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Comparison of Constructions of Irregular Gallager Codes 

David J. C. MacKay, Simon T. Wilson. Associate Member. IEEE. and Matthew C. Davey

Abstract-The low-density parity check codes whose perfor
mance is closest to the Shannon limit are ·'Gallager codes" 
based on irregular graphs. We compare alternative methods for 
constructing these graphs and present two results. First, ,,-e find 
a ·'super-Poisson" construction which gives a small improvement 
in empirical performance over a random construction. Second, 
whereas Gallager codes normally take _y l time to encode, we 
inve ligate constructions of regular and irregular Gallager codes 
that allow more rapid encoding and have smaller memory re
quirements in the encoder. We find that these "fast encoding" 
Gallager codes have equally good performance. 

Index Terms--Channel coding, error correction coding, Gauss
ian channels, graph theory, iterative probabilistic decoding, ran
dom codes. 

I. INTRODUCTION

G
ALLAGER codes 131, 141 are low-density parity check
codes cons1ruc1ed at random subject to constraints on the

weight of each row and of each column. The original regular

Gallager codes have very sparse random parity check matrices
with uniform weigh1 t per column and t,. per row. (We will
also use the term "regular" for codes 1hat have nearly uniform
weight columns and rows-for example. codes which have
some weight 2 columns and some weight 3 columns.) These
codes are asymptotically good and can be practically decoded
with Gallager·s sum-product algorithm giving near Shannon
limit performance when large block lengths are used [6)-[8].
Regular Gallager codes have also been found to be competitive
codes for short block-length code-division multiple-access
(CDMA) applications I 101.

Recent advances in the performance of Gallager codes
are summarized in Fig. I. The rightmo t curve hows the
performance of a regular binary Gallager code with rate 1/4.
The best known binary Gallager codes are irregular codes
whose parity check matrice · have 110111111ifor111 weight per
column [5]; the performance of one such code is shown by
the second curve from the right. The best known Gallager
codes of all are Gallager codes defined over finite fields (,' F( q)
[ l J. [2]. The remaining two solid curves in Fig. I show the
perfom1ance of a regular Gallager code over G'F(rn) 121 and

Paper approved by S. B. Wicker, !he Editor for Coding Theory amJ 
Technique, of 1he IEEE Communication, S0cic1y. Manw,cripl received 
Augu5t 11. 1998: revised January 27. 1999. Thi, paper wa, presented in 
pan al the t 998 Allenon Conference on Communica1iorn,, Control. and 
Computing. Allenon Hou,e. IL. September 1998. 

The au1hor, are wi1h 1he Depanment of Physics. University of Cam
bridge, Cambridge CB3 OHE. U.K. (e-mail: mackay@mrao.cam.ac.uk; 
,1w I t@mrao.cam.ac.uk; mcdavey@mrao.cam.ac.uk). 

Publisher hem Identifier S 0090 -6778(99)0778 4-3. 

0.1 .-�-�-�-�----� 

"' 
.0 0.01 

0.001 
e 
w 

ii§ 0.0001

<ii .g·c.E
UJ 

18·05 

18·06 

u Reg 
c GF(16) \ 

lrreg\ 
GF(2) 

T 
lrreg GF(8) 

Reg 
GF(2) 

-0.2 0 0.2 0.4 0.6 0.8 
Eb/No (dB) 

Fig. I. Empirical results for Gaussian channel. ra1e 1/4 left-right: irregular 
LDPC. G F( 8) blocklenglh 24 000 bits: JPL Turbo. blocklength 65 536 bi1,: 
regular LDPC. GF(lG). blockleng1h 24 448 bi1s: irregular LDPC. GF(2).

block.Jenglh 6 4000 bil,: regular LDPC. GF(2). blocklc!nglh 40000 biis. 
(Reproduced from [I].) 

an irregular code over C F(8) with bit-error probability of
10-� at Eb / No = -0.05 dB [II. In comparing this code with
the rate 1/4 turbo-code shown by the dotted line. the following
points should be noted. I) The transmitted blocklength of the
irregular Gallager code is only 24 000 bits, whereas that of the
turbo-code is 65 536 bits. 2) The errors made by the Gallager
codes were all detected errors, whereas turbo-codes make
undetected errors at high signal-to-noise ratio. This difference
is not caused by a difference in the decoding algorithm: both
codes are decoded by the sum-product algorithm [9]. Turbo
codes make undetected errors because they ha,•e low-weight

codewords. For Gallager codes, the rate of occurrence of
undetected errors is ext y s cause they have good
distance properties l\).inimum distanc cales linearly with
the blocklength) � all our experime with Gallager
code of block n'ifti greater tha�OO and c umn weight at
least 3. undete � errors have �r occurred.

T�e �xcelle �rforma�ce o�egular Gal� r codes is the
mouvauon for � paper, 111 wltich we explo ays of further
enhancing the codes. � �The irregular codes of �y. Mitzen Shokrollahi,
and Spie_lman 15 J ve parity ch_eck mat� ith both nonuni
form weight per row d nonuniform we t per column. lt has
not yet been established of these nonuniformities
are desirable. Jn our experience with codes for noisy channels,
performance is more sensitive to the distribution of column
weights. In this paper, we concentrate on irregular codes with
the weight per row as uniform as possible.

We can define an irregular Gallager code in two steps.
First, we select a profile that describes the desired number
of columns of each weight and the desired number of rows of

0090--0778/99$10.00 © 1999 IEEE 

Apple 1102f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


1 1.1 1.2 1.3 1.4 1.5 1 1.1

IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. 47. NO. 10. OCTOBER I999

93p

1.2 1.3 1.4 1.5 . 1.2 1.3 1.4

1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5

Fig. 2. Upper panels: constructions of regular and irregular codes. Lower panels: performance of these codes. The construction types shown are regular,
(3. 33). Poisson (93p), sub-Poisson (933). super-Poisson (5333:). and super-Poisson (93y). Notation for upper panels for all constructions except 93p: an integer
represents a number of permutation matrices superposed on the surrounding square. Horizontal and vertical lines indicate the boundaries of the permutation
blocks. Notation for the Poisson construction 93p: integers "3" and "9“ represent column weights. The integer “7" represents the row weight. bower panels
show the performance of several random codes of each construction. Venical axis: block error probability. Horizontal axis: E1. /.\1i in dB. All codes have
.-‘V = 9972 and K = .-U = -41986. All errors were detected errors. as is usual with Gallager codes.

each weight. The parity check matrix of a code can be viewed

as defining at bipartite graph with “bit" vertices corresponding

to the columns and ‘‘check’‘ vertices corresponding to the

rows. Each nonzero entry in the matrix corresponds to an edge

connecting a bit to a check. The profile specifies the degrees

of the vertices in this graph.

Second. we choose a constrttctirm method, that is. a pseudo-

random algorithm for putting edges between the vertices in a

way that satisfies the Constraints. (In the case of rtonbinary

Gallager codes. we also need to choose an algorithm for

assigning values to the nonzero entries in the matrix.)

This paper has two parts. In the first part (Section III). we

Compare alternative construction methods for a fixed profile in
order to find out whether the construction method matters. In

the second part (Section IV), we examine regular and irregular

constructions which lend themselves to rapid encoding. One
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motivation for this second study is that the only drawback of

regular Gallager codes compared to turbo-codes for CDMA

applications appears to be their greater encoding complexity

[10].

In the experiments presented here, we study binary codes

with rate 1/2 and blocklength about N : 10000. We simulate

an additive white Gaussian noise channel in the usual way

[2] and examine the block error probability as a function

of the signal-to—noise ratio. The error bars we show are one

standard deviation error bars on the estimate of the logarithm

of the block error probability ft defined. Thus, when we

observe r failures out of II‘ trials. pi = 1) r-xp{:I:rIt.,g ,,l where

: lit -1‘)/(rri).altlg ,.

ll. C()NSTRl}CTl0NS

We compare the following methods.

Pui.i'.mn: The edges are placed “completely at random."

subject to the prolile constraints and the rule that you cannot

put two edges between one pair of vertices. which would

correspond to a double entry in the parity check matrix. One

way to implement a Poisson construction is to make a list of

all the columns in the matrix. with each column appearing in

the list a number of times equal to its weight. then make a

similar list of all the rows in the matrix. each row appearing

with multiplicity equal to its weight. and then map one list

onto the other by a random permutation. taking care not to

create duplicate entries [5].

A variation of this construction is to require that no two

columns in the parity check matrix have an overlap greater

than one. i.e.. forbid cycles of length 4 in the graph. (Similar

to construction IA in I81.) A second variation requires that the

graph have no cycles of length less than some I. (Similar to

construction 1B in [8].) This constraint can be quite hard to

enforce if the profile includes high weight rows or columns.

Perniutart'0ns: We can build parity check matrices by su-

perposing random permutation matrices £4]. The convenience

of this method depends on the profile. There are many ways of

laying out these permutation matrices to satisfy a given pro-

file. We will distinguish “srtpr’t'-Poi's.rwi" and "sut'J-Pm'.rson"
constructions.

- In a super—Poisson construction. the distribution of high

weight columns per row has greater variance than a
Poisson distribution.

- In a sub-Poisson construction, the distribution of high

weight columns per row has smaller variance than a
Poisson distribution.

III. COMPARING POISSON. SUPER-POISSON.
AND SUB-POISSON CONSTRUCTIONS

A. Pi'0_file.r and Cwtstt'trr‘ti0rI.r Srttrlferl in this‘ Paper’

I) Rcgrtlai' Cort‘es%’: and 33: As our baseline. we study

regular Gallager codes with weight per column exactly 1 = It

and weight per row exactly t‘,. : b‘. We construct parity check

matrices satisfying this profile from pennutation matrices in

two ways. labeled "3" and “33," shown diagrammatically in

the upper panels of Fig. 2. In the figure, a square containing

1 1.1 1.2 1.3 1.4 . 1 1.1 1.2 1.3 1.4 1.5

(:1) (b)

Fig. 3. (at Comparison of one representative of each of the constructions: 3
(regular). 93p (Poisson) and 93y [super-Poisson). lb) Representatives of all
six constructions in Fig. 2. Vertical axis: block error probability. Horizontal
axis: Er,/Ni, in dB.

TABLE l
THE Two PRt_iFt|.I~IS Srtinttsii IN rttts PAPI-iR

Column weight Fraction of columns ltow weight Fraction
’r'j3_'“_—j1j'_‘ " " "6‘m-T_‘-t

Column weight Fractlortof t‘0ltJIIII1S Row weight Fraction
3 11/12 7 1
9 lg]!

Profile 3

Profile 93

an integer (for example. “3") denotes the superposition inside

that Square of that number of random permutation matrices.

The matrices are generated at random subject to the constraint
that no two nonzero entries coincide.

2) Irregular Code.r—93p. 93a. 931:. and 93y: We chose

the profile “93" shown in Table I. It has columns of weight

9 and of weight 3: all rows have weight 7. Note that this

profile only differs from the regular profile "3" in that some

extra 1's are added to 1/12 of the columns. We emphasize that

this profile has not been carefully optimized. so the results of

this paper should not be taken as describing the best that can

be done with irregular binary Gallager codes. We chose this

profile because it lends itself to interesting experiments.
We will refer to the bits that connect to nine checks as

"elite" bits. We use four different constructions that match this

profile. named as follows. These constructions are depicted

diagrammatically in the upper panels of Fig. 2.

Put'.rsmi—93p.' In this construction. while most checks will
connect to one or two elite bits. a fraction of them will connect

to more than two elite bits, and some will connect to none.

Sub-Pot'sson—93a.' This construction allocates exactly one
or two elite bits to each check.

Super-Pm'.rson.' 933; and 93y are, respectively. moderately

and very super—Poisson. In 93y. one third of the checks are

connected to four elite bits, one third are connected to one,
and one third are connected to none.

B. Rc.\'ttlr.t'

II Vat‘t'abit't‘r}.' Wt‘rh.t'ri Each Construc'ti'art.' For each con-
struction. we created several codes in order to assess the

variability of performance within each ensemble. All codes

f 
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Fig. 4. 1a) Comparison of irregular 93y with regular 33 code. Vertical axis: median number of iterations. Horizontal: E,,/.\}, in dB. (b) Histogram of
number of iterations for 93y code at Ei,/N0 : 1.4. (c) Log/log plot of iterations histogram showing that the tail of the distribution is well approximated
by a power law. The straight line has slope -8.5. Above 50, iterations were binned into intervals of 5.

studied were of rate 1/2, with blocklength N = 4986. The

results are shown in Fig. 2. We see no significant variability

among the 3.33.931 (Poisson) or 93a (sub-Poisson) codes.

But among the super-Poisson codes, 93:: and 93y. there is

some variability with some codes showing an error floor.

2) E.rplcman'on of Error Floors: In both cases. the error

floor has a simple cause. The most frequent error under these
conditions is a reconstructed transmission which differs from

the correct codeword in exactly three bits—the same three bits

every time. These bits, which have weight 3 columns in the

parity Check matrix. are connected to just five checks with the

topology shown below
- - I I I

checks /, 3.. ./..§(__
. ..i£<€!»;”. ' t in

bits i”; Q; .

If the three bits shaded grey are flipped into the wrong

state, then the syndrome vector changes sign in the fifth check

only. The sum—product algorithm is unable to extricate itself

from this state. As the block length of the code is increased,

the probability of this topology’s occurrence falls. It is also

possible to modify the construction algorithm for Gallager

codes such that cycles of length 4. like this are forbidden (as

checks 1,7‘. .''..t,

V <2)
=1‘; . . "_‘I 1"’: I

I I
'§/\-

"\ i./

in construction IA of [8]). This modification is sufficient to

prevent the topology shown in (1) from occurring. In principle.

it is possible for a code to have a minimum distance of 4 even

when the minimum cycle length is 6. However, for randomly

constructed codes. the minimum distance increases linearly

with the blocklength. for almost all codes [4].

We discard the two codes with error floors in the subsequent

comparisons.

3) Comparison of Constructions." The six families are

compared with each other in Fig. 3. There are no detectable

differences between the regular codes 3 and 33. There is a

Encoding procedure;

Bits 1; . . . tx are ricfint-d to he source hits.

Bits tK+1...tN_M< are set in sequence. using
the mth parity check to determine ix“...

This costs {N —M<)t, computational
operations. where t, is the typical
weight per row.

Bi” 3N— M<+| ‘N 5-"9 39‘ ‘-'‘l“3-l ‘-95 C’ ' can be stored in bits of mem-
ory. The product Bl.’ t:.'t.n he com-
puted in !lrf<t',- computational opera-
tions, tutti the multiplication by C”
takes M3 operations.

C_lBt’ t:1od2

where t‘ = (t1...tN_M<)‘ and C” isthe inverse of C in module 2 arithmetic.

Fig. 5. Upper panel: general fomi of a fast-encoding Crallagcr code. Hori-
zontal stripes indicate low-weight rows. The diagonal line is a line of 1's.
The matrices B and C are of dimension .l[( X (N — .11.‘ l and 1!.‘ x .\I.;.
respectively. Lower panel: the fast encoding method to generate a codeword
and its computational cost, assuming an appropriate representation of the
sparse matr'tx.

clear ranking of the other constructions, as follows:

3 < 93a < 93p < 93:: < 93y.

Thus, we find that at least for the 93 profile. sub—Poisson

Constructions are inferior to Poisson constructions. and super-

Poisson constructions are significantly superior. In the case of

93y. we see an improvement of about 0.05 dB.

4) Decoding Times: Not only do these irregular codes out-

perform the regular codes, they require fewer iterations as

illustrated in Fig. 4(a), which compares the median number of

iterations of the irregular code 93y and the regular code 33.

Note that 93y requires 7/6 times more operations per iteration

due to the increased weight of the matrix, so the total decoding
times are similar.

Fig. 4(b) and (C) shows that the distribution of decoding

times is heavy tailed. At Eb/N0 = 1.4, the tail is well

approximated by the power law: P( ) ~ 7"3'5, where 1' is

the number of iterations. At Eb/N0 = 1.2, the distribution is

heavier tailed, and we have P(r) ~ “F5.
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Fig. 6. (a) Upper panels: construction methods 13 and 1933;. As in Fig. 2. an integer represents a number of permutation matrices superposed on the
surrounding square. A diagonal line represents a line of F5. Horizontal and vertical lines indicate the boundaries of the permutation blocks. Lower picture:
variability of performance among 13 and 1933; codes. Vertical axis: block error probability. Horizontal axis: Eb/N9 in dB. All codes have N = 9972 and
It' : AI = 4086. (b) Example of a parity check matrix with .\' = 1-14 made using construction 1933*.

5) Unequal Error Protection: We can compare the bit~
error rate of elite bits with that of standard bits. We find that

when decoding fails, elite bits are more likely than standard

bits to be correctly decoded. In the case of construction 93):.

we found that at E1,/N0 1.3 dB, the probability of an

elite bit being in error, given that the block was incorrectly
decoded. was 0.012 whereas standard bits had an error rate

of 0.065. Differences remain at small El,/Nu. For example. at

Eh/Na = 0.7 dB. the error rates are 0.035 and 0.097.

IV. FAST~ENCODlNG GALLAGER Cones

One of the possible drawbacks of Gallager codes is that their

encoding time generally scales as N2. Inspired by Spielman’s

work [11], we have investigated constructions of Gallager

codes whose profiles are similar to or identical to the 3 and

93 profiles above, but which are fast—encoding. The general

form of parity check matrix for a fast-encoding Gallager code

is shown in Fig. 5. The parity check matrix has an almost

lower—tt-iangular structure which allows all but a small number

114.: of the parity bits to be computed using sparse operations.

The final M< parity bits can be computed in ME binary

operations. If M< were as small as \/TE, then the codes would
be linear—time encodable.

We introduce two constructions, 13 and l93y (“l" for

linear), shown diagrammatically in Fig. 6(a). Construction 13

has profile identical to construction 3. Construction 193y has

a profile identical to the 93 codes and is most similar to

93y. Fig. 6(b) shows an example of a matrix made using

f 
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