UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Apple Inc.,
Petitioner

V.

California Institute of Technology,
Patent Owner.

Case: [IPR2017-00700

DECLARATION OF JAMES A. DAVIS, PH.D.
REGARDING U.S. PATENT NO. 7,421,032

Apple 1004

U.S. Patent 7,421,032

Declaration of James A. Davis, Ph.D.

TABLE OF CONTENTS

Page
L. BacKSround . .cucisususssssscissssssssnssssssnssrsnssrassannsssssnssssessassansusssssssasssassasas el
II. Legal PrinCipPles cccinmssicessssssnsssasssnsssssnsnssassassssnssnnssssnssssnssnssssasssssssnssssnssssnsas 4
III. Overview Of The Technology......cccosvussrsunesssunssssneassssassssasssssnssssasans .6
A. Error-Correcting Codes in General.iviinnuiniaiismmaainmiiarmamim0
B. Coding Rate .. 9
C. Performance of Error Correctmg Codes BT RUUPSUPPIRRRPR | |
D. LDPC Codes, Turbo Codes, and Repeat- Accumulate Codesll
E. Mathematical Representations of Error-Correcting Codes.........c.ccooriniininniniiciieisnes 16
F. Irregularity ... 2]
G. Message Passmg and Bellef Propagatlon Decoders sl
IV. Overview Of Primary Prior Art References.......ccumne. 28
H. PRI vssmcarsscesinasensnspsssssnsanasssassnssssonssnsnnsnssnasnssupassnsansassnnsnnsnnsnssnnsnnssssos o84 SE0b04804 0101000 08 0SRSSRRERRSR 28
Lo IMRBICRT voninsiinanismmmiinsiscsssmoisnnssssmsssusnsisins s in A s A A S SRS RS By B SRR SRSl oSS AN A G 36
T T st S A B e B S R RS TR S PSS oo i e s 37
L s P U st 30y e M B Y LA P YRR A s BT L AL 41
V. Person Of Ordinary SKkill In The Art.....cc.ccvevannes wed2
VI. Overview Of The *032 Patentcccusumssssnnsssansssassesssssassssansssansssssssssasssssnsase 42
W T RTEIES niicsoncsmmonssntnssocsss s s S S AW R A A T T N A A A L A 42
N. Bummary ¢f the Speelfication s mamssamnimmpm it
VIL Claim ConStructionciccsuseseesssssssessonsesessasnossossonssssssssnsrssnsasossnssssasansssssssusans 44
0. “irregular” wessamns .44
P. “Tanner graph” (Clalms 1 1 18) Y
IX. The Challenged Claims Are Invalid.......cccuoveiiinniiinnncnnes .47

Q. Ground 1: Claims 11, 12, and 14-16 Are Obvious over Ping in View of MacKay and
Further in View of Divsalar... AT

S.
X.
XL

XII.

Ground 2: Claims 13 and 18- 23 Are Obvrous over ng in Vrew of MacKay, Drvsalar and

Luby97...

il &

Ground 3: Clalm 17 Is Obv1ous over ng in Vlew of MacKay, D1vsalar and Pﬁster ...90

Availability For Cross-Examinationcccccceveieisnsnmnenmnnssmmssinssnnss

Right To Supplement........ccccrresensssrsssasansssssssnnsssssssnsssenannas

TN A i s S i T e e s R

kinniaid 1
i!!ni92

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

I, James A. Davis, Ph.D., declare as follows:

1. My name is James A. Davis.

I. BACKGROUND

2. I am a Professor of Mathematics at the University of Richmond in
Richmond, Virginia.

3. I received a B.S. in Mathematics (with honors) from Lafayette
College in 1983 and an M.S. and Ph.D. in Mathematics from the University of
Virginia in 1985 and 1987, respectively.

4. After receiving my doctorate, I taught for one year at Lafayette
College before accepting a position at the University of Richmond as an Assistant
Professor of Mathematics in 1988. [became an Associate Professor of
Mathematics in 1994 and a Full Professor of Mathematics in 2001.

5. Since joining the faculty of the University of Richmond in 1988, |
have been engaged in research in Coding Theory, Algebra, and Combinatorics. My
research has appeared in journals such as IEEE Transactions on Information
Theory, the Journal of Combinatorial Theory Series A, Designs, Codes, and
Cryptography, the Proceedings of the American Mathematical Society, and the
Journal of Algebra.

6. [have made several major contributions to the field of coding theory

in wireless communication and sequence design. | co-discovered the connection

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

between sequences with good power control and Reed-Muller codes, an important
step in making OFDM communication practical. I co-discovered a techniqué for
constructing difference sets that has been applied to constructions of bent
functions. I co-wrote the paper on the non-existence of Barker arrays.

¥ I was a co-Principal Investigator of a $1.5 million National Science
Foundation grant designed to engage undergraduates in long-term research projects
in mathematics.

8. I have taught mathematics courses in Calculus, Statistics, Linear
Algebra, Abstract Algebra, Coding Theory, and Cryptography, among others. I
have directed 12 honors projects and 76 summer research experiences for
undergraduates in the general area of Coding Theory and Combinatorics.

9. I spent two years (academic years 1995-96 and 2000-01) working at
Hewlett-Packard Laboratories in Bristol, England. I was in a communications lab
during this time, an industrial research lab focused on applications of Coding
Theory to wireless communication and storage devices. I am co-inventor on 16
patents based on my work during this time.

10. I served as Chair of the Department of Mathematics and Computer

Science 1997-2000.

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

11. I have authored or co-authored over 50 peer-reviewed academic
publications in the fields of Coding Theory, Combinatorics, Finite Geometry, and
Algebra.

12. A copy of my curriculum vitae is attached as Appendix A.

13. I have reviewed the specification and claims of U.S. Patent No.
7,421,032 (the “’032 patent”; Ex. 1001). I have been informed that the *032 patent
is a continuation of U.S. Patent No. 7,116,710, which claims priority to provisional
applications filed on May 18, 2000 and August 18, 2000.

14. 1 have also reviewed the following references, all of which I
understand to be prior art to the *032 patent:

e L.Ping, W. K. Leung, N. Phamdo, “Low Density Parity Check
Codes with Semi-random Parity Check Matrix.” Electron. Letters,
Vol. 35, No. 1, pp. 38-39, published on January 7, 1999 (“Ping”;
Ex. 1003.)

e D.J.C.MacKay, S. T. Wilson, and M. C. Davey, “Comparison of
Constructions of Irregular Gallager Codes,” IEEE Trans. Commun.,
Vol. 47, No. 10, pp. 1449-54, published in Oct. 1999 (*MacKay™;
Ex. 1002.

e D. Divsalar, H. Jin, and R. J. McEliece, “Coding Theorems for
‘Turbo-like’ Codes,” Proc. 36th Allerton Conf. on Comm., Control

3

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

and Computing, Allerton, Illinois, pp. 201-10, March, 1999
(“Divsalar”; Ex. 1017.)
* Luby, M. et al., “Practical Loss-Resilient Codes,” STOC *97, pp.
150-159, published in 1997 (“Luby97”; Ex. 1008.)
e Pfister, H. and Siegel, P, “The Serial Concatenation of Rate-1
Codes Through Uniform Random Interleavers,” 37th Allerton
Conf. on Comm., Control and Computing, Monticello, Illinois,
published on or before September 24, 1999 (“Pfister”; Ex. 1022.)
15. Iam being compensated at my normal consulting rate for my work.
16. My compensation is not dependent on and in no way affects the
substance of my statements in this Declaration.
17. I have no financial interest in Petitioners. | similarly have no financial
interest in the 032 patent.

II. LEGAL PRINCIPLES

18. I have been informed that a claim is invalid as anticipated under Pre-
AIA 35 U.S.C. § 102(a) if “the invention was known or used by others in this
country, or patented or described in a printed publication in this or a foreign
country, before the invention thereof by the applicant for patent.” I have also been
informed that a claim is invalid as anticipated under Pre-AIA 35 U.S.C. § 102(b) if

“the invention was patented or described in a printed publication in this or a

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

foreign country or in public use or on sale in this country, more than one year prior
to the date of the application for patent in the United States.” Further I have been
informed that a claim is invalid as anticipated under Pre-AIA 35 U.S.C. § 102(e) if
“the invention was described in ... an application for patent, published under
section 122(b), by another filed in the United States before the invention by the
applicant for patent” It is my understanding that for a claim to be anticipated,
all of the limitations must be present in a single prior art reference, either expressly
or inherently.

19. I have been informed that a claim is invalid as obvious under Pre-AIA
35 U.S.C. § 103(a):

if the differences between the subject matter sought to be patented and

the prior art are such that the subject matter as a whole would have

been obvious at the time the invention was made to a person having

ordinary skill in the art to which [the] subject matter pertains.

20. I understand that a claimed invention would have been obvious, and
therefore not patentable, if the subject matter claimed would have been considered
obvious to a person of ordinary skill in the art at the time that the invention was
made. I understand that when there are known elements that perform in known
ways and produce predictable results, the combination of those elements is

probably obvious. Further, I understand that when there is a predictable variation

5

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

and a person would see the benefit of making that variation, implementing that
predictable variation is probably not patentable. I have also been informed that
obviousness does not require absolute predictability of success, but that what does
matter is whether the prior art gives direction as to what parameters are critical and
which of many possible choices may be successful.

III. OVERVIEW OF THE TECHNOLOGY

21. The *032 patent relates to the field of channel coding and error-
correcting codes. This section provides an introduction to channel coding and
error-correcting codes, highlighting developments relevant to the *032 patent.

A. Error-Correcting Codes in General

22. Most computing devices and other digital electronics use bits to
represent information. A bit is a binary unit of information that may have one of
two values: 1 or 0. Any type of information, including, for example, text, music,
images and video information, can be represented digitally with bits.

23. When transmitting binary information over an analog communication
channel, the data bits representing the information to be communicated (also called
“information bits”) are converted into an analog signal that can be transmitted 6ver
the channel. This process is called modulation. The transmitted signal is then

received by a device and converted back into binary form. This process, in which a

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

received analog waveform is converted into bits, is called demodulation. The steps

of modulation and demodulation are illustrated in the figure below:

Modulation Transmission Demodulation
11000010 “w~ P MWJ\N VM!\NJV 4 P> 11000010

T Transmitter T Receiver T

Digital Analog Digital
information Signal Information
(bits) {waves) (bits)

Modulation, Transmission, and Demodulation

24. Transmission over physical channels is rarely 100% reliable. The
transmitted signal can be corrupted during transmission by “noise” caused by, for
example, obstructions in the signal path, interference from other signals, or
electrical/magnetic disturbances. Noise can cause bits to “flip” during
transmission: for example, because of noise, a bit that was transmitted as a 1 can be
corrupted during transmission and demodulated as 0, and vice versa.

2 Error-correcting codes were developed to combat such transmission
errors. Using the bits representing the information to be communicated (called
“information bits™) an error-correcting code generates “parity bits” that allow the
receiver to verify that the bits were transmitted correctly, and to correct

transmission errors that occurred.

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

26. Bits are encoded by an encoder, which receives a sequence of
information bits as input, generates parity bits with an encoding algorithm, and
outputs a sequence of encoded bits called a codeword. The codeword produced by
the encoder is then modulated and transmitted as an analog signal.

27. Atthe receiver, the signal is demodulated, and the codeword is passed
to the decoder, which uses a decoding algorithm to recover the original

information bits.

Transmission

11oooo1ooo1o1o1oo10}zﬁ Al Al w1o1o1oo1o@noooo1o
T i

i

T g e T

Information bits Codeword Codeword information bits

Encoding and Decoding

28. Error-correcting codes work by adding redundant information to the
original message. Due to redundancy, the information represented by a given
information bit is spread across multiple bits of the codeword. Thus, even if one of
those bits is flipped during transmission, the original information bit can still be
recovered from the others.

29. As asimple example, consider an encoding scheme, called “repeat-
three,” that outputs three copies of each information bit. In this scheme, the

information bits “1 0 1” would be encoded as “111 000 111.” Upon receipt, the

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

decoder converts instances of “111” into “1” and instances of “000” into “0” to
produce the decoded bits “1 0 1,” which match the original information bits.

30. Suppose a bit is flipped during transmission, changing “000” to “010.”
The decoder can detect a transmission error, because “010” is not a valid “repeat-
three” codeword. Using a “majority vote” rule, the decoder can infer that the
original information bit was a 0, correcting the transmission error. Thus, due to the
redundancy of the codeword, no information was lost due to the transmission error.

31. Error-correcting codes are either systematic or non-systematic. (Ex.
1020, p. 12, “Also, a [binary convolutional encoder] can be systematic or non-
systematic.”; id. pp. 12-13, Figures 2.1 and 2.2, showing systematic and non-
systematic encoders.) In a systematic code, both the parity bits and information bits
are included in the codeword. (Ex. 1020, p. 14, “a systematic encoder is one for
which the encoder input (the data) forms a substring of the output (the codword)”;
Ex. 1021, pp. 6, 229.) In a non-systematic code, the encoded data only includes the
parity bits.

32. Systematic and non-systematic codes had been known in the art for
decades prior to May 18, 2000, the claimed priqrity date of the 032 patent.

B. Coding Rate

33. Many error-correcting codes encode information bits in groups, or

blocks of fixed length n. An encoder receives a k-bit block of information bits as

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

input, and produces a corresponding n-bit codeword. The ratio #/n is called the rate
of the code. Because the codeword generally includes redundant information, » is
generally greater than k, and the rate k&/n of an error-correcting code is generally
less than one.

C. Performance of Error-Correcting Codes

34. The effectiveness of an error-correcting code may be measured using
a variety of metrics.

35. One tool used to assess the performance of a code is its bit-error rate
(BER.) The BER is defined as the number of corrupted information bits divided by
the total number of information bits during a particular time interval. For example,
if a decoder outputs one thousand bits in a given time period, and ten of those bits
are corrupted (meaning they differ from the information bits originally received by
the encoder), then the BER of the code during that time period is (10 bit errors) /

(1000 total bits) = 0.01 or 1%."

! Note that as used herein, BER refers to the information BER, which measures the
percentage of bits that remain incorrect affer decoding. This is different than the
transmission BER, which measures the percentage of bits that are incorrect when
received by the decoder, but before the decoding process begins.

10

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

36. The BER of a transmission depends on the amount of noise in the
communication channel and the strength of the transmitted signal (meaning the
power that is used to transmit the signal). An increase in noise tends to increase the
error rate and an increase in signal strength tends to decrease the error rate. The
ratio of signal strength to noise, called the “signal-to-noise ratio,” is often used to
characterize the channel over which the encoded signal is transmitted. The signal-
to-noise ratio can be expressed mathematically as E,/N,, in which E is the amount
of energy used to transmit each bit of the signal, and N, is the density of the noise.
The BER of an error-correcting code is often measured for multiple values of E,/Ng
to determine how the code performs under various channel conditions.

37. Error-correcting codes may also be assessed based on their
computational complexity. The complexity of a code is a rough estimate of how
many calculations are required for the encoder to generate the encoded parity bits
and how many calculations are required for the decoder to reconstruct the
information bits from the parity bits. If a code is too complex, it may be
impractical to build encoders/decoders that are fast enough to use it.

D. LDPC Codes, Turbo Codes, and Repeat-Accumulate Codes

38. In 1963, Robert Gallager described a set of error correcting codes
called Low Density Parity Check (“LDPC”) codes. Gallager described how LDPC

codes provide one method of generating parity bits from information bits using a

11

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

matrix populated with mostly Os and relatively few 1s, as explained in more detail
below. (See Gallager, R., Low-Density Parity-Check Codes, Monograph, M.L.T.
Press, 1963; Ex. 1005.)

39. Gallager’s work was largely ignored over the following decades, as
researchers continued to discover other algorithms for calculating parity bits. These
algorithms included, for example, convolutional encoding with Viterbi decoding
and cyclic code encoding with bounded distance decoding. In many cases, these
new codes could be decoded using low-complexity decoding algorithms.

40. In 1993, researchers discovered “turbocodes,” a class of error-
correcting codes capable of transmitting information at a rate close to the so-called
“Shannon Limit” — the maximum rate at which information can be transmitted over
a channel. A standard turbocoder encodes a sequence of information bits using two
“convolutional” coders. The information bits are passed to the first convolutional
coder in their original order. At the same time, a copy of the information bits that
have been reordered by an interleaver is passed to the second convolutional coder.
The figure below shows the structure of a typical turbocoder. See Berrou et al.,
“Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes," ICC

'93, Technical Program, Conference Record 1064, Geneva 1993 (Ex. 1006)

12

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

Recursive
Systematic
Code (37,21)

delay Y
tre (L) "
1
Yok Y
interleaving I k
G
Recursive
Systematic
Cods (37,21)
Fig. 2 Recursive Systematic codes
with parallel concatenation.
41. The main drawback of convolutional codes is that they do not perform

well over channels in which errors are clustered tightly together. Turbo codes
overcome this deficiency by encoding the input bits twice. The input bits are fed to
a first convolutional encoder in their normal order to produce a first set of parity
bits. The same input bits are also reordered by an interleaver and then encoded by a
second convolutional encoder to produce a second set of parity bits. The two sets
of parity bits together with the information bits form a single codeword. Using a

turbo code, a small number of errors will not result in loss of information unless

13

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

the errors happen to fall close together in both the original data stream and in the
permuted data stream, which is unlikely.

42. In 1995, David J. C. MacKay rediscovered Gallager’s work from
1963 relating to low-density parity-check (LDPC) codes, and demonstrated that
they have performance comparable to that of turbocodes. See MacKay, D. J. C, and
Neal, R. M. “Near Shannon Limit Performance of Low Density Parity Check
Codes,” Electronics Letters, vol. 32, pp. 1645-46, 1996 (Ex. 1016.) This
rediscovery was met with wide acclaim. Turbocodes and LDPC codes have
common characteristics: both codes use pseudo-random permutations to spread out
redundancy, and both use iterative decoding algorithms.

43. In 1995 and 1996, researchers began to explore “concatenated”
convolutional codes. See Benedetto, S. et al., Serial Concatenation of Block and
Convolutional Codes, 32.10 Electronics Letters 887-8, 1996 (Ex. 1007.) While
turbo codes use two convolutional coders connected in parallel, concatenated
convolutional codes use two convolutional coders connected in series: the
information bits are encoded by a first encoder, the output of the first encoder is
interleaved, and the interleaved sequence is encoded by a second, convolutional
code. In such codes, the first and second encoders are often called the “outer

coder” and the “inner coder,” respectively.

14

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

44. In 1998, researchers developed “repeat-accumulate,” or “RA codes,”
by simplifying the principles underlying turbocodes. (See Ex. 1017.) In RA codes,
the information bits are first passed to a repeater that repeats (duplicates) the
information bits and outputs a stream of repeated bits (the encoder described above
in the context of the “repeat three” coding scheme is one example of a repeater).
The repeated bits are then optionally reordered by an interleaver, and are then
passed to an accumulator where they are “accumulated” to form the parity bits.

45. Accumulation is a running sum process whereby each input bit is
added to the previous input bits to produce a sequence of running sums, each of
which represents the sum of all input bits yet received. More formally, if an
accumulator receives a sequence of input bits 7, i, i3, ... iy, it will produce output
bits 0y, 02, 03, ... 0, such that:

01 = ’il
09 = ’il @ i2
03 =— il @D ’ig ® Z 3

On:il@’ig@’i3® aain
Where the @ symbol denotes modulo-2 addition. Accumulators can be

implemented simply, allowing accumulate codes to be encoded rapidly and

cheaply.

15

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

E. Mathematical Representations of Error-Correcting Codes
1. Linear Transformations

46. Coding theorists often think of error-correcting codes in linear-
algebraic terms. For example, a k-bit block of information bits is a k-dimensional
vector of bits, and an n-bit codeword is an n-dimensional vector of bits (a
“dimensional vector” of bits is a sequence of bits). The encoding process, which
converts blocks of information bits into codewords, is a linear transformation that
maps k-dimensional bit vectors to n-dimensional bit vectors. This transformation is
represented by an n x k matrix G called a generator matrix. For a vector of

information bits #, the corresponding codeword x is given by:

k
u,
|] Z ..U,
k2

The n-dimensional vectors that can be written in the form Gu are valid codewords.

47. Most n-dimensional vectors are not valid codewords. It is this
property that allows a decoder to determine when there has been an error during
transmission. This determination is made using an (n - k) x » matrix H, called a

parity check matrix. Using a parity check matrix, a vector x is a valid codeword if

16

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

and only if Hx = 0. If the parity check shows that Hx does not equal 0, then the
‘decoder detects a transmission error (much like the “010” example in the “repeat
three” code above).

48. Each of the n - k rows of the parity-check matrix H represents an
equation that a valid codeword must satisfy. For example, consider a codeword x

and a parity check matrix H given as follows:

e

=, 10 0 1 1

T= e, H"[l 1 0 0
2

49. Ifxis avalid codeword, the product Hx must be equal to 0, so we

e [27] [} -
T +z, 0

As this equation shows, the first row of H represents the constraint that x; + x4 =0,

have:

and the second row of H represents the constraint that x; + x, = 0. If the vector x
satisfies both of these constraints, it is a valid codeword. In practice, parity-check
matrices often have hundreds or thousands of rows, each of which represents an
equation of the form x, + x, + ... + x, = 0, similar to those shown in the above
example. These equations are called parity-check equations.

2, Repeating and Permuting as Examples of LDGM Codes

17

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

50. As explained above, the encoding process can be represented using a
generator matrix. This is true of all linear codes, including the “repeat,”
“interleave,” and “accumulate” phases of the “repeat-accumulate” codes discussed
above. More specifically, the “repeat” and interleave” phases can be represented
using generator matrices whose entries are mostly zeros, with a relatively low
proportion of 1s. Such generator matrices are called “low-density generator
matrices” (LDGMSs). The following is a generator matrix that repeats each

information bit twice:

GREPEAT2 =

COOO0OOOOCOMOOOOOCO0O0O
OOO0OOOMOOOOOOOOOO
OCOOOHMROOOOOOOOOO0O0O
OCOFHFOOOOOCOOOOOOOOO
HHOQOOOOOOOOOOOOOOO

COOOOOOOCOOCOOOOCOMMH
COCOOOCOOOCOOCOOHKEOO
OO0 OOOOOCOCOOEOOOO
COCOCOOOOCOOKMHOOOOOO

b

51. Using this generator matrix, encoding a sequence of input bits
“101010101” would result in the encoded sequence “110011001100110011” (the
number of times each input bit is repeated is determined by the number of “Is” in

the column corresponding to that input bit). In the 18 x9 matrix above, 11.1% of

18

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

the entries are 1s, and the rest are 0s. The relative scarcity of 1s means that
GrepeaT2 1S a low-density generator matrix (LDGM).

52. Permutation is another linear transform that is represented by a low-
density generator matrix. For example, the matrix below is a permutation matrix

that will output bits in a different order than bits are input:

— —

01000000
10000000
00000010
00001000
GSHUFFLE = | g 0 0 1 0 0 0 0
00000001
00000100
(0010000 0]

53. Permutation matrices, like GsyyurrLg above, have exactly one 1 per row
and one 1 per column. The order of the output bits is determined by the position of
each of these 1s within its row/column. The matrix above, for example, would
transform input bits iy, iy, I3, is, is, Is, i7, I3 into the output sequence i, iy, iy, is, is, I3,
is, i3. Permutation matrices are square, with dimensions » xn, because the input
sequence and the output sequence have the same length. With only one 1 per
row/column of permutation matrices, the density of 1s is 1/n (GsuurrLe, Shown
above, has a density of 1/8, or 12.5%). With linear codes, which often operate on

blocks of more than a thousand bits at a time, a permutation matrix might comprise

19

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

0.1% 1s or fewer, and are therefore very low-density generator matrices
(LDGMs).

3 Tanner Graphs

54. Another popular mathematical representation of error-correcting
codes is the “Tanner Graph.” Tanner graphs are bipartite graphs wherein nodes can
be divided into two groups. Every edge connects a node in one group to a node in
the other (meaning no two nodes in the same group are connected by an edge). A

bipartite graph is shown below:

Group 1 Group 2

A Simple Bipartite Graph

55. A Tanner graph includes one group of nodes called variable nodes

that correspond to the information and parity bits, and a second group of nodes

> In fact, for a given » and k, there are no viable codes whose generator matrices
have a lower density than repeat-codes or permute-codes. Both of these codes have
matrices with exactly one 1 per row — a matrix with lower density would
necessarily have at least one row without any 1s at all, which would result in every
codeword having a 0 in a particular bit position, conveying no information about
the original message.

20

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

called check nodes that represent constraints that parity and information bits must
satisfy. In particular, when a set of variable nodes are connected to a particular
check node, it means that the information/parity bits corresponding to those
variable nodes must sum to 0.

56. These two mathematical descriptions of linear codes — one using
matrices, one using Tanner graphs — are two different ways of describing the same
thing. Matrices and Tanner graphs are two different ways of describing the same
set of linear codes, in much the same way that “0.5” and “/%” are two different
ways of describing the same number. Every generator matrix corresponds to a

Tanner graph, and vice versa.

F. Irregularity
57. Irregular LDPC codes were first introduced in a 1997 paper by Luby.

See Luby, M. et al., “Practical Loss-Resilient Codes,” STOC "97, 1997 (Ex. 1008).
The paper showed that irregular codes perform better than regular codes on certain
types of noisy channels.

58. Regular codes are codes in which each information bit contributes to
the same number of parity bits, while irregular codes are codes in which different
information bits or groups of information bits contribute to different numbers of
parity bits. This is supported by the Board’s construction of “irregular” in prior

proceedings. (See, e.g., IPR2015-00060, Paper 18, p. 12.) Irregularity can also be

21

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

defined in terms of Tanner graphs. A regular code is one with a Tanner graph in
which each variable node corresponding to an information bit is connected to the
same number of check nodes. Irregular codes are those with Tanner graphs in
which some variable nodes corresponding to information bits are connected to
more check nodes than others. These two formulations of irregularity are different
(and well-known) ways of describing the same concept.

59. After Luby’s initial paper describing irregularity, the same team of
researchers published a second paper, expanding the theory of irregularity in error-
correcting codes. (See Luby, M. et al., “Analysis of Low Density Codes and
Improved Designs Using Irregular Graphs,” STOC 98, pp. 249-59, published in
1998.) (Ex. 1009.) At the time, both of these Luby papers were widely read by
coding theorists, and motivated extensive research into irregularity.

60. For example, the 1998 Luby paper was the first reference cited in a
paper by Frey and MacKay titled “Irregular Turbocodes,” presented at the 1999
Allerton Conference on Communications, Control, and Computing. (See Ex.
1002.) The second author, MacKay, was the same researcher who had rediscovered
LDPC codes in 1995. In this paper, the authors applied the concept of irregularity
to turbo codes by explaining how to construct irregular turbo codes in which some

information bits connect to more check nodes than others. The experimental results

24

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

presented in the Frey paper demonstrated that these irregular turbo codes perform
better than the regular turbocodes that were known in the art. (See Ex. 1002.)

61. By May 18, 2000, the claimed priority date of the *032 pétent, it was
common knowledge that the performance of error-correcting code could be
improved with irregularity.

G. Message Passing and Belief Propagation Decoders

62. After the encoded bits are transmitted, they are received by a decoder,
which attempts to correct any errors that occurred during transmission and
reconstruct the original message. One type of decoder that was well-known in the
art by the time the 032 patent was filed is called a “message passing decoder.”
Message passing decoding works by passing messages back and forth between
variable nodes (representing information and parity bits) and check nodes
(representing parity constraints, as described above) according to a Tanner graph.
Using the information contained in the messages, each variable node is, over time,
able to determine the true value of its corresponding bit. (See, e.g., Kschischang
and Frey, “Iterative decoding of compound codes by probability propagation in
graphical models,” IEEE Journal on Selected Areas in Communications, vol. 16,

no. 2, pp. 219-230, 1998; Ex. 1024.)

23

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

63. This message passing procedure can be illustrated using the example
Tanner graph shown below, in which variable nodes are represented by open

circles, and check nodes are represented by filled circles:

At the start of the algorithm, each variable node forms an initial estimate as to the
value of its corresponding bit, based on the information provided by the
demodulator. Some demodulators make a “hard” decision as to the value of each
bit during demodulation (e.g., a if a “hard” demodulator determines that a given bit
is more likely to be a 1 than a 0, it tells the decoder that the bit is a 1). Other
demodulators provide “soft” information to the decoder, representing the relative
likelihood that the bit has a given value based on the signal received by the
demodulator (e.g., a “soft” demodulator might indicate that the probability that a
given bit is equdl to 1 is 0.63, or 63%). The message-passing algorithm can be used
with either type of demodulator, and treats both hard- and soft-demodulation
information as probabilities (i.e., the message-passing algorithms treat the values

received from the demodulator as probabilities of 1.0 and 0.0, where a hard-

24

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

decision that a bit is a 1 is represented by a 1.0, and a hard decision that a bitisa 0
is represented by a probability of 0.0).” However, due to the possibility of a
transmission error and other imperfections in the transmission process, many nodes
can have a relatively low level of confidence that their initial estimates are correct.
For example, a variable node might initially have a 60% level of confidence that
the value of its corresponding bit is a 1.*

64. After the initial estimates have been formed, message passing

proceeds in iterations, each of which has two phases. In the first phase of an

*In practice, the two possible values received from a “hard” demodulator may be
treated by the decoder as probabilities that are close to 1.0 and 0.0 (e.g., 0.95 and
0.05), recognizing that there is a non-zero probability that the demodulator may be
wrong.

* A bit has only two possible values, i.e., 1 or 0. So, if the probability that a bit has
a value of 1 equals p, then the probability that the bit has a value of 0 is equal to
1-p. Thus, the probability that a bit is equal to 1 and the probability that a bit is
equal to 0 can both be conveyed using a single message. For example, if a node has
60% confidence that its bit is equal to 1, then it necessarily has 40% confidence
that its bit is equal to 0. A message of “60%” conveys all the information that a

node needs to send in a single iteration of the decoding algorithm.

25

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

iteration, each variable node computes a message and sends its message (red

arrows below) to the check nodes to which it is connected:

N/ \

N N\

Phase 1: Variable Nodes Pass Messages to Check Nodes

A message sent from a variable node to a check node represents the variable
node’s confidence that its corresponding bit is a 1 (in the first iteration, this value
is based on information received from the demodulator, but this confidence value
will be refined as the algorithm proceeds, as described below.)

65. Inthe next phase of the iteration, each check node computes a
message for each of the variable nodes to which it is connected, and sends each

message (green arrows below) to the appropriate variable node:

J

26

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

Phase 2: Check Nodes Pass Messages to Variable Nodes

A message sent from a check node to a variable node represents the check node’s
confidence, based on the messages the check node has received from other variable
nodes, that the value of the variable node’s bit is 1.

66. Each variable node, based on the messages it receives from the check
nodes to which is it connected, adjusts its own estimate that its value is 1. A
message of 50% represents maximum uncertainty about the value of a bit. A
message of 0% represents the highest possible belief that the node’s associated bit
has a value of zero and a message of 100% represents the highest possible belief
that the node’s associated bit has a value of one. For example, a variable node
might start with 60% confidence that its value is 1, but if it receives messages from
check nodes that indicate a lower level of confidence, it will adjust its own
confidence estimate downward. At the same time, if it receives messages from
check nodes that indicate a higher level of confidence, it will adjust its own
confidence estimate upward.

67. Accordingly, with each iteration, each variable node refines its
confidence level in the value of its associated bit. With each successive iteration of
the message passing algorithm, the confidence level that each variable node has a
value of 1 should either approach 100% (which indicates that the node’s value is

indeed 1) or 0% (which indicates that the node’s value is actually 0). Once the

27

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

confidence level of every variable node is sufficiently close to 100% or 0%, the
algorithm terminates.

68. There are many varieties of message passing algorithms used for
decoding, and these algorithms are described using a variety of terms, including,
for example, “belief propagation” decoding, the “sum-product algorithm,”
decoding by “probability propagation,” decoding a code defined by a “Tanner
graph,” and decoding a code defined by a “factor graph.” It would have been
obvious to one of ordinary skill to use the ‘message-passing’ techniques described
above in a conventional implementation of any of these algorithms. In particular,
these techniques would comprise iteratively sending parallel messages back and
forth between variable nodes and check nodes. These operations are described in
several publications prior to the *032 patent (e.g., “Low D.ensity Parity Check
Codes”, monograph, M.I.T. Press, 1963; Ex. 1005.)

IV. OVERVIEW OF PRIMARY PRIOR ART REFERENCES

H. Ping
69. L.Ping, W. K. Leung, N. Phamdo, “Low Density Parity Check Codes

with Semi-random Parity Check Matrix,” Electron. Letters, Vol. 35, No. 1, pp. 38-
39 (“Ping”, Ex. 1003) was published in January 1999, more than a year before the
filing of the provisional application to which the *032 patent claims priority. 1

understand that Ping is thus prior art to the 032 patent under 35 U.S.C. § 102(a)

28

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

and (b). Ping was not considered by the Patent Office during prosecution of the
’032 patent.

70. Ping discloses an LDPC code with two stages or coding blocks: an
outer LDGM coder followed by an inner coder that is an accumulator. In Ping’s
outer coder, a generator matrix is applied to a sequence of information bits to
produce sums of information bits. In Ping’s inner coder, parity bits are set equal to
accumulated sums of information bits. Ping thus teaches LDPC codes that are also
accumulate codes. (See Ex. 1003 at 38.)

71. Ping’s Equation (4) illustrates that Ping’s encoding process involves
two distinct types of encoding operations — i.e., a two-stage encoding method. This
is a logical division of the Ping encoding process into two stages — a first stage and

a second stage (note that the terms “first” and “second” here do not imply that the

two stages cannot be performed in parallel; whether to perform the two stages

sequentially or simultaneously are design choices that are left to the implementer).

The first stage (the red box below) operates as a mod-2 summation (“X”) of
information bits and the second stage (the green box below) operates as a mod-2
summing of a previously calculated parity bit with the summation of information

bits.” The first stage (red box) results in a summation, which is then used to

> The summations of Ping’s first stage output parity bits and Ping’s second stage
also outputs parity bits.

29

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

compute the final sum (green box) in the second stage. The second stage is

recursive because each successive parity bit, p;, is calculated using the previous

parity bit, p;.;.

pi =|Pi—1 + Z hi.d;
J

Ex. 1003, p. 38 (annotated)

72. Ping’s full Equation (4) is shown below (highlighting added). The left
portion of Equation (4) shows how to compute the first parity bit, p;, and the right
portion of the equation shows how to compute successive parity bits, p,, p3, and so

on, based on prior parity bits and information bits:

P = Z h‘fjdj and Pi = Pi-1T Z hgjdj (mod 2)
F J

73. In the above equation, the terms hg- (which are part of the summation
highlighted in red) are elements of a matrix H* described in Ping, where each
particular hfj equals either 0 or 1 and “d” represents an information bit (d; is the &

information bit). (Ex. 1003, p. 38.)

74. Ping’s matrix H is comprised of entries hg- as follows:

30

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

d d d d
h h IR

14 1,2 1,3
d d d L. d
h2,1 h2,2 h2,3 hz,k
d _ d d d b d
H = h’3,1 h3,2 hs,s hs,k

d d d . 1d
hn——k,l hn—k,2 hn—k,S hn—k,k

As Ping explains, H® is a portion of parity-check matrix H, which is comprised of
two parts, H? and HP, where “H = [H", H']” (Ex. 1003, p. 38.)

75. Ping’s First Stage: The first stage in implementing Ping’s Equation

(4) is illustrated by red highlighting above and produces summations. That is,
Ping’s first stage is computing the summation terms shown in Ping’s Equation (4).

The equations below describe computation of those summation terms:

Zh‘fj dj =hd di+hd dy+ -+ hd dy

J

S hdy =y + by + -+ b,

76. Similarly, the equation for the iy, summation, ;; h{ij d;, for all possible

values of “7 is:

> hid; = hddy +hids + - + bl dx

31

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

77. These equations can be conceptualized in terms of the H*® matrix as
follows:

* The first summation,). ; h‘fj d;, is produced by multiplying terms in the first
row of the H® matrix and the information bits, and then summing those
products;

* The second summation,) ; hg ; d;, is produced by multiplying terms in the
second row of the H! matrix and the information bits,‘ and then summing
those products;

* And so on.

78. The summations, }; ; h{ij d;, are not only a conceptual way of
understanding Ping’s equation. Rather, Ping teaches actually computing those
summations. Specifically, Ping states, “[I]t requires very little memory to store H*
in the encoder if H® is sparse (this can be ensured using small £).” One of ordinary
skill would have known that Ping’s encoder would not store the H* matrix in the

encoder unless it were used. That H? matrix supplies the values of h?j for the
above equations for computing the summations, Y’ ; hfj d;. That is the only purpose
for which Ping’s encoder uses the hfij values. Therefore, one of ordinary skill
would have known that the summations, 3, ; h?j d;, are actually computed as the
first stage of computing the parity bits per Ping’s Equation (4).

52

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

79. Ping’s Second Stage: Once the summation, }’ ; hldj d;, has been

calculated, Ping then teaches a second stage — an accumulation operation — to
calculate the parity bits p; using the value of the summation }; ; h?j d; and the value
of the previous parity bit p;.;. That second stage, which uses each summation as an
input, is illustrated by the equations below.
p{y = summation,
p, = p; + summation,

ps = p, + summation,

p; = pi—1 + summation;

In other words, for any value of “i” greater than one, p; = p;_1 + summation;.

80. While it is not necessary that all of the summations be calculated
before beginning to compute the parity bits p;, it is possible to implement the
encoder taught by Ping this way, because each of the values of summation; is
defined in terms of the information bits ahd H®, both of which are provided as
input to the encoderl. The formulas Y. ; h?j d; are explicit formulas that can be
calculated based entirely on known values (i.e., the values of the information bits

and the matrix H%).

33

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

81. The second stage of the Ping encoding operation is different it is
defined by recursive formulas, which must be calculated in a particular order. For
example, calculating the value of p, involves adding the second summation,
summation;, to the first parity bit p;. In other words, to calculate p,, we must first
calculate both summation; and p,. Similarly, beforg calculating p; we need to
calculate both summation; and p,, and so on. Finally, before calculating the final
parity bit p,., we need to have calculated summation,. as well as all of the
previous parity bits p,, for all x < n-k, which in turn requires calculating
summation,, for all x < n-k.

82. Therefore, as the above equations show, the final operation of the
second stage of Ping’s encoding algorithm, calculating the final parity bit p,,,
cannot be completed until all of the summations from the first stage, summation;
through summation,.;, have been calculated. Because of this, while the first and
secoﬁd stages do not have to be performed in sequential order, the first stage of
Ping (computing the summations) must be completed before the second stage
(computing the parity bits) can be finished. Thus, while the two stages of Ping can
be performed in parallel, there will necessarily be a point in time near the end of
the encoding process when the first (“summation”) stage is complete and

the second (“accumulation”) stage is still underway.

34

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

83. Ping’s H® Matrix: As noted above, the individual elements of the H*
matrix (i.e., the hldj for all i and j) are all equal to either 1 or 0. This is so because
Ping’s codes are binary. (Ex. 1003, p. 38, “For simplicity we will consider only
binary codes.”; Equation (4) stating that computations are “(mod 2).”) In Ping’s
H* matrix, every column corresponds to an information bit (d;) and every row
corresponds to a summation (3 h?j d;). This can be seen from the equations
shown above for computing the summations in Ping’s first step. For example, the
first information bit, d,, is always multiplied by an entry in the first column of the
H? matrix (ie., hfil for all rows i). Similarly, the second information bit, d, is
always multiplied by an entry in the second column of the H* matrix (i.e., h% for
all rows 7). Also, multiplying the i row of the H* matrix by the vector of
information bits produces the i™ summation (3, j hfj d;).

84. Because each column of the H! matrix corresponds to a particular
information bit, the number of 1s in a column determines the number of
summations to which an information bit contributes. Ping refers to the number of
1s in a column as the “column weight” and uses the variable “#” to refer to it. (Ex.
1003, p. 38, “The resultant H has a column weight of £... (the weight of a vector is
the number of 1s among its elements).”) Ping gives an example in which “=4”,

meaning that every information bit contributes to exactly four of the summations

35

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

(X hidj d;), or four outer coder parity bits. Also, because each row of the H*
matrix corresponds to a particular summation (3; ; hfj d;), the number of 1s in a row
determines the number of information bits that are summed to produce the
summation. Ping refers to the number of 1s in a row as the “row weight.” (Ex.

1003, p. 38, “The resultant H has ... a row weight of kt / (n-k) (the weight of a

vector is the number of 1s among its elements).”)

I. MacKay
85. “Comparison of constructions of irregular Gallager codes,” IEEE

Trans. Commun., Vol. 47, No. 10, pp. 1449-1454 (“*MacKay™; Ex. 1002) was
published in October 1999. I understand that MacKay accordingly qualifies as
prior art under 35 U.S.C. § 102(a) and (b). MacKay was not considered by the
Patent Office during prosecution of the *032 patent.

86. MacKay describes “[t]he excellent performance of irregular Gallager
codes,” and explores “ways of further enhancing these codes” (Ex. 1002, p. 1459).
Specifically, MacKay investigates both regular and irregular Gallager codes with
encoding algorithms that have low encoding complexity. As noted above, in 1995,
David MacKay rediscovered Gallager’s 1963 work on low-density parity-check
(LDPC) codes. One reason why Gallager’s LDPC codes had been overlooked for

nearly thirty years was their perceived encoding complexity. While LDPC parity-

36

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

check matrices are low density, their generator matrices are not necessarily so,
which made LDPC encoding impractical for 1960s-era computers.

87. By the 1990s, computing power had advanced significantly. Encoding
Gallager codes was, by then, more computationally feasible. MacKay is therefore
directed to implementing these codes using a general-purpose computer, in which a
processor (or “CPU”) performs calculations on values stored in “memory.” (EX.
1002, 1454.) To that end, MacKay investigates improving Gallager codes so that
they can be rapidly encoded. (See. Ex. 1002, p. 1454, “we examine regular and
irregular constructions which lend themselves to rapid encoding.”) This included
experimenting with irregularity, and constructing irregular codes with high
performance. As MacKay concluded, “[t]he excellent performance of irregular
Gallager codes is the motivation for this paper....” (Ex. 1002, p. 1449.)

J. Divsalar

88. “Coding Theorems for ‘Turbo-Like’ Codes,” by Divsalar et al., was
published in March 1999, in the Proceedings of the 36th Allerton Conference on
Communication, Control and Computing. (“Divsalar,” Ex. 1017.) As the Board
found in the prior IPR proceeding for the 032 patent, Divsalar qualifies as prior art
under 35 U.S.C. §102(b) because it was published “well before” the effective filing
date of the *032 patent, which is May 18, 2000. (Ex. 1008, pp. 13-22; see also Ex.

1019, explaining that Divsalar was available to the public by March 30, 1999.)

37

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

89. Divsalar teaches “repeat and accumulate” codes, which it describes as
“a simple class of rate 1/g serially concatenated codes where the outer code is a g-
fold repetition code and the inner éode is a rate 1 convolutional code with transfer
function 1/(1 +D).” (Ex. 1017, p. 1.) Figure 3 of Divsalar shows an encoder for a

repeat-accumulate code with rate 1/g:

LENGTH N N N g qN
rate 1/q 9 . 9 p| rate l »
, - " ’ repetition . P 5.4 1/(1+D} ;
(WEIGHT] (wl] igwl [qw! {h]
gN x gN

permutation
matrix

90. A block of N information bits enters the coder at the left and is
provided to the repeater (labeled “rate 1/q repetition”). (See id., p. 5.) The repeater
duplicates each of the N information bits g times and outputs the resulting N % g
repeated bits, which are then “scrambled by an interleaver of size gN” (id.,
referring to the box labeled “P”). The scrambled bits are “then encoded by a rate 1
accumulator.” (Id., emphasis in original.)

91. Divsalar describes the accumulator as follows:

38

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

The accumulator can be viewed as a truncated rate-1 recursive
convolutional encoder with transfer function 1/(1 + D), but we prefer to think of it as
a block code whose input block [zy,...,Z,] and output block [y1,...,yn] are related
by the formula

Y1 =2y
Y2 =I1 + T2
(5.1) Ya =121+ T2+ 23

Yn =21 +Za+ 23+ - + Inp.

(Ex. 1017, p. 5.) Divsalar focuses on binary linear codes, in which data elements
are Bits, and thus the + symbols above are understood to denote modulo-2 addition.
(Ex. 1017, p. 2, “Consider a binary linear (n,k) block code...”)

92. Divsalar explains that RA codes have “very good” performance and
that they can be efficiently decoded using a “message passing decoding algorithm.”
(Ex. 1017, pp. 9-10.)

93. Further, Divsalar introduces this paper as relevant to “turbo-like”
codes, which Divsalar states include classical turbocodes, serially concatenated
convolutional codes, and RA codes. “We call these systems ‘turbo-like’ codes and
they include as special cases ... the classical turbo codes,” “the serial
concatenation of interleaved convolutional codes,” and “a special class of turbo-
like codes, the repeat-and-accumulate codes.” (Ex. 1017, p. 1.) Divsalar also uses
turbo-like decoding methods in the decoder: “an important feature of turbo-like

codes is the availability of a simple iterative, message passing decoding algorithm

39

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

that approximates ML decoding. We wrote a computer program to implement this
‘turbo-like’ decoding for RA codes with q = 3 (rate 1/3) and q = 4 (rate 1/4), and
the results are shown in Figure 5.” (Id., p. 9.)

94. As explained below, Divsalar teaches all but one aspect of an IRA
code: irregularity (the “I” in Irregular Repeat-Accumulate). That is, Divsalar
teaches regular repeat-accumulate (RA) codes rather than irregular repeat-
accumulate codes as described in the 032 patent. A single modification to Divsalar
— changing the repeat to irregular rather than regular — results in the irregular codes

that Patent Owner claims to have invented.

K. Luby97
95. Luby, M. et al., “Practical Loss-Resilient Codes,” STOC ’97, pp. 150-

59, published in 1997 (“Luby97”; Ex. 1008) first introduced irregularity. Luby97
was published on or before June 9, 1998, and is therefore prior art to the *032
patent under 35 U.S.C. § 102. (Ex. 1008, p. 150.)

96. In addition to introducing irregularity, Luby97 describes receiving
data to be encoded in a stream of data symbols (e.g., bits), where the “stream of
data symbols [] is partitioned and transmitted in logical units of blocks.” (Ex. 1008,
p. 150, emphasis added.) One of ordinary skill would have understood that

information bits are often received in a real-time stream. The encoder waits until it

40

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

has received a certain number of information bits (i.e., a “block™), which are then
encoded all at once, producing a codeword of fixed size.

L. Pfister

97. Pfister, H. and Siegel, P., “The Serial Concatenation of Rate-1 Codes
Through Uniform Random Interleavers,” 37th Allerton Conf. on Comm., Control
and Computing, Monticello, Illinois, published on or before September 24, 1999
(“Pfister”’; Ex. 1022) was presented by Paul Siegel at the Allerton Conference in
September 1999. (See Ex. 1023, p. 3.) Pfister relates to codes constructed as a
serial chain of rate-1 encoders and interleavers. (See Ex. 1022, pp. 1-2.) Pfister
explicitly builds on Divsalar and introduces Divsalar as the starting point for his
findings. (Id., p. 4.) In particular, Pfister discusses a class of codes called “RAA
(Repeat-Accumulate-Accumulate) codes,” in which the outer code comprises a
repeater, followed by two accumulators with Rate 1. (/d., p. 1.) In particular,

~ Pfister shows an RAA coder that uses two rate-1 accumulators:

N . gN __ _ agN gN

Repeat ; l/(1+D) ol 1/(1+
P Rate=1 1 Rate=1]

bit q tlmes

Ex. 1022, p. 20

The boxes labeled “1/(1+D) Rate=1" represent accumulators that are chained
together in series after the repeater (represented by the box labeled “Repeat bit g

times”). Thus, the RAA codes of Pfister are simply Divsalar’s Repeat-Accumulate

41

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

codes with an extra accumulator added to the end. Pfister compares the
performance of Divsalar’s RA codes to RAA codes, and concludes that adding an
extra accumulator improves the codes’ performance. (See id., p. 21.)

V. PERSON OF ORDINARY SKILL IN THE ART

98. A person of ordinary skill in the art at the time of the alleged
invention of the 032 patent would have had a Ph.D. in mathematics, electrical or
computer engineering, or computer science with emphasis in signal processing,
communications, or coding, or a master’s degree in the above area with at least
three years of work experience in this field at the time of the alleged invention.

VI. OVERVIEW OF THE ’032 PATENT
M. Claims

99. The 032 patent includes 23 claims, of which claims 1, 11, and 18 are
independent. Claims 11-17 are challenged in the accompanying petition.
Independent claim 11 is directed to an encoder that generates a sequence of parity
bits from a collection of message bits in accordance with a particular Tanner graph.
Independent claim 18 is directed to a device for decoding a data stream that has

been encoded in accordance with the same Tanner graph. (Ex. 1001, 7:61-10:57.)

42

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

N. Summary of the Specification

100. The specification of the 032 patent is generally directed to irregular
RA codes (or “IRA” codes). Figure 2 of the specification, bélow, shows the

structure of an IRA encoder:

” .
{, .
L}f OUTER X p e INNER ——r
v W
\- 202 \- 204 206
FiIG. 2

Ex. 1001, Fig. 2

101. Explaining this figure, the patent describes encoding data using an
outer coder 202 connected to an inner coder 206 via an interleaver 204 (labeled
“P”) (Ex. 1001, 2:35-42.)

102. Outer coder 202 receives a block of information bits and duplicates
each bit a given number of times, producing a sequence of repeated bits at its
output. (Ex. 1001, 2:52-60.) The outer coder repeats bits irregularly —i.e., it
outputs more duplicates of some information bits than others. (/d.)

103. The repeated bits are passed to an interleaver 204, where they are

scrambled. (Ex. 1001, 3:24-28.) The scrambled bits are then passed to the inner

43

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

coder 206, where they are accumulated to form parity bits. (/d., 2:66-3:18.)

According to the specification:

Such an accumulator may be
considered a block coder whose input block [x,, ..., X,] and
output block [y,, . .., y,] are related by the formula

Yi7x
Yo=x, By
Y3=x, O Dxy

Yn =x163x2®x3€fj L @xn'
Ex. 1001 at 3:3-18

104. The specification describes systematic and non-systematic codes. In a
systematic code, the encoder outputs a copy of the information bits in addition to
the parity bits output by inner coder 206 (the systematic output is represented in
Fig. 2. as an arrow running toward the right along the top of the figure). In a non-
systematic code, the codeword output by the encoder is comprised of parity bits
only.

VII. CLAIM CONSTRUCTION
O. “irregular”

105. As explained above, in regular codes, each information bit contributes
to the same number of parity bits. In irregular codes, different information bits or

groups of information bits contribute to different numbers of parity bits.

44

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

106. Irregularity can also be defined in terms of Tanner graphs. A regular
code has a Tanner graph in which each variable node corresponding to an
information bit is connected to the same number of check nodes. An irregular code
has a Tanner graph in which some variable nodes corresponding to information
bits are connected to more check nodes than others.

107. These two formulations of irregularity are alternative (and well-
known) ways of describing the same concept. I also understand that both are
consistent with the Board’s construction of “irregular” in prior proceedings.
(IPR2015-00060, Paper 18, p. 11.)

P. “Tanner graph” (Claims 11, 18)

108. Claims 11 and 18 recite the following diagram, called a “Tanner

graph™:

45

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

¥,

Q
VW

RANDOM PERMLUTATHIN

109. I understand that in IPR2015-00060, the Board construed this Tanner
graph term to mean: “a graph representing an [irregular repeat accumulate
(“IRA”)] code as a set of parity checks where every message bit is repeated, at
least two different subsets of message bits are repeated a different number of times,
and check nodes, randomly connected to the repeated message bits, enforce
constraints that determine parity bits” along with the added constraint that “a parity
bit is determined as a function of both information bits and other parity bits as
shown by the configuration of nodes and edges of the Tanner graph.” (IPR2015-
00060, Paper 18, pp. 13-14.)

110. In the Tanner graph of independent claims 11 and 18, the parity bits

are determined as a function of information bits and other parity bits, as captured

46

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

by the “added constraint” of the Board’s prior construction. The 032 specification
also supports the Board’s prior construction, including the “added constraint.” For
example, per the equations shown in the *032 patent, the second parity bit ()
equals the sum of the first parity bit (y;, which is itself equal to the first
information bit x;) and the second information bits (x,); the third parity bit (y3)
equals the sum of the second parity bit (y,) and the third information bit (x3), and
so on. (See Ex. 1001, 3:5-17).

IX. THE CHALLENGED CLAIMS ARE INVALID

Q. Ground 1: Claims 11, 12, and 14-16 Are Obvious over Ping in
View of MacKay and Further in View of Divsalar

1. Motivation to Combine Ping with MacKay and Divsalar

(a) Incorporating Irregularity into Ping

111. A person of ordinary skill would have had the motivation to
incorporate the irregularity disclosed in MacKay into Ping’s code. Both references
are directed to the same field of endeavor, the field of improving error-correcting
codes, and both point toward one another by teaching how to improve the same
type of code (a “Gallagher code”).

112. Specifically, Ping is directed to “[lJow density parity check codes with
semi-random parity check matrix,” and describes the recent “revived interest in the
low density parity check (LDPC) codes originally introduced in 1962 by Gallager.”

(Ex. 1003, p. 38.) Ping credits this revived interest to the work of David MacKay,

47

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

which demonstrated the “very good performances” of such codes (id., pp. 38, 39
(reference “[2])), and then proceeds to describe an “LDPC code design” that “can
achieve essentially the same performance as the standard LDPC encoding method
with significantly reduced complexity.” (/d., p. 38.)

113. MacKay was published just a few months after Ping, is entitled
“Comparison of Constructions of Irregular Gallager Codes,” and demonstrates that
“[t]he low-density parity check codes whose performance is closest to the Shannon
limit are ‘Gallager codes’ based on irregular graphs.” (Ex. 1002, p. 1449.) Like
Ping, MacKay is focused on improving LDPC codes so that they can be encoded
faster with less complexity. (See id., p. 1450, “we examine regular and irregular
constructions which lend themselves to rapid encoding”).) Like Ping, MacKay
measures performance improvement in terms of BER vs. E;/N, performance.
(Compare Ex. 1003, p. 39 with Ex. 1002, p. 1449 and Fig. 1.) And, notably, after
comparing “regular” Gallager codes (like those of Ping) against “irregular Gallager
codes” (e.g., Ex. 1002, p. 1449 and Fig. 1), MacKay concludes that making an
LDPC code irregular improves performance. (Id., p. 1449, “The low-density parity
check codes whose performance is closest to the Shannon limit are ‘Gallager
codes’ based on irregular graphs.”; id., p. 1452, “Not only do these irregular codes

outperform the regular codes, they require fewer iterations....”)

48

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

114. Because MacKay teaches that irregular codes perform better than
regular codes, one of ordinary skill would have had the motivation to incorporate
irregularity into Ping. Doing so would have been straightforward. As explained
above, Ping’s outer LDPC code is regular because each column in Ping’s generator

[AP>5]
t

matrix H® contains the same number of 1s — exactly “#” 1s. Ping accordingly states
that matrix “H" has a column weight of ¢” (Ex. 1003, p. 38.) As a result, each
information bit in Ping’s matrix contributes to the same number of outer coder
parity bits (i.e., “#” summations), ; hflj d;).

115. Like Ping, MacKay teaches matrices in which each information bit
corresponds to a column, and where the weight of that column (the number of 1s
contained in that column) represents the degree of the information bit. (Ex. 1002,
p. 1450, “The parity check matrix of a code can be viewed as defining a bipartite
graph with ‘bit’ vertices corresponding to the columns and ‘check’ vertices
corresponding to the rows. Each nonzero entry in the matrix corresponds to an
edge connecting a bit to a check. The profile specifies the degrees of the vertices in
this graph.”) Using “column weight” language identical to Ping, MacKay also
teaches how to make LDPC matrices “irregular” by implementing a ‘;nonum'form
weight per column.” (Ex. 1002, p. 1449, “The best known binary Gallager codes

are irregular codes whose parity check matrices have nonuniform weight per

column.”) MacKay describes, as an example, a matrix that “has columns of weight

49

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

9 and of weight 3....” (Id., p. 1451.) As a result, in MacKay’s irregular matrix,
different information bits contribute to different numbers of parity bits.

116. It would have been straightforward for a person of ordinary skill to
change Ping’s generator H® matrix such that not all columns had the same weight —
for example, setting some columns to weight 9 and others to weight 3, as taught by
MacKay. (Ex. 1002, p. 1451.) This change would result in some information bits
contributing to more outer LDPC parity bits than others, and would have made
Ping’s outer LDPC code irregular. This would have been an easy way for one of
ordinary skill to incorporate the irregularity disclosed by MacKay into Ping.
Additionally, MacKay’s teaching that the best performing LDPC codes are
irregular would also have made this modification obvious (and desirable) to try.
(Ex. 1002, pp. 1449, 1454, “The excellent performance of irregular Gallager codes
is the motivation for this paper....”)

117. Also, one of ordinary skill would have had the motivation to combine
Ping and MacKay because Ping’s H? matrix is described in terms very similar to
the terms MacKay uses to describe irregularity with matrices. Because Ping’s
Equation (4) uses the HY matrix to produce parity bits from information bits, it is a
“generator matrix.” (Ex. 1003, p. 38.) Ping’s H matrix is also part of Ping’s
“parity check” matrix H. (Id., “Accordingly, we dec;ompose H into H=[H", H].”)
MacKay describes its irregularity in terms of the “parity check” matrix. (Ex. 1002,

50

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

p. 1450.) As explained below, MacKay’s parity-check matrix and Ping’s matrix H’
both establish the same thing. Ping’s Equation (4) provides a formula for

calculating p;:
, =pi_1+ Y h%d;
pz = p?/_—]. ij 7
J

118. Adding p; to both sides of the equation (mod 2) allows Ping’s
equation to be written as the following equation (the mod-2 sum of a bit with itself

is 0):

0=p;+pi-1+)_hid;
J

119. MacKay’s parity-check matrix also establishes constraints, as do all
parity-check matrices, that sums of bits must equal zero. Accordingly, one of
ordinary skill would have understood how to use MacKay’s statements about
parity-check matrices in Ping and would have had the motivation to do so.

(b) Using Repetition in Ping
120. As explained above, in the first stage of Ping’s two-stage encoding

procedure (Ping’s outer LDPC coder), each information bit contributes to #
summations Y, ; h?j d;, and Ping explicitly discloses an example in which “/=4.”
(Ex. 1003, p. 39.) One of ordinary skill would have understood that an obvious

way to implement having each information bit contribute to # summations . ; h?j d;

31

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

would be to repeat each information bit ¢ times. However, even if Ping standing
alone is not understood to teach, or render obvious, repeating information bits,
doing so would have been obvious in view of Divsalar’s explicit teaching of
repeating bits. Indeed, the use of a repeater in implementing an outer coder was
common in the prior art, as evidenced by, for example, Frey and MacKay’s
“Irregular Turbocodes” (Ex. 1010, showing repetition of bits at the bottom of
Figure 2) and Pfister (Ex. 1022, showing outer coder block labeled “Repeat bit q
times” in Figure 1, reproduced above).

121. A person of ordinary skill would have had the motivation to use
Divsalar’s repetition in Ping (as modified with the irregularity of MacKay, as
described above). Specifically, one of ordinary skill would have recognized that
the repetition techniques taught by Divsalar provide a natural way to implement
the codes of Ping. In one such implementation, each of Ping’s information bits dj is
“repeated” once for each summation }; ; hg- d; in which it appears. This generates ¢
“repeats” of each information bit, which are then used to compute the summations
b, hldj d; required by Equation (4) of Ping, described above.

122. One of ordinary skill would have been further motivated to implement
Ping using the repeater of Divsalar because this implementation would be both
cost-effective and easy to build. A repeater is a simple component that can be built

cheaply and would require relatively little space in an encoding circuit.

52

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

123. Additionally, both Ping and Divsalar relate to linear error-correcting
codes and, specifically, both references describe encoders that perform an
accumulation as the final stage of the encoding process. (See Ex. 1003, p. 38; see
also Ex. 1017, p. 5.) Both references also teach encoding procedures that are
recursive (Ex. 1017, p. 5, “The accumulator can be viewed as a truncated rate-1
recursive convolutional encoder ...,” emphasis added; see also Ex. 1003, p. 38,
providing a recursive formula (Equation (4)) for generating the parity bits p.)
These additional similarities between Ping and Divsalar would have provided
additional motivation to one of ordinary skill to implement Ping’s code using a
repeater, as taught by Divsalar, because it would have been obvious from Divsalar
that a repeater would work for Ping’s purpose (including to produce the outer
coder summations that are then further encoded by Ping’s inner coder).

124. For these reasons, and those discussed more below, a person of
ordinary skill would have had the motivation to incorporate the irregularity of
MacKay and the repetition of Divsalar into the encoding methods of Ping. Also, as
demonstrated below, the similarity and combinability of Ping, MacKay, and
Divsalar are evidenced by the number of claim limitations that are simultaneously
taught by these references.

2 Claim 11

33

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

125. As explained below, claim 11 is rendered obvious by the combination
of Ping in view of MacKay and Divsalar.

(a) “A device comprising ...”

126. Ping, MacKay, and Divsalar each teach the preamble. Ping refers to
an “encoder” comprising “memory,” which a person of ordinary skill would have
understood to be a “device.” (Ex. 1003, p. 38.) Similarly, MacKay teaches that

“both the memory requirements and the CPU requirements at the encoder of our

fast-encoding codes are substantially smaller.” (Ex. 1002, p. 1453, emphasis
added). Divsalar likewise teaches an encoding device, as shown in Figure 3,
reproduced above. (Ex. 1017, p. 5.)

(b) “an encoder configured to receive a collection of

message bits and encode the message bits to generate a
collection of parity bits”

127. Ping teaches this limitation. As described in detail above, Ping
provides equations from which the parity bits “p = {p;} can easily be calculated
from a given d = {d;}” (where “p and d contain the parity and information bits,
respectively”). (Ex. 1003, p. 38.)

128. The term “message bits” is synonymous with “information bits.” One
of ordinary skill would have understood that Ping’s “information bits” d are a

“collection of message bits,” and that, per Ping’s Equation (4), those information

54

~ U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

bits are encoded to generate “a collection of parity bits” p as the claim requires.

(Ex. 1003, p. 38.)

(c)

“Tanner graph”

129. Claim 11 requires that the parity bits “be generated in accordance with

the following Tanner graph:”

..........
¥ [}

(Ex. 1001, 8:65-9:35.)

RANDOM PERAMUTATION

NWAVAVAVA VY

N/ N/

130. As noted above, the Board previously construed the Tanner graph

limitation to mean: “a graph representing an [irregular repeat accumulate (“IRA™)]

code as a set of parity checks where every message bit is repeated, at least two

different subsets of message bits are repeated a different number of times, and

check nodes, randomly connected to the repeated message bits, enforce constraints

55

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

that determine parity bits” along with the added constraint that “a parity bit is
determined as a function of both information bits and other parity bits as shown by
the configuration of nodes and edges of the Tanner graph.” (IPR2015-00060, Paper
18, pp. 13-14.) This limitation accordingly requires three elements:

(i) “agraph representing an [irregular repeat accumulate (“IRA”)] code
as a set of parity checks where every message bit is repeated, at least
two different subsets of message bits are repeated a different number
of times”

(i) “check nodes, randomly connected to the repeated message bits,
enforce constraints that determine parity bits”; and

(iii) “a parity bit is determined as a function of both information bits and
other parity bits as shown by the configuration of nodes and edges of
the Tanner graph.”

Ping, in view of MacKay and Divsalar, teaches all three elements of the claimed
Tanner graph, as the Board has previously construed this term. For ease of
explanation, we demonstrate how Ping in view of MacKay and Divsalar teaches
these elements in an order different than how they appear in the Board’s
construction.

(iii) “a parity bit is determined as a function of both information bits
and other parity bits as shown by the configuration of nodes and

edges of the Tanner graph”

56

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

131. As explained above, Ping teaches an LDPC-accumulate code in which

the value of one parity bit is used to calculate the next parity bit:

p1 = Z h‘,ljclj and pi = pi—1 + z hfjdj (mod 2)
J J
(4)

Ping: Equation (4) (Ex. 1003, p. 38)

132. Once the initial parity bit p; is calculated (blue box), Ping’s Equation
(4) can be used to calculate the second parity bit (orange box), which can be used
to calculate the third parity bit (orange box), and so on. To make this clear, we

expand Ping’s Equation (4) below to show calculation of individual parity bits:
d
p2=p1+ Y _hid;
i
d
ps =p2+) _hd;
j

P4 =p3+ thj d;
J

pi =pi—1 + Y _htd;

Accordingly, each parity bit p; (for all i greater than or equal to two) depends on
the previous parity bit p;.; and one of the summations }’; h?jdj. Similarly, each

parity bit p; (for all i greater than or equal to three) depends on the two previous

57

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

parity bits p;, and p;.; and one of the summations }. ; hldj d; (e.g., p3 depends upon
P2, and p, in turn depends on py).
133. Also, as explained in the Ping overview above, each of the

summations (3. hg- d;) (meaning the intermediate bits produced by the outer LDPC
coder) is a sum of information bits, d;. That is, each summation (3 hfj d;) equals

the sum of information bits d; for which the corresponding values of h?j are equal

to one. (Ex. 1003, p. 38.)

134. Accordingly, Ping teaches that “a parity bit [such as the third parity
bit, p;] is determined as a function of both information bits and other parity bits” as
required by part (iii) of the Board’s prior construction of the Tanner graph.

(i) “agraph representing an [irregular repeat accumulate (“IRA”)]

code as a set of parity checks where every message bit is repeated,

at least two different subsets of message bits are repeated a
different number of times”

135. This element of the Board’s prior Tanner graph construction has two
requirements. First, it requires the code to be an irregular repeat accumulate (or
“IRA”) code. Second, when represented as a graph, the code must have a set of
parity checks where every message bit is repeated, and at least two different
subsets of message bits are repeated a different number of times. Ping, in view of
MacKay and Divsalar, teaches both requirements.

(a) Ping, in View of MacKay and Divsalar, Teaches an
Irregular Repeat Accumulate (IRA) Code

58

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

* “Irregular”

136. Ping’s outer LDPC coder is regular. That is, in Ping each information
bit contributes to exactly “#” outer coder parity bits. (Ex. 1003, p. 38.) However,
as explained in the motivation to combine section above, one of ordinary skill
would have had the motivation to use MacKay’s irregularity in Ping, thus making
Ping’s outer LDPC encoder irregular. For example, it would have been obvious to
use MacKay’s specific example where some information bits contribute to nine
parity bits and others contribute to three parity bits. (Ex. 1002, p. 1451.) Doing so
produces an irregular code as recited in this limitation.

* “Repeat”

137. As explained in the motivation to combine section above, one of
ordinary skill would have had the motivation to use Divsalar’s repetition in Ping’s
outer LDPC encoder. Using Divsalar’s repetition and MacKay’s irregularity
makes Ping’s outer LDGM encoder an irregular-repeat encoder in which different
subsets of message bits are repeated a different number of times. For example,
using MacKay’s specific “9/3” example, some bits would be repeated nine times
and others would be repeated three times. (Ex. 1002, p. 1451.)

* “Accumulate”

138. As explained in the overview of Ping above, Ping’s outer coder is an

LDPC encoder and Ping’s inner coder is an accumulator. Ping’s inner coder is an

39

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

accumulator because each successive inner coder parity bit, p;, is calculated by

adding something to the previous parity bit, p;.,. This is shown by Ping’s Equation

(4):

=Zhdd-
P2 = p1+2hdd -—Zhdd +zhd
p3 = p2+Zhdd —Zhdd +Zhdd +Zh

Ping’s teaching therefore matches how the "032 patent itself describes
accumulation. (See Ex. 1001, 3:3-19.)

139. Therefore, the combination of Ping in view of Divsalar and MacKay
teaches “an [irregular repeat accumulate (“IRA”)] code where every message bit is
repeated” and “at least two different subsets of message bits are repeated a
different number of times,” as required by the Board’s prior construction.

(b) Ping, in View of MacKay and Divsalar, Teaches A “Graph

Representing ... Parity Checks ...” as Construed by the
Board

140. As explained above in the background, a Tanner graph includes one
group of nodes (called variable nodes) that correspond to the information and
parity bits, and a second group of nodes (called check nodes) that represent

constraints that the information and parity bits must satisfy. Specifically, when a

60

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

set of variable nodes are connected to a particular check node, it means that the
information and parity bits corresponding to those variable nodes must sum to
Zero.

141. A single code can be described either in terms of matrices or as a
Tanner graph. MacKay, for example, describes its code in terms of both matrices
and Tanner graphs. (Ex. 1002, p. 1450, “The parity check matrix of a code can be
viewed as defining a bipartite [Tanner] graph with ‘bit’ vertices corresponding to
the columns and ‘check’ vertices corresponding to the rows. Each nonzero entry in
the matrix corresponds to an edge connecting a bit to a check.”) These two
mathematical descriptions of linear codes — one using matrices, and one using
Tanner graphs — are merely two ways of describing the same thing — in much the
same way that “0.5” and “/%2” describe the same number.

142. One of ordinary skill would therefore have understood the IRA code
taught by Ping, in view of MacKay and Divsalar, to correspond to a Tanner graph
with variable nodes and check nodes exactly as set forth in the Board’s prior
construction. Specifically, Ping’s information bits (“d”) and parity bits (“p”) are
variable nodes when represented as a graph. Similarly, Ping’s parity check
equations — each instance of Equation (4) for each of the parity bits p,, p3, ps ... pi,
as discussed above — constitute check nodes when represented as a graphic. Ping,

whether alone or in view of Divisalar, teaches repeating each message bit (meaning

61

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

the information bits “d”) for the reasons explained in §IX.A.1 above. And, as
further explained in §IX.A.1 above, Ping in view of MacKay teaches at least two
different subsets of message bits are repeated a different number of times.
Applying MacKay’s teaching to have “columns of weight 9 and of weight 3,” for
example, would result in two subsets of message bits: a first subset containing
message bits that are repeated nine times and a second subset containing message
bits that are repeated three times. (Ex. 1002, p. 1451.)

143. Ping, in view of MacKay and Divsalar, therefore teaches all aspects of
element (i) of the Board’s prior construction.

(ii) “check nodes, randomly connected to the repeated message bits,
enforce constraints that determine parity bits”

144. This final element of the Board’s construction has two requirements.
First, the recited “check nodes” must “enforce constraints that determine parity
bits.” Second, the “check nodes” must also be “randomly connected to the
repeated message bits.” Ping teaches both requirements.

(a) Ping teaches “check nodes” that “enforce constraints that
determine parity bits”

145. As is true of parity checks generally, Ping’s parity checks enforce
constraints that determine parity bits. Specifically, the constraint that Ping’s parity
checks enforce is the requirement that a particular collection of information bits

and parity bits sum to zero. This is taught by Ping’s Equation (4). As explained

62

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

for part (i) of the Tanner graph construction above, and taking the second parity bit

as an example, Ping’s Equation (4) can be written as follows:
p. — p. + E hd d .
J

146. Adding p; to both sides of the equation (mod 2) allows Ping’s
equation to be written as the following equation (the mod-2 sum of a bit with itself

1s 0):

0=p; +pi—1+ thjdj
3

147. Ping generates each parity bit (for example, pa, ps, ps. ... pi) by
performing an instance of Equation (4). In each instance, the constraint is the
same: each particular collection of information bits and parity bits must sum to
zero.

148. Additionally, each instance of Equation (4) constitutes a “‘check node”
in the language of the Board’s prior construction. As explained above for part (1)
of the Tanner graph construction, a person of ordinary skill would have understood
that the identical error-correcting code can be expressed using either linear algebra
or a Tanner graph (just like “%4” and “0.5” both express the same number). Ping’s
Equation (4), using linear algebraic notation, constitutes a “check node” when

expressed in the form of a Tanner graph. Ping’s check nodes accordingly “enforce

63

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

constraints that determine parity bits” precisely as required by the Board’s prior
construction of this term.

(b) Ping’s “check nodes” are “randomly connected to the
repeated message bits.”

149. As explained above for part (i) of the Tanner graph construction,
using Divsalar’s repetition in Ping means that the check nodes require a collection
of repeated information bits and parity bits to sum to zero, as illustrated by the

equation below:
0=pi+pi-1+) hld;
J

In this equation, repeated message bits are represented by the variable d;. Because
the repeated message bits are a variable in each instance of Ping’s parity check
Equation (4), Ping’s check nodes are connected to the repeated message bits.

150. Additionally, Ping teaches that these connections are “random.” As
explained above, Ping teaches placing 1s into H? “randomly,” thereby ensuring
that the information bits d; where h?j = 1, are selected randomly. Because the 1s in
Ping’s H® matrix identify the information bits that contribute to each parity bit,
those 1s represent connections in a Tanner graph. Ping teaches placing 1s into H®

“randomly,” thereby ensuring that the information bits d; (where hfj =1)

contributing to each parity bit p; are chosen at random. (Ex. 1003, p. 38, “In each

64

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

sub-block HY, i=1, 2...t, we randomly create exactly one element 1 per column
and kt/(n-k) 1s per row.” (emphasis added).) Because of this, in an implementation
of Ping that uses repetition, as taught by, for example, Divsalar, this random
selection satisfies the requirement of the claim that the check nodes are “randomly
connected to the repeated message bits.”

151. To summarize, the bits that must sum to zero for a given parity check
are represented in a Tanner graph by connections between those bits and a check
node. The “random” connections between the repeated information bits and the
check nodes in the claimed Tanner graph correspond to the random placement of
1s in Ping’s matrix H®. Therefore, the codes of Ping meet the “randomly
connected” requirement of claim 11. Also, when Ping is implemented using
repetition, as taught by, for example, Divsalar, the check nodes are “randomly
connected” to “repeated information bits.”

152. Accordingly, as shown above, the combination of Ping in view of
MacKay and Divsalar teaches every limitation of claim 11.

3. Claim 12

153. Claim 12 depends from claim 11, and adds “wherein the encoder is
configured to generate the collection of parity bits as if a number of inputs into

nodes v; was not constant.”

65

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

154. Inclaim 11, the nodes of the claimed Tanner graph shown
immediately to the right of the “random permutation” box are labeled “v.” The
’032 patent explains, with reference to Figure 3, that these “v” nodes are check
nodes. (Ex. 1001, 3:37-39, “The Tanner graph includes two kinds of nodes:

variable nodes (open circles) and check nodes (filled circles),” emphasis added.)

Each check node, v; determines the value of a parity bit such that the parity bits
and information bits to which the check node is connected sum to zero. (/d., 4:4-6.)
As explained above, this limitation of claim 11 was obvious over the combination
of Ping in view of MacKay and Divsalar.

155. MacKay teaches claim 12’s additional “not constant” limitation as set
forth below.

13 i2

(@) The number of inputs to a check node “v” is determined
by the row weight of a matrix

156. MacKay describes codes in terms of both parity-check matrices and
Tanner graphs, stating: “The parity check matrix of a code can be viewed as
defining a bipartite [Tanner] graph with ‘bit” vertices corresponding to the columns
and ‘check’ vertices corresponding to the rows. Each nonzero entry in the matrix
corresponds to an edge connecting a bit to a check.” (Ex. 1002, p. 1449.) Each row
of MacKay’s parity check matrix accordingly corresponds to a check node in a
Tanner graph, and each nonzero entry (“1”) in a row represents an input to the

check node. (Id.)

66

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

157. Claim 12’s requirement that the number of inputs into the check nodes
is not constant means — when stated in terms of a parity check matrix — that the
number of “1”’s in rows of the parity check matrix is not constant. That is, a parity
check matrix where some rows have more ones than other rows teaches the “not
constant” limitation of claim 12.

(b) In MacKay, the number of inputs to each check node “v”
is not constant

158. MacKay describes “irregular codes” that have parity check matrices

“with both nonuniform weight per row and nonuniform weight per column.” (Ex.

1002, p. 1449, emphasis added.) “Row weight” refers to the number of “1”’s in a

row. MacKay therefore teaches a parity check matrix where the number of “1”’s in
each row is not constant, corresponding to the claimed Tanner graph where the
number of inputs into each check node is not constant. In particular, MacKay
describes designing a code such that some rows of the parity check matrix have

more ones than others. (Ex. 1002, pp. 1449-50, “First, we select a profile that

describes the desired number of columns of each weight and the desired number of

rows of each weight,” emphasis added).

159. Additionally, as explained above, each row of the parity check matrix
corresponds to a check node in the Tanner graph. The check nodes of a Tanner
graph each establish the constraint that the bits connected to the check node must

sum to zero. Similarly, each row of the parity check matrix establishes a constraint

67

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

that the information bits and parity check bits appearing in that row must sum to

zero, as shown by Ping’s Equation (4):
J

160. Adding p; to both sides of the equation (mod 2) allows Ping’s
equation to be written as the following equation (the mod-2 sum of a bit with itself

1s 0):

0=9p; +pi_1+ Zhidj
J

161. The rows of MacKay’s parity-check matrix accordingly also establish
constraints, as do all parity-check matrices, that sums of bits must equal zero.

(¢) Ping in view of MacKay and Divsalar renders claim 12
obvious

162. As demonstrated for claim 11 above, one of ordinary skill would have
had the motivation to use MacKay’s teaching of “nonuniform column weight” in
the combination of Ping, MacKay, and Divsalar, thereby making the column
weight of Ping’s matrix H® nonuniform. (See supra at §IX.A.1.) Varying the
column weight of Ping’s H matrix would result in some information bits

contributing to more summations (3 hfl]- d;) than other information bits.

68

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

163. Moreover, modifying Ping’s H* matrix such that it had both
nonuniform row weights and nonuniform column weights would have been
straightforward for a person of ordinary skill. Implementing nonuniform column
weights in Ping’s H® matrix has been discussed in conjunction with claim 11 above.
Additionally varying the row weight of Ping’s H? matrix would make the number
of inputs into the check nodes variable, as required by claim 12.

164. For example, Ping’s first two outer LDPC coder bits could be

computed according to the following equations.®
d
> hld; =di+dy
J
d
Y hld; =ds+dy
J
165. Continuing this example, if the row weight of Ping’s first row were

five and the row weight of Ping’s second row were two, the equations for the first

two summations might reduce to, e.g.:

¢ Because the 1s in Ping’s H? matrix are randomly distributed, any particular
summation is unlikely to equal the sum of these two particular information bits.
But this example illustrates the concept that each summation equals the sum of two

particular information bits.

69

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

Y hid; = di +dz +dy +ds +do

> hid; =ds+dy

In this simple example, MacKay’s teaching of nonuniform row weight is
incorporated into Ping by changing three Os to 1s in the first row of Ping’s H°
matrix, yielding one row (the first row) with weight 5, and one row (the second
row) with weight two. Modifying Ping’s H" matrix in this way, or other ways, to
use MacKay’s nonuniform row weight would have been obvious.

166. In summary, claim 12 would have been obvious to one of ordinary
skill over the combination of Ping, Divsalar, and MacKay. As explained above, the
additional limitation imposed by claim 12, meaning generating “a collection of
parity bits as if a number of inputs into nodes v; was not constant,” is satisfied by a
parity check matrix in which the number of 1s per row — the “row weight” — is not
uniform. As explained more above, MacKay teaches parity check matrices with
nonuniform row weight. Therefore, this teaching of MacKay satisfies the
additional limitations recited by claim 12.

4. Claim 14

167. Claim 14 depends from claim 12, and it also requires that “the
accumulator comprises a recursive convolutional coder.” (Ex. 1001, 9:46-47.)

Divsalar teaches an accumulator that “comprises a recursive convolutional coder.”

70

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

(Ex. 1017, p. 5, “The accumulator can be viewed as a truncated rate-1 recursive
convolutional encoder with transfer function 1/(1 +D)...”); see also id., Figure 3.)
168. Ping’s accumulator is also a recursive convolutional encoder. Ping’s

Equation (4) shows how to compute each parity bit, p;, as a sum of the prior parity

d
i

p1= Zh(lijdj
pr=p1+) hyd;

3
ps=pa+»_hid;
7

bit, p;.;, and a summation (Z]- hi.d;), and can be written as:

Pi = Pi-1+ Zhi.dj
i

Ping therefore teaches the same accumulation as the *032 patent. (Ex. 1001,
3:3-18.)

169. As explained above, the combination of Ping, Divsalar, and MacKay
teaches every claim limitation of claim 12, from which claim 14 depends.
Therefore, claim 14 is obvious over Ping in view of Divsalar and MacKay.

- Claim 15

170. Claim 15 depends from claim 14, and also requires that “the recursive

convolutional coder comprises a truncated rate-1 recursive convolutional coder.”

71

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

(Ex. 1001, 9:48-50.) As explained above, the combination of Ping in view of
Divsalar and MacKay teaches every claim limitation of claim 14. Divsalar also
teaches that the accumulator is a “truncated rate-1 recursive convolutional coder.”
(Ex. 1017, p. 5.) Therefore, claim 15 is obvious over Ping in view of Divsalar and
MacKay.

6. Claim 16

171. Claim 16 depends from claim 14, and also requires that “the recursive
convolutional coder has a transfer function of 1/(1+D).” (Ex. 1001, 9:51-52.) As
explained above, the combination of Ping in view of Divsalar and MacKay teaches
every claim limitation of claim 14. Divsalar also teaches that the recursive
convolutional coder has a transfer function of 1/(1+D). (Ex. 1017, p. 5, Figure 3.)
In particular, in Figure 3, Divsalar depicts its accumulator as having a transfer
function of “1/(1+D)” and Divsalar states in the text that “[t]he accumulator can be
viewed as a truncated rate-1 recursive convolutional encoder with transfer function
1/(14D)....” (Ex. 1017, p. 5.) Therefore, claim 16 is obvious over Ping in view of
Divsalar and MacKay.

R. Ground 2: Claims 13 and 18-23 Are Obvious over Ping in View of
MacKay, Divsalar, and Luby97

1. Motivation to Combine Ping, MacKay, Divsalar and Luby97

(a) Irregularity and Repetition

72

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

172. As explained above for Ground 1, one of ordinary skill would have
had the motivation to use MacKay’s irregularity and Divsalar’s repetition in Ping.

(b) Streams

173. Ping discloses block codes in which the codeword “c = [p, d], where
p and d contain the parity and information bits, respectively.” (Ex. 1003, p. 38.)
One of ordinary skill would have understood that it was obvious for Ping to receive
information bits d in “a source data stream” and to output its parity bits pin a
“transmission data stream.” That is, it would have been obvious for information
bits arriving in a stream to be collected into blocks and encoded per Ping’s
Equation (4) and for Ping’s codewords, which contain parity bits, to be output
sequentially in a stream.

174. Even if Ping is not understood to teach encoding bits in a “stream”
standing alone, it would have been obvious to use “streams” as taught by Luby97
in Ping. As explained above, Luby97 describes receiving data to be encoded in a
stream of data symbols (which could be, for example, bits), where the “stream of
data symbols [] is partitioned and transmitted in logical units of blocks.” (Ex. 1008,
p. 150, emphasis added.) One of ordinary skill in the art would have understood
that, in practice, information bits are often received in a real-time stream. The

encoder waits until it has received a certain number of information bits (meaning a

[,

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

“block” of information bits), which are then encoded all at once, producing a
codeword of fixed size.

175. Coders that receive “streams” of bits that comprise one or more
“blocks™ of data were common, and would have been familiar to a person of
ordinary skill. To the extent that “streams” were not obvious in view of Ping alone,
it would have been obvious to use Luby97’s teaching of “streams” in Ping to make
the encoder capable of receiving and processing “streams” as opposed to just
blocks. Accordingly, it would have been obvious to a person of ordinary skill to
incorporate Luby97’s “stream” teachings into the encoder of Ping (modified with
the irregularity of MacKay and the repeater of Divsalar, as described above).

< Claim 13

176. Claim 13 depends from claim 11 and also requires that the encoder
comprise: (a) “a low-density generator matrix (LDGM) coder configured to
perform an irregular repeat on message bits having a first sequence in a source data
stream to output a random sequence of repeats of the message bits”; and (b) “an
accumulator conﬁgured to XOR sum in linear sequential fashion a predecessor
parity bit and ‘a’ bits of the random sequence of repeats of the message bits.” (Ex.

1001, 9:39-45.)

74

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

177. As explained above, the combination of Ping in view of MacKay and
Divsalar discloses every claim limitation of claim 11. Ping in view of MacKay,
Divsalar and Luby97 teach the additional limitations of claim 13.

(a) “alow-density generator matrix (LDGM) coder
configured to perform an irregular repeat on message
bits having a first sequence in a source data stream to

output a random sequence of repeats of the message
bits”

178. This limitation imposes three requirements: (i) a low-density
generator matrix (LDGM) coder configured to perform an irregular repeat on
message bits; (ii) the LDGM coder outputs a random sequence of repeats of the
message bits; and (iii) the message bits have a first sequence in a source data
stream. The prior art teaches each of these requirements.

(1) a low-density generator matrix (LDGM) coder

configured to perform an irregular repeat on
message bits

179. Ping’s matrix H? is a low-density generator matrix. Ping’s matrix H*
has n-k (“n” minus “k”) rows and & columns, where k is the number of information
bits in a codeword, n is the total number of bits in a codeword, and ¢ is a “preset
integer.” (Ex. 1003, p. 38.) Ping discloses an example in which k£ = 30,000 and the
code rate, k/n, is 1/3. (Id., p. 39 (Fig. 1 caption).) In a rate 1/3 code, three bits are
output for every single information bit. So, in this example, the length of the

codeword, n, is 90,000 bits. This corresponds to a generator matrix H? with

75

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

60,000 rows, 30,000 columns, and therefore a total of 1,800,000,000 entries.

Every column contains exactly “#” ones, and in Ping’s example, “t=4.” (Id.)
Therefore, of the 1,800,000,000 entries, only 240,000 of the entries are ones
(t(n[1k)=4(60,000)=240,000). The ratio of ones to total entries in the H* matrix is
240,000/1,800,000,000=0.00013, meaning that only 0.013% of the entries are ones.
Accordingly, H? is a very low density matrix.

180. Additionally, as explained in the context of claim 11, it would have
been obvious to one of ordinary skill to implement Ping by using Divsalar’s
technique of repeating bits and MacKay’s nonuniform column weights, which
would result in some message bits being repeated more than others — thereby
satisfying the “irregular repeat” limitation of claim 13.

(2) the LDGM coder outputs a random sequence of
repeats of the message bits

181. As explained above in the context of claim 11, the positions of 1s in
Ping’s generator matrix H? are “randomly” distributed: “In each sub-block HY, i=
1,2 ... t, we randomly create exactly one element 1 per column and k#/(n-k) 1s per
row.” (Ex. 1003, p. 38, emphasis added.) Because the 1s are randomly distributed
in Ping’s generator matrix H%, the matrix would output “a random sequence” of
bits, as claim 13 requires.

(3) the message bits have a first sequence in a source
data stream

76

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

182. Luby97 describes receiving data to be encoded in a stream of data
symbols (which could be, for example, bits), where the “stream of data symbols []
is partitioned and transmitted in logical units of blocks.” (Ex. 1008, p. 150,
emphasis added.) One of ordinary skill would have understood that, in practice,
message bits are often received in a real-time stream. The encoder waits until it has
received a certain number of message bits (a “block™ of message bits), which are
then encoded all at once, producing a codeword of fixed size.

183. Coders that receive “streams” of message bits were common, and
would have been familiar to a person of ordinary skill. To the extent that “streams”
were not obvious in view of Ping alone, it would have been obvious to use
Luby97’s “stream” teaching in Ping to make the encoder capable of receiving and
processing “streams” as opposed to just blocks. Accordingly, it would have been
obvious to a person of ordinary skill to incorporate the “stream” teachings of
Luby97 into the encoder of Ping.

(b) “an accumulator configured to XOR sum in linear

sequential fashion a predecessor parity bit and ‘a’ bits of
the random sequence of repeats of the message bits”

184. As discussed above for claim 11, Ping generates the parity bits by
summing the claimed “predecessor parity bit and ‘a’ bits of the random sequence
of bits.” That is, as shown in Equation (4), Ping computes the parity bit p; by

summing the claimed “predecessor parity bit,” (p;.1) and a summation }; h?j d;. (Ex.

77

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

1003, p. 38.) As also explained for claim 11, this process uses “accumulation,” or
“an accumulator.”

185. Also, as shown on the right side of Ping’s Equation (4), the
computations are performed “mod 2.” Mod 2 (or modulo 2) arithmetic performs an
“XOR” sum (meaning for both “mod 2” and “XOR,” the following are true:
0®0=0; 0®1=1; 1®0=1; and 1®1=0).

186. Also, as explained above for claim 12, the number of information bits
that are summed to produce each summation (3. h?j d;) corresponds to the number
of 1s in each row of Ping’s matrix H® and Ping discloses an example in which
exactly two information bits are summed to produce each summation (3 h?j d;).
Accordingly, in this example, the claimed value of “a” is the constant two.
Therefore, each summation, }; ; h?j d;, is a sum of the claimed *““‘a’ [2] bits of the
random sequence of bits.”

187. Also, as explained above in subsection (a) for claim 13 (supra at
§IX.B.2), (i) the information bits used in the summation }; ; hfj d; are selected from
a “random sequence” of information bits, and (ii) it would have been obvious to
one of ordinary skill to implement Ping by using Divsalar’s “repeating” technique
such that the information bits used in the summation }, ; h?j d; were “repeats” of the

information bits.

78

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

188. Finally, Ping computes the parity bits in “linear sequential fashion” as
claimed. As shown by Ping’s Equation (4), Ping computes the parity bit pg.i)
before computing the parity bit p;, accordingly computing the parity bits in
“sequential fashion” as claimed. Also, Ping’s Equation (4) is “linear” as claimed.
The only operations in Ping’s Equation (4) are multiplication and addition, and
both of those are linear operations.

3. Claim 18

189. As explained below, one limitation at a time, claim 18 is rendered
obvious by Ping in view of MacKay, Divsalar, and Luby97.

(a) “A device comprising:

190. As explained above for claim 11, Ping, MacKay, and Divsalar each
teach this preamble.
(b) “a message passing decoder configured to decode a

received data stream that includes a collection of parity
bits”

191. Divsalar teaches this limitation. Divsalar teaches that “an important

feature of turbo-like codes is the availability of a simple iterative, message passing

decoding algorithm that approximates ML decoding. We wrote a computer
program to implement this ‘turbo-like’ decoding for RA codes with g = 3 (rate 1/3)
and g = 4 (rate 1/4), and the results are shown in Figure 5.” (Ex. 1017, p. 9,

emphasis added.) One of ordihary skill would understand that “message passing

79

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

decoding” is performed by a device called a “decoder” that receives “a collection
of parity bits.”

192. MacKay also teaches this limitation. MacKay explains that Gallager
codes “are asymptotically good and can be practically decoded with Gallager’s
sum-product algorithm.” (Ex. 1002, p. 1449.) For additional information about the
“sum-product” algorithm, MacKay directs the reader to “R. J. McEliece, D. J. C.
MacKay, and J.-F. Cheng, ‘Turbo decoding as an instance of Pearl's “belief

propagation’ algorithm.””” (Ex. 1002, p. 1454, reference [9], emphasis added). As

explained above (supra at §1V.G), a person of ordinary skill would have
recognized that the “sum-product algorithm” and “belief propagation” are types of
a “message passing decoder,” as required by claim 18. The fact that a “belief
propagation” decoder is a type of “message passing decoder” is also confirmed by
claim 22 of the *032 patent, which depends from claim 18 and further specifies that
the “message passing decoder” is a “belief propagation decoder.”

193. Luby97 also teaches this limitation. As Luby97 explains, “We have
also implemented error-correcting codes that use our novel graph constructions and

decode with belief propogation [sic] techniques. Our experiments with these

constructions yield dramatic improvements in the error recovery rate. We will

report these results in a separate paper.” (Ex. 1008, p. 158, emphasis added.)

80

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

194. While Ping does not specify a particular decoding algorithm, it
explains that “[t]he decoding algorithm follows that in [2]”, where reference “[2]”
is “MacKay, D. J. C, and Neal, R. M. ‘Near Shannon Limit Performance of Low
Density Parity Check Codes’, Electron. Lett., 1997.” (Ex. 1016, p. 39.) The 1996
version of the 1997 MacKay reference cited by Ping describes “an approximate
belief propagation algorithm.” (Ex. 1002_ORIG, p. 1646.) In view of this citation,
and the fact that one of ordinary skill would understand message passing
algorithms to be a standard technique for decoding linear error-correcting codes, it
would have been obvious to use the “message passing decoders” taught by
Divsalar, MacKay, and Luby97 to decode the LDPC-accumulate codes of Ping.

195. Additionally, it would have been obvious to use a stream-based
decoder to decode the LDPC-accumulate codes of Ping. As discussed above,

Luby97 describes receiving data to be encoded in a stream of data symbols (which

could be, for example, bits), where the “stream of data symbols [] is partitioned

and transmitted in logical units of blocks.” (Ex. 1008, p. 150, emphasis added.)
196. While this passage discusses transmitting data in “/ogical units of
blocks,” a person of ordinary skill in the art would understand that the bits in each
logical block are not actually transmitted all at once, but rather sequentially, as a
stream of encoded data bits, that are only grouped “logically” into units of blocks.

Accordingly, they are also received sequentially by the decoder as a stream; a

81

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

person of ordinary skill in the art would understand that groups of codeword bits
are not received simultaneously in blocks, but sequentially as a stream.

197. Even if a person of ordinary skill were to treat the codeword bits in
each block as if they had been received simultaneously, they would have
recognized that a sequence of blocks with a defined order, such as the logical
blocks of encoded symbols transmitted by the Luby97 encoder, constitutes a
stream.

198. Indeed, like the encoder of Luby97, the decoding algorithm described
in the *032 specification also treats the codeword as a “logical block™ containing

parity bits. As the *032 patent explains, “/bjefore decoding, the messages m(v—u)

and m(u—v) are initialized to be zero, and my(u) is initialized to be the log-
likelihood ratio based on the channel received information. If the channel is
memoryless, i.e., each channel output only relies on its input, and y is the output of

the channel code bit u, then mo(u)=log(p(u=0ly)/p(u=1ly)). After this initialization,

the decoding process may run ...” (Ex. 1001, 5:64-6:3 (emphasis added).) Here,

the variable “u” represents a variable node of the Tanner graph, and the value
“mo(u)” represents the likelihood that the codeword bit corresponding to node u is
a 0, based on “the channel received information.” (Ex. 1001, 5:64-6:3.) As this

passage explains, the information “mg(u)” corresponding to all of the codeword

82

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

bits “u” must be received in order to complete the initialization phase, only after
which the decoding process may begin.

199. Thus, just as the encoder described in Luby97 transmits codeword bits
in “logical blocks,” the preferred embodiment of claim 18 receives parity bits in
“logical blocks,” waiting until every parity bit in the block has been received
before decoding can begin. A person of ordinary skill in the art would have
understood that while each codeword is treated by the encoder and the decoder as a
“logical block™ containing parity bits, the bits in this “logical block™ are not
transmitted over the channel all at once. Instead, the bits in the codeword are
transmitted sequentially over time, as a “stream” of parity bits.

200. It would therefore have been obvious to a person of ordinary skill to
decode the LDPC-accumulate codes of Ping with a message passing decoder that is
compatible with these teachings of Luby97 (especially in view of Luby97’s
teaching of a message passing decoder, as explained above). Specifically, it would
have been obvious to one of ordinary skill to use a decoder that can receive
encoded bits in a stream where the encoder that encoded those bits output them in a
stream, as taught by Luby97.

(c) “the message passing decoder comprising two or more
check/variable nodes operating in parallel to receive
messages from neighboring check/variable nodes and

send updated messages to the neighboring variable/check
nodes”

83

U.S. Patent 7,421,032
Declaration of James A. Davis, Ph.D.

201. As discussed above in the background section, a perso