Error-Correction Coding for Digital Communications

Applications of Communications Theory

 Series Editor: R. W. Lucky, Bell LaboratoriesINTRODUCTION TO COMMUNICATION SCIENCE AND SYSTEMS
John R. Pierce and Edward C. Posner
OPTICAL FIBER TRANSMISSION SYSTEMS
Stewart D. Personick
TELECOMMUNICATIONS SWITCHING
J. Gordon Pearce
ERROR-CORRECTION CODING FOR DIGITAL COMMUNICATIONS
George C. Clark, Jr., and J. Bibb Cain

Erro Codi

George and J. Bibb

Harris Corporation Melbourne, Florid

Error-Correction Coding for Digital Communications

George C. Clark, Jr.
and
J. Bibb Cain

Harris Corporation
Melbourne, Florida

[^0]
Library of Congress Cataloging in Publication Data

Clark, George C. (George Cyril), 1938-
Error-correction coding for digital communications.
Bibliography: p.
Includes index.

1. Data transmission systems. 2. Error-correcting codes (Information theory). I. Cain, J. Bibb. II. Title.
TK5102.5.C52 621.38'0413
ISBN 0-306-40615-2

Preface

Error-correction co new communication increase the energy also providing inn problems. Among caused by filtering certain frequency m coding provided by merous articles have deficiencies. First. tl algorithm into actua that is available is sk required to evaluate countered in practict reports.

This book is air for the design engine and for the commu equipment into a sy graduate text for an

The book uses classical theorem/pr ever possible heuristi by drawing analogi mathematical rigor

No part of this book may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording, or otherwise, without written permission fin in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher
Printed in the United States of America

© 1981 Plenum Press, New York

A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013
All rights reserved
standing. coding is a impossible task to a at all. The assumptio
differ in two positions, etc. As in the simple example given previously, there will almost always be some patterns that are left over after assigning all those that differ in t or fewer places (thus accounting for the inequality),

At this point we are in a position to relate the amount of redundancy in a code to the number of errors that are correctable. First observe that there are 2^{n} possible sequences. Each column of the decoding table contains N_{e} of these sequences so that the number of code words, N_{c}, must obey the inequality

$$
\begin{equation*}
N_{c} \leq 2^{n} /\left[1+n+\binom{n}{2}+\cdots+\binom{n}{t}\right] \tag{1-3}
\end{equation*}
$$

This is called a Hamming bound or "sphere-packing" bound. The equality in this bound can be achieved only for so-called perfect codes. These are codes which can correct all patterns of t or fewer errors and no others. There are only a small number of perfect codes which have been found and consequently the equality in (1-3) is almost never achieved.

At the encoder we envision a process by which a k-symbol information sequence is mapped into an n-symbol code sequence. Although the terminology is usually restricted to the so-called linear codes (to be discussed), we shall refer to any such mapping as an (n, k) code. Since the k-symbol sequence can take on 2^{k} distinct values, inequality (1-3) can be written

$$
\begin{equation*}
2^{k} \leq 2^{n} /\left[1+n+\binom{n}{2}+\cdots+\binom{n}{t}\right] \tag{1-4}
\end{equation*}
$$

A measure of the efficiency implied by a particular code choice is given by the ratio

$$
\begin{equation*}
R=k / n \tag{1-5}
\end{equation*}
$$

where R is defined as the code rate. The fraction of transmitted symbols that are redundant is $1-R$.

The mapping implied by the encoder can be described by a look-up table. For example, the four-word code discussed previously is described in Table 1-2. The portion of the code sequence contained between the dashed lines is identical to the input sequence. Thus, each code sequence is easily and uniquely related to the input. Not all block codes exhibit this property. Those which do are referred to as systematic codes. For systematic codes, the concept of redundant digits becomes very clear and in Table 1-2 consists of the digits in positions 1,4 , and 5 . Conversely, codes which do not exhibit this property are called nonsystematic codes.

Many gooc permit the corr remarkable imp to generate and relatively straigł of length 40 that ing up to four reveals that this than 10^{-4}. If this of increasing the going to a some averaging. In eith Both options, ho tives.

Before proc practical import for many years. scheme for corre (in this case t / n i made arbitrarily Unfortunately, th procedures encou ratio t / n at the e (or equivalently, the relative numb vanishingly small was given by Just construct a class scribed above) an the authors' knov real communicatic

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

[^0]: PLENUM PRESS • NEW YORK AND LONDON

