
PartE: Programming Tools

Debugging Tools and Techniques

MS-DOS provides a wide variety of tools to aid in the debugging process. Some are
intended specifically for debugging. For example, the DEBUG program is delivered with
MS-DOS and provides basic debugging aid; the more sophisticated SYMDEB is supplied
with MASM, Microsoft's macro assembler; Code View, a debugger for high-order languages,
is supplied with Microsoft C, Microsoft Pascal, and Microsoft FORTRAN. Others are gen­
eral MS-DOS services and features that are also useful in the debugging process.

Debugging, like programming, has aspects of both an art and a craft. The craft- the
mechanical details of using the tools- is discussed both here and elsewhere in this
volume, but the main subject of this article is the art of debugging- the choice of the
correct tool, the best techniques to use in various situations, the methods of extracting the
clues to the problem from a recalcitrant program.

Debugging a program is a form of puzzle solving. As with most intellectual detective
work, the following rule applies:

Gather enough information and the solution will be obvious.

The craft of debugging involves gathering the data; the art lies in deciding which data to
gather and in noticing when the solution has become obvious.

The methods of gathering data for debugging, listed in order of increasing difficulty and
tediousness, fall into four major categories:

• Inspection and observation
• Instrumentation
• Use of software debugging monitors (DEBUG, SYMDEB, and Code View)
• Use of hardware debugging aids

As mentioned above, part of the art of debugging is knowing which method to use. This
is one of the most difficult aspects of debugging-so difficult, in fact, that even program­
mers with years of experience make mistakes. Many programmers have spent hours
single-stepping through a program with DEBUG only to discover that the cause of the
problem would have been obvious if they had given the program's output even a cursory
check. The only universal rule for choosing the correct debugging method is

Try them all, starting with the simplest.

Inspection and observation

Inspection and observation is the oldest and, usually, the best method of program debug­
ging. It is also the basis for all the other methods. The first step with this method, as with
the others, is to gather all the pertinent materials. Program listings, file layouts, report
layouts, and program design materials (such as algorithm descriptions and flowcharts)
are all extremely valuable in the debugging process.

546 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 556

l
I

Article 18: Debugging in the MS-DOS Environment

Desk-checking

Before a programmer can determine what a program is doing wrong, he or she must
know the correct operation of the program. There was a time, when computers were rare
and expensive resources, that programmers were encouraged not to run their programs
until the programs had been thoroughly desk-checked. The desk-checking process in­
volves sitting down with a listing, a hand calculator, and some sample data. The program­
mer then "plays computer," executing each line of the program manually and writing
down on paper the results of each program step. This process is extremely slow and
tedious. When the desk-checking is completed, however, the programmer not only has
found most of the bugs in the program but also has become intimately familiar with the
execution of the program and the values of the program variables at each step.

The advent of inexpensive yet powerful personal computers, combined with the rising
cost of programmer time, has made complete desk-checking nearly obsolete. It is now
cheaper to run the program and let the computer find the errors. However, the usefulness
of the desk-checking technique remains. Many programmers find it helpful to manually
execute those sections of a program that they suspect are causing trouble. Even if they
don't find errors in the code, the insight they gain into the workings of the code and the
values of the variables at each step can be invaluable when applying other debugging
techniques.

The inspection-and-observation methodology

The basic technique of the inspection-and-observation method is simple: After gathering
all the required materials, run the program and observe. Observe very carefully; events
that seem insignificant may be the very clues needed to discover where the program is
going astray. As the program executes, note whether each section performs correctly. 4
Does the program clear the screen when it should? Does it ask for input when it should?
Does it produce the correct results? Observable events are the debugger's milestones in
the execution of the program. If the program clears the screen but writes purple asterisks
instead of requesting input, then the problem lies somewhere after the program issues the
Clear Screen command but before it writes the input prompt on the screen. At this point,
the program listing and design data become important. Inspect the listing and examine
the area after the last successful milestone and before the missing milestone. Look for a
logic error in the code that could explain the observed data.

If the program produces printed reports, they may also be useful. Watch the screen and
listen to the printer. Clues can sometimes be found in the order in which things happen.
The light on the disk drive can be another indication of activity. See how disk activity co­
ordinates with screen and printer events. Try to identify each section of the program from
these clues. Then use this information to localize the inspection of the listing to isolate
the erroneous code.

The values of data given in reports and on the screen can also give clues to what's going
wrong. Examining the data and reconstructing the values used to compute it sometimes
leads to inferences about data problems. Perhaps a variable was misspelled in the code

Section 11· Programming in the MS-DOS Environment 547

ZTE (USA) 1007, Page 557

Part E: Programming Tools

or perhaps a data file is in the wrong format or has been corrupted. With this information,
the bug can often be isolated. However, a very thorough knowledge of the program and its
algorithms is required. See Desk-checking above.

MS-DOS provides four commands and filters that are useful in the collection and examina­
tion of data for debugging: TYPE, PRINT, FIND, and DEBUG. All these commands display
the data in a file in some way. If the data is ASCII (displayable) characters, TYPE and
PRINT can be used, with some help from FIND. Binary files can be examined and modi­
fied with the DEBUG utility. See USER COMMANDS: FIND; PRINT; TYPE; PROGRAMMING
UTILITIES: DEBUG.

The TYPE command provides the simplest way to display ASCII data files. This method
can be used to examine both input and output files. Checking the input files may uncover
some bad (or unexpected) data that causes the program to malfunction; examining the
output files will show whether calculations are being performed correctly and may help
pinpoint the erroneous calculations if they are not.

The FIND utility is useful in locating specific data in a file. Using FIND is more accurate
and definitely less tedious than examining the file manually using the TYPE command.
The IN switch causes FIND to also display the relative line number of the matching line­
information that is most useful in debugging.

Sometimes the data is too complex to be examined on the screen and printed copy is
needed. The PRINT command will produce hard copy of an ASCII file as will the TYPE
command if its output is redirected to the printer with the >PRN command-line parameter
after the filename.

Not all data files contain pure ASCII data, and displaying such non-ASCII files requires a
different approach. The TYPE command can be used, but nonprintable characters will
produce garbage on the screen. This technique can still prove useful if the file has a large
amount of ASCII data or if the records are regular and the ASCII information always
appears at the same location, but no information can be gained about non-ASCII numeric
data in such files. Note also that the entire file might not be displayed using TYPE because
if TYPE encounters a byte containing lAH (Control-Z), it assumes it has reached the end
of the file and stops.

Clearly, a more useful tool for examining non-ASCII files would be a program that dumps
the file in hexadecimal, with an appropriate translation of all·displayable characters. Such
programs exist in the public domain (through bulletin-board services, for instance) and, in
any event, are not difficult to write. MS-DOS does not include a stand-alone file-dumping
program among its standard commands and utilities, but the DEBUG program can be
used, with minor inconvenience, to display files. This program is discussed in detail later
in this article; for now, simply follow these instructions to use DEBUG as a file dumper.
To load DEBUG and the program to be debugged, use the form

DEBUG [drive:] [path]jilename.ext

DEBUG will display a hyphen as a prompt. To see the contents of the file, enter D (the
DEBUG Display Memory command) and press Enter. DEBUG will display the first 128
(80H) bytes of the file in hexadecimal and will also show any displayable characters.

548 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 558

&tide 18: Debugging in the MS-DOS Environment

To see the rest of the file, simply continue entering D until the desired area is found. Hard
copy of the contents of the display can be made by using the PrtSc key (or Ctrl-PrtSc to
print continuously). Note that the offset addresses for the bytes in the file begin at the
value in the program's CS:IP registers, which can be viewed by using the Debug R (Display
or Modify Registers) command. To obtain the true offsets, subtract CS:IP from the address
shown.

The essence of the inspection-and-observation method is careful and thoughtful observa­
tion. The computer and the operating system can provide tools to aid in the collection of
data, but the most important tool is the programmer's mind. By applying the logical skills
they already possess to the observed data, programmers can usually avoid the more
complex forms of debugging.

Instrumentation

Debugging by instrumentation is a traditional method that has been popular since pro­
grams were holes punched in cards. In general, this method consists of adding something
to the program, either internally or externally, to report on the progress of program execu­
tion. Programmers call this added mechanism instrumentation because of its resemblance
to the measuring instruments used in science and engineering. Instrumentation can be
software, hardware, or a combination of both; it can be internal to the program or external
to it. Internal instrumentation is always software, but external instrumentation may be
either hardware or software.

Internal instrumentation

Internal instrumentation usually consists of display or print statements placed at strategic
locations. Other signals to the user can be used if they are available. For instance, the sys-

4
tern beeper can be sounded at key locations, perhaps in a coded sequence of beeps; if the
device being debugged has lights that can be accessed by the program, these lights can be
flashed at important locations in the program. Beeping and flashing do not, however,
possess the information content usually required for debugging, so display or print state-
ments are preferred.

The use of display or print statements to display key data and milestones on the screen or
printer requires careful planning. First, apply the techniques of inspection and observation
described in the previous section to determine the most probable points of failure. Then, if
there is some doubt about what path execution is taking through the code, embed mes­
sages of the following types after key decision points:

BEGINNING SORT PHASE
ENDING PRINCIPAL CALCULATION
PROCESSING RECORD XX

A second way to use display or print statement instrumentation is to embed statements that
display the data and interim values used for calculations. This technique can be extremely
useful in finding problems related to the data being processed. Consider the QuickBASIC
program in Figure 18-1 as an example. The program has no syntax errors and compiles
cleanly, but it sometimes produces an incorrect answer.

Section /1- Programming in the MS-DOS Environment 549

/

ZTE (USA) 1007, Page 559

Part E: Programming Tools

EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

I **
' *
' * EXP

' *

*
*
*

' * This routine computes EXP(x) using the following infinite series: *
' * *
' * X

' * EXP(x) 1 + + + + + ... *
' * 1! 2! 3! 4! 5!

' * *
' * *
' * The program requests a value for x and a value for the convergence *·
' * criterion, C. The program will continue evaluating the terms of *
' * the series until the difference between two terms is less than C. *
' * *
' * The result of the calculation and the number of terms required to *
' * converge are printed. The program will repeat until an x of 0 is *
' * entered. *
' * *
I **

Initialize program variables

INITIALIZE:

TERMS = 1

FACT =

LAST= 1.E35

DELTA = 1 .E34
EX = 1

Input user data

INPUT "Enter number:

IF X = 0 THEN END

"; X

INPUT "Enter convergence criterion (.0001 for 4 places)

Compute exponential until difference of last 2 terms is < C

WHILE ABS(LAST- DELTA) >= C

LAST = DELTA

WEND

FACT = FACT * TERMS

DELTA = XATERMS / FACT

EX = EX + DELTA

TERMS TERMS +

Figure 18-1. A routine to compute exponentials.

550 The MS-DOS Encyclopedia

"; c

(more)

ZTE (USA) 1007, Page 560

.Article 18: Debugging in the MS-DOS Environment

·, Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge"

PRINT

GOTO INITIALIZE

Figure 18-1. Continued.

The purpose of the EXP.BAS program is to compute the exponential of a given number
to a specified precision using an infinite series. The program computes the value of each
term in the infinite series and adds it to a running total. To keep from executing forever,
the program checks the difference between the last two elements computed and stops
when this difference is less than the convergence criterion entered by the user.

When the program is run for several values, the following results are observed:

Enter number: ? 1

Enter convergence criterion (.0001 for 4 places): ? .0001

2.718282

10 elements required to converge

Enter number: ? 1.5

Enter convergence criterion (.0001 for 4 places): ? .0001

4.481686
11 elements required to converge

Enter number: ? 2
Enter convergence criterion (.0001 for 4 places): .0001

5
3 elements required to converge

Enter number: ? 2.5
Enter convergence criterion (.0001 for 4 places): .0001

12.18249
15 elements required to converge

Enter number: ? 3

Enter convergence criterion (.0001 for 4 places): ? .0001

13
4 elements required to converge

Enter number: ? 0

Some of these numbers are incorrect. Table 18-2 shows the computed values and the
correct values.

Section !1- Programming in the MS-DOS Environment 551

ZTE (USA) 1007, Page 561

Part E: Programming Tools

Table 18-2. The Computed Values Generated by EXP.BAS and the Expected
Values.

X Computed Correct

1.0 2.718282 2.718282
1.5 4.481686 4.481689
2.0 5 7.389056
2.5 12.18249 12.18249
3.0 13 20.08554

Applying the methods from the first section of this article and observing the data quickly
reveals a pattern. With the exception of 1, all whole numbers give incorrect results, but all
numbers with fractions give results that are correct to the specified convergence criterion.
Examination of the listing shows no obvious reason for this. The answer is there, but only
an exceptionally intuitive numeric analyst would see it. Because no answer is obvious, the
next step is to validate the only information available- that whole numbers produce er­
rors and fractional ones do not. Repeating the first experiment with 2 and a number
very close to 2 yields the following results:

Enter number: ? 1.999
Enter convergence criterion (.0001 for 4 places): ? .0001

7.38167
13 elements required to converge

Enter number: ? 2
Enter convergence criterion (.0001 for 4 places): ? .0001

5

3 elements required to conve,rge

Enter number: ? 0

The outcome is the same- repeating the experiment with a number as near to 2 as the
convergence criterion permits (1.9999) produces the same result. The error is indeed
caused by the fact that the number is an integer.

Because no intuitive way can be found to solve the mystery by inspection, the program­
mer must turn to the next method in the hierarchy, instrumentation. The problem has
something to do with the calculation of the terms of the series. Therefore, the section of
the program that performs this calculation should be instrumented by placing PRINT
statements inside the WHILE loop (Figure 18-2) to display all the intermediate values
of the calculation.

WHILE ABS(LAST- DELTA) >= C
LAST = DELTA
FACT = FACT * TERMS
DELTA = X A TERMS / FACT

Figure 18-2. Instrumenting the WHILE loop.

552 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 562

WEND

Article 18: Debugging in the MS-DOS Environment

EX = EX + DELTA

PRINT "TERMS="; TERMS; "EX="; EX; "FACT="; FACT; "DELTA="; DELTA;
PRINT "LAST="; LAST

TERMS = TERMS + 1

Figure 18-2. Continued.

The print statements used in this WHILE loop are typical of the type used for instrumenta­
tion. The program makes no attempt at fancy formatting. The print statements simply
identify each value with its variable name, allowing easy correlation of the data and the
code in the listing. Repeating the experiment with 1.999 and 2 yields

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001

TERMS= EX= 2.999 FACT= 1 DELTA= 1.999 LAST= 1E+34

TERMS.= 2 EX= 4. 997001 FACT= 2 DELTA= 1 . 998 LAST= 1 . 999
TERMS= 3 EX=
TERMS= 4 EX=
TERMS= 5 EX=

TERMS= 6 EX=

TERMS= 7 EX=
TERMS= 8 EX=

6.328335 FACT= 6 DELTA= 1.331334 LAST= 1.998
6.993669 FACT= 24 DELTA= .6653343 LAST= 1.331334

7.25967 FACT= 120 DELTA= .2660006 LAST= .6653343

7.348292 FACT= 720 DELTA= 8.862254E-02 LAST= .2660006

7.373601 FACT= 5040 DELTA= 2.530806E-02 LAST= 8.862254E-02

7.379924 FACT= 40320 DELTA= 6.323853E-03 LAST= 2.530806E-02
TERMS= 9 EX= 7.381329 FACT= 362880 DELTA= 1 .404598E-03 LAST= 6.323853E-03

TERMS= 10 EX= 7.3816T FACT= 3628800 DELTA= 2.807791E-04 LAST= 1 .404598E-03

TERMS= 11 EX= 7.381661 FACT= 3.99168E+07 DELTA= 5.102522E-05 LAST= 2.807791E-04
TERMS= 12 EX= 7.38167 FACT= 4.790016E+08 DELTA= 8.499951E-06 LAST= 5.102522E-05

7.38167

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
TERMS= EX= 3 FACT= 1 DELTA= 2 LAST= 1E+34

TERMS= 2 EX= 5 FACT= 2 DELTA= 2 LAST= 2

5

3 elements required to converge

Examination of the instrumentation printout for the two cases shows a drastically different
pattern. The fractional number went through 13 iterations following the expected pattern;
the whole number, however, quit on the third step. The loop is terminating prematurely.
Why? Look at the values calculated for DELTA and LAST on the last complete step. They
are the same, giving a difference of zero. Because this difference will always be less than
the convergence criterion, the loop will always terminate early. A moment's reflection
shows why. The numerator of the fraction for each term but the first in the infinite series is
a power of the number entered; the denominator is a factorial, a product formed by multi­
plying successive integers. Because n! = n •(n-1)!, when an integer is raised to a power
equal to itself and divided by the factorial of that integer the result will always be the same
as the preceding term. That is what has happened here.

Section Jl- Programming in the MS-DOS Environment. 553

ZTE (USA) 1007, Page 563

Part E: Programming Tools

Now that the cause of the problem is found, it must be fixed. How can this problem be
prevented? In this case, the problem is caused by a logic error. The programmer misread
(or miswrote!) the algorithm and assumed that the criterion for termination was that the
difference between the last two terms be less than the specified value. This is incorrect.
Actually, the termination criterion should be that the difference between the forming
EXP(x) and the last term be less than the criterion. To simplify, the last term itself must be
less than the value specified. The correct program listing, including the new WHILE loop,
is shown in Figure 18-3.

EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

I **
' .
' * EXP
' . *

*
*

' * This routine computes EXP(x) using the following infinite series: *
' *
' * X

' * EXP(x) 1 +

' * 1!

+ --- + --- +
2! 3!

*
*
*
*

I * *.

' * *
' * The program requests a value for x and a value for the convergence *
' * criterion, C. The program will continue evaluating the terms of *
' * the series until the amount added with a term is less than C. *
' * *
' * The result of the calculation and the number of terms required to *
' * converge are printed. The program will repeat until an x of 0 is

' * entered. *
' * *
t **

Initialize program variables

INITIALIZE:

TERMS = 1

FACT = 1

DELTA= 1.E35
EX = 1

Input user data

INPUT "Enter number: "; X
IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places): "; c

Compute exponential until difference of last 2 terms is < C

Figure 18-3. Corrected exponential calculation routine.

554 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 564

l
I

WHILE DELTA > C

WEND

FACT = FACT * TERMS
DELTA = XATERMS / FACT

EX = EX + DELTA

TERMS TERMS + 1

Article 18: Debugging in the MS-DOS Environment

Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge"
PRINT

GOTO INITIALIZE

Figure 18-3. Continued.

The program now produces the correct results within the limits of the specified accuracy:

Enter number: ? 1.999
Enter convergence criterion (.0001 for 4 places): ? .0001

7.381661

12 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001

7.389047
12 elements required to converge

Enter number: ? 0

This example illustrates how easy it is to use internal instrumentation in high-order lan­
guages. Because these languages usually have simple formatted output commands, they
require very little work to instrument. When these output commands are not available,
however, more work may be required. For instance, if the program being debugged is in
assembly language, it is possible that the code required to format and print internal data
will be longer than the program being debugged. For this reason, internal instrumentation
is rarely used on small and moderate assembly programs. However, large assembly pro­
grams and systems often already have print formatting routines built into them; in these
cases, internal instrumentation may be as easy as with high-order languages. ·

External instrumentation

Sometimes it is difficult to use internal instrumentation with a program. If, for instance,
the problem is timing related, adding print statements could cloud the problem or, worse
yet, make it go away completely. This leaves the programmer in the frustrating position of
having the problem only when the cause can't be seen and not having the problem when
it can. A solution to this type of problem can sometimes be found by moving the instru­
mentation outside the program itself. There are two types of external instrumentation:
hardware and software.

Section 11· Programming in the MS-DOS Environment 55 5

ZTE (USA) 1007, Page 565

Part E: Programming Tools

Hardware instrumentation consists of whatever logic analyzers, oscilloscopes, meters,
lights, bells, or gongs are appropriate to the hardware and software under test. Hardware
instrumentation is difficult to set up and tedious to use. It is, therefore, usually reserved for
those problems directly associated with hardware. Such problems often arise when new
software is being run on new hardware and no one is quite sure where the bugs are.
Because most programmers reading this book are developing software on tried-and-true
personal computer hardware and because most of those programmers are unlikely to have
a logic analyzer costing several thousand dollars, we will skip over the use of hardware
instrumentation for software debugging. If a logic analyzer must be used, the programmer
should remember that the debugging philosophy and techniques discussed in this article
can still be applied effectively.

MS-DOS provides a feature that is very useful in building external instrumentation soft­
ware: the TSR, or terminate-and-stay-resident routine. See PROGRAMMING IN THE MS­
DOS ENVIRONMENT: CusTOMIZING Ms-nos: Terminate-and-Stay-Resident Utilities. This
feature of the operating system allows the programmer to build a monitoring routine that
is, in essence, a part of the operating system and outside the application program. The TSR
is loaded as a normal program, but instead of leaving the system when it is done, it remains
intact in memory. The operating system provides no way to reexecute the program after it
terminates, so most TSRs are interrupt driven.

Because TSRs exist outside the application program, they can be used to build external
instrumentation devices. This independence allows them to perform monitoring functions
without disturbing the logic flow of the application program. The only areas where inter­
ference is likely are those where the TSR and the program must use common resources.
These conflicts typically involve timing but can also involve other resources, such as 1/0
devices, disk files, and MS-DOS resources, including environment space. Some of these
problems are addressed in the next example.

The TSR type of external instrumentation software can prove useful in analyzing serial
communications. Such an instrumentation program monitors the serial communication
line and records all data. To detect protocol or timing problems, the program tags the
recorded data so that transmitted data can be differentiated from received data. Hardware
devices exist that plug into the serial port and perform both the monitoring and tagging
function, but they are expensive and not always handy. Fortunately, this inexpensive piece
of software instrumentation will serve in many cases.

Software interrupt calls are made with the INT instruction. Although their service routines
must obey similar rules, these interrupts should not be confused with hardware interrupts
caused by external hardware events. Software interrupts in MS-DOS are used by an appli­
cation program to communicate with the operating system and, by extension in IBM sys­
tems, with the ROM BIOS. For example, on IBM PCs and compatibles, application pro­
grams can use software Interrupt 14H to communicate with the ROM BIOS serial port
driver. The ROM BIOS routine, in turn, manages the hardware interrupts from the actual

556 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 566

I

r

I
I

l
I

.Article 18: Debugging in the MS-DOS Environment

serial device. Thus, Interrupt 14H does not communicate directly with the hardware. All
the programs in this article deal with software interrupts to the ROM BIOS and MS-DOS.

A program to trace the serial data flow must have access to the serial data, so such a pro­
gram must replace the vector for Interrupt l4H with one that points to itself. The routine
can then record all the serial data and pass it along through the serial port. Because the
goal is to minimize the effect of this monitoring on the timing of the data, the method used
for recording the data should be fast. This requirement rules out writing to a disk file,
because unexpected delays can be introduced (and because doing disk I/0 from an inter­
rupt service routine under MS-DOS is difficult, if not impossible). Printing the data on
paper is clearly too slow, and data displayed on the screen is too ephemeral. Thus, about
the only thing that can be done with the data is to write it to RAM. Luckily, memory has
become cheap and most personal computers have plenty.

Writing a routine that monitors and records serial data is not enough, however. The data
must still flow through the serial port to and from the external serial device. Thus, the
monitor program can have only temporary custody of the data and must pass it on to the
serial interrupt service routine in the ROM BIOS. This is accomplished by using MS-DOS
function calls to extract the address of the serial interrupt handler before the new vector is
installed in its place. The process of intercepting interrupts and then passing the data on is
known as "daisy-chaining" interrupt handlers. So long as such intercepting programs are
careful to maintain the data and conditions upon entrance for subsequent routines (that is,
so long as routines are well behaved; see PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FOR Ms-oos), several interrupt handlers can be daisy-chained
together with no detriment to processing. (Woe be unto the person who breaks the daisy
chain- the results are annoying at best and unpredictable at worst.)

The serial monitoring program, as described so far, correctly collects and stores serial data 4
and then passes it on to the serial port. This may be intellectually satisfying, but it is not of
much use in the real world. Some way must be provided to control the program- to start
collection, to stop collection, to pause and resume collection. Also, once data is collected,
a control function must be provided that returns the number of bytes collected and their
starting location, so that the data can be examined.

From all this, it is clear that a serial communications monitoring instrument must

1. Replace the Interrupt 14H vector with one pointing to itself.
2. Save the address of the old interrupt handler.
3. Collect the serial data, tag it as transmitted or received, and store it in RAM.
4. Pass the data on, in a completely transparent manner, to the old interrupt handler.
5. Provide some way to control data collection.

A program that meets all these criteria is shown in Figure 18-4. The COMMSCOP program
has three major parts:

Section /1· Programming in the MS-DOS Environment 557

ZTE (USA) 1007, Page 567

PartE: Programming Tools

Procedure

COMMSCOPE
CONTROL
VECTOR_INIT

Purpose

Monitoring and tagging
External control
Interrupt vector initialization

The COMMSCOPE procedure provides the new Interrupt 14H handler that intercepts the
serial 1/0 interrupts. The CONTROL procequre provides the external control needed to
make the system work. The VECTOR_INIT procedure gets the old interrupt handler
address, installs COMMSCOPE as the new interrupt handler, and installs the interrupt
handler for the control interrupt.

TITLE COMMSCOP -- COMMUNICATIONS TRACE UTILITY

**
; * *
; * COMMSCOP -- *
; * THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH
ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
WAS SENT BY OR RECEIVED BY THE SYSTEM.

COMMSCOP IS INSTALLED BY ENTERING

COMMSCOP

THIS WILL INSTALL COMMSCOP AND SET UP A 64K BUFFER TO BE USED
FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR

*
*
*
*
*
*
*
*
*
* ; * EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT *

; * 30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD, *
; * ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY *

*.
; *

HOLD MORE THAN 30 SECONDS WORTH OF DATA. *
*

; * WHEN INSTALLED, COMMSCOP INTERCEPTS ALL INT 14H CALLS. IF THE *
; * PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE- *
; * CEIVE DATA, A COPY OF THE DATA BYTE, PROPERLY TAGGED, IS PLACED *
; * IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL
; * INT 14H HANDLER.

; *
; * COMMSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE !NT HAS
; * THE FOLLOWING CALLING SEQUENCE:

; *
; *
; *
; *
i "*
; *
; *
; *
; *

AH -- COMMAND

0 STOP TRACING, PLACE STOP MARK IN BUFFER
1 FLUSH BUFFER AND START TRACE
2 RESUME TRACE
3 RETURN COMM BUFFER ADDRESSES

DX -- COMM PORT (ONLY USED WITH AH = 1 or 2)
0 COM1
1 -- COM2

Figure 18-4. Communications trace utility.

558 The MS-DOS Encyclopedia

*
*
*
*
*
*
*
*
*
*
*
*
*
*

(more)

ZTE (USA) 1007, Page 568

Article 18: Debugging in the MS-DOS Environment

; *
;· *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH 3:

CX -- BUFFER COUNT IN BYTES

OX -- SEGMENT ADDRESS OF THE START OF THE BUFFER

BX -- OFFSET ADDRESS OF THE START OF THE BUFFER

THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE
FOLLOWING FORM:

BYTE 0 -- CONTROL
BIT 0 ON FOR RECEIVED DATA, OFF FOR TRANS.

BIT 7 STOP MARK -- INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.

BYTE 1 -- 8-BIT DATA

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

**

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 1 OOH

INITIALIZE:

JMP VECTOR_INIT

SYSTEM VARIABLES

OLD_COMM.._INT

COUNT
COMMSCOPE_INT

STATUS

PORT

BUFPNTR

DO

ow
EQU

DB

DB

ow

?

0
60H

0

0
VECTOR_INIT

SUBTTL DATA INTERRUPT HANDLER

PAGE

;TO MAKE A COMM FILE

;JUMP TO THE INITIALIZATION
ROUTINE WHICH, TO SAVE SPACE,

; IS IN THE COMM BUFFER

;ADDRESS OF REAL COMM INT

;BUFFER COUNT

;COMMSCOPE CONTROL INT

;PROCESSING STATUS
; 0 -- OFF

; 1 -- ON

;COMM PORT BEING TRACED

;NEXT BUFFER LOCATION

**
; * *
; * COMMSCOPE

; *
; *
; *

THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA

IF APPROPRIATE.
*
*
*

**
COMMSCOPE

TEST
JZ

PROC NEAR

CS:STATUS,1
OLD_JUMP

;ARE WE ON?
; NO, SIMPLY JUMP TO OLD HANDLER

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 559

ZTE (USA) 1007, Page 569

PartE: Programming Tools

' CMP AH,OOH ;SKIP SETUP CALLS

JE OLD_JUMP ;

CMP AH,03H ;SKIP STATUS REQUESTS
JAE, OLD_JUMP ;

CMP AH,02H ;IS THIS A READ REQUEST?

JE GET-READ ; YES, GO PROCESS

DATA WRITE REQUEST -- SAVE IF APPROPRIATE

CMP DL,CS:PORT ;IS WRITE FOR PORT BEING TRACED?

JNE OLD_ JUMP ; NO, JUST PASS IT THROUGH

PUSH DS ;SAVE CALLER'S REGISTERS

PUSH BX ;

PUSH cs ;SET UP DS FOR OUR PROGRAM
POP DS ;

MOV BX,BUFPNTR ;GET ADDR OF NEXT BUFFER LOC
MOV [BX],BYTE PTR 0 ;MARK AS TRANSMITTED BYTE

MOV [BX+1],AL ;SAVE DATA IN BUFFER

INC COUNT ;INCREMENT BUFFER BYTE COUNT

INC COUNT ;

INC BX ;POINT TO NEXT LOCATION

INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER

JNZ WRITE_DONE ;ZERO MEANS BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF
WRITE_DONE:

POP BX ;RESTORE CALLER'S REGISTERS
POP DS ;

JMP OLD_JUMP ;PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

GET-READ:

CMP DL,CS:PORT ;IS READ FOR PORT BEING TRACED?
JNE OLD_JUMP ; NO, JUST PASS IT THROUGH

PUSH DS ;SAVE CALLER'S REGISTERS
PUSH BX ;

PUSH cs ;SET UP DS FOR OUR PROGRAM
POP DS ;

PUSHF ;FAKE INT 14H CALL
CLI ;

CALL OLD_COMM_INT ;PASS REQUEST ON TO BIOS
TEST AH,SOH ;VALID READ?
JNZ READ _DONE ; NO, SKIP BUFFER UPDATE

Figure 18-4. Continued. (more)

560 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 570

Article 18: Debugging in the MS-DOS Environment

MOV BX,BUFPNTR ;GET ADDR OF NEXT BUFFER LOC
MOV [BX] ,BYTE PTR ;MARK AS RECEIVED BYTE
MOV [BX+1] ,AL ;SAVE DATA IN BUFFER
INC COUNT ;INCREMENT BUFFER BYTE COUNT
INC COUNT ;

INC BX ;POINT TO NEXT LOCATION

INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER

JNZ READ __DONE ;ZERO MEANS BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF
READ__DONE:

POP BX ;RESTORE CALLER'S REGISTERS

POP DS ;

IRET

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP CS:OLD_COMM_INT

COMMSCOPE ENDP

SUBTTL CONTROL INTERRUPT HANDLER
PAGE

**
; *
; * CONTROL
; * THIS ROUTINE PROCESSES CONTROL REQUESTS.

; *

*
*
*

**

CONTROL PROC NEAR

.CMP AH,OOH ;STOP REQUEST?

JNE CNTL_START ; NO, CHECK START
PUSH DS ;SAVE REGISTERS

PUSH BX ;

PUSH cs ;SET DS FOR OUR ROUTINE

POP DS

MOV STATUS,O ;TURN PROCESSING OFF
MOV BX,BUFPNTR ;PLACE STOP MARK IN BUFFER
MOV [BX],BYTE PTR SOH ;

MOV [BX+1] ,BYTE PTR OFFH ;

INC BX ;INCREMENT BUFFER POINTER

INC BX ;

MOV BUFPNTR,BX ;

INC COUNT ;INCREMENT COUNT

INC COUNT ;

POP BX ;RESTORE REGISTERS

POP DS ;

JMP CONTROL_DONE

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 561

ZTE (USA) 1007, Page 571

Part E: Programming Tools

CNTL_START:
CMP
JNE

AH,01H
CNTL__RESUME

;START REQUEST?
; NO, CHECK RESUME

MOV CS:PORT,DL ;SAVE PORT TO TRACE
MOV CS:BUFPNTR,OFFSET VECTOR-INIT ;RESET BUFFER TO START
MOV
MOV
JMP

CNTL__RESUME:
CMP
JNE
CMP
JE
MOV
MOV
JMP

CNTL_STATUS:
CMP
JNE
MOV
PUSH
POP
MOV

CONTROL__DONE:
IRET

CONTROL ENDP

SUB TTL
PAGE

CS:COUNT,O
CS:STATUS,1
CONTROL__j)ONE

AH,02H
CNTL_STATUS
CS:BUFPNTR,O
CONTROL_DONE
CS:PORT,DL
CS:STATUS,1
CONTROL_DONE

AH,03H
CONTROL_DONE
CX,CS:COUNT
cs
DX
BX,OFFSET VECTOR-INIT

;ZERO COUNT
;START LOGGING

;RESUME REQUEST?
; NO, CHECK STATUS
;END OF BUFFER CONDITION?
; YES, DO NOTHING
;SAVE PORT TO TRACE
;START LOGGING

;RETURN STATUS REQUEST?
; NO, ERROR -- DO NOTHING
; RETURN COUNT
;RETURN SEGMENT ADDR OF BUFFER

;RETURN OFFSET ADDR OF BUFFER

INITIALIZE INTERRUPT VECTORS

**
; * *
; * VECTOR-INIT *
; * THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *
; * EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *
; *
; *
; *

A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE
IN THE BUFFER IS THE OFFSET OF VECTOR-INIT.

*
*
*

**

EVEN
VECTOR-IN IT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

MOV AH, 35H

Figure 18-4. Continued.

562 The MS-DOS Encyclopedia

;ASSURE BUFFER ON EVEN BOUNDARY

(more)

ZTE (USA) 1007, Page 572

Article 18: Debugging in the MS-DOS Environment

MOV AL, 14H
INT 21 H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX
MOV AX,ES
MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE
MOV AH,25H
MOV AL, 14H
INT 21 H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL
MOV AH, 25H
MOV AL,COMMSCOPE_INT
INT 21 H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV
MOV
INT

VECTOR_INIT ENDP
CSEG ENDS

AX,3100H
DX,1000H
21H

END INITIALIZE

Figure 18-4. Continued.

;TERM AND STAY RES COMMAND
;64K RESERVED
;DONE

The first executable statement of the program is a jump to the VECTOJL/NIT procedure.
The vector initialization code is needed only during installation; after initialization of the
vectors, the code can be discarded. In this case, the area where this code resides will
become the start of the trace buffer; therefore, it makes sense to put the initialization code
at the end of the program where it can be overlaid by the trace buffer. The jump at the start
of the program is required because the rules for making .COM files require that the entry
point be the first instruction of the program.

The vector initialization routine uses Interrupt 21H Function 35H (Get Interrupt Vector)
to get the address of the current Interrupt 14H service routine. The segment and offset ad­
dress (returned in the ES:BX registers) is stored in the doubleword at OW_ COMM_ /NT
Interrupt 21H Function 25H (Set Interrupt Vector) is then used to vector all Interrupt 14H
calls to COMMSCOPE. Another Function 25H call sets Interrupt 60H to vector to the
CONTROL routine. This interrupt, which provides the means to control and interrogate
the COMMSCOPE routine, was chosen because it is unused by MS-DOS and because some
IBM technical materials list 60H through 66H as being available for user interrupts. (If,
for some reason, Interrupt 60H is not available, simply change the equated symbol
COMMSCOPE_/NT to an available interrupt.)

Section II: Programming in the MS-DOS Environment 563

ZTE (USA) 1007, Page 573

PartE: Programming Tools

When the vector initialization process is complete, the routine exits and stays resident by
using Interrupt 21H Function 31H (Terminate and Stay Resident). As part of the termina­
tion process, the routine requests lOOOH paragraphs, or 64 KB, of storage. A little over 500
bytes of this storage area is used for the code; the rest is available for trace data. If the serial
port is running at 2400 baud, a solid stream of data will fill this buffer in about two min­
utes. However, a solid 32 KB block of data is unusual in asynchronous communications
and, in reality, the buffer will usually contain many minutes worth of data. Note that the
buffer-handling routines in COMMSCOPJJ. require that the buffer be aligned on an even
byte boundary, so VECTOJLINIT is preceded by the EVEN directive.

The interrupt service routine, COMMSCOPE, receives all Interrupt 14H calls. First
COMMSCOPE checks its own status. If it has not been activated, it immediately passes
control to the real service routine. If the tracer is active, COMMSCOPE examines the Inter­
rupt 14H function in AH. Setup and status requests (AH = 0 and AH = 3) do not affect trac­
ing, so they are passed on directly to the the real service routine. If the Interrupt 14H call
is a write-data request (AH = 1), COMMSCOPE moves the byte marking the data as trans­
mitted and the data byte itself to the current buffer location and increments both the byte
count and the buffer pointer by 2. If the buffer pointer goes to zero, the buffer has
wrapped; data collection is turned off and cannot be turned on again without clearing the
trace buffer. Because the buffer, which starts at VECTOR_INIT, is always on an even byte
boundary, there is no danger of the first byte of the data pair forcing a wrap. After the
transmitted data is added to the buffer, COMMSCOPE passes control to the real service
routine.

A read-data request (AH = 2) must be handled a little differently. In this case, the data
to be collected is not yet available. In order to get it, COMMSCOPE must pass control to
the real service routine and then intercept the results on the way back. The code at
GET _READ fakes an interrupt to the service routine by pushing the flags onto the stack so
that the service routine's IRET will pop them off again. COMMSCOPE then calls the ser­
vice routine and, when it returns, retrieves the incoming serial data character from AL. If
the incoming data byte is valid (bit 7 of AH is zero), the byte marking the data as received
and the data byte itself are placed in the trace buffer, and both the byte count and the
buffer pointer are incremented by 2. The buffer-wrap condition is detected and handled in
the same manner as with transmitted data. Because the real service routine has already
been called, COMMSCOPE exits as if it were the service routine by issuing an IRET.

The CONTROL procedure provides the mechanism for external control of the trace pro­
cedure. The routine is entered whenever an Interrupt 60H is executed. Commands are
sent through the AH register and can cause the routine to STOP (AH = 0), START/FLUSH
(AH = 1), RESUME (AH = 2), or RETURN STATUS (AH = 3). This routine also sets the com­
munications port to be traced. The required information is provided in DX using the same
format as the Interrupt 14H routine. The port information is used only with START and
RESUME requests. The RETURN STATUS command returns data in registers: the byte
count (CX), the segment address of the buffer (DX), and the offset of the first byte in the
buffer (BX).

564 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 574

Article 18: Debugging in the MS-DOS Environment

The COMMSCOP program is assembled using the Microsoft Macro Assembler (MASM),
linked using the Microsoft Object Linker (LINK), and then converted to a .COM file using
EXE2BIN (see PROGRAMMING UTILITIES):

C>MASM COMMSCOP; .<Enter>
C>LINK COMMSCOP; <Enter>
C>EXE2BIN COMMSCOP.EXE COMMSCOP.COM <Enter>
C>DEL COMMSCOP.EXE <Enter>

The linker will display the message Warning: no stack segment; this message can be
ignored because the rules for making a .COM file forbid a separate stack segment.

The program is installed by simply typing COMMSCOP. Tracing can then be started and
stopped using Interrupt 60H. MS-DOS does not allow resident routines to be removed, so
COMMSCOP will be in the system until the system is restarted. Also note that, because
COMMSCOP is well behaved, nothing disastrous will happen if multiple copies of it are
accidentally installed. As each new copy is installed, it chains to the previous copy. When
Interrupt 14H is intercepted, the new routine dutifully passes the data on to the previous
routine, which repeats the process until the real service routine is reached. The data is
added to the trace buffer of each copy, giving multiple, redundant copies of the same data.
Because Interrupt 60H is not chained, only the last copy's buffer can be accessed. Thus,
the other copies simply waste 64 KB each.

Two techniques can be used to start or stop a trace. The first is to issue Interrupt 60H
calls at strategic locations within the program being debugged. With assembly-language
programs, this is easy. The appropriate registers are loaded and an INT 60H instruction is
executed. Issuing this INT instruction is not much more difficult with higher-order Micro­
soft languages-both QuickBASIC and C provide a library routine called INT86 that
allows registers to be loaded and INT instructions to be executed. (In QuickBASIC, the
INT86library routine is included in the File USERLIB.OBJ; in Microsoft C, it is included in
the file DOS.H.) Embedded Interrupt 60H calls can be convenient because they limit trac­
ing to those areas where processing is suspect. Because COMMSCOP marks the buffer
each time the trace is stopped and resumed, the separate pieces of a trace are easy to dif­
ferentiate.

The second technique is to write a simple routine to start or stop the trace outside the pro­
gram being debugged. The example in Figure 18-5, COMMSCMD, is a Microsoft C program
that can perform these functions using the INT86 library function to issue Interrupt 60H
calls.

!**

*
* COMMSCMD *
• *
* This routine controls the COMMSCOP program that has been in- *
* stalled as a resident routine. The operation performed is de-
* termined by the command line. The COMMSCMD program is invoked *
* as follows:

* *
*
*

COMMSCMD [[cmd] [port]] *

Figure 18-5. A serial-trace control routine written in C. (more)

Section IL Programming in the MS-DOS Environment 565

ZTE (USA) 1007, Page 575

Part E: Programming Tools

* where cmd is the command to be executed
* STOP stop trace

*
*
*
*

START flush trace buffer and start trace

RESUME resume a stopped trace
port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

* If cmd is omitted, STOP is assumed. If port is omitted, 1 is

* assumed.

*

*
*
*
*
*
*
*
*
*

**!

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#define COMMCMD Ox60

main(argc, argv)

int argc;
char *argv [1;
(

int cmd, port, result;
static char commands [3] [1 0]
union REGS inregs, outregs;

("STOPPED", "STARTED", "RESUMED");

cmd = 0;
port = 0;

if (argc > 1)
(

if (0 == stricmp(argv[1], "STOP"))

cmd =
else if (0

cmd =

else if (0

cmd =

if (argc == 3)
{

0;
-- stricmp(argv[1],

1;
== stricmp(argv[1],

2;

port= atoi(argv[2]);

if (port > 0)
port = port - 1 ;

inregs.h.ah = cmd;
inregs.x.dx =port;

"START"))

"RESUME"))

result= int86(COMMCMD, &inregs, &outregs);

printf("\nCommunications tracing %s for.port COM%1d:\n",

commands[cmd], port+ 1);

Figure 18-5. Continued.

566 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 576

Article 18: Debugging in the MS-DOS Environment

COMMSCMD is passed arguments in the command line. The first argument is the com­
mand to be performed: STOP, START, or RESUME. If no command is specified, STOP is
assumed. The second argument is the port number: 1 (for COM1) or 2 (for COM2). If no
port number is specified, 1 is assumed.

The COMMSCMD program uses a simple IF filter to determine the function to be per­
formed. The program tests the number of arguments in the command line to see if a port
has been specified. If the argument count (argc) is 3 (one for the command name, one for
the command, and one for the port number), the port number argument is retrieved and
converted to an integer. The Interrupt 60H routine expects port numbers to be specified in
the same manner as for Interrupt 14H, so the port number is decremented if it is not already
zero. The AH register is loaded with the command (cmd), the DX register is loaded with
the port number (port), and the INT86 library function is then used to execute an Interrupt
60H call. When the interrupt returns, COMMSCMD displays a message showing the func­
tion and port.

The same function can be performed by the QuickBASIC program in Figure 18-6.

I **
. * *
' * COMMSCMD

I * *
1 * This routine controls the COMMSCOP program that has been in- *
1 * stalled as a resident routine. The operation performed is de- *
1 * termined by the command line. The COMMSCMD program is invoked *
1 * as follows: *
. *
. * COMMSCMD [[cmd] [,port]]

I *
1 * where cmd is the command to be executed

I *
I *
. *
. *
I *

STOP stop trace
START -- flush trace buffer and start trace
RESUME -- resume a stopped trace

port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

1 * If cmd is omitted, STOP is assumed. If port is omitted, 1 is

*
*
*
*
*
*
*
*
*

' * assumed. *
. * *
' **

Establish system constants and variables

DEFINT A-Z

DIM INREG(7}, OUTREG(7} 'Define register arrays

Figure 18-6. A QuickBASICversion ofCOMMSCMD. (more)

Section II: Programming in the MS-DOS Environment 567

ZTE (USA) 1007, Page 577

PartE: Programming Tools

SENDCMD:

RAX 0
RBX 1
RCX 2
RDX 3

RBP 4

RSI 5
RDI 6

RFL 7

DIM TEXT$(2)

TEXT$ (0) "STOPPED"
TEXT$(1) "STARTED"
TEXT$(2) "RESUMED"

Process command-line tail

C$ = COMMAND$

IF LEN (C$) = 0 THEN

CMD = 0
PORT = 0
GOTO SENDCMD

END IF

COMMA= INSTR(C$, ", ")

IF COMMA = 0 THEN
CMDTXT$ = C$

PORT = 0

ELSE

'Establish values for 8086
registers

'Get command-line data

'If no command line specified
'Set CMD to STOP

'Set PORT to COM1

'Extract operands

CMDTXT$ = LEFT$(C$, COMMA- 1)

PORT= VAL(MID$(C$, COMMA+ 1)) - 1
END IF

IF PORT < 0 THEN PORT = 0

IF CMDTXT$ = "STOP" THEN
CMD = 0

ELSEIF CMDTXT$

CMD = 1

ELSEIF CMDTXT$
CMD 2

ELSE

CMD 0

END IF

"START" THEN

"RESUME" THEN

Send command to COMMSCOP routine

INREG(RAX) 256 * CMD

Figure 18-6. Continued. (more)

568 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 578

Article 18: Debugging in the MS-DOS Environment

INREG(RDX) =PORT

CALL INT86(&H60, VARPTR(INREG(O)), VARPTR(OUTREG(Q)))

Notify user that action is complete

PRINT : PRINT
PRINT "Communications tracing"; TEXT$(CMD);
IF CMD <> 0 THEN

PRINT" for port COM"; MID$(STR$(PORT + 1), 2);

ELSE
PRINT

END IF

END

Figure 18-6. Continued.

Both versions of COMMSCMD accept their commands from the command tail; both are
invoked with a STOP, START, or RESUME command and a serial port number (1 or 2). If
the operands are omitted, STOP and COMl are assumed.

After data has been collected and safely placed in the trace buffer, it must be read before
it can be useful. Interrupt 60H provides a function (AH = 3) that returns the buffer address
and the number of bytes in the buffer. The QuickBASIC routine in Figure 18-7 uses this
function to get the address of the data and then formats the data on the screen.

I **
' *
' * COMMDUMP

*
*

' * *
' * This routine dumps the contents of the COMMSCOP trace buffer to
' * the screen in a formatted manner. Received data is shown in *
' * reverse video. Where possible, the ASCII character for the byte
' * is shown; otherwise a dot is shown. !he value of the byte is
' * displayed in hex below the character. Points where tracing was
' * stopped are shown by a solid bar.

' *

*

*
*

' **

Establish system constants and variables

DEFINT A-Z

DIM INREG(7), OUTREG(7) 'Define register arrays

RAX 0 'Establish values for 8086
RBX 1 ' registers

RCX 2

RDX 3

Figure 18-7. Formatted dump routine for serial-trace buffer. (more)

Section II: Programming in the MS-DOS Environment · 569

ZTE (USA) 1007, Page 579

PartE: Programming Tools

RBP 4
RSI 5
RDI 6
RFL 7

Interrogate COMMSCOP to obtain addresses and count of data in
trace buffer

INREG (RAX) = &H0300 ·,Request address data and count
CALL INT86(&H60, VARPTR(INREG(O)), VARPTR(OUTREG(O)))

NUM = OUTREG(RCX)
BUFSEG
BUFOFF

OUTREG(RDX)
OUTREG(RBX)

'Number of bytes in buffer
'Buffer segment address
'Offset of buffer start

IF NUM 0 THEN END

Set screen up and display control data

CLS
KEY OFF
LOCATE 25,
PRINT "NUM ="; NUM;"BUFSEG
PRINT HEX$(BUFOFF);
LOCATE 4, 1
PRINT STRING$(80,"-")
DEF SEG = BUFSEG

"; HEX$(BUFSEG); "BUFOFF

Set up display control variables

DLINE = 1
DCOL = 1
DSHOWN = 0

Fetch and display each character in buffer

FOR I= BUFOFF TO BUFOFF+NUM-2 STEP 2
STAT = PEEK(I)
DAT = PEEK(I + 1)

IF (STAT AND 1)

COLOR 7, 0
ELSE

COLOR 0, 7
END IF

0 THEN

RLINE = (DLINE-1) * 4 + 1

Figure 18-7. Continued.

570 The MS-DOS Encyclopedia

";

(more)

ZTE (USA) 1007, Page 580

Article 18: Debugging in the MS-DOS Environment

IF (STAT AND &H80) = 0 THEN

LOCATE RLINE, DCOL

ELSE

C$ = CHR$(DAT)

IF DAT < 32 THEN C$

P.RINT C$;

H$ = RIGHT$("00" + HEX$(DAT), 2)

LOCATE RLINE + 1, DCOL

PRINT LEFT$(H$, 1);
LOCATE RLINE + 2, DCOL

PRINT RIGHT$(H$, 1);

LOCATE RLINE, DCOL

PRINT CHR$(178);

LOCATE RLINE.+ 1, DCOL

PRINT CHR$(178);
LOCATE RLINE + 2, DCOL

PRINT CHR$(178);

END IF

DCOL = DCOL + 1

IF DCOL > 80 THEN

COLOR 7, 0

DCOL = 1

DLINE = DLINE + 1
SHOWN = SHOWN + 1

IF SHOWN = 6 THEN

LOCATE 25, 50

COLOR 0, 7

PRINT "ENTER ANY KEY TO CONTINUE: ";
WHILE LEN(INKEY$) = 0

WEND

COLOR 7, 0

LOCATE 25, 50

PRINT SPACE$(29);
SHOWN = 0

END IF

IF DLINE > 6 THEN

LOCATE 24, 1

ELSE

PRINT : PRINT : PRINT : PRINT

LOCATE 24, 1

PRINT STRING$(80, "-");

DLINE = 6

LOCATE DLINE * 4,
PRINT STRING$(80, "-");

END IF

END IF

NEXT I

END

Figure 18-7. Continued.

Section II: Programming in the MS-DOS Environment 571

ZTE (USA) 1007, Page 581

PartE: Programming Tools

COMMDUMP is a simple routine. Like most debugging aids, it lacks needless frills. When
it is executed, COMMDUMP displays the data in the trace buffer on the screen in the for­
mat shown in Figure 18-8 .

. 812832.132856788881886713285678888188671328567888818867132856788881886713285678
~333333833
18128323132856788881886713285678888188671328567888818867132856788881886713285678

~8818867132856788881886713285678888188671328567888818867.1.~812832.567813288881
~333821: 3333338333333333333
~8818867132856788881886713285678888188671328567888818867338·18128323567813288881

~8675678132888818867567813288881886756781328888188675678132888818867567813288881
~333
B8675678132888818867567813288881886756781328888188675678132888818867567813288881

B86756781328888188675678132888818867.1.~812832.88671328567888818867132856788881
~33333333333333333333333333333333333821: 333333833333333333333333333333333333333
88675678132BBBB18867567S132888818867338.1812832388671328567888818867132856788881

88671328567888818867132856788881886713285678888188671328567888818867132856788881
33
88671328567888818867132856788881886713285678888188671328567888818867132856788881

~867132856788881.1.~812832.1328567888818867132856788881886713285678888188671328
~333333333333333821: 333333833
~867132856788881338.181283231328567888818867132856788881886713285678888188671328

~UH = 1122 BUFSEG = 1313 BUFOFF = 288

Figure 18-8. Formatted trace dump routine output.

Note that the data for each byte is presented in two forms. If the byte is greater than
lFH, the ASCII character represented by that number is shown; otherwise, a dot is shown.
Directly below each character is the hexadecimal representation of the data. The display
shows received data in reverse video and transmitted data in normal video. The mark
placed in the buffer when collection is stopped and resumed is represented on the screen
as a vertical bar one character wide. The display pauses when the screen is full and waits
for a key to be pressed.

Data collected and displayed in this way can. be invaluable to the programmer trying to
debug a program involving a communications protocol. The example shown above is
part of an ordered exchange of sales data for a system using blocked transmissions and
ACK/NAK protocol. Like all debugging, finding bugs in such a system requires the collec­
tion of large amounts of data. With no data, the causes of problems can be almost impos­
sible to find; with sufficiently large amounts of data, the solutions are obvious.

Several things could be done to the COMMSCOP program to increase its usefulness. For
instance, there are six unused bits in the tag accompanying each data byte in the trace
buffer. These could be used to record the status of the modem control bits, to place timer
ticks in the buffer, or to coordinate the data with some outside event. (Such changes to
COMMSCOP would require a more complicated COMMDUMP routine to display them.)

572 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 582

Article 18: Debugging in the MS-DOS Environment

Software debugging monitors

Debugging monitors provide the next level of sophistication in the hierarchy of debugging
methods. These monitors are coresident in memory with the application being debugged
and provide a controlled testing environment- that is, they allow the programmer to con­
trol the execution of the program and to monitor the results. They even allow some prob­
lems to be fixed directly and the result reexecuted immediately, without the need to
reassemble or recompile.

These monitors are analogous to the TSR serial monitor from the previous section. The
debugging monitors, however, do not reside permanently in memory and are controlled
interactively from the keyboard during the execution of the program under test. Although
this level of control is more flexible than instrumentation, it is also more intrusive into pro­
gram execution. While the debugging monitor sits and waits for input from the keyboard,
the application program is also idle. For programs that must run in real time or must
respond to external stimuli, long delays can be fatal. Careful planning and a thorough
knowledge of the internal workings of the program are required to debug in such an
environment.

Other problems with debugging monitors arise from the nature of the monitors them­
selves. They are programs, no different from the application program being debugged and
are therefore limited to those things that can be done with software. For instance, they can
break (stop execution to allow investigation of program status) when a specific instruction
address is executed (because this can be done with software), but they cannot break
when a data address is referenced (because this would require special hardware). Because
these monitors reside in RAM, as do the application program and MS-DOS, they are sus­
ceptible to damage from a program running wild. Some trial and error is usually involved
in locating the problem causing this kind of damage; breakpoints won't work here because
the problem kills the monitor (and usually MS-DOS also).

Microsoft provides three debugging monitors, each with greater capabilities than its pre­
decessor. In order of increasing sophistication, these three monitors are

Monitor

DEBUG

SYMDEB

Code View

Description

A basic debugging monitor with the ability to load files, modify memory
and registers, execute programs, set simple breakpoints, trace execution,
modify disk files, and enter assembly-language statements into memory.

A more advanced debugging monitor incorporating all the features of
DEBUG plus more sophisticated data display, support for graphics pro­
grams, support for the Intel80186/80286 microprocessors and the Intel
80287 math coprocessor, improved breakpoints, improved tracing,
recognition of symbols from the program being debugged, and limited
source-line display.

The most sophisticated debugging monitor, incorporating the func­
tionality of SYMDEB (with some differences in the details) plus win­
dows, full source-line support, mouse support, and generally more
sophistication on all functions.

Section II: Programming in the MS-DOS Environment 573

ZTE (USA) 1007, Page 583

Part E: Programming Tools

Although all these debugging monitors will be discussed here, this section is not intended
to be a tutorial on all the commands and options of the monitors- those are presented
elsewhere in this volume and in the manuals accompanying the monitors. See PROGRAM­
MING UTILITIES: DEBuG; SYMDEB; ConE VIEw. Rather, this section uses case histories and
sample programs to illustrate the techniques for solving various types of common debug­
ging problems. The case histories have been chosen to show a wide range of problems,
from simple to extremely complex.

DEBUG

Although DEBUG is the least sophisticated of the software debugging monitors, it is quite
useful with moderately complex programs and is an effective tool for learning basic
techniques.

Basic techniques
The first sample program is written in assembly language. It is a test program that per­
forms serial input and output and was used to debug COMMSCOP, the serial-trace TSR
presented earlier. The routine reads from the keyboard and writes to COMl by means of
Interrupt 14H. It also accepts incoming serial data and displays it on the screen. This
process continues until Ctrl-C is pressed on the keyboard. A serial terminal is attached
to COMl to serve as a data source. Figure 18-9 shows the erroneous program.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

**
; *
; * TESTCOMM

*
*

; * THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS *
; * CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING *
; * INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE *
; * SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *
; *
; *

ON THE KEYBOARD. *
*

**

SSEG SEGMENT PARA STACK 'STACK'
DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT
ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR
PUSH DS ;SET UP FOR RET TOMS-DOS
XOR AX,AX
PUSH AX

Figure 18-9. Incorrect serial test routine.

57 4 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 584

l
I
{

MAINLOOP:
MOV
MOV
INT
JZ

CMP
JNE
RET

SENDCOMM:
MOV
MOV
INT

TESTCOMM:
MOV
MOV
INT
AND
JZ
MOV
MOV
INT
MOV
INT
JMP

BEGIN ENDP
CSEG ENDS

END

AH,6
DL, OFFH
21
T,ESTCOMM

AL,03
SENDCOMM

AH, 01
DX,O
14H

AH,3
DX,O
14H
AH,1
MAINLOOP
AH,2
DX,O
14H
AH,6
21H
MAINLOOP

BEGIN

Figure 18-9. Continued.

Article 18: Debugging in the MS-DOS Environment

;USE MS-DOS CALL TO CHECK FOR
KEYBOARD ACTIVITY
IF NO CHARACTER, JUMP TO
COMM ACTIVITY TEST

;WAS CHARACTER A Ctrl-C?
NO, SEND IT TO SERIAL PORT

; YES, RETURN TO MS-DOS

;USE INT 14H WRITE FUNCTION TO
SEND DATA TO SERIAL PORT

;GET SERIAL PORT STATUS
;

;

;ANY DATA WAITING?
; NO, GO BACK TO KEYBOARD TEST
;READ SERIAL DATA
;

;WRITE SERIAL DATA TO SCREEN

;CONTINUE

When executed, this program produces a constant stream of zeros from the serial port.
Incoming serial data is not echoed on the screen, but the cursor moves as if it were. Fur­
ther, the Ctrl-C keystroke is not recognized, so the only way to stop the program is to
restart the system.

An examination of the listing should reveal the errors that cause these problems, but
things do not always happen that way. For the purposes of this case study, assume that the
listing was no help. Instrumentation is more difficult for assembly-language programs than
for programs written in higher-order languages, so in this case it is advantageous to go
directly to a debugging monitor. The monitor for this example is DEBUG.

The first step in using DEBUG is not to invoke the monitor; rather, it is to gather all perti­
nent listings, link maps, and program design documentation. In this case, the program is
so short that a link map will not be needed; all the design documentation that exists is in
the program comments.

Now begin DEBUG by typing

C>DEBUG TESTCOMM.EXE <Enter>

Section /1· Programming in the MS-DOS Environment 575

ZTE (USA) 1007, Page 585

PartE: Programming Tools

The filename must be fully qualified; DEBUG makes no assumptions about the extension.
Any type of file can be examined with DEBUG, but only files with an extension of .COM,
.EXE, or .HEX are actually loaded and made ready for execution. Since TESTCOMM is a
.EXE file, DEBUG loads it and prepares it for execution in a manner compatible with the
MS-DOS loader. Type the Display or Modify Registers command, R.

-R <Enter>

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=OOOO NV UP EI PL NZ NA PO NC

1ACD:OOOO 1E PUSH DS

Notice that the SS and CS registers have been loaded to their correct values and that SP
points to the bottom of the stack. DS and ES point to an address lOOH bytes (lOH para­
graphs) before the stack segment. (This is because the system sets these registers to point
to the program segment prefix [PSP] when a .EXE program is loaded.) Normally, the pro­
gram code would be responsible for loading the correct value of DS, but this example does
not use the data segment, so the program doesn't bother. The register display also shows
the instruction at the current value of CS:IP, lACD:OOOOH. The instruction pointer was set
to this address because the END statement in the source program specified the procedure
BEGIN as the entry point and that procedure begins at CS:IP. Note that the instruction dis­
played below the register information has not yet been executed. This condition is true for
all register displays in DEBUG-IP always points to the next instruction to be executed,
so the instruction at IP has not been executed.

From the symptoms observed during program execution, it is clear that the keyboard data
is not reaching the serial port. The failure could be in the keyboard read routine or in the
serial port write routine. This code is compact and fairly linear, so the easiest way to find
out what is going on is to trace through the first few instructions of the program. Executing
five instructions with the Trace Program Execution command, T, will do this.

-TS <Enter>

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFE BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0001 NV UP EI PL NZ NA PO NC

1ACD:0001 33CO XOR AX, AX

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFE BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0003 NV UP EI PL ZR NA PE NC
1ACD:0003 50 PUSH AX

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0004 NV UP EI PL ZR NA PE NC
1ACD:0004 B406 MOV AH,06

AX=0600 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0006 NV UP EI PL ZR NA PE NC
1ACD:0006 B2FF MOV DL,FF

AX=0600 BX=OOOO CX=0131 DX=OOFF SP=OOFC BP=OOOO SI=OOOO · DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=OOOS NV UP EI PL ZR NA PE NC
1ACD:0008 CD15 INT 15

576 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 586

Article 18: Debugging in the MS-DOS Environment

The Trace command shows the contents of the registers as each instruction is executed.
·The register contents are after the execution of the instruction listed above the registers
and the instruction shown with the registers is the nexf instruction to be executed. The
first register display in this example represents the state of affairs after the execution of the
PUSH DS instruction, as indicated by SP. The first three instructions set up the stack so
that the far return issued at the end of the program will pass control to the PSP for termina­
tion. The next two instructions set the registers for a Direct Console I/0 MS-DOS call
(AH = 060, DL = HFFH for input). After these registers are set up, the program should ex­
ecute the MS-DOS call INT 21H. However, the next instruction to be executed is INT 15H.
This is the reason the keyboard data is not being read. The code requests INT 21, not 21H.
This mistake is a common one. The assembler's default radix is decimal, so it converted 21
into 15H. This error can be corrected in memory from within DEBUG and, because the in­
struction hasn't executed yet, the fix can be tested immediately. To make the correction,
use the Assemble Machine Instructions command, A.

-A 8 <Enter>

1ACD:0008 int 21 <Enter>

1ACD:OOOA <Enter>

The A 8 code instructs DEBUG to begin assembling at CS:0008H. DEBUG prompts with
the address and waits for an instruction to be entered. The letter H is not needed after the
21 this time because DEBUG assumes all numbers entered with the Assemble command
are in hexadecimal form. In general, any valid 8086/8087/8088 assembly-language state­
ment can be entered this way and translated into executable machine code. See
PROGRAMMING UTILITIES: DEBUG: A. Within its restrictions, the Assemble command
is a handy way of making changes. The Enter Data command, E, could also have been
used to change the 15H to a 21H, but the Assemble command is safer, especially for com­
plex instructions. After the new instruction has been entered, press Enter again to stop
the assembly process.

There is a danger associated with making changes in memory during debugging: The
memory copy of the program is temporary; the changes exist only in memory and when
DEBUG exits, they are lost. Changes made to .EXE and .HEX files cannot be written back
to disk. To avoid forgetting the changes, write them down. When DEBUG exits, edit the
source file immediately. Changes made to other files can be written back to disk with
DEBUG's Write File or Sectors command, W.

To be sure that the change was made correctly, use the Disassemble (Unassemble)
Program command, U, to show the instructions starting at CS:0004H.

-U 4 <Enter>

1ACD:0004 B406 MOV AH,06

1ACD:0006 B2FF MOV DL,FF

1ACD:0008 CD21 INT 21

1ACD:OOOA 740C JZ 0018

1ACD:OOOC 3C03 CMP AL,03

1ACD:OOOE 7501 JNZ 0011

1ACD:0010 CB RETF

Section II: Programming in the MS-DOS Environment 577

ZTE (USA) 1007, Page 587

PartE: Programming Tools

1ACD:0011 B401 MOV AH,01
1ACD:0013 BAOOOO MOV DX,OOOO
1ACD:0016 CD14 INT 14
1ACD:0018 B403 MOV AH,03
1ACD:001A BAOOOO MOV DXOOOO
1ACD:001D CD14 INT 14
1ACD:001F 80E401 AND AH, 01
1ACD:0022 74EO JZ 0004

The change has been correctly made. Now, to test the change, start the program to see if
characters make it out the serial port. The problem of data from the serial port not making
it to the screen remains, however, so instead of simply starting the program, set a break­
point at the location in the program that handles incoming serial data (CS:0024H). This.
technique allows the output section of the code to be tested separately. The breakpoint is
set using the Go command, G.

-G 24 <Enter>

AX=0130 BX=OOOO CX=0131 DX=OOOO ·SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0024 NV UP EI PL NZ NA PO NC
1ACD:0024 B402 MOV AH,02
-u <Enter>
1ACD:0024 B402 MOV AH,02
1ACD:0026 BAOOOO MOV DX,OOOO
1ACD:0029 CD14 INT 14
1ACD:002B B406 MOV AH,06
1ACD:002D CD21 INT 21
1ACD:002F EBD3 JMP 0004
1 ACD: 0031 0000 ADD [BX+SI) ,AL
1ACD:0033 0000 ADD [BX+SI) ,AL
1ACD:0035 0000 ADD [BX+SI] ,AL
1ACD:0037 0000 ADD [BX+SI] ,AL
1ACD:0039 0000 ADD [BX+SI),AL
1ACD:003B 0000 ADD [BX+SI) ,AL
1ACD:003D 0000 ADD [BX+SI) ,AL
1ACD:003F 0000 ADD [BX+SI),AL
1ACD:0041 0000 ADD [BX+SI] ,AL
1ACD:0043 0000 ADD [BX+SI) ,AL

As stated earlier, the serial port is attached to a serial terminal. After execution of the pro­
gram is started with the Go command, all keys typed on the keyboard are displayed cor­
rectly on the terminal, thus confirming the fix made to the INT 21H instruction. To test
serial input, a key must be pressed on the terminal, causing the breakpoint at CS:0024H
to be executed.

The fact that location CS:0024H was reached indicates that Interrupt 14H is detecting the
presence of an input character. To test if the character is now making it to the screen, a
breakpoint is needed after the write to the screen. The Disassemble command shows the
instructions starting at the current IP value. The program ends at CS:002FH; the instruc­
tions shown after that are whatever happened to be in memory when the program was
loaded. A good place to set the next breakpoint is CS:002FH, just after the Interrupt 21H
call.

578 '!he MS-DOS Encyclopedia

ZTE (USA) 1007, Page 588

j Artkle ,., Debugging in ihe M~OOS En"'~meru

!

-G 2f <Enter>

AX=0600 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=002F NV UP EI PL NZ NA PO NC
1ACD:002F EBD3 JMP 0004

DEBUG shows that the breakpoint was reached and the character did not print (it should
have been on the line after -G 2/), so something must be wrong with the Interrupt 21H
call. A breakpoint just before the MS-DOS call at CS:002DH should reveal the cause of the
problem.

-G 2d <Enter>

AX=0662 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=002D NV UP EI PL NZ NA PO NC
1ACD:002D CD21 INT 21

The key that was entered on the serial terminal (b) is in AL, where it was returned by
Interrupt 14H. Unfortunately, it is not in DL, where it is expected by the Direct Console 1/0
function (06H) of the MS-DOS command. The MS-DOS function was simply printing a null
(OOH) and then moving the cursor. An instruction (MOV DL,AL) is missing.

Fixing this problem requires the insertion of a line of code, which is usually difficult to do
inside DEBUG. The Move (Copy) Data command, M, can be used to move the code located
below the point where the insertion is to be made down 2 bytes, but this will probably
throw any subsequent addressing off. It is usually easier to exit DEBUG, edit the source file,
and then reassemble. In this case, however, because the instruction to be added is near the
last instruction, a patch can easily be made by entering only three instructions: the new
one and the two it destroys.

-A 2d <Enter>
1ACD:002D rnov dl,al <Enter>
1ACD:002F int 21 <Enter>
1ACD:0031 jrnp 4 <Enter>
1ACD:0033 <Enter>
-U 2b <Enter>
1ACD:002B 8406
1ACD:002D 88C2
1ACD:002F CD21
1ACD:0031 EBD1
1ACD:0033 0000
1ACD:0035 0000
1ACD:0037 0000
1ACD:0039 0000
1ACD:003B 0000
1ACD:003D 0000
1ACD:003F 0000
1ACD:0041 0000
1ACD:0043 0000
1ACD:0045 0000
1ACD:0047 0000
1ACD:0049 0000

MOV AH,06
MOV DL,AL
INT 21
JMP 0004
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL

Section II: Programming in the MS-DOS Environment 579

ZTE (USA) 1007, Page 589

Part E: Programming Tools

The new line of code has been inserted and verified with the Disassemble command. The
fix is ready to test. The Trace command could be used to single-step through the program
to verify execution. A word of warning is in order, however: The DEBUG Trace command
should never be used to trace an Interrupt 21H call. Once the trace enters the MS-DOS call,
it will wander around for a while and then lock the machine, requiring a restart. Avoid this
problem either by setting a breakpoint just beyond the Interrupt 21H call or by using the
Proceed Through Loop or Subroutine command, P. The Proceed command operates in a
similar manner to the Trace command but does not trace loops, calls, and interrupts.

Because the fix is fairly certain, use the Go command in its simple form with no break­
points. The program will execute without further intervention from DEBUG.

-G <Enter>
lasdfgh
Program terminated normally
-Q <Enter>

The lasdfgh text entered on the serial terminal is displayed correctly. When a Ctrl-C is
entered from the keyboard, the program terminates properly and DEBUG displays the
message Program terminated normally. Now exit DEBUG with the Quit command, Q.

The source code ofTESTCOMM should be edited immediately so that it reflects the two
changes made temporarily under DEBUG. Figure 18-10 shows the corrected listing.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

**
; * *
; * TESTCOMM *
; * THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS
; * CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING *
; * INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE
; * SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *
; * ON THE KEYBOARD.

; *
*
*

**

SSEG SEGMENT PARA STACK 'STACK'
DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT
ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR

PUSH DS ;SET UP FOR RET TOMS-DOS

XOR AX,AX
PUSH AX

Figure 18-10. Correct serial test routine.

580 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 590

Article 18: Debugging in the MS-DOS Environment

MAINLOOP:
MOV

MOV

INT

JZ

CMP

JNE

RET

SENDCOMM:
MOV
MOV

INT

TESTCOMM:

MOV
MOV

INT

AND

JZ
MOV

MOV

INT
MOV

MOV

INT

JMP

BEGIN ENDP

CSEG ENDS

END

AH,6
DL, OFFH

21H

TJ;:STCOMM

AL,03

SENDCOMM

AH,01

DX,O

14H

AH,3
DX,O

14H

AH, 1
MAINLOOP

AH,2

DX,O

14H
AH,6

DL,AL

21H

MAINLOOP

BEGIN

Figure 18-10. Continued.

;USE DOS CALL TO CHECK FOR
KEYBOARD ACTIVITY

IF NO CHARACTER, JUMP TO
COMM ACTIVITY TEST

;WAS CHARACTER A Ctrl-C?

NO, SEND IT TO SERIAL PORT
; YES, RETURN TO MS-DOS

;USE INT 14H WRITE FUNCTION TO

SEND DATA TO SERIAL PORT

;GET SERIAL PORT STATUS

;ANY DATA WAITING?

; NO, GO BACK TO KEYBOARD TEST

;READ SERIAL DATA
,:;

;WRITE SERIAL DATA TO SCREEN

;CONTINUE

DEBUG has a rich set of commands and features. The preceding case study shows the
more common ones in their most straightforward aspect. Some of the other commands
and some useful techniques are described below. See PROGRAMMING UTILITIES:
DEBUG.

Establishing initial conditions
When a program is loaded for testing, four areas may require initialization:

• Registers
• Dataareas
• Default file-control blocks (FCBs)
• Command tail

These areas may also require changes during testing, especially when the programmer is
working around bugs or establishing different test conditions.

Section /1- Programming in the MS-DOS Environment 581

ZTE (USA) 1007, Page 591

Part E: Programming Tools

Registers. Registers are ordinarily set when the program is loaded. The values in them
depend on whether a .EXE, .COM, or .HEX file was loaded. Generally, the segment regis­
ters, the IP register, and the SP register are set to appropriate values; with the exception of
AX, BX, and CX, the rest of the registers are set to zero. BX and CX contain the length of
the loaded file. By MS-DOS convention, when a program is loaded, the contents of AL and
AH indicate the validity of the drive specifiers in the first and second DEBUG command­
line parameters, respectively. Each register contains zero if the corresponding drive was
valid, OlH if the drive was valid and wildcards were used, or OFFH if the drive was invalid.

To change the value of any register, use an alternate form of the Register command. Enter
R followed by the two-letter register name. Only 16-bit registers can be changed, so use the
X form of the general-purpose registers:

-R AX <Enter>

DEBUG will respond with the current contents of the register and prompt for a new value.
Either enter a new hexadecimal value or press Enter to keep the current value:

AX 0000
:FFFF <Enter>

In this example, the new value of AX is FFFFH.

When changing registers, exercise caution modifying the segment registers. These regis­
ters control the execution of the program and should be changed only after careful and
thoughtful consideration.

The Register command can also be used to modify the CPU flags.

Data areas. Initializing or changing data areas is easy, and several methods are provided.
The Fill Memory command, F, can be used to initialize areas of RAM. For instance,

-F 0 1400 0 <Enter>

fills DS:OOOOH through DS:03FFH with zero. (The absence of a segment override causes
the Fill command to use its default segment, DS.) Entering

-F CS:100 200 1B "[Hello" OD <Enter>

fills CS:OlOOH through CS:0200H with many repetitions of the string 1B 5B 48 65 6C 6C 6F
OD. (Note that an address range was specified, not a length.)

When the wholesale changing of memory is not appropriate, the Enter command can be
used to edit a small number of locations. The Enter command has two forms: One enters a
list of bytes into the specified memory location; the other prompts with the contents of
each location and waits for input. Either form can be used as appropriate.

Default file-control blocks and the command tail. The setting of the default FCBs and
of the command tail are related functions. When DEBUG is entered, the first parameter
following the command DEBUG is the name of the file to be loaded into memory for
debugging. If the next two parameters are filenames, FCBs for these files are formatted at

582 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 592

Article 18: Debugging in the MS-DOS Environment

DS:005CH and DS:006CH in the PSP. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PROGRAMMING FOR Ms-oos: File and Record Management. If either parameter con­
tains a pathname, the corresponding FCB will contain only a valid drive number; the
filename field will not be valid. All filenames and switches following the name of the file
to be debugged are considered the command tail and are saved in memory starting at
DS:0081H. The length of the command tail is in DS:0080H. For example, entering

C>DEBUG CDMMDUMP.EXE FILE1 .DAT FILE2.DAT <Enter>

results in the first FCB (5CH), the second FCB (6CH), and the command tail (81H) being
loaded as follows:

-D 50 <Enter>

42C9:0050 CD 21 CB 00 00 00 00 00-00 00 00 00 00 46 49 4C . ! FIL

42C9:0060 45 31 20 20 20 44 41 54-00 00 00 00 00 46 49 4C E1 OAT FIL

42C9:0070 45 32 20 20 20 44 41 54-00 00 00 00 00 00 00 00 E2 DAT

42C9:0080 15 20 66 69 6C 65 31 2E-64 61 74 20 66 69 6C 65 file1 .dat file

42C9:0090 32 2E 64 61 74 20 OD 74-20 66 69 6C 65 32 2E 64 2.dat .t file2.d

42C9:00AO 61 74 20 OD 00 00 00 00-00 00 00 00 00 00 00 00 at ••• 0 0 ••••• 0 ••

42C9:00BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 0 •••• 0 0 0 •••• 0 • ••

42C9:00CO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ••• 0 0 0 •••••• 0 0 ••

In this example, location DS:005CH contains an unopened FCB for file FILEl.DAT on the
current drive. Location DS:006CH contains an unopened FCB for FILE2.DAT on the current
drive. (The second FCB cannot be used where it is and must be moved to another location
before the first FCB is opened.) Location DS:0080H contains the length of the command
tail, 15H (21) bytes. The next 21 bytes are the command tail prepared by DEBUG; they cor­
respond exactly to what the command tail would be if the program had been loaded by
COMMAND.COM instead of by DEBUG.

The default FCBs and the command tail can also be set after the program has been loaded,
by using the Name File or Command-Tail Parameters command, N. DEBUG treats the
string of characters that follow the Name command as the command tail: If the first two
parameters are filenames, they become the first and second FCBs, respectively. The Name
command also places the string at DS:0081H, with the length of the string at DS:0080H.
Entering the DEBUG command

-N FILE1 .OAT FILE2.DAT <Enter>

produces the same results as specifying the filenames in the command line. When em­
ployed in this manner, the Name command is useful for initializing command-tail data that
was not in the command line or for changing the command-tail data to test different
aspects of a program. (If files are named in this manner, they are not validated until the
Load File or Sectors command, L, is used.) Note that the data following the Name com­
mand need not be filenames; it can be any parameters, data, or switches that the applica­
tion program expects to see.

Section II: Programming in the MS-DOS Environment 583

ZTE (USA) 1007, Page 593

PartE: Programming Tools

More on breakpoints
The case study at the beginning of this section used breakpoints in their simplest form:
Only a single breakpoint was specified at a time and the execution address was con­
sidered to be the current IP. The Go command is also capable of setting multiple break­
points and of beginning execution at any address in memory. The more general form of
the Go command is

G[=address] [address [address ...]]

If Go is used with no operands, execution begins at the current value of CS:IP and no
breakpoints are set. If the =address operand is used, DEBUG sets IP to the address speci­
fied and execution then begins at the new CS:IP. The other optional addresses are break­
points. When execution reaches one of these breakpoints, DEBUG stops and displays the
system's registers. As many as 10 breakpoints can be set on one Go command, and they
can be in any order.

The breakpoint addresses must be on instruction boundaries because DEBUG replaces
the instructio~ at each breakpoint address with an INT 03H instruction (OCCH). DEBUG
saves the replaced instructions internally. When any breakpoint is reached, DEBUG stops
execution and restores the instructions at all the breakpoints; if no breakpoint is reached,
the instructions are not restored and the Load command must be used to reload the origi­
nal program.

The multiple-breakpoint feature of the Go command allows the tracing of program exe­
cution when branches exist in the code. When a program contains, for instance, a condi­
tional jump on the zero flag, a breakpoint can be placed in each of the two possible
branches. When the branch is reached, one of the two breakpoints will be encountered
shortly thereafter. When DEBUG displays the breakpoint, the programmer knows which
branch was taken. Moving through a program with breakpoints at key locations is faster
than using the Trace command to execute each and every instruction.

Multiple breakpoints can also be used to home in on a bad piece of code. This technique
is particularly useful in those nasty situations when there are no symptoms except that the
system locks up and must be restarted. When debugging a problem such as this, set break­
points at each of the major sections of the program and then note those breakpoints that
are executed successfully, continuing until the system locks up. The problem lies some­
where between the last successful breakpoint and the next breakpoint set. Now repeat the
processes, setting breakpoints between the last breakpoint and the one that was never
reached. By progressively narrowing the gap between breakpoints, the exact offending
instruction can be isolated.

Some general comments about the Go command and breakpoints:

• After a program has reached completion and returned to MS-DOS, it must be reloaded
with the Load command before it can be executed again. (DEBUG intercepts this
return and displays Program terminated normally.)

• Because DEBUG replaces program instructions with an INT 03H instruction to form
breakpoints, the break address must be on an instruction boundary. If it is not, the
INT 03H will be stuck in the middle of an instruction, causing strange and sometimes
entertaining results.

584 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 594

Article 18: Debugging in the MS-DOS Environment

• Breakpoints cannot be set in data, because data is not executed.
e The target program's SS:SP registers must point to a valid stack that has at least 6 bytes

of stack space available. When the Go command is executed, it pushes the target pro­
gram's flags and CS and IP registers onto the stack and then transfers control to the
program with an IRET instruction. Thus, if the target program's stack is not valid or
is too small, the system may crash.

• Finally, and obviously, breakpoints cannot be set in read-only memory (the ROM
BIOS, for instance).

Using the Write commands
After a program has been debugged, fixed, and tested with DEBUG, the temptation exists
to write the patched program directly back to the disk as a .COM file. This action is some­
times legitimate, but only rarely. The technique will be explained in a moment, but first a
sermon:

DON'T DO IT

One of the greatest sadnesses in a programmer's life comes when, after a program has
been running wonderfully, enhancements are made to the source code and the recom­
piled program suddenly has bugs in it that haven't been seen for months. Always make any
debugging patches permanent in the source file immediately.

Unless, of course, the source code is not available. This is the only time saving a patched
program is permissible. For example, sometimes commercial programs require patching
because the program does not quite fit the hardware it must run on or because bugs have
been found in the program. The source of these patches is sometimes word-of-mouth,
sometimes a bulletin-board service, and sometimes the program's manufacturer.

Even when legitimate reasons exist to save patched code, precautions should be taken. Be
very careful, meticulous, and alert as the patches are applied. Understand each step before
undertaking it. Most important of all, always have a backup of the original unpatched
program safely on a floppy disk.

Use the Write command to write the program image to disk. A starting address can op­
tionally be specified; otherwise the write starts at CS:OlOOH. The name of the file will be
either the name specified in the last Name command or the name of the program from the
DEBUG command line if the Name command has not been used. The number of bytes to
be written is in BX and CX, with the most significant half in BX. These registers will have
been loaded correctly when the program was loaded, but they should be checked if the
program has executed since it was loaded. ·

The .EXE and .HEX file types cannot be written to disk with the Write command. The
command performs no formatting and only writes the binary image of memory to the disk
file. Thus, all programs written with Write must be .COM files. The image of a .EXE or
.HEX file can still be written as a .COM file provided no segment fixups are required and
provided the other rules for a .COM file are followed. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure of an Application Program.
(A segment fixup is a segment address that must be provided by the loader when the

Section II: Programming in the MS-DOS Environment 585

ZTE (USA) 1007, Page 595

Part E: Programming Tools

program is originally loaded. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRo­
GRAMMING TooLs: Object Modules.) If a .EXE file containing a segment fixup is written as a
.COM file, the new file will execute correctly only when loaded at exactly the same address
as the original file, and this is difficult to ensure for programs running under MS-DOS.

If it is necessary to patch a .EXE or .HEX file and the exact addresses relative to the start of
the file are known, use the following procedure:

1. Rename (or better yet, copy) the file to an extension other than .EXE or .HEX.
2. Load the program image into memory by placing the new name on DEBUG's com­

mand line. Note that the loaded file is an image of the disk file and is not executable.
3. Modify the program image in memory, but never try to execute the program. Results

would be unpredictable and the program image could be damaged.
4. Write the modified image back to disk using a simple w. No other action is needed,

because the original load will have set the filename and the correct length in BX
andCX.

5. Rename the file to a name with the correct .EXE or .HEX extension. The new name
need not be the same as the original, but it should have the same extension.

The same technique can be used to load, modify, and save data files. Simply make sure
that the file does not have an extension of .COM, .EXE, or .HEX. The data file will be
loaded at address CS:OlOOH. (DEBUG treats the file much the same as a .COM file.) After
patching the data (the Enter command works best), use the Write command to write it
back to the disk.

SYMDEB

SYMDEB is an extension of DEBUG; virtually all the DEBUG commands and techniques
still work as expected. The major new feature, and the source of the name SYMDEB, is
symbolic debugging: SYMDEB can use all public labels in a program for reference, instead
of using hexadecimal offset addresses. In addition, SYMDEB allows the use of line num­
bers for reference in compatible high-order languages; source-line display within SYMDEB
is also possible for these languages. Currently, the languages supporting these options are
Microsoft FORTRAN versions 3.0 and later, MicrosoftPascal versions 3.0 and later, and
Microsoft C versions 2.0 and later. Versions 4.0 and earlier of the Microsoft Macro Assem­
bler (MASM) do not generate the data needed for line-number display and source-line
debugging.

In addition to symbolic debugging, SYMDEB has added several other new features and has
expanded existing DEBUG features:

• Breakpoints have been made more sophisticated with the addition of "sticky"
breakpoints. Unlike the breakpoints set with the Go command, sticky breakpoints
remain attached to the program throughout a SYMDEB session until they are explic­
itly removed. Specific commands are supplied for listing, removing, enabling, and
disabling sticky breakpoints.

• DEBUG's Display Memory command, D, has been extended so that data can be
displayed in different formats.

586 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 596

Article 18: Debugging in the MS-DOS Environment

• Full redirection is supported.
• A stack trace feature has been added.
• Terminate-and-stay-resident programs are supported.
• A shell escape command has been added to allow the execution of MS-DOS

commands and programs without leaving SYMDEB and the debugging session.

These additions allow more sophisticated debugging techniques to be used and, in some
cases, also simplify locating problems. To see the advantages of using symbols and sticky
breakpoints in debugging, consider a type of program that is one of the most difficult to
debug- the TSR.

Debugging TSRs with SYMDEB
Terminate-and-stay-resident routines can be difficult to debug. They exist in two worlds
and can have bugs associated with each. At the outset, they are usually simple programs
that perform some initialization task and then exit. At this point, they are transformed into
another type of beast entirely- resident routines that are more a part of the operating sys­
tem than of any application program. Each form of the program must be debugged sepa­
rately, using different techniques.

The TSR routine used for this case study is the same one created previously to serve
as external instrumentation to trace serial communications. The program was qlled
COMMSCOP, but to avoid confusion of that working program with the broken one pre­
sented here, the name has been changed to BADSCOP. BADSCOP was assembled and
linked in the usual manner and then converted to a .COM file using EXE2BIN. When it was
installed, it returned normally, but at the first attempt to issue an Interrupt 14H, the system
locked up completely. Warm booting was not sufficient to restore it, and a power-on cold
boot was required to get the system working again.

Figure 18-11 is a listing ofBADSCOP. The only difference from COMMSCOP, aside from the
errors, is the addition of two PUBLIC statements to make all the procedure names and the
important data names available to SYMDEB.

TITLE BADSCOP - BAD VERSION OF COMMUNICATIONS TRACE UTILITY

**
; *
; * BADSCOP -
; * THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT
; * AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH
; * ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
; * WAS SENT BY OR RECEIVED BY THE SYSTEM.

; *
; * BADSCOP IS INSTALLED BY ENTERING

; *
; *
; *

BADSCOP

Figure 18-11. An incorrect version of the serial trace utility.

*
*
*
*
*
*
*
*
*
*

(more)

Section II: Programming in the MS-DOS Environment 587

ZTE (USA) 1007, Page 597

PartE: Programming Tools

; * THIS WILL INSTALL BADSCOP AND SET UP A 64K BUFFER TO BE USED *
; * FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR

; *
; *
; *
; *
; *

EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT

30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD,
ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY .
HOLD MORE THAN 30 SECONDS WORTH OF DATA.

*
*

*
*

; * WHEN INSTALLED, BADSCOP INTERCEPTS ALL INT 14H CALLS. IF THE *
; * PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE- *
; * CEIVE DATA, A COPY OF THE DATA BYTE,. PROPERLY TAGGED, IS PLACED *
; * IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL *
; * INT 14H HANDLER.

; *
; * BADSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE INT HAS

; * THE FOLLOWING CALLING SEQUENCE:

; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

AH - COMMAND

0 STOP TRACING, PLACE STOP MARK IN BUFFER
FLUSH BUFFER AND START TRACE

2

3

RESUME TRACE

RETURN COMM BUFFER ADDRESSES
DX - COMM PORT (ONLY USED WITH AH = 1 or 2)

0 COM1
1 - COM2

; * THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH 3:

; *
; *
; *
; *
; *

ex
DX
BX

BUFFER COUNT IN BYTES

SEGMENT ADDRESS OF THE START OF THE BUFFER
OFFSET ADDRESS OF THE START OF THE BUFFER

; * THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE

; * FOLLOWING FORM:

; *
; *
; *
; *
; *
; *
; *

BYTE

BYTE

0 -

BIT

BIT

1 -

CONTROL

0 - ON FOR RECEIVED DATA, OFF FOR TRANS.
7 - STOP MARK - INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.

8-BIT DATA

*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*

~***************

CSEG

PUBLIC INITIALIZE,CONTROL,VECTOR_INIT,COMMSCOPE

PUBLIC OLD_COMM_INT,COUNT,STATUS,PORT,BUFPNTR

SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 1 OOH ;TO MAKE A COM FILE

Figure 18-11. Continued.

588 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 598

INITIALIZE:

JMP VECTOR-IN IT

SYSTEM VARIABLES

OLO_COMM_INT

COUNT
COMMSCOPE_INT

STATUS

PORT

BUFPNTR

DO

ow
EQU
DB

DB

ow

?

0
60H

0

0
VECTOR_INIT

Article 18: Debugging in the MS-DOS Environment

;JUMP TO THE INITIALIZATION

ROUTINE WHICH, TO SAVE SPACE,
; IS IN THE COMM BUFFER

;ADDRESS OF REAL COMM INT

;BUFFER COUNT
;COMMSCOPE CONTROL INT

;PROCESSING STATUS

; 0 - OFF

; 1 -ON
;COMM PORT BEING TRACED

;NEXT BUFFER LOCATION

SUBTTL DATA INTERRUPT HANDLER

PAGE

************************************~************~********************
; * *
; * COMMSCOPE

; * THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *
; * IF APPROPRIATE.

; *
**

COMMSCOPE

TEST

JZ

CMP

JE

CMP

JAE

CMP

JE

PROC NEAR

CS: STATUS, 1
OLD_JUMP

AH,OOH
OLD_JUMP

AH,03H
OLO_JUMP

AH,02H
GET _READ

;ARE WE ON?

; NO, SIMPLY JUMP TO OLD HANDLER

;SKIP SETUP CALLS

;SKIP STATUS REQUESTS

;IS THIS A READ REQUEST?

; YES, GO PROCESS

DATA WRITE REQUEST - SAVE IF APPROPRIATE

CMP

JNE

PUSH

PUSH

PUSH

POP

MOV

DL,CS:PORT
OLO_JUMP

OS

BX

cs
OS

BX,BUFPNTR

;IS WRITE FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

;SAVE CALLER'S REGISTERS

; .
;SET UP OS FOR OUR PROGRAM

; .
;GET ADDRESS OF NEXT BUFFER LOCATION·

Figure 18-11. Continued. (more)

Section II: Programming in the MS-DOS Environment 589

ZTE (USA) 1007, Page 599

PartE: Programming Tools

MOV [BX),BYTE PTR 0 ;MARK AS TRANSMITTED BYTE
MOV [BX+1], AL ;SAVE DATA IN BUFFER
INC COUNT ;INCREMENT BUFFER BYTE COUNT
INC COUNT ;

INC BX ;POINT TO NEXT LOCATION
INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER
JNZ WRITE_DONE ;ZERO INDICATES BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF - BUFFER FULL

WRITEJJONE:

POP BX ;RESTORE CALLER'S REGISTERS
POP DS ;

JMP OLD_JUMP ;PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

GET_READ:

CMP DL,CS:PORT
JNE OLD_JUMP

PUSH DS

PUSH BX
PUSH cs
POP DS

PUSHF

CLI

CALL OLD_COMM_INT

TEST AH,BOH
JNZ READ_DONE

MOV BX,BUFPNTR
MOV [BX),BYTE PTR
MOV [BX+1) ,AL

INC COUNT

INC COUNT

INC BX
INC BX
MOV BUFPNTR,BX

JNZ READJJONE

MOV STATUS,O
READ_DONE:

POP BX
POP DS
IRET

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP OLD_COMM_INT

COMMSCOPE ENDP

Figure 18-11. Continued.

590 The MS-DOS Encyclopedia

;IS READ FOR PORT BEING TRACED?
; NO, JUST PASS IT THROUGH

;SAVE CALLER'S REGISTERS

;SET UP DS FOR OUR PROGRAM

;FAKE INT 14H CALL

;PASS REQUEST ON TO BIOS
;VALID READ?

; NO, SKIP BUFFER UPDATE

;GET ADDRESS OF NEXT BUFFER LOCATION

;MARK AS RECEIVED BYTE
;SAVE DATA IN BUFFER

;INCREMENT BUFFER BYTE COUNT

;POINT TO NEXT LOCATION

;SAVE NEW POINTER

;ZERO INDICATES BUFFER HAS WRAPPED

;TURN COLLECTION OFF - BUFFER FULL

;RESTORE CALLER'S REGISTERS

(more)

ZTE (USA) 1007, Page 600

1
l
(

Article 18: Debugging in the MS-DOS Environment

SUB TTL CONTROL INTERRUPT HANDLER
PAGE

**
; *
; * CONTROL

; * THIS ROUTINE PROCESSES CONTROL REQUESTS.
*
* ; *

**

CONTROL PROC

CMP
JNE

PUSH

PUSH

PUSH
POP

MOV

MOV
MOV

MOV

INC

INC

POP
POP

JMP

CNTL_START:

CMP

JNE
MOV

MOV

MOV

MOV

JMP

CNTL-RESUME:
CMP

JNE

CMP

JE

MOV
MOV

JMP

CNTL_STATUS:

CMP

JNE
MOV

PUSH

POP
MOV

NEAR

AH,OOH
CNTL_START

OS
BX

cs
DS

STATUS,O

BX,BUFPNTR

[BX],BYTE PTR 80H
[BX+1],BYTE PTR OFFH

COUNT

COUNT

BX

OS
CONTROL_DONE

;STOP REQUEST?
; NO, CHECK START

;SAVE REGISTERS

; .
;SET OS FOR OUR ROUTINE

;TURN PROCESSING OFF

;PLACE STOP MARK IN BUFFER

;INCREMENT COUNT

;RESTORE REGISTERS

;START REQUEST?

; NO, CHECK RESUME

;SAVE PORT TO TRACE

AH,01H
CNTL_RESUME

CS:PORT,DL

CS:BUFPNTR,OFFSET

CS:COUNT,O
VECTOR_INIT ;RESET BUFFER TO START

;ZERO COUNT

CS: STATUS, 1
CONTROL_DONE

AH,02H
CNTL_STATUS

CS:BUFPNTR,O
CONTROL_DONE

CS:PORT,DL
CS:STATUS,1
CONTROL_DONE

AH,03H
CONTROL_DONE

CX,CS:COUNT

cs
ox
BX,OFFSET VECTOR_INIT

;START LOGGING

;RESUME REQUEST?

; NO, CHECK STATUS
;END OF BUFFER CONDITION?

; YES, DO NOTHING

;SAVE PORT TO TRACE

;START LOGGING

;RETURN STATUS REQUEST?

; NO, ERROR - DO NOTHING

;RETURN COUNT

;RETURN SEGMENT ADDR OF BUFFER

; .
;RETURN OFFSET ADDR OF BUFFER

Figure 18-11. Continued. (more)

Section II: Programming in the MS-DOS Environment 591

ZTE (USA) 1007, Page 601

Part E: Programming Tools

CONTROL_DONE:

IRET

CONTROL ENDP

SUBTTL INITIALIZE INTERRUPT VECTORS
PAGE

**
; *
; * VECTOR....INIT
; * THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN
; * EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION.
; * A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE
; * IN THE BUFFER IS THE OFFSET OF VECTOR_INIT.

*
*
*
*

; * *
**

EVEN
VECTOR....INIT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

MOV AH,35H
MOV AL, 14H
INT 21H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX

MOV AX,ES

;ASSURE BUFFER ON EVEN BOUNDARY

MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE
MOV AH, 25H
MOV AL, 14H
INT 21H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL
MOV AH,25H
MOV AL,COMMSCOPE_INT
INT 21 H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV
MOV
INT

AX,3100H
DX,1000H
21H

Figure 18-11. Continued.

592 The MS-DOS Encyclopedia

;TERM AND STAY RES COMMAND
;64K RESERVED
;DONE

(more)

ZTE (USA) 1007, Page 602

Article 18: Debugging in the MS-DOS Environment

VECTOR_INIT ENDP

CSEG ENDS
END INITIALIZE

Figure 18-11. Continued.

In order to use the symbolic debugging features of SYMDEB, a symbol file must be built in
a specific format. The SYMDEB utility MAPSYM performs this function, using the contents
of the .MAP file built by LINK. MAPSYM is easy to use because it has only two parameters:
the .MAP file and the /L switch (which triggers verbose mode). The symbol table for
BADSCOP is built as follows:

C>MAPSYM BADSCOP <Enter>

This operation produces a symbol file called BADSCOP.SYM.

Armed with the .SYM file and the usual collection of listing and design notes, the program­
mer can begin the debugging process using SYMDEB.

The first task is to discover if the BADSCOP TSR is installing correctly. To test this, run the
.COM file under SYMDEB by typing

C>SYMDEB BADSCOP.SYM BADSCOP.COM <Enter>

Note the order in which operands are passed to SYMDEB-it is not the order that
would be expected. All switches (none were used here) must immediately follow the
word SYMDEB. These switches must be followed in turn by the fully qualified names of
any symbol files (in this case, BADSCOP.SYM). Only then is the name of the file to be
debugged given. If BADSCOP expected any parameters in the command tail, they would 4
be last. This potential need for command-tail data is the reason the name of the file to be
debugged follows the name of the symbol file. SYMDEB knows that the first non-.SYM file
it encounters is the file to be loaded; the parameters that follow the filename may be of
any form and number.

When SYMDEB begins, it displays

Microsoft {R) Symbolic Debug Utility Version 4.00
Copyright {C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

The debugger identifies itself and then notes the type of CPU it is running on- in this
case, an Intel 80286. The Display or Modify Registers command, R, gives the same display
that DEBUG gives, with one exception.

-R <Enter>
AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1FDO SS=1FDO CS=1FD0 IP=0100 NV UP EI PL NZ NA PO NC
CSEG:INITIALIZE:
1FD0:0100 E90701 JMP VECTOR_INIT

Section JL- Programming in the MS-DOS Environment 593

ZTE (USA) 1007, Page 603

PartE: Programming Tools

The instruction at CS:IP,]MP, is now preceded by the information that the instruction is
at label INITIALIZE within segment CSEG. An examination of Figure 18-11 shows that this
is indeed the case.

To check that all the symbols requested with the PUBLIC statement are present, use the
X?* form of the Examine Symbol Map command.

-X?* <Enter>

CSEG: (1 FDO)
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT 0109 STATUS

018F CONTROL 010A PORT 010B BUFPNTR 010D COMMSCOPE
020A VECTOR_INIT

The display shows that the value of CSEG (lFDOH) matches the current value of CS. The
offset values shown for the procedure names and data names match the numbers from an
assembled listing. Because this is a .COM file, there is only one segment. If there had been
other segments- a data segment, for instance- they would have been shown with their
values and associated labels and offsets.

The purpose of this test is to determine whether the problems this program is having are
caused by an incorrect installation. First, use the Trace Program Execution command, T, to
trace through the first few steps.

-T7 <Enter>
AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1FDO SS=1FDO CS=1FDO IP=020A NV UP EI PL NZ NA PO NC
CSEG:VECTOR_INIT:
1FD0:020A B435
AX=3500 BX=OOOO
DS=1FDO ES=1FDO
1FD0:020C B014
AX=3514 BX=OOOO
DS=1FDO ES=1FDO
1FD0:020E CD21
AX=3514 BX=1375
DS=1FDO ES=1567
1FD0:0210 891E0301
AX=3514 BX=1375
DS=1FDO ES=1567
1FD0:0214 8CCO
AX=1567 BX=1375
DS=1FDO ES=1567
1FD0:0216 A30501
AX=1567 BX=1375
DS=1FDO ES=1567
1FD0:0219 BA0D01

MOV AH,35 ;'5'
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=020C NV UP EI PL NZ NA PO NC .

MOV AL,14
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=020E NV UP EI PL NZ NA PO NC

INT 21 ;Get Interrupt Vector
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0210 NV UP EI PL NZ NA PO NC

MOV [OLD_COMM_INT],BX DS:0103=0000
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0214 NV UP EI PL NZ NA PO NC

MOV AX,ES
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0216 NV UP EI PL NZ NA PO NC

MOV [OLD_COMM_INT+02 (0105)],AX DS:0105=0000
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0219 NV UP EI PL NZ NA PO NC

MOV DX,010D

This part of the program uses Interrupt 21H Function 35H to obtain the current vector for
Interrupt 14H. Note that, unlike DEBUG, SYMDEB coasts right through an Interrupt 21H
call with no problems. It not only knows enough not to make the call but also displays the
type of function call being made, based on the value in AH.

594 The MS-DOS Encyclopedia

'

-I
i

. I

I

ZTE (USA) 1007, Page 604

Article 18: Debugging in the MS-DOS Environment

To make sure that the correct vector for the old Interrupt 14H handler has been stored, use
the Display Doublewords command, DD, in conjunction with a symbol name.

-DD OLD_COMM_INT L1 <Enter>
1FD0:01030 1567:1375

This is the correct vector address (1567:1375H). Now trace through the next part of the
program, which establishes the new vectors for interrupts.

-T8 <Enter>
AX=1567 BX=1375 CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567
1FD0:021C B425
AX=2567 BX=1375
DS=1FDO ES=1567
1FD0:021E B014
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0220 CD21
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0222 BA8F01
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0225 B425
AX=2514 BX=1375
DS=1FDO ES=1567

SS=1FD0 CS=1FDO IP=021C NV UP EI PL NZ NA PO NC
MOV AH,25 ;'%'

CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FD0 IP=021E NV UP EI PL NZ NA PO NC

MOV AL, 14
CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0220 NV UP EI PL NZ NA PO NC

INT 21 ; Set Vector
CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FD0 CS=1FDO IP=0222 NV UP EI PL NZ NA PO NC

MOV DX,018F
CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0225 NV UP ~I PL NZ NA PO NC

MOV AH,25 ; '%'
CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0227 NV UP EI PL NZ NA PO NC

1 FDO: 0227 B060 MOV AL, 60 ; ' ''
AX=2560 BX=1375 CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567 SS=1FDO CS=1FDO IP=0229 NV UP EI PL NZ NA PO NC
1 FDO: 022 9 CD21 INT 21 ; Set Vector
AX=2560 BX=1375 CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567 SS=1FDO CS=1FD0 IP=022B NV UP EI PL NZ NA PO NC
1FD0:022B B80031 MOV AX,3100

Examination of these trace steps shows that all went normally. The new Interrupt 14H
vector has been established at COMMSCOPE; the vector for the new Interrupt 60H has also
been correctly installed. Use the Go command, G, to allow the program to continue to
termination and then use the Quit command, Q, to exit SYMDEB.

-G <Enter>

Program terminated and stayed resident (0)

-Q <Enter>

SYMDEB displays the information that the program terminated with a completion code
of zero and stayed resident. This is as it should be, and the conclusion is that the installa­
tion portion of this TSR is running properly. The problem must be in the real-time execu­
tion of the program.

Debugging the resident portion of a TSR is complicated but not especially difficult. A sim­
ple program is used to exercise the TSR, and it is this program that is debugged. As this
driver program exercises the TSR, the tracing process continues into the resident routine.

Section /1· Programming in the MS-DOS Environment 595

ZTE (USA) 1007, Page 605

PartE: Programming Tools

Because symbol tables exist for the TSR, symbolic debugging can be used to follow its
execution.

The driver program will be TESTCOMM, shown in Figure 18-10. To make the program
more easily usable by SYMDEB, one line has been added before the first SEGMENT
statement:

PUBLIC BEGIN,MAINLOOP,SENDCOMM,TESTCOMM

Using the .MAP file produced by LINK, the MAPSYM routine creates TESTCOMM.SYM.
TESTCOMM can now be invoked with two symbol files:

C>SYMDEB TESTCOMM.SYM BADSCOP.SYM TESTCOMM.EXE <Enter>

SYMDEB will load both symbol files and then load TESTCOMM.EXE. Because the name of
the TESTCOMM.SYM file matches the name of the program being loaded, SYMDEB makes
TESTCOMM.SYM the active symbol file.

Use the Register command to show that the test program was properly loaded.

-R <Enter>

AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=390E IP=OOOO NV UP EI PL NZ NA PO NC
CSEG:BEGIN:
390E:OOOO 1E PUSH DS

Then use the Examine Symbol Map command to determine whether the symbol files
were loaded correctly. The form X• lists all the symbol maps and their segments; the form
X?• lists all the symbols for the current symbol map and segment.

-X* <Enter>

[38FE TESTCOMM]
[390E CSEG]

0000 BADSCOP
0000 CSEG

-X?* <Enter>

CSEG: (390E)
0000 BEGIN 0004 MAINLOOP 0011 SENDCOMM 0018 TESTCOMM

The current symbol map and segment are shown in square brackets. The symbol map for
BADSCOP is also present but not selected. Note that there are no values associated with
BADSCOP in the listing produced by the X?• command, because all the symbols currently
available to SYMDEB are shown and only the symbols in TESTCOMM's CSEG are available
(that is, TESTCOMM.SYM is the only active symbol file).

Recall that the BADSCOP TSR loaded normally but locked the system up at the first attempt
to issue an Interrupt 14H. This behavior indicates that the problem is associated with an In­
terrupt 14H call. TESTCOMM repeatedly makes the system fail, but which of the Interrupt
14H calls within TESTCOMM is causing the trouble is not known. The most straightfor­
ward approach would be to put a breakpoint just before each Interrupt 14H instruction.
Use the Disassemble (Unassemble) command, U, to find the location of all Interrupt 14H
calls.

596 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 606

Article 18: Debugging in the MS-DOS Environment

-u MAINLOOP 119 <Enter>
·csEG:MAINLOOP:

390E:0004 B406 MOV AH,06

390E:0006 B2FF MOV DL,FF

390E:0008 CD21 INT 21

390E:OOOA 740C JZ TESTCOMM

390E:OOOC 3C03 CMP AL,03

390E:OOOE 7501 JNZ SENDCOMM

390E:0010 CB RETF

CSEG:SENDCOMM:

390E:0011 B401 MOV AH,01

390E:0013 BAOOOO MOV DX,BADSCOP!CSEG

390E:0016 CD14 INT 14
CSEG:TESTCOMM:

390E:0018 B403 MOV AH,03

390E:001A BAOOOO MOV DX,BADSCOP!CSEG

390E:001D CD14 INT 14

390E:001F 80E401 AND l'.H, 01

390E:0022 74EO JZ MAINLOOP

390E:0024 B402 MOV AH,02

390E:0026 BAOOOO MOV DX,BADSCOP!CSEG
390E:0029 CD14 INT 14

390E:002B B406 MOV AH,06

390E:002D 8ADO MOV DL,AL

390E:002F CD21 INT 21

390E:0031 EBD1 JMP MAINLOOP

The Disassemble request starts at MAINLOOP and acts on the next 25 (19H) instructions.
SYMDEB displays symbol names instead of numbers whenever it can. However, it does
get confused from time to time, so a grain of salt might be needed when reading the dis­
assembly. Notice, for instance, the MOV DX,O instructions at offsets 13H, lAH, and 26H. 4
SYMDEB has decided that what is being moved is not zero, but BADSCOP!CSEG. (The!
identifies a mapname in the same way a : defines a segment.) In this case, SYMDEB
searched its map tables for an address of zero and found one at CSEG in BADSCOP. This
segment has the address of zero because it has not been initialized.

Ignoring the name confusions, the disassembly clearly shows the three INT 14H instruc­
tions at offsets 16H, lDH, and 29H. Use the Set Breakpoints command, BP, to set a sticky,
or permanent, breakpoint at each of these locations. In this way, any Interrupt 14H call
issued by TESTCOMM will be intercepted before it executes. Use the List Breakpoints
command, BL, to verify the breakpoints.

-BP 16 <Enter>

-BP 1 D <Enter>

-BP 2 9 <Enter>

-BL <Enter>
0 e 390E:0016 [CSEG:SENDCOMM+OS (0016)]

e 390E:001D [CSEG:TESTCOMM+OS (0010)]

2 e 390E: 0029 [CSEG: TESTCOMM+11 (0029)]

Section II: Programming in the MS-DOS Environment 597

ZTE (USA) 1007, Page 607

I

Part E: Programming Tools

The List Breakpoints command shows that breakpoint 0 is enabled and set to
SENDCOMM+05, or CS:0016H. Likewise, breakpoint 1 is at CS:OOlDH and breakpoint 2 is at
CS:0029H. It is important to trap on an Interrupt 14H so that the subsequent actions of the
Interrupt 14H service routine can be traced. Now allow the program to execute until it
encounters a breakpoint.

-G <Enter>
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=390E IP=001D NV UP EI PL ZR NA PE NC
390E:001D CD14 INT 14 ;BR1

The first Interrupt 14H encountered is the one at the second breakpoint, breakpoint 1, as
can be seen from the address at which execution broke. Also, SYMDEB was kind enough
to include the comment ;BRJ on the disassembled line, indicating that this is Break Re­
quest 1. The instruction at this location is a request for serial port status (AH = 3) and the
registers are loaded correctly. Execution can now be passed to the TSR by simply exe­
cuting the current instruction. (Remember that the instruction displayed at a breakpoint
has not yet been executed.)

-T <Enter>

AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOQO
DS=38EE ES=38EE SS=38FE CS=1FDO IP=010D NV UP DI PL ZR NA PE NC
1FD0:010D 2EF606090101 TEST Byte Ptr CS: [0109],01 CS:0109=00

The single Trace command has moved execution into the TSR. Note that the Interrupt
14H has changed the value of CS and jumped to location lODH off the new CS. This loca­
tion contains the first instruction of the COMMSCOPE procedure in the TSR. SYMDEB
does not know that a different segment is being executed and must be instructed to use a
different map table. Use the Open Symbol Map command, XO, to do this, instructing
SYMDEB to set the active map table to BADSCOP!.

-XO BADSCOP! <Enter>
-X?* <Enter>

CSEG: (0000}
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT
010A PORT 010B BUFPNTR 010D COMMSCOPE
020A VECTOR-INIT

0109 STATUS
018F CONTROL

The X?• command shows that the BADSCOP symbols are now the current map. They are
not usable, however, because the value of CSEG- zero-needs to be changed to the cur­
rent CS register. To correct this, use the SYMDEB Set Symbol Value command, Z. This
command can set any symbol in the current map table to any value; the value can be a
number, another symbol, or the contents of a register. In this case, set the value of CSEG
in BADSCOP! to the current contents of the CS register.

-Z CSEG CS <Eryter>
-X* <Enter>

38FE TESTCOMM
390E CSEG

[0000 BADSCOP]
[1FDO CSEG]

598 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 608

Article 18: Debugging in the MS-DOS Environment

The X• command confirms that BADSCOP! is now the selected symbol map and that the
CSEG within it has the value lFDOH. The CSEG segment in TESTCOMM is an entirely dif­
ferent entity and still has its correct value, which will be valid when the TSR returns.

With the symbols set, the debugging can begin by tracing the first few instructions. Be­
cause COMMSCOPE is not currently active, the routine should quickly pass the processing
on to the old interrupt handler.

-T5 <Enter>
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=1FD0 IP=0113 NV UP DI PL ZR NAPE NC
1FD0:0113 7476 JZ COMMSCOPE+7E (018B)
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=1FDO IP=018B NV UP DI PL ZR NA PE NC
1FD0:018B FF2E0301 JMP FAR [0103] DS:0103=0000
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=OOOO NV UP DI PL ZR NA PE NC
0000:0000 381E6715 CMP [1567],BL 08:1567=00
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=0004 NV UP DI PL ZR NA PE NC
0000:0004 BC2CE1 MOV SP,E12C
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=E12C BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=0007 NV UP DI PL ZR NA PE NC
0000:0007 2F DAS

STATUS is tested with a mask of OlH at CS:OlODH; the test sets the zero flag, indicating that
tracing is disabled. TheJZ to COMMSCOPE+7E (CS:018BH) is taken. At this address is a far
jump to the old Interrupt 14H handler at 1567:1375H. The jump is taken and then disaster
strikes. Instead of going to the correct address, processing is suddenly at OOOO:OOOOH. Any
wild jump is dangerous, but a far jump into low memory is exceptionally so. This explains
the system's locking up and requiring a cold boot to recover.

Now that the bug has been caught in the act, it should be a simple matter to determine
what went wrong. When the BADSCOP TSR installed itself, it was seen to place the correct
offset address at 0103H. Yet whenever the resident portion of the TSR tries to use the value
at that address, it finds all zeros. The initialization routine placed the address at the symbol
OLD_COMM_!NT (1FDO:Ol03H). If that location is examined, the following is found:

-DD OLD_COMMLINT L1 <Enter>

1FD0:0103 1567:1375

This is the correct address. Why, then, did the programs find zero there? Use the Display
Doublewords command to look at the same memory location again, this time using the
specific address 0103H rather than a program symbol.

-DD 103 L1 <Enter>

38EE:01D3 0000:0000

The dump of OLD_COMM_!NT looked at 1FDO:Ol03H, but the simple dump looked at
38EE:Ol03H. The explanation is clear when the values of the registers just before the far
jump are examined. The CS register contains lFDOH and the DS register contains 38EEH.

Section II: Programming in the MS-DOS Environment 599

ZTE (USA) 1007, Page 609

Part E: Programming Tools

This is the problem- there is a missing CS override on the indirect jump command.
When the TSR installed itself, CS and DS were the same because it was a .COM file. When
the TSR is entered as the result of an interrupt call, only CS is set; DS remains what it was
in the calling program. Without an override, the CPU assumed that the address of the desti­
nation of the far call was located at offset 103H from the DS register. This offset, unfortu­
nately, contained zeros, and the program locked up the system.

The problem is now easily corrected. Exit SYMDEB with the Quit command and edit the
program source so that the offending line reads

OLD_JUMP:
JMP CS:OLD_CQMM_INT

Debugging C programs with SYMDEB
One of SYMDEB's finest features is the ability to debug with source-line data from pro­
grams written in Microsoft C, Pascal, and FORTRAN. The actual lines of Cor FORTRAN
can be included in the debugging display, and the addresses for breakpoints show which
line of code the breakpoints are in. Combined with symbolic debugging, these features
provide a powerful tool that can significantly reduce debugging time for programs
written in a supported language.

The following rather complicated case illustrates SYMDEB at its best. The program
BADSCOP from the previous example was not completely debugged. Although the patch
to the BADSCOP code at OW_]UMP: did correct the disastrous problem that caused the
system to lock up, running the program in a realistic test situation reveals that a subtle
problem still remains that might be in either BADSCOP or one of the support programs.

Before we investigate the problem, a quick review of the programs in the COMMSCOP
system is in order. At the heart of the system is the Interrupt 14H intercept program
COMMSCOP. When executed, this program installs itself as a TSR and intercepts all Inter­
rupt 14H calls. (The in~orrect version of the COMMSCOP program is called BADSCOP.)
The installed COMMSCOP TSR passes all Interrupt 14H calls on to the real service routine
in the ROM BIOS until it is commanded to start tracing. The COMMSCMD routine controls
tracing. This control routine can request that COMMSCOP start, stop, or resume tracing for
a specific serial port. These commands are facilitated through Interrupt 60H, which is ·
recognized by the COMMSCOP TSR as a command request. When tracing is started, the
trace buffer is emptied by zeroing the trace count and setting the buffer pointer to the first
buffer location. When tracing is stopped by COMMSCMD's STOP command, a marker is
placed in the buffer to indicate the end of a trace segment. Tracing can be resumed with
COMMSCMD's RESUME command. Resuming a trace preserves collected data and places
new trace data after the marker in the trace buffer. The RESUME command differs from
the START command in that the buffer is not emptied.

Now the problem: When the serial data tracing is started with COMMSCMD (see Figure
18-5), data is collected normally. When COMMSCMD issues a STOP command and the
data is displayed with COMMDUMP (see Figure 18-7), the data appears normal. The
traced data ends with a stop mark just as it should. However, the RESUME command of

600 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 610

'l

Article 18: Debugging in the MS-DOS Environment

COMMSCMD causes the stop mark to be overwritten with collected data. After this, when­
ever COMMDUMP displays data an extra byte appears at the end of the data. The problem
could be with either BADSCOP or COMMSCMD. SYMDEB has the facilities to debug both
the routines at one~.

The first step in the debugging process is, as usual, to gather all the listings and design
documentation. As a part of this process, the symbol tables needed for SYMDEB must be
prepared. The process of preparing a symbol table for BADSCOP has already been ex­
plained; however, preparing the SYMDEB input and supporting listings for a C program is
slightly more complicated.

First, when the C program is compiled, three switches must be specified. (C switches are
case sensitive and must be entered exactly as shown.)

C>MSC /Fe /Zd /Od COMMSCMD; <Enter>

The /Zd switch produces an object file containing line-number information that corre­
sponds to the line numbers of the source file. The /Od switch disables optimization that
involves complex code rearrangement; localized optimization, peephole optimization, and
other simple forms of optimization are still performed. The /Od switch is not required, but
code rearrangement can make the resulting object code more difficult to debug.

The /Fe switch invokes a feature of C that is especially important for debugging with
SYMDEB: a listing that contains the C source lines and the generated assembler code inter­
mixed. The file is a .COD file; the command line shown above would produce the file
COMMSCMD.COD. Figure 18-12 shows the contents of COMMSCMD.COD.

Static Name Aliases

$S142_commands EQU
TITLE commscmd

commands

NAME commscmd.C

.287
_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
DGROUP GROUP CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
EXTRN _int86:NEAR
EXTRN _printf:NEAR
EXTRN _stricmp:NEAR
EXTRN _atoi:NEAR
EXTRN __ chkstk:NEAR
_DATA SEGMENT

Figure 18-12. COMMSCMD.COD. (more)

Section II: Programming in the MS-DOS Environment 601

ZTE (USA) 1007, Page 611

Part E: Programming Tools

$SG148 DB 'STOP', OOh

$SG151 DB 'START', OOh
.$SG154 DB 'RESUME', OOh

$SG157 DB Oah, 'Communications

$S 142-commands DB 'STOPPED',
ORG $+2

DB 'STARTED', OOh
ORG $+2

DB 'RESUMED', OOh

ORG $+2
ENDS _DATA

_TEXT SEGMENT

tracing %-s for port COM%-1d:', Oah, OOh

OOh

; :*** /**
;l*** * *
;:*** * COMMSCMD

;I**** *
; :••• * This routine controls the COMMSCOP program that has been in-

; : ** *
; : ***

*
*

stalled as a resident routine.
termined by the command line.

The operation performed is de­
The COMMSCMD .program is invoked

; :*** * as follows:

; : *** *
; : *** *
; : *** *

COMMSCMD [[cmd] [port]]

; :••• * where cmd is the command to be executed

;:••• * STOP stop trace

; : *** *
; : *** *
; : *** *
; : *** *

START flush trace buffer and start trace

RESUME resume a stopped trace

port is the COMM port to be traced (1 =COM.1 , 2=COM2, etc.)

*
*
*
*
*

*
*

*
*
*

; :••• * If cmd is omitted, STOP is assumed. If port is omitted, 1 is *
; :*** * assumed.

; : *** *
*
*

::*** **/
; : ***

iiinclude <stdlib.h>

#include <stdio.h>
#include <dos.h>

; : ***
; : ***
; : ***
i: ***
j II***

#define COMMSCMD Ox60

; : ***
; : ***

Line

_main

main(argc, argv)

int argc;

29
PUBLIC _main

PROC NEAR

*** 000000

*** 000001

*** 000003

*** 000006

*** 000009

*** OOOOOa

Figure 18-12. Continued.

602 The MS-DOS Encyclopedia

55

Sb ec

b8 22

e8 00

57

56

push bp
mov bp,sp

00 mov ax,34
00 call _chkstk

push di

push si

(more)

ZTE (USA) 1007, Page 612

; :*** char *argv[];

; : *** {
Line 31

argc = 4
argv = 6

cmd = -4

port = -6
result = -2

inregs = -34

outregs = -20

Article 18: Debugging in the MS-DOS Environment

; : ***
; : ***
; : ***
; : ***
; : ***

int cmd, port, result;

static char commands [3] [1 OJ
union REGS inregs, outregs;

("STOPPED", "STARTED", "RESUMED"};

cmd = 0;

; Line 36

*** OOOOOb

; : *** port = 0;

; Line 37

*** 000010

; : ***
; : *** if (argc >
; Line 39

*** 000015

*** 000019

*** 00001b

; : ***
; Line 40

c7 46 fc 00 00

c7 46 fa 00 00

1)

83 7e 04 01
7f 03
e9 Sd 00

$JCC25:

mov

mov

crop
jg

WORD PTR [bp-4],0

WORD PTR [bp-6],0

WORD PTR [bp+4],1

$JCC25

jmp $1145

;cmd

;port

;argc

; : *** if (0 == stricmp(argv[1], "STOP"))

; Line 41

*** 00001e b8 00 00 mov ax, OFFSET DGROUP:$SG148

*** 000021 50 push ax

*** 000022 8b Se 06 mov bx, [bp+6] ;argv

*** 000025 ff 77 02 push WORD PTR [bx+2]

*** 000028 e8 00 00 call _stricmp

*** 00002b 83 c4 04 add sp,4

*** 00002e 3d 00 00 cmp ax,O

*** 000031 74 03 je $JCC49

*** 000033 e9 08 00 jmp $1147

$JCC4 9:

; : *** cmd 0;

; Line 42

*** 000036 c7 46 fc 00 00 mov WORD PTR [bp-4],0 ;cmd

; : *** else if (0 -- stricmp (argv [1], "START"))

Figure 18-12. Continued. (more)

Section /1· Programming in the MS-DOS Environment 603

~

ZTE (USA) 1007, Page 613

Part E: Programming Tools

Line 43

*** 00003b e9 3d 00 jmp $1149

$1147:

*** 00003e b8 05 00 mov ax,OFFSET DGROUP:$SG151

*** 000041 50 push ax

*** 000042 8b 5e 06 mov bx, [bp+6] ;argv

*** 000045 ff 77 02 push WORD PTR [bx+2]

*** 000048 e8 00 00 call _stricmp

*** 00004b 83 c4 04 add sp,4

*** 00004e 3d 00 00 cmp ax,O

*** 000051 74 03 je $JCC81

*** 000053 e9 08 00 jmp $1150

$JCC81:

; : *** cmd 1;

; Line 44

*** 000056 c7 46 fc 01 00 mov WORD PTR [bp-4]' 1 ;cmd

; : *** else if (0 == stricmp(argv[1], "RESUME"))

; Line 45

*** 00005b e9 1d 00 jmp $1152

$1150:

*** 00005e b8 Ob 00 mov ax, OFFSET DGROUP:$SG154

*** 000061 50 push ax

*** 000062 8b 5e 06 mov bx, [bp+6] ;a·rgv

*** 000065 ff 77 02 push WORD PTR [bx+2]

*** 000068 e8 00 00 call _stricmp

*** 00006b 83 c4 04 add sp,4

*** 00006e 3d 00 00 cmp ax,O

*** 000071 74 03 je $JCC113

*** 000073 e9 05 00 jmp $1153

$JCC113:

; : *** cmd 2;

; Line 46

*** 000076 c7 46 fc 02 00 mov WORD PTR [bp-4], 2 ;cmd

; : *** }

; Line 47
$1153:

$1152:

$1149:

; : ***
; : ** * if (argc 3)

; Line 49
$1145:

*** 00007b 83 7e 04 03 cmp WORD PTR [bp+4] '3 ;argc

*** 00007f 74 03 je $JCC127

*** 000081 e9 1b 00 jmp $1155

$JCC127:

; : ** *
; Line 50

; : *** port atoi(argv[2]);

Figure 18-12. Continued.
(more)

604 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 614

Article 18: Debugging in the MS-DOS Environment

Line 51

*** 000084 Sb Se 06 mov bx, [bp+6] ;argv
*** 000087 ff 77 04 push WORD PTR [bx+4]
*** 00008a e8 00 00 call _atoi

*** 00008cj 83 c4 02 add sp,2
*** 000090 89 46 fa mov [bp-6],ax ;port

; : *** if (port > 0)
; Line 52

*** 000093 83 7e fa 00 cmp WORD PTR [bp-6],0 ;port
*** 000097 7f 03 jg $JCC151

*** 000099 e9 03 00 jmp $I156

$JCC151:

; : *** port = port-1;
; Line 53

*** 00009c ff 4e fa dec WORD PTR [bp-6] ;port
; : ***)

; Line 54

$I156:

; : ** *
i: *** inregs.h.ah cmd;

; Line 56

$I155:

*** 00009f Sa 46 fc mov al, [bp-4] ;cmd
*** 0000a2 88 46 df mov [bp-33],al

; : *** inregs.x.dx = port;
; Line 57

*** OOOOaS Sb 46 fa mov ax, [bp-6] ;port
*** 0000a8 89 46 e4 mov [bp-28],ax

i: *** result = int86(COMMCMD, &inregs,. &outregs) ;
; Line 58

*** OOOOab Sd 46 ec lea ax, [bp-20]

'0'""•'4 *** OOOOae so push ax

*** OOOOaf Sd 46 de lea ax, [bp-34] ;lnregs
*** 0000b2 so push ax

*** 0000b3 b8 60 00 mov ax,96

*** 0000b6 so ptish ax
*** 0000b7 e8 00 00 call _int86

*** OOOOba 83 c4 06 add sp, 6

*** OOOObd 89 46 fe mov [bp-2],ax ;result

; : ** *
; : ***
; : *** printf("\nCommunications tracing %s for port COM%1d:\n",

; : *** commands [cmd], port + 1);
; Line 62

*** OOOOcO Sb 46 fa mov ax, [bp-6] ;port
*** OOOOc3 40 inc ax

*** 0000c4 50 push ax

*** OOOOcS Sb 46 fc mov ax, [bp-4] ;cmd

*** 0000c8 Sb c8 mov ex, ax
*** OOOOca d1 eO shl ax, 1

*** OOOOcc d1 eO shl ax, 1

*** OOOOce 03 c1 add ax, ex
*** OOOOdO d1 eO shl ax,1

Figure 18-12. Continued. (more)

Section 11- Programming in the MS-DOS Environment 605

ZTE (USA) 1007, Page 615

PartE: Programming Tools

*** 0000d2 05 40 00

50

add ax,OFFSET DGROUP:$S142_comrnands

*** 0000d5

*** 0000d6

*** 0000d9

*** OOOOda

*** OOOOdd

i: ***)

; Line 63

*** OOOOeO

*** 0000e1

*** 0000e2

*** OOOOe4

*** 0000e5

_main ENDP
_TEXT ENDS

END

Figure 18-12. Continued.

b8 12 00

50

e8 00 00
83 c4 06

Se
Sf
8b es
Sd
c3

$EX138:

push

mov

push

call

add

pop

pop
mov

pop
ret

ax
ax,OFFSET DGROUP:$SG157

ax
_printf

sp, 6

si

di
sp,bp

bp

After the C program is compiled, it must be linked using the /LI switch to indicate that the
line number information is to be maintained:

C>LINK COMMSCMD /MAP /LI; <Enter>

The /MAP switch is still required to generate a map file of public names for use in building
the symbol file, which is created in the usual manner:

C>MAPSYM COMMSCMD <Enter>

Everything needed to debug COMMSCMD and BADSCOP is now available. The first test is
an attempt to start tracing. To invoke SYMDEB, type

C>SYMDEB COMMSCMD.SYM BADSCOP.SYM COMMSCMD.EXE START 1 <Enter>

SYMDEB first loads the symbol files for COMMSCMD and BADSCOP and then loads the
.EXE file for COMMSCMD. BADSCOP is already in memory, having been loaded by simply
running it. (It then stays resident.) The last two entries in the command line load the com­
mand tail for COMMSCMD with a start request for COMl. SYMDEB responds with

Microsoft (R) Symbolic Debug Utility Version 4.00

Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

Use the Register and Examine Symbol Map commands to display the initial register values
and symbol table information.

606 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 616

Article 18: Debugging in the MS-DOS Environment

-R <Enter>

AX=OOOO 8X=OOOO CX=1928 DX=OOOO SP=0800 8P=OOOO SI=OOOO DI=OOOO
DS=2CAO ES=2CAO SS=2E85 CS=2C80 IP=010F NV UP EI PL NZ NA PO NC
_TEXT:_astart:
2C80:010F 8430
-X* <Enter>
[2C80 COMMSCMD]

[2C80 _TEXT]
2E08 DGROUP

0000 8ADSCOP
0000 CSEG

-X?* <Enter>
9876 _acrtused
_TEXT: (2C80)
0010 _main
OOF9 _chkstk
0189 _int86
02C2 _stbuf
0458 _cinit
0572 _dosretO
05EA __NMSG_WRITE
OF6D _flsbuf
1098 _forcdecpt
1125 ___myalloc
11 92 _flushall
11D1 _nmalloc
1351 _amalloc
1 4AD _Jnkctl
DGROUP: (2E08)
0094 STKHQQ
009A _abrktb
018C _iob2
021E _errno

0226 _osmajor
0228 _oserr
0240 _argv
0278 _cflush
028A _asegr
03DO ___bufout

MOV AH,30

9876 _acrtmsg

OOF6 _atoi
010F _astart
023A _printf
0361 _ftbuf
0507 _exit
057A _dosretax
0613 _output
1098 _fassign
1098 _cfltcvt
1167 _strlen
11C3 _free
1217 _write
1432 _amexpand

0096 _asizds
OOEA _abrktbe
0204 _lastiob
0220 _umaskval
0226 _dosvermajor
0228 _doserrno
0242 _environ
027A _asegds
028C _amblksiz
05DO ___bufin

i I 0 I

01AB _cintDIV 01AE _amsg_exit
0270 _strcmpi 0270 _stricmp
03E7 _cat ox 043C _nullcheck
051E _exit 054A _ctermsub
0586 _maperror 058A __NMSG_TEXT
OE22 _setargv OF07 _setenvp
1098 _crop zeros 1098 _positive
1098 _fflush 1103 :_isatty
1182 _ultoa 118C _fptrap
11C3 _nfree 11D1 _rnalloc
12F1 _cltoasub 12FD _cxtoa
146C _am link 148E _amallocbrk

0098 _atopsp
OOEA _abrkp OOEC _iob
0212 _aintdiv 0216 _fac

0222 _pspadr 0224 _psp
0227 _osminor 0227 _dosverminor
022A _osfile 023E _argc
0244 _child· 0246 _csigtab
0286 _aseg1 0288 _asegn
0292 _fpinit 03A8 _edata
07DO _end

The Register command shows that the first instruction to be executed will be at symbol
astart in the TEXT segment. (Note that C puts a single underscore in front of all public
library and routine names; a double underscore indicates routines for C's internal use.) The
Examine Symbol Map command reveals that the symbol map COMMSCMD! has two seg­
ments, _TEXT and DGROUP, with _TEXT currently selected. The segment in BADSCOP!,
CSEG, has no value assigned to it because SYMDEB doesn't know where it is; one of the
debugging tasks is to determine the location of CSEG.

C places initialization and preamble code at the front of its object modules. This code can
be skipped during debugging, so this example begins at the label_ main. Examination of
the code at this label using the Disassemble command reveals the following:

Section II: Programming in the MS-DOS Environment 607

ZTE (USA) 1007, Page 617

Part E: Programming Tools

-u _main <Enter>
commscmd.C
29: int argc;
_TEXT:_main:
2CB0:0010 55 PUSH BP
2CB0:0011 BBEC MOV BP,SP
2CB0:0013 B82200 MOV AX,0022
2CB0:0016 EBEOOO CALL _chkstk

2CB0:0019 57 PUSH DI

This disassembly shows the way source-line information is displayed. These instructions
are generated by line 29 of COMMSCMD.C. When the disassembly is compared with the
listing in Figure 18-12, the same instructions are seen. However, their addresses are differ­
ent. The addresses in the disassembly are relative to the start of the segment _TEXT, but
the addresses in the listing are relative to the start of_ main. SYMDEB allows address ref­
erences to be made relative to a symbol, so breakpoints can be set as displacements from
_main and the addresses shown in the listing can be used.

Because the location of the problem being debugged is not known, breakpoints must be
placed strategically throughout COMMSCMD to trace the execution of the program. Use
the Set Breakpoints command to set the breakpoints.

-BP _main+1e <Enter>
-BP _main+36 <Enter>
-BP _main+56 <Enter>
-BP _main+76 <Enter>
-BP _main+7b <Enter>
-BP _main+9c <Enter>
-BP _main+b7 <Enter>
-BP _main+e5 <Enter>
-BL <Enter>
0 e 2CB0:002E [_TEXT:_main+1E (002E)] commscmd.C:41
1 e 2CB0:0046 [_TEXT:_main+36 (0046) l commscmd.C:42
2 e 2CB0:0066 [_TEXT:_main+56 (0066) l commscmd.C:44
3 e 2CB0:0086 [_TEXT:__main+76 (0086) l commscmd.C:46
4 e 2CB0:008B [_TEXT:__main+7B (008B)] commscmd.C:49
5 e 2CBO:OOAC [_TEXT:__main+9C (00AC)] commscmd.C:53
6 e 2CBO:OOC7 [_TEXT:__main+B7 (00C7)] commscmd.C:58
7 e 2CBO:OOF5 [_TEXT:__main+E5 (00F5)] commscmd.C:63

The List Breakpoints command shows the breakpoint addresses in three ways: first the
absolute segment:offset address, then the displacement from the label_ main, and finally
the line number in COMMSCMD.C.

The first part of the COMMSCMD program decodes the arguments and sets the appro­
priate values for cmd and port. If there are no arguments, this decoding is skipped; if there
are arguments, the decoding begins at line 41, so the first breakpoint is set there. If the cri­
terion of line 41 is met (the first argument is STOP), then line 42 is executed. The second
breakpoint is set there. Reaching the second breakpoint means that a STOP command was
properly decoded. If the command was not STOP, execution continues at line 43. If this

608 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 618

Article 18: Debugging in the MS-DOS Environment

test is passed, line 44 is executed. This is the location of the third breakpoint. If the test at
line 44 fails but the one at line 45 is passed, then the breakpoint at line 46 is executed.
Whether or not one of the tests passes, execution ends up at line 49. At this point, the pro­
gram tests for the presence of a second operand. If there is a second operand, execution
traps at line 53, where the program decrements the port number to put it in the proper
form for the Interrupt 60H handler. Execution will then always, stop in line 58, just before
the call to _int86. (_int86 is a library routine that loads registers and executes INT
instructions.)

When the program is run with START 1 in the command tail, it gives the following results:

-G <Enter>
AX=0022 BX=OF82 CX=0019 DX=0098 SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC
41: if (0 stricmp(argv[1],"STOP"))
2CB0:002E 883600 MOV AX,0036 ;BRO
-G <Enter>
AX=OOOO BX=415A CX=OOOO DX=0098
DS=2E08 ES=2E08 SS=2E08 CS=2CBO
44: cmd = 1;

SP=OF7E BP=OFA4 SI=0089 0!=1065
IP=0066 NV UP EI PL ZR NA PE NC

2CB0:0066 C746FC0100 MOV Word Ptr [BP-04],0001 ;BR2 SS:OFAO=OOOO
-G <Enter>
AX=OOOO BX=415A CX=OOOO DX=0098 SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOBB NV UP EI PL ZR NA PE NC
49: if (argc == 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:OFA8=0003
-G <Enter>
AX=0001 BX=OODO CX=OOOO DX=OOOO SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOAC NV UP EI PL NZ NA PO NC
5 port = port-1;
2CB0:00AC FF4EFA DEC Word Ptr [BP-06] ;BR5 SS:OF9E=0001
-G <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF78 BP=0FA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOC7 NV UP EI PL ZR NA PE NC
2CBO:OOC7 EBEFOO CALL _int86 ;BR6

The first break occurs at line 41, indicating that one or more arguments were present in
the command line. The next break is at line 44, where the program sets the cmd code for
Interrupt 60H to 1, the correct value for a start request. The next break occurs at line 49,
where the program checks the number of arguments. If this number is 3, then there is a
second argument in the command line. (Remember that, in C, the first argument is the
name of the routine, so an argument count of 3 actually means that there are 2 arguments
present.) The number of arguments is at BP+04, or SS:OFA8H, and it is indeed 3. Therefore,
the next break is at line 53. The program decrements the current value of port, leaving a
value of 0, which is what Interrupt 60H expects to see for COM1.

Continuing execution causes a break just before the call to _ int86. To validate that
the Interrupt 60H call is being made correctly, set a breakpoint just before the INT 60H
instruction is issued. Unfortunately, no listing of_ int86 is available, so no alternative

Section /1· Programming in the MS-DOS Environment 609

4

ZTE (USA) 1007, Page 619

PartE: Programming Tools

exists but to trace the execution of the routine until the INT instruction is issued. The
details of the processing are of no interest to this debugging session, so they can be
ignored until an INT 60H is seen. (The trace offers a great deal of information about how C
interfaces with subroutines. Studying the trace would be educational but is beyond the
scope of this example.)

-T 5 <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F76 BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01B9 NV UP EI PL ZR NA PE NC
_TEXT:_int86:
2CB0:01B9 55
AX=0060 BX=OODO

PUSH BP
CX=OOOO DX=OOOO SP=0F74 BP=OFA4 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BA NV UP EI PL ZR NAPE NC
MOV BP, SP 2CB0:01BA 8BEC

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF74 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BC NV UP EI PL ZR NA PE NC
2CB0:01BC 56 PUSH SI
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF72 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BD NV UP EI PL ZR NA PE NC
2CB0:01BD 57 PUSH DI
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF70 BP=OF74 SI=0089 DI=1065
DS=2E08. ES=2E08
2CB0:01BE 83ECOA
-T 5 <Enter>

SS=2E08 CS=2CBO IP=01BE NV UP EI PL ZR NA PE NC
SUB SP, +OA

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01C1 NV UP EI PL NZ AC PE NC
2CB0:01C1 C646F6CD MOV Byte Ptr [BP-OA],CD
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089

SS:OF6A=BE
DI=1065

DS=2E08 ES=2E08
2CB0:01C5 8B4604
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CB0:01C8 8846F7
AX=0060 BX=OODO
DS=2E08 ES=2E08

SS=2E08 CS=2CB0 IP=01C5
MOV AX, [BP+04]

CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CBO IP=01C8

NV UP EI PL NZ AC PE NC
SS:OF78=0060

BP=OF74 SI=0089 DI=1065
NV UP EI PL NZ AC PE NC

MOV [BP-09] ,AL
CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CB0 IP=01CB

SS: OF6B=01
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC
2CBO: 01 CB 3C25 CMP AL, 25 ; '%'

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01CD NV UP EI PL NZ AC PO NC
2CB0:01CD 740A JZ _int86+20 (01D9)
-T 5 <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08
2CB0:01CF 3C26
AX=0060 BX=OODO

SS=2E08 CS=2CBO IP=01CF NV UP EI PL NZ AC PO NC
CMP AL, 26 ; ' & '

CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01D1 NV UP EI PL NZ AC PE NC
2CB0:01D1 7406
AX=0060 BX=OODO CX=OOOO
DS=2E08 ES=2E08 SS=2E08
2CB0:01D3 C646F8CB
AX=0060 BX=OODO CX=OOOO

JZ _int86+20 (01D9)
DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
CS=2CBO IP=01D3 NV UP EI PL NZ AC PE NC

MOV Byte Ptr [BP-08],CB SS:OF6C=BO
DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01D7 NV UP EI PL NZ AC PE NC

610 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 620

r

2CB0:01D7 EBOC

AX=0060 BX=OODO
DS=2E08 ES=2E08

2CB0:01E5 8C56F4
-·T 5 <Enter>

Article 18: Debugging in the MS-DOS Environment

JMP _int86+2C (01E5)

CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
SS=2E08 CS=2CB0 IP=01E5 NV UP EI PL NZ AC PE NC

MOV [BP-OC], SS SS: OF68=0F74

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065

DS=2E08 ES=2E08
2CB0:01E8 8D46F6

AX=OF6A BX=OODO

DS=2E08 ES=2E08

2CB0:01EB 8946F2
AX=OF6A BX=OODO

DS=2E08 ES=2E08
2CB0:01EE 8B7E06

AX=OF6A BX=OODO
DS=2E08 ES=2E08

2CB0:01F1 8B05

AX=0100 BX=OODO

DS=2E08 ES=2E08

2CB0:01F3 8B5D02
-T 5 <Enter>

SS=2E08

CX=OOOO

SS=2E08

CX=OOOO

SS=2E08

CX=OOOO
SS=2E08

CX=OOOO
SS=2E08

CS=2CB0 IP=01E8
LEA AX, [BP-OA]

DX=OOOO SP=OF66

CS=2CBO IP=01EB
MOV [BP-OE],AX

DX=OOOO SP=OF66

CS=2CBO IP=01EE
MOV DI, [BP+06]

DX=OOOO SP=OF66
CS=2CBO IP=01F1

MOV AX, [DI]

DX=OOOO SP=OF66

CS=2CBO IP=01F3

MOV BX, [DI+02]

NV UP EI PL NZ AC PE NC

SS:OF6A=60CD
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC

SS:OF66=0060
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC

SS:OF7A=OF82
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS.:OF82=01 00
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS:OF84=0000

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=OF82

DS=2E08 ES=2E08

2CB0:01F6 8B4D04
AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:01F9 8B5506

AX=0100 BX=OOOO

DS=2E08 ES=2E08
2CB0:01FC 8B7508

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:01FF 8B7DOA

AX=0100 BX=OOOO

SS=2E08 CS=2CBO IP=01F6
MOV CX, [DI+04]

CX=OOOO DX=OOOO SP=OF66

SS=2E08 CS=2CB0 IP=01F9
MOV DX, [DI+06]

CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CBO IP=01FC

MOV SI, [DI+OB]

CX=OOOO DX=OOOO SP=OF66

SS=2E08 CS=2CBO IP=01FF

MOV DI, [DI+OA]

CX=OOOO DX=OOOO SP=OF66

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=0202

2CB0:0202 55
-T 5 <Enter>

PUSH BP

NV UP EI PL NZ AC PE NC

DS:OF86=0000
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC
DS:OFBB=OOOO

BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS:OFBA=OOOO

BP=OF74 SI=OOOO DI=OF82

NV UP EI PL NZ AC PE NC

DS:OFBC=OOOO

BP=OF74 SI=OOOO DI=OOOO
NV UP EI PL NZ AC PE NC

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF64 BP=OF74 SI=OOOO DI=OOOO

DS=2E08 ES=2E08

2CB0:0203 83EDOE

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:0206 FF5EOO

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2EOB:OF6A CD60

AX=0100 BX=OOOO

DS=2E08 ES=2E08

SS=2E08 CS=2CBO IP=0203
SUB BP,+OE

CX=OOOO DX=OOOO SP=OF64
SS=2E08 CS=2CBO IP=0206

CALL FAR [BP+OO]

CX=OOOO DX=OOOO SP=OF60
SS=2E08 CS=2E08

INT 60
CX=OOOO DX=OOOO

SS=2E08 CS=1313

IP=OF6A

SP=OF5A

IP=0190

1313:0190 BOFCOO CMP AH,OO

NV UP EI PL NZ AC PE NC

BP=OF66 SI=OOOO DI=OOOO

NV UP EI PL NZ AC PE NC
SS:OF66=0F6A

BP=OF66 SI=OOOO DI=OOOO

NV UP EI PL NZ AC PE NC

BP=OF66 SI=OOOO DI=OOOO

NV UP DI PL NZ AC PE NC

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF5A BP=OF66 SI=OOOO DI=OOOO

DS=2EOB ES=2E08 SS=2E08 CS=1313 IP~0193 NV UP DI PL NZ NA PO NC

1313:0193 7521 JNZ 01B6

Section /1· Programming in the MS-DOS Environment 611

ZTE (USA) 1007, Page 621

Part E: Programming Tools

When the Interrupt 60H call is encountered at offset OF6AH, the values passed to it can
be checked. AH contains 1 and DX contains 0-the correct values for START COMl.

In order to use the symbols for BADSCOP, use the Open Symbol Map command, XO, to
switch to the correct symbol map. Then, because the value of CSEG is not defined in the
map, use the Set Symbol Value command to set CSEG to the current value of CS. (CS was
changed to the correct value for BADSCOP when the program executed the INT 60H
instruction.)

-XO BAOSCOP! <Enter>
-z CSEG CS <Enter>
-X?* <Enter>

CSEG: (1313)
0100 INITIALIZE 0103 OLO_COMMLINT 0107 COUNT
010A PORT 010B BUFPNTR 0100 COMSCOPE
020A VECTOR_INIT

0109 STATUS
0190 CONTROL

Because the BADSCOP symbols now have meaning, a great deal of trouble can be avoided
by setting a breakpoint at CONTROL, the entry point for Interrupt 60H, so that it will no
longer be necessary to trace the _int86 routine to find the INT 60H command. Execution
will automatically stop when the Interrupt 60H handler is entered.

-BP CONTROL <Enter>
-BL <Enter>
0 e 2CB0:002E [COMMSCMO!_TEXT:_main+1E (002E)] commscmd.C:41
1 e 2CB0:0046 [COMMSCMO!_TEXT:_main+36 (0046) l commscmd.C:42

2 e 2CB0:0066 [COMMSCMO!_TEXT:_main+56 (0066) l commscmd.C:44
3 e 2CB0:0086 [COMMSCMO!_TEXT:_main+76 (0086) l commscmd.C:46
4 e 2CBO: 008B [COMMSCMO!_TEXT:_main+7B (008B)] commscmd.C:49
5 e 2CBO:OOAC [COMMSCMO!_TEXT:_main+9C (OOAC)] commscmd.C:53
6 e 2CB0:00C7 [COMMSCMO!_TEXT:_main+B7 (00C7)] commscmd. C: 58
7 e 2CBO:OOF5 [COMMSCMO!_TEXT:_main+E5 (00F5)] commscmd.C:63
8 e 1313:0190 [CSEGS:CONTROL]

With the housekeeping tasks done, the business of debugging BADSCOP can begin. The
first thing CONTROL does is check for a stop request. If no stop request is present, the
routine jumps to the check for a start request. (The first test and jump were already com­
plete when the trace ended above.) The test for a start request is passed. CONTROL
places the port number in a local variable, resets the buffer pointer and the buffer count,
and turns tracing status on. With all this complete, CONTROL returns.

-T 5 <Enter>
AX=01BB BX=E81E
OS=2E08 ES=2E08
1313:0186 80FC01
AX=01BB BX=E81E
OS=2E08 ES=2E08
1313:01B9 751C
AX=01BB BX=E81E
OS=2E08 ES=2E08

CX=3F48 OX=OOOO BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313

SP=OF5A
IP=01 B6 NV UP OI PL NZ NA PO NC

CMP AH, 01
CX=3F48 OX=OOOO SP=OF5A BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313 IP=01B9 NV UP OI PL ZR NAPE NC

JNZ CONTROL+47 (0107)
CX=3F48 OX=OOOO SP=OF5A BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313 IP=01BB

1313:01BB 2E88160A01 MOV CS: [PORT], OL
NV UP OI PL ZR NA PE NC

CS:010A=OO

612 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 622

Article 18: Debugging in the MS-DOS Environment

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01CO NV UP D1 PL ZR NAPE NC
1313:01CO 2EC7060B010202 MOV Word Ptr CS: [BUFPNTR],VECTOR_1N1T (0209) CS:010B=0202
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2EOB ES=2E08 .SS=2E08 CS=1313 1P=01C7 NV UP D1 PL ZR NAPE NC
1313:01C7 2EC70607010000 MOV Word Ptr CS: [COUNT],OOOO CS:0107=0002
-·T 5 <Enter>

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01CE NV UP D1 PL ZR NAPE NC
1313:01CE 2EC606090101 MOV Byte Ptr CS: [STATUS],01 CS:0109=01
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01D4 NV UP D1 PL ZR NAPE NC
1313:0104 EB2B JMP CONTROL+71 (0201)
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=0201 NV UP D1 PL ZR NAPE NC
1313:0201 CF
AX=01BB BX=E81E
DS=2E08 ES=2E08

IRET
CX=3F48 DX=OOOO
SS=2E08 CS=2E08

2E08:0F6C CB RETF

SP=OF60
1P=OF6C

BP=OF66 S1=lCE7 01=7400
NV UP EI PL NZ AC PE NC

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF64 BP=OF66 SI=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=2CBO 1P=0209 NV UP E1 PL NZ AC PE NC
2CB0:0209 5D POP BP

As can be seen from the trace, CONTROL performed correctly, so execution of the routine
can continue.

-.G <Enter>

Communications tracing STARTED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=OFA6 BP=OOOO 51=0089 01=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO 1P=OOF5 NV UP E1 PL NZ NA PE NC
2CBO:OOF5 C3 RET ;BR7

COMMSCMD has written the message to the user and trapped at the breakpoint set at the
end of _main. The Examine Symbol Map command now shows that SYMDEB has auto­
matically switched to the symbol map for COMMSCMD.

-X* <Enter>

[2CBO COMMSCMD]
[2CB0 _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

No problems have been encountered with the START command; now the same process of
checking COMMSCMD and BADSCOP must be repeated for the STOP command. (Even if
problems had been found with the START command, it would be imprudent not to test the
other commands- they could have errors, too.) SYMDEB could be exited and restarted
with new commands, but this would mean the loss of the painfully created set of break­
points. Instead, a new copy of COMMSCMD is loaded without leaving SYMDEB. One
problem with this, however, is that when SYMDEB loads an .EXE file, it adds the value of
the initial CS register to the addresses of the segments in the symbol map whose name

Section IL Programming in the MS-DOS Environment 613

ZTE (USA) 1007, Page 623

PartE: Programming Tools

matches the .EXE file. This is fine the first time the program loads, but the second time, all
the values are doubled and therefore incorrect. To avoid this error, the addresses must be
adjusted before the load. Use the Set Symbol Value command to subtract CS from each seg­
ment name in COMMSCMD!. The Examine Symbol Map command shows the new values.

-z -TEXT _TEXT-CS <Enter>
-z OGROUP OGROUP-CS <Enter>
-x* <Enter>
[2CBO COMM5CMO]

[0000 _TEXT]
0158 OGROUP

0000 BA05COP
1313 C5EG

The Name File or Command-Tail Parameters command, N, and the Load File or Sectors
command, L, can now be used to load a new copy of COMMSCMD.EXE.

-N COMMSCMO.EXE <Enter>
-L <Enter>
-x* <Enter>
[2CBO COMMSCMO]

[2CB0 _TEXT]
2E08 OGROUP

0000 BA05COP
1313 C5EG

Notice that the segment values inside COMMSCMD! are the same as they were when the
program was first loaded. Use the Name command again, this time to set the command tail
to contain a STOP command for COMl. The breakpoint table from the first execution is
still set, so the program can now be traced in the same way.

-N STOP 1 <Enter>
-G <Enter>
AX=0022 BX=OF84 CX=0019 OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 55=2E08 C5=2CB0 1P=002E NV UP E1 PL NZ NA PO NC
41: if (0 == stricmp(argv[1],"5TOP"))
2CB0: 002E B83600 MOV AX, 0036 ; BRO

-G <Enter>
AX=OOOO BX=415A CX=OOOO OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 S5=2E08 C5=2CB0 1P=0046 NV UP E1 PL ZR NA PE NC
42: cmd = 0;
2CB0:0046 C746FCOOOO MOV Word Ptr [BP-04],0000 ;BR1 5S:OFA2=0000

-G <Enter>
AX=OOOO BX=415A CX=OOOO OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 ES=2E08 55=2E08 C5=2CB0 1P=008B NV UP E1 PL ZR NA PE NC
49: if (argc 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 55:0FAA=0003

-G <Enter>
AX=0001 BX=OOOO CX=OOOO OX=OOOO 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 55=2E08 C5=2CBO 1P=OOAC NV UP E1 PL NZ NA PO NC
53: port = port-1;

614 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 624

.·1 ·.·.

Article 18: Debugging in the MS-DOS Environment

2CBO:OOAC FF4EFA
-'G <Enter>
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CBO:OOC7 EBEFOO

DEC Word Ptr [BP-06] ;BRS SS:OFA0=0001

CX=OOOO DX=OOOO SP=OF7A BP=OFA6 SI=0089 DI=1065
SS=2E08 CS=2CBO IP=00C7 NV UP EI PL ZR NA PE NC

CALL _int86 ;BR6

COMMSCMD detected that this is a stop request for COMl and set the arguments for
_int86 correctly. Because a breakpoint is now set at CONTROL, tracing until the Interrupt
60H call is found is not necessary. Simply executing the program will cause it to stop at
CONTROL.

-G <Enter>
AX=001E BX=3F48 CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0190 NV UP DI PL NZ AC PO NC
CSEG:CONTROL:
1313:0190 80FCOO CMP AH,OO ;BR8

The registers are set correctly for a stop request on COMl (AH = 0, DX = 0). The routine
can now be traced to check for correct operation. First, however, a quick look at the sym­
bol maps shows that SYMDEB has automatically switched to BADSCOP's symbols.

-X* <Enter>
2CBO COMMSCMD

2CBO _TEXT
2E08 DGROUP

[0000 BADSCOP]
[1313 CSEG]

-T 5 <Enter>
AX=001E BX=3F48
DS=2E08 ES=2EOB
1313:0193 7521
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0195 1E
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0196 53
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0197 OE
AX=001E
DS=2E08

BX=3F48
ES=2E08

1313:0198 1F
-T 5 <Enter>

CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0193 NV UP DI PL ZR NAPE NC

JNZ CONTROL+26 (01B6)
CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0195 NV UP DI PL ZR NAPE NC

PUSH DS
CX=OOOO DX=OOOO SP=OFSA BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0196 NV UP DI PL ZR NAPE NC

PUSH BX
CX=OOOO DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0197 NV UP. DI PL ZR NA PE NC

PUSH CS
CX=OOOO DX=OOOO SP=OF56 BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0198 NV UP DI PL ZR NAPE NC

POP DS

AX=001E BX=3F48 CX=OOOO
DS=1313 ES=2E08 SS=2E08
1313:0199 C606090100

DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
CS=1313 IP=0199 NV UP DI PL ZR NAPE NC

MOV Byte Ptr [STATUS], 00 DS: 01 09=01
AX=001E
DS=1313

BX=3F48
ES=2E08

CX=OOOO
SS=2E08

1313:019E 8B1EOB01
AX=001E BX=0202 CX=OOOO

DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
CS=1313 IP=019E

MOV BX, [BUFPNTR]
NV UP DI PL ZR NA PE NC

DS:010B=0202

DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A2 NV UP DI PL ZR NAPE NC

(more)

Section II: Programming in the MS-DOS Environment 615

ZTE (USA) 1007, Page 625

Part E: Programming Tools

1313:01A2 C607BO MOV Byte Ptr [BX],BO 05:0202=80
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF6B SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01A5 NV UP DI PL ZR NAPE NC
1313:01A5 C64701FF MOV Byte Ptr [BX+01),FF DS:0203=FF
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB
1313:01A9 FF060701

CS=1313 IP=01A9 NV UP DI PL ZR NAPE NC
INC Word Ptr [COUNT) 05:0107=0000

-T 5 <Enter>
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01AD NV UP DI PL NZ NA PO NC
1313:01AD FF060701 INC Word Ptr [COUNT) 05:0107=0001
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01B1 NV UP DI PL NZ NA PO NC
1313:01B1 SB POP BX
AX=001E BX=3F4B CX=OOOO DX=OOOO SP=OFSA BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01B2 NV UP DI PL NZ NA PO NC
1313:01B2 1F
AX=001E BX=3F4B
DS=2EOB ES=2EOB
1313:01B3 EB4C
AX=001E BX=3F4B
DS=2EOB ES=2EOB
1313:0201 CF

POP DS
CX=OODO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI~E903

SS=2EOB CS=1313 IP=01B3 NV UP DI PL NZ NA PO NC
JMP CONTROL+71 (0201)

CX=OOOO DX=OOOO SP=OFSC BP=OF6B SI=7400 DI=E903
SS=2EOB CS=1313 IP=0201

IRET
NV UP DI PL NZ NA PO NC

CONTROL correctly detected that this was a stop request. It then saved the user's registers
and established aDS equal to CS. (Remember that BADSCOP is a .COM file and CS = DS =
SS.) Having done this, the routine moves a zero to STATUS, which turns the trace off. It
then moves SOH FFH to the buffer to indicate the end of a trace session, increments
COUNT to allow for the new entry, and restores the user's registers. What it does not do
is increment the buffer pointer to allow for the stop marker. This behavior is entirely con­
sistent with the observed phenomena: When a trace is stopped and resumed, the stop
marker is missing and the count is one too high. The fix is to add

INC
INC
MOV

BX
BX
BUFPNTR,BX

;INCREMENT BUFFER POINTER
; .

to the CONTROL procedure before the registers are restored. (Insert these lines later with
your favorite editor.)

Even though the bug lias been found, the rest of the routine should be checked for other
possible bugs.

-G <Enter>
Communications tracing STOPPED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=OFAB BP=OOOO SI=OOB9 DI=1065
DS=2EOB ES=2EOB SS=2EOB CS=2CB0 IP=OOFS NV UP EI PL NZ AC PO NC
2CBO:OOF5 C3 RET ;BR7

Loading a new copy of COMMSCMD, setting the command tail to RESUME 1, and monitor­
ing program· execution yields the following:

616 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 626

Article 18: Debugging in the MS-DOS Environment

-N COMMSCMD.EXE <Enter>
-z _TEXT _TEXT-CS <Enter>
-z DGROUP DGROUP-CS <Enter>
-X* <Enter>
[2CBO COMMSCMD]

[0000 _TEXT]
0158 DGROUP

0000 BADSCOP
1313 CSEG

-L <Enter>
-X* <Enter>
[2CBO COMMSCMD]

[2CBO _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

-N RESUME 1 <Enter>
-G <Enter>
AX=0022 BX=OF82
DS=2E08 ES=2E08
41:

CX=0019 DX=0098 SP=OF7E BP=OFA4 SI=0089 DI=1065
SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC

if (0 == stricmp(argv[1],"STOP"))
2CB0:002E B83600
-G <Enter>
AX=OOOO BX=415A CX=OOOO
DS=2E08 ES=2E08 SS=2E08
46: cmd
2CB0:0086 C746FC0200
-G <Enter>

AX=OOOO BX=415A CX=OOOO

MOV AX, 0036 ; BRO

DX=0098 SP=OF7E BP=OFA4 SI=0089 DI=1065
CS=2CB0 IP=0086 NV UP EI PL ZR NA PE NC

2;
MOV Word Ptr [BP-04],0002 ;BR3 SS:OFAO=OOOO

DX=0098 BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO

SP=OF7E
IP=008B NV UP EI PL ZR NA PE NC

49: if (argc 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:OFA8=0003
-G <Enter>
AX=0001 BX=OODO CX=OOOO DX=OOOO SP=OF7E BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOAC NV UP EI PL NZ NA PO NC
53: port port-1;
2CB0:00AC FF4EFA
-G <Enter>
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CBO:OOC7 E8EFOO
-G <Enter>
AX=0265 BX=001E
DS=2E08 ES=2E08
CSEG:CONTROL:
1313:0190 80FCOO
-T 5 <Enter>

DEC Word Ptr [BP-06] ;BRS SS:OF9E=0001

CX=OOOO DX=OOOO SP=OF78
SS=2E08 CS=2CB0 IP=OOC7

CALL _int86

CX=3F48 DX=OOOO SP=OFSA
SS=2E08 CS=1313 IP=0190

CMP AH,OO

AX=0265 BX=001E CX=3F48 DX=OOOO SP=OFSA
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0193
1313:0193 7521 JNZ CONTROL+26
AX=0265 BX=001E CX=3F48 DX=OOOO SP=OFSA
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B6
1313:01B6 80FC01 CMP AH,01

BP=OFA4 SI=0089 DI=1065
NV UP EI PL ZR NA PE NC

;BR6

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ AC PE NC

;BR8

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ NA PO NC

(01 B6)
BP=OF66 SI=OOOO DI=7400

NV UP DI PL NZ NA PO NC

(more)

Section II: Programming in the MS-DOS Environment 617

ZTE (USA) 1007, Page 627

Part E: Programming Tools

AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01B9 751C
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:0107 80FC02
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01DA 7516

-T 5 <Enter>
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01DC 2E833EOB0100
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E2 741D

DX=OOOO SP=OFSA
CS=1313 IP=01B9

JNZ CONTROL+47
DX=OOOO SP=OFSA
CS=1313 IP=01D7

CMP AH,02
DX=OOOO SP=OFSA
CS=1313 IP=01DA

JNZ CONTROL+62

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ NA PO NC

(01D7)
BP=OF66 SI=OOOO DI=7400

NV UP DI PL NZ NA PO NC

BP=OF66 SI=OOOO DI=7400
NV UP DI PL ZR NA PE NC

(01F2)

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01DC NV UP DI PL ZR NAPE NC

CMP , Word Ptr CS: [BUFPNTR], +00 CS: 01 OB=0202
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E2 NV UP DI PL NZ NA PO NC

JZ CONTROL+71 (0201)
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E4

AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E4 2E88160A01
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E9 2EC606090101

MOV CS: [PORT] , DL
NV UP DI PL NZ NA PO NC

CS:010A=00

AX=0265 BX=001E
DS=2E08 ES=2E08
1313:01EF EB10

-T 5 <Enter>
AX=0265 BX=001E
DS=2E08 ES=2E08
1 31 3: 0 2 01 CF
AX=0265 BX=001E
DS=2E08 ES=2E08
2E08:0F6C CB
AX=0265 BX=001E
DS=2EOB ES=2E08
2CB0:0209 SD
AX=0265 BX=001E
DS=2E08 ES=2E08
2CB0:020A 57
AX=0265 BX=001E
DS=2E08 ES=2E08
2CB0:020B 8B7E08

-G <Enter>

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E9 NV UP DI PL NZ NA PO NC

MOV Byte Ptr CS:[STATUS],01 CS:0109=00
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01 EF NV UP DI PL NZ NA PO NC

JMP CONTROL+71 (0201)

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=0201 NV UP DI PL NZ NA PO NC

IRET
DX=OOOO SP=OF60 BP=OF66 SI=OOOO DI=7400
CS=2E08 IP=OF6C NV UP EI PL NZ AC PE NC

RETF
DX=OOOO SP=OF64 BP=OF66 SI=OOOO DI=7400
CS=2CB0 IP=0209 NV UP EI PL NZ AC PE NC

POP BP
DX=OOOO SP=OF66 BP=OF74 SI=OOOO DI=7400
CS=2CB0 IP=020A NV UP EI PL NZ AC PE NC

PUSH DI
CX=3F48 DX=OOOO SP=OF64
SS=2E08 CS=2CB0 IP=020B

BP=OF74 SI=OOOO DI=7400
NV UP EI PL NZ AC PE NC

SS:OF7C=OF90 MOV DI, [BP+08]

Communications tracing RESUMED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=0FA6 BP=OOOO SI=0089 DI=1065
DS=2E08 ES=2E08 S~=2E08 CS=2CB0 IP=OOFS NV UP EI PL NZ NA PE NC
2CBO:OOF5 C3

-o <Enter>

RET ;BR7

The processing of a resume request is correct. Thus, the problem with stop processing
in BADSCOP was the only problem. The corrected BADSCOP, which is actually
COMMSCOP, is shown in Figure 18-4.

618 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 628

I

Article 18: Debugging in the MS-DOS Environment

Code View

Code View is the most sophisticated debugging monitor produced by Microsoft. It
combines the philosophy and many of the commands of its predecessors, DEBUG and
SYMDEB, with true·source-code debugging. The availability of source lines and symbols
allows Code View to rival the convenience of program development and debugging pre­
viously available only in interpreters such as Microsoft GW-BASIC. However, this high level
of interaction with the source program is also the root of its problems for advanced
debugging.

In order to provide the debugger with the tools to debug at the source-line level and to
interrogate program variables, CodeView is required to have a detailed knowledge of how
high-order languages work and of their internal conventions. This is not a problem for lan­
guages like C, Pascal, and FORTRAN, versions of which are produced by the same com­
pany that created Code View. The object code generated by these compilers obeys a
stringent set of rules and conventions. Assembly-language programs, however, tend to fol­
fow their own rules and traditions, making them quite different from C programs, with
their own separate debugging needs.

C, Pascal, and FORTRAN programmers will find Code View a dream to use. Assembly­
language programmers using versions of MASM earlier than 5.0 will find Code View cum­
bersome and will have to weigh its advantages over its disadvantages. All users will,
however, appreciate the good design and programming that have gone into Code View. It
is pleasing to know that someone understands the programmer's debugging needs and is
trying to ease the burden.

Code View has added several welcome functions to the debugger's repertoire, but one
of these new features towers above the rest-watchpoints. The debugger can watch the 4
values of program variables or expressions and set breakpoints on them, making it possi-
ble to stop execution if an expression evaluates to zero or if a location changes. Previous
debugging monitors have been limited to tracing and breaking on instructions. This new
facet of debugging changes, somewhat, the approach to resolving a bug.

In the previous discussion of debugging techniques, an orderly application of techniques
from inspection and observation through instrumentation to debugging monitors was
recommended. This sequence is still recommended with Code View, but now the instru­
mentation features have been integrated into the debugging monitor.

A simple example
The following example shows how Code View uses the instrumentation approach to isolate
a problem and then uses the debugging monitor functions to solve it. The example is also
an introduction to Code View commands and techniques. The commands are, for the most
part, similar to those used by SYMDEB. Those commands that differ greatly are indicated.
This example, like all the examples and demonstrations in this article, is not intended to
be a complete tutorial-CodeView commands are summarized elsewhere in this book
and explained in detail in the manual accompanying the product. See PROGRAMMING
UTILITIES: coDEVIEW. The example simply shows some of the more common Code View
commands and demonstrates debugging techniques using them.

Section II: Programming in the MS-DOS Environment 619

ZTE (USA) 1007, Page 629

PartE: Programming Tools

UPPERCAS.C (Figure 18-13) is a simple program whose sole function is to convert a canned
string to uppercase. When executed, the program prints a few of the characters from the
string and some that aren't in the string. Inspecting the listing doesn't reveal the cause of
the problem. (Some readers with experience writing C programs will see the cause of the
problem, because it is quite common; pr!'!tend, for now, that the listing is of no help and
enjoy the wonders of Code View.)

!**************************************~*********************************

*
* UPPERCAS.C

* This routine converts a fixed string to uppercase and prints it.

*

*
*
*

**/

#include <ctype.h>
#include <string.h>

#include <stdio.h>

main(argc,argv)

int argc;

char *argv[];

char *cp, c;

cp = ''a string\n'';

I* Convert *cp to uppercase and write to standard output */

while (*cp != '\0')
{

c = toupper(*cp++);

putchar(c);
)

Figure 18-13. An erroneous C program to convert a string to uppercase.

Like SYMDEB, Code View requires some special preparation to produce a suitable exe­
cutable file. Code View, however, makes the job much simpler. Using the Microsoft C Com­
piler, compile the program with

C>MSC /Zi UPPERCAS; <Enter>

(Remember that C is case sensitive when interpreting switches, so the /Zi switch should
be entered exactly as shown.) The /Zi switch instructs the compiler to generate the symbol
tables and line-number information needed by Code View. Other options appropriate to
the program can also be included, but /Zi is required.

To form an executable file, use the Microsoft Object Linker (LINK) as follows:

C>LINK /CO UPPERCAS; <Enter>

620 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 630

Article 18: Debugging in the MS-DOS Environment

This command line instructs LINK to build an executable file with the information
needed for Code View. Other options can be used as needed or desired. The output of
LINK, UPPERCAS.EXE, will be larger than a .EXE file built without /CO (about 2600 bytes
larger in this case),_ but the program will run correctly when executed without Code View.

Starting Code View is straightforward. Simply type

C>CV UPPERCAS <Enter>

Code View loads UPPERCAS.EXE. It locates UPPERCAS.C, the source file, and loads that
too. It then presents a full-screen display similar to this:

File View Search Run Uatc~ Options Language Calls Help I F8=Trace FS=Go
, uppercas.C

1: /MM~! ~:
~: *
~: * UPPEHCAS.C
~: * This routine conuerts a fixed string to uppercase and prints it.
~= * r,:
~:
~: linclude <ctype.h>
18: linclude <string.h)
u: linclude <stdio.h)
12:
13: nain(argc,argu)
14:
15: int argc:
16: char •argu[);
17:
18: {

'"'
~icrosoft (H) CodeUiew CH> Version 2.8 I (C) Copyright Hicrosoft Corp. 1986, 1987. All rights reserued.
>

This display has two windows open: the display window, which shows the program being
debugged, and the the dialog window, which currently contains only the copyright notice
and a prompt (>) for input. The F6 function key moves the cursor back and forth between
the two windows.

Code View can be instructed from either window to go to a specific line (that is, to execute
·until a specific line is reached). If the cursor is in the display window, use the arrow keys
to select a line and press the F7 key. Execution will proceed until the selected line (or the
end of the program) is reached. TQ start execution without specifying a stop line, press F5.

The same functions can be performed from the dialog window using typed commands,
which may seem more familiar. Enter the Go Execute Program command, G, optionally
followed by an address. Execution will continue until the specified address is reached

Section IL· Programming in the MS-DOS Environment 621

ZTE (USA) 1007, Page 631

PartE: Programming Tools

or until stopped by something else, such as the end of the program. In this sense, the
Code View Go command is the same as that of DEBUG and SYMDEB. Unlike those rou­
tines, however, Code View's Go command does not allow an equals operator (=).

The address for the Go command can be specified in several ways. Because the display
window is currently showing only source lines, it is appropriate to set the stop location in
terms of line numbers. The syntax of a line-number specification is the same as in
SYMDEB- simply enter the line number preceded by a period:

>G . 27 <Enter>

Note that the line number is specified in decimal. This seemingly innocent statement
uncovers one of the problem areas in Code View, especially for assembly-language pro­
grammers. The default radix for Code View is decimal. This convention works well for
things associated with the C program, such as line numbers, but is very inconvenient for
addresses and other similar items, which are usually in hexadecimal. Hexadecimal num­
bers must be specified using the cumbersome C notation. Thus, the number FF3EH would
be entered as Oxff3e. The radix can be changed using the Change Current Radix com­
mand, N (different from the DEBUG and SYMDEB N command). (The problems associ­
ated with hexadecimal numbers in early versions of Code View are no longer present in
versions 2.0 and later.)

The radix problem can be avoided, for the moment, by using labels. Issue

>G _main <Enter>

to cause Code View to execute until the main routine is reached. Code View then shows

File Uiew Search Run Uatch Options Language Calls Help 1 F8=Trace FS=Go

~:
18:
11:
12:
13:
14:

ftinclude <ctype.h>
ftinclude <string.h>
ftinclude <stdio.h>

nain(argc,argu)

uppercas.C

15: i nt argc; ,:,
1&:
17:
18:
19:
a:
1:
2:
3:
4:
s:
&:

char *argu[];

{

char *Cp,c;

cp = "a string\n";

I* Conuert *Cp to uppercase and write to standard output */

while (*Cp != '\8')
{

F===t
icrosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserued.
)g _nain

622 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 632

Article 18: Debugging in the MS-DOS Environment

The display shows line 15 in reverse video, indicating that Code View has stopped there.
This is the first line of the main() module, but it is not executable. Press the FlO key,
which has the same effect as entering the Step Through Program command, P, in the dia­
log window, to cause line 19 to be executed. The reverse video line is then 21, which is the
next line to be executed.

To see the changes to cp, •cp, and c, establish a watch on these three variables. To use the
Watch Word command, WW, for the word cp, type

>WW cp <Enter>

When entered from the dialog window, this command opens the watch window at the top
of the screen and displays the current value of cp. To display the expression at •cp, use the
Watch Expression command, W?, as follows:

>W? cp,s <Enter>

This expression will display the null-delimited string at •cp. Finally, to see the ASCII char­
acter value of c, use the Watch ASCII command, WA:

>WA c <Enter>

The results of these watch commands are shown in the following screen:

File Uiew Search lltn Uatc~ Options Language Calls Help J FB=Trace F5=Go
, uppercas.C

IH cp : 55C4!BFFB 5527
p cp,s : uu

2l c : 55C4:BFF2

9: linclude <ctype.h>
18: linclude <string.h>
u: linclude <stdio.h>
12:
13: l!lain(argc,argu) i!!!
14:
15: int argc:
16: char •argu[];
17:
18: {

19:
~B:

char *Cp,c:

~I

22: i >ww cp
>w? cp,s

~ >wa c
>

The values displayed in the watch window are not yet defined because line 21, which
initialized cp, has not been executed. Press F8 to rectify this. Press it again to bring the ex­
ecution of the program into the main loop.

Section II: Programming in the MS-DOS Environment 623

ZTE (USA) 1007, Page 633

Part E: Programming Tools

File View Search lltn Uatch Options Language Calls Help I FB=Trace FS=Go
uppercas.C

~) cp : 55C4:arra aa3&
1) cp,s : "a string
~) c : 55C4:aFF2

18: {

19: char *Cp,c:
~a:
~1: cp = "a string\n":
~2:
~3: I• Convert *Cp to uppercase and write to standard output •I
~4:
~5: while
~:

(*Cp != '\a') ji {

I IJ.Jl.l.l!J

~a: putchar(c):
~g: }

~a:
:u: }

t=
>ww cp
>w? cp,s

~\ >wa c
>

The pointer cp now contains the correct address. The Display Memory command, D,
could be used to display the contents of DS:0036H, just as in DEBUG and SYMDEB. (This
step is not necessary, however, because there is a formatted display of memory in the
watch window at 1). The variable c has not yet been initialized.

624 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 634

Article 18: Debugging in the MS-DOS Environment

Press the F8 key to execute line 27. A curious and unexpected thing happens, as shown in
the next screen:

File Uiew Searcl) B:.tn Uatch Options Language Calls Help I F8=Trace FS=Go

~) : 55C4:8FF8 8838
1 uppercas.C 1

cp
1) cp,s : "string
~) c : 55C4:8FF2

18: {

19: char *Cp,c;
~8:
~1: cp = "a string\n":
~z:
~3: I* Conuert *Cp to uppercase and write to standard output *I
~4:
l?.s: while (*Cp != '\8')

I! ~G: {

~7: c = toupper(*Cp++);
r.~:

17.9: }

IJ8:
~1: }

t=
>ww cp
>w7 cp,s

~ >wa c
>

Notice that the value of cp has changed from 0036H to 0038H. The line of code, however,
indicates that the pointer should have been incremented by only one (*CP++). The second 4
character of the string, a blank, has been loaded into c. This could explain the apparent
random selection of characters being displayed (actually every other character) and the
garbage characters displayed (the zero at the end of the string might be skipped, causing
the routine to continue converting until a zero is encountered somewhere in memory).

Source-line debugging does not reveal enough about what is happening in this case. To
look more closely at the mechanism of the program, the program must be restarted.
Before doing this, set a breakpoint at line 27:

>BP .27 <Enter>

Section 11· Programming in the MS-DOS Environment 625

ZTE (USA) 1007, Page 635

Part E: Programming Tools

Then restart (actually, reload) the program with the Reload Program command, L. Note
that watch commands and breakpoints are preserved when a program is restarted.
Executing the restarted program with G yields

File View Search a.tn Uatch Options Language Calls Help I FB=Trace FS=Go

~) : SSC4:8FF8 8836
1 uppercas .C r

cp
1) cp,s : "a string
~) c : SSC4:8FF2

18: {

19: char *Cp,c;
7.8:
21: cp = "a string\n";
zz:
7.3: I• Conuert *Cp to uppercase and write to standard output •I
24:
25: . while (*Cp != '\8')

~ 7'(,: {

I

~a: putchar(c);
~9: }

~8:
~1: }

~=-
)bp .27
>1 I)g
>

The display shows line 27 in reverse video, indicating that it is the next line to be executed.
The pointer cp has the correct value, as shown in the watch window. Now Press the F2 key
to turn on the register display and press F3 to show the assembly code.

626 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 636

Article 18: Debugging in the MS-DOS Environment

File Uiew Search Jhn Watch Options Language Calls Help I FB=Trace FS=Go
uppercas.C

~) cp : 55C4:BFFB 8836 AX = 8884
1) cp,s : "a string BX = 8836
~) c : 55C4:BFFZ ex = BB19

DX = BBBB
Z7: c = touppep(trcp++); SP = BFFB
!1\.TA'M~ ~'AIWiilHnl I ' :uu-• BP = BFF4
55Z?:BBZ9 BAB? 110V AL,Byta Ptr lBXl I SI = BBA9 55Z?:B8ZB 98 CBW DI = 1BD5
b5Z?:8BZC BBDB 110V BX,AX DS = 55C4
55Z?:BBZE F68?B381BZ TEST Byte Ptr lBX+B1B3l,BZ l!li ES = 55C4
55Z?:BB33 74BC JZ -"'ain+31 (8841) SS = 55C4
5527:8835 8B5EFC 110V BX,Word Ptr [cpl CS = 55Z?
b5Z?:BB38 FF46FC INC Word Ptr lcpl IP = BBZG
b5Z?:BB3B BAB? 110V AL,Byte Ptr lBXl
~5Z?:BB3D ZCZB SUB AL,ZB NV UP
~5Z?:BB3F EBBS JI1P -"'ain+39 (8849) II PL
~527:8841 BBSEFC 110V BX,Word Ptr [cpl NZ NA
~SZ?:BB44 FF46FC INC Word Ptr [cpl PO NC

t=
)bp .Z? ss:erro
>I i 8836
)g
>

The display highlights line 27, indicating that a breakpoint exists at this line. The line of
code at CS:0026H is in reverse video, indicating that it is the next line to be executed.

The previous instruction has loaded BX with [cp]. The first thing the code for line 27
does is increment the word at memory location [cp]. The initial value of cp is in BX, so the
*Cp++ request can now be executed. Use the F8 key to single-step through the lines of
code. Notice that when only source lines are on the screen, F8 steps one source line at a
time, but when assembly code is shown, F8 steps one assembly line at a time. Single­
stepping through the code, note how the registers and watch window change. Everything
appears normal until CS:0038H is executed.

Section IL- Programming in the MS-DOS Environment 627

ZTE (USA) 1007, Page 637

Part E: Programming Tools

File View Search Run Uatch Options ~nguage Calls Help I FB=Trace F5=Go
1 uppercas.C

AX = 8861 IH cp : 55C4 : 8FF8 8838 '
1) cp,s : "string BX = 8837 ,, c : 55C4:8FF2 ex = 8819

DX = 88BB
"0: c = toupper(ifCp++); SP = 8FF8
~:8826 FF46FC UIC 11oM Ftr [cp] ;BJ18 BP = 8FF4
~527!8829 BA87 1101J AL,Byte Ptr [BXl SI = 88A9
~527:882B 98 CBU DI = 18D~
~527:882C BBDB HOIJ BX,AX DS = 55C4
~27!882E F6B7B38182 TEST Byte Ptr [BX+81B31,82 iii! ES = 55C4
~527:8833 748C JZ _lllain+31 (8841) Iss = 55C4
~527:8835 BB5EFC 1101J BX,Uord Ptr [cp] cs = 5527
~527!8838 FF46FC IHC Uord Ptr [cp] IP = 883B
L..._.,.., .. ~ a:ua: • ~ I '11111 . . .
~527:883D 2C28 SUB AL,28 HIJ UP
~527!883F EB8B JtiP _lllain+39 (8849) EI PL
~527:8841 BB5EFC tiOIJ BX,Uord Ptr [cpl HZ HA
~527:8844 FF46FC IHC Uord Ptr [cpl PO HC

t=
)bp .27 DS:8837
>I I 28
)g
)

Notice that the value of cp in the watch window has incremented again. The line of C
code has two increments hidden in it, not the expected single increment. Why is this?

To find the answer, examine the toupper() macro. The following definition, extracted
from CTYPE.H, explains what is happening:

#define _UPPER Ox1 I* uppercase letter *I
#define _LOWER Ox2 I* lowercase letter *I
#define isupper(c) (_ctype+1) [c] & _UPPER)
#define islower(c) (_ctype+1) [c] & _LOWER)

#define _tolower (c) (c)- • A • + • a •
#define _toupper(c) (c)-'a'+'A'

#define toupper (c) (is lower (c)) ? _toupper (c) : (c))
#define tolower (c) (isupper (c)) ? _tolower (c) : (c))

The argument to toupper(), c, is used twice, once in the macro that checks for lowercase,
is/ower(), and once in _toupper(). The argument is replaced in this case with •cp++,
which has the famous C unexpected side effects. Because the unary post-increment is the
handiest way to perform the function desired in the program, fixing the problem by
changing the code in the main loop is undesirable. Another solution to the problem is to
use the function version of toupper(). Because toupper() is defined as a function in
STDIO.H, simply deleting #include <ctype.h> would solve the problem. Unfortunately,
this would also deprive the program of the other useful definitions in CTYPE.H. (Admit­
tedly, the features are not currently used by the program, but little programs sometimes
grow into mighty systems.) So to keep CTYPE.H but still remove the macro definition of

628 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 638

Article 18: Debugging in the MS-DOS Environment

toupper(), use the #undef command. (Because to/ower() has the same problem, it should
also be undefined.) The corrected listing is shown in Figure 18-14.

!**
* *
* UPPERCAS.C *

This routine converts a fixed string to uppercase and prints it.

* *
**/

#include <ctype.h>

#undef toupper

#undef tolower
#include <string.h>

#include <stdio.h>

main(argc,argv)

int argc;
char *argv[];

char *cp,c;

cp = ''a string\n'';

I* Convert *cp to uppercase and write to standard output */

while (*cp != '\0')
{

c = toupper(*cp++);

putchar(c);
}

Figure 18-14. The corrected version ojUPPERCAS.C.

An example using screen output
A problem with DEBUG is that it writes to the same screen as the program does. Both
SYMDEB and Code View, however, allow the debugger to switch back and forth between
the screen containing the program's output and the screen containing the debugger's out­
put. This feature is a special option with SYMDEB and is sometimes clumsy to use, but
with Code View, keeping a separate program output screen is automatic and switching
back and forth involves simply pressing a function key (F4).

The following example program is intended to display an ASCII lookup table with all the
displayable characters available on an IBM PC. The expected output is shown in Figure
18-15.

Section II- Programming in the MS-DOS Environment 629

ZTE (USA) 1007, Page 639

PartE: Programming Tools

l.)asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B c D E F
~ g 1!1 ' + oQo t fJ * 1

"'
... f !! '11 § . l f .j. +-

~ ! " II $:1. & ' () * + - I I·

8 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 ~ A B c D E F G H I J K L " tt.o
5 p Q R s T u v w X Y. z [\] A

-
~

. b d r h i j k 1 a c e g Ill n 0

p q r s t u II w X y z { I } - 0 I

~ ~ u e a a a. a g e e e i' i i A r.
l2 fl 0 i:i 0 0. u y ij u ¢ £ ¥ 1\ f

: a 1 6 u ii Fl !l !! (. r ., ~ ~ i « »

:~ ' II 1
~ t ' ! ~ il A i1 ,!1 Jl J

l c - f i II = Jl
T 1 ~

Jl 'f 11
b f IT + r • I •

0(p r n ~ cr jJ 1' !! e n ~ ... Ill E n
~ :!: ~ i r J ::: 0 J n z I -
r.>

Figure 18-15. The output expectedfromASCTBL.C.

The program that should produce this display, ASCTBL.C, is shown in Figure 18-16.

!**

* *
* ASCTBL.C *
* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *
* codes. *
*
**/

#include <ctype.h>

#include <stdio.h>

main()

int i, j, k;

I* Print table title. *I
printf("\n\n\n

I* Print column headers. *I
printf(" ")_;

for (i = 0; i < 16; i++)

printf(''%X '', i);
fputchar("\n");

ASCII LOOKUP TABLE\n\n");

Figure 18-16. An erroneous program to display ASCII characters.

630 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 640

I* Print each line of the table. *I
for (i = 0, k 0; i < 16; i++)

{

Article 18: Debugging in the MS-DOS Environment

I* Print first hex digit of symbols on this line. *I
printf(''%X '', i);
I* Print each of the 16 symbols for this line. *I
for (j = 0; j < 16; j++)

{

I* Filter nonprintable characters. *I
if ! !k >= 7 && k <= 13! II !k >= 28 && k <= 31 l l

prin:tf(" ");

else

k++;
) I

fputchar("\n");

printf("%c ", k);

Figure 18-16. Continued.

The problem to be debugged in this example is evident when the program in Figure 18-16
is compiled, linked, and executed. Here is the resulting display:

p>asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B C D E F hB g ! ' + ~ t
" • y1 ~ ~ t " ~ § - t ' ' • y2

" It $:1. ll ' () * + , - • I y3 II 1 2 3 4 5 G 7 8
9 < = > 7 y4 @ A B C D E F G H I J K L M H 0 y5 P

Q R 8 T U V W X Y Z [\ 1 A _ yG ., a b c d e r g h i
j k I n n o y7 p q ~ s t u u w x y z { } - o y8 g

U e & a a l s & M e 1 1 l A A y9 E ~ R o o o u u y ij
UO£¥RfyA a16uiiH 11 L.--.~~i«»yB !!ii

I ll~ 1~11, illl'ii.!IJI~ 1 yC Lii ~-t ~ lfllrr
uD=1r-yD .n'f11 11 brrr~+J r .11 111 YE afl
rn~crJI1'!!9R~m!IIEnyF E±~S. fJ +=" · ·
J n z 1 y

p>

Section 11- Programming in the MS-DOS Environment 631

ZTE (USA) 1007, Page 641

Part E: Programming Tools

Something is clearly wrong. The output is jumbled and no pattern is immediately obvious.
To locate the problem, first prepare a .EXE file and start Code View as follows:

C>MSC /Zi ASCTBL; <Enter>
C>LINK /CO ASCTBL; <Enter>
C>CV ASCTBL <Enter>

Code View starts and displays the following screen:

File Uiew Search :am Uatch Options Language Calls Help I FB=Trace FS=Go
asctbl.C

1:
2: IIUIMIUUIIIIUfiUIIIIIIEiflfi!IUIIUIIEIIIUIIflflflllllllflllflllflflllflfilUUIIIIIlfJflllllflllllllflfiUilflllfiUIJflfiiiiJflf)(lf::::

3: * 4: * ASCTBL.C
~= * This progran generates an ASCII lookup table For all displayable
&: * ASCII and extended IBMPC codes, leauing blanks For nondisplayable
?: * codes.
a: * 9:
10:
u: linclude <ctype.h)
12: linclude <stdio.h>
13:
14: nainO
15: {

16: int i, j, k:
17: I* Print table title. *I
18: printf("\n\n\n ASCII LOOJ<UP TABLE\n\n");

t=

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserued. ~ >

The start of the source program is shown in the display window and the dialog window
contains an input prompt. Press the FlO key three times to bring execution to line 21.
(Remember that the line indicated in reverse video has not yet been executed.)

632 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 642

Article 18: Debugging in the MS-DOS Environment

File Uiew Search A.m Uatch Options Language Calls Help I F8=Trace FS=Go
1 asctbl.C 1

9:
HI:
11: Uinclude <~type.h>
12: Uinclude <stdio.h>
13: llll
14: 111ainO
15: {

16: int i, j, k:
17: I* Print table title. *I
18: printFC"\n\n\n ASCII LOOKUP TABLE\n\n"):
19:
?.B: I* Print colu111n headers. ~

22: For (i = B: i < 16: i++)
~3: printr C":xX " i); I

~4: FputcharC"\n");
25:
~6: 1*-Print each line oF the table. *I

t=

~icrosort CR> CodeView CR) Version Z.B

~ (C) Copyright MicrosoFt Corp. 1986, 1987. All rights reserved.
>

The display heading has been printed at line 18. Press the F4 key to display what the pro­
gram has written on the screen.

p)cu asctbl

ASCII LOOKUP TABLE

Section 11· Programming in the MS-DOS Environment 633

ZTE (USA) 1007, Page 643

Part E: Programming Tools

Note: Any information on the screen when you started Code View will remain on the vir­
tual output screen until program execution clears it or forces it to scroll off.

The table heading has been properly written to the screen. Press the F4 key again to return
to the Code View display. Continue executing the program with the FlO key to bring the
program to line 24.

File Uiew Search Run Uatch Options Language Calls Help I FB=Trace FS=Go
F============l.• asctbl.C 1

~:
1a:
~1:
12:
13:
14:
15:
~G:
17:
18:
19:
~a:
z1:
22:
23:

Uinclude <ctype.h>
Uinclude <stdio.h}

MainO
{

int i, j, k;
I• Print table title. •I
printf("\n\n\n

I• Print coluMn headers. •I
printr(" ">;
for Ci = a; i < 1G; i++)

printr(":t.X ", D;

ASCII LOOKUP TABLE\n\n");

24: fputchar("\n"); ['
r.

I• Print each line of the table. •I
F===~

icrosort CR) CodeUiew CR) Version 2.a
(C) Copyright Microsoft Corp. 19BG, 1987. ~11 rights reserued.

At this point in program execution, the column headings have been written on the screen.
Press the F4 key again to see the results.

634 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 644

l
}

Article 18: Debugging in the MS-DOS Environment

C>cu asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 G 7 B 9 A B C D E F

The output of the program is still correct, so allow execution to continue by pressing F4 to
return to the Code View screen and then pressing the FlO key. This will execute the call to
the fputchar() function to write a newline character.

File Uiew Search llm Uatch Options Language Calls Help I FB=Trace F5=Go

21: printf("
! asctbl.C 1

">:
22: for (i = 8: i < 1&: i++)
~3: printr<":t.X " i); I

24: fputchar("\n");
25:
2&: I* Print each line of the table. *I

I ~-~~ .
28: {

~ 29: I* Print first hex digit of sy~bols on this line. *I 1:•

~8: printf("XX " I i);

~1: I* Print each of the 1& sy~bols for this line. *I
~2: for (j = 8: J < 1&: j++)
~3: {

~4: I* Filter non-printable characters. *I
~5: if ((k >= 7 && k <~ 13) II (k >= 28 && k <= 31)
~&: printr (" ");
~7: else
~a: printf(":t.c " I k):

:=
~icrosoft (R) CodeUiew (R) Version 2.8 J (C) Copyright 11icrosoft Corp. 198&, 1987. All rights reserued.
>

Section /1- Programming in the MS-DOS Environment 635

ZTE (USA) 1007, Page 645

Part E: Programming Tools

Examination of the output screen shows that the display is now incorrect.

C>cu asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B C "D E F h

A lowercase h has been written to the screen instead of a newline character. Further ex­
ecution demonstrates that newline characters written with fputchar() are not working. A
closer inspection of the fputchar() function is needed.

To see what is happening, use the Reload Program command to restart execution at
the top of the program. Change the cursor window with the F6 key, use the arrow keys
to place the cursor on line 24, and press F7. This brings execution back to line 24, where
fputchar() is called. Press the F3 key to place the display in assembly mode and the F2
key to show the CPU registers and flags. The first assembly instruction of the Jputchar()
function call is about to be executed.

636 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 646

Article 18: Debugging in the MS-DOS Environment

for (
:8858 C746FE8888
:885D C746FA8888
:8862 837EFE18
:8866 7D68
:8868 EBBS
:886A FF46FE
:886D EBF3

_fputchar (8194)
ADD SP,+82

i = a, k = a: i < 16: i++>
MOV Word Ptr [il,8888
MOV Word Ptr [kl,8888
CMP Word Ptr [il,+18
JGE _nain+c8 (88D8)
JMP _nain+Sf C886F)
IHC Word Ptr [il
JMP _nain+52 (8862)

printf(":t.X ", i);
PUSH Word Ptr [il
MOV AX,886A
PUSH AX
CALL _printf (81C1)

icrosoft (R) CodeView (R) Version 2.8
C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
1

HV UP
II PL
ZR HA
PI HC

Notice that the parameter being passed to the function by means of the stack is 0068H. Use
the Display Memory command to display DS:0068H. (Note the hexadecimal notation.)

File Uiew Search lhn Uatch Options , Language Calls Help I FB=Trace FS=Go

24:
. ! asctbl .C 1

~ AX = 8883 fputchar("\n");
,._.,,~ .. ~ ~~••ltlfnl ~ s I . s ~tnl BX = 8881
5527:8851 58 PUSH AX ex = aaa1
~527:8852 E83F81 CALL _fputchar (8194) DX = 83C8
~527:8855 83C482 ADD SP,+82 SP = 8F98
~7: for (i = a, k = a: i < 16: i++> BP = 8F96
~527:8858 C746FE8888 MOV Word Ptr [il,8888 SI = 88A9
~527:885D C746FA8888 MOV Word Ptr [kl,8888 ljii D I = 1875
~527:8862 837EFE18 CMP Word Ptr [il,+18 DS = 566D
~527:8866 7D68 JGE _nain+c8 (88D8) ES = 566D
~527:8869 EBBS JMP _nain+Sf (886F> SS = 566D
~527:886A FF46FE IHC Word Ptr [i] cs = 5527
~527:886D EBF3 JMP _nain+52 (8862) IP = 884E
~a: printr (":t.X " ' i);
~527:886F FF76FE PUSH Word Ptr [I] HV UP
~527:8872 BB6A88 MOV AX,886A II PL
~527:8875 58 PUSH AX ZR HA
~527:8876 EB4881 CALL _printf C81CD PI HC

:=
>1
>d 8x68 LB

·~ ~66D:8868 -BA 88 25 58 28 28 28 88
>

Section II: Programming in the MS-DOS Environment 637

ZTE (USA) 1007, Page 647

Part E: Programming Tools

The contents of memory at this address consist of a null-delimited string containing a
newline character. The representation of \ n is correct. To see how the string is handled,
use the trace key, F8, to single-step through fputchar() and subordinate functions. These
functions are complicated; nearly 100 steps are required to reach the MS-DOS Interrupt
21H call that actually writes the screen.

File Uiew Search Run Uatch Options Language Calls Help FB=Trace FS=Go
F-============f asctbl.C !===========r=====9

527:18E9 51
527:18EA BBCF
5Z7:18EC ZBCA

PUSH CX
tiOV CX,Dl
SUB CX,DX

527:18F8 9C PUSHF
5Z7:18F1 83F8 ADD SI,AX
527:18F3 9D POPF
527:18F4 7384 JNB _write+BZ (18FA>
5Z7:18F~ B489 tiOV AH,89
527:18F8 EB1A JtiP _write+9c (1114)
527:18FA 8BC8 OR AX,AX
5Z7:18FC 751~ JNZ _write+9c (1114)
527:18FE F~87128248 TEST Byte Ptr lBX+ __ osfile1,48
527:1183 748B JZ _write+98 (1118)
527:1185 8B5E8~ tiOV BX,Word Ptr lBP+8~1
527:1188 883F1A CtiP Byte Ptr lBX1,1A

~5=2=7=:1=1=8=B=7=5=83=======J=N=Z===_=w=r=it=e=+9=8==(=11=1=8=)=========•1~ r5Z7:118D FB CLC +

~~D:88~8 -8A 88 25 58 28 28 28 88
>d 8xf84 LB !iii
~~D:8F88 ~8 88 DC 8B-A9 88 9~ 8F h

>

AX = 488A
BX = 8881
CX = 881U
DX = 8F84
SP = 8F~8
BP = 8FGE
SI = 8888
DI = 8F85
DS = S~~D
ES = S~~D
88 = 5~6D
cs = 5527
IP = 18EE

NV UP
EI PL
NZ NA
PO NC

The AH register's contents, 40H, indicate that the Interrupt 21H call is a request for a write
to a device. The BX register has the handle of the device, 1, which is the special file handle
for standard output (stdout). For this program as it was invoked, standard output is the
screen. The ex register indicates that 1 byte is to be written; DS:DX points to the data to be
written. The contents of memory at DS:OF84H finally reveal the cause of the problem:
This memory location contains the address of the data to be written, not the data. The
fputchar() function was called with the wrong level of indirection.

Examination of the listing shows that all the newline requests were made with

fputchar("\n");

Strings specified with double quotes are replaced in C functions with the address of the
string, but the function expected the actual character and not its address. The problem can
be corrected by replacing the fputchar() calls with

fputchar (1 \n 1) ;

The newline character will now be passed directly to the function.

638 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 648

Article 18: Debugging in the MS-DOS Environment

This kind of problem can be avoided. C provides the ability to check the type of each
parameter passed to a function against the expected type. If the following definition is
included at the top of the C program, incorrect types will generate error messages:

#define LINT_ARGS·

The corrected listing is shown in Figure 18-17. This new program produces the correct
output.

!**
* *
* ASCTBL.C *
* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *
* codes. *
* *
**!

#define LINT_ARGS

#include <ctype.h>
#include <stdio.h>

main ()

int i, j, k;

I* Print table title. *I
printf("\n\n\n

I* Print column headers. *I
printf(" ");

for (i = 0; i < 16; i++)
printf(''%X '', i);

fputchar ('\n') ;

ASCII LOOKUP TABLE\n\n");

I* Print each line of the table. *I
for (i 0, k 0; i < 16; i++)

I* Print first hex digit of symbols on this line. *I
printf(''%X '', i);
I* Print each of the 16 symbols for this line. *I
for (j = 0; j < 16; j++)

{

I* Filter nonprintable characters. *I
if ((k >= 7 & & k <= 1 3 l II (k >= 2 s & & k <= 31 l l

printf(" ");

else

k++;

fputchar (' \n') ;

)

printf(''%c '', k);

Figure 18-17. The correct ASCII table generation program.

Section Il· Programming in the MS-DOS Environment 639

ZTE (USA) 1007, Page 649

PartE: Programming Tools

Code View is a good choice for debugging C, Pascal, BASIC, and FORTRAN programs.
The fact that versions of MASM earlier than 5.0 do not generate data for Code View makes
Code View a poorer choice for these assembly-language programs. These disadvantages
must be weighed against the ability to set watchpoints and to trap nonmaskable interrupts
(NMis). Code View is also not as well suited as SYMDEB for debugging programs that in­
teract with TSRs and device drivers, because Code View does not provide any mechanism
for including symbol tables for routines not linked together.

Hardware debugging aids
Hardware de buggers are a combination of hardware and software designed to be installed
in a PC system. The software provides features much like those available with SYMDEB
and Code View. The advantages of hardware debuggers over purely software debuggers
can be summarized in three points:

• Crash protection
• Manual execution break
• Hardware breakpoints

A hardware debugger can provide program crash protection because of its independence
from the PC software. If the program being debugged goes wild and destroys the operat­
ing system of the PC, the hardware debugger is protected by virtue of being a separate
hardware system and is capable of recovering enough control to allow the user to find
out what happened.

All hardware de buggers offer a means of breaking into the program under test from some
external source-usually a push button in the hands of the programmer. The mechanism
used to get the attention of the PC's CPU is the nonmaskable interrupt (NMI). This inter­
rupt provides a more reliable means of interrupting program execution than the Break key
because its operation is independent of the state of interrupts and other conditions.

Hardware debuggers usually have access to the address and data lines on the PC bus,
allowing them to set hardware breakpoints. Thus, these debuggers can be set to break
when specific addresses are referenced. They execute the breakpoint code from a debug­
ging monitor, which generally runs from their own memory. This memory is usually
protected from the regular operating system and the application program.

Although hardware debuggers can be used to instrument a program, they should not be
confused with the external hardware instrumentation discussed earlier in this article. The
logic analyzers and in-circuit emulators mentioned there are general-purpose test instru­
ments; the hardware debuggers are highly specific devices intended to do only one thing
on one type of hardware- provide debugging monitor functions at a hardware level to
IBM PC-type machines. It is this specialization that makes hardware debuggers so much
easier to use for programmers trying to get a piece of code running.

Because this volume deals only with MS-DOS and associated Microsoft software, a detailed
discussion of hardware debuggers and debugging would not be appropriate. Instead, a
few popular hardware products that work with MS-DOS utilities are mentioned and a gen­
eral discussion of debugging with hardware is presented.

640 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 650

Article 18: Debugging in the MS-DOS Environment

Several manufacturers make hardware products that can be used for debugging. These
products vary in the features offered and in their suitability for various kinds of debugging.
Three of these products that can be used with SYMDEB are,

• IBM Professional Debug Utility
• PC Probe and AT Probe from Atron Corporation
• Periscope from The Periscope Company, Inc.

These boards can be used with SYMDEB by specifying the IN switch when the program is
started. When used in this way, however, the hardware provides little more than a source
of NMis to interrupt program execution; otherwise, SYMDEB runs as usual. This restric­
tion may not be acceptable to a programmer who wants to use the sophisticated debug­
ging software that accompanies these products and makes use of their hardware features.
For this reason, these boards are rarely used with SYMDEB.

The general techniques of debugging with hardware aids will already be familiar to the
reader-they are the same techniques discussed at length earlier in this article. The tech­
niques of inspection and observation should still be applied; instrumentation is facilitated
by hardware; a debugging monitor accompanies all hardware debuggers and the same
techniques discussed for DEBUG, SYMDEB, and Code View apply. No new techniques are
needed to use these devices. The changes in the details of the techniques come with the
added features available with the hardware debuggers. (Remember that all these features
are not universally available on all hardware debuggers.)

The manual interrupt feature of hardware debuggers is useful in a system crash. Every
programmer, especially assembly-language programmers, has had the situation where the
program runs wild, destroys the operating system, and locks up the system. The tech­
niques described in previous sections of this article show that about the only way to solve
these problems without hardware help is to set breakpoints at strategic locations in the
program and see how many are passed before the system locks up. The breakpoints are
placed at finer and finer increments until the instruction causing the crash is located.

This long and ugly procedure can sometimes be shortened with a hardware debugger.
When the system crashes, the programmer can push the manual interrupt button, suspend
program execution, and give control to the debugger card. At this point, the programmer
can use the debugging monitor software supplied with the card to sniff around memory
looking for something suspicious. Clues can sometimes be found by examining the pro­
gram's stack and data areas-provided, of course, that they are still in memory and
haven't been destroyed, along with the operating system, by the rampaging program. This
approach is not always an immediate solution to the problem, however; often, the start­
and-set-breakpoints process has to be repeated even with a hardware debugger. The hard­
ware will, however, possibly shed some light on the causes of the problem and shorten the
procedure.

Another feature offered by many of the debugging boards is the ability to set breakpoints
on events other than the execution of a line of code. Often, these boards will allow the
programmer to break on a reference to a specific memory location, to a range of memory

Section 11· Programming in the MS-DOS Environment 641

ZTE (USA) 1007, Page 651

Part E: Programming Tools

locations, or to an I/0 port. This feature allows a watch to be set on data, analogous to the
watchpoint feature of Code View. This technique is almost always useful, as it is with
Code View, but there is one class of problems where it is essential to reaching a solution.

Consider the case of a program that seems to be running well. Every so often, however,
an ampersand appears in the middle of a payroll amount, or occasionally the program
makes an erroneous branch and executes the wrong path. Suppose that, after painstaking
investigation, the programmer discovers that these problems are being caused by a change
in a specific location in memory sometime during the execution of the program. In debug­
ging, the discovery of the cause of a problem usually leads almost instantly to a fix. Not so
in this case. That byte of memory could be changed by an error in the program, by a glitch
in the operating system or in a device driver, or by cosmic rays from outer space. Discover­
ing the culprit in a case like this is almost impossible without the help of hardware break­
points. Setting a breakpoint on the affected memory location and running the program
will solve the problem. As soon as the memory location is changed, the breakpoint will be
executed and the state of the system registers will point a clear finger at the instruction
that caused the problem.

Hardware debuggers can provide significant aid to the serious programmer. They are
especially helpful in debugging operating systems and operating-system services such as
device drivers. They are also helpful in complicated situations where many programs may
be running at the same time. The consensus among programmers who have hardware
debuggers is that they are well worth the money.

Summary

Although Microsoft and others have provided an impressive array of technology to aid
in program debugging, the most important tool a programmer has is his or her native wit
and talent. As the examples in this article have illustrated, the technology makes the task
easier, but never easy. In all cases, however, it is the programmer who debugs the program
and solves the problems.

Technology will never be able to replace the person for solving the problem of a bug­
ridden program. (This is an area where artificial intelligence will undoubtedly fail.)
Therefore, it is the skills discussed in the first part of this article- debugging by inspec­
tion and observation- that deserve the greatest attention and practice. All the other tech­
niques and technologies, with their ever-increasing sophistication, are only extensions of
these basic techniques. A programmer who can debug effectively at the lowest level of
technology will always be ready to use whatever advanced technology is available.

Therefore, as a final word, remember the rule that opened this article:

Gather enough information and the solution will be obvious.

All the rest of this article was merely a discussion of ways to gather the information.

Steve Bostwick

642 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 652

J

Article19
Object Modules

Article 19: Object Modules

Object modules are used primarily by programmers. The end user of an MS-DOS appli­
cation need never be concerned with object code, object modules, and object libraries
because application programs are almost always distributed as .EXE or .COM files that can
be executed with a simple startup command.

An application programmer writing in a high-level language can. use object modules and
object libraries without knowing either the format of object code or the details of what the
utilities that process object modules, such as the Microsoft Library Manager (LIB) and the
Microsoft Object Linker (LINK), are actually doing. Most application programmers simply
regard the contents of an object module as a "black box" and trust their compilers and
object module utility programs to do the right thing.

A programmer using assembly language or an assembly-language debugger such as
DEBUG or SYMDEB, however, might want to know more about the content and function
of object modules. The use of assembly language gives the programmer more control over
the actual contents of object modules, so knowing how the modules are constructed and
examining their contents can sometimes help with program debugging.

Finally, a programmer writing a compiler, an assembler, or a language translator must
know the details of object module format and processing. To take advantage of LIB and
LINK, a language translator must construct object modules that conform to the format and
usage conventions specified by Microsoft.

Note: This article assumes some background knowledge of the process by which source
code is converted into an executable file in the MS-DOS environment. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Structure of an
Application Program; PROGRAMMING TooLs: The Microsoft Object Linker; PROGRAMMING
UTILITIES.

The Use of Object Modules

Although some MS-DOS language translators generate executable 8086-family machine
code directly from source code, most produce object code instead. Typically, a translator
processes each file of source code individually and leaves the resulting object module
in a separate file bearing a .OBJ extension. The source-code files themselves remain
unchanged. After all of a program's source-code modules have been translated, the result­
ing object modules can be linked into a single executable program. Because object mod­
ules frequently represent only a portion of a complete program, each source-code module
usually contains instructions that indicate how its corresponding object code is to be
combined with the object code in other object modules when they are linked.

Section 11: Programming in the MS-DOS Environment 643

ZTE (USA) 1007, Page 653

PartE: Programming Tools

The object code contained in each object module consists of a binary image of the pro­
gram plus program structure information. This object code is not directly executable. The
binary image corresponds to the executable code that will ultimately be loaded into mem­
ory for execution; it contains both machine code and program data. The program struc­
ture information includes descriptions of logical groupings defined in the source code
(such as named subroutines or segments) and symbolic references to addresses in other
object modules.

The program structure information is used by a linkage editor, or linker, such as Microsoft
LINK to edit the binary image of the program contained in the object module. The linker
combines the binary images from one or more object modules into a complete executable
program.

The linker's output is a .EXE file-a file containing executable machine code that can be
loaded into RAM and executed (Figure 19-1). The linker leaves intact all of the object
modules it processes.

+--- Object module __...
librarian (LIB)

Linker (LINK)

Executable
binary image
(.EXE file)

MS-DOS loader

(Program runs)

Figure 19-1. Generation of an executable (.EXE) file.

Object code thus serves as an intermediate form for compiled programs. This form offers
two major advantages:

• Modular intermediate code. The use of object modules eliminates the overhead of
repeated compilation of an entire program whenever changes are made to parts of its
source code. Instead, only those object modules affected by source-code revisions
need be recompiled.

• Shareable format. Object module format is well defined, so object modules can be
linked even if they were produced by different translators. Many high-level-language
compilers take advantage of this commonality of object-code format to support
"interlanguage" linkage ..

644 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 654

Article 19: Object Modules

Contents of an object module

Object modules contain five basic types of information. Some of this information exists
explicitly in the source code (and is subsequently passed on to the object module), but
much is inferred by the program translator from the structure of the source code and the
way memory is accessed by the 8086.

Binary Image. As described earlier, the binary image comprises executable code (such as
opcodes and addresses) and program data. When object modules are linked, the linker
builds an executable program from the binary image in each object module it processes.
The binary image in each object module is always associated with program structure in­
formation that tells the linker how to combine it with related binary images in other object
modules.

External References. Because an object module generally represents only a small portion
of a larger program that will be constructed from several object modules, it usually con­
tains symbols that allow it to be linked to the other modules. Such references to corre­
sponding symbols in other object modules are resolved when the modules are linked.

For example, consider the following short C program:

main()

puts("Hello, world\n");

This program calls the C function puts() to display a character string, but puts() is not
defined in the source code. Rather, the name puts is a reference to a function that is exter­
nal to the program's main() routine. When the C compiler generates an object module for
this program, it will identify puts as an external reference. Later, the linker will resolve the
external reference by linking the object module containing the puts() routine with the
module containing the main() routine.

Address References. When a program is built from a group of object modules, the actual
values of many addresses cannot be computed until the linker combines the binary image
of executable code and the program data from each of the program's constituent object
modules. Object modules contain information that tells the linker how to resolve the
values of such addresses, either symbolically (as in the case of external references) or rela­
tively, in terms of some other address (such as the beginning of a block of executable code
or program data).

Debugging Information. An object module can also contain information that relates
addresses in the executable program to the corresponding source code. After the linker
performs its address fixups, it can use the object module's debugging information to relate
a line of source code in a program module to the executable code that corresponds to it.

Miscellaneous Information. Finally, an object module can contain comments, lists of
symbols defined in or referenced by the module, module identification information, and

Section Jl- Programming in the MS-DOS Environment 645

ZTE (USA) 1007, Page 655

PartE: Programming Tools

information for use by an object library manager or a linker (for example, the names of
object libraries to be searched by default).

Object module terminology

When the linker generates an executable program, it organizes the structural components
of the program according to the information contained in the object modules. The layout
of the executable program can be conceptually described as a run-time memory map
after it has been loaded into memory.

The basic structure of every executable program for the 8086 family of microprocessors
must conform to the segmented architecture of the microprocessor. Thus, the run-time
memory map of an executable program is partitioned into segments, each of which can be
addressed by using one of the microprocessor's segment registers. This segmented struc­
ture of 8086-based programs is the basis for most of the following terminology.

Frames. The memory address space of the 8086 is conceptually divided into a sequence
of paragraph-aligned, overlapping 64 KB regions called frames. Frame 0 in the 8086's ad­
dress space is the 64 KB of memory starting at physical address OOOOOH (0000:0000 in seg­
ment:offset notation), frame 1 is the 64 KB of memory starting at OOOlOH (0001:0000), and
so on. A frame number thus denotes the beginning of any paragraph-aligned 64 KB of
memory. For example, the location of a 64 KB buffer that starts at address B800:0000 can
be specified as frame OB800H.

Logical Segments. The run-time memory map for every 8086 program is partitioned into
one or more logical segments, which are groupings of logically related portions of the pro­
gram. Typically, an MS-DOS program includes at least one code segment (that contains all
ofthe program's executable code), one or more data segments (that contain program
data), and one stack segment.

When a program is loaded into RAM to be executed, each logical segment in the program
can be addressed with a frame number- that is, a physical 8086 segment address. Before
the MS-DOS loader transfers control to a program in memory, it initializes the CS and SS
registers with the segment addresses of the program's executable code and stack seg­
ments. If an MS-DOS program has a separate logical segment for program data, the pro­
gram itself usually stores this segment's address in the DS register.

Relocatable Segments. In MS-DOS programs, most logical segments are relocatable.
The loader determines the physical addresses of a program's relocatable segments when
it places the program into memory to be executed. However, this address determination
poses a problem for the MS-DOS loader, because a program may contain references to the
address of a relocatable segment' even though the address value is not determined until
the program is loaded. The problem is solved by indicating where such references occur
within the program's object modules. The linker then extracts this information from the
object modules and uses it to build a list of such address references into a segment reloca­
tion table in the header of executable files. After the loader copies a program into memory
for execution, it uses the segment relocation table to update, or fix up, the segment address
references within the program.

646 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 656

Article 19: Object Modules

Consider the following example, in which a program loads the starting addresses of two
data segments into the DS and ES segment registers:

mov ax,seg _DATA
mov
mov
.mov

ds,ax
ax,seg FAR_DATA

es,ax

make _DATA segment addressable through DS

make FAR_DATA segment addressable through ES

The actual addresses of the _DATA and FAR_ DATA segments are unknown when the
source code is assembled and the corresponding object module is constructed. The assem­
bler indicates this by including segment fixup information, instead of actual segment ad­
dresses, in the program's object module. When the object module is linked, the linker
builds this segment fixup information into the segment relocation table in the header of the
program's .EXE file. Then, when the .EXE file is loaded, the MS-DOS loader uses the infor­
mation in the .EXE file's header to patch the actual address values into the program.

Absolute Segments. Sometimes a program needs to address a predetermined segment of
memory. In this case, the program's source code must declare an absolute segment so that
a reference to the corresponding frame number can be built into the program's object
module.

For example, a program might need to address a video display buffer located at a specific
physical address. The following assembler directive declares the name of the segment and
its frame number:

VideoBufferSeg SEGMENT at 0B800h

Segment Alignment. When a program is loaded, the physical address of each logical seg-
ment is constrained by the segment's alignment. A segment can be page aligned (aligned 4
on a 256-byte boundary), paragraph aligned (aligned on a 16-byte paragraph boundary),.
word aligned (aligned on an even-byte boundary), or byte aligned (not aligned on any
particular boundary). A specification of each segment's alignment is part of every object
module's program structure information.

High-level-language translators generally align segments according to the type of data
they contain. For example, executable code segments are usually byte aligned; program
data segments are usually word aligned. With an assembler, segment alignment can be
specified with the SEGMENT directive and the assembler will build this information into
the program's object module.

Concatenated Segments. The linker can concatenate logical segments from different
object modules when it builds the executable program. For example, several object mod­
ules may each contain part of a program's executable code. When the linker processes
these object modules, it can concatenate the executable code from the different object
modules into one range of contiguous addresses.

The order in which the linker concatenates logical segments in the executable program is
determined by the order in which the linker processes its input files and by the program

Section IL- Programming in the MS-DOS Environment 647

ZTE (USA) 1007, Page 657

Part E: Programming Tools

structure information in the object modules. With a high-level-language translator, the
translator infers which segments can be concatenated from the structure of the source
code and builds appropriate segment concatenation information into the object modules
it generates. With an assembler, the segment class type can be used to indicate which
segments can be concatenated.

Groups of Segments. Segments with different names may also be grouped together by the
linker so that they can all be addressed within the same 64 KB frame, even though they are
not concatenated. For example, it might be desirable to group program data segments and
a stack segment within the same 64 KB frame so that program data items and data on the
stack can be addressed with the same 8086 segment register.

In high-level languages, it is up to the translator to incorporate appropriate segment group­
ing information into the object modules it generates. With an assembler, groups of seg­
ments can be declared with the GROUP directive.

Fixups. Sometimes a compiler or an assembler encounters addresses whose values cannot
be determined from the source code. The addresses of external symbols are an obvious
example. The addresses of relocatable segments and of labels within those segments are
another example.

A fixup is a language translator's way of passing the buck about such addresses to the
linker. Typically, a translator builds a zero value in the binary image at locations where it
cannot store an actual address. Accompanying each such location is fixup information,
which allows the linker to determine the correct address. The linker then completes the
fixup by calculating the correct address value and adding it to the value in the correspond­
ing location in the binary image. The only fixups the linker cannot fully resolve are those
that refer to the segment address of a relocatable segment. Such addresses are not known
until the program is actually loaded, so the linker, in turn, passes the responsibility to the
MS-DOS loader by creating a segment relocation table in the header of the executable file.

To process fixups properly, the linker needs three pieces of information: the LOCATION
of the value in the object module, the nature of the TARGET (the address whose value is
not yet known), and the FRAME in which the address calculations are to take place. Object
modules contain the LOCATION, TARGET, and FRAME information the linker uses to
calculate the appropriate address for any given fixup.

Consider the "program" in Figure 19-2. The statement:

start: call far ptr FarProc

contains a reference to an address in the logical segment FarSeg2. Because the assembler
does not know the address of FarSeg2, it places fixup information about the address into
the object module. The LOCATION to be fixed up is 1 byte past the label start (the 4-byte
pointer following the call opcode 9AH). The TARGET is the address referenced in the call
instruction- that is, the label FarProc in the segment FarSeg2. The FRAME to which

648 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 658

Article 19:·0bject Modules

the fixup relates is designated by the group FarGroup and is inferred from the statement

ASSUME cs:FarGroup

in the FarSeg2 segment.

0000

0000 9A 0000 ---- R

0005

0000

0000

0000

0000

0000 CB

0001

title fixups

FarGroup GROUP FarSeg1,FarSeg2

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

start: call far ptr FarProc

CodeSeg ENDS

FarSeg1 SEGMENT byte public ;part of FarGroup

FarSeg1 ENDS

FarSeg2 SEGMENT byte public

ASSUME cs:FarGroup

FarProc PROC far
ret ;a FAR return

FarProc ENDP

FarSeg2 ENDS

END

Figure 19-2. A sample "program" containing statements from whic,h the assembler derivesfixup information.

There are several different ways for a language translator to identify a fixup. For example,
the LOCATION might be a single byte, a 16-bit offset, or a 32-bit pointer, as in Figure 19-2.
The TARGET might be a label whose offset is relative either to the base (beginning) of a
particular segment or to the LOCATION itself. The FRAME might be a relocatable seg­
ment, an absolute segment, or a group of segments.

Taken together, all the information in an object module that concerns the alignment and
grouping of segments can be regarded as a specification of a program's run-time memory
map. In effect, the object module specifies what goes where in memory when a program
is loaded. The linker can then take the program structure information in the object mod­
ules and generate a file containing an executable program with the corresponding
structure.

Section 11- Programming in the MS-DOS Environment 649

ZTE (USA) 1007, Page 659

Part E: Programming Tools

The Structure of an Object Module

Although object modules contain the information that ultimately determines the structure
of an executable program, they bear little structural resemblance to the resulting execut­
able program. Each object module is made up of a sequence of variable-length object
records. Different types of object records contain different types of program information.

Each object record begins with a 1-byte field that identifies its type. This is followed by a
2-byte field containing the length (in bytes) of the remainder of the record. Next comes the
actual structural or program information, represented in one or more fields of varied
lengths. Finally, each record ends with a 1-byte checksum.

The sequence in which object records appear in an object module is important. Because
the records vary in length, each object module must be constructed linearly, from start to
end. More important, however, is the fact that some types of object records contain ref­
erences to preceding object records. Because the linker processes object records sequen­
tially, the position of each object record within an object module depends primarily on
the type of information each record contains.

Types of object records

Microsoft LINK currently recognizes 14 types of object records, each of which carries a
specific type of information within the object module. Each type of object record is
assigned an identifying six-letter abbreviation, but these abbreviations are used only in
documentation, not within an object module itself. As already mentioned, the first byte
of each object record contains a value that indicates its type. In a hexadecimal dump of
the contents of an object module, these identifying bytes identify the start of each object
record.

Table 19-1lists the types of object records supported by LINK. The value of each record's
identifying byte (in hexadecimal) is included, along with the six-letter abbreviation and a
brief functional description. The functions of the 14 types of object records fall into six
general categories:

• Binary data (executable code and program data) is contained in the LEDATA and
LIDATA records.

• Address binding and relocation information is contained in FIXUPP records.
• The structure of the run-time memory map is indicated by SEGDEF, GRPDEF,

COMDEF, and TYPDEF records.
• Symbol names are declared in LNAMES, EXTDEF, and PUBDEF records.
• Debugging information is in the LINNUM record.
• Finally, the structure of the object module itself is determined by the THEADR,

COMENT, and MOD END records.

650 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 660

Article 19: Object Modules

Table 19-1. Types of 8086 Object Records Supported by Microsoft LINK.

IDbyte Abbreviation

SOH THEADR
88H COME NT
8AH MOD END
8CH EXIDEF
8EH TYPDEF
90H PUBDEF
94H LINNUM
96H LNAMES
98H SEGDEF
9AH GRPDEF
9CH FIXUPP
OAOH LEDATA
OA2H LIDATA
OBOH COMDEF

Object record order

Description

Translator Header Record
Comment Record
Module End Record
External Names Definition Record
Type Definition Record
Public Names Definition Record
Line Number Record
List of Names Record
Segment Definition Record
Group Definition Record
Fixup Record
Logical Enumerated Data Record
Logical Iterated Data Record
Communal Names Definition Record

The sequence in which the types of object records appear in an object module is fairly
flexible in some respects. Several record types are optional, and if the type of information
they carry is unnecessary, they are omitted from an object module. In addition, most
object record types can occur more than once in the same object module. And, because
object records are variable in length, it is often possible to choose, as a matter of conve­
nience, between combining information into one large record or breaking it down into
several smaller records of the same type.

As stated previously, an important constraint on the order in which object records appear
is the need for some types of object records to refer to information contained in other
records. Because the linker processes the records sequentially, object records containing
such information must precede the records that refer to it. For example, two types of object
records, SEGDEF and GRPDEF, refer to the names contained in an LNAMES record. Thus,
an LNAMES record must appear before any SEGDEF or GRPDEF records that refer to it so
that the names in the LNAMES record are known to the linker by the time it processes the
SEGDEF or GRPDEF records.

A typical object module

Figure 19-3 contains the source code for HELLO.ASM, an assembly-language program
that displays a short message'. Figure 19-4 is a hexadecimal dump of HELLO.OBJ, the object
module generated by assembling HELLO.ASM with the Microsoft Macro Assembler. Figure
19-5 isolates the object records within the object module.

Section II: Programming in the MS-DOS Environment 651

ZTE (USA) 1007, Page 661

Part E: Programming Tools

NAME HELLO

_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:-DATA

start:

mov ax,seg msg

mov ds,ax

mov dx,offset msg

mov ah,09h

int 21h

mov ax,4C00h

int 21h

_TEXT ENDS

-DATA SEGMENT word public 'DATA'

;program entry point

;DS:DX -> msg

;perform int 21H function 09H
; (Output character string)

;perform int 21H function 4CH

; (Terminate with return code)

msg DB 'Hello, world',ODh,OAh, '$'

_DATA ENDS

_STACK SEGMENT stack 'STACK'

DW SOh dup(?) ;stack depth 128 words

_STACK ENDS

END start

Figure 19-3. The source code for HELLO. ASM.

0 2 3 4 5 6 7 8 9 A B c D E F
0000 80 07 00 OS 48 45 4C 4C 4F 00 96 25 00 00 04 43 HELLO .. % ••• C
0010 4F 44 45 04 44 41 54 41 OS 53 54 41 43 4B OS SF ODE.DATA.STACK._
0020 44 41 54 41 06 SF 53 54 41 43 4B OS SF 54 45 58 DATA._STACK._TEX
0030 54 8B 98 07 00 28 11 00 07 02 01 1E 98 07 00 48 T (......... H
0040 OF 00 OS 03 01 01 98 07 00 74 00 01 06 04 01 E1 t
0050 AO 15 00 01 00 00 B8 00 00 BE DB BA 00 00 B4 09
0060 CD 21 B8 00 4C CD 21 DS 9C OB 00 cs 01 04 02,, 02 . ! .. L.!
0070 C4 06 04 02 02 B6 AO 13 00 02 00 00 48 65 6C 6C Hell
0080 6F 2C 20 77 6F 72 6C 64 OD OA 24 AS SA 07 00 C1 o, world .. $.•...

0090 00 01 01 00 00 AC

Figure 19-4. A hexadecimal dump ojHELLO.OB].

652 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 662

THEADR

0000

LNAMES

0000

0010
0020

0030

SEGDEF

0030

SEGDEF

0030

0

80

4F
44

54

2 3 4 5 6 7 8 9 A B

07 00 05 48 45 4C 4C 4F 00

96 25
44 45 04 44 41 54 41 05 53 54 41

41 54 41 06 SF 53 54 41 43 4B 05
8B

98 07 00 28 11 00 07 02 01 1E

c D E F

00 00 04 43

43 4B OS SF

SF 54 45 58

98 07 00 48
0040 OF 00 05 03 01 01

SEGDEF

0040

LEDATA

0050

0060

FIXUPP

0060

0070

LEDATA

0070

0080

MOD END

0080

0090

AO

CD

C4

6F

00

15 00 01 00 00

21 B8 00 4C CD

06 04 02 02 B6

2C 20 77 6F 72

01 01 00 00 AC

98 07 00 74 00 01 06 04 01 E1

B8 00 00 SE 08 BA 00 00 B4 09

21 OS

9C OB 00 C8 01 04 02 02

AO 13 00 02 00 00 48 65 6C 6C

6C 64 OD OA 24 AS

SA 07 00 C1

Figure 19-5. The object records in HELLO.OB].

Article 19: Object Modules

.... HELLO.

.% ••• c
ODE.DATA.STACK._
DATA._STACK._TEX

T.

... (..... .

••• H

... t

•••••••••••• 0 0 ••

. ! .. L.!.

• 0 ••• 0 ••

...... Hell

o, world .. $.

As shown most clearly in Figure 19-5, each of the object records begins with the single byte
value identifying the record's type. The second and third bytes of each record contain a
single 16-bit value, stored with its low-order byte first, that represents the length (in bytes)
of the remainder of the object record.

The first record, THEADR, identifies the object module and the last record, MOD END,
terminates the object module. The second record, LNAMES, contains a list of segment
names and segment class names that LINK will use to lay out the run-time memory map.
The three succeeding SEGDEF records describe the three corresponding segments
defined in the source code.

Section 11· Programming in the MS-DOS Environment 653

ZTE (USA) 1007, Page 663

PartE: Programming Tools

The order in which the object records appear reflects both the structure of the source
code and the record order constraints already mentioned. The LNAMES record appears
before the three SEGDEF records because each SEGDEF record contains a reference to
a name in the LNAMES record.

The binary data representing each of the two segments in the source code is contained
in the two LEDATA records. The first LEDATA record represents the _TEXT segment; the
second specifies the data in the _DATA segment. The FIXUPP record following the first
LEDATA record contains information about the address references in the _TEXT segment.
Again, the order in which the records appear is important: the FIXUPP record refers to
the LEDATA record preceding it.

References between object records

Object records can refer to information in other records either indirectly, by means of
implicit references, or directly, by means of indexed references to names or other records.

Implicit References. Some types of object records implicitly reference another record in
the same object module. The most important example of such implicit referencing is in the
FIXUPP record, which always contains fixup information for the preceding LEDATA or
LIDATA record in the object module. Whenever an LEDATA or LIDATA record contains a
value that needs to be fixed up, the next record in the object module is always a FIXUPP
record containing the actual fixup information.

Indexed References to Names. An object record that refers to a symbolic name, such as
the name of a segment or an external routine, uses an index into a list of names contained
in a previous object record. (The LNAMES record in Figure 19-5 is an example.) The first
name in such a list has the index number 1, the second name has index number 2, the third
has index number 3, and so on. Altogether, a list of as many as 32,767 (7FFFH) names can
be incorporated into an object module-generally adequate for even the most verbose
programmer. (LINK does, however, impose its own version-specific limits.)

Indexed References to Object Records. An object record can also refer to a previous
object record by using the same type of index. In this case, the index number refers to one
of a list of object records of a particular type. For example, a FIXUPP record might refer to
a segment by referencing one of several preceding SEGDEF records in the object module.
In that case, a value of 1 would indicate the first SEGDEF record in the object module, a
value of 2 would indicate the second, and so on.

The index-number field in an object record can be either 1 or 2 bytes long. If the number
is in the range 0-7FH, the high-order bit (bit 7) is 0 and the low-order 7 bits contain the
index number, so the field is only 1 byte long:

bit 7 6 5 4 3 2 0

0 index number

654 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 664

Article 19: Object Modules

If the index number is in the range 80-7FFFH, the field is 2 bytes long. The high-order bit
of the first byte in the field is set to 1, and the high-order byte of the index number (which
must be in the range 0-7FH) fits in the remaining 7 bits. The low-order byte of the index
number is specified in the second byte of the field:

bit 7 6 5 4 3 2 0 7 6 5 4 3 2
r--.------------------------~----------------~--~--~0~

high-order byte of index number low-order byte of index number

first byte second byte

The same format is used whether an index refers to a list of names or to a previous object
record.

Microsoft 8086 Object Record Formats

Just as the design of the lntel8086 microprocessor reflects the design of its 8-bit predeces­
sors, 8086 object record formats are reminiscent of the 8-bit software tradition. In 8-bit sys­
tems, disk space and RAM were often at a premium. To minimize the space consumed by
object records, information is packed into bit fields within bytes and variable-length fields
are frequently used.

Microsoft LINK recognizes a major subset oflntel's original8086 object module speci­
fication (Intel Technical Specification 121748-001). Intel also proposed a six-letter name for
each type of object record and symbolic names for fields. These names are documented in
the foll0wing descriptions, which appear in the order shown earlier in Table 19-1.

The Intel record types that are not recognized by LINK provide information about an
executable program that MS-DOS obtains in other ways. (For example, information about
run-time overlays is supplied in LINK's command line rather than being encoded in object
records.) Because they are ignored by LINK, they are not included here.

All8086 object records conform to the following format:

The record type field is a 1-byte field containing the hexadecimal number that identifies
the type of object record (see Table 19-1).

The record length is a 2-byte field that gives the length of the remainder of the object
record in bytes (excluding the bytes in the record type and record length fields). The
record length is stored with the low-order byte first.

Section 11- Programming in the MS-DOS Environment 655

ZTE (USA) 1007, Page 665

Part E: Programming Tools

The body field of the record varies in size and content, depending on the record type.

The checksum is a 1-byte field that contains the negative sum (modulo 256) of all other
bytes in the record. In other words, the checksum byte is calculated so that the low-order
byte of the sum of all the bytes in the record, including the checksum byte, equals zero.

Note: As shown in the preceding example, the boxes used to depict the fields vary in size.
The square boxes used for record type and chksum indicate a single byte, the rectangular
box used for record length indicates 2 bytes, and the diagonal lines used for body indicate
a variable-length field.

656 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 666

Article 19: Object Modules

SOH THEADR Translator Header Record

The THEADR record contains the name of the object module. This name identifies an
object module within an object library or in messages produced by the linker.

Record format

~~-so_H_LI __ Ie_n~~-th--~--T--m~~~~~-le--~--~
T-module name

The T-module name field is a variable-length field that contains the name of the object
module. The first byte of the field contains the number of subsequent bytes that contain
the name itself. The name can be uppercase or lowercase and can be any string of
characters.

The T-module name is used by LIB and LINK within error messages. Language translators
frequently derive the T-module name from the name of the file that contains a program's
source code. Assembly-language programmers can specify the T-module name explicitly
with the assembler NAME directive.

Location in object module

As its name implies, the THEADR record must be the first record in every object mo..dule
generated by a language translator.

Example

The following THEADR record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 80 09 00 07 68 65 6C 6C 6F 2E 63 CB

• Byte OOH contains SOH, indicating a THEADR record.

.... hello.c.

• Bytes 01-02H contain 0009H, the length of the remainder of the record.
• Bytes 03-0AH contain the T-module name. Byte 03H contains 07H, the length of

the name, and bytes 04H through OAH contain the name itself (hello. c). (In object
modules generated by the Microsoft C Compiler, the THEADR record indicates
the filename that contained the C source code for the module.)

• Byte OBH contains the checksum, OCBH.

Section II: Programming in the MS-DOS Environment 657

ZTE (USA) 1007, Page 667

PartE: Programming Tools

88H COMENT Comment Record

The COMENT record contains a character string that may represent a plain text comment,
a symbol meaningful to a program such as LIB or LINK, or even binary-encoded identifica­
tion data. An object module can contain any number of COMENT records.

Record format

Attrib

r---r---.----.---.---,.---~~~--~---,

comment
L---L---~--~---L--~----~~~--~--~

Attrib is a 1-byte field in which only the first 2 bits are meaningful:

bit 7 6 5 4 3 2 0
rlp-~-~-e~,--~-,---o--r--0-.--0-,~0--r--0~--0-,

• If bit 7 (no purge) is set to 1, utility programs that manipulate object modules should
not delete the comment record from the object module. Bit 7 can thus protect an
important comment, such as a copyright message, from deletion.

• If bit 6 (no list) is set to 1, utility programs that can list the contents of object modules
are directed not to list the comment. Bit 6 can thus hide a comment.

• Bits 5 through 0 are unused and should be set to 0.

Microsoft LIB ignores the attrib field.

Comment class

Comment class is a 1-byte field whose value provides information about the type of
comment. The original Intel specification provided for the following possible comment
class values:

Value

OOH

01H
02-9BH

Use

Language-translator comment (the name of the translator that generated the
object module).

Copyright comment.
Reserved for Intel proprietary software.

658 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 668

Article 19: Object Modules

Microsoft language translators can generate several other classes of COMENT record that
communicate specific information about the object module to LINK:

Value

81H
9CH

9DH

9EH
9FH

OAlH

OCOH­
OFFH

Comment

Use

Obsolete; replaced by comment class 9FH.
MS-DOS version number. Some language translators create a COMENT record

with a 2-byte binary value in the comment field indicating the MS-DOS ver­
sion under which the module was created. This record is ignored by LINK.

Memory model. The comment field contains a string that indicates the mem­
ory model used by the language translator. The string contains one of the
lowercase letters s, c, m, l, and h to designate small, compact, medium, large,
and huge memory models. Microsoft language translators generate COMENT
records with this comment class only for compatibility with the XENIX ver­
sion of LINK. The MS-DOS version of LINK ignores these COMENT records.

Sets Microsoft LINK's DOSSEG switch.
Default library search name. LINK interprets the contents of the comment

field as the name of a library to be searched in order to resolve external ref­
erences within the object module. The default library search can be overrid­
den with LINK's NODEFAULTLIBRARYSEARCH switch.

Indicates that Microsoft extensions to the Intel object record specification are
used in the object module. For example, when COMDEF records are used
within an object module, a COMENT record with comment class OAlH must
appear in the object module at some point before the first COMDEF record.
LINK ignores the comment string in COMENT records with this comment
class.

Reserved for user-defined comment classes.

The comment field is a variable-length string of bytes that represent the comment. The
length of the string is inferred from the length of the object rec?rd.

Location in object module

A COMENT record can appear almost anywhere in an object module. Only two restric­
tions apply:

• A COMENT record cannot be placed between a FIXUPP record and the LEDATA or
LIDATA record to which it refers.

• A COMENT record cannot be the first or last record in an object module. (The first
record must always be a THEADR record and the last must always be MODEND.)

Section II: Programming in the MS-DOS Environment 659

ZTE (USA) 1007, Page 669

PartE: Programming Tools

Examples
The following three examples are typical COMENT records taken from an object module
generated by the Microsoft C Compiler.

This first example is a language-translator comment:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 07 00 00 00 4D 53 20 43 6E ••••• MS en

• Byte OOH contains 88H, indicating that this is a COMENT record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.
• Byte 03H (the attrib field) contains OOH. Bit 7 (no purge) is set to 0, indicating that

this COMENT record may be purged from the object module by a utility program that
manipulates object modules. Bit 6 (no list) is set to 0, indicating that this comment
neecf not be excluded from any listing of the module's contents. The remaining bits
are all 0.

• Byte 04H (the comment class field) contains OOH, indicating that this COMENT record
contains the name of the language translator that generated the object module.

• Bytes 05H through 08H contain the name of the language translator, MS C.
• Byte 09H contains the checksum, 6EH.

The second example contains the name of an object library to be searched by default
when LINK processes the object module containing this COMENT record:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 09 00 00 9F 53 4C 49 42 46 50 10 SLIBFP.

• Byte 04H (the comment class field) contains 9FH, indicating that this record contains
the name of a library for LINK to use to resolve external references.

• Bytes 05-0AH contain the library name, SLIBFP. In this example, the name refers to
the Microsoft C Compiler's floating-point function library, SLIBFP.LIB.

The last example indicates that the object module contains Microsoft-defined extensions to
the Intel object module specification:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 06 00 00 A1 01 43 56 37 CV7

• Byte 04H indicates the comment class, OAlH.
• Bytes 05-07H, which contain the comment string, are ignored by LINK.

660 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 670

Article 19: Object Modules

SAH MODEND Module End Record

The MOD END record denotes the end of an object module. It also indicates whether the
object module contains the main routine in a program, and it can, optionally, contain a
reference to a program's entry point.

Record format

Module type

The module type field is an 8-bit (1-byte) field:

bit 7 6 5 4

I main I start I 0 0

3

0

2

0

0

0

• Bit 7 (main) is set to 1 if the module is a main program module.
• Bit 6 (start) is set to 1 if the MOD END record contains an entry point (start address).
• Bit 0 is set to 1 if the start address field contains a relocatable address reference that

LINK must fix up. If bit 6 is set to 1, bit 0 must also be set to 1. (The Intel specification
allows bit 0 to be set to 0, to indicate that start address is an absolute physical address,
but this capability is not supported by LINK.)

Start address

The start address field appears in the MODEND record only when bit 6 is set to 1:

The format and interpretation of the start address field corresponds to the fixup field
of the FIXUPP record. The end dat field corresponds to the fix dat field in the FIXUPP
record. Bit 2 of the end dat field, which corresponds to the P bit in a fix dat field, must
be zero.

Location in object module

A MODEND record can appear only as the last record in an object module.

Section II: Programming in the MS-DOS Environment 661

ZTE (USA) 1007, Page 671

Part E: Programming Tools

Example

Consider the MOD END record of the HELLO.ASM example:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 SA 07 00 C1 00 01 01 00 00 AC

• Byte OOH contains 8AH, indicating a MODEND record.
• Bytes 01-02H contain 0007H, the lengtl} of the remainder of the record.
• Byte 03H contains OC1H (llOOOOOlB). Bit 7 is set to 1, indicating that this module is

the main module of the program. Bit 6 is set to 1, indicating that a start address field is
present. Bit 0 is set to 1, indicating that the address referenced in the start address
field must be fixed up by LINK.

• Byte 04H (end dat in the start address field) contains OOH. As in a FIXUPP record,
bit 7 indicates that the frame for this fixup is specified explicitly, and bits 6 through 4
indicate that a SEGDEF index specifies the frame. Bit 3 indicates that the target refer­
ence is also specified explicitly, and bits 2 through 0 indicate that a SEGDEF index
also specifies the target. See also FIXUPP 9CH Fixup Record below.

• Byte 05H (frame datum in the start address field) contains OlH. This is a reference
to the first SEGDEF record in the module, which in this example corresponds to the
_TEXT segment. This reference tells LINK that the start address lies in the _TEXT
segment of the module.

• Byte 06H (target datum in the start address field) contains OlH. This too is a ref­
erence to the first SEGDEF record in the object module, which corresponds to the
_TEXT segment. LINK uses the following target displacement field to determine
where in the _TEXT segment the address lies.

• Bytes 07-08H (target displacement in the start address field) contain OOOOH. This is
the offset (in bytes) of the start address.

• Byte 09H contains the checksum, OACH.

662 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 672

Article 19: Object Modules

SCH EXTDEF External Names Definition Record

The EXTDEF record contains a list of symbolic external references- that is, references to
symbols defined in other object modules. The linker resolves external references by
matching the symbols declared in EXTDEF records with symbols declared in PUBDEF
records.

Record format

External reference list

The external reference list is a variable-length field containing a list of names and name
types, each formatted as follows:

name

~~~--~~~--~--~ 

• The name length is a 1-byte field containing the length of the name field that follows 
it. (LINK restricts name length to a value between OlH and 7FH.) 

• The type index is a 1-byte reference to the TYPDEF record in the object module that 
describes the type of symbol the name represents. A type index value of zero indi- 4 
cates that no TYPDEF record is associated with the symbol. A nonzero value indicates 
which TYPDEF record is associated with the external name. Microsoft LINK recog-
nizes TYPDEF records only for the purpose of declaring communal variables. See 8EH 
TYPDEF Type Definition Record below. 

LINK imposes a limit of 1023 external mimes. 

Location in object module 

Any EXTDEF records in an object module must appear before the FIXUPP records that 
reference them. Also, if an EXTDEF record contains a nonzero type index, the indexed 
TYPDEF record must precede the EXTDEF record. 

Example 

Consider this EXTDEF record generated by the Microsoft C Compiler: 

0 1 2 3 4 s 6 7 8 9 
0000 8C 2S 00 OA SF SF 61 63 72 74 
0010 SF 6D 61 69 6E 00 OS SF 70 7S 
0020 63 68 6B 73 74 6B 00 AS 

A B c D E F 
7S 73 6S 64 00 OS .%. ,_acrtused .. 

74 73 00 08 SF SF __main .• _puts .. _ 

chkstk .• 

Section II: Programming in the MS-DOS Environment 663 

ZTE (USA) 1007, Page 673



PartE: Programming Tools 

• Byte OOH contains 8CH, indicating that this is an EXTDEF record. 
• Bytes 01-02H contain 0025H, the length of the remainder of the record. 
• Bytes 03-26H contain a list of external references. The first reference starts in byte 

03H, which contains OAH, the length of the name _acrtused. The name itself fol­
lows in bytes 04-0DH. Byte OEH contains OOH, which indicates that the symbol's type 
is not defined by any TYPDEF record in this object module. Bytes OF-26H contain 
similar references to the external symbols _main, _puts, and _chkstk. 

• Byte 27H contains the checksum, 0A5H. 

664 The MS-DOS Encyclopedia 

ZTE (USA) 1007, Page 674



Article 19: Object Modules 

SEH TYPDEF Type Definition Record 

The TYPDEF record contains details about the type of data represented by a name 
declared in a PUBDEF or an EXTDEF record. This information may be used by the linker 
to validate references to names, or it may be used by a debugger to display data according 
to type. 

Starting with Microsoft LINK version 3.50, the COMDEF record should be used for declara­
tion of communal variables. For compatibility, however, later versions of LINK recognize 
TYPDEF records as well as COMDEF records. 

Record format 

Name 

Although the original Intel specification allowed for many different type specifications, 
such as scalar, pointer, and mixed data structure, LINK uses TYPDEF records to declare 
only communal variables. Communal variables represent globally shared memory areas­
for example, FORTRAN common blocks or uninitialized public variables in C. 

The size of a communal variable is declared explicitly in the TYPDEF record. If a 
communal variable has different sizes in different object modules, LINK uses the largest 
declared size when it generates an executable module. 

The name field of a TYPDEF record is a 1-byte field that is always null; that is, it contains a 
single zero byte. 

Eight-leaf descriptor 

The eight-leaf descriptor field, in the original Intel specification, was a variable-length 
field that contained as many as eight "leaves" that could be used to describe mixed data 
structures. 

Microsoft uses a stripped-down version of the eight-leaf descriptor, because the field's only 
function is to describe communal variables: 

~~~ 
~:-7

repeated

Section /1· Programming in the MS-DOS Environment 665

ZTE (USA) 1007, Page 675

Part E: Programming Tools

• The first field in the eight-leaf descriptor is a 1-byte field that contains a zero byte.
• The leaf descriptor field is a variable-length field that is itself divided into four fields

("leaves") that describe the size and type of a variable. The two possible variable
types are NEAR and FAR.

If the field describes a NEAR variable (one that can be referenced as an offset within a
default data segment), the format is

- The 1-byte field containing 62H signifies a NEAR variable.
- The variable type field is a 1-byte field that specifies the variable type:

77H Array
79H Structure
7BH Scalar

This field is ignored by LINK.
- The length in bits field is a variable-length field that indicates the size of the com­

munal variable. Its format depends on the size it represents. If the size is less than
128 (SOH) bits, length in bits is a 1-byte field containing the actual size of the field:

If the size is 128 bits or greater, it cannot be represented in a single byte value, so
the length in bits field is formatted with an extra initial byte that indicates whether
the size is represented as a 2-, 3-, or 4-byte value:

lasH I : 4-byt:e size :

666 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 676

Article 19: Object Modules

If the leaf descriptor field describes a FAR variable (one that must be referenced with
an explicit segment and offset), the format is

- The 1-byte field containing 61H signifies a FAR variable.
- The 1-byte variable type for a FAR communal variable is restricted to 77H (array).

(As with the NEAR variable type field, LINK ignores this field.)
- The number of elements is a variable-length field that contains the number of

elements in the array. It has the same format as the length in bits field in the leaf
descriptor for a· NEAR variable.

- The element type index is an index field that references a previous TYPDEF
record. A value of 1 indicates the first TYPDEF record in the object module, a value
of 2 indicates the second TYPDEF record, and so on. The TYPDEF record refer­
enced must describe a NEAR variable. This way, the data type and size of the
elements in the array can be determined.

Location in object module

Any TYPDEF records in an object module must precede the EXTDEF or PUBDEF records
that reference them.

Examples

The following three examples of TYPDEF records were generated by the Microsoft C
Compiler version 3.0. (Later versions use COMDEF records.)

The first sample TYPDEF record corresponds to the public declaration

int foe; I* 16-bit integer *I

The TYPEDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 8E 06 00 00 00 62 7B 10 7F b{ ..

• Byte OOH contains 8EH, indicating that this is a TYPDEF record.
• Bytes 01-02H contain 0006H, the length of the remainder of the record.
• Byte 03H (the name field) contains OOH, a null name.
• Bytes 04-07H represent the eight-leaf descriptor field. The first byte of this field

(byte 04H) contains OOH. The remaining bytes (bytes 05-07H) represent the leaf
descriptor field:
- Byte 05H contains 62H, indicating this TYPDEF record describes a NEAR variable.
- Byte 06H (the variable type field) contains 7BH, which describes this variable as

a scalar.
- Byte 07H (the length in bits field) contains 10H, the size of the variable in bits.

Section 11- Programming in the MS-DOS Environment 667

ZTE (USA) 1007, Page 677

Part E: Programming Tools

• Byte 08H contains the checksum, 7FH.

The next example demonstrates how the variable size contained in the length in bits field
of the leaf descriptor is formatted:

char foo2[32768]; I* 32 KB array *I

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 8E 09 00 00 00 62 7B 84 00 00 04 04, b{

• The length in bits field (bytes 07 -OAH) starts with a byte containing 84H, which in­
dicates that the actual size of the variable is represented as a 3-byte value (the follow­
ing 3 bytes). Bytes 08-0AH contain the value 040000H, the size of the 32 KB array
in bits.

This third C statement, because it declares a FAR variable, causes two TYPDEF records to
be generated:

char far foo3 [10] [2] [20]; I* 400-element FAR array *I

The two TYPDEF records are

0123456789ABCDEF
0000 8E 06 00 00 00 62 7B 08 87 8E 09 00 00 00 61 77
0010 81 90 01 01 7E

.••.. b{ ...•.•. aw

' o o o • I

• Bytes 00-08H contain the first TYPDEF record, which defines the data type of the
elements of the array (NEAR, scalar, 8 bits in size).

• Bytes 09-14H contain the second TYPDEF record. The leaf descriptor field of this
record declares that the variable is FAR (byte OEH contains 61H) and an array (byte
OFH, the variable type, contains 77H).
- Because this TYPDEF record describes a FAR variable, bytes 10-12H represent

a number of elements field. The first byte of the field is 81H, indicating a 2-byte
value, so the next 2 bytes (bytes ll-12H) contain the number of elements in the
array, 0190H (400D).

• Byte 13H (the element type index) contains OlH, which is a reference to the first
TYPDEF record in the object module-in this example, the one in bytes 00-08H.

668 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 678

Article 19: Object Modules

90H PUBDEF Public Names Definition Record

The PUBDEF record contains a list of public names. When object modules are linked, the
linker uses these m~mes to resolve external references in other object modules.

Record format

Public base

Each name in the PUBDEF record refers to a location (a 16-bit offset) in a particular seg­
ment or group. The public base, a variable-length field that specifies the segment or group,
is formatted as follows:

• Group index is an index field that references a previous GRPDEF record in the object
module. If the group index value is 0, no group is associated with this PUBDEF
record.

• Segment index is also an index field. It associates a particular segment with this
PUBDEF record by referencing a previous SEGDEF record. A value of 1 indicates the
first SEGDEF record in the object module, a value of 2 indicates the second, and so on.
If the segment index value is 0, the group index must also be 0-in this case, the
frame number appears in the public base field.

• The 2-byte frame number appears in the public base field only when the group
index and segment index are both 0. In other words, the frame number specifies
the start of an absolute segment. If present, the value in the frame number field indi­
cates the number of the frame containing the public name.

Public name

Public name is a variable-length field containing a public name. The first byte specifies
the length of the name; the remainder is the name itself. (The Intel specification allows
names of 1 to 255 bytes. Microsoft LINK restricts the maximum length of a public name to
127bytes.)

Section /1· Programming in the MS-DOS Environment 669

ZTE (USA) 1007, Page 679

PartE: Programming Tools

Public offset

Public offset is a 2-byte field containing the offset of the location referred to by the public
name. This offset is assumed to lie within the segment, group, or frame specified in the
public base field.

Type index

Type index is an index field that references a previous TYPDEF record in the object mod­
ule. A value of 1 indicates the first TYPDEF record in the module, a value of 2 indicates the
second, and so on. The type index value can be 0 if no data type is associated with the
public name.

The public name, public offset, and type index fields can be repeated within a single
PUBDEF record. Thus, one PUBDEF record can declare a list of public names.

Location in object module

Any PUBDEF records in an object module must appear after the GRPDEF and SEGDEF
records to which they refer. Because PUBDEF records are not themselves referenced by
any other type of object record, they are generally placed near the end of an object
module.

Examples

The following two examples show PUBDEF records created by the Microsoft Macro
Assembler.

The first example is the record for the statement

PUBLIC GAMMA

The PUBDEF record is

0123456789ABCDEF
0000 90 OC 00 00 01 05 47 41 4D 4D 41 02 00 00 F9 GAMMA

• Byte OOH contains 90H, indicating a PUBDEF record.
• Bytes Ol-02H contain OOOCH, the length ofthe remainder of the record.
• Bytes 03-04H represent the public base field. Byte 03H (the group inde~) contains 0,

indicating that no group is associated with the name in this PUBDEF record. Byte 04H
(the segment index) contains 1, a reference to the first SEGDEF record in the object
module. This is the segment to which the name in this PUBDEF record refers.

• Bytes 05-0AH represent the public name field. Byte 05H contains 05H (the length of
the name), and bytes 06-0AH contain the name itself, GAMMA.

• Bytes OB-OCH contain 0002H, the public offset. The name GAMMA thus refers to the
location that is offset 2 bytes from the beginning of the segment referenced by the
public base.

• Byte ODH is the type index. The value of the type index is 0, indicating that no data
type is associated with the name GAMMA.

• Byte OEH contains the checksum, OF9H.

670 The MS-DOS Encyclopedia

j

ZTE (USA) 1007, Page 680

Article 19: Object Modules

The next example is the PUBDEF record for the following absolute symbol declaration:

PUBLIC
ALPHA EQU

ALPHA
1234h

The PUBDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 90 OE 00 00 00 00 00 OS 41 4C 50 48 41 34 12 00 ALPHA4
0010 B1

• Bytes 03-06H (the public base field) contain a group index of 0 (byte 03H) and a
segment index of 0 (byte 04H). Since both the group index and segment index are 0,
a frame number also appears in the public base field. In this instance, the frame
number (bytes 05-06H) also happens to be 0.

• Bytes 07 -OCH (the public name field) contain the name ALPHA, preceded by its
length.

• Bytes OD-OEH (the public offset field) contain 1234H. This is the value associated
with the symbol ALPHA in the assembler EQU directive. If ALPHA is declared in
another object module with the declaration

EXTRN ALPHA:ABS

any references to ALPHA in that object module are fixed up as absolute references to
offset 1234H in frame 0. In other words, ALPHA would have the value 1234H.

• Byte OFH (the type index) contains 0.

Section Jl: Programming in the MS-DOS Environment 671

ZTE (USA) 1007, Page 681

Part E: Programming Tools

94H LINNUM Line Number Record

The LINNUM record relates line numbers in source code to addresses in object code.

Record format

Line number base

The line number base describes the segment to which the line number refers. Although
the complete Intel specification allows the line number base to refer to a group or to an
absolute segment as well as to a relocatable segment, Microsoft restricts references in this
field to relocatable segments. The format of the line number base field is

• The group index field always contains a single zero byte.
• The segment index is an index field that references a previous SEGDEF record. A

value of 1 indicates the first SEGDEF record in the object module, a value of 2 indicates
the second, and so on.

Line number

Line number is a 2-byte field containing a line number between 0 and 32,767
(0-7FFFH).

Line number offset

The line number offset is a 2-byte field that specifies the offset of the executable code (in
the segment specified in the line number base field) to which the line number in the line
number field refers.

The line number and line number offset fields can be repeated, so a single LINNUM
record can specify multiple line numbers in the same segment.

Location in object module

Any LINNUM records in an object module must appear after the SEGDEF records to which
they refer. Because LINNUM records are not themselves referenced by any other type of
object record, they are generally placed near the end of an object module.

672 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 682

Article 19: Object Modules

Example

The following LINNUM record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 94 OF 00 00 01 02 00 00 00 03 00 08 00 04 00 OF
0010 00 3C

• Byte OOH contains 94H, indicating that this is a LINNUM record.
• Bytes 01-02H contain OOOFH, the length of the remainder of the record.
• Bytes 03-04H represent the line number base field. Byte 03H (the group index field)

contains OOH, as it must. Byte 04H (the segment index field) contains OlH, indicating
that the line numbers in this LINNUM record refer to code in the segment defined in
the first SEGDEF record in this object module.

• Bytes 05-06H (a line number field) contain 0002H, and bytes 07 -08H (a line num­
ber offset field) contain OOOOH. Together, they indicate that source-code line number
0002 corresponds to offset OOOOH in the segment indicated in the line number base
field.

Similarly, the two pairs of line number and line number offset fields in bytes 09-lOH
specify that line number 0003 corresponds to offset 0008H and that line number 0004
corresponds to offset OOOFH.

• Byte llH contains the checksum, 3CH.

Section IL- Programming in the MS-DOS Environment 673

ZTE (USA) 1007, Page 683

PartE: Programming Tools

96H LNAMES List of Names Record

The LNAMES record is a list of names that can be referenced by subsequent SEGDEF and
GRPDEF records in the object module.

Record format

Name list

Name list is a variable-length field that contains the list of names. Each name is preceded
by 1 byte that defines its length, which can be a value between 0 and 255 (0-0FFH).

The names in the list are indexed implicitly in the order they appear: The first name in the
list has an index of 1, the second name has an index of 2, and so forth. References to the
names contained in name list by subsequent object records, such as SEGDEF, are accom­
plished by using this index number. LINK imposes a limit of 255logical names per object
module.

Location in object module

Any LNAMES records in an object module must appear before the GRPDEF or SEGDEF
records that refer to them. Because it does not refer to any other type of object records, an
LNAMES record usually appears near the start of an object module.

Example

The following LNAMES record contains the segment and class names specified in all three
of the assembler statements:

_TEXT SEGMENT byte public 'CODE'
_DATA SEGMENT word public 'DATA'
_STACK SEGMENT para public 'STACK'

The LNAMES record is

0 1 2 3 4 5 6 7 8 9 A B c D E F

0000 96 25 00 00 04 43 4F 44 45 04 44 41 54 41 OS 53 .% ... CODE.DATA.S

0010 54 41 43 4B OS SF 44 41 54 41 06 SF 53 54 41 43 TACK._DATA._STAC

0020 4B 05 SF 54 45 58 54 BB K._TEXT.

• Byte OOH contains 96H, indicating that this is an LNAMES record.
• Bytes 01-02H contain 0025H, the length of the remainder of the record.

674 TheMS-DOSEncyclopedia

ZTE (USA) 1007, Page 684

Article 19: Object Modules

• Byte 03H contains OOH, a zero-length name.
• Byte 04H contains 04H, the length of the class name CODE, which is found in bytes

05-08H. Bytes 09-26H contain the class names DATA and STACK and the segment
names _DATA, _STACK, and _TEXT, each preceded by 1 byte giving its length.

• Byte 27H contains the checksum, 8BH.

Section Jl- Programming in the MS-DOS Environment 675

ZTE (USA) 1007, Page 685

PartE: Programming Tools

98H SEGDEF Segment Definition Record

The SEGDEF record describes a logical segment in an object module. It defines the seg­
ment's name, length, and alignment, and the way the segment can be combined with other
logical segments. LINK imposes a limit of 255 SEGDEF records per object module.

Object records that follow a SEG DEF record can refer to it to identify a particular segment.

Record format

r--.---.--.---~ ~--~--,---r---~ ~--~--~~~--~--~~~--~~
class name overlay name

index index
~--~--~~ ~~--._~

Segment attributes

Segment attributes is a variable-length field:

The ACBP byte

The contents and size of the segment attributes field depend on the first byte of the field,
the ACBP byte:

bit 7 6 5 4 3 2 0

A c B p

The bit fields in the ACBP byte describe the following characteristics of the segment:

A Alignment in the run-time memory map
C Combination with other segments
B Big (a segment of exactly 64 KB)
P Page-resident (not used in MS-DOS)

The A field. Bits 7-5 of the ACBP byte, the A field, describe the logical segment's
alignment:

A=O (OOOB)
A= 1 (OOlB)
A= 2 (OlOB)
A= 3 (OllB)
A= 4(100B)

Absolute (located at a specified frame address)
Relocatable, byte aligned
Relocatable, word aligned
Relocatable, paragraph aligned
Relocatable, page aligned

676 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 686

Article 19: Object Modules

The original Intel specification includes two additional segment-alignment values not
supported in MS-DOS.

The following examples of Microsoft assembler SEGMENT directives show the resulting
values for the A field in the corresponding SEGDEF object record:

aseg

bseg

cseg

SEGMENT at 400h A = 0
; A= 1

; A = 3

SEGMENT byte public 'CODE'

SEGMENT para stack 'STACK'

The Cfield. Bits 4-2 of the ACBP byte, the C field, describe how the linker can combine
the segment with other segments. Under MS-DOS, segments with the same name and class
can be combined in two ways. They can be concatenated to form one logical segment, or
they can be overlapped. In the latter case, they have either the same starting address or the
same end address and they describe a common area of memory.

The value in the C field corresponds to one of these two methods of combining segments.
Meaningful values, however, also depend on whether the segment is absolute (A = 0) or
relocatable (A= 1, 2, 3, or 4). If A= 0, then C must also be 0, because absolute segments
cannot be combined. Values for the C field are

C= O(OOOB)

C= 1 (001B)
C= 2 (OlOB)

C= 3 (OllB)
C= 4(100B)
C= 5 (lOlB)

C= 6(110B)

C= 7 (111B)

Cannot be combined; used for segments whose combine type is not
explicitly specified (private segments).

Not used by Microsoft.
Can be concatenated with another segment of the same name; used for

segments with the public combine type.
Undefined.
As defined by Microsoft, same as C = 2.
Can be concatenated with another segment with the same name; used for

segments with the stack combine type.
Can be overlapped with another segment with the same name; used for

segments with the common combine type.
As defined by Microsoft, same as C = 2. ·

The following examples of assembler SEGMENT directives show the resulting values for
the C field in the corresponding SEGDEF object record:

aseg SEGMENT at 400H c = 0
bseg SEGMENT public 'DATA' c = 2

cseg SEGMENT stack 'STACK' c = 5

dseg SEGMENT common 'COMMON' c = 6

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING ToOLs: The
Microsoft Object Linker.

The Band P fields. Bit 1 of the ACBP byte, the B field, is set to 1 (and the segment length
field is set to 0) only if the segment is exactly 64 KB long.

Bit 0 of the ACBP byte, the P field, is unused in MS-DOS. Its value should always be 0.

Section JL- Programming in the MS-DOS Environment 677

ZTE (USA) 1007, Page 687

PartE: Programming Tools

Frame number and offset
The frame number and offset fields of the segment attributes field are present only if the
segment is an absolute segment (A = 0 in the ACBP byte). Taken together, the frame num­
ber and offset indicate the starting address of the segment.

• Frame number is a 2-byte field that contains the frame number of the start of the
segment.

• Offset is a 1-byte field that contains an ?ffset between OOH and OFH within the speci­
fied frame. LINK ignores the offset field.

Segment length

Segment length is a 2-byte field that specifies the length of the segment in bytes. The
length can be from OOH to FFFF.H. If a segment is exactly 64 KB (10000H) in size, segment
length should be 0 and the B field in the ACBP byte should be 1.

Segment name index, class name index, and overlay name index

Each of the segment name index, class name index, and overlay name index fields
contains an index into the list of names defined in previous LNAMES records in the object
module. An index value of 1 indicates the first name in the LNAMES record, a value of 2 the
second, and so on.

• The segment name index identifies the segment with a unique name. The name may
have been assigned by the programmer, or it may have been generated by a compiler.

• The class name index identifies the segment with a class name (such as CODE,
FAR_ DATA, and STACK). The linker places segments with the same class name into
a contiguous area of memory in the run-time memory map.

• The overlay name index identifies the segment with a run-time overlay. Starting with
version 2.40, however, LINK ignores the overlay name index. In versions 2.40 and
later, command-line parameters to LINK, rather than information contained in object
modules, determine the creation of run-time overlays.

Location in object module

SEGDEF records must follow the LNAMES record to which they refer. In addition, SEGDEF
records must precede any PUBDEF, LINNUM, GRPDEF, FIXUPP, LEDATA, or LIDATA
records that refer to them.

Examples

In this first example, the segment is byte aligned:

0123456789ABCDEF

0000 98 07 00 28 11 00 07 02 01 1E ... (......

• Byte OOH contains 98H, indicating that this is a SEGDEF record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.

678 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 688

Article 19: Object Modules

• Byte 03H contains 28H (00101000B), the ACBP byte. Bits 7-5 (the A field) contain 1
(OOlB), indicating that this segment is relocatable and byte aligned. Bits 4-2 (the C
field) contain 2 (OlOB), which represents a public combine type. (When this object
module is linked, this segment will be concatenated with all other segments with the
same name.) Bit 1 (the B field) is 0, indicating that this segment is smaller than 64 KB.
Bit 0 (the P field) is ignored and should be zero, as it is here.

• Bytes 04-05H contain 0011H, the size of the segment in bytes.
• Bytes 06-08H index the list of names defined in the module's LNAMES record. Byte

06H (the segment name index) contains 07H, so the name of this segment is the
seventh name in the LNAMES record. Byte 07H (the class name index) contains 02H,
so the segment's class name is the second name in the LNAMES record. Byte 08H (the
overlay name index) contains 1, a reference to the first name in the LNAMES record.
(This name is usually null, as MS-DOS ignores it anyway.)

• Byte 09H contains the checksum, lEH.

The second SEGDEF record declares a word-aligned segment. It differs only slightly from
the first.

0123456789ABCDEF

0000 98 07 00 48 OF 00 05 03 01 01 ... H .••.••

• Bits 7-5 (the A field) of byte 03H (the ACBP byte) contain 2 (OlOB), indicating that
this segment is relocatable and word aligned.

• Bytes 04-05H contain the size of the segment, OOOFH.
• Byte 06H (the segment name index) contains 05H, which refers to the fifth name in

the previous LNAMES record.
• Byte 07H (the class name index) contains 03H, a reference to the third name in the

LNAMES record.

Section /1· Programming in the MS-DOS Environment ·679

ZTE (USA) 1007, Page 689

PartE: Programming Tools

9AH GRPDEF Group Definition Record

The GRPDEF record defines a group of segments, all of which lie within the same 64 KB
frame in the run-time memory map. LINK imposes a limit of 21 GRPDEF records per
object module.

Record format

Group name index

Group name index is an index field whose value refers to a name in the name list field of
a previous LNAMES record.

Group component descriptor

The group component descriptor consists of two fields:

• Type is a 1-byte field whose value is always OFFH, indicating that the following field
contains a segment index value. The original Intel specification defines four other
types of group component descriptor with the values OFEH, OFDH, OFBH, and OFAH.
LINK ignores these other type values, however, and assumes that the group compo­
nent descriptor contains a segment index value.

• The segment index field contains an index number that refers to a previous SEGDEF
record. A value of 1 indicates the first SEGDEF record in the object module, a value of
2 indicates the second, and so on.

The group component descriptor field is usually repeated within the GRPDEF record, so
all segments constituting the group can be included in one GRPDEF record.

Location in object module

GRPDEF records must follow the LNAMES and SEGDEF records to which they refer. They
must also precede any PUBDEF, LINNUM, FIXUPP, LEDATA, or LIDATA records that refer
to them.

680 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 690

Article 19: Object Modules

Example

The following example of a GRPDEF record corresponds to the assembler directive:

tgroup GROUP seg1~seg2,seg3

The GRPDEF record is

0123456789ABCDEF
0000 9A 08 00 06 FF 01 FF 02 FF 03 55 U

• Byte OOH contains 9AH, indicating that this is a GRPDEF record.
• Bytes Ol-02H contain 0008H, the length of the remainder of the record.
• Byte 03H contains 06H, the group name index. In this instance, the index number

refers to the sixth name in the previous LNAMES record in the object module. That
name is the name of the group of segments defined in the remainder of the record.

• Bytes 04-05H contain the first of three group component descriptor fields. Byte 04H
contains the required OFFH, indicating that the subsequent field is a segment index.
Byte 05H contains OlH, a segment index that refers to the first SEGDEF record in the
object module. This SEGDEF record declared the first of three segments in the group.

• Bytes 06-07H represent the second group component descriptor, this one referring to
the second SEGDEF record in the object module.

• Similarly, bytes 08-09H are a group component descriptor field that references the
third SEGDEF record.

• Byte OAH contains the checksum, 55H.

Section Jl- Programming_in the MS-DOS Environment 681

ZTE (USA) 1007, Page 691

Part E: Programming Tools

9CH FIXUPP Fixup Record

The FIXUPP record contains information that allows the linker to resolve (fix up) ad­
dresses whose values cannot be determined by the language translator. FIXUPP records
describe the LOCATION of each address value to be fixed up, the TARGET address to
which the fixup refers, and the FRAME relative to which the address computation is
performed.

Record format

Thread and fixup fields

A FIXUPP record can contain zero or more thread fields and zero or more fixup fields.
Each fixup field describes the method to be used by the linker to compute the TARGET
address to be placed at a particular location in the executable image, relative to a particular
FRAME. The information that determines the LOCATION, TARGET, and FRAME can be
specified explicitly in the fixup field. It can also be specified within the fixup field by a
reference to a previous thread field.

A thread field describes only the method to be used by the linker to refer to a particular
TARGET or FRAME. Because the same thread field can be referenced in several subse­
quent fixup fields, a FIXUPP record that uses thread fields may be smaller than one in
which thread fields are not used.

Thread and fixup fields are distinguished from one another by the high-order bit of the
first byte in the field. If the high-order bit is 0, the field is a thread field. If the high-order
bit is 1, the field is a fixup field.

The thread field
A thread field contains information that can be referenced in subsequent thread or fixup
fields in the same or subsequent FIXUPP records. It has the following format:

682 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 692

Article 19: Object Modules
.,

The thread data field is a single byte comprising five subfields:

bit 7 6 5

0 D
0 ·I

4 3

method

2 0

thread
number

• Bit 7 of the thread data byte is 0, indicating the start of a thread field.
• The D field (bit 6) indicates whether the thread field specifies a FRAME or a

TARGET. The D bit is set to 1 to indicate a FRAME or to 0 to indicate a TARGET.
• Bit 5 of the thread data byte is not used. It should always be set to 0.
• Bits 4 through 2 represent the method field. If D = 1, the method field contains 0, 1, 2,

4, or 5. Each of these numbers corresponds to one method of specifying a FRAME (see
Table 19-2). If D = 0, the method field contains 0, 1, 2, 4, 5, or 6, each of which corre­
sponds to one of the methods of specifying a TARGET (see Table 19-3).

In the case of a TARGET address, only bits 3 and 2 of the method field are used. When
D = 0, the high-order bit of the value in the method field is derived from the P bit in
the fix dat field of any subsequent fixup field that refers to this thread field. Thus, if
D = 0, bit 4 of the method field is also 0, and the only meaningful values for the
method field are 0, 1, and 2.

• The thread number field (bits 1 and 0) contains a number between 0 and 3. This
number is used in subsequent fixup or thread fields to refer to this particular thread
field.

The thread number is implicitly associated with the D field by the linker, so as many
as eight different thread fields (four FRAMEs and four TARGETs) can be referenced at
any time. A thread number can be reused in an object module and, if it is, always
refers to the thread field in which it last appeared.

Table 19-2. FRAME Fixup Methods.

Method Description

0 The FRAME is specified by a segment index.
1 The FRAME is specified by a group index.
2 The FRAME is indicated by an external index. LINK determines the FRAME

from the external name's corresponding PUBDEF record in another object
module, which specifies either a logical segment or a group.

3 The FRAME is identified by an explicit frame number. (Not supported by
LINK.)

4 The FRAME is determined by the segment in which the LOCATION is defined.
In this case, the largest possible frame number is used.

5 The FRAME is determined by the TARGET's segment, group, or external
index.

Section II: Programming in the MS-DOS Environment 683

ZTE (USA) 1007, Page 693

PartE: Programming Tools

Table 19-3. TARGET Fixup Methods.

Method Description

0 The TARGET is specified by a segment index and a displacement. The
displacement is given in the target displacement field of the FIXUPP record.

1 The TARGET is specified by a group index and a target displacement.
2 The TARGET is specified by an external index and a target displacement.

LINK adds the displacement to the address it determines from the external
name's corresponding PUBDEF record in another object module.

3 The TARGET is identified by an explicit frame number. (Not supported by
LINK.)

4 * The TARGET is specified by a segment index only.
5 * The TARGET is specified by a group index only.
6 * The TARGET is specified by an external index. The TARGET is the address

associated with the external name.
7* The TARGET is identified by an explicit frame number. (Not supported by

LINK.)

• TARGET methods 4-7 are analogous to the preceding four, except that methods 4-7 do not use an explicit
displacement to identify the TARGET. Instead, a displacement of 0 is assumed.

The index field either contains an index value that refers to a previous SEGDEF, GRPDEF,
or EXTDEF record, or it contains an explicit frame number. The interpretation of the index
value depends on the value of the method field of the thread data field:

method= 0
method= 1
method= 2
method= 3

Segment index (reference to a previous SEGDEF record)
Group index (reference to a previous GRPDEF record)
External index (reference to a previous EXTDEF record)
Frame number (not supported by LINK; ignored)

The fixup field
The fixup field provides the information needed by the linker to resolve a reference to a
relocatable or external address. The fixup field has the following format:

r---~--,-~-r----~~~--~----~

frame datum

~--~--~--~--~~~--~--~

The 2-byte locat field has an unusual format. Contrary to the usual byte order in Intel data
structures, the most significant bits of the locat field are found in the low-order, rather than
the high-order, byte:

low-order byte

bit 15 14 13 12 11 10 7

loc

684 The MS-DOS Encyclopedia

high-order byte

6 5 4 3

data record offset

2 0

ZTE (USA) 1007, Page 694

I
i

.I

•
•
•
•

Article 19: Object Modules

Bit 15 (the high-order bit of the locat field) contains 1, indicating that this is a fixup
field.
Bit 14 (the M bit) is 1 if the fixup is segment relative and 0 if the fi.A'Up is self-relative .
Bit 13 (the S bit) is currently unused and should always be set to 0 .
Bits 12 through 10 represent the toe field. This field contains a number between 0 and
5 that indicates the type ofLOCATION to be fixed up:

loc = 0
loc = 1
loc = 2
loc = 3
loc = 4
loc = 5

Low-order byte
Offset
Segment
Pointer (segment:offset)
High-order byte (not recognized by LINK)
Loader-resolved offset (treated as toe = 1 by the linker)

• Bits 9 through 0 (the data record offset) indicate the position of the LOCATION to be
fixed up in the LEDATA or LIDATA record immediately preceding the FI:XUPP record.
This offset indicates either a byte in the data field of an LEDATA record or a data byte
in the content field of an iterated data block in an LIDATA record.

The fix dat field is a single byte comprising five fields:

bit 7 6 5 4 3 2 0

F frame T p targt

e Bit 7 (the F bit) is set to 1 if the FRAME for this fixup is specified by a reference to a 4
previous thread field. The F bit is 0 if the FRAME method is explicitly defined in this
fixup field.

• The interpretation of the frame field in bits 6 through 4 depends on the value of the
F bit. IfF= 1, the frame field contains a number between 0 and 3 that indicates the
thread field containing the FRAME method. IfF= 0, the frame field contains 0, 1, 2,
4, or 5, corresponding to one of the methods of specifying a FRAME listed in Table
19-2.

• Bit 3 (the T bit) is set to 1 if the TARGET for the fixup is specified by a reference to a
previous thread field. If the T bit is 0, the TARGET is explicitly defined in this fixup
field.

• Bit 2 (the P bit) and bits 1 and 0 (the targt field) can be considered a 3-bit field analo­
gous to the frame field.

• If the T bit indicates that the TARGET is specified by a previous thread reference
(T = 1), the targt field contains a number between 0 and 3 that refers to a previous
thread field containing the TARGET method. In this case, the P bit, combined with
the 2 low-order bits of the method field in the thread field, determines the TARGET
method.

Section IL- Programming in the MS-DOS Environment 685

ZTE (USA) 1007, Page 695

Part E: Programming Tools

If the T bit is 0, indicating that the target is explicitly defined, the P and targt fields
together contain 0, 1, 2, 4, 5, or 6. This number corresponds to one of the TARGET
fixup methods listed in Table 19-3. On this case, the P bit can be regarded as the
high-order bit of the method number.)

Frame datum is an index field that refers to a previous SEGDEF, GRPDEF, or EXTDEF
record, depending on the FRAME method.

Similarly, the target datum field contains a: segment index, a group index, or an external
index, depending on the TARGET method.

The target displacement field, a 2-byte field, is present only if the P bit in the fixdat field
is set to 0, in which case the target displacement field contains the 16-bit offset used in
methods 0, 1, and 2 of specifying a TARGET.

Location in object module

FIXUPP records must appear after the SEGDEF, GRPDEF, or EXTDEF records to which
they refer. In addition, if a FIXUPP record contains any fixup fields, it must immediately
follow the LEDATA or LIDATA record to which the fixups refer.

Examples

Although crucial to the proper linking of object modules, FIXUPP records are terse:
Almost every bit is meaningful. For these reasons, the following three examples of FIXUPP
records are particularly detailed.

A good way to understand how a FIXUPP record is put together is to compare it to the cor­
responding source code. The Microsoft Macro Assembler is helpful in this regard, because
it marks in its source listing address references it cannot resolve. The "program" in Figure
19-6 is designed to show how some of the most frequently encountered fixups are encoded
in FIXUPP records.

0000

0000 E9 0000 E
0003 EB 00 E
0005 EA 0000 R
OOOA EA 0000 E

OOOF BB 0015 R
0012 B8 ---- R

TITLE fixupps _
_ TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

NearProc

EXTRN NearLabel:near
EXTRN FarLabel:far

PROC near

jmp NearLabel ;relocatable word offset
jmp short NearLabel ;relocatable byte offset
jmp far ptr FarProc ; far jump to a known seg
jmp FarLabel ; far jump to an unknown seg

mov bx,offset LocalLabel ;relocatable offset
mov ax,seg LocalLabel ;relocatable seg

Figure 19-6. A sample "program'' showing how some common fixups are encoded in FIXUPP records. (more)

686 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 696

Article 19: Object Modules

0015 C3 LocalLabel: ret

NearProc ENDP

0016 _TEXT ENDS

0000 FAR_TEXT SEGMENT byte public 'FAR_CODE'
ASSUME cs:FAR_TEXT

0000 FarProc PROC far

0000 CB ret

FarProc ENDP

0001 FAR_ TEXT ENDS

END

Figure 19-6. Continued.

The assembler generates one LEDATA record for this program:

0 2 3 4 5 6 7 8 9 A B C D E F
0010 AO 1A 00 01 00 00 E9 00 00 EB 00 EA 00 00 00 00
0020 EA 00 00 00 00 BB 00 00 B8 00 00 C3 67 g

.Bytes 06-2BH (the data field) of this LEDATA record contain 8086 opcodes for each of
the instruction mnemonics in the source code. The gaps (zero values) in the data field
correspond to address values that the assembler cannot resolve. The linker will fix up the 4
address values in the gaps by computing the correct values and adding them to the zero
values in the gaps. The FIXUPP record that tells the linker how to do this immediately
follows the LEDATA record in the object module:

0 2 3 4 5 6 7 8 9 A B c D E F

0000 9C 21 00 84 01 06 01 02 80 04 06 01 02 cc 06 04 . ! 0 ••••••••

0010 02 02 CC OB 06 01 01 C4 10 00 01 01 15 00 C8 13 • 0 •••• 0 0.' 0 •••• 0

0020 04 01 01 A3

• Byte OOH contains 9CH, indicating this is a FIXUPP record.
• Bytes 01-02H contain 0021H, the length of the remainder of the record.
• Bytes 03-07H represent the first of the six fixup fields in this record:

The information in this fixup field will allow the linker to resolve the address refer­
ence in the statement

jmp NearLabel

Section 11· Programming in the MS-DOS Environment 687

ZTE (USA) 1007, Page 697

Part E: Programming Tools

- Bytes 03-04H (the locat field) contain 8401H (lOOOOlOOOOOOOOOlB). (Recall that
this field does not conform to the usual Intel byte order.) Bit 15 is 1, signifying that
this is a fixup field, not a thread field. Bit 14 (theM bit) is 0, so this fixup is self­
relative. Bit 13 is unused and should be set to 0, as it is here. Bits 12-10 (the loc
field) contain 1 (OOlB), so the LOCATION to be fixed up is a 16-bit offset. Bits 9-0
(the data record offset) contain 1 (OOOOOOOOOlB), which informs the linker that the
LOCATION to be fixed up is at offset 1 in the data field ofthe LEDATA record im­
mediately preceding this FIXUPP record-in other words, the 2 bytes immedi­
ately following the first opcode OE9H.

- Byte 05H (the fix dat field) contains 06H (OOOOOllOB). Bit 7 (the F bit) is 0, mean­
ing the FRAME for this fixup is explicitly specified in this fixup field. Bits 6-4
(the frame field) contain 0 (OOOB), indicating that FRAME method 0 specifies the
FRAME. Bit 3 (the T bit) is 0, so the TARGET for this fixup is also explicitly speci­
fied. Bits 2-0 (the P bit) and the targt field contain 6 (110B), so TARGET method 6
specifies the TARGET.

- Byte 06H is a frame datum field, because the FRAME is explicitly specified (the
F bit of the fix dat field= 0). And, because method 0 is specified, the frame
datum is an index field that refers to a previous SEGDEF record. In this example,
the frame datum field contains 1, which indicates the first SEGDEF record in the
object module: the_ TEXT segment.

- Similarly, byte 07H is a target datum, because the TARGET is also explicitly speci­
fied (the T bit of the fix dat field = 0). The fix dat field also indicates that
TARGET method 6 is used, so the target datum is an index field that refers to the
external reference list in a previous EXTDEF record. The value of this index is 2,
so the TARGET is the second external reference declared in the EXTDEF record:
NearLabel in this object module.

• Bytes 08-0CH represent the second fixup field:

012345678 D E F

This fixup field corresponds to the statement

jrnp short NearLabel

The only difference between this statement and the first is that the jump uses an 8-bit,
rather than a 16-bit, offset. Thus, the loc field (bits 12-10 of byte 08H) contains 0
(OOOB) to indicate that the LOCATION to be fixed up is a low-order byte.

• Bytes OD-llH represent the third fixup field in this FIXUPP record:

This fixup field corresponds to the statement

jrnp far ptr FarProc

688 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 698

Article 19: Object Modules

In this case, both the TARGET's frame (the segment FAR_ TEXT) and offset (the label
FarProc) are known to the assembler. Both the segment address and the label offset are
relocatable, however, so in the FIXUPP record the assembler passes the responsibility
for resolving the addresses to the linker.
- Bytes OD-OEH (the locat field) indicate that the field is a fixup field (bit 15 = 1)

and that the fixup is segment relative (bit 14- theM bit= 1). The toe field (bits
12-10) contains 3 (OllB), so the LOCATION being fixed up is a 32-bit (FAR) pointer
(segment and offset). The data record offset (bits 9-0) is 6 (OOOOOOOllOB); the
LOCATION is the 4 bytes following the first far jump opcode (EAH) in the preced­
ing LEDATA record.

- In byte OFH (the fix dat field), the F bit and the frame field are 0, indicating that
method 0 (a segment index) is used to specify the FRAME. The T bit is 0 (meaning
the target is explicitly defined in the fixup field); therefore, the P bit and targt
fields together indicate method 4 (a segment index) to specify the TARGET.

- Because the FRAME is specified with a segment index, byte 10H (the frame
datum field) is a reference to the second SEGDEF record in the object module,
which in this example declared the FAR_ TEXT segment. Similarly, byte llH (the
target datum field) references the FAR_ TEXT segment. In this case, the FRAME
is the same as the TARGET segment; had FAIL TEXT been one of a group of seg­
ments, the FRAME could have referred to the group instead.

• The fourth assembler statement is different from the third because it references a
segment not known to the assembler:

jmp FarLabel

Bytes 12-16H contain the corresponding fixup field:

The significant difference between this and the preceding fixup field is that the
P bit and targt field of the fix dat byte (byte 14H) specify TARGET method 6. In this
fixup field, the target datum (byte 16H) refers to the first EXTDEF record in the
object module, which declares FarLabel as an external reference.

• The fifthfixup field (bytes 17-lDH) is

This fixup field contains information that enables the linker to calculate the value of
the relocatable offset Loca!Label:

mov bx,offset LocalLabel

Section 11· Programming in the MS-DOS Environment 689

ZTE (USA) 1007, Page 699

PartE: Programming Tools

- Bytes 17 -18H (the locat field) contain C410H (1100010000010000B). Bit 15 is 1,
denoting a fixup field. TheM bit (bit 14) is 1, indicating that this fixup is segment
relative. The loc field (bits 12-10) contains 1 (OOlB), so the LOCATION is a 16-bit
offset. The data record offset (bits 9-0) is lOH (OOOOOlOOOOB), a reference to the
2 bytes in the LEDATA record following the opcode OBBH.

- Byte 19H (the fix dat byte) contains OOH. The F bit, frame field, T bit, P bit, and
targt field are all 0, so FRAME method 0 and TARGET method 0 are explicitly
specified in this fixup field. ,.

- Because FRAME method 0 is used, byte lAH (the frame datum field) is an index
field. It contains 01H, a reference to the first SEGDEF record in the object module,
which declares the segment _TEXT.

Similarly, byte lBH (the target datum field) references the _TEXT segment.
- Because TARGET method 0 is specified, an offset, in addition to a segment, is

required to define the TARGET. This offset appears in the target displacement
field in bytes 1C-1DH. The value of this offset is 0015H, corresponding to the offset
of the TARGET (Loca!Label) in its segment (_TEXT).

• The sixth and final fixup field in this FIXUPP record (bytes 1E-22H) is

0 1 2 3 4 5 6 7 8 9 A B C D E F

This corresponds to the segment of the relocatable address Loca!Label:

mov ax,seg LocalLabel

- Bytes 1E-1FH (the locat field) contain C813H (1100100000010011B). Bit 15 is 1, so
this is a fixup field. TheM bit (bit 14) is 1, so the fixup is segment relative. The loc
field (bits 12-10) contains 2 (OlOB), so the LOCATION is a 16-bit segment value.
The data record offset (bits 9-0) indicates the 2 bytes in the LEDATA record
following the opcode OB8H.

- Byte 20H (the fix dat byte) contains 04H, so FRAME method 0 and TARGET
method 4 are explicitly specified in this fixup field.

- Byte 21H (the frame datum field) contains OlH. Because FRAME method 0 is
specified, the frame datum is an index value that refers to the first SEGDEF record
in the object module (corresponding to the_ TEXT segment).

- Byte 22H (the target datum field) contains OlH. Because TARGET method 4 is
specified, the target datum also references the _TEXT segment.

• Finally, byte 23H contains this FIXUPP record's checksum, OA3H.

The next two FIXUPP records show how thread fields are used. The first of the two
contains six thread fields that can be referenced by both thread and fixup fields in sub­
sequent FIXUPP records in the same object module:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 9C OD 00 00 03 01 02 02 01 03 04 40 01 45 01 CO•.... @ ••••

690 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 700

Article 19: Object Modules

Bytes 03-04H, 05-06H, 07-08H, 09-0AH, OB-OCH, and OD-OEH represent the six
thread fields in this FIXUPP record. The high-order bit of the first byte of each of these
fields is 0, indicating that they are, indeed, thread fields and not fixup fields.

• Byte 03H, which contains OOH, is the thread data byte of the first thread field. Bit 7
of this byte is 0, indicating this is a thread field. Bit 6(the D bit) is 0, so this field
specifies a TARGET. Bit 5 is 0, as it must always be. Bits 4 through 2 (the method field)
contain 0 (OOOB), which specifies TARGET method 0. Finally, bits 1 and 0 contain 0
(OOB), the thread number that identifies this thread field.

Byte 04H represents a segment index field, because method 0 of specifying a
TARGET references a segment. The value of the index, 3, is a reference to the third
SEGDEF record defined in the object module.

• Bytes 05-06H, 07-08H, and 09-0AH contain similar thread fields. In each, the
method field specifies TARGET method 0. The three thread fields also have thread
numbers of 1, 2, and 3. Because TARGET method 0 is specified for each thread field,
bytes 06H, 08H, and OAH represent segment index fields, which reference the
second, first, and fourth SEGDEF records, respectively.

• Byte OBH (the thread data byte of the fifth thread field in this FIXUPP record) con­
tains 40H (OlOOOOOOB). The D bit (bit 6) is 1, so this thread field specifies a FRAME.
The method field (bits 4 through 2) contains 0 (OOOB), which specifies FRAME
method 0. Byte OCH (which contains OlH) is therefore interpreted as a segment index
reference to the first SEGDEF record in the object module.

• Byte ODH is the thread data byte of the sixth thread field. It contains 45H
(01000101B). Bit 6 is 1, which indicates that this thread specifies a FRAME. The
method field (bits 4 through 2) contains 1 (OOlB), which specifies FRAME method 1.
Byte OEH (which contains 01H) is therefore interpreted as a group index to the first
preceding GRPDEF record.

The thread number fields of the fifth and sixth thread fields contain 0 and 1, respec­
tively, but these thread numbers do not conflict with the ones used in the first and
second thread fields, because the latter represent TARGET references, not FRAME
references.

The next FIXUPP example appears after the preceding record, in the same object module.
This FIXUPP record contains a fixup field in bytes 03-05H that refers to a thread in the
previous FIXUPP record:

0123456789ABCDEF
0000 9C 04 00 C4 09 9D F6

• Bytes 03-04H represent the 16-bit locat field, which contains C409H
(1100010000001001B). Bit 15 of the locat field is 1, indicating a fixup field. The M bit
(bit 14) is 1, so this fixup is relative to a particular segment, which is specified later in
the fixup field. Bit 13 is 0, as it should be. Bits 12-10 (the loc field) contain 1 (OOlB),
so the LOCATION to be fixed up is a 16-bit offset. Bits 9-0 (the data record offset
field) contain 9 (0000001001B), so the LOCATION to be fixed up is represented at an
offset of 9 bytes into the data field of the preceding LEDATA or LIDATA record.

Section II: Programming in the MS-DOS Environment 691

ZTE (USA) 1007, Page 701

PartE: Programming Tools

• Byte 05H (the fix dat byte) contains 9DH (10011101B). The F bit (bit 7) is 1, so this
fixup field references a thread field that, in turn, defines the method of specifying
the FRAME for the fixup. Bits 6-4 (the frame field) contain 1 (OOlB), the number of
the thread that contains the FRAME method. This thread contains a method number
of 1, which references the first GRPDEF record in the object module, thus specifying
the FRAME.

The T bit (bit 3 in the fix dat byte) is 1, so the TARGET method is also defined in a
preceding thread field. The targt field(bits 1 and 0 in the fix dat byte) contains 1
(OlB), so the TARGET thread field whose thread number is 1 specifies the TARGET.
The P bit (bit 3 in the fix dat byte) contains 1, which is combined with the low-order
bits of the method field in the thread field that describes the target to obtain TARGET
method number 4 (lOOB). The TARGET thread references the second SEGDEF record
to specify the TARGET.

The last FIXUPP example illustrates that the linker performs a fixup by adding the calcu­
lated address value to the value in the LOCATION being fixed up. This function of the
linker can be exploited to use fixups to modify opcodes or program data, as well as to
resolve address references.

Consider how the following assembler instruction might be fixed up:

lea bx,alpha+10h ; alpha is an external symbol

Typically, this instruction is translated into an LEDATA record with zero in the LOCATION
(bytes 08-09H) to be fixed up:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 AO 08 00 01 00 00 8D 1E 00 00 AC

The corresponding FIXUPP record contains a target displacement of lOH bytes (bytes
08-09H):

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 0 0 9C 0 8 0 0 C4 0 2 0 2 01 01 1 0 0 0 8 2

This FIXUPP record specifies TARGET method 2, which is indicated by the targt field
(bits 2-0) of the fixdat field (byte 05H). In this case, the linker adds the target displace­
ment to the address it has determined for the TARGET (alpha) and then completes the
fixup by adding this calculated address value to the zero value in the LOCATION.

The same result can be achieved by storing the displacement (lOH) directly in the
LOCATION in the LEDATA record:

0123456789ABCDEF

0000 AO 08 00 01 00 00 8D 1E 10 00 9C

Then, the target displacement can be omitted from the FIXUPP record:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 9C 06 00 C4 02 06 01 01 90

692 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 702

If

I
Article 19: Object Modules

This FIXUPP record specifies TARGET method 6, which does not use a target displace­
ment. The linker performs this fixup by adding the address of alpha to the value in the
LOCATION, so the result is identical to the preceding one.

The difference between the two techniques is that in the latter the linker does not perform
error checking when it adds the calculated fixup value to the value in the LOCATION. If
this second technique is used, the linker will not flag arithmetic overflow or underflow
errors when it adds the displacement to the TARGET address. The first technique, then,
traps all errors; the second can be used when overflow or underflow is irrelevant and an
error message would be undesirable.

Section IL Programming in the MS-DOS Environment 693

ZTE (USA) 1007, Page 703

Part E: Programming Tools

OAOH LEDATA Logical Enumerated Data Record

The LEDATA record contains contiguous binary data- executable code or program
data-that is eventually copied into the program's executable binary image.

The binary data in an LEDATA record can be modified by the linker if the record is fol­
lowed by a FIXUPP record.

Record format

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value ofl indicates the first SEGDEF
record, a value of 2 the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LEDATA record is to be placed.

Enumerated data offset

Data

The enumerated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
enumerated data offset fields indicate the location where the enumerated data will be
placed in the run-time memory map.

The data field contains the actual data, which can be either executable 8086 instructions
or program data. The maximum size of the data field is 1024 bytes.

Location in object module

Any LEDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LEDATA record requires a fixup, a FIXUPP record must imme­
diately follow the LEDATA record.

Example

The following LEDATA record contains a simple text string:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 AO 13 00 02 00 00 48 65 6C 6C 6F 2C 20 77 6F 72 Hello, wor
0010 6C 64 OD OA 24 A8 ld .. $.

• Byte OOH contains OAOH, which identifies this as an LEDATA record.
• Bytes 01-02H contain 0013H, the length of the remainder of the record.

694 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 704

Article 19: Object Modules

• Byte 03H (the segment index field) contains 02H, a reference to the second SEGDEF
record in the object module.

• Bytes 04-05H (the enumerated data offset field) contain OOOOH. This is the offset,
from the base of the segment indicated by the segment index field, at which the data
in the data field will be placed when the program is linked. Of course, this offset is
subject to relocation by the linker because the segment declared in the specified
SEGDEF record may be relocatable and may be combined with other segments
declared in other object modules.

• Bytes 06-14H (the data field) contain the actual data.
• Byte 15H contains the checksum, OA8H.

Section IL Programming in the MS-DOS Environment 695

ZTE (USA) 1007, Page 705

Part E: Programming Tools

OA2H LIDATA Logical Iterated Data Record

Like the LEDATA record, the LID ATA record contains binary data- executable code or
program data. The data in an LIDATA record, however, is specified as a repeating pattern
(iterated), rather than by explicit enumeration.

The data in an LIDATA record may be modified by the linker if the LIDATA record is
followed by a FIXUPP record.

Record format

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value of 1 indicates the first SEGDEF
record, 2 indicates the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LIDATA record is to be placed when the program is
executed.

Iterated data offset

The iterated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
iterated data offset fields indicate the location where the iterated data will be placed in
the run-time memory map.

Iterated data block

The iterated data block is a variable-length field containing the actual data-executable
code and program data. Iterated data blocks can be nested, so one iterated data block
can contain one or more other iterated data blocks. Microsoft LINK restricts the maximum
size of an iterated data block to 512 bytes.

The format of the iterated data block is

• Repeat count is a 2-byte field indicating the number of times the content field is to
be repeated.

• Block count is a 2-byte field indicating the number of iterated data blocks in the
content field. If the block count is 0, the content field contains data only.

696 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 706

Article 19: Object Modules

• Content is a variable-length field that can contain either nested iterated data blocks
(if the block count is nonzero) or data (if the block count is 0). If the content field
contains data, the field contains a 1-byte count of the number of data bytes in the field,
followed by the actual data.

Location in object module

Any LIDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LIDATA record requires a fixup, a FIXUPP record must imme­
diately follow the LIDATA record.

Example

This sample LIDATA record corresponds to the following assembler statement, which
declares a 10-element array containing the strings ALPHA and BETA:

db 1 0 dup ('ALPHA', 'BETA')

The LIDATA record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 A2 1B 00 01 00 00 OA 00 02 00 01 00 00 00 OS 41 A
0010 4C 50 48 41 01 00 00 00 04 42 45 54 41 A9 LPHA BETA.

• Byte OOH contains OA2H, identifying this as an LIDATA record.
• Bytes 01-02H contain lBH, the length of the remainder of the record.
• Byte 03H (the segment index) contains 01H, a reference to the first SEGDEF record in

this object module, indicating that the data declared in this LIDATA record is to be
placed into the segment described by the first SEGDEF record.

• Bytes 04-05H (the iterated data offset) contain OOOOH, so the data in this LIDATA 4
record is to be located at offset OOOOH in the segment designated by the segment
index.

• Bytes 06-1CH represent an iterated data block:
- Bytes 06-07H contain the repeat count, OOOAH~ which indicates that the content

field of this iterated data block is to be repeated 10 times.
- Bytes 08-09H (the block count for this iterated data block) contain 0002H, which

indicates that the content field of this iterated data block (bytes OA -1CH) con­
tains two nested iterated data block fields (bytes OA-13H and bytes 14-1CH).

- Bytes OA-OBH contain OOOlH, the repeat count for the first nested iterated data
block. Bytes OC-ODH contain OOOOH, indicating that the content field of this
nested iterated data block contains data, rather than more nested iterated data
blocks. The content field (bytes OE-13H) contains the data: Byte OEH contains
05H, the number of subsequent data bytes, and bytes OF -13H contain the actual
data (the string ALPHA).

- Bytes 14-1CH represent the second nested iterated data block, which has a format
similar to that of the block in bytes OA -13H. This second nested iterated data
block represents the 4-byte string BETA.

• Byte 1DH is the checksum, OA9H.

Section 11· Programming in the MS-DOS Environment 697

ZTE (USA) 1007, Page 707

Part E: Programming Tools

OBOH COMDEF Communal Names Definition Record

The COMDEF record is a Microsoft extension to the basic set of 8086 object record types
defined by Intel that declares a list of one or more communal variables. The COMDEF
record is recognized by versions 3.50 and later of LINK. Microsoft encourages the use
of the COMDEF record for declaration of communal variables.

Record format

Communal name

The communal name field is a variable-length field that contains the name of a communal
variable. The first byte of this field indicates the length of the name contained in the re­
mainder of the field.

Type index

The type index field is an index field that references a previous TYPDEF record in the
object module. A value of 1 indicates the first TYPDEF record in the module, a value of 2
indicates the second, and so on. The type index value can be 0 if no data type is associated
with the public name.

Data segment type

The data segment type field is a single byte that indicates whether the communal variable
is FAR or NEAR. There are only two possible values for data segment type:

61H FAR variable
62H NEAR variable

Communal length

The communal length is a variable-length field that indicates the amount of memory to be
allocated for the communal variable. The contents of this field depend on the value in the
data segment type field. If the data segment type is NEAR (62H), the communal length
field contains the size (in bytes) of the communal variable:

698 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 708

Article 19: Object Modules

If the data segment type is FAR (61H), the communal length field is formatted 1:ts follows:

~er of .elem::l.:;isize I ments
:1.:~--'-----,1

A FAR communal variable is viewed as an array of elements of a specified size. Thus, the
number of elements field is a variable-length field representing the number of elements in
the array, and the element size field is a variable-length field that indicates the size (in
bytes) of each element. The amount of memory required for a FAR communal variable is
thus the product of the number of elements and the element size.

The format of the variable size, number of elements, and element size fields depends upon
the magnitude of the values they contain:

• If the value is less than 12S (SOH), the field is formatted as a 1-byte field containing the
actual value:

• If the value is 12S (SOH) or greater, the field is formatted with an extra initial byte that
indicates whether the value is represented in the subsequent 2, 3, or 4 bytes:

Groups of communal name, type index, data segment type, and communal length fields
can be repeated so that more than one communal variable can be declared in the same
COMDEF record.

Location in object module

Any object module that contains COMDEF records must also contain one COMENT record
with the comment class OA1H, indicating that Microsoft extensions to the Intel object
record specification are included in the object module. This COMENT record must appear
before any COMDEF records in the object module.

Section II: Programming in the MS-DOS Environment 699

ZTE (USA) 1007, Page 709

PartE: Programming Tools

Example

The following COMDEF record was generated by the Microsoft C Compiler version 4.0 for
these public variable declarations:

int
char
char

foo;
foo2[32768];
far foo3[10][2][20];

I* 2-byte integer *I
I* 32768-byte array *I
I* 400-byte array *I

The COMDEF record is

0 1 2 3 4 S 6 7 8 9 A B C D E F
0000 BO 20 00 04 SF 66 6F 6F 00 62 02 OS SF 66 6F 6F ... _foo.b .. _foo
0010 32 00 62 81 00 80 OS SF 66 6F 6F 33 00 61 81 90 2.b _foo3.a ..

0020 01 01 99

• Byte OOH contains OBOH, indicating that this is a COMDEF record.
• Bytes 01-02H contain 0020H, the length of the remainder of the record.
• Bytes 03-0AH, OB-15H, and 16-21H represent three declarations for the communal

variables foo, foo2, and foo3. The C compiler prepends an underscore to each of the
names declared in the source code, so the symbols represented in this COMDEF
record are _foo, _foo2, and _foo3.
- Byte 03H contains 04H, the length of the first communal name in this record.

Bytes 04-07H contain the name itself (_joo). Byte 08H (the type index field) con­
tains OOH, as required. Byte 09H (the data segment type field) contains 62H, indi­
cating this is a NEAR variable. Byte OAH (the communal length field) contains
02H, the size of the variable in bytes.

- Byte OBH contains 05H, the length of the second communal name. Bytes OC-10H
contain the name, _foo2. Byte llH is the type index field, which again contains
OOH as required. Byte 12H (the data segment type field) contains 62H, indicating
that _foo2 is a NEAR variable.

Bytes 13-15H (the communal length field) contain the size in bytes of the variable.
The first byte of the communal length field (byte 13H) is 81H, indicating that the
size is represented in the subsequent 2 bytes of data-bytes 14-15H, which con­
tain the value 8000H.

- Bytes 16-lBH represent the communal name field for _foo3, the third communal
variable declared in this record. Byte 1CH (the type index field) again contains
OOH as required. Byte lDH (the data segment type field) contains 61H, indicating
this is a FAR variable. This means the communal length field is formatted as a
number of elements field (bytes 1E-20H, which contain the value 0190H) and an
element size field (byte 21H, which contains 01H). The total size of this communal
variable is thus 190H times 1, or 400 bytes.

• Byte 22H contains the checksum, 99H.

Richard Wilton

700 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 710

Article 20: The Microsoft Object Linker

Article 20
The Microsoft Object Linker

MS-DOS object modules can be processed in two ways: They can be grouped together in
object libraries, or they can be linked into executable files. All Microsoft language transla­
tors are distributed with two utility programs that process object modules: The Microsoft
Library Manager (LIB) creates and modifies object libraries; the Microsoft Object Linker
(LINK) processes the individual object records within object modules to create executable
files.

The following discussion focuses on LINK because of its crucial role in creating an execut­
able file. Before delving into the complexities of LINK, however, it is worthwhile reviewing
how object modules are managed.

Object Files, Object Libraries, and LIB

Compilers and assemblers translate source-code modules into object modules (Figure
20-1). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING Toms:
Object Modules. An object module consists of a sequence of object records that describe
the form and content of part of an executable program. An MS-DOS object module always
starts with a THEADR record; subsequent object records in the module follow the
sequence discussed in the Object Modules article.

Object modules can be stored in either of two types of MS-DOS files: object files and object
libraries. By convention, object files have the filename extension .OBJ and object libraries
have the extension .LIB. Although both object files and object libraries contain one or

......_ Object module
librarian (LIB)__...

Linker (LINK)

Executable
binary image
(.EXE file)

MS-DOS loader

(Program runs)

Figure 20-1. Object modules, object libraries, LIB, and LINK.

Section II: Programming in the MS-DOS Environment 701

ZTE (USA) 1007, Page 711

PartE: Programming Tools

more object modules, the files and the libraries have different internal organization.
Furthermore, LINK processes object files and libraries differently.

The structures of object files and libraries are compared in Figure 20-2. An object file is a
simple concatenation of object modules in any arbitrary order. (Microsoft discourages the
use of object files that contain more than one object module; Microsoft language translators
never generate more than one object module in an object file.) In contrast, a library con­
tains a hashed aictionary of all the public symbols declared in each of the object modules,
in addition to the object modules themselves. Each symbol in the dictionary is associated
with a reference to the object module in which the symbol was declared.

LINK processes object files differently than it does libraries. When LINK builds an execut­
able file, it incorporates all the object modules in all the object files it processes. In con­
trast, when LINK processes libraries, it uses the hashed symbol dictionary in each library
to extract object modules selectively- it uses an object module from a library only when
the object module contains a symbol that is referenced within some other object module.
This distinction between object files and libraries is important in understanding what
LINK does.

(a)

Object module

Object module

Object module

(b)
Library header

Object module

Object module

Object module

Symbol dictionary

Figure 20-2. Structures of an object file and an object library. (a) An object file contains one or more object
modules. (Microsoft discourages using more than one object module per object file.) (b) An object library con­
tains one or more object modules plus a hashed symbol dictionary indicating the object modules in which
each public symbol is defined.

702 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 712

Article 20: The Microsoft Object Linker

What LINK Does

The function of LINK is to translate object modules into an executable program. LINK's
input consists of one or more object files (.OBJ files) and, optionally, one or more libraries
(.LIB files). LINK's output is an executable file (.EXE file) containing binary data that can
be loaded directly from the file into memory and executed. LINK can also generate a sym­
bolic address map listing (.MAP file)- a text file that describes the organization of the
.EXE file and the correspondence of symbols declared in the object modules to addresses
in the executable file.

Building an executable file

LINK builds two types of information into a .EXE file. First, it extracts executable code and
data from the LEDATA and LIDATA records in object modules, arranges them in a specified
order according to its rules for segment combination and relocation, and copies the result
into the .EXE file. Second, LINK builds a header for the .EXE file. The header describes the
size of the executable program and also contains a table of load-time segment relocations
and initial values for certain CPU registers. See Pass 2 below.

Relocation and linking

In building an executable image from object modules, LINK performs two essential tasks:
relocation and linking. As it combines and rearranges the executable code and data it ex­
tracts from the object modules it processes, LINK frequently adjusts, or relocates, address
references to account for the rearrangements (Figure 20-3). LINK links object modules by

· resolving address references among them. It does this by matching the symbols declared
in EXTDEF and PUBDEF object records (Figure 20-4). LINK uses FIXUPP records to deter­
mine exactly how to compute both address relocations a:nd linked address references.

Object Module Order

LINK processes input files from three sources: object files and libraries specified explicitly
by the user (in the command line, in response to LINK's prompts, or in a response file)
and object libraries named in object module COMENT records.

Code segment (64H bytes)

Labell at offset 1 OH

Module!

Code segment (50H bytes)
Label2 at offset lOH

Module2

Code segment (B4H bytes)

Labell at offset lOH
Label2 at offset 74H

Combined code segment

Figure 20-3. A simple relocation. Both object modules contain code that LINK combines into one logical
segment. In this example, LINK appends the 50H bytes of code in Module2 to the 64H bytes of code in Modulel.
LINK relocates all references to addresses in the code segment so that they apply to the combined segment.

Section 11- Programming in the MS-DOS Environment 703

ZTE (USA) 1007, Page 713

Part E: Programming Tools

Code segment
EXTDEF Label2

jmpi;-abel2

Module!

Code segment
PUBDEF Label2

Label2: :

Module2

Code segment;

Label2:

Combined code segment

Figure 20-4. Resolving an external reference. LINK resolves the external reference in Modulel (declared in
an EXTDEF record) with the address of Label2 in Module2 (declared in a PUBDEF record).

LINK always uses all the object modules in the object files it processes. In contrast, it
extracts individual object modules from libraries- only those object modules needed to
resolve references to public symbols are used. This difference is implicit in the order in
which LINK reads its input files:

1. Object files specified in the command line or in response to the Object Modules
prompt

2. Libraries specified in the command line or in response to the Libraries prompt
3. Libraries specified in COMENT records

The order in which LINK processes object modules influences the resulting executable
file in three ways. First, the order in which segments appear in LINK's input files is
reflected in the segment structure of the executable file. Second, the order in which LINK
resolves external references to public symbols depends on the order in which it finds the
public symbols in its input files. Finally, LINK derives the default name of the executable
file from the name of the first input object file.

Segment order in the executable file

In general, LINK builds named segments into the executable file in the order in which it
first encounters the SEGDEF records that declare the segments. (The /DOSSEG switch also
affects segment order. See Using the /DOSSEG Switch below.) This means that the order in
which segments appear in the executable file can be controlled by linking object modules
in a specific order. In assembly-language programs, it is best to declare all the segments
used in the program in the first object module to be linked so that the segment order in
the executable file is under complete control.

Order in which references are resolved

LINK resolves external references in the order in which it encounters the corresponding
public declarations. This fact is important because it determines the order in which LINK
extracts object modules from libraries. When a public symbol required to resolve an exter­
nal reference is declared more than once among the object modules in the input libraries,
LINK uses the first object module that contains the public symbol. This means that the
actual executable code or data associated with a particular external reference can be
varied by changing the order in which LINK processes its input libraries.

704 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 714

Article 20: The Microsoft Object Linker

For example, imagine that a C programmer has written two versions of a function named
myfunc() that is called by the program MYPROG .C. One version of myfunc() is for
debugging; its object module is found in MYFUNC.OBJ. The other is a production version
whose object module resides in MYLIB.LIB. Under normal circumstances, the program­
mer links the production version of myfunc() by using MYLIB.LIB (Figure 20-5). To use
the debugging version of myfunc(), the programmer explicitly includes its object module
(MYFUNC.OBJ) when LINK is executed. This causes LINK to build the debugging version
of myfunc() into the executable file because it encounters the debugging version in
MYFUNC.OBJ before it finds the qther version in MYLIB.LIB.

To exploit the order in which LINK resolves external references, it is important to know
LINK's library search strategy: Each individual library is searched repeatedly (from first
library to last, in the sequence in which they are input to LINK) until no further external
references can be resolved. /

main ()
{ EXTDEF for myfunc() r--

x=rnyfunc (y);
)

MYPROG.C MYPROG.OBJ
Executable code

rnyfunc(a)
contains myfunc()

~ derived from either
int a;

PUBDEF for myfunc() MYFUNC.OBJ or -
{

MYLIB.OBJ

MYFUNC.OBJ

)

MYFUNC.C

PUBDEF for myfunc() -

MYLIB.LIB

Figure 20-5. Ordered object module processing by LINK. (a) With the command LINK MYPROG,,MYLIB,
the production version of myfunc () in MYLIB.LIB is used. (b) With the command LINK MYPROG+
MYFUNC,,MYLIB, the debugging version ofmyfunc () in MYFUNC.OB] is used.

Section II: Programming in the MS-DOS Environment 705

ZTE (USA) 1007, Page 715

Part E: Programming Tools

Module A
Call C

ModuleB

LIBl.LIB

ModuleC
CallB

LIB2.LIB

ModuleMAIN
CallA

MYPROG.OBJ

Module MAIN
Start of
program

1---------1

ModuleA

ModuleC

ModuleB

MYPROG.EXE

Figure 20-6. Library search order. Modules are incorporated into the executable file as LINK extracts them
from the libraries to resolve external references.

The example in Figure 20-6 demonstrates this search strategy. Library LIBl.LIB contains
object modules A and B, library LIB2.LIB contains object module C, and the object file
MYPROG.OBJ contains the object module MAIN; modules MAIN, A, and C each contain
an external reference to a symbol declared in another module. When this program is
linked with

C>LINK MYPROG,,,LIB1+LIB2 <Enter>

LINK starts by incorporating the object module MAIN into the executable program. It
then searches the input libraries until it resolves all the external references:

1. Process MYPROG.OBJ, find unresolved external reference to A.
2. Search LIBl.LIB, extract A, find unresolved external reference to C.
3. Search LIBl.LIB again; reference to Cremains unresolved.
4. Search LIB2.LIB, extract C, find unresolved external reference to B.
5. Search LIB2.LIB again; reference to B remains unresolved.
6. Search LIBl.LIB again, extract B.
7. No more unresolved external references, so end library search.

The order in which the modules appear in the executable file thus reflects the order in
which LINK resolves the external references; this, in turn, depends on which modules
were contained in the libraries and on the order in which the libraries are input to LINK.

Name of the executable file

If no filename is specified in the command line or in response to the Run File prompt,
LINK derives the name of the executable file from the name of the first object file it pro­
cesses. For example, if the object files PROGl.OBJ and PROG2.0BJ are linked with the
command

C>LINK PROG1+PROG2; <Enter>

the resulting executable file, PROGl.EXE, takes its name from the first object file pro­
cessed by LINK.

706 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 716

Article 20: The Microsoft Object Linker

Segment Order and Segment Combinations

LINK builds segments into the executable file by applying the following sequence of rules:

1. Segments appear in the executable file in the order in which their SEGDEF declara­
tions first appear in the input object modules .

. 2. Segments in different object modules are combined if they have the same name and
class and a public, memory, stack, or common combine type. All address references
within the combined segments are relocated relative to the start of the combined
segment.
- Segments with the same name and either the public or the memory combine type

are combined in the order in which they are processed by LINK. The size of the
resulting segment equals the total size of the combined segments.
Segments with the same name and the stack combine type are overlapped so that
the data in each of the overlapped segments ends at the same address. The size of
the resulting segment equals the total size of the combined segments. The resulting
segment is always paragraph aligned.
Segments with the same name and the common combine type are overlapped so
that the data in each of the overlapped segments starts at the same address. The
size of the resulting segment equals the size of the largest of the overlapped
segments.

3. Segments with the same class name are concatenated.
4. If the /DOSSEG switch is used, the segments are rearranged in conjunction with

DGROUP. See Using the /DOSSEG Switch below.

These rules allow the programmer to control the organization of segments in the execut­
able file by ordering SEGMENT declarations in an assembly-language source module,
which produces the same order of SEGDEF records in the corresponding object module,
and by placing this object module first in the order in which LINK processes its input files.

A typical MS-DOS program is constructed by declaring all executable code and data seg­
ments with the public combine type, thus enabling the programmer to compile the pro­
gram's source code from separate source-code modules into separate object modules.
When these object modules are linked, LINK combines the segments from the object
modules according to the above rules to create logically unified code and data segments
in the executable file.

Segment classes

LINK concatenates segments with the same class name after it combines segments with
the same segment name and class. For example, Figure 20-7 shows the following compiling
and linking:

C>MASM MYPROG1; <Enter>
C>MASM MYPROG2; <Enter>
C>LINK MYPROG1+MYPROG2; <Enter>

Section 11· Programming in the MS-DOS Environment 707

ZTE (USA) 1007, Page 717

PartE: Programming Tools

_TEXT SEGMENT public 'CODE'
SEGDEF for_ TEXT

FAR TEXT SEGMENT public 'CODE' ~ SEGDEF for FAR_ TEXT - segment 'CODE'
_TEXT }

SEGDEF for _DATA
_DATA SEGMENT public 'DATA'

MYPROG l.ASM MYPROGl.OBJ

•'

_TEXT SEGMENT public 'CODE'
SEGDEF for _TEXT
SEGDEF for FAR_ TEXT

FAR_TEXT SEGMENT public 'CODE'

MYPROG2.ASM MYPROG2.0BJ

~

class
FAR_TEXT
segment

_DATA
egment s

f- MYPROG l.EXE

Figure 20-7. Segment order and concatenation by LINK. The start of each file, corresponding to the lowest
address, is at the top.

After MYPROGl.ASM and MYPROG2.ASM have been compiled, LINK builds the _TEXT
and FAR_ TEXT segments by combining segments with the same name from the different
object modules. Then, _TEXT and FAR_ TEXT are concatenated because they have the
same class name ('CODE'). _TEXT appears before FAR_TEXT in the executable file
because LINK encounters the SEGDEF record for _TEXT before it finds the SEGDEF
record for FAR_ TEXT.

Se~entali~ent

LINK aligns the starting address of each segment it processes according to the alignment
specified in each SEGDEF record. It adjusts the alignment of each segment it encounters
regardless of how that segment is combined with other segments of the same name or
class. (The one exception is stack segments, which always start on a paragraph
boundary.)

_DATA SEGMENT byte public
35Hbytes

Module!

Resulting _DATA segment in .EXE file

_DATA SEGMENT word public
35Hbytes

Module2

35H bytes (byte aligned)

35H bytes (word aligned)

35H bytes (paragraph aligned)

_DATA SEGMENT para public
35H bytes

Module3

Figure 20-8. Alignment of combined segments. LINK enforces segment alignment by padding combined
segments with uninitialized data bytes.

708 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 718

Article 20: The Microsoft Object Linker

Segment alignment is particularly important when public segments with the same name
and class are combined from different object modules. Note what happens in Figure 20-8,
where the three concatenated _DATA segments have different alignments. To enforce the
word alignment and paragraph alignment of the _DATA segments in Module2 and
Module3, LINK inserts one or more bytes of padding between the segments.

Segment groups

A segment group establishes a logical segment address to which all offsets in a group of
segments can refer. That is, all addresses in all segments in the group can be expressed as
offsets relative to the segment value associated with the group (Figure 20-9). Declaring
segments in a group does not affect their positions in the executable file; the segments in
a group may or may not be contiguous and can appear in any order as long as all address
references to the group fall within 64 KB of each other.

DataGroup GROUP DataSeg1,DataSeg2

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

mov ax, offset DataSeg2:TestData
mov ax, offset DataGroup:TestData

CodeSeg ENDS

DataSeg1 SEGMENT para public 'DATA'

DB 100h dup(?)

DataSeg1 ENDS

DataSeg2 SEGMENT para public 'DATA'
TestData DB
DataSeg2 ENDS

END

Figure 20-9. Example of group addressing. The first MOV loads the value OOH into AX (the offset of TestData
relative to DataSeg2); the second MOV loads the value lOOH into AX (the offset of TestData relative to the group
DataGroup).

LINK reserves one group name, DGROUP, for use by Microsoft language translators.
DGROUP is used to group compiler-generated data segments and a default stack segment.
See DGROUP below.

LINK Internals

Many programmers use LINK as a "black box" program that transforms object modules
into executable files. Nevertheless, it is helpful to observe how LINK processes object
records to accomplish this task.

Section IL· Programming in the MS-DOS Environment 709

ZTE (USA) 1007, Page 719

PartE: Programming Tools

Passl

LINK is a two-pass linker; that is, it reads all its input object modules twice. On Pass 1,
LINK builds an address map of the segments and symbols in the object modules. On Pass
2, it extracts the executable code and program data from the object modules and builds
a memory image- an exact replica- of the executable file.

The reason LINK builds an image of the executable file in memory, instead of simply
copying code and data from object modules into the executable file, is that it organizes the
executable file by segments and not by the order in which it processes object modules.
The most efficient way to concatenate, comb'!ne, and relocate the code and data is to build
a map of the executable file in memory during Pass 1 and then fill in the map with code
and data during Pass 2.

In versions 3.52 and later, whenever the /1 (/INFORMATION) switch is specified in the
command line, LINK displays status messages at the start of each pass and as it processes
each object module. If the /M UMAP) switch is used in addition to the /I switch, LINK also
displays the total length of each segment declared in the object modules. This information
is helpful in determining how the structure of an executable file corresponds to the con­
tents of the object modules processed by LINK.

During Pass 1, LINK processes the LNAMES, SEGDEF, GRPDEF, COMDEF, EXTDEF, and
PUBDEF records in each input object module and uses the information in these object
records to construct a symbol table and an address map of segments and segment groups.

Symbol table

As each object module is processed, LINK uses the symbol table to resolve external
references (declared in EXTDEF and COMDEF records) to public symbols. If LINK pro­
cesses all the object files without resolving all the external references in the symbol table,
it searches the input libraries for public symbols that match the unresolved external
references. LINK continues to search each library until all the external references in the
symbol table are resolved.

Segments and groups

LINK processes each SEGDEF record according to the segment name, class name, and
attributes specified in the record. LINK constructs a table of named segments and updates
it as it concatenates or combines segments. This allows LINK to associate each public sym­
bol in the symbol table with an offset into the segment in which the symbol is declared.

LINK also generates default segments into which it places communal variables declared
in COMDEF records. Near communal variables are placed in one paragraph-aligned public
segment named c_common, with.class name BSS (block storage space) and group

710 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 720

Article 20: The Microsoft Object Linker

DGROUP. Far communal variables are placed in a paragraph-aligned segment named
FAlLBSS, with class name FAlLBSS. The combine type of each far communal variable's
FAlLBSS segment is private (that is, not public, memory, common, or stack). As many
FAlLBSS segments as necessary are generated.

After all the object files have been read and all the external references in the symbol table
have been resolved, LINK has a complete map of the addresses of all segments and sym­
bols in the program. If a .MAP file has been requested, LINK creates the file and writes
the address map to it. Then LINK initiates Pass 2.

Pass2

In Pass 2, LINK extracts executable code and program data from the LEDATA and LIDATA
records in the object modules. It builds the code and data into a memory image of the
executable file. Durirtg Pass 2, LINK also carries out all the address relocations and fixups
related to segment relocation, segment grouping, and resolution of external references, as
well as any other address fixups specified explicitly in object module FIXUPP records.

If it determines during Pass 2 that not enough RAM is available to contain the entire image,
LINK creates a temporary file in the current directory on the default disk drive. (LINK ver­
sions 3.60 and later use the environment variable TMP to find the directory for the tempo­
rary scratch file.) LINK then uses this file in addition to all the available RAM to construct
the image of the executable file. (In versions of MS-DOS earlier than 3.0, the temporary file
is named VM.TMP; in versions 3.0 and later, LINK uses Interrupt 21H Function 5AH to
create the file.)

LINK reads each of the input object modules in the same order as it did in Pass 1. This time
it copies the information from each object module's LEDATA and LIDATA records into the
memory image of each segment in the proper sequence. This is when LINK expands the
iterated data in each LIDATA record it processes.

LINK processes each LEDATA and LIDATA record along with the corresponding FIXUPP
record, if one exists. LINK processes the FIXUPP record, performs the address calculations
required for relocation, segment grouping, and resolving external references, and then
stores binary data from the LEDATA or LIDATA record, including the results of the address
calculations, in the proper segment in the memory image. The only exception to this
process occurs when a FIXUPP record refers to a segment address. In this case, LINK adds
the address of the fixup to a table of segment fixups; this table is used later to generate the
segment relocation table in the .EXE header.

When all the data has been extracted from the object modules and all the fixups have
been carried out, the memory image is complete. LINK now has all the information it
needs to build the .EXE header (Table 20-1). At this point, therefore, LINK creates the
executable file and writes the header and all segments into it. ·

Section IL- Programming in the MS-DOS Environment 711

ZTE (USA) 1007, Page 721

Part E: Programming Tools

Table 20-1. How LINK Builds a .EXE File Header.

Offset

OOH
02H

04H

06H

08H

OAH

OCH

OEH

10H

12H

Contents

'MZ'
Length of executable

image MOD 512
Length of executable image in

512-byte pages, including last
partial page (if any)

Number of run-time segment
relocations

Size of the .EXE header in 16-byte
paragraphs

MINALLOC: Minimum amount of
RAM to be allocated above end of
the loaded program (in 16-byte
paragraphs)

MAXALLOC: Maximum amount of
RAM to be allocated above end
of the loaded program (in 16-byte
paragraphs)

Stack segment (initial value for SS
I

register); relocated by MS-DOS
when program is loaded

Stack pointer (initial value for
register SP)

Checksum

Comments

.EXE file signature

}

Total size of all segments plus .EXE
file header

Number of segment fixups

Size of segment relocation table

Size of uninitialized data and/or stack
segments at end of program (0 if /HI
switch is used)

0 if /HI switch is used; value specified
with /CP switch; FFFFH if /CP and
/HI switches are not used

Address of stack segment relative to
start of executable image

Size of stack segment in bytes

One's complement of sum of all words
in file, excluding checksum itself

14H

16H

Entry point offset (initial value for }
register IP)

Entry point segment (initial value
·for register CS); relocated by
MS-DOS when program is loaded

Offset of start of segment relocation
table relative to start of .EXE
header

MOD END object record that specifies
program start address

18H

1AH Overlay number

1 CH Reserved

712 The MS-DOS Encyclopedia

0 for resident segments; >0 for overlay
segments

ZTE (USA) 1007, Page 722

Article 20: The Microsoft Object Linker

Using LINK to Organize Memory

By using LINK to rearrange and combine segments, a programmer can generate an exe­
cutable file in which segment order and addressing serve specific purposes. As the follow­
ing examples demonstrate, careful use of LINK leads to more efficient use of memory and
simpler, more efficient programs.

Segment order for a TSR

In a terminate-and-stay-resident (TSR) program, LINK must be used carefully to generate
segments in the executable file in the proper order. A typical TSR program consists of a
resident portion, in which the TSR application is implemented, and a transient portion,
which executes only once to initialize the resident portion. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Terminate-and-Stay-Resident Utilities.

Because the transient portion of the TSR program is executed only once, the memory
it occupies should be freed after the resident portion has been initialized. To allow the
MS-DOS Terminate and Stay Resident function (Interrupt 21H Function 31H) to free this
memory when it leaves the resident portion of the TSR program in memory, the TSR pro­
gram must have its resident portion at lower addresses than its transient portion.

Low Memory ResidentCodeSeg SEGMENT para

. (executable code)

ResidentCodeSeg ENDS

ResidentDataSeg SEGMENT word

. (program data)

ResidentDataSeg ENDS

StackSeg SEGMENT para

. (stack)

StackSeg ENDS

TransientCodeSeg SEGMENT para

. (executable code)

TransientCodeSeg ENDS

TransientDataSeg SEGMENT word

. (program data)

High Memory TransientDataSeg ENDS

Figure 20-10. Segment order for a terminate-and-stay-resident program.

Resident
portion

Transient
portion

Section IL· Programming in the MS-DOS Environment 713

ZTE (USA) 1007, Page 723

PartE: Programming Tools

In Figure 20-10, the segments containing the resident code and data are declared before
the segments that represent the transient portion of the program. Because LINK preserves
this segment order, the executable program has the desired structure, with resident code
and data at lower addresses than transient code and data. Moreover, the number of para­
graphs in the resident portion of the program, which must be computed before Interrupt
21H Function 31H is called, is easy to derive from the segment structure: This value is the
difference between the segment address of the program segment prefix, which immedi­
ately precedes the first segment in the resident portion, and the address of the first seg­
ment in the transient portion of the program.

Groups for unified segment addressing

In some programs it is desirable to maintain executable code and data in separate logical
segments but to address both code and data with the same segment register. For example,
in a hardware interrupt handler, using the CS register to address program data is generally
simpler than using DS orES.

In the routine in Figure 20-11, code and data are maintained in separate segments for pro­
gram clarity, yet both can be addressed using the CS register because both code and data
segments are included in the same group. (The SNAP.ASM listing in the Terminate-and­
Stay-Resident Utilities article is another example of this use of a group to unify segment
addressing.)

ISRgroup GROUP CodeSeg,DataSeg

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs: ISRgroup
mov ax, offset ISRgroup:CodeLabel

CodeLabel: mov bx,ISRgroup:DataLabel

CodeSeg ENDS

DataSeg SEGMENT para public 'DATA'

DataLabel ow ?

DataSeg ENDS

END

Figure 20-11 . . Code and data included in the same group. In this example, addresses within both CodeSeg
and DataSeg are referenced relative to the CS register by grouping the segments (using the assembler GROUP
directive) and addressing the group through CS (using the assembler ASSUME directive).

Uninitialized data segments

A segment that contains only uninitialized data can be processed by LINK in two ways,
depending on the position of the segment in the program. If the segment is not at the end
of the program, LINK generates a block of bytes initialized to zero to represent the seg­
ment in the executable file. If the segment appears at the end of the program, however,
LINK does not generate a block of zeroed bytes. Instead, it increases the minimum run­
time memory allocation by increasing MINALLOC (specified at offset OAH in the .EXE
header) by the amount of memory required for the segment.

714 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 724

Article 20: The Microsoft Object Linker

Therefore, if it is necessary to reserve a large amount of uninitialized memory in a seg­
ment, the size of the .EXE file can be decreased by building the segment at the end of a
program (Figure 20-12). This is why, for example, Microsoft high-level-language translators
always build BSS and STACK segments at the end of compiled programs. (The loader does
not fill these segments with zeros; a program must still initialize them with appropriate
values.)

(a) CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg,ds:DataSeg

ret

CodeSeg ENDS

DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

END

(b) DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg,ds:DataSeg
ret

CodeSeg ENDS
END

Figure 20-12. LINK processing of uninitialized data segments. (a) When DataSeg, which contains only
uninitialized data, is placed at the end of this program, the size of the .EXEfile is only 513 bytes. (b) When
DataSeg is not placed at the end of the program, the size of the .EXEfile is 10513 bytes.

Overlays

If a program contains two or more subroutines that are mutually independent- that is,
subroutines that do not transfer control to each other-LINK can be instructed to build
each subroutine into a separately loaded portion of the executable file. (This instruction
is indicated in the command line when LINK is executed by enclosing each overlay sub­
routine or group of subroutines in parentheses.) Each of the subroutines can then be over­
laid as it is needed in the same area of memory (Figure 20-13). The amount of memory
required to run a program that uses overlays is, therefore, less than the amount required
to run the same program without overlays.

A program that uses overlays must include the Microsoft run-time overlay manager. The
overlay manager is responsible for copying overlay code from the executable file into
memory whenever the program attempts to transfer control to code in an overlay. A pro­
gram that uses overlays runs slower than a program that does not use them, because it
takes longer to extract overlays separately from the .EXE file than it does to read the entire
.EXE file into memory at once.

Section IL- Programming in the MS-DOS Environment 715

ZTE (USA) 1007, Page 725

PartE: Programming Tools

(a)

E

D CallE()

c

B Call C()

A Call B()
Call D()

LINK A+B+C+D+E;

(b)

A
Call B()
CallD()

LINK A+(B+C)+(D+E);

Figure 20-13. Memory use in a program linked (a) without overlays and (b) with overlays. In (b), either
modules (B+C) or modules (D+E) can be loaded into the overlay area at run time.

The default object libraries that accompany Microsoft high-level-language compilers con­
tain object modules that support the Microsoft run-time overlay manager. The following
description of LINK's relationship to the run-time overlay manager applies to versions
3.00 through 3.60 of LINK; implementation details may vary in future versions.

Overlay format in a .EXE file

An executable file that contains overlays has a .EXE header preceding each overlay (Figure
20-14). The overlays are numbered in sequence, starting at 0; the overlay number is stored
in the word at offset lAH in each overlay's .EXE header. When the contents of the .EXE file
are loaded into memory for execution, only the resident, nonoverlaid part of the program
is copied into memory. The overlays must be read into memory from the .EXE file by the
run-time overlay manager.

Start of file
.EXEheader Overlay number 0

A
Overlay segments

.EXEheader Overlay number 1

B
c

.EXEheader Overlay number 2

D
E

End of file

Figure 20-14 .. EXEfile structure produced by LINK A+ (B+C) + (D+E).

716 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 726

Article 20: The Microsoft Object Linker

Segments for overlays

When LINK produces an executable file that contains overlays, it adds three segments
to those defined in the object modules: OVERLAY_AREA, OVERLAY_ END, and
OVERLAY_DATA. LINK assigns the segment class name 'CODE' to OVERLAY_AREA
and OVERLAY_END and includes OVERLAY_DATA in the default group DGROUP.

OVERLAY_AREA is a reserved segment into which the run-time overlay manager is
expected to load each overlay as it is needed. Therefore, LINK sets the size of
OVERLAY_AREA to fit the largest overlay in the program. The OVERLAY_END seg­
ment is declared immediately after OVERLAY_AREA, so a program can determine the
size of the OVERLAY_AREA segment by subtracting its segment address from that of
OVERLAY _END. The OVERLAY_DATA segment is initialized by LINK with information
about the executable file, the number of overlays, and other data useful to the run-time
overlay manager.

LINK requires the executable code used in overlays to be contained in segments whose
class names end in CODE and whose segment names differ from those of the segments
used in the resident (nonoverlaid) portion of the program. In assembly language, this is
accomplished by using the SEGMENT directive; in high-levellanguages, the technique of
ensuring unique segment names depends on the compiler. In Microsoft C, for example, the
!A switch in the command line selects the memory model and thus the segment naming
defaults used by the compiler; in medium, large, and huge memory models, the compiler
generates a unique segment name for each C function in the source code. In Microsoft
FORTRAN, on the other hand, the compiler always generates a uniquely named segment
for each SUBROUTINE and FUNCTION in the source code, so no special programming
is required.

LINK substitutes all far CALL instructions from root to overlay or from overlay to
overlay with a software interrupt followed by an overlay number and an offset into the
overlay segment (Figure 20-15). The interrupt number can be specified with LINK's
/OVERLAYINTERRUPT switch; if the switch is omitted; LINK uses Interrupt 3FH by
default. By replacing calls to overlay code with a software interrupt, LINK provides a
mechanism for the run-time overlay manager to take control, load a specified overlay
into memory, and transfer control to a specified offset within the overlay.

(a)

(b)

EXTRN

call

int

DB
DW

OverlayEntryPoint:far
OverlayEntryPoint far CALL

IntNo interrupt number

6verlayNumber
OverlayEntry

specified with /OVERLAYINTERRUPT
switch (default 3FH)

overlay number
offset of overlay entry point

(the address to which
the overlay manager transfers

control)

Figure 20-15. Executable code modification by LINK for accessing overlays. (a) Code as written. (b) Code as
modified by LINK.

Section IL- Programming in the MS-DOS Environment 717

ZTE (USA) 1007, Page 727

PartE: Programming Tools

Run-time processing of overlays

The resident (nonoverlaid) portion of a program that uses overlays initializes the overlay
interrupt vector specified by LINK with the address of the run-time overlay manager. (The
OVERLAY_DATA segment contains the interrupt number.) The overlay manager then
takes control wherever LINK has substituted a software interrupt for a far call in the exe­
cutable code.

Each time the overlay manager executes, its.Jirst task is to determine which overlay is
being called. It does this by using the return address left on the stack by the INT instruc­
tion that invoked the overlay manager; this address points to the overlay number stored in
the byte after the interrupt instruction that just executed. The overlay manager then deter­
mines whether the destination overlay is already resident and loads it only if necessary.
Next, the overlay manager opens the .EXE file, using the filename in the OVERLAY_ DATA
segment. It locates the start of the specified overlay in the file by examining the length
(offset 02H and offset 04H) and overlay number (offset lAH) in each overlay's .EXE
header.

The overlay manager can then read the overlay from the .EXE file into the
OVERLAY_AREA segment. It uses the overlay's segment relocation table to fix up any seg­
ment references in the over lay. The overlay manager transfers control to the overlay with a
far call to the OVERLAY_AREA segment, using the offset stored by LINK 1 byte after the
interrupt instruction (see Figure 20-15).

Interrupt 2m Function 4BH

LINK's protocol for implementing overlays is not recognized by Interrupt 21H Function
4BH (Load and Execute Program). This MS-DOS function, when called withAL = 03H,
loads an overlay from a .EXE file into a specified location in memory. See SYSTEM CALLS:
INTERRUPT 21H: Function 4BH. However, Function 4BH does not use an overlay number, so
it cannot find overlays in a .EXE file formatted by LINK with multiple .EXE headers.

DGROUP

LINK always includes DGROUP in its internal table of segment groups. In object modules
generated by Microsoft high-level-language translators, DGROUP contains both the default
data segment and the stack segment. LINK's /DOSSEG and /DSALLOCATE switches both
affect the way LINK treats DGROUP. Changing the way LINK manages DGROUP ulti­
mately affects segment order and addressing in the executable file.

Using the /DOSSEG switch

The /DOSSEG switch causes LINK to arrange segments in the default order used by
Microsoft high-level-language translators:

1. All segments with a class name ending in CODE. These segments contain executable
code.

2. All other segments outside DGROUP. These segments typically contain far data items.

718 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 728

Article 20: The Microsoft Object Linker

3. DGROUP segments. These are a program's near data and stack segments. The order
in which segments appear in DGROUP is
- Any segments of class BEG DATA. (This class name is reserved for Microsoft use.)
- Any segments not of class BEG DATA, BSS, or STACK.
- Segments of class BSS.

Segments of class STACK.

This segment order is necessary if programs compiled by Microsoft translators are to run
properly. The /DOSSEG switch can be used whenever an object module produced by an
assembler is linked ahead of object modules generated by a Microsoft compiler, to ensure
that segments in the executable file are ordered as in the preceding list regardless of the
order of segments in the assembled object module.

When the /DOSSEG switch is in effect, LINK always places DGROUP at the end of the
executable program, with all uninitalized data segments at the end of the group. As dis­
cussed above, this placement helps to minimize the size of the executable file. The
/DOSSEG switch also causes LINK to restructure the executable program to support
certain conventions used by Microsoft language translators:

• Compiler-generated segments with the class name BEG DATA are placed at the begin­
ning of DGROUP.

• The public symbols _edata and _end are generated to point to the beginning of the
BSS and STACK segments.

• Sixteen bytes of zero are inserted in front of the _TEXT segment.

Microsoft compilers that rely on /DOSSEG conventions generate a special COMENT object
record that sets the /DOSSEG switch when the record is processed by LINK.

Using the /HIGH and /DSALLOCATE switches

When a program has been linked without using LINK's /HIGH switch, MS-DOS loads
program code and data segments from the .EXE file at the lowest address in the first avail­
able block of RAM large enough to contain the program (Figure 20-16). The value in the
.EXE header at offset OCH specifies the maximum amount of extra RAM MS-DOS must
allocate to the program above what is loaded from the .EXE file. Above that, all unused
RAM is managed by MS-DOS. With this memory allocation strategy, a program can use
Interrupt 21H Functions 48H (Allocate Memory Block) and 4AH (Resize Memory Block)
to increase or decrease the amount of RAM allocated to it.

When a program is linked with LINK's /HIGH switch, LINK zeros the words it stores in
the .EXE header at offset OAH and OCH. Setting the words at OAH and OCH to zero indi­
cates that the program is to be loaded into RAM at the highest address possible (Figure
20-16). With this memory layciut, however, a program can no longer change its memory
allocation dynamically because all available RAM is allocated to the program when it is
loaded and the uninitialized RAM between the program segment prefix and the program
itself cannot be freed.

Section II: Programming in the MS-DOS Environment 719

ZTE (USA) 1007, Page 729

PartE: Programming Tools

FFFFFH

System ROM, etc.

(Unused)

Uninitialized
program RAM

Environment, PSP

Resident portion of
MS-DOS

OOOOOH
(a)

}
Specified in
.EXEheader

}

Program code and ,
data segments
copied from .EXE file

System ROM, etc.

Uninitialized program
RAM

Environment, PSP

Resident portion of
MS-DOS

(b)

FFFFFH

}

Program code arid
data segments
copied from .EXE file

OOOOOH

Figure 20-16. Effect of the /HIGH switch on run-time memory use. (a) The program is linked without the
!HIGH switch. (b) The program is linked with the !HIGH switch.

The only reason to load a program with this type of memory allocation is to allow a pro­
gram data structure to be dynamically extended toward lower memory addresses. For
example, both stacks and heaps can be implemented in this way. If a program's stack
segment is the first segment in its memory map, the stack can grow downward without
colliding with other program data.

To facilitate addressing in such a segment, LINK provides the /DSALLOCATE switch.
When a program is linked using this switch, all addresses within DGROUP are relocated in
such a way that the last byte in the group has offset FFFFH. For example, if the program in
Figure 20-17 is linked without the /DSALLOCATE and /HIGH switches, the value of offset
DGROUP:Dataltem would be OOH; if these switches are used, the linker adjusts the seg­
ment value of DGROUP downward so that the offset of Dataltem within DGROUP
becomes FFFOH.

Early versions of Microsoft Pascal (before version 3.30) and Microsoft FORTRAN (before
version 3.30) generated object code that had to be linked with the /DSALLOCATE switch.
For this reason, LINK sets the /DSALLOCATE switch by defau~t if it processes an object
module containing a COMENT record generated by one of these compilers. (Such a
COMENT record contains the string MS PASCAL or FORTRAN 77. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING ToOLs: Object Modules.) Apart from this
special requirement of certain language translators, however, the use of /DSALLOCATE
and /HIGH should probably be avoided because of the limitations they place on run-time
memory allocation.

720 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 730

Article 20: The Microsoft Object Linker

DGROUP GROUP _DATA

~ATA SEGMENT word public 'DATA'

Dataitem DB 10h dup (?)

_])ATA ENDS

_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:DGROUP

mov bx,offset DGROUP:Dataitem
_TEXT ENDS

END

Figure 20-17. The value of offset DGROUP:Dataltem in this program is FFFOH if the program is linked with
the /DSALLOCATE switch or OOH if the program is linked without using the switch.

Summary

LINK's characteristic support for segment ordering, for run-time memory management,
and for dynamic overlays has an impact in many different situations. Programmers who
write their own language translators must bear in mind the special conventions followed
by LINK in support of Microsoft language translators. Application programmers must be
familiar with LINK's capabilities when they use assembly language or link assembly-lan­
guage programs with object modules generated by Microsoft compilers. LINK is a power­
ful program development tool and understanding its special capabilities can lead
to more efficient programs.

Richard Wilton

Section /1: Programming in the MS-DOS Environment 721

ZTE (USA) 1007, Page 731

ZTE (USA) 1007, Page 732

ZTE (USA) 1007, Page 733

ZTE (USA) 1007, Page 734ZTE (USA) 1007, Page 734

User Commands Introduction

Introduction

This section of The'MS-DOS Encyclopedia describes the standard internal and external
MS-DOS commands available to the user who is running MS-DOS (versions 1.0 through
3.2). System configuration options, special batch-file directives, the line editor (EDLIN)
and the installable device drivers normally included with MS-DOS are also covered. '

Entries are arranged alphabetically by the name of the command or driver. The config­
uration, batch-file, and line-editor directives appear alphabetically under the headings
CONFIG.SYS, BATCH, and EDLIN, respectively. Each entry includes

• Command name
• Version dependencies and network information
• Command purpose .
• Prototype command and summary of options
• Detailed description of command
• One or more examples of command use
• Return codes (where applicable)
• Informational and error messages

The experienced user can find information with a quick glance at the first part of a com­
mand entry; a less experienced user can refer to the detailed explanation and examples in
a more leisurely fashion. The next two pages contain an example of a typical entry from
the User Commands section, with explanations of each component. This example is
followed by listings of the commands by functional group.

The following terms are used for command-line variables in the sample syntax:

drive

path

pathname

filename

a letter in the range A-Z, followed by a colon, indicating a logical disk
drive.
a specific location in a disk's hierarchical directory structure; can include
the special directory names • and •• ; elements are separated by backslash
characters (\).
a file specification that can include a path and/or drive and/or filename
extension.
the name of a file, generally with its extension; cannot include a drive or
path.

Note: PC-DOS, though not an official product name, is used in this section to indicate
IBM's version of the disk operating system originally provided by Microsoft. Commands
sometimes have slightly different options or appear for the first time in different versions
of MS-DOS and PC-DOS. When a command appears only in the IBM versions, the abbre­
viation IBM appears in the heading area. Significant differences between MS-DOS and
PC-DOS versions of a command are indicated in the Syntax and Description portions
of the entry.

Section Ill: User Commands 725

ZTE (USA) 1007, Page 735

User Commands Introduction/Key

HEADING------+----...,
The command name as
the user would enter it
or as it would be used
in a batch or system­
configuration file.

ICON-1-------t-'
MS-DOS version
dependency.

ICON-2 -------+~
Whether the command
is internal (built into
COMMAND.COM) or
external (loaded from a
disk file when needed).

ICON-3 -------+.....J
The abbreviation IBM if
the command is present
only in PC-DOS and the
warning No Net if the
command cannot be
used across a network.

PURPOSE ------+-..1
An abstract of command
purpose and usage.

SYNTAX--------+-~
A prototype command
line, with variable names
in italic and optional

REP LAC

REPLACE 3.2

External

REPLACE !drlve,]palhname !driue,]!path]I/Al!/D]!!Pl!!Rl!/Sli/W]

where:

path name

drlve:path

/A

/D

/P
/R
IS

/W

Description

is the name and location oflhe source files to transferred, optionally
preceded by a drive; wildcard characters a permitted in the filename.
is the destination for the file being trans reed; filenames are not permit­
ted in the destination parameter.
transfers only those source files th do not exist at the destination (cannot
be used with /S or /D).
transfers only those source f ith a more rece!n date than their destina­
tion counterparts (cannot e us d with /A).
prompts the user for c umati n before each file is transferred.
allows REPLACE to erwrite tination read-only files.
searches all subd' ctories of th destination directory for a match with
the source file cannot be used ith //\).
causes REP CE to wait for the isk to be changed before transferring
files.

The path parameter (the source) specifies the name an ocation of the files to be
transferred optionally preceded by a drive); wildcards are ermitted in the filename. The
drlve:path arameter (the destination) specifies the lo on of the files to be replaced
and can co istofa drive, a path, orboth.Ifonlya dr' e i specified as the destination,
REPLACE umes the current directory ofthe dis n tha drive. If the destination is omit-
ted comple ly, REPLACE assumes the current ve and irectory. The IS switch causes
REPLACE also search all subdirectories of e destinati n directory for files to be
replaced.

parameters in square
brackets. The various

t)llj

elements of the com-
mand line should be
entered in the order
shown. Any punctuation
must be used exactly as
shown; in commands
that use commas as
separators, the comma
usually must be included
as a placeholder even if
the parameter is omit-
ted. Except where noted,
commands, parameters,
and switches can be
entered in either upper-
case or lowercase. With
MS-DOS versions 3.0
and later, external com-
mands can be preceded
by a drive and/or path.

726 The MS-DOS Encyclopedia

BELOW WHERE
A brief explanation of
each command parame­
ter and switch. Drives,
paths, and filenames are
always listed first, fol­
lowed by the switches in
alphabetic order. Any
special position required
for a filename or switch
is shown in the syntax
line and noted in the
explanation.

DESCRIPTION
A detailed description of
the command, including
a full explanation of
MS-DOS version depen­
dencies, default values,
possible interactions of
command parameters
and options, useful
background information,
and any applicable
warnings.

ZTE (USA) 1007, Page 736

REPU.CE

those source files that match t e destination filenames but have a more recent date than
their destination counterparts (The /D switch is not available with the PC-DOS version of
REPLACE.) The /P switch cau es REPLACE to prompt the user for confirmation before
each file is transferred.

User Commands Introduction/Key

RETURN CODES
Exit codes returned by
the command (if any)
that can be tested in a
batch file or by another
program.

The /R switch allows the repl cement of read-only as well as normal files. If the /R switch
is not used and one of the des ination files !h'"t"Wtllrldcctt.,..,;·.,.-t.,.,..:ph!t:od;,;-,rmikt:d----t­ EXAMPLES
read-only, the REPLACE prog am terminal with an error message. (REPLACE cannot be
used to update hidden or syst m files.)

Return Codes

e.
8 Memory as insufficient to run the REPLACE command.

15 An inv. id drive was specified the command line.
Other St ardMS-OOS error codes (eturned on a failed Interrupt 21H file-function

quesO.

Examples

To replace the files in the directory \SOUR Eon e current drive with all matching files
e, type

. One or more examples
of the command at work
including examples of '
the resulting output
where appropriate. User
entry appears in color;
do not type the prompt,
which appears in black.
Press the Enter key
(labeled Return on some
keyboards) as directed
at the end of each
command line.

....----------+- MESSAGES

rent directory, type

C>REPLAC£ A: •. • ll\

Messages
n Flle(s) added

An alphabetic list of
messages that may be
displayed when the
command is used in

After the replacement operation is completed, if the h switc s used in the command MS-DOS version 3.2
(may vary slightly in
earlier versions). Both
messages generated by

line, REPLACE displays the total number of files adde

n File(s) replaced
After the replacement operation is completed, REP
processed.

Seclion/ll:UserCommands 91')

the command itself and
applicable messages gen­
erated by MS-DOS are
included. Following each
message is a brief
explanation of the con­
dition that produces the
message and, where
appropriate, any action
that should be taken.

Section Ill: User Commands 727

ZTE (USA) 1007, Page 737

User Commands Introduction

Contents by Functional Group

The MS-DOS commands can be divided into several distinct groups according to the func­
tions they perform. These are listed on the following pages.

Command Action

System Configuration and Control
BREAK Set Control-C check.
COMMAND
DATE
EXIT
PROMPT
SELECT
SET
SHARE
TIME
VER

Install secondary copy of command processor.
Set date.
Terminate command processor.
Define system prompt.
Configure system disk for a specific country.
Set environment variable.
Install file-sharing support.
Set system time.
Display version.

Character-Device Management
CLS Clear screen.
CTTY Assign standard input/output.
GRAFTABL Load graphics character set.
GRAPHICS Print graphics screen-dump program.
KEYBxx Define keyboard.
MODE Configure device.
PRINT Print file (background print spooler).

File Management
ATTRIB
BACKUP
COMP
COPY
DEVERASE
EDLIN
FC
RECOVER
RENAME
REPLACE
RESTORE
TYPE
X COPY

728 The MS-DOS Encyclopedia

Change file attributes.
Back up files.
Compare files.
Copy file or device.
Delete file.
Create or modify text file (see also commands below).
Compare files.
Recover files.
Change filename.
Update files.
Restore backup files.
Display file.
Copy files.

(more)

ZTE (USA) 1007, Page 738

Command

Filters
FIND
MORE
SORT

Action

Find string.
Display by screenful.
Sort file or character stream alphabetically.

Directory Management
APPEND Set data-file search path.
CHOIR Change current directory.
DIR Display directory.
MKDIR Make directory.
PATH Define command search path.
RMDIR Remove directory.
TREE Display directory structure .

. Disk Management
ASSIGN
CHKDSK
DISKCOMP
DISK COPY
FORMAT
FDISK
JOIN
LABEL
SUBST
SYS
VERIFY
VOL

Assign drive alias.
Check disk status.
Compare floppy disks.
Copy floppy disks.
Initialize disk.
Configure fixed disk.
Join disk to directory.
Display volume label.
Substitute drive for subdirectory.
Transfer system files.
Set verify flag.
Display disk name.

Installable Device Drivers
ANSI.SYS ANSI console driver.
DRIVER.SYS
RAMDRIVE.SYS
VDISK.SYS

Configurable external-disk-drive driver.
Virtual disk.
Virtual disk.

System-Configuration File Directives
BREAK Configure Control-C checking.
BUFFERS Configure internal disk buffers.
COUNTRY Set country code.
DEVICE Install device driver.

Set block-device parameters.

User Commands Introduction

DRIVPARM
PCBS Set maximum open files using File Control Blocks (FCBs).

(more)

Section III: User Commands 729

ZTE (USA) 1007, Page 739

User Commands Introduction

Command Action

System-Configuration File Directives (continued)

FILES Set maximum open files using handles.
LASTDRIVE Set highest logical drive.
SHELL· Specify command processor.
STACKS Configure internal stacks.

Batch-File Directives
AUTO EXEC. BAT System startup batch file.
ECHO Display text.
FOR Execute command on file set.
GOTO Jump to label.
IF Perform conditional execution.
PAUSE Suspend batch-file execution.
REM Include comment line.
SHIFT Shift replaceable parameters.

EDLIN Commands
linenumber
A
c
D
E

L
M
p

Q
R
s
T
w

730 The MS-DOS Encyclopedia

Edit line.
Append lines from disk.
Copy lines.
Delete lines.
End editing session.
Insert lines.
List lines.
Move lines.
Display in pages.
Quit.
Replace text.
Search for text.
Transfer another file.
Write lines to disk.

ZTE (USA) 1007, Page 740

ANSI.SYS

'·'

ANSI.SYS 2.0 and later

ANSI Console Driver External

Purpose

Allows the user to employ a subset of the American National Standards Institute (ANSI)
standard escape sequences for control of the console.

Syntax

DEVICE=[drive:][path]ANSI.SYS

where:

drive:path is the drive and/or path to search for ANSI.SYS if it is not in the root direc­
tory of the startup disk.

Description

The ANSI.SYS file contains an installable character-device driver that supersedes the
system's default driver for the console device (video display and keyboard). After
ANSI.SYS is installed by means of a DEVICE=ANSI.SYS command in the CONFIG.SYS file
of the disk used to start the system, programs can use a subset of the ANSI 3.64-1979 stan­
dard escape sequences to erase the display, set the display mode and attributes, and con­
trol the cursor in a hardware-independent fashion. (A supplementary set of escape
sequences that are not part of the ANSI standard allows reprogramming of the keyboard.)

Programs that use ANSI.SYS for control of the screen can run on any MS-DOS machine
without modification, regardless of its hardware configuration. However, most popular ap­
plication programs for the IBM PC and compatibles circumvent ANSI.SYS and manipulate
the video controller and its video buffer directly to achieve maximum performance.

The ANSI.SYS device driver detects ANSI escape sequences in a character stream and 4
interprets them as commands to control the keyboard and display. An ANSI escape se-
quence is a sequence of ASCII characters, the first two of which must be the Escape char-.
acter (lBH) and the left-bracket character (5BH). The characters following the Escape and
left-bracket characters vary with the type of control function being performed; most con-
sist of an alphanumeric code followed by a letter. In some cases this code is a single char-
acter; in others it is more than one character or a two-part string separated by a semicolon.
Each ANSI escape sequence ends in a unique letter character that identifies the sequence;
case is significant for these letters. The escape sequences supported by the ANSI.SYS
driver are summarized in the tables on the following pages.

An escape sequence cannot be entered directly at the system prompt because each ANSI
escape sequence must begin with an Escape character, and pressing the Esc key (or Alt-27
on the numeric keypad) causes MS-DOS to cancel the command line. There are three
methods of executing ANSI escape sequences that do not require writing a program:

Section III: User Commands 731

ZTE (USA) 1007, Page 741

ANSI.SYS

• Include the escape sequences in a PROMPT command.
• Enter the escape sequences into a word processor or text editor, save the file as an

ASCII text file, and then execute the file by using the TYPE or COPY command (spec­
ifying CON as the destination for COPY) from the MS-DOS system prompt.
(If the escape sequences are echoed on the screen when the file is executed, a
DEVICE=ANSI.SYS command was not included in the CONFIG.SYS file when the
system was turned on.)

• Place the escape sequences in a batch (,BAT) file as part of an ECHO command. .
When the batch file is executed, the sequences are sent to the console.

When escape sequences are entered using the PROMPT command, the Escape character
is entered as $e. When escape sequences are entered using a word processor to create an
ASCII text or batch file, the Escape character is usually entered by pressing the Esc key or
by holding down the Alt key while typing 27 on the numeric keypad. (See the documenta­
tion provided with the word-processor for specific instructions.) In most cases, the escape
character will appear in the word processor or text editor as a back-arrow character (~)
or a caret-left bracket combimition (A[).

Note: When the escape character is represented as A[(as it is in EDLIN, for example), an
additional left-bracket character must still be added to properly begin an ANSI escape se­
quence. Thus, the beginning of a valid ANSI escape sequence in EDLIN appears as A[[.

The tables in this section use the abbreviation ESC to show where the ASCII escape char­
acter 27 (1BH) appears in the string.

Note: Case is significant for the terminal character in the string.

The following escape sequences control cursor movement:

Operation Escape Sequence

Cursor Up ESC[numberA

Cursor Down ESC[numberB

Cursor Right ESC[numberC

Cursor Left ESC[numberD

Position Cursor ESC[row;columnH

732 The MS-DOS Encyclopedia

Effect

Moves the cursor up number rows (1- 24,
default = 1). Has no effect if cursor is on
thetoprow.

Moves the cursor down number rows
(1-24, default= 1). Has no effect if cursor
is on the bottom row.

Moves the cursor right number rows (1-79,
default = 1). Has no effect if cursor is in
the far right column.

Moves the cursor left number rows (1-79,
default = 1). Has no effect if cursor is in
the far left column.

Moves the cursor to the specified row
(1-25, default= 1) and column (1-80,
default = 1). If row is omitted, the semi­
colon before column must be specified.

(more)

ZTE (USA) 1007, Page 742

I
l
:

Operation Escape Sequence

Position Cursor ESC[row;columnf
Save Cursor Position ESC[s

Restore Cursor ESC[u
Position

ANSI.SYS

Effect

Same as above.
Stores the current row and column position

of the cursor. Cursor can be restored to
this position later with a Restore Cursor
Position escape sequence.

Moves the cursor to the position of the
most recent Save Cursor Position escape
sequence.

The following two escape sequences are used to erase all or part of the display:

Operation Escape Sequence

Erase Display ESC[2J

Erase Line ESC[K

Effect

Clears the screen and places the cursor at
the home position.

Erases from the cursor position to the end
of the same row.

The following escape sequences control the width and the color capability of the display.
The use of any of these sequences clears the screen.

Operation

Set Mode

Escape Sequence

ESC[=Oh
ESC[=lh
ESC[=2h
ESC[=3h
ESC[=4h
ESC[=5h

ESC[=6h

Effect

Sets display to 40 x 25 monochrome (text).
Sets display to 40 x 25 color (text).
Sets display to 80 x 25 monochrome (text).
Sets display to 80 x 25 color (text).
Sets display to 320 x 200 4-color (graphics).
Sets display to 320 x 200 4-color (graphics,

color burst disabled).
Sets display to 640 x 200 2-color (graphics).

The following escape sequences control whether characters will wrap around to the first
column of the next row after the rightmost column in the current row has been filled:

Operation

Enable Character
Wrap

Disable Character
Wrap

Escape Sequence

ESC[=7h

ESC[=71

Effect

Sets character wrap.

Disables character wrap. (Note that the
terminating letter is a lowercase L.)

Section III: User Commands 733

ZTE (USA) 1007, Page 743

ANSI.SYS

The following escape sequence controls specific graphics attributes such as intensity,
blinking, superscript, and subscript, as well as the foreground and background colors:

ESC[attrib; ... ;attribm

where:

attrib

Value

0
1
2
4

5
7
8

is one or more of the following values. Multiple values must be separated by
semicolons.

Attribute Value Foreground Value Background
Color Color

All attributes off 30 Black 40 Black
High intensity (bold) 31 Red 41 Red
Normal intensity 32 Green 42 Green
Underline (mono-

chrome only) 33 Yellow 43 Yellow
Blink 34 Blue 44 Blue
Reverse video 35 Magenta 45 Magenta
Concealed (invisible) 36 Cyan 46 Cyan

37 White 47 White

Note: Values 30 through 47 meet the ISO 6429 standard.

The following escape sequence allows redefinition of keyboard keys to a specified string:

ESC[code;string; ... p

where:

code

string

Key

F1
F2
F3
F4
F5
F6

is one or more of the following values that represent keyboard keys.
Semicolons shown in this table must be entered in addition to the required
semicolons in the command line.
is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A

Code

Alone Shift- Ctrl- Alt-

0;59 0;84 0;94 0;104
0;60 0;85 0;95 0;105
0;61 0;86 0;96 0;106
0;62 0;87 0;97 0;107
0;63 0;88 0;98 0;108
0;64 0;89 0;99 0;109

(more)

734 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 744

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

F7 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112
FlO 0;68 0;93 0;103 0;113
Home 0;71 55 0;119
UpArrow 0;72 56
PgUp 0;73 57 0;132
Left Arrow 0;75 52 0;115
Down Arrow 0;77 54 0;116
End 0;79 49 0;117
Down Arrow 0;80 50
PgDn 0;81 51 0;118
Ins 0;82 48
Del 0;83 46
PrtSc 0;114
A 97 65 1 0;30
B 98 66 2 0;48
c 99 67 3 0;46
D 100 68 4 0;32
E 101 69 5 0;18
F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23

J 106 74 10 0;36
K 107 75 11 0;37
L 108 76 12 0;38
M 109 77 13 0;50
N 110 78 14 0;49
0 111 79 15 0;24
p 112 80 16 0;25
Q 113 81 17 0;16
R 114 82 18 0;19
s 115 83 19 0;31
T 116 84 20 0;20
u 117 85 21 0;22
v 118 86 22 0;47
w 119 87 23 0;17
X 120 88 24 0;45

(more)

Section Ill: User Commands 735

ZTE (USA) 1007, Page 745

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

y 121 89 25 0;21
z 122 90 26 0;44
1 49 33 0;120
2 50 64 0;121
3 51 35 :.:'.' 0;122
4 52 36 0;123
5 53 37 0;124
6 54 94 0;125
7 55 38 0;126
8 56 42 0;127
9 57 40 0;128
0 48 41 0;129

45 95 0;130
61 43 0;131

Tab 9 0;15
Null 0;3

Examples

The following examples use ESC or $e to show where the ASCII escape character 27 (lBH)
appears in the string. The PROMPT examples can be typed as shown, but for the examples
that use ESC to denote the escape character, the actual escape character should be typed in
its place.

To move the cursor to row 10, column 30 and display the string Main Menu, use the escape
sequence

ESC[10;30fMain Menu

or

ESC[10;30HMain Menu

To move the cursor to row 5, column 10 and display the letter A (ESC[5;10jA), move the
cursor down one row (ESC[B), move the cursor back one space and display the letter B
(ESC[DB), move the cursor down one row (ESC[B), and move the cursor back one space
and display the letter C (ESC[DC), use the escape sequence

ESC[5;10fAESC[BESC[DBESC[BESC[DC

To use ANSI escape sequences with the PROMPT command to save the current cursor
position ($e[s), move the cursor to row 1, column 69 ($e[1;69j), display the current time
using the PROMPT command's $t function, restore the cursor position ($e[u), and then

736 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 746

ANSI.SYS

display the current path using the PROMPT command's $p function and display a greater­
than sign using the PROMPT co~mand's $g function, use the escape sequence

C>PROMPT $e[s$e[1;69fte[upg <Enter>

To erase the display (ESC(2j), then move the cursor to row 10, column 30 and display the
string Main Menu (ESC(l0;30fMain Menu), use the escape sequence

ESC[2JESC[10;30fMain Menu

To move the cursor to row 5, column 40 (ESC(5;40f) and erase the remainder of the row
starting at the current cursor position (ESC(K), use the escape sequence

ESC[5;40fESC[K

To move the cursor to row 3 (ESC(3;/), erase the entire row (ESC[K), move the cursor
down one row (ESC[B), erase that entire row (ESC(K), move the cursor down one row and
erase that entire row, use the escape sequence

ESC[3;fESC[KESC[BESC[KESC[BESC[K

To set the display mode to 25 rows of 80 columns in color (ESC(= 3h) and disable character
wrap (ESC(= 7/), use the escape sequence

ESC[=3hESC[=71

Note that ESC[=3h will also clear the screen.

To enable character wrap, use the escape sequence

ESC[=7h

To set the foreground color to black and the background color to blue (ESC(30;44m), clear
the display (ESC(2j), then position the cursor at row 10, column 30 and display the string
MainMenu(ESC(10;30fMainMenu), use the escape sequence

ESC[30;44mESC[2JESC[10;30fMain Menu

To (effectively) exchange the backslash and question-mark keys using literal strings to
denote the keys, use the escape sequence

ESC[''\'';''?''pESC[''?'';''\''p

To exchange the backslash and question-mark keys using each key's ASCII value to denote
the key, use the escape sequence

ESC[92;63pESC[63;92p

To restore the backslash and question-mark keys to their original meanings, use the escape
sequence

ESC[''\'';''\''pESC[''?'';"?''p

or

ESC[92;92pESC[63;63p

Section Ill: UserCommands 737

ZTE (USA) 1007, Page 747

ANSI.SYS

To redefine the Alt-F9 key combination (ESC[0;112) so that it issues a CLS command
(;"CLS") plus a carriage return (;13) to execute the CLS command, then issues a DIR com­
mand piped through the SORT filter starting at column 24 (; ''DIR /SORT/+ 24") followed
by another carriage return, use the escape sequence

ESC[0;112;"CLS";13;"DIR : SORT /+24";13p

To restore the Alt-F9 key combination to its original meaning, use the escape sequence

ESC[0;112;0;112p

\

738 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 748

APPEND

APPEND 3.2

Set Data-File Search Path External

Purpose

Specifies a search path for open operations on data files. (Also supported with some
implementations of version 3.1, for use with networks.)

Syntax

APPEND [[drive:] path] [;[drive:]path ...]

or

APPEND;

where:

path is the name of a valid directory, optionally preceded by a drive.

Description

APPEND is a terminate-and-stay-resident program that is used to specify a path or paths to
be searched for data files (in contrast with the PATH command, which specifies a path to
be searched for executable or batch files). The search path can include a network drive. If
a program attempts to open a file and the file is not found in the current or specified direc­
tory, each path given in the APPEND command is searched.

If the APPEND command is entered with a path consisting of on:ly a semicolon character
(;), a "null" search path for data files is set; that is, no directory other than the current or
specified directory is searched. This effectively cancels any search paths previously set
with an APPEND command but does not free the memory used by APPEND.

An APPEND command without any parameters displays the current search path(s) for data
files.

Note that a program cannot detect whether an opened file was found where it was ex­
pected (in the current or specified directory) or in some other directory specified in the
APPEND command.

Warning: When an assigned drive is to be part of the search path, the ASSIGN command
must be used before the APPEND command. Use of the ASSIGN command should be
avoided whenever possible because it hides drive characteristics from those programs that
require detailed knowledge of the drive size and format.

Section Ill: User Commands 739

ZTE (USA) 1007, Page 749

APPEND

Examples

To cause the directories C: \SYSTEM and C: \SOURCE to be searched for a file during an
open operation if the file is not found in the current or specified directory, type

C>APPEND C:\SYSTEM;C:\SOURCE <Enter>

To display the current search path for data files, type

C>APPEND <Enter>

MS-DOS then displays

APPEND=C:\SYSTEM;C:\SOURCE

To ensure that no directories other than the current or specified directory are searched
during a file open operation, type

C>APPEND <Enter>

Messages

APPEND/ ASSIGN Conflict
APPEND was used before ASSIGN.

Incorrect DOS version
The version of APPEND is not compatible with the version of MS-DOS that is running.

No appended directories
The APPEND command had no parameters and no APPEND search path is active.

740 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 750

ASSIGN

ASSIGN 3.0 and later

Assign Drive Alias External

Purpose

Redirects requests for disk operations on one drive to a different drive. (Available with
PC-DOS beginning with version 2.0.)

Syntax

ASSIGN [x=y [. ..]]

where:

x is a valid designator (A, B, C, etc.) for a disk drive that physically exists in the
system.

y is a valid designator for the drive to be accessed by references to x.

Description

ASSIGN is a terminate-and-stay-resident program that redirects all references to drive xor
files on drive x to drive y. The ASSIGN command is intended for use with application pro­
grams that require files to reside on drive A orB and have no provision within the pro­
gram for changing those drives.

Multiple drive assignments can be requested in the same ASSIGN command line; the drive
pairs must be separated with spaces, commas, or semicolons. Unlike the form in most
other MS-DOS commands, the drive letters are not followed by colon characters (:). When
a single drive is assigned, the equal sign is optional.

ASSIGN commands are not incremental. Each new ASSIGN command replaces assign­
ments made with the previous ASSIGN command and cancels any assignments not specifi­
cally replaced. Entering ASSIGN with no parameters cancels all current drive assignments.

Warning: Use of the ASSIGN command should be avoided whenever possible because it
hides drive characteristics from those programs that require detailed knowledge of the
drive size and format; in particular, drives redirected with an ASSIGN statement should
never be used with a BACKUP, RESTORE, LABEL, JOIN, SUBST, or PRINT command.
ASSIGN can also defeat the checking performed by the COPY command to prevent a file
from being copied onto itself. The FORMAT, SYS, DISK COPY, and DISKCOMP commands
ignore any drive reassignments made with ASSIGN.

With MS-DOS versions 3.1 and later, the SUBST command should be used instead of
ASSIGN. For example, the command

C>ASSIGN A=C <Enter>

should be replaced with the command

C>SUBST A: C:\ <Enter>

Section///: UserCommands 741

ZTE (USA) 1007, Page 751

ASSIGN

Examples

To redirect all reqll:ests for drive A to drive C, type

C>ASSIGN A=C <Enter>

To redirect all requests for drives A and B to drive C, type

C>ASSIGN A=C B=C <Enter>

To cancel all drive redirections currently in effect, type

C>ASSIGN <Enter>

Messages

Incorrect DOS version
The version of ASSIGN is not compatible with the version of MS-DOS that is running.

Invalid parameter
One of the specified drive designators refers to a drive that does not exist in the system.

7 42 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 752

ATTRIB
Change File Attributes

Purpose

3.0 and later

External

ATTRIB

Sets, removes, or displays a file's read-only and/or archive attributes.

Syntax

ATTRIB [+R:-RJ [+A:-AJ [drive:]pathname

where:

+ R marks the file read-only.
-R removes the read-only attribute.
+A sets the file's archive flag (version 3.2).
-A removes the file's archive flag (version 3.2).
pathname is the name and location, optionally preceded by a drive, of the file whose

attributes are to be changed or displayed; wildcard characters are permitted in
the filename.

Description

Each file has an entry in the disk's directory that contains its name, location, and size; the
date and time it was created or last modified; and an attribute byte. For normal files, bits 0,
1, 2, and 5 in the attribute byte designate, respectively, whether the file is read-only, hid­
den, or system and whether it has been changed since it was last backed up.

The ATTRIB command provides a way to alter the read-only and archive bits from the
MS-DOS command level. If a file is marked read-only, it cannot be deleted or modified;
thus, crucial programs or data can be protected from accidental erasure. A file's archive
flag can be used together with the /M switch of the BACKUP command or the /M or /A
switch of the XCOPY command to allow an incremental or selective backup of files from
one disk to another.

If the ATTRIB command is entered with only a pathname, the current attributes of the
selected file are displayed. An R is displayed next to the name of a file that is marked read­
only and an A is displayed if the file has the archive flag set.

Examples

To make the file MENUMGR.C in the current directory of the current drive a read-only file,
type

C>ATTRIB +R MENUMGR.C <Enter>

To display the attributes of the file LETTER. DOC in the directory \SOURCE on the disk in
drive D, type

C>ATTRIB D:\SOURCE\LETTER.DOC <Enter>

Section !I/: UserCommands 743

ZTE (USA) 1007, Page 753

ATTRIB

MS-DOS then displays

R A D:\SOURCE\LETTER.DOC

to indicate that the file is marked read-only and the archive flag has been set.

To set the archive flag on all files in the directory \SYSTEM on drive C and mark them as
read-only, type

C>ATTRIB +A +R C:\SYSTEM*.* <Enter>

Messages

Access denied
ATTRIB cannot be used to alter or replace the attributes of a file in use across a network.

DOS 2.0 or later required
ATTRIB does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of ATTRIB is not compatible with the version of MS-DOS that is running.

Invalid number of parameters
More than two attributes were used before the pathname.

Invalid path or file not found
The file named in the command line or one of the directories in the given path does not
exist.

Syntax error
An invalid attribute was supplied or the attribute was not properly placed before the path­
name in the command line.

7 44 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 754

BACKUP
Back Up Files

Purpose

2.0 and later

External

BACKUP

Creates backup copies of files, along with the associated directory information necessary
to restore the files to their original locations.

Syntax

BACKUP source destination [!A] [/D:date] [/L:filename] [!M] [!P] [IS) [!T:time]

where:

source

destination
!A

/D:date
!L:filename

/M
!P

IS
/T:time

is the location (drive and/or path) and, optionally, the name of the files to
be backed up; wildcard characters are permitted in the filename.
is the drive to receive the backup files.
adds the files to existing files on the destination disk without erasing the
destination disk.
backs up only those files modified on or after date.
creates a log file with the specified name in the root directory of the
disk being backed up. If filename is not specified, BACKUP creates a
file named BACKUP. LOG and places the log entries there. Use of the
/L:filename switch may cause loss of IBM compatibility.
backs up only those files modified since the last backup.
packs the destination disk with as many files as possible, creating sub­
directories, if necessary, to hold some of the files. Use of the /P switch
causes loss of IBM compatibility.
backs up the contents of all subdirectories of the source directory.
backs up only those files modified on or after time.

Note: Not all switches are supported by all implementations of MS-DOS.

Description

The BACKUP command creates a backup copy of the specified file or files, transferring
them from either a floppy disk or a fixed disk to another removable or fixed disk. The
backup file is in a special format that includes information about the original file's location
in the directory structure. Files created by BACKUP can be restored to their original form
only with the RESTORE command.

BACKUP can back up a single file or many files in the same operation. If only a drive letter
is given as the source, all the files in the current directory of that disk are backed up. If
only a path is given as the source, all the files in the specified directory are backed up. If
the IS switch is used, all the files in the current or specified directory are backed up, and

Section III: User Commands 745

ZTE (USA) 1007, Page 755

BACKUP

the files in all its subdirectories as well. If both a path and a filename are entered as the
source, the specified file or files in the named directory are backed up.

If the source file is marked read-only, the resulting backup file will also be marked read­
only. If the source file's archive bit is set, it will be cleared for both the source and the des­
tination files. BACKUP also backs up hidden files; the files will remain hidden on the desti-

. nation disk.

If the destination disk is a floppy disk, its previous contents are erased as part of the
backup operation (unless the /A switch is included in the command line and the destina­
tion disk has already been used as a backup disk- that is, the disk contains a valid
BACKUPID.@@@ file). If the files being backed up do not fit onto a single floppy disk, the
user will be prompted to insert additional disks until the backup operation is complete.

If the destination disk is a fixed disk, the backed-up files are placed in a directory named
\BACKUP. If a \BACKUP directory already exists on the fixed disk, any files previously
contained in it are erased as part of the backup operation (unless the I A switch is included
in the command line and the destination disk has already been used as a backup disk­
that is, the \BACKUP directory contains a valid BACKUPID.@@@ file). Other files on the
destination fixed disk are not disturbed.

A control file named BACKUPID.@@@ is placed on every floppy disk onto which files are
backed up or in the /BACKUP directory if the files are· backed up onto a fixed disk. The
BACKUPID.@@@ file has the following format:

Byte Value Use

OOH OOorFFH Not last floppy disk/last floppy disk
01-0ZH nn Floppy disk number in low-byte/high-byte decimal format
03-04H nnnn Full year in low-byte/high-byte order
05H 1-31 Day of the month
06H 1-12 Month of the year
07-0AH nnnn Standard MS-DOS system time if the /T: time switch was used;

otherwiseO
OB-7FH 00 Not used

Each backed-up file also has a 128-byte header added to it when it is created. The header
has the following format:

Byte

OOH
01H
02-04H

Value Use

00 or FFH Not last floppy disk/last floppy disk on which this file resides
nn Floppy disk number
00 Notused

7 46 The MS-DOS Encyclopedia

(more)

ZTE (USA) 1007, Page 756

l
I

Byte Value

05-44H nn
45-52H 00
53H nn
54-7FH 00

Use

File's full pathname, except for drive designator
Not used
Length of the file's pathname plus one
Not used

BACKUP

The IT: time, !D:date, and/M switches allow incremental or partial backups. The IT: time
switch excludes files modified or created before a certain time and should be used in the
form of the COUNTRY command in effect. For the USA, the format is /T: hh:mm: ss. (The
IT: time switch is not supported in all implementations of BACKUP.) The /D: date switch
excludes files modified or created before a certain date and should be used in the form
of the COUNTRY command in effect. For the USA, the format is /D: mm-dd-yy. The /M
switch selects only those files that have been modified since the last backup operation.

The /L:filename switch causes a log file to be created on the source disk. This file
includes the name of each file backed up, the time and date, and the number of the des­
tination disk that received that backup file. If filename is omitted, the name defaults to
BACKUP.LOG. Use of the !L:filename switch can cause compatibility problems between
MS-DOS and PC-DOS because the backup log file may match the search pattern and be
backed up, too, resulting in an extra file on the backup disk.

The /P switcl:l causes backup files to be packed as densely as possible on the destination
disk. When many short files are being backed up to floppy disks, the number of files that
fit on the destination disk may exceed the number of entries that will fit in the destina­
tion's root directory. If the /P switch is included in the command line, subdirectories are
created on the destination disk as needed to use the disk space more effectively. The /P
switch is not supported under PC-DOS; backup disks created with the /P switch will not
be compatible with IBM's BACKUP and RESTORE commands.

Warning: BACKUP should not be used on disk directories or drives that have been
redirected with an ASSIGN,JOIN, or SUBST command.

Return Codes

0 Backup operation was successful.
1 No files were found to back up.
2 Some files were not backed up because of sharing conflicts (versions 3.0 and later).
3 Backup operation was terminated by user.
4 Backup operation was terminated because of error.

Examples

To back up the file REPORT. TXT in the current directory on the current drive, placing the
backup file on the disk in drive A, type

C>BACKUP REPORT.TXT A: <Enter>

Section Ill: User Commands 747

ZTE (USA) 1007, Page 757

BACKUP

To back up all the files in the subdirectory B: \V2\ SOURCE, placing the backup files on the
disk in drive A, type

C>~ACKUP B:\V2\SOURCE A: <Enter>

To back up all the files with extension .C in the directory \V2\SOURCE on the current
drive, placing the backup files on the disk in drive A, type

C>BACKUP \V2\SOURCE*.C A: <Enter>

To back up all the files with the extension .ASM from the current directory on the current
drive and from all its subdirectories, placing the backup files on the disk in drive A, type

C>BACKUP *.ASM A: /S <Enter>

To back up all the files that have been modified since the last backup from all the sub­
directories on drive C, placing the backup files on the disk in drive A, type

C>~ACKUP C:\ A: /S /M <Enter>

To back up all the files with the extension .C from the directory C: \V2\SOURCE that were
modified on or after October 16, 1985, placing the backup files on the disk in drive A, type

C>BACKUP C:\V2\SOURCE*.C A: /D:10-16-85 <Enter>

Messages

•••Backing up files to drive X: ***
Diskette Number: n
This informational message informs the user of the progress or' the BACKUP command.

•••Last file not backed up ***
The destination drive does not have enough space to back up the last file.

•••Notable to back up file ***
One of the system calls used by BACKUP failed unexpectedly; for example, a file could not
be opened, read, or written.

Cannot create Subdirectory BACKUP on driveX:
Drive X is full or its root directory is full.

DOS 2.0 or later required
BACKUP does not work with versions of MS-DOS earlier than 2.0.

Error trying to open backup log file
Continuing without making log entries
The /L switch was used and BACKUP is unable to create the backup log file.

7 48 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 758

Files cannot be added to this. diskette
unless the PACK (!P) switch is used
Set the switch (Y /N)?

BACKUP

The root directory of the destination disk is full and a subdirectory must be created to hold
the remaining files. Respond with Y to cause BACKUP to create a subdirectory and con­
tinue backing up files into it; respond with N to return to MS-DOS.

Incorrect DOS version
The version of BACKUP is not compatible with the version of MS-DOS that is running.

Insert backup diskette in drive X:
Strike any key when ready
This message prompts the user to insert a disk to receive the backup files into the speci­
fied destination drive.

Insert backup diskette n in drive X:
Strike any key when ready
The files being backed up will not fit onto a single floppy disk; this message prompts the
user to insert the next floppy disk. Multiple-floppy-disk backup disks should be labeled
and numbered to match the number displayed in this message.

Insert backup source diskette in drive X:
Strike any key when ready
This message prompts the user to insert the floppy disk to be backed up into the specified
source drive.

Insert last backup diskett~ in drive X:
Strike any key when ready
This message prompts the user to insert the final disk that will receive the backup files
into the specified destination drive.

Insufficient memory
Available system memory is insufficient to run the BACKUP program.

Invalid argument
One of the switches specified in the command line is invalid or is not supported in the ver­
sion of BACKUP being used.

Invalid Date/Time
An invalid date or time was given with the /D: date or /T: time switch.

Invalid drive specification
The source or destination drive specified in the command line is not available or is not
valid.

Invalid number of parameters
At least two parameters, the source and the destination, must be specified in the com­
mand line; a maximum of seven switches can be specified after the source and
destination.

Section ill: User Commands 749

ZTE (USA) 1007, Page 759

BACKUP

Invalid parameter
One of the switches supplied in the command line is invalid.

Invalid path
The path specified as the source is invalid or does not exist.

Last backup diskette not inserted
Insert last backup diskette in drive X:
Strike any key when ready
The backup disk inserted as the last backup disk was not the correct disk. Insert the cor­
rect disk.

No space left on device
The destination disk is full.

No such file or directory
The source specified is invalid or does not exist.

Source and target drives are the same
The disks specified as the source and destination disks are identical.

Source disk is Non-removable
The disk containing the files to be backed up is a fixed disk.

Target can not be used for backup
The disk specified as the destination disk is damaged or the I A switch was used in the
command line and the disk does not contain a valid BACKUPID.@@@ file.

Target disk is Non-removable
The disk that will contain the backed-up files is a fixed disk.

Target is a floppy disk

or

Target is a hard disk
This informational message indicates which type of disk was specified as the destination
disk.

Too many open files
Too many files are open. Increase the value of the FILES command in the CONFIG.SYS
file. ·

Unable to erase filename
BACKUP is unable to erase an older version of a backed-up file because the file is read­
only or is in use by another program.

750 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 760

Warning! Files in the target drive
X: \root directory will be erased
Strike any key when ready

BACKUP

The destination is a floppy-disk drive and this message warns the user that all files in its
root directory will be erased before the backup operation.

Warning! Files in the target drive
C: \BACKUP directory will be erased
Strike any key when ready
BACKUP is ready to begin backing up files to the \BACKUP directory on drive C. All exist­
ing files in the \BACKUP directory will be deleted. Press Crtl-Break to terminate the
backup operation or press any key to continue.

Warning! No files were found to back up
No files were found on the source disk in the current or specified directory or no files were
found matching the filename supplied.

Section III: UserCommands 751

ZTE (USA) 1007, Page 761

BATCH

BATCH 1. 0 and later

Internal System Batch-File Interpreter

Purpose

Sequentially executes commands stored in·a batch file (a text-only file with a .BAT
extension).

Syntax

filename [[parameterl [parameter2 [...]]]]

where:

filename

parameterl

parameter2

Description

is the name of the batch file to be executed, without the .BAT extension.
(The filename is always %0 in the list of replaceable parameters.)
is the filename, switch, or string that is the value of the first replaceable
parameter (%1).
is the filename, switch, or string that is the value of the second replaceable
parameter (o/o2). As many additional replaceable parameters can be speci­
fied as the command line will hold.

A batch file is an ASCII text file that contains one or more MS-DOS commands. It is a use­
ful way to perform sequences of frequently used commands without having to type them
all each time they are needed. When a batch file is invoked by entering its name, the com­
mands it contains are carried out in sequence by a special batch-file interpreter built into
COMMAND.COM. Additional information entered in the batch-file command line can be
passed to other programs by means of replaceable parameters (see below).

A batch file must always have the extension .BAT. The file can contain any number of lines
of ASCII text; each line can contain a maximum of 128 characters. Batch files can be cre­
ated with EDLIN or another text editor or with a word processor in nondocument mode.
(Formatted document files cannot be used as batch files because they contain special con­
trol codes or escape sequences that cannot be processed by the batch-file interpreter.)
Batch files can also be created with the MS-DOS COPY command by specifying the CON
device (keyboard) as the source file and the desired batch-file name as the destination file.
For example, after the command

C>COPY CON MYFILE.BAT <Enter>

each line that is typed will be placed into MYFILE.BAT. This form of the COPY command
is terminated by pressing Ctrl-Z or the F6 key, followed by the Enter key.

The commands in a batch file can be any combination of internal MS-DOS commands
(such as DIR or COPY), external MS-DOS commands (such as CHKDSK or BACKUP), the
names of other programs or batch files, or the following special batch-file directives:

752 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 762

Command

ECHO
FOR

GOTO

IF

PAUSE

REM

SHIFT

BATCH

Action

Displays a message on standard output (versions 2.0 and later).
Executes a command on each of a set of files (versions 2.0 and

later).
Transfers control to another point in a batch file (versions 2.0

and later).
Conditionally executes a command based on the existence of a

file, the equality of two strings, or the return code of a previously
run program (versions 2.0 and later).

Waits for the user to press a key before executing the remainder of
the batch file.

Allows comment lines to be placed in batch files for internal
documentation.

Provides access to more than 10 command-line parameters (ver­
sions 2.0 and later).

These special batch commands are discussed individually, with examples, in the following
pages.

A batch file is executed by entering its name, without the .BAT extension, in response to
the MS-DOS prompt. The system's command processor, COMMAND. COM, searches the
current directory and then each directory named in the PATH environment variable for a
file with the specified name and the extension .COM, .EXE, or .BAT, in that order. If a
.COM or .EXE file is found, it is loaded into memory and receives control; if a .BAT file is
found, it is assumed to be a text file and is passed to the batch-file interpreter. (If two files
with the same name exist in the same, directory, one with a .COM or .EXE extension and
the other with a .BAT extension, it is not possible to execute the .BAT file- the .COM or
.EXE file is always loaded instead.)

If the disk that contains a batch file is removed before all the commands in the batch file
are executed, COMMAND. COM will prompt the user to replace the disk so that the batch 4
file can be completed. Execution of a batch file can be terminated by pressing Ctrl-C or
Ctrl-Break, causing COMMAND. COM to issue the message Terminate batch job? (YIN). If
the user responds with Y, the batch file is abandoned and COMMAND. COM displays its
usual prompt.

The input redirection(<), output redirection(> or>>), and piping G) characters have no
effect when they are used in a command line that invokes a batch file. However, they can
be used in individual command lines within the file.

Ordinarily, if a batch file includes the name of another batch file, control passes to the sec­
ond batch file and never returns. That is, when the commands in the second batch file are
completed, the batch-file interpreter terminates and any remaining commands in the first

Section III: User Commands 753

ZTE (USA) 1007, Page 763

BATCH

batch file are not processed. However, a batch file can execute another batch file without
itself being terminated by first loading a secondary copy of the system's command pro­
cessor. To accomplish this, the first batch file must contain a command of the form

COMMAND !C batch2

where batch2 is the name of the second batch file. When all the commands in the second
batch file have been processed, the secondary copy of COMMAND. COM exits and the
first batch file continues where it left off. (See USER COMMANDS: coMMAND for details on
the use of the /C switch with COMMAND. COM.)

A batch file can be made more flexible by including replaceable parameters inside the file.
A replaceable parameter takes the form %n, where n is a numeral in the range 0 through 9.
Replaceable parameters simply hold places in the batch file for filenames or other informa­
tion that the user will supply in the command line when the batch file is invoked.

When a batch file is interpreted and a command containing a replaceable parameter is
encountered, the corresponding value specified in the batch-file command line is substi­
tuted for the replaceable parameter and the command is then executed. The %0 replace­
able parameter is replaced by the name of the batch file itself; parameters %1 through %9
are replaced sequentially with the remaining values specified in the command line. If a
replaceable parameter references a command-line entry that does not exist, the parameter
is replaced with a null (zero-length) string.

For example, if the batch file MYBATCH.BAT contains the single line

COPY %1 .COM %2.SAV

and is executed by entry of

C>MYBATCH FILE1 FILE2 <Enter>

the actual command that is carried out is

COPY FILE1 .COM FILE2.SAV

(The SHIFT batch command makes it possible to use more than 10 replaceable parame­
ters. See USER COMMANDS: BATCH:SHIFT)

An environment variable is a special case of a replaceable parameter. If the SET command
is used in the form

SET name=value

to add an environment variable to the system's environment block, the string value will be
substituted for the string %name% wherever the latter is encountered during the inter­
pretation of a batch file. This capability is available only in versions 2.x, 3.1, and 3.2.

754 TheMS-DOS Encyclopedia

ZTE (USA) 1007, Page 764

BATCH: AUTOEXEC.BAT
System Startup Batch File

Description

BATCH: AUTOEXEC.BAT

1.0 and later

The AUTO EXEC. BAT file is an optional batch file containing a series of MS-DOS com­
mands that automatically execute when the system is turned on or restarted.

When the system's default command processor, COMMAND. COM, is first loaded, it
looks in the root directory of the current drive for a file named AUTO EXEC. BAT. If
AUTO EXEC. BAT is not found, COMMAND. COM prompts the user to enter the current
time and date and then displays the MS-DOS copyright notice and command prompt. If
AUTOEXEC.BAT is found, COMMAND. COM sequentially executes the commands within
the file. No prompts to enter the time and date are issued unless the TIME and DATE
commands are explicitly included in the batch file; no copyright notice is displayed.

Typical uses of the AUTO EXEC. BAT file include

• Running a program to set the system time and date from a real-time clock/calendar
located on a multipurpose expansion board (IBM PC, PC/XT, or compatibles only)

• Using the MODE command to configure a serial port or to redirect printing
• Executing SET commands to configure environment variables
• Setting display colors on a color monitor (if the command DEVICE=ANSI.SYShas

been included in the CONFIG.SYS file)
• Installing terminate-and-stay-resident (TSR) utilities
• Using the PATH command to tell COMMAND. COM where to find executable pro­

gram files if they are not in the current drive and/or directory
• Defining a custom prompt using the PROMPT command
• Invoking an application program such as a database, spreadsheet, or word processor

A secondary copy of the command processor can also be loaded from within the
AUTO EXEC. BAT file. If this copy of COMMAND.COM is loaded with the /P switch, it too
searches for an AUTO EXEC. BAT file on the current drive and processes the file if it is
found. This feature can be useful for performing special operations. For example, on very
old PCs that are unable to start from a fixed disk, a secondary copy of the command pro­
cessor can be used to make the fixed disk's copy of COMMAND. COM the copy used by
the system from that point on (at the expense of some system memory). If the
AUTO EXEC. BAT file containing the lines

C:
COMMAND C:\ /P

is stored on the floppy disk in drive A when the system is turned on or restarted, the
first line of the file causes drive C to become the current drive; then the second line

Section Ill: User Commands 755

ZTE (USA) 1007, Page 765

BATCH: AUTOEXEC.BAT

permanently loads a secondary copy of COMMAND.COM from drive C and instructs
COMMAND. COM to reload its transient portion from the root directory of drive C when
necessary. This in turn triggers the execution of the AUTO EXEC. BAT file on the fixed
disk to perform the actual system configuration. Because the transient part of
COMMAND.COM will be reloaded from the fixed disk when necessary, rather than
from the floppy disk, system performance is improved considerably.

Example
The following example illustrates several common uses of the AUTO EXEC. BAT file to con­
figure the MS-DOS system at startup time. (The line numbers are included for reference
and are not part of the actual file.)

ECHO OFF
2 SETCLOCK
3 PROMPT pg
4 MD D: \BIN
5 COPY C:\SYSTEM*.* D:\BIN >NUL
6 PATH=D:\BIN;C:\WP\WORD;C:\MSC\BIN;C:\ASM
7 APPEND 0:\BIN;C:\WP\WORD;C:\ASM
8 SET INCLUDE=C:\MSC\INCLUDE
9 SET LIB=C:\MSC\LIB
10 SET TMP=C:\TEMP
11 MODE COM1 :9600,n,8,1,p
12 MODE LPT1:=COM1:

Line 1 causes the batch-file processor to operate silently; that is, the commands in the
batch file are not displayed on the screen as they are executed.

Line 2 runs a utility program called SETCLOCK, which reads the current time and date
from a real-time clock chip on a multifunction board and sets the system time and date
accordingly.

Line 3 configures COMMAND. COM's user prompt so that it displays the current drive and
directory.

Line 4 creates a directory named \BIN on drive D, which in this case is a RAMdisk that
was created by an entry in the system's CONFIG.SYS file.

l
Line 5 copies all the programs in the \SYSTEM directory on drive C to the \BIN directory
on drive D. The normal output of this COPY command is redirected to the NUL device­
in effect, the output is thrown away- to avoid cluttering the screen.

Line 6 sets the search path for executable files and line 7 sets the search path for data files.
Note that the RAMdisk directory D: \BIN is specified as the first directory in the PATH
command; therefore, if the name of a program is entered and it cannot be found in the cur­
rent directory, COMMAND. COM will look next in the directory D:\BIN. This strategy
allows commonly used programs (in this example, the programs in the \SYSTEM direc­
tory that were copied into D: \BIN) to be located and loaded quickly.

756 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 766

BATCH: AUTOEXEC.BAT

Lines 8 through 10 add the environment variables INCLUDE, LIB, and TMP to the system's
environment. These variables are used by the Microsoft C Compiler and the Microsoft
Object Linker.

Line 11 configures the first serial communications port (COMl) and line 12 causes program
output to the system's first parallel port (LPTl) to be redirected to the first serial port. This
pair of commands allows a serial-interface Hewlett Packard Laser jet printer to be used as
the system list device.

Note: Depending on the version of MS-DOS in use, some commands in this example may
not be available or may support different options. See the individual command entries for
more detailed information.

Section Ill: User Commands 757

ZTE (USA) 1007, Page 767

BATCH: ECHO

BATCH: ECHO 2.0 and later

Display Text Internal

Purpose

Displays a message during the execution oh batch file and controls whether or not batch­
file commands are listed on the screen as they are executed.

Syntax

ECHO [ONiOFFimessage]

where:

ON enables the display of all subsequent batch-file commands as they are
executed.

OFF disables the display of all subsequent batch-file commands as they are
executed.

message is a text string to be displayed on standard output.

Description

Each command line of a batch file is ordinarily displayed on the screen as it is executed.
The ECHO command has a dual usage: to control the display of these commands and to
display a message to the user.

ECHO is used with ON or OFF to enable or disable the display of commands during
batch-file processing. If the ECHO command is used with no parameter, the current status
of the batch processor's ECHO flag is displayed. Note that the ECHO flag is always forced
on at the start of any batch-file processing, even if that batch file was invoked by another
batch file.

The ECHO command is not limited to batch files; an ECHO command can also be issued
at the command prompt. ECHO OFF entered at the command prompt prevents the
prompt from subsequently being displayed. ECHO ON entered interactively restores the
display. If ECHO is entered interactively without a parameter, the current status of the
ECHO flag is displayed.

ECHO can also be followed by a message to be sent to standard output regardless of the
status of the ECHO flag (on or off). Note that if ECHO is on, two copies ofthe message
are actually displayed, the first copy preceded by the word ECHO. ECHO message is fre­
quently used to display prompts and informative text during the execution of a batch file
because text following REM or PAUSE commands is not displayed if ECHO is off.

ECHO message can also be used to build lists or other batch files dynamically while the
batch file is executing. For example, the messages in the following ECHO commands are
used to build the file STARTUP.BAT:

ECHO CHKDSK > STARTUP.BAT
ECHO DIR /W >> STARTUP.BAT
ECHO PROMPT pg >> STARTUP.BAT

758 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 768

BATCH: ECHO

The first ECHO command causes the message CHKDSK to be redirected to the file
STARTUP.BAT. The second and third ECHO commands cause the messages DIR/W and
PROMPT pg to be appended to the existing contents of STARTUP. BAT. The completed
STARTUP. BAT file contains the following:

CHKDSK
DIR /W

PROMPT pg

Note: When the pipe symbol (:) is used in message, the symbol and any characters follow­
ing it are ignored until a redirection symbol (<,>,or>>) is encountered, at which point the
redirection symbol and the remaining characters are recognized. For example, if the line

ECHO DIR : SORT > STARTUP.BAT

was placed in a batch file and subsequently executed, the only characters echoed to the
file STARTUP. BAT would be D~R; the pipe symbol and the characters between it and the
redirection symbol > would be ignored.

Examples

To disable the display of each batch-file command as it is executed, include the following
line as the first line in the batch file:

ECHO OFF

To display the message Now formatting disk on standard output, include the following
line in the batch file:

ECHO Now formatting disk

To display the current status of the ECHO flag, include the following line in the batch file:

ECHO

If the ECHO flag is currently off, MS-DOS displays:

ECHO is off

To echo a blank line to the screen with versions 2.x, type a space after the ECHO com­
mand and press Enter. To echo a blank line with versions 3.x, type the ECHO command
and a space, then hold down Alt and type 255 on the numeric keypad; finally, release the
Alt key and press Enter.

Messages

ECHO is off

or

ECHO is on
If the ECHO command is entered without a parameter, one of these lines is displayed to
give the current status of the batch processor's ECHO flag.

Section III: User Commands 759

ZTE (USA) 1007, Page 769

BATCH: FOR

BATCH: FOR
Execute Command on File Set

2.0 and later

Internal

Purpose

Executes a command or program for each file in a set of files.

Syntax

FOR %%variable IN (set) DO command (batch processing)

or

FOR %variable IN (set) DO command (interactive processing)

where:

variable

set

command

Description

is a variable name that can be any single character except the numerals 0
through 9, the redirection symbols (<, >, and»), and the pipe symbol CD;
case is significant.
is one or more filenames, pathnames, character strings, or metacharacters,
separated by spaces, commas, or semicolons; wildcard characters are per­
mitted in filenames.
is any MS-DOS command or program except the FOR command; the vari­
able name %%variable (or %variable in interactive mode) can be part of
the command.

The FOR command allows sequential execution of the same command or program on
each member of a set of files.

The set parameter can contain multiple filenames (including wildcards), pathnames, char­
acter strings, or metacharacters such as the replaceable parameters %0 through %9. Each of
the following lines is an example of a valid set:

(FILE1 .TXT %1 %2 B:\PROG\LISTING?.TXT)

(A:\%1 A:\%2 C:\LETTERS*.TXT C:MEMO?.*)
(%PATH%)

Each filename from set is assigned in turn to %variable and then the specified command
or program is executed. (When the FOR command line is executed in a batch file, the
leading percent sign ofo/oo/ovariable is removed, leaving %variable.) If a filename in set
contains wildcards, each matching file is used before the batch processor goes on to the
next member of set.

760 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 770

BATCH: FOR

Note: In versions 2.x, set can consist only of a list of single filenames, a single filename
with wildcard characters, or a combination of single filenames and metacharacters. Inver­
sions 3.x, however, all combinations of these are allowed in the same set.

The FOR command can also be used interactively at the MS-DOS prompt to perform a
single command on several files without entering the same command for each file. When
FOR is used in this manner, only one percent sign (%) should be used before the dummy
alphabetic variable; in this case, the percent sign is not removed during processing. When
the FOR command is used interactively, environment variables such as %PATH% cannot
be used as part of the filename set.

Examples

To view all the files with the extension .TXT in the current directory, include the following
line in the batch file:

FOR %%X IN (*.TXT) DO TYPE %%X

To perform the same function interactively, type

C>FOR %X IN (*.TXT) DO TYPE %X <Enter>

To copy up to nine files to the disk in drive A, specifying the names of the files in the
batch-file command line, include the following line in the batch file:

FOR %%Y IN (%1 %2 %3 %4 %5 %6 %7 %8 %9) DO COPY %%Y A:

(Recall that %0 is the name of the batch file.)

To execute successive batch files under the control of one batch file, use the /C switch with
COMMAND, as in the following batch-file line:

FOR %%Z IN (BAT1 BAT2 BAT3) DO COMMAND /C %%Z

Message

FOR cannot be nested
The command or program performed by a FOR command cannot be another FOR
command.

Section Ill: User Commands 761

ZTE (USA) 1007, Page 771

BATCH:GOTO

BATCH:GOTO
Jump to Label

Purpose

2.0 and later

Internal

Transfers program control to the batch-file !,ine following the specified label.

Syntax

GOTO name

where:

name is a batch-file label declared elsewhere in the file in the form :name.

Description

The GOTO command causes the batch-file processor to transfer its point of execution to
the line following the specified label. If the label does not exist in the file, execution of the
batch file is terminated with the message Label not found.

A batch-file label is defined as a line with a colon character(:) in the first column, followed
by any text (including spaces but not other separator characters such as semicolons or
equal signs). Only the first eight characters following the colon are significant; spaces are
not counted in the eight characters.

Examples

The GOTO command is frequently used in combination with the IF and SHIFT batch
commands to perform some action based on the return code from a program. For exam­
ple, the following batch file will back up a variable number of files or directories, whose
names are specified in the batch-file command line, to a floppy disk in drive A. The batch
file accomplishes this by executing the BACKUP program with successive pathnames
specified in the command line until BACKUP returns a nonzero (error) code. Control is
then transferred to the label :DONE, and the batch file is terminated.

ECHO OFF
2 :START
3 BACKUP %1 A:
4 IF ERRORLEVEL 1 GOTO DONE
5 SHIFT
6 GOTO START
7 :DONE

Note thatthe batch file includes two labels, :START and :DONE, in lines 2 and 7, respec­
tively. It also includes two GOTO commands, in lines 4 and 6. (The line numbers in the
listing above are included only for reference and are not present in the actual batch file.) If
the condition in line 4 is true (the BACKUP program returned an exit code of 1 or higher),
the remainder of line 4 is executed and program control passes to the :DONE label in

762 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 772

BATCH:GOTO

line 7. If the condition is false, program control passes to line 5, the SHIFT command is
executed, and program control goes to line 6, where the GOTO statement returns pro­
gram control to line 2.

Message

Label not found
The specified label does not exist in the batch file.

Section Ill: User Commands 763

ZTE (USA) 1007, Page 773

BATCH: IF

BATCH: IF
Perform Conditional Execution

2.0 and later

Internal

Purpose

Tests a condition and executes a command ~or program if the condition is met.

Syntax

IF [NOT] condition command

where:

condition

command

Description

is one of the following:

ERRORLEVEL number
The condition is true if the exit code of the program last executed by
COMMAND. COM was equal to or greater than number. Note that not all
MS-DOS commands return explicit exit codes.

string 1= = string2
The condition is true if stringl and string2are identical after parameter
substitution; case is significant. The strings cannot contain separator char­
acters such as commas, semicolons, equal signs, or spaces.

EXIST pathname
The condition is true if the specified file exists. The pathname can include
metacharacters.

is the command or program to be executed if the condition is true.

The IF command provides conditional execution of a command or program in a batch file.
When condition is true, IF executes the specified command, which can be another IF
command, any other MS-DOS internal command, or a program. When condition is not
true, MS-DOS ignores command and proceeds to the next line in the batch file. The sense
of any condition can be reversed by preceding the test or expression with NOT.

Examples

To branch to the label :ERROR if the file LEDGER.DAT does not exist, include the follow­
ing line in the batch file:

IF NOT EXIST LEDGER.DAT GOTO ERROR

764 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 774

BATCH: IF

To branch to the label :ONEPAR if the batch-file command line does not contain at least
two parameters, include the following line in the batch file:

IF "%2"==""GOTO ONEPAR

or

IF %2-==- GOTO ONEPAR

Note that the existence of a replaceable parameter can be determined by concatenating it
to another string. In the first example, quotation marks are concatenated on either side of
the replaceable parameter; if%2 doesn't exist, "%2"== ""evaluates to '"'=='"~which is true
and will allow GOTO ONEPAR to be executed. In the second example, a tilde character is
concatenated to the end of the replaceable parameter; if %2 doesn't exist, the argument
becomes -==-.

To copy the file specified by the first replaceable batch-file parameter to drive A only if it
does not already exist on the disk in drive A, include the following line in the batch file:

IF NOT EXIST A:%1 COPY %1 A:

To branch to the label :DONE if the first replaceable batch-file parameter exists in the
\ PROG directory on drive C and in the \BACKUP directory on drive C, include the follow­
ing line in the batch file:

IF EXIST C:\PROG\%1 IF EXIST C:\BACKUP\%1 GOTO DONE

Messages

Bad command or filename
The command following the condition in the IF statement was misspelled, does not exist,
or was represented by a replaceable parameter that was not supplied in the command line
that invoked the batch file.

Syntax error
The condition specified in the IF statement cannot be tested.

Section II/: UserCommands 765

ZTE (USA) 1007, Page 775

BATCH: PAUSE

BATCH: PAUSE
Suspend Batch-File Execution

Purpose

1.0 and later

Internal

Displays a message, suspends execution of.a batch file, and waits for the·user to press a
key.

Syntax

PAUSE [message]

where:

message is a text string to be displayed on standard output.

Description

The PAUSE command displays the message Strike a key when ready ... and suspends
execution of a batch file until the user presses a key. This command can be used to allow
time for the operator to change disks, change the type of forms on the printer, or take
some other action that is necessary before the batch file can continue.

If the batch processor's ECHO flag is on when the PAUSE command is executed, the entire
line containing the PAUSE statement is displayed on the screen so that the optional mes-
sage is visible to the user. The message Strike a key when ready ... is then displayed on a
new line and the system waits. Note that Strike a key when ready ... is always displayed,
even if the ECHO flag is off. When the user presses a key, execution of the batch file
resumes.

Note: Redirection symbols should not be used within message. They prevent the message
Strike a key when ready ... from being displayed on the screen.

If the user presses Ctrl-C or Ctrl-Break while a PAUSE command is waiting for a key to be
pressed, a prompt is displayed that gives the user the opportunity to terminate the execu­
tion of the batch file. This same message is displayed whenever the user presses Ctrl-C or
Ctrl-Break during the execution of a batch file; however, using PAUSE commands supple­
mented by appropriate ECHO commands at strategic points within a batch file provides
the user with clearly defined breakpoints for terminating the file.

Examples

To display the message Put an empty disk in drive A and then wait until the user has
pressed a key, include the following line in the batch file:

PAUSE Put an empty disk in drive A

7 66 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 776

BATCH: PAUSE

When this line of the batch file is executed, if the ECHO flag is on, the user sees the fol­
lowing messages on the screen:

C>PAUSE Put an empty disk in drive A

Strike a key when.ready ...

If the ECHO flag is off, only the message Strike a key when ready . .. appears.

To display the message without the prompt and command, the PAUSE command can be
used immediately after an ECHO command, as follows:

ECHO OFF

CLS
ECHO Put an empty disk in drive A

PAUSE

This batch file will display the following message on the screen:

Put an empty disk in drive A

Strike a key when ready . . .

Note that the message must be included in an ECHO command. With ECHO off, a PAUSE
message is not displayed.

Section Ill: User Commands 767

ZTE (USA) 1007, Page 777

BATCH: REM

BATCH: REM
Include Comment Line

Purpose

Designates a remark, or comment, line in a patch file.

Syntax

REM [message]

where:

message is any text.

Description

1.0 and later

Internal

The REM command allows inclusion of remarks, or comments, within a batch file.
Remarks are often used to document the purpose of other commands within the file for
the benefit of those who may wish to modify the file later.

If the ECHO flag is on, remarks are displayed on the screen during the execution of a
batch file. Thus, remarks can also be used to provide information, guidance, or prompts to
the user; however, the ECHO and PAUSE commands are more suitable for these purposes.

REM can also be used alone to insert blank lines in a batch file to improve readability. (If
ECHO is on, the word REM will still be displayed.)

Note: The redirection symbols (<,>,and>>) and piping character C) produce no mean­
ingful results with the REM command and should not be used.

Example

To document a batch file's revision history with the internal comment This batch file last
modified on 6/18/87, include the following line in the batch file:

REM This batch file last modified on 6/18/87

768 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 778

BATCH: SHIFT

BATCH: SHIFT 2.0 and later

Shift Replaceable Parameters Internal

Purpose

Changes the position of the replaceable parameters in a batch-file command line, thereby
allowing more than 10 replaceable parameters.

Syntax

SHIFT

Description

Ordinarily only 10 replaceable parameters (%0 through %9, where %0 is the name of the
batch file) can be referenced within a batch file. The SHIFT command allows access to ad­
ditional parameters specified in the command line by shifting the contents of each of the
previously assigned parameters to a lower number (%1 becomes %0, %2 becomes %1, and
so on). The previous contents of %0 are lost and are not recoverable. The eleventh param­
eter in the batch-file command line is then moved into %9. This allows more than 10
parameters to be specified in the batch-file command line and subsequently processed
in the batch file.

Example

The following batch file will copy a variable number of files, whose names are entered in
the batch-file command line, to the disk in drive A:

ECHO OFF
:NEXT
IF "%1"=="" GOTO DONE
COPY %1 A:
SHIFT
GOTO NEXT
:DONE

Section Ill: User Commands 769

ZTE (USA) 1007, Page 779

BREAK

BREAK 2.0 and later

Set Control-C Check Internal

Purpose

Sets or clears MS-DOS's internal flag for Cootrol-C checking.

Syntax

BREAK [ON:OFF)

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro­
gram, unless the program itself contains instructions that disable MS-DOS's Control-C han­
dling. As a rule, MS-DOS checks the keyboard for a Control-C only when a character is
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executes for long periods without performing such character 1/0,
detection of the user's entry of a Control-C may be delayed. The BREAK ON command
causes MS-DOS to also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK OFF command disables such extended
Control-C checking. The default setting for BREAK is off.

If the BREAK command is entered alone, the current status of MS-DOS's internal BREAK
flag is displayed.

Examples

To display the current status of the MS-DOS internal flag for extended Control-C checking,
type

C>BREAK <Enter>

MS-DOS displays

BREAK is off

or

BREAK is on

depending on the status of the BREAK flag.

To enable extended checking for Control-C during disk operations, type

C>BREAK ON <Enter>

770 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 780

BREAK

Messages

BREAK is on

or

BREAK is off
Extended Control-C checking is enabled or disabled, respectively. These messages occur
in response to a BREAK status check.

Must specify ON or OFF
An invalid parameter was supplied in a BREAK command.

Section III: User Commands 771

ZTE (USA) 1007, Page 781

CHDIRorCD

CHDIRorCD
Change Current Directory

Purpose

2.0 and later

Internal

Changes the current directory or displays the current path of the specified or default disk
drive.

Syntax

CHOIR [drive:][pathl

or

CD [drive:] [path]

where:

drive

path

Description

is the letter of the drive for which the current directory will be changed or
displayed, followed by a colon. Note that use of the drive parameter does not
change the currently active drive.
is one or more directory names, separated by backslash characters(\), that
define an existing path.

The CHOIR command, when followed by an existing path, is used to set the working
directory for the default or specified disk drive.

The path parameter consists of the name of an existing directory, optionally followed by
the names of existing subdirectories, each separated from the next by a backslash charac­
ter. If path begins with a backslash, CHOIR assumes that the first named directory is a sub­
directory of the root directory; otherwise, CHOIR assumes that the first named directory is
a subdirectory of the current directory. The special directory name .• , which is an alias for
the parent directory of the current directory, can be used as the path.

When CHOIR is entered alone or with only a drive letter followed by a colon, the full path
of the current directory for the default or specified drive is displayed.

CD is simply an alias for CHOIR; the two commands are identical.

Examples

To change the current directory for the current (default) disk drive to the path
\V2\SOURCE, type

C>CD \V2\SOURCE <Enter>

772 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 782

CHDIRorCD

To display the name of the current directory for the disk in drive D, type

C>co D: <Enter>

To return to the pal,"ent directory of the current directory, type

C>co <Enter>

Messages

Invalid directory
One of the directories in the specified path does not exist.

Invalid drive specification
An invalid drive letter was given or the named drive does not exist in the system.

Section Ill: User Commands 773

ZTE (USA) 1007, Page 783

CHKDSK

CHKDSK 1. 0 and later

Check Disk Status External

Purpose

Analyzes the allocation of storage space on a disk and displays a summary report of the
space occupied by files and directories.

Syntax

CHKDSK [drive:][pathname] [/F] [/V]

where:

drive

path name

IF
/V

Description

is the letter of the drive containing the disk to be analyzed, followed by a
colon.
is the location and, optionally, the name of the file(s) to be checked for
fragmentation; wildcard characters are permitted in the filename.
repairs errors (versions 2.0 and later).
''verbose mode," reports the name of each file as it is checked (versions
2.0 and later).

The CHKDSK command analyzes the disk directory and file allocation table for consis­
tency and reports any errors. If the /V switch is included in the command line, the name of
each file processed is displayed as the disk is being analyzed.

After analyzing the disk, CHKDSK displays a summary of the disk and RAM space used
and available. The disk-space report includes

• Total disk space in bytes
• Number of bytes allocated to hidden files
• Number of bytes contained in directories
• Number of bytes contained in user files
• Number of bytes contained in bad (unusable) sectors
• Number of available bytes on the disk

(Hidden files are files that do not appear in a directory listing. A bootable MS-DOS or
PC-DOS disk always contains two hidden files- MSDOS.SYS and IO.SYS or IBMDOS. COM
and IBMBIO.COM, respectively-that contain the operating system. A volume label, if
present, counts as a hidden file. In addition, some application programs create hidden files
for copy protection or other purposes.)

Directory errors detected by CHKDSK include

• Invalid pointers to data areas
• Bad file attributes in directory entries

77 4 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 784

CHKDSK

• Damage to a portion of the directory that makes it impossible to check one or more
paths

• Damage to an entire directory that makes the files contained in that directory
inaccessible

File allocation table (FAT) errors detected by CHKDSK include

• Defective disk sectors in the FAT
• Invalid cluster (disk allocation unit) numbers in the FAT
• Lost clusters
• Cross-linking of files on the same cluster

If the IF switch is included in the command line, CHKDSK will attempt to repair errors in
disk allocation and recover as much data as possible. Because repairs usually involve
changes to the disk's file allocation table that may cause a loss of information, the user is
prompted for confirmation. Lost clusters are collected into files in the root directory with
names of the form FILEnnnn.CHK.

If the command line contains a file specification, CHKDSK will examine all files that
match the specification and report on their fragmentation- that is, on whether or not
their sectors are contiguous on the disk. (Fragmented files can degrade the performance of
the system because of the time required to move the drive head back and forth across the
disk to reach the various parts of the file.) Files on a floppy disk can be collected into con­
tiguous sectors by copying them to an empty floppy disk. Files on a fixed disk can be col­
lected into contiguous sectors by backing them all up to floppy disks, erasing all files and
subdirectories on the fixed disk, and then restoring the files from the floppy disk.

Warning: CHKDSK should not be used on a network drive or on a drive created or
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To check the disk in the current drive, type

C>CHKDSK <Enter>

If CHKDSK finds no errors, a report such as the following is displayed:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

11 6736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory
566576 bytes free

Section Ill: User Commands 775

ZTE (USA) 1007, Page 785

CHKDSK

Note that the line containing the volume name and creation date does not appear if the
disk has not been assigned a volume name.

If CHKDSK finds errors, a message such as the following is displayed:

Errors found, F parameter not specified.
Corrections will not be written to disk.

10 lost clusters found in 3 chains.
Convert lost chains to files (Y/N)?

A Y response at this point does not convert the lost chains to files; to do this, enter the
CHKDSK command again with the IF switch specified.

To correct any allocation errors found by the CHKDSK command, type

C>CHKDSK /F <Enter>

In this example, CHKDSK displays its usual report, followed by an error message:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

116736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

10 lost clusters found in 3 chains.
Convert lost chains to files (Y/N) ?

A Y response causes CHKDSK to recover the lost chains of clusters into files in the root
directory, giving the files the names FILEOOOO.CHK, FILEOOOl.CHK, FILE0002.CHK, and
so on. An N response causes CHKDSK to free the lost chains of clusters without saving the
contents to files.

To check all files in the directory C:\SYSTEM with the extension .COM for fragmentation,
type

C>CHKDSK C:\SYSTEM*.COM <Enter>

776 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 786

CHKDSK displays its usual report, followed by a list of fragmented files:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space

38912 bytes in 3 hidden files

116736 bytes in 53 directories

17055744 bytes in 715 user files

20480 bytes in bad sectors

3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

C:\SYSTEM\ALUSQ.COM

Contains 2 non-contiguous blocks.

C:\SYSTEM\EJECT.COM

Contains 4 non-contiguous blocks.

Messages

. Does not exist.

or

.. Does not exist.
The • (alias for the current directory) or the •• (alias for the parent directory) entry is
missing.

filename Is cross linked on clustern

CHKDSK

Two or more files have been assigned the same cluster. Make a copy of both files on
another disk and then delete them from the disk containing the error. One or both of the
resulting files may contain information belonging to the other file.

· x lost clusters found iny chains.
Convert lost chains to files (YIN)? 4
Clusters have been identified that are not assigned to any existing file. If the IF switch was
included in the original command line, respond with Y to convert the lost clusters to files
in the root directory of the disk with names of the form FILE nnnn.CHK. If desired, the
recovered clusters can then be returned to the free-disk-space pool by erasing the .CHK
files.

Allocation error, size adjusted.
The size of the file indicated in the disk directory is not consistent with the number of
clusters allocated to the file. If the IF switch was included in the command line, the file is
truncated to the size indicated in the disk directory.

All specified flle(s) are contiguous.
The clusters belonging to the specified file(s) are allocated contiguously (without
fragmentation).

Section Ill: User Commands 777

ZTE (USA) 1007, Page 787

CHKDSK

Cannot CHDIR to pathname
tree past this point not processed.
The tree directory structure of the disk being checked cannot be traveled to the specified
directory. This message indicates severe damage to the disk's directories or files.

CannotCEU>IRtoroot
Processing cannot continue.
In traversing the tree directory structure of the disk being checked, CHKDSK was unable
to return to the root directory. This message indicates severe damage to the disk's directo­
ries or files.

Cannot CHKDSK a Network drive
The drive containing the disk to be checked has been assigned to a network.

Cannot CHKDSK a SUBSTed or ASSIGNed drive
The drive containing the disk to be checked has been substituted or assigned.

Cannot recover . entry, processing continued.
The special directory entry. (alias for the current directory) is defective.

Cannot recover .. entry,
Entry has a bad attribute

or

Cannot recover .. entry,
Entry has a bad link

or

Cannot recover .. entry,
Entry has a bad size
The special directory entry •. (alias for the parent directory ofthe current directory) is
defective due to a bad attribute, link, or size.

CHDIR .. failed, trying alternate method.
While checking the tree structure, CHKDSK was unable to return to the parent directory
of the current directory. It will attempt to return to that directory by starting over at the
root directory and searching again.

Contains n non-contiguo'uS blocks.
The clusters assigned to the specified file are not allocated contiguously on the disk.

Directory is joined
CHKDSK cannot process directories that have been joined using the JOIN command. Use
the JOIN /D command to unjoin the directories, then run CHKDSK again.

Directory is totally empty, no . or ..
The specified directory does not contain the usual aliases for the current and parent direc­
tories. This message indicates severe damage to the disk's directories or files. Delete the
directory and recreate it.

778 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 788

CHKDSK

Disk error reading FAT n

or

Disk error writitJ.g FAT n
One of the file allocation tables for the disk being checked contains a defective sector.
MS-DOS will use the alternate FAT if one is available. It is advisable to copy all the files on
the disk containing the defective sector to another disk.

Errors found, F parameter not specified.
Corrections will not be written to disk.
Errors were found on the disk being checked, but the IF switch was not included in the
command line.

File allocation table bad drive X:
The disk is not an MS-DOS disk. Repeat CHKDSK with the IF option; if this message is
displayed again, reformat the disk.

File not found.
CHKDSK was unable to find the specified file.

First cluster number is invalid, entry truncated.
The directory entry for the specified file contains an invalid pointer to the disk's data area.
If the IF switch was included in the command line, the file is truncated to a zero-length
file.

General Failure error reading drive X:
The format of the disk being checked is not compatible with MS-DOS or the disk has not
been formatted for use by MS-DOS.

Has iJ:lvalid cluster, file truncated.
The file directory contains an invalid pointer to the disk's data area. If the IF switch was
included in the command line, the file is truncated to a zero-length file.

Incorrect DOS version
The version of CHKDSK is not compatible with the version of MS-DOS that is running.

Insufficient memory
Processing cannot continue.
The computer does not have enough memory to contain the tables necessary for CHKDSK
to process the specified disk.

Insufficient room in root directory.
Erase files in root and repeat CHKDSK.
The root directory is full and does not have room for the entries for recovered files. Delete
some files from the root directory of the disk being checked and rerun the CHKDSK
program.

Section III: User Commands 779

ZTE (USA) 1007, Page 789

CHKDSK

Invalid current directory
Processing cannot continue.
The directory structure of the disk is so badly damaged that the disk is unusable.

Invalid drive specification
The CHKDSK command contained an invalid disk drive.

Invalid parameter
One of the switches in the command line isinvalid.

Invalid sub-directory entry.
The directory name specified in the command line does not exist or is invalid.

Path not found.
One of the directories in the path specified in the command line does not exist or is
invalid. '

Probable non-DOS disk
Continue (Y /N)?
The disk being checked was not formatted by MS-DOS or the file allocation table has been
severely damaged or destroyed.

Unrecoverable error in directory.
Convert directory to file (Y /N)?
The specified directory is damaged and unusable. If the IF switch was included in the
original command line, respond with Y to convert the damaged directory to a file in the
root directory of the disk with a name of the form FILE nnnn.CHK. If desired, the .CHK file
can then be deleted. Any files that were previously reached through the damaged direc­
tory will be lost.

780 The MS-DOS Encyclopedia

ZTE (USA) 1007, Page 790

CLS
Clear Screen

Purpose

Clears the video display.

·syntax

CLS

Description

2.0 and later

Internal

The CLS command clears the video display and displays the current prompt.

CLS

In some implementations of MS-DOS, proper operation of the CLS command may require
installation of the ANSI.SYS console driver with a DEV/CE=ANSI.SYS command in the
CONFIG.SYS file.

Examples

To clear the screen, type

C>CLS <Enter>

To save the ANSI escape sequence used bythe CLS command (ESC[2J) into a file named
CLEAR.TXT, type

C>CLS > CLEAR.TXT <Enter>

Section III: UserCommands 781

ZTE (USA) 1007, Page 791

