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Preface

Algebraic-geometric (AG) codes are a new paradigm in coding theory which
promise performance improvements for point-to-point communications systems.
AG codes offer several advantages over state-of-the-art Reed-Solomon (RS)
codes. First, their construction is based on selecting points on a curve creating a
non-binary code with long code length and effective decoding. The bit error rate
(BER) performance of AG codesis impressive and attractive for wireless networks
with severe fading conditions. Second, AG codes are more flexible than RS codes
because they are easily extendable to high finite fields with minimal additional
complexity. Third, the decoding approach gets all required information from the
received data without the need for a decoding list. It is very attractive from the
perspectives of both reliability and buffering capacity. Finally, construction of AG
codes from curves offers an endless supply of AG codes with different properties
and parameters applicable for different applications.

In this book, AG codes are designed, constructed and implemented from
Hermitian curves. Simulations were carried out in Matlab to make comparisons of
BERperformance of AG codes and RS codesusing different modulation schemes
and various channel models such as additive white Gaussian noise (AWGN) and
Rayleigh fast fading. Simulation results of BER performance for AG codesusing
quadrature amplitude modulation (16QAM and 64QAM)schemesare presented
for the first time (to our knowledge) and shownto outperform RS codesat various
code rates. Results for the AWGN channel are presented in this book; results for
the Rayleigh fast fading channel are contained in the first author’s Ph.D.
dissertation.

To further improve the BER performance, algebraic-geometric block turbo
codes (AG-BTCs) are proposed and implemented in this book. Their design,
construction and implementation are investigated. Their performanceis evaluated
by simulations in Matlab, and results are presented for the first time in the liter-
ature. They show significant performance improvements butat the expense of high
system complexity due to the use of Chase-Pyndiah’s algorithm for AG codes.

In order to reduce system complexity while maintaining high BER perfor-
mance, this book proposes algebraic-geometric irregular block turbo codes (AG-
IBTCs). The design, construction and implementation of AG-IBTCs are presented
along with new simulation results. Again appearing for the first time in the

vil
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literature, results show that significant reduction in system complexity can be
achieved while maintaining the high BER performance of AG-BTCs.

This book is intended to be useful to researchers and students in digital com-
munications. The reader is assumed to have an appropriate background in math-
ematics and telecommunications. The presentation is intended to be self-contained
with a substantial amount of background material included in the first half of the
book. The second half concentrates on new research results. The advanced sections

of the book may require a graduate level of education in communications.
This book is a result of the Ph.D. work carried out by the first author at the

College of Engineering in Swansea University, Wales. The authors are grateful to
Dr. Martin Johnston at Newcastle University for his invaluable assistance at the
early stages of the research. Special thanks are given to Dr. Martin Crossley in the
Mathematics Department at Swansea University for mathematical assistance
throughout this work.

Salt, Jordan, April 2014 Jafar A. Alzubi
London, UK Omar A. Alzubi

Thomas M. Chen
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Chapter 1
Introduction

In the past decade, the number of mobile devices has escalated driven mostly by
demand for bandwidth-hungry smart phones. The need for efficient and reliable
wireless communications has never been greater. The future Internet of Things (IoT)
consisting of interconnected common objects capable of sensing and processing
may generate orders of magnitudes more data. At the sametime, the amountof radio
spectrum is essentially limited, motivating a perpetual search for efficient coding
schemes. Although major advances have been realized in coding, wireless mobile
systems remain highly susceptible to impairments in the radio channel, and the
control of transmission errors continues to be a major research problemandpractical
concern for communications system designers[1].

Thebasic principlesofdigital communication systems maybe traced to Shannon’s
historic 1948 paper establishing the foundations of information theory [2]. This
chapter was concerned with the transmission of symbols from an information source
to a destination through a noisy channel. Following a probabilistic view of the infor-
mation source, Shannon’s source coding theorem established the concept of entropy
as the lowerlimit on average bit rate for lossless source coding.

Shannon’s noisy channel coding theorem described the maximum possible effi-
ciency oferror-correcting codes for a noisy channel. Channel capacity is the mutual
information between the input and output of the channel maximized with respectto
the input distribution. If the source information is transmitted at a rate less than the
channel capacity, then there exist codes that allow the probability of error at the des-
tination to be arbitrarily small. In other words,it is theoretically possible to transmit
information with very low error at a rate up to the channel capacity. Conversely, if
the transmission rate is more than the channel capacity, it is not possible to achieve
an arbitrarily small error probability.

Since Shannon’s contribution, the research community has worked diligently
towards the goalof efficient encoding and decoding methodsto control errors due to
the noisy channel. Modern communication systemsare typically designed with error
control as an essential part. Continual advancesin error control coding have led to
more efficient and reliable digital communication systems.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, I
SpringerBriefs in Electrical and Computer Engineering,
DOI, 10.1007/978-3-319-08293-6_1, © The Author(s) 2014
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Fig. 1.1 A typical digital communication system

1.1 Digital Communications Systems

A classical view of a typical digital communication system is shown in the block
diagramin Fig. 1.1 [1]. Generally, the information source could be analogordiscrete.
An analog source is usually assumedto be converted into a discrete source through
analog-to-digital conversion consisting of sampling and quantization. A discrete
source can transmit a sequence of symbols chosen from a knowndiscrete alphabet.
The source coder attempts to map the source symbols into bits as efficiently as
possible, commonly by meansof variable length coding. The process is sometimes
called data compression. The idea of variable length coding is to assign shorter
codewords to symbols that are morelikely to be transmitted, and longer codewords
to less likely symbols, thereby minimizing the average codeword length, e.g., by the
well known Huffman code. The source coder producesa string of bits to the channel
encoder.

The channel encoder and modulator depend on the characteristics of the channel.
It is possible to simply use modulation without a channel encoder. Transmissionis a
physical process that is handled by the modulator. Without the channel encoder, the
modulator converts bits from the source coder to baseband waveforms. If the channel

is noiseless, the demodulator would convert the baseband waveforms backintobits

for the source decoderto recoverthe transmitted symbols.
Unfortunately, there is no perfect (error-free) channel in actuality, and different

types of media have different characteristics. Even optical fiber which is well known
to be one of the best transmission mediastill has a very low bit error rate. The fiber
acts as a waveguide for photonsthat is immuneto external electromagnetic interfer-
ence. The main causesofsignal attenuation are light scattering and absorption within
the fiber core. At the other extreme, radio channels are knownto be oneofthenoisiest

transmission media because they are vulnerable to several types of impairments such
as reflections from objects (buildings, earth, atmospheric layers), diffraction (sec-
ondary waves bending around sharp obstructions), scattering, diffusion, attenuation,
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and multipaths (radio signals taking different paths to the receiver). In addition, the
source and destination may be mobile and moving.

A critical part of communication system design is mathematical characterization
of the channel. A common mathematical model is additive white Gaussian noise

(AWGN)in which the impairment to communicationis a linear addition of wideband
or white noise with a constant spectral density (expressed as watts per hertz of
bandwidth) and a Gaussian distribution of amplitude. The model does not account
for fading, frequency selectivity, interference, nonlinearity or dispersion. However,
it is popular dueto its simplicity and tractability.

The AWGNchannelis a good model for many satellite and deep space commu-
nicationlinks. It is not a good model for mostterrestrial links because of multipath,
terrain blocking, interference, and so on. However, for terrestrial path modeling,
AWGNis commonly used to simulate background noise of the channel understudy.

1.1.1 Error Control Coding

In the presence of a noisy channel, the channel encoder becomes necessary for error
control. Channel coding adds redundantbits after source coding to compensate for
possible bit errors due to the imperfect channel. The channel encoder transforms the
information sequence from the source encoder into a coded sequence of codewords.
Codewords can be a binary or non-binary sequence. An enormous bodyoftheory has
been developed with many techniques for error control coding [3]. Commontech-
niques include parity bits, cyclic redundancy checks (CRC), block codes (including
Hamming, Reed-Solomon, Golay, BCH), and convolutional codes.

The channel decoder transforms the received sequence (of possibly corrupted
codewords) into a binary or non-binary sequencecalled the estimated information
sequence. The two main factors affecting decoding strategies are: the rules used in
the channel encoding process and the noise characteristics of the channel(or storage
medium).

A perfect channel encoding and decoding system will produce an estimated infor-
mation sequencethatis identical to the original information sequence, even though
a number of decoding errors may introduced by the channel noise. The design and
implementation of channel decoders is a major area of researchsinceit playsa crit-
ical role in the performance of digital communication systems. Design of efficient
channel decodersis an important topic in this book as well.

Design is governed by these considerations: the probability of decoding errors
should be minimized; the transmission of information should be dense orfast as

possible; the reproduced informationat the channel decoderoutput should be reliable;
and the implementation cost of the encoder and decoder should be reasonable [4].
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1.1.2 Block and Convolutional Codes

Error control codes are divided structurally into two types: block codes and convo-
lutional codes. The main difference between the two types is whether the encoder
uses only the symbolsin the current frame to produceits output as in block codes,
or remembers a numberofprevious frames to produce its output as in the case of
convolutional codes.

A newtype of channel codecs wasintroduced in 1993 by Claude Berrou and Alain
Glavieux called turbo codes (TCs) and block turbo codes (BTCs) which proved to be
very powerful error correction techniques that outperformed all previously known
coding schemes. They can be used in any communication system wherea significant
powersaving is required or the operating signal-to-noise ratio (SNR) is very low.
Deep space communications, mobile satellite/cellular communications, microwave
links, and paging are someof the possible applications of this coding technique. The
idea behind TCs can be thought of as a refinement of the concatenated encoding
structure plus an iterative algorithm for decoding the associated code sequence [5].

A new family of non-binary block codes called algebraic-geometric (AG) codes
were first introduced by V. D. Goppa in 1981. These codes are constructed from
algebraic curves (e.g., Hermitian curves, elliptic curves, hyperelliptic curves) over
finite fields. One property of the AG codesis that they have relatively long size[6].

Oneofthe first and best known decoding algorithms for non-binary codesis the
Berlekamp-Massey (BM) algorithm whichprovedto be very effective for short codes.
However, because the decoding process involves two matrix inversions,the algorithm
suffers from high complexity when dealing with long codes such as AG codes. To
overcomethis drawback, a new decodingalgorithm essentially extending Berlekamp-

Massey’s algorithm wasintroduced by Sakata in 1988 [7]. Sakata replaced the matrix
inversion processes by generating a set of polynomials whose coefficients formed
recursive relationships among an array of finite field elements. Sakata’s algorithm
has been usedin our design of the BTCsand the irregular BTCs.

1.2 Motivations

The motivation of this book is to investigate the construction, decoding, implemen-
tation, and BER performance evaluation of AG codes. A well knownconstruction
method of AG codes presented by Justesenetal. is used in this book owingto its sim-
plicity and versatility for different channel models. The constructed AG codes have
shownsignificant improvements in BER performance in comparison to RS codes.
This motivates us to use AG codes as code components of BTCsin the pursuit of
further performance improvements.

One important characteristic of AG codesis that they produce hard output. This
does notfit well with the concept of BTCs where a soft output is usually required.
This motivates us to consider Chase-Pyndiah’s approach for extracting soft output
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from hard decision output and then converting the one-pass system to an iterative
system in order to improve the BER performancefurther.

Reed-Solomon block turbo codes (RS-BTCs) have been used as a reference to

measure the gain in BER performance of AG-BTCs.In addition to the BER perfor-
mance, the complexity of the decoding process is an important trade-off with the
performance. However, using AG codesalong with Chase-Pyndiah’s algorithm may
lead to an increase in the decoding complexity for better performance.

In order to reduce the decoding complexity of the resultant system and con-
sider practical implementation, we design algebraic-geometric block turbo codes

(AG-BTCs)by constructing suitable algebraic-geometric irregular block turbo codes
(AG-IBTCs). The construction, decoding and implementation of the new IBTC are
investigated here. The performance of the new constructed AG-IBTCsis compared
with the performance of the equivalent AG-BTC overdifferent channel models and
several modulation schemes.

1.3 Aims and Objectives

This book aimsto design, construct and implement a reliable communications system
with relatively low complexity compared to state-of-the-art systems. The design,
construction and implementation of AG codes for use as code components in BTCs
and IBTCsare investigated. The BER performanceofvarious AG codes are compared
with the equivalent Reed-Solomon (RS) variations of BTC by means of computer
simulations. Comparison results are presented for several code rates and modulation
schemesover various practical channel models.

The objectives of this book can be summarized as:

e Design and construct long AG codes and compare their BER performance with
equivalent RS codes;
Construct a new BTC by employing Chase-Pyndiah’s algorithm for extracting soft
outputs from hard decision outputs using the AG codes as code components;
Evaluate the BER performanceofthe new AG-BTCsin comparison with RS-BTCs
by means of computersimulations;

Design and construct IBTCs using AG codes as code components in order to
reduce the decoding complexity of AG-BTCsand enhance the BER performance
as possible;
Evaluate the BER performance of the new AG-IBTCs in comparison with
equivalent AG-BTCs through computer simulations;
Evaluate the above constructed codes over AWGNchannels using several modu-
lation schemesthrough computer simulations.
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1.4 Original Contributions

In this book, AG codesare constructed using the simplified method of Justesenet al.
from Hermitian curves overthe finite field GF (24) with varying code rates. The
extension of BM decoding algorithm presented by Sakata is used with a majority
voting (MV) technique to decode the produced codes. The performanceof the con-
structed codes is evaluated in terms of BER over AWGNchannelwith binary phase-
shift keying (BPSK) modulation scheme which matches the well knownresults in
the literature. Moreover, the first simulation results showing the performance of AG
codes over AWGNchannel using quadrature phase-shift keying (QPSK), 16QAM
and 64QAM modulation schemesare presented.

In addition, an AGiterative decoding technique is developed for non-binary BTCs
constructed from AG codes as code components. Iterative decoding is applied to
AG codes in order to enhance performance. This is done with the use of Chase-
Pyndiah’s decoding algorithm for extracting soft output from a hard decision output
(AG decoderbased on Sakata’s algorithm). Simulation results show that AG-BTCs
outperform the RS-BTCs in AWGNchannels over the above mentioned modulation
schemes.

In order to reduce system complexity, AG-IBTCs are proposed, designed, and
constructed. Measurements of the BER performance of the designed AG-IBTCs
show that they perform no worse than the regular AG-BTCs and frequently better
especially at higher order modulation schemes. Moreover, the AG-IBTCs system’s
complexity is always reduced significantly compared to the complexity of AG-BTCs.

1.5 Book Layout

This book is organized into five chapters as follows:

e Chapter |:
This chapter motivates the book, provides an overview,lists objectives and aims,
and summarizes the key contributions of the work.

e Chapter2:
This chapter presents the theoretical background covering AG code creation,
encoding and decoding as well as fundamentals of TCs and BTCs.

e Chapter3:
This chapter reviewsthe literature on AG codes construction and decoding methods
and the decoding of regular and irregular BTCs.

e Chapter 4:
This chapter extends the AG codes design into BTCs design by using the AG
codes as code components of BTCs and shows AG codes construction using
Justesen’s simplified method. Also the AG iterative decoding technique using
Chase-Pyndiah’s algorithm is presented in this chapter.
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e Chapter5:
This chapter introduces the developed IBTC with AG codes as code components.

e Chapter6:
This chapterfinally discussesall the results achieved and draws conclusions with
a discussion of possible future work.
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Chapter 2

Theoretical Background

In this chapter, the theoretical background is presented covering design and
construction of AG codesfor the encoder and decoderalong with important parame-
ters. We also present a block diagram of the modified Sakata’s algorithm forthefirst
time.It shows howthe construction of AG codes using Hermitian codesis performed
using a hard-input hard-output (HIHO) decoding algorithm. Fundamentals of TCs
encoder, decoder and interleaver design are shown. Examples of the construction of
BTCsare also presented.

2.1 Algebraic Geometric Codes

For a long time researchers attempted to realize a very long non-binary block code
with high code rate and large Hamming distance, howeverfulfilling these properties
by classical codes wasnotpossible. In 1981, V. D. Goppa showed a wayto construct

these codes which are now called Goppa codes or AG codes[1]. Goppa explained the
construction from affine points of an irreducible projective curve and a set of rational
functions defined on that curve. The famous Reed-Solomon (RS) code represents
the best and for most the simplest example that demonstrates the construction of
AGcodes thoughit is constructed from the affine points of a projective line not a
projective curve whichis the case of Goppa codes.

The numberofaffine points determines the length of an AG code,so the cardinality
ofthe chosenfield restricts the length of RS codes whichresult in relatively short code
lengths. Replacing the projective line with a projective curve yields moreaffine points
which meanslonger code lengths while keeping the samesizeofthe finite field [2, 3].
The longest possible codes can be obtained by choosing curves that have the
maximum numberofaffine points which are called maximalcurves,so the objective
is alwaysto find those curves wheneverpossible.

A possible reason that AG codes have not been studied and investigated very well
is that they require a good knowledgeofthe theory of algebraic geometry,a difficult

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, 9
SpringerBriefs in Electrical and Computer Engineering,
DOI, 10.1007/978-3-319-08293-6_2, © The Author(s) 2014



10 2 Theoretical Background

and complicated branch of mathematics. To overcomethe previously stated problem,
a simplified construction method was introduced in 1989 by Justesenetal. [4]. His
method requires a basic understanding of algebraic geometry to produce AG codes.
Although a limited number of AG codes—whichis considered as a drawback—
can be constructed using this method compared with using a more complicated AG
approach, howeverthis limited numberof codesis still acceptable.

2.1.1 Construction ofAG Code Parameters

According to Carrasco [5], an AG code can be constructed using Justesen’s simplified
method by choosing an irreducible affine smooth curve overa finite field. Classes of
good curvesthat could be used to produce good AG codesare the Hermitian curves,
elliptic curves, hyperelliptic curves, and so on, as they all have one pointatinfinity.

However, Hermitian curves with degree m = r + 1 where r = ,/@ are well
known from the previous classes of curves and most popular for constructing AG

codesdefinedovera finite field F, [4]:

Cw, y) = xitl fh y" 4 y (2.1)

To define the message length (k) and the designed minimum Hammingdistance
(d*), all affine points (the points causing the curve to vanish) as well as the pointat
infinity on the chosen curve must be found. The numberofthe affine points which
satisfy C(x, y) = 0 is n = r°. Hasse-Weil bound gives an upper bound forthe
numberofaffine points n [4]:

n<2y/q+til+q (22)

where y is the genus of the curve.
It is worth giving a complete explanation ofthe curve genusasit is difficult to find

a detailed simplified definition and methad of genus computation. The genusis the
maximum numberofcuttings along non-intersecting simple curves [6]. The process
of computing it is perhaps more interesting. Assumethere exists a plane curve called
C whichis defined by f(x, y) = 0 where f(x, y) is a two-dimensional polynomial
composedof two variables. The degree ofthis polynomial is m whichis the largest
sum of the exponents of x and yin each term of the curve equation. Then the genus
of C is:

_ (m — 1)(m — 2)
5 (2.3)

if and only if C is non-singular curve.
A nonsingular curve, also called smooth curve, is the one which has no singular

points. A singular point is defined as the point where something unusual happenson
the curve like a sharp corner (y? = x3) or a crossing of two branches (y? =x3 4x7),
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Otherwise, when the curve hasa finite numberof singular points, it is called a singular
curve [7].

As Hermitian curves saturate the Hasse-Weil bound, they called maximal curves
making them suitable to generate long AG codes. Justesen’s construction method
suggests a non-negative integer j which is boundedby[8]:

 

m—-2<j< (2.4) |
Goppa or AG codesare of two types: functional Goppa codes (C;,) and residue

Goppa codes (Cg). Thelatter is the dual of the former.In both types, the block length
is equal to the numberofaffine points on the curve (n) [5]. To compute the length of
the message for an AG code,a set ofrational functions with a pole of order equal or
less than the degree of the divisor (a) at the pointat infinity (Q) must be foundfirst
[6], where the degree of the divisor is limited to be greater than 2y — 2 and less than
n (2y <a <n). In Justesen’s simplified construction method a = mj. Thisset of
rational functions is also called the linear space of aQ which is denoted by L(aQ).

The numberof elements in the previousset is equal to the messagelength k. It is
called the dimension of aQ and denoted by /(aQ)[8]. The Riemann-Roch theorem
is used to calculate /(aQ) [9, 10] which defines the message length k in functional
Goppa codes C;(D, aQ)as:

k=Il(aQ) =deg(aQ) -y+l=a-yt+l1 (2.5)

while the message length & in residue Goppa codesis defined by:

k=n—-l(eaQ)=n-—a+y-—1 (2.6)

For both types of AG codes, a lower bound of the Hamming distance of AG
codesis calculated and called the designed minimum Hammingdistance d* as the
Hammingdistance (d) cannot alwaysbe calculated accurately. Meeting the singleton
bound when calculating minimum Hammingdistance is required as the value will
then be optimal [1 1]:

d=n-k+1 (2.7)

However, the main disadvantage that must be mentioned regarding the use of AG
codesis that the designed minimum Hammingdistanceis affected inversely by the
genus of the curve. This meansthat the larger the genus, the smaller the designed
minimum Hamming distance, and vice versa. In contrast, the case of RS codes are
constructed over an affine line of degree one and genus equalto zero [5].

So the actual designed minimum Hammingdistanceis [8, 10]:

d*=n—k-ytl (2.8)
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To compute the designed minimum Hamming distance for functional Goppa
codes, we substitute the value of message length for those codes into (2.8) and
get that:

d*=n-a (2.9)

Also for residue Goppa codes, the designed minimum Hamming distance can be
found by substituting the message length k into (2.8) and get:

d* =a—-2y+2 (2.10)

As Justesen’s simplified code have the same parameters as residue Goppa codes
since a = mj, then the code parametersare [8]:

K=n-mj+y-l (2.11)

d* =mj —2y +2 (2.12)

and the codewordlength n is equal to the numberofaffine points on the curve as
mentioned earlier.

2.1.2 Designing AG Encoder

To generate a generator matrix for an AG code,all the points that satisfy the chosen
curve must be found which meansall the points that make C(x, y) = 0 excluding
the point at infinity. For Harmitian curves, as previously said, the number of these
points is equal ton = r? where r = ,/@, andq is thefinite field size[8].

A k two variables monomial basis is defined as: F = xy? where 0 < a < m
and b > 0 and ordered using total graduated degree (<7). This method ofordering
follows the pattern: first-degree pair (a, b) = (0, 0); next-degree pair (a’, b’) is [12]:

(a—1,b6+1) ifa>0
Ce| Fel 0) ifa=0 (2.13)

So, degree pairs ordering is: (0,0) <7 (1,0) <r (0,1) <7 (2,0) <7 Cl, 1) <r
(0, 2) =F (3, 0) <7: (2; 1) ot (1, 2) <7! (0, 3) <T (4, 0) <7 (35 1) <T (2.2) cas

This gives monomialbasis (@;):

{1, C9yASHEET AITTE: wf (2.14)
It is worth explaining another ordering technique whichis called partial ordering

as it will help to show the concrete difference between the two ordering techniques
and will be helpful in understandingsteps of the decoding procedure later on. Assume
there are two pairs of integers a = (a), a) and b = (by, b2) then [12]:
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a<b if ap<bAa<haakb (2.15)

To obtain the final non-systematic generator matrix of the code, each of the mono-
mial basis @;, i = 1,2, ...,k in L(aQ)is evaluated at each affine point as the fol-
lowing:

pi(pi) bilp2) +++ bi(Pn-1) $1 (Pn)
$2(p1) 2(p2) me $2(Pn—1) 2(Pn)
$3(p1) =3(p2) +++ $3(Pn-1) —$3(Pn)

(2.16)

bk—-1(P1) Pk-1(P2) +> Ok-1(Pn-1) Pk-1(Pn)
Oe(P1) be (p2) +++ PeCPn-1) Ok (Pn)

Extracting the original message from the decoded codewordis a difficult and
complex process when working with a non-systematic generator matrix. Multi-stage
shift register technique is used in cyclic codes like RS codes to produce systematic
generator matrix from a non-systematic one [5]. However, the technique does not
work for AG codes since they are not cyclic, so another technique called Gauss-
Jordan elimination could be used to convert the non-systematic generator matrix to
a systematic one, keeping in mind that any interchange in columns while applying
Gauss-Jordan elimination must be followed by same pattern on points [8, 13].

2.1.3 Designing AG Decoder

Thetraditional decoding technique for RS codes consists of two stages: the purpose
of the first stage is to find the error locations while the second stage attempts to
compute the error magnitudes for each of the found locations. AG codesfollow the
previously described technique [14].

In 1969, the BM algorithm [15] was introduced as a way to produce a shortest
linear feedbackshift register (LFSR) whichyieldsa finite sequenceofdigits. By using
the BM algorithm in 1988, Sakata was able to develop his algorithm which generates
a set of minimal polynomials whose coefficients form a recursive relationship within
a two-dimensionalarray offinite field elements [12].

Justesen etal. [16] were able to improve Sakata’s algorithm in 1992. The aim ofthis
improvement wasto decrease the decoding complexity of AG codes by generating
a set of error-locating polynomials (F') from a two-dimensional matrix containing
syndrome values for AG codes. The decoding process starts with computing the
elements in the two-dimensional syndromesarray. Let us refer to the elementlocation
in the two dimensionalarray by (Sz,») where a is the row numberandJis the column
number(a, b < g — 1). The syndrome valueis defined by [16]:

i n in

Sab = > rixf ye = Dc + es)xfy? = Do eixfy? (2.17)
i=l i=l i=l
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Fig. 2.1 General two-dimensional syndrome array

Letr; be areceived element within the received codewordr, c; be acoded symbol,
e; the corresponding error magnitude in the i-th position, and (x;, y;) the i-th affine
point, fori € J, 7 C {1, 2,3, ..., 2}. The general two-dimensional syndromearray
for the AG code constructed from the Hermitian curve defined by (2.1) is shown in
Fig.2.1 [5].

Sakata’s algorithm makesuse ofthis two-dimensional array by creating a set of
error-locating polynomials (F’) of the form [12]:

fF, y= Dies (2.18)

where the i-th polynomialin F is denoted byi, and the coefficients of the terms x* y!
in f(x, y) isrepresented by f(k, 1). By reading every syndrome valuein the two-
dimensionalarray using the total graduate degree order (<7), all polynomials in F
are updated in order to generate recursive relationships between known syndromes,
up to the current syndrome by changingall the coefficients of every polynomial
f(x, y) [17]. However the generated recursive relationship needsto fulfill the
following equation [5]:

(i) eo2 Fi Sa—1 4k,b—1 41 =0 (2.19)

where FO, y) is a polynomial in the set F and has x, y as variables of the
leading term with i and E° representing their powers, respectively. Usingthetotal
graduated degree ordering (<7) described previously, the syndromes in the two-
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dimensional array are read as following: So,0, S1,0, So,1, $2.0, $1.1, $0,2, $3.0, $2.1,
and so on until the last syndromein the array whichis $j515.

The nonnegative integer j defined by (2.4) plays an importantrole in articulat-
ing the syndromes. However, the syndromesare categorized into two types: known

and unknown, where the known onesare from So.9 to Sm, j+1—m - To compute the
syndromes Spo,9 to So,; Eq.(2.17) is used. By substituting the curve equation in the
equation representing the error-locating palynomialin (2.18), the following recursive
relationship is formed to calculate more known syndromes$j+1,0 to Sin. j+1—m [12]:

> Cit S144,51044 =0 (2.20)
kl

Co,1Sa —m-+0,b—0+1 + Co,m—15a—m+0,b—0+m—1 + Cm.0Sa—m-4m,b-0-+0 =0 (2.21)

where the coefficient of C(x, y) is Cy, and the powers of x and y for each term
in C(x, y) are k and /, respectively. This relationship could be simplified into the
following equation as all coefficients of C(x, y) are equal to one [5]:

Sa,b — Sa—m,b+1 + Sa—m,b+m—1 (2:22)

Nextis the time to updatethe set F bytesting all polynomials (f(x, y) € F) to
see whetherthey satisfy (2.19). If they do, then none needs to be changed. Otherwise,
if any of these polynomials do not satisfy (2.19) then this polynomialwill be used in
the updating process ofthe set F because it has a discrepancy dy. This meansthat
the polynomialat this stage is not ideal and must be changedsothatit satisfies (2.19)
after updating. The goal is to haveaset of error-locating polynomials in F’, and a
polynomial is said to be error-locating if and onlyifit satisfies (2.19) [5, 8, 12].

The polynomials that do not satisfy (2.19) by having a nonzero discrepancy will
be placed in a new set called auxiliary set (G). Also the point at which they were
placed is stored (az, bg). At this stage of the decoder, a new set span(G)is generated
by the unionofall sets less than or equal to each span(g“ (x, y)) in G asin following
Equation[5]:

"

span(G) = Dit(k.D) | (kD < span(g(x, y))} (2.23)
i=]

where(k, /) are a pairof positive integers and ¢ is the numberof polynomials in the
set G. Span meansthatat the point (a, b) there is no polynomial with a leading term

x4e—") ybe—uS? that cansatisfy (2.19). It is defined as [12]:

span(g(x, y)) = (ag — ul}, by — uy”) (2.24)

where g (x, y) is a polynomialin the set G and has x, yas variables of the leading
terms with uy? and uy representing their degrees, respectively.
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Fig. 2.2. Graphical representation of span(G)

The maximal point within span(G) is defined as an interior corner while the
minimal point outside span(G) is called as exterior corner [5]. Both interior and
exterior corners are defined with respect to partial ordering which is denoted by (<)
as mentioned earlier. However, the values of the exterior corners are the degrees of
the polynomials in the set F and their numberis the numberof those polynomials.

Drawing span(G) makesit mucheasierto find the interior and exterior corners. An
example shows how drawinghelpsin finding out these corners. Assume span(G) =
{(0, 0), (1, 0), (0, 1), (2,0), C1, 1), (0, 2), (3, 0)}. From Fig. 2.2, the exterior corners
are (4,0), (2, 1), (1, 2), and (0, 3) as no other points outside span(G)are less than
them. In the same manner,it is shown that the interior corners are (3, 0), (1, 1), and

(0, 2) since these points are the greatest ones within span(G). Exterior corners are
marked with large whitecirclesin the figure andthe interior corners are marked with
large black circles [5].

2.1.3.1 Updating the Sets F and G

The polynomials in the set F' with a nonzero discrepancy (d¢ 4 0) are stored in anew
set called Fy. The union ofthis set with the set G results a new set called G’ which
is the updated version of the set G (G’ = G U Fy) [8]. Equation (2.23) is used to
calculate the span of each polynomial in G’, then Eq. (2.22) is used to find span(G’).
Theinterior corners are found then using span(G’) so that any polynomialin the set
G' with span not equal to any ofthe interior corner will be removed.In case two or
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more polynomials in the set G’ have span equal to any interior corner then any of
those polynomials will be kept. The point in the two-dimensional syndrome array

(ag, by) wherethe discrepancies of remaining G’ polynomials were nonzero and the
discrepancy of the set G’ polynomials d, are stored [12]. G’ at this stageis the final
update of the set G which will be used for the next point in the two-dimensional
syndromearray.

The exterior corners are found using span(G’) to update the set F. As mentioned
earlier, the numberof the exterior corners identifies the numberof the polynomials
in the updated set F’. Also their values are the powers ofthe leading terms of these
polynomials [5]. The polynomials in the set F are updated using one of three cases
for each of the exterior corners (¢;, €2), however these cases must be applied in the
following order [8, 18]:

Case I If the difference set (F/Fy) has a polynomial fC, y) with
Ce = (€1, €2), then the new minimal polynomial h“(x, y) € F’ will be
the same:

hO(x,y) = FOC, y) (2.25)

Case II If there is a polynomial f(x, y) € Fy with (1(?, $?) < (e1, €2) and
€| > a or € > b, then the new minimal polynomial h“ (x, y) € F’ is generated
using: * (i) (i) :

HO (x, y) = x18 yO“ — FO (x, y) (2.26)

Case IIIIfthere is a polynomial g(x, y) € G having span greaterthanor equal
to (a —€1, b— £2) anda polynomial f(x, y) € Fy with @”, n°) < (€1, €2), then
the new minimal polynomial h“(x, y) € F’ is generatedusing:

(i) et enpi) df 2 gi)
EEE RENT Fore FEeee ey) (2.27)g

where (p}, p2) = span(g(x, y)) —(a—e£1, b—€2). Whenever, an update occursto
the set F, a new set denoted by A is developed.It will be used for the MV technique
as part of the decoding procedure and also for termination of the decoding algorithm
whenrequired.It is defined as [8]:

A-l

»Ay (2.28)
k=l

where 4 represents the numberofall polynomials in the set F. Further, Ag is defined
by:

A={&DIG) s (1-158? -1)] (2.29)
where (k, /) are a pair of positive integers.
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A major modification was introduced to the decoding algorithm which was
concerned with adding a termination criteria for the algorithm when |A| becomes
greater than the numberoferrors that the decoder can handle[5, 8]. In such case, the
MVschemewill choose a false value for the unknown syndrome whichwill affect
the accuracy of finding the remaining unknown syndromesresulting in inaccurate
decoding.

After completing the two-dimensional syndromearray,all polynomials in the set
F are said to be error-correcting polynomials which means when substituting the
curve points into any of those polynomials, the error locations are the points that

make the polynomial vanish [18].
A modified version of Sakata’s algorithm is illustrated in the flow chart shown in

Fig. 2.3. The best of our knowledge,this flow chart is the first published illustration
in the literature.

2.1.3.2 Majority Voting

Sakata’s algorithm uses the technique of substituting the curve Eq. (2.1) into (2.19)
to come up with a recursive relationship among the previous syndromesto find the
unknown syndromesofthe type S,., where a < m. This can betrue if and onlyifall
previous syndromes are known.If any ofthose previous syndromes are unknown,
then the MV technique is used to compute the unknown syndromesof the type Sq.
where a < m [5, 12].

The following example will help clarify the idea. For an algebraic geometric code
constructed from a Hermitian curve of the form given in (2.1) with degree m = 5,
Eq. (2.22) can be used to compute the syndrome Sg1:

Sg. = Sg—s.141 + Sg—s.5-1 (2.30)

= S39 + 53,4 (2.31)

This only holds if both $3. and $3.4 are known. Otherwise, MV technique is used
to find the unknownones.

In 1993 Feng and Rao [19] introduced the MV scheme which Sakata etal. used
later in 1995 [17] to design a hard-decision decoding technique for AG codes. For
an unknown syndrome of the type S,., where a < m, any minimal polynomial
fl) Ge, y) € F will be used to find a candidate syndrome value. It turns out that
there are four possible scenarios to be encountered depending on some conditions
whichwill be explained in detail below[17].

)
Scenario one: The candidate syndromevalueis v; if a = io andb = e can be

calculated by using the following equation whichis derived from (2.19):

O) oo> Fred Skat4b eS (2.32)
k.D<r(1{?.1?)
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Scenario two: The candidate syndromevalueis w; ifa-+-m = ie and b — ° =
m — 1 can be calculated by using the following equation:

(i) oe = oe.2, Sui Sepatm—1 L4b—m41— Sa,b—m42 = —Wi (2.33)
kD<r(4,8?)

Scenario three: If both scenarios one and two are fulfilled which means (2.32)
and (2.33) are satisfied, then there will be two candidate values v; and w; for the

syndromefrom this minimal polynomial.
Scenario four: If none of the above three scenarios are fulfilled, then the chosen

minimal polynomial f(x, y) € F is not capable of finding a candidate syndrome
value, so a different minimal polynomial FOC, y) € F will be considered.

The next step in calculating the MV is to generate two new sets:

Ki =(k,.D|0<k<aa0<I1 <b}

Kr ={(k, ) |0<k <ma0<l<b—m+]} (2.34)

where (k, /) are a pair of positive integers. A set K = K, U Ko is computed also.
The MVdecision is made based on the numberofelements in the set K; which is
found for each candidate syndrome value 6), 52, 53, ... as [17]:

Kj=| U av U Bi [4 (2.35)
Vi =; Wy =;

where A; and B; are defined by:

A= {kD eK [k-+n? <anl+1? <d}
By = {kD €K |k+n? satmal+iy? <b—m41} (2.36)

2.1.3.3 Error Magnitudes

To find the error magnitude for AG codes (generated from Hermitain curves), the
points on the curve are categorized into four types. The magnitude ofthe error will
be calculated based on the error location on the curve which meansit does matter

wherethe error occursin orderto find its magnitude[8].
The following four categories of points on the curve will be useful in the method

described below. The method dependson calculations of a one-dimensional inverse
discrete Fourier transform (IDFT), knowledge of the unknown syndromes up to

syndrome S—1,g—1, and the curve properties [17, 20].
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Category one:For error occurring at the point where both coordinates x and y are
zeros, i.¢., P(y.o). The error value is found by subtracting the error values of errors
which occurredatall other points types P(x ,0), P(o,y), and P(x.) as following:

> ei = Sg-1,q-1
PIEPx.y)

D>, = Soq-1 — Sq—1,¢-1 (2.37)
Pi EPO)

>, e= Sq—1,0 = Sq- l.q—-1
Pi EP(x,0)

This leads to:

a= Lia > e— > ej} — > ejPiEP(x.y) Pi EPO) Pi EP(x,0)

= So,0 — Sg-1,q-1 = (So,g-1 = Sg-1,q-) = (Sg—1,0 = Sq—1,q—-1) (2.38)

However,for the codes constructed from the curvesovera finite field of characteristic

two, Eq. (2.38) can be simplified to:

ej = Soo + Sg—1,0 + Sqg—1,g—-1 + So,q-1 (2.39)

Category two: Forall errors occurring at the points of zero x-coordinate and
nonzero y-coordinate,i.e., P(o,y), the following mappingis defined:

a” forO <m<q—2m—> {6 form=q = 1 (2.40)
and the one-dimensional IDFT equationis:

q-2

E, = > Sog-i-ie™ (2.41)
20

where @ is the primitive element of the finite field and E,, is the summation ofall
error values occurred at the points of nonzero y-coordinate a”. Luckily, Hermitian
curves (the focus here) have a property that wheneverthere is a point on the curve

of zero x-coordinate and nonzero y-coordinate, there will be no points on the curve
with the same y-coordinate value with nonzero x-coordinate (@’", a”). Which means

that E,, is in fact the error magnitudeof the errorat the point Pio, ;) = (0, a”).
Category three: For all errors occurring at the points of nonzero x-coordinate

and zero y-coordinate,i.e., Pi, 9), the same mapping(2.40) as above takes place and
the one-dimensional IDFTrelationis:
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q-2

En = >) 5,-1-ie™ (2.42)
a

where q@ is the primitive element of the finite field and £,, is the summation ofall
error values happening at the points of nonzero x-coordinate a. The property of
Hermitian curves mentioned abovestill applies which says there are no points on the
curve with the same x-coordinate value ew” and nonzero y-coordinate. Hence, E,, is

in fact the error magnitude of the error at the point P;y,9) = (@””, 0).
Category four: A two-dimensional IDFT is used forerrors occurring at the points

of nonzero x-coordinate and nonzero y-coordinate, P(,,y). The error magnitude of
the error at any point P; = (x, y) is given by:

q—2 q-2

e= DD SapxF* yy? (2.43)
a=0 b=0

wheree; is the error magnitude of the error that happenedat the point P;, and q is
the size of the finite field. However, before Sakata et al. started this method in 1995,

which waslater improved by Liu [20] in 1999, a very lengthy and complex method
was found by solving Eq. (2.17).

2.1.4 Complete Hard-Decision Decoding Algorithm
for AG Codes Constructed From Hermitian Curves

In this section, we describe the details of the decoding algorithm used to decode AG
codes constructed from Hermitian curves. It is used for iterative decoding [4, 5, 8]
later in this book.

Step 1: Known syndromes computation:

a. The known syndromes Spo,o, ..., So,; can be found by applying Eq. (2.17).
b. The known syndromes $j+1,0, .... Sm, j—m+1 can be found using Eq.(2.22).

Step 2: Finding the error location:

The known syndromes and someof the unknown syndromesup to So, j+: are needed
to find the error locations.

a. Run Sakata’s algorithm with known syndromes(found in step 1) as input; some
unknown syndromes are found using (2.22) when syndromeis of the form S,.p
forb>m-—1.

b. Run Sakata’s algorithm with unknown syndromes(found in step 2-a) as input;
when having asyndromeofthe form S, _; fora > m, then (2.22) is used to compute
the value of the unknown syndrome or MV schemeis used if the syndrome has
the form Sy, fora < m.
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c. Run Sakata’s algorithm with unknown syndromes (found step 2-b) as input and
find more unknown syndromesusing (2.22) when syndromeis of the form Sg
forb>m-—1.

d. Substitute the points on the curve into any of the minimal(error-locating) poly-
nomials in set F to find its roots as these roots are the error locations.

Step 3: Finding magnitudesoferrors:
The unknown syndromes from Sj+1+m,0 up to the last syndrome of the two-
dimensional syndrome array S,—1,,—1 are needed to compute the error magnitudes.

a. Equation (2.22) is used to find the value of the unknown syndromeif it is of the
form S,, fora > m.

b. Ifthe unknown syndromeis of the form Sz, fora < m, then to computeits value,
a recursive relationship between the syndromesshould be formed by substituting
the last minimal polynomialin the set F in Eq. (2.19).

c. Find the error values using IDFT:

e Whentheerrorlocation is at the origin point P, = (0, 0), then Eq.(2.39)is
used to find the error magnitude.

e Whentheerror is located at a point with zero x-coordinate and nonzero

y-coordinate Py y = (0, y), then Eq.(2.41) is used to find the error
magnitude.

e When the error is located at a point with nonzero x-coordinate and zero
y-coordinate P,,,y = (x,0), then Eq.(2.42) is used to find the error
magnitude.

e Whentheerror is located at a point with nonzero x-coordinate and nonzero

y-coordinate P, ,, = (x, y), then Eq. (2.43)is usedto find the error magnitude.

Step 4: Error correction:
To correct the errors in terms of extracting the original message, the error values
found in step 3 at the positions found in step 2 are added into the received codeword
to give the decoded codeword. Then the original messageisthe first k symbols from
the decoded codeword as the code is systematic.

2.2 Turbo Codes

Turbo coding was a breakthrough in channel coding introduced in 1993 by a group
of French researchers [21, 22] as a new classoferror correction codes with a relevant

iterative decoding method. Turbo coding was notjust a new set of codes but a new
way of thinking about channel coding. These codes showed performanceclose to
Shannon’s capacity limit [21]. This represented a significant gain in powerefficiency
over other coding techniques knownatthat time.

The operation of a turbo codec relies on some basic ideas: using uncorrelated
inputs, divide and conquer, and processing informationiteratively. The information
to be transmitted is stored in a memory in order to be scrambled to produce two
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uncorrelated sequences that are then encoded and transmitted. This idea is the key
to the incomparable performanceof turbo codes[23].

Since TCs were introduced, they have been useful for low-powerapplications such
as satellite, deep-space communications, and for interference limited applications
such as third generation (3G)cellular and personal communication services. Even
though TCs have been a “hot topic” in the research literature over the past decade,
thereis still a relative lack of basic and fundamental papers serving as a starting point
for researchers in this field [24]. The following sections in this chapterwill briefly
describe the main three components of a turbo codec (turbo encoder, interleaver, and
turbo decoder).

2.2.1 Turbo Encoder

The basic turbo code encoderis producedusing parallel concatenation of two identi-
cal recursive systematic convolutional (RSC) encoders separated by arbitrary inter-
leaver (other interleavers could also be used such as block interleaver) [21, 25] as

shownin Fig. 2.4.
This way of constructing an encoderis called parallel concatenation because the

two encoders operate on the same input bits, rather than one encoding the output
of the other. As a result, TCs are called parallel concatenated convolutional codes
(PCCC)[26].

Both encoders have the same rate (r = 1/2), the upper encoder receiving
data directly while the lower one receives it after being randomly interleaved by a
permutation function @ which maps bits in position i to position a@(i). It is
important to note that this interleaver a works in a block-wise manner, interleav-
ing L bits at a time. Hence, TCs are actually block codes [25]. As both encoders
receive the same input sequence in permuted fashion then only one of the systematic
outputs needs to be transmitted. In most turbo encoders, the systematic output of the
upper encoderis sent along with the parity bits of both of them. The overall rate of a
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TC consisting of parallel concatenation of two systematic codes with rate (r = 1/2)
is (r = 1/3). However, this rate can be increased if a subset of the parity bits is
stopped from being transmitted by a process called puncturing. The code rate of a
TC is increased to (r = 1/2) if the odd indexed parity bits and all systematic bits
from the upper encoderare transmitted along with the even indexedparity bits from
the other encoder[24].

2.2.2 Interleaver

Theinterleaver in turbo coding is a pseudorandom block scrambler which permutes
N input bits with no repetitions by reading it into the interleaver and reading it
out pseudorandomly [23, 25]. The interleaver has two main roles in TC: converting
the small memory convolutional codes into long block codes, and decorrelating the
inputs to both decoders so that an iterative sub-optimal decoding algorithm based
on information exchange between the two decoders can be applied. This role of the
interleaver makesit necessary that the same interleaving pattern should be available at
the decodingside [21, 22]. If the input sequencesto the two decodersare decorrelated,
then there is a high possibility that after correction someofthe errors in one decoder
and some of the remaining errors becomecorrectable in the second decoder[25].

2.2.3 Turbo Decoder

The TC decoderis constructed in a similar way as the encoder. Two simple soft-input
soft-output (SISO) decoders are interconnected to each otherina serial concatenation.
Aninterleaveris installed between the two decodersto spread out error bursts coming
from the outputoffirst decoder [21].

TCs can be decoded by maximumaposteriori (MAP) or maximum likelihood
(ML) decoding methods. These decoders could be implemented only for small size
interleavers as they are too complex for medium and large interleaver sizes [26].
The realistic value of TCslies in the availability of a simple sub-optimal decoding
algorithm [21, 26].

The idea behind turbo decoding is improvingthe reliability of the second decoder
output by feeding it with extrinsic information that has been extracted out of the
first decoder output. Then the reliability of the first decoder’s output is improved
by feeding the first decoder with extrinsic information extracted from the second
decoder’s output. This process will keep iterating until no further improvement can
be made on the performance of the turbo decoder[24].
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2.3 Block Turbo Codes

In 1994 Ramesh Pyndiah introduced BTCsas analternative to classical convolutional
TCs which were introduceda year before for applications requiring either high code
rates (R > 0.8), very low error floors, or low complexity decoders that operate at
several hundreds of megabits per second or higher[27].

BTCsare constructed as the data to be encoded is set in an /-dimensional hyper-
cube with dimensional lengths denoted by(k,, kz, ... , ky). Here all the dimensional
sub-codes are encoded in the systematic linear block code (7;, kj, dint), Where nj
represents the length of the code, k; is the length of the information bit, dyjnj is the
minimum Hammingdistance, and r; = k;/n; the code rate of the i-th dimensional
sub-code. As a result for the /-dimensional BTC, the codewordlengthis Ths nj; the
informationbit length is [hs k;; the minimum Hammingdistanceis Ths dminis and
the coderate is Ths r;. Note that a higher dimensional numberof the BTC implies
a more complex implementation so the two-dimensional BTC seemsto be the right
choice for communication systems becauseofits relatively simple implementation
and suitable structure for high code rate codes [28].

The RS code or Bose-Chaudhuri-Hocguenghem (BCH) code can be chosenas the
componentcode of a two-dimensional BTC. The RS codehasbetter error correction
performance butdueto its very high decoding complexity, the BCH codeis usually
preferred for practical applications [23].

To encode a two-dimensional BTC whose component code is a BCH code,first
the k, x kz informationbits are set into a matrix of k2 rows and k; columns. Then the

kz rowsare horizontally or row-wise encoded by applying BCH (nq, ky, dininy) and

k, columnsare vertically or column-wise encoded by applying BCH (n2, k2, dnin2)
as shownin Fig. 2.5 [25].

In addition, a row/columninterleaver is used in between the two BCH encoders

to guarantee the informationbitthat is horizontally encodedin the first BCH encoder
can be vertically encoded in the second BCH encoder. One cansee that this encoding
techniqueis identical to encoding a BCHserial concatenated code in which the same
interleaver used. Encoding with this technique leads to a BTC with the following
parameters: n =n, xX m9,k = ky x ko, and dyin = dmning X Amin2-

Concerning the decoding process, let us consider the decoding of binary linear
block code c(n, k, dyin). While for high rate block code whose codewordlength is
too long, ML decoding requires very large code numbersand the complexity of the
decoding algorithm increases exponentially. Therefore, a decoding technique with
much lower complexity and small degradation in performance for the linear block
code was introduced by Chase in 1972 and used by Pyndiah in 1994 [27]. It should
be noted that the previous techniqueis also suitable for decoding non-binary codes
like RS codes.
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Fig. 2.5 The encoding structural diagram of the two-dimensional BTC

2.4 Summary

In this chapter, an overview of the concepts of AG code construction, encoding,
and decoding techniques has been presented in detail which forms a foundation for
understanding the subsequent chapters.

AG code construction sets out the code parameters such as the message length,
codewordlength, minimum Hammingdistance, and the capabilities of code in locat-
ing and correcting errors. The encoding part was mainly composed of generating
a non-systematic generator matrix and converting that into a systematic one using
Gauss-Jordan elimination technique. For decoding,a full description was given of
Sakata’s algorithm and the MV technique was explained as well. Finding the mag-
nitudes of errors depending on their locations was also explained.

Also in this chapter, the basics of TC were reviewed through a brief description
of the main three components of TC (turbo encoder, interleaver, and turbo decoder).
BTCs were introduced briefly as a prelude to more detailed explanations to follow
in the next chapters.
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Chapter3
Literature Review

There is a relative lack of basic and fundamental chapters that can serveasa starting
point for researchers in the field of using algebraic geometry theory in forward error
correction and especially in BTCs. Even the algebraic geometry approach foundto be
efficientin dealing with binary and non-binary fields. So this chapter will concentrate
on the construction and decoding aspects of AG codesto build up a sound knowledge
to start developing the new BTC and IBTC.

Theliterature on constructing and decoding of AG codes is limited due to the
fact that not many researchers are interested in working in this specialization asit
requires a good knowledge and understanding of the theory of algebraic geometry,
a difficult and complicated branch of mathematics.

3.1 Construction and Decoding of AG Codes

The existence of good linear codes were proven by Varshamov in 1957, showing
that they have code rate R = k/n, minimum distance rate 0 = d/n, and lower
bounded by the Gilbert-Varshamov bound. The boundassures the existence of codes
with longer and longer lengths but still with the same rate as probability of error
goes to zero whereasthe code length approachesinfinity by using bounded distance
decoding algorithms[1].

In 1981, Goppa [2] was the first to show the connection between the theory of
algebraic geometry and error correcting codes, and showed an idea forefficient
construction of very long codes with good parameterslike relatively large minimum
distance and high coding rate. This review of literature on AG codeswill focus on the
construction of “good” linear AG codes and the developmentofefficient decoding
algorithms for AG codes.

No binary code having parameters exceeding this lower bound was knownuntil
a breakthrough made by Tsfasman, Vladut and Zink in 1984. Their work estab-
lished that with very high complexity, it is possible to produce good linear AG codes

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, 31
SpringerBriefs in Electrical and Computer Engineering,
DOI, 10.1007/978-3-319-08293-6_3, © The Author(s) 2014
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exceeding the Gilbert-Varshamov bound using modular curvesin certain squarefinite
fields setting a new lower boundcalled Tsfasman-Vladut-Zink bound[3].

A new class of codes based on algebraic plane curves was introduced in 1989
by Justesen et al. [4]. Further they provided a detailed explanation of the process
of constructing such codes(i.e., parameters, generator and parity-check matrices).
They claimed that their method of construction is so simple that it does not require
much knowledgein algebraic geometry theory. They also presented an algorithm for
decoding that is considered to be a general form of Peterson’s decoding algorithm
for binary BCH codes and also a general form of the Peterson-Gorenstein-Zierler
(PGZ) algorithm for short non-binary BCH and RS codes.

A modified version of this decoding algorithm was presented by Skorobogatov
and Vladut in 1990 [5] to decode any AG code constructed from algebraic curve
with errors correcting ability up to [d* — y — 1]/2 errors, where d* is the designed
minimum Hammingdistance of the code and y is the genus of the curve, with the
same complexity as the PGZ algorithm. They also presented a version for the case of
codes generated from elliptic and hyperelleptic curves with errors correcting ability
of up to [(d* — 1)/2] errors.

Later in 1992, Justesen et al. [6] used Sakata’s algorithm from 1988 [7] to reduce
the complexity of his famous decoding algorithm described earlier.

Sakata’s 1988 algorithm [7] was able to find a minimal set of two-dimensional
linear recurring relations to generate a two-dimensional array containing syndromes
from which a set of minimal polynomials is generated. The coefficients of these
minimal polynomials will form a recursive relationship between the syndromesin
the two-dimensional array. The errors locations can be found by finding the points
on the curve that make any of these minimal polynomials vanish.

It is worth mentioning that Sakata demonstrated how higher dimensions can be
achieved through extensionsofhis algorithm. The worst-case computation for syn-
dromearray of size n is O(n”). However, the overall computational complexity of
Sakata’s algorithm has worst-case of O(n’ /3). This process is a two-dimensional
extension of the BM algorithm [8, 9] which uses a one-dimensional vector of syn-
dromes to generate a minimal polynomial. A recursive relationship between these
syndromesis created from the coefficients of the polynomial. The locations of errors
can be found by inverting the roots of the minimal polynomial. The BM algorithm
has a worst-case computation complexity of O(n?) which is better than Sakata’s
algorithm.

In 1993, Feng and Rao [10] introduced a simple MV schemein order to overcome
the shortcomingofall previous decoding algorithms which can be summarized as an
inability of these algorithmsto correct a numberoferrors up to the maximum number
that can be achieved by the algorithm. The purpose of Feng and Rao’s work was to
simplify the concept of AG codes and introduce a decoding algorithm. The idea of
their algorithm was to apply Gaussian elimination on a matrix of known syndromes
and use the MV schemein orderto find the values of unknown syndromes. Having
extra syndromesenablesthis algorithm to correct |d* — 1/2] errors. Basically, this
decoding algorithm was a generalization of Peterson’s decoding algorithm for BCH
codes with computation complexity of O(n?).
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Duursmaapplied the MV scheme [11] to Skorobogatov and Vladut’s procedure
introduced in 1990 in order to increase the algorithm’s error correction capability.
However, the computational complexity remained the sameasin [5] which is O(n).

Another simple method for constructing AG codes generated from affine plan
curves was proposed by Feng etal. in 1994 [12]. They introduced a fast decod-
ing technique with complexity less than the first decoding algorithm presented by
Justesen et al. in 1989 and the decoding algorithm of Skorobogatov and Vladut as
well, with capability to correct up to [(d* — 1)/2] errors.

A yearlater [13], the same authors [12] presented a simple construction method

for AG codes from algebraic curves and other varieties with better parameters than
traditional AG codes when high coderate and large genus are considered.

Construction of codes from elliptic curves been studied by Yaghoobian and
Blake [14]. Elliptic curves produce maximal curves with property of having maxi-
mum numberof points for different finite fields of characteristic two. Sakata with
Justesen et al. in 1995 [15] introduced the MV scheme of Feng and Rao to Sakata’s
algorithm [16] which is a generalization of the BM algorithm. They were able to cor-
rect all errors of weightless than d*/2 with low computational complexity O(n7/9).
The only restriction for this algorithm is that it is not able to correct any errors
occurring at any point with a zero coordinate.

In contrast to all previous construction methods which produce non-systematic
codes; Heegardetal. [17] in 1995 were able to presentthefirst systematic AG codes
based on the theory of Grobner bases which provides a description and implemen-
tation of a systematic encoder.

Later in 1998, Blake et al. [18] developed AG codes from particular classes of
curves,e.g., elliptic, hyperelliptic, and Hermitian curves. They also presented decod-
ing algorithms for these classes of curve codes.

In 1999, Xing et al. [19] introduced two construction methods for linear codes
from local expansionsoffunctionsata fixed rational point. While their constructions
have the same boundon the parameters as Goppa’s codes and equivalent to Goppa’s
construction method, the codes they constructed from maximal curves turned out to
have better parameters than the codes obtained by Goppa from maximal curves with
the restriction of a certain interval of parameters.

The problem ofcorrecting errors that are located at points with a zero coordinate,
which was considered a drawback of the modified version of Sakata’s decoding
algorithm, was addressed in [15]. It was resolved later in 1999 by Liu [20].

There were no simulation results evaluating the performance of AG codes with
hard-decision decoding algorithms until 2004, when Johnstonet al. [21] introduced
their first simulation results for designing AG codes over fading channels using a
BPSK modulation scheme. Asthey stated [21], AG codes have the property of longer
code lengths comparedto RS codes.In addition, there are more choicesofcodes with
acceptable decoding complexity. Significant coding gains over fading channels have
been demonstrated in simulation results of AG codes and RS codes, maintaining the
same coderate and samefinite field but not the codesize.

A yearlater, Johnston et al. [22] presented a simulation work of systematic AG
codes constructed from Hermitian curves (Hermitian codes) over additive white
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Gaussian noise (AWGN)and Rayleighfast fading channels using BPSK modulation.
They showed again that AG codes outperformed RS codes and suggested a possible
future use of these codes in many fields such as mobile radio environment where RS
codesare not suitable because oftheir length and the limitation on their number.

However, all previous simulation results were concerned with evaluating and
comparing AG codes performancewith linear block codes such as RS codes.In other
words, no evaluation and comparison of BTCs using AG codes as code components
has been done. In addition to that, simulation of performance for IBTCs using AG
codes as code components does notexist in the current literature.

3.2 Iterative Decoding of Block Turbo Codes

The need for high code rates (R > 0.8), very low error floors, and low-complexity
decoders that operate at high rate have been driven by the adoption ofreal-time data
services such as video transmission and other real-time video applications. These
applications led to the introduction of TCs anditerative decoding by Berrouetal.
for the first time in 1993 [23].

The early implementation of TCs was in satellite and deep-space missions in
which they showed impressive BER performance comparedto the codes being used
at that time without requiring additional power. Dueto this property they played an
important role in many commercial applications such as third generation (3G) wire-
less phones, Digital Video Broadcasting (DVB) systems, or wireless metropolitan
area networks (WMAN),etc.

In 1994, Ramesh Pyndiah et al. extended the idea to BTC or what is known
as Turbo Product Codes (TPCs) achieved by serially concatenating two block
codes [24]. Later these codes were viewed as an attractive alternative choice to the

classical convolutional turbo codes (CTCs). Pyndiahet al. introduced a new decoding
scheme known as “Chase-Pyndiah” soft decoder to improve the BER performance
of the block codesas hard-decision decoding algorithms in use before that. The main
and important idea that the turbo decodingrelies on is the exchangeof probabilistic
messages(extrinsic information) between the SISO decoders.

Since the introduction of the Chase-Pyndiah SISO decoding algorithm in 1994,
continuous improvements have been made by researchers with the aim to lower
decoding complexity, improve BER performance,and increase coding gain. In 1999,
Picart and Pyndiah [25] claimed that a coding gain of up to 2dB can be achieved
in short codes, and a reduction by | or 2 decoding steps can be achieved as well
for specific BER in long codes. The results were obtained by adaptation of decoding
algorithm to the characteristics of the encoder, modulation, and the numberofdecod-
ing steps.

Later in 2001, Hirst et al. [26] introduced a highly efficient fast Chase decoding
algorithm by reordering the original Chase algorithm’s repeated decodings such that
the inherent computational redundancyis. greatly reduced without any reduction in
performance.
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A year later, Martin and Taylor suggested an alternative Chase-based decoding
algorithm for BTCs [27]. The idea of the proposed algorithm is to calculate the
distance of only a small subset of codewordsin orderto estimate the extrinsic infor-
mation.

Non-binary BTCs have beenofinterest to researchers dueto their large minimum
Hammingdistances,less sensitivity to puncturing patterns, reduced latency, robust-
ness of the decoder, and better convergence [28]. The iterative decoding and
performance of non-binary BTCs have been improvedsince the introduction of turbo
decoding.

The year 1996 witnessedthe first appearance of non-binary product codes when
Aitsab and Pyndiah [29] introducedthe iterative decoding of RS product codes. They
presented two construction methods for these codes, and showed that the iterative
decoding of this new coding schemeis based on the soft decoding and the soft
decision of the componentcodes. The evaluation of the performanceofthis class of
codes over an AWGNchannel showeda coding gain of up to 5.5 dB for BER 10~°.
The achieved results made these codes very attractive for data storage applications.

Later in 2000, Sweeney and Wesemeyer [30] claimed that a very good coding gain
in terms of BER performance and a reduction in complexity can be obtained when
using the sub-optimal soft-decision Dorsch’s algorithm combined with Pyndian’s
methodfor extracting soft output to iteratively decode block codes defined overfinite
fields higher than GF(2). Their chapter presented two new different interleaving
structures which yield different performances in terms of coding delay and BER
performance.

Zhouet al. in 2004 [31] presented a comparison between BTCsconstructed based
on Q-ary symbol concatenation and BTCs constructed based on bit concatenation
of about similar coding rates. They showed that the aforementioned class of codes
outperformsthe latter in terms of BER performance with lower hardware complexity
{31]. They also claimed that the Q-ary symbol based concatenation BTCs can achieve
reliable transmission at less than one dB away from Shannon’s bound, when proper
choice of component codes is made. For high code rate applications such as high
speed optical transmissions and data storage, the authors in [31, 32] found that the
Q-ary symbol concatenation BTCsare more suitable than the ones constructed based
on bit concatenation as they have much smaller data block size which is directly
proportional to the coding/decoding delay and size of memoryin use.

In the same year, Diatta et al. [33] showed clearly that the turbo RS iterative
decoding based on Pyndiah’s methodofextracting the soft output used in enhanced
very high bit rate digital subscriber line (VDSL) systems perform much better than
the classical RS hard decision decoding used in asymmetric digital subscriber line
(ADSL).

In 2006, Piriou et al. [34] introduced an efficient non-binary BTC decoder
architecture. The authors presented an architecture for BTCs using RS codes as
component codes, in which they implemented the key equation solver for the alge-
braic decoding of RS codes which is considered a design innovation in this archi-
tecture. Another design innovation was reported implementing the iterative SISO
decoding of RS-BTCsin this efficient architecture. Building the architecture this
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way makes this family of codes more suitable for applications requiring high code
rates such as mobile communications, data storage, satellite communications, and
optical communications. It is worth noting that this architecture was the first pub-
lished architecture to implement a RS-BTC decoder.

3.3 Irregular Iterative Decoding of Block Turbo Codes

In recent years, great interest has been shown in the concept of unequal protection
of information bits. The concept has been deployed in the design of irregular low
density parity check (LDPC)codes, irregular turbo codes (ITCs), and BTCs. The
idea is attractive because of these advantages: improved BER performance, reduced
decoding complexity compared to the regular (equal protection) codes, and codes
that are close to Shannon’s bound.

In 1999, the first ITC was presented in a chaptertitled “Irregular Turbo Codes”
by Frey and MacKay [35]. The authors claimed that a coding gain of 0.15 dB is
obtainable at BER 10~* over an AWGNchannel using BPSK modulation.It was
accomplished by changing the structure of the original rate 1/2 TC of Berrou etal.
to be slightly irregular. They also showed that the BER performance of this new
irregular TC performs in the same regime as the best knownirregular Gallager code
at thattime.

A year later the same team [36] showedthat an increase in the rate of codes
that compose an irregular code will cause the number of low-weight codewords
to be increased, which in turn produce an ITC. They further explained that it
is possible to use the sum-product decoding algorithm—a general form of the
turbo coding algorithm with low complexity—iteratively to decode their ITC. Their
work [35, 36] suffered from a requirementfor large frame size, though no report is
available on what numberofiterations is required to obtain a low BER performance.

Richardsonetal. [37] showed the best irregular LDPC code with a length of one
million bits which performed close to Shannon’s bound over a noisy Gaussian channel
using BPSK modulation. This new code showed an improvementin the performance
of the LDPC codesof about 0.82 dB and was 0.13 dB away from Shannon’s capacity
at BER 10~°. However, the cost for this improvement in performance was more
complexity in the decoding process. The just mentioned result, the design, and the
construction method were presented in their chapter titled “Design of Capacity-
Approaching Irregular Low-Density Parity-Check Codes” published in 2001.

In 2003, Sawaya and Boutros [38] introduced an ITC designto lower the decoding
complexity whichis the point to be considered when applying channel coding. Their
design consisted of a single RSC encoderand a single SISO decoder. However,it has
two drawbacks: in order to achieve a very low bit errorrate (i.e., 10~°),it required
a high numberofiterations (nearly 100) and a very large frame size. The proposed
design in [38] showed a coding gain of about 0.24 dB at BER of 10~° over an AWGN
channel using a BPSK modulation scheme compared to the regular TC.
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As the complexity in all ITCs wasthe price for improving the BER performance
and getting closer to Shannon’s bound, Sholiyi in his thesis titled “Irregular Block
Turbo Codes for communication systems”[39] introduced a lower complexity irreg-
ular block turbo codec for communication systems over noisy Gaussian channels
which is flexible and high speed. The BER performance improved in these new
codecs as they benefit from extra protection of some bits set in a specific manner
using state of art techniques. The simulation results presented in [39] showed that
IBTC having more coding gain over noisy Gaussian channels using higher mod-
ulation schemes(i.e., 16 QAM and 64 QAM modulation schemes) comparing to

existing BTCs.

3.4 Summary

This literature review has discussed various methods for constructing and decoding
AG channel codes. The performanceof different AG codes in terms of BER were
studied and evaluated in comparison with decoding complexity over AWGN and
Rayleigh fast fading channels. The benefits and drawbacks of each method were
highlighted. The simplest construction method was identified in order to useit in
constructing the AG codes which are the focus of this book. The best decoding
algorithm for AG codesin terms of complexity and BER performance was considered
as well.

Interestingly, we have foundin theliterature that no one has considered AG codes
as componentcodes for binary and non-binary TCs and BTCs. Also in this chapter,
the techniques for regular decoding of BTCs were highlighted in order to use it in
conjunction with the decoding algorithm of AG codes as component decoders of
BTC decoders.

The irregular decoding methods of BTCs were studied and their benefits and
drawbacks were highlighted in this chapter as BTCswill be revisited later in this
book. We also found that irregular decoding has never been used in AG-BTCs, so
the construction of irregular decoders is studied later.
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Chapter4

Algebraic-Geometric Non-binary
Block Turbo Codes

In Chap. 2, the necessary mathematics neededto understand the design, construction,
and encoding and decoding of AG codes were covered. This chapter will focus on the
conceptofblock turbo design of AG codesconstructed from Hermitian curves defined
overfinite fields, and the iterative decoding of the constructed block turbo codesusing
a HIHO decoding technique based on Sakata’s algorithm with MV technique and
Chase-Pyndiah’s algorithm to extract a soft output from the hard output of the AG
decoder. Then this chapter will present simulation results for BER performance of
AG-BTCs compared with the BER performance of RS-BTCsof about samesize and
relatively similar rate over different finite fields.

4.1 AG Non-binary Block Turbo Code Encoder

The AG block turbo encoderconsists of two AG systematic encoders (recall Chap. 2)
separated by a blockinterleaver. The construction of an AG non-binary BTCis similar
to the construction of the binary BCH-BTC except that each non-binary symbol
consists of mm bits. In other words, the AG non-binary BTC operatesin a Galois field
m for various AG non-binary BTC sizes [1, 2] which meansthat these codesconsist
of K, x K> x q information bits where K,, Kz are shown in Fig. 2.5, and q is the
Q-ary of the non-binary symbol.

The information symbols are arranged in a k x k block and encoded horizon-
tally or row-wise bythe first AG systematic encoder (outer AG systematic encoder)
as illustrated in Fig.4.1. The output from the previous step will be passed to the
interleaver (inverting rows into columns and vice versa). The result will be fed to
the second AG systematic encoder (inner AG encoder) which in a real sense means
encoding the information symbols vertically or column-wise. It should be noted that
the term “interleaving” does not exist in the BTC literature as the vertical encoding
of the information symbols proceeding the horizontal encodingis the same as a block
interleaved version ofthe horizontal symbols. Figure 2.5 showsstructural diagram
of the two-dimensional BTC.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, 41
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-3-319-08293-6_4, © The Author(s) 2014
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The output of the inner AG systematic encoder is am x n symbols block which
will be convertedinto bits to be modulated by applying any the following modulation
schemes: BPSK, QPSK, 16-QAM,or 64-QAM. The modulated bits will be passed
to an AWGNorRayleigh fast fading channel.

4.2 AG Non-binary Block Turbo Code Decoder

To the best of our knowledge, the AG block turbo decoder shown in Fig. 4.2 is the
first appearancein theliterature. It consists of two AG decoders,a block interleaver,
and a deinterleaver. The decodingis performed at symbollevel as the AG decoderis a
HIHOdecoder.Iterative decoding is applied to AG codes to enhanceits performance.
This is done with the use of Chase-Pyndiah’s decoding algorithm which consists of
two main parts, a soft-input hard-output (STHO) decoding algorithm and a hard-
output computation unit, which is similar to the one implemented by Pyndiah in
1996 [3] for extracting soft output from a hard decision decoder.

The received sequence from the channel is demodulated and the soft information
represented by arow or acolumn E = (e),1, €1,2, ..-, €n,q), Where n is the codeword
length in symbols and q is the numberofbits per symbol. The received codeword R

is denoted by R = [r1.1, 71,2, ---+1n,q] where n is the codeword length in symbols
and gq is the numberof bits per symbol.

The log-likelihood ratio (LLR) of each bit in R is computed using the general
expression depending on the modulation schemeused [4]:

Pr {eij = +1/rij}
LER (e;,;) = In( ij) Pr {ei = —1/rjj} (4.1)

where (i = 1,2,..., n) represents the codeword length in symbols and (j = 1,
2,...,q) represents the numberofbits in each symbol.
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The hard decision Y° of the transmitted signal is calculated using the sign of the
LLRvalues for each receivedbit:

Y°=[yn yi2 YI3 + Vig Y2i y22 +» Yngl (4.2)

and

0 {7 if LLR(e;;) = 0 (4.3)—| if LLR(e;j) <0

This hard form of the received sequenceis then passed through Chase-Pyndiah’s
algorithm, which is explained next in this chapter. Then the testing patterns
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(2? candidate codewords) are decoded using the inner AG decoderafter being con-
verted from binary symbols into non-binary symbols. Theextrinsic information W;;
is then computed. The received sequence is updated by adding the extrinsic infor-
mationinto it to go into the second Chase-Pyndiah’s algorithm,and next to the outer
AG decoderafter being deinterleaved using the block deinterleaver in the other half
of the iteration.
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4.2.1 Extracting Soft Information From the Hard Output
ofAG Decoder Using Chase-Pyndiah Algorithm

Chase-Pyndiah’s algorithm is explained to take advantage of increasing the viewing
range of the decoder, which is the common way of decoding BTCsfor both binary
and non-binary cases.It is illustrated in Fig. 4.3 [4].

It finds the p least reliable binary symbols in R and masks them
(flipping +1 to —1 andvice versa)to obtainalist L containing 2? candidate codewords
(test patterns) denoted by L; where i = 1, 2, ..., 2?. The binary candidatecodewords
are then converted into non-binary candidate codewords and decoded using the AG
decoder based on Sakata’s algorithm explainedearlier in Chap.2.

The decoding result of each candidate codeword in the list ZL is converted into
binary symbols andstoredin a list C which will contain at most 2? distinct candidate
codewords as there might be some repeated codewordsin the set. The minimum
Euclidean distance metric criterion is considered to find the nearest test pattern
(candidate codword) Cj, in C to the received word R which will be the final hard

decision asin the following equation:

D=Cimin if |r—C4| <|r-C*| V d#e (4.4) 
where D represents the selected and final hard decision codeword, and Cg and C,
are different candidate codewordsin the list C. Let D = [d).|, dj.2,..., dn.q| where
nis the codeword length in symbols, and g is the numberof bits per symbol.

The next step is central to the turbo concept, which is extracting the extrinsic
information from the selected candidate codeword D to update the soft input of the
following iteration. In order to achieve this, the reliability of each bit in D based on
R is computed using LLRasin the following equation which wasillustrated in [5]:

Pr {ej = +1/R}
LER: 7 =1n 4.5‘v Pr {e;; = —1/R} =

Applying normalisation, expansion, and approximation will yield:

a2
n= azRi =rnjt+ Wij (4.6)

where W;; is the required extrinsic information needed to updatethe soft input to the
following iteration, and rs is the soft output ofthe bit dj; in the candidate codeword
D whichis calculated using the following equation[6]:

» _ Wrig— Gyll? — Ig — ay? 
dij (4.7)
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where C is the next closest codeword to R in the list C having the bit cj; with a
minimum Euclidean distance from thebit r;; such that c;,; A dj,;, and d;_; is the hard
decision for each bit of the selected codeword.In this notation,|| ||? represents the
norm. If the next closest codeword in C to R cannot be found, then the soft output

from the bit dj _; in the selected candidate codewordDis rij whichcan be calculated
and defined using the following equation:

nj =rig+B dij (4.8)

Here rj;represents the j-th bit in the i-th non-binary received symbol, and £ is
a weighting factor that can be set as a constant ranging between 0 and 1 which
increases as the iteration increases or approximatedas in the following LLR [7]:

7 Pr {dj,j = eij} (4.9)
Pr {dij # ei}

The values of 6 used here are in the range between 0.2 and 0.85 at intervals of
0.1. However, in the decoding of the AG-BTC,the horizontal decoder consists of
one Chase-Pyndiah decoding process whichis a half iteration, while the horizontal
and vertical decoders contain two Chase-Pyndiah decoding processes which are a
full iteration. Each Chase-Pyndiah decoding process uses one 6 value. This implies
that a full iteration requires two 6 values.

After computing r;;,W;; for each binary elementin the codeword is computedij?
using Eq. (4.6). The next step is to update the elements of R following:

rij(g) = rig +a(g) - Wij(g) (4.10)

where g represents the number of the next decoding iteration, and @ is a scaling
factor that reduces the influence of extrinsic information delivered at the previous
half iteration. The a values used here increase with the iteration number and range
between 0 and0.7 atintervals of 0.1.

Several Systematic AG-BTCs constructed from Hermitian curves over GF(2*)
were evaluated in terms oftheir performance using Monte Carlo simulations and
compared with RS-BTCs codes over GF(28) of about samesize and similar code
rate. The simulation results showed that this coding scheme outperforms comparable
RS schemes over both AWGNandRayleighfast fading channels.

4.3 BER Performance of AG Block Turbo Codes

Versus RS Block Turbo Codes

In this section, the performance of AG-BTCs is compared to performance of
RS-BTCs. The process of making AG codesfunction in an iterative manneris carried
out considering the numberofiterations, numberofleast reliable (LR) bits, and code
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Fig. 4.4 BER of AG-BTC(64,49) versus RS-BTC(31,23) using BPSK over AWGN

gain over various channel models using different modulation schemes. This will
allow us to have a comprehensiveinvestigation and gives insights into the impact of
various parameters. For example, the selection of the number ofthe LR bits offers
an interesting trade-off between performance and complexity. Thus, the optimum
numberof LR bits is obtained by finding the maximum numberthat results in the
best BER performance after which the performance improvements are negligibleat
higher complexity cost. This optimum number obtained from numerical simulation
was found to be 4. However, we intentionally did not show the BER performance for
eachiteration for the sake of keeping thefiguresas neat as possible in all comparisons
that involved BTCs of both AG and RScodes.

Simulations comparing the performances of AG-BTC and RS-BTC codes were
carried out. For all modulation schemes and across different code rates and chan-

nel models, the superiority of AG-BTC was clearly demonstrated. These results
are shownin Figs.4.4, 4.5 and 4.6 for BPSK modulation over an AWGNchannel.
The coding gain of AG-BTCsatfinite field GF(2*) for BER of 107° are 0.7, 0.92
and 1.22 dBs with code rates of 0.59, 0.47 and 0.37, respectively, in comparison to
RS-BTCofcoderate 0.55 atfinite field GF(2°). Thosegainsare clearly much higher
than those obtained from AG codeitself.

It is worth observing that even thoughthe code rate of the AG-BTCatrate 0.59
is higher than the code rate of RS-BTC at 0.55, there is still significant coding gain
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Fig. 4.5 BER of AG-BTC(64,44) versus RS(31,23) using BPSK over AWGN

achieved. This versatility of AG codes stemming from the fact it can be used in
concatenation in a BTC processindicates their usability for a wide range of appli-
cations where the RS-BTCis preferred. However, such flexibility in getting higher
coding gains comesatthe cost ofslightly higher system complexity due to the use of
Chase-Pyndiah’s algorithm. From the channel capacity perspective, the AG-BTCs
result in 0.3, 0.354 and 0.361 bits per channel use shift from the Shannon capacity
at BER 10~° forcoderates 0.59, 0.47 and 0.37, respectively, whereas the RS-BTC
is 0.365 bits per channel use shift from the Shannon capacity at same BER and code
rate of 0.55.

Similarly for QPSK modulation scheme over AWGNchannel, coding gains of
AG-BTCsat BER of 10~are 0.7, 1.05 and 1.35 dBs with coderates of 0.59, 0.47

and 0.37, respectively in comparison to RS-BTC of code rate 0.55 all at the same
finite field lengths as the BPSK modulation simulations. Those results are shown in
Figs. 4.7, 4.8 and 4.9. As expected, the coding gain difference between BPSK and
QPSKis minimal.

For the 16QAM modulation scheme over AWGNchannels, gains are more signif-
icant especially at lower code rates. Coding gainsof 1.1, 1.6 and 2.3 dBs are achieved
at BER of 10~° with code rates equal to the QPSK coderates. These gains are shown
in Figs. 4.10, 4.11 and 4.12.
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Fig. 4.6 BER of AG-BTC(64,39) versus RS-BTC(31,23) using BPSK over AWGN

Considering the highest modulation scheme, 64QAM allows us to examine the
performancegains at higher probability of channel error rate over an AWGNchannel.
The obtainedcodinggainsare 1.8, 2.45 and 3.3 dBs at BER of 10~® with coderates
equal to the 16QAM coderates. These gains are shownin Figs. 4.13, 4.14 and 4.15.
We note that the coding gains increase as the modulation index increases. This is
of particular importance in next-generation communications systems requiring high
throughputandreliability.

An evaluation over Rayleigh fast fading channel was also carried out. A fast
fading model is employed in which the coherence time (t) is far less than the system
maximum codewordlength. In particular we set the coherence timeto | bit duration.
This represents the worst case scenario and allowsusto obtain the lower bound on the
coding gain. It also tests the effectiveness of the AG-BTCsover various modulation
schemes.

Simulation results compare the BER performance of AG-BTCswith coderates
0.59, 0.47 and 0.37 and RS-BTC with code rates 0.55 for BPSK, QPSK, 16QAM

and 64QAM modulation schemes. Gains are clearly much higher than the ones
obtained over an AWGNchannel. This illustrates that most improvements from the
AG-BTCsdesign is achieved at extreme channel conditions. This is very appealing to
next generation wireless systems employing orthogonal frequency division multiple
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Fig. 4.11 BER of AG-BTC(64,44) versus RS-BTC(31,23) using 16QAM over AWGN
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access (OFDMA) where fading is a major problem in the way of achieving the
expected high throughputs. For more detailed results,the reader is referred to Alzubi’s
PhDdissertation [8].

4.4 Summary

In this chapter, we first wrote code for computer simulations to evaluate the BER
performance of AG codes and comparewith the performance of RS codes. Simulation
results confirmed the correctness of the developed software platform by matching
exactly publishedresults in the literature for the case of BPSK modulation over both
AWGNandRayleigh fast fading channel conditions.

The design, construction and implementation of AG-BTCs are presented. For
BPSK modulation over AWGN channel model, results show coding gains of 0.7,
0.92 and 1.22 dBs for the AG codes of code rates 0.59, 0.47 and 0.37 respectively

over the RS code of code rate 0.55. A slight increase in coding gain is observed for
the case of QBPSK modulation. For 1}6QAM, coding gains of 1.1, 1.6 and 2.3 dBs
for the AG codesof code rates 0.59, 0.47 and 0.37 respectively over the RS code of
code rate 0.55. Those gains are 0.4, 0.32 and 0.92 dBs more than the gains obtained
using BPSK modulation for the same code rates and channel model. Similarly for
64QAM over an AWGNchannel, the achieved gains are 1.1, 1.53 and 2.08 dBs more
than the gains obtained using BPSK modulation.
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Those results are encouraging and show the applicability of AG codes as a code
component of BTCs. This combinationis useful and could work well in applications
such as video transmission. The trend of increased coding gains with the modulation
index increase is clearly noticeable.

Simulation results in this chapter highlight the benefits of using AG codes as a
code componentofBTCsover RS codes of samestructure using different modulation
schemes and over AWGN channel. However, this comes at the cost of increased

overall system complexity owing to using Chase-Pyndiah’s decoding along with AG
codesin the case of BTC. This problem is addressed in the next chapter.
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Chapter 5

Irregular Decoding of Algebraic-Geometric
Block Turbo Codes

In the previous chapter, the design, construction, and implementation of quantam
AG-BTCswere proposed and investigated in depth. The designed system suffered
from high complexity in the decoding side due to the use of Chase-Pyndiah’s decod-
ing algorithm. In this algorithm, the decoding process complexity is exponentially
related to the numberof LR bits chosen.

To overcome this drawbackof the designed codec, a new design and construction
method of IBTCsis proposed in this chapter. The new design is inspired by the idea
of unequal protection of information symbols whichis central to IBTCs.

The chapterstarts with presenting the design and construction method ofthe AG-
IBTC. A design for the AG-IBTC decoder is proposed with detailed explanation
of the decoding process. Simulations results for BER performance of the new AG-
IBTC are presented and compared with the BER performanceresults of equivalent
AG-BTCs.

Finally this chapter will be concluded with observations about the gain obtained
by implementing the proposed design and the complexity reduction achieved.

5.1 Irregular AG Block Turbo Code Encoder

The conventional encoding method of BTCsor turbo product codes (TPCs) is sum-
marised here. The information bits are arranged in a block format, and then passed
into a systematic block encoder which is nothing more than multiplication of the
information bits (block) by a systematic generator matrix constructed according to a
certain set of rules depending on the type of the code being used. The outputis then
interleaved using a block interleaver which converts the rows into columnsand vice
versa. The output from the block interleaver is passed through another systematic
block encoder of the sametypeasthefirst one [1]. Figure5.1 shows the described
encoding method.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, Oy
SpringerBriefs in Electrical and Computer Engineering,
DOT: 10.1007/978-3-319-08293-6_5, © The Author(s) 2014
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However, there is an equivalent structure of the TPCs which is composed of only
one encoding componentin contrast with the conventional encoding method. In this
equivalent method,the informationbits are repeated(i.e., twice) in the case of TPCs
of even information bits. The reason is because each information bit will have two

extrinsic information values in the decoding process, one from the outer decoding
componentandthe other from the inner decoding component. Similarly in 2° IBTC,
every information bit in the codeword will have two extrinsic information values in
the decoding process [2]. This equivalent structure is illustrated in Fig. 5.2.

The core idea of the equivalent structure of TPCs mentioned aboveis applied to
design and construct the AG-IBTC. Assume degree d is the numberoftimes that
a fraction of information (non-binary symbols) is repeated with a restriction that
d > 2. The higher the value of d, the stronger the protection on the symbols as
the a posteriori value of those symbols will be derived from d numberofextrinsic
information symbols.

Figure 5.3 illustrates a block diagram of the IBTC encoder. The information sym-
bols to be encoded K;, will be passed into a non-uniform repetition unit which will
splits the information symbols into j groups, where j should not exceed 3 for a good
code performance. Each group is repeated d; times where d; = 2,3,...,7, and T
is the maximum numberofrepetitions. A fractions of the total information symbols
fj is the number of symbols in a group j, where
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> i= Ki (5.1)

Hence, fj is repeated d; times by the non-uniform repetition unit in the encoder.
The information after being processed in the non-uniform repetition unit will be:

7 3

H=> >af (5.2)
i=2 j=l
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Fig. 5.5 BER of AG-IBTC(64, 49) versus AG-BTC(64, 49) using BPSK over AWGN

The length of the code (codeword size) controls and limits the options of choosing
an appropriate symbol degree d; and a correspondingfraction /;. Further explanation
will be presented later in this section. Thus far there is no known algorithm that
computesan optimal combinationofthese values. However, the symboldegreeprofile

is preferably to contain a fraction f; of the information symbols repeated one time
(degree 2). Generally, the symbol degree twopreferred to have a fraction f; between
75 and 95 % of the original information symbols, while higher degrees share the
remaining fraction depending on the modulation schemeused[2].

Using the abovecriteria in designing the AG-IBTC,oneofthe codes used hereis
AG-IBTC(64, 49) with the symbol degree combination of 85 % fraction of the infor-
mation block repeated once (degree 2), 10% fraction is repeated twice (degree 3),
and 5 % fraction is repeated eight times (degree 9).

The output of the non-uniform repeating unit in Fig.5.3 is then interleaved ran-
domly using a random interleaver and then passed into an AG systematic block
encoder. The parity bits P; can be easily extracted from the output of the AG system-
atic encoder to be appendedto the original information K; before the non-uniform
repetition unit to be transmitted together in block format N;. The code rate of such
IBTCis:

K;
R = —— 5.3K, +P, (5.3)
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Fig. 5.6 BER of AG-IBTC(64, 44) versus AG-BTC(64, 44) using BPSK over AWGN

where R represents the code rate of the IBTC, K;is the length of original information,
and P;, is the length of parity.

Aspreviously mentionedin this section, the degrees d; play an importantrole in
the construction of the IBTC butare limited and controlled by the block size of the
corresponding regular BTC for a fair comparison in terms of the BER performance.
The following example will illustrate this idea.

Considering one of the AG non-binary BTC codes used here, a systematic AG
non-binary BTC (n,k,d) where n and k are the lengths of the codeword and the
information in non-binary symbols, respectively, and d is the minimum Hamming
distance. Thus in designing a corresponding AG non-binary I-BTC, the size of the
information to be encoded and transmitted, K;, which will be grouped in terms to be
repeated mustbe equal to the size of the information k in the regular AG non-binary
BTC [3].

For instance, the AG non-binary I-BTC derived from a (64, 49, 10) systematic
AG non-binary regular BTC could have a block size of information K; of 49 x 20
non-binary symbols, for each row k; in K; using a 2° of repetition for 85 % fraction

fj of the information, 3° for 10 % fraction f;, and degree 9 for 5 % fraction f; of the
information, where j = 1, 2,3. These combinations will produce a repeated infor-
mation block H, of size 49 x 49 where each row is called h,. Although there exist
a few other combinations, which will ensure that H, retains the original dimension
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Fig. 5.7 BER of AG-IBTC(64, 49) versus AG-BTC(64, 49) using QPSK over AWGN

of the regular BTC information block before encoding, but the just described com-
bination showed the optimum BER performance with comparison to (64, 49, 10)
systematic AG non-binary regular BTC.

A random interleaveris used to interleave the whole array H;, and then each row
from the interleaved version of H; whichis called H/ will be read out individually
as a vector hr) and then encoded using the AG systematic encoder separately. Parity
non-binary symbols are then extracted from the encoded vector while the information
part is discarded. The parity vector P; is then attached to the original information
symbols vector k; to form the encoded message n;. A collection of encoded messages
compose a block of encoded information symbols N; in order to be modulated and
transmitted via the channel. Therate of the produced code R = 0.57 is almostsimilar
to the rate of the equivalent regular BTC (64, 49, 10) which is R = 0.585.

5.2 Irregular AG Non-binary Block Turbo Code Decoder

The received encoded block N, will be demodulated using a proper demodulator,
and then passed through a demultiplexer in order to separate the parity P, symbols
in each encoded message n, from the information symbols k,. The information part
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Fig. 5.8 BER of AG-IBTC(64, 44) versus AG-BTC(64, 44) using QPSK over AWGN

K, is then repeated in the same manneras at the transmitter side using the same
non-uniform repetition unit to produce a repeated information block H, in order to
interleave it randomly using the same random interleaverbeing usedat the transmitter
side [2, 4]. Each parity vector P, is then attached to its corresponding interleaved
vector of repeated information h/. to form a vector n,. An initial a priori value a,
of equal probability (i.e., zero log-likelihood) will be added to the vector n, before
entering the AG decoder.

Extrinsic information e, of same size as vector /1, is collected and computed from
the output of the AG decoder. The block of extrinsic information EF, is deinterleaved
using a random deinterleaver before being passed into the extrinsic computational
block [4]. A new extrinsic information value is computed for every information
symbolof degree d; at every iteration, and this new extrinsic information value is the
productof the other d; — | extrinsic information valuesor is the sum of those values
whenusing log-likelihood values[3].

The new a priori values block A; is set by randomly interleaving the output of
the extrinsic computational block whichis of same size as the extrinsic information
block E,. The a priori vectors a; are then read out individually in order to be added
to n,. vectors for the next decodingiteration.

After final decoding iteration of each codeword, the decoded codewordis stored
to form a block of decoded codewords. The block of decoded codewordsis then
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Fig. 5.9 BER of AG-IBTC(64, 49) versus AG-BTC(64, 49) using 16QAM over AWGN

deinterleaved using a random deinterleaver in order to remove the parity part from
each codeword. The aim of extracting the information part only from the decoded
codeword is to retain the original generated information vector k, format for com-
parison purposes[2].

The whole decoding processis illustrated in Fig.5.4. It should be noted that the
terms random interleaver and random deinterleaver implies that the randomness in
the interleaver and deinterleaveris preserved for every data block [4]. In other words
the random interleaver and random deinterleaver patterns used for one data block are
totally different from those who are used for any other data block.

5.3 BER Performance of AG Irregular Block Turbo Codes
Versus AG Block Turbo Codes

In the previous chapter, the AG-BTCs have shown better BER performance compared
to RS-BTCs. However, their complexity is relatively high due to the use of Chase-
Pyndiah’s algorithm for extracting the soft output needed for the iterative process in
the AG-BTCs. The design of AG-IBTCs proposed in this chapter could help greatly
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Fig. 5.10 BER of AG-IBTC(64, 44) versus AG-BTC(64, 44) using 16QAM over AWGN

to reduce the system complexity due to using one encoder and one decoderinstead
of two of each componentin the AG-BTC case.

The overall AG-IBTC system complexity is still less than the AG-BTC despite
requiring more iterations for the same BER performance.Ouraim is to explore this
complexity-performance trade-off and highlight the conditions under which AG-
IBTC outperforms AG-BTC while keeping the complexity at minimum.Theresults
for different modulation schemes and channel models are presented in this chapter
(the BER performancefor each iteration were intentionally not shown for the sake
of keeping the figures as neat as possible).

For the sake of fair comparison between the AG-IBTC and AG-BTC, similar data
block sizes and almost the same code rates are chosen over the samefinite field

GF (24). It is important to mention that the optimal combination of the AG-IBTC
has been obtained from simulations and selected to be used in the comparison with
AG-BTC. Using BPSK modulation over an AWGN channel as shown in Figs. 5.5
and 5.6, the coding gains in BER performance of AG-IBTC codes at BER of 10~°
are —0.35 and —0.27 dBs with coderates of 0.57 and 0.5 respectively in comparison
to AG-BTC codesof coderates 0.585 and 0.47. The losses from using the AG-IBTCs
design are negligible given the significant reduction in the system complexity.

Figures 5.7 and 5.8 show the QPSK results over an AWGNchannel. The cod-
ing gains in BER performance of AG-IBTC codes at BER of 10~° are —0.1 and
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Fig. 5.11 BER of AG-IBTC(64, 49) versus AG-BTC(64, 49) using 64QAM over AWGN

—0.08 dBs with code rates of 0.57 and 0.5 respectively in comparison to AG-BTCs
of code rates 0.585 and 0.47. Although the losses are again negligible, they are
decreasing at faster rate as the modulation index increases to QPSK.

Figures 5.9 and 5.10 show the 16QAM results over an AWGNchannel. The cod-
ing gains in BER performance of AG-IBTC codes at BER of 10~® are 0.35 and
0.4dBs with coderates of 0.57 and 0.5 respectively in comparison to AG-BTCsof
code rates 0.585 and 0.47. It can be seen that the gains are positive. Not only is
system complexity reduced but BER performance gains are also achieved. This is
consistent with the gain improvement trend for AG-BTCscodes as the modulation
index increases that was highlighted earlier.

Figures 5.11 and 5.12 show the 64QAM results over an AWGNchannel. The
coding gains in BER performance of AG-IBTC codes at BER of 10~® are 0.4 and
0.55 dBs with code rates of 0.57 and 0.5 respectively in comparison to AG-BTCs
of code rates 0.585 and 0.47. This is the point at which the highest BER perfor-
mance gain and large reduction in system complexity are achieved. Further, we can
emphasize the adaptability of AG codes in various coding design with BTC and
IBTCs.

The same coderates, finite field, and data block sizes as in the AWGNchannel

model were re-used for the Rayleigh fast fading channel. Losses from using the
AG-IBTCs design seems considerable atfirst glance. However, it can be observed
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Fig. 5.12 BER of AG-IBTC(64, 44) versus AG-BTC(64, 44) using 64QAM over AWGN

that these losses are applicable to the high EB/No region and comeasthe result of
severe fading channel conditions. Moreover, AG-IBTC hasthe benefit of substantial
reduction in system complexity whichis highly desirable in severe fading conditions.
For more detailed results, the reader is referred to Alzubi’s Ph.D. dissertation [5].

5.4 Summary

In order to overcomethe high system complexity of AG-BTCs,a solution based on the
IBTC is proposed. This approach can substantially reduce system complexity while
maintaining BER performance. Simulations were carried out in Matlab to measure
the BER performance of AG-IBTCs and compare to their equivalent AG-BTCs over
AWGNand Rayleigh fast fading channel models. The comparison is performed on
similar data block length, code rates and over the samefinite field.

For BPSK modulation, AG-IBTCresults in 0.35 and 0.27 dBs coding loss at BER
of 10~° for code rates 0.57 and 0.5 respectively over AWGNchannel. For QPSK
again the codinglossis a bit lower than the BPSK case. For both cases and despite the
coding loss, a significant system complexity reduction is obtained whichis clearly
shownin the design and construction of the AG-IBT codec. For 16QAM and 64QAM,
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the coding gains becomepositive,i.e., 0.35 and 0.6 dBs and 0.4 and 0.8 dBs for code
rates 0.57 and 0.5, respectively, at BER of 10~®. Such transition from negative to
positive confirms the fact that the AG codes in general and specifically AG-IBTCs
gain are better when the modulation index increases. Also it gives a solution to the
complexity issue of AG-BTC.
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Chapter6
Conclusions

In this book, BER performance results for AG codes publishedin the literature have
been verified through simulations. Those results allow us to draw solid conclusions
about the performance, parameterization, and characteristics of AG codes. For both
AWGNand Rayleigh fast fading channels, results have shown that the AG codes
outperform RS codes of the same data block length and rate but over different finite
fields due to the nature and construction of each kind of codes. This is a more

appropriate and fair comparison than the onesusedin theliterature.
AG codesseem to offer even higher coding gains in Rayleigh fast fading channels

than AWGNchannels. In addition, the coding gain is directly proportional to the
modulation index which suggests that they offer more resilience to adverse channel
conditions currently impeding throughput in wireless networks. Considering the
ability to achieve higher coding gains using higher modulation indexes, AG codes
seem to be a good candidate technology for next-generation wireless systems.

The approachof using AG codes as code componentsin design of BTC has shown
several benefits and challenges. One challenge wasto extract soft outputs from the
hard decision outputs of the AG codes as required by the BTC design. This has been
addressed via introducing the Chase-Pyndiah method for extracting such output. This
resulted in additional system complexity.

The benefits include higher coding gain which was measured by BER performance
at different AG-BTC coderates in comparison to an equivalent RS-BTC.In contrast
to the literature, our comparison is performed on the basis of same data block length
and coderates but different finite fields as mentionedearlier. We believe this is more

accurate as the numberof simulated bits and code rates matter more thanthefinite

field size. This also helps to keep the effect of the chosen numberof LRbits.
Using Matlab simulations, we were able to compare the BER performance using

different modulation schemes over AWGNchannel. AG-BTCshave outperformed
RS-BTCs in all simulated scenarios. The coding gains achieved increase as the
modulation index increases. The results show anattractive adaptability of AG codes
to change in code design.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, 69
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In orderto alleviate the problem of high system complexity arising from AG-BTC,
we proposethe design and construction of AG-IBTC (forthefirst time to the best of
our knowledge). Simulation results comparing AG-IBTCswith equivalent AG-BTCs
were obtained andpresentedhere.Forthefirst time, simulations have been carried out
comparing regular and irregular BTC based on AG codesusing different modulations
over AWGNand Rayleighfast fading channels. Simulation results highlightthe trade-
off between the BER performance and overall system complexity. It has been shown
that in most cases, coding gain is achieved while reducing the system complexity.
For a few cases, a negligible coding loss was observed while enjoying a significant
system complexity reduction.

Webelieve the inclusion of AG-IBTCswill offer great flexibility in codec design
that is particularly applicable to high-throughput wireless networksthat can adjust
the trade-off between system complexity and performance. For example, the newly
developed AG-IBTCcan be exploited in regular BTC applications suchaserrorcor-
rection in optical and magnetic storage devices and next generation storage devices
such as Blu-rays discs and HD-DVDs,albeit at a reduced complexity.

6.1 Open Research Issues

It has been shownthat the BER performance of AG codesis significantly improved
compared to RS codes. This is also the case when using AG-BTC. However, the
decoding complexity of AG codesisstill higher than the complexity of RS codes. The
complexity increases when AG codesare used in BTC design. A major component of
this complexity is due to the use of Chase-Pyndiah’s algorithm to extract soft output
from the hard decision outputs of AG codes. This is currently performed onthebit
level which requires a large number of computations. Using a symbol-level Chase
algorithm will help reduce the complexity of the overall system.

AG-IBTCs have been shown to offer much reduced system complexity while
maintaining the BER performance gains of AG-BTCs. Currently, there are no avail-
able algorithms to compute the optimal combinations of symbol degree and corre-
sponding fractions to generate IBTCs. Our approachis to find these combinations
from computer simulations. A possible goal for future researchis a reliable algorithm
to compute these combinations.

AG codes have shown significant coding gains improvements as a single code,
and as code components of BTCs and IBTCs. Those gains are found to be even
higher in severe fading channel conditions while being scalable with the increase
in the modulation index. Currently, there are no attempts to include AG codes in
wireless communication standards such as OFDMA-basedair interface networks

(HSPA and LTE) and IEEE WLANs standards such as 802.11g and 802.11n. The
reason for this could be due to their high codec complexity in the past. In this
book,several techniques for reducing the system complexity are presented and hence
further research could be carried out into extending current results to OFDMAand
IEEE standards based wireless systems.


