows program receives and acts upon the messages. 

This messaging makes the relationship between Windows and a Windows program much 
different from the relationship between MS-DOS and an MS-DOS program. Whereas 
MS-DOS does not provide information until a program requests it through an MS-DOS 
function call, Windows must continually notify a program of all the events that affect its 
window. 

Window messages can be separated into two major categories: queued and nonqueued. 

Queued messages are similar to the keyboard information an MS-DOS program obtains 
from MS-DOS. When the Windows user presses a key on the keyboard, moves the mouse, 
or presses one of the mouse buttons, Windows saves information about the event (in the 
form of a data structure) in the system message queue. Each message is destined for a par­
ticular window in a particular instance of a Windows program. Windows therefore deter­
mines which window should get the information and then places the message in the 
instance's own message queue. 

A Windows program retrieves information from its queue in the message loop: 

while (GetMessage (&msg, NULL, 0, ,0)) 
( 

TranslateMessage (&msg) 

DispatchMessage (&msg) ; 

) 

The msg variable is a structure. During the GetMessage call, Windows fills in the fields of 
this structure with information about the message. The fields are as follows: 

522 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 532



Article 17: Windows 

• hwnd: The handle for the window that is to receive the message. 
• iMessage: A numeric code identifying the type of message (for example, keyboard 

or mouse). 
• wParam: A 16-bit value containing information specific to the message. See The 

Windows Messages below. 
• lParam: A 32-bit value containing information specific to the message. 
• time: The time, in milliseconds, that the message was placed in the queue. The time 

is a 32-bit value relative to the time at which the current Windows session began. 
• pt.x: The horizontal coordinate of the mouse cursor at the time the event occurred. 
• pt.y: The vertical coordinate of the mouse cursor at the time the event occurred. 

GetMessage always returns a nonzero value except when it receives a quit message. The 
quit message causes the message loop to end. The program should then terminate and 
return control to Windows. 

Within the message loop, the TranslateMessage function translates physical keystrokes into 
character-code messages. Windows places these translated messages into the program's 
message queue. 

The DispatchMessage function essentially makes a call to the window function of the win­
dow specified by the hwnd field. This window function (WndProc in SAMPLE) is indicated 
in the lpfn WndProc field of the window class structure. 

When DispatchMessage passes the message to the window function, Windows uses the 
first four fields of the message structure as parameters to the function. The window func­
tion can then process the message. In SAMPLE, for instance, the four fields passed to 
WndProc are hwnd (the handle to the window), iMessage (the numeric message iden­
tifier), wParam, and lParam. Although Windows does not pass the time and mouse­
position information fields as parameters to the window function, this information is 
available through the Windows functions GetMessageTime and GetMessagePos. 

A Windows program obtains only a few specific types of messages through its message 
queue. These are keyboard messages, mouse messages, timer messages, the paint message 
that tells the program it must re-create the client area of its window, and the quit message 
that tells the program it is being terminated. 

In addition to the queued messages, however, a program's window function also receives 
many nonqueued messages. Windows sends these nonqueued messages by bypassing the 
message loop and calling the program's window function directly. 

Many of these non queued messages are derived from queued messages. For example, 
when the user clicks the mouse onthe menu bar, a mouse-click message is placed in the 
program's message queue. The GetMessage function retrieves the message and the Dis­
patchMessage function sends it to the program's window function. However, because this 
mouse message affects a nonclient area of the window (an area outside the window's cli­
ent area), the window function normally does not process it. Instead, the function passes 
the message back to Windows. In this example, the message tells Windows to invoke a 
pop-up menu. Windows calls up the menu and then sends the window function several 
non queued messages to inform the program of this action. 

Section !1: Programming in the MS-DOS Environment 523 

ZTE (USA) 1007, Page 533



Part D: Directions of MS-DOS 

A Windows program is thus message driven. Once a program reaches the message loop, 
it acts only when the window function receives a message. And, although a program 
receives many messages that affect the window, the program usually processes only some 
of them, sending the rest to Windows for normal default processing. 

The Windows messages 

Windows can send a window function more than 100 different messages. The 
WINDOWS.H header file includes identifiersJor all these messages so that C programmers 
do not have to remember the message numbers. Some of the more common messages and 
the meanings of the wParam and lParam parameters are discussed here: 

WM_CREATE. Windows sends a window function this nonqueued message while pro­
cessing the CreateWindow call. The lParam parameter is a pointer to a creation structure. 
A window function can perform some program initialization during the WM_ CREATE . 
message. 

WM_MOVE. Windows sends a window function the nonqueued WM_MOVE message 
when the window has been moved to another part of the display. The lParam parameter 
gives the new coordinates of the window relative to the upper left corner of the screen. 

WM_SIZE. This nonqueued message indicates that the size of the window has been 
changed. The new size is encoded in the lParam parameter. Programs often save this 
window size for later use. 

WM_PAINT. This queued message indicates that a region in the window's client area 
needs repainting. (The message queue can contain only one WM_ PAINT message.) 

WM_COMMAND. This nonqueued message signals a program that a user has selected a 
menu item or has triggered a keyboard accelerator. Child-window controls also use 
WM_COMMAND to send messages to the parent window. 

WM_KEYDOWN. The wParam parameter of this queued message is a virtual key code 
that identifies the key being pressed. The lParam parameter includes flags that indicate 
the previous key state and the number of keypresses the message represents. 

WM_KEYUP. This queued message tells a window function that a key has been released. 
The wParam parameter is a virtual key code. 

WM_CHAR. This queued message is generated from WM_KEYDOWN messages during 
the TranslateMessage call. The wParam parameter is the ASCII code of a keyboard key. 

WM_MOUSEMOVE. Windows uses this queued message to tell a program about mouse 
movement. The lParam parameter contains the coordinates of the mouse relative to the 
upper left corner of the client area of the window. The wParam parameter contains flags 
that indicate whether any mouse buttons or the Shift or Ctrl keys are currently pressed. 

WM_xBUTTONDOWN. This queued message tells a program that a button on the mouse 
was depressed while the mouse was in the window's. client area. The xcan be either L, R, 
or M for the left, right, or middle mouse button. The wParam and lParam parameters are 
the same as for WM_MOUSEMOVE. 

524 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 534



Article 17: Windows 

WM_xBUTTONUP This queued message tells a program that the user has released a 
mouse button. 

WM_xBUTTONDBLCLK. When the user double-clicks a mouse button, Windows 
generates a WM_xBUTTONDOWN message for the first click and a queued 
WM_xBUTTONDBLCLK message for the second click. 

WM_ TIMER. When a Windows program sets a timer with the SetTimer function, 
Windows places a WM_ TIMER message in the message queue at periodic intervals. 
The wParam parameter is a timer ID. (If the message queue already contains a 
WM_TIMER message, Windows does not add another one to the queue.) 

WM_ VSCROLL. A Windows program that includes a vertical scroll bar in its window 
receives nonqueued WM_ VSCROLL messages indicating various types of scroll-bar 
manipulation. 

WM....;.HSCROLL. This nonqueued message indicates a user is manipulating a horizontal 
scroll bar. 

WM_CLOSE. Windows sends a window function this nonqueued message when the user 
has selected Close from the window's system menu. A program can query the user to de­
termine whether any action, such as saving a file to disk, is needed before the program 
is terminated. 

WM_QUERYENDSESSION. This nonqueued message indicates that the user is shutting 
down Windows by selecting Close from the MS-DOS Executive system menu. A program 
can request the user to verify that the program should be ended. If the window function 
returns a zero value from the message, Windows does not end the session. 

WM_DESTROY. This nonqueued message is the last message a window function receives 
before the program ends. A window function can perform some last-minute cleanup while 
processing WM_DESTROY. 

WM_QUIT. This is a queued message that never reaches the window function because it 
causes GetMessage to return a zero value that causes the program to exit the message loop. 

Message processing 

Programmers can choose to process some messages and ignore others in the window 
function. Messages that are ignored are generally passed on to the function 
DefWindowProc for default processing within Windows. 

Because Windows eventually has access to messages that a window function does not 
process, it can send a program messages that might otherwise be regarded as pertaining to 
system functions- for example, mouse messages that occur in a non client area of the win­
dow, or system keyboard messages that affect the menu. Unless these messages are passed 
on to DefWindowProc, the menu and other system functions do not work properly. 

A program can, however, trap some of these messages to override Windows' default pro­
cessing. For example, when Windows needs to repaint the nonclient area of a window (the 
title bar, system-menu box, and scroll bars), it sends the window function a WM_NCPAINT 

Section II: Programming in the MS-DOS Environment 525 

ZTE (USA) 1007, Page 535



Part D: Directions of MS-DOS 

(nonclient paint) message. The window function normally passes this message to 
DefWindowProc, which then calls routines to update the nonclient areas of the window. 
The program can, however, choose to process the WM_NCPAINT message and paint the 
. nonclient area itself. A program that does this can, for example, draw its own scroll bars. 

The Windows messaging system also notifies a program of important events occurring 
outside its window. For example, if the MS-DOS Executive were simply to end the Win­
dows session when the user selects the Close option from its system menu, then applica­
tions that were still running would not have a chance to save changed files to disk. Instead, 
when the user selects Close from the last instance of the MS-DOS Executive's system 
menu, the MS-DOS Executive sends a WM_QUERYENDSESSION message to each cur­
rently running application. If any application responds by returning a zero value, the MS­
DOS Executive does not end the Windows session. 

Before responding, an application can process the WM_QUERYENDSESSION message 
and display a message box asking the user if a file should be saved. The message box 
should include three buttons labeled Yes, No, and Cancel. If the user answers Yes, the pro­
gram can save the file and then return a nonzero value to the WM_QUERYENDSESSION 
message. If the user answers No, the program can return a nonzero value without saving 
the file. But if the user answers Cancel, the program should return a zero value so that 
the Windows session will not be ended. If a program does not process the 
WM_QUERYENDSESSION message, DefWindowProc returns a nonzero value. 

When a user selects Close from the system menu of a particular instance of an application, 
rather than from the MS-DOS Executive's menu, Windows sends the window function a 
WM_CLOSE message. If the program has an unsaved file loaded, it can query the user with 
a message box-possibly the same one displayed when WM_QUERYENDSESSION is 
processed. If the user responds Yes to the query, the program can save the file and then 
call DestroyWindow. If the user responds No, the program can call DestroyWindow 
without saving the file. If the user responds Cancel, the window function does not call 
DestroyWindow and the program will not be terminated. If a program does not process 
WM_CLOSE messages, DefWindowProc calls DestroyWindow. 

Finally, a window function can send messages to other window functions, either within 
the same program or in other programs, with the Windows Send Message function. This 
function returns control to the calling program after the message has been processed. A 
program can also place messages in a program's message queue with the PostMessage 
function. This function returns control immediately after posting the message. 

For example, when a program makes changes to the WIN.INI file (a file containing 
Windows initialization information), it can notify all currently running instances of these 
changes by sending them a WM_ WININICHANGE message: 

SendMessage (-1, WM_WININICHANGE, 0, OL) ; 

The -1 parameter indicates that the message is to be sent to all window functions of 
all currently running instances. Windows calls the window functions with the 
WM_WININICHANGE message and then returns control to the program that sent the 
message. 

526 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 536



Article 17: Windows 

SAMPLE's message processing 

The SAMPLE program shown in Figure 17-11 processes only four messages: 
WM_COMMAND, WM_SIZE, WM_PAINT, and WM_DESTROY. All other messages are 
passed to DefWindowProc. As is typical with most Windows programs written inc, 
SAMPLE uses a switch and case construction for processing messages. 

The WM_COMMAND message signals the program that the user has selected a new font 
from the menu. SAMPLE first obtains a handle to the menu and removes the checkmark 
from the previously selected font: 

hMenu = GetMenu (hWnd) ; 
CheckMenuitem (hMenu, nCurrentFont, MF_UNCHECKED) ; 

The value of wParam in the WM_COMMAND message is the menu ID of the newly 
selected font. SAMPLE saves that value in a static variable (nCurrentFont) and then places a 
checkmark on the new menu choice: 

nCurrentFont = wParam ; 
CheckMenuitem (hMenu, nCurrentFont, MF_CHECKED) ; 

Because the typeface has changed, SAMPLE must repaint its display. The program does 
not repaint it immediately, however. Instead, it calls the InvalidateRect function: 

InvalidateRect (hWnd, NULL, TRUE) ; 

This causes a WM_PAINT message to be placed in the program's message queue. The 
NULL parameter indicates that the entire client area should be repainted. The TRUE 
parameter indicates that the background should be erased. 

The WM_SIZE message indicates that the size of SAMPLE's client area has changed. 
SAMPLE simply saves the new dimensions of the client area in two static variables: 

xClient = LOWORD (lParam) ; 
yClient = HIWORD (lParam) ; 

The LOWORD and HIWORD macros are defined in WINDOWS. H. 

Windows also places a WM_PAINT message in SAMPLE's message queue when the size 
of the client area has changed. As is the case with WM_COMMAND, the program does 
not have to repaint the client area immediately, because the WM_ PAINT message is in the 
message queue. 

SAMPLE can receive a WM_PAINT message for many reasons. The first WM_PAINT mes­
sage it receives results from calling UpdateWindow in the WinMain function. Later, if the 
current font is changed from the menu, the program itself causes a WM_ PAINT message 
to be placed in the message queue by calling InvalidateRect. Windows also sends a win­
dow function a WM_ PAINT message whenever the user changes the size of the window 
or when part of the window previously covered by another window is uncovered. 

Programs begin processing WM_PAINT messages by calling Begin Paint: 

BeginPaint (hWnd, &ps) ; 

Section II: Programming in the MS-DOS Environment 527 

ZTE (USA) 1007, Page 537



Part D: Directions of MS-DOS 

The SAMPLE program then creates a font based on the current size of the client area and 
the current typeface selected from the menu: 

hFont = CreateFont (yClient, xClient I 8, 
0, O, 400, 0, 0, 0, OEM_CHARSET, 
OUT_STROKE_pRECIS, OUT_STROKE_pRECIS, 

DRAFT-QUALITY, (BYTE) VARIABLE_piTCH 
cFamily [nCurrentFont- IDM___SCRIPT], 

szFace [nCurrentFont- IDM___SCRIPT]) 

The font is selected into the device context (a data structure internal to Windows that 
describes the characteristics of the output device); the program also saves the original 
device-context font: 

hFont = SelectObject (ps.hdc, hFont) 

And the word Windows is displayed: 

TextOut (ps.hdc, 0, 0, "Windows", 7) 

The original font in the device context is then selected, and the font that was created is 
now deleted: 

DeleteObject (SelectObject (ps.hdc, hFont)) ; 

Finally, SAMPLE calls EndPaint to signal Windows that the client area is now updated and 
valid: 

EndPaint (hWnd, &ps) ; 

Although the processing of the WM_ PAINT message in this program is simple, the 
method used is common to all Windows programs. The Begin Paint and End Paint func­
tions always occur in pairs, first to get information about the area that needs repainting 
and then to mark that area as valid. 

SAMPLE will display this text even when the program is minimized to be displayed as an 
icon at the bottom of the screen. Although most Windows programs use a customized icon 
for this purpose, the window-class structure in SAMPLE indicates that the program's icon 
is NULL, meaning that the program is responsible for drawing its own icon. SAMPLE does 
not, however, make any special provisions for drawing the icon. To it, the icon is simply 
a small client area. As a result, SAMPLE displays the word Windows in its "icon," using a 
small font size. 

Windows sends the window function the WM_DESTROY message as a result of the 
DestroyWindow function that DefWindowProc calls when processing a WM_ CLOSE 
message. The standard processing involves placing a WM_QUIT message in the message 
queue: 

PostQuitMessage (0) ; 

When the GetMessage function retrieves WM_QUIT from the message queue, GetMessage 
returns 0. This terminates the message loop and the program. 

528 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 538



Article 17: Windows 

For all other messages, SAMPLE calls DefWindowProc and exits the window function by 
returning the value from the call: 

return DefWindowProc (hWnd, iMessage, wPararn, lPararn) ; 

This allows Windows to perform default processing on the messages SAMPLE ignores. 

Windows' multitasking 

Most operating systems or operating environments that allow multitasking use what is 
called a preemptive scheduler. Generally, the procedure involves use of the computer's 
clock to switch rapidly between programs and allow each a small time slice. When 
switching between programs, the operating system must preserve the machine state. 

Windows is different. It is a nonpreemptive multitasking environment. Although Windows 
allows several programs to run simultaneously, it never switches from one program to 
allow another to run. It switches between programs only when the currently running pro­
gram calls the GetMessage function or the related Peek Message and WaitMessage 
functions. 

When a Windows program calls GetMessage and the program's message queue contains 
a message other than WM_ PAINT or WM_ TIMER, Windows returns control to the pro­
gram with the next message. However, if the program's message queue contains only a 
WM_PAINT or WM_TIMER message and another program's queue contains a message 
other than WM_ PAINT or WM_ TIMER, Windows returns control to the other program, 
which is also waiting for its GetMessage call to return. 

(Windows also switches between programs temporarily when a program uses 
Send Message to send a message to a window function in another program, but control 
returns to the calling program after the window function has processed the message sent 
to it.) 

To cooperate with Windows' nonpreemptive multitasking, programmers should try to 
perform message processing as quickly as possible. Programs can, for example, split a 
large amount of processing into several smaller pieces to allow other programs to run in 
the interval. During long processing a program can also periodically call Peek Message to 
allow other programs to run. 

Graphics Device Interface 

Programs receive input through the Windows message system. For program output, 
Windows provides a device-independent interface to graphics output devices, such as the 
video display, printers, and plotters. This interface is called the Graphics Device Interface, 
orGDI. 

Section IL- Programming in the MS-DOS Environment 529 

ZTE (USA) 1007, Page 539



Part D: Directions of MS-DOS 

The device context (DC) 

When a Windows program needs to send output to the video screen, the printer, or 
another graphics output device, it must first obtain a handle to the device's device context, 
or DC. Windows provides a number of functions for obtaining this device-context handle: 

Begin Paint. Used for obtaining a video device-context handle during processing of a 
WM_PAINT message. This device context applies only to the rectangular section of the 
client area that is invalid (needs repainting). This region is also a clipping region, meaning 
that a program cannot paint outside this rectangle. BeginPaint fills in the fields of a 
PAINTSTRUCT structure. This structure contains the coordinates of the invalid rectangle 
and a byte that indicates if the background of the invalid rectangle has been erased. 

GetDC. Generally used for obtaining a video device-context handle during processing of 
messages other than WM_PAINT. The handle obtained with this function references only 
the client area of the window. 

GetWindowDC. Used for obtaining a video device-context handle that encompasses the 
entire window, including the title bar, menu bar, and scroll bars. A Windows program can 
use this function if it is necessary to paint over areas of the window outside the client area. 

CreateDC. Used for obtaining a device-context handle for the entire display or for a 
printer, a plotter, or other graphics output device. 

Create/C. Used for obtaining an information-context handle, which is similar to a 
device-context handle but can be used only for obtaining information about the output 
device, not for drawing. 

CreateCompatibleDC. Used for obtaining a device-context handle to a memory device 
context compatible with a particular graphics output device. This function is generally 
used for transferring bitmaps to a graphics output device. 

CreateMetaFile. Used for obtaining a metafile device-context handle. A metafile is a collec­
tion of GDI calls encoded in binary form. 

The Windows program uses the device-context handle when calling GDI functions. In 
addition to drawing, the various GDI functions can change the attributes of the device con­
text, select different drawing objects (such as pens and fonts) into the device context, and 
determine the characteristics of the device context. 

Device-independent programming 

Windows supports such a wide variety of video displays, printers, and plotters that pro­
grams cannot make assumptions about the size and resolution of the device. Furthermore, 
because the user can generally alter the size of a program's window, the program must be 
able to adjust its output appropriately. The SAMPLE program, for example, showed how 
the window function can use the WM_SIZE message to obtain the current size of a win­
dow to create a font that fits text within the window's client area. 

Programs can also use other Windows functions to determine the physical characteristics 
of a device. For instance, a program can use the GetDeviceCaps function to obtain 

530 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 540



Article 17: Windows 

information aboutthe device context, including the resolution of the device, its physical 
dimensions, and its relative pixel height and width. 

Then, too, the GetTextMetrics function returns information about the current font selected 
in the device context. In the default device context, this is the system font. Many Windows 
programs base the size of their display output on the size of a system-font character. 

Device-context attributes 

The device context includes attributes that define how the graphics output functions work 
on the device. When a program first obtains a handle to a device context, Windows sets 
these attributes to default values, but the program can change them. Some of these 
device-context attributes are as follows: 

Pen. Windows uses the current pen for drawing lines. The default pen produces a solid 
black line 1 pixel wide. A program can change the pen color, change to a dotted or dashed 
line, or make the pen draw a solid line wider than 1 pixel. 

Brush. Windows uses the current brush (sometimes called a pattern) for filling areas. A 
brush is an 8-pixel-by-8-pixel bitmap. The default brush is solid white. Programs can 
create colored brushes, hatched brushes, and customized brushes based on bitmaps. 

Background color. Windows uses the background color to fill the spaces in and between 
characters when drawing text and to color the open areas in hatched brushstrokes and 4 
dotted or dashed pen lines. Windows uses the background color only if the background 
mode (another attribute of the display context) is opaque. If the background mode is 
transparent, Windows leaves the background unaltered. The default background color 
is white. 

Text color. Windows uses this color for drawing text. The default is black. 

Font. Windows uses the font to determine the shape of text characters. The default is 
called the system font, a fixed-pitch font that also appears in menus, caption bars, and 
dialog boxes. 

Additional device-context attributes (such as mapping modes) are described in the follow­
ing sections. 

Mapping modes 

Most GDI drawing functions in Windows have parameters that specify the coordinates or 
size of an object. For instance, the Rectangle function has five parameters: 

Rectangle lhDC, x1, y1, x2, y2) ; 

The first parameter is the handle to the device context. The others are 

• xl: horizontal coordinate of the upper left corner of the rectangle. 
• yl: vertical coordinate of the upper left corner of the rectangle. 
• x2: horizontal coordinate of the lower right corner of the rectangle. 
• y2: vertical coordinate of the lower right corner of the rectangle. 

Section JL- Programming in the MS-DOS Environment 531 

ZTE (USA) 1007, Page 541



Part D: Directions <;>f MS-DOS 

In the Rectangle and most other GDI functions, coordinates are logical coordinates, which 
are not necessarily the same as the physical coordinates (pixels) of the device. To translate 
logical coordinates into physical coordinates, Windows uses the current mapping mode. 

In actuality, the mapping mode defines a transformation of coordinates between a win­
dow, which is defined in terms of logical coordinates, and a viewport, which is defined in 
terms of physical coordinates. For any mapping mode, a program can define separate win­
dow and viewport origins. The logical point defined as the window origin is then mapped 
to the physical point defined as the viewport origin. For some mapping modes, a program 
can also define window and viewport extents, which determine how the logical coordi­
nates are scaled to the physical coordinates. 

Windows programs can select one of eight mapping modes. The first six are sometimes 
called fully constrained, because the ratio between the window and viewport extents is 
fixed and cannot be changed. 

In MM_ TEXT, the default mapping mode, coordinates on the x axis increase from left to 
right, and coordinates on the y axis increase from the top downward. In the other five fully 
constrained mapping modes, coordinates on the x axis also increase from left to right, but 
coordinates on the y axis increase from the bottom upward. The six fully constrained 
mapping modes are 

• MM_TEXT: Logical coordinates are the same as physical coordinates. 
• MM_LOMETRIC: Logical coordinates are in units of 0.1 millimeter. 
• MM_HIMETRIC: Logical coordinates are in units of 0.01 millimeter. 
• MM_LOENGLISH: Logical coordinates are in units of 0.01 inch. 
• MM_HIENGLISH: Logical coordinates are in units of 0.001 inch. 
• MM_TWIPS: Logical coordinates are in units ofl/I44o inch. (These units are lho of a 

typographic point, which is approximately lfn inch.) 

The seventh mapping mode is called partially constrained, because a program can change 
the window and viewport extents but Windows adjusts the values to ensure that equal 
horizontal and vertical logical coordinates translate to equal horizontal and vertical physical 
dimensions: 

• MM_ISOTROPIC: Logical coordinates represent the same physical distance on both 
the x andy axes. 

The MM_ISOTROPIC mapping mode is useful for drawing circles and squares. The 
MM_LOMETRIC, MM_HIMETRIC, MM_LOENGLISH, MM_HIENGLISH, and 
MM_ TWIPS mapping modes are also isotropic, because equal logical coordinates map to 
the same physical dimensions on both axes. 

The final mapping mode is sometimes called unconstrained because a program is free to 
set different window and viewport extents on the x andy axes. 

• MM_ANISOTROPIC: Logical coordinates are mapped to arbitrarily scaled physical 
coordinates. 

532 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 542



Article 17: Windows 

Functions for drawing 

Windows includes several functions that programs can use to draw in the client area of a 
window. The most common of these functions are 

SetPixel. Sets a point to a particular color. 

LineTo. Draws a line from the current position to a point specified in the LineTo function. 
The current position is defined in the device context and can be altered before the call to 
LineTo with the MoveTo function, which changes the current position but does not draw 
anything. Windows uses the current pen and the current drawing mode (see below) for 
drawing the line. 

Polyline. Draws multiple lines much like a series of LineTo calls but does not alter the cur­
rent position on completion. 

Rectangle. Draws a filled rectangle with a border. Parameters to the Rectangle function 
specify the coordinates of the upper left and lower right corners of the rectangle. Windows 
draws the border of the rectangle with the current pen and current drawing mode defined 
in the device context, just as if it were using the Polyline function then Windows fills tbe 
rectangle with the current brush defined in the device context. 

Ellipse. Uses the same parameters as Rectangle but draws an ellipse within the rectangular 
area. 

RoundRect. Draws a rectangle with rounded corners. Two parameters to this function 
define the height and width of an ellipse that Windows uses for drawing the rounded 
corners. 

Polygon. Draws a polygon connecting a series of points and fills the enclosed areas in 
either an alternate or winding mode. The winding mode causes Windows to fill every area 
within the polygon. The alternate mode fills every other area. For a polygon that defines a 
five-pointed star, for instance, the center is filled if the mode is winding but is not filled if 
the mode is alternate. 

Arc. Draws a curved line that is part of the circumference of an ellipse. 

Chord. Similar to the Arc function, but Windows connects the beginning and ending 
points of the arc with a straight line. The area is filled with the current brush defined in 
the device context. 

Pie. Similar to the Arc function, but Windows draws lines from the beginning and ending 
points of the arc to the center of the ellipse. The area is filled with the current brush 
defined in the device context. 

TextOut. Writes text with the current font, text color, background color, and background 
mode (transparent or opaque). 

Windows also includes other drawing functions for filling areas, formatting text, and trans­
ferring bitmaps. 

Section II: Programming in the MS-DOS Environment 533 

ZTE (USA) 1007, Page 543



Part D: Directions of MS-DOS 

Raster operations for pens 

When Windows uses a pen to write to a device context, it must first determine which pix­
els of the destination are to be altered by the pen (the foreground) and which pixels will 
not be affected (the background). With dotted and dashed pens, the background-
the space between the dots or dashes- is left unaltered if the drawing mode is trans­
parent and is filled with the background color ifthe drawing mode is opaque. 

When Windows alters the pixels of the destination that correspond to the foreground of 
the pen, the most obvious result is that the color of the current pen defined in the display 
context is used to color the destination. But this is not the only possible result. Windows 
also generalizes the process by using a logical operation to combine the pixels of the pen 
and the pixels of the destination. 

This logical operation is defined by the drawing mode attribute of the device context. This 
drawing mode can be set to one of 16 binary raster operations (abbreviated ROP2). 

The following table shows the 16 binary raster operation codes defined in WINDOWS.H. 
The column headed "Resultant Destination" shows how the destination changes, depend­
ing on the bit pattern of the pen and the bit pattern of the destination before the line is 
drawn. The words OR, AND, XOR, and NOT are the logical operations. 

Binary Raster 
Operation 

R2_BLACK 
R2_COPYPEN 
R2_MERGEPEN 
R2_MASKPEN 
R2_XORPEN 
R2_NOTCOPYPEN 
R2_NOTMERGEPEN 
R2_NOTMASKPEN 
R2_NOTXORPEN 
R2_MERGEPENNOT 
R2_MASKPENNOT 
R2_MERGENOTPEN 
R2_MASKNOTPEN 
R2_NOP 
R2_NOT 
R2_WHITE 

Resultant 
Destination 

0 
pen 
pen OR destination 
pen AND destination 
pen XOR destination 
NOT pen 
NOT (pen OR destination) 
NOT (pen AND destination) 
NOT (pen XOR destination) 
pen OR (NOT destination) 
pen AND (NOT destination) 
(NOT pen) OR destination 
(NOT pen) AND destination 
destination 
NOT destination 
1 

The default drawing mode defined in a device context is R2_COPYPEN, which simply 
copies the pen to the destination. However, if the pen color is blue, the destination is red, 
and the drawing mode is R2_MERGEPEN, then the drawn line appears as magenta, which 

534 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 544



Article 17: Windows 

results from combining the pen and destination colors. If the pen color is blue, the desti­
nation is red, and the drawing mode is R2_NOTMERGEPEN, then the drawn line is green, 
because the blue pen and the red destination are combined into magenta, which Windows 
then inverts to make green. 

Bit-block transfers 

Windows also uses logical operations when transferring a rectangular pixel pattern (a bit 
block) from one device context to another or from one area of a device context to another 
area of the same device context. 

While line drawing involves a logical combination of two sets of pixels (the pen·and the 
destination), the bit -block transfer functions perform a logical combination of three sets 
of pixels: a source bitmap, a destination bitmap, and the brush currently selected in the 
destination device context. As shown in the preceding section, there are 16 different ROP2 
drawing modes for all the possible combinations of two sets of pixels. The tertiary raster 
operations (abbreviated ROP3) for bit-block transfers require 256 different operations for 
all possible combinations. 

Windows defines three functions for transferring rectangular pixel patterns: BitBlt (bit­
block transfer), StretchBlt (stretch-block transfer), and PatBlt (pattern-block transfer). Of 
these three functions, StretchBlt is the most generalized. StretchBlt transfers a bitmap from 
a source device context to a destination device context. Function parameters specify the 
origin, width, and height of the bitmap. If the source and destination widths and heights 
are different, Windows stretches or compresses the bitmap appropriately. Negative values 
of widths and heights cause Windows to draw a mirror image of the bitmap. 

The BitBlt function transfers a bitmap from a source device context to a destination device 
context, but the width and height of the source and destination must be the same. If the 
source and destination device contexts have different mapping modes, Windows uses 
StretchBlt instead. 

In both BitBlt and StretchBlt, Windows performs a bit-by-bit logical operation with the bit 
block in the source device context, the bit block in the destination area of the destination 
device context, and the brush currently selected in the destination device context. 
Although Windows supports all 256 possible raster operations with these three bitmaps, 
only a few have been given WINDOWS.H identifiers: 

Raster 
Operation 

BLACKNESS 
SRCCOPY 
SRCAND 
SRCPAINT 

Resultant 
Destination 

0 
source 
source AND destination 
source OR destination 

(more) 

Section II: Programming in the MS-DOS Environment 535 

ZTE (USA) 1007, Page 545



Part D: Directions of MS-DOS 

Raster 
Operation 

SRCINVERT 
SRCERASE 
MERGEPAINT 
NOTSRCCOPY 
NOTSRCERASE 
DSTINVERT 
PA,TCOPY 
MERGE COPY 
PATINVERT 
PATPAINT 
WHITENESS 

Resultant 
Destination 

source XOR destination 
source AND (NOT destination) 
source OR (NOT destination) 
NOT source 
NOT (source OR destination) 
NOT destination 
pattern 
source AND pattern 
destination XOR pattern 
source OR (NOT destination) OR pattern 
1 

The PatBlt function is similar to BitBlt and StretchBlt but performs a logical operation only 
between the currently selected brush and a destination area of the device context. Thus, 
only 16 raster operations can be used with PatBlt; these are equivalent to the binary raster 
operations used with line drawing. 

Text and fonts 
Windows supports file-based text fonts in two different formats: raster and vector. The 
raster fonts, such as Courier, Helvetica, and Times Roman, are defined by digital represen­
tations of the bit patterns of the characters. Font files usually contain several different sizes 
for each typeface. The vector fonts, such as Modern, Script, and Roman, are defined by 
points that are connected to form the letters and can be scaled to different sizes. 

When using a device such as a printer, which has built-in fonts, Windows can also use 
these device-based fonts. 

To specify a font, a Windows program uses the CreateFont function to create a logical 
font- a detailed description of the desired font. When this logical font is selected into a 
device context, Windows finds the actual font that best fits this description. In many cases, 
this match is not exact. The program can then call GetTextMetrics to determine the char­
acteristics of the actual font that the device will use to display text. 

Windows supports both fixed-width and variable-width fonts, as well as such attributes as 
italics, underlining, and boldfacing. Programs can also justify text with the GetTextExtent 
call, which obtains the width of a particular text string. The program can then insert extra 
spaces between words with SetTextJustification or it can insert extra spaces between 
letters with SetTextCharacterExtra. 

Metafiles 
As explained earlier, a metafile is a collection of GDI function calls stored in a binary 
coded form. A program can create a metafile by calling CreateMetaFile and giving it either 

536 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 546



Article 17: Windows 

an MS-DOS filename or NULL as a parameter. If CreateMetaFile is given an MS-DOS file­
name, Windows creates a disk-based metafile; if the parameter is NULL, Windows creates 
a metafile in memory. The CreateMetaFile call returns a handle to a metafile device con­
text. Any GDI calls that reference this device-context handle become part of the metafile. 

When the program calls CloseMetaFile, Windows closes the metafile device context and 
returns a handle to the metafile. The program can then "play" this metafile on another 
device context (such as the video display) without calling the GDI functions directly. 

Metafiles provide a useful way to transfer device-independent pictures between programs. 

Data Sharing and Data Exchange 

Windows includes a variety of methods by which programs can share and exchange data. 
These methods are discussed in the following sections. 

Sharing local data among instances 

Multiple instances of the same program can share data in the static data area of the pro­
gram's data segment. Later instances of a program can thus call GetlnstanceData and copy 
configuration options established by the.user in the first instance. Multiple instances of 
programs can also share resources, such as dialog-box templates. 

The Windows Clipboard 
The Windows Clipboard is a general-purpose mechanism that allows a user to transfer 
data from one program to another. Programs that support the Clipboard generally include 
a top-level menu item called Edit, which invokes a pop-up menu that offers at least these 
three options: 

• Cut: Copies the current selection to the Clipboard and deletes the selection from the 
current program file. 

• Copy: Copies the current selection to the Clipboard without deleting the selection 
from the current program file. 

• Paste: Copies the contents of the Clipboard to the current program file. 

The Clipboard can hold only one item at a time. A program can transfer data to the Clip­
board through the function call SetClipboardData. With this function, the program passes 
the Clipboard a handle to a global memory block, which then becomes the property of the 
Clipboard. A program can access Clipboard data through the complementary function 
GetClipboardData. 

The Clipboard supports several formats: 

• Text: ASCII text; each line ends with a carriage return and linefeed, and the text is 
terminated with a NULL character. 

• Bitmap: A collection of bits in the GDI bitmap format. 

Section IL· Programming in the MS-DOS Environment 537 

ZTE (USA) 1007, Page 547



Part D: Directions of MS-DOS 

• Metafile Picture: A structure that contains a handle to a metafile along with other 
information suggesting the mapping mode and aspect ratio of the picture. 

• SYLK: Microsoft's Symbolic Link format. 
• DIF: Software Arts' Data Interchange Format. 

Programs can also use the Clipboard for storing data in private formats. 

Some programs, such as the CLIPBRD program included with Windows, can also become 
Clipboard viewers. Such programs receive a message whenever the contents of the Clip­
board change. 

Dynamic Data Exchange (DDE) 

Dynamic Data Exchange (DDE) is a protocol that cooperating programs can use to 
exchange data without user intervention. DDE makes use of the facilities in Windows that 
enable programs to send messages among themselves. 

In DDE, the program that needs data from another program is called the client. The client 
sends a WM_DDE_INITIATE message either to a dedicated server program or to all cur­
rently running programs. Parameters to the WM_DDE_INITIATE message are atoms, 
which are numbers referring to text strings. A server application that has the data the client 
needs sends a WM_ DDE_ACK message back to the client. The client can then be more 
specific about the data it needs by sending the server a WM_DDE_ADVISE message. The 
server can then pass global memory handles to the client with the WM_DDE_ DATA 
message. 

Internationalization 

Windows includes several features that ease the conversion and translation of programs 
for international markets. Among these features are keyboard drivers appropriate for many 
European languages and use of the ANSI character set, which provides a richer set of 
accented letters than does the character set resident in the IBM PC and compatibles. 

Windows also includes several functions that assist in language-independent coding. The 
AnsiUpper and AnsiLower functions translate characters or strings to uppercase or lower­
case in the full ANSI character set, rather than the more limited ASCII character set. In 
addition, the AnsiNext and AnsiPrev functions allow scanning of text strings that may 
contain 2 or more bytes per character. 

Windows programmers can also help in program translation by defining all text strings 
used within the program as resources contained in the resource script file. Because the 
resource script file also contains menu templates and dialog-box templates, it thus 
becomes the only file that needs alteration when a foreign-language version of the 
program is created. 

Charles Petzold 

538 The MS-DOS Encyclopedia 

I 

I 
I 

I 
-I 
I 

ZTE (USA) 1007, Page 548



i . 
( 

PartE 
Programming Tools 

ZTE (USA) 1007, Page 549



ZTE (USA) 1007, Page 550ZTE (USA) 1007, Page 550



1

,, 
' 

' 

' 

Article 18: Debugging in the MS-DOS Environment 

Article 18 
Debugging in the MS-DOS Environment 

It is axiomatic that any program will need debugging at some time in its development 
cycle, and programs written to run under MS-DOS are no exception. This article provides 
an introduction to the debugging tools and techniques available to the serious program­
mer developing code in the MS-DOS environment. Space does not permit a thorough 
investigation of the philosophy, psychology, and science of debugging computer pro­
grams; instead, a brief and practical discussion of the basic debugging approaches is pre­
sented, along with some rules-of-thumb for choosing the best approach. Nor are the details 
of every single utility and command included in this article; these are described in detail 
in the reference sections of this volume. The commands and utility programs that are 
most useful for debugging are discussed and illustrated with examples and case histories 
that also serve as models for the various debugging methods. 

The reader of this article is assumed to be a programmer with sufficient experience to 
understand an assembly-language program. The reader is also assumed to be familiar with 
MS-DOS- terms like FCB and PSP are not explained. A reader without this background in 
MS-DOS need not be deterred, however; these terms are thoroughly explained elsewhere 
in this book. Besides assembly language, examples in this article are written in Microsoft 
QuickBASIC and Microsoft C. A detailed knowledge of these languages is not required; the 
examples are short and straightforward. 

The reader should also keep in mind that the examples given here are real but not neces- 4 
sarily realistic. To avoid the tedium that accompanies debugging, the examples have been 
designed to reveal their bugs fairly quickly. All the methods and techniques shown are 
accurate in detail but not always in scale. Most of the debugging examples presented here 
would require one-half to one hour of work. It is possible for real debugging sessions to 
last for hours or days, especially if the wrong approach or tool is chosen. One of the pur-
poses of this article is to help the programmer choose the correct tool and, thus, to reduce 
the tedium. 

The Programs 

There are more than a dozen listings in this article. Some of them are correct and others 
contain errors for use in illustrating debugging techniques. Many of the programs serve 
as examples in multiple sections of the article. The following summary of the programs 
(Table 18-1) is given to avoid confusion and to provide a common location to consult for 
explanations of the programs. 

Section 11- Programming in the MS-DOS Environment 541 

ZTE (USA) 1007, Page 551



Part E: Programming Tools 

Table 18-1. Summary of Example Programs. 

Name: 
Figure: 
Status: 
Purpose: 

Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 

Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 

Compiling: 

Parameters: 

EXP.BAS 
18-1 
Incorrect-do not use. 
Computes EXP(x) (the exponential of x) to a specified precision using an 
infinite series. 
QBEXP; 
LINKEXP; 
Prompts for value for x and a convergence criterion. Enter zero to quit. 

EXP.BAS 
18-3 
Correct version of Figure 18-1. 
Computes EXP(x) (the exponential of x) to a specified precision using an 
infinite series. 
QBEXP; 
LINKEXP; 
Prompts for value for x and a convergence criterion. Enter zero to quit. 

COMMSCOP.ASM 
18-4 
Correct. 
Monitors the activity on a specified COM port and places a copy of all 
transmitted and received data in a RAM buffer. Each entry in the buffer is 
tagged to indicate whether the byte was sent by or received by the applica­
tion program under test. Control is provided to start, stop, and resume trac­
ing by means of a control interrupt. When tracing is stopped and resumed, 
a marker is left in the buffer. COMMSCOP is a terminate-and-stay-resident 
(TSR) program. 
MASM COMMSCOP; 
LINK COMMSCOP; 
EXE2BIN COMMSCOP.EXE COMMSCOP.COM 
DEL COMMSCOP.EXE 
Installed by entering COMMSCOP; no parameters for installation. The 
TSR is controlled by passing parameter data in registers with an Interrupt 
60H call. The registers can have the following values: 

AH: Command: 
OOH STOP 
01H FLUSH AND START 
02H RESUME TRACE 
03H RETURN TRACE BUFFER ADDRESS 

(more) 

542 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 552



l 
I 

Name: 
Figure: 
Status: 
Purpose: 

COMPILING: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 

Compiling: 

Parameters: 

Name 
Figure: 
Status: 
Purpose: 

Article 18: Debugging in the MS-DOS Environment 

DX: 
OOH 
01H 

COMport: 
COM1 
COM2 

Interrupt 60H returns the following in response to function 3: 

CX Buffer count in bytes 
DX Segment address of buffer 
BX Offset address of buffer 

COMMSCMD.C 
18-5 
Correct. 
Controls the COMMSCOP program by issuing Interrupt 60H calls. 
eversion. 
MSC COMMSCMD; 
LINK COMMSCMD; 
Commands are issued by 
COMMSCMD [[ cmd] [port]] 
where: cmd is the command to be executed: 

STOP Stop trace 
START Flush buffer and start trace 
RESUME Resume a stopped trace 

port is the COM port (1 = COM1, 2 = COM2) 
If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed. 

COMMSCMD.BAS 
18-6 
Correct. 
Controls the COMMSCOP program by issuing Interrupt 60H calls. 
QuickBASIC version. 
QB COMMSCMD; 
LINK COMMSCMD USERLIB; 
Commands are issued by 
COMMSCMD [[cmd][,port]] 
where: cmd is the command to be executed: 

STOP Stop trace 
START Flush buffer and start trace 
RESUME Resume a stopped trace 

port is the COM port (1 = COM1, 2 = COM2) 
If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed. 

COMMDUMP.BAS 
18-7 
Correct. 
Produces a formatted dump of the communications trace buffer. 

(more) 

Section II: Programming in the MS-DOS Environment 543 

ZTE (USA) 1007, Page 553



Part E: Programming Tools 

Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 

Compiling: 

Parameters: 

QB COMMDUMP; 
LINK COMMDUMP USERLIB; 
No parameters. When COMMDUMP is invoked, it formats and dumps the· 
entire buffer. 

TESTCOMM.ASM 
18-9 
Incorrect-do not use. 
Provides test data for the COMMSCOP routine. 
MASM TESTCOMM; 
LINK TESTCOMM; 
No parameters. TESTCOMM reads data from the keyboard and writes to 
COM1 and reads COM1 data and displays it on the screen. Ctrl-C cancels. 

TESTCOMM.ASM 
18-10 
Correct version of Figure 18-9. 
Provides test data for the COMMSCOP routine. 
MASM TESTCOMM; 
LINK TESTCOMM; 
No parameters. TESTCOMM reads data from the keyboard and writes to 
COM1 and reads COM1 data and displays it on the screen. Ctrl-C cancels. 

BADSCOP.ASM 
18-11 
Incorrect version of Figure 18-4-do not use. 
Monitors the activity on a specified COM port and places a copy of all 
transmitted and received data in a RAM buffer. Each entry in the buffer is 
tagged to indicate whether the byte was sent by or received by the applica­
tion program under test. Control is provided to start, stop, and resume trac­
ing by means of a control interrupt. When tracing is stopped and resumed, 
a marker is left in the buffer. BADSCOP is a terminate-and-stay-resident 
(TSR) program. 
MASM BADSCOP; 
LINK BADSCOP; 
EXE2BIN BADSCOP.EXE BADSCOP.COM 
DEL BADSCOP.EXE 
Installed by entering BADSCOP; no parameters for installation. The TSR is 
controlled by passing parameter data in registers with an Interrupt60H 
call. The registers can have the following values: 

AH: Command: 
OOH STOP 
01H FLUSH AND START 

(more) 

544 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 554



Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Name: 
Figure: 
Status: 
Purpose: 
Compiling: 

Parameters: 

Article 18: Debugging in the MS-DOS Environment 

., 

02H RESUME TRACE 
03H RETURN TRACE BUFFER ADDRESS 

DX: COM port: 
OOH COM1 
01H COM2 

Interrupt 60H returns the following in response to function 3: 

CX Buffer count in bytes 
DX Segment address of buffer 
BX Offset address of buffer 

UPPERCAS.C 
18-13 
Incorrect-do not use. 
Converts a fixed string to uppercase and prints it. 
MSC /Zi UPPERCAS; 
LINK UPPERCAS /CO; 
No parameters. 

UPPERCAS.C 
18-14 
Correct version of Figure 18-13. 
Converts a fixed string to uppercase and prints it. 
MSC /Zi UPPERCAS; 
LINK UPPERCAS /CO; 
No parameters. 

ASCTBL.C 
18-16 
Incorrect-do not use. 
Displays a table of all displayable characters. 
MSC /Zi ASCTBL; 
LINK ASCTBL /CO; 
No parameters. 

ASCTBL.C 
18-17 
Correct version of Figure 18-16. 
Displays a table of all displayable characters. 
MSC /Zi ASCTBL; 
LINK ASCTBL /CO; 
No parameters. 

Section II: Programming in the MS-DOS Environment 545 

ZTE (USA) 1007, Page 555


