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Preface

The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 of-
fered communication engineers the possibility of reducing error rates on noisy
channels to negligible levels without sacrificing data rates. The primary obstacle
to the practical use of this theorem has been the equipment complexity and the
computation time required to decode the noisy received data.

This monograph presents a technique for achieving high data rates and neg-
ligible error probabilities on noisy channels with a reasonable amount of equip-
ment. The advantages and disadvantages ofthis technique over other techniques
for the same purpose are neither simple nor clear-cut, and depend primarily
upon the channel and the type of service required. More important than the
particular technique, however, is the hope that the concepts here will lead to
new and better coding procedures.

The chapters of the monograph are arranged in such a way that with the
exception of Chapter 5 each chapter can be read independently of the others.
Chapter 1 sets the backgroundof the study, summarizes the results, and briefly
compares low-density coding with other coding schemes. Chapter 2 analyzes
the distances between code words in low-density codes and Chapter 3 applies
these results to the problem of bounding the probability of decoding error that
can be achieved for these codes on a broad class of binary-input channels. The
results of Chapter 3 can be immediately applied to any code or class of codes
for which the distance properties can be bounded. Chapter 4 presents a simple
decoding algorithm for these codes and analyzes the resulting error probabil-
ity. Chapter 5 briefly extends all the previous results to multi-input channels,
and Chapter 6 presents the results of computer simulation of the low-density
decoding algorithm.

The work reported here is an expanded and revised version of my doctoral
dissertation, completed in 1960 in the Department of Electrical Engineering,
M.LT. I am grateful to my thesis supervisor, Professor Peter Elias, and to
mythesis readers, Professors Robert M. Fano and John M. Wozencraft, for
assistance and encouragement both during the course of the thesis andlater.

This research was made possible in part by support extended by the Research
Laboratory of Electronics of the Massachusetts Institute of Technology, which is
supported in part by the U.S. Army, the Air Force Office of Scientific Research,
and the Office of Naval Research; additional support was received through the
National Science Foundation (Grant G-16526) and the National Institute of
Health (Grant MH-04737-03).

Muchof Chapter 4 is reprinted with permission of the editors from anarticle
by the author in the Transactions of the LR.E., IT-9, pages 21 to 28.

The experimental results in Chapter 6 were obtained in part through the
support of the Rome Air Development Center and in part through the support
of the M.LT. Computation Center.

Cambridge, Mass.
July, 1963 Robert G. Gallager
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1 Introduction

1.1 Coding for Digital Data Transmission

The need forefficient and reliable digital data communication systerns has been
rising rapidly in recent years. This need has been brought on by a variety of
reasons, among them being the increase in automatic dataprocessing equipment
and the increased need for long range communication. Attempts to develop data
systems through the use of conventional modulation and voice transmission
techniques have generally resulted in systems with relatively low date rates and
high error probabilities.

A more fundamental approach to the problemsofefficiency and reliability
in communication systems is contained in the Noisy Channel Coding theorem
developed by C. E. Shannon[15, 4] in 1948. In order to understand the meaning
of this theorem, consider Figure 1.1. The source produces binary digits, or
binits, at some fixed time rate R,. The encoderis a device that performs data 

Source R Encoder . Decoder pro-
Noisybinits per operates on v Channel duces replica of

second binits at a time source binits 
Figure 1.1: Block diagram of a communication system.

processing, modulation, and anything else that might be necessary to prepare
the data for transmission over the channel. We shall assume, however, that

the encoder separates the source sequence into blocks of v binits and operates
on only one block at a time. The encoder output is then transmitted over the
channel and changed by somesort of random disturbanceor noise. The decoder
processes the channel output and produces a delayedreplica of the source binits.
The coding theoremstates that for a large variety of channel models, encoders
and decoders exist such that the probability of the decoder reproducing a source
binit in error P, is bounded by

e~[Ei(Re)+0Y)] <p, < @-VE(Re)

The functions E(R;) and E,(R,) depend upon the channel but not upon v; they
are positive when R,; = 0, and decrease with R, until they become 0 at some
time rate C;, known as the channel capacity. The exact nature of these functions
and the particular class of channels for which this theorem has been proved need
not concern us here. The important result is that the coding constraint length
v is a fundamental parameter of a communication system. If a channel is to be
used efficiently, that is with R, close to C;, then v must be made correspondingly
large to achieve a satisfactory error probability.

The obvious response of an engineer to such a theorem is: “Splendid, but how
does one build encoders and decoders that behave in this way whenv is large?”
lt is rather sobering to observe that if an encoder stores a waveform or code



word for each possible block of v binits, then the storage requirement must be
proportional to 2”, which is obviously impractical whenv is large. Fortunately,
Elias [3] and Reiffen [14] have proved that for a wide variety of channel models,
the results of the Noisy Channel Coding theorem can be achieved with little
equipment complexity at the encoder by the use of parity-check coding. This
will be described in more detail later.

Unfortunately, the problem of decoding simply but effectively when v is
large appears to be much moredifficult than the problem of encoding. Enough
approaches to this problem have been developed to assure one that the Cod-
ing theorem has engineering importance. On the other hand these approaches
have not been carried far enough for the design of an efficient, reliable data
communication system to become a matter of routine engineering.

This monograph contains a detailed study of one of the three or four most
promising approaches to simple decoding for long constraint length codes. The
purpose of publishing this work is primarily to show how such a coding and
decoding scheme would work and where it might be useful. Also, naturally,
it is hoped that this will stimulate further research on the subject. Further
mathematical analysis will probably be fruitless, but there are many interesting
modifications of the scheme that might be made and much experimental work
that should be done.

In order the prove mathematically some results about. low-density parity-
check codes, we shall assume that the codes are to be used on a somewhat
restricted and idealized class of channels. It is obvious that results using such
channel models can be applied only to channels that closely approximate the
model. However, when studying the probability of decoding error, we are in-
terested primarily in the extremely atypical events that cause errors. It is not
easy to find models that approximate both these atypical events and typical
events. Consequently the analysis of codes on idealized channels can provide
onlylimited insight about real channels, and such insight should be used with
caution.

The channel models to be considered here are called symmetric binary-input
channels. By this we mean a time-discrete channel for which the input is a
sequenceof the binary digits 0 and 1 and the output is a corresponding sequence
of letters from a discrete or continuous alphabet. The channel is memoryless in
the sense that given the input at a given time, the output at the corresponding
time is statistically independentof all other inputs and outputs. The symmetry
requirementwill be defined precisely in Chapter 3, but roughlyit means that the
outputs can be paired in such a way that the probability of one output given an
input is the same as that of the other output of the pair given the other input.
The binary symmetric channel, abbreviated BSC, is a memberofthis class of
channels in which there are only two output symbols, one corresponding to each
input. The BSC can beentirely specified by the probability of a crossover from
one input to the other output.

If a symmetric binary-input channel were to be used without coding, a se-
quenceof binary digits would be transmitted through the channel and the re-
ceiver would guess the transmitted symbols one at a time from the received



symbols. If coding were to be used, however, the coder would first take se-
quences of binary digits carrying the information from the source and would
map these sequences into longer redundant sequences, called code words, for
transmission over the channel. We define the rate R of such codes to be the

ratio of the length of the information sequence to the length of the code word
sequence. If the code words are of length n, then there are 2"F possible se-
quences from the source that are mapped into n-length code words. Thus only
a fraction 2-"(!-) of the 2” different, n-length sequences can be used as code
words.

At the receiver, the decoder, with its knowledge of which sequences are code
words, can separate the transmitted n-length code word from the channel noise.
Thus the code word is mapped back into the nF information digits. Many
decoding schemesfind the transmitted code word byfirst. making a decision on
each received digit and then using a knowledge of the code words to correct the
errors. This intermediate decision, however, destroys a considerable amount of
information about the transmitted message, as discussed in detail for several
channels in Reference[1]. The decoding scheme to be describedhere avoids this
intermediate decision and operates directly with the a posteriori probabilities
of the input symbols conditional on the corresponding received symbols.

The codes to be discussed here are special examples of parity-check codes'.
The code words of a parity-check code are formed by combining a block of
binary-information digits with a block of check digits. Each check digit is the
modulo 2 sum? of a pre-specified set of information digits. These formation rules
for the check digits can be represented conveniently by a parity-check matrix,
as in Figure 1.2. This matrix represents a set of linear homogeneous modulo 2
equations called parity-check equations, and the set of code wordsis the set of
solutions of these equations. Wecall the set of digits contained in a parity-check
equation a parity-check set. For example, the first parity-check set in Figure 1.2
is the set ofdigits (1, 2,3, 5).

HZ, %@2 83 qe FR Le LF

te =2, +te+ 73

tg = 2, + fo + £4
B7 = 2, + 2X3 + 24 

Figure 1.2; Example of a parity-check matrix.

Theuse of-parity check codes makes coding(as distinguished from decoding)
relatively simple to implement. Also, as Elias [3] has shown,if a typical parity-
check code of long block length is used on a BSC,andif the code rate is between
critical rate and channel capacity, then the probability of decoding error will be
almost as small as that for the best possible code of that rate and block length.

1For a more detailed discussion of parity-check codes, see Peterson [12].
2The modulo 2 sum is 1 if the ordinary sum is odd and 0 if the ordinary sum is even.



Unfortunately, the decoding of parity-check codes is not inherently simple
to implement; thus we must look for special classes of parity-check codes, such
as described in Section 1.2, for which reasonable decoding procedures exist.

1.2 Low-Density Parity-Check Codes

Low-density parity-check codesare codes specified by a matrix containing mostly
0’s and relatively few 1’s. In particular, an (n, j,k) low-density code is a codeof
block length n with a matrix like that of Figure 2.1, where each column contains
a small fixed number j of 1’s and each row contains a small fixed number k of
l’s. Note that this type of matrix does not have the check digits appearing
in diagonal form as do those in Figure 1.2. However, for coding purposes, the
equations represented by these matrices can always be solved to give the check
digits as explicit sums of information digits.

Low density codes are not optimum in the somewhatartificial sense of min-
imizing the probability of decoding error for a given block length, and it can
be shown that the maximum rate at. which they can be used is bounded below
channel capacity. However, the existence of a simple decoding scheme more
than compensates for these disadvantages.

1.3 Summary of Results

An ensemble of (n, j,k) codes will be formed in Chapter 2, and this ensemble
will be used to analyze the distance properties of (n, j,k) codes. The distance
between two wordsin a code is simply the numberof digits in which they differ.
Clearly an important parameter in a codeis the set of distances separating one
code word fromall the other code words. In a parity-check code, it can be shown
that all code words have the same setof distances to the other code words[12].
Thus the distance properties for the ensemble can be summarized by the typical
number of code words at each distance from the all-zero code word. It is found

that the typical (n, j,k) code for j > 3 has a minimum distance that increases
linearly with the block length for j and & constant. Figure 2.4 plots the ratio
of minimum distance to block length for several values of j and k and compares
the ratio with the same ratio for ordinary parity-check codes. The (n,j,k)
codes with j = 2 exhibit markedly different behavior, and it is shown that the
minimum distance of an (n, 2, k) code can increase at most logarithmically with
the block length.

In Chapter 3, a general upper bound on the probability of decodingerror for
symmetric binary-input channels with maximum-likelihood decoding is derived
for both individual codes and for arbitrary ensembles of codes. The boundis
a function of the code only through its distance properties. The assumption of
maximum-likelihood decoding is made partly for analytic convenience and partly
so as to be able to evaluate codes independently of their decoding algorithms.
Anypractical decoding algorithm, such as that described in Chapter 4, involves
a trade-off between error probability and simplicity; the maximum-likelihood



decoder minimizes the error probability but is totally impractical if the block
length is large.

It is shown in Chapter 3 that if the distance properties of the code are
exponentially related to the block length, and if the code rate is sufficiently low,
then the bound to P(e) is an exponentially decreasing function of the block
length. For the appropriate ensemble of codes, these bounds reduce to the
usual random coding bounds[3, 4].

For the special case of the binary symmetric channel, a particularly simple
bound to P(e) is found; this is used to show that over a range of channel
crossover probabilities, a typical low-density code has the same error behavior
as the optimum code of a slightly higher rate. Figure 3.5 illustrates this loss of
effective rate associated with low-density codes.

In Chapter 4, two decoding schemesare described. In thefirst, which is par-
ticularly simple, the decoderfirst makes a decision on each digit, then computes
the parity checks and changes any digit that is contained in more than some
fixed number of unsatisfied parity-check equations. The process is repeated,
each time using the changed digits, until the sequence is decoded. The second
decoding schemeis based on a procedure for computing the conditional proba-
bility that an input symbolis 1; this is conditioned on all the received symbols
that are in any of the parity-check sets containing the digit in question. Once
again, the procedureis iterated until the sequence is decoded. The computation
per digit per iteration in each scheme is independent of the code length. The
probabilistic, or second scheme,entails slightly more computation than the first
scheme, but decodes with a lower error probability.

A mathematical analysis of the probability of decoding error using proba-
bilistic decoding is difficult because of statistical dependencies. However, for a
BSC with sufficiently small cross-over probabilities and for codes with j > 4,
a very weak upper bound the probability of error is derived that decreases
exponentially with a root of the code length. Figure 3.5 plots cross-over proba-
bilities for which the probability of decoding error is guaranteed to approach 0
with increasing code length. It is hypothesized that the probability of decoding
error actually decreases exponentially with block length, while the number of
iterations necessary to decode increases logarithmically.

Chapter 5 extends all the major results of Chapters 2, 3, and 4 to non-
binary low-density parity-check codes. Although the theory generalizes in a
very natural way, the expressions for minimum distance, error probability, and
probabilistic decoding performanceerror are sufficiently complicated thatlittle
insight is gained into the advantagesor disadvantages of a multilevel system over
a binary system. Some experimental work would be helpful here in evaluating
these codes.

Some experimental results for binary low-density codes are presented in
Chapter 6. An IBM 7090 computer was used to simulate both probabilistic
decoding and the noise generated by several different types of channels. Due
to limitation on computer time, the only situations investigated were those in
which the channel was sufficiently noisy to yield a probability of decoding er-
ror greater than 107‘. The most spectacular data from these experiments are



given in Figure 6.8, which emphasizes the advantages of a decoding scheme that
operates from a likelihood receiver instead of a decision receiver.

1.4 Comparison with Other Schemes

Some other coding and decoding schemes that appear extremely promising for
achieving low error probabilities and high data rates at reasonable cost are the
following: first, convolutional codes [3] with sequential decoding as developed
by Wozencraft [17], Fano [5], and Reiffen [14]; second, convolutional codes with
Massey’s threshold decoding [10]; and third, the Bose-Chaudhuricodes[2] with
the decoding schemes developed by Peterson [12] and Zierler and Gorenstein [18].

It has been shown byFano[5] that for arbitrary discrete memoryless chan-
nels, sequential decoding has a probability of decoding error that is upper
bounded by a function of the form e~°". Here nis the constraint length of
the code andais a function of both the channel and the code; a is positive for
rates below channel capacity C. Fano also shows that for rates below a certain
quantity called Reomp, where Reomp < C, the average amount of computation
in decodinga digit is bounded by a quantity independent of constraint length.

An experimental sequential decoder has been built at Lincoln Laboratories,
Lexington, Massachusetts [11]. By using this decoderin a system with a feed-
back link and an appropriately designed modulator and demodulator, reliable
transmission has been achieved experimentally [9] over a telephone circuit at
about 7500 bits per second rather than the 1200 or 2400 bits per second possi-
ble without coding.

The two principal weaknesses of sequential decoding are as follows: First,
the amount of computation required per digit is a randomvariable, and this
creates a waiting line problem at the decoder; second, if the decoder once makes
an error, a large block of errors can be made before the decoder gets back on
the proper track. If a feedback link is available, these problemsare not serious,
but considerably more study is required for cases in which no feedback exists.

Threshold decoding is the simplest scheme to implement that is discussed
here;it involves only shift registers, a few binary adders, and a thresholddevice.
It is most effective at relatively short constraint lengths, and has a somewhat
higher error probabilityand less flexibility than sequential decoding.

The computation per digit associated with the Bose-Chaudhuri codes on the
BSC increases roughly as the cube of the block length but does not fluctuate
widely. The decoding scheme guaranteescorrection of all combinationsof up to
some fixed number of errors and corrects nothing beyond. For moderately long
block lengths, this restriction in the decoding procedure causes a large increase
in P,. No way is known to make use of the a posteriori probabilities at the
output of more general binary input channels. This inability to make use of a
posteriori probabilities appears to be a characteristic limitation of algebraic as
opposed to probabilistic decoding techniques.

The computation per digit associated with low-density parity-check codes
appears to increase at most logarithmically with block length and notto fluctu-
ate widely with the noise. The probability of decoding error is unknown,butis



believed to decrease exponentially with block length at a reasonable rate. The
ability to decode the digits of a block in parallel makes it possible to handle
higher data rates than is possible with other schemes.

For many channels with memory, retaining the a posteriori probabilities from
the channel makes it practically unnecessary to take account of the memory in
any other way. For instance, on a fading channel when the fade persists for
several baud lengths, the a posteriori probabilities will indicate the presence of
a fade. If this channel were used as a BSC however, it would be necessary for
the decoder to account for the fact that bursts of errors are more probable than
isolated errors. Then, using a posteriori probabilities gives low-density decoding
and sequential decoding a great flexibility in handling channels with dependent,
noise. For channels in which the noise is rigidly constrained to occur in short,
severe bursts, on the other hand, there is a particularly simple procedure for
decoding the Bose-Chaudhuri codes [12].

Whentransmitting over channels subject to long fades or long noise bursts,
it is often impractical to correct errors in these noisy periods. In such casesit is
advantageous to use a combination of error correction anderror detection with
feedback and retransmission[16]. All of the coding and decoding schemes being
consideredherefit naturally into such a system, but in cases wherelittle or no
error correction is attempted, low-density codes appear at a disadvantage.

In conclusion, all these schemes have their own advantages, and clearly no
scheme is optimum for all communication situations. It appears that enough
coding and decoding alternatives now exist for serious consideration of the use
of coding on particular channels.

10



2 Distance Functions

The distance function of a parity check-code N(é) is defined as the number of
code words in the code of weight ¢ From the group properties of a parity-
check code, it easily follows [12] that N(£) is also the number of code words
at distance @ from any given code word. The minimum distance D of a code
is then defined as the smallest value of £ > 0 for which N(é) # 0. Clearly, in
a code of given block length n and rate R it is desirable to make D as large
as possible and to make N(é) as small as possible for those ¢ just larger than
D. However, the next chapter, which discusses bounding the probability of
decoding error for symmetric binary-input channels, will make the exact effect
of N(é) on error-correcting capability clearer.

For a parity-check code of long block length it is usually impractical to
calculate exactly the distance function or even the minimum distance because
of the enormous number of code words involved. It is often simpler to analyze the
average distance function of an ensemble of codes;the statistics of an ensemble
permit one to average over quantities that are not tractable in individual codes.
From the ensemble average, one can then makestatistical statements about the
member codes.

2.1 Equiprobable Ensemble of Parity-Check Codes

This chapter will be concerned primarily with the distance functions of low-
density parity-check codes, but for comparison purposes, the average distance
function of another ensemble of parity-check codes will be derived first. Since a
parity-check code is completely specified by a parity check matrix, an ensemble
of parity-check codes maybe defined in terms of an ensemble of parity-check
matrices. The equiprobable ensemble of parity-check codes of rate R and block
length nwill be defined as the ensemble in which the n(1—) by n parity-check
matrix is filled with statistically independent equiprobable binary digits. This
is essentially the same ensemble as that considered by Elias [3] in his random
coding boundsfor parity-check codes; the minordifference is that codes in this
ensemble may have a rate slightly higher than R, since the rows of a matrix in
this ensemble are not necessarily independent over the modulo 2 field.

Theorem 2.1. Let N(@) be the average number of code words of weight € in a
code averaged over the equiprobable ensemble of parity-check codes of length n
and rate R. Then for € > 0,

— _i

N(@) (‘) 2-n0-B) < [2enX(1—A)] 2 expn[H(A)-(1-—R)In2] (2.1)
where

A= ale
 1 1

H(A) =AIny + (1—d)Inj—

11



Proof. Let. P(£) be the probability of the set of codes for which someparticular
sequence of weight £ is a code word. Stated differently, P(é) is the probability
that a particular sequence of weight @ will be a code word in a code chosen at
random from the ensemble. Since the all-zero code word is a code word in any

parity-check code, P(é) = 1 for = 0. For é # 0, a particular parity-check will
check with probability 5 on the last position in which the @ weight sequence has
a one. This makes the probability } that a parity-check is satisfied regardless
whetherthefirst £— 1 ones were checked an even or an odd numberof times. A

sequence will be a codeif andonlyif it satisfies all the n(1 — R) parity checks,
so that

P() =2-"0-*); for 240

The probability P(é) can also be interpreted as an expectation of a random
variable that is 1 if the sequence is a code word and 0 otherwise. Nowwe observe
that there are (7) sequences of weight @ and that the expected number of code
words among these sequencesis the sum of the expectations that the individual
sequences are code words. Thus

Nb = (7) g-n(-R) (2.2)
We nowbound (7) by the Stirling approximation:
  , « 1 1 n 1 1=n eee) S [7S "exp(—n+—) (2.Jinn exp(—n+ 12n Seon) = (") =in exp( Ati) ue

It follows after some manipulation that for An = £

1 L 4 1ATOP(O = wacew) < (") < JimnyPd)
(2.4)

where

H(A) = —AlnA — (1 — A) In(1 —-))

Combining Equations (2.4) and (2.2), we get the statement of the theorem.
Oo

Next we observe that over the equiprobable ensemble of parity-check codes,
the minimum distance of the individual codes is a random variable whose dis-
tribution function can be bounded by the following theorem.

Theorem 2.2. Over the equiprobable ensemble of parity-check codes of length n
and rate R, the minimum-distance distribution function Pr(D < dn) is bounded
by both the following inequalities for 6 < 4 and 6n andinteger:

—6

Pr(D < dn) <a5expn[H (6) — (1 — R)In2] (2.5)
Pr(D < én) <1

12



Proof. It was shown in Theorem 2.1 that the probability that a nonzero sequence
is a code word over the ensemble of codes is 2~"(!-®), The probability that any
sequence of weight né or less is a code word is certainly less than the sum of
the probabilities that the individual sequences are code words. Thus,

né

Pr(D < nd) < yo (7)gah) (2.6)#1

 nd . _» (7) ~ (*,) [b+ * EEStif=1

Bounding this by a geometric series, we get

bs (7) < (r)aa (2.7)
Bounding Equation (2.7) by (2.4) and substituting into Equation (2.6), we get
the statement of the theorem. Oo

As n gets larger, this bound to Pr(D < én) as a function of 6 approaches
a step function with the step at that dy) < } for which H(6j) = (1 — R)In2.
Figure 2.4 plots dp as a function of rate. This result is closely related to the
Gilbert bound on minimum distance [6]. The asymptotic form of the Gilbert
boundfor large n states that there exists a code for which D > ndp. Theorem2.2
states that for any « > 0, the probability of the set of parity-check codes for
which D < n(ég9 —€) approaches 0 exponentially with n.

2.2 Distance Properties of Low-Density Codes

In this section an ensemble of low-density parity-check codes will be defined, and
theorems similar to Theorems 2.1 and 2.2 will be proved. Then a new ensemble
will be formed by expurgating those codes that have small minimum distances.
This expurgated ensemblewill be used in the next chapter to derive bounds on
the probability of decoding error for various channels.

Define an (n, j,k) parity-check matrix as a matrix of n columns that has j
ones in each column, & ones in each row, and zeros elsewhere. It follows from
this definition that an (n, j,k) parity-check matrix has nj/k rows and thus a rate
R>1-— j/k. In order to construct an ensemble of (n, j,k) matrices, consider
first the special (n,j,k) matrix in Figure 2.1, for which n = 20, 7 = 3, and
k=4,

This matrix is divided into j submatrices, each containing a single 1 in
each column. The first of these submatrices containsall its 1’s in descending
order; that is, the it* row contains l’s in columns (i — 1)k +1 to ik. The
other submatrices are merely column permutations ofthe first. We define the
ensemble of (n, 7, k) codes as the ensemble resulting from random permutations
of the columnsof each of the bottom 7 — 1 submatrices of a matrix such as in

13
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Figure 2.1: Example of a low-density code matrix for n = 20, 7 = 3, and k = 4.

Figure 2.1 with equal probability assigned to each permutation. This definition
is somewhat arbitrary and is made for mathematical convenience. In fact such
an ensemble does not include all (n,j,k) codes as just defined. Also, at least
(j —1) rows in each matrix of the ensemble are linearly dependent. This simply
means that the codes have a slightly higher information rate than the matrix
indicates.

Beforefinding the average distance function and the minimum-distance dis-
tribution function for these ensembles of codes, we need the following theorem.

Theorem 2.3. For each code in an (n,j,k) ensemble, the number N,(€) of
sequences of weight € that satisfies any one of j blocks of n/k parity-checks is
bounded by

n n

N,[Fn'(s)] < exp [a(s) — su!(s) + (1) 1nd] (2.8)
where s is an arbitrary parameter, u(s) is defined by

 

u(s) =In27* [a +e+(1-e°)| (2.9)

and ‘inip(s) = ue
Discussion. This theorem relates £ and N,(é) by expression both as functions
of the parameter s. Figure 2.2 sketches @/n and [In Nj (é)|/n as functions of s.

Proof. For any code in the ensemble, and for any one of the j blocks of n/k
parity checks, the n/k parity-check sets within a block are mutually exclusive
and exhaust all the digits. Consider the set of all sequences of k binits that
contain an even numberofones, and construct an ensemble from these sequences
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Figure 2.2: The functions ¢/n and [In Ni (@)]/n as parametric functionsof s.

by assigning the same probability to each. The total number of sequences in
the ensemble is 2*—', and the probability of a sequence containing i ones (i
even) is (*)2~*+!. The moment-generating function for the numberof ones in
a sequence is thus

g(s)= D> (Fattest (2.10)i even

or

g(s) = 2-*[(1 + e%)* + (1 —e*)*] (2.11)

To show that Equations (2.10) and (2.11) are equivalent, use the binomial ex-
pansion on Equation (2.11) and observe that odd terms cancel.

For each of the n/k parity-check sets, independently choose a sequence from
the previous ensemble and use that sequence as the binits in that parity-check
set. This procedure defines an ensemble of equiprobable events in which the
events are the n-length sequences satisfying the n/k parity checks. The number
of ones in an n-length sequence is the sum of the numberofones in the individual
parity-check sets, and thus the sum of n/k independent random variables each
having the moment-generating function g(s) in Equation (2.11). Consequently,
the moment generating function for the numberof ones in an n-length sequence
is [g(s)|"/*. This is now used to bound the probability Q(é) in this ensemble
that a sequence has @ ones. By definition,

[a(s)]}& =}exp(sQ(0) (2.12)
é=0

> exp(sf)Q(4); for any s and ¢ (2.13)
From Equation (2.9) and Equation (2.11), (s) = Ing(s), so that

nh

Q(6 < exp[En(s) — s¢|
Finally, Ni (@) equals Q(£) times the number of sequencesin the ensemble. Since
there are 2*~! sequences in the k-length ensemble, there are 2"(*—!)/* sequences
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in the n-length ensemble, so that

Ni(0) < exp|>u(s) ip zk —1)In2— st] (2.14)
When weset the derivative of the exponent in Equation (2.14) equal to 0, we

get £ = (n/k)u'(s), and when we substitute this value of £ in Equation (2.14),
Equation (2.8) results, thereby proving the theorem. O

It is shown in Reference [4] that setting @ = (n/k)u'(s) actually minimizes
the exponent, thereby yielding the best bound; however, the theorem is true
regardless of the minimal characterof the exponent. Althoughit is not necessary
in the proof, it can be shown,using “tilted” probabilities [4] and a central limit
theorem [7], that asymptotically for large n,

7 2 Th

N [FH'(s)| + Junie) exp T [u(s) — su'(s) + (k — 1) In2] (2.15)
Theorem 2.3 can now be used to find the probability P(£) of the set of

codes for which some particular sequence of weight £ is a code word. Since
all permutations of a code are equally likely, P(¢) is clearly independent of
the particular ¢-weight sequence chosen. If we choose an é-weight sequence at
random, then for any codein the ensemble the probability is N,(é)/(%) that the
é-weight sequence chosenwill satisfy any particular block of n/k parity checks.
Since each of the j blocks of parity checks is chosen independently,

j

P(é) = iy(6) (2.16)
4)

The distance properties and the minimum-distance distribution function can
now be derived in terms of P(é) in the same way as they were derived for the
ensembleof all parity-check codes in Equations (2.1) and (2.5).

 

Nu < (7) P00 = (7) wild)! (2.17)
Pr(D < nd) < (") P(t) = > (7) reN (2) (2.18)

Note that in the low-density ensemble only sequences of even weight may be
code words. Using Equations (2.4) and (2.14), we get

Njx(Q < C(A,n) exp—nBjx(A); where A = < (2.19)
By (A) = (9 — I) AA) - Z[n(s) +(k—-1)In2] +jsad (2.20)

j-1 eo '

C(A,n) = [2mnX(1 — d)] = eXP Tp d where A = vt) (2.21)1 .
md(1 — A)?
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Substituting Equation (2.19) into Equation (2.18), we get
nd

Pr(D < nd) < » C(A,n) exp —n.Bj,(A) (2.22)
@=2

For n large, the summations in Equations (2.19) and (2.22) are governed prin-
cipally by the behavior of Bjx(A); Bjx(A) also appears in the bounds for prob-
ability of decoding error in the next chapter. Unfortunately, it is not easy to
analyze B;,(A) since it is given in termsof s, which is in turn an implicit func-
tion of \. It is shown in Appendix A that for j > 3, Bj«(A) has the behavior
shown in Figure 2.3. It is 0 at A = 0; rises with an initial infinite slope; has a
maximum; and then decreases, crossing the axis at some A = 6;,, and remains
negative for A > djx.

Bjx(A)

Figure 2.3: Sketch of the function Bj, (A).

It is clear that for any 6 > 6;, the summation in Equation (2.22) becomes
unbounded, but the minimum-distance distribution functionis still bounded by
1. For 6 < dq, the biggest terms in the summation are for A close to 0 and 2
close to 6j;,. The following theorem, which is proved in Appendix A, states this
precisely.

Theorem 2.4. For an (n,j,k) ensemble of codes, the minimum-distance dis-
tribution function is bounded by both

k-1

Pr(D < nd) < Sine
1

4 0(>) 4+ nC(nd, n) exp —nB;(8) (2.23)
and

Pr(D < 1nd) <1

where C’ and B are defined in Equations (2.20) and (2.21) and O(1/n?~*) is a
function approaching zero with n faster than 1/n/ ro

The first term in Equation (2.23) comes from code words of weight 2; the
next term comes from words of small weights greater than 2; and the last term
comes from wordsof large weight. As n gets larger, this bound to the minimum-
distance distribution function tends toward small step at 6 = 2/n, and a large
step at 6 = 6j,, with the amplitude of the small step decreasing as nite,
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The expression 4j, will be called the typical minimum-distance ratio of an
(n,j,k) ensemble. For large n, most codes in the ensemble have a minimum
distance either close to or greater than 6,,; since 4;, is independent of block
length, the minimum distance typical of most codes in the ensemble increases
linearly with the block length. Figure 2.4 plots 6j, as a function of rate for
several values of j and k and compares them with the typical minimum distance
ratio of the equiprobable ensemble of codes. It can be seen that as j and k
increases, 6;, for the (n,j,k) codes quickly approaches 69 for the equiprobable
ensemble of codes. This is proved in Theorem A.3 of Appendix A.

0.8  
 

do, Equiprobable ensemble
of parity-check codes

0 ol 0.2 0.3 0.4 0.5

éj, = Minimum distance ratio

Figure 2.4: Ratio of minimum distance to block length for typical long (n, j,k)
codes.

Here we see why a minimum-distance distribution function was derived be-
fore any results were obtained about probability of decoding error. If two words
in a group code differ only in two digits, then the probability of a decoding error
is lower bounded by the probability of receiving those twodigits incorrectly; this
is independent of code length. Thus, over the whole ensemble, the probability
of decoding error as n + 00 is proportional to 1/n/~?, the probability of codes
of minimum distance 2. Thus a very small number of poor codes dominates the
probability of decoding error over the ensemble.

In order to determine the probability of error behavior of typical (n, J, k)
codes with minimumdistances in the order of nd;,, we shall modify the (n, 7, k)
ensemble. Remove the half of the codes with smallest minimum distances from
an (n,j,k) ensemble and double the probability of each code in the remaining
half. The resulting ensemble will be called an expurgated(n, j,k) ensemble and
will be used in Chapter 3 to derive bounds on the probability of decoding error
for (n,j,&) codes.

Let 6,;, be the minimum distance of the expurgated ensemble. Then dnjx is
lower bounded by that value of 6 for which the right hand side of Equation (2.23)
is one-half. With increasing n, the bound of Equation (2.23) approaches a
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step function at 4jx, so that 5,3 is asymptotically bounded by 4;,. For the
expurgated low-density ensemble, we now have

——{<2C(A,n)exp—nBye(A); A> OndeNn{ Se te nee - my
Similarly, we can expurgate the random ensemble of parity-check codes to

get, from Equations (2.1) and (2.5)

(2.24)

1

NO? < 2(2rA(1—A)] 2 expn[H(A) —(1-R)In2]; A> dq (2.25)

where 6 satisfies H(ég) = (1 — R)In2, andnis large enough so that

i: 1— do

1 — 260V2ando

Before using this modified (n, j,k) ensemble to derive bounds to the prob-
ability of decoding error, we shall consider the special case of 7 = 2, which
corresponds to ensembles in which each digit is contained in exactly two parity-
check sets.

 
= bale

Theorem 2.5. Let a parity-check code have block length n with each digit con-
tained in exactly two parity-check sets, at let each parity-check set contain k
digits. Then the minimum distance D of this code must be bounded by

2inFpeig-o ee
S** ink-1 (2.26)

Proof. The theorem will be proved by representing the code in the form of a
tree as in Figure 2.5. Let the first digit in the code be represented by the node
at the base of the tree. This digit is contained in two parity-check sets, which
are denoted by the two branches rising from the base node. The other digits
in these two parity-check sets are represented by the nodesin the first tier of
the tree. In like manner, each digit in the first tier is contained in another
parity-check set. depicted by a branchrising from that digit.

Successive tiers in the base may be similarly constructed until, for some
integer m a loop is formed by the branches rising from the m* tier. Such a
loop may occureither if two parity-check sets rising from the m* tier contain
a digit on tier m +1, as in Figure 2.5, or if a single parity-check set rising from
the m** tier contains more than one digit in the m™tier.

We next bound m in terms of the block length n. Thefirst of the tree
contains 2(k — 1) nodes; the second contains 2(k — 1)? nodes; and similarly
the m** tier contains 2(k — 1)™ nodes, since by assumption no loop occurs in
branches below the m* tier. Since each node corresponds to a distinct digit,

Yk —1)™ <n

In §
m< in(k 1) (2.27)
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Figure 2.5: Parity-check tree

For a given loop in the tree, consider the set of nodes that comprise the
intersections of the branches in the loop. Such a set of nodes is represented
byasterisks in Figure 2.5. Each branch in the loop must contain exactly two
of these nodes, and no other branch in the tree contains any of these nodes.
Consequently, an n-length sequence that contains ones in positions correspond-
ing to the nodes of this set and zeros elsewhere must be a code word,sinceall
parity-check sets contain an even numberof ones. Finally, the weight D of the
code word corresponding to the first loop that occurs must be bounded by

D<2m+2 (2.28)

since the loop is formed by a single descent and ascent in the tree. Combin-
ing Equations (2.27) and (2.28), we get the statement of the theorem, Equa-
tion (2.26). Oo
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3 Probability of Decoding Error

A technique for upper bounding the probability of decoding error for arbitrary
binary block codes will be developed in this chapter. It will be assumed that
the decoding is maximum likelihood and that the channel has a binary-input
alphabet, an arbitrary output alphabet, and is symmetrical in a sense to be
defined later.

The reason for developing this technique is threefold: First, it is needed
to demonstrate the capabilities of low-density codes; second, it provides a tool
both for comparing codes and for gaining insight into the relation between a
code’s distance properties and its probability of decoding error; third, it yields
a conceptually simpler, although analytically more complicated, technique for
analyzing random ensembles of codes. The conceptual simplification here lies
in a separation of the analysis of the channel from the analysis of the ensemble
of codes (which is used to derive the distance properties of the ensemble).

3.1 Symmetric Binary Input Channels

A symmetric binary-input channelis defined as a time-discrete channel with the
following properties:

1. The input alphabet X consists of two letters, denoted by 0 and 1.

2. The output alphabet Y can be represented either as a discrete or a continuous
set of real numbers.

3. The output y at a given discrete timeis statistically dependent only on the
current input <x.

4, The symmetry condition given by Equation (3.1) holds for all outputs y.

Poly) = Pi(-y) (3.1)

In this equation and throughout this chapter, P,(y) is a conditional proba-
bility density if Y is a continuousset, and is a conditional probability if Y is a
discrete set.

Some examples of such channels are given in Figure 3.1. The lack of sym-
metry between the labeling of input and output is regrettable, but a change
in output labeling would greatly complicate the symmetry condition, Equa-
tion (3.1), and a change in input labeling would make parity-check codes seem
less familiar to symbol-oriented readers.

3.2 Distance Properties

Assumethat in a particular code of block length n, an arbitrary code word uo
is transmitted, and assume that the numberof other code words N(é) at each
distance ¢ from wo is known. In the following section, the probability of error
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a. Binary symmetric channel.

b. Binary symmetric threshold channel.
c. Additive white Gaussian noise channel; log-likelihood output (see Sec-
tion 6.3).

 

1 (y — 02/2)”
Poly) = ao“tee

2

1 ytoa?/2Py(y) = ae exp-Ute)
2 _ 4E-(1—p)

c= No

d. Rayleigh fading channel; log-likelihood output (see Section 6.4).

14+A

Pol) = Fayay
_ 1+A y(1+ A).
~AQ+A)PA”

Pi(y) = Po(-y)
E.A= —
No

exp— 7 y>2O
y <0

Figure 3.1: Symmetric binary-input channels.
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using maximum-likelihood decoding will be upper bounded in terms of N(é)
when ug is transmitted over a symmetric binary-input channel. This boundwill
then easily be extended to apply to an entire code or to an ensemble of codes.

3.3. Upper Bound on Probability of Decoding Error

Let up = £19, £20,---;2no be the transmitted code word, and let v = yi, y2,---;
yn be the received sequence. Let the other code words be numbered wi, ..., uj,

..;Um-—1 where uj = 21j,---,%nj- Using maximum likelihood decoding, a
decoding error will be made if P(v|u;) > P(v|uo) for any j, 1 < 7 ¢ M—1.
Also, a decoding error might be made if P(v|uj) = P(v|uo), and in upper
bounding the probability of decoding error, we can assume that such errors are
always made. Using the assumption ofstatistical independence between the n
uses of the channel, this condition for decoding errors becomes

rm

NG2s (Yi) > [] Pewo(ys), for some j,1<j<M-1 (3.2)i=l]

Thus, the probability of decoding error is upper bounded by the probability
that Equation (3.2) is satisfied. Equation (3.2) becomes easier to work with if
we take the logarithmof both sides, yielding the following inequality between
sums of random variables:

> In Po,iy Ya)Le ym Perio (ya) (3.3)i=l

Finally, for reasons to be discussed later, we subtract an arbitrary function of
the output sequence, }“"_, f(y;) from both sides of Equation (3.3) and multiply
by —1, yielding the following condition for decoding errors:

ym Pesta Se Fest) on
for some j, 1 <j < M—1. Weplace thefollowing restriction on f(y): f(y) is
positive if either Py(y) or P;(y) is positive, and

f(y) = f(-y); for ally (3-5)

Next we define the discrepancy d6(a#;y;) between an input x; and an output
Yi as

 f(yi)
é iyi) = In 3.6(rats)=19Bw) 6)

Further, define the discrepancy D(uv) between u and v as

D(uv) = D> 5(aiys) (3.7)
i=1
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From Equations (3.4), (3.6), and (3.7), we see that a decodingerror is madeonly
when D(uj;v) < D(uov) for any code word u; other than uo. More formally, the
probability of decoding error P, is bounded by

M-1

P< Pr U [event that D(ujv) < D(uov)]} (3.8)
j=l

The most obvious procedurefor simplifying Equation (3.8) would be to upper
bound the probability of the union of events by the sum of the probabilities of
the individual events. This does not yield a good upper bound, however; when
D(ugv) is very large, say greater than a suitable constant nd,it is likely to be
larger than many of D(ujv), thereby causing one decoding error to be counted
many times in the bound. To avoid this difficulty, we shall use separate bounding
techniques on those events for which D(uov) > nd. The parameterd is arbitrary
and will be optimized later. Thus,if we split Equation (3.8), we get

P,<P,+Pr (3.9)

where

M-1

Pi Pr U [event that D(ugv) > nd; D(ujv) < D(uae)]}
j=l
M-1

Py = Pr U [event that D(ugv) < nd; D(ujv) < D(wov)] }
j=l

Now we can bound P; and P, separately by

P, < Pr[D(uov) > nd] (3.10)
M-1

P< S> Pr[D(uov) < nd; D(ujv) < D(uov)] (3.11)
j=l

Observe that Equation (3.9) is an exact expression for P, except for the
bounding involved in assuming that ambiguities (that is, cases where D(uov) =
D(u;v)) always cause errors. Thus the arbitrary function f(y) can have no
effect on Equation (3.9) since it has no effect on which word is decoded when uo
is transmitted. The function f(y) does have an effect on Equations (3.10) and
(3.11), however, since the function helps determine the set of output sequences
for which D(uov) > nd.

Finally, observe from Equation (3.7) that D(uov) and D(ujv) are both de-
fined as sums of randomvariables, and thus, using Equations (3.10) and (3.11),
the problem of bounding P. has been reduced to the problem of bounding the
tails of the distributions of sums of random variables. This is best done by the
Chernov bound technique, briefly described in Appendix B. For a more detailed
exposition, see Fano [4, Chapter 8].



3.4 Chernov Bounds

In order to bound P; in Equation (3.10), we need the following theorem which
is proved in Appendix B.

Theorem 3.1. Let Z = S77, % be the sum of n independent random vari-
ables, let P,(z;) be the probability density of the i variable, and let gi(s) =
Jo. exp(s2i)Pi(zi) dex be the momentgenerating function for the it” variable.
Then

mn

Pr(Z > nzo) < exp(—nszo) || gi(s) (3.12)
i=l

for all s > 0 such that the g;(s) ewist. If the z; are discrete, then the same
statement holds except that the P;(z;) are probabilities and the integral defining
gi(s) is replaced by a sum.

To apply this theorem to D(uov) = S77, 6(xioyi), we consider 6(ai0yi) as
a random variable where 2; is given and y; is determined according to P,;(yi)-
The moment generating function of 6 is then

gi(s) = /~ exp[sd(xi04s)] Peso (yi) dys (3.13)—oo

Using Equation (3.6), this becomes

as 1-3 soi(s) =f [Poso(vo)]*[Atu) a (3.14)—co

For x9 = 0, Equation (3.14) becomes

otal = / Poly)!-*F(y)? dy (3.15)
For zj9 = 1, using the symmetry conditions Equations (3.1) and (3.5), Equa-
tion (3.14) becomes

gi(s) = [ Po(—y)!-°f(=y)* dy (3.16)
Substituting —y for y as the variable of integration, we see that Equations (3.15)
and (3.16) are identical, and thus g;(s) is independent of xj9 and i:

nts) = 916) =” Paly)!* f(y)? dy (3.17)
It can be shown that Equation (3.17) is equivalent to the distribution function
of the discrepancy between the channel input and output and is independent of
the input as is reasonable from the channel symmetry.
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Finally, using Theorem 3.1, we get

P, < Pr[D(uov) > nd] < g(s)” exp(—nsd) (3.18)

for any s > 0 such that g(s) in Equation (3.17) exists.
To complete our boundonerror probability, P2, as given by Equation (3.11)

must be bounded. This requires the following theorem which is proven in Ap-
pendix B.

Theorem 3.2. Let z; and wi, 1<i<n, ben pairs of random variables with
probability density functions P;(z:, wi). Let the joint moment generating func-
tion of z;,wi, be

hy(r,t) = [| exp(rz; + tw;) P;(2;, w,) dz; dw; (3.19)
Let each pair of random variables be statistically independent of each other pair
and define Z and Wby

nm

i= So
d= 1

: (3.20
W= So wi

i=l]

Lon

Then, for any arbitrary numbers zo and wo,
é n

P(Z < nz; W < nwo) < [[ [rt t)] Il [hi(r,0)] exp —n(r29 + two) (3.21)
i=1 i=641

for any r <0, t < 0 for which h,(r,t) exists. If z and w are discrete, Equa-
tion (3.21) still holds with integrals in Equation (3.19) replaced by sums, and
the probability density replaced by a probability.

This theorem will be used to bound Pr[D(uov) < nd; D(ujv) — D(uov) < 0]
for each code word u;. Assumefirst that u; differs from uo in the first £ digits
andis identical to uo in the last n — @ digits. Then

é

D(u;,v) — D(uo,v) = >> 5(23,4s) — 6(ri0, ys)
i=1

From the symmetry conditions, Equations (3.1) and (3.5), and from the defini-
tion of 6 in Equation (3.6), we note that 5(2i;,y;) equals 6(ao, —y;) for i < &
since we have assumed that 2;; 4 vio for i < £. Nowlet

2, = 6(tin, yi); wi = O(zi0, —ys) — (Zio, yi)
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For a given 2;, both z; and w; are functions of y;, and we can write hy(r, t)
in Equation (3.19) as

oo

hy(r,t) = / exp[r6(xio, yi) + t6(win, —ys) — t6(ai0, ¥i)] Perio (yi) dys (3-22)—oo

Writing out h,(r,t) in the same way as g;(s) in Equation (3.13), we see that
h,(r, t) is independent of x9 and 7. Thus

hitrst) = hrst) =f Poa)"Po(—v)Fu)" dy (8.23)
Now, applying Theorem 3.2, we get

Pr[D(uow) < nd; D(ujv) — D(uov) < 0] < [A(r, t)|‘ [aCr, 0)] mfe-nrd (3.24)
for any r < 0, t < 0 if u; and uo differ in the first ¢ digits.

Finally, by renumbering the n digits in a block, we see that the bound in
Equation (3.24) applies to each of the N(é) code words that are distance ¢ from
ttg. Thus

P, < yN() [h(r, t)|‘[a(r, 0)]"‘e-nrd (3.25)
é=0

for any r < 0, t < 0 where A(r,t) is given in Equation (3.23).
The term in Equation (3.25) for € = 0 accounts for the pathological possi-

bility that one of the other code wordsis identical to uo; N(0) is the number of
code words other than up that are identical to uo.

Equations (3.25) and (3.18) give bounds for P; and P2; from Equation (3.9)
their sum bounds the maximum-likelihood probability of decoding error when
a given code word is transmitted. This bound is in terms of the code dis-
tances N(é), the channel transition probabilities Po(y), and a numberof stray
parameters that must be optimized; namely, s, r, t, d, and f(y). Thus the com-
binatorial and probabilistic aspects of the problem have been solved, and given
N(é), Equations (3.25) and (3.18) are essentially as simple to evaluate when the
block length is large as when it is small. However, the optimization problem
is by no meanstrivial since the equations are transcendental and involve con-
straints on s, r,t and f(y). One simplification is to eliminate the parameter f.
Equation (3.25) is minimized with respect to t by minimizing h(r,t), which can
be accomplished by setting Oh(r, t)/8t = 0. From Equation (3.23), this gives us

/. (1maPo(y)!-?*#Po(—-y)~*f(y)" dy = 0 (3.26)
If 1—r+t = —t, then using the symmetry of f(y) we see that the integrand
of Equation 3.26 is antisymmetrical in y and thus the integral is 0. To ensure
that this is a minimum,

aSos I. (i Ae)row)Pow)F0) dy 20
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Finally we observe that the solution
 p="

t= 5 (3.27)
automatically satisfies the constraint

t<0; forr <0

With this simplification, Equation 3.25 can be rewritten

Pr < SS N(O[AC)]‘ [g(r]eo (3.28)
é=0

~” (1-7)/2pyvpnr) =f (Pow)Po(-w))”* Foy" dy (3.29)
~ l-r

g(r) =f [Pow] sey ay (3.30)—o9

These equations use that fact that h(r,0) = g(r), as can be seen from Equa-
tions (3.17) and (3.23).

3.5 P, for Codes and Ensembles of Codes

Next consider the probability of decoding error for a complete code. Let N;(é)
be the numberof code wordsat distance ¢ from the code word uj;0 <j < M—-1.
Then, from Equations (3.18) and (3.28), the probability of decoding error for
the code assuming equiprobable use of the code wordsis

M-1 n
z 1

P, <S~>—49(s)"e-84 + S-Ni (OA(r) g(r)?fe“9;= x 7198) DNHCOROY AC) } ais
for any s>0,r <0

Now define

, Mo
NO =D NO

j=0

as the average over j of the numberof code wordsat distance ¢ from code word
uj. Equation (3.31) then becomes

P, < g(s)"e~?*4 +} NOh(r)*g(r)?-te-4:
120 (3.32)

for any s>0,7r <0

where

g(e) = [ Po(y)'-*f(y)? dy (3.33)
hie) = i* [Po(y)Po(—y)] 7”?Fw)” dy (3.34)
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Finally consider an ensemble of codes such as those considered in Chapter 2.
Letting N(é) be the average over the ensemble of codes of the N(é) defined in the
first paragraphof this section for a particular code, Equation (3.32) again holds,
and P, is now the ensemble average probability of decoding error. Note that at
least. one code in the ensemble must have a probability of error as small as the
average and that at least a fraction 1 — a of the codes must have a probability
of error at most P./a. This last result follows from noting that if more than a
fraction a of the codes had a probability of error greater than P./a then these
codes alone would contribute more than P, to the average error probability.

The bound in Equation (3.32) is somewhatdifficult to work with,first. be-
cause it involves a sumover n terms where n might be large, and second because
there are a number of stray parameters, r, s, d, f(y), over which the bound
should be optimized. Unfortunately, in general, virtually nothing can be done
to simplify this bound without weakening it. Before proceeding, however, some
motivation on the direction to be followed in this simplification and weakening
will be helpful. It will be shown later that Equation (3.32) is approximately
an exponentially decreasing function of the block length n, both for low-density
and equiprobable ensembles of parity-check codes. Thus, to study P, for very
long block lengths, and to study the variation of P, with block length, the co-
efficient of n in this exponential function will be of primary importance. Our
aim in what follows will be to find values of d, f(y), r, and s to optimize this
exponential coefficient. Consequently, other parts of the expression for P, will
be ignored for purposes of optimization. Having obtained such a bound,it is
of course possible to go back in any particular case and get a tighter result for
Equation (3.32), but to attempt this in general would only confuse and already
complicated situation. _

Now assume that the distance function N(é) for a particular code or ensemble
of codes can be bounded by an expression such as

  

N(® < CO, nje™™; A= < (3.35)
where C(A,n) must be a relatively small quantity for the following approach
to be useful. Equations (2.1) and (2.19) give such bounds for random and
low-density ensembles of parity-check codes. Now let

(Ce max C(A,n) (3.36)

Using C, for C(A,n) in Equation (3.35), substituting this into Equation (3.32),
rearrangingalittle, and bounding the summation by 7 times its maximum term,
we get

P, < expn/[lng(s) — sd] + nC, max expn[B(A) + Aln h(r) + (1 — A) Ing(r) — rd]
for any s >0,r <0 (3.37)

The functions g andharestill given by Equations (3.33) and (3.34). Equa-
tion (3.37) has two terms, each of which are essentially exponential in n. The

29



first. term decreases with d if s > 0, and the second increases with d if r < 0.
Thusif we chose d to make the exponents equal, any change in d would increase
one of the two exponents. Thus this choice of d minimizes the coefficient of n
in the largest exponent. Eliminating d in this way, we get

P, < (1+nCp) exp[—n min E(s,r,A)|; for s >0,r<0 (3.38)
E(s,r,) =

 

r = In g(s) — = [B(A) + AlnA(r) + (1—A)Ing(r)] (3.39)
The result in Equations (3.38) and (3.39) still depends on the function f(y)

through the definition of the functions g and h. In Appendix B,it is shown that
E(s,r,A) is maximized over f by

Jf po®T+ Pyy)2|+ 38245 [Polu)!-" + Pi(y)!7] )
fy) = ky “—__—~eanrs+PRige

where (3.40)

___ g(r)
g{r) + h(r)

The constant & in Equation (3.40) is arbitrary and cancels out in the bound for
P,. Unfortunately, this is only an implicit solution since q@ itself is a function
of f(y). For any value of s, r, and A, the f(y) satisfying Equation (3.40) can
be found only by a series of approximations for a. This makes optimizing
Equation (3.39) difficult even with a computer. As a result, we choose f(y)
more simply to be

_, [Poy2 + Ply)2] va
fy) =)4Pw) Gab)

For the equiprobable ensemble of codes, maximizing P, over A will later be
shownto yield \ = a, and in this case, Equations (3.40) and(3.41) give identical
results. For other ensembles, the small change in f(y) caused by using Equa-
tion (3.41) instead of Equation (3.40) will cause only a second-order change in
the exponentof P..

Writing out the moment-generating functions explicitly in Equation (3.39)
and using Equation (3.41), we get (see Appendix B)

P, < (1+nC;,,) exp —nE(s,r) (3.42)
l=r

oo r ft —T 25_

E(s,r) = =shla) - in [ (Ri-8 + Plo)(PH? +P?) (3.43)0

co il-r 2r l—r

[erry(RF +Pya(RP)“ (3.44)Qe
= 2soO tT. Lor

[epee(ar++P,?eye0
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B(e) = min [—B(A) — Alna — (1 — A) In(1 — @)] (3.45)

Equations (3.42) to (3.45) give a general bound for P, in terms of three
parameters: s, r and X. Equation (3.45) can be used to eliminate for any
given s > 0 and r < 0, but maximizing E(s,r) over s and r is not simple and
may even involve several local maxima. However, this maximization can be
performed with a computer.

3.6 Error Probability for Equiprobable Code Ensemble

As an example of the use of Equations (3.42) to (3.45) consider the special case
of the equiprobable ensembleof parity-check codes, for which from Equation 2.1

B(A) = —(1— R)In2—AInA- (1A) In(1-d) (3.46)

where R = (log, M)/n is the coderate.
Substituting Equation (3.46) into Equation (3.45) and minimizing, we see

that the minimum is at \ = a and has a constant value independent ofa,

B(a) = (1— R)In2 (3.47)

This makes Equation (3.43) independent of a, and makesit possible to simplify
Equations (3.42) and (3.43) to (see Appendix B):

P. < (1+nCp)e7"2™

E(s) = ——(1- R)n2- inf [Po(y)-*§ + Pr(y)JOdy (3.48)~ 0

for any sin the rangeO<s< 5

Thus, for any given value of s, E(s) is linearly related to R with a slope of
—sIn2/(1—s). Figure 3.2 illustrates the relation of E(s) to R with s as a pa-
rameter. The upper envelope ofthis family of curves gives the desired exponent
of P, as a function of R.

A parametric pair of equations for this envelope can be found by setting
the partial derivative of E(s) with respect to s equal to 0. This yields the
relationship

_ (L=s)?9"(s)R(s) =1 age USbS4 (3.49)
E(s) = s(1 — s)7'(s) — (8) (3.50)

where

4(s) = In [* [Poly)!-2 + Pay)!dy (3.51)
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8 
E(s,R)= (1 — R)In2—(s)l-s

26 it

4(s) = in [ [Po(y)'~* + Pr(y)'~*] -* dy

Figure 3.2: Family of curves relating exponent to rate for equiprobable ensemble
of codes.

It can be shown that: R(s) decreases with s, E(s) increases with s, the slope
of E(s) as a function of R(s) is (—sIn2)/(1 — s), and lim,_,9 R(s) is equal to
channel capacity. For those values of R less than R(}), the E vs. R curve is
given by Equation (3.48) with s = 4

E=(1-R)n2-In[ |VPaty) dongPA @) dy; for R< R(t) (3.52)
The E vs. R curve yielded by Equations (3.49) to (3.52) is the same as that

found by Fano[4] except for some small changes in terminology. These equations
simplify even further in the special case of the binary symmetric channel (See
Figure 3.1). In this case,

1

l—s

 

(8) =y=;nO -p)? +P]

and after some straightforward manipulation we get the familiar results,

_,_H(ps)
Rs) =1-54 (3.53)

1

E(s) =p,in ; +(1—ps)In

 

 1 z

rap 7 Ele) (3.54)
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where

ps— F 1

Be gma (Tape 8 S°S2

E=(1—R)In2—2In(/p+ /1—p); for R< R($) (3.55)

We have seen that for this equiprobable ensemble of codes the value of »
that yields the largest contribution to P, is equal to a, which is given in Equa-
tion (3.44) and simplifies for the equiprobable ensemble (see Appendix B)to:

[(par oe piniyie | 2(PoP,)'-5 | dyot (piv? + Pi-*)"oS

[ (Pi-s 4 pinay dy
One curious consequence of this is as follows: Suppose we had a way of

increasing the minimum distanceof a typical randomly chosen code. This would
have negligible effect on the probability of decoding error for the code on a
particular channel unless the minimum distance could be made larger than
na(s) since that is the distance at which most of the decoding errors occur.

On the other hand, if the code rate is low enough, the minimum distance
can be made sufficiently large to change the exponent of P.. In Chapter 2, it
was shown that the ensemble of random parity-check codes could be expurgated
to include only codes with minimum distance at least nAg where

H(Ao) = (1— R)In2

a(s) = (3.56)

Minimizing 6(a) in Equation (3.45) for this expurgated ensemble, we get

B(a) =(1—R)lIn2=H (Ao); a> ro (3.57)
Bla) = —Ap Ina—(1—Ag)In(l—a); a<Ao (3.58)

Now observe that with this expurgated ensemble we can still use the same
values of s and r for a given rate as we did for the unexpurgated ensemble, and
certainly get a valid exponential bound on P,. If we do this, then the exponent
E will be unchanged from the unexpurgated case for rates such that a > Ag
and the exponent FE will be increased when a < Ag. It can be shown that this
exponent is in fact the maximum exponent over s and r. Further, it can be
shown that a = 9 at some Ro satisfying 0 < Ro < R(}) and that a < Apo for
R< Ro. For R < Ro, substituting Equation (3.58) into Equation (3.43) with
3 = }, r= 0 andsimplifying yields

oo

E=—gin [ 2/PowPiw)dy (3.59)0

where Ag satisfies H(Ao) = (1 — R)In2. Figure 3.3 shows a sketch of the E-
R curve for this expurgated case. This bound was also independently derived
earlier for the binary symmetric channel by Elias in unpublished work.
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Expurgated ensemble

E = —AgIn 5° 2\/Poly)Pi (y) dy
H(Ao) = (1 — R)ln2

(i — R)In2- (4)

 Unexpurgated
ensemble

  

R(t) OR C

Figure 3.3: Expurgated and unexpurgated equiprobable ensembleof codes.

3.7 Binary Symmetric Channel

In order to obtain some insight into the behavior of Equations (3.42) to (3.45)
for arbitrary code ensembles and, in particular, low-density code ensembles, we
shall consider the binary symmetric channel (BSC) with transition probability
p as shown in Figure 3.1. For this channel, the integrals in Equations (3.43)
and (3.44) reduce to single terms, and we get

 
P, < (1+nCpy) exp —nE(s,r) (3.60)

E(s,r) = Ale) + — in|(1 —p)'-s +p] - SS In la pyr +p?|
(3.61)

=ans=(3.62)
ip)2 pe

B(a) = min[-B(A) — AIna ~ (1 ~ A) In(1 ~ @)] (3.63)
In Appendix B it is shown that if E(s,r) has a maximum in the region

0<s <0; —-00 <r< (0, then this maximumis given by

 

E = max E(s,r) = peln= + (1—p,)In —H(p.) (3.64)l—p

where p, is the solution to the following two equations involving the unknowns
Ds and pr:

pe = 72 + (1 Do)p, (3.65)
H(ps) = B(Ao) + Aoln2 + (1 — ro)H(pr) (3.66)
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In Equations (3.65) and (3.66), Ao is the value of \ that maximizes

B(A) + 2 im4pp(1 ~ py) (3.67)
The values of s and r at which the maximum in Equation(3.64) occurs are given
implicitly by

_ pis
Pep+

p -T
p+ =p)

The solution of Equations (3.65), (3.66), and (3.67) still involves the si-
multaneous solution of three equations of which two are transcendental. The
advantage of these equations, however, is that they do not involve the channel
transition probability p. Thus,if a solution exists to these equations,it is valid
for all transition probabilities in the range

Pr SPSPs (3.69)

From Equation (3.68), this is the range of p over which s > 0 and r < 0. Fig-
ure 3.4 gives a geometrical interpretation of the exponent E in Equation (3.64)
as a functionof p, andp.It is interesting to observe,also, that Equation (3.64)
is identical to Equation (3.54), the exponent derived for the equiprobable en-
semble, except, of course, that the value of p, might be different. A lower bound
to P. for the best possible code of rate R can also be derived, and it has been
shown [4] that Equations (3.53) and (3.54) also relate the exponent of P, and
the rate for the best possible code. Thus it is meaningful to compare codes for

(3.68)

Pr —

 
P Ps

Figure 3.4: Geometric interpretation of exponent for binary symmetric channel.

the BSC in termsof the parameter p,. Equations (3.65), (3.66), and (3.67) have
been solved for several expurgated ensembles of low-density parity-check codes
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Figure 3.5: Error-correcting properties of (n, j,k) codes on BSC as function of
rate for large n.

for which the function B(A) is bounded in Equation (2.20). Figure 3.5 presents
a comparison between code rates of low-density codes and the rate of an opti-
mum code that yields the same value of p, and, therefore, the same exponent to
P, in the range p, < p < ps. It is interesting to observe from the comparison of
Figures 2.4 and 3.5 that these codes can achieve an error probability going down
exponentially with block length even when the expected numberof transitions
in a block is considerably more than the minimum distance. Thus althoughit
is possible to make decoding errors when the number of channel transitionsis
half the minimum distance, decoding errors are unlikely until the number of
transitions is much greater than the minimumdistance. It is also interesting to
observe that Ayn appears to give the most likely distance between transmitted
and decoded code words when decoding errors occur. More precisely, it gives
the distance at which the boundto error probability is largest. It is curious that
this quantity does not change as p varies between p, and ps.

For p < p,, E(s,r) is maximized by r = 0. This is not surprising, since
from Equation (3.68), r = 0 for p = p,-. When we substitute r = 0 into
Equation (3.61), some algebraic manipulation yields

max E(s,r) = min —B(A) + sl for p < py (3.70)
i

Rao
4p(1 — p)

For p < p,, the A that minimizes Equation (3.70) typically will decrease with p
down to the code minimum distance ratio.
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The preceding results have considered the case of codes and code ensembles
in which Equations (3.65), (3.66), and (3.67) have a solution. Unfortunately,
these equations do not have solutionsfor all codes. No solution corresponds to
the situation in which E(s,r) is maximized for r = —oo. Here, Equation (3.64)
is still valid for p < ps, but ps is now given by Ap /2, and Ag is now the ratio
of minimum distance to block length for the code. Physically, this means that
there are so many code words at the minimum distance that error correction is
unlikely when more than nAp/2 errors occur. One example of this is the code
with only two code words, one of which is the complementof the other.

3.8 Upper Bound on Rate for Low-Density Codes

The results on error probabilities up to this point have all been upper bounds
on P,. We have shown that low-density parity-check codes are at least as good
on the BSC as the optimum code of a somewhat higher rate. However, there is
no direct way of showing that some low-density codes are not a great deal better
than the average. One small result in this direction, however, is the following
theorem which shows that low-density codes cannot be used effectively on a
BSC for which channel capacity is arbitrarily close to the coderate.

Theorem 3.3. Let a parity-check code of length n and rate R containing k
digits in each parity-check set be used on a BSC with crossover probability p,
and let the code words be used with equal probability. Let

H(p) = —plnp — (1 —p)In(1 —p)

1+(1—2p)*
P=

Then,

(pe) — H(p)
H(px)

implies that for a fixed k, the probability of decoding error is bounded away from
0 by an amount independent of n.

R> (3.71)

Discussion. The channel capacity of a BSC in bits per symbolis 1—[H(p)/ In2].
Since H(p,) < In2, this theorem states that the source rate must be bounded
away from the channel capacity for reliable transmission. Figure 3.5 illustrates
the amount by which the capacity must exceed the source rate for several values
of j and k.

Proof. Let u be a transmitted code word andlet v be a received sequence. The
average mutual information in bits per symbolis

1—— 1——  1———
—I(u,v) = ——log, p(u) + —log, p,(u)
Tm Th nr (3.72)1——._ | ——~

= ——] eelogs P(v) + Tog, pul)
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If the per digit equivocation satisfies the equation
to

~log. Pu(u) 2€ > 0 (3.73)
for some € independent of n, then the probability of decoding error must also
remain bounded away from 0. Equation (3.73) will be established by evaluating
the other terms in Equation (3.72).

Since there are 2” messages in the codeset,
Sree

——log, plu) = R (3.74)
Given the sequence u, each digit in the sequence uv has probability p of being
different from the corresponding digit in wu, so that

—H(p)
In2

Consider specifying the received sequence v byfirst specifying the parities of
the n(1— R) parity checks and then specifying the received digits in someset of
nR linearly independent positions in the code. This specification is equivalent
to specifying v since specifying one will make is possible to compute the other.
The probability that a parity-check is satisfied is the probability that an even
numberof errors have occurred within the parity-check set, which is

> (‘\ria pt = Otek (3.76)

 :_—

logPal) = (3.78)

even

To verify Equation (3.76), rewrite the right hand side as

(1—p+p)*+(1—p—p)*
2

and expandit in a binomial series.
The uncertainty associated with each parity-check is thus H(p,)/1n2 bits

where pz = [1 + (1 — 2p)*]/2. Since the uncertainty associated with each in-
formation digit is at most 1 bit and dependencies can only reduce the over-all
entropy, we have

~ =Tog p(v) < Ce)
The substitution of Equations (3.74), (3.75) and (3.77) into Equation (3.72)
produces

+R (3.77)

1———_H(p)_ (1— R)H(pe)ovis SeteSee1082 Pu(u) 2 5 me (3.78)
From the hypothesis of the theorem, there is an ¢ > 0 that satisfies

H(p,) — H(p)+eln2R=—- 3.79Hx) ory
Substituting Equation (3.79) in Equation (3.78) we obtain Equation (3.73),
proving the theorem. Oo



4 Decoding

4.1 Introduction

Chapter 3 analyzed the probability of decoding error for (n,j,k) codes on var-
ious binary-input channels using maximum-likelihood decoding. Maximum-
likelihood decoding is a convenient concept since it minimizes the probability
of decoding error and thus measure theeffectiveness of a code apart from any
particular decoding scheme. However, implementing a maximum-likelihood de-
coder that actually compares the received sequence with all possible code words
is a most unattractive possibility; this is particularly true for long block lengths,
since the size of the code set grows exponentially with block length. A decoder
that is relatively simple in terms of equipment, storage, and computation is
more desirable even if it moderately increases the probability of error. If the
lower probability of error is required, one can simply increase the block length
of the code.

Two decoding schemes will be described here that appear to achieve a rea-
sonable balance between complexity and probability of decoding error. Thefirst
is particularly simple but applicable only to the BSC at rates far below capacity.
The second scheme, which decodes directly from the a posteriori probabilities
at the channel output is more promising but can be understood more easily
after the first scheme is described.

In the first decoding scheme, the decoder computes all the parity-checks
and then changes anydigit that is contained in more than some fixed numberof
unsatisfied parity-check equations. Using these new values, the parity checks are
recomputed, and the process is repeated until the parity checksareall satisfied.

If the parity-checksets are small, this decoding procedureis reasonable,since
most of the parity-check sets will contain either one transmission error or no
transmission errors. Thus when most of the parity-check equations checking on
a digit are unsatisfied, there is a strong indication that that digit is in error.
For example, suppose a transmission error occurred in thefirst digit of the code
in Figure 2.1. Then parity checks 1, 6, and 11 would be violated, and all three
parity-check equations checking digit 1 would be violated. On the other hand,
at most, one of the three equations checking on any other digit in the block
would be violated.

To see how an arbitrary digit d can be corrected even if its parity-check
sets contain more than one transmission error, consider the tree structure in

Figure 4.1. Digit d is represented by the node at the base of the tree, and each
line rising from this node represents one of the parity-check sets containing digit
d. The other digits in these parity-check sets are represented by the nodes on the
first tier of the tree. The lines rising fromtier 1 to tier 2 of the tree represent
the other parity-check sets containing the digits on tier 1, and the nodes on
tier 2 represent the other digits in those parity-check sets. Notice that if such
a tree is extended to manytiers, the same digit might appear in more than one
place, but this will be discussed in Section 4.2

Assume now that both digit d and several of the digits in the first tier are
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Figure 4.1: Parity-check set tree

transmission errors. Then on thefirst decoding attempt, the error-free digits in
the second tier and their parity-check constraints will allow correction of errors
in the first tier. This in turn will allow correction of digit d on the second
decoding attempt. Thus digits and parity-check equations can aid in decoding
a digit seemingly unconnected with them. The probabilistic decoding scheme
to be described next utilizes these extra digits and extra parity-check equations
more systematically.

4.2 Probabilistic Decoding

Assumethat the code words from an (n, j,k) code are used with equal probabil-
ity on an arbitrary binary-input channel. For any digit d, using the notation of
Figure 4.1, an iteration process will be derived that on the m*? iteration com-
putes the probability that the transmitted digit in position d is a 1 conditional
on the received symbols out to and including the m** tier. For thefirst itera-
tion, we can consider digit d and the digits in thefirst tier to form a subcode
in which all sets of these digits that satisfy the 7 parity-check equations in the
tree have equal probability of transmission’.

Consider the ensemble of events in which the transmitted digits in the po-
sitions of d and the first tier are independent equiprobable binary digits, and
the probabilities of the received symbols in these positions are determined by
the channel transition probabilities P,(y). In this ensemble the probability of
any event conditional on the event that the transmitted digits satisfy the j
parity-check equationsis the sameas the probability of an eventin the subcode
described above. Thus, within this ensemble we wantto find the probability
that the transmitted digit in position d is a 1 conditional on the set of received
symbols {y} and on the event S that the transmitted digits satisfy the j parity-
check equations on digit d. We write this as

Pr[zg=1| {y}, 5]

Using this ensemble and notation, we can prove the following theorem:

2 An exception to this statement occurs if some linear combination of those parity-checks
equations not containing d produces a parity-check equation containing only digits in thefirst
tier. This will be discussed later but is not a serious restriction.
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Theorem 4.1. Let Py be the probability that the transmitted digit in position
d is a 1 conditional on the received digit in position d, and let Pie be the same
probability for the €digit in the iparity-check set of the first tier in Figure 4.1.
Let the digits be statistically independent of each other, and let S be the event
that the transmitted digits satisfy the j parity-check constraints on digit d. Then

Pr[za = O|{y}, S] = 157 1+ Te — 2Pie)Priaa = 1|{y}, 5] — See ai — 2Pie) e
In order to prove this theorem, we need the following lemma:

Lemma 4.1. Consider a sequence of m independent binary digits in which the
ft digit is a1 with probability Py. Then the probability that an even number of
digits are 1 ts

1+ TE.G — 2P,)
2

Proof of the Lemma. Consider the function

ite — Pe + Pyt)
é=1

Observe that if this is expanded into a polynomialin ¢, the coefficientof ¢? is
the probability of i 1’s. The function []j2, (1 — Pe — Pet) is identical except that
all the odd powers of ¢ are negative. Adding these two functions, all the even
powers of t are doubled, and the odd terms cancel out. Finally letting ¢ = 1
and dividing by 2, the result is that the probability of an even numberofones.
But

[eft — Py + Pe) +TT740 — Py — Pr) _ 1+ Ie — 2P;)
2 2

thus proving the lemma. Oo

Proof of the Theorem. By the definition of conditional probabilities

Priza = Ol{y},$] _ 1—Pa py PrlSlaa =0, {y}]
Priva = U{y},S] Pa EY Pr[S|ea = 1, {y}]

 
(4.2)

Given that xg = 0, a parity check on d is satisfied if the other (k — 1) positions
in the parity-check set contain an even number of 1’s. Since all digits in the
ensemble are statistically independent, the probability that all 7 parity-checks
are satisfied is the product of the probabilities of the individual checks being
satisfied. Using Lemma 4.1 this is

J j _ 9p.

Pr[S|ra =0,{y}]=]]eeeees (4.3)i=1
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Similarly,

i [=Miea(t=27) (4.4)Pr[S|ea = 1, {y}] = [] 3i=]

Substituting Equations (4.3) and (4.4) into Equation (4.2) we get the statement
of the theorem. O

Judging from the complexity of this result, it would appear difficult to com-
pute the probability that the transmitted digit in position d is a 1 conditional
on the received digits in two or moretiers of the tree in Figure 4.1. Fortunately,
however, the many-tier case can be solved from the I-tier case by a simple
iterative technique.

Considerfirst the 2-tier case. We can use Theorem 4.1 to find the probability
that each of the transmitted digits in the first tier of the tree is a 1 conditional
on the received digits in the second tier. The only modification of the theorem
is that the first product is taken over only j — 1 terms, since the parity-check
set containing digit dis not included. Now these probabilities can be used in
Equation (4.1) to find the probability that the transmitted digit in position d is
1. The validity of the procedure follows immediately from the independence of
the new values of P;¢ in the ensemble used in Theorem 4.1. By induction, this
iteration process can be used to find the probability that the transmitted digit
dis 1, given any numberoftiers of distinct digits in the tree.

The general decoding procedure for the entire code may now bestated. For
each digit and each combination of j — 1 parity-check sets containing that digit,
use Equation (4.1) to calculate the probability of a transmitted 1 conditional
on the received symbols in the j — 1 parity-check sets. Thus there are j dif-
ferent probabilities associated with each digit, each one omitting 1 parity-check
set. Next these probabilities are used in Equation (4.1) to compute a second-
order set of probabilities. The probability to be associated with one digit in
the computation of another digit d is the probability found in the first itera-
tion, omitting the parity-check set containing d. If the decodingis successful,
then the probabilities associated with each digit approach 0 or 1 (depending on
the transmitted digit) as the numberofiterations is increased. The procedure
is valid only for as many iterations as meet the independence assumption in
Theorem 4.1. This assumption breaks down when the tree closes uponitself.
Since each tier of the tree contains (j — 1)(k — 1) times more nodes than the
previous tier, the independence assumption must break down while mis quite
small for any code of reasonable block length. This lack of independence can
be ignored, however, on the reasonable assumption that the dependencies have
a relatively minor effect and tend to cancel each other out somewhat. Also,
even if dependencies occur in the m*iteration, the first m — 1 iterations have
reduced the equivocation in each digit. Then we can consider the probabilities
after the m —1iterations to be a new received sequence that should be easier
to decode than the original received sequence.
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The most significant feature of this decoding schemeis that. the computation
per digit, per iteration is independent of the block length. Furthermore, it can
be shown that the average numberof iterations required to decode is bounded
by a quantity proportional to the log of the log of the block length.

For the actual computation of the probabilities in Theorem 4.1, it appears
to be more convenient to use Equation (4.1) in terms of log-likelihood ratios.
Let

 1-F

In P zg = aaa
12;

In ae© = aeBie (4.5)
Prieg = Ol{y}, $ Biri; d l{y} ] =a',6,
Prta = ll{y},5]

where a is the sign and @ is the magnitude of the log-likelihood ratio. After
some manipulation, Equation (4.1) becomes

i

at,3, = aaBa + 2 (TI ai) f Ie f(6x)| (4.6)
where 3

f(@)=n5%
ef —]1

The calculation of the log-likelihood ratios in Equation (4.6) for each digit
can be performedeitherserially in time or by parallel computations. Theserial
computation can be programmed for a general-purpose computer, and the ex-
perimental data in Chapter 6 was obtained in this manner. For fast, decoding,
parallel computing is more promising, and Figure 4.2 sketches a simplified block
diagram showing how this can be done.

If the input to the decoderis in the form of a log-likelihood ratio, the first
row of boxes in Figure 4.2 computes f(3) for each digit, corresponding to the
rightmost operation in Equation (4.6). The output from the adders on the next
row is so f(Be), corresponding to the two rightmost operations in Equa-
tion (4.6). Likewise, successive rows in Figure 4.2 correspond to operations in
Equation (4.6) working to theleft. Clearly, Figure 4.2 omits some details, such
as the operations on the signs of the log-likelihood ratios with each digit, but
these create no essential difficulty.

We see from Figure 4.2 that a parallel computer can be simply instrumented
requiring principally a number proportional to n of analogue adders, modulo 2
adders, amplifiers and nonlinear circuits to approximate the function f(@). How
closely this function must be approximated is a subject for further study, but
there are indications that it is not critical’.

4Some recent experimental work indicates that if computation is strictly digital, 6 sig-
nificant bits are sufficient to represent f(G@) without appreciable effect on the probability of
decoding error.
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Figure 4.2: Decoding apparatus

4.3 Probability of Error Using Probabilistic Decoding

A mathematical analysis of probabilistic decodingis difficult, but a very weak
bound on the probability of error can be derived easily.

Assume a BSC with crossover probability po and assumefirst an (n, j,k)
code with j = 3 parity-check sets containing each digit. Consider a parity-check
set tree, as in Figure 4.1, containing m independent tiers, but let the tiers be
numbered from top to bottom so that the uppermost tier is the 0 tier and the
digit to be decoded is tier m.

Modify the decoding procedureasfollow: If both parity checks corresponding
to the branches rising from a digit in the first tier are unsatisfied change the
digit; using these changed digits in the first tier, perform the same operation on
the second tier, and continue this procedure down to digit d.

The probability of decoding error for digit d after this procedure is an upper
bound to that resulting form making a decision after the m‘ iteration of the
probabilistic decoding scheme. Both procedures base their decision only on the
received symbols in the m-tier tree, but the probabilistic scheme makes the most
likely decision from this information.

We now determine the probability that a digit in the first tier is in error
after we apply the modified decoding procedure described above. If the digit is
received in error (an event of probability pg) then a parity check constraining
that digit will be unsatisfied if and only if an even number(including zero) of
errors among the other & —1digits in the parity-check set. From Lemma4.1,
the probability of an even numberof errors among k — 1 digits is

1+ (1 —2po)*-?
5 (4.7)
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Since an error will be corrected only if both parity checks rising from the digit
are unsatisfied, the following expression gives the probability that a digit in the
first tier is received in error and then corrected.

a k-172

pee (48)
By the same reasoning, Equation (4.9) gives the probability that a digit in the
first. tier is received correctly but then changed because of unsatisfied parity
checks.

(1 — po)pea (4.9)
If we combine Equations (4.8) and (4.9), the probability of error of a digit in
the first tier after applying this decoding processis

pr =m —|B5 py[OY (4.10)
By induction it easily follows that if p; is the probability of error after pro-

cessing of a digit in the i‘ tier, then

pest =P ~po[POPP) po)[2— OO)" aay
 

We now show that for sufficiently small po, the sequence [p;] converges to 0.
Consider Figure 4.3, which is a sketch of pjy1 as a function of p;. Since the

Pitt

  
Figure 4.3: Sketch of pj. as a function of p;.

ordinate for one value of i is the abscissa for the next, the dotted zigzag line
illustrates a convenient graphical method offinding p; for successive values of 7.
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It can be seen from Figure 4.3 that if

O0< pizi <p; for0< pi < po (4.12)
Pitt =Pi; for p; = 0

then the sequence [p;] + 0. It can be seen from Equation (4.11) that for po
sufficiently small, the inequality (Equation (4.12)) is satisfied. Figure 4.4 gives
the maximum pp for several values of k.

0.0612

6 0.333 0.0748

5 0.25 0.1069
 

Figure 4.4: Maximum po for weak bound decoding convergence.

The rate at which [p;| + 0 may be determined by noting from Equa-
tion (4.11) that for small p;

Pit © pi2(k — 1)po (4.13)

From this it is easy to showthat for sufficiently large #,

pi © c[2(k — 1)po}* (4.14)

where ¢ is a constant independent of 7. Since the number of independent tiers
in the tree increases logarithmically with block length, this bound to the prob-
ability of decoding error approaches zero with some small negative power of the
block length. This slow approach to zero appears to be a consequence of the
modification of the decoding scheme andof the strict independence requirement,
rather than of probabilistic decoding as a whole.

This same argument can be applied to codes with more than 3 parity-check
sets per digit. Stronger results will be achieved if for some integer b, to be de-
termined later, a digit is changed whenever 6 or more parity-check constraints
rising from the digit are violated. Using this criterion and following the reason-
ing leading to Equation (4.11), we obtain

g-1 >. -178é k-173-1-é
_ j-1\ [1+—2p)'1"J1- (1-291)Pi+1 = Po — Po >( t YI 3 5

The integer b can now be chosen to minimize p;;;. The solution to this mini-
mization is the smallest integer b for which

_ _ \k-1726-9+11—ppo < 1+ (1— 2p,) (4.16)
Po 1i- (1 = 2p;)*-1
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From this equation, is it seen that as p; decreases, b also decreases. Figure 4.5
sketches p;41 as a function of p; when b is changed according to Equation (4.16).
The breakpoints in the figure represent changesin b.

akpoint

Pi+l

 
 

Figure 4.5: Behavior of decoding iterations for j > 3.

The proof that the probability of decoding error approaches 0 with an in-
creasing number ofiterations for sufficiently small po is the same as before.
The asymptotic approach of the sequence [p;] to 0 is different, however. From
Equation (4.16), if p; is sufficiently small, 6 takes the value j/2 for j even and
(j +1)/2 for j odd. Using these values of b and expanding Equation (4.15) in
a powerseries in pj,

j—1 joi EtPi+1 =m1 )t —1) 2 p,* +higher order terms; j odd (4.17)2

eePi+1 = Po ( i
job

ee - 1)?p? +higher order terms; jeven (4.18)2

Using this, it can be shown that for a suitably chosen positive constant cj, and
sufficiently large i

pi < exp[—cye ()); j odd (4.19)
PS exp[—ejx (2) j even

It is interesting to relate this result to the block length of the code. Since there
are (j —1)™(k—1)™ digits in the m™tier of a tree n must beat least this big,
giving the left side of Equation (4.20). On the other hand,a specific procedure
is described in Appendix C for constructing codes satisfying the right side of
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Equation (4.20).

Inn In ls = aE:
ing —D(k—1) =" = 2nG—1(e— 1) a)

When we combine Equations (4.19) and (4.20), the probability of decoding error
for a code satisfying Equation (4.20) is bounded by

Fin S exp —Cjx l= aoa= 2k  2j(k—1)

In + .
= onG-1eon) 7° (4.21)

Ind .
a j even

~ 2inG —1)(F-D

For j > 3, this probability of decoding error bound decreases exponentially
with a root on n. Observe that if the numberof iterations m which can be

made without dependencies were [2In(k — 1)(j — 1)]/(Inj/2) times larger, then
the probability of decoding error would decrease exponentially with n. It is
hypothesized that using the probabilistic decoding scheme and continuing to
iterate after dependencies occur will produce this exponential dependence.

A second wayto evaluate the probabilistic decoding schemeis to calculate the
probability distributions of log-likelihood ratios in Equation (4.6) for a number
of iterations. This approach makes it possible to find whether a code of given
j and k is capable of achieving arbitrarily small error probability on any given
channel. With the aid of the IBM 7090 computer,it was found that a code with
j = 3, k =6is capable of handling transition probabilities up to 0.07 and with
j = 3, k =4,transition probabilities up to 0.144 can be handled. These figures
are particularly interesting since they disprove the common conjecture that the
computational cutoff rate of sequential decoding [17] bounds the rate at which
any simple decoding scheme can operate.



5 Low-Density Codes with Arbitrary Alphabet
Sizes

The results of Chapters 2, 3, and 4 concerning binary low-density parity-check
codes will be extended in this chapter to codes with an arbitrary alphabetsize.
The letters in the alphabet will be A’nary digits, where A is the alphabet size
and the A’nary digits are numbers from 0 to A — 1 inclusive. The definitions
of (n, j,k) parity-check matrices and ensembles of matrices are the same here
as in Chapter 2. The code words going with such a matrix will be sequences of
A’narydigits such that the sum of the digits within any parity-check set is zero
modulo A.

5.1 Distance Functions

Define the distance between two sequences in a code of alphabetsize A as the
numberof positions in which the sequences differ. The weight of a sequenceis
the number of nonzero digits or the distance from the all-zero sequence. The
distance function N(é) of a code is again defined as the number of code words
of weight @. It follows from the group properties of such a code [12] that N(£) is
the numberof words at distance @ from any given code word. In order to upper
bound N(é) for these codes, we need the following theorem, which is a direct
extension of Theorem 2.3

Theorem 5.1. For each code in an (n,j,k) ensemble with alphabet size A, the
number N,(£) of sequences of weight € that satisfies any one of the j blocks of
n/k checks is bounded by

n n

Mi [Fula(s)| < exp Z [wa(s) — sula(s) + (k- 1) In A] (5.1)
where s is an arbitrary parameter and p4(s) is defined by

ja(s) = In A*S +(A—1e}*+(A4-)a- e*)*}

pia(s) = Hae)
Proof. Consider a particular check set of k digits. Let m(£) be the number of
different sequences of k A’nary digits of weight @ that sum to 0 modulo A. We
shall first show that for arbitrary ¢

(5.2)

, 1 » Aa
So mot! = 7 [1+ (4- ne] +a- 68 (5.3)
i A A

Consider the double enumerating function

B(t,r) = (1+tr + tr? +---+4r4-1)* (5.4)
= So bet*r? (5.5)

fg
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Clearly bg; is the numberof sequences of length k containing £ nonzero A’nary
digits that sum to j. Now consider the expression

7S i2na ee, ij2na
aA S; B(te A ) = AG S exp A ) (5.6)

a=0 ej a=0

The term in parenthesis in Equation (5.6) sums to 0 for all 7 that are not
multiples of A due to the uniform spacing of the terms aroundthe unit circle of
the complex plane. If j is a multiple of A, the bracketed term sums to 1. Thus

  

 

 

l ao} i2ma = é=> B(te A ) = So m(é)t (5.7)a=0 £=0

Finally for r 4 1, from Equation (5.4) we get

—pAyizk

B(t,r) = fite(4 — )] (5.8)
i2na (1-1); a#X0

Bltje A j= : 5.9( . ) aaah a=0 ee)
Combining Equations (5.9) and (5.7), we get Equation (5.3).

Now consider an ensemble in which all n-length A’nary sequences that satisfy
the given n/k parity checksare equally likely. Then, over any k digits in a check
set, each of the A*~! k-length sequences satisfying the check are equallylikely,
and from Equation (5.3), the moment-generating function for the weights of
these sequences is

o(s) = A~*{ [1+ (A-Ne']* + (4-0 —e*)*} (5.10)
Now the theorem follows in exactly the same way as in Theorem 2.3. O

There are altogether (7)(A —1)* A’nary n-length sequences of weight £, so
that the probability that a randomly chosen sequence of weight will satisfy
the block of n/k parity checksis

(2)

(7)(A- DF

Since over the ensemble of codes, each of the j blocks of parity checks is in-
dependent, the probability P(é) that a sequence of weight @ is a code word
is

_f[ mo )
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Thus, following Chapter 2, the distance function Nj,(@) and the minimum dis-
tance distribution function can be bounded by

Nyx(nd) < CA, n) exp —nBjxa(A) (5.11)
nd

Pr(D < nd) < D C(A,n) exp —nBjra 3) (5.12)
é=2

where

Byxa(d) = (J —)[HO) + Aln(A—1)] — 2 [ya(s) +(e - 1) In] + 50d
(5.13)

C(A,n) = [20nA(1 — A)] — exp mien (5.14)
y = Hal) (5.15)

k

and j4(s) is given by Equation(5.2).
It can be shown by methodssimilar to those of Appendix A that the function

Bjxa(A) is 0 at A = 0;it rises with an initial infinite slope, has one zero crossing
at the typical minimum distance, and then remains negative.

5.2 Probability of Decoding Error

Consider a channel with an input alphabet of A letters which for convenience
we take to be A’nary digits. Let the output be y and, as in Chapter 3,let f(y)
be an arbitrary function of the output. Let uo,ui,...,uj,---,Um—1, Where
Uj = £1j,€2j,---,€nzj be the M code words of an A’nary block code of length n.
Define the discrepancy between an input word u = (#1,...,%n) and an output
0 = (y1,-+-,Yn) as

 

D(u,v) = $5 6(2i, yi) (5.16)
where i=1

— yp wl)6(z,y) =1 Fly) (5.17)
Define

gi(s) = exp 86; (5.18)

hj (r,t) = exp rd; + t(6; — 4;) (5.19)

The averaging in Equations (5.18) and (5.19) is according to the distribution
of channel outputs y conditioned on x; being transmitted. Now we restrict our
attention to channels which are symmetrical in the sense that gi(s) and hj;(r, t)
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are independent of i and j for an appropriate choice of f(y). Further, we restrict
our attention to f(y) functions for which this symmetry is achieved.

One example of such a channel is a channel with A’nary digits for both
input and output and a probability 1 — p of receiving the transmitted digit and
p/(A—1) of receiving any other digit. Another example is that of A orthogonal
equal energy signals on either a white Gaussian noise channel or a Rayleigh
fading channel similar to Figure 3.1.

Maximum-likelihood decoding on this channel is equivalent to choosing u,;
that minimizes D(u;,v) when v is the received word. Thus, when ug is trans-
mitted, we can bound the probability of maximum-likelihood decoding error
by

P(e) <P, +Pr (5.20)

P,<Pr [> 4(zi0, yi) = nd| (5.21)i=l
M-1 n nh

Py < y. Pr ly (40, ys) < nd; »: 5(xij, yi) — 5(@i0, yi) < d (5.22)
j=l i=] i=l

Theorems 3.1 and 3.2 can nowbe used directly to bound Equations (5.21) and
(5.22).

P, < [9(s)]" exp(-nsd); 5 20 (5.23)

Py < 57 N(@[ACr, t)]‘ [A(r, 0)} nat exp(—nrd) r<0,t<0 (5.24)
é=0

where g(s) and A(r,t) are given by Equations (5.18) and (5.19) and N(é)is the
distance function of the code. For an ensemble of parity-check codes, Equa-
tions (5.20), (5.23), and (5.24) bound the average probability of decoding error
over the ensemble in terms of the arbitrary parameters d, f(y), s > 0,r <0,
t <0. As in Chapter 3, t = (r — 1)/2 optimizes the bound over t, but no other
simplification has been found. Equations (5.20), (5.23), and (5.24) are sufficient,
however, in conjunction with Equation (5.11) to demonstrate the exponential
decrease of probability of error with block length for an expurgated ensemble of
(n, j,k) codes at sufficiently low rates.

5.3. Probabilistic Decoding

Consider an (n, j,k) code of A’nary digits, and assume that the code words have
equal probability. As in Chapter 4, using the notation of Figure 4.1, we wish to
find P,;, (xq = a), the probability that the transmitted digit in position d was an
a,0<a< A-—1, given the received symbols in the m tiers of the parity-check
set tree on digit xq. First we shall find P,(%¢ =a).

Consider the ensemble in which the transmitted digits in position d and the
first tier are independent equiprobable A’nary digits, and the received digits are

52



determined according to the channel. Within this ensemble, the probability of
any event conditional on the j parity checksof the first tier being satisfied is
the same as the probability of the event in the actual code. Thus, using our
previous notation,

Py (q = a) = Pr(va = al{y}, 5) (5.25)

Theorem 5.2. Let Po(xig = a) be the probability that the €" transmitted A’nary
digit in the iparity-check set on d is a, given the received symbolin that po-
sition. Assume that all combinations of rq and the xz that satisfy the j parity
checks on xq are equally likely. Then

Plog =a) =—potee=2)Tia9:(-@) :et 8)=At pita = a) ThdO ee)
where

A=-1 k-1 A-1

Gi(t) = S> gila)t? = [] D> Polwie = 0)2" (5.27)
a=0 f=1 a=0

In Equation (5.26), —a is taken modulo A, and the multiplication in Equa-
tion (5.27) is taken modulo t4.

Equation (5.27) yields an explicit solution for g;(a) for each i, but computa-
tionally, g;(a) is found for all a, 0 <a < A—1 simultaneously. Before proving
this theorem, the following lemma is needed.

Lemma 5.1. Consider a sequence of L statistically independent A’nary digits
in which the €letter assumes the value a with probability Pe(a). Then the
probability that the modulo A sum of the digits has the value a is given by g(a)
in the expansion

A-1 L A-1

Gt) = 7 o(@et* = [] > Be@et" (5.28)
a=0 f=1 a=0

where the product in Equation (5.28) is taken modulo tA.

Proof of Lemma. Note that the right side of Equation (5.28) using ordinary
multiplication is simply the z transform for the sum of the @ letters. In other
words, the coefficient of #* in the expanded form of Equation (5.28) is the
probability that the sum of the digits is a. Taking the product modulo tA
simply adds all coefficients for which a has the same value modulo A, thus
proving the lemma. oO

Proof of Theorem. Using Equation (5.25), with some manipulation of condi-
tional probabilities, we get

Pr(Slea = a, {y})Po(oa = a)
Pr(S|{y})

_ —PriSita= 0WPRee=) i599
yarPr(Slea = a!, {y})Po(ra = 0!)

P\(2j =a) =
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Now we observe that the term Pr(S|xq = a, {y}) is the probability that each set
of k—1 digits other than din the parity-check sets add to —e. From Lemma5.1,

Pr(S|2a = a, {y}) = Il g;(—a mod A) (5.30)
i=1

where g;(—a modA)is given by Equation (5.27). Substituting Equation (5.30)
into Equation (5.29), we get the statement of the theorem. O

Equation 5.26 can be extended immediately to an iterative decoding pro-
cedure by the same arguments as used in Chapter 4. In successive iterations,
Po(xig = a) becomes P»(xie = a), and j different probabilities must be calcu-
lated for each digit, each probability leaving one of the j parity checks out of
consideration.

5.4 Probability of Error Using Probabilistic Decoding

Consider a channel with A inputs and A outputs both labeled from 0 to A —1.
The channel transition probabilities are given by

P(yolte) =1—po; P(yalae) =a for any a, b such that a #b
Consider a parity-check set. tree as in Figure 4.1 with m independent, tiers num-
bered from top to bottom with 7 = 3. Modify the decoding procedure as
follows: If both parity checks rising from a digit are unsatisfied and both have
the same value, change thedigit so as to satisfy both checks; otherwise leave the
digit unchanged. The probability of error in this procedure overboundsthat for
probabilistic decoding. The probability that a digit in the first tier is received
incorrectly and then corrected is PyQ* where Q is the probability of either no
errors or of errors adding to 0 mod A in one of the sets of k—1 digits. We define
the error in a digit as (y— x) mod A. Next it will be shown that

_14+(4-00- ay

 

1
wlQ + (5.31)

The z transform for the ordinary sumof the errors in k — 1 digits is

Po A-l k—-1ot) =(1-m+ye) (5.32)
po z—z4\*!{+ . 1 33Ge) =(1-m+ PE) tore y (5.33)

=e foreail (5.34)

Now consider the quantity A-1
1 jana
q > Ge")a=0



All powers of z in this expression that are not multiples of A cancel out due
to their uniform spacing around the unit circle in the complex plane. The
coefficients of powers that are multiples of A add, thus giving Q.

1 42! -
Q=5 S> Ge") (5.35)a=0

Now from Equation (5.33)

wa k-1

G(e"#*) = (1-p +375) ; forazo (5.36)
Finally, combining Equations (5.36) and (5.34), we get Equation (5.31). Thus,
the probability that a digit in the first tier is received incorrectly and then
corrected is

2
_ _ Apo k-1

nize 1)(1— 422) } (5:37)A

The probability of receiving a digit in the first tier correctly and then changing
it due to two identically violated parity checks is

(1-po)(1- => (5.38)
The term (1—Q) in Equation (5.38) is the probability that the errors in oneset
of k —1digits will not satisfy the parity, and the term (1 — Q)/(1 — A) is the
probability that the other set will have the same value modulo A as thefirst
set.

Combining Equations (5.37), (5.38), and (5.31), we get the probability of
error for a digit in the first tier after the first iteration of the decoding process

2
 1+(A-1)(1- 48)*"

Pi = Po— Po A
2

= _ _A k-1

+-mya-y{=E-9C=eI (5.39)
Similarly, for successivetiers,

: ave

1+(A-1)(1= 44)"
Pi = Po — Po§——{7

2

ieae| (5.40)+-ma-n{ 5
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The rate at which [p;] + 0 can be determined from Equation (5.40). For p;
small,

Pit © pi2(k — 1)po (5.41)

It is interesting to observe that Equation (5.41) is identical to Equation (4.14),
although, of course, the maximumvalueofpo for which p; from Equation (5.40)
converge to0is different. This value increases with A up to 1/2(k — 1).

A bound on decoding error with 7 > 3 is considerably more difficult. The
decoding schemewill be to change a digit whenever a number 6 to be determined
later, or more of the parity checks rising from a digit all have the same value.
The digit will be changed in such a way as to satisfy the 6 parity checks. If
b > (j — 1)/2, it can be shown in the same wayas in Section 4.3 that

Gel pe ;

Pit = Po—Po>, C e ‘) QA -— Qit=b

+(1 -m) (’ Y ') (ssi -a-1) (5.42)
 

where
oy

ioeie
as

The integer b can nowbe chosen to minimize p;,; subject to the restriction b >
(j —1)/2. Thesolution to this minimization is the smallest integer b > (j —1)/2
for which

(5.43)

1—po - Q?(A — 17?
pm <Q)*F-F(A-2-Qyr

As p; approaches 0, b = 7/2 for j even and (j +1)/2 for j odd. Then expanding
Equation (5.42) in a powerseries in p;, we obtain

(5.44)

purr =po(?c1') [ple 1))? +---5 J odd (5.45)
_ Asp 1(F=1\5 avid ae = even 6Pit = [po +a =.) ( i ) face Die tex 3 Jeve (5.46)

Observe that Equation (5.45) is identical to Equation (4.17) and Equation (5.46)
is identical to Equation (4.18) except for the coefficient.

From Equation (4.18) on, the derivation of error probability in Chapter 4
does not use the restriction of a binary binary alphabet, and therefore the
bound on error probability in Equation (4.21) is valid for codes of arbitrary
alphabet size. The coefficient cj, appearing in Equation (4.21) is a function of
the alphabet size A, however.
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6 Experimental Results

The probability of decoding error P(e) associated with a coding and decoding
schemecan be directly measured by simulating both the scheme and the channel
of interest on a computer. Unfortunately, the experiment must be repeated until
there are many decoding failures if P(e) is to be evaluated with any accuracy,
and thus many times 1/P(e) trials are necessary. For block lengths of about
500, an IBM 7090 computer requires about 0.1 second periteration to decode
a block by the probabilistic decoding scheme. Consequently, many hours of
computation time are necessary to evaluate even a P(e) in the order of 1077.

Because of limitations on available computer time, all of the results pre-
sented will be for situations in which P(e) is large. Certainly it would be more
interesting to have results for small P(e). However, the data presented can
probably be extrapolated with some degree of confidence to situations in which
P(e) is 10~° or 10~®. Furthermore, even the limited data presented here give
someindication of the variability of P(e) with such parameters as block length,
code rate, and type of channel.

6.1 Code Generation

All of the results in this chapter were obtained with low-density parity-check
codes generated on an IBM 7090 computer by a pseudorandom procedure. More
specifically, the parity-check matrices were chosen in the same way as the ensem-
ble of low-density matrices was generated in Chapter 2. Thefirst submatrix of
n/k parity-check sets contained successive sets of k digits, and each succeeding
submatrix was a random column permutation of the first. The random permu-
tation was performed with a pseudorandom number routine and then modified
so that no two parity-check sets would contain more than one digit in common.
This modification guaranteed the validity of the first iteration in the decod-
ing process and also excluded the remotepossibility of choosing a code with a
minimumdistance of 2.

The codes generated in this way were stored in the computer and used in
decoding the noise sequences generated by simulated binary symmetric channels,
white Gaussian noise channels, and Rayleigh fading channels. In order to reduce
computer time, however, the code word to be transmitted was always the all-
zero sequence. This is valid since, as explained in Chapter 3, the probability
of decoding error on a symmetric binary-input channel is independent of the
transmitted code word. This simplification, of course, requires extreme care
to ensure that the actual simulation of decoding maintains complete symmetry
between positive and negative outputs.

6.2 Binary Symmetric Channel

A true simulation of a binary symmetric channel (BSC) would involve choosing
randomerror sequences in which crossovers(that is, channel errors, represented
by the crossed transition lines in Figure 3.1a) occur independently with a given
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probability p. Whether probabilistic decoding with a particular code can decode
such a sequence depends very strongly on the numberof crossovers ¢ generated
in such a process. Since c has a well known (that is, binomial) distribution, it
is possible to evaluate experimentally the probability of decoding error given
c crossovers and then calculate P(e) for a BSC from this data. This latter
procedure has the advantage of giving additional insight into the operation
of the decoding scheme and also of facilitating comparison with other coding
schemes that are oriented toward correcting a fixed number of crossovers.

Figures 6.1 to 6.4 present the actual data gathered this way. The abscissa
on each graph is the ratio of number of crossovers to block length c/n and the
ordinate is the digit error probability after decoding. In all these experiments,
except for one code with a rate 5 and block length 126, the decoderfailed
to decode rather than decoding to an incorrect message. In other words, the a
posteriori probabilities computed by the decoderfailed to converge to either 1 or
0. This is an important point in any communication system in which a feedback
link is available since undecoded blocks of information can be retransmitted. It

is important to note that P(e) as shown in Figures 6.1 to 6.4 is the decoding
error probability per digit that ensues when the best guess is made about each
digit in blocks that can’t be decoded. The probability of failure to decode a
block is typically about 10 times larger than P(e).

1907!

107?

Bose- ow-densityr code, maximum-
P(e) Chena huri likelihood decodingcode n=504, j=3

n= 6511 . k=6R=i°
R=id ow-density = ~ 2

-3 cade,
10 probabilistic

P decoding,experimental,
n = 504,

j=3,,k=6a

 
L074 I IL |

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 Q.12

Ratio of transmission error to blocklength

Figure 6.5: Comparison of experimental results using probabilistic decoding to
theoretical results with maximum-likelihood decoding.

The median number of blocks with decoding failures per point plotted on
Figures 6.1 to 6.4 is 8; many points, particularly where P(e) is small, were
evaluated from data containing decodingfailures in only 1 or 2 blocks. Thus the
position of individual points on these curves would probably change appreciably
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with more data.

Figure 6.5 compares the experimental data using probabilistic decoding on a
code with n = 504, j = 3, and k = 6 to the theoretical probability of error that
would result for the same code if maximum-likelihood decoding were used. For
comparison purposes, a Bose-Chaudhuri code of approximately the same block
length andrate is included. The value of P(e) for this code assumes the use of
one of the knownalgorithms for decoding such as Peterson’s [12]. These algo-
rithms correct only numbers of crossovers less than half the minimum distance.
It appears from the curve that the Bose-Chaudhuri code would perform better
at low crossover probabilities and the low-density code would perform better at
high crossover probabilities.

6.3. White Gaussian Noise Channel

In the following two sections each of the channels under consideration will consist
of a binary data transmitter, a physical channel, and a likelihood receiver. The
output from the likelihood receiver is assumed to be the log-likelihood ratio,

_,, Prlx = 0[r()]
=Hire

where z is a transmitted digit, r(t) is the received waveform corresponding to
that digit, and y is the output from the likelihood receiver for that digit. Of
course, this output could be converted into a binary digit before attempting
to decode a block of data, but this conversion would destroy some information
about the transmitted sequence. Since probabilistic decoding operates naturally
with log-likelihood ratios, it is natural to ask how much can be gained in terms
of error probability, signal power or transmission rate by using the output of a
likelihood receiver directly with the decoder rather than making binary decisions
first. For both the channels considered here, this gain turns out to be of central
importance.

For the white Gaussian noise channel, assume that one of two waveforms
is transmitted every T seconds. These signals appear at the receiver, suitably
attenuated and delayed, as two functions xo(t) and x,(¢), both nonzero only
from t = 0 to t = T, andboth of equal energy,

T T .

EB, = : g(t) dt = [ a? (t) dt0 Q

Let n(t) be a sample of white Gaussian noise of power density No per unit
bandwidth that is added to the signal at the receiver. Then the log-likelihood
ratio y computed by an ideal receiver can easily be shown [8] to be

7

i= x [ [x0 (t) — 21 (t)]r(t) at
where r(t) is the received waveform. When x =0is the transmitted digit, then
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Figure 6.6: Comparison between low-density codes and no coding, white Gaus-
sian noise.

r(t) = xo(t)+n(t), and y is easily shown to be Gaussian with probability density

1 (y- 5)"

4E,(1—p) 1 j*2_ ; met,oc =—No; p Ee [ £o(t)2, (t) dt (6.2)
Likewise, *

1 yt =P(y|e =1)=re 35?
Figure 3.1c contains a sketch of these probabilities.

A number of experiments were performed on the 7090 computer for codes
of various block lengths and rates in which the channel outputs were chosen
by a pseudorandom number generator according to the probability density in
Equation (6.1), which corresponds to the all-zero code word. The simulated
decoder stored these received words in the computer and then attempted to
decode them by probabilistic decoding. The results of these experiments for a
block length of 504 and rates of ; and } are shown in Figure 6.6 Thesignal
energy E appearing on the abscissa is the available energy per information digit
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so that

Ec
= R (6.3)

These data assume antipodal signals, or p = —1 in Equation (6.2). For uncor-
related signals, add 3 db to each value on the abscissa.

The fact that the error probability is lower for the rate } code than for the
rate i code needs some explanation. Consider two systems, both with the same
available signal power, noise power, block length, and number of information
digits per second. If one system is coded at rate 4 and the other at rate i,
then the time duration of a block length for the rate 5 code is twice that for
the rate + code. Thus the improvementat rate 5 can be explained primarily
by the longer constraint time of the code. While there is great theoretical merit
in using the constraint time or constraint length in information bits as a basis
of comparison for different rates, the cost of implementing a low-density parity
check decoder is determined primarily by the constraint length in channel digits;
thus we have used the latter basis of comparison here.

Consider now two systems, one codedat rate 4 and the other uncoded, both
having a final digit error probability of 107° and both transmitting the same
number of information symbols per second. Since the abscissa of Figure 6.6
is given in terms of energy per information digit, Figure 6.6 indicates that the
coded system requires 6.8 — 2.4 db or 4.4 db less signal power than the uncoded
system. The rate } codeis less favorable since the increased error-correcting
power does not quite offset the loss in signal energy per channel digit. (See
Figure 6.7.) Although no experimental data using likelihood receivers exist for
the rate 4 and % codes, it appears unlikely from the poor performanceof these
codes on the BSC that they would have any advantages over the rate 4 code.

Finally, to illustrate the advantage oflikelihood receivers over decision re-
ceivers for decoding, consider Figure 6.8. This compares the experimental results
for a low-density code, using a likelihood receiver and probabilistic decoding to
a lower bound, to P(e) for any code of the same block length and rate, using
a decision receiver and maximum likelihood decoding. The abscissa, p, in Fig-
ure 6.8 is the probability of crossover that would exist if a decision were made.
In other words

p= [,. Leas
It is significant in Figure 6.8 to observe the importanceof a likelihood receiver
in terms of the error-correcting power of a code. It suggests that the concept
of “optimum code” is not as relevant to communication as its name indicates,
and that the simplicity and flexibility of coding schemes deserve much greater
attention than their being “optimum.”

6.4 Rayleigh Fading Channel

Assume that one of two equiprobable, equal energy, uncorrelated narrow band
signals is transmitted every T seconds, and let xo(t) and x(t) be the complex
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Figure 6.7: Effect of block length for rate 4 code on white Gaussian noise
channel.

positive frequency representations of these signals. Assume that the complex
representation of the received signal is

r(t) = ae%a(t) +n(t); xo (t) transmitted

r(t) =ae/*x,(t)+n(t); #1 (t) transmitted

where a is Rayleigh distributed and 3 is a random phase,

Pr(a) = ae*/?, a >0

Pr(§)=—; 0<f<2r
20

and n(t) represents white Gaussian noise of power density No.
In the absence of any information about a or § before the transmission

interval, it can be shown that all the information whether 29(¢) or x;(t) was
transmitted lies in the sampled envelopes zp and z; of the outputs offilters
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matched to xo(t) and a (¢),

249 >
r 1

¢ xe(t)r(t) ails 
t id

i= [ xi (t)r(t) dt| EB. ?0

Pierce [13] shows that zo and z; are positive Rayleigh distributed random vari-
ables with variance No + E, and No depending on whether zo(t) or x(t) was
transmitted,

  

2

Pr(z;) = Nea exp “aaPy? for i = 0 of 1, if 2;(t) is transmitted
(6.4)

. 2

Pr(z;) = = exp “oN if signal other than 2;(t) is transmitted (6.5)
where

T

E, = | ao(t)x%(t) dt (6.6)0
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It follows immediately from Equations (6.4) and (6.5) and the independence of
zg and z, that the log-likelihood ratio for the receiver output is given by

Pr(w =0|20,21) _ 2 2)(_1 1ASellen 4) (sx No a) SF)
Finally, it follows from Equations (6.4), (6.5) and (6.7) that

1+A :
2Pr(yle = 0) =¢AC *A)

y=!

“4; y20
Ota) (6.8)ry A <—

Aataye*3 ¥s?

where E
4222

No

A Rayleigh fading channel was simulated on the computer by using a pseudo-
random number generator to produce outputs y according to the probability
distribution of Equation (6.8). Successive values of y were chosen indepen-
dently, which appears somewhatunrealistic since we assumed the path strength
was constant over the baud length, T. This should be a reasonable assumption,
however, when the fading rate is comparable to the baud length, and a good
assumption when scrambling is employed between the digits of successive blocks
of a code.  
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Figure 6.9: Comparison between low-density codes and time diversity for
Rayleigh fading channel.

Figure 6.9 showsthe results of such a simulation. Figure 6.9 shows a much
more marked difference between coding and no coding than Figure 6.6, and
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this is, of course, due to the slow decrease of bit error rates with signal power
on Rayleigh fading channels. Figure 6.9 also indicates that the rate ; codeis
somewhat better than the rate 5 code, but there are not enough data here to
be convincing. Also, the rate 5 code contains twice as many information digits
per block as the rate ; code, so that a block lasts twice as long for the same
information rate in bits per second. This is advantageous when the fades are
longer than a baud length.
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Figure 6.10: Effect of block length on error probability for Rayleigh fading
channel; R = }.

Figure 6.10 showstheeffect of block length on error probability for the rate
5 code. The error probabilities for the smaller block length codes appear to
decrease much more slowly with increasing signal power than the long block
length codes, but more data would be helpful here.

Finally, Figure 6.8 again shows the advantage of a likelihood receiver over a
decision receiver for the Rayleigh fading channel. The Rayleigh fading channel
and Gaussian channel are so different in their characteristics that it is conjec-

tured that this type of gain holds for most symmetric binary-input channels
(with the obvious exception of the BSC).
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A Properties of the Function B(A)

In Chapter 2, the following bound was derived for the minimum-distance dis-
tribution function of an (n, j,k) ensemble of codes:

nd

Pr(D < nd) < 5) C(A,n) exp —nB())
f=2

Pr(D <né) <1

(A.1)

where

c=
Ht .

BQ) = (7-1) H(A) - = la(s) +(k-1)In2]+js\ —(A.2)
dei j-1

C(A,n) = [2rnX(1 _ d)] a exp 12nd(1—A)(A.3)
p(s) + (k-1)In2=In 3 [(1+e°)* + (1) (A.4)

ete) = for optimum bound (A.5)
In this appendix three theoremswill be proved concerning Equation (A.1). The
first theorem will analyze the behavior of B(A), the second will bound the
summation in Equation (A.1) in terms of the first and last terms, the third
will show that as 7 and k increase, Equation (A.1) approaches the minimum-
distance distribution function derived for the equiprobable ensemble of codes in
Equation (2.5).

Theorem A.1. Assume k > j > 3, and let B(A) be defined in Equations (A.2),
(A.4) and (A.5). Then

zi lim,o B(A) = 0,

2. limo ue =o,
3. B(A) has only one zero in the range 0 <r< $,
4. B(A) has no local minimum within the range where B(A) > 0.

Proof. 1. We show that lim,9 B(A) = 0 by showing that each of the three
terms on the right of Equation (A.2) approaches 0. The term H(A) is given
by —Aln\ — (1 — A) In(1 — A) and clearly approaches 0. Differentiating Equa-
tion (A.4), we get

_ p(s) _ e (a + es)k-1 we! (1 _ e®)F-1]
— (1+es)* +(1—e8)*

 
(A.6)
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Figure A.1: Sketch of s and A as functions of z.

and from this, s > —oo as \ > 0. But from Equation (A.4), lims—,—.o u(s) +
(k —1)In2 =0.Finally,

_ jse®[(1 + e8)*-! — (1 —e8)*-*]
Jaa~~(tek+(1—esyt

which also approaches 0 as s + —oo.

2. From Equation (A.2),

  

 

 

dB OB(X),OB(A) (OA\-!_ 1-A.,ay Or 5s (as) G7 No +s
Making the substitution

1-e*

a" 7 +e
1-2 (a)

ais 1+z

and performing some manipulation on Equation (A.6), we get

  

1—-zI—2z'1
a A.2 1+2* (a6)

In Figure A.1, s and are sketched as functions of z.

_ dB, .. l+zy\sl1+2z*-! eee eetim, Gy = BG - Dn) (ger)+
. dB : 1+2\ 1+ 28-'\i-1

tim Sy = Bn)() (A)
k-1)j-1

lim ae = lim In are")
x00 dA zl)(1—28-13-20tz)tz+--+2h?)

limo 42 = oo for j — 2 > 0,or in other words,for j > 3.
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3. Before proving parts 3 and 4 of the theorem, we must show that dB/dA has
only one extremum. Using Equation (A.9), we obtain the derivative of dB/d\
with respect to z.

 

da (=) _ 2 2(j —1)(k—1)z*-?dz\d\/ 1-2 1 — z%tk-1)

Setting this equal to 0, we have

 

: 1.— 22-2 L+2%+zi+---4 22h-4
G —1)(kK- 1) = Grae? = ye

k=2
2 1

G-D(k-1)=14+ 0 (2 x =a) for k even (A.10)
<=]

hnd
2 a 1

(j-(k-1) = 0 (21 +57); for koad (A.11)4=1

The functions on the right in Equations (A.10) and (A.11) are decreasing
in z for 0 < z < 1. Hence each equation can have at most one solution in
this range. Thus, dB/d\ has at most one extremum and at most two zeros for
0<A< 4. Then B has at most two zeros besides B(0) = 0. But since B goes
positive as A increases from 0, two zero crossings for 0 < A < 4 would imply
B(4) > 0. However, from Equation (A.4), using s = 0 at A= 5,

B(3) = [(j-1)In2- 7(k- 1)In2- (1 = z) In2] <0
Therefore, B(A) has exactly one zero for 0 < A < §.
4. If B(\) has a minimum within the range for which B(A) > 0, then it would
require a maximum ontheeither side of the minimum to satisfy B(0) = 0 and
B(4) <0. But B(A) has at most two extrema, so this is impossible.

Oo

Theorem A.2. For an (n,j,k) ensemble of codes, the minimum-distance dis-
tribution function may be bounded by”

a5 + 0(n-I+*) + nCO(6,n) exp —nB(4) (A.12)
 

Pr(D < nd) <

Proof. From Equation (2.18), we have

nd —j+l .

pp <nd)< (7) Imcolt=2 

5By 0(n-+?) we mean a function that goes to zero with increasing n faster than nite;
that is, a function f(n) such that limnoo n’~?f(n) = 0.
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We can evaluate the term for ¢ = 2 directly. Recall that N1(2) is the numberof
sequences of weight 2 which satisfy the first n/k parity-checks of any particular
code. There are CI ways of arranging 2 ones in a single parity check set;
multiplying by the n/k parity-check sets, we have

mo-30)
=Er4 j =

(2) Hixae RVgyi)
 

 

2 (n—1)i-! 2nd?
k= 4 : nd

Pr(D <6) < 55-5 + O(n-F*?) + d C(A,n)exp—nB(A) (A138)
where C(\,n) and B(A) are given in Equations (A.2) and (A.3). In order
to bound the terms for which @ is small in Equation (A.13), we note from
Equation (A.6) that as A + 0, s > 4 In[A\/(k —1)]. Using this value of s instead
of p'(s)/k = A in Equation (A.2), B(A) must be underbounded.

  . 1 1 j kV gj d
> = 2 — — ie at xBO) 2G 1) [Ans +(1 NIn—| ced(je + 5AlIng—

J 1_j),—1B(A) > (2 1)Aln 5 Zin =e e ZN In(h of) (A.14)
Substituting @/n for A and using some inequalities, we have

exp —n.B(A) < n~(3-1) 03-4) (& - 12 ex(2) (a) (A.15)
~ 2n

From Equation (A.3) we get

g-1
6f

From Equations (A.15) and (A.16), we see that the terms for f= 4 and = 6
in Equation (A.13) approach zero faster than n~3+?. From Theorem A.1, if
B(6) > 0, then for every term between £ = 8 and £ = nd, B(A) is lower bounded
by either B(8/n) or B(d). (If B(6) < 0, the right side of Equation (A.12) is
larger than 1 and the trivial bound of 1 applies.) Thus, the summation between
é@=8 and dn is bounded by

j=

C(A,n) < (2né)"2 exp
 

(A.16)

8

nCmmax [exp —nB (-) + exp —nB(5)| (A.17)
Thefirst term of Equation (A.17) has an n dependence given by

nlit4y*+8(-5+0)] =O(n4+"); for 7 >3
The second term of Equation (A.17) is the last expression appearing in the
statement, of the theorem, Equation (A.12), proving the theorem. Oo
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Theorem A.3. Let 5;, be the nonzero solution of B(A) = 0 for an (n,j,k)
ensemble, and let R= 1—j/k be fixed. Let 59 < 4 be the solution of H(do) =
(1— R)In2. Then limp_+o0 dj~ = do-

From Theorem 2.2, 69 is the typical minimum-distance for the equiprobable
ensemble of parity-check codes, so the theorem asserts that the typical mini-
mum. distance of (n,j,k) codes approach that of the equiprobable ensemble as k
increases.

Proof. Using Equation (A.2), B(A) can be rewritten in the form

B(A) = {-H(.) < In at + {i[H) +s] - 7 In[(d —e)Fa (it et)*]}
(A.18)

We shall show that for A 4 0, the last brace in Equation (A.18) approaches 0
with increasing k. This is sufficient to prove the theorem, since j/k = 1—R
and thus thefirst brace is zero only for A = do.

r

Making the substitution z = (1 — e*)/(1 +) of Equations (A.7) and (A.8),

 

H(A) + s\= Afin( S) +5] —In(1—))

 l—zl—z'-! 142%} 1+z\/14+2*-!
HO) +ae—a(S \(apar) ae)

Also

1 syk sy\k 3 1 &
z mla+e*) +(1—e*)*] =In@ +e’) + FIn(1 + 2")

_ 2 1 k
=Ingz5 + znd +2") (A.20)

Combining Equations (A.19) and (A.20), the second brace in Equation (A.18)
becomes

1-—z\sl—2*) 1+2*7-1 L+283 gj-j(2—2)\ (2-2) wo tae ki( 5 \( fae ) n> ea + jln ice +7 init )
As k increases, for any z < 1, (where \ > 0), z* and z*~' approach 0. Expanding
the logarithms we have

k-1
. l-—z l-z k-1 + k-1 gzSe he ee

In this expression, j > 00 linearly with k, but z*~' + 0 exponentially. Thus,
the second brace in Equation (A.18) approaches 0. Oo
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B Miscellaneous Mathematical Derivations for

Chapter 3

B.1 Chernov Bounds

Theorem 3.1. Let Z = 07, %i be the sum of n independent random vari-
ables, let P;(z;) be the probability density of the i** variable, andlet gi(s) =
To. exp(sz;)P;(z;) dz; be the moment generating function for the it” yariable.
Then

Pr(Z > nz) < exp(—nszo) Thais (B.1)
i=l

for all s > 0 such that the g;(s) exist. If the z; are discrete, then the same
statement holds except that the P;(z;) are probabilities and the integral defining
gi(s) is replaced by a sum.

Proof. The sumZis itself a randomvariable, and has a probability distribution
function F(Z) and a moment-generating function,

GG) = /* exp(sZ) dF(Z) = exp(sZ) (B.2)
From the definition of 7, we get

vc

G(s)exp (S- zi) = I eXp $2;i=l

Since the variables are independent,
Th nl

G(s) = [J exp sz: = J 9i(s) (B.3)
i=l i=1

Nowfrom Equations (B.2) and (B.3), we get

[] 9(s) = if* exp(sZ) dF(Z) > i* exp(sZ) dF(Z) (B.4)20

For s > Q and Z > nzo, sZ > 829. Thus,
Tt oo

[[ si(s) > exp(onze) | d(Z) =exp(snza) PZ > nz0)  (B5)
i=l nzo

Rearranging terms, we get the statement of the theorem, Equation (B.1). The
theorem is proven in exactly the same way if the z; are discrete. oO
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It would appear from the rather gross inequalities in Equations (B.4) and
(B.5) that the bound in Equation (B.1) is rather poor. However, this is not so
if the parameter s is correctly chosen andif nzp is greater than the mean value
of Z. To see this, consider the product F(Z)e*%. For larger n, F(Z) increases
sharply around Z. However, e®7 can be considered as a weighting factor that
weights large Z very heavily. Thus, the product F(Z)e*? will have a sharprise
for some Z larger than Z. The trick is to pick s to that this rise occurs at
Z = nz. Analytically, this can be done by taking the partial derivatives with
respect to s of the right side of Equation (B.1) and setting it equal to 0, giving

n=aoe) (BS)
With the choice of s satisfying Equation (B.6), it can be shown that the bound
in Equation (B.1), known as the Chernov bound,at least has the correct. expo-
nential dependence on mn.

Theorem 3.2. Let z; and w;, 1 <i<n, ben pairs of random variables with
probability density functions P;(z;,w;). Let the joint moment generating func-
tion of 2;,w;, be

A,(r, t) = // exp(rz; + tw) P; (zi, w;) dz; dw; (B.7)
Let each pair of randomvariables be statistically independent of each other pair
and define Z and W by

Z = 3° 4
i=1

é

W= So wi
w=1

Lin

(B.8)

Then, for any arbitrary numbers zp and wo,
é n

P(Z <nzo; W < nwo) < [[ [ac t)] II [hi(r, 0)| exp —n(r2o9 + tug) (B.9)
i=l ist+1

for any r <0, t < 0 for which hj(r,t) exists. If z and w are discrete, Equa-
tion (B.8) still holds with integrals in Equation (B.7) replaced by sums, and the
probability density replaced by a probability.

Proof. Let F(Z,W) be the distribution function of Z,W and let the moment-
generating function of 7,W be

H(r,t) = i* [* exp(rZ +tW) dF(Z,W)
=exp(rZ + tW)

(B.10)
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Using Equation (B.8) and the independence of samples, we get
r

+.

H(r,t) = exp [Sere + tw) + > rzi|
i=f+1

= [enon=m] |t=1

n —$——$——$$——

TI era=é+1
é n

= [J adr.t) [[ ril.9) (B.11)
i=l i=€+1l

Combining Equations (B.10) and (B.11), we get:

é nm 00 oo

[prtTf ilr,0) = / / exp(rZ + tW) dF(Z,W)ixf+l1
mhze9 nwo

> | | exp(rZ +tW)dF(Z, W)

For r<0,t<0, Z < nz, and W < nwo we have

exp(rZ + tW) > exp(rnzo + tnwo)
é n

II hA,(r, t) I hy(r,0) > exp(rnzp + tnwo) Pr(Z < nz; W < nwo)
i=l i=l+1

Rearranging terms, we get the statement of the theorem, Equation (B.9). O

B.2 Optimum Valueof f(y)

We wish to find an expression for f(y) = f(—y) to maximize the expression
 

E(s,7,) = = ’ —Ing(s) - — [B(A) + Alnh(r) + (1—A)Ing(r)] (B.12)
where

a(s) =fPo(u)'*Fu)ay (B.13)
nor) = [PakPOFYay (B.14)

If we write f(y) in the form f(y) = fo(y) +efe(y), fo(y) will maximize E(s, r, A)
if E(s,r,) is maximized with respect to € at ¢ = 0 independentof f,(y). We
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can automatically satisfy the constraint f(y) = f(—y) is we rewrite the integrals
in Equations (B.13) and (B.14) as integrals from 0 to oo. Thus,

ats) = [[Poy+ Pay] Lolo) + fo)ay (B.15)
noo) =f 2Pow)8@-PyO[folw) teu)dv (B16)

Using Equations (B.15) and (B.16) we get

OE(s,r,A) _ Ts 20 = i eiBe = arial) fy (PTI) Uo + ef fed
sar pp lt-r) pi") rl-gann | 2F5 P; (fo +efe)”” fe dy

s(l—A)r [f°¢oir, pier -~ts—nary Jo (Ri +P} ) (fo + fe) 'f.dy (B17)
If Equation B.17 is written out as one integral, it is clear that it will be 0 at

€ = 0 independent of f,(y) only if the integrand is identically 0. Thus,

ifww#4 pi-*\i7 - aye7) pall") peo
b=

=a=a(BET+ PIT)r-1_Q (B.18)

_ hy [2PW)2-PP.G)E-] + HA [Poontot + Pil)
fou)"

shy [Pow)!=# + ily)!
(B.19)

Finally, we observe that if an fo(y) satisfying Equation (B.19) is multiplied
by an arbitrary constant, it will still satisfy Equation (B.19) due to the com-
pensating changes in g(s), h(r) and g(r). Thus, with a little manipulation we
get. Equation (3.40).

Next we show that this value of fo(y) yields a local maximum of E(s,r, A)
with respect to e.

BPE(s,r,r) _ r O°g(s) _ fOg(s)}?Oe? ~ (s— Paley {208 Oe? | de \
 

 2 7~ (s—a= {hrEe - al
) alr)_Og(r)7?- Seri ae ~ Be } eae)
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Consider the first brace in Equation (B.20):

2 2

a) - 5
 

 elfetern8 ay|
[eetsrrygia

oO 2

_ 3° i (Pp-* + Pi-*) ekg a)0

From the Schwartz inequality,

oo 2 20

if (Pi*-+ PI)5 <(/ (Pi-e-+ PI")5d
x [[etePrasnay]

g(s)2) — [PMO>ants) [CreeRStae
In the same way, it can be shown that at « = 0,

2 2 OF dA gcd (letno) RD — PRO > onan [PROPROMP BAB dy
2 Fa waig(r)78) — [282]? > —rgiey [Rr + PESAe dy

 en

 

Combining these results and using the fact that s > 0, r < 0, wefind

 

 @’E(s,r, A) rs “| t oa ‘eh camea < Py —s P -8 éde? eer —.f a8) ¢ * )fo fe
Ay ps(=r) p$ 0-7) pr—2 go

erie 2h(r) P; fo f;
_1i-A

sari) (Po + Pio") fo 7 f2| dy (B.21)
 

Finally, comparing the integrand of Equation (B.21) with Equation (B.18),
we see that the integrand is identically 0. Thus,

2

PB(sr)| oo
a

and we have established that Equation (3.40) yields a local maximumof E(s,7r, A)
with respect to f(y).
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B.3. Elimination of f(y) from Exponent

In this section, we simplify the expression for E(s,7, ) given in Equations (B.12),
(B.13) and (B.14) by eliminating f(y) from Equations (B.13) and (B.14) by us-
ing Equation (3.41) (repeated here as Equation (B.22) for convenience).

wl$-rTr

fy) = [Poyyt@-? +P,ge] “ [Pow + Py(y)'-* (B.22)
First we add and subtract s/(s —r)In[g(r) + h(r)| from Equation (B.12). This
gives us

,

E(s,r, A) =
 

In g(ssap ngs)
5 _£B(A) + Ana + (1—A)In(1— a) + In[g(r) + A(r)]} (B.23)
 

&5—-T

_ h(r)
a@=In a0) + hr) (B.24)

Writing out g(s) and g(r) + A(r) by using Equation (B.22), we get

9(8) = g(r) + A(r)

=| [Po(y)!-* + Pa(y)!-*]7= [Po(y)2O-7) + Py(y)2O-9] =" (B.25)
Substituting Equation (B.25) into Equation (B.23), and writing out the ex-

pression for a, we get Equations (3.43), (3.44), and (3.45).

B.4 Simplification of Exponent for Random Ensemble of
Parity-Check Codes

Equation (3.47) shows that 8(a@) = (1 — R)1n2, which is independent of @ in
this case. Thus the expression for E(s,r), Equation (3.43), is independent. of a
and can be written

E(s,r) = —(l —R)In2
2

-in [(FI + Pin#) "FF (pROmN 4 p20-")) 72% ay (B.26)
 

If we now make the substitutions p = s/(s —r), 71 =1—s, 72 = $(1—r), we
get

E:(o1, p) = p(1— R)In2—I1n / (Po + Pet)*? (pee pe)” dy—(B.27)
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where

_ i-a(1~p)
2p

Next we find the maximum of FE, (o1,p) over o,. Define

z(o1,y) = [Poly)]” + [Pr@)]”

Bx(01,9) = p(1— R)in2—In f 2(or,y)'P2(02,4)*dy

92

JE; (01, p)
Oo;

me a (1—p)zi(o1,y)—2pz(o2,y)(1 — p)-{ z(o1,y)'~°z(o2,y)?eee=Se| dy
oe ¢

[ 2(o1,y)'-P2(, 9)? dy0

(B.28)

The partial derivate in Equation (B.28) was taken with p constant but a2
varying with a, according to Equation (B.27). It is clear from the bracketed
term in Equation (B.28) that E,(o,, pe) has a stationary point at 0; = o2, or
l-s= (1 —T).

In order to show that a; = o2 actually maximizes £, (01, ¢), it is sufficient
to show that Equation (B.28) is nonnegative for 71 < o2 and nonpositive for
01 > 02. Since the sign of Equation (B.28) is determined only by the bracketed
term, however, is it sufficient to show that

0 [-zi(o1,y),2i(o2,9)—|— + <0 B.29Oo,|2z(o1,4) z(o2,y)|~ ( )
Or,

_ zi (or, y)z(o1, 9) — [zi(o1; y))
[z(o1,y))?

<024! (o2,y)2(92,y) — lz, (2, y)}? ¢_(- p)+ee|e
[2(02,9))? 2p

Writing out the first term, we get

[Pg? (In Po)? + P?* (In P,)?] [Pst + Py] — [Py? In Po + Py? in P;)’
[z (a1 7 y))?

From the Schwartz inequality, the second part of this expression is less than
or equal to the first, so the whole term is negative. In the same way, the second
term is negative, establishing that 1—s = (l—r)/2 yields a maximumofE(s,r).
Substituting this into Equation (B.26), we get

 

B(s) = -==(1- R)In2—- in [ [pi-> 4 pi-9}'/0-9) dy (B30)
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B.5 General BSC

In order to maximize Equation (3.61) over s and r, and thereby minimize our
upper bound to P, for the BSC, we could simply combine Equations (3.61),
(3.62), and (3.63), and then set the partial derivatives with respect to s, r, and
A equal to 0. This procedure is tedious, andit is difficult to demonstrate that
the stationary point so found is indeed the maximum over s, r of the minimum
over \. However, we recall that Equations (3.61) to (3.64) were derived by
eliminating f(y) from Equation (3.37).

For the BSC, it makes no difference what f(y) is. Due to the symmetry
condition, Equation (3.5), f(+1) = f(—1), and thus f(y) is specified by one
value. However, we showed that multiplying f(y) by a constant does not change
E, so that f(y) can be chosen as 1 for the BSC. At this point, we can return to
Equation (3.37) and minimize this directly. We have, letting p = Po(—1)

P, < max min{ exp n{In g(s) — sd]A 8,r,d

+nCy expn[B(A) + Aln h(r) + (1 — A) Ing(r) — rd] } (B.31)

g(s) =p’? + (L—p)*
ue - (B.32)

A(r) = 2p? (1—p) 2

To minimize Equation (B.31) over s, we can simply minimize[In g(s) — sd]

ga Pp) + (=p)nfl=p)
p+ (1p)

if d is in the proper range to make 0 < s < oo. .
To see that Equation (B.33) actually minimizes P., we can show that

6 [In g(s) — sd]
Os?

This can be done either by straightforward but tedious differentiation or by re-
calling that the secondderivative of a semi-invariant generating function[In g(s)]
is always positive [4]. Likewise, minimizing over r gives us

A pT In(1/p) + (1 — p)*~7 Inf1/(1 — p)]
d= —p(1— p) + (L—A) pi? +(1—p)i-?

if d is in the proper range to make —co <r < 0. Finally we can minimize over
d by making the two exponents equal.

(B.33)

>0 (B.34)

(B.35)

In(p'~* + (1 —p)'~*) —sd

= B(A) +AlIn2+ os Inp(1 — p) + (1— A) In(p'"" + (1—p)'~*) — rd
(B.36)
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Equations (B.34), (B.35) and (B.36) can be used in principle to solve for s,
r, and d in terms of 4 if a solution exists with 0 < s < 00; -oo <r <0. To
simplify these equations,first combine Equations (B.33) and (B.35) to eliminate
d.

—psinp —(1—ps,)n(1—p) = -; Inp(1 — p) — (1—A)[pr Inp + (1 — py) In(1 — p)]
(B.37)

where

n=——ae
"po0-p

PT (B.38)
Pr = pi-r+(1—p)i-"
Pr SP SPs

The third condition in Equation (B.38) is required by the condition s > 0,r <0.
Rearranging Equation (B.37), we get

(-r.+2+(-2p.) inp = [a -p.) - 3 - A -2)( = p»)] In(t =P)
= [-P. + S {i= \pr| In(1 — p)

Pa= 34 (1— 2p, (B.39)
Equation (B.36) can also be simplified if we add d to each side, then substi-
tute Equation (B.34) in the left side of Equation (B.36), and substitute Equa-
tion (B.35) in the right side of Equation (B.36). After some simplification, this
yields

H(ps) = BOA) + Aln2 + (1 — A)(pr) (B.40)

Also, since we haveset the exponents in Equation (B.31) equal, we can simplify
the expression for P,. Proceeding in the way used to get Equation (B.40), we
obtain

 

P, <max(1 +nC;,) exp —n [-#(@.) +Ds In +(1—pes)In5 =| (B.41)
where ps satisfies Equations (B.39) and (B40) and p, < p < ps.

Note from Figure 3.4 that the P. in Equation (B.41) is decreasing with pg,
so that maximizing \ means to find the A for which the p, satisfying Equa-
tions (B.39) and (B.40) is minimized. A simpler formulation for this A can be
found from Equation (B.31), from which A is chosen to maximize

h(r)[B(X) + Aln Oe = B(A) + in4p,(1 — pr) (B.42)
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C Analysis of Numberof Independent Decoding
Iterations

An asymptotic bound on the probability of decoding error using probabilistic
decoding was developed in Chapter 4, Equation (4.19). This bound was given
as a function of the number of decodingiterations. In this appendix, upper and
lower boundswill be derived on the maximum numberof decoding iterations m
that can be achieved with an (n,7,k) code before the independence assumption
of Theorem 4.1 becomes invalid. We shall show first that for any (n, j,k) code
m must be upper bounded by

me logn
log(k — 1)(j — 1)

Second, and more important, a construction procedure will be described by
which it is always possible to find an (n, j,k) code satisfying

] logSizkaig,OCREESan
2log(k — 1)(j - 1) ~

Note that for large n, the m given by Equation (C.2) is approximately half that
given by Equation (C.1).

(C.1)

m+1 (C.2)

Theorem C.1. Let m be the largest number of independent decoding iterations
possible for any code of block length n with k digits per parity-check and j parity-
check sets per digit. Then

me logn
log(k — 1)(j - 1)

Proof. Consider an m-tier parity-check set tree for any digit in any (n, j,k)
code. To achieve m independent decoding iterations, each node of this tree
must correspond to a separate digit in this code. Thus, the number of nodes
in the m-tier tree must be at most equal to the block length n. Thefirst tier
contains (k — 1) nodes for each of the j branches rising from the base node.
Thus, the first tier contains j(k — 1) digits. Each of these digits gives rise to
(j —1)(k —1) digits on the secondtier since only (j — 1) branches rise from each
node onthefirst tier. Thus, there are j(j —1)(k — 1)* digits on the secondtier.
Similarly, there are j(j — 1)*~!(k — 1)* digits on the i*” tier. Thus,

1+ j(k—1) + 5(j — 1)(R-1)? +--- + 9G — 1)(R- 1)
+j(j-V™(k-1)™ <n (C3)

The expression on the left of Equation (C.3) is lower bounded byits last term,
and that in turn is lower bounded by (j — 1)”(k —1)™, hence

(G-1™(k-1)™ <n (C.4)

Taking the logarithm of both sides of Equation (C.4), we get Equation (C.1),
proving the theorem. Oo
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Equation (C.3) can also be summed exactly to get

i. ea pa cade ,1+5G-0"&-1)"[F=G—pagesls" C*)
The complexity of Equation (C.5), however, makes it less useful than Equa-
tion (C.1).

Before describing a construction procedure to satisfy Equation (C.2), a re-
lationship will be established between m andtherelative locations of the 1’s in
the parity-check matrix. Define a closed path in parity-check matrix to be a se-
quence of connected alternating horizontal and vertical lines with the following
properties: First, the last line in the sequence terminates at the beginning of
the first line; second, each vertex is at a point where the parity-check matrix
contains a 1. A vertex is here defined as a connection point between succes-
sive lines in the sequence, including that between the last and first lines (see
Figure C.1). Define the length of a closed path as the numberof lines in the

 

  
Figure C.1: Example ofclosed path of length 6. Blanks = 0’s; slashes = 1’s.

sequence. For example, the closed path in Figure C.1 has length 6. Note that
a horizontal or vertical line can pass through other lines and other ones in the
matrix and is still counted as one line. We allow the sequence oflines associated
with a closed path to start with any line in the path and go in either direction.

Lemma C.1. If one or more closed path of length L exists in a parity-check
matrix and no closed path of length less than L exists, then m, the number of
independent decoding iterations, satisfies

L

Proof of First Half of Inequality. Considera particular closed path of length L.
There are L/2 vertical lines in this path, each corresponding to a digit in the
code. Call these digits, in order of their appearance along the closed path a,,
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@2z, .-- , @p/2- For the closed path shownin Figure C.1, we could have a; = 1,
a2 = 6, and ag = 13. Consider the parity-check set tree associated with digit
@z/2 (see Figure C.2), and consider the two paths in this tree formed by az/2,

(1116 @1116

 
Figure C.2: Closed path of Figure C.1 in a parity-check set tree.

Q(/2)-15 «+» + @b/a (OF Qp/4)41/2) ANd App, G1, A2,--- 5 @L/4 (OF O(n /4)41/2):
Note that az/2 appears on tier 0; a, and az/2)-1 on tier 1, and in general a;
and az2); on tier i. If L/4 is an integer, then az/4 must appear twice on the
L/4* tier and thus m < L/4. Alternatively, if (L/4) + 1/2 is an integer, then
a(1/4)41/2 appears once on the (L/4) — un tier and once on the (L/4) + pte
tier. In this case, m < L/4—4 < L/4, completing the proof that m< L/4. O

Proof of Second Half of Inequality. If a code has only m independent decoding
iterations, then for some digit in the code, say d, the parity-check set tree
contains a digit on tier m+1, say ao, that has appeared elsewhere either on tier
m +1 or on a lower tier. Now let a, and b; be the digits immediately below
the two appearances of ag on the parity-check set tree; let az and by be the
digits underneath them, and so forth down to digit d. The numberofdigits in
the set ao, d, a1, .-., 61, --.; is at most 2(m+1). Finally, consider drawing a
closed path in the parity-check matrix starting with ao and the parity check set
containing a, and a2, and so on down to digit d and back up to ag via the b’s.
This closed path contains twice as manylines as digits, so that L < 4(m-+ 1)
proving the theorem. Oo

A procedure will now be described for constructing parity-check matrices
with no closed paths of length L = 4m or less. The procedure will be followed
by a proof the that construction can be carried out whenever Equation (C.2)
is satisfied. Consider and nj/k by n matrix such as in Figure C.3. The matrix
has been divided into jk square submatrices, each with n/k rows and columns.
The first row of submatrices and the first column of submatrices are all identity
matrices. The other submatrices contain the letter U in each position on the
main diagonal and the letter A in each position off the main diagonal. Our
object is to replace each submatrix containing A’s and U’s with permutations
of the n/k by n/k identity matrix in such a way as to form no closed paths
of length 4m or less. The letter A is used to denote an acceptable position
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Figure C.3: Initial stage of construction procedure.

in which to place a 1 without forming any closed paths of length 4m or less.
The letter U denotes an unacceptable position; these are positions in which a 1
would create a closed path of length 4m or less. Note that even for m = 1, the
main diagonals contain U’s because of the closed paths of length 4 such as that
shown by the dotted line in Figure C.3.

Next pick a submatrix containing A’s and U’s, and in the first. row, select
some position containing an A and replace that A with a 1. Also place a 0 in
front of each letter in the submatrix that is in the same rowor column as that

1. Finally, for those positions in the matrix in which 1’s can no longer be placed
without creating a closed path of length 4m or less, replace the A with a U.
This yields a matrix such as that in Figure C.4

Continue with row 2 of the submatrix, replacing some position containing

an A (not 0A) with a 1, filling in that row and column by 0’s and changing A’s
to U’s when necessary. Continue in this way until each row of the submatrix
contains a 1 and go through each submatrix in this way. If, at some pointin this
process, a row is encountered, say the #", in which no position contains an A
without an accompanying 0, go through the following “emergency” procedure.

Let c¢ be a column in which row @ contains a U. Denote this by P(¢,ce) =U,
where P(i, 7) is defined as the symbol appearing in the i* row of the jth column
of the submatrix. For each i < é, define ¢; as the column for which P(i,¢;) = 1.
Now find an i for which P(i,c¢) =0A and P(é,¢;) = 0A (see the circled entries
in Figure C.5.) For this i, change P(i,ce) to 1, P(é,c;) to 1, P(i, ci) to 0A and
modify the A’s U’s and 0.4’s throughout the matrix to correspond to this new
set of L’s.

For this emergency procedure to work, it is necessaryfirst to prove that mak-
ing both P(i,¢c;) = 1 and P(é,¢e¢) = 1 simultaneously does not form any closed
path of length 4m or less. Also, it is necessary to prove that if Equation (C.2)
is satisfied, then an 7 always exists such that P(i,ce) = 0A and P(é,¢;) = OA.
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Figure C.4: Second step in matrix construction.

Thefirst point will be proved by contradiction. Assume that setting P(2, ¢;) =
1, P(@,ce) = 1, and P(i,e;) = 0 forms a closed path of length 4mor less. This
path must contain both points i, ce and &,¢; as vertices, since the 0.A’s formerly
in these positions indicated that no closed path of length 4m or less existed
through either point alone. Consider tracing round this closed path starting at
£,¢; along the horizontal line. There are two cases to be considered: First, the
path comes to i,c¢ along a horizontal line as in Figure C.6; second, the path
comes to i, ce along a vertical line as in Figure C.7.

For case 1, set P(i,c¢) = 0, P(i,c;) = 1, and terminate the horizontal line
coming into i, cg on point i, ¢;, as in Figure C.6. Then close the path by moving
vertically to £,¢;. This path has a length less than 4m since it is shorter than
the original path. However, this contradicts the assumption that ¢,c; was an
acceptable point when P(i,c;) was equal to 1.

For case 2, set P(i,ce) = 0, P(é,¢c;) = 0, and P(i,e;) = 1. Now make the
vertical line previously terminating on £,c; terminate on 7, c;, and the horizontal
line previously originating on i, cg originate on 7, ¢; (see Figure C.7). This forms
a closed path of length less than 4m involving neither 7, ce nor £,¢;. This is also
a contradiction since no 1’s are placed in the matrix in such a way as to form
a closed path of length 4m or less. This completes the proof that P(é,c;) and
P(i,ce) may simultaneously be set equal to 1 if they are both labelled 0A.

To complete the proof, we must show that if Equation (C.2) is satisfied, it is
always possible in this emergency condition to find an i such that P(é,¢;) =0A
and P(i,ce) = 0A. First, we shall show that Equation (C.2) implies that there
are no more than n/2k values of i for which P(é,c;) = OA. Second, we shall
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Figure C.5: Example of emergency procedure in matrix construction.

 
Figure C.6: Case 1: Closed path through fe; andice.

showthat more than n/2k elements in column cg of the submatrix contain 0A’s.
These two relations will complete the proof since if P(i,ce) # OA for all i for
which P(é,c;) = 0A, then columncy will contain more than n/2k non-0A’s and
more than 7/2k 0A’s. But this is impossible since column ¢ of the submatrix
contains only n/k elements. Thus, there must be an i for which P(i,ce) = 0A
and P(é,¢;) = 0A.

We now bound the number of points in row @ that can be labelled U. If a
point in the é* row of the submatrix is unacceptable, then a 1 placed at that
point would cause a closed path of length 4m or less. We shall consider the
first line of that closed path to be the horizontal line on row & originating at
the unacceptable point. The last line will then be the vertical line terminating
at. the unacceptable point. We first ask how many closed paths of length 4 can
exist starting at an unacceptable point in row @ of the submatrix. There are
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Figure C.7: Case 2: Closed path through fe; and ic.

at most (k — 1) points where this first horizontal line can terminate, namely,
those positions in row £ of the complete matrix in which ones have already been
placed. The vertical line from any oneof these (k—1) points can terminate in at
most (j—1) points, namely the other positions in the column in which ones have
been placed. Rememberthat in this construction we never placed more than k
1’s in a row or over j 1’s in a column. Finally, if a closed path of length 4 is to
be constructed, the next horizontal line from any of these (j — 1) points must
terminate in a column contained in the submatrix under consideration, and there

is at most a single 1 in any of those columns on which that horizontal like can
terminate. Thus there are at most (k—1)(j—1) different closed paths of length 4
that can have an unacceptable point in row é of the given submatrix as a vertex.
Consequently, at most (& — 1)(j — 1) points in row @ of the given submatrix are
unacceptable because of closed paths of length 4. The same argument can be
used on closed paths of length 6. Here, for any of the (k — 1)(j — 1) paths of
length 2, there are at most k—1 points on which the third line can terminate, and
for each of these, at. most (j — 1) points on which the fourth line can terminate.
Thefifth line is now determined since it must terminate in a column of the given
submatrix. Hence at most (k—1)?(j—1)? points in row @ of the given submatrix
are unacceptable because of closed paths of length 6. Similarly, closed paths of
length 2i can make at most (k —1)'~*(j —1)*-! points unacceptable. Thus, the
total number of unacceptable points in row & of the submatrix N,, is bounded
by

2m

Ny < So(k- 1915-1)?
i=2

we amet, pamafi-(k-DG- Viren)= —yemig— neEGEI
(k ae 4877 — Tyee

<“T-1@-DG-)F*
_ (&-)G-)P"
=k=5 eA
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Thus N, < n/2k if

[(k-G-P™ 2m
kj—-k-j 8k

or
kj-k-j

logn + log
™ = Flog(k —1)G —1)

Since all the elements in row f of the given submatrix are either 0A or U,
Equation (C.2) implies that more than n/2k of the elements in row @ are 0A’s.

Finally, we must show that more than n/2k elements in column ce of the
submatrix are labelled 0.4. The argumentis identical to that last argument with
the exception that instead of constructing paths starting with horizontal lines
from the unacceptable digit, we start. with a vertical line. Equation (C.7)still
gives a bound on the numberof unacceptable points, and Equation (C.2)still
guarantees that over n/2k points are labelled 0A since all the elements in column
ce are OU’s or OA's. Thus, we have demonstrated a constructive procedure for
generating codes in which mindependent decoding iterations can be performed
where m satisfies Equation (C.2).

88



References

(1)

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. J. Bloom, §. §. L. Chang, et al. Improvements of binary transmission by
null-zone reception. Proceedings of the IRE, 45:963-975, 1957.

R. C. Bose and D. K. Ray-Chaudhuri. On a class of error-correcting binary group
codes. Information and Control, 3:68-79, 1960.

P. Elias. Coding for two noisy channels. In Colin Cherry, editor, Information
Theory, Third London Symposium, London, England, September 1955, Butter-
worth’s Scientific Publications.

R. M. Fano. Transmission of Information. The M.1.T. Press and John Wiley &
Sons, Inc., New York, 1961.

R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE Transactions

on Information Theory, IT-9:62-71, 1963.

E. N. Gilbert. A comparison ofsignaling alphabets. Bell System Technical Jour-
nal, 31:504-522, 1952.

B. V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Inde-
pendent Random Variables. Addison Wesley Publishing Company, Cambridge,
Massachusetts, 1954.

C. W. Helstrom. Resolution of signals in white Gaussian noise. Proceedings of
the IRE, 43:1111-1118, September 1955.

I. L. Lebow, P. G. McHugh, A. C. Parker, P. Rosen, and J. M. Wozencraft. Ap-
plication of sequential decoding to high rate data communication on a telephone
line. IEEE Transactions on Information Theory, IT-9, April 1963.

J. L. Massey. Threshold Decoding. The M.1.T. Press, Cambridge, Massachusetts,
1963.

K. M. Perry and J. M. Wozencraft. SECO:A self regulating error correcting coder-
decoder. IRE Transactions on Information Theory, IT—8(5):129--135, September
1962.

W. W.Peterson. Error-Correcting Codes. The M.1.T. Press and John Wiley &
Sons, Inc., New York, 1961.

J. R. Pierce. Theoretical diversity improvement in frequency shift keying. Pro-
ceeding of the IRE, 46:903-910, 1958.

B. Reiffen. Sequential decoding for discrete input memoryless channels. JRE
Transactions on Information Theory, IT-8(3):208-220, April 1962.

C. E. Shannon. Certain results in coding theory for noisy channels. Information
and Control, 1:6-25, 1957.

J. M. Wozencraft and M. Horstein. Coding for two way channels. In Fourth
London Symposium on Information Theory, September 1960.

J. M. Wozencraft and B. Reiffen. Sequential Decoding. The M.I.T. Press and
John Wiley & Sons, Inc., New York, 1961.

N. Zierler. A class of cyclic linear error-correcting codes in p™ symbols. Group
Report 55-19, M.I.T. Lincoln Laboratory, Lexington, Massachusetts, January
1960.

89



Index

A posteriori probabilities, 6, 9, 10, 39

Binary Symmetric Channel (BSC), 5, 8-10,
34, 35, 37, 39, 44

Binary Symmetric Threshold Channel, 22
Block length of a code, 7
Bose-Chaudhuri, 9, 10, 60

Chernov bound, 24-28
derivation, 72-74

Closed path of a matrix, 82
Coding theorem

Noisy Channel, 4, 5
Computational cutoff rate, Reamp, 9, 48
Computer simulations, 2, 57-66
Construction procedure for low-density ma-

trices, 83-88
Convergence of error probability with itera-

tions, 45-47, 56
Convolutional codes, 9

Decoder, 4
Decoding

computation, 8, 9, 39, 43
maximum-likelihood, 23, 39, 52
numberof iterations, 42, 81
probabilistic scheme, 8, 40-43, 54
simple scheme, 8

Discrepancy function, 23
Distance function, 11

for A'nary alphabet, 49
for equiprobable ensemble, 11
for low-density ensemble, 14

Distribution function of log-likelihood ratios
after decoding iteration, 48
for Gaussian channel, 61
for Rayleigh fading channel, 65

Elias, P., 5, 6, 11, 33
Encoder, 4
Equipment complexity, 5, 39
Error detection, 10
Experimental results, 57-66
Expurgated ensemble

low-density codes, 18
Expurgated random ensemble, 19, 33

Fano, R. M., 9, 24, 32
Feedback and retransmission, 9, 10

Gaussian noise channel, 22, 52, 57, 60-62
Gilbert bound, 13
Gorenstein, D., 9

Log-likelihood ratios, 43, 60, 65
Low-density

ensemble of cades, 13
ensemble of matrices, 13
expurgated ensemble, 18
matrices, 13
maximum rate, 37
parity-check codes, 7

90

Massey, J. L., 9
Maximum-likelihood decoding, 23, 39, 52
Minimum-distance, 7, 11

ratio
typical, 18

related to correctable crossovers, 36
Minimum-distance distribution function

A'nary alphabet, 51
equiprobable ensemble, 12
low-density ensemble, 16, 69

Modeling of channels, 5
Moment-generating functions, 15, 25, 26, 50,

72, 73

Optimum code, 62
Orthogonal equal energy signals, 52

Parallel decoding computation, 43
Parity-check

matrix, 6
Parity-check codes, 6

Coding theorem, 5, 6
Parity-check set, 6

tree, 19, 39, 44
Peterson, W. W., 6, 9
Pierce, J. R., 64
Probability of a decoding error, P,, 4, 18, 29

as affected by minimum distance, 33
equiprobable ensemble, 31
low-density ensemble, 35, 36

Probability of an even number of events, 41
Pseudorandom number generators, 57

Rate of a code, 6
Rayleigh fading channel, 22, 52, 57, 62-66Receivers

decision, 9, 60, 62, 64, 66
likelihood, 9, 60, 62, 64, 66

Reiffen, B., 5, 9

Scrambling, 65
Sequential decoding, 9, 10, 48
Serial decoding computation, 43
Shannon, C. E., 4
Signal energy (£, F.}, 60, 62, 64

antipodal, 62
orthogonal, 62

Source
information, 4

Stirling approximation, 12
Symmetric binary input channel, 5, 7, 21
Symmetry

of f(y), 23, 52
of transition probabilities, 21, 51

‘Threshold decoding, 9

Uncertainty of received parity check, 38

Wozencraft, J. M., 9

#4 transform, 53, 54
Zierler, N., 9


