APPENDIX A-3

y - Complete and

Unabridged
- I
Hg o e
28 » 7
-
2% O
; g

= MS-DOS
’ Encyclopedia

Foreword, Bill Gates

General Editor, Ray Duncan
HUAWEI EX. 1204 A-3 - 2/165

The

1S-DOS

Encyclopedia

HUAWEI EX. 1204 A-3 - 3/165

AT
RPN PR
P A S o Lt

S — T e

B RS i R

TS

ST Sl

Microsoft Press
Redmond, Washington

1988 :

= P LTI A AR

o TR R TR R o

Ray Duncan, General Editor
Foreword by Bill Gates -

HUAWEI EX. 1204 A-3 - 4/165

Published by

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press

Allrights reserved No part of the contents of this book

may be reproduced or transmitted in any form or by 2ny means
without the written permission of the publisher

Library of Congress Cataloging in Publication Data
The MS-DOS encyelopedia : versions 1 0 through 32 /
editor, Ray Duncan
P cm
Includes indexes
1 MS-DOS (Computer operating system) 1. Duncan, Ray, 1952-
I Microsoft Press
QAT76 76 063M74 1988 87-21452
005 4'46--dc19 CIP
ISBN 1-55615-174-8

Printed and bound in the United States of America
123456789RMRM 321098

Distributed to the book trade in the
United States by Harper & Row

Distributed to the book trade in
Canada by General Publishing Company, 1td

Distributed to the book trade outside the
United States and Canada by Penguin Books Lid

Penguin Books 1td , Harmondsworth, Middlesex England
Penguin Books Australia Lid . Ringwood, Victoria, Australia
Penguin Books N Z Ltd , 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Fublicaiion Data avaiiable

IBM® IBM AT®, P5/2®, and TopView® are registered trademarks of international Business Machines Corporation
GW-BASIC®, Microsoft® MS® MS-DOS®, SOFTCARD® and XENIX® are registered irademarksof -~
Microsoft Corporation

Microsoft Press gratefully acknowledges permission to reproduce materiai listed below
Page 4: Courtesy The Computer Museum
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs Courtesy Intel Corporation
Page 6: Reprinted from Popular Electronics, January 1975 Copyright ® 1975 Ziff Communications Cempany
Page 13: Reprinted with permission of Rod Brock
Page 16; Reprinted with permission of The Seattle Times Copyright @ 1983
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corperation Copyright © 1981, 1982, 1984 All rights reserved
Page 21: ‘Big IBM's Little Compurer’ Copyright @ 1981 by The New York Times Company Reprinted by
permission
‘IBM Announces New Microcomputer Syster” Reprinted with permission of InfoWorld Copyright © 1981

IBM really gets personal” Reprinted with permission of Personal Computing Copyright © 1981

‘Personal Computer from IBM- Reprinted from DATAMATION Magazine October 1981 Copyright © by Cahners
Publishing Company

IBM's New Line Likely to Shake up the Market for Personal Computers Reprinted by permission of The Wall
Street Journal Copyright © Dow Jones & Company, Inc. 1981 All Rights Reserved
Page 36 Irresistible DOS 3 0 and “The Ascent of DOS “Reprinied from PC Teck Joir nal,
December 1984 and October 1986 Copyright © 1984 1986 Ziff Communicarions Cornpany
{MS-DOS 2 00: A Hands-On Tutorial” Reprinted by permission of PC World from Volume 1, Issue 3 March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107

Special thanks o Bob O'Rear, Aaron Reynolds, and Kenichi Tkeda

[

e st s e

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr
Special Projects Editor: Sally A. Brunsman
Editorial Coordinator; Sarah Hersack

Associate Editors and Technical Editors:
Parnela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chzis Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,

Lee Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kem, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services
Production: Larry Anderson, Jane Bennett, Rick
Bourgein, Darcie § Furlan, Nick Gregoric, Peggy

Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, joy Ulskey

Marketing and Sales Director: James Brown
Director of Production: Chyistopher D Banks

Publisher: Min S Yee

HUAWEI EX. 1204 A-3 - 5/165

N T

Contributors

Ray Duncan, Geneval Editor Duncan received a B A. in Chemistry from the University of Califor-
nig, Riverside, and an M D. from the University of Caiifornia, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatwlogy at the Cedars-Sinai Medical Center in Los Angeles He
has written many articles for personal computing magazines, including BYTE PC' Magazine, Dr. Dobb’s
Jorirnal. and Softalk/PC, and is the author of the Microsoft Press book Advanced MS-DOS He is the
founder of Laboratory Microsystems Incorporated. a software house specializing in FORTH interpreters
and compilers

Steve Bostwick Bostwick holds a B.S in Physics from the University of California, Los Angeles, and
has over 20 years’ experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc , a software firm specializing in the creation of systerns for applications that
interface microcomputers with specialized haydware. He is also an instructor for the UCL A Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program

Keith Burgoyne Bormn and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits inciude numerous user manuals and tutorials.

RobertA. Byers Byers is the author of the bestselling Fveryman’s Database Primer. He is presently
involved with the Emeraid Bay database project with RSPI and Migent, Inc

Thom Hogan During 11 vears working with personal computers, Hogan has been a software devel-
aper, a programmer, a technical writer, a marketing manager, and a lecturer He has written six books
fumercus magazine articles, and four manuals, Hogan is the author of the forthcoming Microsoft Press
book PC Programmer’s Sourcebook.

JimKyle Kyle has 23 years’ experience in computing Since 1967 he has been a systems program-
mer with strong telecommunications orientation His interest in microcomputers dates from 1975 He is
currently MIS Administrator for BII Systems, Inc , the OEM Division of BancTec Inc manufacturers of
MICR equipment for the banking industry. He has written 34 books and munercus magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Compister
Language Magazine s CL MFORUM on CompuServe since earty 1985

Gordon Lefwin Letwin is Chief Architect Systems Software Microsoft Corporation He is the author
of Inside O%/2, published by Microsoft Press

Charles Petzold Petzold holds an M S in Mathematics from Stevens Institute of Technoiogy Before
launching his writing career, he worked 10 years in the insurance industry, programeming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2 0, a contributing editor to PC Magazine and a frequent contributor to the Microsoft Systemns

Journal

Chip Rabinowitz Rabinowitz has been a programmer for 11 years He is presently chief program-
mer for Productivity Solutions, 2 microcomputer consulting firm based in Pennsylvania and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986

Contributors vit

HUAWEI EX. 1204 A-3 - 6/165

JimTomlin Tomiinholdsa B S andanM.5 in Mathematics. He has programmed at Boeing
Microsoft, and Opcon and has taught at Seattle Pacific University He now heads his own company in
Seartle, which specializes in PC systems programming and industrial machine vision applications

Richard Wilton Wilton has programmed extensively in P1/1, FORIRAN, FORTH, C, and several
assembly languages He is the author of Programmer s Guide to PC & PS/2 Video Systems, published

by Microsoft Press

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Rurmning M$-DOS and
Supercharging MS-DOS, both published by Microsoft Press

William Wong “Wong holds engineering and computer science degrees from Georgia Tech and

Rutgers University He is director of PC Eabs and president of Logic Fusion Inc. His interests include
operating systems, computer languages, and artificial intelligence He has written numerous magazine
articles and a book on M$-DOS

Jodnne Woodcock

Woodcock, a former senior editor at Microsoft Press, has been a writer for

EBrcyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets both published by Microsoft Press

Special Technical Advisor

Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary
Steve Ballmer Bob Griffin
Reuben Borman Doug Hogarth
Rob Bowman James W. Johnson
John Butler Kaamel Kermaani
Chuck Carrotl Adrian King
Mark Chamberlain Reed Koch

David Cheli James Landowski
Mike Colee Chris Larson
Mike Gourtney Thomas Lennon
Mike Dryfoos Dan Lipkie
Rachet Duncan Marc McDonald
Kurt Eckhardr Bruce McKinney
Eric Evans Pascal Martin
Rick Farmer Estelle Mathers
Bill Gates Bob Matthews
The M5-DOS Encyciopedia

Dayvid Melin
Charles Mergentime
Randy Nevin
Dan Newell
Tani Neweil
David Norris
Mike O'Leary
Bob O Rear
Mike Qlsson
Larry Osterman
Ridge Ostling
Sunil Pai

Tim Paterson
Gary Perez
Chris Peters
Charles Petzold

fohr: Pollock
Aaron Reynolds
Darryl Rubin
Ralph Ryan

Karl Schulmeisters
Rajen Shah
Barry Shaw
Anthony Short
Ben Slivka

Jon Stnirl

Berty Stillmaker
John Sioddard
Dennis Tillman
Greg Whitten
Natalie Yount
Steve Zeck

SN RN SN N S

Contents

Foreword by Bill Gates
Preface byRay Duncan

Introduction

Section I: The Development of MS-DOS
Section II: Programming in the MS-DOS Environment

Part A: Structure of MS-DOS

Article 1;
Article 2:
Article 3;

An Introduction to MS-DOS 51
The Components of MS-DOS 61
MS-DOS Storage Devices 85

PartB: Programming for MS-DOS

Article 4:
Article 5.
Article 6:
Article 7:
Article 8:
Article 9:

Atticle 10

Structure of an Application Program 107
Character Device Input and Output 149
Interrupt-Driven Communications 167
File and Record Management 247

Disk Directories and Volume Labels 279
Memory Management 297

The MS-DOS EXEC Function 321

Part C: Customizing MS-DOS

Article 11:
Article 12
Article 13:
Article 14:
Article 15:

Terminate-and-Stay-Resident Utilities 347
Exception Handlers 385

Hardware Interrupt Handlers 409
Writing MS-DOS Filters 429

Installable Device Drivers 447

PartD: Directions of MS-DOS

Article 16:
Article 17:

Writing Applications for Upward Compatibility 489
Windows 499

Part E: Programming Tools

Article 18:
Article 19:

Debugging in the M$-DOS Environment 541
Object Modules 643 '

Article 20: The Microsoft Object Linker 701

Contents

HUAWEI EX. 1204 A-3 - 7/165

ix

Section III: User Commands
Introduction 725

User commands are listed in alphabetic order This section includes ANSLSYS,
BATCH, CONFIG SYS$, DRIVER SYS, EDLIN, RAMDRIVE SYS, and VDISK 5Y§

Section IV: Programming Utilities
Introduction 963
CREE 967
EXEZRBIN 971
EXEMOD 974
EXEPACK 977
LIB 980
IINK 987
MAKE 999

MAPSYM 1004
MASM 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054
CodeView 1157

Section V: System Calls

Introduction 1177

System calls are listed in numeric order
Appendixes

Appendix A: MS-DOS Version 3.3 1433
Appendix B: Critical Frror Codes 1459

723

961

1175

1431

Appendix C: Extended Error Codes 1461
Appendix D: ASCIT and IBM Extended ASCII Character Sets 1465
Appendix E: EBCDIC Character Set 1469
AppendixF: ANSISYS Key and Extended Key Codes 1471
Appendix G: Fiie Controt Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP} Structure 1477
Appendixl: 8086/8088/80286/80386 Instruction Sets 1479
Appendix J: Common MS-DOS Filename Exiensions 1485
Appendix K: Segmented (New) EXE File Header Format 1487
Appendix1: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509
Appendix O: IBM PC BIOS Calls 1513

X The M5-DOS Encyclopedica

Indexes

_, Subject 1533
1 Commands and System Cails 1565

e =

Contents

1531

Xt

HUAWEI EX. 1204 A-3 - 8/165

Foreword

Microsoft’s MS-DOS is the most popular piece of software in the world It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications—the largest set of applications in any computer environment As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur-
thering Microsoft’s original vision—a computer for every desktop and in every home The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet-
ing this challenge since the release of MS-DOS in 1981. The true measure of our success

in this effort 1s M3-DOS’s continued prominence in the microcomputer industry

Since MS-DOS’s creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as forold To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM’s deci-
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel 8080 microprocessor This technolog-
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in-
compatible with the machines of other hardware vendors This specialization also meant
tremendous duplication of effort—each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this because different manu-
facturers would buy the same chip with the same instruction set

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually

every personai computer manufacturer — Radio Shack, Commodore, Apple, and dozens
of others—to build Microsoft BASIC into its machines For the first time, one common lan-
guage cut across all hardware vendor lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vender’s machine to another

Most machines produced during this early period did not have a buiit-in disk drive
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, eniered
the market A standard disk operating system that could accommodate these develop-
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research alt to
support CP/M-80, Digital Research'’s 8080 DOS

Foreword Xiii

HUAWEI EX. 1204 A-3 - 9/165

xiv

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs It was important that software designed for
the new 16-bit machines have this same advantage No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard — a standard that would be the software
industry’s lifeblood The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for IBM, is ntot the key point here The
key point is that it was inevitable for a popular operating system to emetge for the 16-hit
machine, just as Microsoft’s BASIC had prevailed on the 8-bit systems

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the marker when T#me in 1982 named the personal computer “Man of the Year” MS-
DOS was integral 1o this acceptance and popularity, and we have continued to adapt
MS-DOS 1o support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers The length of this book is many
times greater than the source listing of the first version of MS-DOS—evidence of the
growing complexity and sophistication of the operating system The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessar and the virtual mode introduced with the
80386 microprocessor MS$-DOS will continue to play an integral part in this effort Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi-
tasking systems, nerworking, improved levels of data protection, better hardware memory
management for multipie applications, stunning graphics systemns that can display an inno-
vative graphical user interface, and communication subsystems MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
AP of 08/2. Users will continue to benefit from our commitment to improved operating-
system performance and usability as the future unfolds

Bill Gates

The MS-DOS Encyclopedia

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines it has grown, matured,
and siabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating systemn. Why, then, yet another book on
MS-DOS? And what can we say about the operating systern that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers We have therefore been free to bypass elemen-
tary subjects such as the number of bits in a byte and the interpretation of hexadecimal
numbers Instead, we have emphasized detailed technical explanations, working code ex-
amples that can be adapted and incorporated into new applications, and a sysiems view of
even the most common MS-DOS commands and utilities

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DQOS books mention only briefly, such as exception and error handling,
intertupt-driven communications, debugging strategies, memory management, and install-
able device drivers We have commissioned definitive articles on the relocatable dbject
modules generated by Microsoft language translators, the operation of the Microsoft Ob-
ject Linker, and terminate-and-stay-resident utilities We have even interviewed the key
developers of MS-DOS and drawn on theit files and bulletin boards to offer an entertain-
ing, illustrated account of the origins of Microsoft’s standard-setting operating system

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
t0 MS-DOS services, commands, directives, and urtilities In many instances, the manu-
scripts have been reviewed by the authors of the Microsoft tools described

We have made every effort during the creation of this book to ensure that its contents are
timely and trustworthy In a work of this size, however, it is inevitable that errors and omis-
sions will occur If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow programmers To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information

Ray Duncan

Preface Xy

HUAWEI EX. 1204 A-3 - 10/165

Updates to The MS DOS Encyclopcdla s

<Penod1ca]ly, the staff of The MS- DOS .Encyclopedm wﬂ pubtish: updates conta.mmg HE
clanficauons or con eC'ElOnS to the meI mation presented

i VIF‘W ckEnters

“taxfs apphcable and. $5 50 per. d1sk for: domesm: postage aniel

- 3011, ‘Bothell, WA 98041:3011 Please specify 5.25- inéh'or

"Mlmosoft :

Opthl’l tax WA S[a{e 7 8%

$800. per -dtSk for .
foreign orders, 1o: Microsoft Press, Attn:; Companion 1 Disk Offex, 21919 20th- Ave S E sBox
‘S-inchformat Payment's mustbe
in'U'8. funds’ You may: pay by ¢heck:or money: erder:(ayable to Microsoft Press), or by
Américan Express, VISA, or MasterCard; please! mclude yom «credlt card number and R
piration- date All -domestic. grders are shlpped 2nd day au upon 1ece1pt of order by,

ca residents 5% plus focdl eptxon tax, CI75% FL 6% M_A 5% MN 6%, MO 4 225%, NY 4% plus local :

xUi The MS-DOS Encyclopedia

Introduction

The M5-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system Written for experienced microcomputer
users and programmers, it contains detailed, version-specific informaticn on all the
MS-DOS commands, utilities, and system calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content Special typographic conven-
tions are also used to clarify the material

Organization of the Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes Each
section has a unique internal organization; explanatoty introductions are included where
approptiaie

Section 1, The Development of MS-DOS, presents the history of Microsoft's standard-
setting operating system from its immediate predecessors through version 3 2 Numerous
photographs, anecdotes, and quotations are included

Section II, Programming in the MS-DOS Environment, is divided into five parts: Strueture
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools Each part contains several articles by acknowledged experts on these
topics The articles include numerous figures, tables, and programming exampiles that pro-
vide detail about the subject

Section ITI, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, including ANSI SYS, BATCH, CONFIG SYS, DRIVER SYS, EDLIN,
RAMDRIVE 8YS, and VDISK SYS. Each command is presented in a structuze that allows
the experienced user to quickly review syntax and restrictions on variables; the less-
experienced uset can refer to the detailed discussion of the command and its uses.

Section TV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
debuggers Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefore included to create a com-
prehensive reference

Introduction XU

HUAWEI EX. 1204 A-3 - 11/165

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH The
Interrupt 21H functions are listed in individual entties. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensive notes for the less-experienced programmer:

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3 3, the segmented (new) . EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

T he book includes two indexes — one organized by subject and one organized by com-
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mand or systern call '

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles Most of these
programs are complete utilities; some are routines that can be incorporated into function-
ing programs Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

T he programs were tested using the Microsoft Macro Assembler (MASM) version 4 0, the
Microsoft C Compiler version 4 0, or the Microsoft QuickBASIC Compiler version 2 0.

The functional programs and larger routines are also available on disk Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text

The M5-DOS Encyclopedia

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan-
guage, messages and refurn values in text, and, occasionally, emphasis

A typographic distinction is made between lowercase | and the numerai I in both text and
program listings

Cross-references appear in the form SECTION NAME: Part Name, COMMAND NAME, OR IN-
TERRUPT NUMBER: Aiticle Name or Function Number

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple-
mentation of MS-DOS If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Retuin When <Enfer>is included in a
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctri-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Ctri-C

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (% in the code portions of program listings)
Ranges of hexadecimal values are indicated with a dash — for example, 07-0AH

The notation (more) appears in italic at the bottom of program listings and tabies that are
continued on the next page 1he complete caption or table title appears on the first page
of a continued element and is designated Contirued on subsequent pages

Introduction xix

HUAWEI EX. 1204 A-3 - 12/165

HUAWEI EX. 1204 A-3 - 13/165

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected — so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft’s decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow To the extent that personal opin-
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS

; Before MS-DOS

The role of International Business Machines Corporation in Microsoft's decision to create
’ MS-DOS has been well publicized. But events, like inventions, always build on prior ac-

' complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-
ware and software developments of the 1970s: Microsoft’s disk-based and stand-alone
versions of BASIC, Digital Research’s CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de-
; veloped a version of BASIC for a revolutionary small computer named the Altair, which
‘ was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I The Development of MS-DOS 3

HUAWEI EX. 1204 A-3 - 14/165

1975

4

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night’s destination of the starship Enterprise The photograph
clearly shows the input swilches on the front panel of the cabinet

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first “personal” computer to appear in an environ-
ment dominated by minicomputers and mainframes It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080

microprocessor at its heart; the other board provided 256 bytes of random-access memory.

This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair’s combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

[N

1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced. At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language — and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-O-Data o produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma-
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor

of the 8080 in the Altair. '

Section I The Development of MS-DOS 5

HUAWEI EX. 1204 A-3 - 15/165

1976

1975
‘ The January 1975 cover of Popular .
HOW TO “READ” FM TUNER SPECIFICATIONS Electronics magazine, featuring the 5’1"0 ,q'g).l (4‘7 enT €on Z#}’é 1 < COMPUTER NOTES/JULY, 1975
° machine that caught the imaginations
Po ular Electl‘onlcs of thousands of like-minded electron-
ics enthusiasts — among them, Paul low namer Clbots Loading Software
WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/ 75¢ Allen and Bill Gates - e " Software from MITS will be pro-
C——\"A‘T"'A"Bj poinTer 4o nex¥ ling ClLH-}cs) ::dnd in a checksummed format.
. There will be a bootstr oader
PROJECT BREAKTHROUGH! biney e W (2hyi) that you key in mameeiis (Lons: than
chacacteoe ou vk (see note M 25 b{te;). (T:is ;iu read a)che;:k-
) L [3 3 2¢, sum loader (the 'bin’ loader) which
World's First Minicomputer Kit > (x brr) i 0 e 0 s
- . For audic cassette loading the
. be rs wi
to Rival Commercial Models... <Repedl aboe R endly 1> ST L L
- " ain n detail in a cover package
ALTA]R 8800 sAvE OVER $1°0° — 2o (1 L\(Jes that will go out with all software.
. - - . {_VRI’(TRB’] Symee vanab lC_S . é &t,{w:} e varuu“(For loading non-checksummed
s 2 5'1-1#5; 7lv£ Ho n paper tapes here i{s a short program: i
H bytes g He yalve, STKLOC: OW GETNEW
<Repect Ao each’ vm.iadl > o
[#eqme] A ooy bl R
2 boyte (\z\—rq‘h—] START: [XI 4,0
values — T iia. inpus chamel>
Qeew’(& Cor eadh aer RAL :,g:t i:put ready bit
ALSO IN THIS ISSUE: ‘ BRENT) e entin or slocko e, it chamoet
H H <Qu3 = X B>
® An Under~$90 Scientific Calculator Project Csmemp] :‘: ’?’i@ , (:’ can be e fere) oA
s 1 @ CCD's—TV Camera Tube Successor? j Cpe o Skl ey $TA cHeoc
® Thyristor-Controlled Photoflashers ; [rrEe?) botton of stack / JopeiP locect v for stemds (22 byces)
TEST REPORTS: ¢ 2 043 start byees the yee o va
:—"——'—F . ,ﬂa e gpcc s:creg at ioc 9, the bytestc be
P Yy . store s » = - etc. Start at
|moone Pioneer RT-1011 Open-Reel Recorder H K =75) Currenk st 9 wsage START, making sure the memory the
jpaoas Tram Diamond-40 CB AM Transceiver : sTRING S . loader Ls in is unprotected. ake
Edmund Scientific "Kirlian” Photo Kit ; CmEms YZ-) waglest dachum [peation. 5% Touaing on top of 1t
Hewiett-Packard 5381 Frequency Counter
~ back :‘: ;\;’1 Ehg;sagain change CHGLOC
s SAwnz allows for szrwgﬁéz .

. toble Max 6 4enusl. O-ly. collcetsr oS
Although it was too limited to serve as the central processor for a general-purpose compu- . s or gtrings Wik pend o 4K BASI (4
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc- :
tion set were concerned. Thus Traf -O~D%ta s W_OIk Wlth the 8008 gave Qﬁtes and Allena On the left, Bill Gates’s original handwritten notes describing memory configuration for Altair BASIC. On
head start when they later developed their version of BASIC for the Altair. i the right, a short bootstrap program written by Gates for Altair users; published in the July 1975 edition of the
Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular f MITS user newsletter, Computer Notes
Electromnics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates, : .

A . ‘ ‘ ‘ From paper tape to disk
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon- Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap
strate the language for MITS. The developers gave themselves the company name of to load the tape was entered into memory by flipping switches on the front panel of the
Microsoft and licensed their BASIC to MITS as Microsoft’s first product. i computer. In late 1975, however, MITS decided to release a floppy-disk system for the

. ‘) .) L . ir— irst retail f ~di ket. As a result, in February 1976
Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was Altair —the fnst'retall HOPPY, disk system on the marke . . Y 9. :

: . L . Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of

developed, was a landmark product in the history of personal computing. On another Altais BASIC. The Altair had i tem and hence no method of managing files

: e 1 ; o . ') ‘ ; m)
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim tgix disk B ASKeI allr d ha n(: operla cllng SYs ef, le-manasement routines. It woufi i‘i
Paterson and the disk operating system he developed for Seattle Computer Products for Scf)f N h1s P wou Ye d(') e ; ,e som§ tl. " 8) ’
the 8086 chip. effect, have to function as a rudimentary operating system.

6 The MS-DOS Encyclopedia Section I: The Development of MS-DOS 7

HUAWEI EX. 1204 A-3 - 16/165

1977-1978

1978

Microsoft, 1978, Albuguerque,

New Mexico Top row, left to right
Steve Wood, Bob Wallace, Jim Lane
Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin Bottom row, left to
right. Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft’s entry into the business of languages for per-
sonal computers — not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man-
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
“chained” references pointing to the actual storage locations on disk Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS,

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con-
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the T19900.

The MS-DOS Encyclopedia

A Microsoft advertisement from the
January 1979 issue of Byte magazine
mentioning some products and the
machines they ran on_In the lower
right corner is an announcement of
the company’s move to Bellevue,
Washington

Twoe

ly.one company: sefs the pace with
- =Softwareifor:microprocessors

assermbler g st y
MAGRC- 20 Paickoge; InCltiding Microscffs tirk

O D
ManGol:$

\s new address:
MICROSOFT

40800 NE Eighth, Suite 819
Believue, Washington 98004
206-455-8080

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced “Midas” or “My DOS”). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor-
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele-
gated to the back room. As Allen describes it, “Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that.”

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft’s Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I The Development of MS-DOS 9

HUAWEI EX. 1204 A-3 - 17/165

1978

1978

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair’s Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor, or CE/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M’s history is that the software was developed several
years before its release date —actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall’s
machine, equipped with-a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build

a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu-
ter and the disk drive while Kildall worked on the software portion —the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-
ing systems.

Digital Research’s CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output — disk I/O, screen display, print requests, and so on— CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv-
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CB/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re-
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even

after, the appearance of the 8086.

10 The MS-DOS Encyclopedia

The 16-bit Intel 808G chip, introduced in 1978
Much faster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte of memory

The 8086

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future
The 8080 was designed not to make computing a part of everyday life but to make house-
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086’s full 16-bit buses made it fast-
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me-
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen’s
suggestion, the company developed the SoftCard for the popular Apple 11, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple 11 users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal — more than one voice in the trade press warned that industry invest-
ment in 8-bit equipment and software was too great to successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I The Development of MS-DOS 11

HUAWEI EX. 1204 A-3 - 18/165

1979-1980

1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an $-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his employer, Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-
lator, It was also real fast— it could do a 16-bit ADD in three clocks.”

After the seminar, Paterson— again with Brock’s support — began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer’s new board

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital's represen-
tative said December 1979, which meant, according to Paterson’s diary, “we’ll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we’ll be
able to switch to a real operating system.”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference

in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft’s M-DOS, which he
found interesting because it used a system for keeping track of disk files — the FAT devel-
oped for Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys-
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-
tem he developed mimicked CP/M-80’s functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files,

The MS-DOS Encyclopedia

GO 16-BITNOW — WE HAVE MADE IT EASY

8086

8Mhz. 2-card CPU Set

WITH 86-DOS® $595

ASSEMBLED, TESTED, GUARANTEED

With our 2.card 8086 CRU set you can upgrade your 280 8-
bit 5100 system to run three times as fast by swapping the
CPUs. If you use our 16-bit memory, it wilt run five times as
fast. Up 1o 64K of your static 8-bit memory may be used in the
8086's 1-megabyte addressingrange A switch aflows either 4
©or 8 Mhz. aperation Memory access requirements at 4 Mhz
exceed 500 nsec

The EPROM monitor allows you to dispiay, alter and
search memory do inputs and outputs, and boat your disk.
Debugging aids include register display and change . singie
stepping, and execute with breakpoints.

The set includes a serial port with programmable baud rate.
four independent programmable 16-bit imers {two may be

or a f-day clock), a parallel out
port, and an interrupt contratier with 15 inputs. External power
may be applied to the timers 10 maintain the clock duning
system power-off time. Total power: 2amps at + 8V less than
100 ma. at + 16V and at -16V

86-DOS™, our $195 8086 single user disk operating
system, 1s provided withoul additional charge. it allows
functions such as console | O of characters and strings. and
random o sequencial reading and writing to named disk fites.
‘While it has a different format from CP'M, it performs similar
calls plus {CPMisa of
Dignal Research Corporation} s construction allows relative-

ly easy contfiguration of 1'0 to different hardware. Directly

code written for GP M. transiate this to 8086 source code.
assemble the source code, and then run the program on the
8086 processor under B6-DOS. This atlows the conversion af
any Z80 program, for which source code is avasiable .16 run on
the much higher performance 8085

BASIC-86 by Microsoft is available for the 8086 at $350
Several firms are working on application programs Call for
current software status

Ali sohware hicensed for use on a single computer only
N

supported are the Tarbel and C disk

The 86-DOS™ package includes an 8086 resident as-
sembier, a Z80 to 8086 source code translator a utility to read
files written in CP M and converi them to the 86-DOS format a
line editor and disk maintenance utilites Of significance 1o
Z80 users 1 the ability of the transtator to accept Z80 source

required. Shipping from stock to
one week. Bank cards, personal checks CODs okay There s
2 10-day return privilege All boards are guaranteed one year
— both parts and labor. Shipped prepaid by air in US and
Canada. Foreign purchases must be prepaid i US tunds
Also add $10 per board for overseas air shipment

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte

8/16 16-BIT MEMORY

This board was designed lor the 1980s 1t is configured as
16K by 8 bits when accessed by an 8-bit processor and
configured 8K by 16 bits when used with a 16-bit processor
The configuration switching 1s automatic and 1s done by the
card sampling the ' sixieen fequest” signal sent out by all S
100 IEEE 16-bit CPU boards. The card has ail the high noise
immunity features of our well known PLUS RAM cards as well
as “extended addressing” Extended addressing 15 a replace-
ment for bank seiect. It makes use of atotal of 24 address hines
10 give a directly range of over 16
(For older systems, a switch will cause the card 10 ignore the
top 8 address lines) This card ensures that your memory

board purchase will not soon be obsolete It is guaranteed to

run without wa states with our 8086 CPU set using an8 Mnz

clock Shippediromstock Prices 1-4 $280;5-9 $260° 10

oyt w Seattie Computer Products, Inc.

1114 Ingustry Drive. Seattle. WA 98188
1206} 575 1830

HUAWEI EX. 1204 A-3 - 19/165

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I. The Development of MS-DOS 13

1980

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten-
tion to the possibility of developing a low-end workstation for a market it knew well: busi-
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM’s interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro-
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles— typically four or five years— and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment

One of IBM’s solutions — the one outlined by Sams’s group — was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques-

tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for

it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel’s 8086 chip instead? At the end
of this meeting — the first of many — Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been
designed to run as a stand-alone product, it was unique in that respect — the other lan-
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all thte languages for IBM — approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

14

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates’s eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, “Kay and I were just sitting there at
night and Paul was on the couch. Kay said, ‘Got to do it, got to do it * It was only 20 more K

The MS-DOS Encyclopedia

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn't that big
a deal, and once Kay said it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable — the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the

contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O’'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O’'Rear recalls, “If I was awake, I was thinking about

the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) — arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%s-inch disks, so Microsoft needed to de-
termine the format of the new disk and then find a way to get the operating system from

the old format to the new.

Section I The Development of MS-DOS 15

HUAWEI EX. 1204 A-3 - 20/165

1980-1981 1980-1981

Pc'ml Allen and Bob O’Rear’s sketch of
Bill Gates (1982). o odre et s + aduafoms the steps involved in
W"’“""(}* rcdn o E8205 Tomart S moving 86-DOS to the
{ 1BM prototype.

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal

format. Next, he uploaded it to 2 DEC-2020 and from there downloaded it to a large Intel e 'ﬁ,‘:{f;ﬁx:::?&
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format — different from Paterson’s 8-inch
format — was an added challenge. Paterson’s ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system’s startup
messages to changes in EDLIN, the line editor he had written for his own use Throughout
this process, IBM’s security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations

16 The MS-DOS Encyclopedia Section I: The Development of MS-DOS 17

HUAWEI EX. 1204 A-3 - 21/165

1980-1981

1981

sﬂ%&es
O?/w M&M -C‘x %%M;&SW&/&@HG
3o].M M“‘t@ &}DC\ 'toaﬂm-ywm
oo Beolelily’ M.fwuj' WE@,L%SM

lm‘r”i"‘*— BIos 1o bo:o af
38 b}&%o o 86D0S vl $o 100 0 ég'at:\

U\M&EGOT ?“’3‘“ to Load the BIOS ¢ 205

s &JW o I.ocaﬁg
N s wqu
Wm&ntyﬁ %MTM ?ﬁ
./Ja :
,@“‘-‘«Lﬂq
o ‘/L l Aledns O Dos u‘“‘?“ sPF.‘/cQs
V/v g ket K [Mo ‘date to Barmon Locition » 501 2
H]
3. ’1‘ Lt 5032 fo}ﬁ.?ijf =
7/" O@QM S0:3 - yyyatay -
et AR -2 o o PO
e

o~ p p 9949y yyenemddddd
g)m ; Reguins el £ 36bOS to smmmear addese dode “"’”‘ﬂ%*
TVETRA acce widl take ent 36DOS Mrot‘(--d-it#m‘b&mnm
e . fimid 34 Al 2 vodily Comman® To Acacdh G AuToEXEC.DAT w
‘ A Qo 0. swbeif on thix e, .L\"Auuerecg;&»f

*(=7 MR (‘)fﬁ-%&(Fix Deﬁ_r‘éi fi&s aum.«keg Mﬁcsi%

; (& b/ A ~ M OW 59 ,/LZAAQ«LIJZ
% E\% Cresan 4 ‘@‘9 De‘?é%(%g Qo;i’: s’mmsw #

FoRm aﬂﬂ,-uje
&‘% L%. RMAT Tp ditocked bad Tinchs

BADTRK.

2 T podle. vt 2280 @0 5PRce whea 4 neslem
r8ad u%,ua} (€uechion39) bombs, “

l/u 7. Chet ot @s-222 WA..\ Yo BESS
i WW ot SUBTET eomamad

o Ww ot EpLzal L.:;Hg 1!;1‘ Lenger o araidable
dlﬁun—«ﬂam 2

O~ \C\m{ wﬂ%m Gl By dots et ionk
% N Fioibn foomn CHEDSE]} awallelle diredog 0.Biies.

‘My own IBM computer.
Imagine that?

Presenting the IBM of
Personal Computers.

‘Dad, can I use
the IBM computer
™ tonight?”

J

E{‘(Its ot an unusual colortul graphics, your son or daughter will discover
phenomenon. It what makes a computer tick—and what it can do, They

stariswhenyour can take the same word PEOCESSINg PIOGFaM You use
\
B

7} smasksto tocreae business reports (o write and edit book reports

> borrow (and learn haw to type in the process) Your kids might
atie. Of even get 5o “computer smart,’ they'll start writing

when your their own programs in BASIC or Pascal

daughter Ultisnately, an 1BM Personsi Computer can be one
wants 0 ofthe best investments you make in your family's future
10 use your metal racquet Sometimes you let them: Often And one of the ieast expensive. Starting a less than
you don't, But when they start asking to use your IBM 31600 there's 2 system that, with the addition of one

Personal Computes, its better 10 say yes. simple device. hooks up to you home TV and uses your
Bocause learning abour COMPULErS is 2 Subject your audio cassete recorder

kids can study and enjoy at home. To introduce your family to the {BM Personal
Iesalso a fact that the 1BM Personai Computer can Computer, visit any Computerland® store or Scars

be as useful in your home 25 it s in your office To help Business Systems Center, Or see it all at one of our (BM

plan the family budget for instance. Or to compute Product Centers. { The 18M National Accounts Division

anything from laterest paid to calories consiimed You will serve business customers who want to purchase in

can even wp directly into the Dow jones data bank with quantity.)

yous telephone and an inexpensive adaptet And remember. When your kids sk 1o use your
But as susely as an [BM Personat Computer (BM Personal Compuer, let them. But just make.
sure you can get it back. After all your sons

can help you, it can aiso help your children
still wearing that e >

Because just by playing games or drawing

The 1BM Personal Computer

Part of Bob O'Rear’s “laundry” list of operating-system changes and corrections for early April 1981. Around
this time, interim beta copies were shipped to IBM for testing.

18 The MS-DOS Encyclopedia

The 1981 debut of the
IBM Personal
Computer.

In spite of such difficulties, however, the new operating system ran on the prototype for
the first time in February 1981. In the six months that followed, the system was continually
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM
Personal Computer on which it appeared, had become a functional product for home

and office use.

Section I- The Development of MS-DOS

19

I S S S U Sy
HUAWEI EX. 1204 A-3 - 22/165

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi-
sioned as a final model for 16-bit computer systems. According to Bill Gates, “Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file
system and everything... the key thing [in developing version 1.0] was my saying, ‘Look,
we can come out with a subset first and just go upward from that *”

This first version — Gates’s subset of MS-DOS — was actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
with CP/M

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and
character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in-
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND COM, was the external command processor — the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan-
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CP/M. The resem-
blance was even more striking at the programming level, with an almost one-to-one cor-
respondence between CP/M and MS-DOS in the system calls available to application
programs. !

New Features

20

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably
bonded to the IBM PC. Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate
changes and new directions in the hardware technology — disks, memory boards, even
microprocessors—on which it depended The first steps toward this independence from

The MS-DOS Encyclopedia

1981

A New Image

IBM’

eral versions of &

The Market for Personal Computers =

By GRoROE ANDERs catehup. The IRM Machines operate on an far greater cquivalent to more than 1000

Stass Reportes of Tore WaLLSvacr JouRnaL Inte) oy’ 8068 rocessor. 3 faster tten pages. —
HEW YORK - Intsmationa] Rusinms Ma- and mons oaestul “obin” than ihoae ueed o't use all Lhal CADACITY. OA1 what they do | PoTms
made is boid eniry into in AvAls’ machies. 1B 150 bas obtained use will enable them to work WIth Jorger | woufr By ¥ persoal s

tead In the youthhdl industry within 1wo Keted by Personal Software Inc. video screens tn greater detai

ears. P .

Yesterday (e company mtroduced sev. TBM squipment iclude the. Easywrter L5 scimowledges
er

small computer destgned word m, theee
for use in homes, schoals and offices. Prices puckages from Peachiree Sottware Inc, and

s New Line Likely to Shake Up

,susmzsst Blg I.LB.M.’s Little Computer' ieltjagSS:)es
ABESt e perer 1.3% in July
[row s Model Brings wr smEnts VAL 0F ot

<} But Analysts
Are Dubious of
General Upturn

The new 1BM computers

i
in e s ARy prrvace
Chriopner Morgan, chtor have 3438 Uit 3 echamon — esath

accoanting - pu
5,

cost $6.(basic
54 mathine comes with 16,00 characters

1t's Official, One surprise
By Thows Hogan, IW Sl

another 54

= fple extras runs

= P
sfoWorld

For et s

heve :AN-'I:WM

IBM Announces NewMicrocompulerSystem oo

NEW YORK.NY.-

Computes

oMt

Srodoccion ok place a Pt kner i ani

T Bl || BM redly gets personal

achine.
cipaicd, e faures of the macume are The price bk ¢ 3155, slghdy bigher
Viewlly Wicical 1 the (ke weve than we reported carber. ¢ s the ey
sready poished. bt unic_ 10 endanced Miceesoft BASIC i

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM

The mainframer’s long-
awaited antry into the personal
computing market aims for
corporate as well as home
users,
With uncharacteristic but resounding fan
farc, 1BM ended the summer’s most popular
guessing game for the industry by introduc-
ing its Personal Computer, Highly compa-
rable to offerings from arch-contenders Ap
ple.and Radio Shack. the machine repre-
sents several new tacks for the leading com-
puter manufacturer s it attempts to hitch its
wagon to one of the fastest growing seg-
ments of the industry

The computer which is designed to
appeal to home users as well as corporate
professionals, ranges in price from $1,565
for a bare-bones configuration to $6.300 for

Sears and Computerland computer retail
stores as well as directly 1o large corporate
and educational users, iBM says, pointing
out that it has set up 3 speciai national mar-
keting teamn to handle such volume orders

Donald Estridge, the articulate di
rector of 1BM's entry systems business who
braved strobes and movie lights at the ma- §
chine's Waidorf-Astoria introduction, de-
clines 10 say how many personnel have been B
dedicated to the national marketing effort, &
bu says it will be selling in volumes of 20
machines or more. Several weeks after the
unveiling. he said response so far had been
“very. very good "' with orders being taken
but no deliveries 10 be made before this
month

In addition to the game of Adven-
ture, which Estridge said has been thor
oughly exercised by his Boca Raton, Fia.,
staff, 1BM has decked out the machine with
an array of packaged applications programs
that are expected to make it attractive to the
corporate user.

Among these are the popular Visi-
Cale spreadsheet package from Personal
Software, accounting packages from Man-
agement Science America's Peachtree Soft-
ware operation, and Information Unlimit-
ed's EasyWriter word processing system
Although iBM wouldn't say, more indepen
dently developed packages are certain (o be
offered for puter as well

the full

‘modulator) for a display. { The machine is fully FCC

tiy unveiled its first offering in the
certificd for home operation as a class B

Dersomil computer markei—the 1BM Personal
Computer The unit, perhaps surprisingly, plays
fmusic and inchudes game software to say nothing 1BM is cognizant of the fact that this minimalty
of the standard features available. configured machine probably won last 2 serious

i
’ computing device)

The machine is impressive. it's starting price isa ’ ‘computerist long before he wants 1o expand. The
|

mere $1565. For that price the buyer gets the 83
key keyboard, the computer itseif, based on an
8088 microprocessos, and 16k of main memory.
This minimal ion can use a tape:

for mass storagé and 2 television set (with an rf

12 Personal Compating/October 1981

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal

Computer.

Section I The Development of MS-DOS 21

HUAWEI EX. 1204 A-3 - 23/165

1981

1981

MICROSOFT
QUARTERLY

This poicy is especally advan-
tageous when alarge number of
programs s distrioutedusing a
single copy o the runtme Mod-
uie because oniy one royarty
paymentis paid.

{Micrasoftstit supports the
funiime systemused with pre-
vious versions. fapplication

Pauf Allen plexoperations, such as floating

| pointand grapnics routmes
execuie muchiaster. The

speedof th
IBM Breaks the | 750z

i easy (0 consiruct a graphi
16-Bit Barrier | ey oo
A

tanquage.
- ofthe Personai Computer. t

t0thew appications, there is

Microsoft
COBOL
Passes GSA
Validation

terisits 8088 CPU

its produets.

on: dearfer 100.)
This change in the
BASCOM royaty poicy refiects
Microsolt's wish o increase the

change. lhe addition of CHAIN.
with COMMON. and the im-
‘plementation of the suntime
module make BASCOM a much
more fexible and pawertul 100l
for the applicaton programmer
BASCOMS5.3isavailable
now for CP/M systems.
inclucing the Apple llwith the

Microsoft Softcard, Microsoft

Inacc-

govemment,

Personal Comauler. we re

software n Ihe world, has de-

16-oittan-

loots. Application packages are

standardsior compiers. Tesing
ofcompers, X

especially

speciors,

‘The “linch pin” ofMicrosots
new 16-ti product hine for the

Microsoft submitted s
goaomemer tundes the

validaton, The General

= oact
2| flexivie cperaning system. MS-
00S. MS-D0f

BASCO!

the past the Personal Computer. We've

and validated Microsoft COBOL

faton of the 1974

1S, thus.

y
sanous exsting
i

for COBOL.

oM

. andwhy did

have,

.
MS-DOS. MS-DOS also pro-

we submit Microsoit COBOL.
forvalidation? Mike Orr. COBOL
offeredihe

A mult-user, mufti-

Other
DOS

For device
example, we'vetakenadvan- | indepencentl/O. andbuit-in

inginour MS-LINK, alinkertor | wntes. Whatis now the stan-
Pascalor FORTR/

1BM! tes wil

8086 BASIC nterpreter can standard.
, aimost

Appications

ticatedin their features, human | appreciated, Microsoft expects
i andin 10 see many

computess.

rges . qui
time and,

i of 1BM
cessofs alsomeans thatcom- | swing.

A page from Microsoft’s third-quarter
report for 1981

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device-
independent input and output, variable record lengths, relocatable program files, and 2
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-
trol block of a file named in a2 command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application’s portion of the memory space. It includes, among other things, the file-
name, the extension, and information about the size and starting location of the file

on disk.)

Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap-
plication did not have to be modified if new devices were added to the system. From the

22 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 24/165

user’s point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi-
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-
tem maintained file lengths to the exact size in bytes and could be relied on to support logi-
cal records of any size desired

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the exterisions
COM and .EXE. Program files ending with COM mimicked the binary files in CF/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro-
gram code, stack, and data could be no larger than 64 KB. A EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each

segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND.COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM’s phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces-
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk. .

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table — the
FAT — that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al-
location map —a list of sixteen 1 KB allocation units where successive parts of the file
were stored —an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I The Development of MS-DOS 23

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS’s
ability to find and load even very long files was extremely rapid compared with CP/M’s.

Two other important features — the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor == provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors, When reading multiple records in CP/M, an appli-
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap-
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre-
sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro-
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commonly requested func-
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in-
tegrity of the functions for the user, the resident part of COMMAND COM was given the
job of checking the transient portion for damage when an application terminated. If neces-
sary, this resident portion would then load a new copy of its transient partner into memory

Ease of Use)

24

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel-
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin-
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications

The MS-DOS Encyclopedia

1981

o) Package Contents
1 diskette, with the following files:
COMMAND . COM
MSDOS ,COM
EDLIN,COM
DEBUG. COM
FILCOM.COM
contents
1 M5-DOS Disk Operating System Manual O
Introduction
Features and Benefits of MS-DOS
Using This Manual
Syntax Notation
¥5-DOS Structure and Characteristics
System Requirements Chapter 1 General MS-DOS Commands
1.1 Control Function Characters
1.2 Special Bditing Commands
The MS-DOS Operating System requires 8K bytes of memory 13 Disx Brrors
o Chapter 2 COMMAND COM
2.1 Prompt
2.2 Pilenames
2.3 commands
2.3.1 Internal Commands
2:3.2 External Commands
0O Chapter 3 EDLIN
3.1 Invoking EDIIN
3.2 Commands
321 Command Parameters
3.2.2 Interline Commands
373 Exror Messages
Chapter 4 DEBUG
2.1 Invoking DEBUG
4.2 Commands
4.2.1 Command Parameters
42,2 Command Descriptions
4.3 Error Messages
e} Chapter § FILCOM
5.1 Invoking FILCOK
5.2 Commands
5.2.1 Filenanes
5.2.2 switches
5.3 Examples
O Chapter & Instructions for Single Disk Drive Users

Two pages from Microsoft’s MS-DOS version 1.0 manual. On the lefi, the system’s requirements — 8 KB of
memor?y, on the right, the 118-page manual’s complete table of contents

In a further attempt to safeguard data, MS-DOS also trapped hard errors— such as critical
hardware errors — that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them —a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature — one visible with the DIR command —was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I The Development of MS-DOS 25

HUAWEI EX. 1204 A-3 - 25/165

1981-1982

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations — one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to.a program when it terminated. For ex-
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory, MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

‘When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and Sof Tech Microsystem’s p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the /nfoWorld bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con-
cern was compatibility: To what extent was Microsoft’s new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of
the number of machines using MS-DOS wouldn’t have matched what really ended up
happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM’s name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC — in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CE/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the “CP/M Record Playet” — presumably in
anticipation of a vast inventory of CP/M applications for the new computer—and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard fora
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be

the one

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS, Tim Paterson’s
“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac-
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat’s version of CP/M-80.

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as

COMPAQ-DOS and Zenith's Z-DOS
Given this confusing host of names for a product it believed could become the industry

standard, Microsoft finally took the lead and, as developer, insisted that the operating sys-
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business —
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I. The Development of MS-DOS 27

HUAWEI EX. 1204 A-3 - 26/165

1981-1982

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS’s biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS-DOS was not a2 maverick —
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

® First, one of Microsoft’s goals in developing the first version of MS-DOS had always
been translation compatibility from CE/M-80 to MS-DOS software.

® Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502

® Third, many applications were written in a high-level language, rather than in assem-
bly language.

® Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS

Thus, even though some people had originally believed that only CP/M-86 would auto-
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing ~and appropriate —
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines —although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft’s list of MS-DOS custom-
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe-
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri-
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and “dramatically” better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

Additional MS-DOS Features and Benellls

+ Written Enrely in 8085 Assembly Language
Thi ides significant speed

bit counterpans

o Fast Efficlent File Structure

girectory information and verify atter write
 No Need 10 Log In Disks
log in a new disk by yping Control-C. This preatly

improves usability for single disk system users and for

* No Phyaical Flie/Disk Size Limitslion
Unlike users of operating systems that are timited 10 8

megabyte hard disk into three saparate drives

Operating systems that are fargely transiated from their 8-

Tne format eliminates the nead for ‘sxtents.” minimizes
access 16 the diractory track, and provides for duphcate

As 1ang as no file is curtently open, there is no need to

people who like 10 stora their data on sepacale disketies.

megabytes, MS-DOS users would ot have 1o break & 24

MS-DOS
Standard Operating System for 8086 Micros

MS-DOS is & disk oparating system from Micrasoft for
6086/8088 microprocessors, inlernationsi Business Machines.
Corp. chose MS-DOS (called 1BM Personai Computer DOS) to
be its aperating system of choice for its Personal Computer
Microsofrs agreements with 1BM and several other major
computer manutacturers indicats that end-user systems

What Makes MS-DOS Important?

Tunniag MS-DOS wil be widely available in the near fulure.
making MS-DOS the siandard low-end operating system for
8085 micros. Wny 15 MS-DOS becoming popular? MS-DOS 5
an important agvance n microcomputer operating systems

All of Microsoft's languages (BASIC Interpreter, BASIC
Compiler, FORTRAN, COBOL. Pascal) are available
immediately under MS-DOS. Users of MS-DOS are assured
that their operating system witi be th tirst that Microsoft wilt
suppOrt when any new progucts or major releases are
announced. in addition, the B-tit versions of Microsott's
languages are upward compatible with the 16-bit versions.
Thus, apolication programs written in 8-bit Microsoft
Ianguages can be run under MS-DOS with litle or no
modification. Microsoft wants (o encourage both the
tranaporting of 8-bit 1o 16-bit software and the Geveiopment of
new 16-bit software

Here are the major teatures that make MS-DOS the operating
system people want 1o use on 8086 machines:

« Eany Conversion from 3080 to 5086
MS-DOS allows &5 much transportability of 8-bit machine
tanguage software as is possible. MS-DOS emulates.
systam calls 1o CP/M-80. By simply running assembly
language source code through the Intel conversion
program, almost al 8080 programs wili work without
modification. In most cases. a convarsion to MS-DOS is
easier than conversion 1o other aperating systems.

* Devico independent VO
MS-DOS simplifies /O to ditterent devices on the UNIX
concept. A single set of 1/O calls treats all devices alike
from the user's perspective. Thiere is no need 1o rewrite
programs when & hew device is added 1o the system.
Simply OPEN the device and READ or WRITE. Also,
device indepencent /O assures that different control
characters (specifically TAB) ar6 handied the same by
he ditferem dvices.

The Future of MS-DOS

« Advanced Error Recovery Procedures
MS-DOS doesnt simply fade away when errors occur. It
& disk emor accurs at any time during any program, M-
DOS will retcy the operation three times. If the operation
cannot be completed successtully, MS-DOS will return
an error message. then wait for the user to enter &
response. The user can attempt recovery rather than
reboat the operaling system

= Complete Program Relocatabilly
MS-DOS i3 2 truly reiocatable operating system. Not only
can the Micrasoft relocatable linking loader provide for
separate segments but also the COMMAND program in
MS-DOS relocates the modules during loading rather
than loading ther to preset adaresses. Thus, MS-DOS
oes not have the 84K program space limitation of otner
aperating systems.

o Powerlul, Fiexible Fite Characleristics
MS-DOS has no practical limit on file or disk size. MS-
DOS uses 4-byte XENIX OS compatible iogical pointers
for tile and disk capacity up 104 gigabytes.

Within a single diskette. the user of MS-DOS can have
tiles of different logical record tengths. MS-DOS is
designed to block and deblock its own physical sectors:
28 is not a sacred number in MS-D0S

MS-DOS remembers the exact end of fils marker. Thus.
should ane open file with a logical record length other
Ihan the physical record iength. MS-DOS remembers
exactly where the file ends 1o the byte. rather than
rounded 10 128 bytes. This alleviates the need tor forcing
Contrai-2's of the fike at the end of a file

Microsoft plans to enhance MS-DOS. The additional
addressing 5pace of the B0BS processor makes multi-tasking 2
particularly atiractive enhancement. An Upward migration path
10 the XENIX operating system through XENIX compatible
system calls, “pipes * and “forking" 15 another planned
ennancement.

Plans for MS-DOS also include disk buflenng. graphics and
cursor positioning. kanji suppon multi-user and hard isk
support and networking

« NoOverhoad for Non-128-Byte Physical Sectors
©One does not have to wotry about different physical
soctor sizes whon writing a BIOS

* ‘Time/Date Stampz
This aiteviates, or instance, the need 1o recompile a file i
the time on the relocatabie file is mora recent than on the
source fite

* Litebost Assoclates
The world's largest independent distributor of
microcomputer sofiware has chosen 10 support MS-DOS
as its iow-end 16-bit operating system. Recognizing the
important migration path from ne 8-bit Jevet 1o XENIX
OS Lifeboat will bs ofiering a wice range of sottware for
the MS-DOS environment

« 100% 18M Compalible
1BM s offering sotiware sunning under MS-DOS. 1BM has
announced Microsoft BASIC and Microsoft Pascal, along
with accounting, financial planning and word processing
software running under MS-DOS

MICROSOFT

Microsoft inc.
10800 NE Eighth, Suite 819
Bellevue, WA 98004
206-455-8080 Telex 328045

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS

Section I The Development of MS-DOS

HUAWEI EX. 1204 A-3 - 27/165

1982-1983

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan-
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS—one closer to the operating system Microsoft had envisioned from the start—
became feasible

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some typé of multitasking. Fach of these features contrib-
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible example of its difference from ver-
sions 1.0, 1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-
management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team’s choice for
handling files on the XT’s fixed disk.

30 The MS-DOS Encyclopedia

The MS-DOS version 1.0 manual next to the version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-
mentation. Many small-system users— particularly software developers—were already
familiar with partitioning, if not overly fond of it, from their experience with CB/M. Devel-
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub-
stantial growth in the storage capacity of disk-based media: Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the.other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2 0 and even-
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
1.x, and was based on a root, or main, directory under which the user could create a sys-
tem of subdirectories and sub-subdirectories to hold files, Each file in the system was iden-
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s
request, decided to use the backslash as the separator instead. Although the backslash

Section I. The Development of MS-DOS 31

HUAWEI EX. 1204 A-3 - 28/165

1982-1983

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati-
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac-
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when-
ever an MS-DOS program opened a file, All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure — different
from an FCB —so that the program never had to deal directly with information about the
file’s location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten —
the file handle would be the only referent needed, and this would not change

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program’s input and out-
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations

Installable Device Drivers

32

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de-
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it — the BIOS

The MS-DOS Encyclopedia

contained all the code that permitted the operating system to run the hardware. If inde-
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version

of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, 10.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list—this time, of device drivers—that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver— for example, the ANSL.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-
form rudimentary background processing — an interim solution to a growing awareness of
the potentials of multitasking

Background print spooling was sufficient to meet the needs of most people in most situa-
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I The Development of MS-DOS 33

HUAWEI EX. 1204 A-3 - 29/165

1982-1983

Two members of the
1BM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel-
oped O the left, the
original IBM PC (ver-
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2 0)

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM — whether for a fixed disk or a floppy — was probably
still good

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2 0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code
Though it maintained its compatibility with versions 1.x, it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the

industry standard for 8086 processors.

Versions 2.1 and 2.25

34

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi-
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 30/165

|

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require-
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5Y4-inch drives, would employ a slightly different disk-controller architecture. Be-
cause of these differences from the standard PC line, IBM’s immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys-
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita-
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop-
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro-
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country’s huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi’s
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer’s support for
MS-DOS.

Section I. The Development of MS-DOS 35

1983

1983
DOS 30 A sample of the reviews that appeared
with each new version of MS-DOS
Inlmes, and many Wﬁlﬁm maggs
30resultina szgn!ﬁcam enbanced
operating system.
The Ascent ==
of DOS ==
e
Hands On: Operating Systems [pemingoorliirid
MS-DOS 2.00: A e
Hands-On Tutorial =~ |~
-
e e e
In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft’s other customers were becoming more vocal about their own needs
Several wanted a networking capability, adding weight to IBM’s request, but a more urgent
need for many —a need not shared by IBM at the time — was support for international
products. Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries— a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats
Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file
36 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 31/165

A Kanji screen with

NEC PC-9800 Series Personal Camputer the MS-DOS copyright
message

420Y7+ MS-DOS N -3 37 3. 10
Copyright 1981, 1985 Microsoft Corp. / NEC Corporation

BT EFHRET
BB, ALV F54 7D NecDIC sYs TE

COMMAND " -¥* 3¥ 3.10

A>DIR /W
FS47 A OF 4 27 DFY 5 —4 5 ~WIE KAVAL_RYU
F4v7 FYIE A¥BIN

. . ASSIGN CCM ATIRIB EXE BACKUP EXE
CHKDSK EXE CoPY2 COM COPYA DISKCOPY COM MOUSE SYS

FIND EXE FORMAT EXE KEY COM LABEL EXE
MORE COM SPEED COM SWITCH COM SYS EXE SORT COM

20 D7 7 A NDHD ET
3604480 ~¥A +HMERIAIGETT

m>ed 7 a7 FRRER

R [BFMS-DOS

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo-
grams) arose. The difficulty with Kanji is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char-
acters, however, sometimes use one byte, sometimes two. This variability creates prob-
Jems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,

Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to TBM and did

not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisty those OEM cus-
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ-
ence between their version of the operating system and IBM’s introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver-
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM’s

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 201 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji

Section I The Development of MS-DOS 37

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance —
and difficulty — of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-
face had been published, software developers could, and often did, work directly with the
hardwate in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did

not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re-
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro-
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver-
sion of MS-DOS had to continue supporting CP/M-style calls

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version 1x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2 0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft’s own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2 0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems— requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running.
For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM’s upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone’s best interest

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 32/165

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
}f)ox;cnetworks, exaggerated the problems of compatibility that had been encountered
efore.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project
“there was a very long period of time between 2.1 and 3.0 — almost 2 year and a half Dlylr'-
ing that time, we believed we understood all the problems involved in making DOS a net-
working product. [But] as time progressed, we realized that we didn’t fully understand it
either from a compatibility standpoint or from an operating-system standpoint. We knevs’/
very well how it [DOS] ran in a single-tasking environment, but we started gbing to this
new environment and found places where it came up short.”

In fact, the great variability in programs and pi'ogramming approaches that MS-DOS
suppF)rt‘ed eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and, in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS—DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons,

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage-
ment, and logical device independence at the network level. Even 0, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
qufjte ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 3.0 supported the AT’s larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft’s other OEM
customers as version 3.05.

Section I The Development of MS-DOS 39

]

1983-1984

1983-1984
Ror
A Resiam e Make *
£ mise _DisK.RESET ——"fanbRE" FAIL NesewTRY ; @
(e CZE -
firtfo [.Set. bile, ATTRS r . : - D R |
: i ¢ +—I6NORE" FalL ISEAREH [Dos Smrch. (ORI DL J BiRent L
by Pyt 4 S Sl pis - ALLEES
Rowy GETESF belste rPELETE ™ &om| Dos . CLosE cLosE
GETPATH FIMDEwtr DIR
L
RELELKS UNPACK Proe WAAPCLUSTER. T
NETRUFWRIT, SUF
FLuSHBUF] CHECKFLUS T BUFURTE
0 P
[=4 FETFLWSH BUF L2y AT
Rows NEXTSE & — bAM (pgE
G b
2 FNDCLYS DISKWRITE 5k
oW SKPCLE NSR REAB| .1 3> DA
oPTIMIZE - WJRITE HIRITE
=
.%loh@ Carry 3 fai} insteod cosk
N?:_S m;’\;tzu's ey i %6 ~& SHARE
bATA ;
/-m' omELs Ca)
3 CHAR T jo
[em
0 < CHRIC
Fl
= [sl ek of AH
Aaron Reynolds's diagram of version 3 O's network support, sketched ouit to enable him to add the fail option
to Interrupt 24 and find all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagram pinned to his office wall stmply because ‘it was so much work
io put together.”
40 The MS-DOS Encyciopedia

SGET.LRIVE . FREESPAE

Section: I. The Development of M5-DOS

HUAWEI EX. 1204 A-3 - 33/165

PATH

GetSet

41

1983-1964

1984

42

The Intel 80286 micro-
processor, the chip at
the heart of the IBM
PCAT, which is shown
beside it Version 3 00f
MS-DOS, developed for
this machine, offered
support for networks
and the PCAT's 1 2-
megabyte floppy disk
drive and built-in
€MOS clock

But version 3 0 was not a simple extension of version 2.0 In laying the foundation for net-
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel

Different as it was from version 1.0, version Z 0 had been built on top of the same structure
For example, whereas file requests in MS-DOS 1 0 used FCBs, requests in version 2 0 used
fite handles However, the version 2 0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 10 The redirected input and
output in version 2 0 further complicared the file-system requests When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2 0 first cpened a
handle and then turned it back into an FCB cail at a lower level Version 3.0 eliminared this
redundancy by eliminating the old FCB input/output code of versions 1and 2, replacing it
with a standard set of I/O calls that could be called directly by both FCB calls and handle
calls The look-alike calls for CP/M-compatible character I/O were included as part of the
set of handle calls As a result of this restructuring, these calls were distinctly faster in

version 3 0 than in version 2.0

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the 15O Open System Intercon-
nect model Microsoft was using for nerworking. The 1SO model describes a number of
protocol layers, ranging from the application-to-apptication interface at the top level down
to the physicat link - plugging into the network — at the lowest level. In the middle is the
transport layes, which manages the actual transfer of data The layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the nerwork software or hardware

On the IBM PC network, the transport layer and the server functions were handled by
IBM's Network Adapter card and the task of MS-DOS was to suppott this hardware. For its
other OEM customers, however, Microsolt needed to supply both the transport and the
server functions as software. Although version 3 0 did not provide this general-purpose
networking sottware, it did provide the basic support for IBM’s networking hardware

The suppott for IBM consisted of redirector and sharer software MS-DOS used an ap-
proach to networking in which remote requests were routed by a redirector that was able

The MS-DOS Encyclopedia

to interact with the transport layer of the network The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-evel file /O code, the operating sys-
tem determined whether the call was local or remote A local call would be allowed to fall
through to the local file I/0O code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local.

Version 3.1

Both the redirector and the sharer intetfaces for IBM's Network Adapter card were in place
in version 3 0 when it was delivered to IBM, but the redirector itself wasn't ready Version
31, completed by Zbikowski and Reynolds and released three months later, completed this
network support and made it available in the form of Microsoft Networks for use on non-
IBM network cards

Microsoft Networks was built on the concept of “services” and “consumers.” Services
were provided by a file server, which was part of the Networks application and ran ona
computer dedicated to the task. Consumers were programs on various network machines
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk
The requesting programs — the consumers — did not need any knowledge of the remote
machine, not even what type of file system it had

This ability to pass a high-level request to a remote server without having to know the
details of the server's file siructure allowed ancther level of generalization of the system
In MS-DOS 3 1, different types of file systems could be accessed on the same network It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

® Fitst were the MS-DOS-compatible programs These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any MS-DOS machine without probletns

® Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines

® Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor-
mance but were also the most difficult to support

Of these, Microsoft officially encouraged the writing of MS-DOS-compatibie programs for
use on the network.

Section I. The Development of MS-DOS 43

HUAWEI EX. 1204 A-3 - 34/165

1986

1987

Network concerns

The file-access module was changed in version 3 0 to simplify file management on the
network, but this did not solve all the problems For instance, MS-DOS still needed to han-
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it One of the functions of the server was to keep track of all open files
on the network, and it ran inic difficulties when an FCB was opened 50 or 100 times and
never closed To solve this problem, Microsoft introduced an FCB cache in version 3 1 that
allowed only four FCBs to be open at any one time If a fifth FCB was opened, the least re-
cently used one was closed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning — and generated new problems —with networking One problem concerned
printers on the network Commonly, networks are used to allow several people to share a
printer The network could easily accommodate a program that would open the printer,
write to it, and close it again Some programs, however, would try to use the direct IBM
BIOS intetface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle Once this was accomplished, version 3 1 was able to handle most
types of printer cutput on the network in a tansparent manner

Version 3.2

44

In January 1986, Microsoft released another revision of MS-D(S, version 3 2, which
supported 3%z-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM

The MS-DOS Encyclopedia

The Future

Since its appearance in 1981, MS-DOS has taken and held 2n enviable position in the
microcomputer environment Not only has it “taught” millions of personal computers
“how to think,” it has taught equal millions of people how to use computers. Many highly
sophisticated computer usets can trace their first encounter with these machines to the
original IBM PC and version 1.0 of MS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
anothet, they wander through with familiarity

Microsoft has stated its commitment to ensuring that, for the foreseeable future, M$-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users In the iong term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world The story
of MS-DOS will, of course, remain even onger For this operating system has earned its
place in microcomputing history

JoAnne Woodcock

-

Section I The Development of M5-DOS 45

HUAWEI EX. 1204 A-3 - 35/165

HUAWEI EX. 1204 A-3 - 36/165

Part A
Structure of MS-DOS

HUAWEI EX. 1204 A-3 - 37/165

Article 1 An Introduction to MS-DOS

Article 1
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In genetal, an operating system provides

® Siorage management

® Processing management
® Security

]

Human interface
Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments The general charae-

teristics of the three categories are listed in Table 1-1

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional

ROM Operating Operating

Monitor System Environment
Complexity Low Medium High
Builton Hardware BICS Operating system
Delivered on ROM Disk Disk
Programs on ROM Disk Disk
Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system 1t is designed for a particular
hardware configuration and provides a program with basic ~—and often direct—access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additicnal features such as a file system and log-
ical access 1o peripherals (Logical access to peripherals allows applications torunina
hardware-independent manner) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution
MS-DOS is a traditional operating system

An operating environment is built cn top of a traditional operating system The operating
environment provides additional services, such as common menu and forms support, that

Section Ii. Programming in the MS-DOS Environment 51

HUAWEI EX. 1204 A-3 - 38/165

Part A: Structuse of MS-DOS

Article I: An Introduction to MS-DOS

simplify program operation and make the user interface more consistent Microsoft
Windows is an operating environment

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

@ The operating-system loader
The MS-DOS BIOS

The MS-DOS kernel

The user interface (shell)
Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: StrucTURE oF Ms-DOs: The Components of MS-DOS

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved (The texm bootstrapping came aboui because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the -
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (hoot) sector of the startup disk and executes it The disk
bootstrap loadet, in turn, reads the main portions of MS-DOS—MSDOS SYS and 1O §Y5
(IBMDCS.COM and IBMBIO COM with PC-DOS) — from conventional disk files into mem-
oty The special module SYSINIT within MSDOS SYS then initializes MS-DOS'’s tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: S1RUC-
TURE OF M3-DOs: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution This loader is different from the ROM
Ioader and the operating-system loader)

The MS-DOS BIOS

52

The MS-DOS BIOS, loaded from the file IO SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel and the hardware. An
application performs input and ocutput by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

T'he MS-DOS BIOS consists of some initialization code and a collection of device drivers
(A device driver is a specialized program that provides support for a specific device such as

The M5-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 39/165

a display or serial port) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable dsivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file
See PROGRAMMING IN T HE MS-DOS ENVIRONMENT : CustoMIzInG Ms-Dos: Installable
Device Drivers; USER COMMANDS: CONFIG SYS:DEVICE

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

® Process control

® Memory management
¢ Peripheral support

® Afile system

The MS-DOS kernel is loaded from the file MSDOS SYS during system initialization

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time One program can invoke anothet, which then
becomes the active (foreground) tasle When the invoked task terminates, the invoking
program again becomes the foreground task Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system

MS-DOS does have a few “hoolks” that allow certain programs to do some multitasking
on their own For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes Of these, MS-DOS formally supports only pipes (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system

Memory management

Because the amount of memory a program needs varies from progiam to program, the
tradirional operating system ordinarily provides memory-management functions Memory

Section I1. Programming in the MS-DOS Environment 53

Part A: Structure of M5-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time

MS-DOS memory management is based on a pool of variable-size memory blocks The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool
Many programs perform their own memory management by using a local memory pool, or
heap —an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocks for use by its various routines See PROGRAMMING
IN THE MS-DOS ENVIRONMEN T: PROGRAMMING FOR Ms-DOS: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can intetject additional features or translations Keyboards, displays, and printers
usually require only logieal-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats Disk devices—and
block devices in general —have the greatest number of features added by the operating
system See The File System below

As stared earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system

The file system

54

The file system is one of the largest portions of an operating system A file system is buiit
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage A file system on a disk
contains, at 2 minimum, allocation information, a directory, and space for files See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF M8-DOS: MS-DOS

Storage Devices
The file allocation information can take various forms, depending on the operating sys-

tem, but al} forms basically track the space used by files and the space available for new
data The directory contains a list of the files stored on the device, their sizes, and informa-

tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist MS-DOS usesa
particular allocation method called a file allocation table (FAT) and a hierarchical directory

The M5-DQS Encyclopedia

Article I; An Introduction to MS-DOS

structure See PROGRAMMING IN THE MS-DOS ENVIRONMENT: SIRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DOs: Disk Directories and Volume Labels

IThe file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device Device files provide a
useful consistency to the environment for application programs; M3-DOS suppotts such
fites by assigning a reserved logical name {such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys-
tem itself The default MS-DOS user interface is a replaceable shell program called
COMMAND COM.

One of the fundamental tasks of a sheil is to load a program into memory on request and
pass control of the system to the program so that the program can execute When the pro-
gram terminates, control retuins to the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making -
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-
ory space versus speed and flexibility. Early microcomputer-based operating systerns pro-
vided a minimal number of resident shell commands because of [imited memory space;
modern operating systems such as MS-DCS include a wide variety of these functions as
internal commands

Support programs

The MS-DCS softwate includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND COM Because
these programs are stored as executable files on disk, they are essentially the same as ap-
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running) See USER COMMANDS

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See THE
DEVELCPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum-
marized in the following table.

Section I Programming in the M5-DOS Environment 55

HUAWEI EX. 1204 A-3 - 40/165

Part A: Structure of MS-DOS

Article 1: An Introduction to MS-DOS

56

Version Date Special Characteristics
PC-DOS10 1981 First operating system for the IBM PC
Record-oriented files
PC-DOS 11 1982 Double-sided-disk support
MS-DOS 125 1982 First OEM release of MS-DOS.
MS-DOS/PC-DOS 2.0 1983 Operating system for the IBM PC/XT
UNIX/XENTX-like file system
Installable device drivers
Byte-otiented files
Support for fixed disks
PC-D0OS21 Operating system for the IBM PCjt
MS-DOS211 Internatjonalization support
2 0x bug fixes :
MS-DOS/PC-DOS 3.0 1964 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks
Suppott for large fixed disks
Support for file and record locking
Application control of prine spooler
MS-DOS/PC-DOS 3.1 1984 Support for MS Networks
MS-DOS/PC-DOS 3.2 1986 3 5-inch floppy-disk support
Pisk track formatting support added to
device drivers
MS-DOS/PC-DOS 33 1987 Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOS version 1 0 was the first commercial version of MS-DOS Tt was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions 1 x were similar in many ways to CP/M, the popuiar operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These vez-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
suppoit installable device drivers or networks Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs File operations were record
otiented, again like CE/M, although record sizes could be vatied in MS-DOS

Although they retained compatibility with versions 1 x, MS-DOS and PC-DOS versions 2 x
represented a major change . In addition to providing support for fixed disks, the new ver-
sions switched to 2 hierarchical file system like that found in UNDX/XENIX and to file-
handle access instead of FCBs (A file handle is a 16-bit number used to reference an inter-
nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table } The UND{/XENIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records Applications can read or write
1to 65535 bytes in a single operation, starting at any byte offset within the file Filenames

The M5-DOS Encyclopedia

used for opening a file are passed as text strings instead of being parsed into an FCB
Installable device drivets were another major enhancement

MS-DQS and PC-DOS versions 3 x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-locking
and record-locking functions. Network support was added by providing hooks for a redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system It
provides a large number of system services in a transparent fashion so that, 2s long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera-
tions, applications developed for one MS-DOS machine can usually run on another

Basic MS-DOS Requirements

Foremost among the reguirements for MS-DOS is an Intel 8086-compatible microproces-
sor See Specific Hardware Requirements below

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS5-DOS BIOS, kernel, and shell and an application program The RAM must start at ad-
dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. T he uppet limit
for RAM is the limit placed upon the system by the 8086 family — 1 MB

T he final requirement for MS-DOS is a set of devices supported by device drivers, includ-
ing at least one block device, one character device, and a clock device The block device is
usually the boot disk device (the disk device fiom which MS-DOS is loaded); the character
device is usually a keyboard Adisplay combination for interaction with the uset; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub-
multiple of one second

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
components include

® An 8080-family microprocessor

8 Memory

® Peripheral devices

® A ROM BIOS (PC-DOS only)
The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, including the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40

Section II. Programming in the MS-DOS Environment 57

HUAWEI EX. 1204 A-3 - 41/165

Part A: Structure of MS-DOS

Article 1: An Introduction to MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memoty access, timer, and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusToMiZING Ms-Dos: Hardware Interrupt Handlers
MS-DOS, however, does not have address requitements that conflict with those interrupt
and intetface areas

‘The 80286 has an extended instruction set and two operating modes: real and protected.

Real mode is compatible with the 8086/8088 and runs MS-DOS Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in termes of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088)

The 80386 adds further instructions and a third mode called virtual 86 mode. The 80386
instructions operate in either a 16-bit o1 a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386

Memory requirements

58

At a minimum, MS-DOS versions 1 x require 64 KB of contiguous RAM from the base of
memary 1o do useful work; versions 2 x and 3 x need at least 128 KB The maximum is

1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred 1o as conventional memory
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS Some of the reserved areas include

Base Address Size (bytes) Description
AQ00:0000H 10000H (64 KB) EGA video buffer
B0O00:0000H 1000H (4 KB) Monochrome video buffer

B800:0000H 4000H {16 KB) Colot/graphics video buffer
C800:0000H 4000H (16 KB) Fixed-disk ROM
FO00:0000H 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro-
processot for an interrupt vector table — that s, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, 1o store addresses of its own tables and routines and to provide linkage
to its services for application programs The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

The M$-DOS Encyclopedia

Peripheral devices

MS-DQOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by instaliable device drivers

Five logical devices are provided in a basic MS-DOS systern:

Device Name Description

CON Console input and cutput
PRIN Printer output

AUX Auxiliary input and output
CLOCK$ Date and time support
Varies (A-E) One block device

These five logical devices can be implemented with a BIOS supposting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device Insucha
minimum case, the printer and auxiliary device are simply aliases for the console device
However, most MS-DOS systems support several additional logical and physical devices
See PROGRAMMING IN THE MS-DOS ENVIRONMENT : PROGRAMMING FOR MS-DOS:
Character Device Input and Output

The MS-DOS ketnel provides one additional device: the NUL device. NUL is a “bit
bucket” —that is, anything written to NUL is simply discarded Reading from NUIL always
returns an end-of-file marker One common use for the NUIL device is as the redirected

~ output device of a command or application that is being run in a batch file; this redirection

prevents screen clutter and distuption of the batch file’s menus and displays

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
10 SYS file loaded at initizlization PC-DOS, on the other hand, uses a very specific ROM
BIOS The PC ROM BIOS does not provide device drivers; rather, it provides support rou-
tines used by the device drivers found in IBMBIO COM (the PC-DOS version of IO 5YS).
The support provided by a PC ROM BIOS inciudes

¢ Power-on self test (POST)

Bootstrap loader

Keyboard

Displays {(monochrome and colot/graphics adapters)
Serial ports 1 and 2

Parallel printer ports 1, 2, and 3

Clock

Print screen

Section Il Programmniing in the MS-DOS Environment 59

HUAWEI EX. 1204 A-3 - 42/165

Part A: Structure of MS-DOS Article 2: The Components of MS-DOS

allows the system to start from the fixed disk)

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit Al‘tiCle 2
for additional ROMs The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs. (T he fixed-disk ROM also includes an additional loader routine that E The Comp Onents Of MS'DOS

*

MS-DOS is a modutar operating system consisting of multiple components with special-

Summary k ized functions. When MS-DOS is copied into memory during the loading process, many of
.) . its components ar d, adjusted, or discarded H . when it is running, MS-DOS
MS-DOS is a widely accepted traditional operating system Its consistent and well-defined ; 1S CC.JI P! i § are moved, adju T discan ‘? ‘ Owever, when it1s IUﬂmclilg o

L) ! . o ; dant and program E is a relatively static entity and its components are predictable and easy to study Therefore,
interface makes it one of the easiet operating systems to adap prog ' this article deals first with MS-DOS in its running state and later with its loading behavior.

MS-DOS is also a growing operating system — each version has added more features yet

made the system easier to use for both end-users and programmers. In addition, each ver-

sion has included more support for different devices, from 5 25-inch floppy disks to high- : : .

density 3 5-inch floppy disks As the hardware continues to evolve and user needs become The Ma]OI' Elements

¢ isti - too will continue to evolve _
more sophisticated, M5S-DOS MS-DOS consists of three major modules:

Wiliiam Wong Module MS-DOS Filename PC-DOS Filename
: MS-DOS BIOS IO SYS IBMBIO COM
MS-DOS kernel MSDOS SYS [BMDOS COM

MS-DOS shell COMMAND COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vecton table located at the beginning of memory All three modules
remain in memory until the computer is reset or turned off {The loader and system initial-
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DQOS below)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOS: An Introduction to M$-DOS The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS— that is, no modifications are made by the OEM The shell is a replaceable
module that can be supplied by the OEM ot replaced by the user; the default shell,
COMMAND COM, is supplied by Microsoft

The MS-DOS BIOS

The file IO SYS contains the MS-DOS BIOS and the MS-DOS initialization module, |
SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM SYSINIT
is supplied by Microsoft and is put into 10 5YS by the OEM when the file is created See
Loading MS-DOS below

60 The MS-DOS Encyclopedia Section II Programming in the M5-DOS Environment 61

HUAWEI EX. 1204 A-3 - 43/165

Part A: Structure of MS-DOS

T he MS-DOS BIOS consists of a list of resident device diivers and an additional initializa-
tion module created by the CEM. The device drivers appear first in IO SYS because they
remain resident after 10 SYS is initialized; the MS-DOS BIOS inirialization routine and
SYSINIT are usually discarded after initialization

The minimum set of resident device drivers is CON, PRN, AUX, CLOCKS$, and the driver

for one block device The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device diivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel

Device driver code can be split between IO SYS and ROM For example, most MS-DOS sys-
tems and ail PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM {Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM zllows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations) ‘

The 10 SYS file is an absolute program image and does niot contain relocation information
The routines in IO SYS assume that the CS register contains the segment at which the file is
foaded. Thus, IC SYS has the same 64 KB restriction as a COM file See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application
Program Larger 10 SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside

the first 64 KB,

The MS-DOS kernel

62

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi-
tional operating system It is contained in a single proprietary file, MSDOS SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system.
functions) to application programs in a hardware-independent manner and, in turn, is iso-
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
1o perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

® File and directory management
® Character device input and output
® Time and date support

It also provides the following non-device-related functions:

€ Memory management
® Task and environment management
& Country-specific configuration

The MS-DOS Encyclopedia

Article 2; The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions MS-DOS
reserves Interrupts 20H through 3FH for this purpose The MS-DOS interrupts are

Interrupt Name

20H Terminate Program

21H MS-1DOS Function Calls

22H Terminate Routine Address
23H Control-C Handler Address
241 Critical Esror Handler Address
25H Absolute Disk Read

26H Absolute Disk Write

271 Terminate and Stay Resident
28H-2EH Reserved

2FH.- Muitiplex

30H—3FH Reserved

Interrupt 21H is the main source of MS-DOS services The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction (MS-DOS also supports
a call instruction interface for CP/M compatibility The function and parameter registers
differ from the interrupt interface The CB/M interface was provided in MS-DOS version 1.0
solely to assist in movement of CB/M-based applications to MS-DQOS. New applications
should use Interrupt 21H functions exclusively)

MS-DOS version 2 0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG SYS file. CONFIG SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de-
vice drivers to be loaded The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG 5Y5

The MS-DOS shell

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DGS BIOS and kernel have been loaded and initialized It provides the interface
between the kernel and the user The default MS-DOS shell, COMMAND COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented

COMMAND COM is a replaceable shell. A number of commercial products can be used
as COMMAND COM replacements, or a progiamumer can develop a custornized shell. The
new shell program is installed by renaming the program to COMMAND COM o1 by using
the SHEII command in CONFIG SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section II. Programming in the MS-DOS Environment 63

HUAWEI EX. 1204 A-3 - 44/165

Part A: Structure of MS-DOS

COMMAND COM can execute a set of internal (built-in) comumands, load and execute
programs, or interpret batch files Most of the internal commands support file and direc-
tory operations and manipulate the program environment segment maintained by
COMMAND COM. The programs executed by COMMAND COM are .COM or EXE files
loaded from a block device. The batch (BAT) files supported by COMMAND COM pro-
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands In particular, when it is first loaded by
MS-DOS, COMMAND COM searches for the baich file AUTOEXEC BAT and interprets it, if
found, before taking any other action COMMAND COM alsc provides default terminate,
Conirol-C and critical error handlers whose addresses are stored in the vectors for Inter-
rupts 22H, 23H, and 24H See PROGRAMMING IN THE MS-DOS ENVIRONMENT :
Cusromizing Ms-bos: Exception Handlers,

COMMAND.COM’s split personality

COMMAND COM is a conventional COM application with a slight twist Ordinarily, a
COM program is loaded into a single memory segment. COMMAND .COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in low memory The memory above the resident pottion is released to MS-DOS

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMAND.COM regains control of the system The resident
portion then computes a checksum on the area in high memory where the noniesident
portion should be, to determine whether it has been overwritten If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND COM continues its normal
operation '

This “split personality” exists becanse MS-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND COM, which contains the
built-in commands and batch-file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks Thus, permitting the nonresident portion to be overwritten frees additional
RAM and aliows larger application programs to be run

Command execution

COMMAND COM interprets commands by first checking to see if the specified command
matches the name of an internal command If so, it executes the command; otherwise, it
searches fora COM, EXE, or BAT file (in that order) with the specified name If 2 COM
or EXE program is found, COMMAND COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BHD to load and execute it; COMMAND COM itself interprets BAT files

If no file is found, the message Bad command or file name is displayed

Although a cominand is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name o be preceded by a full pathname If a path is not
explicitly specified, the COMMAND COM search mechanism uses the contents of the

The M5-DOS Encyclopedia

Article 2; The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-
mands. The search staits with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted For example, the PATH
specification

PAIH C:\BIN;D:\BIN:E:\

causes COMMAND.COM to search the current directory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E COMMAND COM searches each directory for a match-
ing COM, EXE, or BAT file, in that order, before moving to the next directory

MS-DOS environments

Version 2 0 introduced the concept of environments to MS-DOS. An environment is a
paragraph—aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable=value

that provide such information as the cutrent search path used by COMMAND.COM to find
executable files, the location of COMMAND COM itself, and the format of the user prompt
The end of the set of strings is marked by a null string — that is, a single zero byte. A
specific environment is associated with each program in memory through a pointer con-
tained at offset 2CH in the 256-byte program segment prefix (PSP) The maximurm size of
an environment is 32 KB; the defauit size is 160 bytes

If a program uses the EXEC function to load and execute another program, the contents of
the new program’s environment are provided to MS-DOS by the initiating program — one
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program’s
environment The default environment provided 1o the new program is a copy of the
initiating prograny’s environment

A program that uses the EXEC function to load and execute another program will not
itself have access to the new prograim’s environment, because MS-DOS provides a pointer
to this environment only to the new program Any changes made to the new program’s en-
vironment during program execution are invisibie to the initiating program because a
child program’s environment is always discarded when the child program terminates

The system’s master environment is normally associated with the shell COMMAND COM
COMMAND COM creates this set of environment strings within itself from the contents
of the CONFIG SYS and AUTOEXEC BAT files, using the SET, PATH, and PROMPT com-
mands. $ee USER COMMANDS: AUTOEXEC BAT; CONFIG sv5. In MS-DOS version 3 2, the
initial size of COMMAND COM’s environment can be controlled by loading

COMMAND COM with the /E parameter, using the SHELI directive in CONFIG SYS

For example, placing the line

SHELI=COMMAND COM /E:2048 /P

Section Il Programming in the MS-DOS Enyi ronment 65

HUAWEI EX. 1204 A-3 - 45/165

Part A: Structure of MS-DOS

Article 2: The Components of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND COM's enwironment to 2 KB (The /P
option prevents COMMAND COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND COM entwironment con-
tents SET with no parametess displays the list of all the environment strings in the envi-
ronment A typical listing might show the following settings: '

COMSPEC=A: \COMMAND . COM
PAIH=C:\;A:\;B:\
PROMPI=3p $d t_Snsg
IMP=C:\ [EMP
The following is a dump of the environment segment containing the previous environment
example:
9 1 2 3 ¢ 5 6 7 8 9 A B C D E F
D00 43 4F 4D 53 50 45 43 30-41 3A 5C 43 4F 4D 4D 41 COMSPEC=2:\COMMA
0010 4F 44 2E 43 4F 4D 00 50-41 54 48 3D 43 3A 5C 3B ND COM PAIH=C:\:
0020 47 3A SC 3B 42 3A 5C 00-50 52 4F 4D 50 54 3D 24 A:\;B:\ PROMFI-%

0030 7¢ 20 20 24 &4 20 20 24-74 24 SF 24 8R 24 67 00 P $d t_.sn$g
Q040 54 4D S0 3D 43 3& 5C 54-45 4D 30 00 00 00 00 00 TME=C:\1EMP .

A SET command that specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a BAT exiension thar contain MS-DOS user and batch com-
mands Each line in the file is limited tc 128 bytes Sgze USER COMMANDS: Batch. Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE BAI <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the
screen as it is typed The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
[BM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND COM one line at a time In addition to the stan-
dard MS-DOS commands, COMMAND COM’s batch-file interpreter supports a number of
special batch commands:

Command Meaning

ECHO* Display a message
FOR* Execute a2 command for a list of files
{more)
66 The MS-DOS Encyclopedia

Command Meaning

GOTO* Transfer control io another point
IF* Conditionally execute a command
PAUSE Wait for any key to be pressed
REM Insert comment line

SHIFT* Access more than 10 parameters

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Cirl-C or
Ctel-Break, causing COMMAND COM 1o display the prompt

lerminate batch job? (Y/N)

1/0 redirection

1/O redirection was introduced with M3-DOS version 2.0. The redirection facility is imple-
mented within COMMAND COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H) COMMAND COM uses these func-
tions to provide both redirection at the command levei and a UNIX/XENIX-like pipe
facility

Redirection is transparent 1o application programs, bt to take advantage of redirection, an
application program must make use of the standard input and output file handles The in-
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected

Redirection is specified in the command line by prefixing file or device names with the
special characters >, >>, and < Standard output (defauit = CON} is redirected using > and
>> followed by the name of a file or character device The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist-
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device See also PRO-
GRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-DOS: Writing MS-DOS
Filters

The redirection facility can also be used to pass information from one program to an-
other through 2 “pipe.” A pipe in MS-DOS is a special file created by COMMAND COM
COMMAND COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar (|}, separates the pro~
gram names Multiple program names can be piped together in the same command line:

C>DIR * * | SORI | MORE <Enter>
This command is equivalent to

C>DIR. *.* > PIPEQ <Enter>
C>S0RI < PIPE0O > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section II. Programming in the MS-DOS Environment 67

HUAWEI EX. 1204 A-3 - 46/165

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper-
ating system that actually runs the programs simultanecusly UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program: at a time and passes
information through a disk file

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations This section discusses the complete process normally associated with MS-DOS
versions 2 0 and later (MS-DQOS versions 1 x use the same general steps but lack support for
various system tables and ingtallable device diivers.)

MS-DOS is loaded as a result of either a “cold boot” or a “warm boot ” On IBM-compatible
machines, a cold boot is petformed when the computer is first turned on or when a hard-
ware reset occurs A cold boot usually performs a power-on self test (POST) and deter-
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by sirmultaneously pressing the Ctrl, Al,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices The body of MS-DOS is contained in two files: IO SYS and
MSDOS SYS (IBMBIC COM and IBMDOS COM with PC-DOS) 1O SYS contains the
Microsoft system initialization module, SYSINIT, which configures MS-DOS using either

default values or the specifications in the CONFIG SYS file, if one exists, and then starts up

the shell program (usually COMMAND COM, the default) COMMAND COM checks for an
AUTOEXEC BAI file and interprets the file if found (Other shells might not support such
batch files) Finally, COMMAND COM prompts the user for a command. {The standard
MS-DOS prompt is A> if the systemn was booted from a floppy disk and C> if the system
was booted from a fixed disk) Bach of these steps is discussed in detail below

The ROM BIOS, POST, and bootstrapping

68

Al 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:0000H, which typically contains a jump instruction (o a destination in the ROM BIOS
that contains the initialization code for the machine (This has nothing to do with MS-DOS;
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS
occupies the address space from FO00:0000H to this jump instruction Figure 2-1 shows the
location of the ROM BIOS within the 1 MB address space Supplementary ROM suppoit
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

-«— FIFF:000FH(1 MB)

ROM BIOS -«— FFFF:0000H
«— FO00:0000H
Other ROM and RAM
-«— Top of RAM
(A000:0000H for IBM PC)
Free RAM
L €~ 0000:0000H

Figure 2-1 Memory layout at stariup

The initialization routine in the ROM BIOS — the POST procedure — typically deter-
mines what devices are installed and operational and checks conventional memor§7 (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memoty {above 1
MB) The devices ate tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen

When the machine is found to be operarional, the ROM BIOS sets it up for normal opera-
tion First, it initializes the interrupt vector table at the beginning of memory and any intex-
rupt controllers that reference the table The intertupt vector table area is locaied from
0000-0000H to 0000:03FFI1 On IBM-compatible machines, some of the subsequent mem-
ory (starting at address Q000:0400H) is used for table stor age by various ROM BIOS rou-
tines (Figure 2-2). The beginning load address for the MS-DOS system fiies is usually in
the range 0000:0600H to 0000:0800H

Next, the ROM BIOS sets up any necessary hardwate interfaces, such as direct memory
access (DMA) controllers, serial ports, and the iike Some hardware setup may be done
before the interrupt vecior table area is set up. For example, the IBM PC DMA contioller
aiso provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is running; therefore, the DMA must be set up first

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed
by scanning the memory from A000:0000H to FO00:0000H for 2 particular sequence of sig-
nature bytes If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT’s fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a bootable

Section I1. Programnung in the M5-DOS Environment 69

HUAWEI EX. 1204 A-3 - 47/165

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

-«— FFFT:.000FH(]1 MB)

-«— FEFF:000FH(1 MB)
ROM BIOS «— FFFF:0000H ROM BIOS <«— FFFF:0000H
«— F000:0000H - <€— F000:0000H
Other ROM and RAM Other ROM and RAM
«— Top of RAM o : «— Top of RAM
(AQOC:0000H for IBM PC) (A000:0000H for IBM PC)
} Possible free RAM
Free RAM ' a .)
i : Boot sector <€— Arbitrary location
-«— 0000:0600H E
ROM BIOS tabl :
o <«— (000:0400H : Free RAM
Interrupt vectors
. < 0000:0000H ROMBIOS mbles | J000:0600H
i -— (000:0400H
Figure 2-2 The tnterrupt vector lable and the ROM BIOS table B Interrupt vegtors

L , ,) , , <— (060:0000H
disk in it If there is not, the routine then invokes the ROM associated with another boot- :
able device (o see if that device conrains a bootable disk This procedure is repeated until
2 bootable disk is found or until all bootable devices have been checked without success,

Figure 2-3 A loaded boot sector.

in which case ROM BASIC is enabled
Bootable devices can be detected by a number of proprietary means. The IBM PCROM Boossector € Fist sector on the disk
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family . Reserved
short or long jump at the beginning of the sector and for AASSH in the last word of the sec- {optional}
tor, This signature indicates that the sector contains the operating-system loader. Data . EATHI
disks —those disks not set up with the MS-DOS system files — usually cause the ROM ‘ _
loader routine to display a message indicating that the disk is not a bootable system disk EATH2
T he customary recovery procedure is to display a message asking the user to insert :
another disk (with the operating system files on it) and press a key to try the load opera- Root di

. : . . . L | oot directory
tion again The ROM loader routine is then typically reexecuted from the beginning so :
that it can repeat its normal search procedure [05YS
When it finds a bootable device, the ROM loader routine loads the operating-system loader
and transfers control to it The operating-system loader then uses the ROM BICS services MSDOS SYS
through the interrupt table to load the next part of the operating system into iow memory
Before it can proceed, the operating-system loader must know something about the con- File data area

stricture that contains this information. This stiucture, known as the BIOS parameter
block (BPB), is located in the same sector as the operating-system loader. From the con-
tents of the BPB, the operating-system loader calculates the location of the root directory

figuration of the system boot disk (Figure 2-4) MS-DOS-compatibie disks contain a data ——]

Figure 2-4 Boot-disk configuration

Section IT. Programming in the MS-DOS Environment 71

70 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 48/165

Part A: Structure of MS-DOS

for the boot disk so that it can verify that the first two entries in the root directory are

10 SYS and MSDOS SYS. For versions of MS-DOS through 3 2, these files must also be the
first two files in the fite data area, and they must be contiguous. (The operating-system
ioader usually does not check the file allocation table [FAT] to see if IO SYS and

MSDOS SYS are actually stored in contiguous sectors) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF Ms-DOs: MS-DOS Storage Devices

Next, the operaiing-system foader reads the sectors containing 10 8YS and MSDOS SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5) (Analterna-
tive method is to take advantage of the operating-system loader’s final jump to the entry
point in 10 SYS and include routines in 10 SYS that allow it to load MSDOS SYS)

Finally, assuming the file was loaded without any errors, the operating-sysmmlloader
transfers control to IO SYS, passing the identity of the boot device The operating-system
loader is no longer needed and its RAM is made available for other purposes

«— FFFF:000FH(1 MB})

ROM BIOS
<€~ FO00:0000H
Other ROM and RAM
-«— lop of RAM
(A0Q0:0000H for IBM PC)
Possibie free RAM
Boot sectoz €~ Arbitrary location
Free RAM
MSDOS SYS
<— SYSINII
105YS «— MS-DOS BIOS (resident device drivers)
ROM. BIOS tabl «— 0000:0600H
o= «— (000:0400H
Interrupt vectors

-— (00C:GCO00H

Figure 2-5 1O SYS and MSDOS YS loaded

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded 10 SYS
and MSDQOS SYS and transferred control to the beginning of 10 SYS To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load-
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to IO SYS, however, MS-DOS imposes its standards

The 1O SYS file is divided into three modules:

® The resident device drivers
® The basic MS-DOS BIOS initialization module
¢ The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first past of the IG SYS file,
before the initialization modules

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that cteated [O SYS. On IBM-compatible machines, it then
examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly 'This adjust-
ment usually entails removing those drivers that have no corresponding installed hard-
ware. The initialization routine may also modify internal tables within the device drivers
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module

SYSINIT locates the top of RAM and copies itself there. It then transfers control t the copy
and the copy proceeds with systemn initialization The first step is to move MSDOS SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of 10 SY§, which contains the resident device drivers This move over-
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou-
tine, Which are no longer needed The resulting memory layout is shown in Figure 2-6

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kerne! This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver to set up vectors for any external hardware interrupts used by the
device Each block-device diiver returns a pointer to a BPB for each drive thart it suppotts;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DQCS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUI device driver at the head of the device
driver list

Section II. Programming in the MS-DOS Environmernt 73

HUAWEI EX. 1204 A-3 - 49/165

Part A: Structure of MS-DOS

74

«— FFFF:000FH(1 MB)

ROM BIOS
«— F000:0000H
Other ROM and RAM
«— Topof RAM
(A000:0000H for BM PC)
SYSINIT
Free RAM

MS-DOS kernel
MSDOS.8YS)

MS-DOS BIOS
(FO.8YS)

ROM BIOS tables

«— Resident device drivers

«— 0000:06001
«— 0000:0400H

Interrupt vectors

<« 0000:0000H

Figure 2-6 SYSINIT and MSDOS 5¥S relocated

The kernel initialization routine’s final operation before retumning 0 SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS-DOS is now com-
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers

SYSINIT next attempts to open the CONFIG.8YS file in the root directory of the boot
drive If the file does not exist, SYSINIT uses the default system parametexs; if the file is
opened, SYSINIT reads the entire file into high memory and converts all charactes to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these stiuc-
tures are allocated following the MS-DOS ketnel (Figure 2-7)

Then SYSINIT processes the CONFIG SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded
FEach installable device driver initialization function is called after the device driver file is
Joaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is 1o be placed See PROGRAMMING IN THE MS-DOS ENVI-
RONMENT: CusToMIziNG Ms-Dos: Instatlable Device Drivets

The MS-DO3 Encyclopedia

HUAWEI EX. 1204 A-3 - 50/165

e i]

Article 2: The Components of MS-DOS

-«— FFFF:.000FH(1 MB)
ROM BIOS
-€— F000:0000H
Other ROM and RAM
«— Topof RAM
(AN(0:0000H for 1B
SYSINIT or IBM PC)
Free RAM
Installable
device drivers
File control blocks
Disk buffers
MS-DOS tables
MS-DOS kemel
(MSDOS SYS)
MS-DOS BIOS)
0 8YS) <€— Resident device drivers
ROM BIOS mbles |+ 0000:0600H
€~ 0000:0400H
Interrupt vectors

-€— GGO0:0000H

Figure 2-7. Tables allocated and instaliable device drivers loaded

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
dev.ice driver initialization routine determines that a device is inoperative or nonexistent
A di.scarded device driver is not included in the list of device drivers Installable char acteg;
device drivers supersede resident character-device drivets with the same name; installabk
block-device drivers cannot supersede resident block-drivers and are assigned ,drive léttefs

Jollowing those of the resident block-device drivers.

Section IL Programming in the M5-DOS Enuironment 75

Part A: Structure of MS-DOS

Article 2: The Components of M$-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to LPT1); the standard auxiliary pott
is AUX (which defaults to COM1). Installable device drivers with these names will replace
any resident versions

Starting the shell

SYSINIT’s last function is to load and execute the sheli program by using the MS-DOS
EXEC function. See PROGRAMMING IN T HE MS-DOS ENVIRONMENT: PROGRAMMING
FOR Ms-DOS: The MS-DOS EXEC Function The SHELL statement in CONFIG SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND .COM. The shell program is loaded at the start of free memory after the
instatiable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8)

COMMAND.COM

76

COMMAND COM consists of three parts:

® A resident portion
® Aninitialization module
® A transient portion

The resident pottion contains support for termination of progiams started by
COMMAND COM and presents critical-error messages. It is also responsible for re-
loading the transient pottion when necessary

The initialization module is called once by the resident portion First, it moves the tran-
sient portion to high memory (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELT command in the CONFIG SYS file, if any See USER
COMMANDS: commanD Next, it processes the AUTOEXEC BAT file, if one exists, and
finally, it transfers control back to the resident pottion, which frees the space used by the
initialization module and transient portion. T he relocated wansient portion then displays
the MS-DOS user prompt and is ready 10 accept commands

The transient portion gets 2 command from either the console or a batch file and executes
it Commands are divided into three categories:

¢ Internal commands
8 Batchfiles
® External commands

Internal commands are routines contained within COMMAND COM and include opera-
tions like COPY or ERASE Execution of an internal command does not overwrite the tran-
sient portion. Internal commands consist of 2 keyword, sometimes followed by a list of
command-specific parameters.

The M5-DOS Encyclopedia

«— FFFF:000FH(! MB)
ROM BIOS

~«— FO00:00008
Gther ROM and RAM

-«%— Top of RAM
(A000:0000H for IBM PC)

SYSINIT

Free RAM

COMMAND COM
{trangient)
COMMAND COM
(initialization)

COMMAND .COM
(resident)

Installabie
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-BOS kernel
(MSDOS SYS)

MS-DOS BIOS - i i .
A0 SYS) Resident device drivers

<— 0000:0600H
<« 0000:0400H

ROM BIOS tables

Interrupt vectors

“— (000:0000H

Figure 2-8 COMMAND COM logded

Section IL: Programming in the MS-DOS Environment

HUAWEI EX. 1204 A-3 - 51/165

77

Part A: Structure of MS-DOS

78

«— FEFF:000FH(1 MB)

ROM BIOS
~— FO00:0000H

Other ROM and RAM
. «— ITopof RAM

COMMAND COM {A000:0000H for IBM PC)
(transient)

Free RAM

COMMAND .COM
(resident)

Installable
device drivers

File conirol blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS 5YS)
MS-DOS BIOS -«€— Resident device drivers
0 SYS)
«— 0000:0600H
ROM BIOS tables “ (000:0400H
InterTupt vectors
-«£— (000:0000H

Figure 2-9 COMMAND COM after relocation

Batch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: BaTCH

fxternal commands, which are actually executable programs, are stored in ‘sep;'n‘ate ‘

files with COM and EXE extensions and are included on the M3-DOS distribution disks
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: ?t: uc-
ture of an Application Program. Theése programs are invoked with the name qf the file
without the extension. (MS-DOS versions 3 x allow the complete pathname of the external

command to be specified)

The MS-DOS Encyclopedia

Article 2; The Components of MS-DOS

External commands are loaded by COMMAND COM by means of the MS-1DOS EXEC func-
tion. The EXEC function loads a program into the free memory area, also called the tran-
sient program area (TPA), and then passes it control. Conirol returns to COMMAND COM
when the new program terminates Memory used by the program is released unless it is a
terminate-and-stay-resident (I SR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CusTOMIZING MS-DOS; Terminate-and-Stay-Resident Utilities

After a program terminates, the resident portion of COMMAND COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion’s memory space. T he validity check is done by computing a check-
sum on the transient portion and comparing it with a stored value If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND COM file.

Just as COMMAND.COM uses the EXEC function to load and execute a program, pro-
grams can load and execute other programs until the system runs out of memoty. Figure
2-10 shows a typical memory contfiguration for multiple applications loaded at the same
time The active task — the last one executed — ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced

MS-DOS is not a muititasking operating system, so although several programs can be resi-
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10 The top program is the active one; the next program
down will continue 1o run when the top program exits, and so on until control returns to
COMMAND COM RAM-resident programs that remain in memory after they have termi-
nated are the exception In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is still in effect

A custom shell program

The SHELI directive in the CONFIG SYS file can be used to replace the system’s default
shell, COMMAND COM, with a custom shell Nea:ly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions
For example, the progiam in Figure 2-11 can be used to make any application program
appeat to be a shell program — if the application program terminates, SHEI1 COM
restarts it, giving the appearance that the application program is the shell program

SHEILI COM sets up the segment registers for operation as a COM file and reduces the
program segment size to less than 1 KB It then initializes the segment values in the param-
eter table for the EXEC function, because COM files cannot set up segment values within a
program The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries 1o load the new shell program. SHELL COM prints a
message if the EXEC operation fails The loop continues forever and SHELL COM wiil
never return to the now-discarded SYSINTT that started it

Section IT: Programming in the 3S-DOS Environment 79

HUAWEI EX. 1204 A-3 - 52/165

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

-«— FFFF:000FH(1 MB) SHELL ASM A simple program to run an application as an

ROM BIOS : ; M5-DOS shell program Ihe program name and
; startup parameters must be adjusted before
-~— F000:0000H : SHEIT is assembled
Other ROM and RAM ' Lo
: ; Written by William Wong
«— Topof RAM b
COMMAND COM (A000:0000H for IBM PC) Io create SHEIL COM:
(transient)
: C>MASM SHELIL:
; C>LINK SHEIL:
Free RAM : ; C>EXE2BIN SHELI .EXE SHELIL.COM
; stderr equ 2 ; standard error
Program #3 : cr equ 0dh ; ASCII carriage return
(active) 1f equ Oah : ASCII linefeed
cseg segment para public 'CODE’
Program #2 ;
-=- BSet up DS, ES, and SS:5P to run as .COM --
Program #1 assume ¢5:¢seg
start proc far
mov ax,cs set up segment registers
COMDCOM add ax, 10h ; AX = segment after PSP
{resident) — ds,ax
Instaliable i mov 55,a% 7 set up stack peinter
d .St d:i e : mov sp,offset stk
eVICe drivers mov ax,cffset shell
push cs ; push original CS
File control blocks B push ds ; push segment of shell
't push ax ; push offsetr of shell
ret ; jump to shell
i start endp
Disk buffers i
o= Maih program running as COM --
MS-DOS tables : ; ¢S, DS, SS = cseg
: ; Original CS wvalue on top of stack
Mséggssks‘?ymse)l assume ¢s:cseq,ds:cseg, S5:CSeg
M ' “ seg_size equ (((offset last}) - {offset start}) + 10fh}/18
MS-DOS BIOS : shelil proc near
—IO SYS «— Resident device drivers i pop es ; ES = segment to shrink
ROi\;BIos < oomooons ‘ mor amaan Lk - masity mamers biocr
eg : mov ah, 4a ' = modify memery ack
0000:0400H int 21h ¢ free excess memory
Interrupt vectors mov cmd_seq, ds i setup segments in
- (000:0000H mov fcbl_seg,ds : parameter block for EXEC
; mov feb2_seg, ds
Figure 2-10 Multiple programs loaded ; mev dx,offset main_loop
. mov ax,2523h : RX = set Control-C handler
Figure 2-11 A simple program to r un an application as an M5-DOS shell {(more)
80 The MS-DOS Encyclopedia Section II. Programming in the M5-DOS Environment 81

HUAWEI EX. 1204 A-3 - 53/165

Part A: Structure of MS-DOS

int 21h ; set handier to DS:DX

mov dx,offset main_loop

mov ax,2524h ; AX = set critical error handler
int 21h set handler to D5:DX

main_loop:

push ds H

push es

mov cs:stk_segq, ss ;

mov cs:stk_off, sp

mev dx, offset pgm._name
mov bx,offset par.blk

mov ax, 4b00h H

int 21h H

mov 55,0815tk _seg ;

mov sp,cststk_off

pop es ;

pop ds

jnc main_loop B

mov dx,offset load_msg
mov cx, load msg.length
call print

nov ah, 08h H

int 21h

Jmp main_loop

shell endp

-- Print string --

D8:DX = address of stiring
r CX = size
print proc near
mov ah, 40h
mov bx, stderr ;
int 21h
ret

print endp
; -- Message strings --

load_msg db cr,lf
db 'Cannct load program.'
db 'Press any key to try
load _msg_length equ $-load msqg

-—~ Program data area --

stk_seg dw 0 i

stk_off dw 0 ;
pgm_name db "\NEWSHEIL COM',0

Figure 2-11 Continued

82 The MS-DOS Encyclopedia

Note: DS is egual to C3
save segment registers

save stack pointer

AX = EXEC/run program
carry = EXEC failed
restore stack pointer

restore segment registers

locop if program run

display error message
AH = read without echo
wait for any character
execute forever

AH = write to file
BX = file handle
print string

scr, L
again ",cr,lf

stack segment peinter
save area during EXEC
; any program will do

(more)}

Article 2: The Components of MS-DOS

par_blk dw 4] ;
dw cffset cmd_line ¢
cmd_seg dw o} H
dw offset fcbit ;
febl oseq dw d ;
dw offset fcb2
fch2 _seg dw o] H
cmd_line db 0,cr ;
febl db 0
db 11 dup (" ")
db 25 dup (0)
fch2 db 0
db 171 dup (' ")
[sis] 25 dup { 0)
dw 200 dup { 0)
stk dw 0
last equ $;
cseg ends
end start

Figure 2-11 Continued

use current environment
command-line address

£111 in at initialization
dafault FCB #1

£i11l in at initialization
default FCB 42

£ill in at initialization
actual command line

program stack area

last address used

SHELL COM is very short and not too smatt It needs to be changed and rebuilt if the name
of the application program changes A simple extension to SHHELI —call it XSHEI T —
would be 10 place the name of the application program and any parameters in the comn-
mand line. XSHEIL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function The CONFIG SYS line for starting this shell

would be

SHELL=XSHELL \SHELIADEMC.EXE PARAM1 PARAMZ? PARAM3

SHEILL COM does not set up a new environment but simply uses the one passed to it

William Wong

Section Il Programming in the MS-DOS Ervironment 83

HUAWEI EX. 1204 A-3 - 54/165

HUAWEI EX. 1204 A-3 - 55/165

Article 3: MS-DOS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-
system support that is part of the MS-DOS kernel The MS-DOS kernel accesses these
storage devices, also called biock devices, through two types of device drivers: resident
block-device drivers contained in IO.8YS and installable block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DCS
ENVIRONMENT: S1rRUCTURE OF Ms-DOs: T he Components of MS-DOS; CUSTOMIZING
Ms-DOs: Installable Device Drivers

MS-DOS can handle almost any medium, recording methoed, or other variation for a storage
device as long as there is a device driver for it MS-DQS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver Information
about the number of heads, tracks, and so on is required only for those partitioning pro-
grams that allocate logical devices along these boundaries See Layout of a Partition below

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removabie hard disks, tape drives, and CD ROM drives With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, staiting

with the physical layout of a disk and then moving on to the logical iayout of the file sys-
tem. The scheme examined is for the IBM PC fixed disk

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

® Physical device layout
® Logical device layout
® logical block layout

& MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device A pattitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one Each logical device

Section Il Programming in the MS-DO5 Environment 85

Part A: Structure of MS-DOS

has a logical block tayout used by MS-DOS to implement z file system. These various
views of an MS-DOS disk are discussed below See alsc PROGRAMMING IN THE MS-DOS
ENVIRONMENT: ProcrAMMING FOR MS-DOS: File and Record Management; Disk Directo-
ties and Volume Labels '

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag-
netic media such as floppy or fixed disks Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors

RAMdisks

A RAMdisk is a biock device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer’s power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
tha its contents are not lost when the computet’s power is tutned off). Second, they are
usually not portable

Physical disks

86

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
planiets coated with a special magnetic material The disk is rotated in the drive at high
speeds — approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term “fixed” refess to the fact that the medium is built permanently
into the drive, not to the motion of the medium) Fixed disks are also referred 1o as “hard”
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium. T he regions act like small bar magnets with
north and south poles The magnetic regions of the medium can be logically oriented
toward one or the other of these poles — orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli-
ably capable of flux reversal Higher densities of these regions vield higher-capacity disks
The flux density of a particular system depends on the drive mechanics, the characteris-
tics of the read/write head, and the magnetic properties of the medium

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency moduiation (FM), modified frequency modulation (MFM),

The MS-DOS Encyclopedia

Article 3: M5-DOS Storage Devices

run length limited (RIL) encoding, and advanced 1un length limited (ARLL) encoding
Each technique offers double the data encoding density of the previous cne The associ-
ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circula: fashion around the disk (Figure 3-1) Standard 5 25-
inch floppy disks contain either 40 (0—39) or 80 (0-79) tracks per side. L ike-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1

Tracks can be either spirals, as on a phonograph record, or concentric tings Computer
media usually use one of two types of concentric rings The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-
ity (CAV) The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLV).

Sector

= N

)

N\ el

Tracks

Figure 3-1 The physical layout of a CAV 9-sector, 5 25-inch floppy disk

Most M5-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. Ihis difference in storage capacity accurs because the limiting
factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the fuli capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMSs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track Thus, CAV disks are preferred for MS-DOS systems

Section II: Programming in the M5-DOS Environment 87

HUAWEI EX. 1204 A-3 - 56/165

Part A: Structure of MS-DOS

88

Heads
Simple disk systems use a single disk, or platter, and use one or two sides of the platter;

more complex systems, such as fixed disks, use multiple platters Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter (Performance
can be increased by increasing the number of heads to'as many as one head per track,
eliminating the positioning mechanism However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder Disks are usually pastitioned along cylinders
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of

a single platter, whereas the term cylinder refers to the number of like-numbered tracks on

a device (Figure 3-2)
N

Side 0, track 7

Side 1,
wack 7

1
rcyﬁnder

Side 2. mmack 7

Side 3 track 7

Figure 3-2 Tracks and cyiinders on a fixed-disk system.

Sectors
Each track is divided into equal-size portions called sectors. The size of a sector is a power
of 2 and s usually greater than 128 bytes — typically, 512 bytes.

Floppy disks are either hard-sectored ot soft-sectored, depending on the disk drive and
the medium Hard-sectored disks are implemented using a series of small holes near the

The MS-DOS Encyclopedia

Article 3: M3-DOS Storage Devices

center of the disk that indicate the beginning of each sectot; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has z single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per-
formed, this hole is also read by a photosensor/LED pair. Fixed disks use a special imple-
mentation of soft sectors (see below) A hard-sectored floppy disk cannot be used ina

disk drive buitt for use with soft-sectored floppy disks (and vice versa)

In addition to a fixed number of data bytes, both sector types include a certain amount of
ovethead information, such as error cortection and sector identification, in each secior.
The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5 25-inch floppy disks generally have from 8 to 17 physical sec-
tors per track Sectors are numbered beginning at 1 Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number To
access a particular sector, the disk drive controller hardware moves all heads to the speci-
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
tations The first method, used with floppy disks, empioys an “open-loop” servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there (A servomechanism is a device that can maove a solenoid or hold it in a fixed
position) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly— the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected . The positioning mechanism in floppy-disk drives is made with close tolerances
because if the pesitioning of the heads on two drives differs, disks written on one might
not be usable on the other

Most fixed disk systems use the second method — a “closed-loop” servomechanism that
reserves one side of one platter for positioning information This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or wiite operation; then the disk controller reads the closed-loop servo information,
compares it 1o the desired location, and fine-tunes the head position accordingly This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller Because the “servo platter” usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data

Interleaving

CAV MS-DCS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency)

Section II. Programming in the MS-DOS Environment 89

HUAWEI EX. 1204 A-3 - 57/165

Part A: Structure of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3) The underlying princi-
ple is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track This staggering of sectors is called skewing or, more com-
monly, interleaving A 2-to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor A 3:1interleave
means that three revolutions are required to read all sectors on a track in numeric order

Rotation direction
———

Figure 3-3 A 3 I interieave

One approach to improving fixed-disk performance is to decrease the interleave ratio)
This generally requires a specialized utility program and also requires that the disk be !
reformatted to adjust to the new layout Obvicusly, a 111 intetleave is the most efficient,

provided the disk controller can process at that speed The normal interleave for an IBM

PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail-

able for the PC/AT that are capable of handling a 1:1 interleave Floppy disks on MS-DOS-

based computers all have a 1:1 interleave ratio

Layout of a partition

90

For several reasons, large physical block devices such as fixed disks are often logically par-

titioned into smaller logical block devices (Figure 3-4). For instance, such patitions allow _
a device to be shared among different operating systems Partitions can aiso be used to :
keep the size of each logical device within the PC-DOS 32 MB restriction (important for :
large fixed disks). MS-DOS permits a maximum of four partitions

A partitioned block device has a partition table located in one sector at the beginning of
the disk This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table)

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

Partition 1
Partition 2

Partition 3
|— Partition 4

~

L ——

>

AN\

iz

Figure 3-4 A pariitioned disk

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con-
tains the partition table and a bootstrap program capable of checking the partition table
for 2 bootable partition, loading the bootable partition's boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries: '

Offset From .

Start of Sector Size (bytes) Description
01BEH 16 Partition #4
01CEH 16 Paztition #3
01DBEH 16 Partition #2
01EEH 16 Partition #1
01FEH 2 Signature: AASSH

The partitions are allocated in reverse order. Each 16-byte entry contains the following
information:

Offset From
Start of Entry Size (bytes) Description
00H 1 Boot indicator
01H 1 Beginning head
(more)
Section II. Programming in the M5-DOS Environment 91

HUAWEI EX. 1204 A-3 - 58/165

Part A: Structure of MS-DOS Article 3: MS-DOS Storage Devices

Offset From Layout of a file system
Start of Entry Size (bytes) Description Block devices are accessed on a sector basis The MS-DOS kernél, through the device
02H 1 Beginning sector driver, sees a block device as a logical fixed-size array of sectors and assumes that the array
03H 1 Beginning cylinder contains gv_alid MS-DOS file system The device driver, in turn, transtates the logical sector
04H 1 System indicator : requests from MS-DOS into physical locations on the block device
ggg i gngfng heatd . _ The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT
nding sector program. See USER COMMANDS: rorMat . The general layout for the file system is shown
O7H 1 Ending cylinder _ in Figure 3-5
08H 4 Starting sector (relative to beginning
of disk)
OCH 4 Number of sectors in partition OEM identification BIOS parameter block. Loader routine

Reserved area

The boot indicator is zero for 2 nonbootable partition and 80H for a bootable (active) parti-
tion. A fixed disk can have only one bootable partition (When setting a bootable partition,)]
partition programs such as FDISK reset the boot indicators for all other partitions to zero) : File altocation table (FAT) #1
See USER COMMANDS: FDISK

The system indicatars are Possible additional copies of FAT

Code Meaning

O0OH Unknown : N
01H MS-DOS, 12-bit FAT : oot dis clory
04H MS-DOS, 16-bit FAT

Each partition’s boot sector is located at the start of the partition, which is specified in i
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-
mation, stored in the partition table in this order, is loaded into the DX and CX registers by

the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting f /’—\’///
sector of the partition relative to the beginning of the disk is also indicated The ending | /w
head, sector, and cylinder numbers, alsc included in the partition table, specify the last ac- :

cessible sector for the partition The total numbes of sectors in a partition is the difference ’

between the starting and ending head and cylinder numbers times the number of sectors Files area

per cylinder

MS-DOS versions 2 0 through 3.2 allow only one M5-DOS patrtition per partitioned device : Figure 3-5 The MS-DOS file system

Various device drivers have been implemented that use a different partition table that j

allows more than one MS-DOS partition to be instalied, but the secondary MS-DOS parti- ‘ T he boot sector is always at the beginning of a partition It contains the OEM identifica-

tions are usually accessible only by means of an installable device driver that knows about ; tion, a loader routine, and a BIOS parameter block (BPB) with information about the

this change (Fven with additional MS-DOS partitions, a fixed disk can have only one boot- i device, and it is followed by an optional area of reserved sectors. See The Boot Sector

able partition) _1 below The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area. The file allocation tables (FATs) indicate how the
. file data area is allocated; the root directory contains a fixed number of directory entries;
; and the file data area contains data files, subdirectory files, and free data sectors.

92 The MS-DOS Encyclopedia Section II- Programwning in the MS-DOS Environment 93

HUAWEI EX. 1204 A-3 - 59/165

Part A: Structure of M3-DOS

All the areas just described —the boot sector, the FAT, the root directory, and the file data
area —are of fixed size; that is, they do not change after FORMAT sets up the medium

The size of each of these areas depends on vatious factors. For instance, the size of the FAT
is proportionai to the file data area The root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256 (RAMdisk drivers such 2s RAMDRIVE 5YS and
some implementations of FORMAT allow the number of directory entries to be specitied)

The file data area is allocated in terms of clusters. A clusterisa fixed number of con-
tiguous sectors Sector size and cluster size must be4 power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are
possible Commonly used MS-DOS cluster sizes ate

Disk Type Sectors/Cluster Bytes/Cluster™
Single-sided floppy disk 1 512
Double-sided floppy disk 2 1024
PC/AT fixed disk 4 2048
PC/XT fixed disk 3 4096
Other fixed disks 16 8192
Other fixed disks 32 16384

* Assumes 512 bytes per sector

In general, larger cluster sizes aze used to support larger fixed disks Although smaller clus-
te1 sizes make allocation more space-efficient, larger clusters are usually more efficient for
random and sequential access, especially if the clusters for a single file are not sequentiaily
allocated

The file allocation table contains one entry per cluster in the file data area. Doubling the
sectors per cluster will aiso halve the number of FAT entries fora given partition See The
File Allocation Table below

The boot sector

The boot sector (Figure 3-6) contains a BIOS parameter block, 2 loader routine, and some
other fields useful to device drivers. The BPB describes a number of physical parameters
of the device, as well as the location and size of the other areas on the device. The device
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter-
mine how the disk is configured

Figure 3-7 is 2 hexadecimal dump of an actual boot sector The first 3 bytes of the boot sec-
tor shown in. Figure 3-7 would be E9H 2CH 00H if 2 long jump were used instead of a short
one {(as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, are a
fixed signature used by the loader routine to verify that the sector is a valid boot sector

94 The MS-DOS Encyclopedia

Article 3; MS-DOS Storage Devices

HUAWEI EX. 1204 A-3 - 60/165

00H

B9 XX XX XX
- or EB 90

OEM name and version (8 bytes)

0BH -«

B Y
ODH ytes per sector (2 bytes)

Sectors per allocatt it

OEH per allocation unit (1 byte)
\oH Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

tH1H
Number of root-directory entries (2 bytes) BPB

13H

SH Total sectors in logical volume (2 bytes)
161 Media descriptor byte

\8H Number of sectors per FAT (2 bytes)
1AH Sectors per track (2 bytes)

— Number of heads (2 bytes)

\EH Number of hidden sectors (2 bytes)

Loader routine

Figure 3-6. Ma : g ;
(Bi - 3 5 of the boot sector of an M5-DOS disk Bytes OBH through 17H are the BIOS parameter block

The BPB information contained in bytes 0BH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot sector}
2 FATs
112 roet directory entries
1440 sectors on the disk
FO9H media descriptor
3 sectors per FAT

Section II. Programming in the M5-DOS Environment 95

Part A: Structure of MS-DOS

0000 EB 2D 90
0010 3
00206 00 0A 00
003 BB €O 07

0180 OA 44 69
0180 72 €5 0D
01AQ 20 64 69
0iB0 72 6F 7Z
o1co 20 76 72
G100 68 65 BE
01E0 00 00 00
01F0 00 00 00

Figure 3-7 Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted

345 5 7 8
20 20 20 20 20-20

Sh-09
00 DF 02 25 02-0%
8E D8 BC 00 7C-33

73 6B 20 42 6F-6F 74 20 4& &1
0A 0D QA 4E 6F-6FE 2D 53 79 73
73 6B 20 6F 12-20 64 €9 73 6B
0D OA 52 65 70-6C 61 63 65 20
65 73 13 20 61-86E 7% 20 6B 65
20 72 65 61 64-7% 0D OA 00 Q0
g0 00 00 00 00-00 00 00 00 00
60 00 00 00 00-00 00 00 00 00

69
74
20
61
79
00
00
00

k-

Boov. e
. .—. % .®PV. Z
8@, .x<.i38.P .80

6C 715 .Disk Boot Failu
65 €D re... Non-System
65 72 disk or disk er

6E 64 ror. .Replace and
20 77 press any key w
o0 00 hen ready

00 00 G .
55 AA I

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
indicate the type of medium currently in a drive. IBM-compatible media have the follow-

ing descriptors:

Descriptor Media Type MS-DOS Versions
OF8H Fixed disk 2,3 :
OF0H 3 5-inch, 2-sided, 18 sector 32
0F9H 3 5-inch, 2-sided, 9 sector 32
OF9H 5 25-inch, 2-sided, 15 secror 3x
OFCH 5 25-inch, 1-sided, 9 sector 2%,3x
0FDH 5.25-inch, 2-sided, 9 sector 2% 3x
OFEH 5 25-inch, 1-sided, 8 sector 1% 2% 3x
OFFH 5 25-inch, 2-sided, 8 sector 1x(except10),2,3
OFEH 8-inch, I-sided, single-density
OFDH 8-inch, 2-sided, single-density
OFEH 8-inch, I-sided, double-density
0FDH 8-inch, 2-sided, double-density
96 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi-
cating which clusters are allocated to each file and in what order To enable MS-DOS o
locate a file, the file’s directory entry contains its beginning FAT entry number This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links
(The set of links for a particular file is called a chain)

Additional copies of the FAT are used to provide backup in case of damage to the first,

or primary, FAT; the typical floppy disk or fixed disk contains two FATs, The FATs are
arranged sequentially after the boot sector, with some possitde intervening reserved area.
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs

It aiso compares all FATs when a disk is first accessed, to make sure they match

MS-DOS supports two types of FAT: One uses 12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
Itnks.

The first two entries of a FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (For a 16-bit FAT) OFFH bytes, as shown
in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:
F9 F7 FF 03 40 00 FF 6F-00 07 FO FF 00 0C 00 00
16-bit FAT:
F8 FF Fi FF 03 DO 04 00-FF FF 06 00 07 00 FF FF

T'he remaining FAT entries have a one-to-one relationship with the clusters in the file data
area Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in-
itially marks the FAT entry for each cluster as free) The use status is one of the foliowing:

12-bit 16-bit Meaning

000H 0000H Free cluster

00182 0001H Unused code

FFO-FF6H FFFO-FEF6H Reserved

FF7H FFF7H Bad cluster; cannot be used
FF8-FFFH FEF8-FFFFH Last cluster of file

All other values

All other values

Link o next ciuster in file

Section IT. Progmmmz'ng in the M5-DOS Environment

HUAWEI EX. 1204 A-3 - 61/165

97

Part A: Structure of MS-DOS
Article 3: MS-DOS Storage Dy,
2%

1f a FAT entry is nonzero, the corresponding cluster has been allocated A free cluster is 12-hit FAT:
found by scanning the FAT from the beginning 1o find the first zero value Bad clusters are
ordinarily identified during formatting Figure 3-8 shows a typical FAT chain _ Reserved 003H FFER 0078 000H
FAlenay: 0 i 2 3 4 5 6 7 8 9 }
" ! wL ! ¢ L i E9 F¥ FE 03 40 00, BEF 6F 00 07 FEO EE'J 00 oo
FFDH | FFFH | 003H | 005H | FF7H) 006H | FFFH | 000H | 000H | OCCOH {j—J t-—-LIJ
(4093)] (4095) | () | () (@8N ® @09 © | @ | @ conines 0043 006H FEFH
_ 16 bit FAT:
Reserved
Unused; available cluster G003H Q004H FFFFH 0006H 00074 EEEEH D000
f 1
Urusable E8 FF FF EF 03 00 04 00 FF §F 06 :(-).f ‘07 00 EFF FE 00 00
Unused; not available
— Disk is double-sided, double-density FAT entry: 0 1 5 3 4 5 6 ; a
Figure 3-8 Space allocation in the FAT for a typical MS-DOS disk _hi . -
_ 12-bit FAT: 2 I o | 003s [o0ar [evra [oosx | 0o7a | Frrm | ooon !
‘ 16-bit FAT: eserve continues . :
i : i O003H |00O4H [FEFEH | 0006|000 70 |FEFEH [0000K

Free FAT entries contain a link vaiue of zero; a link value of 1is neverused Thus, the first
allocatable link mumber, associated with the first available cluster in the file data area, is 2, u

which is the number assigned to the first pAysical cluster in the f{ile data area Figure 3-9 , Directory entry U u
shows the relationship of files, FAT entries, and clusters in the file data area. :

FILEi TXT
(points to FAT entry 2)

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries;
the difference is simply in the storage and access methods Because the 8080 is specifically
designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit
FAY is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11)

FILEZ. TXT
(poinis to FAT entry 5) |-

Special considerations)
The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can File data arca Corresponding FAT entry
occur One tradeoff is having a partially filled cluster at the end of a file This situation FILE] TXT ‘

leads to an efficiency problem when a large cluster size is used, because an entire cluster is 2
allocated, regardless of the number of bytes it contains For example, ten 100-byte files on a ‘ FILEL 1XT '

disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus- 5 3

ters use only 10 KB-—a difference of 150 KB, or 15 times less storage used by the smaller l L FILEL IXI 4

cluster size On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty '

(and therefore slowness) of moving through a large file that has a long linked list of many L FILED TXT S

small clusters. Therefore, the nature of the data must be considered: 1arge database appli-
cations work best with a larger cluster size; a smaller cluster size allows many smali text .‘ FILE2 IXT
files to fit on a disk (The programmer writing the device driver for a disk device ordinarily 6

sets the cluster size)

FILEZ TXI 7

l Unused (avaiiable) 8
i 1

Figure 3-9 Correspomdence between the FAT and the file data area

Section IL. Programming in the M5-DOS Environment 90

L

98 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 62/165

Ppart A: Structure of MS-DOS

i

; Parameters:

; ax =
; ds:bx =
; Returns:

H ax =

———— Obtain the next link number from a 12-bit EFAI

current entry number
address of FAI (must be contiguous)

next link number

; Uses: ax, bx, cx

nextl12 proc near ,
add bx,ax ; ds:bx = partial index
shr ax, ! ; ax = offset/2
; carry = no shift needed
pushf ; save carry
add bx,ax ; ds:bx = next cluster number index
mov ax, [bx] ; ax = next cluster number
popf ; carry = no shift needed
jc shift ; skip if using top 12 bits
and ax, 0ffth ; ax = lower 12 bits
ret
shift: mov cx, 4 ; cx = shift count
shr ar,cl ; ax = top 12 bits in lower 12 bits
ret

next12 endp

Figure 3-10 Assembly-language routine o access a 12-bit FAT.

;

; Parameters:
ax =
ds:bx

; Returns:

; ax =

;

; Uses: ax, bx,

next16 proc
add
add
mowv
ret

nextlo endp

———- Obtain the next iink number from a 16-bit FAI

current entry number
address of FAI (must be contiguous)

next link number

near

ax, ax ; ax = word offset

bx, ax ; ds:bx = next link number index
ax, [bx} ; ax = next link number

Figure 3-11 Assembly-language routine lo access @ 16-bit FAT.

100 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 -

Articie 3: MS-DOS Storage Devicec

Problems with corrupted directories or FATS, induced by such events as power failures
and programs running wild, can lead to greater problems if not corrected The MS-DOS
CHKDSK program can detect and fix some of these problems See USER COMMANDS:
cHKDsK For example, one common problem is dangling allocation lists caused by the
absence of a directory entry pointing to the start of the list This situation often results
when the directory entry was not updated because a file was not ¢losed before the com-
puter was turned off or restarted The effect is relatively benign: The dara is inaccessible,
but this limitation does not affect other file allocation operations CHKDSK can fix this
problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entry does not match the file
length as computed by traversing the linked list in the FAT This problem can resultin
improper cperation of a program and in. error responses from MS-DOS

A more complex (and rarer) problem occurs when the directory entry is properly set up
but ali or some portion of the linked list is also referenced by another directory entry. The
problem is grave, because writing or appending to one file changes the contents of the
othet file This error usually causes severe data and/or directory corruption or causes the
system to crash

A similay difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster number If the free cluster is allocated before the error is corrected, the
problem eventually reverts to the preceding problems. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered

In addition 1o CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance. For instance, disk reorganizets can be used to essentially
reasrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT

The root directory

Directory entries, which are 32 bytes long, are found in hoth the root directory and the
subdirectories. Each entry includes a filename and extension, the file’s size, the starting
FAT entry, the time and date the file was created or last revised, and the file’s aitributes
This structure resembles the format of the CP/M-style file control blocks (FCBs) used by
the MS8-DOS version 1 x file functions. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-Dos: Disk Directories and Volume Labels

The MS-DQS file-naming convention is also derived from CP/M: an eight-character file-
name followed by a three-character file type, each left aligned and padded with spaces if
necessary. Within the limitations of the character set, the name and type are completely
arbitrary. The time and date stamps are in the same format used by other MS-DOS func-
tions and reflect the time the file was last written to

Figure 3-12 shows a dump of a 512-byte directory sector containing 16 direciory entries
{Each entry occupies two lines in this example) The byte at offset 0ABH, containing a
10H, signifies that the entry starting at 0AOH is for a subdirectory The byte at offset 160H,
containing OESH, means that the file has been deleted The byte at offset 8BH, containing

Section IE: Programming in the M$-DOS Environment 101

63/165

Part A: Structure of MS-DOS

the value 08H, indicates that the directory eniry beginning at offset 80H is a volume label
Finally the zero byte at offset 1IEOH marks the end of the directory, indicating that the sub-

sequent entries in the directory have

(versions 2 0 and later)

never been used and therefore need not be searched

Article 3: MS-DOS Storage Devices

102

0 1 2 3 4 5 & 7T 8 9 A B C D EE
0000 49 4F 20 20 20 20 20 20-53 59 33 27 00 00 00 00 0 sYS!
001G GO0 00 00 0C 00 00 59 53-83 OB 02 00 DI 12 00 09 P £ T o
0020 4F 53 44 4F 53 20 20 20-53 59 53 27 00 00 Q0 0 M3DOos 5Ys!
0030 00 00 00 00 00 00 41 49-52 0A 07 00 €9 43 08 00 . .ATR ic
0040 41 4E $3 49 20 20 20 20-53 59 53 20 00 00" 00 00 ANST SYS
0050 Q0 00 00 00 00 GO 41 49-52 0a 18 00 76 07 00 00 . ..AIR.. V
0060 58 54 41 4C 4B 20 20 20-45 58 45 20 00 a0 00 00 XIALK EXE
0070 00 00 00 ©0 OG0 DO §7 7D-38 09 23 02 84 0B 01 00 I "2 - Iy
0080 4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 Qo LABEL
0690 0C 00 00 00 00 00 8C 20-2A 0% 00 00 g0 00 00 0C . #.D..R.
00A0 AC 4F 54 55 53 20 20 20-20 20 20 10 00 00 00 00 LOTUS
poRO 00 00 00 00 B0 00 EO CA-ET 06 A6 01 00 0o 00 0C 'a&.a. .
06cOo 4C 54 53 4C 4F 41 44 20-43 4F 4D 20 Q0 00 00 00 LISLOAD COM .
pgpo 00 00 00 00 00 00 EC OA-E1 06 A7 01 AQ 27 Q0 00 o et
0O0EQ 4D 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 MCI-SE XIK . ..
GOFG 00 08 00 00 00 00 46 19-32 0D B1 01 79 04 Q0 00 2.0y
0100 58 5S4 41 4C 4B 20 20 20-48 4C S50 20 00 00 00 Q0 XIRIK. HIP
0110 00 00 G0 00 00 Q0 ¢S5 6D-73 07 A3 02 AF 28 00 Q0 . . Ems.# /
0120 54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 00 cO X coM .
0130 00 GO 00 00 00 00 05 61-65 0C 39 01 E8 20 00 oC . .ae 9.h
0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 09 00 00 0¢ COMMAND €CM .. .
5150 00 00 00 00 00 00 41 49-52 QA 27 00 55 3F 00 00AIR " U?
0160 ES5 32 33 20 20 20 20 20-45 58 45 20 00 a0 00 00 @23 EXE . .
0170 00 00 00 G 00 00 9C B2-85 OB 42 01 80 S5E 01 00 ... 2 B .
0180 47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 QO GD DRV .
0180 00 00 00 DO 00 00 EO OA-E1 06 SA 01 58 08 Q0 00 P
01RO 4B 42 20 20 20 20 20 20-44 52 36 20 00 09 00 0Q KB DRV
0180 00 00 00 GG 0O 00 EO OA-ET 06 9D 01 &0 01 00 0Q .o tas !
01Cco 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 PR DRV
0p1D0 00 00 00 00 §¢ 00 EQ OA-E1 06 SE 07 49 01 Q¢ 04 ... e I

01EQ 00 F6 E6 F6 F6 FG EH F6-FB EG 56 Fh FH T6 F6 F6
01F0 F6 F6 F6 F6 F6 F6 FG F6-F6 £6 F6 F6 E6 F6 F6 6

Figure 3-12. Hexadecimal dump of a 512-byte directory sector

The sector shown in Figure 3-12 is actuaily an example of the first directory sector in the
root directory of a bootable disk Notice that IO SY5 and MSDOS SYS are the first two files
in the directory and that the file attribute byte (offset 0BH ina directory entry) has a
binary value of 00100111, indicating that both files have hidden (bit 1= 1), system (bit 0 = 1),
and read-only (bit 2 =) atrributes The archive bit (bit 5) is also set, marking the files for
possible backup

The MS-DOS Encyciopedia

HUAWEI EX. 1204 A-3 - 64/165

lihe root directory can optionally have a special type of entry called a volume iabel, iden-
tified by an atttibute type of 08H, that is used 1o identify disks by name A root direétory
can contain only one volume label The root directory can also contain entries that point to
subdirectories; such entries are identified by an attribute type of 10H and a file size of zero
Programs that manipulate subdirectoties must do so by tracing through their chaing of
clusters in the FAT

Two other special types of directory entries are found only within subdirectories These
entries have the filenames . and .. and correspond to the current directory and the parent
directory of the current directory. These special entries, sometimes called directory
aliases, can be used to move quickly through the directory structure.

.l'he maximum pathname length supported by MS-DOS, excluding a drive specifier but
including any filename and extension and subdirectory name separators, is 64 characters
The size of the directory structure itself is limited only by the number of root directory
entries and the available disk space

Thefile area

T.h<.3 file area contains subdirectoties, file data, and unallocated clusters. The area is
divided into fixed-size clusters and the use for a particular cluster is specified by the corre-
sponding FAT entry

Other MS-DOS Storage Devices

As men‘tioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
tape drives and CD ROM drives Tape drives are most often used for archiving and for
sequential transaction processing and therefore are not discussed here

QD ROMs are compact laser discs that hold a massive amount of information-—a single
sideofa CIP ROM can hold almost 300 MB of data However, there are some drawbacks to
current CD ROM technology For instance, data cannot be wiitten to them —the informa-
tion is placed on the compact disk at the factory when the disk is made and is available on
a read-only basis In addition, the access time for a CD ROM is much slower than for most
magnetic-disk systems Even with these [imitations, however, the ability to hold so much
information makes CD ROM a good method for storing large amounts of static information

William Wong

Section II. Programming i the #(5-DOS Environmen! 103

PartB
Programming for MS-DOS

HUAWEI EX. 1204 A-3 - 65/165

' Article 4: Structure of an Application Program

Article 4
_: Structure of an Application Program

Planning an MS-DOS application program requires serious analysis of the program’s size.
This analysis can help the programmer determine which of the two program styles sup-
ported by MS-DOS best suits the application. The EXE program structure provides a large
program with benefits resulting from the extra 512 bytes (or more) of header that preface
all EXE files. On the other hand, at the cost of losing the extra benefits, the COM program
structure does not burden a small program with the overhead of these extra header bytes

Because COM programs start their lives as EXE programs (before being converted by
EXEZ2BIN) and because several aspects of application programming under MS-DOS
remain similar regardless of the program structure used, a solid understanding of EXE
structures is beneficial even to the programmer who plans on writing only COM pro-
grams Therefore, we'll begin our discussion with the structure and behavior of EXE
programs and then look at differences between COM programs and EXE programs,
including restrictions on the structure and content of COM programs

The .EXE Program

The EXE program has several advantages over the COM program for application design.
Considerations that could lead to the choice of the EXE format include

¢ Exuemely large programs

® Multiple segments

® Overlays

® Segment and far address constants
® Longcails

.

Possibility of upgrading programs to MS OS/2 protected mode

The principal advantages of the EXE format are provided by the fite header Most
important, the header contains information that permits a program to make direct seg-
ment address references — a requirement if the program is to grow beyond 64 KB

The file header also tells MS-DGS how much memory the program requires This informa-
tion keeps memory net required by the program from being allocated to the program —
an important consideration if the program is to be upgraded in the future to run efficiently
under MS 08/2 protected mode

Before discussing the EXE program structure in detail, we'll look at how EXE programs
behave. .

Section I Programming in the M5-DOS Environment 167

HUAWEI EX. 1204 A-3 - 66/165

Part B: Frogramming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a EXE program might appear in memory when
MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro-
gram segment arrangement.

- 4 Sp
Any segments with class
STACK
< S8
All segments Any segments with class
declared BSS .
as part of group Any DGROUP segments
DGROUP not shown elsewhere
Any segments with class
BEGDATA
Any segments with class names 1P
Start segment . .
and startf)f }I ending with CODE {4 Cs
gr;;g;anf; :1?:1256 : Program segment prefix (PSP) S
—————————————————— 4 DSES

Figtire 4-1 The EXE program. memory map diagram with register pointers

Before transferring control to the EXE program, MS-DOS initializes various areas of
memory and several of the microprocessor’s registers The following discussion explains
what to expect from MS-DOS before it gives the EXE program control

The program segment prefix

The program segment prefix (PSP) is not a direct result of any program code Rather, this
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all EXE
and .COM programs when they are loaded into memory. Although the PSP does contain
severz] fields of use to newer programs, it exists primarily as a remnant of CB/'M —
Microsoft adopted the PSP for ease in porting the vast number of programs available under
CE/M to the M5-DOS environment Figure 4-2 shows the fields that make up the PSP

PSP.O0COH (Termineate Jold Warm Boot] Vector) The PSP begins with an 8086-family
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm
Boot/ Terminate) vector under CP/M an CB/M programs usually terminated by jumping
to this vector. This method of termination should not be used in newer programs See
Terminating the EXE Program below

PSP-0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word
at offset 02H into the PSP It contains the segment address of the paragraph following the
block of memory allocated 1o the program This address should be used only to determine
the size or the end of the memory block allocated to the program; it must not be con-
sidered a pointer to free memory that the program can appropriate In most cases this ad-
dress will mor point to free memory, because any free memory will already have been

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

xCH xIH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

OxH INT20H | Endalloc |Resv Far cafl 10 MS-DOS fn handler Prev tezminate address | Prev Cud ©
DCDH[20H | seg lo]seg hi 9AH ,cfsnoiufshi!seg Jof seg b ofslo,ofsh;§seg Io Jseg i ot o] ofs s |
IxH address | Prev criticel error address Reserved
[seg lo | s2ghi fofslo | ofshi Ise.glu seg hi i l ‘ , J ’ I ’ , f
2xH .. Reserved Environ seg Reserved |
R O Y O T !
3H .Reserved. . Ty——_ MS5-DOs2p0
Ll l o lateronly
4xH . Reserved
L[LI b0 [
5x17 |INT 22H and RETF Reserved Primary FCB.
eorlawbed | | | [] | | | |alelila]
e .. Primary file control block (FCB) ‘ Secondary FCB .
Lefnfalm|e]E]x |t |00k foot | oom{00k] @ | F | i |1 |
IxH . Secondary file contro] block (FCRB) Reserved

efn]a}m]e}ﬁ[xft[ooH]oaH|00H|00H L
8xH Command tail and default disk transfer area (DTA) (continues through OFFH) .

o] L L

Figure 4-2 The program segment prefix (PSP)

allgcated to the program unless the program was linked using the /CPARMAXATLQC
sv‘vxtch‘ Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block
of memory only as big as the program requires Well-behaved programs should acquire
additional memory only thi ough the MS-DOS function calls provided for that purpose

PSP.0005H (MS-DOS Function Call fold BDOS) Vecior} Offser 05H is also 2 hand-me-
down from CB/M This location contains an 8086-family far (intersegment) call instruction
to-MS—DOS’s function request handier (Tinder CP/M, this address was the Basic Disk O er-
ating System [BDOS)] vector, which served a similar purpose) This vector should not bf
used to call MS-DOS in newer programs The System Calls section of this book explains
the newer, approved method for calling MS-DOS MS-DOS provides this vector only to sup-
icft CIZMﬁtyEe programs and therefore honors only the CP/, M-style functions (00— 24H) °
ough it

PSP.000AH-0015H (Parent’s 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses
offsets 0AH through 15H to save the contents of three program-specific interrupt vectors
MS-DOS must save these vectors because it permits any program to execute another pro-
gram (called a child process) through an MS-DOS function call that returns control to the
original program when the called program terminates Because the original program
resumes executing when the child program terminates, MS-DOS must restore these three

Section I Programming in the MS-DOS Enmironmens 109

HUAWEI EX. 1204 A-3 - 67/165

Part B: Programuming for MS-DOS

110

interrupt vectors for the original program in case the called program changed them. The
three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Controi-Break handler vectot {Interrupt 23H), and the critical error handler
vector (Interrupt 24H) MS-DOS saves the ot iginal preexecution contents of these vectors
in the child program’s PSP as doubleword fields beginning at offsets OAH for the program
termination handler vector, OFH for the Control-C/Control-Break handler vector, and 12H

for the crirical error handler vector.

PSP.002CH { Segment Address of Environment) Under MS-DOS versions 2.0 and later, the
word at oftset 2CH contains one of the most useful pieces of information a program can
find in the PSP — the segment address of the first paragraph of the MS-DOS environment
This pointer enables the program to search through the environment for any configuration
or directory search path strings placed there by users with the SET command

PSPO0S0H (New MS-DOS Call Vector) Many programmers distegard the contents of offset
50H. The location consists simply of an INT 21H instruction followed by a RETF. A EXE
program can call this location using a far call as a means of accessing the MS-DOS function
handler Of course, the program can also simply do an INT 21H directiy, which is smaller
and faster than calling SOH Unlike calls to offset 05H, calls 1o offset S0H can request the

full range of MS-DOS functions.

PSP 005CH (Defait File Control Block 1) and PSF. 006CH (Default File Control Block 2)
MS-DOS parses the first two parameters the user enters in the command line following the
program’s name If the first parameter qualifies as a valid (limited) MS-DOS filename

(the name can be preceded by a drive letter but nota directory path), MS-DOS initializes
offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for
the specified file. If the second parameter also qualifiesas a valid MS-DOS filename,
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
the second specified file If the user specifies a directory path as part of either filename,
MS-DOS initializes only the diive code in the associated FCB Many programmers o
longer use this feature, because file access using FCBs does not support directory paths

and other newer MS-DOS features

Because FCRs expand to 37 bytes when the file is opened, opening the first FCB at offset
5CH causes it to grow from 16 bytes to 37 bytes and to overwiite the second FCB Similasly,
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA). (The command tail and default
DTA are described below) To use the contents of both default FCBs, the program should
copy the FCBs to a pair of 37-byte fields located in the program’s data area The program
can use the first FCB without moving it only atter 1elocating the second FCB (if necessary)
and only by performing sequential reads or writes when using the first FCB To perform
random reads and writes using the first FCB, the programmer must either move the first
FCB or change the defauit DTA address Otherwise, the first FCB’s random record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: PROGRAMMING FOR Ms-nOs: File and Record Management

The MS-DO5 Encyclopedia

HUAWEI EX. 1204 A-3 - 68/165

Article 4: Structure of an Application Program

PSP OOSQH (Command Tail and Defauit DTA) The default DTA resides in the entire sec-
ond ha.!f (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record
bqffer if t_he program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program ,can call to change th
a'ddr‘ess MS-DOS will use as the current DTA See SYSTEM CALLS: INTERRUPT 21H: ?unc—e
F;}n Mﬁ) Because tl-le d.efaulr_ DTA serves no purpose until the program pexforms; some
ile aCf.lel'Y that requires it, MS-DOS places the command tail in this ares for the program
to examine. The command tail consists of any text the user types following the proégram
name when executing the program Normaily, an ASCII space (20ED) is the first character
in ti:l? command tail, but any character MS-DOS recognizes as a separator can occupy this
position I\{ISﬂDOS stores the command-tail text starting at offset 81H and always pl;cis an
gfsglf[; ;:gmage r;tu.m (ODH) atthe end of the text. As an additional aid, it places the length
o examrsgatﬁe tcag:;t; c;fizeltiigH This length includes all characters except the final ODH.

C>DOII WIIH CLASS <Enter>

will result in the program DOIT being executed with PSP:0080H containing

OB 20 57 49 54 48 20 43 4C 41 53 53 oD
lenspWw I I H spC L A S S cr

The stack

Because E?{E—st.yle programs did not exist under CP/M, MS-DOS expects EXE programs
0 oper.ate in strictty MS-DOS fashion For example, MS-DQOS expects the EXE progiam 1o
supply its own stack (Figure 4-1 shows the program’s stack as the top box in the diagram)

Microsoft’s high-level-language compilers create a stack themselves, but when wiiting in
a;sembly language the programmer must specifically declare one or, more segments v%ith
L 1;;‘ STACK c?mbzne type. If th.e programmer declares multiple stack segments, possibly in
lifferent source modules, the linker combines them into one large segment. See Control
ling the EXE Program’s Structure below. i | o

Many programmers declare their stack segments as preinitialized with some recognizable
repeating strling such as *STACK This makes it possible to examine the progxam’sg;:ack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gx'am actually used On the other hand, if the stack is left as uninitialized memory anc]ij
linked at the end of the EXE program, it will not require space within the .EXE file (The
reason for this will become more apparent when we examine the st uctur‘é ofa EXE file)

Nc_)te:‘ When multiple stack segments have been declared in different ASM files, the
Mlcx'gsoft Object Linker (IINK) correctly allocates the total amount of stack s ac’e speci-
fied in all the source modules, but the initialization data from all modules is oizferla ; d
module by module at the high end of the combined segment. Fre

An important difference between COM and EXE programs is that MS-DOS preinitializes
a COM program’s stack with a termination address before transferring control to the pro-
gram. MS—DQS does not do this for EXE programs, so a . EXE program cansot simpl ;
execute an 8086-family RET instruction as a means of terminating o

Section II: Programming in the MS-DOS Environment 111

Part B: Programming for MS-DOS

Note: In the assembly-language files generated for 2 Microsoft C program or for programs
in most other high-level-languages, the compiler’s placement of 2 RET instruction at the
end of the main function/subroutine/procedure might seem confusing After all, MS-DOS
does not place any return address on the stack The compiler places the RET at the end of
main because main does not receive control directly from MS-DOS. A library initializa-
tion routine receives control from MS-DOS; this routine then calls main, When main per-
forms the RET, it returns control to a library termination routine, which then terminates

back to MS-DOS in an approved mannet.

Preallocated memory

While loading a EXE program, M5-DOS performs several steps to determine the initial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of the EXE header: The first vaiue, MINAL 1L.OC, indicates the
minimum amount of extra memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the progiam would
like allocated before it starts executing Next, MS-DOS locates the largest free block of
memory available If the size of the program’s image within the EXE file combined with
the value specified for MINAITOC exceeds the memory block it found, MS-DOS returns
an error to the process trying to load the program If that process is COMMAND.COM,
COMMAND COM then displays a Progrant 100 big to fit in memoyy e1ror message and
terminates the user's execution request, If the block exceeds the program’s MINALILOC
requirement, MS-DOS then compares the memory block against the program’s image
combined with the MAXAILOC request. If the free block exceeds the maximum memory
requested by the program, MS-DOS allocates only the maximum request; otherwise, it
allocates the entire block MS-DOS then builds a PSP at the start of this block and loads
the program’s image from the EXE file into memory following the PSP

This process ensures that the extra memory allocated to the program will immediately
follow the program’s image The same will not necessarily be true for any memory
MS-DOS allocates to the program as a result of MS-DOS function calls the program per-
forms during its execution Only function calls requesting MS-DOS to increase the initial
allocation can guarantee additional contiguous memory (OFf course, the granting of such
increase requests depends on the availability of free memory following the initial

allocation.)

Programmets writing EXE programs sornetimes find the lack of keywords or compiler/
assembier switches that deal wich MINATLOC (and possibly MAXALIOC) confusing. T he
programmer never explicitly specifies a MINALLOC value because LINK sets MINAT1OC
to the total size of all uninitialized data and/or stack segments linked at the very end of the
program The MINATLOC field aliows the compiler to indicate the size of the initiatized
data fields in the load module without actually including the fields themselves, resulting in
a smaller EXE program file For LINK to minimize the size of the FXE file, the program
must be coded and linked in such a way as to place all uninitialized data fields at the end
of the program Microsoft high-level-language compilets handle this autormatically;
assembly-language programmers must give LINK a little help

112 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 69/165

Article 4: Structure of an Application Program

Notel." Beginniflg and even advanced assembly-language programmers can easily fall into
:? gg;ment v«fith the assembler over field addressing when attempting to place data fields
2 Etér 1\2 Ef}:\} cIode dnét;; source file This argument can be avoided ¥f programmets use the

any UP assembler directi i ’
SEGMENT er directives See Controlling the EXE Program’s Struc-

No f?liable method exists for the linker to determine the correct MAXAILQC value
required by the EXE program. Therefore, LINK uses a “safe” value of FPFIPH which
causes MS-DOS 10 allocate all of the largest block of free memory —which is ’usuall all
fre§ memory —to the program. Unless a program specifically releases the memor }frbr
which it has no use, it denies multitasking supervisor programs, such as IBM's To 3<fiew
any memory in which o execute additional programs ~~hence the rule thata we?l— ’
behaved program releases unneeded memory during its initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor sup g?ts th
al?ﬂlty t(;] load several programs into memory without executing them Iherefbre,iro—)
Ig)izrgriz ;tn :t have correctly established MAXALLOC values actually are well-behaved

To this e_nd, newer versions of Microsoft IINK include the /CPARMAXALLOC switch

to permit specification of the maximum amount of memory required by the program. Th
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value thaltais inowﬁ toe
be less than MINAILOC. For example, specifying 2 MAXATLOC value of 1 (/CP:1) force
M.S-DOS 1o allocate only MINALLOC extra paragraphs to the program In additi;m ’
Microsoft supplies a program called EXEMOD with most of its languages This pro’grarn

E permits modification of the MAXALLOC field in the headers of existing EXE programs

See Modifying the EXE File Header below
The registers

Eigurle 4-1 gives 2 general indication of how MS-DOS sets the 8086-family registers
efore transferring control 10 a EXE program MS-DOS determines most of the original

d register values from information the linker places in the EXE file header at the start of the

EXE file.

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg-
menis declgred with the STACK combirne type and sets the SP register to the offset from S8
of the byte immediately after the combined stack segments (If no stack segment is
declaregl, MS-DOS sets S5:SP to CS:0000) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stack Therefore, if the programmer declares stack segments when writing an assem-
bly—langgage program, the program will not need to initialize the SS and SP registers
Microsoft’s high-level-language compilers handle the creation of stack segments autdmat‘
cally In both cases, the linker determines the initial SS and SP values and places them i -
the header at the start of the .EXE program file P o

Un]'ike its handling of the 3S and SP registers, MS-DOS does not initialize the DS and ES
registers to any data areas of the EXE program Instead, it points DS and ES to the start of

Section I Programming in the MS-DOS Environment 113

Part B: Programming for M8-DOS

the PSP It does this for two primary reasons: First, MS-DOS uses the DS and ES registers (o
tell the program the address of the PSF; second, most programs start by examining the
command tail within the PSP Because the program starts without DS pointing to the data
segments, the program must initialize DS and (optionally) ES to point to the data segments
before it starts trying to access any fields in those segments Unlike COM programs, EXE
programs can do this easily because they can make direct references to segments, as

follows:
MOV AX,SEG DAIA SEGMENI_OR.GROUB_NAME
MOV DS, AX)
MOV ES, AX

High-level-language programs need not initiatize and maintain DS and ES; the compiler
and library support routines do this

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and Al 10 reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP MS-DOS sets
Al to OFFH if the first FCB at PSP:005CH was initialized with 2 nonexistent drive identifier;
otherwise, it sets Al to zero Similar ly, MS-DOS sets AH to reflect the drive identifier

placed in the second FCB at PSP:006CH

When MS-DOS analyzes the first two command-line parameters following the program
name in order to build the first and second FCBs, it reats arny character followed by a
colon as a drive prefix If the diive prefix consists of a lowercase letter (ASCII g through
), MS-DOS starts by converting the character to uppercase {ASCII A through Z) Then it
subtracts 40H from the character, regardless of its original value. This converts the drive
prefix letters A through Z to the drive codes O1H through 1AH, as required by the two
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB

This process does not actually preclude invalid drive specifications from being placed in
the ECBs Fot instance, MS-DOS will accept the drive prefix !: and piace a drive code of
OFTH in the FCB (! = 21H; 21H-40H = 0E1H) However, M5-DOS wili then check the drive
code o see if it represents an existing drive attached to the computer and will pass a value
of OFFH o the program in the appropriate register (AL or AH) if it does not

As a side effect of this process, MS-DOS accepts @:asa valid drive prefix because the
subtraction of 40H converts the @ chazacter (40H) to 00H MS-DOS accepts the O0H value
as valid because 2 00H drive code represents the current default drive MS-DOS will leave
the FCB's drive code set to 00H rather than translating it to the code for the default drive
because the MS-DOS function calls that use FCBs accept the 00H code.

Finally, MS-DOS initializes the CS and IP registers, i ansferring control to the program’s
entry point Programs developed using high-level-language compilers usuatly receive con-
trol at a library initialization routine A programimer writing an assembiy-language pro-
gram using the Microsoft Macro Assembler (MASM) can declare any label within the

114 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 70/165

Article 4 Structure of an Application Program

programas the entyy point by placing the label after the END statement as the last line of the
progran:

END ENIRY_POINI_IABEL

Vfi;h multipfle source files, only one of the files should have a labe! following the END
statement. If more than one source file has such a label, IINK ir: i
s e et , uses the first one it encoun-

The other processor registers (BX, CX, DX, BP, SI, and DD contain unknown values when
the program receives control from MS-DOS Once again, high-level-language program-
mers can ignote this fact—the compiler and library support routines deaf with the situa-
tion Ho.wever, assembly-language programmers should keep this fact in mind It may give
ngdted J;llsight sometime in the future when a program functions at certain times ar:?lg

at others

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undocumented stare. For instance, some debuggers may predicrabl
set BP to zero before starting program execution However, a program must not 1ely on ’
such debugger actions, because MS-DOS makes no such promises. Situations like this

could account for a program that fails when exec i
. uted directly under MS-DOS
fine when executed using a debugger ’ purorke

Terminating the .EXE program

{&fter MS-DOS has given the EXE program control and it has completed whatever task
it set out,to pexfo'rm, the program needs to give control back to MS-DOS Because of
MS-DOS’s evolution, five methods of program termination have accumulated — not

%ncludmg the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which dara ha; been written or
whose lengths were changed Under versions 2 0 and later, MS-DOS closes any files
opened using handles However, good programming practice dictates that the program
2,0:1 Ielyhon t(};(;operating system 10 close the program’s files. In addition, programs written
dos?: gs ﬂil;ef .ﬂe;ie:n gxtgrer; Irxlli—t[l);s verstons 3 0 and later should release any file locks before

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Rfeturn Code function (4CH) is recommended for programs running under MS-DOS ver
sion 2 6 or later: This method is one of the easiest approaches to terminating any pro- -
gram, regardless of its structure or segment register settings The Terminate Prc;celzs with
Return Code function call simply consists of the following:

igz AH, 4CE +load the MS-DOS function code
i AL, RETURN_CODE ;load the termination code
21H rcall MS-DOS to terminate program

Section IT: Programming in the MS-DOS Environment 115

Past B: Programming for M5-DOS

116

HUAWEI EX. 1204 A-3 - 71/165

The example loads the AH register with the Terminate Process with Return Coc(iie .fun.ci::on
code Then it loads the AL register with a return code Normally, thg retlilln CQ e‘ repr
sents the reason the program terminated or the result of any operation the program
performed

A program that executes another program as a child process can xie_cover atﬁd celmlailgs; it:;
child program’s return code if the child process used this termmatxoq m§ o.t‘exemltes ;5
the child process can recoves the RETURN_CODE retur.ned by any pé ograin 11 cHecures:

a child process When a program is terminated using L‘m_s methoc} anl ccl)n‘ 1Ol r s
MS-DOS, 2 batch (BAT) file can be used to test the terminated program's refurn

using the IF ERRORLEVEL statement

Only two general conventions have been adopted for the value of RE T.URI_I_COfDil]E:
First, 2 RETURN_CODE value of 00H indicates a normal no-e1ror tem-nnat;on o the

ro: ,rax'n' second, increasing RETURN_CODE values indicate incre.asmg severity of con-
lZlitigns ujndel which the program terminated For instance, 2 cogxpﬂer could use the ‘
RETURN_CODE 00H if it found no errors in the source file, 01H if it found only warning
errors, or 02H if it found severe errors |
If a program has no need to return any special RETURN_CODE values, tkéenft(lgzg Ifllowmg
instructions will suffice to terminate the program with a RET URN_CODE o :

MOV AX, 4C00H

patht 295
Apart from being the approved termination method, Ter.‘rn'u}ate Proce;s 1;mth Ret;}lrlno(t]}?ecie
is easier to use with EXE programs than any other termination methq N ecgusgam orher
methods require that the CS register point to the start of the PSP when © g progr am e
nares, This restriction causes problems for EXE programs because they have o g
ments with segment addresses different from that of the PSP

The only problem with Terminate Process with Return Code is that it is not avai}ablclabz;nder
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compst; e
with early MS-DOS versions However, Figure 4-3 shows hov?r a program can use t es -
approved termination method when available but still remain pre-2 0 compatible See The
Warm Boot/ Terminate Vector below

IEXI SEGMENI PARA PUBLIC 'CCDE’

ASSUME CS:IEXI,DS:NOIHING,ES:NOEHING,SS:NOIHING
1ERM VECIOR oD ?
ENTRY_PROC PROC FAR

:save pointer Lo termination vector in PSP
:

MOV WORD PIR £s: IERM_VECIOR+0,0000h ;save offset of Warm Boot vector
£
MOV WORD PIR ¢5; JERM_VECIOR+2,DS ;save segment address of PSP
: 'S (more}
Figire 4-3. Terminating properly under any MS-DOS version
The M$S-DOS Encyclopedia

Article 4: Structure of an Application Program

pF¥k¥d Place main task here #x*#%

;determine which MS-DOS version is active, take jump if 2.0 or later

MoV AH, 30h :load Get MS-DOS Version Number function code
INI 21h ;call MS-DOS to get version number
OR AL, AT ;see if pre-2.0 M3-DOS
JNZ IERM 0200 tJump if 2 0 or later
Jterminate under pre-2 .0 MS-DOS
JMP CS:IERM VECIOR ;jump to Warm Boect vector in PSP

rterminate under MS-DOS 2.0 or later

TERM..0200;
MOV A%, 4CO0h tload MS-DOS termination function code
;and return code
INI 21h rcall MS-DOS to terminate
ENTIRY_PROC ENDP
IEXT ENDS
END ENIRY_PROC tdefine entry point

Figure 4-3 Continued

The Terminate Program interrupt

Before MS-DOS version 2 0, terminating with an approved method meant executing

an INT 20H instruction, the Terminate Program interrupt The INT 20H instruction was
replaced as the approved termination method for two ptimary reasons: First, it did not
provide a means whereby programs could return a termination code; second, CS had
to point to the PSP before the INT 20H instruction was executed

I he restriction placed on the value of CS at termination did not pose a problem for COM
programs because they execute with CS pointing to the beginning of the PSP A EXE pro-
gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate. Because of this, few EXE programs attempt simply to execute a Terminate Pro-
gram interrupt from directly within their own code segments Instead, they usualiy use
the termination method discussed next

The Warm Boot/Terminate vector

The eatlier discussion of the structure of the PSP briefly covered one older method a EXE
program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction
to which the program can jump in order to terminate MS-DOS adopted this technique to
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was
referred to as the Warm Boot vector because the CB/M operating system was always
rejoaded from disk (rebooted) whenever a program terminated

Section IT Programming in the MS-DOS Environment 117

Part B: Programming for MS-DOS

Because offset 00H in the PSP contains an INT 20H instruction, jurnping o} thgt 1_ocatior1 |
terminates a program in the same manner as an INT 20H included directly within the I;ro—
gram, but with one important difference: By jumping o PSII’:QO.OOH, the progr‘aq? gets the
S register 1o point to the beginning of the PSP, thereby sansfyl-ng the' only restriction
imposed on executing the Terminate Program interrupt Thfe dlscu.ssmn of MS-DOS Func-
tion 4CH gave an example of how a EXE program can tenminafe via }?SP:OOOOH The ex-
ample first asks MS-DOS for its version rumber and then terminates via PSP:0000H oaly
under versions of MS-DOS earlier than 2 0 Programs can aiso use PSP:0000H un.dfax
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is
preferred under the later MS-DOS versions

The RET instruction

118

The other popular method used by CE/M programs to terminate involved simply execut-
ing a RET instruction This worked because CP/M pushed the address gf the Warm Boq
vector onto the stack before giving the program conirol MS-DOS provides this support
only for COM-style programs; it does ot push a termination address onto the stack
before giving EXE programs control

The programmer who wants to use the RET instruction to return to MS-DOS can use the
variation of the Figure 4-3 listing shown in Figure 4-4

IEXT SEGMENI PARA PUBLIC 'CODE'
ASSUME CS:IEXE,DS:NOIHING,ES:NOIHING,SS:NOIHING

ENIRY_PROC PRGC EAR ;make proc FAR so RET will be FAR

i € i il or in PSP
;Push pointer teo termination vect

PUSH DS ;push PSE’s segment address
XOR AX,AX rax = 0 = offset of Warm Boot vector in PSP

PUSH AX ;push Warm Boot vector offseat

c#¥%xx Place main task here k¥*¥

.Determine which M§-DOS vexsion is active, take jump if 2.0 or later

MoV AH, 30h . 1oad Get MS-DOS Version Number function code
INI 27h ;eall MS-DOS to get version number

OR AL ,AL ;see if pre-2 0 MS-DOS

JNZ IERM._0200C ;jump if 2.0 or later

;Terminate under pre-2 0 MS-DOS (this is a EAR proc, S0 REI will be FAR}
REI ;pop PSP:00H into C5:IF to terminate

Figure 4-4 Using RET to retur 1 control to M$-DOS (more)

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 72/165

Article 4; Structure of an Application Program

;Ierminate under MS-DOS 2 .0 or later

TERM..02Q0:
MOV AX, 4C00h ;AH = MS-DOS Ierminate Process with Return Code
+funection code, ALl = return code of 00H
INT 21h ;ecall MS-DOS te terminate
ENTRY_PROC ENDP
IEXI ENDS
END ENIRY_PROC ideclare the program’s entry point

Figure 4-4 Continued

The Terminate Process function

T he final method for tesminating a2 .EXE program is Interrupt 21H Function 00H (Termi-
nate Process) This method maintains the same restriction as all other older termination
methods: CS must point to the PSP Because of this restriction, EXE programs typically
avoid this method in favor of terminating via PSP:0000H, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0

Terminating and staying resident

A EXE program can use any of several additional termination methods to return con-

trol to MS-DOS but still remain resident within memory to service a special event See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustomiziNG Ms-pos: Terminate-and-
Stay-Resident Utilities -

Structure of the .EXE files

So far we've examined how the EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory Figure 4-5 shows the general siructure of a EXE file

The file header

Unlike COM program files, EXE program files contain information that permits the

EXE program and MS-DOS 1o use the full capabilities of the 8086 family of microproces-
sors. The linker places all this exira information in a header at the start of the EXE file
Although the EXE file structure could easily accomunodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS) The EXE file header conrains
the following information, which MS-DCS reads into a temporary work area in memory
for use while loading the EXE program:

00-01H (EXE Signature) MS-DOS does not rely on the extension (EXE or COM) to
determine whether a file contains a COM or 2 EXE program Instead, MS-DOS recognizes
the file asa EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section [I Programming in the MS-DOS Bnvironment 119

Part B: Programming for MS-DOS

«OH xIH x0H x3H x4H x5H xGH x7H x8H x9H xaH xBH xCH xDH xEH xFH
Signature Wast Page Size] File Pages [Reloc liems) Header Paras MINALLOC Woe PreReloc S8
4DH | 541 Yo bytti byt{lo byt|hi bytllo bytfhi bytllo byt[ii bytllo byt|hi bytilo byt|hi bytlo byt fhi byt
Tnitial SP | Neg Chkstm | Initial IP | Pze Reloc CS |Reloc Thl Ofs Overlay Num Reserved

LXET B | ¢ Tofofs hiflo by(hi byt]ofs Iojos hi|seg lojscg hiflo byt bytlo bythi byt

e ——

OxH P

Use Reloc - . -
Tbl Ofs at 18H Seg Relocation Ptr #1 | Seg Relocation Pr#2 | Seg Relocation Prr #3 ('Qch Reloc.anon P |
(offset is from ofs lojofs hijseg lojseg hijofs lojofs hijseg lojseg hilofs 10 jofs hi|seg lojseg hijofs lokofs hijseg lojseg hil

rtore W
Use Reloc

Seg Relocation Pir #1-3 | Seg Relocation Ptr#n-Z- Seg Reloca.ﬁ(m Pr#n-1 | Seg Rclﬁaﬂnglh #nhi o Ttems
ofs 1o ofs hifseg lojseg hilofs lojofs hi|seg lojseg hilofs iojofs hijseg lojseg hilofs lojofs hilseg lojseg ot OGH

Use Header ///—‘_’//
Paras at 08H //w

(load module » Y
always starts on Programimage _ _ _ _ _ _ o o m e om = — = = = — = —
paragraph boundary) } 7 7T T sdule) Use Last Pa%. Size at 02H Final 512—:)'16 page as

End of file h4 indicated by F%e Pages at 04H_|

Figure 45 Structure of a EXE file

(ASCII characters M and Z) If either or both of the signature bytes contain (?thex values,
MS-DOS assumes the file containsa COM program, regardless of the extension. The
reverse is not necessarily true — that is, MS-DOS does not accept‘the tile asa EXE pro-
gram simply because the file begins with a .EXE signature. The file must also pass several
" othertests

02—03H (Last Page Size) The word at this location indicates the actual nL.lIIleI' of bytes

in the final 512-byte page of the file This word comkl)ines with the following word to deter-
mine the actual size of the file |

04—05H (File Pages) This word contains a count of the total number of 512-byte pages
required to hold the file If the file contains 1024 bytes, this word contains th'e value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H The previous word (Last
Page Size, 02—03H) is used to determine the number of valid bytes in th_e final 512-byte
page Thus, if the file contains 1024 bytes, the Last Page Size word canams 0000H because
no bytes overflow into a final partly used page; if the file contains 1025 by't.es, the Last Page
Size word contains 0001H because the final page contains only a single valid byte (the
1025th byte).

06—07H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table See Relocation Pointer Table below

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

08—09H (Headier Paragraphs) This word gives the size of the EXE file header in 16-byte
paragraphs. It indicates the offset of the program’s compiled/assembled and linked image
(the load module) within the EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program’s image. The header always spans
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file’s total size is 1025 bytes. As discussed
before, the Last Page Size word (02-03H) will contain 6001H and the File Pages word
(04—05H) will contain 0003H Because the header is 512 bytes, the Header Paragraphs
word (08-09H) will contain 32 (0020H) (That is, 32 paragraphs times 16 bytes per para-
graph totals 512 bytes) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program’s image can be determined —in this case, 513 bytes

OA—OBH (MINALIOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold

the program’s image MINALLOC normally represents the total size of any uninitialized
data and/or stack segments linked at the end of the program LINK excludes the

space reserved by these fields from the end of the EXE file 1o avoid wasting disk space

If not enough memory remains to satisfy MINAI LOC when loading the program, MS-

DOS returns an error to the process tying to load the program If the process is
COMMAND.COM, COMMANT COM then displays a Pragram too big lo fit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the EXE
File Header below ' .

O0C—0DH (MAXAILOC) This word indicates the maximum number of 16-byte paragraphs
the program waould like allocated to it before it begins execution MAXAILOC indicates
additional memory desired beyond that required to hold the program’s image. MS-DOS
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para-
graphs are not available, the program receives the largest memory block available —at
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field
1o request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example

Unless otherwise specified with the /CPARMAXAITOC switch at link time, the linkes sets
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory
it has available to the program To make the program compatible with multitasking supe:-
visor programs, the programmer should use /CPARMAXAILOC to set the true maximum
number of extra paragraphs the program desires The EXEMOD utility can also be used
to alter this field

Note: If both MINALLOC and MAXALLOC have been set 1o 0000H, MS-DOS loads the
program as high in memory as possible. LINK sets these fields to 0000H if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields

OF —OFH (Initial SS Value) This word contains the paragraph address of the stack segment
relative to the statt of the load module At load time, MS-DOS relocates this value by adding
the program’s start segment address 1o it, and the resulting value is placed in the S5 regis-
ter before giving the program control, (The start segment corresponds 1o the first segment
boundary in memory following the PSP}

Section II. Programming in the MS-DOS Environment 121

HUAWEI EX. 1204 A-3 - 73/165

Part B: Programming for MS-DOS

122

10--11H (Tnitial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control Because MS-DOS always loads pro-
grams starting on a segment-address boundary, and because the linker knows the size of
the stack segment, the linker is able to determine the correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time The EXEMOD utility can be

used to alter this field

12—13H (Complemented Checksum) This word contains the one's complement of the
summation of all words in the EXE file. Current versions of MS-DOS basically ignore this
word when they load a EXE program; however, future versions might not, When LINK
generares a EXE file, it adds together all the contents of the EXE file (including the EXE
header) by treating the entire file as a long sequence of 16-bit words. During this addition,
LINK gives the Complemented Checksum word (12—13H) a temporary value of 0000H. If
the file consists of an odd number of bytes, then the final byte is treated as a word with a
high byte of 00H. Once LINK has totaled all words in the EXE file, it performs a one’s
complement operation on the total and records the answer in the .EXE file header at
offsets 12—13H The validity of a EXE file can then be checked by performing the same
word-totaling process as 1 INK performed. The total should be FFFFH, because the total
will include LINK’s calculated complemented checksum, which is designed to give the file

the FTFFH total.

An example 7-byte EXE file illustrates how EXEfile checksums are calculated. (This

is a totally fictitious file, because EXE headers are never smaller than 512 bytes) If this fic-
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H, then the file’s total
would be calculated using C88CH + DS8EH +10BAH +00B4H=1B288H (Overflow past 16
bits is ignored, so the value is interpreted as B288H) If this were a valid EXE file, then
the B288H total would have been FFFFH instead

14—15H (Tnitial IP Value) This word contains the absolute value that MS-DOS loads into
the IP register in order to transfer control 1 the program Because MS-DOS always loads
programs starting on a segment address boundary, the linker can calculate the cotrect IP
offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this vaiue at load time

16—17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative
the start of the load module, that MS-DOS places in the CS register to give the EXE pro-
gram control MS-DOS adjusts this value in the same manner as the initial SS value before

loading it into the CS registet

18—19H (Relocation Table Offset) This word gives the offset from the start of the file to
the relocation pointer table This word must be used to locate the relocation pointer table,
beecause variable-length information pertaining to program overlays can occur before the
table, thus causing the position of the table to vary

1A—1BH (Overlay Number) This word is normally set 1o 00CH, indicating that the EXE
file consists of the resident, ot primary, part of the program This number changes only in
files containing programs that use overlays, which are sections of a program that remain

The MS-DOS Encyclopedia

:

Article 4: Structure of an Application Program

on disk unti the program actually requires them These program sections are loaded into
memory by special gvex‘lay managing routines included in the run-time libraries supplied
with some Microsoft high-level-danguage compilers.

.Ihe preceding section of the header (00-1BH) is known as the formatted area. Optional
information used by high-level-language overlay managers can follow this formatted area
Unless the program in the EXE file incorporates such information, the relocation pointer
table immediately follows the formatted header area

R?locatz‘on Pointer Table The relocation pointer table consists of a list of pointers 1o words
within the EXE program image that MS-DOS must adjusi before giving the program con-
trol. These words consist of references made by the program to the segments that make up
the program MS-DOS must adjust these segment address references when it loads the pro-
gram, because it can load the program into memory starting at any segment address
boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative to the start of the load module Together, these two words point to a third word
within the load module that must have the start segment address added to it (The start seg-
ment corresponds to the segment address at which MS-DOS started loading the program’s

EXE File
End of file
Rel Seg Ref=003CH
Abs Seg Ref=25DIH
Load module
___‘____\"/ Memory
Relocation pointer 003CH
0002H:0005H + 2595H + Rel Seg Ref=003CH
L 25DIH Abs Seg Ref=25DIH
Relocation pointer table 0002H:0005H 1 oad modul
+2595H | Start Seg oac module
X) 2597H:0005H — 2595H %
Formatted header area Program segment prefix
Start of file

Figure 4-6 The EXE file relocation procedure

Section It Programming in the MS-DOS Environment 123

HUAWEI EX. 1204 A-3 - 74/165

Part B: Programiming for MS-DOS

image, immediately following the PSP) Figure 4-6 shows the entire procedure M$-DOS
petforms for each relocation table entry

The load module

The load module starts where the EXE header ends and consists of the fully linked image
of the program. The load module appears within the EXE file exactly as it would appear in
memory if M$-DOS were to load it at segment address 0000H The only changes MS-DOS
makes to the load module involve relocating any direct segment references

Although the EXE file contains distinct segment images within the load module, it pro-
vides no information for separating those individual segments from one another. ExXisting
versions of MS-DOS ignore how the program is segmented; they simply copy the ioad
module into memory, relocate any direct segment references, and give the program

control.

Loading the .EXE program
So far we've covered all the characteristics of the EXE program as it resides in memory
and on disk, We've also touched on all the steps MS-DOS petforms while loading the EXE
program from disk and executing it The following list recaps the EXE program loading
process in the order in which MS-DOS performs it:

1 MS-DOS reads the formatted area of the header (the first 1BH bytes) from the EXE
file into a work area _

2 MS-DOS determines the size of the largest available block of memory

3 MS-DOS determines the size of the load module using the Last Page Size (offset
02HD), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
header An example of this process is in the discussion of the Header Paragraphs
field.

4 MS-DOSadds the MINALLOC field (offset 0AH) in the header to the calculated load-
module size and the size of the PSP (100H bytes). If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and returns an exor to
the calling process If the calling process was COMMAND COM, COMMAND . COM
then displays a Program too big to fit in memory €101 message

5 MS-DOS adds the MAXALLOC field (offset 0CH) in the header to the calculated
toad-module size and the size of the PSP If the memory block found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size t© the program
from the memory block; if the calculated total exceeds the block’s size, M§-DOS
allocates the entire block

6 If the MINALLOC and MAXAILLOC fields both contain 0000H, MS-DOS uses the
caleulated load-module size to determine a start segment MS-DOS calculates the

start segment so that the load module will load into the high end of the allocated
block. If either MINALEOC or MAXATLOC contains nonzero values (the normal
case), MS-DOS establishes the start segment as the segment following the PSP

7 MS-DOS loads the load module into memory starting at the start segment.

124 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 75/165

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod-
ule’s direct segment references, as shown in Figure 4-0
9. MS-DOS builds a PSP in the first 100H bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
AL and AH registers
10 MS-DOS sets the 8S and SP registers 1o the values in the header after the start seg-
ment is added to the 88 vaiue '
11, MS-DOS sets the DS and ES registers to point to the beginning of the PSP
12 MS-DOS transfers control to the EXE program by setting CS and IP to the values in
the header after adding the start segment to the CS value

Controlling the .EXE program’s structure

We've now covered almost every aspect of a completed EXE program. Next, we'll discuss
how to control the structure of the final EXE program from the source level We'll start by
covering the statements provided by MASM that permit the programmer to define the
;chture of the program when programming in assembly language Then we’ll cover the
five standard memory models provided by Microsoft’s C and FORTRAN compilers (both
version 4.0), which provide predefined structuring over which the programmer has
limited control

The MASM SEGMENT directive

MASM’s SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment Program segments contain collections of code or data that have
offset addresses relative to the same common segment address

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT [align] [combine] ['ciass']

With MASM, the contents of a segment can be defined at one point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off This occurs regard-
less of the combine type specified in the SEGMENT directive —the combine type influ-
ences only the actions of the linker See The combine Type Parameter below.

The align type parameter

The .optiona_[alipn paramelter iets the programmer send the linker an instruction on how
tg align a segment withinmemory In reality, the linker can align the segment oniy in rela-
tion to the stast of the program’s load module, but the result remains the same because
MS-DOS always loads the module aligned on 2 paragraph (16-byze) boundary (The PAGE
align type creates a special exception, as discussed below } .

The following alignment types are permitted:

BYTE .This align type instructs the linker to start the segment on the byte immediately
following the previous segment BY TE alignment prevents any wasted memory hetween
the previous segment and the BY T E-aligned segment

Section II. Programming in the MS-DOS Environment 125

Part B: Programming for MS-DOS

126

A minor disadvantage to BY TE alignment is that the 8086-family segment registers might
not be able to directly address the stait of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment This means that the segment size shouid not
be more than 15 bytes short of 64 KB The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph

addressing boundary

Another possible concern is execution speed on irue 16-bit 8086-family microprocessors.
When using non-8088 microprocessors, a program ¢an actually run faster if the instruc-
tions and word data fields within segments are aligned on word boundaries This permits
the 16-bit processors to fetch full words in a single memory read, rather than having to per-
form two single-byte reads The EVEN directive tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment of the items within the segment

WORD This align type instructs the linker to start the segment on the next word bound-
ary Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero) WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BY TE
alignment type. Howeve, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-aligned segment in order to position the new segment on 2

word boundary

Another minor disadvantage to WORD alignment is that the 8086-family segment registers
might not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have 10 point as many as
14 bytes behind the start of the segment. T his means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences o compensate for differences between the physical segment start and the paragraph

addressing boundary.

PARA This align type instructs the linker to start the segment on the next paragraph
boundary The segments default to PARA if no alignment type is specified Paragraph
boundaries occur every 16 bytes and consist of all addresses with hexadecimmal values end-
ing in zero (0000H, 0010H, 0020H, and so forth) Paragraph alignment ensures that the
segment begins on a segment register addressing boundary, thus making it possible to ad-
dress a full 64 KB segment Also, because paragraph addresses ate even addresses, PARA
alignment has the same advantages as WORD alignment The only real disadvantage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment.

PAGE This align type insiructs the linker to start the segment on the next page boundary
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (000CH, 0100H, 0200H, and so forth). PAGE alignment ensures

The MS-DOS Encyclopedic

Article 4: Structure of an Application Progeam

HUAWEI EX. 1204 A-3 - 76/165

only that the linker positions the segment on a page boundary relative to the start of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary

When a programmer declares pieces of a segment with the same name in different source
modules, the align type specified for each segment piece influences the alignment of that
specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

_DAIA SEGMENI PARA PUBLIC 'DAIA’
DB '1237
_DAIA ENDS

_PAIA SEGMENI PARA PUBIIC 'DAIA'
DB '456"
—DAIA ENDS3

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. When the linker encounters the second segment piece
in the second object modle, it aligns that piece on the first paragraph boundary following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second. The segment pieces must exist in separate source modules for this to occur If
the segment pieces exist in the same source module, MASM assumes that the second seg-
ment declaration is simply a resumption of the first and creates an object module with
segment declarations equivalent to the following:

—DAIA SEGMENI PARA PUBIIC fDAIA’
DB 123"
DB ‘45467

_DATA ENDS

The combine type parameter

The optional combire parameter allows the programmer to send directions to the linker
on how to combine segments with the same segrname occuiring in different object mod-
gles. If no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname The combine type has no effect on the relationship of segments with
different segnames MASM and TINK both suppott the following combine types:

PUBLIC This combine type instructs the linker to concatenate multiple segments having
the same segrame into a single contiguous segment. The linker adjusts any address refer-
ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac-
cessing code or data in different scurce modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the progtam’s stack and initialization data contained within STACK segments is handled
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker to determine the initial $S and SP register values it places in the EXE

Section IT. Programming in the MS-DOS Environment 127

Part B: Programming for MS-DOS

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source moduies, the linker
will concatenate them in the same fashion as PUBLIC segments. Howeves, initialization
data declared within any STACK segment is placed at the high end of the combined STACK
segments on 2 module-by-module basis Thus, each successive module’s initialization data
overlays the previous module’s data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can-
not determine the program’s initial 83 and SP values (The warning canbe gnored if the
program itself initializes S8 and SP) :

COMMON This combine type instructs the linker to overlap multiple segments having
the same segname. The length of the resulting segment reflects the length of the longest
segment declared If any code or data is declared in the overlapping segments, the data
contzined in the final segments linked replaces any data in previously loaded segments
This combine type is useful when a data area is to be shared by code in different source

modules

MEMORY Microsoft's [INK treats this combine type the same as it treats the PUBLIC
type MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel’s definition of a MEMORY combine type.

AT address This combine type instructs LINK to pretend that the segment will reside at
the absolute segment address LINK then adjusts all address references to the segment in
accordance with the masquerade LINK will not create an image of the segment in the
load module, and it will ignore any data defined within the segment. This behavior is con-
sistent with the fact that MS-DOS does not support the loading of program segments into
absohite memory segments. All programs must be able to execute from any segment ad-
dress at which MS-DOS can find available memory The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the progiam For
instance, SEGMENT AT 0000H couid be used to create a template of the 8086-family inter-
rupt vecitors. Because data contained within SEGMENT AT address segments is suppressed
by 1INK and not by MASM (which places the data in the object module), it is possible to
use OBJ files generated by MASM with another linker that supports ROM or other absolute
code generation should the programmer require this specialized capability

Theclass type parameter
The class parameter provides the means to organize different segments into classifications

For instance, here are three source modules, each with its own separate code and data
segments: '

;Module "A"
A_DAIA SEGMENI PARA PUBIIC 'DAILA'
:Module "A" data fields
A _DATA ENDS
A _CODF SEGMENI PARA PUBLIC 'CODE®
:Module "AM™ code
A.CODE ENDS
END

(more)

128 The M$-DOS Encyclopedia

Article 4: Structure of an Application Program

iModule "B™
B_DATA SEGMENI PARA PUBLIC 'DAIAY
Module "B" data fields
B_DAIA ENDS
B_CODE SEGMENI PARAR PUBLIC 'CODRE’
;Module "B" code
B_CODE ENDS
END

;Module "C™
C_DAIA SEGMENI PARA PUBLIC 'DAIA’
;Module "C" data fields
C_DAIA ENDS
C_CODE SEGMENI PARA PUBLIC 'CODE'
;Module "C" code
C_CODE ENDS
END

If the 'CODE!' and 'DATA’ class types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them If the prngammer speci-
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A_DATA
A _CODE
B_DATA
B.CODE
C_DATA
C_.COoDR

However, if the programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows:

'DAIAY class: A DATA
B_DAIA
C_DAIA

'CODE' class: A_CCDE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches. The preferred method involves using the /DOSSEG switch with the linker
This produces the segment ordering shown in Figure 4-1 The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segrments declared in the various other source modules The programiner creates the Jist
in the order the segments are to be arranged in memory and then specifies the OBJ file for
this module as the first file for the linker to process This procedure establishes the order
of all the segments before LINK begins processing the other program modules, so the

Section IT. Programming in the MS-DOS Environment 129

HUAWEI EX. 1204 A-3 - 77/165

Part B: Programming for M8-DOS

130

programumer can declare segments in these other modules in any convenient order. Fort
instance, the following source module rearranges the resuit of the previous example so
that the linker places the 'CODE' class before the 'DATA' class:

A_CODE SEGMENI PARA PUBLIC "CODE "'
A_CODE ENDS

‘5_CODE SEGMENI PARA PUBLTC 'CODE'

8_CODE ENDS
C_CODE SEGMENI PARA PUBILIC 'CODE’
C_CODE ENDS

A _DAIA SEGMENI PARA PUBLIC 'DAIA’
A DAIA ENDS
B_DAIA SEGMENI PARA PUBLIC 'DATA’
8_DAIA ENDS
c_DA1A SEGMENI PARA PUBIIC 'DAIA’
C_DATIA ENDS

END

Rather than creating a new module, the third method places the same segment ordeting
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying for the linker. T his duplicates the approach used by
Microsoft’'s newer comnpilers, such as C version 40

The ordering of segments within the load module has no direct effect on the linker’s
adjustment of address references (o locations within the various segments Only the
GROUP directive and the SEGMENT directive’s combine parameter affect address
adjustments performed by the linker See The MASM GROUP Directive below

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object
file in alphabetic order regardless of their order in the source file These older versions can
limit efforts to control segment ordering Upgrading to a new version of the assembler is
the best solurion to this problem

Ordering segments to shrink the EXE file

Correct segment ordering can significantly decrease the size of a EXE program as it
resides on disk This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker’s ordering of the program’s
segments so that the uninitialized data field segments all reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod-
ules 1o tell the linker about initialized and uninitialized areas of all segments The linkes
then uses this information to prevent the wiiting of unihitialized data areas that occur at
the end of the program image as part of the resulting .EXE file To account for the memory
space required by these fields, the linker also sets the MINALLOC field in the EXE file.
header to represent the data area not written 1o the file MS-DOS then uses the MINATIOC
field to reallocate this missing space when loading the program

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 78/165

Article 4: Structure of an Application Program

The MASM GROUP directivé

'Ehhe MASM G}.{OU.P directive can also have a strong impacton a EXE program However,
the GROUP d1r’e¢t1ve has 70 effect on the arrangement of program segments within merz;—
ory Rather, GROUP associates program segments for addressing purposes

The GROUP directive has the following syntax:
grpname GROUP segname, segname,segriame,

Tl'his directive causes the linker to adjust all address references to labels within any speci-
fied segname 1o be relative to the start of the declared group The start of the group is de-

termined at link time The group starts with which ‘ i
' ever of the segments in th i
the linker places lowest in memory ° *in the GROUP

That the GROUP directive neither causes nor requires contiguous arrangement of the
g?c.)ljiped segments creates some interesting, although not necessarily desitable, possi-
bilities For instance, it permits the programmer to locate segments not belongi’np to the
declared group between segments that do belong to the group The only resty ictin im
posed on the declared group is that the last byte of the last segment in the group must]

OCCUIWlhInMKBO € starl O egIO F I64 [y
t f [h tart f th 11 -7 [frate: e 1
p Igu 1liustr S thlS p Of Segmen

A
SBEGMENT_C
(listed with GROUP directive)
LABEL C »
— LABEL. B p
6_4_KB Offset to . SE.G MENT_B
maximum LABEL B (not listed with GROUP directive)
Offsetto W
LABEL_C
— LABEL_A »
Offset to . S.EGD'ENI*A
LABEL A (listed with GROUP directive)
A\

Figure 4-7 Noncontiguous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM’s
OFFSE‘T operator. The GROUP directive affects only the offset addresses generated b
such direct addressing instructions as Y

MOV A¥, FIEID_FABEL
but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSET FIELD_LABEL

Section [I: Programming in the MS-DOS Environment 131

Part B: Programming for MS-DOS

Article 4: Structure of an Application Program

Using the OFFSET operator on labels contained within
following approach: '

MOV AX,OFFSET GROUP_NAME :FIEID IABEL

The programmer must explicitly request th

grouped segments requires the

e offset from the group base, because MASM

| from the start of its

defines the result of the OFFSET operator to be the offset of the labe

segment, not its group

Structuring a small program with SEGMENT and GROUP

132

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc-
tives, we'll put both directives to work structuring a skeleton program. The program,
shown in Figures 4-8, 4-9, and 4-10, consists of three scurce modules (MODULE_A,
MODULE__B, and MODULE_C), each using the following four program segments:

Segment Definition

_TEXT The code or program text segment

_DATA The standard data segment containing preinitialized data fields the pro-
gram might change

CONST The constant data segment containing constant data fields the program
will not change '

_BSS The “block storage segment/space” segment containing uninitialized data
fields®

*programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as
ppropriate, although sorewhat more elaborate, defini-

block started at symbol, which reflects an equally a
tion of the abbreviation Other commaon translations of BSS, such as ‘blank static storage, misrepresent the
segment name, because blanking of BSS segments does not occur —the memory contains undetermined

values when the program begins execution

:Source Module MODUIE_ A

;Predeclare all segments to force the linker's segment ordering HERE EREA RS REA
_IEXI SEGMENI BYIE PUBLIC ‘CODE'
_IEXI ENDS

_DAIA SEGMENI WORD PUBLIC 'DATA’
_DAalA ENDS

CONSI SEGMENT WORD PUBLIC 'CONSI'
CONSI ENDS

_BSS SECMENI WORD PUBLTIC 'BSE’

_ESS ENDS

Figure -8 Structuring a EXE program MODULE_A (more)

The MS-DOS Encyclopedia

SIACK SEGMENI PARYL SIACK 'SIACK'
STACK ENDS

DGROUP GROUP —DAIA,CONSI,_ B35S, SIACK

;Constant declarations #&F st ksxdahd s bd ks kA b A AFRbRRREFF R b b S hhb kg FEhadkb kik®E
CONSI SEGMENI WORD PUBLIC 'CONSI®
CONSI_FIELD_ A DB "Constant A’ rdeclare a MODULE_A constant

CONST ENDS

;Preinitialized data fieclds ###sskdkbhkdhd brhbhhha e b bR Anb b d b b i kb kb mk R R ¥ Fh bk
_BAIA SEGMENI WORD PURIIC 'DAIA’
DATA F t

IEID_A DB "Data A' rdeclare a MODULE_A preinitialized field

_DAIA ENDS

;Uninitialized data ficlds #ws¥dkd eh sk s 2 s TRk RRE A RRF LI A IR R FRF Rk kAR ERLEF HF R F R
-BSS SEGMENT WORD PUBLIC 'BSS'
BSS_

FIEID_A DB 5 DUP (2} rdeclare a MODULELA uninitialized field

_BSS ENDS

JProgram LeXh kk A s ¢ i s s st kb b AR b F Ehd b AR B R Rk h R R R R R R R AR R SRR H R R d
~TEXI SEGMENT BYIE PURLIC 'CODE'
ASSUME (C§5:_IEXI,DS:DGROUP,ES:NOIRING, SS:NOLHING

:label is in _IEXI segment (NEAR)
:label is in _IEXI segment (NEAR}

EXIRN PROC_B:NEAR
EXIRN PROC_C:NEAR

PROC_A PROC NEAR

CALL PROC_E ;eall into MODUIE_B
CAIL PROC_C ycall into MODUIE_C
Mov AX,4C00H ;termi
jterminate (MS-DOS 2 0
o o or later only}

PROC_.A ENDP
—IEXI ENDS

Figure 4-8 Continued p)
more

Section IT. Programming in the MS-DOS Environment 133

HUAWEI EX. 1204 A-3 - 79/165

Part B: Programming for MS-DOS

134

;Stack ******ﬁ****i*#*#**#****************#**************ik***#*********t*****

STIACK SEGMENI PARA SIACK 'SIACK'

DW 128 DOP (2} ;jdeclare some space to use as stack

SIACK BASE 1ABEL WORD

SIACK ENDS

END PROC. A ideclare PROC.A as entry polint

Figure 4-8 Continued

:Source Module MODUILE_B
iConstant declarations dokAe R R R Rk kR R RE KRR R RARE A ARk R R T E R AR AR FRR RS ERRR AR

CONSI SEGMENT WORD PUBIIC 'CONSI'

CONSI_FIELD_B DB "Constant B' ;declare a MODULE_B constant

CONST ENDS

;Preinitialized data fields B R B R R R KRR L RN RN B F R E A RN AR R EREERRT R AL

_DATA SEGMENI WORD PUBLIC 'DAIA'
;declare a MODUIE_B preinitialized field

DAIA FIEID_B DB 'Data B’

_DAIA ENDS

;Uninitialized data fields ERHEEEAERFERAFRA A EREREEA A X A KRR KRR A AR R R R R R R E R RES

_B8S SEGMENI WORD PUBLIC 'BSS'
BSS_FIEID_B DB 5 DUB{?) ;declare a MODUIE_B uninitialized field
_BSs ENDS

;Program taxt *****#*1*t*#*i***#*i***k***********************#********i*******

DGROUP GROUPR DAIA,CONSI, BS3S
_IEXI SEGMENT BYIE PUBILIC 'CODE'

ASSUME ©S;_IEXI,DS:DGROUP,ES:NOTHING, SS:NOIHING

Figure 4-9 Strycturing @ EXE program: MODULE__B (more)

The MS-DOS Encyclopedia

Article 4; Structure of an Application Program

PUBLIC FPROC_B
PROC_B FPROC NEAR

ireference in MODULE_A

RET
PROC_B ENDP
_I1EXI ENDS

END

Figure 4-9. Continued

i Source Module MOIDUIE#C

cConstant declarablions #Ed s d ket ks btk ackokkok Rk # dokok ok Bk bk ke ok b ok ok ROkl ok ok Rk R R R R R R Kk
CONSI SEGMENI WORD PUBLIC 'COMSI'

CONSI.FIEID C DB 'Constant C' ;declare a MODULE.C constant

CONSI ENDS

;Preinitialized data Fields s soksokskokso i o okokob foR S ion b dofkfodok s ok lob bk B fok fok R R & K oE % §
_DATIA SEGMENI WORD PUBLIC 'DAIA'
DATA_FIELD_C DB 'Data C'

;declare a MODUIE_C preinitialized £fleld

_DATA ENDS

;Uninitialized data filelds # %% #¥ ¥ k4 PFBERRFRARRKXKRLRBRBK AR R X R bk R KR F B R A HF F X3 R K
_BSS SEGMENI WORD PUBLIC 'BSS'
BSS_FIELD_C DB S5 DUP(2)

;declare a MODUIE_C uninitialized Eield

_BSS ENDS

FRPIOGTAam LEXT R F b doh kb b ok R R R Bk o sk ko K R R K K KR R R R
DGRQUP GRQUP —DAIA,CONSI,_BSS
_IEXI SEGMENI BYIE PUBLIC 'CODE'

ASSUME CS:_IEXI,DS:DGROUP,ES:NOIHING, S5:NOIHING

Figure 4-10 Structuring a EXE program: MODUIE..C (more)

Section I Programming in the MS-DOS Environment 135

HUAWEI EX. 1204 A-3 - 80/165

Part B: Programming for M§-DOS

PUBLIC PROC_C :referenced in MODUILE_A

PROC_C PROC NEAR

REI
PROC_C ENDP
_IEX1 ENDS

END

Figure 4-10 Continued

T his example creates a small memory model program image, so the linked program can
have only a single code segment and a single data segment —the simplest standard form
of a EXE program See Using Microsoft’s Contemporary Memory Models below

In addition to declaring the four segments already discussed, MODULE_ A declares a
STACK segment in which to define a block of memory for use as the program’s stack and
also defines the linking order of the five segments Defining the linking order leaves the
programmer free to declare the segments in any order when defining the segment con-
tents— a necessity because the assembler has difficulty assembling programs that use

forward references

With Microsoft's MASM and LINK on the same disk with the ASM files, the following com-
mands can be made into a batch file:

MRESM SIRUCA;

MASM SIRUCB;

MASM SIRUCC:
LINK SIRUCA+SIRUCB+SIRUCC/M;

These commands will assemble and link all the ASM files listed, producing the memory
map report file STRUCA MAP shown in Figure 4-11

Start Stop Length Name Class
0ODOOE O00QCH 000CDH _IEXT CCDE
Q0Q0EH 0001FH 00012H _DAIA DAIA
¢Uo20H Q0D03DH (0001ER CONSI COMST
O0003EH OOC4EH C0U11H _BSS BES
00050H O014FH 00100H SIACK SIACK

Origin Group
0000:¢ DGROUP

address Publics by Name
Q000:0008 PROC_B
0000:000C PROC.C

Figure 4-11 Structuring @ EXE program memory medfr report {more)

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 81/165

Article 4: Structure of an Application Program

Address Publics by Value
0000:0008 PROC_B
0000:000C PROC.C

Program entry point at 0000:0000

Figure 4-11. Continued

The above memory map report represents the memory diagram shown in Figure 4-12.

Absolute
address Size in bytes
00150H »
STACK 4
ST 256
Class ACK (A)
00050H p| - — — — -
0004FH B| — -~ — — = PARA align gap 1
OOMAH B| = = = = == = = = = BSS (C) 5 T
0004 WORD ali
H P - ---- - BS§ - ign gap L
00044H B} - - - - - — Class - - BSSQ) 5
00043H B | -DGROUP ~i- = - - = ORD align gap l 321
0003EH » Group = BSS (A) 5
00034H p{ - - - — - _ CONST - |.CONST(C) 10 4
0002AH p| - - - - - _ Ciass _ | CONST(B) 10 30
00020H p| - - ~ - = consTay | 10 4
O0DIAH p| — ~ — — — ~ DATA - —DATAO 6 4
00014 p| - —= - — ~ _ Class _ | DATA®) 6 18
0000EH p| - — - - ~ DATA (A) 6 J.
CO0ODH B WORD align gap 1 v
GO0OCH »|— — — - CODE — — - TEXT (C) 1 A
DGROUP O0COBH pf[- - — -~ Class - — - TEXT (B) 1 13
addressing B 00000H p TEXT (A) 11 ¢

base

Figure 4-12 Structure of the sample EXE program

Using Microsoft’s contemporary memory models

Now that we've analyzed the varicus aspects of designing assembly-language EXE pro-
grams, we can Jook at how Microsoft’s high-level-language compilers create EXE pro-
grams from high-level-language source files Even assembly-language programmers will
find this discussion of interest and shouid seriously consider using the five standard
memory models outlined here

Tt']is discussion is based on the Microsoft C Compiler version 4 .0, which, along with the
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
generator currently available These newer compilers generate code based on three to five

Section IL Programming in the MS-DOS Environment 137

Part B: Programming for MS-DOS

138

of the following standard programmer-selectable program structures, referred to as mem-
ory models The discussion of each of these memory models will centes on the model’s
use with the Microsoft C Compiler and will close with comments regarding any differences

for the Microsoft FORTRAN Compiler

Small (C compiler switch /AS) 1his model, the default, includes only 2 single code seg-
ment and a single data segment. All code must fit within 64 KB, and all data must fit within
an additional 64 KB Most C program designs £21] into this category Data can exceed the
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used witha small model The C compiler uses the default segment name
__TEXI for all code and the defauit segment name _ DATA for ail non-far/huge data
Microsoft FORTRAN programs can generate 2 semblance of this model only by using the
/NM (name module) and /AM (medium model) compiler switches in combination with the

near attribute on all subprogram declarations.

Medium (C and FORTRAN compiler switch /AM) This model includes only a single data
segment but breaks the code into multiple code segments All data must fit within 64 KB,
but the 64 KB restriction on code size applies onlyona module-by-module basis. Data can
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments
The data-size-threshold switch described for the compact model is ignared by the
Microsoft C Compiler when used with a medium model. The compiler uses the default seg-
ment name _ DATA for all non-far/huge data and the template modufe TEXT to create
names for all code segments The modude clement of module_TEXT indicates where the
compiler is to substitute the name of the source module For example, if the source module
HELPFUNC C is compiled using the medium model, the compiler creates the code seg-
ment HFIPEUNC_TEXT The Microsoft FORT RAN Compiler version 40 directly suppoits

the medium model

Compact (C compiler switch /AC) This model includes only a single code segment but
breaks the data into multiple data segments All code must fit within 64 KB, but the data is
allowed to consume all the remaining available memory The Microsoft € Compiler’s op-
rional data-size-threshold switch (/Gt) controls the placement of the larger data items into
additional dara segments, leaving the smaller items in the default segment for faster access.
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge The compiler uses the default segment name
_TEXT for all code segments and the template module# DATA 1o creale names for all data
segments. I he modile element indicates whete the compiler is to substitute the source
module’s name; the # element represents a digit that the compiler changes for each addi-
tional data segment required o hold the module’s data The compiler starts with the digit 5
and counts up. For example, if the name of the source module is HELPF UNC C, the com-
piler names the first data segment HELPFUNCS_DATA FORTRAN programs can generate
4 semblance of this model only by using the /NM (name module) and /AL (large model)
compiler switches in combination with the near attribute on all subprogram declarations

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 82/165

Article 4: Structure of an Application Program

! :;ii I(1 fsa;z}cz’eﬁORTR‘le compger switch /AL) This model creates multiple code and data
‘ compiler treats data in the same manner as it does for the
| - . compact model
;nd Iueats code in the same manner as it does for the medium model. The Micliosoft)
ORTRAN Compiler version 4 0 directly supports the large model

Huge (C and FORTRAN compiler switch /AH) Allocation of segments under the hi

model follows the same rules as for the large model. The difference is that individs u%fi
items can exceed 64 KB Under the huge model, the compiler generates the necesgir e
code t? index arrays or adjust pointers across segment boundaries; effectively transf Y i
the microprocessor’s segment-addressed memory into Iinear—addr:assed menB;OI T E’(l)' e
makes the huge n.lodel especially useful for porting a program originally Wlitteg for 2115 10-
c;;ssor th-at u‘sed ‘11near acidres-sing The speed penalties the program pays in exchangepfox
this der essing freedom require serious consideration If the program actually contains
?;ZVOEJ}? j; zgttl;::z S)g((e:e;dglgl 6b4 KB, I1t pllo]:ziably contains only a few In that case, it is best

odel by explicitly declaring those fi i i

Fhe huge; keyword within the source modlfle This p?ever??sf;:;;i;:;ge:lllsti?;fne llll g
items with extra addressing math The Microsoft FORTRAN Compiler version 4 i l‘lge
supports the huge model] oo direatly

Figure 4-13 shows an example of the segment arrangement created by a large/huge mod

program ’Ih'e ‘example assumes two source modules: MSCA C and MSCB Cg Eachgso?llr(;eel
rﬁodule specifies er}ough data to cause the compiler to create two extra data segments for
that module The diagram does not show all the various segments that occur as a result of

linking with the run-time library or asa r : ili i i i '
Coderion e y or as a result of compiling with the intention of using the

Groups Classes Segments
STACK STACK 4 SMCLH: Program stack
SGROUP BSS c_common | SM: Ali uninitiatized global jtems. CLH: Empty
_BSS < SMCLH: All uninitialized non-far/huge items
CONST . CONST 4 SMCLH: Constants (floating point constraints segment addresses etc)
DATA _DATA < SMCLH: Al items that don't end up anywhere else
FAR_BSS FAR_BSS |4 SM: Nonexistent, CLH: All uninitialized global items

MSCB6_DATA(4 From MSCB only: SM: Farthuge items. CL H: Items larger than thresheld

FAR DATA MSCBS_DATA| From MSCB only: SM: Far/huge items CLH: ltems larger than threshold
MSCAG DATA| « From MSCA only: SM: Farthuge items CLH: Items larger than threshold

MSCAS_DATA| 4« From MSCA only: SM: Far/huge items, CLH: tems larger than threshold
coDE - TEXT « SC: All code, MLH: Run-time Library code only

SCB_TEXT |4 SC: Nonexistent MLH: MSCB C Code
MSCA_TEXT | 4 SC; Nonexistent MI H: MSCA .C Code

§ = Small model L = Large model
M = Medium model H= Huge modei
C = Compact model

Figure 4-13. General structure of a Microsoft C program

Section II: Programming tn the MS-DOS Enwironment 139

Part B: Programming for MS-DOS

Note that if the program declares an extremely large number of small data iten’lls, it can
exceed the 64 KB size limit on the default data segment (. DATA) regardless f)f the memory
model specified This occurs because the data items all fall belqw the data-lsxze—threshold
limit (compiler /Gt switch), causing the compiler o plac_e ther{l inthe ._I?ATA segment.
Lowering the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem.

Modifying the .EXE file header

140

With most of its language compilers, Microsoft supplies a utility program called EXEMOD
See PROGRAMMING UTILITIES: exemon This utility allows the progr ammer to display
and modify certain fields contained within the EXE file header Following are the header
fields EXEMOD can modify (based on EXEMOD version 4 0):

MAXAILLOC This field can be modified by using EXEMOD's /MAX switch Brecause
EXEMOD operates on EXE files that have already been linked, the /MAX !?WltCh can be
used to modify the MAXALLOC field in existing EXE programs that contain ’the defal.jlt
MAXALLOC value of FFFFH, provided the programs do not rely on MS—pOS s allocating
all free memory to them. EXEMOD's /MAX switch functions in an identical manner to

TINK's /CPARMAXATLOC switch

MINALIOC This field can be modified by using EXEMOD’s /MIN switch Unlike the case
with the MAXATLOC field, most programs do not have an arbitrary value for_ MINALLOC
MINALLOC normally represents tninitialized memory and stack space the linker has com-
pressed out of the EXE file, so a programmer should never reduce 'the MINAL IjO.C value
within a EXE program written by someone else. Ifapr ogram requires some m1mm1?m
amount of extra dynamic memory in addition to any static fields, MINAL LO(.: c-:an bein-
creased to ensure that the program will have this extra memory before receiving control If
this is done, the program will not have to verify that MS~DQS alloca-ted enough memory to
meet program needs Of course, the same result can be achieved without EXEMOD by
declaring this minimum extra memory as an uninitialized field at the end of the program

Initial SP Value Thisfield can be modified by using the /STACK switch to increase ot
decrease the size of a program’s stack However, modifying the initial SP value for pro-
grams developed using Microsoft language compiler versions earlier than the follovn‘ng
may cause the programs to fail: C version 3 0, Pascal version 3 .3, and FORT RA_N version

% 3 Other language compilers may have the same restr iction The /STACK :SVV.ltCh can also
be used with programs developed using MASM, provided the stac%c space is 111}ked at the
end of the program, but it would probably be wise to change the size of the SIACK seg-
ment declaration within the program instead The linker also provides a /STACK switch

that performs the same purpose

Note: With the /H switch set, EXEMOD displays the cusrent values of the fields within
the EXE header This switch should not be used with the other switches EXEMOD also

displays field values if no switches are used

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 83/165

Article 4: Structure of an Application Program

Warning: EXEMOD also functions correctly when used with packed EXE files created
using EXEPACK or the /EXEPACK linker switch However, it is important to use the
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in

the packing method may result in incompatibilities between EXEMOD and nonassociated
linker/EXEPACK versions

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem 1o have at least one
unspotted error. If a2 program has been distributed to other users, the programmer will
probably need to provide those users with corrections when such bugs come to light One
inexpensive updating approach used by many large companies consists of mailing out
single-page instructions explaining how the user can patch the program to correct the
problem

Program patching usually involves loading the program file into the DEBUG utility sup-
_plied with MS-DOS, storing new bytes into the program image, and then saving the pro-
gram file back to disk Unfortunately, DEBUG cannot load a EXE program into memory
and then save it back to disk in EXE format. The programmer must trick DEBUG into

patching EXE program files, using the procedure outlined below See PROGRAMMING
UTILITIES: DEBUG ' '

Note: Users should be reminded to make backup copies of their program before attempt-
ing the patching procedure

1 Rename the EXE file using a filename extension thar does not have special meaning
for DEBUG (Avoid EXE, COM, and HEX) For instance, MYPROG BIN serves well as
a temporary new name for MYPROG. EXE because DEBUG does not recognize a file
with a BIN extension as anything special DEBUG will load the entire image of
MYPROG BIN, including the [EXE header and relocation table, inio memory starting
at offset 100H within a COM-style program segment (as discussed previously)

2. Locate the area within the load module section of the EXE file image that requires
patching The previous discussion of the EXE file image, together with compiler/
assembler fistings and linker memory map reports, provides the information neces-
sary to locate the error within the EXE file image DEBUG loads the file image start-
ing at offset 100H within a COM-style program segment, so the programmer must
compensate for this offset when calculating addresses within the file image. Also, the
compiler listings and linker memory map reports provide addresses relative to the
start of the program image within the EXE file, not relative to the start of the file
irself Therefore, the programmer must first check the information contained in the

EXE file header to determine where the load module (the program’s image) starts
within the file

3 Use DEBUG's E (Enter Data) or A (Assemble Machine Instiuctions) command to

insert the corrections, (Normally, patch instructions to users would simply give an
address at which the user should apply the patch Ihe user need not know how to
determine the address)

4 Afterthe patch has been applied, simply issue the DEBUG W {Write File or Sectors)

commuand o write the corrected image back to disk under the same filename, pro-
vided the patch has not increased the size of the program If program size has

Section 11 Programming in the M$-DOS Environmen: 141

Part B: Programming for MS-DOS

increased, first change the appropriate size fields in the EXE header at the start of the
file and use the DEBUG R (Display or Modify Registers) command to modify the BX
and CX registers so that they contain the file image’s new size Then use the W com-
mand to write the image back to disk under the same name

5 Use the DEBUG Q (Quit) command to return 1o MS-DOS command level, and then
rename the file to the original EXE filename extension

EXE summary
To summarize, the EXE program and file sts uctures provide considerable flexibility in the
design of programs, providing the programmer with the necessary freedom to produce

large-scale applications Programs written using Microsoft’s high-leveHanguage compilers -

have access to five standardized program structure models (small, medium, compact,
{arge, and huge). T hese standardized models are excellent examples of ways 1o structure

assembly-language programs

The .COM Program

The majority of differences between COM and EXE programs exist because COM
program files are not prefaced by header information. Therefore, COM programs do not

henefit from the features the EXE header provides.

The absence of 2 header leaves MS-DOS with no way of knowing how much memory the
COM program requires in addition to the size of the program’s image. Therefore, MS-DOS
must always allocate the largest free block of memory t© the COM program, regardiess of
the prograny’s true memory requirements As was discussed for EXF programs, this allo-
cation of the largest block of free memory usually results in MS-DOS's allocating all
remaining free memory — an action that can cause problems for multitasking supervisor
programs.

The EXE program header also includes the direct segment address relocation pointer
table Because they lack this table, COM programs cannot make address references to the
labels specified in SEGMENT directives, with the exception of SEGMENT AT address
directives If 2 COM program did make these references, MS-DOS would have no way of
adjusting the addresses to correspond to the actual segment address into which MS-DOS
loaded the program See Creating the COM Program below.

The COM program structure exists primarily to suppott the vast number of CP/M pro-
grams ported to MS-DOS Currently, COM programs are most often used to avoid adding
the 512 bytes or more of EXF header information onto small, simple programs that often
do not exceed 512 bytes by themselves

The COM program structure has another advantage: Its memory organization places the
PSP within the same address segment as the rest of the program Thus, it is easier (0 access
tields within the PSP in COM programs :

142 The MS-DOS Encyciopedia

HUAWEI EX. 1204 A-3 - 84/165

Article 4: Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the COM program, MS-DOS builds

a PSP in the lowest 100H bytes of the block. No difference exists betwe:en the PSP MS-DOS
builds for COM programs and the PSP it builds for EXE programs Also with EXE pro-
grams, MS-DOS determines the initial values for the Al and AH registers at this time and
then loads the entire COM-file image into memory immediately following the PSP,
Because COM files have no file-size header fields, MS-DOS relies on the size recorded in
the disk directory to determine the size of the program image . It loads the program exact]
as it appears in the file, without checking the file’s contents. '

MS-DOS then sets the DS, ES, and 58 segment registers to point o the start of the PSP If
able to allocate atleast 64 KB 10 the program, M3-DOS sets the SP register to offset FFFFH
+1 (D000H) to establish an initial stack; if less than 64 KB are available for allocation to the-
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DOS then pushes a single word of 0000H onto the program’s stack for"

use in terminating the program

Finally, MS5-DOS transfers control to the program by setting the CS register to the PSP’s
segmenF address and the IP register to 0100H. This means that the program’s entry point
must exist at the very start of the program’s image, as shown in later examples.

Figure 4-14 shows the overall structure of a COM program as it receives control from
MS-DOS.

.COM program memory image

soorrrmse ———]
Remaining free memory

within first 64 KB allocated
to .COM program
{provided a full 64 KB was available)

COM program image from file
COM program image 4| o« IP=0100H

Program segment prefix.

4 CS.DS.ES,SS

*The SP and 64 KB values are dependent upon
MS-DOS having 64 KB or more of memory
available to allocate to the COM program

at load time.

Figure 4-14 The COM program memory map diagram with register pointers

Section IT. Programming in the MS-DOS Environment 143

Part B: Programming for M5-DOS

Terminating the .COM program

A COM program can use ali the termination methods descr ibec.l for EXE programs b.ut
should still use the MS-DOS Interrupt 21H Terminate Process with Return C‘Jode f.uncnon
(4CH) as the preferred method. If the COM program must remain corn.patl.ble with ver-
sions of MS-DOS earlier than 2 0, it can easily use any of the older termination methods,
including those described as difficult to use from EXE programs, because COM programs
execute with the CS register pointing to the PSP as required by these methods.

Creating the .COM program

144

A COM program is created in the same manner as 2 EXT program and then converted
using the MS-DOS EXE2BIN utility See PROGRAMMING UTILITIES: EXE2BIN

Certain restrictions do apply to COM programs, however First, COM programs cannot
exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack

Next, only a single segment-—or atleast single addressing group — should exist within
the program. T he following two examples show ways 10 structure a COM program to sat-

isfy both this restriction and MASM's need to have data fields precede program code in the

source file.

COMPROG1 ASM (Figure 4-15) declares only a single segment (COMSEG), s0 no special
considerations apply when using the MASM OFFSET operator See The MA‘?M GROUP
Directive above. COMPROG2 ASM (Figure 4-16) declares separate code (C§EG) and data
(DSEG) segments, which the GROUP directive ties into a cOmmaon addl:essmg block.

T hus, the programmer can declare data fields at the start of the source.fllfe gnd hav.e thek
linker place the data fields segment (DSEG) after the code segrent (CSEG) when.ﬂ links
the program, as discussed for the EXE program structure This second example &muigtes
the program structuring provided under CP’M by Microsoft’s old Macxo-SO (M80) macro
assembler and Link-80 (180) linker The design also expands easily to accominodate

COMMON or other additional segments

COMSEG SEGMENI BYIE PUBLIC 'CODE'
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG

ORG 0100HK

BEGIN:
TMP STIARI ;skip over data fields

;Place your data fields here.

STIARI:

;Place your program text here
MOV AX, 4CO0H ;terminate {(MS3-DOS 2.0 or later only)
INI 21H

COMSEG ENDS
END BEGIN

Figure 4-15 COM program with data at stari

The M$-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 85/165

Article 4: Structure of an Application Program

CSEG SEGMENI BYIE PUBLIC *CODE’
CSEG ENDS

DSEG SEGMENI BYIE PUBLIC 'DRIA'
DSEG ENDS

COMGRP GROUP CSEG, DSEG

DSEG SEGMENI

;Place your data fields here

DSEG ENDS

CSEG SEGMENI

restablish segment order

;establish joint address base

ASSUME C5:COMGRP, DS:COMGRP, ES : COMGRP, 88 : COMGRP
ORG 0100R

BEGIN:
;Place your program text here Remember to use
;OFFSEI COMGRP:1ABEI whenever you use OFFSET.

MOV AX, 4CO0H rterminate (MS-DOS 2.0 or later only)
INI 21H

CSEG ENDS
END BEGIN

Figure 4-16 . COM program with data at end

These examples demonstrate other significant requirements for producing a functioning
COM program For instance, the ORG 0100H statement in both examples tells MASM o
start assembling the code at offset 100H within the encompassing segment This corre-
sponds to MS-DOS’s transferring control to the program at IP = 0100H In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appeats again as a
parameter to the END statement. Together, these factors satisfy the requirement that COM
programs declare their entry point at offset 100H If any factor is missing, the MS-DOS
EXEZBIN utility will not properly convert the EXE file produced by the linker into a COM
file. Specifically, if a COM program declares an entry point (as a parameter to the END
“statemnent) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the EXE file
when the programmer attempts to convert it If the program fails o declare an entry point
or declares an emry point at offset 0000H, EXE2BIN assumes that the EXE file is to be
converted to a binary image rather than to a COM image When EXE2BIN converts a EXE
file to a non- COM binary file, it does not strip the extra 100H bytes the linker places in
front of the code as a result of the ORG 0I0CGH instruction 1hus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the 100H offset As a result, the
program — and probably the rest of the system as well —is likely to crash

A COM program also must not contain direct segment address references to any segments
that make up the program Thus, the COM program cannot reference any segment labels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive)
Following are various examples of direct segment address references that are nor per-
mitted as pait of COM programs:

Section [T, Programming in the MS-DOS Environment 145

Part B: Programming for MS-DOS

PROC..A PROC FAR
PROC_A ENDP
CALL PROC_A :intersegment call
JMP PROC_A ;intersegment jump
or

EXIRN PROC_A:FAR
; intersegment call

CALL PROC_A
JMP PROC_A ;intersegment jump
or
MOV AY¥,SEG SEG_A : segment address
DD LABEL_A : segment.:offset pointer

st not declare any segments with the STACK combine type If
f the STACK combine type, the linker will insert initial
header, causing EXEZBIN to reject the EXE file A COM
ed stacks, although it can reserve space in a pon-
it can initialize the SP register gfter it recejves
will cause the linker to issue 2 harmless warning

Finally, COM progtams mu
a program declares a segroent wit
SS and SP values into the EXE file
program does not have explicitly declar
STACK combine type segment to which
control. The absence of a stack segment
message

When the program is asserbled and linked into a EXE file, it must be converted into 2
binary file witha COM extension by using the EXE2BIN utility as shown in the following

example for the file YOURPROG EXE:

CSEXEZBIN YOURPROG YOURPROG .COM <Enter>

Tt is not necessary to delete or rename a EXE file with the same filename as the COM

file before trying to execute the COM file as long as both remain in the same directory,
COM files first, then EXE files, and finally BAT

because MS-DOS’s order of execution is
files However, the safest practice is to delete a EXE file immediately after converting itto
d or moved to a different directory. If a

2 COM file in case the COM file is later rename
EXE file designed for conversion o a COM file is executed by accident, it is likely to crash

the system

Patching the .COM program using DEBUG

146

rammer who distributes software to users will probably

As discusse.d for EXE files, a prog
s approach to software

want fo send instructions on how to patch in error corrections. Thi
updates lends itself even better to GOM files than it does to EXE files.

For example, because COM files contain only the code image, they need not be renamed
in order 1o read and write them using DEBUG The user need only be instructed on how o
load the COM file into DEBUG, how to patch the program, and how to write the patched
image back to disk Calculating the addresses and patch values is even easier, because no

header exists in the COM file image to cause complications With the preceding excep-
tions, the details for patching COM programs remain the same as previously outlined for

EXE programs

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 86/165

Article 4: Structure of an Application Program

.COM summary

To summarize, the .COM program and file structures are a simpler but more restricted
appr'oach to wiiting programs than the EXE structure because the programmer has onl
single memory modet from which to choose (the COM program segment modeD Alsé)1 e
COM program files do not contain the 512-byte (or more) header inherentto EXE files’
the COM program structure is well suited to small programs for which adding 512 by S
of header would probably at least double the file’s size B

Summary of Differences

1 he following table summarizes the differences between COM and EXE programs

LCOM program EXE program
Maximum size 65536 bytes minus 256 bytes No limit
. ‘ for PSP and 2 bytes for stack
Crsltg g_)r:;:nt }l’;’g:OlOOH Defined by END statement
v Segment containing program’s
entry point
IPat :
entry 0100H Offset of entry point within its
DS at entry Psp nge’gmem
ESatentry PSP PSP
S5 atentr
> z:lt eramy Psp o Segment with STACK attribute
v FFFEH or top word inavailable End of segment defined with
memory, whichever is lower STACK attribute
Stack at entry Zero word Initialized or uninitialized,
‘ depending on source
Stack size 655306 bytes minus 256 bytes Defined in segment with
for PSP and size of executable STACK artribute

Subroutine calls
Exit method

Size of tile

code and data

NEAR

Interrupt 21H Function 4CH
preferred; NEARRET if
MS-DOS versions 1 x

Exact size of program

NEAR ot FAR

Interrupt 21H Function 4CH
preferred; indirect jump
to PSP:0000H if MS-DOS
versions 1 x

Size of program plus header (at
least 512 extra bytes)

Sectior IL Programming in the M5-DOS Environment 147

Article 5: Character Device input and Output

Part B: Programming for M5-DOS

. -
an application usually depends on the program’s Artl(:le 5:

intended size, but the decision can also be influenced by a program’s need to address mul-

tiple memory segments Normally, small utility programs (such as CHKDSK and FOR- | Chal'acter DeViCC Input and Output

MAT) are designed as COM programs; large progiams (such as the Microsoft C ComPiler)
are designed as EXE programs The ultimarte decision is, of course, th¢ programmer’s

Which format the programmer uses fot

All functional computer systems ase composed of a central processing unit (CPU), some
Keith Burgoyne memory, and peripheral devices that the CPU can use to store data or communicate with
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard
(for input), the display (for output), and one or more disk drives (for nonvoelatile storage)
Additional devices such as printers, modems, and pointing devices extend the function-

ality of the computer or offer alternative methods of using the system

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com-
munications ports

The distinction between block and character devices is not always readily apparent, but
in general, block devices transfer information in chunks, or blocks, and character devices
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by
a drive letter assigned when the device’s controlling software, the device driver, is loaded
A character device, on the other hand, is identified by a logical name (similar to a filename
and subject to many of the same restrictions) built into its device driver. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: CustoMizing Ms-Dos: Installable Device Drivers.

Background Information

Versions 1 x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices
with a fixed set of device drivers loaded during system initialization from the hidden file
IO SYS (or IBMBIO COM with PC-DOS) These versions of MS-DOS offered application
programs a high degree of input/output device independence by allowing character
devices to be treated like files, but they did not provide an easy way to augment the built-in
set of drivers if the user wished to add a third-party peripheral device to the system

With the release of MS-DOS version 2 0, the hardware flexibility of the system was tremen-
dously enhanced Versions 2.0 and later support installable device drivers that can reside in
separate files on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIG SYS file on the startup disk See USER COMMANDS:
CONFIG sv8: DEVICE A well-defined interface between installable drivers and the MS-DOS
kernel allows such drivers to be written for most types of peripheral devices without the
need for modification to the operating system itself '

The CONFIG $YS file can contain a numbser of different DEVICE commands to load sepa-
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on Each
diiver, in turn, is specialized for the hardware characteristics of the device it supports

Section IT. Programming in the MS-DOS Environment 149

148 The MS-DOS Encyciopedia

HUAWEI EX. 1204 A-3 - 87/165

Part B: Programming for M3-DOS

When the system is turned on or restarted, the installable device diivers are added to the
chain, or linked list, of default device drivers loaded from IO 3Y3 during MS-DOS initializa-
tion. Thus, the need for the system’s default set of device drivers to supporta wide range of
optional device types and features at an excessive cost of system memory is avoided

One important distinction between block and character devices is that MS-DOS always
adds new block-device drivers to the tail of the driver chain but adds new character-device
drivers to the head of the chain Thus, because MS-DOS searches the chain sequentially
and uses the first driver it finds that satisfies its seasch conditions, any existing character-
device driver can be superseded by simply installing another driver with an identical logi-
cal device name.

This article covers some of the details of working with MS-DOS character devices: display-
ing text, keyboard input, and other basic character /O functions; the definition and use of
standard input and output; redirection of the default character devices; and the use of the
TOCTL function (Interrupt 21H Function 44H) to communicate directly with a character-
device driver Much of the information presented in this article is applicable only to
MS-DOS versions 2.0 and later

Acéessing Character Devices

150

Application programs can use either of two basic techniques to access character devices in
a portable manner under MS-DOS. First, a program can use the handle-type function calls
that were added to MS-DOS in version 2 0 Alternatively, a program can use the so-called
“traditional” character-device functions that were present in versions 1 X and have been
retained in the operating system for compatibility Because the handle functions are more
povwerful and {lexible, they are discussed first

A handle is a 16-bit number returned by the operating system whenever a file or device is
opened or created by passing a name to MS-DOS Interrupt 21H Function 3CH (Create File
with Handle), 3DH (Open File with Handle), SAH (Create Temporary File), or SBH (Create
New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the
computer's memory and the file or device

During an open or create function call, MS-DOS searches the device-driver chain sequen-
tially for a character device with the specified name (the extension is ignored) before
searching the disk directory Thus, a file with the same name as any character device in the
driver chain— for example, the file NUL TXT — cannot be created, nor can an existing file
be accessed if a device in the chain has the same name

The second method for accessing character devices is through the traditional MS-DOS
character input and output functions, Interrupt 21H Functions 01H through OCH These
functions are designed to communicate directly with the keyboard, display, printer, and
serial port Each of these devices has its own function or group of functions, so neither

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 88/165

Article 5: Character Device Input and Ouiput

names not handles need be used However, in MS-DOS versions 2 0 and ldter, these func-
tion calls are translated within MS-DOS to make use of the same roufines that are used by
the handle functions, so the traditional keyboard and display functions are affected by /0
redirection and piping

Use of either the traditional or the handle-based method for character device I/O results
it highly portable programs that can be used on any computer that runs MS-DOS . A third,
less portable access method is to use the hardware-specific routines resident in the read-
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func-
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral
device’s adapter directly, bypassing the system software altogether Although these latter
hardware-dependent methods cannot be recommended, they are admittedly sometimes
necessary for performance reasons

The Basic MS-DOS Character Devices

Every MS-DQS system supports at least the following set of logical character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port
CIOCK$ System real-time clock

NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “traditional”
function calls; strings can be read from or written to the devices according to their capabili-
ties on any MS-DOS systemn. Data written to the NUI device is discarded; reads from the
NUL device always return an end-of-file condition

PC-DOS and compatible implementations of MS-DOS typically also support the following
logical character-device names:

Device Meaning

COM1 First serial communications port
COoMmz2 Second serjal communications port
IPT1 First parallel printer port

IPI2 Second paralle! printer port

IPT3 Third parallel printer port

Section IT. Programming in the MS5-DOS Environment 151

Part B: Programming for MS-DOS

In such systems, PRN is an alias for IPT1 and AUX is an alias for COM1 The MODE com-
mand can be used to redirect an LPT device to another device See USER COMMANDS:

MODE

As previously mentioned, any of these default character-device dsivers can be superseded
by a user-installed device driver — for example, one that offers enhanced functionality or
changes the device’s apparent characteristics. One frequently used alternative character-
device driver is ANSI SYS, which replaces the standard MS-DOS CON device driver and
allows ANSI escape sequences to be used to perform tasks such as clearing the screen,
controlling the cursor position, and selecting character attributes See USER COMMANDS:

ANSLSYS

The standard devices

152

Under MS-DOS versions 2.0 and later, each program owns five previously opened handles
for character devices (refetred to as the standard devices) when it begins executing. These
handles can be used for input and output operations without further preliminaries The
five standard devices and their associated handles are

Standard Device Name Handle Default Assignment
Standard input (stdir) 0 CON

Standard output (stdout) 1 CON

Standard etror (stderr) 2 CON

Standard auxiliary {stdaux) 3 AUX

Standard printer (stdprn) 4 PRN

The standard input and standard output handles are especially important because they are
subject to /O redirection. Although these handles are associated by default with the CON
device so that read and wiite operations are implemented using the keyboard and video
display, the user can associate the handles with other character devices or with files by
using redirection parameters in a program’s command line:

Redirection Result

< file Causes read operations from standard input to obtain data from file

> file Causes data written to standard output to be placed in file.

>> file Causes data written to standard output to be appended to file

piip2 Causes data written to standard output by program p1 to appear as the

standard input of program pz2

This ability to redirect I/O adds great flexibility and power to the system. For example,
programs ordinarily controlled by keyboard entries can be run with “scripts” from files,
the output of a program can be captured in a file or on a printer for later inspection, and
general-purpose programs {filters) can be written that process text streams without regard
to the text’s origin or destination See PROGRAMMING IN THE MS$-DOS ENVIRONMENT ;
CUSTOMIZING Ms-DOs: Writing MS-DOS Filters.

The MS-DOS Encyclopedia

Article 3: Character Device Input and Qutput

Ordinarily, an application program is not aware that its input or cutput has been redi-
rected, although a write operation to standard output will fail uvnexpectedly if standard
output was redirected to a disk file and the disk is full An application can check for the
existence of 1/0 redirection with an IOCTT (Interrupt 21H Function 44H) call, but it can-
not obtain any information about the destination of the redirected handle except whether
it is associated with a character device or with a file

Raw versus cooked mode

MS-DOS associates each handle for a character device with a mode that determines how
I/O requests directed to that handle are treated When a handle is in raw mode, characters
are passed between the application program and the device driver without any filtering or
buffering by MS-DOS When a handle is in cooked mode, MS-DOS buffers any data that is
read from or written to the device and takes special actions when certain characters are
detected

During cooked mode input, MS-DOS obtains characters from the device driver one at a
time, checking each character for 2 Control-C The characters are assembled into a string
within an internal MS-DOS buffer The input operation is terminated when a carriage
return (ODH) or an end-of-file mark (JAH) is received or when the number of characters
requested by the application have been accumulated If the source is standard input, lone
linefeed characters are translated to caniage-return/linefeed pairs The stting is then
copied from the internal MS-DOS butffer to the application program’s buffer, and control
returns to the application program

During cooked mode output, MS-DOS transfers the characters in the application pro-
gram’s output buffer 1o the device driver one at a time, checking after each character for

a Control-C pending at the keyboard If the destination is standard output and standard
output has not been redirected, tabs are expanded to spaces using eight-column tab stops
Output is terminated when the requested number of characters have been written or when
an end-of-file mark (1AH) is encountered in the output string

In contrast, during raw mode input or output, data is transferred directly between the
application program’s buffer and the device driver Special characters such as carriage
return and the end-of-file mark are ignored, and the exact number of characters in the ap-
plication program’s request are always read or written. MS-DOS does not break the strings
into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entries during the I/O operation Finally, characters read from standard input
in raw mode are not echoed to standard output

As might be expected from the preceding description, raw mode input or output is usu-
ally much faster than cooked mode input or output, because each character is not being
individually processed by the MS-DOS kernel Raw mode also allows programs to read
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for
example, Control-C, Control-P, and Control-S) (If BREAK is on, MS-DOS will still check for
Control-C entries during other function calls, such as disk operations, and transfer control

Section IT Programming in the M5-DOS Environment 153

HUAWEI EX. 1204 A-3 - 89/165

Part B: Programming for MS-DOS

to the Control-C exception handler if a Control-C is detected) A program can use the
MS-DOS IOCTL Get and Set Device Data services (Interrupt 21H Function 44H Subfunc-
tions DOH and O1HD to set the mode for a character-device handle. See IOCTL below

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was
obtained from a previous open operation and affects only the /O operations requested
by the program that owns the handle. However, when a program uses 1OCI1 to select raw
ot cooked mode for one of the standard device handles, the selection has a global effect
on the behavior of the system because those handles are never closed. Thus, some of the
“traditional” keyboard input functions might bebave in unexpected ways Consequently,
programs that change the mode on a standard device handle should save the handle’s
mode at entry and restore it before performing a final exit 1o M3-DOS, so thai the opera-
tion of COMMAND.COM and other applications will not be disturbed. Such programs
should also incorporate custom critical error and Control-C exception handlers so that the
programs cannot be terminated unexpectedly See PROGRAMMING IN THE MS-DOS’
ENVIRONMEN T: CusToMiziNG ms-Dos: Exception Handlers

The keyboard -

154

Among the MS-DOS Interrupt 21H functions are two methods of checking for and receiv-
ing input from the keyboard: the traditional method, which uses MS-DOS character input
Functions 01H, 06H, 07H, 08H, 0AH, 0BH, and 0CH (Table 5-1); and the handle method,
which uses Function 3FH Each of these methods has its own advantages and disadvan-

tages See SYSTEM CAILS.

Table 5:1. Traditional MS-DOS Character Input Functions.

Read Multiple Ctrl-C

Function Naine Characters Echo Check
01H Character Input with Echo No Yes Yes
06H Direct Console I/O No No No
074 . Unfiltered Character Input

Without Echo No No No
08H Charactes [nput Without Echo No No Yes
0AH Buffered Keyboard Input Yes Yes Yes
0BH Check Keyboard Status No No Yes
0CH Flush Buffer, Read Keyboard * * *

*Varies depending on function (from above) called in the Al register

The first four traditional keyboard input calls are really very similar They all return a char-
acter in the Al 1egister; they differ mainly in whether they echo that character to the dis-
play and whether they are sensitive to interruption by the user’s entry of a Control-C. Both
Functions 06H and 0BH can be used to test keyboard status (that is, whether a key has
been pressed and is waiting to be read by the program); Function OBH is simpler o use,
but Function 06H is immune 1o Control-C entries

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 90/165

Article 5: Character Device Input and Output

Function 0AH is used to read a “buifered line” from the user, meaning that an entire line is
accepted by MS-DOS before control retuns to the program. The line is terminated when
the user presses the Enter key or when the maximum number of characters (to 253) speci-
fied by the program have been received. While entry of the line is in progress, the usual
editing keys (such as the left and right atrow keys and the function keys on IBM PCs and
compatibles) are active; only the final, edited line is delivered to the requesting program

Function 0CH allows a program to flush the rype-ahead buffer before accepting input
This capability is important for occasions when a prompt must be displayed unexpectedly
(such as when a critical error occurs) and the user could not have typed ahead a valid
response This function should also be used when the user is being prompted for a critical
decision (such as whether to erase a file}, to prevent a character that was previcusly
pressed by accident from triggering an irrecoverable operation Function OCH is unusual
in that it is called with the number of cne of the other keyboard input functions in register
AL After any pending input has been discarded, Function 0CH simply transfers to the
other specified input function; thus, its other parameters (if any) depend on the function
thar ultimately will be executed.

The primary disadvantage of the traditional function cails js that they handle redirected
input poorly If standard input has been redirected to a file, no way exists for a program
calling the traditional input functions to detect that the end of the file has been reached —
the input function will simply wait forever, and the system will appear to hang,

A program that wishes to use handle-based 1/0 to get input from the keyboard must use
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH Ordinarily, the pro-
gram can employ the predefined handle for standard input (0, which does not need to be
opened and which allows the program’s input 1o be redirected by the user to another file
or device, If the program needs to circumvent redirection and ensure that its input is from
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the
handle obtained from that open operation instead of the standard input handle,

A program using the handle functions to read the keyboard can control the echoing of
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the
IOCTL Get and Set Device Data services (default = cooked mode) To test the keyboard
status, the program can either issue an IOCTI Check Input Status call (Interrupt 21H Func-
tion 44H Subfunction 06H} or use the traditional Check Keyboard Status call (Interrupt
21H Function 0BH).

The primary advantages of the handle method for keyboard input are its symmetry with
file operations and its graceful handling of reditected input The handle function also
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard
Input function allows a maximum of 255 characters 1o be read ata time This considera-
tion is important for programs that are {requently used with. redirected input and output
(such as filters), because reading and writing larger blocks of data from files results in
more efficient operation The only real disadvantage to the handle method is that it i$
limited to MS-DOS versions 2 0 and later (although this is no longer a significant
restriction).

Section II. Programming in the MS-DOS Environment 155

Part B: Programming for MS-DOS

Role of the ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard-
ware interrupt (09H) that is serviced by a routine in the ROM BIOS The ROM BIOS inter-
rupt handler reads I/O ports assigned to the keyboard controller and translates the key’s
scan code into an ASCII character code. The result of this translation depends on the cur-
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control,
or Alt key is being held down (The ROM BIOS maintains a keyboard flags byte at address
0000:0417H that gives the current status of each of these modifier keys)

After translation, both the scan code and the ASCII code are placed in the ROM BIOS’s
32-byte (16-character) keyboard input buffer. In the case of “extended” keys such as the
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the
information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed
as a first-in/first-cut queue Because of the method used to determine when the buffer is
empty, one position in the buffer is always wasted; the maximum mumber of characters
that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are
discarded and a warning beep is sounded

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that
allows programs to test keyboard status, determine whether characters are waiting in the
type-ahead buffer, and remove characters from the buffer See Appendix O: IBM PC BIOS
Calls Its use by application programs should ordinarily be avoided, howevet; to prevent
introducing unnecessary hardware dependence

On IBM PCs and compatibies, the keyboard input portion of the CON driver in the

BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-
dependent work Thus, calls to MS-DOS for keyboard input by an application program are
subject to two layers of translation: The Interrupt 21H function call is converted by the
MS-DOS kernel to calls to the CON driver, which in tutn remaps the request onto a ROM
BIOS call that obtains the character

Keyboard programming examples
Example Use the ROM BIOS keyboard driver to read a character from the keyboard The
character is not echoed 1o the display

mov ah,00h ; subfunction 00H = read character
int 1&h ; transfer to ROM BIOS
; now AH = scan code, AL = character

Example Use the MS-DOS traditional keyboard input function to read a character from
the keyboard. The character is not echoed to the display The input can be interrupted
with a Ct1l-C keystroke

mov ah, 08h ; function 08H = character input
; without echo
int 21h i transfer to MS-DOS
’ ; now AL = character

156 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Example. Use the MS-DOS traditional Buffered Keyboard Input function to read an entire
line from the keyboard, specifying a maximum line length of 80 characters All editing
keys are active during entry, and the input is echoed to the display

kbuf db 80 ; maximum length of read
db 3] ; actual length of read
db 80 dup (0) ; keyboard input goes here
nov dx, seq kbuf 7 set DS:DX = address of
mov ds, dx ; keyboard input buffer
mov dx,offset kbuf
mov ah,Oah + function OAH = read buffered line
int 21h transfer to MS-DOS

and kbuf+l = length of input,

7

; terminated by a carriage return,
;

; not inciuding the carriage return

Example: Use the M5-DOS handle-based Read File or Device function and the standaid
input handle to read an entire line from the keyboard, specifying a maximum line length
of 80 characters " All editing keys are active during entry, and the input is echoed to the dis-
play (The input will not terminate on a carriage retuin as expected if standard input is in

raw mode)
kbuf db 80 dup (0) ; buffer for keyboard input
mov dx, seg kbuf + set D5:DX = address of
mov ds, dx ; keyboard input buffer
mov dx,offset kbuf
nov <%, 80 ; CX = maximum length of input
mov bx,O ¢ standard input handle = 0
mov ah, 3fh ; function 3FH = read file/device
int 21h ; transfer to MS-DOS
je error ¢ jump if function failed
i otherwise AX = actual
: length of keyboard input,
; including carriage-return and
; linefeed, and the data is
; in the buffer 'kbuf'
The display

The output half of the MS-DOS logical character device CON is the video display. On IBM
PCs and compatibles, the videc display is an “option” of sorts that comes in several forms
IBM has introduced five video subsystems that support different types of displays: the
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics
Array (MCGA) Other, non-IBM-compatible video subsystems in common use inchude the
Hercules Graphics Card and its variants that support downloadable fonts

Section II. Programming in the MS-DOS Environmernt 157

HUAWEI EX. 1204 A-3 - 91/165

" Ppart B: Programming for MS-DOS

Two portable techniques exist for writing text to the video display with MS-DOS function
calls The traditional method is supported by Interrupt 21H Functions 02H (Character Out-
put), 06H (Direct Console 1/0), and 09H (Display String) The handle method is supported
by Function 40H (Write File or Device) and is available only in MS-DOS versions 2 0 and
later. See SYSTEM CAI1S: INTERRUPT 21H: Functicns 02H, 06H, 09H, 40H All these calls
treat the display essentially as a “glass teletype” and do not support bit-mapped graphics

Traditional Functions 02H and 06H are similar Both are called with the characterto be
displayed in the DL register; they differ in that Function 02H is sensitive to interruption by
the user’s entry of a Control-C, whereas Function 06H is immune to Control-C but cannot
be used to output the character O0FFH (ASCII rubour). Both calls check specifically for car-
tiage return (ODH), linefeed (0ATD), and backspace (08H) characters and take the appro-

priate action if these characters are detected

1s to MS-DOS for each chatacier to be displayed is inefficient

Because making individual cal
and slow, the traditional Display Stiing function (09H) is generally used in preference ©©
lted with the address of a string that is termi-

Functions 02H and 06H Function 09H is ca
nated with a dollar-sign character ($); it displays the entire string in one oper ation, regard-
less of its length The string can contain embedded control characters such as carmriage

return and linefeed

To use the handle method for screen display, programs must call the MS-DOS Write File

or Device service, Interrupt 21H Function AOH. Ordinarily, 2 program should use the pre-
defined handle for standard output (D) to send text to the screen, so that any redirection
requested by the user on the program’s command line will be honored. If the program
needs to circurvent redirection and ensure that its output goes to the screen, it can either
use the predefined handle for standard error (2) or explicitly open the CON device with
Intertupt 21H Function 3DH and use the resulting handle for its write operations
The handle technique for displaying text has several advantages over the traditional
displayed is passed as an explicit parameter, sO

calls First, the length of the string to be
the string need not contain a special terminating character and the $ character can be dis-

piayed as part of the st1ing Second, the traditional calls are translated to handle calls
inside MS-DOS, so the handte calls have less internal overhead and are generally faster
Finaily, use of the handle Write File or Device function to display text is symmetric with
the methods the program must Use 10 aCCess its files In short, the traditional functions
should be avoided unless the program must be capable of running under MS-DOS ver-

sions1x

Controlling the screen

158

One of the deficiencies of the standard M5-DOS CON device diiver is the lack of screen-

control capabilities 1he default CON driver has no built-in routines to support cursor

placement, screen clearing, display mode sclection, and soon

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the
£ the screen-control capabilities needed by text-

file ANSI SYS. This driver contains most o
oriented application programs The driver is installed by adding a DEVICE directive to the

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 92/165

Article 5: Character Device Input and Outpui

COI?I?IGVSYS file and restarting the system. When ANSI.SYS is active, a program
position the cursor, inquire about the current cursor position, select fé)repro%nd CZH
background colors, and clear the current line or the entire sc:;een by seniin an o
sequence consisting of the ASCII Esc character (1BH) followed by various ffnctiescape
specific parameters to the standard output device See USER COMMANDS: aNsI :‘fs_

Programs that use the ANSI.SYS capabiliti :
. . pabilities for screen control are portable t© any M

1 . S‘D
1mp1em§ntat1c?n that contains the ANSI SYS driver. Programs that seek irnprovedyperfot'—os
Iiam-me | y calling t_he ROM BIOS video driver or by assuming direct control of the hard-

re are necessarily less portable and usually require modification when new PC model
o1 video subsystems are released. =

Role of the ROM BIOS

;(E)lft ‘;Cciigo subcsiygtgn: in IBM PCs and compatibles use a hybrid of memory-mapped and
t-addresse range of the machine’s memory addresses is typi

: idr © typically reserved for
v1c%eo refresh buffer th-ar_: holds the character codes and attributes to be dispsifayed on th: a
screen; .the cursor position, display mode, palettes, and similar global dispiay char-
acteristics are governed by writing control values to specific /O ports

}Iigi R\([)é\/;& BIO; of IBM P.Cs and compatibles contains a primitive driver for the MDA, CGA
, , and MCGA video subsystems This driver supports the following functio;ls: ,

® Read or write characters with attributes at any screen position

Query or set the cursor position |

Clear or scroll an arbitrary portion of the screen

Select palette, background, foreground, and border colors

g;;rhyi C(;r’ Zi: dt};s g:f)play mode (40-column text, 80-column text, all-points-addressable
® Read orwrite a pixel at any screen coordinate

(T)I'nle];}ev[funcnons are invoked by a program through software Interrupt 10H See Appendix
HIE PC BIOS Calls. In PC-DOS-compatible implementations of MS-DOS, the displa
portions of the M3-DOS CON and ANSI SYS drivers use these ROM BIOS :c:utines \gidy
subsystem§ that are not IBM compatible either must contain their own ROM BIOS o o
be' used with an installable device driver that captures Interrupt 10H and provid ; m-uSt
ptiate suppott functions provEE PR

Text-only application programs should avoid use of the ROM BIOS functions or dir
access to the hardware whenever possible, to ensure maximum portability betvve;::ct
MS-DOS systen.ls However, because the MS-DOS CON driver contains no suppott for bit
m;ppe@ graphics, graphically oriented applications usually must resort to direct contr !1 _
of the video adapter and its refresh buffer for speed and precision e

Section 11, Programming in the MS-DOS Environment 159

Part B: Programming for MS-DOS

Display programming examples

160

i i i acter 1o the
upt 10H function to write an asterisk char

Examgle, Uee b B e ode, BL must also be set to the desired foreground

display in text mode (In graphics m

color.}
mov ah, Oeh : subfunction OEH = write character
: in teletype mode
mov al,'*! : al = character te display
bh, 0 ; select display page o] . .
I.“OZ 10;1 ; transfer td ROM EIOS video driver
in

write an asterisk character 1o the dis- ‘
ring the output and standard output is
handler whose address is found

Example: Use the M3-DOS traditional function t©
play If the user's entry of a Control-C is detected du '
in cooked mode, MS-DOS calls the Control-C exception
in the vector for Interrupt 23H.

function 02H = di splay character

ah,02h H :
e dl’ tat ; DL = character to display
v
ITLOt 21;1 ; transfer to MS-DOS
in

e a string to the display The output

Example. Usethe MS-DOS traditional function to writ Control-C if

interr nters a
is terminated by the $ character and can be intertupted when the user €
standard output is in cooked mode

‘This is a test message’,'§’'

nsg db
: : = dress éf text
mov dx, seqg msg : DS.D}?: lad
mov ds,dx ; to displiay
dx,offset msg ‘ }
o ah’OBh ; function 9B = display string
oV ,
T_“ t 2th . transfer to MS-DOS
ip

or Device function and the predefined

. ite File
Example. Use the MS-DOS handle-based Wiite play Output can be interrupted by the

' L ite a string to the dis
handle for standard output 1O Wil th
user's entry of a Control-C if standard output is in cooked mode

*Ihis 15 a test message’

msg db
mag—len equ 5~msq
ax, seg msg . DS:DX = address of Text
mov .
mov ds, dz ; to display
dx,of fset msg .
e cx,msg_l.en ; CX = length of text
o b ’1 . BX = handle for standard output
o a: 40h . function 408 = write file/device
mov B
int 21 : transfer to MS-DOS
The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 93/165

Article 5: Character Device Input and Qutput

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,
identified as COMI and COM2, by means of three drivers named AUX, COM1, and COM?2
(AUX is ordinarily an alias for COM1)

The traditional MS-DOS method of reading from and writing to the serial ports is through
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS-DOS
versions 2.0 and later, the handle-based Read File or Device and Wiite File or Device func-
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux-
iliary device A program can use the predefined handle for the standard auxiliary device
{(3) with Functions 3FH and 40H, or it can explicitly open the COML or COMZ devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to
perform read and write cperations

MS-DOS support for the serial communications port is inadequate in several respects for
high-performance serial I/O applications First, MS-DOS provides no portable way to test
for the existence or the status of a particular serial port in a system; if a program “opens”
COM2 and writes clara to it and the physical COM2 adapter is not present in the system, the
program may simply hang Similarly, if the serial port exists but no character has been
received and the program attempts to read a characrer, the program will hang until one is
available; there is no traditional function call to check if a character is waiting as there is
for the keyboard

MS-DOS also provides no portable method to initialize the communications adapter to a
particular baud rate, word length, and parity An application must resort to ROM BIOS
calls, manipulate the hardware directly, or rely on the user to configure the port properly
with the MODE command before running the application that uses it The default settings
for the serial port on PC-DOS-compatible systems are 2400 baud, no parity, 1stop bit, and
8 databits, See USER COMMANDS: MODE

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and
compatibles, however, is that it is not interrupt drivenn Accordingly, when baud rates above
1200 are selected, characiers can be Jost during time-consuming operations petformed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk
sector Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial port
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not
usually improve matters

Because of all the problems just described, telecommunications application programs
commonly take over complete control of the serial port and supply their own intetrupt
handler and internal buffering for character read and write operations See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT : PROGRAMMING FOR Ms-DOs: Intetrupt-Driven
Communications.-

Section II: Programming in the MS-DOS Environment 161

Part B: Programming for MS-DOS

Serial port programming examples
Example: Use the ROM BIOS serial port driver to write a string to COM1

msg db 'This is a test message’

msg_len equ 5-msg
ﬁov bx, seg msg ; D8:BX = address of message
mov ds, bx
noev bx,offset msg
mov cx,msg_len . X = length of message
mov dr, 0 ; DX = 0 for CoMI

L1: MoV al, [bx] ; get next character into AL

‘ %ov ah,01h : subfunction Q1H = output

int 14h ; transfer to ROM BICS
ine bx ; bump pointer to output string
loop 11 ; and loop until all chars sent

Example. Use the MS-DOS traditional function for auxiliary device output to write a string

to COM1

msy db 'This is a test message’

msg-len equ $-msg
ﬁov bx, seqg msg ; set DS:BX = address of message
mov ds,bx
mov bx,offset msg
mov cx,msg_len . set CX = length of message

L1: mov dl, [bx] . : get next character into DL

‘ mov ah,04h ; function (4H. = auxiliary output
’

int 2th ; transfer to MS-DOS .
ine bx ; bump pointer to putput string
loop 1 ; and loop until all chars sent

Example: Use the MS-DOS handie-based Write File or Device function and the

handle for the standard auxiliary device to write a string to COM1.

msg db 'This is a test message’
msg.-len equ $-msg
wmov dx, seqg meg : D$:DX = address of message
mov ds, dx
mov dx,offset msg
mev cx,msg_len ; CX = length of message
mov bx,3 : BX = handle for standard aux.
' . : s
mov ah, 40h ; function 40H = write file/device
L
int 21h ; transfer to MS-DOS _
Jje errcr ; jump if write operation failed

162 The MS-DOS Encyclopedia

predeﬁned

HUAWEI EX. 1204 A-3 - 94/165

Article 5: Character Device Input and Ourpui

The parallel port and printer

Most MS-DOS implementations contain device drivers for four printer devices: LPT1, IPT2,
LPT3, and PRN. PRN is ordinarily an alias for IPT1 and refers to the first parailel output
port in the system. To provide for list devices that do not have a parallel interface, the IPT
devices can be individually redirected with the MODE command to one of the serial com-
munications ports. See TISER COMMANDS: moDE.

As with the keyboard, the display, and the serial port, MS-DOS allows the printer 1o be
accessed with either traditional or handle-based function calls The traditional function
call is Interrupt 21H Function 05H, which accepts a character in DL and sends it to the
physical device currently assigned to logical device name IPT1

A program can perform handle-based output to the printer with Interrupt 21H Function
40H (Write File or Device). The predefined handle for the standard printer (4) can be used.
to send strings to logical device IPT1. Alternatively, the program can issue an open oper-
ation for a specific ptinter device with Interrupt 21H Function 30H and use the handle
obtained from that open operation with Function 40H. This latter method also allows
mote than one printer to be used at a time from the same program

Because the parallel ports are assumed to be output only, no traditional call exists for
input from the parallel port. In addition, no portable method exists 1o test printer post
status under MS-DOS; programs that wish to avoid sending a character to the printer
adapter when it is not ready or not physically present in the system must test the adapter’s
status by making a call to the ROM BIOS printer driver (by means of software Interrupt
17H; see Appendix O: IBM PC BIOS Calls) or by accessing the hardware directly

Parallei port programming examples

Example Use the ROM BIOS printer driver to send a string to the first parallel printet port

msg db 'This is a test message’

msg_len equ $-msg
" mov bz, seq msg i DS:BX = address of message
mov ds,bx
mov bx,offset msg
mov cx, msg_len ; CX = length of message
mov d=, 0 ; DX = 0 for IPX1 _

11: mov al, [bx] ; get next character into AI
mov ah, 00h ; subfunction COR = output
int 1’h ; transfer to ROM BIOCS
inc bx ; bump pointer to output string
loop L1 ; and loop until all chars. sent

Section II Programming in the MS-DOS Environment 163

Part B: Programming for MS-DOS

Example Use the traditional MS-DOS function call to send a string to the first parallel

printer port.

‘This is a test message’

msg db
msg_len edqu $-msg
mav bx,sedq msg ; D3:BX = address of message
r
nov ds,bx
mov bx,offset msg)
mov cx,msg_len : CX = length of message
Ii: mov dl, [bx] : get next character into DI
) mov ah,G5h . Function O5H = printer output
int 2th . transfer to MS-DOS .
inc bx ; bump polnter to cutput string
loop 11 ; and loop until all chars sent
; . . . ned
Example. Use the handle-based MS-DOS Write File or Device call and the predefine

handle for the standard printer to send a string o the system list device

msg db 1this is a test message’
msg_len equ $-msg
mov dx, seg msg . DS:D¥ = address of message
mov ds,dx
mov dx,offset msg
mov CX, mSg..len ;. ¢y = length of message -
v bx, 4 : BX = handle for standard printer
EZV ah’40h ; function 40H = write file/device
.
int 21h ; transfer to MS-DOS ‘
Jje error ; jump if write operation failed

TOCTL

164

later, MS-DOS has provided applications with the ability fo communi-

In versions 2.0 and :
cate directly with device drivers through a set of subfunctions grouped under Interrupt

>1H Function 441 (IOCTL) See SYSTEM CALLS: INTERRUPT 21x; Function 44H ;he .
IOCTL subfunctions that are particularly applicable o the character I/O needs of app:

cation programs are

Subfunction Name
00H Get Device Data
O1H Set Device Data .
02H Receive Control Data from Character Device
(more)
The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 95/165

Article 5: Character Device Input and Qutput

Subfunction Name

03H Send Control Data to Character Device

06H Check Input Status

07H Check Qurput Status

0AH Check if Handle is Remote (version 3.1 or later)

0CH Generic I/0 Control for Handles: Get/Set Output Iteration Count

Various bits in the device information word returned by Subfunction 00H can be tested

by an application to determine whether a specific handle is associated with a character
device or a file and whether the driver for the device can process control strings passed by
Subfunctions 02H and 03H. The device information - word also aliows the program to test
whether a character device is the CLOCKS, standard input, standard output, or NUI device
and whether the device is in raw or cooked mode The program can then use Subfunction
01H to select raw mode or cooked mode for subsequent I/O performed with the handle

Subfunctions 02H and 03H allow control strings to be passed between the device driver
and an application, they do not usually result in any physical I/O to the device For exam-
ple, a custom device diiver might allow an application program to configure the setial port
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi-
larly, the custom driver might respond to Subfunction 02H by passing the application a
serics of bytes that defines the current configuration and status of the serial port

Subfunctions 06H and 07H can be used by application programs to test whether a device is
ready to accept an output character or has a character ready for input These subfunctions
are particularly applicable to the serial communications ports and parallel printer ports
because M5-DOS does not supply traditional function calls to test their status

Subfunction 0AH can be used to determine whether the character device assoctated

with a handle s local or remote — that is, attached to the computer the program is running
on or attached to another computer on z local area nerwork A program should not or-
dinarily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.

T his subfunction is available only if Microsoft Networks is running

Finally, Subfunction OCH allows a program to query or set the number of times a device
driver tries 1o send outpuk to the printer before assuming the device is not available

IOCTL programming examples

Example Use IOCTL Subfunction 00H to obtain the device information word for the stan-
dard input handle and save it, and then use Subfunction O1H to place standard input into
raw mode

info dw 2 ; save device information word here

(more}

Section IT. Programming in the MS-DOS Environment 165

Part B: Programming for MS-DOS

mov ax, 4400h
mov bx,0

int 21n

mov info,d=x
or d1,20h
mov dh, &

mov ax,4401h
int 21h

Example. Use IOCTL Subfunction Q6H to test
first serial port The function returns

mov ax, 4406H
mov bx, 3

int 21h

or al,al
inz ready

166 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 96/165

i

v

An = function 44H, IOCTL

AT - subfunction p0H, get device
ipformation word

BY¥ = handle for standard input
transfer to MS-DCS

save device information word
(assumes DS = data segment)

gset raw mode kit .

and clear DH as MS-DOS requires
AL = subfunction 01H, set device
information word

(8% still contains handle)
transfer to MS-DOS

whether a character is 1eady for input on the
AL = OFFH if a character is ready and AL = 00H if not

af = function 44H, I10CIL
Al = subfunction U6H, get
input status

. B¥ = handle for standard aux

rransfer to MS-DOS
rest status of AUX driver
jump if input character ready

: else no character 1s waiting

Jum Kyle
Chip Rabinowitz

Article 6: Interrupt-Driven Communications

Article 6
Interrupt-Driven Communications

In the earliest days of personal-computer communications, when speeds were no faster
than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate The PC had time between characters to determine what it
ought to do next and could spend that time keeping track of the status of the remote
system

Modern data-transfer rates, however, are four to eight times faster and leave little orno
time to spare between characters At 1200 bits per second, as many as three characters can
be lost in the time required to scroll the display up one line. At such speeds, a technique to
permit characters to be received and simultaneously displayed becomes necessary

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs
attention, it sends an interrupt request to the processor The processor interrupts its activ-
ity, services the request, and then goes back to what it was doing Because the response is
driven by the request; this type of processing is known as interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors

Successful telecommunication with PCs at modern data rates demands an inter1 upt-driven
routine for data reception. This article discusses in detail the techniques for interrupt-
driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS-DOS to achieve this goal
To see what must be done to supplement M3-DOS functions, the hardware (both the
modem and the serial port) is examined This leads to a discussion of the method MS-DOS
has provided since version 2 0 for solving the problems of special hardware interfacing:
the installable device driver

With the background established, alternate paths to interrupt-driven communications are
discussed — one following recommended MS-DOS techniques, the other following stan-
dard industty practice -— and programs are developed for each

Throughout this aiticle, the discussion is restricted to the architecture and BIOS of the IBM
PC family MS-DOS systerms not totally compatible with this architecture may require sub-
stantially different approaches at the detailed level, but the same general principles apply

Purpose of Communications Programs

The primary purpose of any communications program is commmunicating — that is, trans-
mitting information entered as keystrokes (ot bytes read from a file) in a form suitable for

Section IT- Programming in the MS-DOS Environment 167

Part B: Programming for MS-DOS

transmission to a remote computer via phone lines and, conversely, converting informa-
tion received from the remote computer into a display on the video screen (or data in a
file)

Some years ago, the most abstract form of all communications programs was dubbed a
modem engine, by analogy to Babbage’s analytical engine or the inference-engine model
used in artificial-intelligence development The functions of the modem engine are com-
mon to all kinds of communications programs, from the simplest to the most complex,

and can be described in a type of pseudo-C as follows:
The Mcdem Engine Pseudocode

DC { IF (input character is avallable}
send-it_to_remote;
IF {remote character is available)

use.it_locally;
} UNIIL (told to_stop):
The essence of this modem-engine code is that the absence of an input character, or of a
character from the remote computer, does not hang the loop in a wait state Rather, the
engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message, it is nice to be able to pause and read the mes-
sage before the lines scroll into oblivion On the other hand, taking too long to study the
screen means that incoming characters are lost. The answer is a technicue called flow con-
trol, in which a special control character is sent to shut down transmission and some other

character is later sent to start it up again

Several conventions for flow control exist One of the most widespread is known as
XON/XOFE, from the old Teletype-33 keycap legends for the two control codes involved
In the original use, XOFF halted the paper tape reader and XON started it going again. In
mid-1967, the General Electric Company began using these signals in its time-sharing com-
puter services to control the flow of data, and the practice rapidly spread throughout the
industry

The sample program named ENGINE, shown later in this article, is an almost literal imple-
mentation of the modem-engine approach This sample represents one extreme of sim-
plicity in communications programs. The other sample program, CTERM C, is much more
complex, but the modem engine is still at its heart

Using Simple MS-DOS Functions

Because MS-DOS provides, among its standard service functions, the capability of sending
output to ot reading input from the device named AUX (which defaults to COM], the first

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 97/165

Article &: Interrups-Driven Communications

;;;i;.i; gglftu?:ét@ﬁ mgcﬁiilesl)(, a first attempt at implementing the modem engine using
. tons might look something like the f; ing i :
Microsoft Macro Assembier (MASM) cod%:: ® ollowing incomplete f sgmentof

;Incomplete ({and Unworkable) Implementation

100p; ;Ig;f 2:1},10811 7 read keyboard, no echo
MOV DL, AL / set up to send
bId;)\Ii 211-1;1041': 7 send to AUX device
I;g\lf ?i;OBh i read from AUX device
[I:g\‘;’ IL:L,;&I i set up to send
o 211-11; 2h v send to scréen
JMP 100P i keep doing it

é(l;l:rgxi)éer? t;v:iti [t;;is code is that it violates the keep-looking principle both at the key

atthe port: Interrupt 21H Funciion 08H do i |
character is available, so no data from the , read untila by oc¥board

s , € AUX port can be read until is pr
locally Similarly, Function 03H wai alatls f pressed
\ aits for a character to becom ilable fr

more keys can be recognized locally until s 2 e ALK, 50 00
_ the r
is received, the foop as oo o y € remote system sends a character If nothing

ll()()Ve COme t e!)!())lellla Iile eylma[den EU][(tl()ll()” Call])e llSB(['()(iele nine if

. h t k L d, H T T ‘
a I;ESf has beeﬂ p[.essed bef‘o‘[,e an attempt J‘S made 78 I‘ead one, as Sh own iI] thf follcv,ing
mOdlfIC&tl()l X Of‘ the fI’agmﬁ'I 1t

iImproved, (but Stfl1 Unworkable) Implementation

100P: MOV AH, 0Bh
. ’ ! test keyboar
o o ; Y. d for char
OR
- AL, AT ;i test for zero
. RMI i no char avail, skip
A4 AH, 08h i have char, read it in
INI 21n’
Egv DI, AL i Set up to send
v AH, 04h i send to AUX device
INI 21h
RMT
Mov AH, 03h H
i read from AUX]
INT 21h oo
]1:;{2: DI,AT ¢ set up to send
X AH, 02h ¢ send Lo screen
INI 21h
JMP 1007 i keep doing it

g ::srézdedpzrm iifts any .input fiom AUX to be received withour waiting for a local key to
be elzki nseﬂ,] Et AUX is sl(?w about providing input, the program waits indefinitely before
g the keyboard again Thus, the problem is only partially solved ’

Section IX. Programming i the MS-DOS Environment 169

Part B: Programming for MS-DOS

MS-DOS, however, simply does not provide any direct method of making the required
tests for AUX or, for that mattet, any of the serial port devices That is why communications
programs must be ireated differently from most other types of programs under MS-DOS
and why such programs must be intimately involved with machine details despite all

accepted principles of portable program design.

The Hardware Involved

Personal-computer Communications require at least two distinct pieces of hardware (sepa-
rate devices, even though they are often combined on a single board) These hardware
items are the serial port, which converts data from the computer’s inftel nal bus into a bit
stream for transmission over a single externat line, and the modem, which converts the bit
streamn into a form suitabile for telephone-line (o1, sometimes, 1adio) transmission

The modem

170

HUAWEI EX.

TOm MOdulator-DEModulator) is a device that converts 2

1 changes of voltage level, into audio frequency sig-
-grade telephone circuits (modulation) and con-
bits that duplicates the or iginal input (demodu-

The modem (a word coined
stream of bits, represented as sequentia
nals suitable for transmission over voice
verts these signals back into a streari of
lation)

Specitic characteristics of the audio signals involved were established by AT&T when that
company monopolized the modem industry, and those characteristics then evolved into
de facto standards when the monopoly vanished They take several forms, depending on
the data rate in use; these forms are normally identified by the original Bell specification
d below) or 2124 (for the 1200 bps standard).

numbes, such as 103 (for 600 bps an
its per second (bps), often mistermed baud or even “baud

per second.” A baud measures the number of signals per second; as with knot (nautical
miles per hour), the time reference is built in If one signal change marks one bit, as is true
for the Bell 103 standard, then baud and bps have equal values However, they are not
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200
bps uses two tone Sireams, each operating at 600 baud, to transmit data at 1200 bits per

second

The data rate is measured in b

;ather than baud, except where widespread industry

Tor accuracy, this article uses bps,
“baud rate generator”)

misuse of baud has become standardized (as in
ed to the computer’s serial post via a cable
its signals were standardized in the 1960s
randard RS232C. Like the Bell standards
are listed in

Originally, the modem itself was a box connect
Chatacteristics of this cable, its conneclors, and
by the Electronic Industries Association (ETA), in 3
for modems, RS232C has survived almost unchanged. Its characteristics

Table 6-1

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Table 6-1. RS232C Signals.

DB25 Pin 232 Name Description

; a ngety Ground

: o II{))(GS Tranﬁmit Data

: o X Receive Data

: o R.IIS Request To Send

° o CTS Clear To Send

’ o DSR Data Set Ready

’ A GND Signal Ground
- o g(IZD Data Cguier Detected
2 o R D.ata Terminal Ready

RI Ring Indicator

lth h lﬁcreaslng p ty p
W the Opula]l Of p 5O 1 O
€1 Tal ¢ IIlputeI 5, inter nal mOdemS tbat IU mtot
g he

The fir i ‘ :
e 3 ita st:g; 1:31{de€5 el:manufactured by Hayes Corporation, and like Bell and the EIA,
andard. Functionally, the internal modem i identi :
: A m i inati
of a serial port, a connecting cable, and an external mod.emS ientical o the combination

The serial port

EaCh SeI'Ia,E POI[Ofa stan IB y typ
. da‘d M T connects the rest Of the system tod Lo IIJ582 50
UIll‘leI Sal ASIy nCh!OIlOLlS RCCelver IIaIISlllltEGI‘ (UARI) lnteglated circuit (IC) Ciup devel-
l) y NAuCtor ¥ i i
[6) ed I)I Natior a SEIIIIC() d C()Ip(ration Thls Chlp, aloﬂg Wl[h aSSOC}a{ed CiICliltS n

1 Converts data suppli i
pplied via the system data bus into
. _ a sequer
, téle single TXD output line that represent binary digits quence ofvoliage fevelson
. onverts data received as a se "hi RXD
. quence of i i
o b b binary levels on the single input line
2 1(;::;1{‘1;)15 the mo.dem’s. actions through the DTR and RT'S output lines
mo;'; nelrs S'tzttl}]]s 131:% ngltion to the processor; this information comes from the
, via the , DCD, CTS8, and RI input lines, a ithi
dem, °CD, CTS, »and i
which signals data available, data needed, or efror detectzoc;n thinthe UART ftseft

¥

T he word ‘ i
e ﬂ;ﬁ:gﬁggﬂ ti: (;he n;ng:)of the .IC comes from the Bell specifications. When
this can be done in either of t:;icw:;; S;Efﬁ?(:sst}gg t'o - neig}iﬂ?iors e
this ne . - vious method is to keep the bit str
tifycthz sbylz;schsﬁzrszes :vn;th a c}ocls signal of known frequency and count th CI;CE;E:;IE;T;
et biopne o binl;lllsswn 1; lfnom as synchronous, often abbreviated to synch ot
ointers, mics the sta tyos;ync f;orhlous The §econd methaod, first used with mechanical
Leleprinters, marks the eac wb}t group W%th a defined statt bit and the end with on
p bits, and it defines a duration for each bit time Detection of a start beit

Secrion I Programming in the MS-DOS Environment .171

1204 A-3 - 98/165

The 8250 UART architecture

Part B: Programming for MS-DOS

sampled at each bit time uniil

marks the beginning of 2 received group; the signal is then
hronous {or just asynch) and is

the stop bit is encountered This method is known as async
the one used by the standard IBM PC

The start bit is, by definition, exactly the same as that used to indicate binary zeto, and the
stop bit is the same 28 that indicating binary one A Z€10 signal is often called SPACE, and 2
one signal is called MARK, from terms used in the teleprinter industry

During transmission, the least significant bit of the data is sent first, after the start bit. A
parity bit, if used, appears as the most significant bit in the data group, before the stop bit
or bits; it cannot be distinguished from a databit except by its position. Once the first stop

bit is sent, the line remains in MARK (sometimes called idling) condition until a new start

bit indicates the beginning of another group
he serial port transfers one 8-hit byte at a time, and the term word speci-
he UART world, however, 2 word is the unit of informarion sent by

he word length is part of the control information set into the chip
This discussion follows UART conven-

In most PC uses, t
fies a 16-bit quantity Int
the chip in each chunk T
during setup operations and canbe 5, 6, 7, 0r 8 bits.

tions and refers t1© wotds, rather than to bytes
ot often used in PC-to-PC communications but sometimes

necessary in communicating with mainframe systems, is 2 BREAK The BREAKisan all-

SPACE condition that extends for more than one word time, including the stop-bit time
e BREAK to last at least 150 milliseconds regardless of data rate]

(Many Systems require thy
erated by any not mal data charactert ansmission, the BREAK is

Becanse it cannot be gen
used to interrupt, or br eak into, normal operation The IBM PC’s 8250 UART can generate
the BREAK signal, burits duration must be determined by a program, rather than by the

chip

One special type of signal, n

transmitter, control circuits,

¢ major functional areas: receiver,
terms used in the follow-

T he 8250 UART contains fou
and status circuits. Because these areas are closely related, some
ing descriptions are, of necessity, forward references 1 subsequent paragraphs

ata register called the Received

The major parts of the receiver are a shift register andad
ter assermbles sequentially received data info word-parallel

Data Register The shift regis

form by shifting the level of the RXD line into its front end at each bit time and, at the same
time, shifting previous bits over When the shift register is full, all bits in it are moved over
1o the data register, the shift1e 11 zeros, and the bitin the status circuits

that indicates data ready is set ng receipt of that word, other bits

in the status circuits are also set

gister is clearedtoa
1f an error is detected duri

a holding register called the Transmil

s of the transmitter ase
s transferred from the

Similarly, the major patt
ift register Fach word to be transmitted i

Holding Register and 2 sh

172 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 99/165

Article §: Interrupt-Driven Communications

data bus to the holdi i
ing register. If the holding regi i
s o : . g register is not empty when this i
previons fo;meg:;;z 105?. I‘he tr ansxr:yttex ’s shift register converts word»parasliZJdc(l) Iie’ 'the
Pl scria) ommor srr;xi?lon }:})}yfshlfting the most significant bit out to the TXD Iiarllz onc
ne, same time shifting lower bit ifting i -

Fach bitcime, at th I its over and shifting in an idling bi
e mov; dgtlgt:;x 'Zih:n thfe last databit has been shifted out, any data'l if ttl)f;it tl};f:
register s moved o (b c(;:mi I1l t reg‘ljsile]r, the holding register is filled with idling bits in 2a I;g

‘ o and the bit in the st irCui indi .
po more data s 10 : he | status circuits that indicat i
pm.iryn]i : (iafglstel is emipty is set to indicate that another word can be tr ansefizﬂrleecl]-I e
pa , arlly, apd stop bits are added to the transmitted strea ‘ o

tiy iy f any, and siop | m after the last databit

The control circuits establi
tablish three communicati

pcons | : ications features: first, line
such s séd ;f:ci}; v&cléletthcler : not (and how) patity is checked, and thceoglt.ll;fllbveilgt? L:t

Ls; , ntrol values, such as the st , -
i o : : state of the DTR and RTS ou ines;
e :g?;tl; :Svg;:él data is sgnt ar_1d received These control values ar‘ecézl;tti;;ilslfe(si’ and
o FplL e iers e Ofle 16-bit register, which are addressed as four 8-bit regist F‘ i
BRG Divi ol Register (LCR}, the Modem Control Register (MCR vl

ivisor Latch, addressed as Baud0 and Baucdl ¢ handihe 16Dl

The BRG Divisor
grammabg;;?é I;:;ttch Cs::ts the data rate by defining the bit time produced by the Pr
e o datae r:ie;a-ltor (PBRG), a major part of the control circuits YThe PEISCI;-G
oy e Psgeé dfroma few bits per second to 38400 bps; in the BIOS of th
" th;, e agd . Méﬁg,etgoglg'h},loirlﬂy the range 110 through 9600’ bps is supportetd ©

; ablish their control val i
and how interrupts are enabled are discussed 1ate‘1i'a bes howthe PERG s programinec,

The fourth major area in the 8250 UART, the -

registers) th o) W UARL status circuits, records (in a pai

an%i any chaigcg?s;t::[gs ;;‘t;heligcelve. and transmit citcuits, any errots thP;t ;xf ciifa‘ésted
tor's content <hanges, a0 imee 23.2(3 1nqu }1nes from the modem. When any status re i’s_
PC system This approach 1etmf1pt tequest, if enabled, is generated to notify the rest of tghe
monitor the status of the s .-:1[ebC att.end to other matters without having to continuall
occur erial port, yet it assures immediate action when something doesY

The 8250 programming interface

Not ali the registers mentioned in the precedi ;

The shift reei preceding section are accessible to progr ‘
cirt ;f [II ;g:zt:;se, lfgr ‘exfimp‘le, ca'n be read from or wtitten to only by tﬁf ;;’:;:’({;Sﬁ]l;‘ftlj ISal
ceven distinct addres regt(st;le;s avgxlaEljle o the programmet, and they are accessed b . I
Itansmit Holding Re SI:;: fs }?W-n in Table 6-2). The Received Data Register and the y only
goes to the holding Ii isies) areas gle address (a read gets the received data; a write
Register (IER} are shzuged “Ir‘tiin}? ddltian, b.ot.h this address and that of the Intez,r upt Enabl
callecd the Diviuos T ate: Ac Clesst]; IngEG Divisor Ia‘tch A bit in the Line Control Register)
specific time it (DLAB) determines which register is addressed at any

Section IT- Programming in the MS-DOS Environment 173

Part B: Programming for MS-DOS

In the IBM PG, the seven addresses used by the 8250 are selected by the low 3 bits of the
port numbes (the higher bits select the specitic port). Thus, each seriat pott occupies eight
ddress space However, only the lowest address used —the one in which

positions in the a
the low 3 bits are all 0— need be remembered in order to access all eight addresses

Because of this, any serial portin the PG is referred to by an address that, in hexadecimal
notation, ends with either 0 or 8: The COM1 port normally uses address 03F8H, and COM2
uses 02FSH This lowest port address is usually called the base port address, and each
addressable register is then referenced as an offset from this base value, as shown in

Table 6-2.

Table 6-2. 8250 Port Offsets from Base Address.

Offset Name Description

If DLAB bit in LCR = 0:
OOH DATA Received Data Register if

read from, Transmit Holding
Register if written to

01H {ER Interrupt Enable Register

FDLABDbitinICR=1
BRG Divisor Latch, low byte

0otk Baud0
01H Baudi BRG Divisor Latch, high byte
Not affected by DLAB bit:
02H 1D interrupt Identifier Register
03H ICR Line Control Regisier
04H MCR Modem Control Register
0SH 1SR : 1ine Status Register
06H MSR * Modem Status Register

The control circuits

The control circuits of the-8250 include the Programmable Baud Rate Generator (PBRG),
the Tine Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En-

able Register (IER).
The PBRG establishes the bit time used for both transmitting and receiving data by divid-
d bit rate, the appropiate divisor i3 ioaded

ing an external clock signal. To select a desire
into the PBRG’s 16-bit Divisor Lateh by setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then

writing the divisor info Baud0 and Baudl After the bit rate is selected, DLAB is changed
back to 0, to permit normal operation of the DATA registers and the TER

174 TheMS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

HUAWEI EX. 1204 A-3 - 100/165

ng ;:1:::1 1513:3? Mglz fext;rnal UART clock frequency used in standard IBM systems
in decimal notation) for bit rates between 45.5) ’
Table 6-3. These speeds are establishy S st o o
ed by a crystal contained in the seri 1
modem} and are totally unrelated to the speed of the processor’s clocicenal pore{orinternal

Table 6-3. Bit Rate Divisor Table for 8250/1BM.

BPS Divisor
455 2532
50 2304
75 1536
110 1047
1345 857
130 768
300 384
600 192
1200 96
1800 64
2000 58
2400 8
4800 24
9600 12
19200 6
38400 3

a:g txﬁ:llaltnmg conttol circuits are the Line Control Register, the Modem Control Register
and the n emlfpt Enable Reg%ster Bits in the ICR control the assignment of offsets Ogand i
1 ssion of the BREAK signal, parity generation, the number of stop bits, and th ’
ength sent and received, as shown in Table 6-4. ppits and the word

Table 6-4. 8250 Line Control Register Bit Values.

Bit Name Binary Meaning
Address Control:
7
DLAB 1000004 Offset 0 refers to DATA,;
offset 1 refers to IER
XXX Offsets 0 and 1 refer to
BRG Divisor Latch
BREAK Control:
6
. SETBRK xOooomx Normal UART operation
xlxooxx Send BREAK signal

(more)

Section I Programming in the MS-DOS Environment 175

Part B: Programming for MS-DOS

Table 6-4. Continued

Bit Name Binary Meaning
perity Checking GENPAR povoilreed No patity bit
>3 xx001xxx Parity bitis ODD
xx011xxx Parity bit is EVEN
xx101xxx - Parity bitis 1
xx111xx Parity bit is 0
Sopme XSTOP ook EX Only 1 stop bit
: Pevesdbod 2 siop bits
(15 WL=5)
Yord peneh WD5 xxxxxx00 Word length =5
H WD6 xxxrxx(] Word length = 6
WD7 xxoexxx 10 Word length =7
wD8 xooxx 1l Word length = 8

Two bits in the MCR (Table 6-3) control cutput lines]?TR and RTS; [wc: ot&e:h I\gilgagssﬂ
(OUT1 and OUT2) are left free by the UART 10 be assigned by tbe u;er, a el
puts the UART into 2 self-test mode of operatio'n The upper 3 bits have no

UART The MCR can be both read from and written to

Both of the uses-assignable bits are defined in the IBMPC OUTLis used by Hayefs GIXEIEal
modems to cause a power-o1 reset of their circuits; OU 12 controls the passage O

i 1, interrupt
generated interrupt request signals to the rest of the PC Unless OUT21ssettc 1,1 p

m the UART cannot reach the rest of the PC, even though all other controls are

ignals fro . : ,
Slrgcl)] aerly set. This feature is documented, but obscutely, in the IBM Technical Refe;encaen
Ir)nar?uzils and the asynchronous-adapter schematic; it is easy 1O overlook when writing

interrupt-driven program for these machines

Table 6-5. 8250 Modem Control Register Bit Values.

Name Binary Description
' 2 nfiguration
pv b ool Turns on UART self-test co;
E?Tg poeedbosd Controls 8250 intert upt signals (User2 Qutput)
OUT1 bevsedhed Resets Hayes 1200b internal modem (Uset] Output)
RTS oKX X1X Sets RIS ourput to R5232C connectat
DTR sk Sets DTR output to R§232C connector.

176 The MS-DOS Encyclopedia

~

HUAWEI EX. 1204 A-3 - 101/165

Article &: Interrupt-Driven Communications

The 8250 can generate any or all of four classes of interrupts, each individually enabled or
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6-6)
Thus, setting the IER to 00H disables all the UART interrupts within the 8250 without

regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com-

mands. The IER can be both read from and written to. Only the low 4 bits have any effect
on the UART

Table 6-6. 8250 Intertupt Enable Register Constants.

Binary Action

XK 1X%X Enable Modem Status Interrupt

xoxx1xx Enable Line Status Interrupt

XXXXREIX Enable Transmit Register Interrupt

xxxxxax1 Enable Received Data Ready Interrupt
The status circuits

T he status circuits of the 8250 include the Line Status Register (LSR), the Modem Status

Register {MSR), the Interrupt Identifier (IID) Register, and the interrupt-request generation
system

The 8250 includes circuitry that detects a received BREAK signal and also detects three
classes of data-reception errors Separate bits in the ISR (Table 6-7) are set o indicate that
a BREAK has been received and to indicate any of the following: a parity error (if lateral
parity is in use), a framing error (incoming bit = 0 at stop-hit time), or an overrun etror
(word not yet read from receive buffer by the time the next word must be moved into it)

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the
Transmit Holding Register, and the Received Data Register; the most significant bit of the
ISR is not used and is always 0 The LSR is a read-only register; writing to it has no effect

Table 6-7. 8250 Line Status Register Bit Values.

Bit Binary Meaning

7 Oooxxxx Always zero

6 X1xXoxK Transmit Shift Register empty

5 XX IXXXXK Transmit Holding Register empty
4 bo's dbesed BREAK received

3 XXXX1xXxx Framing error

2 oo 1xx Parity error

1 XXXXRX1X Overrun error

0 XXEXXHR Received data ready

Section 11, Programming in the MS-DOS Environment 177

Part B: Programming for MS-DOS

The MSR (Table 6-8) monitors the four RS232C lines that report modem sFatus The upp4er
4 bits of this register indicate the voltage level of the associa%ed RS232C line; the lower
bits indicate that the voltage level has changed since the register was last read.

Table 6-8. 8250 Modem Status Register Bit Values.

Bit Binary Meaning

7 IXXXXXKK Data Carrier Detected (DCD) level
6 pabeeesed Ring Indicator (RI} level

5 be:dbssivee Data Set Ready (DSR) level

4 po v dbveed Clear To Send (CTS) level

3 povodboed DCD change

2 XRXXXIXX RI change

1 Xoxxxx1x DSR change

0 XRHHKEXT CTS change

As mentioned previously, four types of interrupts are generated The four.types are iden-
tified by flag values in the IID Register (Table 6-9). These flags are set as follows:

' i i flag
® Change of any bit value in the MSR sets the modem status g ‘
® Settingg of theyBREAK Received bit or any of the three error bits in the ISR sets the line

status flag

® Setting of the Transmit Holding Register Empty bit in the ISR :-sets the transmit flag.
® Setting of the Received Data Ready bit in the LSR sets the receive flag.

The [ID register indicates the interrupt type, €ven though the IER may b§ disabling that
type of interrupt from generating any request The IID is a read-only register; atiempts to

write to it have no effect

Table 6-9. 8250 Interrupt Identification and Causes.

D content Meaning

xxxoox1B No intetrupt active _ '

xxxxx000B Modem Status Interrupt; bit changed in MSB . .

xxxxx010B Transmit Register Intertupt; Transmit Holding Register empty, bit
setin ISR ‘ ‘ . :

xoxxx100B Received Data Ready Interrupt; Data Register full, bit set in ISR

xoxxx 1108 Iine Status Interrupt; BREAK or error bit set in LSR

As shown in Table 6-9, an all-zero value (which in most of the ol.:}}er registers is abtotally)
disabling condition) means that 2 Modem Status Interrupt condition has not‘yet e:f:zc1i ste
viced. A modem need not be connected, however, fora Moderln Statu.s Intert t;lpt COnY tl tfn
to occur; ail that is required is for one of the RS232C non-data input lines to change state,

thus changing the MSR.

178 The MS$-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 102/165

Article 6: Interrupt-Driven Communications

Whenever a flag is set in the 11D, the UART interrupt-request generator will, if enabled
by the UART programming, generate an interrupt request to the processor Two or more
interrupts can be active at the same time; if so, more than one flag in the 11D register is set

The T1D flag for each interrupt type (and the 15R or MSR bits associated with if) clears
when the corresponding register is read (or, in one case, written to) For example, reading
the content of the MSR clears the modem status flag; writing a byte to the DATA register
clears the transmit flag; reading the DATA register clears the receive flag; reading the LSR
clears the line status flag. The 18R or MSR bit does not clear until it has been read; the ITD
flag clears with the 1 SR or MSR bit.

Programming the UART

Each time power is applied, any serial-interface device must be programmed before it is
used This programming can be done by the computer’s bootstrap sequence or as a part of
the port initialization routines performed when a port driver is installed Often, both tech-
niques are used: The bootstrap provides default conditions, and these can be maodified
during initialization to meet the needs of each port driver used in a session.

When the 8250 chip is programmed, the BRG Divisor Latch should be set for the proper
baud rate, the LCR and MCR should be loaded, the TER shouid be set, and all internal inter-
rupt requests and the receive buffer should be cleared. The sequence in which these are
done is not especially critical, but any pending interrupt requests should be cieared before
they are permitted to pass on to the rest of the PC

The following sample code performs these startup actions, setting up the chip in device
COML (at port 03F8H) to operate at 1200 bps with a word length of 8 bits, no parity check-
ing, and all UART intertupts enabled. (In practical code, all values for addresses and
operating conditions would not be built in; these values are included in the example to
clarify what is being done at each step)

MOV DX, 03FBh : base port COMT (03F8) + LCR (3)
MOV AL, 080h + ehable Divisor Latch

Ul DX, Al

MOV DX, 03F8h i set for Baudl

MOV AX, 96 ¢ oset divisor to 1200 bps

our DX,Al

INC |25:4 5 to offset 1 for Baudi

MOV AL, AH ¢ high byte of divisor

QuI DX,AL

MOV DX, 03EBh ; back to the LCR offset

MOV AT,03 ; DIAB = 0, Parity = N, WI = 8
QU1 DX, AL

MOV DX, 03F%h ; offset 1 for IER

MoV AL, QFh ; enable all ints in 8250

QuUI DX, AL

MoV DX, 03ECh ; CoM1 + MCR {4)

MoV Al , OBh ; QUI2 + RIS + DIR bits

QuUl . DX,AL

(more)

Section I, Programmting in the MS-DOS Environment 179

Part B: Programming for MS-DOS

CIRGS:
MOV DX, 03FDh ; clear LSR
IN AL ,DX
MOV DX,03F8h ; elear RX reg
IN AL,DX
MOV DX, 03FEh ; c¢lear MSR
IN AL,DX
MOV DX, 03FEAh ; IID reg
IN AL, DX
IN AL,DX ; repeat to be sure
1ESI AL, 1 © ; int pending?
J2 CIRGS ; yes, rep<at

Note: This code does not completely set up the IBM serial port. Although it fully programs
the 8250 itself, additional work remains to be done The system interrupt vectors must be
changed to provide linkage 1o the interrupt service routine (ISR) code, and the 8?59 |
Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt
requests from the UART channels. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CusTOMIZING Ms-DOs: Hardware Interrupt Handjers

Device Drivers

180

All versions of MS-DOS since 2 0 have permitted the installation of use.f«prox‘zided device
dyivers From the standpoint of operating-system theory, using such drivers is the proper
way to handle generic communications interfacing The following parags apk?s are 1ntel:nded
as 2 refresher and to explain this article’s departure from standard device-driver terminol-
ogy See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING MS-DOS!
Installable Device Drivers

An instaliable device driver consists of (1) a driver header that links the dfiv.er o
others in the chain maintained by MS-DOS, tells the system the chgractensr-ucs of this spe-
cific driver, provides pointers (o the two major routines contained in the driver, and (for a
character-device driver) identifies the driver by name; (2) any data and storage space the
driver may require; and (3) the two major code routines

The code routines are called the Strategy routine and the Intertupt routine' in normal
device-driver descriptions Neither has any connection WiFh the hardware interrupts d.ealt
with by the drivers presented in this article Because of this, the term Request routing 18
used instead of Interrupt routine, so that hardware interrupt c.oc‘ie can be called an
interrupt service routine (ISR) with minimal chances for confusion

MS-DOS communicates with a device driver by reserving space for a.comnjland packet
of as many as 22 bytes and by passing this packet’s address to t?le d]f‘lVEI‘ w1th_ a calll to the
Strategy routine. All data transfer between MS-DOS and the driver, m.both directions,
occurs via this command packet and the Request routine The operating system places a
command code and, optionally, a byte count and a buffer address into the packet at the
specified locations, then calls the Request routine The driver performs the command
and returns the status (and sometimes a byte count) in the packet

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 103/165

Article 6: Interrupt-Driven Communications

Two Alternative Approaches

Now that the factors involved in creating interrupt-driven communications programs have
been discussed, they can be put together into practical program packages Doing so brings
out not only general principles but also minor details that make the difference between
success and failure of program design in this hardware-dependent and time-critical area

The traditional way: Going it alone

Because MS-DOS provides no generic functions suitable for communications use, virtually
all popular communications programs provide and install their own port driver code, and
then remove it before returning to MS-DOS: This approach entails the creation of a com-
munications handler for each program and requires the “uninstallation” of the handler on
exit from the program that uses it. Despite the extra requirements, most communications
programs use this method.

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system
before returning to the command level, an installable device driver can be built as a
replacement for COMx so that every program can have all features However, this

approach is not compatible with existing terminal programs because it has never been a
part of MS-DOS

Comparison of the two methods

The traditional approach has several advantages, the most obvious being that the driver
code can be fully tailored to the needs of the program Because only one program will
ever use the driver, no general cases need be considered

However, if a user wants to keep communications capability available in a terminate-and-
stay-resident (TSR) module for background use and also wants a different type of commu-
nications program running in the foreground (not, of course, while the background task is
using the port), the background program and the foreground job must each have its own
separate driver code And, because such code usually includes buffer areas, the duplicated
drivers represent wasted resources

A single communications device driver that is instalied when the system powers up and
that remains active until shutdown avoids wasting rescurces by allowing both the back-
ground and foreground tasks to share the driver code Until such drivers are common,
however, it is unlikely that commercial software will be able to make use of them In addi-
tion, such a driver must either provide totally general capabilities or it must include control
interfaces so each user program can dynamically alter the diiver to suit its needs

At this time, the use of a single driver is an interesting exercise rather than a practical
application, although a possible exception is a dedicated system in which all software is
either custom designed or specially modified. In such a system, the generalized driver
can provide significant improvement in the efficiency of resource allocation

Section IT. Programming in the MS-DOS Environment 181

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

14 : Push Di
‘ 15 : Push Ax
A DeVice—Driver Pl'ogl'am PaCkage 3 16 : Les Di,Cs:Dbgptr ; get pointer to CRI
ion. the first of the two complete : :; : Hov A:'ES: e
L ; . eceding section, tne i : Mov al,itr? ; move in letters
Despite the hn?ltaw-ms menugneci:zéhfgff ZCSZpanate device driver The driver handles all : 19 . Stosw
packages in this article uses t‘e P mits extreme simplicity in all other modules 20 : Mov Al,Ltr2
hardware-dependent interfacing and thus p?}fnb Tuse it is especially well suited for in- 21 Stosw
of the package. This approach is prese%‘lmd- ”Z:cgrzrils However, the package is not merely ;g : Mov Al,Itrd
. ications progr : ’ . : Stosw
tlodUCIDgfhe'conC?pts of Comﬁlel?eatures tl'izatare not available in most commercial 24 : Cmp Di, 1600 : top 10 lines only
a tutorial device: It includes 80 2 25 . b e
programs . i R 26 : Xor Di,Di
The package itself consists of three separate programs Fitstis the dexgce dl:ﬁi:::gilch 27 : Xxx: Mov Word Ptr Cs:Dbgptr,Di
p . HOS via the CONEIG SYS file Second is the modem engine, W 28 Pop ax
becomes a part of MS-DOS via ~nally similar component forms the heart of every 29 : Pop pi
is the actual terminal program. (A functionaly s embly language or a high-level lan- o Fop - Es
communications program, whether it is Wi 1ttex-1 in ass ‘Y so) Thirdis a separately’ exe-] Endm
age and regardless of the machine or opesating system in u i as word length 32 : * ; asterisk ends commented-out region
guag meram that permits changing such driver characteristics a s _ 33 :
cuted suppoit prograi P 34 @ Device Type Codes
parity, and baud rate) ¢ program 35 : DevChr Equ 8000h : this is a character device
_ hat use the traditional approach, the driver and the support progt: 36 : DevBlk Equ 0000k : this is a block (disk) device
In most programs that us N ingle unit and the resuiting mass of detail : 37 : DevIoc Equ 4000h ; this device accepts TOCIL requests
are combined with the mOd‘_ﬂ? Engine masmfl e the parts are presented as separate ' 38 : DevNon Equ 2000h ; non-TBM disk driver (block oaly)
obscures the essential simphcﬁYOf. each part Here, p 39 : DevOIB Equ 2000h ; MS-DOS 3.x out until busy supported (char}
mOdules o emphﬁSiZC that simphCltY . 40 : DevOCR Equ 0800h ¢ MS-DOS 3 x open/close/rm supported
COMDVR.ASM : : j; : Devx32 EHaqu 0640h ; MS-DOS 3.2 functions supported
1 dr-iver;] : DevSpc Equ 0010h ;i accepts special interrupt 29H
The device) e 1t the default COMI and COM2 devices with other 43 : DevClk Equ 0008k : this is the CLOCK device
1he device driver is wiitlen 1o S5 hvsical hardware but are logically sepa- 4 44 : DevNul Equ 0004h : this is the NUL device
devices named ASY1 and ASY?2 that.use the same P X/IASM and is shown in the listing in 45 : DevSte Equ 0002h ; this is standard cutput
cate The driver (COMDVR ASM}is 1mplergler}teg ;; ;aSkeleton is designed to permit 4§ : DevSti Equ 000th ; this is standard input
. jver is written pasica r . , 47
Figure 6-1 Althou.gh the drweéisused as a general-purpose sample of device-driver 48 1 ; Error Status BIIS
extensive expansion and can be 49 : StsErr Equ 8000h ; general error
source code 50 : StsBsy Equ 0200h : device busy
Od 51 : StsDne Equ 0100h : request completed
The code 52 :
U liele compve Driver for IBM COM Ports 53 @ ; Error Reasonlvalues for lower-order bits
PR Tim Kyle, 1987 54 : ErrWp Equ 0 write protect error
5 o E_ased on ideas from many soQurces 55 : ErrUu Equ 1 ; unknown unit
o including Mike Higgins, CIM March 1985; 56 : ErrDnr Eem 2 7 drive not ready
4; ; public-domain ITWIBIOS program from BBS's7 537 : ErrUc Equ 3 ; unknown command
“6' ’ COMBIOS COM from CIS programmers’ SIG: and 58 : ErxCrc Equ 4 ; eyclical redundancy check error
; ' ADVANCED MS-DOS by Ray Duncan 5% : ErrBsl Egu 5 i bad drive request structure lsngth
e s i b Srmomon o mmme
o Comment * Inis comments out the Dbg mac:rol 62 : Exrrsnf Equ 8 sector not found
10 . 1trl,Ltr2,Ltr3 used only to depbug driver. 63 : ErrPop Equ 2 ; printer out of paper
11 : Dbg Macro ! 64 : ErrWwf Equ 10 ; write fault
12 Local ExX d
save all regs use
13 Push Es ’ Figure 6-1. Continued (more)

(more)

Figure 6-1 COMDVR ASM

Section II: Programming in the MS-DOS Environment 183

182 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 104/165

Article &: Interrupt-Driven Communications

Part B: Programming for MS-DOS

65 @ ErrRf Equ 11 ; read fault ' 116 : BrkRcv Egu 00010000b ; break received
66 : ErrGf Equ 12 ; genmeral failure : 117 : FrmErr Equ 00001000b ; framing error

67 & ; i 118 : ParErr Equ 00000100b ; parity error

68 : ; structure of an I/0 request packet header é 118 : OveRun Equ 00000010k ; overrun error

69 & ; . i 120 : rdta Equ 00000001k : received data ready

70 ¢ Pack Struc ; 121 @ anyErr Equ BrkRev+FrmErrtParErr+OveRun

71 : Len Db 2 ; length of record 122 :

72 : Prtno Db 2 ; unit code 123 : 8250 MCR constants

73 : Ccode Db 2 : command code 124 : LpBk Equ 00010000b : UARI out lcops to in (test)

74 : stat Dw ? . return status 125 & Usr2 Equ 00001060b : Gates 8250 interrupts

75 : Dosg nd 7 ; {unused M5-DOS queue link pointer) 126 : Usr? Equ 00000100b ; aux userl output

16 : Devg bd 2 ; (unused driver queue 1ink pointer} 127 : SetRI53 Equ 00000010b ; sets RIS output

77 : Media Db ? ; media code on read/write 128 : SetDIR Equ 00000001 ; sets DIR output

78 : Xfer Dw 2 ; =fer address offset 129 ¢ ;

79 t Xseg Dw ? ; xfer address segment 130 : ¢ 8250 MSR constants

80 : Count Dw H : transfer byte count 131 : Cblvl Equ 10000000k ; carrier detect level

81 : Sector Dw ? : starting sector value {block only) 132 : R_IlVl Equ 01000000b ; ring indicator level

82 : Pack Ends : 133 : DsRIvl Equ 00100000b ; DSR level

83 : 134 : ¢Islvl Equ 00010000b ; CIS level

84 : Subttl IBM-PC Hardware Driver Definitions 135 : Cbhchg Equ 00001000b : Carrier Detect change

85 : page : 136 : RIchg Equ 00000100b ; Ring Indicator changé

86 ¢ 1 137 : DSRchg Equ 00000010b ; DSR change

87+ ; 8259 data 138 : CISchg Equ 00000801b : CIS change

88 : PICLhL Equ 020h ; port for EOI 139 : ;

89 : PIC_e Equ 0z1h ; port for Int enabling 4 140 8250 IER constants

90 : EOI Equ 020h ; EOT control word L 147 ¢ s Int Equ 00001000b ; enable status interrupt

81 & i 142 : E_Int Egu 00000100b ; enable error interrupt

92 * ; 8250 port cffsets 143 @ X Int Equ 00000010b ; enable transmit interrupt

93 : RxBuf Equ 0F8h : base address S 744 : R_Int Equ 00000001k ; enable receive interrupt

94 ; Baudl Equ RxBuf+! ; baud divisor high byte S 145 : allint Equ 00001111b ; enable all interrupts

95 ; IntEn Equ rxBuf+l ; interrupt enable register # 146

96 : IntId Equ RxBuf+2 : interrupt identification register 147 : Subttl Definitions for IHIS Driver

97 : letrl Equ RxBuf+3 ; line control register 148 : page

98 : Metrl Equ RxBuf+4 : modem contrel register 149

49 : Istat Equ pxBuf+5 ; line status register 150 = ¢ Bit definitions for the output status byte
100 : Mstat Equ RxBuf+6 ; modem status register 151 2 (this driver only)

101 ¢ 152 : linIdl Equ 0ffh ; if all bits off, xmitter is idle

102 = 8250 LCR constants 153 : linxef Equ 1 i output is suspended by XCFF

103 : Dlab Equ 10000000b ; divisor latch access bit 134 : LinDSR Equ 2 ; output is suspended until DSR comes on again
104 : SetBrk Equ 01000000b ; send break control bit 155 : LinCIS Equ 4 ; outpur is suspended until CIS comes cn again
105 : 8tkPar Equ 00100000b ; stick parity control bit 156 = :

106 : EvnPar Equ 0G010000b ; even parity bit 157 = Bit definitions for the input status byte

107 : GenPar Equ 000010005 : generate parity bit 158 : ; (this ariver orly }

108 : Xstop Equ p0000100b :+ extra stop bit 159 : BadInp Equ 1 ; input line errors have been detected

109 : Wds Equ 00000011b ; word length = 8 160 : lostDt Egu 2 : receiver buffer overflowed, data lost
116 @ Wd7 Equ 00000010b : word length =7 161 : Offrin Equ 4 . device is off line now

111 Wde Baqu 00000001b ; word length = 6 162 ;

112 & 163 1 Bit definitions for the special characteristics words
13 @ ; 8250 ISR constants 164 - { this driver only

114 : xsre Equ 01000000b ; xmt SR empty 165 g InSpec controls how input from the UARI is treated
115 : xhre Equ 01000000 ; xmt HR empty 166 1 ;

{more) Figure 6-1 Continued {more)

Figure 6-1 Continued

184 The MS-DOS Encyclopedia Section IT: Programming in the MS-DOS Environment 185

HUAWEI EX. 1204 A-3 - 105/165

Part B: Programming for MS-DOS

Article 6: Interrupt-Driven Communications

167 : InEpe Equ 0001h . errors translate o codes with parity bit on 218 -
168 ¢
. . 219 : PackHd Dd 0
169 : OutsSpec contzols how output to the UARI is treated 208 .
10 221 1 baud .
17t : QuUtDSR Equ 0001h ; DSR is used to throttle output data 292 : Asy_baudt Diu rate COHYersmn table
172 : OutCis Equ 0002k ; CIS is used to throttle output data 223 5 50,2304 . first value is desired baud rate
173 : OutXon Egu 0004h ;7 XON/XOFE is used to throttle cutput data 294 Dw 75,1338 i second is divisor register value
174 : QutCdf Edu 0010h . carrier detect is off-line signal 235 DW 10,1047
175 : outDri Equ 0o20n : DSR is off-line signal) w 134, 857
176 1 ; , ! 226 = Dw 150, 786
177 : Unit 3truc ; each unit has’a structure defining its state: L iz; Bw 300, 384
178 : Port Dw H ; I/0 port address ! 595 gw 600, 192
179 : Vect Dw ? ; interrupt vecior offset (NOI interrupt number!} 230 D"" 1200, 98
180 : Isradr BDv H . offset to interrupt -service routine 231 D"’ 1800, 64
181 : OtStat Db nA8 : default LCR bit settings during INII, 232 . DW 2000, 58
182 ; output status bits after 233 . D“’ 2400, 48
183 : InStat Db Usr2+SetRIS+SetDIR ; MCR bit settings during INII, 224 . DW) 3606, 32
184 ; input status bits atter 235 . DW 4800, 24
185 : InSpec Dw InEpc ; special mode bits for INPUI 236 - DW 7300, 16
186 : CutSpec Dw cutxXon spacial mode bits for OUIPUT 237 . w 9600, 12
187 : Baud Dw 96 ; current baud rate divisor value (1200 b} 218 table of st
188 Ifirst Dw) . offset of first character in input buffer 35 AS; Ijucturgs
189 : Iavail Dw 0 . offset of next available byte 240 ; N c%t.efaults to tl"‘e COM1 port, INI OCH vector, XON,
190 : Ibuf Dw ? , pointer to input buffer 241 : asy_tabi .O parity, 8 databits, 1 stop bit, and 1200 baud
19y . Ofirst Dw 0 ; offset of first character in output puffer 242 - U .)
192 . Gavail Dw 3] ; offset of next avail byte in outpul buffer 243 nit <3f8h,30h,asylisr,,,,,,,,inlbuf,, ,outlbuif>
193 : Obuf Duw ? : pointer to output buffer 04a ; 572 a N
194 : Unit Erds a5 . o ?:aults to ti:m_e COM2 port, INI O0BH vector, XON,
122 . T neytann, parity, 8 databits, ! stop bit, and 1200 baud
197 & ¢ Beginning of driver code and data z:; Unit <2f8h,2ch,asy2isr,,,,,,,,1in2buf,, cut2buf>
198
189 ; Driver Segment IEE:(Q) : :2?;;; iqu 256] input buffer size
200 Aesume Cs:driver, ds:driver. es:driver 257 Inibu b BuI:S?Z'] mask for calcularing offsets modulo bufsiz
201 org 0 ; drivers start at O Bufsiz DUP {2}
202 252 Outibuf Db Bufsiz DUP {?)
203 Dw AsyncZ, -1 ; pointer to pext device 253 ¢ InZbuf Db Bufsiz DUP (2)
204 Dw DevChr + DevIoc ; character device with I0CIL 254 & OutZouf Db Bufsiz DUF (2)
205 Dw strtegy ;. offset of Strategy routine 235 &
206 Dw Request | . offget of imterrupt entry point 1 ;ij : Following is a table of offsets to all the driver functions
207 Db "ASY1 ' : device 1 name
258 Asy_funcs:
208 : AsyncZ: .
209 : Dw -1,-1 ; pointer to next device: M§-DOS fills in 2:3 EW Init : 0 initialize driver
210 @ ow pevChr + DevIoc ; character device with IOCIL 261 Dw Mchek ; 1 media check (block only)
211 Dw strtegy . offset of Strategy routine 262 Dw BldBm‘a ;2 build BPB (klock only}
212 ¢ Dw Request? . offset of interrupt entry point 2) " Loctlin ;3 IOCIL read
213 : Db TASY2 ' ; device 2 name 223 : Duw Read 4 read
214 26; g: gdread 5 nondestructive read
215 : ;dbgptr bd 0b0000000h P : 5 xstat 5 input status
216 = 7 - . 267 - S 7 flush input buffer
2117 Following is the storage area for the request packet pointer rite : B write
268 Dw Write ;9 write with wverify
Figure 6-1 Continued Figure 6-1 Continued.
(more)
Section I Programming in the MS-DOS Environment 187

186 TheMS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 106/165

Part B: Programming for MS-DOS

269 : Dw Ixstat ; 10 output status
270 Dw Ixflush ; 11 flush cutput buffer
27 Dw Ioctlout ; 12 I0CIL write
272 : ; Following are not used in this driver.
273 bw Zaxit : 13 open (3.x only, not used)
274 : bw Zexit ; 14 close (3 .z only, not used}
275 Dw Zexit ;15 rem med (3.x only, not used)
276 Dw Zexit ; 16 out until bsy (3 x only, not used)
277 s Dw Zexit P17
278 Dw Zexit ;18
219 Dw Zexit 7 19 gemeric IOCTII request (3.2 only)
280 Dw Zexit ;20
281 : bw Zexit 721
282 : Dw Zexit v 22
283 : Dw Zexit ; 23 get logical drive map (3.2 only)
284 Dw Zexit : 24 set logical drive map (3.2 only)
285
286 : Subttl DPriver Code
287 : page
288 : ;
288 @ Ihe Strategy routine itself:
2%0 :
291 : strtegy Proc Far
282 @ dbg 's', 'R,V
293 : Mov Word Ptr CS:PackHd,BX ; store the offset
294 Mov Word Ptr CS:PackHd+2,ES ; store the segment
295 Ret
296 : strtegy Endp
297 1,
298 : Requesti: ; async! has been requested
289 : Push Si save ST
300 = iea Si,hsy_tabl get the device unit table address
LI Jmp Short Gen_recuest
302
303 : Request?Z: ; async2 has been requested
304 : Push 51 ; save ST
305 : lea Si,Asy_tab2 ; get unit table two's address
306
307 : Gen_reguest:
- 308 : dbg R PRY, !
309 pPushf ; save all regs
310 cld
311 ¢ Push Ax
312 Push Bx
313 push Cx
314 Push Dx
315 Push Di
316 : Push Bp
317 : Push Ds
318 push Es
319 ¢ Push Cs : set DS = CS

Figure 0-1 Cowmtinued

188 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 107/165

{more)

Article &: Intertupt-Driven Communications

320
321
322
323
324
325
326
327
328
329
330
331
332
333
234
335
336
337
338
339
340
341
342
343
344
343
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Exitp
Bsyexit

¢ Mchek:

B1dBPE:
Zexit:
Exit:

ExitP

Subttl
Page

Read:

Pop
Les
Lea
Mov
Chw
Add
Add
Jmp

Ds .
Bx, PackHd get packet pointer
Di,Asy_funcs ;- polot DI to jump table
Al,e§:code[bx] i command code

AxX,Ax ; double to word

Di, ax

[di] ; go do it

Exit from driver reguest

Proc

Mov
Jimp

Xor
Iesg

Mov
Pop
Pop
Pop
Pop
Pop
Pop
Pop
Pop
Popf
Pop
Ret
Endp

Far

AX, 5tsBsy
Short Exit

Ax,Ax

Bx, PackHd ; get packet pointer
A%, StsDne

Es:Stat [Bx]),Ax ; set return status
Es ; restore registers
Ds

Bp

Di

bx

Cx

Bx

Ax

5i

Driver 3ervice Routines

Read data from device

dbg
Mov
Mov
Mov
Push
Push
Mowv
lest
Je
Add

Figure 6-1 Continued

TRY, AT,
Cx.Es:Count {bx] ; get requested nbr
Di,Es:Xfer[bx] ; get target pointer
Dx,Es:Xseq[bx]
Bx ; save for count fixup
Es
Es,Dx
InStat(si],BadInp Or lostDt
No_lerr ; no error so far
Sp,4 i error, flush SPp
(more)
Section Il Programming in the MS-DOS Environment 189

Article &: Interrupt-Driven Communications

Part B: Programming for M$8-DOS

421 : Write:

371 And InStat[si],Not (Badinp Or LostDt)
372 Mowv Ax,ErrREf ; error, report it | 422 : ; dbg e, e,
373 : Jmp Exit { 423 : Mov Cx,es:count [bx]
374 : No_lerr: : 424 : Mov Di,es:xfer{bx]
375 = Call Get_in : go for cne : 425 : Mov Ax,es:xseqg(bx]
376 : Qr Ah,2ah 426 Mov Es,ax
377 : Jnz Got_all ; none to get now 427 1 Wlup:
378 : Stosb ; store it 428 : Mov Bl,es: {di] ; get the byte
379 : Loop No_lerxr ; go for more 429 Inec Di '
380 : Got-all: 430 : Wwait:
381 : Pop Es 431 Calil Put__out ; pub away
382 Pop Bx 432 Cmp ah,0
383 ¢ Sub Di,Es:Xfer(bx] - calc number stored 433 : Jne Wwait : wait for room!
384 : Mov Es:Count (bx},Di ; return as count 434 Call Start_output : get it going
385 Jmp Zexit 435 Loop Wlup
386 436 :
387 : Nondestructive read from device 437 = Jmp Zexit
388 : 438
389 : Ndread: 439 @ ; Output status request
390 - Mov Di,ifirst[si] 440
391 ¢ Cmp Di,iavail (sil 441 : Ixstat:
392 ine Ndget 442 Mov Ax,ofirst[si]
393 : Jmp Bsyexit ; buffer empty 443 Dec Ax
394 : Ndget: 444 3 And Ax,bufmsk
395 : Push Bx 445 = Cimp Az,ocavail[si]
396 = Mov Bx,ibuf(sil] 446 : Jne IXRroom
397 Mov AL, [bx+dil] : 447 Tmp Bsyexit ; buffer full
398 : Pop Bxz - 448 : Ixroom: :
359 : Mov Es:media{bxj,al ; return char : 249 Jap Zaxit . room exists
400 : Jmp Zexit 450
401 451 & ; IOCII read request, return line parameters
402 & ¢ Input status request 452
403 = 453 : Toctlin:
404 : Rxstat: 454 : Mov Cx,es:count {bx]
405 Mov Di,ifirst[si] 455 Mov Di,es:xfer [bx]
406 Cmp Di,izvail[si] 456 Mov Dx,es:xseg [bx]
407 = Jne Rxzful 457 Mov Es,dx
408 Jmp Bsyexit ; buffer empty 458 Cmp Cx, 10
409 :+ Rxful: 459 Je Poiocin
410 Jmp Zexit ; have data 460 : Mov Ax,errbsl
411 461 Jop Exit
412 Input flush request 462 : Doiocin:
2173 - i 463 Mov Dx,port [si] : base port
414 : Inflush: B 464 : Mov Dl,Ictrl ; line status
415 : Mov A%, lavail([si] 465 : Mov Cx,4 : LCR, MCR, 1SR, MSR
416 Mov Ifirst{si],ax 466 : Getport:
617 1t Jmp Zexit 467 In Al,dx
418 : 468 : Stos Byte Ptr [DI]
419 : output data to device 469 : Inc Dz
420 470 : lLoop Getport
471

Figure 6-1. Continued

(more)

Figure 6G-1. Continued

(more)

190 The MS-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 191

HUAWEI EX. 1204 A-3 - 108/165

Part B: Programming for MS-DOS Article 6: Interrupt-Driven Communications
.)

472 : Mov Ax,InSpecisil ; spec in flags : 523 : add Di,3 ; skip ISR,MSR
473 Stos Word Ptr [DI] : 524 Mov Ax,es: (di]
474 Mov aAx,OutSpecisi} ; out flags 525 Add pi,2
475 : stos Word Ptr [DI} : 526 : Mov Indpec(sil,ax

476 : Mov 2x,baud[si] ; baud rate : 321 : Mov ax,es:{di)

477 Mov Bx, di 528 : Add Di,2

478 = Mov Di,offset Asy_baudt+? i 529 Mov outSpec[si],ax

179 : Mov Cx,15 ; 530 : Mov Ax,es: [di] : set baud
480 : Baudecin: : 531 ¢ Mov Bx,di

481 cmp [di},rax i 532 Mov Di,offset Asy_baudt

482 Ja ¥esinb) S 533 Mow C¢x,15

483 : Add Di 4 534 : Baudeout:

484 ioop Baudcin ; 333 ¢ Crap [di],ax

485 : Yesinb: I 536 : Je Yesoutb

486 : Mov Ax, -2idil 537 : Add Di, 4

487 Mov pi, bx 538 = Loop Baudcout

488 Stos word Ptr [DI] 539

289 : Jmp zexit 540 Mo Dl,lctrl ; line ectrl
490 : 541 In AL, dx ; get ICR data
491 Filush output buffer request 542 : And Al,not Dlab ; strip

492 543 Clc

483 @ [xflush: 544 JInc S+2

494 : Mov Ax,oavail(lsi] 245 Out Dx,al ; put back

495 MoV Ofirstlsi),ax 546 : Mov Ax, ErrUm ; "unknown media™
496 : Jnp Zexit 547 _ Jmp Exit

197) 548 :

498 & 10CTT request: change line parameters for this driver 549 : Yescutb:

199 350 & Mov Ax,2[di] ; get divisor
500 : Ioctlout: 551 Mov Baudfsi],ax ; save to report later
501 : Mov Cx, es:count {bx] 552 Mo Dx,port[sil ; set divisor
502 Mov Di,es:xfer [bx] 333 ¢ Qut Dx,al

503 Mov Dx,es:xsegibx] 534 Clc

504 Mov Es,dx 555 Tnc 542

505 : crp cx,10 536 = Inc Dx

506 : Je Doiocout 557 Mov Al,ah

567 Mov Ax,errbsl 558 : Cut Dx,al

508 : Tinp Exit 559 & Clc

509 560 : Jnc 8+2

510 : Doiocout: 561 : Mov o1, letrl ; line ctrl

511 Mov Dx, port [5i] ; base port 562 In Al,dx ; get ICR data
512 Mov pl,lectri ; line ctrl 563 : And Al,not Dlab ; strip

513 Mov al,es: [di] 564 Clc

514 Inc Di 565 : Jne S42

515 = or al,Dilab ; set baud 366 : out Dx,al : put back

516 : out Dx,al 367 : Jmp Zexit

517 : cle se8

518 : Tne $42 569 : Subttl Ring Buffer Routines

519 : Inc Dx ; mdm otrl 370 i Page

520 : Mov Al,es:{di] 571

521 : or Al,Usr2 ; Int Gate 572 : Put_out Proc Near ; puts AL into output ring buffer
522 : Qut Dx,al 573 Push Cx

(more) Figure 6-1 Continued (more)

Figire 6-1 Continned

192 The M$-DOS Encyclopedia Section IT. Programming in the MS-DOS Environment 193

HUAWEI EX. 1204 A-3 - 109/165

Part B: Programming for MS-DOS

Article 6: Interrupt-Driven Communications

574
575
576
577
578
579

581

582
583
584
588
586
587
588
389
590
591

592
593
594
595
596
597
598
599
600
601

602
603
604
605
506
807
608
609
610
811

612
613
614
615
616
817
618
619
620
621

622
623
624

Poerr:

Poret:

i Put_out

Get_out

Ngoerr:

7

! Goret:

Get__out

Put_in

Push
Pushf
Cli
Mow
Mow
Inc
And
Cmp
Je
add
Mov
Mov

Mov
Jmp

Mowv

Popf
Pop
Pop
Ret
Endp

Proc
Push
Push
Pushf
Cli
Mov
Crp
Jne
Mov
Jap

Mov
Add
Mov
Mov
Inc
And
Mow

Popf
Pop
Pop
Ret
Endp

Proc

Figure 6-1. Continued

194 The MS-DOS Encyclopedia

Cx,cavail[si]
Di,cx

Cx

Cx,bufmsk
Cx,ofirst[si]
Poerr
Di,obuf([si]
[di),al
Qavailisi],cx
'Ip!,lO!’l r
ah,0

Short Poret

Ah, -1

Cx

Near ;{ gets next character from output ring buffer

Di,ofirst[si]
Di,cavailfsi]
Ngoerr

Bh, -1

Short Goret
lql’lol’r r
Cx, di

Di, cbuf(si]
Al, [di]

Ah, 0

Cx

Cx, bufmsk
Ofizrst{si],cx

Di
Cx

Neaxr : puts the char from AL into ilnput ring buffer

-

put ptr
bump
overflow?
yes, don’t

no
put in- buffer

get ptr
put ptr

enpty

get char

bump ptr
wrap

(more)

625
626
627
6528
629
630
631
632
633
634
635
636
637
638
€39
640
641

644

663
664
665
666
667
668
669
870
€71
672
673
574
675

: Npierr:

i Piret:

¢ Put_in

Get_in

Gilerr:

Giret:

: Get_in

Push
Pusnt
Pushf
Cli
Mov
Mov
Inc
And
Cmp
Jne
Mov
Jmp

Add
Mov
Mov
dbg
Mov

Popt
Pop
Fop
Ret
Endp

Proc
Push
Push
Pushf
Cli
Mov
Cmp
Je
Mov
Add
Mov
Mov
dbg
Inc
And
Mowv
Jmp

Mov

Popf
Pop
Pop
Ret
Endp

Figure 6-1 Continued

Cx
pi

Di,iavailfsi]
Cx,di

<X

Cx,bufmsk
Cx,ifirst [si]
Npierr

2Ah, -1

Short Piret

Di,ibuf([si]
[di},al
Tavaill[si],cx
'p'l‘i|l
Ah, 0

LR}

Cx

Near ; gets one from input ring buffer inte AL

Cx
Di

Di,ifirst(si]
Di,iavail[si}
Gierr

Cx,di
Di,ibuf{si]
Al, {di]
Ah, 0

gr, i,
(0534
Cx,bufmsk
Ifirstlsil,cx
Short Giret

ah, -1

Cx

Section II. Programming in the M5-DOS Environment

{(more)

195

HUAWEI EX. 1204 A-3 - 110/165

Part B: Programming for MS-DOS

616 Subttl Interrupt Dispatcher Routine

677 : Page

678

679 : Asylisr:

680 sti

681 Push 5i

682 Lea Si,asy_tabl

683 : Jmp Short Int_serve

684 :

685 : AsyZisr:

686 sti

687 ¢ Push si

688 : Ilea 8i,asy_tab2

685

%90 Int_serve:

681 Push AX ; save all regs

682 : Push Bx

693 & Push Cx

694 : Push Dx

695 » Push pi

696 Push Ds

6597 Push Cs ; set DS = C5

698 Pop Ds

699 Int_exit:

700 dbg ittt

701 Mov Dx,Portisi] base address

02 Mov D1, IntId ; c¢heck Int ID

703 = In Al,Dx

704 Crp A}, 00h ; dispatch filter
705 - Je Int_modem

706 Jmp Int_mo_no

707 Int_modem:

708 ; dbg MY, g, T

709 Mov D1,Mstat

110 = In Al,dx ; read MSR content
711 Iest Al1,CD1lvl ; carrier present?
M2 anz Msdsr : yes, test for DSR
713 = lest QutSpecisi], OutCdf ; no, is CD off line?
114 Jz Msdsr

715 or InStat([si],Offlin

116 Msdsr:

117 Test Al,DSRlvl ; DSR present?

718 Jnz Dsron : yes, handle it
718 lest Out8pecisi], OutDSR : ne, iIs DSR throttle?
720 Jz Dsroff

721 Gr otStat{si],LinDSR : yes, throttle down
722 Dsroff:

123 Test QutSpecfsi], QutDrf ; is DSR off line?
724 = Jz Mscts

125 Cr InStat[si],0fflin ¢ yes, set flag
726 Jmp Short Mscts

Figure 6-1 Continued

196 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 111/165

(more)

Article §: Interrupt—Driven Communications

727 : Dsron:

728 « Iest
729 Jz
730 : Xor
731 ¢ Call
732 : Msacts: ’
133 = Test
134 : Jnz
735 : Iest
7136 : Jz
737 : or
738 Jmp
739 : Ctson:

740 Test
747 Jz
742 Xor
743 Jmp
744 : Int.mo _no:
745 Cmp
746 : Ine
747 : Int_txmit:
748 : dbg
749 : Int_exitt:
750 = Call
751 : Int exitZ:
752 Jmp
753 : Int_tx no:
754 Cmp
755 : Jne
756 : Int_receive:
757 : ; dbg
758 : Mov
759 : In
760 : Iest
761 Jz
162 = Cmp
763 : Jne
764 : Or
765 : Jnp
766 ¢ Isg:

167 : Cmp
768 Jne
769 Iest
770 Jz
71 Aor
172 ¢ Jmp
773 ¢ Int_rec_no:
174 : Cmp
775 @ Jne
776 : Int_rxstat:
711 oo dbg

Figure 6-1 Continued

otstat(si],l1inDSR
Mscts

OtStat [8i),LinDSR
Start_ocutput

Al,CISlvl H
Ctson ;

OutSpec(sil],OutCIs

Int_exit2
Ot8tat [si],LinCISs
Short Int_exit?2

OtStat[si],IinCIS
Int_exit?
otStat[si],EinCIS

Short Int_exit1

A1,02h
Int_tx no

i, g,
Start_output
Int_exit

Al,04h
Int_rec_no

TR, Py, !
Dx,port[si]
Al,dx i

throttled for DSR?

; yes, clear it out

CI5 present?
yes, handle it
; no, is CIS throttle?

; yes, shut it down

throttled for CIS?

; yes, clear it out

try to send another

take char from 8250

QutSpec(si],QutXon ; is XON/XOFE enabled?

Stuff_in H
Al,'s' And Q1FH

Isqg :
OtStat[si],linXof
Int_exit2 ;

Al,'Q' And Q1EH ;
stuff_ in i
OtStat [s1],IlinXof
Int.exit2

otstat{sil,linXcf
Int_exit’ H

2l,06h
Int_done

tEY, R,V T

ne
ves, is this XOFF?
no, check for XON
ves, disable output
don't store this one

is this XCN?
no, save it
ves, waiting?
no, ignore it
; yes, clear the XCFF bit
and try to resume xmit

{more)

Section IT. Programmuing in the MS-DOS Environment 197

Part B: Programming for MS-DOS

Dl,Lstat

Al,dx

InSpec{sil], InEpe
Nocode H
Al,AnyErr ;
Al,080h

Put..in ;
Ah, O ;
Int_exit3 ;
InStat[si},lostbt

Int_exit

InStat{sil,BadInp
Int_exit3

$+2

Al,EOI ;
PIC_b,Al

Ds

Di

Dx

cx

Bx

Ax

Si

Proc Near
otstat{si],linldl
Dont_..start ;
Dx,port [si} H
Dl,lstat

Al,Dx

Al, xhre H
Dont_start H
Get_out
Ah, Ah
Dont_start H
Dl,RxBuf
Dx,al
'stylo,

ror

Endp

return them as codes?
no, just set error alarm
yes, mask off all but error bits

put input char in buffer
did it fig?
yes, all OK
; no, set Datalost bit

all done now

restore regs

; Blocked?
yes, no output
no, check UARI

empty?
no
yes, anything waiting?

noc
yes, send it out

826 : Subttl Initialization Request Routine

778 ¢ Mov
779 = in
780 : lest
781 : Jz
782 : And
183 or
784 : Stuff_in:
785 Call
7186 Crmp
187 : Je
788 : or
789 : Int_exit3:
790 Jmp
791 : Nocode:

792 or
793 : Jmp
784 : Int_done:

785 : Clc
786 = Jnc
787 ¢ Mov
788 = Qut
798 : Pop
800 : 2op
801 : EBop
802 : Pop
803 -« POP
804 : Pop
805 Pop
806 : Iret
807

808 : Start_ocutput
809 : Iest
310 : Jnz
811 Mov
812 : Mov
813 : In
814 : Test
815 : Jz
816 : Call
817 : Or
818 : Inz
819 : Maov
820 out
821 . ; dbyg
822 : Dont_start:
823 ret
824 : Start_output
8§25

827 : Page

828

Figure 6-1 Continued

198 The MS-DOS Encyclopedia

(more)

Article 6 Interrupt-Driven Communications

829 : Init: Lea pi,s ; release rest
830 Mov Es:Xfer(bx],Di

831 : Mov Es:Xseg[bx},Cs

832 :

833 : Mov Dx,Port[sij ; base port
834 : Mov Dl,Ictrl

835 : Mov Al,Dblab ; enable divisor
836 : Out Dx,Al

837 : Cle

838 : Jne §+2

839 : Mov D1, RxBuf

840 : Mov Ax,Baudfsi] ; set baud
841 : Out Dx,Al

842 : Clc

843 : Jnc $+2

844 : Inc Dz

845 : Mov Al,Ah

846 Cut Dx,Al

847 : Clc

848 : IJnc $+2

848 :

850 : Mow Dl,Ictrl ; set LCR

851 : Mov Al,O0tStat[si] ; from table
852 out Dx, Al

853 Mov Otstat(si],0 ¢} clear status
854 : Clc

855 : Jnc §+2

856 : Mowv D1, IntEn ¢ IER
" 857 : Mov Al,AllInt enable ints in 8250
858 Qut Dx, Al

459 : Cle

860 : Jnc S+2

861 Mow Dl,Mctrl ; set MCR

862 : Mow Al, InStat (si] ; from table
§63 out Dx, Al

B8e6d : Mov InStat [si], 0 i clear status
865

866 : ClRgs: Mov D1, Istat i clear 1SR
867 : In Al,Dx

868 Mov Pl,RxBuf clear RX reqg
869 In Al,Dx

870 : Mov Dl,Mstat clear MSR
871 : In Al,Dx

872 Mov Dl, IntId ; IID reg

873 - in Al,Dx

874 In Al,Dx

875 ; Iest Al ; int pending?
876 : Iz ClRgs i/ yes, repeat
877

878 : cli

879 : Xor Ax,Ax 7 set int vec

Figure 6-1 Continued

{more)

Section IT. Programming in the MS-DOS Environment 199

HUAWEI EX. 1204 A-3 - 112/165

Part B: Programming for MS-DOS

200

880 Mov Es,Ax

881 Mov pi,Vect [si]

882 Mowv Ax, IsrAdr(si] ; from table

883 : Stosw

884 : Mov Es: [di],cs

885

886 : In Al,PIC_e : get 8259

887 and A1,0E7h . coml/2 mask

888 : Cic

889 Inb S+2

890 : Qut PIC_e,AL

891 : 5ti

892 = ‘ .
893 : Mov Al,EO0L ; now send EQOI Jjust 1in case
894 : out PIC.b,AL

895 :

896 : ; dbg pf,TIN, ; driver installed
897 : Jmp Zexit

898 =

899 : Driver Ends

900 = End

Figure 6-1 Continued

The first part of the driver source code (after the necessaxy_MASM housekeeping c}if.tzuls
in lines 1through 8) is a commented-out Macro definition (hr.xes 10 thr‘c.)ugh 32) T is |
macro is used only during debugging and is part ofa debi.lggmg technique that quufreslz
no sophisticated hardware and no more complex debugging program tl}an the venéfab e
DEBUG COM (Debugging techniques are discussed after the presentation of the driver

program itself)

Definitions ‘ o ‘
The actual driver source program consists of three sets of EQU definitions (lines 34

through 194), followed by the modular code and data areas (lines 197 through'QO’O) The
first set of definitions (lines 34 through 82) gives symbolic names to the permissible values
for MS-DOS device-driver control bits and the device-driver structures

“definiti i . i he poris and bit
The second set of definitions (lines 84 through 145) assigns names to t
vahues that are associated with the IBM hardware —both the 8259 PIC and the 8250 UARId
The third set of definitions (lines 147 through 194) assigns names to the control values an
structures associated with this driver

The definition method used here is recommended for all drivers To move this driver from
the IBM architecture to some other hardware, the major change requited to the program

would be reassignment of the port addresses and bit values in lines 84 through 145
The control values and structures for this specific driver (defined in Fhe third E.QU set) .
provide the means by which the separate support prograim can modify the actions of eac

of the two logical drivers. They also permit the driver to return status information to both

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 113/165

Article &: Interrupt-Driven Communications

the support program and the using program as necessary Only a few features are imple-
mented, but adequate space for expansion is provided The addition of a few more defini-
tions in this area and one or two extra procedures in the code section would do all that is
necessary to extend the driver’s capabilities to such features as automatic expansion of
tab chatacters, case conversion, and so forth, should they be desired

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for
ASY7 (lines 201 through 207) and the other for ASY2 (lines 208 through 213) Following
the headers, in lines 215 through 236, are a commented-out space reservation used by the
debugging procedure (line 215), the pointer to the command packet (line 219), and the
baud-rate conversion table (lines 221 through 236)

T he conversion table is followed by structure tables containing all data unique to ASY7
(lines 239 through 242) and ASY2 (lines 244 through 247). After the structure tables,
buffer areas are reserved in lines 249 through 254 One input buffer and one output buffer
are reserved for each port. All buffers are the same size; for simplicity, buffer size is givena
name (at line 249) so that it can be changed by editing a single line of the program.

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be
able to hold at least 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dur-
ing wiites to disk Whatever size is chosen should be a power of 2 for simple pointer azith-
metic and, if video display is intended, should not be less than 8 bytes, 1o prevent losing
characters when the screen scrolls

If additicnal potts are desired, more headers can be added after line 213; corresponding
structure tables for each driver, plus matching pairs of buffers, would also be necessary
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets
of all request routines in the driver; its use is discussed below

Strategy and Request routines

With all data taken care of, the program code begins at the Strategy routine (lines 289
through 296), which is used by both ports This code saves the command packet address
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS

T he Request routines (lines 298 through 567) are also shared by both ports, but the two
drivers are distinguished by the address placed into the Sl register This address points to
the structure table that is unique to each port and contains such data as the port’s base
address, the associated hardware interrupt vector, the interrupt service routine offset
within the driver's segment, the base offsets of the input and output buffers for that port,
two pointers for each of the buffers, and the input and cutput status conditions (including
baud rate) for the port The only difference between one port’s driver and the other’s is
the data pointed to by SI; all Request routine code is shared by both ports

Each diiver's Request routine has a unique entry point (at line 298 for ASY7 and at line 303
for ASY2) that saves the original content of the SI register and then loads it with the ad-
dress of the structure table for that driver The routines then join as a common stream at
line 307 (Gen_ requiest)

Section II. Programming in the M5-DOS Environment 201

Part B: Programming for MS-DOS

202

This common code preserves all other registers used (lines 309 through 318), sets DS
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-
egy routine (line 321}, uses the pointer to get the command code (line 323), uses the code
to calculate an offset into a table of addresses (lines 324 through 326), and performs an in-
dexed jump (lines 322 and 327} by way of the dispatch table (lines 256 through 284) to the
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 433,
500, or 829)

Although the device-driver specifications for MS-DOS version 3 2 list command request
codes ranging from 0 to 24, not all are used. Easlier versions of MS-DOS permitted only 0
to 12 (versions 2.x) or 0 1o 16 {versions 2 0 and 3 1) codes. In this driver, all 24 codes are
accounted for; those not implemented in this driver return a DONE and NO ERROR status
to the caller Because the Request routine is called only by MS-DOS itself, there is no check
for invalid codes Actually, because the header attribute bits are nof set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273
through 284) could be saved by omitting the entries They are included only to show

how acnexistent commands can be accommodated.

Immediately following the dispatch indexed jump, at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the command packet, restore the registers, and return to the caller. The
alternative entry poinis for BUSY status (line 332), NO ERROR status (line 338), or an error
code (in the AX register at entry to ExiZ, line 339) not only save several bytes of redundant
code but also improve readability of the code by providing unique single Iabels for BUSY,
NO ERROR, and ERROR return conditions.

All of the Request routines, except for the it code at line 829, immediately follow the
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such
4s read data in or write data out The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user’s buffer address are obtained from the command
packet Next, the pointer to the command packet is saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer 1o the port’s input buffer

Before the Ger_in routine that actually accesses the input buffer is called, the input status
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error-return exit from
the driver If no error exists, line 375 calls Get_#n to access the input buffer and lines 376
and 377 determine whether a byte was obtained If a byte is found, it is stored in the user’s
buffer by line 378, and line 379 loops back to get ancther byte until the requested count
has been obtained or until no more bytes are available In practice, the count is an upper
limit and the loop is normaily broken when data runs out

No matter how it happens, control eventually reaches the Got_all routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.
1ines 383 and 384 adjust the count value in the packet to reflect the actual number of bytes
obtained Finally, line 385 jumnps to the normal, no-error exit from the driver.

The M5-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 114/165

Article 6: Interrupt-Driven Communications

Buffering

Both buffers for each driver are of the type known as circular, or ring, buffers Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here
for each buffer; one to put data into it and one to get data out. The ge# pointer always
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written The full-buffer condition is more difficult to test for: The pur pointer
is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full,

All buffer manipulation is done via four procedures (lines 569 through 674) Put_out
(lines 572 through 596) writes a byte 1o the driver's output buffer or returns a buffer-full
indication by setting AH to CFFH. Get..out (lines 598 through 622) gets a byte from the
output buffer or returns OFFH in AH 1o indicate that no byte is available Put_in (lines 624
through 648) and Get_in (lines 650 through 674) do exactly the same as Put_out and
Get_out, but for the input buffer These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Interrupt service routines

The most complex pait of this driver is the ISR (lines 676 through 806), which decides
which of the four possible services for a port is to be performed and where 1ike the
Request routines, the ISR provides unique entry points for each port (line 679 for ASY7 and
line 685 for ASY2); these entty points first preserve the SI register and then load it with the
address of the port’s structure table With SI indicating where the actions are to be per-
formed, the two entries then merge at line 690 into common code that first preserves all
registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although it could be used to prevent
attempts to transmit while off line), these ISR options can be removed so that only the
Transmit and Receive interrupts are serviced To do this, Allnt (at line 145) should be
changed from the OR of all four bits tc include only the transmit and receive bits (03H,

or 00000011B)

The tzansmit and receive portions of the ISR incorporate XON/XOFF flow control (for
transmitted data only) by default. This control is done at the ISR level, rather than in the
using program, to minimize the time required to respond to an incoming XOFF signal,
Presence of the flow-control decisions adds complexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec word in the structure table
with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Fune-
tion 44H) When flow control is enabled, any XOFF character (11H) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section IT Programming in the MS-DOS Envircnment 203

Part B: Programming for MS-DOS

204

bufferto be sent on to any program, although all patterns other than XOFF and XON are
passed through by the diiver When flow control is disabled, the driver passes all patterns
in both directions For binary file transfer, flow control must be disabled

The transmit actjon is simple: The code merely calls the Stari_output procedure at line
750 Stari_output is described in detail below

The receive action is almost as simple as transmit, except for the flow-control testing. First,
the ISR takes the received byte from the UART (lines 758 and 759) to avoid any chance of
an overrun error T he ISR then tests the input specifier (at ine 760) to determine whether
flow control is in effect. H it is not, processing jumps directly to line 784 to store the
received byte in the input buffer with Put_in (line 785) i
If flow control is active, however, the received byte is compared with the XOFF character
(lines 762 through 765) ¥ the byte matches, output is disabled and the byte is ignored If i
the byte is not XOFF, it is compared with XON (lines 760 through 768) 1f it is not XON i
either, control jumps to line 784, If the byte is XON, output is re-enabled if it was disabled
Regardless, the XON byte itself is ignored f
When control reaches Stuff_in at line 784, Pus_in is called to store the received byte in
the input buffer If there is no room for it, 2 lost-databit is set in the input status flags (line
788); otherwise, the receive routine is finished

If the interrupt was a line-status action, the L3R is read (lines 776 through 779) If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte
Otherwise, the Line Status interrupt merely sets the generic Badinp error bit in the input
status flags, which can be read with the IOCTL Read function of the driver

When all ISR action is complete, lines 794 through 8006 1estore machine conditions to those
existing at the time of the interrupt and return to the interrupted procedure

The Starl_output routine

Start_ouiput (lines 808 through 824) is a routine that, like the four buffer procedures, is
used by both the Request routines and the ISR Tts purpose is to initiate transmission of 2
byte, provided that output is not blocked by flow control, the UART Transmit Holding
Register is empty, and a byte to be transmitted exists in the output ring buffer This routine
uses the Gef_out buffer routine to access the buffer and determine whether a byte is avail-
able If all conditions are met, the byte is sent to the UART holding register by lines 819

and 820

The Initialization Request routine

The Initialization Request routine (lines 829 through 897) is critical 1o successful operation
of the driver This routine is placed last in the package so that it can be discarded as soon
as it has served its purpose by installing the driver It is essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop through this

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 115/165

Article 6: Interrupt-Driven Communications

action until the 8250 finally shows no requests pending The strange Cle jrc $+2
seqlfnce that appears repeatedly in this routine is a time delay required by high-speed
machines (6 MHz and up) so that the 8250 has time to settle before another access is
attempted; the delay does no harm on slower machines

Using COMDVR

;ih§ first step 11.1 using this device driver is assembling it with the Microsoft Macro Assem-
ther éMASM) 'Next, use the. Microsoft Object Linker (1INK) to create 2 EXE file. Convert
DEV]?E flé%ljxl}tg ‘a[R b;naxy image fiie with the EXE2BIN utility. Finally, include the line

= Y5 in the CONFIG SYS file so that ill be i
ihe syt i] at COMDVR will be instalied when

Note: The number and colon at the beginnj ine i
: ginning of each line in the program listings in thi
article are for refesence only and should not be included in the soicegfiie e his

Eigt;r;e §—2 s(hows the sequence of actions required, assuming that EDLIN is used for
Hying (or creating) the CONFIG SYS file and that all ¢ i '
root directory of the boot drive commandsateissucd from the

Creating the driver:

C>MASM COMDVR; <Enter>
C>IINK COMDVE: <Enters>
C>EXE2BIN COMDVR.EXE COMDVR . SYS <Enter>

Modifying CONFIG.SYS (MZ = press Cirl-Z);

C>EDLIN CONFIG S¥s <Enterx>
##I <Enter>

*DEVICE=COMDVR .SYS <Enter>
*°7 <Enter>

*E <Enter>

Figure 6-2 Assembling, Linking, and installing COMDVR

Because .the devices installed by COMDVR do not use the standard M$-DOS device n

no confhct occurs with any program that uses conventional port references Such a ?g_leﬁ,
gram will not use the driver; and no problems should result if the program is well b P;l d
and restores all interrupt vectors before returning to MS-DOS e

Device-driver debugging techniques

T he debugging of device drivers, like debugging for any part of MS-DOS itself is mor
difficult than normal program checking because the debugging program DEI;UG C(r)eM :
DE.BUG EXE, itself uses MS-DOS functions to dispiay output When these; functions -
being checked, their use by DEBUG destroys the data being examined And bracause:Me
MS-DOS always saves its return address in the same location, any call to a function from

inside the operating system usuall
. 'y causes a system lockup that can b ‘
shutting the system down and powering up again ’ e uredonly by

Section I Programming in the MS-DOS Enuironment 205

Part B: Programming for M5-DOS

One way to overcome this difficulty is 10 purchase costly debugging tools An easier
way is to bypass the problem: Instead of using MS-DOS functions to track program opera-
tion, write data directly 1o video RAM, as in the macro DBG (lines 10 through 32 of

COMDVR ASM)

Led with a three-character parameter stiing at each point in the pro-

This macro is invo
gram a progress report is desired. Each invocation has its own unique three-charactet
string so that the sequence of actions can be read from the screen When invoked, DBG

. expands into code that saves all registers and then writes the three-character string 10
video RAM Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used:
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer

with the moncchrome adapter and points

The pointer, Dbgptr (line 215), is setup for use
CGA mode), the location should be

to location B0O0D:0000H; to use a CGA or EGA (in
changed to B800:0000H

Most of the frequently used Request
as their first lines (for example, lines
out, but for debugging, the source file should
itself are enabled. '

routines, such as Read and Wrile, have calls to DBG
361 and 422). As shown, these calls are commented
be edited so that all the calls and the macro

10 lines of the display are overwritten with a continual sequence

Wwith DBG active, the top
-DOS functions ate not

of reports, such as RR Tk, put directly into video RAM. Because MS
used, no interference with the driver itself can occur

Although this technique prevents normal use of the system during debugging, it greatly
simpiifies the problem of knowing what is happening in time-critical areas, such as hard-
ware interrupt service In addition, all invocations of DBG in the critical areas ate in con-

ditional code that is executed only when the driver is working as it should.

nce, indicates that the received-data hardware

Failure to display the pi message, for insta
f go after an Ix seport shows that data is not

interrupt is not being serviced, and absence 0
being sent out as it should '
Of course, once debugging is complete, the calls to DBG should be deleted or commented
out Such calls are usually edited out of the source code before release. In: this case, they
remain to demonstrate the technique and, most particularly, to show placement of the calls
to provide maximum information with minimal clutter on the screen

A simple modem engine

The second part of this packa
listing in Figure 6-3 The main loop
(lines 9 through 2(). Of these, five (lines
contact between the program and the seri
returning to command level at the program'’s end

through 18) actually carry out the bulk of the pro-

d Four of these lines are calls to subroutines that

ge is the modem engine itself (ENGINE ASM), shown in the
of this program consists of only 2 dozen lines of code
9 through 13) are devoted to establishing initial
al-port driver and two (lines 19 and 20) aze for

Thus, only five lines of code (lines 14
gram as far as the main loop is concerne

206 The M5-DOS Encyciopedia

Article 6: Interrupt-Driven Communications

tgh‘-i f;‘:: Pl;tl;.iata from and t;) the console and the setial port; the fifth is the IMP that closes
j p. This structure underscor : L
iransfer loop, erscores the fact that a basic modem engine is simply a data-

1 : III1E engine

2 :

3 : CODE SEGMENI PUBIIC 'CODE'

4 :

5 3 ASSUME CS5:CODE,DS:CODE,ES:CODE, S3:CODE

6

7o CRG 0100h

8 :

9 : STIARI: mov dx,cffset devnm : open named device (ASY1)
10 : mov ax, 3d0zh
11 int 21h
12 1 mov handle, ax ; save the handle
13 je quit
14 ; alltim: call getmdm ; main engine loop
15 : call putcrt
i6 : call getkbd
17 call putmdm
18 : Jmp alltim
19 : guit: mov ah,4ch : come here to quit
20 int 21h
21
22 @

getmdm proc 7 get input from modem
23 mov cx,256
24 mov by, handle
25 mov dx,o0ffset mbufr
26 : mov ax, 3FQ0h
27 int 21h
28 je quit
29 mov mdlen, ax
30 ret
31 : getmdm endp
32
;3 f getkbd proc : get input from keyboard
o : mov kblen, 0 ¢ first zero the count
H mov ah, 11 ; key pressed?
36 : int 21h
37 inc al
38 : jnz nogk ; no
39 mov ah,7 ; yes, get it
40 int 21h
j; H ?mp al,3 ; was 1t Ckrl-C?
H je quit ; yes, get out
43 : mov kbhufr,al i no, save it
a4 ine kblen
45 cmp al,13 : was it Enter?
46 : jne nogk ; no
Figure 6-3. ENGINE ASM.
(more)

Section II: Programming in the MS-DOS Environment 207

HUAWEI EX. 1204 A-3 - 116/165

T ————

Part B: Programming for MS-DOS

208

11
ROV byte ptr kbufr+1,10 + Y&Ss add LE

47 :
48 : inc kbklen
49 : nogk: ret
50 : getkbd endp
2 [; put output to modem
52 @ putmdm Pro
53 : mov cx,kblen
54 Jjexz nopn
55 mov by, handle
56 : mov dx,offset kbufr
57 : mov ax,4000h
58 : int 21h
59 : Jjc quit
60 @ nopm: ret
61 : putmdm endp
o - ; put output to CRI

. putcrt proc
ii : mov cx,mdlen
€5 Jjexz nopc
66 mov bx, 1
67 . nev ax,offset moufr
68 mov ah,40h
69 int 21h
70 jc quit
71 : nopc: ret
72 : putcrt endp
S rasY1’, 0 : miscellaneous data and buffers
74 : devnm db .
75 ; handle dw 0
7¢ : kblen dw 0

i 0

77 » mdlen aw
78 ; mbufr dp 256 dup (0}
79 : kbufr db 80 dup {0}
80 :
g1 : CODE ENDS
a2 : END SIARI

Figure 6-3 Continued

Bex ause the eta of iming ar (13 A CONvel SION Are nale S/ the arnvers Ci < EaCh
(}f the fouf SubrOUtlnes 15— to ShOW]LlSt hOW SlIIlPle tlle Gl hOle pIOCSSS 18 _‘ 655611[1311}' 2
b int ce t th = OS Read E lle o1 DEUICE o1 Write F lle or Device routine

Llf feI‘Cd elfa e 1o < IV.{S D

re (lines 22 through 3D asks MS-DOS 0 reafi a max-
I.:O! exampl‘g }tgh(: iii-rs::?h?:ei?ﬁ\iievgce and then stores the num.b.er actually feaci ;11; ;; o
e Ydel The driver returns immediately, without wailing for data, 50 N
O oer r?b 6:;5 ceturned is either 0 or 1. 1f screen scrolling causes the 1ooph o acieis
g’lﬁil nuzin }SY?;: 2ouzt might be highet, but it should never exceed about a dozen chat
elayed,

: lue in mdlen If
‘ i hrough 72) checks the val
the puicri procedure (Jines 63t 110U - len 18
\:henlcznizi’eroegutcrt goes nothing; otherwise, it aslks MS-DOS o w1 :tz Eila; ;1
i)yet;rsaf‘rlom mbu_}”r (where getmdm put them) to the display, and thenitt

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 117/165

Article 6: Interrupt-Driven Communications

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbufr, and posts a
count in kbler; putmdm checks kblen and, if the count is not zero, sends the required
number of bytes from kbufr to the serial device

Note that getkbd does not use the Read File or Device function, because that would wait
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS
functions that test keyboard status (0BH} and read a key without echo (07H) In addition,

special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
kbufr immediately behind Enter and kblen is set to 2

A Ctrl-C keystroke ends program operation; it is detected in getkbd (line 41) and causes
immediate transfer to the guir label (line 19} at the end of the main loop. Because ENGINE

uses only permanently resident routines, there is no need for any uninstallation before
returning tc the MS-DOS command prompt.

ENGINE ASM is written to be used as a COM file Assemble and link it the same as

COMDVR SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIG SYS is needed

The driver-status utility: COVUTL.C

The driver-status utility program CDVUTL C, presented in Figure 6-4, permits either of
the two drivers (A5YI and ASY2) to be reconfigured after being installed, to suit different
needs After one of the drivers has been specified (port 1 or port 2), the baud rate, word
length, parity, and number of stop bits can be changed; each change is made indepen-
dently, with no effect on any of the other characteristics Additionally, flow control can be
switched between two types of hardware handshaking — the software XON/XOFF control

or disabled —and error reporting can be switched between character-oriented and
message-oriented operation

1 : /% edvutl ¢ - COMDVR Utility

2 # Jim Kyle - 1287

3 * for use with COMDVR SYS Device Driver

4 */

5

6 : %include <stdio h> /% i/o definitions */

7 : #include <conio h> /#* special console i/o */

g : #include <stdlib.h> /% misc definitions */

g . #include <dos . h> /% defines intdos{) ¥/
10 =
11 . /% the following define the driver status bits #/
12 =
13 : #define HWINI 0x0B800 /+ MCR, first word, HW Ints gated */
14 : #define o_DIR (0x0200 /% MCR, first word, output DIR ®/
15 : #define o_RIS 0x0100 /* MCR, first word, output RIS w/
16
17 . #define m PG (0x0010 /% LCR, first word, parity ON */
18 : #define m PE 0x0008 /% ICR, Eirst word, parity EVEN L

Figure 6~4 CDVUTL C

{more)

Section II. Programming in the MS-DOS Environment 209

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

19 : &define mXs 0x000% s+ LeR, first word, 2 stop bits */ | 70 . eles
20 : #define m WL 0x0003 /* LCR, Eirst word, wordlen mask */ ; 1 e ,
21 : 72 S iobf [4] == 1200)
22 1 #define 1-CD 0xB0OOO /* MSR, 2nd word, carrier Detect */ . elselObf [41 = 2400;

23 : #define i-RI 0x4000 /% MSR, 2nd word, Ring Indicator */ . 74 i (ione

24 : #define i_DSR 0x2000 /+ MSR, 2nd word, Data get Ready */ 75 j_obg ; 4[4_] == 2400)

25 : #define 1L CIS 0x1000 7+ MSR, 2nd word, Cclear to Send */ : 76 : else I = 9600;

26 . 17 i

27 : #define 1_SRE 0x0040 /+ LSR, 2nd word, Xmtr SR Empry */ '8 ioizif<){.4 1 = 300;

28 : #define 1_HRE 0x0020 /% 18R, Z2nd word, Ymtr HR Empty «/ : 79 Drenk ;

29 : jdefine 1.BRK 0x0010 /* 1SR, 2nd word, sreak Received */) 80 - 4

30 : $define 1_ERI 0x0008 /% ISR, 2nd word, ErmErr */ a1 . case te

31 : $define 1_ERZ 0x0004 /% ISR, 2nd word, Parfry */ g2 iobfr[O . /*% set parity even iy
32 : #define 1_ER3 0x0002 /% ISR, 2nd word, OveRun */ : 83 . tocwr O -, = { mPG + m 2PE);

33 : #define L _RRE 0x0001 /% 1SR, 2nd word, Revi DR Full */ E 44 renic. ’

34 = s "

35 @ /% now define C1S string for ANSI SYS */ . 56 case rg0 .

36 : fdefine CIS "\033[2J" & 87 r (tebE (3] — 1) /* toggle flow control ny
37 : 88 iobf [3] = 2;

38 ; FILE * dvp; . 89 clse

39 : union REGS rvs/ 90 : Cf (dobf [3] == 2

40 : int iobf [3 1; 91 LobE [3] - 4

4 s < 92 : else '

42 : main () E 83 i ;

43 : (cputs ('\nCDVUIL - COMDVE Jtility versiom 1 0 - 1287\a" }i] o1 lf‘ (bEObf [31==14a)

14 . disp (s /% do dispatch loop */ _':; 95 elsem L3 =0;

a5 : } 26 ichf [3] = i;

a6 s : 27 iocwz {);

47 @ disp O /+ dispatcher; mf:.a.ute loop */ 98 : bresk:

48 : { int <, a9

a8 i; 100 : case 'i' /% ipitialize MCR/ICR

50 u = 1; 101 = iobf { 0] = ({ BWINI + o_DIR + o_RIS + m WL }; to 8N1 ;o o®/
St while (1) 102 : focwr 0 m_| T

52 3 [cputs | s\ ry\n\tCommand (2 for help)i: ™)i 103 breaks

53 : switch (tolower (& = getche (})) /* dispatch */ 104

54 : { 103 :) T

55 case '1' /% select port 1 #/ 106 Ca:f:ut: (.CI_S) /% this help list s/

; * - .

56 : foclose (dvp)i o 187 comter (FCOMMAND LISI \n® ;’ clear the display iy
57 : dvp = fopen ["ASYl", "rbt b 108 : center { "1 = select port 1 rI -

58 3 wo= T 109 : center { "2 = select port 2 N : roggie "fom LENGIH =" 35
29 preaki 110 : center { "B = set BAUD rate 0 - set parity to NOWE K
€0 111 1 center ("E = set parity to EVEN : set parity to ODD ")
61 case '2' /% select port 2 */ 112 : center { "F = toggie E L OMW . B = toggle error REPQORIS™ }:
82 : folose (dvp)i 113 : eenter { "I = INITIALIZE l;z‘; I:ic 5 - toggle SIOF bits ¥)
63 1 dvp = fopen [1a5YEY, bt b 114 continue: r Q = QUII .y,
64 u 2; 115

65 : break; 118 case 11t L

56 117 SebE [0] f= 1 oggle word length e
57 case 'b' /% set baud rate */ 118 toomr s

58 : if { iebf [41 == 300) 119 break;

69 iopf [4 1 = 1200; 120

Figure 6-4 Continued

Figure 6-4 Continued
(more)

210 The MS-DOS Encyclopedia .
Section [T Programming in the MS-DOS Environment 211

HUAWEI EX. 1204 A-3 - 118/165

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

121 case 'n' : j+ set parity off */ V72 ¢ report (unit) int unit
122 : iobf [0 1 &= (m_PG + mPE }; 173 ¢ (char temp [80 1;
123 : iocwr ()7 174 = rvs X ax = 0x4402;
124 : break; 75 ¢ rvs x bx = fileno (dvp }:
125 176 : rvs % ex = 10;:

126 : case 'o' : /% set parity odd +/ IR tvs . x . dx = (int) iobf;

127 : iobf [0 1 i= mPG; 178+ intdos (& rvs, & Tvs); /% use IOCIL Read to get d .
128 1 iebf [0] &=~ m.PE; 179+ sprintf (temp, "\nDevice ASY3d\trid BPS, %d‘C—%C\r\n\nf B
129 : iocwr {}; 180 arit, lobf [41, /* baud rate ’ */
130 break: ::; 54 (dobf [01 & MWL), /* word length r
131 : ’ {iobf [0] & m PG ?

132 case 'r' : /#* toggle error reports */ 183 { 1obf [0] & mPE 2 'E' : 0") : 'N')

133 : iobf [2 1 "= 1 ol (dobf [0} &mXs 22" « "1' }); /% sto “bits *
134 1 tocur O 185 : cputs (temp); i /
135 : break; 186

136 : 187 : cputs ("Hardware Interrupts are”);

137 : pase 's' /¢ toggle stop bits %/ 188 @ cputs { onoff (icbf [0] & HWINI });:

138 : iobf [0] ~= m_X5; 188 : cputs (", Data lerminal Rdy"™):

138 : iocwr ()7 180 cputs (onoff (iobf [0 | & o DIR)]

140 : break: 181 ¢ cputs (", Rgst Io Send”);

147 182 ¢ cputs { onoff { iobf [0 1 & o RIS }):

122 - case 'g' 193 5 cputs (".Az\n")

143 : fclose (dvp)i 194

144 3 exit (0)¢ /* break the loop, get out */ 195 cputs { "Carrier Detect™)

145 } 196 : cputs { onoff (iobf [1] & 1_CD)}:

146 cputs { CLS)/ /* clear the display */ 187 = cputs { ", Data Set Ray"):

147 center ("CURRENI COMDVR SIAIUS" }; 198 : cputs (onoff { icbf [1 1 & i_DSR));

148 : report (u, dvp }: /% report current status */ 199 cputs (", Clear to Send” };

129 :) 200 @ cputs (onoff (iobf [1] & 1018 });

150 = 1 201 : cputs (", Ring Indicator" };

159 202 1 cputs { cnoff { iobf [1 1 & L_RI });

152 : center (s } char # s; /% centers a string on CRI #/ 203 cputs { ".\r\n" };

153 ; 1 int 1 ; 204 :

154 : for (i = 80 - strlen (s): i > 0: i -=2) 205 : cputs { 1. SRF & iobf { 1] ? "Xmtr SR Empty, " : "7 };

155 : putch (' ' }; 206 : cputs { 1_HRE & iobf [1] ? "Xmtr ER Empty, " : "V)

156 ¢ cputs (5)i) 207 = cputs { 1.BRK & iobf [1] ? "Break Received, " : ""),

157 ¢ cputs ("\r\n")y 208 cputs { LERT & iobf [1] ? "Framing Error, " : "")"

158 1 } ;09 ; cputs (L_ER2 & iobf [1 } ? "Parity Error, " : "¢),-’

159 0 : cputs (L_ER3 & icbf [1 } 2 “Overrun Exrox, " : "" };

160 ; tocwr O /% IQOCIL Write to COMDVR +/ 21 cputs { 1_RRF & iobf [1] ? "Rcvr DR Full, " : "").'

161+ { rve % . ax = 0x4403; 212 1 cputs ("\b\b \ria"); o '

162 : Vs X px = fileno { dvp 17 213 =

163 rvs x . cx = 10; 24 cputs ("Reception errors ™ };

464 + zvs . x . dx = (int) iobf: 215 ¢ if (dobf [2] == 1)

165 1 intdos (& rvs, & rvs }; 2186 cputs ("are encoded as graphics in buffer" };

166 :) 2T7 1 else

167 238 cputs { "set failure flag" };

168 : char * onoff { x) int 218 gputs (" Arin”)

169 : { return (x 2 " ON" ™ OFE") 226

170 : } ' 22% © cputs ("Outgoing Flow Control "):

171 222 i if (dobf [3] & 4)

Figure 6-4 Continued e)
more,

Figure 6-4 Continued (more)

212 The MS-DOS Encyclopedia Section II: Programming in the M5-DOS Environment 213

HUAWEI EX. 1204 A-3 - 119/165

Part B: Programming for MS-DOS

214

223 ¢ cputs ("by XON and XOFE");
224 : else ’
225 ¢ if (iobf [3] & 2)

226 : cputs ("by RIS and CIS" }:
227 = else

228 = if {(iobf [3] & 1)

229 : cputs { "by DIR and DSR" };
230 : else

231 cputs ("disabled”);

232 < cputs { " Az\n")

233 =}

234 :

235 : /#end of cdvutl ¢ =/

Figure 6-4 Continued

Although CDVUTL appears complicated, most of the complexily is concentrated in the
routines that map driver bit settings into on-screen display text Fach such mapping

requires several lines of source code to generate only a few words of the display repost.
Table 6-10 summarizes the functions found in this program

Table 6-10. CDVUTL Program Functions.

Lines Name Description
4245 main() Conventional entry point
47-150 disp() Main dispatching loop.
152-158 center() Centerstext on CRT
160166 focwr() Writes control string to driver with IOCTI Write
168-170 onoff{) Retumns pointer to ON or OFF
172-233 report() Reads driver status and reports iton display

The long list of #define operations at the start of the listing (lines 11 through 33) hglps '
make the bitmapping comprehensible by assigning a symbolic name to each significant bit
in the four UART registers.

The main() procedure of COVUTL displays a banner line and then calls the dispatcher
routine, disp(), 1o start operation CDVUTL makes no use of either command-line parame-
ters o1 the environment, so the usual argument declarations are omitted

Upon entry to disp(), the first action is to establish the default driver as ASYI by setting
1 = 1 and opening ASY? (line 50); the program then enters an apparent infinite loop
(lines 51 through 149)

With each repetition, the loop first prompts for a command (line 52) and then gets the
next keystroke and uses it to control a huge swifch() statement (lines 53 through 145)..If
no case matches the key pressed, the switch() statement does nothing; the program sim-
ply displays a report of ail current conditions at the selected driver (lines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Howevey, if the key pressed matches one of the cases in the switch() statement, the corre-
sponding command is executed The digits 7 (line 55) and 2 (}ine 61) select the driver 1o
be affected The ? key (line 105) causes the list of valid command keys to be displayed
The g key (line 142) causes rthe program to terminate by cailing exis(0) and is the only
exit from the infinite loop. The other valid keys ail change one or more bits in the IOCTL
control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-DOS IOCTT White function (Interrupt 21H Function 44H Sub-
function 03H) via function iectwr () (lines 160 through 166)

After the command is executed (except for the g command, which terminates operation
of CDVUTL and returns to MS-DOS command level, and the ? command, which displays
the command list), the repor#() function (lines 172 through 233) is called (at line 148) to
display all of the driver’s attributes, including those just changed. This function issues an
IOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through
178) to get new status information into the control string and then uses a sequence of bit
filtering (lines 179 through 232) to translate the obtained status information into words for
display

The special consofe I/O routines provided in Microsoft C libraries have been used exten-
sively in this routine Other compilers may require changes in the names of such library
routines as getch or dosint as well as in the names of #inciude files (lines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the dsiver A full-featured communica-
tions program might make several changes at one time — for example, switching from
7-bit, even paiity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre-
vent losing any bytes with values of 11H ot 13H while performing a binary file transfer with
error-cotrecting protocol In such a case, the program could make all required changes to
the control string before issuing a single IOCTL Write to put them into effect

The Traditional Approach

Because the necessary device driver has never been a part of MS-DOS, most communica-
tions programs are wiitten to provide and install their own port driver code and remove it
before returning to MS-DOS. The second sample program package in this article illustrates
this approach Although the major part of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou-
tines, the exception handler, and faster video display They are discussed first

The hardware ISR module

The first module is a handler 1o service UART interrupts Code for this handler, including
routines to install it at entry and remove it on exit, appears in CH1 ASM, shown in Figure
6-5 :

Section IL Programming in the MS-DOS Environment 215

HUAWEI EX. 1204 A-3 - 120/165

Part B: Programming for MS-DOS

1o 1TILE CH1 ASM

2 :

3 : ; CH1 ASM —-- support file for CLERM.C terminal emulator
41y set up to work with COM2

EEE for use with Microsoft C and SMAIL model only.
6 =

7 ¢ _IEXI segment byte public 'CODE’

8 : _IEXI ends

% : _DAIA segment byte public 'DAIA’

0 : _DAIR ends
11 coNst segment byte public "CONSI

12 : CONST ends

13 : _Bss segment byte public 'B3S'

14 : _pss ends

15 =

16 : DGROUP GROUP CONSI, _BSS, _DATA

17 = assume c¢s:_IEXT, DS:DGROUP, ES:DGRCOUP, S5:DGROUP
i8

19 1 _IEXI segment’
20 :
21 public _i_m,_rdmdm,_Send Byte,_wrtmdm,_set_mdm,_11 m
22

23 ¢ bport EQU
24 1 getiv EQU
25 : putiv EQU
26 : imrmsk EQU
27t piv_o DW
28 ¢ oiv_s Dw
29

30 : pfpp DW
31 : bfi_gp DW
32 : bf bg DW
33 ¢ bf.fi DW

34

35 @ in bf DB
36 :

37 : b_last EQU
38 :

39 : bd dv DW
40 DW
41 DW
42 DW
43 DW
44 : oW
45 1 DW
46 : DW
47

48 : _set_mdm proc
49 PUSH
50 = MOV
51 PUSH

Figure 6-5 CHI ASM

216 The M5-DOS Encyclopedia

02F8h
350Bh
250Bh
006001000k
0

o

in_bf
in_bf
in_bf
b_last

512 DUP {(2)

04170
0300n
01800
Q0COh
0060h
0030h
0018h
00GCh

near
BP
BP,SP
ES

HUAWEI EX. 1204 A-3 - 121/165

COMZ base address, use (3F8H for COMI
COMZ wvectors, use OCH for COM:?

COMZ mask, use 00000100k for COMI

old int vector save space

put pointer {last used)
get polnter {(next to use)
start of buffer

end of buifer

input buffer

address Jjust past buffer end

baud rate diviscrs {{=110 bps)

code 1 = 150 bps
code 2 = 300 bps
code 3 = 600 bps
code 4 = 1200 bps
code 3 = 2400 bps
code 6 = 4800 bps
code 7 = 9600 bps

replaces BICS 'init' function

establish stackframe pointer
save registers

(more}

Article 6: Interrupt-Driven Communications

52
53
54
35
56
57
58
59
60
61
62
63
64
63
&6
67
68
69
70
71
72
73
74
75
16
77
78
79
80
81
82
83
84
85
86
87
88
89
30
91
92
93
84
95
96
97
98
99
100
101
102

3 _set_mdm endp

* _Send Byte:

BUSH
MOV
MOV
MOV
MOV
MOV
MOV
QuUl
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
OUT
MOV
MOV
ot
MOV
AND
MOV
QUI
MOV
MOV
oul
POP
POP
MOV
BOP
REIL

—vwrtmdm proc

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
oUl
MOV
MOV
CALL
JNZ
MOV

Figure 6-5 Continued

DS
AX,CS

DS, AX
ES,AX

AH, [BP+4}
DX, BPORI+3
AI, 80h

DX, AL

DL, AH

CL, 4

pI,CI

DX, 00001110b

DI,CFESEI bd dv

DI,DX
DX, BPORI+1
AL, {DT+1}
DX, AL

DX, BEORT
AL, [DI]
DX, AL

AL, AH
AI,00011111b
DX, BPORI+3
D¥, AL

DX, BPORI+2
AL, 1

DX, AL

ns

ES

SE,BP

BP

near

BP

BP, SP

ES

DS

A¥X,CS

DS, BAX
ES,AX

DX, BPORI+4
AL, 0Bh

D¥, AL

DX, BEORI+6
BH, 20h
w_tmr
w._out

DX, BPORI+5

H

point them to CCDE segment

get parameter passed by C
point to iine Contrel Reg
set DIAB bit {see text)

shift param to BAUD field

mask out all other bits

make pointer to true divisor
set to high byte first

put high byte into UARI

then to low byte

now use rest of parameter
to set Line Control Reg

Interrupt Enable Register
Receive type only

restore saved registers

write char to modem
name used by main program

set up pointer and save regs

establish DIR, RIS, and OUIZ

check for on lins, CIS

timed out
check for UARI ready

Section 11 Programming in the MS-DOS Environment

(mare)

217

Part B: Programmning for MS-DOS

103 = MOV
104 = Call
105 = JNZ
106 MOV
107« MOV
108 : oUl
109 ¢ w_out: POP
110 POP
111 ¢ MOV
112 BCOP
113 REI
114 : _wrtmdm endp
115 =

116 : _rdmdm proc
117 PUSH
118 MOV
119 PUSH
120 = PUSH
121 MOV
122 : MOV
123 = MOV
124 : MOV
125 @ MoV
126 cMp
127 Jz
128 INC
129 : CMP
130 : JINZ
131 MoV
132 : noend: MOV
133 ¢ MOV
134 INC
135 ¢ nochr: POP
136 POP
137 MOV
138 POP
139 = REI
140 : _rdmdm endp
141 =

142 : w tmr proc
143 : MoV

144 @ w_ tml: SUB
145 ¢ w_tm2: IN

146 @ MoV
147 AND
148 : CMP
149 : JZ
150 = 100P
151 @ DEC
152 : Nz
153 : OR

Figure 6-5. Continued

218 The MS-DOS Encyclopedia

BH, 20h
w_tmx
w_out

DX, BPORI
AL, [BP+4]
DX, AL

DS

ES

SP,BP

BP

near
BP

BE, SP

ES

DS

AX,CS
DS, AX
E3, AX
AX,OFFFFh
B¥,bf_gp
BX,bf_pp
nochr

BX
BX,bE_£i
noend
BX,bf_bg
AL, [BX]
bf_gp,BX
AH

DS

ES

SP, BP

Bp

near
BIL,1
C¥,CX
AL, DX
AH, AL
AL, BH
AI,BH
w_tm3
w..tm2
BL
w_tml
BH, BH

timed cut
send out to UARI port
get char passed from C

restore saved regs

reads byte from buffer

set up ptr, save regs

set for ECOF flag
use "get" ptr
compare to "put”
same, empty

else char available
at end of bfr?
no

yes, set to beg
get the char
update "get" ptr
zero AH as flag
restore regs

wait timer, double loop

set up inner loop

check for requested response
save what came in

mask with desired bits

then compare

got it, return with ZE set
else keep trying

until double loop expires

timed out, return NIZ

HUAWEI EX. 1204 A-3 - 122/165

(more)

Article 6: Interrupt-Driven Communications

154
155
156
137
158
158
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
178
180
181

182
183
184
185
186
187
188
18%
190
181

192
193
194
195
196
197
198
149
200
201

202
203
204

w_tm3:
w_Etmr

REI
andp

hardware interrupt service routine

rts_m:

nofix:

—im

imi:

CLI
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
POP
MOV
IN
MOV
INC
CMP
JNZ
MOV
MOV
MOV
MOV
oUl
POP
EOP
POP
POP
POP
IRET

proc
PUSH
MOV
PUSH
FUSH
MOV
MOV
MOV
MOV
MOV
QUlI

MOV
IN
MOV
IESI

Figure 0-5 Continued

DS

AX

BX

CX

DX

[of:}

D8

DX, BPORT
AL, DX
BX,bf_pp
BX

BX,bf fi
nofix
BX,bf bg
fBX],AL
bf_pp,BX
AL, 20h
20h, AT
1954

CX

BX

ax

Ds

near
BP

BE, SP
ES

DS
AX,CS
DS, AX
ES, AX
DX, BEORI+1
AL, 0Fh
DX, AL

DX,BPORI+2
AL, DX
AH,AL

AT, 1

im5

AH, 0

im2

DX, BPORI+6
AL,DX

save all regs

; set DS same as CS
; grab the char from UARI

; use "put" ptr

; step to next slot
past end yet?

; no
yes, set to begln
put char in buffer

¢ update "put" ptr

; send EOI to 823% chip

; restore regs

install modem service

save all regs used

; set D5,ES=CS

Interrupt Enable Reg
; enable all ints now

clear junk from UARI
¢ read IID reg of UARI
; save what came in
; anything pending?
; no, all clear now
ves, Modem Status?
iono
; yes, read MSR to clear

Section Il Programming in the M5-DOS Environment

(more)

219

Part B: Programming for MS-DOS : Article 6: Interrupt-Driven Communications

205 : im2: CMP AH, 2 ; Iransmit HR empty? 256 MoV BX, 0iv_o ; restore original vector
206 : JNZ im3 ; no (no action needed) 287 : MOV DS,0iv_s
207 : im3: CMP AH, 4 ; Received Data Ready? 258 MOV AX,POUITV
208 : JNZ im4 i no 259 = INI 21h
209 : MOV DX, BPCRI ; yes, read it to clear 260 POP DS ; restore registers
210 : N AL, DX 281 = FOP ES
2171 & imé: CMP BH, 6 : Lipe Status? 262 MoV sp,BP
212 JNZ imt ; no, check for more : 263 : . BPOP BP
213 MOV DX, BPORI+5 ; ves, read ISR to clear : 264 : RET
214 : IN AL, DX ' 265 : _om endp
215 : JMP iml ; then check for more . 266
216 : : 267 : _IEXI ends
217 @ im5: MOV DX, BPORI+4 ; set up working conditions } . 268
218 : MoV AL, OBh : DIR, RIS, OUIZ bits ! 269 : END
219 oUT DX, AL i . o
220 : MOV AT, : enable RCV interrupt only g Figure -5 Continued
221 MOV D¥,BPORIt1
293 oul DX, AL The routines in CHI are set up to work only with port COM?2; to use them with COMI, the
223 : MOV AX,GEIIV ; get old int vector three symbolic constants BPORY (base address), GETIV, and PUTIV must be changed to
224 NI 21 . toring later 5 maich the COM1 values Also, as presented, this code is for use with the Microsoft C small
225 v iv_o,BX : save for restor:i o . :
226 : ﬁgv Ziz s memory model only; for use with other memory models, the C compiler manuals should
227 - MOV DX,OFFSEL rts_m : set in new one be consulted for making the necessary changes See also PROGRAMMING IN THE
228 : MOV AX,PUTIV i MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application Program
229 : IN: 21h | . . . o .
230 - AL,21h ; now enasble 8258 PIC ‘ The parts of CHI are listed in Table 6-11, as they occur in the listing The leading under-
231 AND AL, NOT IMRMSK score that is part of the name for each of the six functions is supplied by the C compiler;
232 : oul 21h, AL within the C program that calls the function, the underscore is omitted
233 : MOV AI,20n : then send out an EOT
234 : oul 20h, Al .
23 - rop s ; restore regs Table 6-11. CH1 Module Functions.
236 : POP ES
237 : MOV SP,BP Lines Name Description
238 POP BP) — - -
239 : REI _ 126 Administrative details
240 : _i_m endp 27-46 Data areas
241 ‘ 48-84 _sef_mdm Initializes UART as specified by parameter passed
‘Zg wm g;z; g:ar ; uninstall modem service from C
sad MOV BP,SP ; save registers 86-114 _wrimdm Outputs character to UART
245 : N AL, 27h ; disable COM int in 8259 87 _Send_Byte Entry point for use if flow control is added to system
245 : OR BI, IMRMSK 116~140 _rdmdm Gets character from buffer where ISR put it, ot signals
247 oul 21h, Al _ that no character available
iig igzi i: 142-155 UL tmy Wait timer; internal routine used 1o prevent infinite
250 : ' MOV BX,CS : set same as (S wait in case of problems
251 : MOV DS, AX 157-182 rts_m Hardware ISR; installed by _i_m and removed by
252 : MoV ES,AX _um _
253 = MoY AL, D i disable UARL ints - 184240 _im Installs ISR, saving old interrupt vector
254 : MOV DX, BPORI+1 , _
242265 —U_m Uninstalls ISR, restoring saved interrupt vector
255 : QU1 DX, AL h
Figure 6-5 Continued (more)
220 The MS-DOS Encyclopedia Section I- Programming in the MS-DOS Environment 221

HUAWEI EX. 1204 A-3 - 123/165

Part B: Programming for MS-DOS

222

For simplest operation, the ISR used in this exampie (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.
Each time a byte is received by the UART, the ISR puts it into the buffer The _rdmdm
code, when called by the C program, gets a byte from the buffer if one is available If not,
_rdmdm returns the C EOF code (—1) to indicate that no byte can be obtained

To send a byte, the C program can call either _Send__Byte or _wrimdm; in the package

as shown, these are alternative names for the same routine In the more complex program
from which this package was adapted, _ Send__Byte is called when flow control is desired
and the flow-control routine calls _wremdm To implement flow control, line 87 should be
deleted from CH1 ASM and a control function named Send_Byte() should be added to the
main C program Flow-control tests must occur in Send_Bytel); _wrtmdm performs the
actual port intetfacing.

To set the modem baud rate, word length, and parity, _set_mdm is called from the C
program, with a setup parameter passed as an argument. The format of this parameter is
shown in Table 6-12 and is identical to the IBM BIOCS Interrupt 14H Function 00H

{(Initialization)

Table 6-12. set_mudm() Parameter Coding.

i
i
[

Binary Meaning

000xxxxX Set to 110 bps
001xxx Serto 150 bps
010xxxxx Set to 300 bps
01 1xxxxx Set to 600 bps

100xcoox Set t0 1200 bps
10 1xxxxx Set to 2400 bps

110scoxx Set to 4800 bps
11 Exxxxx Set to 9600 bps
bioseilieed No parity
xxx01xxx ODD Parity
xxl o EVEN Parity
XXXXXOKX 1 stop bit
ook Ixx 2 stop bits (1.5 WL = 35)
XxxX00 Word fength =5
xoexxx01 Word length = 6
xExxxx10 Word length = 7
xxxxxx11 Word length = 8§

The CH1 code pravides a 512-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps without loss of data during scrolling

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handier is needed to prevent return
of control to MS-DOS before _u_m restores the ISR vector to its original value. If a pro-
gram using this code returns to MS-DOS without calling 1 m, the system: is virtually cer-
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer
in memory

A replacement exception handler (CH1A ASM), including routines for installation, access,
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with
Microsoft C (again, the small memory model only)

Note: This module does not provide for fatal disk ervors; if one occurs, immediate restart-
ing is necessary See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusToMIZING

Ms-DOs: Exception Handlers.
III1E CHTA ASM

: ; CHTA .ASM —— support file for CIERM C terminal emulator
; this set of routines replaces Ctrl-C/Ctrl-BREAK
; usage: vold set_int{}, rst_int{);
int broke(): /% boolean if BREAK #/
for use with Microscft C and SMAIL model only.

o R O T S R

w

: _IEXI segment byte public "CODE'
10 @ _IEXI ends

11 : _DAIA segment byte public 'DAIA’
12 : _DAIA ends

13 : CONSI segment byte public 'CONSI!'
14 : CONSI ends

15 : _BsS segment byte public 'B3S'
16 : _3SS ends

17

t8 : DGROUP GROUP CONSI, _BS83, _DAIA

19 : ASSUME (CS8:_IEXI, DS:DGROUP, E3S:DGROUP, S3:DGROUP
20 :
21 : _DAIA SEGMENI BYIE PUBLIC 'DATIA’
22
23 : QLDINI1TB DD o] ; storage for original INI TBH vector
24
253 : _DAIa ENDS
26 :
27 @ _IEXI SEGMENI
28 @
29 - PUBLIC _set_int,_rst_int,_broke
30
31 @ ayintib:
3z mov word ptr cs:brkflg, 1Bh : make it nonzero
33 iret
Figure 6-6 CHIA ASM {more)

Section IE: Programming in the M5-DOS Environment 223

HUAWEI EX. 1204 A-3 - 124/165

Part B: Programming for MS-DOS Articie 6: Interrupt-Driven Communications

: original value for the Interru vector; and _ broke, which returns the present value of
34 ¢ 1 value for the Int t 1BH vector; and _ broke, which ret th sent value of
;: myint23: ' an internal flag (and always clears the flag, just in case it had been set). The internal flag is
: mov ord ptr cs:brkflg,23h ; make it nonzero
37 : fror were ¥ d ! set to a nonzero value in response to either of the revectored interrupts and is tested from
a8 the main C program via the _broke function.
39 : prkflg dw Q ; flag that BREAK occurred . :
o . The video display module
;’; ¢ —broke proc near ; returns 0 if no break The final assembly-language module (CH2 ASM) used by the second package is shown
. or ax, ax ; prepare to reset fla : " . . . s ik R .
.3 - zchg ax’cs brkflg I:_ etirn current flag 361% in Figure 6-7 This module provides convenient screen clearing and cursor positioning via
" b-S : v . . - . - 'l . -
ad ret ’] direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-
45 : _proke endp tines that call its functions In the original, more complex program (DT115 EXE, available
46 : 3 from DLG in the CIMFORUM of CompusServe) from which CTERM was derived, this mod-
47 ¢ _set_int proc near ‘ ule provided windowing capability in addition to improved display speed
48 : mov ax, 351bh ; get interrupt vector for 1BH
49 int 21h ; {don’t need to save for 23H) 1 TIIILE CHZ ASM
30 = mov word ptr oldintib,bx ; save offset in first word 2
31 4 mov word ptr cldintib+2,es ; save segment in second word 3 : , CH2 ASM -- support file for CIERM.C i:erminal emulator
52 3 : 4 ; for use with Microsoft C and SMALI model only
53 : push ds ; save our data segment i 5 .
54 : mov ax,cs ; set DS to CS for now 1 6 : _1EXI segment byte public TCODET
5% mov ds, ax . ? 1 _IEXI ends
56 lea dx,myint1b ; D5:DX points to new routine | 8 : _DAIA segment byte public 'DAIA®
57 = mov ax, 251bh : set interrupt vector | 9 : _pDAIA ends
58 : int 21h : 10 : CONSI segment byte public 'CONSI'
59 : mov ax,cs ; set DS to C§ for now i 11 1 coNSI ends
60 : mov ds,ax 12 : _BsS segment byte public 'BSS'
61 = iea dx, myint23 ; DS:DX points to new routine 12 : _mgs ends
62 : mov ax, 2523h ; set interrupt vector i 14 .
63 : int 21h 15 : DGROUP GROUP CONSI, _BSS, _DAIA
64 : pop ds ; restore data segment i) assume ©8:_1EXI, DS:DGROUP, ES:DGROUP, S5S:DGROUP
65 : rat ; i7 :
66 : _set_int endp ! 18 1 _IEXI segment
67 : 3 19
68 : _rst_int proc near { 20 public __cls,__color,__decl, i v, _Xkey, —wrchr, _wrpos
69 : push ds » save our data segment ! 21
70 lds dx,eldint1b ; DS:DX points to original i 22 atrib DB 0 . attribute
7o mov ax, 251kbh ; set interrupt vector 23 i _colr DB 0 ; coler
2 int 21h 24 i v_bas DW 0 ; video segment
13 pop ds ; restore data segment 25 vy ulc DW 0 ; upper left corner cursor
(K ret 26 : v_lrc DW 1845h : lower right corner Cursor
75 : .rst_int endp 27 @ v_col DW 0 ; current col/row
76 : 28
77 @ _IEXI ends 29 1 __key proc near ; get keystroke
78 : | 30 PUSH BP
79 END i 31 MOV AH, 1 : check status via BIOS
! 32 : 1
Figure 6-G Continued ‘ 33 ;g\i ;.ZhOEFth
: . . . ‘ . 34 JZ key00 ; none ready, return EOF
The three functions in CHIA are _sef__inI, which saves the old vector value for Interrupt 35 MOV AH, O : have one, read via BIOS
1BH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt .]
Figure 6-7 CH2 ASM (more)

23H (Control-C Handler Address) to internal ISR code; _rsi_int, which restores the

224 The M5-DOS Encyclopedia Section IT Programming in the MS-DOS Environment 225

HUAWEI EX. 1204 A-3 - 125/165

Part B: Programming for MS-DOS

36 INI
37 i key00: POP
38 REI
39 : _ _key endp
40

41 : __wrchr proc
42 = PUSH
43 MOV
44 MOV
45 CMP
46 : JNB
47 : cMP
48 JNZ
49 DEC
50 = MOV
51 = CMP
32 : B
53 : JMP
54 :

55 : notbs: CMP
56 3 JNZ
57 3 MOV
58 : ADD
59 : AND
60 : MOV
61 CMP
62 Ja
63 : JMP
64

65 : notht: CMP
66 : JNZ
67 MOV
68 INC
69 = CMP
FLO JBE
1o CALL
72 MoV
73 : nohti: MOV
14 : JMP
15

76 : notif: CMP
71 INZ
78 CAIL
79 JMP
80 :

81 : ck_cr: CMP
82 : JNZ
83 : MOV
84 : MOV
85 : JME
86 :

Figure G-7 Continued

226 The M5-DOS Encyclopedia

16h
BP

near

BP

BP, SP

AL, [BP+4] : get char passed by C
AL, ' !

prchr ; printing char, go do it
AL, 8

nothbs

BYIE PIR v_col ; process backspace
AL,byte ptr v—col

A, byte ptr v-ulc

nxt_c ; step to next column

norml

AL,9

notht

nl,byte ptr v_col
AL, 8

AL, 0F 8h

byte ptr v.col,AL
AL, byte ptr v-lre
nxt_c

SHORI norml

; process HIAB

AL, QAh

notlf

Al ,byte ptr v_col+]
AL

AL,byte ptr v_lrc+l
noht1

scrol

Al ,byte ptr v_lrot]
byte ptr v_col+l,AL
SHORI norml

process linefeed

AL, OCh

ck_er
—.cls ; process formfeed

SHORI ignor

AL,ODh

ignor ; ignore all other CIL chars

AL,byte ptr v_ulc ; process CR
byte ptr v_col,Al
SHORT norml

HUAWEI EX. 1204 A-3 - 126/165

(more)

Article 6 Interrupt-Driven Communications

87 : prchr: MOV

88 : PUSH
89 : XOR
90 - MOV
91 : PUSH
92 : MOV
93 PUSH
94 CAIL
95 - MOV
96 : nxt_c: INC
97 MOV
98 : CMP
ag JIE
100 : MOV
101 : PUSH
102 : CALL
103 : POP
104 : MoV
105 PUSH
106 : CALL
107 POP

108 : porml: CAII
109 @ ignor: MOV

110 POP
11 = REI
112 ; _wrchr endp
113 «

114 @ i v proc
115 PUSH
116 : MOV
17 MOV
118 : MOV
119 MOV
120 : POP
121 = REI
122 ¢ i wv endp
123

124 : _wrpos proc
125 = PUSH
126 ¢ MOV
127 = MOV
128 MOV
129 MOV
130 ¢ MoV
131 = MOV
132 ¢ PUSH
133 INI
134 POP
135 MOV
136 : MoV
137 ¢ ?OP

Figure 6-7 Continued

AH, _colr
AX
AH, AH

; process printing char

AL ,byte ptr v_col+l

AX

AT,byte ptr v_col

AX
wrtvr
SP,BP

BYIE PIR v_col ; advance to next column
Al ,byte ptr v_col
Al ,byte ptr v_lrc

norml
AL, ODh
AX
_.wrchr
AX

AL, Qah
AX
__wrchr
AX
set_cur
5P, BP
BP

near
BP

BP, 5P

AX, 0B0OOR
v_bas,AX
SF,BP

BP

near
BP

BP, SP

DH, [RP+4]
DI, [BP+6]
v_col,DX
BH,atrib
AH,2

BP

10h

BP
A¥X,v_col
SP,BP

BP

; went off end, do CR/IE

establish video base segment

; mono, B8Q0 for CGA
; could be made automatic

i set cursor peosition

row from C program
; col from C program

cursor position

attribute

; return cursor position

Section II. Programming in the MS-DOS Environment

(more)

227

Part B; Programming for MS-DOS

138 RET
139 ¢ _ _wrpos endp
140 :

141 : set_cur proc
142 : PUSH
143 : MOV
144 3 MOV
145 MOV
146 : MOV
147 = PUSH
148 INI
149 POP
150 ¢ MOV
151 MOV
152 DOP
153 REI
i54 : set_cur endp
155 @

156 1 _color proc
157 « PUSH
158 : MOV
159 : MOV
160 : MOV
161 @ MOV
162 : SHI
163 AND
164 OR
165 MOV
166 : ROR
167 @ MOV
168 : POP
169 REI
170 © __color endp
171 ¢

172 : scrol proc
173 : PUSH
174 : MOV
175 : MOV
176 MOV
177 : MOV
178 : MOV
179 : MOV
180 : PUSH
181 INI
182 POP
183 MOV
184 : POP
185 : REI
186 : scrol endp
187

188 1 _cls proc

Figure 6-7 Continued

228 The MS-DOS Encyclopedin

near
BP

BF, SP
DX,v_col
BH,atrib
AH, 2

BP

10h

BP
AX,v_col
3F,BP

BP

near
BP

BP, 5P

AH, [BP+b]
AL, [BR+4]
CX, 4
AH,CI
AL,QFh
AL, RH
_colr, Al
AH, AH

5P, BP

BP

near

BP

BP, SP
AT, 1
Cr,v._ulc
DX, v_lrc
BH, _colr
AR, €

BE

10h

BE

SF,BP

Be

neaxr

HUAWEI EX. 1204 A-3 - 127/165

H

‘

set cursor to v_col

uUse where v_col says

: _color(fg, byg)

background from C
foreground from C

pack up into 1 byte
store for handler's use

scroll CRI up by one line

count of lines to scroll

use BIOS

clear CRI

(more)

Article 6: Interrupt-Driven Communications

189

180

191

192

193
194

195
196
197
198

199
200
201

202
203
204
205
206
207
208
208
210
21

212
213
214
215
216
217
218
21¢
220
221

222
223
224
225
226
227
228
229
230
23

232
233
234
235
236
237
238
239

; —cls

—daeol

deol?:

deol?:

deol

wrtvzr

PUSH
MOV
MOV
MoV
Mov
Mov
Mov
Mov
PUSH
INI
POP
CAITL
MOV
FOP
REI
endp

proc
PUSH
MOy
MOV
MOV
PUSH
MoV
XOR
PUSH
MOV

CMp
JA
PUSH
CALL
POP
INC
JMp

MOV
MOV
POP
REI
endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MUT
XOR

Figure 6-7 Contined

BP

BP, SP

AL,Q ;
CY, v_ulc
v_gel,CX

DX, v_1lrc
BH,_colr

AH, 6

BP

T10h ;
BP
set_cur
SP,BP
BP

near ;
BP

BFP, 5P

AL,* *

AH,_colr

AX

flags CIS to BIOS

set to HOME

use BIOS scroll up

cursor to HOME

delete to end of line

set up blanks

Al,byte ptr v_col+i

AH, AH
AX
Al,byte ptr v.col

Al,byte ptr wv_lre
deoliz ;
AX ;
WItvr

AX

AL ;
deoll i

AX,v_col
SP,BP
BP

near ;
BFP

BP, 3P

DI, {BP+4]
DH, [BE+6]
BX, [BP+8]
&l , 80

DH

DH, DH

set up row value

at RE edge
current location
write a blank

next column
de it again

return cursor position

write video RAM (col, row, chai/atr)

set up arg ptr
column

row

char/etr

cale offset

(more)

Section IT. Programming in the M$-DOS Environment 229

Part B: Programming for MS-DOS

240 : aDD AX, DX
241 = ADD AX, AX
242 : PUSH ES

243 : Mov DI,AX
244 MOV AX,v_Dbas
245 MOV ES, A%
246 1 MOV AX,BX
247 STOSW

248 BCP ES

249 MoV 5P, BP
250 : POP Bp

251 = REI

252 @ wrtvr endp

253 =

254 : _IEXI ends

255

256 END

Figure 6-7 Continued

adjust bytes to words
; save seg reg

; set up segment

; get the data
; put on screen
;j restore regs

The sample smarter terminal emulator: CTERM.C

Given the interrupt handler (CHD, exception handler (CH1A}, and video handler (CH2), a
simple terminal emulation program (CTERM C) can be presented The major functions of
the program are written in Mictosoft C; the listing is shown in Figute 6-8

1 /* lerminal Emulator

2 * Jim Kyle, 1987
3 *

4 & Uses files CH1,
5 ®/

]

7 #include <stdio h>

8 #include <conio . h>

9 #include <stdlib.h>
i0 #incliude <dos .h>
11 $include <string.h>
12 : #define BRK 'C'-'@'

13 : #define ESC '['-'@"'

14 #define XON 'Q°-'@'

15 #define XOFF 'S'-'@’
16
17 #define Irue 1
18 #define False 0
19
20 #define Is_Function_Key(
21
22 static char capbfr [40%
23 static int wh,
24 w3 ;

Figure 6-8 CTERM C

230 The MS-DOS Encyclopedia

{cterm.c)

CH1A, and CHZ for MASM support

/* special console i/o #/
/* misc definitions ®f
/% defines intdos () */
/* cantrel characters ®/
C)} { (C) == ESC)
6 1: /* capture buffer %/

(more)

Article 6: Interrupt-Driven Communications

23
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
36
517
58
59
60
61

62
63
64
65
66
&7
68

-
2

70
71
72
73
74
75

static int T,

waitchr = @,
vilag = False,
. capbp,
capbc,
Ch,
Want..7_Bit = Irue,
ESC_Seqg_State = 0; /* escape sequence state variable #*/
int _cx .,
—C¥s
_atr = 0x07, /* white on black *f
—pag = 0,
oldtop = 0,
oldbot = Ox184£;
- FIIE * in_file = NULL; /* start with kevboard input L7
FILIE * cap file = NULL:
#include "cterm.h" /* external declarations, etc. */
: int Wants_Io_Abort () /% checks for interrupt of script */
{ return broke (};
b
vaid
: main (arge, argv) int arge : /% main routine */
char * argv [];
{ char * cp,
“* addext ();
if { argc » 1) /* check for script filename #/
in_file = fopen { addext (-argv [1], " SCR"™), “r*):
if { argc > 2) /% check for capture filename */
cap_file = fopen (addext { argv [2], " CAP™ }, "w")
set_int {}: /* install CH! module */
Set_wvid () /* get wvideo setup */
cls {): /® clear the screen */
cputs ("lerminal Emulator"); /* tell who's working #®f
cputs ("\r\n< ESC for local commands >\r\n\n"):
Want_.7_Bit = Irue;
ESC_Seq_State = 0;
Init_Comm {}; /* set up drivers, etc */
while (1} /* main loop */
{ if {{ Ch = kk_file (}) > 0) /* check local */
{ 1f { Is_Function_Key { Ch))
{ if { docmd () < 0) /¥ command */
break;
}
else
Send Byte (Ch & Ox7F) /® else send it */

Figure 6-8 Continued

(more}

Section IL. Programming in the MS-DOS Environment 231

HUAWEI EX. 1204 A-3 - 128/165

Article 6: Interrupt-Driven Comrmunications

Part B: Programming for MS-DOS

16 : 1 127 ESC_Seg .State = 0;
77 - if ({ Ch = Read Modem (}) »= 0) /* check remote */ 128 : break;
78 : { if { Want_7.Bit) 129
79 Ch &= Ou7F; /% trim off high bit =/ 130 = case 'H' : /* VI52 home cursor (74
80 : switeh { ESC_Seg _State) /* state machine %/ ; 131 : locate { 0, 0);
81 : { 132 ¢ ESC_Seq_State = §;
82 case 0 : /* no Esc sequence ®/ 133 : break;
83 : switch (Ch) 134
84 : { ! 135 case 'j' : /% VI52 Erase to EOS */
85 : caze ESC /* Esc char received ®/ i 136 deos {);
86 : ESC_Seg_State = 1; i 137 ESC_Seqg_State = 0;
87 : break: i 138 break;
88 : 138 :
89 default 140 : case "[' : /* RANSI .SYS - VI100 sequence *f
ag if { Ch == waitchr)} /* wait 1f reguired */ 141 ESC_Seq_State = 2;
91 : waitchr = 0; i 142 : break;
92 if {(Ch == 12) /* clear screen on FE #/ 143 ¢
93 : cls ()¢ 144 default
94 else 145 putchx { ESC)y /% pass thru all others %/
95 : 1£ (Ch != 127} /* ignore rubouts */ i 146 : putchx ((char) Ch }:
96 { putchx ((char) Ch); /¥ handle all others */ 147 & ESC_Seq.State = 0;
97 - put_cap ((char) Ch }: 148)
98 1 149 break;
99 : } 150
100 : break; 157 : case 2 : /* BNST 3.64 decoder x/
101 = 152 : ESC_Seqg State = {; /* not implemented 4/
102 case 1 ; /% ESC -- process any escape sequences here */ : 153 : }
103 : switch (Ch } 154 }
104 = { 155 : if { broke (}) /* check CH1A handlers ®/
105 case 'A' : /* VIS2 up */ ! 156 : { cputs ({ "\r\n#*##BREARK#+**\1\n" };
106 - : /% nothing but stubs here ®/ 157 : break:
107 : ESC_Seq.State = 0: 158 : }
108 break; 159 } /* end of main loop #/
108 : 160 : if { cap-file) /% save any capture #/
110 case 'B' : /* V152 down L) 161 cap_flush ();
111 s ; 162 Ierm.Comm (); /* restore when done w/
112 ESC_Seq State = {; 163 rst_int (): /* restore break handlers ®/
113 break; 164 : exit (0) /* be nice to MS-DOS */
114 : 165 : }
115 case 'C' : /* V152 left */ 166
116 ¢ i 167 : docmd () /* local command shell 5 f
117 &+ ESC_Seq State = §; 168 : { FIIE * getfil ();:
118 break; 168 : int wp:
119 170 - wp = True:
120 case 'D' /* VIS82 right L7 171 = if (! in_file !, vflag)
121 = ; 172 - cputs { "\r\n\tCcmmand; " }: /* ask for command »/
122 &+ - ESC_Seq-State = 07 173 else
123 break: 174 wp = False:
124 175 Ch = toupper (kbd_wait (});: /* get response */
125 case 'Bf /* VI52 Erase CRI */ : 176 : if ¢ wp)
126 . cls () /¥ actually do this one #/ . 177 putchx ({ (char} Ch };
Figure 6-8 Continued (more)) Figure 6-8 Continued. (more)
232 The MS-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 233

HUAWEI EX. 1204 A-3 - 129/165

Part B: Programming for MS-DOS

/% and act on 1t

178 switeh { Ch }

179 ¢ {

180 : case 'S’

181 & if (wp)

182 : cputs { "low speedirin” }s

183 : Set_Baud (300);

184 break;

185 :

186 case 'D’

187 if { wp)

188 : cputs ("elay (1-9 sec}: "oy

189 : ch = kbdwait (};

190 if (wp)

191 putchx ({char) Ch };

192 pelay (1000 * (Ch - RV

193 : if { wp)

194 : putchx { ‘o')

195 break;

196

187 case 'E’

198 if (wp)

199 cputs ("ven Parity\r\n")i

200 : Set_Parity (2 17

207 : break;

202 :

203 : case 'E'

204 : if { wp)

208 : cputs { “ast speedi\zin”)

2086 : Set_Baud { 1200);

207 break;

208

209 : case 'H'

210 if { wp)

211 = { cputs (m\r\n\tVALID COMMANDS:\ri\n");
212 ¢ cputs ("\tD = delay 0-9 seconds.\r\n”)i
213 cputs { "A\CE = even parity Ar\n")¢

214 cputs ("\tE = (fast) 1200-baud \ri\n" };
215 cputs { "\tN = no parity.\rin")}

216 : cputs ("\tO = odd parity.\r\n" };

217 ¢ cputs { "\tQ = guit, return to DOS. \Nr\a") :
218 : cputs ("\tR = reset modem. \z\n" };

219 : cputs ("\t§ = {slow) 300-baud.\rin" };
220 s cputs { "\t¥ = use script file NrAn" o}
22% cputs ("\tV = verify file input.\ri\n" J);
222 cputs ("\tW = wait fox char."™ }:

223 }

224 break;

225

226 : case 'N’

227 : if { wp)

Figure 6-8 Continued

234 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 130/165

*/

(more)

Article 6: Interrupt-Driven Communications

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
258
257
258
259
260
261
262
263
264
265
266
267
268
263
270
21
212
273
274
275

276

277
218

cputs ("o Parity\r\n"):
Set_Parity (1):
break:

case 'O
Lf { wp)
cputs ("dd Parity\ri\n");
Set_Parity | 3 };
break:

case 'R' :
if { wp)
cputs { "ESEL Comm Pertirin" };
Init_Comm {);
break;

case 'Q'
if (wp)
cputs (M = QUII Command\r\n");
Ch= (-1}
break;

case 'Qgf
if (in.file && ! vilag)
putchx ('D' };
cputs { "se file: " });

getfil ():
cputs ("File ");
cputs { in_file ? “Open\zr\n" : "Bad\r\n"
waitchr = 0;
break:
case 'V'
if { wp))
{ cputs ("erify flag toggled " };
cputs { vflag ? "OFE\z\n" : "ON\r\n"
i
vilag = vflag ? False : lrue;
break;
case ‘W'
if { wp }

cputs ("ait for: <"):
waitchr = kbd wait (};
if (waitchr == ' 1)
waitchr = 0;
if (wp)
{ if t waitchr)
putchx { (char} waitchr):
else
cputs ("no walt™);

Figure 6-8 Continued

Section Il Programming in the MS-DOS Enpironment

):

(more}

235

Part B: Programming for MS-DOS

279 cputs { ">\r\n");
280 : }
281 break;
282
283 default :
284 : if (wp)
285 { cputs ("Don’t know * });
286 : putchx { (char) Ch); .
2817 : cputs { "\r\nUse 'H' command for Help \r\n" }
288 : }
28% Ch = "'z2";
2o | 'f}(wp) /* if window open . . .
291 i
" keylir™ };
292 3 { cputs ("\r\n[any o
293 : while { Read Keyboard () == EOF } /¥ wait for response
294 ;
295 ¢ }
296 : return Ch ;
297 @ }
298

299 : kbd wait ()
300 : { int ¢ ;

301 while ({ ¢ = kb_file (}) == (- 1
302 : i

303 return ¢ & 255;

304 : }

305

306 : kb_file ()
307 ¢ { int c ;

M

/¥ walt for input

/* input from kb or file

/* USING SCRIPI1

308 ; if (in_file } ez
309 : { ¢ = Wants_To_abort {}; /% use first as flag
: i waltchr && ! ¢)
o lfc(- (l— 1) /* then for char
311 . = i
312 else ‘ N B
3:3 : if { ¢ i (¢ = getc (in file })) == EOQOF i c == 26
314 : { fclese { in_file }):
315 eputs ("\r\nScript File Closed\r\n" };
316 ; in.file = NULL:
317 waitchr = 0;
318 c=(-1);
319 }
: else ‘ ‘
2;? : if { ¢ == "\n') /* ignore LEs in file
: ={ =11}
ol if (CC == Th\\'") /% process Esc seguence
323 : ==
H c = asc {}; . N
g;: : if { vflag && c = { - 1)) /* werify file char
326 : { putchx ('({' }:
327 putchx { {char) ¢)i
328 putchx { "}')
329 = }

Figure 6-8. Continned

236 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 131/165

*/

#f

*/

*/
#/

*/

./

.

(more)

Article & Interrupt-Driven Communications

330 3

331 lse

332 . ¢ = Read Keyboard ():
333 return { ¢ }

334

335 -

336 : esc ()

337 [int ¢
338 C = getc (in file);
339 : switeh (toupper (e 1)

340 {
341 case 'Ef
342 c = E3C;
343 break;
344 :

345 case 'N’
346 c = '\n";
347 break:
348 :

349 case 'R' :
350 . S = "\r':
351 : break;
52 .

353 case "'
354 : c = "\t';
355 : break;
356 :

357 case '*7
358 : ¢ = getc { in file) & 31:
359 break;
360 : }

367 return (¢ });
362 :

363 :

364 & FILE # gersil (}
365 : { char fom [20 |;

366 : getnam { fnm, 15);

367 : 1f (! { strchr ¢ fom, .t oy,

368 : strecat (fom, *.SCRY)

369 return { in file = fopen (fom, "yt
370 ¢)

371

372 : void getnam { b, s} char * b;
373 ¢ int 5
374 : { whiie (8 == >0

375 {if {{ * b = (char) kbd _wait ())
376 putchx (* b ++ 3,

377 : else

378 : break ;

379 : }

380 putchx ('\n'),

Figure 6-8 Continued

/* USING CONSOIE y
F% if not using file %/
/% script translator %/
/* contrel chars in file &/
/* get the name *f
1Y
/* take imput to buffer 5/
t= Nrt)
{more)

Section IL. Programming in the MS-DOS Enuironment 237

Part B: Programming for M5-DOS

381 : = b = 0:

382 :)

383

384 : char * addext { b,

385 e) char ¥ b,

386 : * ey

387 : (static char bfr [20 I3
388 : if { strchr (B, ' })
389 - return (b)7

390 : strepy (bfr, b)i

391 streat (bfr, e)7

392 return (bfr };

383 : }

394

395 : void put.cap { ¢) char ¢ ;
396 : { if { cap-file & ¢ != 13)
397 : fputc (¢, cap_file }:
398 : }

399

400 : wvoid cap—flush (}
401 ¢ { if (cap-file)

/+ add default EXlension

/* strip out CRs

/% use M$-DOS buffering

/% end Capture mode

402 : { fclose (cap-file }:

403 : cap-file = NULL;

404 cputs { "\r\nCapture file closed\rin™ }:

405 : !

406 : -}

407 =

408 : /# TIMER SUPPORI SIUFF {IBMPC/MSDOE) */

409 : statice long timr: /% timeout register
410

411 : static union REGE rgv

412

413 : long getmr () . o
414 : { long now /% msec since midnite
415 rgv.x.ax = 0x2cl00;

416 intdos (& rgv, & rgv)i

417 now = rgv.h chi /% hours

418 now *= 60I: /% to minutes

419 ¢ now += rgv.h.cl: /% plus min

420 now #*= 60L; /% to seconds

421 = now += rgv.h. dh; /* plus sec

422 : now #*= 100L;

423 now += rgv.h.dl;

424 return { 10l * now);
425

426

427 : void Delay (n) int n
428 : { long wakeup ;

429 : wakeup = getmr () + (long)
430 while (getmr (} < wakeup)
431 :

Figure 6-8. Continued

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 132/165

n;

/% to /100

/% plus 1/100

/% msec value

/% sleep for n msec

/% wakeup time

/* now sleep

®/

*/
#/

£/

*/

L

=/
#/
#/
&/
*/
“/
%/
*/

*/

*/

£/

(mora)

Article 6: Interrupt-Driven Communications

432 ¢+ }
433
434 : void Start_Iimer (n) int n : /% set timeout for n sec */
435 & { timr = getmr {}) + (long) n * 1000I;
436 : }
437 .
438 : Iimer Fxpired {) /% if timeout return 1 else return 0 */
439 : { xeturn { getmr () > timr);
440 @
441 =
442 : get_vid 0
443 = _iv (); /* initialize wideo £/
444 : return 0;
445 :
446
447 : yoid locate { row, ¢ol) int row ,
448 coel:
449 : [_cy = row % 25;
450 —¢cx = gol % 80:
451 ~wrpos { row, col); /* use ML from CH2 ASM */
452 :)
453
454 : vyoid deol ()
455 1 { _deol (); /% use MI from CHZ2 ASM */
456 :
457 :
438 ! void deos {)
439 : [deol ():
460 : if t _cy < 24) /¥ if not last, clear ®/
461 { rgv.x ax = 0Dx0600;
462 : rgv.x . bx = (_atr << 8);
463 : rgv x cx = { _cy + 1)} << §;
464 : rgv.x . dx = 0x184F;
465 int86 (0x10, & rgv, & rgv)i
466 }
467 locate { _cy, _cx);
468 @ }
469
470 : wvoid cls ()
411 1 [_els () /* use ML */
472+ }
473 -
474 1 void cursor (yn) int yn
475 ¢+ (rgv x.cx = yn ? 0x0607 : 0x2607;: /% ON/OFFE */
476 : £gv . x.ax = 0x0100;
477 int86 { 0x10, & rgv, & rgv }:
478 :
479 :
480 : void revvid (yn) int yn ;
48% = [if ¢ yn)
482 _atr = _color (8, 7 }; /* black on white £/
Figure 6-8 Continued (more)

Section I Programming in the MS-DOS Environment 239

Part B: Programming for MS-DOS

483
484
485
486
487
488
489
4990
49

492
493
494
495
496
497
498
499
500
501
502
503
504
505
5086
507

else
_atr = _color { 15, 0):

putchx { ¢) char € ;
{ if (¢ = 'A\n'
puteh ("Ar' 35
putch (¢ };
return ¢-;

! Read _Keyboard {) /*

508 :

509
510
511

512
513
514
515
518
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

{ int c ¢
1f { kbhit ()
return { getch ()):
return { EOE);

/* white on black

/% put char to CRI

get keyboard character
returns -1 if none present

/% no char at all

/* MODEM SUPPORI */
static char mparm,
wrk [80 1!
: void Init_Comm () /% initialize comm port stuif
{ static int ft = O: /% firstime flag
if (ft 4+ == 0 }
im ()

Sset_Parity (1 §:
Set_Baud { 1200):

fdefine B1200 0x8O
#define B300 0x40

Set_Baud (n) int n ;
(if (n == 300

mparm = { mparm & Ox1F) + B300:
else
if (n == 1200)
mparm = (mparm & Ux1F) + B1200;
else

return 0;
sprintf { wrk, "Baud rate = %d\z\n",
cputs { wrk }:
set_mdm (mparm)
return n

#define PAREVN 0x18
#define PARODD 0x10
fdefine PAROFE 0x00

Figure 6-8 Continued

240 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 133/165

/% BN
/% 1200 baud

/+ baudrate codes

/* n is baud rate

/% invalid speed

n };

/* MCR bits for commands

L

*/

=/

]

x/
2/

*/
*/

*/

s/

#/

(more)

Article 6: Interrupt-Driven Communications

534 : $define SIOP2 0x40
535 : jdefine WORD8 0x03
536 : #define WORD7? 0x02
537 : #define WORDG 0x01

538 :

539 : get_Parity (n } int n ; /% n is parity code ®/
540 : | static int mmode;

541 if (n ==)

542 mnode = (WORD8 | PAROFF); /* off */
543 else

544 ; if {(n==2)

545 : mmode = (WORD? | PAREVN); /* on and even */
546 else

347 : 1f {n==3)

548 mmode = { WORD7 | PARODD };: "~ /% on and odd =/
549 else

580 : return 0; /* invalid code ®/
551 : mparm = { mparm & 0xEQ) + mmode:

552 : sprintf (wrk, "Parity is %s\r\n", (n == 1 ? "OFE"

533 : (n == 2 2 "EVEN" : "ODD"))):
554 : cputs (wrk):

555 set_mdm (mparm);

556 : return o ;

557 @ j

558

589 : Write_Modem {(¢ } char ¢
560 ¢ [writmdm { ¢ }:

561 return { T) /* never any error ®/
562 1y

Se3

564 : Read.Modem ()

565 1 { return ({ rdmdm ()); /% from int bfr */
366 : |

567

368 : void Term Comm {)
569 : { um O

570 &

571

572 : /¥ end of cterm.c */

/+ return 1 if ok, else 0 *

/% uninstalil comm port drivers */

Figure 6-8 Continued

CTERM features file-capture capabilities, a simple yet effective script language, and a
number of stub (that is, incompletely implemented) actions, such as emulation of the VI52
and VT100 series terminals, indicating various directions in which it can be developed

The names of a script file and a capture file can be passed to CTERM in the command line
If no filename extensions are included, the default for the script file is SCR and that for the
capture file is CAP If extensions ate given, they override the default values The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section Il Programming fn the MS-DOS Environment 241

Part B: Programming for MS-DOS

The functions included in CTERM C are listed and summarized in Table 6-13

Table 6-13. CTERM.C Functions.

Lines Name Description

1-5 Program documentation

7-11 Include files

12-20 Definitions.

22-43 Global data areas

45 External prototype declaration

47-49 Wants_To_Abori() Checks for Ctrl-Break or Crl-C being pressed

52-165 main() Main program loop; includes modem engine and
sequential state machine to decode remote
commands.

167297 docmd() Gets, interprets, and performs local (console or
script) command.

209-304 kbd_wait() Waits for input from console or script file

306-334 kb_file() Gets keystroke from console or script; returns ECF
if no character available

336-362 asc() Translates script escape sequence.

364-370 getfill) Gets name of script file and opens the file
372-382 getnam() Gets string from console or script into designated
buffer.

384-393 addexi(} Checks buffer for extension; adds one if none
given.

365308 put_cap() Writes character to capture file if capture in effect.

400—406 cap_flush(i Closes capture file and terminates capture mode if
capture in effect

408-411 Timer data locations

413425 getmr() Returns time since midnight, in milliseconds

427432 Delay() Sleeps 7 milliseconds

434436 Start_Timer() Sets timer for 7 seconds

438440 Timer_Expired() Checks timer versus clock

442-445 Set_Vid() Initializes video data

447-452 locate() Positions cursor on display

454456 deol() Deletes to end of line

458468 deos() Deletes to end of screen

470472 cls() Clears screen

474—-478 cursor(} Turns cursor on o1 off

480—485 revvid() Toggles inverse/normal video display attributes.

487492 pritchx() Writes char to display using puéch() (Microsoft C

242 The MS-DOS Encyclopedia

library)

(more)

Article é: Interrupt-Driven Communications

Table 6-13. Continued

Lines Name Description

494-500 Read_Keyboard() Gets keystroke from keyboard.

502-504 Modem data areas

506-512 Init_Comm() Installs ISR and so forth and initializes modem
514-515 Baud-rate definitions

517-529 Set_ Baud() Changes bps rate of UART

531-537 Parity, W1 definitions

539-557 Set_ Parity() Establishes UART parity mode

559-562 Writa_Modem() Sends character to TUART

564-566 Read_ Modem() Gets character from ISR’s buffet

568-570 Term_Comm() Uninstalls ISR and so forth and restores original

vectors

For communication with the console, CTERM uses the special Microsoft C library func-
tions defined by CONIO H, augmented with the functions in the CH2 ASM handler Much
of the code may require editing if used with other compilers CTERM also uses the func-
tion prototype file CTERM H, listed in Figure 6-9, to optimize function calling within the

program

/% CIERM.H - function prototypes for CIERM.C %/
int Wants_Te_Abort (void);

void main{int ,
int docmd{void)
int kbd wait (ve
int kb _file{voi
int esc(void):

FILE *getfil {vo

char #® *);
id);
d):

id):

vold getnam{char #,int };
char *addext (char *,char *):
vold put_cap(char):

vold cap_flush(

void);

long getmr (void}:

void Delay(int
void Start_Iime

Yi
r{int);

int Iimer Expired(void):

int Set_vid(voi
void locatef{int
void deol (void)
void deos(void}
vold cls({veoid);
void cursor(int
void revvid(int
int putchxi{char

d);
sint);
)i

Y
)i

Figure 6-9 CTERMH

(more)

Section IT. Programming in the M5-DOS Environment 243

HUAWEI EX. 1204 A-3 - 134/165

Part B: Programsming for MS-DOS

244

int Read Keyboard(void) :
void Init_Comm{void):;
int Set_Baud({int):

int Set_Parity({int);
int Write Mcdemichar);
int Read Mocdem{void);
void Ierm Comm{veid):

/+ CHI ASM Functions - modem interfacing */
void i.m({void);

vold set_mdm{int):

void wrtmdm{int);

void Send Byte{int):

int rdmdm{void);

void uwm{void};

/% CH1A ASM functions - exception handlers */
void set_int (void);

volid rst_int (veoid);

int broke (void);

/% CH2.ASM functions - video interfacing #*/
void _i_wivoid);

int _wrpos{int, int}:

void —deol (void);

void —cls(veoid};

int —color{int, int};

Figure 6-9 Continued

Program execution begins at the entry to main(), line 52 CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CIERM opens the corresponding files Next, the program installs the exception handiler
(line 60}, initializes the video handler (line 61), clears the display (line 62), and announces
its presence (lines 63 and 64) The serial driver is installed and initialized to 1200 bps and
no patrity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159)

This loop is functionally the same as that used in ENGINE, but it has been extended to
detect an Esc from the keyboard as signalling the statt of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog-
nize incoming escape sequences, such as the VIS2 or VI100 codes To specify 2 local com-
mand from the keyboard, press the Escape (Esc) key, then the first lettet of the local
command desired After the local command has been selected, press any key (such as
Enter or the spacebar) to continue To get a listing of all the commands available, press
Esc-H

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from
either a script file or the keyboard . If 2 script file is open (lines 308 through 330), it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input Otherwise,

The M5-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 135/165

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given

To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translated according to the following rules:

Character Interpretation

Eore Translates to Esc

Norn Translates to Linefeed

Rors Translates to Enter (CR).

Tort Translates to Tab.

A Causes the next character input to be converted into a control character

Any other character, including another Y, is not translated at all

When the Esc character is detected from either the console or a script file, the docmd()
function (lnes 167 through 297) is called to prompt for and decode the next input charac-
ter as a command and to perform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character Action

D Delay 0—9 seconds, then proceed Must be followed by a decimal
digit that indicates how long to delay

Set EVEN parity.

Set (fast) 1200 baud

Display list of valid commands

Set no parity

Set ODD parity.

Quit; return to MS-DOS command prompt.

Reset modem

Set (slow) 300 baud

Use script file (CTERM prompits for filename)

Verify file input Echoes each sciipt-file byte

Wait for character; the next input character is the one that must be
matched

g<aom00Z T ™

Any other character input after an Esc and the resulting Command prompt generates the
message Don’t know X (where X stands for the actual input character) followed by the
prompt Use ‘H’ command for Help

Section II. Programming in the MS-DOS Environment 245

Part B: Programming for MS-DOS

246

If input is taken from a script and the V fiag is off, docmd() performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let-
ter, followed by a descriptive phrase, is echoed to the screen Input, detection, and execu-
tion of the local commands are accomplished much as in COVUT1, by way of a large
switch(} statement (lines 178 through 290}

Although the listed commands ate only a subset of the features available in CDVUTI for
the device-driver program, they are more than adequate for creating useful scripts The
predecessor of CTERM (DT115 EXE), which included the CompuServe B-Protocol file-
transfer capability but had no additional commands, has been in use since early 1986 10
handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files Tn conjuncrion with an auto-dialing modem, DT115 EXE
handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM are put together by assembling the three handlers

with MASM, compiling CTERM with Microsoft C, and linking all four object modules into
an executable file Figure 6-10 shows the complete sequence and also the three ways of
using the finished program

Compiling:

C>MASM CHT; <Enter>
C>MASM CHIA; <Enter>
C>MASM CH2: <Enter>
C>MSC CIERM; <Enter>

Linking:
C>LINK CIERMACH1+CHIA+CHZ; <Enter>

Use:
(no files)

C>CTIERM <Enter>

or
(script only)

C>CIERM scriptfile <Enter>
o1
C>CIERM scriptfile capturefile <Enter>

Figure 6-10 Putting CTERM together and using it

Jim Kyle
Chip Rabinowitz

The MS-DOS Encyclopedia

j
i
|

i
|

Article 7: File and Record Management

Article 7
File and Record Management

IThe core of most application programs is the reading, processing, and writing of data
stored on magnetic disks This data is organized into files, which are identified by name;
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard-to the hardware characteristics of the disk device Thus, applica-
tions can concern themselves solely with the form and content of the data, leaving the
details of the data’s location on the disk and of its retiieval to the operating system.

The disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files
(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well) This article discusses the MS-DOS function calls that
allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect or change the information (such as
artributes and date and time starmps) associated with disk filenames in disk directories.
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCIURE OF MS-DOS:
MS-DOS Storage Devices; ProGramuinG FOR ms-Dos: Disk Directories and Volume Labels

Historical Perspective

Current versions of MS-DOS provide two overlapping sets of file and record management
sefvices to suppott application programs: the handle functions and the file control block
(FCB) functions Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: InTeriUPT 2151 The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-IDOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CB/M to aid programmers in converting the many
existing CP/M application programs to the 16-bit MS-DOS environment; consequently,
MS-DOS versions 1 x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives

Accordingly, MS-DOS version 2 0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to
use and more flexible than their FCB counterparts and fully support a hierarchical (tree-
like} directory structure The handle functions also allow character devices, such as the

Section IT. Programming in the MS-DOS Environment 247

HUAWEI EX. 1204 A-3 - 136/165

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files MS-DOS ver-
sion 3.0 introduced additional handle functions, enhanced some of the existing handle
functions for use in network environments, and provided improved error reporting for

all functions

The handle functions, which offer far more capability and performance than the FCB
functions, should be used for all new applications Therefore, they are discussed first in
this article

Table 7-1. Interrupt 21H Function: Calls for _File and Record Management.

Handle FCB
Operation Function Function
Create file 3CH 16H
Create new file 5BH
Create temporary file SAH
Open file. 3DH 0FH
Close file 3EH 10H
Delete file 41H 13H
Rename file 56H 17H
Perform sequential read 3FH 14H
Perform sequential write 40H 15H
Perform random record read. 3FH 21H
Perform random record write. 40H 22H
Perform random biock read 27H
Perform random block write. 28H
Set disk transfer area address. ' 1AH
Get disk transfer area address 2FH
Parse filename 29H
Position read/write pointer 42H
Set random record number 24H
Get file size. 42H 23H
Get/Set file atiributes 43H
Get/Set date and time stamp S7H
Duplicate file handle. 45H
Redirect file handle 46H

The MS-DOS Encyclopedia

Article 7: File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:path\ filename ext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filename ext identifies the file itself If drive
and/or path is omitted, MS-DOS assumes the default disk drive and current directory
Examples of acceptable pathnames include

CAPAYROLL\TAXES DAT
LETTERS\MEMO TXT
BUDGET DAT

Pathnames can be hard-coded into 2 program as part of its data More commonly, how-
ever, they are entered by the user at the keyboard, either as a command-line parameter or
in response to a prompt from the program If the pathname is provided as a command-
line parameter, the application program must extract it from the other information in the
command line. F herefore, to allow a program to distinguish between pathnames and
other parameters when the two are combined inn a command line, the other parameters,
such as switches, usually begin with a slash (/) or dash (-) character

Alt handie functions that use a pathname require the name to be in the form of an ASCI{Z
string — that is, the name must be terminated by a null (zero) byte If the pathname is
hard-coded into a program, the null byte must be part of the ASCIIZ string If the path-
name is obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program See Opening an Existing File below

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters
and, if the open o1 create operation is successful, returns a 16-bit handle, or identification
code, for the file The program uses this handle for subsequent operations on the file, such
as record reads and writes

T he total number of handles for simultaneously open fiies is limited in two ways. First, the
per-process limit is 20 file handles The process’s first five handles are always assigned to
the standard devices, which default to the CON, AUX, and PRN character devices:

Handle Setvice Default

0 Standard input Keyboard (CON)

1 Standard output Videc display (CON)

2 Standard error Video display (CON)

3 Standard auxiliary First communications port (AUX)
4 Standard list First parallel printer port (PRIN)

Section II. Programming in the MS-DOS Environment 249

HUAWEI EX. 1204 A-3 - 137/165

Part B: Programming for M5-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,
when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused.

In addition to the per-process limit of 20 file handles, thete is a system-wide limit

MS-DOS maintains an internal table that keeps track of all the files and devices opened
with file handles for all currently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file The size of this table, which is set when MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta-
neously The defauit limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process {imit

To increase the size of MS-DOS’s internal handle rable, the statement FILES=nnn can be
included in the CONFIG SYS file. (CONFIG SYS settings take effect the next time the sys-
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2 x
and 255 in versions 3 x See USER COMMANDS: CONFIG SYS: FILES

Error handling and the handle functions

250

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register The program should check the carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountered error codes for file and record VO (exclusive of nerwork

operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management. '

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles lef)
05 Access denied

06 Invalid handle

11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter
17 Not same device

18 No more files

The error codes used by MS-DOS in versions 3 0 and later are a superset of the MS-DOS
version 2.0 error codes See APPENDIX B: Caitical Exror Cones; APPENDIX C: EXTENDED
Exrror Copes Most MS-DOS version 3 error diagnostics refate to network operations,
which provide the program with a greater chance for error than does a single-user system.

The MS-DOS Encyclopedia

Article 7: File and Record Management

Programs that are to run in a network environment need to anticipate network problems,
For example, the server can go down while the program is using shared files

Under MS-DOS versions 3 X, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error aftera
failed handle function The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record I/0 operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom criticat error exception handler (Interrupt 24H) See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusromMrzinG ms-nos: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

3CH Create File with Handle (versions 2 0 and later)
SAH Create Temporary File (versions 3 0 and later)
SBH Create New File {versions 3 0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register The possible
attribute values are

Code Attribute

00H Normal file
01H Read-only file
02H Hidden file
04H System file

Eiles with more than one attiibute can be created by combining the values listed above
For example, to create a file that has both the read-only and system autributes, the value
05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for
subsequent access to the new file and sets the file read/write pointer to the beginning of
the file; if the Hie is not created, MS-DOS sets the carry flag (CF) and returns an error code
inAX :

Function 3CH is the only file-creation function available under MS-DOS versions 2 x It
must be used with caution, however, because if a file with the specified name already
exists, Function 3CH will open it and truncate it to zero length, eradicating the previous
contents of the file This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call

Section I Programming in the MS-DOS Environment 251

HUAWEI EX. 1204 A-3 - 138/165

Part B: Programming for M5-DOS

Under MS$-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases
because it will fail if a file with the same name already exists In networking envirenments,
this function can be used to implement semaphores, allowing the synchronization of pro-
grams running in different network nodes

Function SAH is used to create a temporary work file that is guaranteed to have a unique
name T his capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volume on a server. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file MS-DOS generates a name for the
created file that is a sequence of alphanumeric characters derived from the current time
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the
file's handle in AX The program must save the filename so that it can delete the file later, if
necessary; the file created with Punction SAH is not destroyed when the program exits

Example: Create a file named MEMO TXT in the \LET TERS directory on drive C using
Function 3CH, Any existing file with the same name is truncated to zero length and

opened

fname db 'C:\1IEIIERS\MEMC IXI',O0

fhandle dw ?
mov dx, seg fname ; DS:bPX = address of
mov ds,dx ; pathname for file
mov dx,cffset £fname
xor CX,CX i CX = normal attribute
mov ah, 3ch ; Function 3CE = create
int 21h i transfer to MS-DOS
Jje error i Jump if create failed
mov fhandle,ax : else save file handle

Example. Create a temporary file using Function 5AH and place it in the \TEMP directory
on drive C. MS-DOS appends the filename it generates to the original path in the buffer
named frame The resulting file specification can be used later to delete the file

fname db TCINTEMEN' ; generated ASCIIZ filename
db 13 dup (0) ; 1s appended by MS-DO3
fhandle dw ?
(more}
The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 139/165

Article 7: File and Record Management

mov dx, seq fname : DS:DX = address of
mov ds, d=x : path for temporary file
mov dx,offset fname
X0or ax,ox ; CX = normal attribute
mov ah, 5ah ; Function 5AH = create

; temporary file
int 21h ; transfer to MS-DOS
je error i jump if create failed
mov fhandle, ax : else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file
in the current or specified directory When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL
register. This access code includes the read/write permissions, the file-sharing mode, and
an inheritance flag The bits of the access code are assigned as follows:

Bit(s) Description

0-2 Read/write permissions (versions 2.0 and later)
3 Reserved

4-6 File-sharing mode (versions 3 0 and later)

7 Inheritance flag (versions 3 0 and later)

The read/write permissions field of the access code specifies how the file will be used and
can take the following values:

Bits 0—-2 Description

000 Read permission desired
001 Write permission desired]
010 Read and wtite permission desired

For the open to succeed, the permissions field must be compatible with the file’s atuibute
byte in the disk directory For example, if the program attempts to open an existing file
that has the read-only attribute when the permissions field of the access code byte is set to
write or read/write, the open function will fail and an error code will be returned in AX

The sharing-mode field of the access code byte is important in a networking environment
It determines whether other programs will also be allowed to open the file and, if so,
what operations they will be allowed to perform Following are the possible values of the
file-sharing mode field:

Section IT' Programming in the MS-DOS Environment 253

Part B: Programming for MS-DOS Article 7 File and Record Management

: prepare to copy filename

Bits 4-6 DeSCIiPﬁOIl mov si,cmdtail ¢ DS:SI = command tail
000 Compatibility mode Other programs can open the file and perform read or el :: . o9 rneme if iziamebl;::rczim:;e;:j N
write operations as long as no process specifies any sharing mode other than ‘ mov di,cffset fname
compatibility mode : cld ; safety First!
001 Deny all Other programs cannot open the file .
010 Deny wiite. Other programs cannot open the file in compatibility mode or : ' i:dSb R + check length of command tail
with write pezmjs‘Sion : jz error ; jump, command tail empty
011 Deny read. Other programs cannot open the file in compatibility mode or with ‘
read permission. . labell: ; scan off leading spaces
100 Deny none Other programs can open the file and perform both read and ; ;On:Sb 1 son f:ti:eztsc:::i‘“er
write operations but cannot open the file in compatibility mode o sz ey yos, skippit :
i
When file-sharing support is active (that is, SHARE EXE has previously been loaded), label2:
the result of any open operation depends cn both the contents of the permissions and file- cmp al,0dh ; lock for terminator
sharing fields of the access code byte and the permissions and file-sharing requested by jz 1?2 é i ¢ quit if retura found
other processes that have already successfully opened the file ;’:p iai’)el)) quit if space Found
The inheritance bit of the access code byte controls whether a child process will inherit stosb i else copy this character
that file handie If the inheritance bit is cleared, the child can use the inherited handle to todsb bel2 / 98T next character
access the file without performing its own open operation. Subsequent operations per- e e
formed by the child process on inherited file handles also affect the file pointer associated label3:
with the parent’s file handle If the inheritance bit is set, the child process does not inherit xor al,al ; store flmal NUIL to
the handle stosb ;j create ASCIIZ string
If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/ ; now open the file
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry mov dx,seg fname ; DS:DX = address of
flag and returns an error code in AX mov ds, dx * pathname for file
mov dx,offset fname
Example. Copy the first parameter from the program’s command tail in the program mov ax,3d0zh © Function 3DH = open r/w
segment prefix (PSP) into the array fhame and append a nult chatacter 1o form an ASCIIZ o i:ieu ?i:\;sfi r;iemi;zgi
filename Atternpt to open the file with compatibility sharing mode and read/write access .
If the file does not already exist, create it and assign it a normal atiribute cmp ax, 2 ; error 2 = file not -found
inz Srror ; Jjump if other error
cmdtall equ 80h : PSP offset of command tail ; else make the File.
fname db 64 dup (7} xor cx, ox ; CX = normal attribute
fhandle dw ? mov ah, 3ch ; Function 3CH = create
int 27h i transfer to MS-DOS
je 2rror i jump 1f create failed
labeld:
assumMe that DS already mov fhandle,ax ; save handle for file

; contains segment of PSP
(more)
Closing a file
Function 3EH (Close File) closes a file created or opened with a file handle function. The

program must place the handle of the file to be closed in BX. If a write operation was pet-
formed on the file, MS-DOS updates the date, time, and size in the file's directory entry

254 The MS-DOS Encyclopedia Section IT Programming in the MS-DOS Environment 255

HUAWEI EX. 1204 A-3 - 140/165

Part B: Programming for MS-DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk
and causes the disk’s file allocation table (FAT) to be updated if necessary

Good programming practice dictates that a program close files as soon as it finishes
using them This practice is particularly important when the file size has been changed, to
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the
user A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles

Reading and writing with handles

256

Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle Before calling Function 3FH, the program must set
the DS:DX registers to point to the beginning of a data buffer large enough to hold the
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX
The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer

If the read operation succeeds, the data is read, beginning at the current position of the
file read/write pointer, to the specified location in memory MS-DOS then increments its
internal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reached is that the length returned is less than the length
requested In contrast, when Function 3FH is used to read from a character device that is
not in raw mode, the read will terminate at the requested length or at the receipt of a car-
riage return character, whichever comes first. See PROGRAMMING IN I HE MS-DOS
ENVIRONMENT: PROGRAMMING FOR M3-00s: Character Device Input and Output If the
read operation fails, MS-DOS returns with the carry flag set and an ervor code in AX

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle
previously obtained from an open or create operation. Before calling Function 40H, the
program must set DS:DX to point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the number of bytes to write in CX The number of bytes
to write can be 2 maximum of 65535

If the write operation is successful, MS-DOS puts the number of bytes written in AX and
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets
the carry flag and returns an error code in AX

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it to disk when the internal
buffer is full, when the file is closed, or when a call to Interrupt 21H Function 0DH (Disk
Reset) is issued

Note: If the destination of the wiite operation is a disk file and the disk is full, the only
indication to the calling program is that the length returned in AX is not the same as the
length requested in CX Disk fuel! s not returned as an error with the carry flag set.

A special use of the Write function is to ttuncate or extend a file, If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location of
the file read/write pointer '

The M5-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 141/165

)
|
|
|
|
|

Article 7: File and Record Management

Example. Open the file MYFILE DAT, create the file MYFILE BAK, copy the contents of
the DAT file into the BAK file using 512-byte reads and writes, and then close both files

filel
file2

handleil
handle?2

buff

loop:

db
db

mov
mov

int
Jc

mov
mov
mov
mnov
int
Jjc
or
jz

mov
mov
mov
mov
int
je

cmp
Jne
Jmp

"MYFILE DAI',0
TMYFILE BaK',0

2

2

512 dup (?}

dz, seg file]
ds, dx
dx,cffset filel
ax,3d00h

2ih

error
handlel,ax

dx,offset fila2
cx, 0

ah, 3ch

21h

error
handle2, ax

dx,offset buff
cx, 512

bx, handiel

ah, 3fh

27h

exrror

ax,ax

done

dx,offset buff
o, ax

bx, handle2

ah, 40h

Z2ih

arror

ax, ¢x

error

loop

handle for MYFILE.DAI
handle for MYEILE BAK

buffer for file I/0

open MYEILE.DAT
D5:DX = address of filename

Function 3DH = open (read-only)

i transfer to MS5-DOS
: jump if open falled
; save handle for file

H

create MYFILE .BAK..

; DE:DX = address of filename

CX = normal attribute

i Function 3CH = create
¢ transfer to MS-DOS

jump 1f create failed
save handle for file

read MYFIIE DAI
DS:DPX = buffer address

: CX = length to read

7 BX = handle for MYFIIF DAI

Function 3FH = read
transfer to M5-DOS

Jump if read failed
were any bytes read?
no, end of file reached

' write MYFIIE. BAK

DS:DX = buffer address

C¥ = length to write

BX = handle for MYFILE BAK
Function 40H = write

¢ transfer to MS-DOS

jump if write failed
was write complete?
Jump 1f disk full

; continue to end of file

Section II. Programming in the M5-DOS Environment

{more)

257

Part B: Programming for MS-DOS

done: i now close files...
mov bx, handlel ; handle for MYFILE.DAT
mov ah, 3eh ; Function 3FEH = close file
int 21h ; transfer to MS-DOS
jc errox ; jump if close failed
mov b, handle2 : handie for MYFIIE.BAK
mov ah, 3eh : Function 3EH = close file
int 21h ; transfer to MS-DOS
Jje error ¢ Jump if close falled

Positioning the read/write pointér

258

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
inAl:

Mode Significance

00 "Supplied offset is relative to beginning of file.
01 Supplied offset is relative to current position of read/write pointer
02 Supplied offset is relative to end of file

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
file pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX N

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a vaiue in DX:AX that represents the
offset of the end-of-file position relative to the beginning of the file

Example Assume that the file MYFILE DAT was previously opened and its handle is
saved in the variable fhandle Position the file pointer 32768 bytes from the beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw ? : handle from previous open
buff db 512 dup (2} ; buffer for data from file

(more)

The MS-DOS Encyclopedia

Article 7: File and Record Management

position the file pointer.

mov cx,0 : C¥ = high part of file offset
mov dx, 32768 r DX = low part of file offset

mov bx, fhandie ; BX = handle for fiie

mov al,0 5 Al = positioning mode

mov ah, 42h ; Function 428 = position

int 21h ; transfer to MS~DOS

jc error ;o Jump 1f function call failed

; now read 512 bytes from file

mov dx,offset buff ; DS:DX = address of buffer
mov cx,512 ; CX = length of 512 bytes
ROV bx,fhandle : BX = handle for file

mov ah,3fh : Function 3FH = read

int 2th ; transfer to MS-DOS

Jjc error ; Jump if read failed

cmp ax, 512 ; was 512 bytes read?

jne error ; jump if partial rec. or EOF

Example Assume thart the file MYFILE DAT was previously opened and its handle is saved
in the variable fhandle Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file The returned offset, which is relative tc the begin-
ning of the file, is the file’s size

fhandle dw ? ; handle from previous open

; position the file pointer
to the end of file.

wmov cx, 0 ; €X = high part of offset

ROV dx,0 + DX = low part of offset

mov bx, fhandle ; BX = handle for file

mov al,2 ; Al = positioning mode

mov ah,42h ; Function 42H = position

int 21h ; transfer toc M5-DOS

jc |/rror ; jump if function call failed

1f call succeeded, DX:AX
now contains the file size

Other handle operations

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete 4 file,
read or change a file’s attributes, read or change a file's date and time stamp, and duplicate
or1edirect a file handle The first three of these are “file-handle-like” because they use an
ASCIIZ string to specify the file; however, they do not return a file handle

Section II: Programming in the M5-DOS Environment 259

HUAWEI EX. 1204 A-3 - 142/165

jramming for M5-DOS

ng a file

unction 56H (Rename File) renames an existing file and/or moves the file from one loca-
on in the hierarchical file structure to another. The file to be renamed cannot be a hidden
r system file or a subdirectory and must not be currently open by any process; attempting
> rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its
irectory entry; it moves a file by removing its current directory entry and creating a new
niry in the target directory that refers to the same file. The location of the file’s actual

ata on the disk is not changed

joth the current and the new filenames must be ASCIIZ strings and can include a drive
nd path specification; wildcard characters (+ and ?) are not permitted in the filenames
he program calls Function 56H with the address of the current pathname in the DS:DX
egisters and the address of the new pathname in ES:DI If the path elements of the two
trings are not the same and both paths are valid, the file “moves” from the source direc-
ay to the target directory. If the paths match but the filenames differ, MS-DOS simply
wdifies the directory entry to reflect the new filename.

{ the function succeeds, MS-DOS returns to the calling program with the carry flag clear.
he function fails if the new filename is already in the target directory, in that case,
1S-DOS sets the carry flag and returns an error code in AX.

Ixample. Change the name of the file MYFILE DAT to MYFILE.OLD In the same opera-
ion, move the file from the \WORK directory to the \BACKUP directory.

ilel db *\WORK\MYFIIE.DAI', O
ile2 db "\BACKUP\MYFILE QLD',0
mov dx,seg filel ; D5:DX = old filename
mov ds, dx
mov es,dx
mev dx,offset filel
AoV di,offser fileZ ; ES:DI = new filename
oV ah, 56h ; Function 56H = rename
int 21h ¢ transfer to MS-DOS
je error ; jump if rename failed
gafile

unction 41H (Delete File) effectively deletes a file from a disk. Before calling the function,
1 program must set the DS:DX registers to point to the ASCIIZ pathname of the file 1o be
ieleted The supplied pathname cannot specify a subdirectory or a read-only file, and the
ile must not be currently open by any process.

The MS-DOS Encyclopedia

Article 7: File and Record Management

HUAWEI EX. 1204 A-3 - 143/165

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its
directory entry with a special character (OESH), making the entry subsequently uarecog-
nizabie, MS-DOS then updates the disk’s FAT so that the clusters that previously belonged
to the file are “free” and returns to the program with the carry flag clear If the delete
function fails, MS-DOS sets the carry flag and returns an error code in AX

The actual contents of the clusters assigned 1o the file are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H

Example Delete the file MYFILE.DAT, located in the \WORK directory on drive C,

fname db "C:\WORKAMYFILE DAI', 0
mov ax, seg fname ; DS:DX = address of filename
mnowv ds,dx
mov dx,offset fname
mov ah,41h : Function 41H = delete
int 21h ; transfer te MS-DOS
jc error ; jump if delete failed

Getting/setting file attributes

Function 43H (Get/Set File Anributes) obtains or modifies the attributes of an existing file
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file To read the attributes, the program must set Al 1o zero; to set
the attributes, it must set AI to 1 and place an attribute code in CX See Creating a File
above

If the functjon is successful, MS-DOS reads or sets the attribute byte in the file's directory
entry and returns with the carry flag clear and the file’s attribute in CX. I the function
fails, MS-DOS sets the carry flag and returns an error code in AX

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of a file It also should not be used on a file that is currently open by any process

Example. Change the attributes of the file MYFILE DAT in the \BACKUP directory on
drive Cto read-only This prevents the file from being accidentally deleted from the disk

fname db "C:\BACKUP\MYFIIE.DAI', O
mov dx, seg fname : D3:DX = address of filenams
mov ds, dx
mov dx,offset fname
mov cx, 1 ; CX = attribute (read-only)
mov a1 ; Al = mode (0 = get, 1 = set)

(mora)

Section I Programming in the MS-DOS Environmert 261

gramming for MS-DOS

mov ah,43h ; Function 43H = get/set attr
int 21h ; transfer to MS-DOS
jc error : jump if set attrib failed

1/setting file date and time

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamnp
of an open file To set the time and date to a particular value, the program must call Func-
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob-
tained from a previous open or create operation) in BX, and the value 1in ATl Toread the
sime and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is returned
cleared; if the function faits, MS-DOS returns the carty flag set and an error ¢code in AX

The formats used for the file time and date are the same as those used in disk directory
entries and FCBs. See Structure of the File Control Block below

The main uses of Function 57H are to force the time and date entry for a file to be updated
when the file has 7ot been changed and to circumvent MS-DOS’s modification of a file
date and time when the file #as been changed In the latter case, a program can use this
function with AL = 0 to obtain the file’s previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with Al =1 before

closing the file.
ating and redirecting handles

Ordinarily, the disk FAT and directory are not updated untila file is closed, even when

the file has been modified Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this s a relatively slow procedure and in a network environment can cause the program
to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Dupticate File Handle) to
duplicate the original handle of the file 1 be updated, can protect data added to a disk file
before the file is closed To use Function 45H, the program must put the handle to be
duplicated in BX If the operation is successful, MS-DOS ¢clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
error code in AX

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. T his forces the desired update of the disk directory and FAT The orig-
inal handle remains open and the program can continue to use it for file read and write

operations

Note: While the second handle is open, moving the read/write pointer associated with
either handle moves the pointer associated with the other

The MS-DOS Encyclopedia

Article 7: File and Record Management

Example: Assume that the file MYFILE DAT was previously opened and the handle for
that file has been saved in the variable fhandle. Duplicate the handle and then close the
duplicate 10 ensure that any data recently wiitten 1o the file is saved on the disk and that
the directory entry for the file is updated accordingly

fhandle dw ? i handle from previous open

duplicate the handle

mov bx, fhandle ;} BX = handle for file

mov ah,45h + Function 45H = dup handle
int 21h ; transfer to MS-DCS

jc error i ojump if function call failed

now close the new handle .

mov bx,ax ; BX = duplicated handle

mov ah, 3eh i Function 3EH = close

int Z1h ; transfer to MS-DOS

je error ; Jump if close failed

mov bx, fhandle ; replace closedhandle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handlé). Function 46H forces a handle 1o be a duplicate for another open handle —in
other words, to refer to the same file or device at the same file read/write pointer location
The handle is then said to be redirected

The most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro-
gram. In such cases, Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits See PROGRAMMING IN THE MS-DCS ENVIRONMENT:
CustomizinG Ms-nos: Writing MS-DOS Filters.

Using the FCB Functions

A file control block is a data structure, located in the application program’s memory space,
that contains relevant information about an open disk file: the disk diive, the filename and
extension, a pointer to 2 position within the file, and so on. Each open file must have its
own FCB The information in an FCB is maintained cooperatively by both MS-DOS and the
application program

Section [L Programming in the M5-DOS Environment 263

HUAWEI EX. 1204 A-3 - 144/165

Part B: Programming for MS-DOS

Article 7: File and Record Management

MS-DOS moves data to and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the
control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP} See PROGRAMMING IN THE MS-DOS
ENVIRONMEN T PROGRAMMING FOR M$-DOS: Structure of an Application Program

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers However, under MS-DOS versions 3 0 and later,
when file-shating support (SHARE EXE) is loaded; MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files If the
application attempts to open oo many FCBs, MS-DOS simply closes the least recently used
FCBs to keep the total number within a limit

The CONFIG SYS file directive FCBS allows the user to control the allowed maximum
number of FCBs and 1o specify a certain number of FCBs to be protected against automatic
closure by the system The default values are a maximum of four files open simultanecusly
using FCBs and zero FCBs protected from automatic closure by the system See USER
COMMANDS: CONFIG sYs: FCBS

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCB file and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro-
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps The FCB structure is shown in Table 7-3

Table 7-3. Structure of a Normal File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Drive identifier
Program 01H 8 Filename
Program 09H 3 File extension
MS-DOS OCH 2 Current block number
Program (OEH 2 Record size (bytes)
MS-DOS 10H 4 File size (bytes)
MS-DGS 14H 2 Date stamp
MS-DOS 16H 2 Time stamp
MS-DOS 18H 8 Reserved
MS-DOS 20H 1 Current record number
Program 21H 4 Random record number

264 The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 145/165

Drive identifier. Initialized by the application to designate the drive on which the file to
be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a vaiue of 1 or greater

Filename Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters A device
name (for example, PRN) can be used; note that there is no colon after a device name

File extension. Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters

Current block number. Initialized to zero by MS-DOS when the file is opened. The block
number and the record number together make up the record pointer during sequential file
access

Record size. The size of a record (in bytes) as used by the program. MS-DOS sets this field
0 128 when the file is opened or created; the program can modify the field afterward to
any desired record size If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program’s own code ordata

File size: The size of the file in bytes MS-DOS initializes this field from the file’s directory
entry when the file is opened The first 2 bytes of this 4-byte field are the least significant
bytes of the file size

Date stamfr The date of the Jast wtite operation on the file MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format
used by tile handle Function 57H (Get/Set/Date/ Time of File):

Date Format

Bit: 14 13 12 11 10 9 87 &6 5 4 3 2 1 0

Content: rIYiLYiY'Y‘YiY,Y]M M‘M)MTD‘DID‘D}DJ

Biis Contents

0-4 Day of month (1-31)
5-8 Month {1-12)

9-15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field
from the file’s directory entry when the file is opened This field uses the same format
used by file handle Function 57H (Get/Set/Date/ Time of File):

Section IT Programming in the MS-DOS Environment 265

Part B: Programming for MS-DOS

266

Time Format

Bit: 15 14 t3 12 11 w0 9% 8|7 6 5 4 3 2 1 0
H|H|H‘H;H|MIM‘M M\M!M|S|S‘S|S|S|

Content: l
Bits Contents
0-4 Nﬁmber of 2-second increments (0—29)

5-~10 Minutes (0-59)
11-15 Hours (0-23)

Current record number: Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127, thus, there
are 128 records per block. The beginning of file is record 0 of block 0

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,
only the first 3 bytes of this field are used MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but noi after random record reads and writes
{Functions 21H and 22H)

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only The extra 7 bytes of an ex-
tended FCB are simply prefixed to the normal FCB format (Table 7-4) The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specities the attributes
of the file being manipulated The remainder of an extended FCB has exactly the same
Jayout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func-
tion call that accepts a notmal FCB

Table 7-4. Structure of an Extended File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Extended FCB flag = 0FFH
MS-DOS 01H 5 Reserved
Program 06H 1 File attribute byte
Program 07H 1 Drive identifier
Program 08H 8 Filename

(more)

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 146/165

Article 7: File and Record Management

Table 7-4. Continued

Offset Size
Maintained by (bytes) (bvtes) Descriptien
Program 10H 3 File extension
MS-DOS 13H 2 Current block number
Program 15H 2 Record size (bytes)
MS-DOS 17H 4. File size (bytes)
MS-DOS 1BH 2 Date stamp
MS-DOS 1DH 2 Time stamp
MsS-DOS 1IFH 8 Reserved
MS-DOS 27H 1 Current record number
Program 28H 4 Random record mumber

Extended FCB flag: When 0FFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of 2 normal FCB (37 bytes).

File attribute byte: Must be initialized by the application when an extended FCB is used to
open or create 3 file The bits of this field have the following significance:

Bit Meaning
0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
57 Archive
6 Reserved
7 Reserved
FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the defauit FCBs, the default DTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

5CH 16 Default ECB #1

6CH 20 Default FCB #2

80H 1 Length of command tail

81H 127 Command-tail text

80H 128 Defauit disk transfer area (DTA)

Section IT. Programming in the M$-DOS Environment 267

Part B: Programming for MS-DOS

Article 7: File and Record Management

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets 5CHand 6CH (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names) MS-DOS then sets the initial DTA address for the
program to PSP:0080H

For several reasons, the default FCBs and the DTA are often moved to another location
within the program’s memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs overlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict Finally, unless either the command
1ail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail. '

Function 1AH (Set DTA Address) is used to alter the DTA address 1t is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the same until another call to Function 1AH, regardless of other file and record
management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the otiginal address can be restored later

Parsing the filename

268

Before a file can be opened o1 created with the FCB function calls, its drive, filename, and
extension must be placed within the proper fields of the FCB The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or

by prompting the user and reading it in with one of the several function calls for character

device input.

MS-DOS automatically parses the first two parameters in the program’s command tail into
the default FCBs at PSP:005CH and PSP:006CH It does not, however, attempt to differenti-
ate between switches and tilenames, so the pre-parsed FCBs are not necessarily useful to
the application program If the filenames were preceded by any switches, the program
itsell has to extract the filenames directly {rom the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends

After a filename has been located, Function 29H (Parse Filename) can be used 1o test it
for invalid characters and separators and to insert its various components into the proper
fields in an FCB The filename must be a string in the standard form drive:filename ext
Wildcard characters are permitted in the filename and/or extension; asterisk (+) wildcards
are expanded to question mark (?) wildcards

To call Functicn 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CAILS: Interrupt 215: Function 29H

The M$-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 147/165

If a drive code is not included in the filename, MS-DOS inserts the drive number of the
current drive into the FCB Parsing stops at the fizst terminator character encountered in
the filename Terminators include the following:

., =+ /"[]i<>|spacetab

H

If a colon character () is not in the proper position to delimit the disk drive identifier or if
a petiod () is not in the proper position to delimit the extension, the charactet will also be
treated as a terminator For example, the filename C:MEMO TXT will be parsed correctly;
however, ABC:DEF DAY will be parsed as ABC

If an invalid drive is specified in the filename, Function 20H returns OFFH in AT; if the
filename contains any wildcard characters, it returns 1 Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename

‘Note that this function simply parses the filename into the FCB It does not initialize any

other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor-
mation when a function fails Typically, an FCB function returns a zero in Al if the func-
tion succeeded and OFFH if the function failed Under MS-DOS versions 2 x, the program
is left to its own devices to determine the cause of the etror Under MS-DOS versions 3 x,
however, a failed FCB function call can be followed by a call to Interrupt 21H Function
39H (Get Extended Error Information) Function 59H will return the same descriptive
codes for the error, including the error locus and a suggested recovery stiategy, as would
be returned for the counterpart handle-ciiented file or record function

Creating a file

Function 16H (Create File with FCB} creates a new file and opens it for subsequent read/
write operations The function is called with DS:DX pointing to a valid, unopened FCB
MS$-DOS searches the current directory for the specifed filename If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating itto a zero-
length file; if the filename is not found, MS-DOS creates a new file and opens it Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it
returns OFFH in AL This function will not ordinarily fail unless the file is being created in
the root directory and the directory is full

Warning: To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file

Section II Programming in the M5-DOS5 Environment 269

Part B: Programming for MS-DOS

Opening a file

270

Function 0FH opens an existing file. DS:DX must peint to a valid; unopened FCB contain-
ing the name of the file to be opened. If the specified file is found in the current directory,
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with AL set
to 00H; if the file is not found, MS-DOS returns with AL set 10 OFFH, indicating an error.

When the file is opened, MS-DOS

® Sets the drive identifier (offset 00H) to the actual drive (01= A, 02 = B, and so on)
Sets the current block number (offset 0CH) to zero.

Sets the file size (offset 10H) to the value found in the directory entry for the file
Sets the record size (offset OEH) to 128

Sets the date and time stamp {(offsets 14H and 16H) to the values found in the direc-
tory entry for the file.

The program may need to adjust the FCB —change the record size and the random record
pointer, for example — before proceeding with record operations

Example Display a prompt and accept a filename from the user Parse the filename into
an FCB, checking for an illegal drive identifier or the presence of wildcards If a valid,
unambiguous filename has been entered, attempt o open the file Create the file if it does
not already exist.

kbuf db 64,0,64 dup {(0)
prompt db Odh, 0ah, 'Enter filename: §'
myfch db 37 dup (0}

; display the prompt

mov dx,seg prompt ; D5:;DX = prompt address

mov ds,dx

mov es,dx

mov dx,offset prompt

mov ah,0%h ¢ Function 09H = print string
int 2ih ; transfer to MS-DOS

; now input filename.

mov dx,offset kbuf ; DS:DX = buffer address
mov ah, 0ah ; Function OAH = enter string
int 21h ; transfer to MS-DOS

; parse filenmame into ECB

mov si,offset kbuf+2 ; DS:31 = address of filename

mov di,offset myfch ; ES:DI = address of fcb

mov a¥,2900h ; Function 2%H = parse name

int 2ih ; transfer to MS-DOS

or al,al ; jump if bad drive or

jnz error ; wildcard characters in name

(more)

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 148/165

i
|
i
I

Article 7: File and Record Management

: try to open file.

mov dx,offset myfck ; DS:DX = FCB address

mowv ah,0fh ; Function OFR = open file
int 21h ; transfer to MS-DOS

or al,al ; check status

Jjz proceed ; jump 1f open successful

; else create file. ..

jiile}'s dx,cffset myfcb ; DS:DX = FCB address
mov ah,16h ; Function 16H = creats
int 21h ; transfer to MS-DOS
or al,al ; did create succeed?
jnz error ; Jump if create failed
proceed:
; file has been opened or
; created, and FCB is valid
; for read/write operations..

Closing a file

Function 10H (Close File with FCB) closes a file previously opened with an FCB As usual,
the function is called with DS:DX pointing to the FCB of the file to be closed MS-DOS
updates the directory, if necessary, to reflect any changes in the file’s size and the date and
time last written '

If the operation succeeds, MS-DOS returns 00H in AL; 1f the operation fails, MS-DOS
returns OFFH

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time MS-DOS increments the
current record and current block numbers after each file access so that they point to the
beginning of the next record. ¥ his method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in
the file, without sequentiaily reading all records up to that point in the file The program
must set the random record number field of the FCB appropriately before the read or wiite
is requested This method is useful in database applications, in which a program must
manipulate fixed-tength records

Random block operations combine the features of sequential and random record access
methods The program can set the record number to point to any record within a file, and
MS-DOS updates the record number after a read or write operation Thus, sequential
operations can easily be initiated at any file location Random block operations witha
record length of 1 byte simulate file-handle access methods

All three methods require that the FCB for the fiie be open, that DS:DX point to the FCB,
that the DTA be large enough for the specified record size, and that the DTA address be
previously set with Function 1AH if the default DTA in the program’s PSP is not being
used

Section IT: Programming in the MS-DOS Environment 271

Part B: Programming for MS-DOS

MS-DOS reports the success or faiture of any FCB-related read operation (sequential,
random record, or random block) with one of four return codes in register Al:

Code Meaning

00H Successful read

01H End of file reached; no data read into DTA

02H Segment wrap (DTA too close to end of segment); no data read into DTA
03H End of file reached; partial record read into DTA

MS-DOS reports the sticcess or failure of an FCB-related write operation as one of three
return codes in register Al:

Code Meaning

00H Successful write
01H Disk full; partial or no write
02H Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call 1o Inter-
rupt 21H Function 0DH (Disk Reset) is issued

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file 1o the current
DTA address, which must point to an area at least as large as the record size specified in
the file’s FCB After each read operation, MS-DOS updates the FCB biock and record num-
bers (offsets 0CH and 20H) 1o point to the next record.

Sequential access: writing

Function 15H (Sequential Write) writes records sequentially from memory inio the file

The length written is specified by the record size field (offset OFEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to point to the next record

Random record access: reading

272

Function 21H (Random Read) reads a specific record from a file Before 1equesting the
read operation, the program specifies the record 1o be ransferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA
address must also have been previously set with Function 1AH to point to a buffer of
adequate size if the default DTA is not large enough

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 149/165

iy

Article 7: File and Record Management

Afterthe read, MS-DQOS sets the current block and current record number fielkds (offsets
0CH and 20H) to point to the same record Thus, the program is set up to change to
sequential reads or writes, However, if the program wants to continue with random record
access, it must continue to update the random record field of the FCB before each random
record read or write operation.

Random record access: writing

Function 22H (Random Wiite) writes a specific record from memory to a file Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written

After the write, MS-DQS sets the current block and current record number fields (offsets
0CH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes If the program wants to continue with random record access, it
must continue to update the random record field of the FCB before each random record

read or write operation.
Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record nmumber fields of the FCB (offsets OEH and 21H} and
must put the number of records to be read in CX The DTA address must have already been
set with Function 1AH to point to a buffer large enough to contain the group of records to
be read if the default DTA was not large enough The program can then issue the Function
27H call with DS:DX peinting to the FCB for the file

After the random block read operation, MS-DQS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next record not read and returns the number of records
actualiy read in CX

If the record size is set to 1 byte, Function 27K reads the naumber of bytes specified in CX,
beginning with the byte position specified in the random record pointer This simulates
(to some extent) the handle type of read operation (Function 3FH)

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random record pointer fields in the FCB (offsets OEH and 21H) If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function 1AH When Function 28H is called,
DS:DX must point to the FCB for the file and CX must contain the number of records to

be wiitten

After the random block write operation, MS-DOS resets the FCB 1andom record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next block of data and returns the number of records
actually written in CX

Section I1. Programming in the MS-DOS Environment 273

Part B: Programming for M5-DOS

If the record size is set 1o 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer This simulates
(to some extent) the handle type of write operation (Function 40H)

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset

21H) multiplied by the contents of the record size field (offset 0EH)

Example: Open the file MYFILE DAT and create the file MYFILE BAK on the current disk
drive, copy the contents of the DAT file into the BAK file using 512-byte reads and writes,

and then close both files

fcbi db 0 ¢ drive = default
db 'MYFIIE : B character filename
db ‘DAL ; 3 character extensien
db 25 dup {(Q) ; remainder of fcbl
fecb2 db 0 ; drive = default
db 'MYFIIE f ; 8 character filename
db 'BAK' ; 3 character extension
db 25 dup {0) ; remainder of fcb?2
buff db 512 dup (7} ; buffer for £ile 1/0
i open MYFIIE DAI.
WOV, dx, seg fcbi ; DE:DX = address of FCB
mov ds,dx
mov dx,offset fcbil
mov ah,0fh ; Function OFH = open
int 21h ; transfer to M5-DGS
or al,al ; did open succeed?
inz |rroxr ; jump if open failed
; create MYFILE.BAK
nov dx,offset £cb2 : DS:DX = address of FCB
mov ah, 16h ¢ Function 16H = create
int 21h ; transfer {o MS-DOS
or al,al ¢ did create succeed?
jnz error Jjump 1f create failed
; set record length to 512
mov word ptr febl+0eh,512
mov ward ptr fobZ2+0eh, 312
i set DIA to our buffer..
mov dx,offset buff ; DS:DX = buifer address
mov ah,lah i Function TAH = setr DIA
int 21h ; transfer to MS5-DOS
loop: ; read MYFIIE DAL
mov dx,offset fcbl : DS:DX = FCB address
mov ah, 14h : Function 14H = seqg. read
int 2ih ; transfer to MS-DOS
or al,al ; was read successful?
jnz done ; no, quit

274 The MS-DOS Encyciopedia

HUAWEI EX. 1204 A-3 - 150/165

write MYFIIE BAK.

(more)

Article 7 File and Record Management

; DS:DX = FCB address

mov dx,offset fcb2

mov ah,15h Function 15H = seq. write

int 21n transfer to MS-DOS

or al,al : was write successful?

inz error jump if write failed

jmp loop ; continue to end of file

done: now close files.

MoV dx,offset febi ; DS:DX = FCEB for MYFILE.DAI

mov ah, 10h ; Function 10H = close file

int 21h ; transfer to MS-DOS

or al,al ¢ did close succeed?

inz error i jump if close failed

mov dx,o0ffset fcb2 : DS:DX = ECB for MYFILE BAK

mov ah, 10h ; Function 10B = close file

int 21h ; transfer to MS-DOS

or al,al ; did close succeed?

jnz error ; jump if close failed
Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters An additional FCB function allows the size or existence of a
file to be determined without actually opening the file

Renaming a file

Function 17H (Rename File) renames a file (or files) in the current directory The file to be
renamed cannot have the hidden or system attribute Before calling Function 17H, the pro-
gram must create a special FCB that contains the drive code at offset 00H, the old filename
at offset 01H, and the new filename at offset 11H Both the current and the new filenames
can contain the ? wildcard character

When the function call is made, DS:DX must point to the special FCB structure MS-DOS
searches the current directory for the old filename If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no matching filename, changes the
directory entry for the old filename to reflect the new filename. If the old filename field of
the special FCB contains any wildcard characters, MS-DOS 1enames every matching file
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

.If the operation is successful, MS-DOS returns zeroin AL if the operation fails, it returns

OFFH The error condition may indicate either that no files were renamed or that at least
one file was renamed but the operation was then terminated because of a duplicate
filename

Example Rename all the files with the extension ASM in the current directory of the
default disk drive to have the extension COD :

Section IT: Programming in the MS-DOS Environment 275

Part B: Programming for MS-DOS

renfck db 0 ; default drive
db rararrY? i wildcard filename
db 'ASM? ; old extension
db 5 dup (0} ; reserved area
db t72222222" i wildeard filename
db *COD? i new extension
db 15 dup (G} ; remainder of FCB
mov dx, seg renfch ; DS:DX = address of
mov ds, dx i "special" FCB
mov dx,offset renfcb
mov ah,17h r Function 17H = rename
int 2th ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if rename falled

Deleting a file

Function 13H (Delete File) deletes a file from the current directory. T he file should not be
currently open by any process If the file to be deleted has special attributes, such as read-
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted T he filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name If at least one file matches the FCB
and is deleted, MS-DOS returns 00H in AL; if no matching filename is found, it returns

OFFH

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions 11H and 12H} to inspect candidate
filenames See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR
ms-pos: Disk Directories and Volume Labels The files can then be deleted individually

Example Delete all the files in the curtent directory of the current disk drive that have
the extension BAK and whose filenames have A as the first character

delick db 0 + default drive
db TAR222222" ; wildcard filename
db 'BAK' ; extensieon
db 25 dup (0) ; remainder of FCB

(more)

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 151/165

|
i
i
;
!

Article 7: File and Record Management

mnov dx,seq delfcb ; DS:DX = FCBE address
mov ds,dx

mov dx,offset delfcb

mov ah,13h ; Function 13R = delete
int 21h ; transfer to MS-DOS

or al,al ; did function succeed?
jnz error ; Jjump if delete failed

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the
existence of a file Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset OFH}, and set the
DS:DX registers to point to the FCB.

When Function 23H returns, Al contains 00H if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 byies, all 4 bytes are used To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call This method is not any faster than simply opening the file, but it does avoid the over-
head of closing the file afterward (which is necessary in a networking environment).

Summary

MS-DOS suppotts two-distinct but overlapping sets of file and record management
services The handle-oriented functions operate in terms of nuli-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file
is opened or created The filenames can include a full path specifying the file's location in
the hierarchical directory structure The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file's read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS

Secrion II. Programming in the MS-DOS Environment 277

Part B: Programming for M$-DOS

278

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program's memory space, 1o specify the name and location of
the file. Aftera file is opened or created, the FCB is used by both MS-DOS and the applica-
tion to hold other information about the file, such as the current read/write file pointer,
while that file is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOS version 2 0 and do not have room 1o hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci-
fied drive

In addition to their lack of suppoart for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are neatly useless in networking
environments because they do not support file sharing and locking Consequently, it is
strongly recommended that the handle-related file and record functions be used ex-
clusively in all new applications

Hobert Byers
Code by Ray Duncan

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 152/165

Article 8: Disk Directories and Volume Labels

Article 8
Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk Directoties are ac-
cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions

MS-DOS versions 1 x support only one directory on each disk Versions 2 0 and later,
however, support multiple directoties linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
describe the location in the directory hierarchy in which the name appears This specifica-
tion, ot path, is created by concatenating a disk drive specifier (for example, A: or C2), the

C\ (root directory)

subdirectory ALPHA
subdirectery ~ BETA
file FILE1.COM
file FILE2 COM
1

CMNALPHA CMNBETA
subdirectory . subdirectory .
subdireciory . . subdirectory + »
subdirectory GAMMA subdirectory ~ EPSILON
subdirectory DELTA file FILE4 COM
file FILE3 COM

|
CMLPHA\GAMMA CMLPHA\DELIA CNBETA\EPSTLON

subdirectory subdirectory . subd?rectory .
subdirectory . . subdirectory « o subdirectory . -
file FILE5 COM file FILE1 COM

Figure 8-1. Typical hierarchical directory structure (MS-DOS versions 2 0 and later)

Section IL. Programming in the MS-DOS Environment 279

Part B: Programming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally
the name of the file or directory For example, in Figure 8-1, the compiete pathname for
FILE5 COM is C:VALPHA\GAMMANFILES COM. The two instances of FILE1 COM, in the
root directory and in the directory EPSILON, are distinguished by their pathnames:
C:AFILEL COM in the first instance and C:\BETAVEPSILONAFILE] COM in the second

Note: If no drive is specified, the current diive is assumed Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative io
the current directory For example, if the current directory ts C:ABETAVEPSILON, the
specification \FILE? COM indicates the file FILE1 COM in the root directory and the
specification FILE1.COM indicates the file FILEL COM in the directory C:\BETA\EPSILON
See Figure 81

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip-
ulating directory contents and maintaining the links between directories This article
provides that information

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con-
tains a name and descriptive information In MS-DOS versions 1 x, each name must be a
filename; in versions 2 0 and later, volume labels and ditectory names can also appeat
in directory entries

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a directory for a name, the search must proceed linearly from the first
name in the directory. In MS-DOS versions 1 x, a directory search continues until the spec-
ified name is found or until every entry in the directory has been examined. In versions 2 0
and later, the search continues until the specified narme is found or until 2 null directory
entry (that is, one whose first byte is zero) is encountered This null entry indicates the
fogical end of the directory

Adding and deleting directory entriecs

280

MS-DOS deletes a directory entry by marking it with 0ESH in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus-
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends
the new entry to the list

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 153/165

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open z file, if no alter-
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated lates, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory).

Directory Format

The root directory is created by the MS-DOS FORMAT program See USER COMMANDS:
rorMAT . The FORMAT program places the root directory immediately after the disk’s file
allocation tables (FATs). FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks In contrast, the size
of subdirectories is limited only by the siorage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DOS file The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE M3-DOS ENVIRONMENT: S1rUC-
TURE OF Ms-DOs: M5-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed

Directory entry format

Each 32-byte directory entry consists of seven {ields, including a name, an attribute byte,
date and time stamps, and information that describes the file's size and physical location
on the disk (Figure 8-2) The fields are formatted as described in the following paragraphs

Byte O 0BH 0CH 16H 18H 1AH 1ICH iFH

Name Attribute (Reserved) Time | Date Starting cluster File size

Figure 8-2 Fotmat of a directory entry

The name field (bytes 0—0AH) contains an 11-byte name unless the first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (§8-byte name

Section IT. Programming in the M5-DOS Environment 281

Part B: Programming for MS-DOS

282

followed by a 3-byte extension), or an 11-byte volume label Names less than 8 bytes and
extensions less than 3 bytes are padded to the right with blanks so that the extension al-
ways appears in bytes 08-0AH of the name field The first byte of the name field can con-
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)

5 First character of name to be displayed.as the character represented by OESH
(MS-DOS version 3.2)

OESH Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly created directory The name . (an ASCII period) is an alias for the name of
the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory — that is, the directory in which the entry containing the name of the current
directory is found,

The attribute field (byte O0BH) is an 8-bit field that describes the way MS-DOS processes

the directory entry (Figure 8-3) Each bit in the attribute field designates a particular attri-
bute of that directory entry; more than one of the bits can be set at a time

Bit 7 6 5 4 3 2 1 0
) : Sub- Votume . Read-onl
. fi Y
(Reserved) | (Reserved) Archive directory Label System file | Hidden file file

Figure 8-3. Pormat of the attribute field in a divectory entry

The read-only bit (bit 0) is set to 1 10 mark a file read-only Interrupt 21H Function 3DH
{Open File with Handle) will fail if it is used in an attempt 1o open this file for writing The
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory
searches —that is, in directory searches that do not specifically request that hidden entries
be included in the search The system bit (bit 2) is set to 1to indicate that the entry refers to
a file used by the operating system Like the hidden bit, the system bit excludes a directory
entry from normal directory searches The volume label bit (bit 3) is set to 1 to indicate that
the directory entry represents a volume label The subdirectory bit (bit 4) is set to I when
the directory entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the current directory (.} and the parent
directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to Simpiy openihg and closing a file is not sufficient to update the
archive bit in the file’s directory entry

The time and date fields (bytes 16~17H and 18-19H) are initialized by MS-DOS when
the directory entry is created These fields are updated whenever a file is written to. The
formats of these fields are shown in Figures 8-4 and 8-5

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 154/165

Article 8: Disk Directories and Voiume Labels

Bit 15 10 4 0

2-second

Hours (0-23) Minutes (0-59) incrermonts (6-29)

Figure 8-4 Format of the time field in a directory entry

Bit i5 8 4 ¢

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5 Format of the date field in a divectory entry

The starting cluster field (bytes 1A-1BH) indicates the disk location of the first cluster
assigned to the file This cluster number can be used as an entry point to the file allocation
table (FAT) for the disk (Cluster numbers can be converted o logical sector numbers with
the aid of the information in the disk’s BPB)

Fot the . entry (the alias for the ditrectory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the
parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero

The file size field (bytes 1IC-1FH) is a 32-bit integer that indicates the file size in bytes

VYolume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape In computer environments where many different volumes
might be used, the operating system can uniquely identify each volume by initializing it
with a volume label

Volume labels are implemented in MS-DOS versions 2 0 and later as a specific type of
directory entry specified by setting bit 3 in the attribute field to 1 In a volume label direc-
tory entry, the name field contains an 13-byte string specifying a name for the disk volume
A volume label can appear only in the root ditectory of a disk, and only one volume label
can be present on any given disk

In MS-DOS versions 2 0 and later, the FORMAT command can be used with the /V switch
1o initialize a disk with a volume label In versions 3 0 and later, the I ABEL command can

be used 1o create, update, or delete a volume label Several commands can display a disk’s
volume label, including VOL, DIR, I ABEL, TREE, and CHKDSK See USER COMMANDS.

Section IT- Programming in the MS-DOS Environment 283

Part B: Programming for MS-DOS

In MS-DOS versions 2 x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In M3-DOS versions 3 x, however, the
SHARE command examines a disk’s volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation.
Removable disk volumes should therefore be assigned unique volume names if they are

to contain shared files

Functional Support for MS-DOS Directories

Several Interrupt 21 service routines can be useful to programmers who need to manipu-
late directories and their contents (Table 8-1) The routines can be broadly grouped into
two categories: those that use a modified file control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4FH, 4FH, 56H,
and 57H) See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR
ms-pos: File and Record Management; SYSTEM CALLS: INTerRUPT 21H

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interiupt 21H function is called. The calling program ini-
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOS service routine in DS:DX The functions that use pathnames expect all path-
names to be in ASCIIZ format —that is, the last character of the name must be followed
by a zero byte

Names in pathnames passed to Interrupt 21H functions can be separated by either a back-
slash (\) or a forward slash (/). (The forward slash is the separator character used in path-
names in UNIX/XENIX systems) For example, the pathnames C:/MSF/SOURCE/ROSE PAS
and C:\MSPASOURCE\ROSE PAS are equivalent when passed to an Interrupt 21H function
The forward slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENTX However, the MS-DOS comand processor (COMMAND COM)
recognizes only the backslash as a pathname separator character, so forward slashes can-
not be used as separators in the command line

Table 8-1. MS-DOS Functions for Accessing Directories.

Fanction Call With Returns Comment

Find First File AH=11H Al = O {directory eniry i default not satisfac-

DS:DX = pointer to found) or OFFH (not found) tory DTA must be
unopened FCB DTA updated (if directory set before using
INT 21H entry found) this function
Find Next File AH=12H Al = 0 (directory entry Use the same FCB
DS:DX = pointer to found) or OFFH (niot found) for Function 11H and
unopened FCB DTA updated (if directory Function 12H
INT 21H entry found)
(more)
The M$-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 155/165

=
i
i
N

Articie 8: Disk Directories and Volume Labels

Table 8-1. continued

Function Call With Returns Comment
Rename File AH=17H Al =0 (file renamed) or
D5:DX = pointer to OFFH (no directory entry
modified FCB or duplicate filename)
INT 21H
Get File Size AH = 23H AL = 0 (directory entry
D8:DX = pointer 1o found) or OFFH (not found)
unopened FCB FCB updated with number
INT 21H of records in file
Create Directory . AH = 39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)
ASCIIZ pathname
TINT 21H
Remove Directory AH =~ 3AH Carry flag set (if error)
: DS:DX = pointer 10 AX = error code (if error}
ASCIIZ pathname
INT 21H
Change Current AH =3BH Carry flag set Gif error)
Directory DS:DX = pointer 1o AX = error code (if error)
ASCIIZ pathname
INT 21H
Get/Set File AN =43H Carry flag set (if error) Cannot be used to
Attribuzes Al = 0 (get attributes) AX = error code (if error} modify the volume
1 (set attributes) X = auribute field from label or subdirectory
CX = auribures (if AL = 1) directory entry (if called bits
D&:DX = pointer to with AL = ()
ASCIIZ pathname
INT 21H
Get Current AH = 47H Carry flag set (if error)
Directory DS:SI = poiniter to AX = error code (if error)
64-byte buffer Buffer updated with
DI = drive number pathname of current
INI 21H directory
Find First File AH = 4EB Carry flag set Gif etror) 1f default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be
ASCIIZ pathname DTA updated set before using
CX = file atrributes to this function
match
INT 21H
Find Next File AH = 4FH Carry flag set (if error)
INT 21H AX = error code (if erroc)
DTA updated
(more}

Section Il Programming in the MS-DOS Environmeni 283

Part B: Programring for MS-DOS

Table 8-1. continued

Function Call With Returns Comiment
Repame File AH=56H Carry flag set (if error)
DS:DX = pointer t© AX = error code (if error)
ASCIIZ pathname
ES:DI = pointer 10
new ASCIIZ pathname
INT 21H
Get/Set Date/ Time AR =357H - Carry flag set (if error)
of File Al = 0 (get date/time) AX = error code (if error)
1 (set date/time) CX =time (fAL=0)
BX = handle DX = date (if AL = 0)

CX =time (if AL =1)
DX = date Gf AL =1)
INT 21H

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches Functions 11H
and 12H use FCBs to tiansfer filenames to MS-DOS; these functions are availabie in all ver-
sions of MS-DOS, but they cannot be used with pathnames Functions 4EH and 4FH sup-
port pathnames, but these functions are unavailable in MS-DOS versions 1 x All four
functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked When Function 12H or 4FH is used, the current DTA must
be the same as the DTA for the preceding cail to Function 11H ot 4EH

The Interzupt 21H directory search functions are designed to be used in pairs The Find
First File functions return the first matching directory entry in the current directory (Func-
tion 1TH) or in the specified directory (Function 4FH) The Find Next File functions
{Functions 12H and 4FH) can be called repeatedly after a successful call to the corre-
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the name originally specified to the Find First Fiie
Function. A directory search can thus be summatized as follows:

call "find first file" function

while { matching directory entry returned)
call "find next file" function

wildcard characters

286

This search strategy is used because name specifications can include the wildcard charac-
ters ?, which matches any single character, and * (see below) When one or more wildcard
characters appear in the name specified to one of the Find Fisst File functions, only the
noawildeard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOO1, FOOZ, and so on; the specification
FOO?7722.72? matches FOO4 COM, FOOBAR EXE, and FOONEW BAK, as well as FOO! and

The MS-DOS Encyclopedia

HUAWEI EX. 1204 A-3 - 156/165

Article 8: Disk Direciories and Volume Labels

Function 4EH also recognizes the wildcard character =, which matches any remaining
characters in a filename or extension. MS-DOS expands the * wildcard character inter-
nally to question marks Thus, for example, the specification FOO + is the same as

Examining a directory entry

Al four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, although the format is different for the two pairs of functions:
Functions 11 and 12H return a copy of the 32-byte directory entry — including the cluster
number— in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number See SYSTEM CAILS: IN1ERRUPT 21H: Function
4FH

The attribute field of a directory entry can be examined using Function 43H (Get/Set File
Artribures) Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's
time or date. However, unlike the other functions discussed here, Function 57H is in-
tended only for files that are being actively used within an application—that is, Function
57H can be called to examine the file’s time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, or 5BH)

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directory entty Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid-
den or system files, subdirectories, and the volume label Related Function 56H (Rename
File) also changes the name field of a filename but cannot rename a volume label or a hid-
den or system file However, it can be used to move a directory entry from one directory
another (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H)

Functions 43H (Get/Set File Atributes) and 57H (Get/Set Date/ Time of File) can be used
to modify specific fields in a dizrectory entry Function 43H can mark a directory entry as a
hidden or system file, although it cannot modify the volume label or subdirectory bits
Punction 57H, as noted above, can be used only with a previously opened file; it provides
a way to read or update a file’s time and date stamps without writing to the file itself

Creating and deleting directories

Function 39H (C:eate Directory) exists only to create directories— that is, directory
entries with the subdirectory bit set to 1. (Interrupt 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory (The
subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories

Section II Programming in the MS-DOS Environment 287

Article 8: Disk Directories and Volume Labels

Part B: Programming for M3-DQOS

Specifying the current directory pop b
ret
A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the 3
current directory in use by MS-DOS to a user-supplied buffer The converse operation, in i —SetDla ENDP
which a new current directory can be specified to MS-DOS, is performed by Function 3BH o e
(Change Current Directory). : ;
N ¢ int GetCurrentDir{ *path);: /* returns error code */
gramming examples: Searching for files
Pro 24 P g ; ; char *path; /% pointer to buffer to contain path %/
The subroutines in Figure 8-6 below illustrate Functions 4EH and 4FH, which use path ;
specifications passed as ASCIIZ strings to search for files Figure 8-7 applies these assem- ' o T
bly-language subroutines in a simple C program that lists the attzibutes associated with j PUBLIC _GetCurrentDir
each entry in the current directory Note how the directory search is performed in the ' _GetCurrentDir PROC near
WHILE loop in Figure 8-7 by using a global wildcard file specification (= *) and by repeat-
edly executing FindNextFile() until no further matching filenames are found (See Pro- i push bp
. . H by,
gramming Example: Updating a Volume Label for examples of the FCB-related search i Ez:h sf =P
functions, 11H and 21H) :
1TTTE 'DIRS ASM’ . mov 51, ARG + DS:SI ~> buffer
I xor dl,dl : DL = 0 {default drive number)
_ mov ah,47h ; AH = INI 21H function number
’ sub . for DIRDUMP C int 21h ; call MS-DOS: AX = error code
H ubreoutines for P .C e 161 ; jump if error
xor ax,ax i no error, return AX = 0
ARE; EQU {‘bp + 4] ; stack frame addressipg for C arguments | 107: pop el
ARG EQU [bp + 6] pop bp
ret
_IEXI SEGMENT byte public 'CODE' _GetCurrentDir ENDP
ASSUME cs:_IEXI
: 'd SetDIA(DIA) int FindFirstFile(path, attribute): /* returns error code */
; voi =) : . R
i char *DIA; : ?har pa.]jL,
/ : int attribute;
cern igzim —Sethia PUBIIC _FindFirstFile
—SetDIa near _FindTirstFile PROC near
push bp oush bp
mov bp, sp ;nov b-p, sp
mov dx, ARG1 ; DS:DX ->» DIA ey dx., ARG . DS:DX -3 ‘R
mov ah, 1Ah ; AH = INI 21H function number ’ ; : pat
int 21h ; pass DIA to MS-DOS nav o, ARGZ i CX = atcribute
4 mov ah, 4Eh ; AH = INI 21H functicn number
Figure 8-6 Subroutines illustrating Interrupt 21H Functions 4FH and 4FH {(more) ' inc 21h i call M5-DOS; AX = error code
. jc o2 ¢ dump if error
Figure 8-6. Continued : fmore)
288 The MS-DOS Encyclopedia Section IL Programming in the M$-DOS Environment 289

HUAWEI EX. 1204 A-3 - 157/165

Articie 8 Disk Directories and Volume Labels

Part B: Programming for MS-DOS

/* DIRDUMP C */

xror ax, ax i no error, return AX = O
102: pop bp #define AllAttributes 0x3F /% bits set for all attributes #/
ret
main ()

_FindFirstFile ENDP {
static char CurrentDir([64];

PR - e e e int ErrorCode;
; : int FileCount = 0;
int FindNextFile(): /* returns error code %/ '
' struct
RS ——— - Gy VS VSO . {
I char reserved{21];
PUBLIC _FindNextFile | char attrib;
—_FindNextFile PROC near ; int time:
int date;
oush vp long size;
mav bp, sp char name {13];
] DIA;
mov ah, 4Fh ; AH = INI 21H function number
int 21h ; call MS-DOS; AX = error code ! /% display current directory name */
je Lg3 ¢ Jump if error |
ErrorCode = GetCurrentDir(CurrentDir };
xor ax,ax ; if no error, set AX = 0 if({ ErrorCode }
{
printf{ "\nError %d: GetCurrentDir", ErrorCode }:
103: pop bp exit (1 };
ret }

EindNextFile ENDP print£("\nCurrent directory is \\%s", CurrentDir);

_IEXI ENDS
. /* display files and attributes */
_DATA SEGMENT word public 'DAIA’ ; SetDIA(&DIA) /* pass DIA to MS8-DOS #/
CurrentDir DB 84 dup (2) { ErrorCode = FindFirstFile(™+ .*", AllAttributes };
DIA oB 64 dup{?) [
; while{ !ErrorCode)
_DAIA ENDS | {
i printf{ "\n%12s -- ", DIA name):
HD ! ShowAttributes! DIA.attrib };
++FileCount;

H

Figure 8-6. Continued [
i: ErrorCode = FindNextFile():
|

/% display file count and exit #/

| printf{ "\nCurrent directory contains %d files\n", FileCount);
return(0);

Figure 8-7. The complete DIRDUMP.C program (more)

290 The MS-DOS Encyclopedia Section II. Programmiing in the MS-DOS Environment 201

HUAWEI EX. 1204 A-3 - 158/165

Part B: Programming for MS-DOS Article 8: Disk Directories and Volume Labeis

ShowAttributes(a }

int a:

{ char #*GetVeollabel(): /% returns pointer to volume label name */
int i ;

int mask = 1; ;

static char *AttribName{] = PUBLIC _GetVollabel

§ ; _GetvVolLabel PROC near
Yread-only ", 3
"hidden ", ; push bp
"system ", . mov bp, sp
"volume ™,) push 51
“subdirectory ', push di
"archive "
1 call SetDIA : pass DIA address to MS-DOS
; mov dx,of fset DGROUP:ExtendedECB :
' Hnov ah,11h : AH = INT 21H function number
for(i=0: i<6: i++) /% test each attribute bit #*/ i int 21h : Search for First Entry
{ X test al,al
if(& & mask) : inz 101
printf{ AttribName(i}); /® display a message if bit is set */ ; label found so make a copy
mask = mask << 1; nev si,ofiset DGRQUP:DIA + 8
} N mov di,offset DGROUP:Vollabel
1 ; call CopyName
; mov ax,o0ffset DGROUP:Vollabel ; return the copy’s address
Figure 8-7 Continued Jmp short 102
Programming example: Updatil]gaVOlume label 101: xor ax,ax ; no label, return 0 (null pointer)
To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions 102: pop di
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to pop si
search for, rename, create, or delete a volume label in MS-DOS versions 2 0 and later ! pop bp
ret
IIILE fVOLS ASM' ;
' _GetVollabel ENDP
; C-callable routines for manipulating MS-DOS volume labels b
; Note: lhese routines modify the current DIA address ; int RenameVollabel { label); /% returns error code #/
char *label: /* pointer to new volume lzbel name */

ARG BEQU [bp + 4] ; stack frame addressing
PUBLIC _RenameVolilabel
DGROUP GROUP _DARIA : _RenameVollabel PROC near
_IEXI SEGMENI byte public 'CODE' ﬂ push bp
ASSUME c¢s:._IEXI,ds:DGROUP mov bp, sp
. push si
Figure 8-8 Subroutines for manipulating volume labels (more) i push di
Figure 8-8 Continued {more)

292 The MS-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 203

HUAWEI EX. 1204 A-3 - 159/165

Article 8; Disk Directories and Volume Labels

Part B: Programming for MS-DOS

mov si,offset DGROUP:Vollabel ; DS:SI ->» old volume name P "

mov di,offset DGROUP:Namel ;

call CopyName ; copy old name to FCB _E i int DeleteVollabel () /% returns error code */

mov si,ARG1 FoTTTTTTT oo - T

mov di,offset DGROUP:Name2 }

call CopyName ; ¢copy new name into FCB : PUBLIC _DeleteVoliabel

—DeleteVollabel PROC near

mov dx, offset DGROUP:ExtendadFCB ¢ DS:DX -> FCB

mov ah,17h ; aH = INI 21H function number | push bp

int 21h ; rename mov bp, sp

®or ah, ah i AX = 00H (success) or OFFH (failure) push si

push di

pop di i restore registezs and return i

pop 51 | mov 5i,cffset DGROUP:Vollabel

pop bp ; mov di,offset DGROUP:Namel

ret _ i call CopyName ; copy current volume name to ECB
_RenameVollabel ENDP mov dx, offset DGROUP:ExtendedFCB

mov ah,13h : AH = INI 21H function number
;———— e i E int 21h : delete directory entry
; i xor ah, ah ; AX = Q0H (success) or OFFH (failure)
; int NewVollabel{ label }; /#* returns error code */ ;
; char *label; /% pointer to new volume label name */ ! pop di) ; restore registers and return
: i pop si
________________________________ ——— [, —_——- i pop bp
1 ret

PUBLIC _NewVolLabel
_DeleteVollabel ENDP

_NewVollabel PROC near
push bp A T T T T T e o —— e
mov bp, sp :
push EX miscellanecus subroutines
push di
mov si,ARG1 :
mowv di,cffset DGROUP:Name SetDIA PROC near
call CopyName ;, copy new name to FCB
push ax ! preserve reglisters used
Mov dx, of fset DGROUP:ExtendedkCB push dx
nov ah, 16h ; AH = INI 21H function number
int 21n : create directory entry mnov dx,offset DGROUP:DIA ; DS:DX -» DIA
xor ah, ah : AX = 00H (success} or 0FFH (failure) mov ah, 12h ; AH = INI 21H function number
int 21h ; set DIA
pop di ; restore registers and return
pop si | pop dx ; restore registers and return
pop bp pop ax
ret ret
MNewVollabel ENDP SetDIA ENDP
Figure 8-8 Continued (more} Figure 8-8 Continued (more)

294 The M$-DOS Encyclopedia Section IT: Programming in the MS-DOS Environment 205

HUAWEI EX. 1204 A-3 - 160/165

Article 9: Memory Management

Part B: Programming for MS-DOS

CopyName PROC near ; Caller: SI -» ASCIIZ source : Article 9
i DI -> destination
push ds
pop es . &5 - porove Memory Management
mov ex, 11 i length of name field
Iit: lodsb ; Ccopy new name inteo FCB
test al,al s . :
iz o 2 . ntil nuli character is reschad Personal computers that are MS-DOS compatible can be outfitted with as many as three
stosb : kinds of random-access memory (RAM): conventional memory, expanded memory, and
loop 111 extended memory.

112: mov al,' ! : pad new name with blanks Al MS-DOS machines have at least some conventional memory, but the presence of ex-
rep stosb : panded or extended memory depends on the installed hardware options and the model of
microprocessor on which the computer is based. Each storage class has its own capabil-

ret
CopyName S ities, characteristics, and Hmijtations. Each also has its own management techniques, which
. | are the subject of this chapter
_IEXI ENDS
_baza SEGMENT word public 'DAIA’ Conventional Memory
vollabel : . . : o
oLene B T oaup (0.0 Conventional memory is the term for the up to 1 MB of memory that is directly addressable
BxtendedFCB DR OFFh ; must be DFFH for cxtended FCE by an Intel 8086/8088 mictoprocessor of by an 80286 or 80385 microprocessor running in
DB 5 dup(0) ; (reserved) ‘ ' real mode (8086-emulation mode) Physical addresses for references to conventional
DB 1000b : attribute byte (bit 3 = 1) E “-memory are generated by a 16-bit segment register, which acts as a base register and holds
: DB 0 : default drive ID : i a paragraph address, combined with a 16-bit offset contained in an index register or in the
Name! bs Phodapttat i global wildcard name ‘ instruction being executed
DB 5 dup(0) i {unused) '
Name2 DB 11 dup(0) i second name {(for renaming entry) _ On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
BB $ dup (D) 3 {unused) : the bottom 640 KB or less of the conventional memory space The memory space above
DTA - 82 dup (0) - the 640 KB mark is partitioned among ROM (read-only memory) chips on the system
board that contain various primitive device handlers and test programs and among RAM
—DAIA ENDS and ROM chips on expansion boards that are used for input and output bufiers and for ad-
ditional device-dependent routines
EHND :
The bottom 640 KB of memory administered by MS-DOS is divided into three zones
Figure 8-8 Continued i (Fi gure o-1):

® The interrupt vector table
Richard Wilton ¢ The operating system area
® The transient program area
The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000—
003FFH); its address and length are hard-wired into the processor and cannot be changed
Each doubleword position in the table is called an interrupt vector and contains the seg-
ment and offset of an interrupt handler routine for the associated hardware or software in-
terrupt number. Interrupt handler routines are usually built into the operating system,

296 The MS-DOS Encyclopedia Section I Programming in the M5-DOS Environment 297

HUAWEI EX. 1204 A-3 - 161/165

Praise for

The MS-DOS® Encyclopedia:

“A superb, nearly inexhaustible ref-
erence work ... Anyone serious
about programming for MS-DOS
will not want to be without [THE
MS-DOS ENCYCLOPEDIAL”
Online Today

“The ultimate authority.”
' Reference & Research Book News

*“A splendid volume.”
Dr. Dobb’s Journal of Software Tools

“PFor those with any technical in-
volvement in the PC industry, this is
the one and the only volume worth
reading ”’ PC WEEK

“If you like the idea of a one-stop
DOS reference book, then this book
is for you.” PC Magazine

“There’s no doubting that this is a
superb reference work on MS-DOS.”
EXFE magazine

Here, from Microsoft Press, is the ultimate resource for writing, maintaining,
and upgrading well-behaved, efficient, reliable, and robust MS-DOS progiams.
Covering all MS-DOS releases through version 3.2, with a special section on
version 3.3, this encyclopedia is the standard reference for the working com-
munity of MS-DOS programmers and for anyone making stiategic decisions
about MS-DOS implementation. Included are version-specific technical data
and descriptions for:

® More than 100 system calls—each accompanied by C-callable
assembly-language routines and programmer’s notes

B More than 90 user commands-—the most comprehensive version-
specific analysis ever assembled

B Key MS-DOS programming utilities and debuggers

THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and
thousands of lines of great sample code plus in-depth articles on debugging,
wiiting filters, installable device drivers, TSRs, Windows, memory manage-
ment, the future of MS-DOS, and much more. There are also more than a dozen
appendixes, an index to commands and system calls, and a subject index. THE
MS-DOS ENCYCLOPEDIA was researched and written by a team of MS-DOS
experts —many involved in the creation and development of MS-DOS —so you
know it’s accuraie and authoritative.

U.S.A. $69.95

U.K. £48 95
Austral. $104 95
(recommended)

HUAWEI EX. 1204 A-3 - 162/165

RAMDRIVE.SYS

RAMDRIVE.SYS

3.2
Wirtual Disk External
Purpose
Creates a virtual disk in memory.
Syntax
DEVICE ={drive:]l pathlRAMDRIVE.SYS [size] [sector] [directory] [/A}/E]
where:
size is the size of the virtual disk in kilobytes (minimum = 16, default = 64).
sector is the sector size in bytes (128, 256, 512, or 1024; default = 128).
directory is the maximum number of entries in the virtual disk’s root directory
(3-1024, default = 64).
A causes RAMDRIVE to use Lotus/Intel/Microsoft Expanded Memory for
storage (cannot be used with /E).
3

causes RAMDRIVE to use extended memory for storage (cannot be used
with /A).

Note: Unless a /A or /E switch is used, the virtual disk is created in conventional memory.
Description

The RAMDRIVE.SYS installable device driver allows the configuration of one or more
virtual disks (sometimes referred to as electronic disks or RAMdisks). A virtual disk is im-
plemented by mapping a disk’s structure — directory, file allocation table, and files area —
onto an area of random-access memory, rather than onto actual sectors located on a
magnetic recording medium. Access to files stored on a virtual disk is very fast, because

no moving parts are involved and the “disk” operates at the speed of the system’s memory.

Warning: Because a RAMdisk resides entirely in RAM and is therefore volatile, any infor-
mation stored there is irretrievably lost when the computer loses power or is restarted.

RAMDRIVE.SYS can create a virtual disk in conventional memory, extended memory, or
Lotus/Intel/Microsoft Expanded Memory. Conventional memory is the term for the up-
10-640 KB of RAM that contain MS-DOS and any application programs. Extended memory
is the term for the memory at addresses above 1 MB (100000H) that is available on 80286-
based personal computers such as the IBM PC/AT. Expanded memory is the term for a sub-
system of bank-switched memory boards (and a driver to manage them) that is compatible
with the Lotus/Intel/Microsoft Expanded Memory Specification (LIM EMS).

A virtual disk can be installed in conventional memory by simply inserting the line
DEVICE=RAMDRIVE.SYS into the system’s CONFIG.SYS file and restarting the system. A

i
il
|
!

!

Section I1I: User Commands 907

i
i
|

HUAWEI EX. 1204 A-3 - 163/165

RAMDRIVE.SYS

Examples 4

908

new “drive” then becomes available in the system, with a default size of 64 KB, 128-byte
sectors, and 64 available directory entries (assuming memory is sufficient). The virtual disk
is assigned the next available drive letter (which is displayed in RAMDRIVE’s sign-on mes-
sage). The drive letter assigned depends on the number of other physical and virtual disks
in the system and also on the position of the DEVICE=RAMDRIVE.SYS line in the CON-
FIG.SYS file relative to other installed block devices. Available memory permitting, multi-
ple virtual disks can be created by using multiple DEVICE=RAMDRIVE.SYS lines. Several
optional parameters allow the user to customize the size and configuration of the virtual
disk and to use extended memory or expanded memory if it is available.

The size parameter specifies the amount of RAM, in kilobytes, to be allocated to the virtual

disk. The default is 64 KB, but any size from 16 KB to the total amount of available memory
can be specified.

The sector parameter sets the virtual sector size used within the virtual disk. The sector
value can be 128, 256, 512, or 1024 bytes (default = 128 bytes). Selection of the smallest sec-
tor size results in a minimum of wasted virtual disk space per file but also results in a
somewhat slower transfer of data. Physical disk devices on IBM PC-compatible systems
always use 512-byte sectors.

Warning: The 1024-byte sector size is not supported in most implementations of MS-DOS
and will terminate the installation of RAMDRIVE.SYS if it is used. Check the documenta-
tion included with the computer to see if this value is supported.

The directory parameter sets the number of available entries in the virtual disk’s root 3;‘1
directory. The allowed range is 3 to 1024 (default = 64). Each directory entry requires 32 ““3
bytes. RAMDRIVE rounds the number of available directory entries up, if necessary, so
that an integral number of sectors are assigned to the root directory.

The /A switch causes Lotus/Intel/Microsoft Expanded Memory to be used for the virtual ‘
disk, rather than conventional memory; the /E switch causes extended memory to be used. |
Either option allows very large virtual disks to be configured while still leaving the max- !
imum amount of conventional memory available for use by application programs. The /A

and /E switches cannot be used together. ‘!

Note: If RAMDRIVE uses conventional memory for virtual disk storage, the memory can- i
not be reclaimed except by modifying the CONFIG.SYS file and restarting the system. b

To create a virtual disk drive with the default values of 64 KB disk size, 128-byte sectors,
and 64 available directory entries, include the following command

!
DEVICE=RAMDRIVE.SYS

in the CONFIG.SYS file and restart the system.

The MS-DOS Encyclopedia

HUAWEI EX.

1204 A-3 - 164/165

To create a 4 MB virtual disk drive in Lotus/Intel/Microsoft Expanded Memory, with
512-byte sectors and 224 available directory entries, when RAMDRIVE.SYS is located in a
directory named \DRIVERS on drive C, include the command

DEVICE=C:\DRIVERS\RAMDRIVE.SYS 4096 512 224 /A
in the CONFIG.SYS file and restart the system.
Messages

Microsoft RAMDrive version n.nn virtual disk X:

Disk size: nnk

Sector size: nnn bytes

Allocation unit: # sectors

Directory entries: nnn
RAMDRIVE.SYS was successfully installed and this message informs the user of the ver-
sion of RAMDRIVE.SYS that created the virtual disk, the drive letter assigned to the disk,
and the characteristics of the disk.

RAMDrive: Above Board Memory Manager not present

The /A switch was used in the command line and the Lotus/Intel/Microsoft Expanded
Memory Manager is not present in the system. Place the DEVICE command that loads the
memory manager before the DEVICE=RAMDRIVE.SYS command in the CONFIG.SYS
file.

RAMDrive: Above Board Memory Status shows errors
The Above Board device driver is bad or damaged or the board itself is defective. Consult
the Above Board manual or the manufacturer.

RAMDrive: Computer must be PC-AT, or PC-AT compatible.
The /E switch was used in the command line and the computer is not an 80286-based IBM
PC/AT or compatible.

RAMDrive: Incorrect DOS version
The version of RAMDRIVE.SYS is not compatible with the version of MS-DOS that is
running.

RAMDrive: Insufficient memory
Available memory is insufficient for RAMDRIVE.SYS to create a virtual drive.

RAMDrive: Invalid parameter
One of the parameters supplied in the command line is incorrect or is not supported by
the computer.

RAMDrive: I/0 error accessing drive memory
The Expanded Memory Manager device driver is bad or damaged or the board itself is
defective. Consult the board’s manual or contact the manufacturer.

RAMDrive: No extended memory available
The /E switch was specified but the system does not contain extended memory.

Section I1I: User Commands 909

HUAWEI EX. 1204 A-3 - 165/165

