APPENDIX A-3

LG Exhibit 1204C, Page 1
LG Electronics, Inc. v. Papst Licensing

®

g
oW
Dy o0
27
2%
D.a.
E g
=
Sy

Foreword, Bill Gates

General Editor, Ray Duncan

The

MS-DOS

Encyclopedia

: cond: YV
mPle?1OH

z.com

om Encycloped

i zts.sWncUaox
Hmmmwmpdpm

LG Exhibit 1204C, Page 2

icensing

LG Electronics, Inc. v. Papst L

The

1S-DOS

Encyclopedia

LG Exhibit 1204C, Page 3
LG Electronics, Inc. v. Papst Licensing

The

MS-DOS

Encyclopedia

Microsoft Press

Mklosoﬂ@, Redmond, Washington

1988

Ray Duncan, General Editor
Foreword by Bill Gates

§ ——— e I
S SRS 5

LG Exhibit 1204C, Page 4
LG Electronics, Inc. v. Papst Licensing

Pubiished by

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press

Al rights reserved No part of the contents of this book

may be reproduced or transmitted in any form or by any means
without the written permission of the publisher

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1 0 through 3.2/
editor, Ray Duncan
p- cm
Includes indexes
1 MS-DOS (Computer operating system) [Duncan, Ray, 1952-
I Microsoft Press
QA7676 063M74 1988 87-21452
005 4'46--dc19 CIpP
1SBN 1-55615-174-8

Printed and bound in the United States of America
123456789 RMRM 321098

Distributed to the book trade in the
United States by Harper & Row

Distributed to the book trade in
Canada by General Publishing Company, Ltd

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd

Penguin Books Ltd., Harmondsworth, Middlesex England
Penguin Books Australia 1td | Ringwood, Victoria, Australia
Penguin Books N Z Lid , 182-190 Wairau Road, Auckliand 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, P5/2®, and TopView® are registered trademarks of Internationa! Business Machines Corporation
GW-BASIC®, Microsoft® MS®@ MS-DOS®, SOFTCARD® and XENIX® are registered trademarks of
Microsoft Corporation

Microsoft Press gratefully acknowledges permission to reproduce material listed below
Page 4: Courtesy The Computer Museum
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs Gourtesy Intel Corporation
Page 6: Reprinted from Popular Electrorics, January 1975 Copyright ® 1975 Ziff Communications Company
Page 13: Reprinted with permission of Rod Brock
Page 10; Reprinted with permission of The Seattle Times Copyright © 1983
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright © 1981, 1982, 1984 All rights reserved
Page Z1: ‘Big IBM's Little Computer’ Copyright © 1981 by The New York Times Company Reprinted by
permission
‘IBM Announces New Microcomputer System” Reprinted with permission of InfoWorld Copytight © 1981

IBM really gets personal” Reprinted with permission of Personal Computing Copyright © 1981

‘Personal Computer from IBM Reprinted from DATAMATION Magazine October 1981 Copyright © by Cahners
Publishing Company

IBM's New Line Likely to Shake up the Market for Personal Computers Reprinted by permission of The Wall
Swreet Journal Copyright © Dow Jones & Gompany, Inc. 1981 All Rights Reserved
Page 36: Irresistible DOS 3 0 and “The Ascent of DOS Reprinied from PC Tech Jour nal,
December 1984 and October 1986 Copyright © 1984 1986 Ziff Communications Company

' MS-DOS 2 00: A Hands-On Tutorial” Reprinted by permission of PC World from Volume 1, Issue 3 March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107

Special thariks to Bob O'Rear, Aaron Reynolds, and Kenichi Tkeda

B RRRCPHIE P

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy 1 Shattuck

Senior Technical Editor: David I. Rygmy:
Special Projects Editor: Sally A. Brunsman
Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,

Lee Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kemn, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Lairy Anderson, Jane Bennett, Rick
Bourgoin, Darcie § Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, joy Ulskey

Marketing and Sales Director: James Brown
Director of Production: Christopher D Banks

Publisher: Min$S Yee

LG Exhibit 1204C, Page 5
LG Electronics, Inc. v. Papst Licensing

S .

Contributors

Ray Duncan, General Editor Duncan received a B A, in Chemistry from the University of Califor-
nia, Riverside, and an M D. from the University of California, Los Angeles, and subsequently received
speciatized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles He
has written many articles for personal computing magazines, including BYTE PC Magazine, Dr. Dobb’s
Journal. and Softalk/PC, and is the author of the Microsoft Press book Advanced MS-DOS He is the
founder of Laberatory Microsystems Incorperated. a software house specializing in FORTH interpresers
and compilers

Steve Bostwick Bostwick holdsa B.S in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc, a software firm specializing in the creation of systems for applications that
interface microcompurters with specialized hardware. He is also an instructor for the UCL A Extension
Department of Enginecring and Science and helped design their popuiar Microprocessor Hardware and
Software Engineering Certificate Program

Ketth Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs_ He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials

Robert A, Byers Byers is the author of the bestselling Everyman’s Database Primer. He is presently
involved with the Emeraid Bay database project with RSPI and Migent, Inc

Thom Hogan During 11 vears working with personal computers, Hogan has been a software devel-
aper, 2 programmer, a technical writer, a marketing managey, and a lecturer He has written six books
numercus magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer’s Sourcebook.

JimKyle Kyle has 23 years’ experience in computing Since 1967 he has been a systems program-
mer with strong telecommunications orientation His interest in microcomputers dates from 1975 He is
currently MIS Administrator for BII Systems, Inc , the OEM Division of BancTec Inc manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine s CLMFCORUM on CompuServe since: early 1985

Gordon Letwin Letwin is Chief Architect Systems Sofrware Microsoft Corporation He is the author
of Inside OS2, published by Microsoft Press

Charles Petzold Petzold holds an M § in Mathematics fror Stevens Institute of Technology Before
launching his writing career, he worked 10 years in the insurance industry, programiming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2 0, 2 contributing editor to PC Magazine and a frequent contributor to the Microsoft Systernns

Journal

Chip Rabinowitz Rabinowitz has been a programmer for 11 years He is presently chief program-
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania and has been
Forum Administraior for the CompuServe MICROSOFT SIG since 1986

Contr ibutors vii

LG Exhibit 1204C, Page 6
LG Electronics, Inc. v. Papst Licensing

Jim Tomtin Tomlin holds 2 B S and an M.S in Mathematics. He has programmed at Boeing
Microsoft, and Opcon and has taught at Seattle Pacific University He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications

Richard Willen Wilton has programmed extensively in P1/1, FORTRAN, FORTH, C, and severa}
assembly languages He is the author of Programmer s Guide to PC & PS/2 Video Systems, published

by Microsoft Press

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Rumwing MS-DOS and

Supercharging MS-DOS, both published by Microsoft Press

William: Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University He is director of PC Labs and president of Logic Fusion Inc. His interests include
operating systems, computer languages, and artificial intelligence He has written numerous magazine

articles and a book on MS-DOS

Jodnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets both published by Microsoft Press

Special Technical Advisor

Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary David Melin john Paliock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman TJames W, Johnson Dan Newel! Ralph Ryan
John Butles Kaamel Kermaani Tani Newell Karl Schulmeisters
Chuck Carroll Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw
David Chell James Landowski Bob O Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka

Mike Courtney Thomas iennon Larry Osterman Jon Smist

Mike Dryfoos Dan Lipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Sunil Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold Steve Zeck

viis The MS-DOS Encyclopedia

§ o m 1

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development of MS-DOS

Section H: Programming in the MS-DOS Environment
Part A: Structure of MS-DOS

Articlel: An Introduction to MS-DOS 51
Article 2. The Components of M5-DOS 61
Article 3: MS-DOS Storage Devices 85

PartB: Programming for MS-DOS

Article 4 Structure of an Application Program 107
Article 3: Character Device Input and Qutput 149
Article & Interrupt-Driven Communications 167
Article 7. File and Record Management 247
Article 8: Disk Directories and Volume Labels 279
Article : Memory Management 297

Atticle 10: The MS-DOS EXEC Function 321

PartC: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Articke 12: Exception Handlers 385

Article 13: Hardware Interrupt Handlers 409

Articie 14: Writing MS-DOS Filters 429

Article 15: Installable Device Drivers 447

PartD: Directions of MS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

Comntertts

LG Exhibit 1204C, Page 7
LG Electronics, Inc. v. Papst Licensing

ix

Section III: User Commands

Introduction 725

User commands are listed in alphabetic order This section includes ANSLSYS,
BATCH, CONFIG SYS, DRIVER SYS, EDLIN, RAMDRIVE SYS, and VDISK 5YS

Section IV: Programming Utilities
Introduction 963

CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
1IB 980
LINK 987
MAKE 999
MAPSYM 1004
MASM 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054
CodeView 1157

Section V: System Calls
Introduction 1177
System calls are listed in numeric order

Appendixes

Appendix A: MS-DOS Version 3.3 1433

Appendix B: Critical Error Codes 1459

Appendix C: Extended Error Codes 1461

Appendix D: ASCII and IBM Extended ASCII Character Sets 1465
Appendix E: EBCDIC Character Set 1469

Appendix F: ANSISYS Key and Extended Key Codes 1471
Appendix G: File Control Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP) Structure 1477
Appendix: 8086/8088/80286/80386 Instruction Sets 1479
Appendix: Common MS-DOS Filename Extensions 1485
AppendixK: Segmented (New) EXE File Header Format 1487
Appendix1: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Sofrware Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509

Appendix O: IBM PC BICS Calls 1513

X The MS-DOS Encyclopedia

723

961

1175

1431

—de

P

Indexes

Subject 1533
Cormmands and System Calls 1565

Contents

1531

xi

LG Exhibit 1204C, Page 8
LG Electronics, Inc. v. Papst Licensing

Foreword

Microsoft’s MS-DOS is the most popular piece of software in the world It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications—the largest set of applications in any computer environment As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur-
thering Microsoft’s original vision— a computer for every desktop and in every home The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet-
ing this challenge since the release of MS-DOS in 1981. The true measure of our success

in this effort is MS-DOS's continued prominence in the microcomputer industry

Since MS-DOS’s creation, more powerful and much-improved computers have entered the
marketplace, vet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as for old To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM’s deci-
sion to build a computer that incorporated 16-bit technology

The compatibility revolution began with the Intel 8080 microprocessor This technolog-
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in-
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort—each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this because different manu-
facturers would buy the same chip with the same instruction set

From 1975 to 1981 (the 8-bit era of microcomputing}, Microsoft convinced virtually

every personal computer manufacturer — Radio Shack, Commodore, Apple, and dozens
of others—to build Microsoft BASIC into its machines For the first time, one common lan-
guage cut across all hardware vendor lines The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vendor's machine to another

Most machines produced during this early period did not have a built-in disk drive
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
commor, and a number of disk-based programs, including WordStar and dBASE, entered
the market A standard disk operating system that could accommodate these develop-
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CE/M-80, Digital Research’s 8080 DOS.

Foreword Xiif

LG Exhibit 1204C, Page 9
LG Electronics, Inc. v. Papst Licensing

xit

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs It was important that software designed for
the new 16-bit machines have this same advantage No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard — a standard that would be the software
industry’s lifeblocd The inuicacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for TBM, is not the key point here The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft’s BASIC had prevailed on the 8-bit systemns

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the petrsonal computer “Man of the Year” MS-
DOS was integral to this acceptance and popularity, and we have continued 10 adapt
MS-DOS to support more powerful computers without sacrificing the compatibility thatis
essential to keeping it an industry standard. The presence of the 80386 microprocessot
guarantees that continued investments in Intel-architecture software will be worthwhile

Qur goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers The length of this book is many
times greater than the source listing of the first version of MS-DOS —evidence of the
growing complexity and sophistication of the operating system The encyclopedia will be
especially usefui to software developers faced with preserving continuity yet enhancing
the portability of their applications :

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor MS-DOS will continue to play an integral part in this effort Faster
and more powerful machines running Microsoft O8/2 mean an exciting future of multi-
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno-
vative graphical user interface, and communication subsystems MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
API of 08/2. Users will continue to benefit from our commitment to improved operating-
system petformance and usability as the future unfolds

Bill Gates

The MS-DOS Encyclopedic

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 mitlion machines. It has grown, matured,
and siabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CID ROMSs containing
tassive amounts of on-line information MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the commumity of working programmers We have therefore been free to bypass elemen-
tary subjects such as the number of bits in a byte and the interpretation of hexadecimal
numbers Instead, we have emphasized detailed technical explanations, working code ex-
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-dtiven communications, debugging strategies, memory management, and install-
able device drivers We have commissioned definitive articles on the relocatable object

- modules generated by Microsoft language translators, the operation of the Microsoft Ob-

ject Linker, and terminate-and-stay-resident utilities We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain-
ing, illustrated account of the origins of Miciosofi’s standard-setting operating system

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS services, commands, directives, and utilities In many instances, the manu-
scripts have been reviewed by the authors of the Microsoft tools described

We have made every etfort during the creation of this bock to ensure that its contents are
timely and trustworthy In a work of this size, however, it is inevitable that errors and omis-
sions will occur If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow progiammers. To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information

Ray Duncan

Preface xXu

LG Exhibit 1204C, Page 10
LG Electronics, Inc. v. Papst Licensing

Introduction

Updates to The MS I)()S Encyclopecha i

The M5-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information on all the
MS-DOS commands, utilities, and systemn calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content Special typographic conven-
tions are also used to clarify the material

_ zul ahd éfter Iecé‘ivmg the prémpt tyi)e ohy Il o s i : Or ganization of the Book
VIFW <Ent=.r_> : R SRR e : ; ‘ L
; ' : | 5 : The MS-DOS Encyclopedia is organized into five major sections, plus appendixes Each
4 : section has a unicque internal organization; explanatory introductions are included where
appropiiaie

'MSPRESS <Enter> N
Section I, The Development of MS-DOS, presents the history of Microsoft’s standard-

setting operating system from its immediate predecessors through version 3 2 Numerous
photographs, anecdotes, and quotations are included

Section II, Programiming in the MS-DOS Environment, is divided into five parts: Structure

! of MS-DQOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and

: Programming Tools Each patt contains several articles by acknowledged experts on these
topics The articles include numerous figures, tables, and programming examples that pro-

f vide detail about the subject

ggk;l:; ﬂ?;z};;ihﬁgz??g? t;;;;f;; :sgz‘ﬁtjg; ofjoi)est Con‘:;:iﬁ?;;éiﬁrzr?jdi at ely H ‘ Section HI, User Commands, presents all the MS-DOS internal and external commands in
E ’Ihe compamon d1sks aze only avaﬂable dnectly ﬁom Mmosoft Press To ordex ise the P , alphabetic order, including ANSI SYS, BATCH, CONFIG 8YS, DRIVER SYS, EDLIN,
o g] i RAMDRIVE SYS, and VDISK SYS. Each command is presented in a structure that allows
2 the experienced user to quickly review syntax and restrictions on variables; the less-
experienced user can refer to the detailed discussion of the command and its uses.

. 5011 Bothell, WA 98041 3011 Please specxfy 5. 2)-1nch or 3 5~mCh format’ Payme_nt mustbe: i f Section IV, Programming Utilities, uses the same format as the User Commands section to
#1108 “funds” You rhay:pay: by-¢heck ot money: order’ (payable 10 Microsoff P 'ess) orby - present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
. Américan Express, VISA, or Master Card; pléase includeryour c:echt card number and ex- - ' debuggers Although some of these utilities are supplied only with Microsoft language
- piration-date ‘Al -demestic orders ‘are shlpped 2nd: day AT ‘pon 1ece1pt of order _by [i products and are not included on the MS-DOS system or supplemental disks, their use is
“Micr Osoft : e : ; inttinsic 1o programming for MS-DOS, and they are therefore included o create a com-
prehensive reference

. CAresn'ients 5% pius locdl-option x, CT 7 5% FI 6% MA 5% MN 6%, MO 4 225%, NY u.p_lu_é l_oga\jl y

opt10r1 tax WA State 7' 8%

XUL The MS-DOS Encyclopedia | Introduciion xXuit

LG Exhibit 1204C, Page 11
LG Electronics, Inc. v. Papst Licensing

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt ZFH The
Interrupt 21H functions are listed in individual entries. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of M5-DOS
version 3 3, the segmented (new) EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
buileted lists for ease of use

T he book includes two indexes — one organized by subject and one organized by com-
mand name or system-call number The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mand or systemn call. '

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, aH designed to run on the IBM PC family and compatibles Most of these
programs are complete utilities; some are routines that can be incorporated into function-
ing programs Vertical eilipses are often used to indicate where additional code would be
supplied by the user to create 2 more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4 0, the
Microsoft C Compiler version 4 0, or the Microsoft QuickBASIC Compiler version 2 0.

The functional programs and larger routines are also available on disk Instructions for
ordering are on the page preceding this introduction and on thé mail-in card bound into
this volume

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume However, for ease of use, a few special conventions should be noted

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words int the C programming lan-
guage, messages and return values in text, and, occasionally, emphasis

A typographic distinction is made between lowercase ! and the numeral 1 in both text and
program listings

Cross-references appear in the form SECTION NAME: Part NaMe, COMMAND NAME, OR IN-
TERRUPT NUMBER: Article Name or Function Number

Color indicates user input and program examples.

Terminology

Although not an official TBM name, the term PC-DOS in this book means the IBM imple-
mentation of MS-DOS If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier

The names of special function ke;fs are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Retun When <Enfer> is included ina
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctsl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Cirl-C

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (% in the code portions of program listings)
Ranges of hexadecimal values are indicated with a dash— for example, 07-0AH

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages

Introduction xix

xviti Ihe MS-DOS Encyciopedia

LG Exhibit 1204C, Page 12
LG Electronics, Inc. v. Papst Licensing

LG Exhibit 1204C, Page 13
LG Electronics, Inc. v. Papst Licensing

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intet 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected — so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft’s decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow To the extent that personal opin-
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

; Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac-
complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-
i ware and software developments of the 1970s: Microsoft’s disk-based and stand-alone

i versions of BASIC, Digital Research’s CB/M-80 operating system, the emergence of the

: 8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
' ware company called Seattle Computer Products.

! Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de-
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I The Development of MS-DOS 3

LG Exhibit 1204C, Page 14
LG Electronics, Inc. v. Papst Licensing

1975

4

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night’s destination of the starship Enterprise The photograph
clearly shows the input switches on the front panel of the cabinet

Albuquerque, New Mexico. Though it has Jong been eclipsed by other, more powerful
makes and models, the Altair was the first “personal” computer to appear in an environ-
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair’s combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

i
4
1

1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced. At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language — and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-O-Data to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma-
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section I The Development of MS-DOS D

LG Exhibit 1204C, Page 15
LG Electronics, Inc. v. Papst Licensing

1976

1975
The January 1975 cover of Popular)
HOW TO “READ” FM TUNER SPECIFICATIONS Electionics magazine, featuring the St raqg (‘*47 cont foo BAg)< OHPUTER NOTES/TOLY, 1975
° machine that caught the imaginations
Po “lar Ele Ctl'onlcs of thousands of like-minded electron-
ics enthusiasts — among them, Paul low rammar Cloois Loading Software
WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/ 756 Allen and Bill Gates e " Software from MITS will be pro-
Creriae] | pormter 4o next lug (2tyies) vided in 2 checksunmed Format.
N Thi wi L 3
PROJECT BREAKTHROUGH! bimacy e W (2 by That you Koy in mee o (1o
. chacactec on ling Cm wole 1 25 b‘_{te;). (T:is ;ill read a)check-
N . sua loader (the 'bin’ loader) which
World’s First Minicomputer Kit | e (2 bute) w5 o o
o L [L— For audic cassette,l.uding Shl
to Rival Commercial Models... | <Repedd abme £ ey 11 potarety i shackon lomdes i1l
! } lained in detail i
"ALTAIR 8800" SAVE OVER $1000 _ e) B T e
N ! UﬁrmBj SYMfL’: varab lC_S - &‘7{“} I vcl(w.’[{ For loading non-checksummed
9 i 2 b paper tapes here (s a short program:
wtes Five tho Name .
q byt g Hae yalve, STKLOC: (nw GETNEW
<Repeat For <ach vseiadle > e e sdarass
CA?D/'MB] Afl\ \/a)uwGIZ} #2 high byte of
2 ka e me GETNEW address)
Zonte lewgll,. ART: (XD 8,
2eake leeg g T 5 oo
IN <flag-input channel>
Qe,feof‘s Cor ealk aer RAL :,ge: i:put ready bit
ALSO IN THIS ISSUE: [sTrew) lowest loeat i QOn 5{:;3;/, B el e channets
- H CHGLOC: CPI <043 = [NX B>
® An Urider-$90 Scientific Calculator Project _ Csmemor] F&f Spaca (5T can be i fere) e x
© CCD's—TV Camera Tube Successor? i fost (Bt sk ety STA cHeLoc
i ® Thyristor-Controlled Photoflashers [rrEToP) bottom of stack / fopast locatiofor stends (22 bytes)
TEST REPORTS: ‘ ¢ ‘ s 000 Srart bytey the byve tobe
Tochnics 200 Speaker Sy [esmof) corcent ater Stored ot doe 0, one byee e be
Pioneer RT-1011 Open-Reel Recorder i Corcent st "9 usage START, making sure the memory the
Tram Di d-40 CBAM Tr i | c sTRINGS loader is in is unprotected. Hake
Edmund Scientific "Kirlian” Photo Kit . MEMSTZ e e st " N ‘ ‘ sure you don't wipe out the loader
Hewlett-Packard 5381 Frequency Counter) et nac [ocatien v foading on top of it.
: % ~ back To run this again change CHGLOC
— ack to CPI - 376,
Vs SAamz allews tor Sl"\gﬁg
, o toble masagenusl. omly collcctsr S
Although it was too limited to serve as the central processor for a general-purpose compu- s for gtrings which pent ¢ 4K BASIC (-4
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc- :
» ‘ s , .
ion set ‘Yere concerned Thus Traf-O D%m S \?Vf)rk Wlth the 8008 gave qates and Allena | On the left, Bill Gates’s original handwritten notes describing memory configuration for Altair BASIC. On
head start when they later developed their version of BASIC for the Altair. i the right, a short bootstrap program written by Gates for Altair users; published in the July 1975 edition of the
Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popuiar f MITS user newsietier, Computer Notes
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates, f— .
d o s ‘ , ; From paper tape to disk
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon- Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap
strate the language for MITS. The developers gave themselves the company name of to load the tape was entered into memory by flipping switches on the front panel of the
Microsoft and licensed their BASIC to MITS as Microsoft’s first product. computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was i iﬁan b thlf fxrls)t.retaul fk;%?f’, disk SEISti/InIl,;)Sn th; rgzékft ?s 2 risulta{nkFEbr u(ajxy 9_70 of
) . ‘ . , - e for - version
developed, was a landmark product in the history of personal computing. On another Al en, stt I(?nThu ijtof Oha d tware or » 8540 dies owite athlii fase rsl files
. . s ; . . . ' . K anagi €S,
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim ta;x disk BA SI(eI tmlI d ha 1o operlatcllng systefr}; and henee notme t.o ° Itm afi 8
. . . - ' It would, in
Paterson and the disk operating system he developed for Seattle Computer Products for so the dis wou ve tg include some ttie-management routines U
the 8086 chip effect, have to function as a rudimentary operating system.
6 The MS-DOS Encyclopedia Section I The Development of MS-DOS 7

LG Exhibit 1204C, Page 16
LG Electronics, Inc. v. Papst Licensing

1977-1978

1978

Microsoft, 1978, Albuquerque,

New Mexico Top row, left to right
Steve Wood, Bob Wallace, Jim Lane
Middle row, left to right. Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwiv. Bottom row, left to
right. Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft’s entry into the business of languages for per-
sonal computers — not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man-
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
“chained” references pointing to the actual storage locations on disk Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the. 8086
chip and eventually, through an operating system named M-DQOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con-
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900

The MS-DOS Encyclopedia

A Microsoft advertisement from the
January 1979 issue of Byte magazine
mentioning some products and the
machines they ran on_In the lower
right corner is an announcement of
the company’s move to Bellevue,
Washington

ASIC ~ NEW RELEASE 7o rouriis

> Glocofon, WHEMEND, trorecledt fies. ond chor
s i r:

S0 ciox
15:5Q mproved:Single copy 1335

AGE (CPIMVvaesion only) merases

OUGhHIES OF CREIKC. nonds

O '
P G EXTEND: Singie CoRY:
FUPCOMING PRODUCTS a

Jan 4,4979.
plecse note our
figw. acidress:

MICROSOFT

10800 NE Eighth, Suite 819
Believue, Washington 98004
. 206-455-8080

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced “Midas” or “My DOS”). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor-
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele-
gated to the back room. As Allen describes it, “Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that”

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft’s Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I The Development of MS-DOS 9

LG Exhibit 1204C, Page 17
LG Electronics, Inc. v. Papst Licensing

1978

1978

10

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair’'s Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor, or CF/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M’s history is that the software was developed several
years before its release date —actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall’s
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build

a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu-
ter and the disk drive while Kildall worked on the software portion —the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-
ing systems.

Digital Research’s CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output— disk I/O, screen display, print requests, and so on— CE/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv-
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re-
quire numerous relatively time-consuming disk reads to find needed information

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

The MS-DOS Encyclopedia

The 16-bit Intel 8086 chip, introduced in 1978
Much faster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte of memory

The 8086

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future
The 8080 was designed not to make computing a part of everyday life but to make house-
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086’s full 16-bit buses made it fast-
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me-
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen’s
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple 1T users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal — more than one voice in the trade press warned that industry invest-
ment in 8-bit equipment and software was too great to successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I The Development of MS-DOS 11

LG Exhibit 1204C, Page 18
LG Electronics, Inc. v. Papst Licensing

1979-1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an $-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a2 seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his employer, Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-
lator. It was also real fast— it could do a 16-bit ADD in three clocks.”

After the seminat, Paterson — again with Brock’s support — began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer’s new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital’s represen-
tative said December 1979, which meant, according to Paterson’s diary, “we’ll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we’ll be
able to switch to a real operating system.”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference

in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track of disk files— the FAT devel-
oped for Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys-
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-
tem he developed mimicked CP/M-80’s functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

The MS-DOS Encyclopedia

1980

GO 16-BIT NOW —WE HAVE MADE IT EASY

8086

8Mhz. 2-card CPU Set

WITH 86-DOS® $595

ASSEMBLED, TESTED, GUARANTEED

With our 2-card 8086 CRU set you can upgrade your 280 8.
bit S-100 system to run three times as fast by swapping the
CPUs. If you use our 16-bit memory, it will run five times as
fast. Up 10 64K of your static 8-bit memory may be used in the
BOBE's 1-megabyte addressingrange A switch ailows either 4
or 8 Mhz. aperation Memory access requirements at 4 Mhz
exceed 500 nsec

The EPROM monitor allows you to dispiay, alter and
search memory do inputs and outputs, and boat your disk.
Debugging aids include register display and change. single
stepping, and execute with breakpoints.

The setincludes a serial port with programmable baudrate.
four independent programmable 16-bit fimers {two may be
combined tor a f-day clock), a parallel
port, and an interrupt contratier with 15 inputs. External power
may be applied 1o the timers to maintain the clock dunng
system power-oft time. Totat power:2amps at + 8V lessthan
100 ma. at + 16V and at -16V

86-DOS™, our $195 8086 single user disk operating
system, 15 provided withoul additional charge.)t allows
functions such as console | O of characters and strings. and
random or sequencial reading and writing 1o named disk fites
While it has a different format from CP'M, it performs simitar
calls plus some {CPMisa
Digral Research C [l
ly easy contfiguration of 1'0 to different hardware. Directly
supported are the Tarbell and Cromemco disk

code written for CP M. transiate this to 8086 source code,
assemble the source code. and then run the program on the:
8088 processor under B6-DOS. This atlows the conversion af
any Z80 program, lor which source code is avasdable 1o run on
the much higher performance 8086

BASIC-86 by Microsoft is availabie tor the 8086 at $350
Several firms are working on application programs Cail for
current software status.

All sottware hcensed for use on a single computer only
N required. Shipping from stock to

The 86-DOS™ package inciudes an 8086 resident as-
sembler, a 280 10 8086 source code translator a utility toread
files writtens in CP M and converithem to the 86-DOS format a

one week. Bank cards, personal checks CODs okay There is
a 10-day return privilege All boards are guaranteed one year
— both parts and labor. Shipped prepaid by air n US and

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte

Iine editor and disk maintenance utilites Of signiticance 1o Canada. Foreign purchases must be prepaid in US funds
280 users 15 the ability of the transtator 16 accept Z80 source Also add $10 per board for overseas air shipment

8/16 16-BIT MEMORY

This board was designed for the 1980s 1t is configured as
16K by 8 bits when accessed by an 8-bit processor and
configured BK by 16 bits when used with a 16-bit processor
The configuration switching 1s automatic and rs done by the
card sampling the " sixieen request” signal sent out by all S
100 IEEE 16-bit CPU boards. The card has ail the high naise
immunity features of our weil known PLUS RAM cards as well
as “extended addressing” Extended addressing 1s a replace-
ment for bank seiect. l makes use of a total of 24 address ines
1o give a directly addressable range of over 16 megabyles
(For older systems, a switch will cause the card 10 ignore the
top 8 address Imes) This card ensures that your memory

board purchase will not scon be obsolete It is guaranteed 1o
run without wait states with our 8086 CPU set using an 8 Mhz ?E

clock Shippediromstock Prices 1-4 $280;5-9 $260 10
soa0 ® eattle Computer Products, Inc.
1114 Ingustry Drve_ Seattie, WA 98188
{206} 575-1830

LG Exhibit 1204C, Page 19
LG Electronics, Inc. v. Papst Licensing

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section. I. The Development of MS-DOS 13

1980

1980

iIBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten-
tion to the possibility of developing a low-end workstation for a market it knew well: busi-
ness and business people. :

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM’s interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro-
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles —typically four or five years—and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment

One of IBM’s solutions — the one outlined by Sams’s group — was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques-

tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for

it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel’s 8086 chip instead? At the end
of this meeting — the first of many — Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess,

One month later, Sams returned to Microsoft asking whether Gates and Allen could, stitl
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been
designed to run as a stand-alone product, it was unique in that respect — the other lan-
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however

Microsoft, meanwhile, still wanted to write all the languages for IBM — approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS,

The turning point

14

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates’s eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, “Kay and I were just sitting there at
night and Paul was on the couch. Kay said, ‘Got to do it, got to do it * It was onaly 20 more K

The MS-DOS Encyclopedia

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn’t that big
a deal, and once Kay said it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable — the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the

contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, “If I was awake, I was thinking about

the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) — arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%4-inch disks, so Microsoft needed to de-
termine the format of the new disk and then find a way to get the operating system from

the old format to the new.

Section I The Development of MS-DOS 15

LG Exhibit 1204C, Page 20
LG Electronics, Inc. v. Papst Licensing

1980-1981 1980-1981

Paul Allen and Bob O’Rear’s sketch of
Bill Gates (1982) Pl s Lre Sty + adedodeons the steps involved in
w;m Bomad Sme moving 86-DOS to the
1BM prototype

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype

Defining and implementing the MS-DOS disk format — different from Paterson’s 8-inch
format —was an added challenge. Paterson’s ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system’s startup
messages to changes in EDLIN, the line editor he had written for his own use Throughout
this process, IBM’s security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not-accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

16 The MS-DOS Encyclopedia Section I The Development of MS-DOS 17

LG Exhibit 1204C, Page 21
LG Electronics, Inc. v. Papst Licensing

1981

1980-1981
5 “ Fxes
O‘r/w ﬁ@%ﬁa&&uu Lox %%MA(SWMRHG
4 e \.M W"‘to &DA WTDQIL)-JW&)
/KB\J Sm.iwuj uﬁa&b&..gras{e“«
gw‘rﬂ{fﬂ\‘— » to bo:d
38 \)}&yzda o J%D‘;SDDSM:&%‘T;L ° é’ht:l\
BooT, prgpa to Load the BIOS dos
xr% s A—&WW ﬁ) Lctuﬂg
(\ ?‘f& M Gag o~ m dix e
date “dixte
Srana Al
O 4/2, ! i Dos Uum;z ¢"xe>

e
. 1‘,
e @@{u VTS

M\»\

O
‘—f} [Move ‘date’ }o &s-mi«am'os‘o:z

sy
Lt s0ia 165)1

So:3 - yyya

| ‘MI = 1
I3 Hi109'8765¥32 1 0

99y aymnemddddd

ity rbe to B6DDS to smmas 2ddese dode -
wll take et 36DOS Mrcd{-.d‘k*wbm:lnhx)

Ve ar ua;g{q.u

ot

Hl) 2> modil LommanDd To Aeaidh @ AuTocxec, B4T w
do & anbeif on thix fle, I€Mua9c BA j»x‘

Cm

2 . Fix VeEBOG ﬁ;
‘f/ g}*& T(éh\ w-wts Mﬂwg Idc_ SNJL»—&*M

‘f/ £

M*.‘
%D%U(ﬁ n M‘b W S"Dw «& u.:.,ﬁo,&-la

€oxzas K2F FTAlLWS

&M/ﬁ) L%gmmw To allecle dfecked, bod Tunchs

BADTRK .

potlen Lot 2280 w50 whoa 4 Newlom
/uu.ﬂ sz&d~w§q) :mbz. e *

7. Chet ot @s-232 a..w,..., He BTOY
&ﬁdww&)ﬁm—r emama

M ot Epezal edid '/}7 {-‘lx ﬂ.uy»ﬂc...a.-;.b[.[g

d.n.g,u—élam'ﬁ-a
O~ \Cﬁ% F"p ;;ax By dets wrtivak

W Tdliestion f‘M CHEDSK. tg,m.bba Mmes

‘My own IBM computer.

Imagine that”

Presenting the IBM of
Personal Computers.

itk —
‘ the
Contena
noreas s
POy g
ot
iy
artan
e i It’s not an unusual
phenomenan. It
starts when your
~
r) sonasks to
! - borraw
atie. O
when your
\,/“J —

wants ©
w0 use ynur meul racquet. Sometimes you fet them: Often
you don't. But when they start zsking € use your IBM
Personal Computer, ic’s better to sy yes.

Because learning abour computers is a subject your
Kids can study and enjoy at home.

Iesalso a fact that the IBM Personal Computer can
be a3 uscful in your home as it is in your office To help
plan the family budget for instance. Or to compute
anything from interest paid to calories consiimed You
can even ap directly into the Dow jones data bank with
your telephone and an inexpensive adapter

But 2s susely as an [BM Personai Computer
can help you, it can aiso help your children
Because just by playing games oe drawing

The {BM Personai Computer

Part of Bob O'Rear’s “laundry” list of operating-system changes and corrections for early April 1981. Around

this time, interim beta copies were shipped to IBM for testing

18 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 22

LG Electronics, Inc. v. Papst Licensing

“Dad, can I use
the IBM computer
tonight?”

colortul graphics. your son or daughter will discover
svhat makes a computer tick—and what it can do. They
can take the same word PrOCESSINg Program you use.

t0 create business reports <o write and edit book reports
(and learn how 10 type in the process). Your kids might
even ger 50 “computer smart’ they Il stare writing

their own programs in BASIC or Pascal

Ultimately, an (BM Personat Compuicr can be one
of the best investments you make in your family’s futre:
And one of the feast cxpensive. Starting at less than
$1600 theres 2 system that, with the addition of one
simple device hooks up to your home TV and uses your
audio cassette recorder.

To introduce your family to the BM Personal
Computer, visit any ComputerLand® store or Sears
Business Systems Center, Or see it all at onc of our (BM
Product Centers { The IBM National Accouncs Division
will serve business customers who want (o purchase in
quantity.)

And remember. When your kids ask 1o use your

(BM Personal Compurer, let them. But just make
sure you can get it back
still wearing that tie =

The 1981 debut of the
IBM Personal
Computer.

In spite of such difficulties, however, the new operating system ran on the prototype for
the first time in February 1981. In the six months that followed, the system was continually
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM
Personal Computer on which it appeared, had become a functional product for home

and office use.

Section I The Development of MS-DOS 19

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi-
sioned as a final model for 16-bit computer systems. According to Bill Gates, “Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file
system and everything ... the key thing [in developing version 1.0] was my saying, ‘Look,
we can come out with a subset first and just go upward from that’”

This first version — Gates’s subset of MS-DOS — was actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
with CBP/M

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and
character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in-
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND.COM, was the external command processor — the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE 11, MS-DOS was designed to allow software developers to mechan-
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CP/M. The resem-
blance was even more striking at the programming level, with an almost one-to-one cor-
respondence between CP/M and MS-DOS in the system calls available to application
programs. ’

New Features

20

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably
bonded to the IBM PC. Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate
changes and new directions in the hardware technology — disks, memory boards, even
microprocessors —on which it depended. The first steps toward this independence from

The MS-DOS Encyclopedia

1981

),eusmzsst Big LB.M.’s Little Computer Retail Sales
12ES
= | Its Desk-Top
oo smes Model Brings wnr sements
A New Image := W | But Analysts
oo G comwoooar

fead In the youtht
years.

eral versions of a

Yesterday e company Introduced sev-
small computer designed

IBM’s New Line Likely to Shake Up
The Market for Personal Computers f;

By Gaonor ANoErs

chines Corp. Ms made its boid entry into in rivals’ machines. I has obtsined use will enable them to work with jonger

the personal-computer market, and experts for distribution such populr programs s ms and more data thin competing

Gelieve the compuier giant could capture the VisiCalc. 2 financia) model mar- machines and 1 display images o0 thetr
80 screens tn greater detail.

i industry within two

er

-processing _system, th put .
for use in bomes, sehoois and fices. Prices _ packages from Peachtree Software Inc. and 51,565 machine comes with 1600 characters

catchup. 1}! TRM machines operate oo an far greater equivalent 10 more thas 1.000

taf) Reperierof T Waw STaeTJouaxal Tntel Crep’ 8088 miemoprocessor. 3. fastes tten pages. The

NEW YORK —Intermations] Rusinss Ma: ard more omenrfl “ebin'” than Thrse need o't use Al (al capacity. ot what ey do
BN also

keted by Persoaal Software Inc. id
Other programs, of sofrware, for the - Bul the added memory comes at a price.
TBM equipment sclude the ZasyWrtter (BM acknowiedges that 2 fuly stocked cor

inUS Up
1.3% in July

+| Are Dubious of
s | General Upturn

. 3 hster new [BM computers

ree accounting puter Will cost $.000 or more I ic

anotber 3540

By Thows Hogan, W Sg

1t's Official, One surprise

IBM Announces New MicrocomputerSystem

apped model
Apple 1. the

NEWYORK.
e sl > i 30 3. ¢ Hoca Raars, e,

e heen sescingtcrs will b seling che Persoral Congpoer

infaona,

Smdoccon ek plce a b e s
the s of e mactne are The

Viewualy sicocal 1 the nkemation wese than we reported crte ¢ incudcs he ey
aresay oty boar uni. 20 entunced Microsof BASIC -

Price begins ¢ 3196, sightly higher

e et || BM reclly gets personal

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM

The mainframer's long-
awaited entry into the personai
computing market aims for
corporate as well as home
users,
With uncharacteristic but resounding fan
farc. 1BM ended the summet's most popular
guessing game for the industry by introduc-
ing its Personal Computer. Highly compa
m A

Sears and Computerland computer retail
stores as well as directly to large corporate
and educational users, IBM says, pointing
out that it has sét up a special national mar-
keling team 1o handle such volume orders
Donald Estridge, the anticulate di
fecior of IBM's entry systems business who

braved strobes and movie lights at the ma- §

chine's Waldorf-Astoria introduction, de-

clines {0 say how many personnel have been 1

dedicated to the national marketing effort,
but says it will be selling in volumes of 20
machines or more. Several weeks after the
unveiling. he said response so far had been

**very, very good "' with orders being taken §
but no deliveries to be made before this

month

In addition 10 the game of Adven-
ture, which Estridge said has been thor
oughty exercised by his Boca Raton, Fia.,

staff, 18M has decked out the machine with |
an armay of packaged applications programs |
that are expx

d to make it attractive to the

rable g Ap
ple.and Radio Shack. the machine tepre
sents several new tacks for the leading com.

corporate user.
Among these are the popular Visi.

puter as it atiempts to hitch its
wagon 1o one of the fastest growing scg
ments of the industry

The computer which is designed to
appeal to home users as well as corporate
professionals. ranges in price from $1,565
for a barc-bones configuration to $6.300 for

Cale package from Personal
Software, accounting packages from Man
agement Science America's Peachtree Soft
ware operation. and Information Unlimit
ed’s EasyWriter word processing system

Although BM wouldn't say, more indepen- |

dently developed packages are certain to be

Tewill

ffered for as well as packages

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal

Computer.

Dersonial computer markei—tbe 1BM FPersonal
Computer. The unit, perhaps surprisingly, plays
music and inchudes game software: o say nothing
of the standard features available.

certificd for home operation as a class B
computing device)

IBM is cognizant of the fact that this minimally
configured machine probably won' 1ast 2 serious
fong before he wants to expand. The

The .
mere $1565. For that price the buyer gets the 83
key keyboard, the computer itself, based on an
8088 microprocessor, and 16k of main memory.
This minimal configuration can use a tape cassette
for mass storage and 2 television set (with an rf

pany upgr of 3
and will sell them in different configurations. For
‘example, the firm lists 2 more typical configuration
for home or school as 64k of main memory, one disk

1
ently unveiled its fiest offering in the r ‘modulator) for a display. (The machine is fully FCC
I continuedt on page 7

12 Personal Computing/October 1981

LG Exhibit 1204C, Page 23
LG Electronics, Inc. v. Papst Licensing

Section I. The Development of MS-DOS

21

1981

1981

22

MICROSOFT
QUARTERLY

This poicy is especialy advan-
tagecus when alarge number of
programs s distributed using a
single copy of the untime mod-
uie because oniy one oyaty.

the
R

Paui Atlen

i —
IBM Breaks the
16-8it Barrier

plex operations,suchas foaig

‘point and graphics roubnes

execute much fasier. The Mlcroso“
speedofthe grapnics peemaves | COBOL
inMBASIC-86 makes it very

easyoconsitsgreoncs | P2SS@s GSA

ey vineutmachine. | \faliclation

tother appications, there s

lerisits 8088 CPU. IBM's choice

ofthe Personai Computer. it

10ns 5.2 and earker 100,)

In acd:

This changein the
BASCOM royaity poscy reflocts
Microsol's wishto increase the
number of apoficaion packages
onthe market: This poi
change. the addition of CHAIN
with COMMON. and the -
plementation of the untirme
macule make BASCOM amuch

more fexible arxi powerultook
forhe application programmer
| BASCOM5.3is availabie

nowlor CP/M systems.
incluing e Apple lhwth the
Microsoft Softcar, Microsalt

X Personal Ct

a
its products. The United States
‘govemment.

.nasde-

16-ittan-

loois, Appicalion packages are. | SEA(CS for compiers, Testing
o ® | of compiiers, called vaidaton,

rapidiy being acapled1o e

spectors,

° ! s | _ Mictosoft submitied is
‘The “inch pin’ oancms"o:s COBOL h

c
lexidie aperatngsystem. Ms. | vabdavan. Tho General
00S. MS-D0!

-OBOL

BASCO!

the past st he

We've

serious

9

tation of the 1974 ANSI stancarg
o for GOBOL..

n

. andwiy did

16-bit

we suomit Microsoft

MS-DOS. MS-DOS also pro-
for vatidation? Mike Orr, COBOL

A16-0H processorgives

10the XENIX mult-user, mutti- | Product manager, offered the:

Other

DOS

For
example, we've taken avan-

a
indepencent /0. andbuit-in

ing in our MS-LINK, alinkerfor

‘wntes. Whatis now the stan-

Pascalor FOI

ites wil

8086 BASIC interpreter can
ai

standard.

imost

an8-bitruntime. Appiications

the technical capabilities atthe

appracialed,

i human
engineeringactars, andin

1o seemany 16-bit personal

computers.

g-

time and,

of IBM

i pro.
cessors alsomeans that corm-

swing.

L

A page from Microsoft’s third-quarter
report for 1981

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device-
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application’s portion of the memory space It includes, among other things, the file-
name, the extension, and information about the size and starting location of the file

on disk.)

Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap-
plication did not have to be modified if new devices were added to the system. From the

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 24
LG Electronics, Inc. v. Papst Licensing

user’s point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/O only, the user could still use a file for input or

direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi-
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-
tem maintained file lengths to the exact size in bytes and could be relied on to support logi-

cal records of any size desired

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the exterisions
COM and .EXE. Program files ending with COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro-
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each

segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND.COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM’s phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces-
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk. .

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table —the
FAT — that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al-
location map—a list of sixteen 1 KB allocation units where successive parts of the file
were stored — an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I The Development of MS-DOS 23

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS’s
ability to find and load even very long files was extremely rapid compared with CP/M’s.

Two other important features — the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor==provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli-
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap-
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre-
sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro-
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commonly requested func-
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in-
tegrity of the functions for the user, the resident part of COMMAND.COM was given the
job of checking the transient portion for damage when an application terminated. If neces-
sary, this resident portion would then load a new copy of its transient partner into memory

Ease of Use)

24

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel-
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin-
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications

The MS-DOS Encyclopedia

1981

O Package Contents
1 diskette, with the following files:
‘COMMAND . COM
MSDOS, COM
EDLIN,COM
DEBUG. COM
FILCOM.COM
Contents
1 M5-DOS Disk Operating System Manual O
Introduction
Features and Benefits of MS-DOS
Using This Manual
Syntax Notati
#5-DOS Structure and Characteristics
System Requirements Chapter 1 General MS-DOS Commands
1.1 Control Function Characters
1.z sSpecial Bditing Commands
The MS5-DOS Operating System requires 8K bytes of memory 1’3 pisk errors
C Chapter 2 COMMAND COM
2.1 Prompt
2.2 Filenames
2.3 Ccommands
2.3.1 Internal Commands
23.2 External Conmands
0 Chapter 3 EDLIN
3.1 Invoking EDIIN
3.2 nds
321 Command Parameters
3.2.2 Interline Commands
33 Error Messages
Chapter 4 DEBUG
4.1 Invoking DEBUG
4.2 Commands
4.2.1 Command Parameters
4:2.2 Command Descriptions
4.3 srror Messages
@) Chapter S FILCOM
5.1 Invoking FILCOM
5.2 Commands
5.2.1 Filenames
5.2.2 switches
5.3 Examples
e} Chapter § Instructions for Single Disk Drive Users

Two pages from Microsoft’s MS-DOS version 1.0 manual. On the left, the system’s requirements — 8 KB of
memory, on the right, the 118-page manual’s complete table of contents

In a further attempt to safeguard data, MS-DOS also trapped hard errors— such as critical
hardware errors — that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them —a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open

Another new feature — one visible with the DIR command —was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I The Development of MS-DOS 25

LG Exhibit 1204C, Page 25
LG Electronics, Inc. v. Papst Licensing

1981-1982

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations — one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to.a program when it terminated. For ex-
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory, MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and Sof Tech Microsystem’s p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the /nfoWorld bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con-
cern was compatibility: To what extent was Microsoft’s new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of
the number of machines using MS-DOS wouldn’t have matched what really ended up
happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM’s name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC — in large part because IBM supplied all its languages and
applications in MS-DOS format

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the “CP/M Record Player” — presumably in
anticipation of a vast inventory of CP/M applications for the new computer—and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard for a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be

the one

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson’s
“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac-
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat’s version of CP/M-80.

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as

COMPAQ-DOS and Zenith's Z-DOS
Given this confusing host of names for a product it believed could become the industry

standard, Microsoft finally took the lead and, as developer, insisted that the operating sys-
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business —
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I. The Development of MS-DOS 27

LG Exhibit 1204C, Page 26
LG Electronics, Inc. v. Papst Licensing

1981-1982

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS's biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick —
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CE/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

® First, one of Microsoft’s goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

® Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, nieither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502

@ Third, many applications were written in a high-level language, rather than in assem-
bly language.

® TFourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto-
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing — and appropriate —
CP/M-80 software,

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines — although, in fact, it did not seem to have much
effect on the survival of CB/M-86 after the first year or so

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft’s list of MS-DOS custom-
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe-
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri-

mary operating system for its Rainbow computer, the company mentioned the richer set of

commands and “dramatically” better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

Additional MS-DOS Features and Benellts

+ Written Enlirely in 8085 Assembly Language
This provides significant spead improvements

operating systems thai are largely transiated from their 8-

bit counterparts

* Fast Etficient Flle Structure
The format eliminates the need for “sxtents,” minimizes
access 10 the directory Track, and provides for duplicate
directory information snd verify aster wiite

* No Need 1o Log In Disks
As long as no file is curtently open, there is no need 10
log in a new disk by 1yping Control-C. This greally
improves usability tor single disk system users and for
people who like 10 store their daia on sepacale disketies.

* No Physical File/Diak Size Limitslion
Unilike users of oparating systems that ere fimited 10 8
megabytes, MS-DOS users would ot have 1o break a 24
megabyte hard disk into three saparate drives

MS-DOS
Standard Operating System for 8086 Micros

MS-DOS is & disk operating system from Microsoft for
6086/8088 microprocessors. inernationsi Business Machines
Corp. chose MS-DOS (cailed 18M Personat Computer DOS) to
e ts operating system of choice for its Personal Computer
Microsoft’s agreements with 1BM and several other mejor
computer manutacturérs indicate that end-user systems

What Makes MS-DOS Iimportant?

running MS-DOS will be widely availabie in the near fulure.
making MS-DOS the standard low-end operating system for
8086 micros. Wny 15 MS-DOS becoming popular? MS-DOS 15

savance 1 i a

All of Microsaft's languages (BASIC Interproter, BASIC
Compiier, FORTRAN, COBOL. Pascal) are available
immediately under MS-DOS. Users of MS-DOS are assured
that their operating system witi be the first that Microsoft wilt
3upPOFt When any new Products o major releases are
announced. in addition, the B-bit versions of Microsoft’s
languages are upward compatible with the 16-bit versions
‘Thus, apolication programs written in 8-bit Microsoft
tanguages can be run under MS-DOS with little or no

transporting of B-bit 10 16-bit software and the Gevelopment of
new 16-bit software

+ Advanced Ervor Recovery Procedures

= Complete Program Relocatability

MS-DOS doesnt simply tage away when errors ocour. It
& disk rror occurs at any time during any program, MS-
DOS will retey the operation three times. If the operation
cannot be completed successfully, MS-DOS will return
an error message, then watl for the user to enter 2
response. The user can attemp? recovery rather than
reboat the operating system

MS-DOS is 2 truly retocatable aperating system. Not only
can the Microsoft relocatable linking loader provide for
progrem in

Here are ihe major teatures that make MS-DOS
system people want o use on 8085 machines:

« Eany Conversion from 8080 to 8086
MS-DOS allows 25 much transportability of 8-bit machine
tanguage software as is possible. MS-DOS emulates
system calls 10 CP/M-80. By simpiy running assembly

the si
program, almost all 880 programs will work without
modification. In most cases. a conversion to MS-DOS is
easior than conversion 1o other oparating systems.

* Device Independant VO
MS-DOS simpilfies /0 10 ditterent devices on the UNIX
concept. A single set of 1/0 calls treats ail devices alike
from the user's perspective. There is no need to rewrite
programs whan & new devics is added 10 the system,
Simply OPEN the device and READ or WRITE. Also,
device indepencent /O assures that different control
characters (specifically TAB) ere handied the same by
he different devices.

The Future of MS-DOS

® Powerlul, Fiexible Fite Characleristics

MS-DOS relocates the modules during loading rather
than loading them 1o preset adaresses. Thus, MS-DOS
oes not have the 64K program space limitation of other
aperating systems.

« NoOverhead for Non-128-Byte Physical Sectors
Ona does ol have to worry about different physical
sactor sizes when wiiting 2 BIO!

* Tima/Date Stamps
This alleviates, for instance, the need 1o recompile a fite if
the time on the reicatabe file is more recsnt than on the
source file

* Litebost Assoclates
The world's larges! independent distributor of
microcomputor sofiware has chosen 10 support MS-DOS
as its fow-end 16-0it operating system. Recognizing the
imponant migration path from the 8-bif Jeve! 10 XENIX
S Lifeboat wil bs ofiering a wide rangs of sottware for
the MS-DOS environment

* 100% 1BM Compalible
18M is offering software sunning under MS-DOS . 18M has
announced Microsoft BASIC and Microsoft Pascal, along
with accounting, financial planning 8nd word processing
software funning under MS-DOS

Microsoft inc.
10800 NE Eighth, Suite 819
Bellevue, WA 9
2064558080 Telex 328045

MS-DOS has no practical iimit on file or disk size. MS:
DOS uses 4-byte XENIX OS compatible iogical pointers
for tile and disk capacity up 104 gigabyes.

Within a singfe diskette. the user of MS-DOS can have
tiles of ditferent logical record tengtns. MS-DOS is
designed to biock and debiock its own physical sectors:
128 is not a sacred number in MS-DOS

MS-DOS remembers the exact end of file marker. Thus
should ane open a file with a logical record length other
Ihan the physical record iength, MS-DOS remembars
exactiy where the file ends to the byte, rather than
sounded 1o 128 bytes. This alleviaies the need for forcing
Contrgi-Z's of the fike at the end of a file

Microsoft MS-DOS.
‘addressing space of the BDBS processor makes multi-tasking 2
particulay An upwar

1o the XENIX operating system through XENIX compatibie
system calls, "pipes " and “forking" 1s another planned
enhancement

Plans for MS-DOS also include disk buHlenng. graphics and
cursor positioning. kanji support multi-user and harg disk
support and Retworking

Section I The Development of MS-DOS

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS

29

LG Exhibit 1204C, Page 27
LG Electronics, Inc. v. Papst Licensing

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan-
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS— one closer to the operating system Microsoft had envisioned from the start—
became feasible

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib-
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible example of its difference from ver-
sions 1.0, 1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-
management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team’s choice for
handling files on the XT’s fixed disk.

30 The MS-DOS Encyclopedia

’4

1982-1983

The MS-DOS version 1.0 manuai next to the version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-
mentation. Many small-system users — particularly software developers —were already
familiar with partitioning, if not overly fond of it, from their experience with CB/M. Devel-
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub-
stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the.other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2 0 and even-
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
1.x, and was based on a root, or main, directory under which the user could create a sys-
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden-
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files, XENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s
request, decided to use the backslash as the separator instead. Although the backslash

Section I The Development of MS-DOS 31

LG Exhibit 1204C, Page 28
LG Electronics, Inc. v. Papst Licensing

1982-1983

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati-
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac-
cess files by means of handles, or descriptors, that could operate across directory lines,

In this added step toward logical device independence, MS-DOS returned a handle when-
ever an MS-DOS program opened a file, All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure — different
from an FCB — so that the program never had to deal directly with information about the
file’s location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten —
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program’s input and out-
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to allow output from a file to be redirected to a device, such as a
printet, or to be piped to another program. It also allowed system cleanup on program
terminations

Installable Device Drivers

32

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de-
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it — the BIOS

The MS-DOS Encyclopedia

contained all the code that permitted the operating system to run the hardware. If inde-
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version

of MS-DOS

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, 10.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list—this time, of device drivers— that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver — for example, the ANSLSYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control,

Print Spooling

At IBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-
form rudimentary background processing — an interim solution to a growing awareness of
the potentials of multitasking

Backgr'ound print spooling was sufficient to meet the needs of most people in most situa-
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I The Development of MS-DOS 33

LG Exhibit 1204C, Page 29
LG Electronics, Inc. v. Papst Licensing

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel-
oped On the left, the
original IBM PC (ver-
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2 0)

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM — whether for a fixed disk or a floppy — was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2 0 increased considerably.

Version 2 0 was released in March 1983, the product of a surprisingly small team of six de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code
Though it maintained its compatibility with versions 1x, it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

34

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi-
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 30
LG Electronics, Inc. v. Papst Licensing

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require-
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5Ys-inch drives, would employ a slightly different disk-controller architecture. Be-
cause of these differences from the standard PC line, IBM’s immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys-
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita-
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop-
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2 0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro-
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country’s huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi’s
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer’s support for
MS-DOS.

Section I. The Development of MS-DOS 35

1983

1983
DO 30 A sample of the reviews that appeared
with each new version of MS-DOS
Trresistible
3.0 result in a significantiy enbanced
operating system.
The Ascent =z
f DOS ==
@ Hands On: Operating Systems b ks o e o e
Hands-On Tutorial =~ =) ==
T
puder XT grabbed the headlines afser is wuveiing, he
In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft’s other customers were becoming more vocal about their own needs
Several wanted a networking capability, adding weight to IBM’s request, but a more urgent
need for many-—a need not shared by IBM at the time — was support for international
products. Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries —a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats
Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjt, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file
36 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 31
LG Electronics, Inc. v. Papst Licensing

A Kanji screen with
the MS-DOS copyright
message

NEC PC-9800 Series Personal Computer

I470Y7% MS-DOS N -¥"3v 3. 10
Copyright 1981, 1985 Microsoft Corp. / NEC Corporation

BRI ER TR T
BEE, ALV F54 7D NCDIC . SYS T

COMMAND " =" 3 3. 10

ASDIR /W
FSA47 a: DF 4 Z2DFY = — 4L 50 KAVAI_RYU
F 4V U A¥BIN

. .. ASSIGN COM ATIRIB EXE BACKUP
CHKDSK EXE copY2 COoM COPYA COM DISKCOPY COM MOUSE
EXE KEY COM LABEL

£
MORE CM SPEED ~ COM_ SWITCH COM SYS EXE SORT
20 {HD7 7 A WHid D EY
3604480 /¥4 b OMEFETRETY

a4y ey 7 MRS

r {9731 BFMS—-DOS <

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo-
grams) arose. The difficulty with Kanji is that it requires dual-byte characters For English
and most European character sets, one byte corresponds to one character. Japanese char-
acters, however, sometimes use one byte, sometimes two. This variability creates prob-
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,

Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did

not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus-
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ),
were in the business of selling 100-percent compatibility with IBM. For them, any differ-
ence between their version of the operating system and IBM’s introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver-
sion 31 that Microsoft was able to supply a system that other OEMs agreed was identical

with [BM’s

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 201 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji

Section I The Development of MS-DOS 37

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance —
and difficulty — of supporting the people who were developing software for MS-DOS,

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re-
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro-
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver-
sion of MS-DOS had to continue supporting CP/M-style calls

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version 1.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2 0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft’s own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2 0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems —requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running
For versions 1x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM’s upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone’s best interest

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 32
LG Electronics, Inc. v. Papst Licensing

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
If)orfnetvvorks, exaggerated the problems of compatibility that had been encountered
efore.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project
“there was a very long period of time between 2.1 and 3.0 — almost a year and a half Dllr-
ing that time, we believed we understood all the problems involved in making DOS a net-
working product. [But] as time progressed, we realized that we didn’t fully understand it
either from a compatibility standpoint or from an operating-system standpoint. We knevs,/
very well how it [DOS] ran in a single-tasking environment, but we started gbing to this
new environment and found places where it came up short.”

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and, in the longer term, to the addition of true
multitasking

Further, by the time Microsoft began work on version 3‘0, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage-
ment, and logical device independence at the network level, Even 0, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
qufite ready, so in August 1984, Microsoft released version 3.0'to IBM without network
software.

Version 3.0 supported the AT’s larger fixed disk, its new CMOS clock, and its high-capacity
1 2—megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft’s other OEM
customers as version 3.05.

Section I' The Development of MS-DOS 39

e

1983-1984

Rotan

Disi<

1983-1984
——
£ mise DISK.RESET —"furoRE FAIL { Mewewtry,
Redane REN?ML‘ ; RIGE
£ty | et bl o ArrRs . : - = -
eriet | Reset Epvir b €—TeNORE" FalL ISEAREH [Dos—Swech.m TCOSRR 1D
a-Tri)e closE e] Rotmd i BIER =
. H
Rawm GETEGF belete [rPEL ETE . Goms o8 CLosE
FIMDEw
s TENTR
s , K
4>
RELBLKS UnPAck} | Proe VAFCLUSTER. f‘
@) =
FrusHBuF {CHECKFLUSH BUFURTE ;
0 Bt 1
< CTPLYSH BUE e FAT
Rown NEXTSE ¢ —] st fagz
[
FNOCLYS DISKWRITE
Rowa SRPCLE NSR Regpl | = AR :
OPTIMIZE WRITE PIRITE. :
RRDED
{10” < fail insteod
' 2> <> 5) s
He.}'h u::,t:rs g" Y IGIJ':RE
bATA ?
/-Dev omkLs (A}
w3 ZHAR T io
it
L %
B Sammml ser of AH
1

Aaron Reynolds's diagram of version 3 0’s network support, sketched otit to enable him to add the fail option
to Interrupt 24 and find all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagrar pinned to his office wall simply because ‘it was so much work
o put fogether.”

40 The MS-DOS Encyclopedia

Lock
SHARE
CHR

c
Qurrent_dir PATH

i Ket
GotSet

—SG ET.DRIVE . FREESPACE

Section I The Developmeni of MS-DOS 41

LG Exhibit 1204C, Page 33
LG Electronics, Inc. v. Papst Licensing

1983-1984

1984

42

The Intel 80286 micro-
pracesser, the chip at
the heart of the IBM
PCAT, which is shown
beside it Version 3 0of
M5-DOS, developed for
this machine, offered
support for networks
and the PCAT's 1 2-
megabyte floppy disk
drive and built-in
CMOS clock

But version 3 § was not a simple extension of version 2.0 In laying the foundation for net-
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel

Different as it was from version 1 0, version 2 0 had been built on top of the same structure
For example, whereas file requests in MS-DOS 1 0 used FCBs, requests in version 2.0 used
file handles However, the version 2 0 handle calls would simply parse the pathname and
then use the underlying FCB cails in the same way as version 1 ¢ The redirected inputand
output in version 2 0 further complicated the file-system requests When a program used
one of the CP/M-compatible calls for character input or ourput, MS-DOS 2 0 first opened a
handle and then turned it back into an FCB call at a lower level Version 3 0 eliminated this
redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of /O calls that could be called directly by both FCB ¢alls and handle
calls The look-aiike calls for CP/M-compatibie character I/O were included as part of the
set of handle calls As a result of this restructuring, these calls were distinctly fasterin

version 3 0 than in version 2.0

More important than the elimination of inefficiencies, however, was the fact that this new
stiucture made it easier to handle network requests under the ISO Open Systern Intercon-
nect model Microsoft was using for nerworking. The IS3O mode] describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physical link — plugging into the network —at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data Thg layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware

On the IBM PC network, the transport layer and the server functions were handled by
IBM’s Network Adapter card and the task of MS-DOS was to support this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3 0 did not provide this general-purpose
networking software, it did provide the basic support for TBM’s networking hardware

T he support for IBM consisted of redirector and sharer software MS-DOS used an ap-
proach to networking in which remote requests were routed by a redirector that was able

The MS-DOS Encyclopedia

to interact with the transport layer of the network The transport layer was composed of
the device drivers that could reliably transfer data from one part of the nerwork to another.
Just before a call was sent to the newly designed low-level file /O code, the operating sys-
tem determined whether the call was local or remote A local call would be ailowed to fall
through to the local file I/0 code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local.

Version 3.1

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place
in version 3 0 when it was delivered to IBM, but the redirector itself wasn't ready Version
31, completed by Zbikowski and Reynolds and released thiee months later, completed this
network support and made it available in the form of Microsoft Networks for use on non-
IBM network cards

Microsoft Networks was built on the concept of “services” and “consumers,” Services
were provided by a file server, which was pait of the Networks application and rant on a
computer dedicated to the task. Consumers were programs on various network machines
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server 1o determine where to find the information on the disk
The requesting programs —the consumers —did not need any knowledge of the remote
machine, not even what type of file system it had

This ability to pass a high-level request to a remote server without having to know the
details of the server’s file structure allowed another level of generalization of the system.
In MS-DOS 3 1, different types of file systems could be accessed on the same network It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major probiem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

® First were the MS-DOS-compatible programs These used only the documented
software-intertupt method of requesting services from the operating system and
would run on any MS-DOS machine without problems

® Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all M5-DOS machines

® Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor-
mance but were aiso the most difficult to support

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.,

Section I. The Development of MS-DOS 43

LG Exhibit 1204C, Page 34
LG Electronics, Inc. v. Papst Licensing

1986
1987

Network concerns The Future

The file-access module was changed in version 3 0 to simplify file management on the
network, but this did not solve all the problems For instance, MS-DOS still needed to han-
dle FCB requests from programs that used them, but many programs would open an FCB
and never ciose it One of the functions of the server was to keep track of all open files

on the network, and it ran inio difficulties when an FCB was opened 50 or 100 times and
never closed To solve this problem, Microsoft introduced an FCB cache in version 3 1 that
allowed only four FCBs to be open at any one time. If a fifth FCB was opened, the least re-
cently used one was closed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue 1o evolve and grow, changing as it has done in the past to satisfy the needs of
its mitlions of users In the iong term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world The story
of MS-DOS will, of course, remain even longer For this operating system has earned its
place in microcomputing history

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment Not only has it “taught” millions of personal computers
“how to think,” it has taught equal millions of people how to use computers. Many highly
sophisticated compuier users can trace their first encounter with these machines to the
eriginal IBM PC and version 1.0 of MS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity

In general, the logical device independence that had been a goal of MS-1DXOS acquired new
meaning —and generated new problems—with networking. Ope problem concerned
printers on the network Commonly, networks are used to allow several people to share a
printer The network could easily accommodate a program that would open the printer,
write to it, and close it again Some programs, however, would try to use the direct IBM
BIOS intetface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle Ornce this was accomplished, version 3 1 was able to handle most

types of printer output on the network in a transparent manner JoAnne Woodcock

Version 3.2

In January 1986, Microsoft released another revision of MS-DOS, version 3.2, which.
supported 3Yz-inch floppy disks. Version 3 2 also moved the formatting function for a
device out of the FORMAT utility routine and intc the device diiver, eliminating the need
for a special hardware-dependent program in addition to the device driver. Itincluded a
sample installable-block-device driver and, finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM

44 The MS-DOS Encyclopedia Section 1 The Development of MS-DOS 43

LG Exhibit 1204C, Page 35
LG Electronics, Inc. v. Papst Licensing

LG Exhibit 1204C, Page 36
LG Electronics, Inc. v. Papst Licensing

Part A
Structure of MS-DOS

LG Exhibit 1204C, Page 37
LG Electronics, Inc. v. Papst Licensing

Article 1: An Introduction to MS-DOS

Article 1
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

Storage management
Processing management
Security

Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments The general charac-
teristics of the three categories are listed in Table 1-1

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional

ROM Operating Operating

Monitor System Environment
Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk
Programs on ROM Disk Disk
Peripheral suppoit Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system It is designed for a particular
hardware configuration and provides a program with basic —and often direct—access to
periphetals arrached to the camputer. Programs coupled with 2 ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system}, and provides additional features such as a file system and log-
ical access to peripherals (Logical access to periphetals allows applications to runin a
hardware-independent manner) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution
MS-DOS is a traditional operating system

An operating environment is built on top of a traditional operating system The operating
environment provides additional services, such as common menu and forms support, that

Section Il Programming in the MS-DOS Environment 51

LG Exhibit 1204C, Page 38
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent Microsoft
Windows is an operating environment

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
systern that consists of five major components:

The operating-system loader
The MS-DOS BIOS

The MS-DOS kernel

The user interface (shell)
Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN ITHE
MS-DOS ENVIRONMENT: StrucTURE OF Ms-DOs: The Components of MS-DOS

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it The disk
bootstrap loadet, in rurn, reads the main portions of MS-DOS—MSDOS SYS and IO SYS
(IBMDOS COM and IBMBIO COM with PC-DOS) — from conventional disk files into mem-
ory The special module SYSINIT within MSDOS SYS then initializes MS-DOS’s tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: StRUC-
TURE OF Ms-DOS: M5-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution This loader is different from the ROM

loader and the operating-system loader.)

The MS-DOS BIOS

52

The MS-DOS BIOS, loaded from the file 10 SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel and the hardware. An
application performs input and cutput by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers
(A device driver is a specialized program that provides support for a specific device such as

The M5-DOS Encyclopedia

LG Exhibit 1204C, Page 39
LG Electronics, Inc. v. Papst Licensing

Article I: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the mictoprocessor that they
need service

The device drivers contained in the file IO SYS, which are always loaded during system
injtialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustomMrzinG Ms-Dos: Installabie
Device Drivers; USER COMMANDS: CONFIG 5YS:DEVICE

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

® Process control

® Memory management
® Peripheral support

® Afile system

The MS-DOS kernel is loaded from the file MSDOS SYS during system initialization

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication

Although MS-DOS is not a multitasking operating systern, it can have multiple programs
residing in memory at the same time One program can invoke another, which then
becomes the active (foreground) taske When the invoked task terminates, the invoking
program again becomes the foreground task Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system

MS-DOS does have a few “hooks” that allow certain programs to do some multitasking
on their own For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concusrent processing by taking control of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes Of these, MS-DOS formally supports only pipes (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system

Memory management

Because the amount of memory a program needs varies from program 1o program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II. Programming in the M5-DOS Environment 53

Part A: Structure of M3-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time

MS-DOS memory management is based on a pool of variable-size memory blocks The
two basic memory-management actions are to allocate a block from the pool and to return
an allecated block to the pool MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool
Many programs perform their own memory management by using 2 local memory pool, or
heap —an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocks for use by its vatious routines See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or ranslations Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats Disk devices—and
block devices in general — have the greatest number of features added by the operating
system See The File System below

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system

The file system

54

T he file system is one of the largest portions of an operating system A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory suucture and files onto the physical unit of storage A file system on a disk
contains, at 2 minimum, allocation information, a directory, and space for files See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF M$-DOS: MS-DOS
Storage Devices

The file allocation information can take various forms, depending on the operating sys-

tem, but all forms basically track the space used by files and the space available for new
data The directory contains a list of the files stored on the device, their sizes, and informa-

tion about where the data for each file is located.

Several different approaches to fiie allocation and directory entries exist. MS-DOS uses a
particular allocation method called a file allocation table (FAT) and a hierarchical directory

The MS5-DOS Encyclopedia

Article 1: An Intreduction to MS-DOS

structure See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE GF M5-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-Dos: Disk Directories and Volume Labels

The file granularity available through the operating system also vaiies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended 1o map character devices as if they were files These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such
files by assigning a reserved logical name {such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys-
tem itself The default MS-DOS user interface is a replaceable shell program called
COMMAND COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute When the pro-
gram terminates, control returns to the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functions for file and directory maintenance
and display In theory, most of these functions could be provided as programs, but making -
them resident in the shell atlows them to be accessed more quickly. The tradeoft is mem-
ory space versus speed and flexibility. Early microcomputer-based operating systems pro-
vided a minimal number of resident shell commands because of limited memory space;
modern operating systems such as MS-DOS include a wide vatiety of these functions as
internal commands

Support programs

The MS-DOS software includes support programs that provide access 1o operating-system
facilities not supplied as resident shell commands built into COMMAND COM Because
these programs are stored as executable files on disk, they are essentially the same as ap-
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running) See USER COMMANDS

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See 1HE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum-
marized in the following table.

Section II Programming in the MS-DOS Environment 55

LG Exhibit 1204C, Page 40
LG Electronics, Inc. v. Papst Licensing

Part A; Structure of MS-DOS

Article 1 An Introduction to MS-DOS

56

Version Date Special Characteristics
PC-DOS 10 1981 First operating system for the IBM PC
Record-oriented files
PC-DOS11 1982 Double-sided-disk support
MS-DOS5 125 1982 First OEM release of MS-DOS
MS-DOS/PC-DOS 20 1983 Operating system for the IBM PC/XT
: UNIX/XENTX-like file system
Installable device drivers
Byte-oriented files
Support for fixed disks
PC-DOS21 Operating system for the IBM PCjt
MS-DOS2 11 Internationalization support
2 Ox bug fixes :
MS-DOS/PC-DOS 30 1984 Operating system for the IBM PC/AT

Support for 1.2 MB tloppy disks
Support for large fixed disks
Support for file and record locking
Application control of print spooler
MS-DOS/PC-DOS 3.1 1984 Support for MS Networks

MS-DOS/PC-DOS 3.2 1986 3 5-inch floppy-disk support
Disk track formatting support added to

device drivers

MS-DOS/PC-DOS 33 1987 Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOS version 1 0 was the fitst commercial version of MS-DOS It was developed for the
otiginal IBM PC, which was typically shipped with 64 KB of memory or less. M5-DOS and
PC-DOS versions 1 x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
suppot installable device drivers or networks Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs File operations were record
otiented, again like CP/M, although record sizes could be varied in MS-DOS

Although they retained compatibility with versions 1x, MS-DOS and PC-DOS versions 2 x
represented a major change. In addition to providing support for fixed disks, the new ver-
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file-
handle access instead of FCBs. (A file handle is 2 16-bit number used 1o reference an inter-
nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table } The UNIX/XENTIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records Applications can read or wiite
1 t0 65535 bytes in a single operation, starting at any byte offset within the file Filenames

The MS-DOS Encyclopedia

used for opening a file are passed as text strings instead of being parsed into an FCB
Installable device drivers were another major enhancement

MS-DOS and PC-DOS versions 3 x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-locking
and record-locking functions Network support was added by providing hooks for a redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera-
tions, applications developed for one MS-DOS machine can usually run on another

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086-compatible microproces-
sor See Specific Hardware Requirements below

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program The RAM must start at ad-
dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family —1 MB

The final requirement for MS-DOS is a set of devices supported by device drivers, includ-
ing at least one block device, one character device, and a clock device The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the character
device is usually a keyboard Adisplay combination for interaction with the user; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub-
multiple of one second

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
components include

® An 8086-family microprocessor

8 Memorty

® Peripheral devices

& A ROM BIOS (PC-DOS only)
The microprocessor

MS-DOS runs on any machine that uses a2 microprocessor that executes the 8086/8088
instruction set, inchuding the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40

Section Il Programming in the M5-DOS Environment 57

LG Exhibit 1204C, Page 41
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timer, and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusToMIzING Ms-Dos: Hardware Interrupt Handlers
MS-DOS, however, does not have address requirements that conflict with those interrupt
and intetface areas

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS Protected mode, used by
operating systems like UNIX/XENIX and MS O8/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088)

T he 80386 adds further instructions and a third mode called virtual 86 mode The 80386
instructions operate in either a 16-bit o1 a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386

Memory requirements

58

Ata minimum, MS-DOS versions 1 x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2 x and 3 x need at least 128 KB The maximum is

1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included . (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memeory
This limit was imposed by the architectuse of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS Some of the reserved areas include

Base Address Size (bytes) Description

A000:0000H 10000H (64 KB) EGA video buffer

BOCC:0000H 1000H (4 KB) Monochrome video buffer
B800:0000H 4000H (16 KB) Colot/graphics video buffer
C800:0000H 4000H (16 KB) Fixed-disk ROM

F00Q:06000H 10000H (64 KB3) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro-
processor for an interrupt vector table —that is, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

The M3-DOS Encyclopedia

Article 1: An Introduction o MS-DOS

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMSs, RAMdisks, and digital tape drives The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by installable device drivers

Five logical devices are provided in a basic MS-DOS system:

Device Name Description

CON Console input and output
PRN Printer output

AUX Auxiliary input and output
CLOCK$ Date and rime support.
Vaties (A—E) One block device

These five logical devices can be implemented with a BIOS suppoiting a2 minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device Insucha
minimum case, the printer and auxiliary device are simply aliases for the console device
However, most MS-DOS systems support several additional logical and physical devices
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS:
Character Device Input and Output

The MS-DOS kernel provides one additional device: the NUL device NUT is a “bit

bucket” —that is, anything written to NUL is simply discarded Reading from NUL always
returns an end-of-file marker One common use for the NUL device is as the redirected
output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file’s menus and displays

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
10 S5 file loaded at initialization PC-DXOS, on the other hand, uses a very specific ROM
BIOS The PC ROM BIOS does not provide device drivers; rather, it provides support rou-
tines used by the device drivers found in IBMBIO COM (the PC-DOS version of 10 8YS).
The support provided by a PC ROM BIOS inciudes

® Power-on self test (POST)

Bootstrap loader

Keyboard

Displays (monochrome and color/graphics adapters)
Serial ports 1and 2

Parallel printer ports 1, 2, and 3

Clock

Print screen

Section IL Programming in the MS-DOS Environment 59

LG Exhibit 1204C, Page 42
LG Electronics, Inc. v. Papst Licensing

Articie 2: The Components of MS-DOS

Patt A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit ; ArtiC].e 2
for additional ROMs The IBM fixed-disk adapter and enhanced graphics adapter (EGA) ;
coniain such ROMs. {T he fixed-disk ROM also includes an additional loader routine that i The Comp Onents Of MS'DO S

allows the system to start from the fixed disk)

-

MS-DOS is a modular operating system consisting of multiple components with special-

Summary : ized functions. When MS-DOS is copied into memory during the loading process, many of
MS-DOS is a widely accepted traditional operating system Its consistent and well-defined . its components are moved, ad?usted, or discarded However, when itis running, MS-DOS
Lo) ! o - ; dant and Drograrm _ is a refatively static entity and its components are predictable and easy to study Therefore,
interface makes it one of the easier operating systems to adapt and prog _ this article deals first with MS-DOS in its running state and later with its loading behavior

MS-DOS is also a growing operating system — each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver-

sion has included more support for different devices, from 5 25-inch floppy disks to high- Tt .
density 3 S-inch floppy disks As the hardware continues 1o evolve and user needs become . = Ma;or Elements :
» isti 5 ¥ ill continue t | ;
more sophisticated, MS-DOS too will continue to evolve ! MS-DOS consists of three major modules:
William Wong Module MS-DOS Filename PC-DOS Filename

MS-DOS BIOS IO.SYS IBMBIO COM
MS-DOS kernel MSDQOS 5YS IBMDGCS.COM
MS-DOS shell COMMAND COM COMMAND COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory All three modules
remain in memory until the computer is reset or turned off (The loader and system initial-
ization modules are omitted from this list because they are discarded as soon as MS-DQOS
is running. See Loading MS-DOS below)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer See PROGRAMMING IN THE
MS-DOS ENVIRONMEN I: SIRUCTURE OF Ms-DOs: An Introduction to MS-DOS The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS —that is, no modifications are made by the OEM Ihe sheli is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND COM, is supplied by Microsoft

The MS-DOS BIOS

The file IO SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DOS BIOS is custornized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into IQ SYS by the CEM when the file is created See
Loading MS-DOS below

Section II Programming in the MS-DOS Environment 61

60 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 43
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device diivers and an additional initializa-
tion module created by the OEM. The device drivers appear first in IO SYS because they
remain resident after 10 SYS is initialized; the MS-DOS BIOS initialization routine and
SYSINIT are usually discarded after initialization

The minimum set of resident device drivers is CON, PRN, AUX, CLOCKS, and the driver

for one block device The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; instailable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUIL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kermnel.

Device driver code can be split between IO SYS and ROM For example, most MS-DOS sys-
tems and all PC-DOS-compatible systems have a ROM BICS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
RCM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations) ‘

The 10 SYS file is an absolute program image and does not contain relocation information
The routines in I0 SYS assume that the CS register contains the segment at which the file is
foaded. Thus, IO SYS has the same 64 KB restriction asa COM file See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application
Program Larger 10 8YS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside

the first 64 KB.

The MS-DOS kernel

62

The MS-DGS kernel is the heart of MS-DOS and provides the functions found in a tradi-
tional operating system It is contained in a single proprietary file, MSDOS.SYS, suppiied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programs in a hardware-independent manner and, in turn, is iso-
iated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

® TFile and directory management
® Character device input and output
® Time and date support

It also provides the following non-device-related functions:

® Memory management
® Task and environment management
#® Country-specific configuration

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions MS-DOS
reserves Interrupts 20H through 3FH for this purpose The MS-DOS interrupts are

Interrupt Name

20H Terminate Program

21H MS-DOS Function Calls

22H Terminate Routine Address
23H Controi-C Handler Address
241 Critical Error Handler Address
25H Absolute Disk Read

26H Absolate Disk Write

27H Terminate and Stay Resident
28H-2EH Reserved

2FH. Muitiplex

30H-3FH Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface The CP/M interface was provided in MS-DOS version 10
solely to assist in movement of CB/M-based applications to MS-DOS. New applications
should use Interrupt 2IH functions exclusively)

MS-DOS version 2 0 introduced a mechanisim to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG SYS file. CONFIG SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de-
vice drivers to be loaded The file is sead when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG SYS

The MS-DOS shell

The shell, or command interpreter, is the first program started by M8-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized [t provides the interface
between the kernel and the user The default MS-DOS shell, COMMAND COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented

COMMAND COM is a replaceable shell. A number of commercial products can be used
as COMMAND COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND COM o1 by using
the SHEII command in CONFIG SYS. The laiter method is preferred because it allows
initialization parameters to be passed to the shell program

Section II Programming in the MS-DOS Environment 63

LG Exhibit 1204C, Page 44
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

COMMAND COM can execute a set of internat (built-in) commands, load and execute
programs, or interpret batch files Most of the internal commands support file and direc-
tory operations and manipulate the program environment segment maintained by
COMMAND COM. The programs executed by COMMAND COM are .COM or .EXE files
loaded from a block device. The batch (BAT) files supported by COMMAND COM pro-
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands In particular, when it is first loaded by
MS-DOS, COMMAND COM searches for the batch file AUTOEXEC BAT and interprets it, if
found, before taking any other action COMMAND COM also provides default terminate,
Conitrol-C and critical error handlers whose addresses are stored in the vectors for Inter-
rupts 22H, 23H, and 24H See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Customrzing ms-pos: Exception Handlers.

COMMAND.COM’s split personality

COMMAND.COM is a conventional COM application with 2 slight twist Ordinarily, a
COM program is loaded into a single memory segment. COMMAND.COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in ilow memory The memary above the resident portion is released to MS-DOS

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMAND COM regains control of the system T he resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten If the checksum maiches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND COM continues its normal
operation '

This “split personality” exists because M3-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND COM, which contains the
built-in commands and batch-file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks Thus, permitting the nonresident portion to be overwritten frees additional
RAM and aliows larger application programs io be run

Command execution

COMMAND COM interprets commands by first checking to see if the specified command
matches the name of an internal command If so, it executes the command; otherwise, it
searches fora COM, EXE, or BAT file (in that order) with the specified name If a COM
or EXE program is found, COMMAND CCM uses the MS-DCS EXEC function (Interrupt
21H Function 4BH) to load and execute it COMMAND COM itseif interprets BAT files

If no file is found, the message Bad command or file name is displayed

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name 1o be preceded by a full pathname If a path is not
explicitly specified, the COMMAND COM search mechanism uses the contents of the

64 The M5-DOS Encyclopedia

Article 2; The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted For example, the PATH
specification

PATH C:\BIN;D:\BIN:E:\

causes COMMAND COM to search the current directory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E COMMAND COM searches each directory for a match-
ing COM, EXE, or BAT file, in that order, before moving to the next directory

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS An environment is a
paragraph-aligned memory segment containing a concatenated set of zerc-terminated
(ASCIIZ) variable-length strings of the form

variable=value

that provide such information as the current search path used by COMMAND COM to find
executable files, the location of COMMAND COM itself, and the format of the user prompt
The end of the set of strings is matked by a null string —that is, a single zero byte, A
specific environment is associated with each program in memoty through a pointer con-
tained at offset 2CH in the 256-byte program segment prefix (PSP) The maximum size of
an environment is 32 KB; the defauit size is 160 bytes

If a program uses the EXEC function to load and execute another program, the contents of
the new program’s environment are provided to MS-DOS by the initiating program— one
of the parameters passed to the MS-DOS EXEC function is 2 pointer to the new program’s
environment The default environment provided to the new program is a copy of the
initiating program’s environment

A program that uses the EXEC function to load and execute another program will not
itself have access to the new prograin’s environment, because MS-DOS provides a pointer
to this environment only to the new program Any changes made to the new program'’s en-
vironment during program execution are invisible to the initiating pt ogram because a
child program’s environment is always discarded when the child program terminates

The system’s master environment is normally associated with the shell COMMAND COM
COMMAND COM creates this set of environment strings within itseif from the contents
of the CONFIG SYS and AUTOEXEG BAT files, using the SET, PATH, and PROMPT com-
mands. See USER COMMANDS: AUTOEXEC BAT; CONFIG S¥s. In MS-DOS version 3 2, the
initial size of COMMAND COM'’s environment can be controlled by loading

COMMAND COM with the /E parameter, using the SHELL directive in CONFIG SYS

For example, placing the line

SHELL=COMMAND COM /E:2048 /P

Section Il Programming in the MS-DOS Environment 65 ‘

LG Exhibit 1204C, Page 45
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

Article 2; The Components of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND COM’s environmentto 2 KB (The /P
option prevents COMMAND COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted)

The SET command is used to display or change the COMMAND COM environment con-
tents SET with no parametess displays the list of all the environment strings in the envi-
ronment A typical listing might show the following settings: '

COMSPEC=A: \COMMAND . COM
PATH=C:\;A:\;B:\
PROMPI=35p 3$d t.%n$g
IMB=C:\IEMP
The following is a dump of the environment segment containing the previous environment
example:
9 1 2 3 4 5 6 7 8 9 A B C D E F
0000 43 4F 4D 53 50 45 43 30-41 3A 5C 43 4F 4D 4D 41 COMSPEC=A:\COMMA
0010 4F 44 2E 43 4F 4D 00 50~41 54 48 3D 43 3 5C 3B ND COM.PAIA=C:\:
0020 41 3A 5C 3B 42 3A 5C 00-50 52 4f 4D 50 54 3D 24 A:\;B:\ .PROMPI=}

0030 70 20 20 24 64 20 20 24-74 Z4 SF 24 &E 24 67 00 B $d 3t5.3nSg
0040 54 4D 50 3D 43 3A 5C S4-45 4D 50 00 00 00 00 00 IMP=C:\IEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari-

able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
Programs.

Batch files

66

Batch files are text files with 2 BAT extension that contain MS-DOS user and batch com-
mands Fach line in the file is limited 10 128 bytes See USER COMMANDS: sarcH Baich
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE BAI <Enter>

The CON device is the system console; text entered fiom the keyboard is echoed on the
screen as it is typed The copy operation is terminated by pressing Cul-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key

Batch files are interpreted by COMMAND COM one line at a time In addition to the stan-
dard MS-DOS commands, COMMAND COM’s batch-file interpreter supporis a number of
special batch commands:

Command Meaning

ECHO* Display a message
FOR* Execute 2 command for a list of files

(more)
The MS-DOS Encyclopedia

Command Meaning

GOTO* Transfer control to another point.
IF* Conditionally execute a command
PAUSE Wait for any key to be pressed.
REM Insert comment line

SHIFT* Access more than 10 parameters

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Cirl-C or
Ctrl-Break, causing COMMAND COM to display the prompt

lerminate batch job? (Y/N}

1/0 redirection

1/0 redirection was introduced with MS-DOS version 2 0. The redirection facility is imple-
mented within COMMAND COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H) COMMAND COM uses these func-
tions to provide both redirection at the command level and a UNIX/XENIX-like pipe
facility

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and cutput file handles The in-
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected

Redlirection is specified in the command line by prefixing file or device names with the
special characters >, >>, and < Standard output (defauit = CON) is redirected using > and
>> followed by the name of a file or character device The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist-
ing file (or creates the file if it does not exist) Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device See also PRC-
GRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Writing MS-DOS
Filters

The redirection facility can also be used to pass information from one program to an-
other through 2 “pipe ” A pipe in MS-DOS is a special file created by COMMAND COM.
COMMAND COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar (i), separates the pro-
gram names Multiple program names can be piped together in the same command line:

C>DIR * ¥ | SORI | MORE <Enter>
This command is equivalent to

C>DIR *.* > PIPEQ <Enter>
C>SORI < PIPEQ > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section II. Programming in the M5-DOS Environment 67

LG Exhibit 1204C, Page 46
LG Electronics, Inc. v. Papst Licensing

Pari A: Strucrure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper-
ating system that actually runs the programs simultanecusly UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations. This section discusses the complete process normally associated with MS-DOS
versions 2 0 and later (MS-DOS versions 1 x use the same general steps but lack support for
various system tables and installable device drivers)

MS-DOS is loaded as a result of either a “cold boot” or a “warm boot ” On IBM-compatible
machines, a cold boot is petformed when the computer is first turned on or when a hard-
ware reset occurs A cold boot usually performs a powes-on self test (POST) and deter-
mines the amount of memory available, as well as which peripheral adapters are installed
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time Por example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultanecusly pressing the Ctil, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DQS Storage Devices The body of MS-DOS is contained in two files: 10 §YS and
MSDOS SYS (IBMBIO.COM and IBMDOS COM with PC-DOS) 10 SYS contains the
Microsoft system initialization module, SYSINII, which configures MS-DOS using either
default values or the specifications in the CONFIG SYS file, if one exists, and then starts up
the shelt program (usually COMMAND COM, the default) COMMAND COM checks for an
AUTOEXEC BAT file and interprets the file if found (Qther shells might not support such
batch files } Finally, COMMAND COM prompts the user for a command. (The standard
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk) Bach of these steps is discussed in detail below

The ROM BIOS, POST, and bootstrapping

68

Al 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:0000H, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine (This has nothing to do with MS-DOS;
it is a feature of the Intel microprocessors) On IBM-compatible machines, the ROM BIOS
occupies the address space from FO0:0000H to this jump instruction Figure 2-1 shows the
location of the ROM BIOS within the T MB address space Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory

The M5-DOS Encyclopedia

Article 2: The Components of MS-DOS

<«€— FFFF:000FH(I MB)

ROM BIOS -«— FFFF:0000H
«— F000:0000H
Other ROM and RAM
«— Topof RAM
(A000:0000H for IBM PC)
Free RAM
L < 0000:0000H

Figure 2-1 Memory layour at startup

The initialization routine in the ROM BIOS — the POST procedure —typically deter-
mines what devices ate installed and operational and checks conventional memof&r (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB) The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen

When the machine is found to be operational, the ROM BIOS sets it up for normal opera-
tion First, it initializes the interrupt vector table at the beginning of memory and any inter-
rupt controllers that reference the table The interrupt vector table area is located from
000C:00C0H to 000C:03FFH On IBM-compatible machines, some of the subsequent mem-
ory (starting at address 0000:0400H) is used for table stor age by various ROM BIOS rou-
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000:0800H

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct MEemory
access (DMA) controllers, serial ports, and the like Some hardware setup may be done
before the interrupt vecior table ares is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is 1unning; therefore, the DMA must be set up first

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed
by scanning the memory from AQ00:0000H to FG00:0000H for 2 particular sequence of sig-
nature bytes If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Exampies of additional ROMs for the IBM PC family are
the PC/XT's fixed-disk ROM BIOS and the EGA ROM BIOS

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine
On the TBM PC, this routine checks the first floppy-disk drive to see if there is a bootable

Section II. Programming in the MS-DOS Environment 69

LG Exhibit 1204C, Page 47
LG Electronics, Inc. v. Papst Licensing

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

-«— FEFF:000FH(1 MB)

-« FFFF:000FH(1 MB)
ROM BICS -«— FFFEF:00C0H ; ROM BIOS «— FFFF:0000H
<— F000:0000H | <€~ F0O00:0000H
Other ROM and RAM Other ROM and RAM
«— Topof RAM . ! «— Top of RAM
(A000:0000H for IBM PC) : (A000:0000H for IBM PC)
) Possible free RAM
Free RAM . .
* : Boot sector -€— Arbitrary location
<«— 0000:0600H :
ROM BIOS tabl ;
28 | e 0000:04008 : Free RAM
Interrupt vectors -
< 0000:0000H : ROM BIOS mbles | ¢ 0000:0600H
- (000:0400H
Figure 2-2 The iinter rupt vector table and the ROM BIOS table Interrupt vectors

N -€— (0G0:0000H
disk in it If there is not, the routine then invokes the ROM associated with another boot- ‘
able device 1o see if that device contains a bootable disk This procedure is repeated until
2 bootable disk is found or until all bootable devices have been checked without success,

Figure 2-3 A loaded boot sector.

in which case ROM BASIC is enabled

Bootable devices can be detected by a number of proprietary means. The IBM PC ROM Boot sector < First sector on the disk
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks foran 8086-family Reserved
short or long jump at the beginning of the sector and for AA55H in the last word of the sec- {optional)
tor. This signature indicates that the sector contains the operating-system loader. Data ! EATH]
disks — those disks not set up with the MS-DOS system files —usually cause the ROM

loader routine to display a message indicating that the disk is not a bootable system disk i FATH

T he customary recovery precedure is to display a message asking the user to insert

another disk (with the operating system files on it) and press a key to try the load opera- E Root directa
tion again The ROM loader routine is then typically reexecuted from the beginning so i
that it can repeat its normal search procedure 0 5YS
When it finds a bootable device, the ROM loader routine loads the operating-system loader

and transfers contral to it I he operating-system loader then uses the ROM BIOS services MSDOS SYS
through the interrupt table to load the next part of the operating system into low memory

Before it can proceed, the operating-system loader must know something about the con- ‘E File data arca

structure that contains this information. This structure, known as the BIOS parameter
block (BPBY), is located in the same sector as the operating-system loader. From the con-
tents of the BPB, the operating-system loader calculates the location of the root directory

figuration of the system boot disk (Figure 2-4) MS-DOS-compatible disks containa darta ! e

Figure 2-4 Boot-disk configuration

70 The M5-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 71

LG Exhibit 1204C, Page 48
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

72

for the boot disk so that it can verify that the first two entries in the root directory are

10 $YS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
Joader usually does not check the file allocation table [FAT] to see if IO SYS and

MSDOS SYS are actually stored in contiguous sectors) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: $TRUCTURE OF Ms-DOs: MS-DOS Storage Devices

Next, the operating-system loader reads the sectors containing 10 SYS and MSDOS 5YS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5) (An alterna-
tive method is to take advantage of the operating-system loader’s final jump o the entry
point in 10O 5YS and include routines in IO SYS that allow it to load MSDOS.SYS)

Finally, assuming the file was loaded without any errors, the operating—system.loader
transfers control to I0.5Y$, passing the identity of the boot device T he operating-system
loader is no longer needed and its RAM is made available for other purposes

«€— FFFF:000FH(1 MB}

ROM BIOS
<— FO00:0000H
Other ROM and RAM
«— Topof RAM
{AQ00:0000H for IBM PC)
Possible free RAM
Boot sector «€-- Arbitrary location
Free RAM
MSDOS SYS
<— SYSINIT
105YS «— MS-DOS BIOS (resident device drivers)
ROM BIOS wbles | & 000:000H
akiad «<— (000:0400H
Interrupt vectors
-€— (000:GG00H

Figure 2-5 JO SYS and MSDOS $Y5 loaded

The MS-DOS Encyclopedia

Article 2: The Compenents of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded 10 SYS
and MSDOS.SYS and transferred control to the beginning of IO SYS To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC Joad-
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred 10 I0.SYS, however, MS-DOS imposes its standards

The IO SYS file is divided into three modules:

® The resident device drivers
® The basic MS-DOS BIOS initialization module
® The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the 10 SYS file,
before the initialization modules

The MS-DQS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created 10 .8YS. On {BM-compatible machines, it then
examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly 7This adjust-
ment usually entails removing those drivers that have no corresponding installed hard-
ware. The initialization routine may alsc modify internal tables within the device drivers
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with systetn initialization The first step is to move MSDOS SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of IO SYS, which contains the resident device drivers This move over-
writes the original copy of SYSINIT and vsually all of the MS-DOS BIOS initialization rou-
tine, which are no longer needed The resulting memory layout is shown in Figure 2-6

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver 1o set up vectors for any external hardware interrupts used by the
device Fach block-device driver returns a pointer to 2 BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driver at the head of the device
driver list

Section IT. Programming in the MS-DOS Environment 73

LG Exhibit 1204C, Page 49
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

74

LG Exhibit 1204C, Page 50
LG Electronics, Inc. v. Papst Licensing

«— FFFF:000FH(1 MB)

ROM BIOS
«— F000:0000H
Other ROM and RAM
«— Topof RAM
(A000:0000H for IBM PC)
SYSINIT
Free RAM

MS-DOS kemnel
(MSDOS. 5YS)

MS-DOS BIOS «— Resident device drivers

(10 SYS)
<— 0000:0600H
ROM BIOS tabl
MBIOS tables | o 0000:0400H

Interrupt vectors

- 0000:0000H

Figure 26 SYSINIT and MSDOS 5¥5 relocated

The kernel initialization routine’s final operation before returning SYSINIT is to display
the MS-DOS copyright message The loading of the system portion of MS-DOS is now com-
plete and SYSINIT can use any M5-DOS function in conjunction with the resident set of
device drivers

SYSINIT pext attempts to open the CONFIG §YS file in the root directory of the boot
drive If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the mumber of entries in the file tables, and the number of entties in the
drive translation table (depending on the specific commands in the file), and these struc-
tures are allocated following the MS-DOS kernel (Figure 2-7)

Then SYSINIT processes the CONFIG SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables Installable device driver
files can be located in any directory on any drive whose driver has already been loaded
Fach installable device driver initialization function is called after the device driver file is
Joaded into memory The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine

where the next device driver is 1o be placed See PROGRAMMING IN THE MS-DOS ENVI- '

RONMENT : CUSTOMIZING MS-DOS: Installable Device Drivers

The MS-DOS Eﬂcyclopedia

Article 2: The Components of MS-DOS

«€— FFFF:000FH(1 MB)
ROM BIOS
«— F000:0000H
Other ROM and RAM
«— Top of RAM
'A0GO:0000H for
SYSINTE (or IBM PC)
Free RAM
Instalfable
device drivers
File control blocks
Disk buffers
MS-DOS tables
MS-DOS kemet
(MSDOS §Y8)
MS-DOS BIOS .
{0 5YS) «— Resident device drivers
ROM BIOS ables | ¢ U000:0600H
~€— (J000:0400H
Interrupt vectors

~€— (000:0000H

Figure 2-7. Tables allocated and installable device drivers loaded

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
dev.ice driver initialization routine determines that a device is inoperative or nonexistent
A d{sca:‘ded device driver is not included in the fist of device drivers Instailable char actef;
device drivers supersede resident character-device drivers with the same name; installable
block-device drivers cannot supersede resident block-drivers and are assigned ’dr ive letter.
Jollowing those of the resident block-device drivers. 5 eener

Section II. Programming in the MS-DOS Enuironment 75

Part A: Structure of MS-DOS

Article Z: The Components of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN {(which defaults to LPT1); the standard auxiliary port
is AUX (which defaults to COMLD). Installable device drivers with these names will reptace
any resident versions

Starting the shell

SYSINIT’s last function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING
FOR Ms-DoS: The MS-DOS EXEC Function The SHELL statement in CONFIG SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND . COM . The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8)

COMMAND.COM

76

COMMAND COM consists of three parts:

® A resident portion
® An initialization module
® A uansient portion

The resident portion contains support for termination of programs started by
COMMAND COM and presents critical-error messages. It is also responsibie for re-
loading the transient portion when necessary

The initialization module is called once by the resident portion First, it moves the tran-
sient portion to high memary {Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG SYS file, if any See USER
COMMANDS: commanD Next, it processes the AUTOEXEC BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion T he relocated transient portion then displays
the MS-DOS user prompt and is ready 10 accept commands

The transient portion gets 2 command from either the console or a batch file and executes
it Commands are divided inio three categories:

® Internal commands
® Batch files
® External commands

Internal commands are routines coptained within COMMAND COM and include opera-
tions like COPY or ERASE Execution of an internal command does not overwrite the tran-
sient portion. Internal commands consist of a keyword, sometimes followed by a list of
command-specific parameters.

The MS-DOS Encyclopedia

ROM BIOS

«— FFFF.000FH(! MB)

Other ROM and RAM

~— F000:0000H

SYSINIT

«<«— Topof RAM
(A000:0000H for IBM PC)

Free RAM

COMMAND COM
(trangient)

COMMAND COM
(initializanion)

COMMAND .COM
(resident)

Installable
device drivers

File control blacks

Disk buffers

MS-DOS tables

MBS-DOS kernel
(MSDOS 5YS)

MS-DOS BIOS
A0 8YS)

ROM BIOS tables

Interrupt vectors

“— Resident device drivers

~— 0000:0600H
€ (000:0400H

- (000:0000H

Figure 228 COMMAND COM logded

Section I1: Programming in the MS-DOS Environment

LG Exhibit 1204C, Page 51
LG Electronics, Inc. v. Papst Licensing

77

Part A; Structure of MS-DOS

78

«— FFFFO00FH(1 MB)

ROM BIOS
~— F000:0000H

Other ROM and RAM
-«— Topof RAM

COMMAND .COM (A000:0000H for IBM PC)
(transient)

Free RAM

COMMAND.COM
(resident)

Installable
device drivers

File comirol blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS SYS)

MS-DOS BIOS

10 $YS) «€— Resident device drivers

«— 0000:0600H

ROM BIOS tables < (000:0400H

Interrupt vectors

«€— (000:0600H

Figure 2-9 COMMAND COM after relocation

Barch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USFR COMMANDS: BATCH

fxternal commands, which are actually executable programs, are stored in .sepgrate .

files with COM and EXE extensions and are included on the MS-DOS distribution disks
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: S.truc—
ture of an Application Program. Thése programs are invoked with the name qf the file
without the extension, (MS-DOS versions 3 x allow the complete pathname of the external

command to be specified)

The MS-DOS Encyciopedia

Article 2: The Components of MS-DOS

External commands are loaded by COMMAND COM by means of the MS-DOS EXEC funec-
tion. The EXEC function loads a program into the free memory area, also called the tran-
sient program area (TPA), and then passes it control. Control returns to COMMAND COM
when the new program terminates Memory used by the program is released unless it is a
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CusToMIZING Ms-DOs:; Terminate-and-Stay-Resident Utilities

After a program terminates, the resident portion of COMMAND COM checks 1o see if the
transient portion is still valid, because if the program was large, it may have cverwritten
the transient pertion’s memory space. T he validity check is done by computing a check-
sum on the transient portion and comparing it with a stored value If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND COM file.

Just as COMMAND.COM uses the EXEC function to load and execute a program, pro-
grams can load and execute other programs until the system runs ocut of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time The active task — the last one executed — ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced

MS-DOS is not a multitasking operating system, so although several programs can be resi-
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10 The top program is the active one; the next program
down will continue 1o run when the top program exits, and so on until control returns to
COMMAND COM RAM-resident programs that remain in meriory after they have termi-
nated are the exception In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is stil} in effect

A custom shell program

The SHELI directive in the CONFIG SYS file can be used to replace the system’s default
shell, COMMAND COM, with a custom shell Nearly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions
For example, the progiam in Figure 2-11 can be used to make any application program
appeat to be 2 shell program — if the application program terminates, SHEIL COM
restarts it, giving the appearance that the application program is the shell program

SHEIL COM sets up the segment registers for operation as a COM file and reduces the
program segment size to less than 1 KB It then initializes the segment values in the param-
eter table for the EXEC function, because . COM files cannot set up segment values within a
program The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL COM prints a
message if the EXEC operation fails The loop continues forever and SHELL COM will
never return to the now-discarded SYSINIT that started it

Section IT: Programming in the MS-DOS Environment 79

LG Exhibit 1204C, Page 52
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

Article 2. The Components of MS-DOS

-«— FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

COMMAND COM
{transient)

Free RAM

-« FOO0:0000H

«— Topof RAM
(A000:0000H for IBM PC)

Program #3
(active)

Program #2

Program #1

COMMAND COM
{resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS ketnel
MSDOS SYS)

MS-DOS BIOS
(10 8YS§)

«— Resident device drivers

-«— (000:0600H

ROM BIOS tables

«— (000:0400H

Interrupt vectors

«— (000:0000H

Figure 2-10 Muitiple programs loaded

80 The MS-DOS Encyclopedia

SHELL ASM A simple program to run an application as an
; MS-DOS shell program. Ihe program name and

SHEII is assembled
; Written by William Wong
To create SHELL .COM:

' C>MASM SHELL:
; C>LINK SHELI:

startup parameters must be adjusted before

C>EXE2BIN SHELI EXE SHELI .COM

stderr equ 2 ; standard error

cr equ 0dh ; ASCII carriage return
1f egqu Oah ; ABCII linefeed

cseg segment para public 'CODE'

i ~- Set up DS, ES, and SS:S5P to zun as .COM -~

assume C5:C35eC

start proc far
mov ax,cs ¢ set up segment registers
add ax, 10h : AX = segment after PSP
mov ds,; ax
mov S8, 8% ; set up stack peinter
mov sp,offset stk
mov ax,cffset shell
push cs ; push original C8
push ds ; push segment of shell
push ax ; push offset of shelil
ret ; Jump to shell

start endp
-- Mzin program running as COM --

; G5, DS, S5 = cseg
; Original CS value on top of stack

assume ¢s:cseqg,ds:cseq, S5:C5eqg

seg_size equ (({cffset last) - (offset start)) + 10fh) /14
shell proc near
pop es ; ES = segment to shrink
mov bx,seg_size ; BX = new segment size
mov ah, 4ah i AH = modify memcry block
int 21h ¢ free excess memory
mov cmd_seg, ds 7 setup segments in
mov fcbl_seg,ds : parameter block for EXEC
mov fcbZ2_seq,ds
mov dx,offset main_loop
mov ax, 2523h : AX = set Control-C handler
Figure 2-11 A simple program 1o r un an application as an MS-DOS shell (more)
Section I Programming in the MS-DOS Environment 81

LG Exhibit 1204C, Page 53

LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

int 2ih :
mov dx,offset main.loo
mev ax,2524h H
int 21h

H

main_loop:

push ds ;

push es

mov c5:s5tk_seqg,ss ;

mov cs:astk _off,sp

mov dx,offset pgm.name
ROV bx,offset par.blk

mov ax, 4b00h H

int 21h ;

mov s3,cs:sthk _sey ;

mov sp,cs:stk_off

pop es i

pop ds

jne main_loop H

mov dx,offset load msqg
mov cx, load _msg_length
call print

mnov ah, 08h ;

int 21h

Jmp main_loop

shell andp
-- Print string --

D5:DX = address of string

CX = size
i
print proc near
mov ah, 40h
mov bx, stderr ;
int 21h
ret

print endp

; -— Message strings --
load_msg db cr,1f
db ‘Cannot load program.'
db 'Press any key to try
load msg_length equ $-load msg

-— Program data area --

stk_seg dw 0 ;
stk_off dw 0 ;

pgm_name db "\NEWSHELL COM',?Q

Figure 2-11 Continued

82 The M$-DOS Encyclopedia

set handler to DS:DX

I .
AX = set critical error handler

set handler to DS:DX
Note: DS is egual to C3

save segment registers

save stack pointer

AX = EXEC/run program
carry = EXEC failed
restore stack pointer

restore segment registers

loop 1f program run

display error message
AH = read without echo
wait for any character

execute forever

AH = write to flle
BX = file handle
print string

,cr, 1t
again ',cr,l£f

stack segment pointer
save area during EXEC
; any program will do

(more)

Article 2: The Components of MS-DOS

par_blk dw 0
dw offset
cmd_seg dw 0
dw offset
febl seqg dw a
dw ocffset
fch2_seg dw 0
cmd _line db ¢, cx
febi db 0
db 11 dup
db 25 dup
fcb2 db 0
db 11 dup
db 25 dup
dw 200 dup
stk dw 0
last equ 3
cseg ends
end start

Figure 2-11 Continued

cmd _line

fcbht

fcb2

use current environment
command-line address

fi11l in at initialization
default ECB #1

£i1l in at initialization
default FCB #2

fill in at initialization
actual command line

program stack area

last address used

SHELL COM is very short and not too smart It needs to be changed and rebuilt if the name
of the application program changes A simple extension 1o SHEII —call it XSHEIT —
would be to place the name of the application program and any parameters in the com-
mand line. XSHFI1 would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function The CONFIG SYS line for starting this shell

would be

SHELL=XSHELL \SHELIADEMC.EXE PARAMI PARAM2 PARAM3

SHELL COM does not set up a new environment but simply uses the one passed to it

William Wong

Section II. Programiming in the MS-DOS Environment 83

LG Exhibit 1204C, Page 54
LG Electronics, Inc. v. Papst Licensing

LG Exhibit 1204C, Page 55
LG Electronics, Inc. v. Papst Licensing

Article 3: MS-DOS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-
system support that is part of the MS-DOS kernel The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in IO.8YS and installabie block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: St1rUcTURE OF Ms-D0Os: T he Components of MS-DOS; CusToMiZING
Ms-pos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver forit MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver Information
about the number of heads, tracks, and so on is required only for those partitioning pro-
grams that allocate logical devices along these boundaries See Lavout of a Partition below

The floppy-disk drive is pethaps the best-known block device, followed by its faster
cousin, the fixed-disk drive Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives With the proper device
driver, M5-DOS can place a file system on any of these devices (except read-only media
such as C[) ROM)

This article discusses the structyre of the file system on floppy and fixed disks, starting

with the physical layout of a disk and then moving on to the logical layout of the file sys-
tem. The scheme examined is for the IBM PC fixed disk

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

Physical device layout
Logical device layout
Logical block layout
MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device A pattitioned physical device contains multiple logical
devices; a physical device that cannoct be partitioned contains only one Each logical device

Section I Programiming in the MS-DOS Environment 85

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR M5s-DOS: File and Record Management; Disk Directo-
ties and Volume Labels '

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag-
netic media such as {loppy or fixed disks Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM . Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are itretrievably
lost when the computet's power is turned off (aithough a special implementation of the
RAMUdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its content’s are not lost when the computet’s power is turned off). Second, they are
usually not portable.

Physical disks

86

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
plattets coated with a special magnetic material The disk is rotated in the drive at high
speeds — approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term “fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium) Fixed disks are also referred to as “hard”
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and wiite tiny magnetic
regions on the rotating magnetic medium. The regions act like small bar magnets with
north and south poles. The magnetic regions of the medium can be logically otiented
toward one or the other of these poles— orientation toward one pole is interpreted asa
specific binary state {1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli-
ably capable of flux reversal Higher densities of these regions yield higher-capacity disks
The flux density of a particular system depends on the drive mechanics, the characteris-
tics of the read/write head, and the magnetic properties of the medium

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

The M5-DOS Encyclopedia

Article 3: M3-DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARIT) encoding
Each technique offers double the data encoding density of the previous cne The associ-
ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circular fashion around the disk (Figure 3-1) Standard 5 25-
inch floppy disks contain either 40 (0-39) or 80 (0—79) tracks per side I ike-numbered
tracks on either side of a double-sided disk are distinguished by the mumber of the read/
wiite head used to access the track For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bortom of the disk is identified 2s head 1 track 1

Tracks can be either spirals, as on a phenograph record, or concentric rings Computer
media usually use one of two types of concentric rings The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-
ity (CAV) The second rype maintains the same recording density across the entire surface
of the disk, so a track neat the center of a disk contains fewer sectors than a track near the
perimeter This latter type of disk is rotated at different speeds 1o keep the medium undes
the magnetic head moving at a constant linear velocity (CLV)

Sector

Figure 3-1 The physical layout of a CAV 9-secior, 5 25-inch floppy disk

Most MS-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. T his difference in storage capaciry accurs because the limiting
factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the full capability of the medium and the
heads, because the space reserved for each magnetic [lux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMSs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track Thus, CAV disks are preferred for MS-DOS systems,

Section [T Frogramming in the M5-DOS Environment 87

LG Exhibit 1204C, Page 56
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

88

Heads
Simple disk systems use a single disk, or platter, and use one or two sides of the platter;

more complex systems, such as fixed disks, use multiple platters Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter (Performance
can be increased by increasing the number of heads to as many as one head per track,
eliminating the positioning mechanism However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder Disks are usually partitioned along cylinders
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric 1ing containing a specific number of sectors on a single side of

a single platter, whereas the term cylinder refers to the number of like-numbered tracks on i

a device (Figure 3-2)
™

Side 0, track 7

Side 1,
track 7

1
rcylinder

Side 2. track 7

Side 3 track 7

Figure 3-2 Tracks and cylinders on a fixed-disk system

Sectors
Each track is divided into equal-size portions called sectors. The size of a sector is a power

of 2 and is usually greater than 128 bytes — typically, 512 bytes.

Floppy disks are either hard-sectored o1 soft-sectored, depending on the disk drive and
the medium. Hard-seciored disks are implemented using a series of small holes near the

The M$-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per-
formed,; this hole is also read by a photosensot/LED pair, Fixed disks use a special imple-
mentation of soft sectors (see below) A hard-sectored floppy disk cannot be used ina
disk drive built for use with soft-sectored floppy disks (and vice versa)

In addition to a fixed number of data bytes, both sector types inchude a certain amount of
overhead information, such as error correction and sector identification, in each sector
The structure of each sector is implemented during the formarting process

Standard fixed disks and 5 25-inch floppy disks generally have from 8 to 17 physical sec-
tors per track Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number To
access a particular sector, the disk drive controller hardware moves all heads to the speci-
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
tations The first method, used with floppy disks, empioys an “open-loop” servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there (A servomechanism is a device that can move a solenoid or hold it in a fixed
position) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned cotrectly — the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other

Most fixed disk systems use the second method —a “closed-loop” servomechanism that
reserves one side of one platter for positioning information This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller Because the “servo platter” usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data

Interleaving _

CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and numbe: of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency)

Section IF: Programniing in the MS-DOS Environment 89

LG Exhibit 1204C, Page 57
LG Electronics, Inc. v. Papst Licensing

Part A; Structure of MS-DOS

On most fixed disks, the sectors on the disk are logically or physicaily numbered so that
logically sequentiad sectors are not physically adjacent (Figure 3-3) The underlying princi-
ple is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track This staggering of sectors is called skewing or, more com-
monly, interleaving A 2-to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them A slower disk controller needs a larger interleave factor A 3:1 interleave
means that three revolutions are required to read all sectors on a track in numeric order

Rotation direction
—

Figure 3-3 A 3 Iinterleave

One approach to improving fixed-disk performance is to decrease the interleave ratio
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layour Obwviously, a 1:1 interleave is the most efficient,
provided the disk controller can process at that speed The notmal interleave for an IBM
PC/AT and its standard fixed disk and disk coniroller is 3:1, but disk controllers are avail-
able for the PC/AT that are capable of handling a 1:1 interleave Floppy disks on MS-DOS-
based computers all have a 1:1 interleave ratic

Layout of a partition

90

For several reasons, large physical block devices such as fixed disks are often logically par-
titioned into smaller logical block devices (Figure 3-4). For instance, such parstitions aliow
a device to be shared among different operating systems Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MB restriction (important for
large fixed disks) MS-DOS permits a maximum of four partitions

A partitioned block device has a partition table located in one sector at the beginning of
the disk This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table)

The MS-DOS Encyclopedia

it

Article 3: MS-DOS Storage Devices

Partition 1
Partition 2
Partition 3
r |— Partition 4

A

iz

>

Figure 3-4 4 parritioned disk

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con-
tains the partition table and a bootstrap program capable of checking the partition table
for a2 bootable partition, loading the hootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start of Sector Size (bytes) Description
01BEH 16 Partition #4
01CEH 16 Partition #3
01DEH 16 Partition #2
01EFH 16 Partition #1
01FEH 2 Signature: AASSH

The partitions are allocated in reverse order. Fach 16-byte entry contains the following
information:

Offset From
Start of Entry Size (bytes) Description
00H 1 Boot indicator
01H 1 Beginning head
{more)
Section IL Programming in the MS-DOS Environment 91

LG Exhibit 1204C, Page 58
LG Electronics, Inc. v. Papst Licensing

Article 3: MS-DOS Storage Devices

Part A: Structure of MS-DOS i

Offset From Layout of a file system
Start of Entry Size (bytes) Description Block devices are accessed on a sector basis The MS-DOS kernel, through the device
p— 1 Beginning sector driver, sees a block device as a logical fixed-size array of sectors and assumes that the array
0311 1 Beginning cylinder contains a valid MS-DOS file system The device driver, in turn, translates the logical sector
04H1 1 System indicator requests from MS-DOS into physical locations on the block device
ggg i Eﬂgfng heatd . The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT
nding sector program. See USER COMMANDS: Formar . The general layout for the file system is shown
07H 1 Ending cylinder in Figure 3-5
08H 4 Starting sector (relative to beginning
of disk)
OCH 4 Number of sectors in paitition OEM identification BIOS parameter block. Loader routine

The boot indicator is zero for a nonbootable partition and 80H for a bootable (active) parti-
tion. A fixed disk can have only one bootable partition (When setting a bootable partition,
partition programs such as FDISK reset the boot indicators for all other partitions to zero)
See USER COMMANDS: FDISK

The system indicators are

Code Meaning

00H Unknown
01H MS-DOS, 12-bit FAT
04H MS-DOS, 16-bit FAT

Each partition’s boot sector is located at the start of the partition, which is specified in
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-
mation, stored in the partition table in this order, is loaded inio the DX and CX registers by
the PC ROM BIOS loader routine when the machine is turned on of restarted. The starting
sector of the pattition relative to the beginning of the disk is also indicated The ending
head, sector, and cylinder numbers, also included in the partition table, specify the last ac-
cessible sector for the partition The total number of sectors in a partition is the difference
between the starting and ending head and cylinder numbets times the number of sectors
per cylinder

MS-DOS versions 2 0 through 3.2 aliow only one MS-DOS partition per partitioned device
Various device drivers have been implemented that use a different partition table that
allows more than one MS-DOS pattition to be installed, but the secondary MS-DOS parti-
tions are usually accessible only by means of an installable device driver that knows about
this change (Even with additional M$-DOS partitions, a fixed disk can have only one boot-
able pastition.)

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 59
LG Electronics, Inc. v. Papst Licensing

Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory

/_\//
/f___/'%

Files area

Figure 3-5 The M5-DOS file system

The boot sector is always at the beginning of a partition It contains the OEM identifica-
tion, a loader routine, and a BIOS parameter block (BPB) with information about the
device, and it is followed by an optional area of reserved sectors. See The Boot Sector
below The reserved area has no specific use, but an OEM might require a mote complex
loader routine and place it in this area The file allocation tables (FATS) indicate how the
file data area is allocated; the root directory contains a fixed number of directory entries;
and the file data area contains dara files, subdirectory files, and free data sectors

Section IT: Programming in the MS-DOS Environment 93

Part A: Structure of MS-DOS

All the areas just described — the boot sector, the FAT, the root directory, and the file data
area—are of fixed size; that is, they do not change after FORMAT sets up the medium

T he size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file data area T he root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold G4 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256 (RAMdisk drivers such as RAMDRIVE S5YS and
some implementations of FORMAT allow the number of directory entries to be specified)

The file data area is allocated in terms of clusters. A cluster isa fixed number of con-
tiguouss sectors Sector size and cluster size must be4 power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 XB, but larger sector and cluster sizes are
possible Commonly used MS-DOS cluster sizes are

Disk Type Sectors/Cluster Bytes/Cluster™
Single-sided floppy disk 1 512
Doubie-sided floppy disk 2 1024
PC/AT fixed disk 4 2048
PC/XT fixed disk 8 4096
Other fixed disks 16 8192
Other fixed disks 32 _ 16384

* Assumes 512 bytes per sector

In general, larger cluster sizes are used to support larger fixed disks Although smaller clus-
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for
random and sequential access, especially if the clusters for a single file are not sequentiafly

allocated

The file ailocation table contains one entry per cluster in the file data area Doubling the
sectors per cluster will also halve the number of FAT entries for a given partition See The

File Allocation Table below

The boot sector

94

The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some
other fields useful to device drivers The BPB describes a number of physical paramete:s
of the device, as well as the location and size of the other areas on the device. The device
driver returns the BPB information to MS-DOS when requested, so that M5-DOS can detes-

mine how the disk is configured

Figure 3-7 is a hexadecimal dump of an actual boot sector The first 3 bytes of the boot sec-
tor shown in Figure 3-7 would be E9H 2CH 00H if 2 long jump were used instead of a short
one (as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, ate a
fixed signature used by the loader routine to verify that the sector is a valid boot sector

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

LG Exhibit 1204C, Page 60
LG Electronics, Inc. v. Papst Licensing

00H
E9 XX XX or EB XX

- or 90

OEM name and version (8 bytes)
0BH -«
ODH Bytes per sector (2 bytes)

Sectors all i i

OEH per allocation unit (1 byte)
\OH Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

11H
Number of root-directory entrics (2 bytes) BFB

13H

- Total sectors in logical volume (2 bytes)
161 Media descriptor byte

\8H Number of sectors per FAT (2 bytes)
(AH Sectors per wack (2 bytes)

\cH Number of heads (2 bytes)

\EH Number of hidden sectors {2 bytes)

Loader routine

Figure 3-6. Ma, ’ - ;
(Bi’ - 3 b of the boot sector of an MS5-DOS disk Bytes OBH through 17H are the BIOS parameter block

The BPB information contained in bytes 0BH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot sector)
2 FATs
112 root directory entries
1440 sectors on the disk
F9H media descriptor
3 sectors per FAT

Section IT. Programming in the MS5-DOS Environiment 95

Part A: Structure of MS-DOS [Article 3: MS-DOS Storage Devices

0o 1 2 3 45 6 7 8 9 A
0000 EB 2D 90 20 20 20 20 20-20 20 20 ¥
0010 § T EEEE0 -0 00 02
0020 00 OA 00 00 DF 02 25 02-09 2A E¥
0030 B8 €O 07 8E D8 BC 00 7C-33 CO0 8E DO 8E CO FB FC

- o The file allocation table

ey

The file allocation table provides a map to the storage locations of files on a disk by indi-
cating which clusters are allocated to each file and in what order. To enable MS-DOS to
locate a file, the file's directory entry contains its beginning FAT entry number This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links
(The set of links for a particular file is called a chain)

7% V¥ PV z
88 . .X<.138.P . 8{i

5180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 63 6C 75 .Disk Boot Failu
0190 72 65 OD OA OD OA 4B GF-6E 2D 53 79 73 74 65 6D re... Non-System
01AR0 20 64 69 73 6B 20 6F 72-20 64 €9 73 6B 20.65 72 disk or disk er
01B0 72 BE 72 OD OA 52 65 70-6C 61 63 65 20 61 6E 64 ror. Replace and
01Cc0 20 70 72 65 73 73 20 61-6E 79 20 6B 65 73 20 77

Additional copies of the FAT are used to provide backup in case of damage to the first,
or primary, FAT; the typical floppy disk or fixed disk contains two FATs, The FATs are

press any key w

01D0 68 65 GE 20 72 &5 61 64-7% OD OA 00 00 00 00 00 hen ready. .. ! :
0TE0 0C 00 00 00 00 00 09 00-00 00 00 00 06 00 00 GO ... arranged sequentially after the boot sector, with some possible intervening reserved area
010 00 00 00 00 0O 00 00 00-00 00 00 90 D0 00 35 AR v o v MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs

Figure 37 Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted It also compares all FATs when a disk is first accessed, 1o make sure they match

K MS-DOS supports two types of FAT: One uses 12-bit links; the othes, introduced with
' - version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
indicate the type of medium currently in a diive. IBM-compatible media have the follow-

ing descriptors:

The first two entries of 2 FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (for 2 16-bit FAT) OFFH bytes, as shown
in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:
i g i MS-DOS Versions
Descriptor Media Type F9 FF EF 03 40 00 FF G6F-00 07 EO FF 00 00 00 00
OF8H Fixed disk 2,3 : .
OFOH 3 5-inch, 2-sided, 18 sector 32 16-bit FAT:
OF9H 3 5-inch, 2-sided, 9 secton 32 . Fg FF Y EF 03 00 04 O0-EF FF 06 00 07 0D EF FF
OF‘QH g TZZ;-.mCE, ?:ﬁ:g ;Sszztc;?r 2 i 3x The remaining FAT entries have a one-to-one relationship with the clusters in the file data
OFGH 2 Sﬁ%nch’ 2_ . ded’ 9 sector 2 x’ 3x area Each cluster’s use status is indicated by its corresponding FAT value (FORMAT in-
(O)I;‘IE)S 2 25-1?(31'1’ l-zlided’ 8 sector 1 X) ‘7 % 3x itially marks the FAT entry for each cluster as free) The use status is one of the following:
OFFH 5 25-inch, 2-sided, 8 sector 1x(except1), 2,3
OFEH 8-inch, 1-sided, single-density 12-bit 16-bit Meaning
(0FDH 8-inch, 2-sided, single-density - :
OFEH 8-inch, I-sided, double-density 882; ggg(l)g ;ijeesclgstscrl .
-inch, 2-sided, double-densit mused ¢
0FbH Frinch, 25 7 FFG-FF6H FFFO-FFF6H Reserved
FF/H FFF7H Bad cluster; cannot be used
FF8-FFFH FFF8—FFFFH Last cluster of file
All other values All other values Link to next ciuster in file
% The MS-DOS Encyclopedia Section IT. Programming in the MS-DGOS Environment 97

LG Exhibit 1204C, Page 61

LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS

98

1f a FAT entry is nonzero, the corresponding cluster has been allocated . A free clusteris
found by scanning the FAT from the beginning to find the first zero value Bad clusters are
ordinarily identified during formatting Figure 3-8 shows a typical FAT chain

FATentry: 0 1 2 3 4

I

FFFH | 003H | 005H | FF7H | 006H LFFFH 000H | 000H | 00oH

FFDH
(4093}

T

{4035) | B (3) (@08t ©® | {095y] @ (0)) continues

Unused; available cluster
Unusable

Unused; not available

—— Disk is double-sided, double-density

Figure 3-8 Space allocation in the FAT for a typical M5-DOS disk

Free FAT entries contain a link value of zero; a link value of 1is never used Thus, the fisst
allocatable link number, associated with the first available cluster in the file data ares, is 2,
which is the number assigned to the first physical cluster in the file data area Figure 3-9
shows the relationship of files, FAT entiies, and clusters in the fiie data atea.

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries;
the difference is simply in the storage and access methods Because the 8086 is specifically
designed o manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11)

Special considerations

The FAT is a highly efficient bookkeeping system, but varicus tradeoffs and problems can
cccur One tradeotf is having a partially filled cluster at the end of a file This situation
leads to an efficiency problem when a large cluster size is used, because an entire cluster is
allocated, regardless of the number of bytes it contains For example, ten 100-byte fileson a
disk with 16 KB clusters use 160 XB of disk space; the same files on a disk with 1 KB clus-
ters use only 10 KB-—a difference of 150 KB, or 15 times less storage used by the smalier
cluster size On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty
(and therefore slowness) of moving through a large file that has a long linked list of many
small clusters. Therefore, the nature of the data must be considered: Large database appli-
cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk (The programmer writing the device driver for a disk device ordinarily

sets the cluster size)

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 62
LG Electronics, Inc. v. Papst Licensing

Article 3: MS-DOS Storage Devy,._
)

12-bit FAT:

Reserved 003H §FTFH 007H 000H

I EO 00 oo
0c4n 006H FFFH
16 bit FAT:
Reserved

Q003H ~ 0004% FFFEE 0006H 0Q07H FEFEH 0000
ISR U I E I s Y e B e B e

E8 FF EF FF 03 00 04 00 FF EF 08 G0 07 00 EF EE 00 00

FAT entry: 4 5 6 7 3
12-bit FAT: N . 0038 | 004H | FFFH | 006H | 007H | FFFAE | 0004 !
6bit FAL eserve continues

i : 0003H 0004!-[FFFFH|0006K|00078 |FEFEs {p000n

Directory eniry L—] u u

FILE1 TXT
(points 10 FAT entry 2)

FILE2 TXT
(points to FAT entry 5) [.

File data area Corresponding FAT entry
FILEl TXT 7 2
FILE!l TXI ’ 3
L FILEL TXT ' 4
L FILEZ TIXI 5
FILE2. IXT 6
FILE2 1XI] 7
[Unused (available) I 8
| 1

Figure 3-9 Correspomdence between the FAT and the file data area

Section IL Programming in the MS-DOS Environment 99

Article 3: MS-DOS Storage Devicece

part A: Structure of MS-DOS

Problems with corrupted directories or FATs, induced by such events as power failures
and programs running wild, can lead to greater problems if not corrected The MS-DOS
CHKDSK program can detect and fix some of these problems See USER COMMANDS:

———— Obtain the next link number from a 12-bit EAL

i

; Parameters:

; ax = current entry number cHKDSK For example, one commeon problem is dangling allocation lists caused by the

; ds:bx = address of FAI (must be contiguous) absence of a directary entry pointing to the start of the list T his situation often results

: when the directory entry was not updated because a file was not closed before the com-

Ret“":{ et link number : puter was turned off or restarted The effect is relatively benign: The data is inaccessible,

’ but this limitation does not affect other file allocation operations CHEKDSK can fix this

| Uses: ax, bx, cx P problem by making a new directory entry and linking it to the list.

neReT? zzzc ;iazx ; ds:bx = partial index ‘ Another difficulty occurs when the file size in a directory entiy does not match the file
shr ax, 1 ; ax = offset/2 length as computed by traversing the linked list in the FAT This problem can resultin

; carry = no shift needed improper operation of a program and in error responses from MS-DQOS

pushf ; save carry ;
add bx, ax ; ds:bx = next cluster number index : A more complex (and rarer) problem occurs when the directory entry is propetly set up
mov ax, [bx] ; ax = next cluster number : but all or some portion of the linked list is also referenced by another directory entry. The
popt ' i eatry =mno Shiit "?zdidits g problem is grave, because writing or appending to one file changes the contents of the
zid z:lzszh ::12 iiw:il?g biis E other file This error usually causes severe data and/or directory cotruption or causes the
ret ' system to crash

shift: ::‘I’ :z il :i ~ :'};f:;;‘;:z in lower 12 bits A similar difficulty occurs when a linked list terminates with a free cluster instead of a

; last-cluster number If the free cluster is allocated before the error is corrected, the
next12 endp ' problem eventually reverts to the preceding problem. An associated difficulty occurs if a
) ‘ link value of 1ot a link value that exceeds the size of the FAT is encountered

" i . outing 72-bit FAT. 2 . : , i o
Figure 3-10 Assembly-language 70Uline o Aecess & . In addition to CHKDSK, a number of commercially available utility programs can be used

to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
it in the file data area and, of course, in the FAT

———— Obtain the next link number from a 16-bit FAI -----

i

; The root directory

: Parameters:

; ax = current entry number i Directory entries, which are 32 bytes long, are found in both the oot directory and the

i ds:bx = address of EAL (must be contiguous) subdirectories. Each entry includes a filename and extension, the file’s size, the starting

i & FAT entry, the time and date the file was created or last revised, and the file’s attributes

Ret”r“:; - iest link number) T his structure resembles the format of the CP/M-style file control blocks (FCBs) used by

’ ' . the MS-DOS version 1 x file functions. See PROGRAMMING IN THE MS-DOS

Uses: ax, bx, X ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Disk Directories and Volume Labels

nexc16 E;Zc :2?; . ax = word offset : The MS-DOS file-naming convention is also derived from CP/M: an eight-character file-
add bx, ax ; ds:bx = next link number index - name followed by a three-character file type, each left aligned and padded with spaces if
mov ax, fbx} i ax = next link number . necessary. Within the limitations of the character set, the name and type are completely
ret > arbitrary. The time and date stamps are in the same format used by othet MS-DOS func-

next16 endp tions and reflect the time the file was last written to

4 -~ - outi cess a 16-bit FAT. . ., . . .
Figure 3-11 Assembly-language routine io aeeess 4 10-01 Figure 3-12 shows a dump of a 512-byte directory sector containing 16 direciory entries

(Each entry occupies two lines in this example) The byte at offset 0ABH, containing a
10H, signifies that the entry starting at CAOH is for a subdirectory The byte at offset 160H,
containing OESH, means that the file has been deleted The byte at offset 8BH, containing

Section I Programming in the M5-DOS Environment 101
100 The MS-DOS Encyciopedia

LG Exhibit 1204C, Page 63
LG Electronics, Inc. v. Papst Licensing

Part A: Structure of MS-DOS
‘ Article 3: MS-DOS Storage Devices
;’
the value 08H, indicates that the directory entry beginning at offset 80H is a volume label : The root directory can optionally have a special type of entry called a volume label, id
Finally the zero byte at offset 1IEOH marks the end of the directory, indicating that the sub- B tified by an atribute type of 08H, that is used to identify disks by name AuTn t?i' (‘2 oty
sequent entries in the directory have never been used and therefore need not be scarched ; can contain only one volume label The root directory can also cyontain emrl?:s ; }:;tecto.rytt
si : . .) - - ‘ point to
(versions 2 0 and later} ‘ subdirectories; such entries are identified by an attribute type of 10H and a file size of zero
6 1 2 3 45 6 78 9 ABCDETE Programs that manipulate subdirectories must do so by tracing through their chains of
0000 45 4F 20 20 20 20 20 20-53 53 53 27 00 00 00 00 IO sys® clusters in the FAT
0010 00 0D 0O 00 00 00 59 $3-83 0B 02 00 D1 12 ©0 0O¥S... Q. ‘) _
5020 47 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 MSDOS SYS' ‘ Two other special types of directory entries are found only within subdirectories These
0030 00 09 00 00 00 00 47 49-52 DA 07 00 C9 43 00 08AIR IC.. _ erlltnes have the filenames . and .. and correspond to the current directory and the parent
0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 000 00 00 ANSI SYS .. . dl.r'ectory of the cutrent directory These special entries, sometimes called directory
0650 0G 00 00 00 00 00 47 4%-532 0A 18 00 76 07 00 00AIR.. ¥ .. ; aliases, can be used o move quickly through the directory structur
0060 58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 00 XIALK EXE ... ¥ ure
2070 22 20 22 2(; (;o og E; ;E—zg 23 23 g: gg gi g; gg . wig. ¥ o _The maximum pathname length supported by MS-DOS, excluding a drive specifier but
ngg o 02} I 0‘; io ;‘C S e 0o 03 00 00 L b ; m}f]udmg any filename and extension and subdirectory name separators, is 64 characters
- - o :) The size of the dir i is limi ‘ .
Tong 4G 4% 54 55 53 20 20 20-20 20 20 10 00 00 00 00 1OTUS ‘ : sizeo hed:re.ctorystrxuctuxeuselhs limited only by the number of root directory
00BO 00 00 00 00 00 00 EG DA-E1 06 A6 01 00 00 00 0O Cakoa i entries and the available disk space
00cO 4C 54 53 4C 4F 41 44 20-43 4§ 4D 20 00 00 00 00 TISLOAD COM i The file area
00p0 00 00 00 00 00 00 EO O0A-E1 06 A7 01 Ap 27 00 00 LAl
gggg gg gg gg é’; 33 :g 22 fg‘zg g; ;i—‘ E? gg 82 gg [0)8 MCI'SFE ;IT y ¥ The file area contains subdirectories, file data, and unallocated clusters. The area is
- e divided into fixed-si ‘ : , :
0100 58 54 41 4C 4B 20 20 20-48 4C S0 20 00 0O 00 00 XIALK. HIP S'dm Lﬁxed size clusters and the use for 2 particular cluster is specified by the corre-
0115 00 00 00 00 00 00 ¢S GD-73 07 A3 02 AF 88 00 00 . .. Ems.¥ / sponding FAT entry
0120 54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 00 00 IX coM .
0130 00 00 00 90 00 0 05 &1-65 OC 39 01 E8 20 00 00 . ae 9.h
5140 43 4F 4D 4D 41 48 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM .. .
5156 00 00 00 00 00 00 41 48-52 DA 27 00 55 3F 00 00AIR ' U2 _ Other MS-DOS Storage Devices
0160 ES 32 33 20 20 20 20 20-45 58 45 20 00 90 00 00 e23 EXE :
0170 00 00 00 00 0C 00 9C BZ-83 0B 42 01 80 5F 01 00 2 B ... : A . .

: S mention - MS- . , ‘
oian 47 2a 20 20 20 20 20 20-44 52 56 20 00 00 00 00 €D — Asme tio ed earlier, MS DQS supports other types of storage devices, such as magnetic-
019G 00 00 00 00 00 00 EO OA-E1 06 94 01 58 08 00 00 ... ' a. -l ! ape IIYeS and CD ROM drives Tape drives are most often used for archiving and for
01RO 4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 KB DRV sequential transaction processing and therefore are not discussed here
g1B0 0O 00 00 00 0O 0D EO OA-E1 06 9D 01 60 01 00 00 ta. ! _
01co 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 ER DRV C_D ROMs are compact laser discs that hold a massive amount of information-—a single
0100 00 00 00 G0 00 00 EO OA-E1 06 9E 01 4% 01 00 0O . ra I side ofaCIJDROM can hold almost 500 MB of data However, there are some drawbacks to

current CD ROM technology For instance, data cannot be written to them —the informa-
1 tion is placed on the compact disk at the factory when the disk is made and is available on
R — a read-only basis [n addition, the access time for a CD ROM is much slower than for most
.rnagneticdisk systems Even with these limitations, however, the ability to hold so much
information makes CD ROM a good method for storing large amounts of static information

01EQ 00 F6 56 F6 F6 F6 E6 F6-Fb EG F6 F6 F6 F6 F6 F6
01F0 F6é 6 £6 F6& F6 F6 FG FE-F6 F6 F6 F6 F6 F6 E6 6

The sector shown in Figure 3-12 is actually an example of the first directory sectot in the
root directory of a bootable disk Notice that IO SYS and MSDOS SYS are the first two files
in the directory and that the file attribute byte (offset OBH ina directory entty) has a

binary value of_00100111, indicating that both files have hidden (bit1=1}, system (bit 0 = 1), William Wong
and read-only (bit 2 = 1) attributes The archive bit (bit 3) is also set, marking the files for |
possible backup.

102 The MS-DOS Encyclapedia Section I1. Programming in the M5-D0S Environment 103

LG Exhibit 1204C, Page 64
LG Electronics, Inc. v. Papst Licensing

PartB
Programming for MS-DOS

LG Exhibit 1204C, Page 65
LG Electronics, Inc. v. Papst Licensing

LG Exhibit 1204C, Page 66
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

Article 4
Structure of an Application Program

Planning an MS-DOS application program requires serious analysis of the program’s size.
This analysis can help the programmer determine which of the two program styles sup-
potted by MS-DOS best suits the application. The EXE program structure provides a large
program with benefits resulting from the extra 512 bytes {or more) of header that preface
all EXE files. On the other hand, at the cost of losing the extra benefits, the COM program
structure does not burden a small program with the overhead of these extra header bytes

Because .COM programs start their lives as .EXE programs (before being converted by
EXE2BIN) and because several aspects of application programming under MS-DOS
remain similar regardless of the program structure used, a solid understanding of EXE
structures is beneficial even to the programmer who plans on writing only COM pro-
grams Therefore, we'll begin cur discussion with the structure and behavior of EXE
programs and then look at differences between COM programs and EXE programs,
including restrictions on the structure and content of COM programs

.EXE Program

The EXE program has several advantages over the COM program for application design
Considerations that could lead to the choice of the EXE format include

Extremely large programs
Multiple segments

Overlays

Segment and far address constants

Long calls
Possibility of upgrading programs to M$ 0O8/2 protected mode

The principal advantages of the EXE format are provided by the file header Most
important, the header contains information that permits a program to make direct seg-
ment address references —a requirement if the program is to grow beyond 64 KB

The file header also tells MS-DOS how much memory the program requires This informa-
tion keeps memot y not required by the program from being allocated to the program —
an important consideration if the program is to be upgraded in the future to run efficiently
under MS O5/2 protected mode

Before discussing the EXE program stzucture in detail, we’ll look at how EXE programs
behave

Section I Programming in the MS5-DOS Environment 107

Article 4: Structure of an Application Program

Part B: Programming for M5-DOS

x0H xIH x2H x3H x4H x5H x6H x7H %8H x9H xAH xBH xCH xDH xEH xFH

Giving control to the .EXE program

; . INT20H | Endalloc |Resv] Farcall ro ps- o :
Figure 4-1 gives an example of how a .EXE program might appear in memory when OxH oan[ol nloj Scoi i esv B:H Tﬂf toMS DOF 0 handter A Prev terminate address- PrevCuI C.
MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro- i Bloj%8 ofs 1o ofs i | g Io] seg i) ofs io]ofs i |seg o Jsog i | ofs 0] ofs 1 i
. 1xH address Prev critical error address Reserved
gram segment arrangement.
seglo | seghi {ofslo | ofshi Iseg lo | seg hi i l) , f i ! I , f
- < SP 2xH - Reserved Eaviron seg Reserved |
(Any segg;r:é I\{vnh class L [0] |] |]] e lo}seg bi Lo
488 3xH .Reserved.. T|— . _ MS-DOS20
All segments Any segments with class L | f i I l | i I f } , i l f J and later only
declared _< BSS . . "
as part of group Any DGROUP segments 4xH L L ; Reserve
DGROUP not shown elsewhere [J l f , J , ;
Any segments with class 5xH ‘::;:IH and RETE Reserved Primary FCB
\ BEGDATA el | [|] | | | [Jalr]i]i]
Any segments with class names 4P 6xH - Primary file control block (FCB) Secondary FCB .
Sract segment . ending with CODE <cs Lelajaim]e]E]x | Joor foot | oorfoom @ | F [i [1 |
¢ 1 : S dary fil
program image ! Progmm segment prefix (PSP) | TxH econdary tite control block (FCB) Reserved
foadmodule) L T - T TT TS | ¢ DSBS elnlafm[efe|x | [oomoonfoomfoor| | ||
8xH Command tail and default disk transfer area (DTA) (continues through OFFH) .
Figire 4-1 The EXE program: memory map diggram with register pointer s Len ’ [J l [{ J ’ J I ! i f | l
Before transferring contrel to the EXE program, MS-DOS initializes various areas of Figure 42 The program segment prefix (PSP)
memory and several of the microprocessor’s registers The following discussion explains _
what to expect from MS-DOS before it gives the EXE program control ‘ allocated to the program unless the program was liniced using the /CPARMAXALLOC
: switch. Even when /CPARMAXALLOC is used MS-DOS may fit the program i
ogram t prefix ; ‘) ‘] y litthe program into a block
The pro segment pr _ ; of memory only as big as the program requires Well-behaved programs should acquire
The program segment prefix (PSP) is not a direct result of any program f:ode Rather, this : additional memory only through the MS-DOS function calls provided for that purpose
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all EXE PSP O0OSH (15] o .
and COM programs when they are loaded into memory. Although the PSP does contain | 7 dov‘;n o 05m C(gi/j D%_F;mciz‘on Call [Qld BDOS jéVecto'r +) Offsgt 05His also a har}d—me-
several fields of use to newer programs, it exists primarily as a remnant of CB/M— : 1 MS.DOS's funct 18 -0ca l?ga co(ﬁta.ms an 808G-family far (intersegment) call instruction
Microsoft adopted the PSP for ease in porting the vast number of programs availabie under : ating System [BD C:;’]n I equ@ o 1}1 t‘I. (Dnde_r C'P/M, this address‘ was the Basic Disk Oper-
CP/M to the MS-DOS environment Figure 4-2 shows the fields that make up the PSP ‘ dg 4 vector, which served a similar purpose) This vector should not be
. : used to call MS-DOS in newer programs The System Calls section of this book explains
PSP.0000H (Terminarte fold Warm Boot] Vector) The PSP begins with an 8086-family the newer, approved method for calling MS-DOS MS-DOS provides this vector only Lo sup-
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The : port CE/M-style programs and therefore honors only the CB/M-style functions (00— 245)
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm ; through it
Boot/ Terminate) vector under CB/M and CP/M programs usually terminated by jumping : PSP.00G
.) . -O00AH- enL :)
to this vector. This method of termination should not be used in newer programs See i O015H (Parent's 22H, 23H, and 24H Inte Frupt Vector Save) MS-DOS uses
Terminating the EXE Program below offsets UAH through 15H to save the contents of three pr ogram-specific interrupt vectors
. : MS-DOS must save these vectors because it permits any program to execute another pro-
PSP.0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word : gram (called a child process) through an MS-DOS function call that returns control to the
at offset 02H into the PSP It contains the segment address of the paragraph following the original program when the called program terminates Because the original program
block of memory allocated to the program This address should be used only 1o determine ‘ resumes executing when the child program terminates, MS-DOS must restore these three

the size or the end of the memory block allocated to the program; it must not be con-
sidered a pointer to free memory that the program can appropziate In most cases this ad-
dress will not point to free memory, because any free memory will already have been

108 The MS-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 109

LG Exhibit 1204C, Page 67
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

110

LG Exhibit 1204C, Page 68
LG Electronics, Inc. v. Papst Licensing

interrupt vectors for the original program in case the called program changed them The
three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Control-Break handler vectot (Interrupt 23H), and the critical error handler
vector (Interrupt 24H). MS-DOS saves the o1 iginal preexecution contents of these vectors
in the child program’s PSP as doubleword fields beginning at offsets OAH for the program
termination handler vector, 0EH for the Control-C/ Control-Break handler vector, and 12H

for the critical error handler vector.

PSP OO2CH (Segment Address of Enwironment) Under MS-DOS versions 2 0 and later, the
word at offset 2CH contains one of the most useful pieces of information a program caa
find in the PSP —the segment address of the first paragraph of the MS-DOS environment
This pointer enables the program {0 search through the environment for any configuration
or directory search path strings placed there by users with the SET command

PSP-0OS0H (New MS-DOS Call Vector) Many programmers disregard the contents of offset
50H. T he location consists simply of an INT 21H instruction followedby a REIF A EXE
program can call this location using a far call as a means of accessing the MS-DOS function
handler Of course, the program can also simply do an INT 21H directly, which is smaller
and faster than calling SOH Unlike calls to offset 05H, calls to offset SOH can request the

full range of MS-DOS functions

PSP 00SCH (Defaudt File Control Block 1) and PSP 006CH (Defauls File Control Block 2)
MS-DOS parses the fisst two parameters the usex enters in the command line following the
program’s name If the first parameter qualifies as a valid (limited) MS-DOS filename

(the name can be preceded by a drive letter but nota directory path), MS-DOS initializes
offsets SCH through 6BH with the first 16 bytes of an unopened fite control block (FCB) for
the specified file. If the second parameter also qualifies as a valid MS-DOS filename,
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
the second specified file If the user specifies a directory path as part of either filename,
MS-DOS initializes only the diive code in the associated FCB Many progiamimers 1o
longer use this feature, because file access using FCBs does not support directory paths

and other newer MS-DOS features

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset
SCH causes it to grow from 16 bytes to 37 bytes and 1o overwrite the second FCB Similarly,
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA) (The command tail and default
DTA are described below) To use the contents of both default FCBs, the program shouid
copy the FCBs to a pair of 37-byte fields located in the program’s data area The program
can use the fitst FCB without moving it only after relocating the second FCB (if necessary)
and only by performing sequential reads or writes when using the first FCB. To perform
random reads and writes using the first FCB, the programmer must either move the first
FCB or change the default DTA address Otherwise, the first FCB's random record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: PROGRAMMING FOR Ms-DOs: File and Record Management

The MS-DOS Encyclopedic

Article 4: Structure of an Application Program

PSP. 008QH (Command Tail and Default DTA) The default DTA resides in the entire sec-
ond ha.lf (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record
bu.ffer if t-he program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program ’can call to change th
a'ddr'ess MS-DOS will use as the current DTA See SYSTEM CALLS: InterrUPT 218 I;g‘unc-e
F;}n lA'I-I") Because tl‘le dfefault DTA serves no purpose until the program performs; some

ile aCIinl[y that requires ir, MS-DOS places the command tail in this area for the program
1o examine. The command tail consists of any text the user types following the pro;mm
name when executing the program. Normally, an ASCII space (20H) is the first character
in ﬂ'l? command tail, but any character MS-DOS recognizes as a separator can eccupy this
position. MS-DOS stores the command-tail text starting at offset 81H and always 1:3;5 an
gsgl carriage retu.rn {ODHD at the end of the text. As an additional aid, it places tlile length
o e(;;f(:lr;lr:,atrﬁz iﬁiﬁ; (;frflileltii(;H This length includes all characters except the final 0DH.

C>DOIT WIIH CLASS <Enter>

will zesult in the program DOIT being executed with PSP:0080H containing

0B 20 57 4% 54 48 20 43 4C 41 53 53 oD
lenspW I I H spC L & 8 S cr

The stack

Because E?(E-st.yle programs did not exist under CP/M, MS-DOS expects EXE programs
o opergte in strictfy MS-DOS fashion Fot example, MS-DOS expects the EXE progiam io
supply its own stack (Figure 4-1 shows the program’s stack as the top box in the diagram.)

Microsoft’s high-levei-language compilers create a stack themselves, but when wiiting in
agsembly language the programmer must specifically declare one or’ more segments v%ith
fj hff S .IACK coymbme type. If th.e programmer declares multiple stack segments, possibly in
lifferent source modules, the linker combines them into one large segment. See C 1
ling the EXE Program’s Structure below. ¢ | onner

Many programmers declare their stack segments as preinitialized with some recognizable
repeating stlling such as *STACK This makes it possible to examine the program’s stack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gxam actually used -On the other hand, if the stack is left as uninitialized memor ancii)
linked at the end of the EXE program, it will not require space within the EXE l};le (The
reason for this will become more apparent when we examine the str ucturé of a EXE file)

N?te:' When multiple stack segments have been declared in different ASM files, the
L\:hcrf)soft Object Linker (1INK) correctly allocates the total amount of stack s ac’e speci-
tied in all the source modules, but the initialization data from all modules is ogrerla . d
module by module at the high end of the combined segment. Pre

Animportant difference between COM and EXE programs is that MS-DOS preinitializes
a COM program’s stack with a termination address before transferring control to the pro-
gram, MS—DQS does not do this for EXE programs, so a . EXE program can#or simpk ;
execute an 8086-family RET instruction as a means of terminating o

Section II: Programniing in the MS-DOS Environment 111

Part B: Prograx'hming for MS-DOS

Note: In the assembly-language files generated for a Microsoft C program or for programs
in most other high-level-languages, the compiler’s placement of 2 RET instr uction at the
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS
does not place any return address on the stack The compiler places the RET at the end of
main because main does not receive control directly from MS-DOS. A library initializa-

tion routine receives control from MS-DOS; this routine then calls main. When main pet-

forms the RET, it returns conirol to a library termination routine, which then terminates
back to M$-DOS in an approved manner.

Prealiocated memory

112

While loading a EXE program, M§-DOS performs several steps to determine the initial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of the FXE header: The first value, MINAL LOC, indicates the
minimum amount of exira memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the program would
like allocated before it starts executing Next, MS-DOS locates the largest free block of
memory available If the size of the program’s image within the EXE file combined with
the value specified for MINALLIOC exceeds the memory block it found, MS-DOS returns
an error {o the process trying to load the program If that process is COMMAND COM,
COMMAND COM then displays a Program 100 big to fit in memory errol message and
terminates the user’s execution request. If the block exceeds the program’s MINALLOC
requirement, MS-DOS then compares the memory block against the program's image
combined with the MAXATLOC request If the free block exceeds the maximum memory
requested by the program, MS-DOS allocates only the maximum request; otherwise, it
aliocates the entire block MS-DOS then builds a PSP at the start of this block and ioads
the program’s image from the EXE file into memory following the PSP

This process ensures that the extra memory allocated to the program will immediately
follow the program’s image The same will not necessarily be true for any memory
MS-DOS allocates to the program as a result of MS-DOS function calls the program per-
forms during its execution Only function calls requesting MS-DOS fo increase the initial
allocation can guarantee additional contignous memory (Of course, the granting of such
increase requests depends on the availability of free memory following the initial

allocation.}

Programmers writing EXE programs sometimes find the lack of keywords or compiler/
assembler switches that deal with MINATLOC (and possibly MAXALLOC) confusing. T he
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC
to the total size of all uninitialized data and/or stack segments linked at the very end of the
program The MINALLCC field allows the compiler to indicate the size of the initialized
data fields in the load module without actually including the fields themselves, resulting in
a smaller EXE program file For LINK to minimize the size of the EXE file, the program
must be coded and linked in such a way as to place all uninitiatized data fields at the end
of the program. Microsoft high-level-language compilers handle this automaticatly;
assembly-language programmers must give TINK a Iittle help

The MS-DOS Encyclopedia

Articie 4; Structure of an Application Program

LG Exhibit 1204C, Page 69
LG Electronics, Inc. v. Papst Licensing

Notg;' Beginniflg and even advanced assembly-language programmers can easily fall into
Zjﬁ axl g;:ment V&flth the assembler over field addressing when attempting to place data fields
2 }_:lf;l 1\; ET\I (}ode dlr(}}t}ilg source file This argument can be avoided if programmers use the

an UP irecti i
SEGMENT assembler directives. See Controlling the .EXE Program’s Struc-

No r('eliable method exists for the linker to determine the correct MAXAILOC value
required by the EXE program. Therefore, LINK uses a “safe” value of FFfPH which
causes MS-DOS to allocate all of the largest block of free memory -—which is ;Jsuall all
fI'EE? memory —to the program . Unless a program specifically releases the memor 5fr'or
which it has no use, it denies multitasking supervisor programs, such as IBM's To 3’;fiew
any memory in which to execute additional programs ~hence ’the rule thata weli)l— ’
behaved program releases unneeded memory during its initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor suppcz;ts th
abdrznty t;:o1 lo;;i several programs into memory without executing them. Therefore, pro-)
gizg;; :n zt ve correctly established MAXAILLOC values actually are well-behaved

To this e_nd, newer versions of Microsoft LINK include the /CPARMAXALLOC switch

to permit specification of the maximum amount of memory required by the program. Th
/CPARMAXAILOC switch can also be used to set MAXAILOC to a value tha}?is inowl'n toe
be less than MINATLOC For example, specifying 2a MAXALLOC value of 1 (/CP:1) forces
M§-DOS to allocate oniy MINAILOC extra paragraphs to the program In additi‘on
M1cro§oft sugplies a program called EXEMOD with most of its languages This pro’ ram
permits modificarion of the MAXALLOC field in the headers of existing EXE pro; .

See Modifving the EXE File Header below ¥ PR

The registers

I;igut'g 4-1 gives 2 general indication of how MS-DOS sets the 8080-family registers

eef;)rte traalisfer;'mg ccz;trol toa EXE program MS-DOS determines most of the original
register values i i i - places i i

E)g(o rom information the linker places in the EXE file header at the start of the

MS-DOS sets the S8 register to the segment (paragraph) address of the start of any seg-
ments declgred with the STACK combine type and sets the SP register to the offset from S
of the byte immediately after the combined stack segments. (If no stack segment is
declargd, MS—pOS sets 55:5P to CS:0000) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stack Therefore, if the programmer declares stack segments when writing an assem-
bly—langqage‘program, the program will not need to initialize the S8 and SP registers
Microsoft’s high-level-language compilers handle the creation of stack segments autém ti
cally In both cases, the linker determines the initial SS and SP values and places th o
the header at the start of the .EXE program file : T

Unl'ike its handling of the 5§ and SP registers, MS-DCS does not initialize the DS and ES
registers to any data areas of the EXE program Instead, it points DS and ES to the start of

Section Il Programming in the MS-DOS Environment 113

Part B: Programming for MS-DOS

the PSP It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to
tell the program the address of the PSP; second, most programs start by examining the
command tail within the PSP Because the program starts without D3 pointing to the data
segments, the program must initialize DS and (optionally) ES to point to the data segments
before it starts trying to access any fields in those segments Unlike COM programs, EXE
programs can do this easily because they can make direct references to segments, as

follows:
MOV AX, SEG DAIA SEGMENT OR_GROUB_NAME
MOV DS,AX% i}
MOV ES,AX

High-levei-language programs need not initialize and maintain DS and ES; the compiler
and library support routines do this

In addition 1o pointing DS and ES to the PSP, MS-DOS also sets AH and Al to reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP MS-DOS sets
Al to OFEH if the fitst FCB at PSP:005CH was initialized with a nonexistent drive identifier;
otherwise, it sets AL to zero Similarly, MS-DOS sets AH to reflect the drive identifier

placed in the second FCB at PSP:006CH

When MS-DOS analyzes the first two command-line parameters following the program
name in order to build the first and second FCBs, it treats any character followed by a
colon as a diive prefix If the drive prefix consists of a lowercase letter (ASCII @ through
), MS-DOS starts by converting the character to uppercase (ASCIL A through Z). Then it
subtracts 40H from the character, regardless of its original value. This converts the drive
prefix letters A through Z to the drive codes 01H through 1AH, as required by the two
FCBs Finaily, MS-DOS places the drive code in the appropriate FCB

This process does not actually preclude invalid drive specifications from being placed in
the FCBs For instance, MS-DOS will accept the drive prefix !: and place a drive code of
OFiH in the FCB (0 = 21H; 21H- 40H = 0E1H) However, MS-DOS wili then check the drive
code to see if it represents an existing drive attached to the computer and will pass a value
of OFFH 1o the program in the appropriate register (Al or AH) if it does not

As a side effect of this process, MS-DOS accepts @: as a valid drive prefix because the
subtraction of 40H converts the @ character (40H) to 00H. M5-DOS accepts the 00H value
as valid because a 00H drive code represents the current default drive MS-DOS will leave
the FCB's drive code set to 00H rather than translating it fo the code for the default drive
because the MS-DOS function calls that use FCBs accept the 00H code.

Finally, MS-DOS initializes the CS and IP registers, transferring conirol to the program’s
entry point Programs developed using high-level-language compilers usually receive con-
trol at a library initialization toutine A programmer writing an assembiy-langiage pro-
gram using the Microsoft Macre Assembler (MASM) can declare any label within the

114 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 70
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

programas the entr int i ' i
o 'y point by placing the label after the END statement as the last line of the

END ENIRY_POINI_IABEL

V;'/'ith multi;I)fle source files, only one of the files should have a label following the END
statemment . If more than one source file has such a labe], LINK ir: i
ers an e ety , uses the first one it encoun-

The other proces§or registers (BX, CX, DX, BP, 81, and DI) contain unknown values when

the program receives control from MS-DOS Once again, high-level-language program-

mers can ignore this fact—the compiler and library support routines deal with the situa-

gzéldfgbyeycz, assembly-language programmers should keep this fact in mind. It may give
ed insight sometime in the future when a program functi tain ti

foeded insi prog nctions at certain times and

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undecumented state. For instance, some debuggers may predictabl
set BP to zero before starting program execution However, a program must not 1ely on '
su;h debugger actions, because MS-DOS makes no such promises. Situations like this

. c..ould account for a program that fails when executed directly under MS-DOS but wotk
fine when executed using a debugger ' -

Terminating the .EXE program

fkfter‘ MS-DOS has given the .EXE program control and it has completed whatever task
it set out'to perfo':m, the program needs o give control back to M5-DOS Because of
MS-DOS'’s evolution, five methods of program termination have accumulated — not

nclud.l g h Seve: ays MS—D S a” StO! inat IGSlde
1 ng the several w O oOwWs programs to terminate bu i
. t remain nt

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data ha; been written or
whose lengths were changed Under versions 2 0 and later, MS-DOS cioses any files
opened using handles However, good programming practice dictates that the program
;)o;;zlyhon t(lilff:.opex ating system to close the program’s files. In addition, programs written
fo use gs tﬁ;ef ‘ﬁelslzi 1;11(;116; ?ﬁ_grgs versions 3 0 and later should release any file locks before

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Retum Code function (4CH) is recommended for programs running under MS-DOS ve
sion 2 0 or later. This method is one of the easiest approaches to terminating any pro- -
gram, regardless of its structure or segment register settings The Terminate Prdceis with
Return Code function call simply consists of the foilowing:

M
;{Rc))g AH, 4CH ;load the MS-DOS function code
- Al ,RETURN_CODE +load the termination code

21H rcall M8-DOS to terminate program

Section II: Programming in the M5-DOS Environment 115

Part B: Programming for MS-DOS

116

LG Exhibit 1204C, Page 71
LG Electronics, Inc. v. Papst Licensing

The example loads the AH register with the Terminate Process with Return Coc(iie fun.c:uon
code Then it loads the AL register with a return code Normally, th§ refurn co e‘ repre-
sents the reason the program terminated ot the result of any operation the program
performed

A program that executes another program as a child process can re'qover aI;Id ;nlaillgcrez; it:l:
child program’s return code if the child process used this termmanog me.t o‘t‘ kewis ,as
the child process can recover the RETURN_CODE. retur.ned by any program 1l @;ms s
a child process. When a program is terminated us;pg'thl_s method an.d C(’)DFIO Fe uens
MS-DOS, a batch (BAT) file can be used to test the teyminated program’s return

using the IF ERRORLEVEL statement

Only two general conventions have been adopted for the value of R]? TUR.:L:;?; é
First, a RETURN_CODE value of 00H indicates a not njlal po—e:.ror ter rfuna 10 o
prog:ram; second, increasing RET URN_CODE values indicate mcre.asulqg selzex 1ryt(i)1
ditions under which the program terminated For instanfe, a corflgller coclll 11186 -6;1 -
RETURN_CODE 00H if it found no errors in the source file, 01H if it found only warning

errors, or 02H if it found severe €rrors

If a program has no need 1o refurf any special RETURN_CODE values, thenfthe éollowing
instructions will suffice to terminate the program with a RET URN_CODE of O0H:

MOV AX, 4COCH
INI 278

Apart from being the approved termination method, Ier:mix?ate Procezs gmth th;llxino(tjl?ig
is easiet to use with EXE programs than any other termination metho N eca_us alomhe
methods require that the CS register point to the start of the PSP when' t ;: progr am e
nates. This restriction causes problems for EXE programs because they have ca g
ments with segment addresses different from that of the PSP

The only problem with Terminate Process with Return Code is that it is n{:))t avﬁak;lt?bt;:der
‘MS-DOS versions earlier than 2.0, so it cannot be used if a program must e co e}tjhe

with early MS-DOS versions However, Figure 4-3 Sh?WS hovtr a pfog:am can xiisble e
approved termination method when available but still remain pre-2 0 compa

Warm Boot/ Terminate Vector below
IEXI SEGMENI PARA PURLIC 'CODE’
ASSUME CS:IEXI,DS:NOIHING,ES:NOIHING,SS:NOIHING
IERM _VECIOR DD ?
ENTIRY_PROC PRGC FAR

:gave pointer to termination vector in PSP
;

MOV WORD PIR £5: IERM_VECIOR+0, 00000 ;save offset of Warm Boot vector
£
MOV WORD PIR CS:IERM_VECIOR+2,DS :save segment address of PSP

- 'S (more)
Figure 4-3. Terminating properly under any MS-DOS version

The M$-DOS Encyclopedia

Article 4: Structure of an Application Program

p*4%k¥# Place main task here ***#%

;determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH, 30h ;lead Get MS-DOS Version Number function code

INT 21k ;call MS-DOS to get version number
OR AL,AI isee if pre-2.0 MS-DO3
JNZ IERM 0200 r3ump if 2 0 or later

;terminate under pre-2 .0 MS-DOS

JMP CS:TERM _VECIOR iJjump to Warm Boot vector in PSP

rterminate under MS-DOS 2.0 or later

IERM..0200:
MOV AX, 4C00h i load MS-DCS termination function code
;and return code
INI 21h rcall MS-DOS to terminate
ENTRY_PROC ENDP
IEXT ENDS
END ENIRY_PROC rdefine entry point

Figure 4-3 Continued

The Terminate Program intertupt

Before MS-DOS version 2 0, terminating with an approved method meant executing

an INT 20H instruction, the Terminate Program interrupt The INT 20H instruction was
replaced as the approved termination method for two primary reasons: First, it did not
provide a means whereby programs could return a termination. code; second, CS had
to point to the PSP before the INT 20H instruction was executed

The restriction placed on the value of CS at termination did not pose a problem for COM
programs because they execute with CS pointing to the beginning of the PSP A EXE pro-
gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate. Because of this, few EXE programs attempt simply to execute a Terminate Pro-
gram intesrupt from directly within their own code segments Instead, they usually use
the termination method discussed next

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a EXE
program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction
o which the program can jump in order to terminate MS-DOS adopted this techniqgue to
support the many CB/M programs ported to MS-DOS. Under CP/M, thiis PSP location was
referred to as the Warm Boot vector because the CP/M operating system was always
rejoaded from disk (rebooted) whenever a program terminated

Section II Programming in the MS-DOS Environment . 117

Part B: Programming for M5-DOS

Because offset O0H in the PSP contains an INT 20H instruction, jurnping o thgt lf)cation |
terminates a program in the same manner as an INT 20H included directly within the pro-
gram, but with one important difference: By jumping to PSI?:QOIOOH, the program s.ets the
CS register to point 1o the beginning of the PSP, thereby satlsfy{ng thej only restriction
imposed on executing the Terminate Program interrupt Th_e dlscu-ssmn of MS-DOS Func-
tion 4CH gave an example of how a EXE program can termmgte via P.SP:OOOOH The ex-
ampile first asks MS-DOS for its version number and then terminates via PSP:0000H only
under versions of MS-DOS carlier than 2 0 Programs can also use PSP:0000H un.dfax
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is
preferred under the later M8-DOS veisions

The RET instruction

118

The other popular method used by CI/M programs to terminate involved simiply execut-
ing a RET instruction This worked because CP/M pushed the address Qf the Warm Boot
vector onto the stack before giving the program conirol MS-DCS provides this support
only for COM-style programs; it does not push a termination address onto the stack

before giving EXE programs control
The programmer who wants to use the RET insu uction to return to MS-DOS can use the
variation of the Figure 4-3 listing shown in Figure 4-4

IEXI SEGMENI PARA PUBLIC 'CODE’

ASSUME CS:IEXI,DS:NOIHING,ES:NOIHING,SS:NOIHING
ENIRY_PROC PRCC EAR ;make proc FAR so REI will be FAR

;Push pointer to termination vector in PSP

PUSH DS ;push PSP's segment address

XOR AX,RX .ax = 0 = offset of Warm Boot vector in PSP
B

PUSH AY ;push Warm Boot vector offset

Lefxx+ Place main task here *¥i¥¥

:Determine which MS5-DOS version is active, take jump if 2.0 or later

MOV AH, 30h i1oad Get MS-DOS Version Number function code
INI 21h ;call MS-DOS to get version number

OR AI AL ;see if pre-2 0 MS-DOS

JNZ IERM._0200 jjump if 2.0 or later

;Ierminate under pre-2 0 MS-DOS {this is a FAR prog, =0 RET will be FAR)
RET ;pop PSP:00H into CB5:IF to terminate

more
Figure 4-4 Using RET lo retur 1t control o M5-DOS €)

The MS-DOS Encyciopedia

LG Exhibit 1204C, Page 72
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

;lerminate under MS-DOS 2.0 or later

TERM_0200:
MOV AX,4C0O0h ;AH = MS-DOS Ierminate Process with Return Code
:function code, ALl = return code of 00H
INT 21h ;call MS-DOS to terminate
ENIRY_PROC ENDP
IEXI ENDS
END ENTRY_PROC ideclare the program’s entry point

Figure 4-4 Continued

The Terminate Process function

The final methed for terminating a EXE program is Interrupt 21H Function 00H (Termi-
nate Process) This method maintains the same restriction as all other older termination
methods: CS must point to the PSP Because of this restriction, EXE programs typically
avoid this method in favor of rerminating via PSP:0000H, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0

Terminating and staying resident

A EXE program can use any of several additional termination methods to return con-

trol to MS-DOS but still remain resident within memory to service a special event See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustomizING Ms-Dos: Terminate-and-
Stay-Resident Utilities

Structure of the .EXE files

So far we've examined how the EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory Figure 4-5 shows the general structure of a EXE file

The file header

Unlike COM program files, EXE program {iles contain information that permits the

EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces-
sors. The linker places all this extra information in a header at the start of the EXE file
Although the EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS) The EXE file header contains
the following information, which MS-DOS reads into a temporary work area in memory
for use while loading the EXE program:

00-01H (EXE Signature) MS-DOS does not rely on the extension { EXE or COM) to
determine whether a file contains a COM or a EXE program Instead, MS-DOS recognizes
the file as a EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section If Programming in the MS-DOS Environment i19

Part B: Programming for MS-DOS

120

. Use Reloc : . -
Tbl Ofs at 18H Seg Relocation Ptr #1 | Seg Relocation Pir #2 | Seg Relocation Pir #3 .LSeg Reloc.auon Pr |
. (offset is from ofs lojofs hijseg lojseg hijofs lojofs hijseg lotseg hilof's 10jofs hijseg toiseg hitofs lojofs hilseg lojseg hil

x0H x1H x?H x3H x4H x5H x6H x7H x8H xSH xAH xBH xCH xDH xEH xFH

MINALLOC tMAXA.LLOC PreReloc 5§
o bytfhi bytjlo byt|hi bytho byt fhi byt
Qverlay Num Reserved

lo bythi byt

Signature [Last Page Size] File Pages [Reloc Ttems| Header Paras

O<H - 4DH |5aH llo bytjii bytflo byt|hi bytlo bytfhi bytllo byt[ni byt
Tnitial SP | Neg Chksum | Initial P {Pre Reloc CS [Reloc Tbl Ofs|
15H B> |0, Tofofs hiflo bytfni byt ofs ofofs hilseg fojseg hiflo byt]hi byt

W

e //%//
Use Reloc

Seg Relocation Pir fin
ofs lojofs hijseg lojseg hi

Seg Relocation Prr #n-1
ofs lojofs hijseg lojseg hi

Seg Relocation Pir #n-2
ofs 1ojofs hi|seg lo[seg bi

4 Jtems
at 06H

Seg Relocation Ptz #1-3
ofs loofs hi|seg lojseg hi

Usz Header //‘_/’/
Paras at 08H /—"—__/

(load module » Y
always starts on Program image _ _ _ _ _ _ _ o m m o — = — = = = — = = =
paragraph boundary) | = 7 7 7 (foad module) Use Last Paie Size at 02H Final 512_:y[e page as

End of file y indicated by F%e Pages at 04H_|

Figure 4-5 Structure of a EXE file

(ASCII characters M and Z) If either or both of the signature bytes contain other values,
MS-DOS assumes the file contains a COM program, regardless of the extension. The
reverse is not necessarily true —that is, MS-DOS does not accept the fije as a .EXE pro-
gram simply because the file begins with a EXE signature. The file must also pass several
other tests
02—03H (Last Page Size) The word at this location indicates the actual mllmber' of bytes
in the final 512-byte page of the file This word comtl)ines with the following word to detet-
mine the actual size of the file |
04—05H (File Pages) This word contains a count of the total number of 512-byte pages
required to hold the file i the file contains 1024 bytes, this word contains the value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H T he previous word (Last
Page Size, 02—03H) is used to determine the number of valid bytes in th_e final 512-byte
page Thus, if the file contains 1024 bytes, the Iast Page Size wo.rd conEams 0000H because
no bytes overflow into a final partly used page; if the file contains 1025 byt.es, the Last Page
Size word contains 0001H because the final page contains only a single valid byte {the
1025th byte).
06—07H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table See Relocation Pointer Table below

The MS-DOS Encyclopedia

Article 4; Structure of an Application Program

08—09H (Header Paragraphs) This word gives the size of the EXE file header in 16-byte
paragraphs. It indicates the offset of the program’s compiled/assembled and linked image
(the load module) within the EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program’s image. The header always spans
an even multiple of 16-byte paragtaphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file’s total size is 1025 bytes. As discussed
before, the Last Page Size word (02—-03H) will contain 0001H and the File Pages word
(04—-05H) will contain 0003H Because the header is 512 bytes, the Header Paragraphs
word (08-09H) will contain 32 (0020H) (That is, 32 paragraphs times 16 bytes per para-
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program’s itmage can be determined —in this case, 513 bytes

0A—OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution én addition fo the memory required to hold
the program’s image. MINALLOC normally represents the total size of any uninitialized
data and/or stack segments linked at the end of the program LINK excludes the

space reserved by these fields from the end of the EXE file 1o avoid wasting disk space
1f not enough memoty remains 1o satisfy MINAILOC when loading the program, MS-
DOS returns an error to the process trying to load the program f the process is
COMMAND COM, COMMAND COM then displays a Program too big to fit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the EXE
File Header below

0C—0DH (MAXAILOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution. MAXALLOC indicates
additional memory desired beyond that required to hold the program's image . MS$-DOS
uses this value to allocate MAXALLQC extra paragraphs, if available. If MAXAILOC para-
graphs are not available, the program receives the largest memory block available -—at
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field
1o request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example

Pnless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets
MAXAILOC to FFFFH. This causes MS-DQOS to allocate all of the largest block of memory
it has available to the program To make the program compatible with multitasking supe:-
visor programs, the programmer should use /CPARMAXAILOC 1o set the true maximum
number of extra paragraphs the program desires The EXEMOD utility can also be used
to alter this field.

Note; If both MINALLOC and MAXAILLOC have been set to 0000H, MS-DOS loads the
program as high in memory as possibie. IINK sets these fields to O000H if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields

OE—QFH (Initial §S Value) This word contains the paragraph address of the stack segment
relative to the start of the load module At load time, MS-DOS relocates this value by adding
the prograny’s start segment address to it, and the resulting value is placed in the SS regis-
ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSP)

Section IL. Programmiing in the M$-DOS Environment 121

LG Exhibit 1204C, Page 73
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M8-DOS

122

10—11H (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control Because MS-DOS always loads pro-
grams starting on a segment address boundary, and because the linker knows the size of
the stack segment, the linker is able to determine the correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time The EXEMOD utility can be

used to alter this field

12—13H (Complemented Checksum) This word contains the one's complement of the
summation of all words in the EXE file Current versions of MS-DOS basically ignore this
word when they load 2 EXE program; however, future versions might not, When LINK
generates a EXE file, it adds together all the contents of the EXE file (including the EXE
header) by treating the entire file as a long sequence of 16-bit words. During this addition,
LINK gives the Complemented Checksum word (12—13H) a temporary value of 0000H. If
the file consists of an odd number of bytes, then the final byte is treated as a word with a
high byte of 00H. Once LINK has totaled all words in the EXE file, it performs a one’s
complement operation on the total and records the answer in the EXE file header at
offsets 12—13H The validity of a EXE file can then be checked by petforming the same
word-totaling process as LINK performed. The total should be FFFFH, because the total
will include LINK’s calculated complemented checksum, which is designed to give the file

the FFFFH total.

An example 7-byte EXE file illustrates how EXE tile checksums are calculated. (This

is a totally fictitious file, because EXE headers ate never smaller than 512 bytes) If this fic-
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H, then the file’s total
would be calculated using C88CH + DSSEH +10BAH +00B4H =1B288H (Overflow past 16
bits s ignored, so the value is interpreted as B288H) If this were a valid EXE file, then
the B288H total would have been FFFFH instead

14—15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into
the TP register in order to transfer control to the program Because MS-DOS always loads
programs starting on a segment address boundary, the linker can calculate the correct 1P
offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this value at load time

16—17H (Pre-Relocated Inttial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register to give the EXE pro-
gram control MS-DOS adjusts this value in the same manner as the initial SS value before

loading it into the CS register

18—19H (Relocation Table Offset) This word gives the offset from the start of the file to
the relocation pointer table This word must be used to locate the relocation pointer table,
because variable-length information periaining to program overlays can occur before the
table, thus causing the position of the table to vary

1A—1BH (Overlay Number) This word is normally set to 0000H, indicating that the EXE
file consists of the resident, ot primary, part of the program This number changes only in
files containing programs that use overlays, which are sections of a program that remain

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 74
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

on disk until the program actually requires them These program sections are loaded into
memory by special pvex‘lay managing routines included in the run-time libraries supplied
with some Microsoft high-level-language compilers.

-Ihe preceding section of the header (00~1BHD is known as the formatied area. Optional
information used by high-level-language overlay managers can follow this formatted area
Unless the program in the EXE file incorporates such information, the relocation pointer
table immediately follows the formatted header area

R?location Pointer Table The relocation pointer table consists of a list of pointers to words
within the EXE program image that MS-DOS must adjust before giving the program con-
trol These words consist of references made by the program to the segments that make up
the program MS-DOS must adjust these segment address references when it loads the pro-
gram, because it can load the program into memmory starting at any segment address
boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative ta the start of the load module Together, these two words point to a third word
within the load module that must have the start segment address added to it (The start seg-
ment corresponds to the segment address at which MS-DOS siarted loading the program’s

EXE File

End of file

Rel Seg Ref=003CH
Abs Seg Ref=25D1H

Load module

Memory

F%”’

Relocation pointer 003CH

0002H:0005H +2505H | Rel Seg Ref=003CH
L 25DIH Abs Seg Ref=25D(H|
0002H:0005H

L |

Relocation pointer table Load modul
+2595H L StartSeg pad ot
) 2597H:0005H — 2505H %
Formatted header area Program segment prefix
Start of file

Figure 4-6 The EXE file relocation procedure

Section I Programming in the MS-DOS Environment 123

Part B: Programming for MS-DOS

image, immediately following the PSP) Figure 4-6 shows the entire procedure MS-DOS
performs for each relocation table entry

The load module

The load module starts where the EXE header ends and consists of the fully linked image

of the program. The load module appears within the EXE file exactly as it would appear in

memory if MS-DOS were 10 Ioad it at segment address 0000H The only changes MS-DOS
makes to the load module involve relocating any direct segment references

Although the EXE file contains distinct segment images within the load module, it pro-
vides no information for separating those individual segments from one another. Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memory, relocate any direct segment references, and give the program

control.

Loading the .EXE program

124

So far we've covered all the characteristics of the EXE program as it resides in memory
and on disk. We've also touched on all the steps MS-DOS performs while loading the EXE
program from disk and executing it The following list recaps the EXE program loading
process in the order in which MS-DOS performs it:

1 MS-DOS reads the formatted area of the header (the first 1BH bytes) from the EXE
file into a work area

2 MS-DOS determines the size of the largest available block of memory

3 MS-DOS determines the size of the load module using the Last Page Size (offset
02ID), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
header An example of this process is in the discussion of the Header Paragraphs
field

4 MS-DOS adds the MINALLOC field (offset DAH) in the header to the calculated load-
module size and the size of the PSP (100H bytes). If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and tetuzns an €1rof 1o
the calling process If the calling process was COMMAND COM, COMMAND COM
then displays a Program too big fo fit in memory e11or message

5 MS-DOS adds the MAXAILOC field (offset 0CH) in the header to the calculated
load-module size and the size of the PSP. If the memory block. found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size to the program
from the memory block; if the calculated iotal exceeds the block’s size, MS-DQOS
allocates the entire block

6 1f the MINALLOC and MAXAITOC fields both contain Q000H, MS-DQS uses the
calculated load-module size to determine a start segment. MS-DOS calculates the
start segment so that the load module will Jead into the high end of the allocated
block. If either MINAILOC or MAXATLOC contains nonzero values (the normal
case), MS-DOS establishes the start segment as the segment following the PSP

7 MS-DOS loads the load module into memory starting at the stait segment.

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 75
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod-
ule’s direct segment references, as shown in Figure 4-6
9. MS-DOS builds a PSP in the first 100H bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
AL and AH registers
10 MS-DOS sets the SS and SP registers to the values in the header after the start seg-
ment is added to the §S value.
11. MS-DOS sets the DS and ES registers to point to the beginning of the PSP
12. MS-DOS transfers control to the EXE program by setting CS and IP to the values in
the header after adding the start segment to the CS value

Controlling the .EXE program’s structure

We've now covered almost every aspect of a completed EXE program. Next, we’ll discuss
how to control the structure of the final EXE program from the scurce level. We'll start by
covering the staiements provided by MASM that permit the programmer to define the
structure of the program when programming in assembly language Then we’ll cover the
five standard memory models provided by Microsoft’s C and FORTRAN compilers (both
version 4.0), which provide predefined structuring over which the programmer has
limited control

The MASM SEGMENT directive

MASM’s SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data that have
offset addresses relative to the same common segment address

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT lalign] [combinel ['class']

With MASM, the contents of a segment can be defined at one point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off This occurs regard-
less of the combine type specified in the SEGMENT directive —the combine type influ-
ences only the actions of the linker See The combine Type Parameter below.

The align type parameter

The ‘optional align parameter lets the programmer send the linker an instruction on how
t? align a segment within inemory. In reality, the linker can align the segment only in rela-
tion to the start of the progiam’s load moduie, but the result remains the same because
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary (The PAGE
align type creates a special exception, as discussed below }

The following alignment types are permitted:

BYTE IThis align type instructs the linker to start the segment on the byte immediately
followmg the previous segment BY TE alignment prevents any wasted memory between
the previous segment and the BY T E-aligned segment

Section II. Programming in the MS-DOS Environment 125

Part B: Programming for MS-DOS

126

A minor disadvantage to BY TE alignment is that the 8086-family segment registers might
not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment This means that the segment size should not
be more than 15 bytes short of 64 KB The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragr aph
addressing boundary

Ancther possible concern is execution speed on true 16-bit 8086-family microprocessors.
When using non-8088 microprocessors, 2 program ¢an actually run faster if the instruc-
tions and word data fields within segments are aligned on word boundaries 1 his permits
the 16-bit processors to fetch full words in a single memory read, rather than having to per-
form two single-byte reads The EVEN directive tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment of the items within the segment

WORD This align type instructs the linker to start the segment on the next word bound-
ary Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-zligned segment in order to position the new segment on a
word boundary

Another minor disadvantage to WORD alignment is that the 8086-family segment registers
might not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment tegisters may have to point as many as
14 bytes behind the start of the segment. T his means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

PARA This align type insiructs the linker to start the segment on the next paragraph
boundary The segments default to PARA if no alignment type is specified Paragraph
boundaries occut every 16 bytes and consist of alt addresses with hexadecimal values end-
ing in zero (0000H, 0010H, 0020H, and so forth) Paragraph alignment ensures that the
segment begins on a segment register addressing houndary, thus making it possible to ad-
dress a full 64 KB segment Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment The only real disadvantage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment.

PAGE This align type instructs the linker to start the segment on the next page boundary
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (0000H, 0100H, 0200H, and so forth). PAGE alignment ensures

The MS$-DOS Encyclopedia

Article 4: Structure of an Application Program

LG Exhibit 1204C, Page 76
LG Electronics, Inc. v. Papst Licensing

only that the linker positions the segment on a page boundary relative to the start of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entite
load module on a paragraph boundary.

When a programmer declares pieces of a segment with the same name in different source
modules, the afign type specified for each segment piece influences the alignment of that
specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

_DAIA SEGMEN1 PARA PUBLIC 'DAIA’
DB *123"
_DAIA ENDS

_DAIA SEGMENTI PARA PUBIIC 'DAIA®
DB '4567
—DAIA ENDS

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. When the linker encounters the second segment piece
in the second object module, it aligns that piece on the first paragraph boundary following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second. The segment pieces must exist in separate source modules for this to occur If
the segment pieces exist in the same source module, MASM assumes that the second seg-

“ment declaration is simply a resumption of the first and creates an object module with

segment declarations equivalent to the following:

_DATA SEGMENT PARA PUBIIC 'DAIA'
DB 123"
DB ‘456"

~DATA ENDS

Thecombine type parameter

The optional combine parameter allows the programmer to send directions to the linker
on how to combine segments with the same segname occurring in different object mod-
gles. I no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname The combine type has no effect on the relationship of segments with
different segnames. MASM and IINK both support the following combine types:

PUBIIC This combine type instructs the linker to concatenate muitiple segments having
the same segname into a single contiguous segment. T he linker adjusts any address refer-
ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment This combine type is useful for ac-
cessing code or data in different source modules using a common segment register value.

STACK This combne type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the program’s stack and initialization data contained within STACK segments is handled
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker' to determine the initial S8 and SP register values it places in the EXE

Section II. Programming in the MS-DOS Environment 127

Part B: Programming for M5-DOS

128

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source modules, the linker
will concatenate them in the same fashion as PUBLIC segments. However, initialization
data declared within any STACK segment is placed at the high end of the combined STACK
segments on a module-by-module basis. Thus, each successive module’s initialization data
overlays the previous module’s data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can-
not determine the program'’s initial SS and SP values (The warning can be ignored if the
program itself injtializes $S and SP) :

COMMON This combine type instructs the linker to overlap multiple segments having

the same segname The length of the resulting segment reflects the length of the longest
segment declared If any code or data is declared in the overlapping segments, the data
contained in the final segments linked replaces any data in previously loaded segments
This combine type is useful when a data area is to be shared by code in different source

modules.

MEMORY Microsoft’s I INK treats this combine type the same as it treats the PUBLIC
type MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel’'s definition of a MEMORY combine type.

AT address This combine type instructs IINK 1o pretend that the segment wili reside at
the absolute segment address LINK then adjusts all address references to the segment in
accordance with the masquerade LINK will nof create an image of the segment in the
load module, and it will ignore any data defined within the segment. This behavior is con-
sistent with the fact that MS-DOS does not support the Joading of program segments into
absolute memoty segments. All programs must be able to execute from any segment ad-
dress at which MS-DOS can find available memory The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the program For
instance, SEGMENT AT 0000H could be used to create a template of the 8086-family inter-
rupt vectors, Because data contained within SEGMENT AT address segments is suppressed
by LINK and not by MASM (which places the data in the object module), it is possible o
use OB fites generated by MASM with another linker that supports ROM or other absolute
code generation shouid the programmer require this specialized capability

The class type parameter
The class parameter provides the means to organize different segments into classifications

For instance, hete are three source modules, each with its own separate code and data
segments:

;Module "A"
2_DAIA SEGMENI PARA PUBIIC 'DAIA'
:Module "A" data fields
A _DATA ENDS
A _CODE SEGMENI PARA PUBLIC 'CODE'
;Module "A" code
A_CODE ENDS
END

(more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;Module "BY
B_DATA SEGMENI PARA PUBLIC 'DAIA’
;Module "B" data fields
B_DATA ENDS
B_CODE SEGMEMI PARA PUBLIC 'CODE'
;Module "B" code
B..CODE ENDS
END

;Module ™C™
C_DAIA SEGMENI PARA PUBLIC 'DAIA’
;Module "C" data fields
C.DAIA ENDS
C_CODE SEGMENI PARA PUBLIC 'CODE'
iModule "C" code
C_CODE ENDS
END

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them If the prbgrammer speci-
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A_DATA
A _CODE
B_DATA
B.CODE
C_DATA
C_.CODE

However, if the programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows:

'DAIAY class: A DATA
B.DAIA
C_DAIA

'CODE' class: A_CODE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches. The prefeired method involves using the /DOSSEG switch with the linker
This produces the segment ordering shown in Figure 4-1 The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segments declared in the various other source modules The programmer creates the list
in the order the segments are to be arranged in memory and then specifies the OB file for
this module as the first file for the linker to process This procedure establishes the order
of all the segments before 1INK begins processing the other program modules, so the

Section 1L Programming in the MS-DOS Environment 129

LG Exhibit 1204C, Page 77
LG Electronics, Inc. v. Papst Licensing

Part B: Programrning for M5-DOS

130

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous exampie so
that the linker places the ‘CODE' class before the 'DATA' class:

A _CODE SEGMENI PARA PUBLIC "CODE'
A_CODE ENDS
B_CODE SEGMENI PARA PUBLIC 'CODE'
B_CODE ENDS
C_CODE SEGMENT PARA PUBIIC 'CODE’
C_CODE ENDS

A_DAIA SEGMENI PARA PUBLIC 'DAIA’
A _DAJA ENDS
B_DAIA SEGMENT PARA PUBLIC 'DATA’
8_DAIA ENDS
C_DATA SEGMENI PARA PUBLIC 'DAIA?
C_DAIA ENDS

END

Rather than creating a new module, the third method places the same segment ordering
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying for the linker. This duplicates the approach used by
Microsoft’s newer compilers, such as C version 40

The ordering of segments within the load module has no direct effect on the linker’s
adjustment of address references to locations within the vatious segments Only the
GROUP directive and the SEGMENT directive’s combine parametet affect address
adjustments performed by the linker See The MASM GROUP Directive below

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object
file in alphabetic order regardless of their order in the sousce file These older versions can
limit efforts to control segment ordering Upgt ading 10 2 new version of the assembier is
the best solution to this problem

Ordering segments to shrink the .FXE file

Correct segment ordering can significantly decrease the size of a EXE programas it
resides on disk This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker’s ordering of the program’s
segments so that the uninitialized data field segments all reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod-
ules to tell the linker about initialized and uninitialized areas of all segments The linker
then uses this information o prevent the writing of uninitialized data areas that occur at
the end of the program image as part of the resulting EXE file To account for the memory
space required by these fields, the linker also sets the MINAILOC field in the EXE file
header o represent the data area not wiitten to the file MS-DOS then uses the MINALLOC
field to reallocate this missing space when loading the program.

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 78
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

The MASM GROUP directive

Ihhe MASM GBOUF’ directive can also have a strong impact cn a EXE program However;
the GROUP d1r‘e§t1ve has no effect on the arrangement of program segroents within men;-
ory Rather, GROUP associates program segments for addressing purposes.

The GROUP directive has the following syntax:
grpmame GROUP segname, segname, segname, .

{his directive causes the linker to adjust all address references to labels within any speci-
fied segname to be relative to the start of the declared group The start of the group is de-

termined at link time The group starts with whiclh : i
: _ ever of the se t i
the iinker places lowest in memory ments n the GROUP fix

That the GROUP directive neither causes nor requires contiguous arrangement of the
gF(')L.iped segments creates some interesting, although not necessarily desirable, possi-
bilities For instance, it permits the programmer to locate segments not belongi’n to the
declared group berween segments that do belong to the group The only rests ict;%)n im
posed on the declared group is that the last byte of the last segment in the group must]

occur within 64 KB of the start of the group. Figure 4-7 ill I]
e et group. Figu illustrates this type of segment

&
SEGMENI_C
(listed with GROUP directive)
LABEL C »
—~—- LABEL. B P
@,KB Offset to ! SE,G MENT_B
maximum LABEL B {not listed with GROUP directive)
Offsetto &
LABEL_C
— LABEL_A p
Offiset to . S.EGMENI‘A
LABEL A (listed with GROUP directive)
A4

Figure 4-7 Noncontiguous segmentis in ihe same GROUP.

g’arm’ng:' One of the most confusing aspects of the GROUP directive relates to MASM’s
FFSE‘T operator. The GROUP directive affects only the offset addresses generated by
such direct addressing instiuctions as ¢

MOV AX, FIELD_LABEL
but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSET FIELD_LABEL

Section [I- Programming in the MS-DOS Environment 131

Article 4: Structure of an Application Program

Part B: Programming for MS-DOS

SIACK SEGMENT PARAR SIACK 'SIACK'

quires the
SIACK ENDS

Using the OFFSET operator on labels contained within grouped segments e

following approach:
DGROUP GROUP _DAIA,CONSI, BSS,SIACK

MOV AX¥,0OFFSEI GROUP_NAME ; FIEID_1ABEL

quest the offset from the group base, because MASM

The programmer must explicitly re
erator to be the offset of the label from the start of its

defines the result of the OFFSET op
segment, not its group

;Constant declarabions k3 s k% e s kX Ef b FE R A A SRR RIRFRFRF IR LR A FE R R EF b BB Rk F R kkE
CONSI SEGMENT WORD PUBLIC 'CONST'

Structuring a small program with SEGMENT and GROUP 7
CONSI_FIEID-A DB 'Constant A’ ;declare a MODULE_A constant

Now that we have analyzed the functions perfor med by the SEGMENT and GROUP direc-

tives, we'll put both directives to work structuting a skeleton program. The program,
shown in Figures 4-8, 49, and 4-10, consists of three scurce modules (MODUILE_A,
MODULE_B, and MODULE_C), each using the following four program segments:

? CONSI ENDS

4 P . ..
;Preinitialized data fields #®* sFrfd st bhd db 2k R d R FRRXER LR TR I RFRRRRETR X4 R A
#4

—DbAIA SEGMENI WCRD PURBLIC 'DAIA’

Segment Definition

_TEXT The code or program text segment DATA _FIEID.A DB Data A ideclare a MODUIE.A preinitialized fisld
_DATA The standard data segment containing preinitialized data fields the pro- ; paia =NDS

gram might change
CONST The constant data segment containing constant data fields the program

xviuxzotchange :f ;Uninitialized data Fields ##&%x3 s ¥ A r s 2 ER PR R FARAELELFAIR RS R T IR AR bR AREX S X EEE £ R
_BSS The “block storage segment/space” segment containing uninitialized data

fields* ' _BSS SEGMENT WORD PUBLIC 'BSS’

B
* Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as | se-FrEn=t o 5 PURE) rdeclare & MODULE..A uninitialized field
mewhat more elaborate, defini- X _BSS ENDS

“lock started at symbol, which reflects an equally appropriate, although so
rion of the abbreviation Other commen translations QF BSS, such as blank static storage, misrepresent the

segment name, because blanking of BSS segments does not occur—the memory contains undetermined
values when the program begins execution

;Program text EAEF R FR BRI R RS RFLRET R R R R R Rk Pk bRk pd R h R kdckckk Rk sy kR kR ke E R by &

;Source Module MODULE_A _TE¥I SEGMENT BYIE PUBLIC 'CODE'

;Predeclare all segments to force the linker's segment orderin HEEFHFAA IR RIS

. g c g ASSUME CS:_IEXI,DS:DGROUP,ES:NOIHING, 5S:NOIHING

_IEXI SEGMENT BYIE PUBLIC 'CODE’

e ENDS . Sziii PROC_B:NEAR :label is in _IEXI segment (NEAR)
; PROC_C:REAR rlabel ig in _IEXI segment (NEAR)

DAIA SEGMENI WORD PUBIIC 'DATA’ PROC.A PROC NEAR

_paIr ENDS
CALL eali i
coNsI SEGMENI WORD PUBLIC 'CONSI' el EESC-JE ;cali into MODULE_B
CONST ENDS c-LC icall into MODULE_C
MoV RX, 4CO0H st ermi
iterminate (MS-DOS 2 0 o 1
NI 218 r later only)

_BSS SEGMENI WORD PUBIIC 'BSE’
_ESS ENDS
PROC_& ENDP

(more)

Figure 48 Structuring a EXE program MODULE_A
_IEX1 ENDS

Figure 4-8 Continyed (more)
maore

132 The MS-DOS Encyclopedia .)
Section II: Programming in the MS-DOS Environment 133

LG Exhibit 1204C, Page 79
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

;Stack ***************#************************##****i***it***s**i******t*****
H X

SIACK SEGMENI PARA SIACK 'SIACK'

DW 128 DUP({2?) ;declare some space to use as stack

SIACK BASE LABEL WORD N

SIACK ENDS

END PROC_A ideclare PROC.A as entry point

Figure 4-8 Continued

;Source Module MODUIE_B

iConstant declarations *k******#*****#********#********t******i***%******$****
CONS1 SEGMENT WORD PUBEIC 'CONSI’
CONST_FIEID_B DB ‘constant B' jdeclare a MODULE_B ceonstant

CONST ENDS

B s B £ 3 % FAKFERE RN KRR RRF R R A Fa kg kR kk kk R Rk RE RS
;Preinitialized data Fields FrEksxsxiitd

_DATA SEGMENI WORD PUBLIC 'DATA’
DAIA FIEID_B DB *Data B'

_DATA END3

.Uninitialized data fields ERRAERA R AEA R R R R R FE R R REE KRR K F A NI A F R A FHEREA

_B3S SEGMEMI WORD PUBLIC 'BES'
BSS_FIELD_B DB 5 DUP (2}

—BSS ENDS

jProgram tex
DGRCUP GROUP -DAIR, CONSI, .B3S
_IEXI SEGMENT BYIE PUBIIC 'CODE’

ASSUME CS:_IEXI,DS:DGROUP,ES:NOTHING, 5S:NOIHING

Figure 4-9 Structuring a EXE program. MODULE_B

134 The MS-DOS Encyclopedia

1 *k*k************i********i*****************k***%#*******%*****k*

;declare a MODUIE_B preinitialized field

;declare a MODUIE_B uninitialized field

(more)}

o
i
A
|
i
i
|

Article 4: Structure of an Application Program

PUBIIC PROC_B :reference in MODULE_A

PROC_B PROC NEAR
RETI

PROC_B ENDP

_IEXI ENDS

END

Figure 4-9. Continued

; Source Module MODULE_C

;Constaﬁt declarations * k¥ &k k¥ FER KX RX R ERKERS KR K FRERBRRKKRRUKEK LR ARk h kI RRE LSRR
CONSI SEGMENI WORD PUBLIC 'CONSI'

CONSI_FIEID C DB 'Constant C' ideclare a MODUIE_C constant

CONSI ENDS

;Preinitialized data fields #*x*®dksyexRRhrd kb v hokbhbbd kb hdk A bkd kb bR bk kxR R R B X &
—DAIA SEGMENI WORD PUBIIC 'DAIA'
;declare a MODULE_C preinitialized field

DATA_FIELD_C DB 'Data C'

_DATA ENDS

;Uninitialized data fields #&#tkdfd ex kb bR badh kB hbhhRhhkhRbk kbbb krhhbkF b ¥ d d k5 k%

.BSS SEGMENI WORD PUBLIC 'BS3'
BSS_FIELD_C DB S pup(?) ;jdeclare a MODUIE_C uninitialized field

_BS5S ENDS

SPIOQEAmM Lot FE4 k4 d 4 bt 6 d R4 4 A Ed AR kA ARk SR R AR ARG AR AR K RAA LT REFT R AR S
DGROUP GROUP _DATIA,CONSI,_BSS
—IEXI SEGMENI BYIE PUBLIC 'CODE'

ASSUME CS:_IEXI,DS:DGROUP,ES:NOIHING,SS:NOTHING

Figure 4-10 Structuring a EXE program: MODUIE_C (more)

Section IT. Programming in the MS-DOS Environment 135

LG Exhibit 1204C, Page 80
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

Part B: Programming for MS-DOS

1
|
!

PUBLIC PROC_C :referenced in MODULE_A Address Publics by value
PROC_C PROC NEAR S 0000:0008 PROC_B
£000:000C PROC_C
REI Program entry point at 0000:0000
PROC_C ENDP ! Figure 4-11. Continued
—IEXL ENDS The above memory map report represents the memory diagram shown in Figure 4-12
END
) Absolute
Figure 4-10 Contintied k| address Size in bytes
) . . ; 001S0H » -
This example creates a small memory model program image, so the linked program can : Y
have only a single code segment and a single data segment —the simplest standard form § gl‘:j:(SIACK (a) | »°
of 2 EXE program See Using Microsoft’s Contemporary Memory Models below | Y _ > | 1
il v K 'ARA a
In addition to declaring the four segments already discussed, MODULE_ A declares a O004FH | - -~ - - ~ gntsl; © 5
STACK segment in which to define a block of memory for use as the program’s stack and 0004AH W[- - - - —-1— - - - - WORD align g7 T
also defines the linking order of the five segments Defining the linking order leaves the 00049H | - — - - - - OBS - E 5 15
programmer free to declare the segments in any Ofder' when deﬁlnmg the segmt}e;t con- . D004H p| - - — — — — Class - FFORD S gon o
tents— a necessity because the assembler has difficulty assembling programs that use O0043H B\ -DGROUP =~ = = = = BSS (A) 5
forward references i ﬁﬁg : Cronp = consT — |- CONST(©) 10 A
With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com- : 000ZAH p| — - - - - Ciass _ | CONST (B) 10 10
mands can be made into a batch file: 0020H P | — — — = = CONST (A) 19
6
RUCA; 000IAH | - ~ — — — - DAlA - DATAD) g
MASM SI H DATA (B) &
MASM SIRUCB; 00014H p| - - - — - - Class - ¢
! : DATA (A) 6
MASM SIRUCC; H O000EH p; - - - - = -
1LINK SIRUCA+SIRUCBHSTRUCC/M; g 0000DH P WORD align gap ! 4
] . . . ; = : TEXT (C) 1
These commands will assemble and link all the ASM files listed, producing the memory 0000CH (- - - - CODE ~ - - TEXT(B) I ?3
map report file STRUCA MAP shown in Figure 411 DGROUP 0000BH B |- — — - Class - - - TEXT (&) T ¢
5 addressing B CO000H p
Start Stop Length Name Class) base
00COOR 0000CH 0000DE _IEXI CODE :
GOOODEH QO01FH 00012H _DAIA DAIA Figure 4-12 Structure of the sample EXE program
000200 0003DE 0001EH CONSI CONST :
Sﬁgiﬁi gg?jgi 3?,?332 —sji.if‘.}(ﬁicx Using Microsoft’s contemporary memory models
,5 Now that we've analyzed the various aspects of designing assembly-language EXE pro-
Origin Group e grams, we can look at how Microsoft's high-level-language compilers create EXE pro-
0000:0 DGROUP grams from high-level-language source files. Even assembly-language programmers will
. g ind this discussion of interest and should seriously consider using the five standar
ddress Publics by Name find this d f interest and should Iy d o the clard
memory models outlined here
0:0008 PROC_B s . . ‘ , . . .
ggg 0:000C PROC_C This discussion is based on the Microsoft C Compiler version 4.0, which, along with the
: (more) Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
Figure 4-11 Structuring & EXE program memory map report generator curtently available These newer compilers generate code based on three to five

Section II Programming in the MS-DOS Environment 137
130 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 81
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M5-DOS

138

of the following standard programmer—seiectable program str UCEUIes, referred to as mem-
ory models The discussion of each of these memory models will center on the model’s
use with the Microsoft C Compiler and will close with comments regarding any differences
for the Microsoft FORTRAN Compiler

Small (C compiler switch /AS) This model, the default, includes only 2 single code seg-
ment and a single data segment. All code must fit within 64 KB, and all data must fit within
an additional 64 KB Most C program designs £4i] into this category Daia can exceed the
64 KB limit only if the far and huge artributes are used, forcing the compiler o use far
addressing, and the linker to place far and huge data jtems into separale segments The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used with a small model The C compiler uses the default segment name
_TEXT for all code and the defauit segment name DATA for ail non-far/huge data
Microsoft FORTRAN programs can generate a semblance of this model only by using the
/NM {name module) and /AM (medium model) compiler switches in combination with the

near attsibute on all subprogram declarations.

Medium (C and FORTRAN compiler switch /4M) This model includes only a single data
segment but breaks the code into multiple code segments All data must fit within 64 KB,
but the 64 KB restriction on code size applies only on a module-by-module basis. Data can
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments
The data-size-threshold switch described for the compact model is ignored by the
Microsoft C Compiler when used with 2 medium model. The compiler uses the default seg-
ment name _ DATA for all non-far/ huge data and the template module TEXT to create
names for all code segments The module clement of module_TEXT indicates where the
compiler is to substitute the name of the source module For example, if the source module
HELPFUNC C is compiled using the medium model, the compiler creates the code seg-
ment HFI PFUNC_TEXT The Microsoft FORT RAN Compiler version 4 0 directly suppotts

the medium model

Compact (C compiler switch /AC) This model includes only a single code segment but
breaks the data into multiple data segments All code must fit within 64 KB, but the data is
allowed to consume all the remaining available memory. The Microsoft € Compiler’s op-
tional data-size-threshold switch (/GU controls the placement of the larger data items into
additional data segments, leaving the smaller iterns in the default segment for faster access.
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge The compiler uses the default segment name
_TEXT for all code segments and the template modules DATA 10 ci€ale names for all data
segments. The module element indicates where the compilet is to substitute the source
module’s name; the # element represents a digit that the compiler changes for each addi-
tional data segment required to hold the module’s data. The compiler starts with the digit 5
and counts up. For example, if the name of the source module is HELPFUNC C, the com-
piler names the first dara segment HELPFUNCS_DATA FORTRAN programs can generate
2 semblance of this model only by using the /NM (name module) and /AL (large modeD
compiler switches in combination with the near attribute on all subprogram declarations

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 82
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

Large (C and FORTRAN compiler switch /AL This model creates muitiple code and dat
segments, The compiler treats data in the same manner as it does for the compact moclala
and Fr'eats code in the same manner as it does for the medium model. The Microsoft)
FORTRAN Compiler version 4 0 directly supports the large model |

Huge (C and FORTRAN compiler switch /AH) Allocation of segments under the huge
model follows the same rules as for the large model. The difference is that 1'ndividuatz(lg d
items can exceed 04 KB Under the huge model, the compiler generates the necessaz ata
code tf) index arrays or adjust pointers across segment boundaries; effectively tr ansfcy' i
- the microprocessor’s segment-addressed memory into linear—addr;ssed menZOI Ih‘Immg
makes the huge rfmdel especially useful for porting a program originally Wliiteg for :ts 10-
CS'SSOI thét gsed ‘hnear addressing. The speed penalties the program pays in exchangepfox
this gddressmg freedom require serious consideration. If the program actually contains
?ny Ei:f‘ structures exceeding 64 KB, it probably contains only a few In that case, it is best
o avoid using the huge model by explicitly declaring those few data items as hu, ’e usi
Fhe hugc? keyword within the source module. This prevents penalizing all the nogn—humg
items with extra addressing math The Microsoft FORTRAN Compiler version 4 0 dix o
supports the huge model ety

ngurg 4-13 shows an example of the segment arrangement created by a large/ huge model
zogx?m T h; example assumes two source modules: MSCA C and MSCB C. Each source
nodule specifies enough data to cause the compiler ' .
: piler to create two extra data segments fo
that module The diagram does not show all the various segments that cccur asga result o;'

linking with the run-time libt ' ' : ili i i i '
Codetiow debogatr ary or as a result of compiling with the intention of using the

Groups Classes Segments
STACK STACK 4 SMCLH: Program stack
SGROUP BSS c_common | SM: All uninitiatized global items. CLH: Empty
_BSS 4 SMCLH: All uninitialized non«fm/hdge items
CONST CONST <« SMCLH: Constants (floating point constraints segment addresses etc)
DATA _DATA 4 SMCLH: All items that don't end up anywhere else
FAR_BSS FAR_BSS | SM: Nonexistent, CLH: All uninitialized global iterms

MSCB6_DATA 4 From MSCB only: SM: Far/huge items CLH: Items larger than thresheld
FAR DATA MSCBS_DATA « From MSCB only: SM: Farhuge items CLH: ltems larger than thresheld
MSCAS DATA| - From MSCA only: SM: Farfhuge items CLH: Items larger than threshold
IMSCAS_DATA| 4 From MSCA only: SM: Farfhuge items, CLH: Ttems larger than threshold

copE TEXT 4 SC: All code, MLH: Run-time library code only
MSCB TEXT |« SC: Nenexistent MLH: MSCB € Code
MSCA_TEXT | o SC: Noaexistent ML H: MSCA C Code

S = Small model L = Large model
M = Medium model H= Huge modei
C = Compact model

Figure 4-13. General structire of a Microsaft C program

Section II. Programming in the MS-DOS Environment 139

Part B: Programming for MS-DOS

Note that if the program declares an extremely large number of small data items, it can
exceed the 64 KB size limit on the default data segment (. DATA) regardless of the memory
model specified This occurs because the data items all fall below the data-size-threshold
limit (compiler /Gt switch), causing the compiler o place them in the _DATA segment.
Loweting the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem

Modifying the .EXE file header

With most of its language compilets, Microsoft supplies a utility program calied EXEMOD
See PROGRAMMING UTILTTIES: Exemop This utility allows the programmer to display
and modify certain fields contained within the EXE file header Following are the header
fields EXEMOD can modify (based on EXEMOD version 400

MAXALLOC This field can be modified by using EXEMOD’s /MAX switch Because
EXEMOD operates on EXE files that have already been linked, the /MAX switch can be
used to modify the MAXATLOC field in existing EXE programs that contain the default
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS's allocating
all free memory to them, EXEMOD's /MAX switch functions in an identical manner to
LINK's /CPARMAXALLOC switch

MINALIOC This field can be modified by using EXEMOD’s /MIN switch Unlike the case
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC
MINALLOC normally represents uninitialized memory and stack space the linker has com-
pressed out of the EXE file, so a programmer should never reduce the MINAILOC value
within 2 EXE program written by someone else If a program requires some minimum
amount of extra dynamic memory in addition to any static fields, MINALLOC can bein-
creased to ensure that the program will have this extra memoty before receiving control I
this is done, the program will not have to verify that MS-DOS allocated enough memory to
meet program needs Of course, the same result can be achieved without EXEMOD by
declaring this minimum extra memory as an uninitialized field at the end of the program

Initial SP Value This field can be modified by using the /STACK switch to increase of
decrease the size of a program’s stack, However, modifying the initjal SP value for pro-
grams developed using Microsoft language compiler versions earlier than the following
may cause the programs to fail: C version 3 0, Pascal version 3 3, and FORTRAN version

3 3 Other language compilers may have the same restriction The /STACK switch can also
be used with programs developed using MASM, provided the stack space is linked at the
end of the program, but it would probably be wise to change the size of the STACK seg-
ment declaration within the program instead The linker also provides a /STACK switch
that performs the same purpose

Note: With the /H switch set, EXEMOD displays the current values of the fields within
the EXE header This switch should not be used with the other switches EXEMOD also

displays field values if no switches are used

140 The MS-DOS Fncyclopedia

s e

LG Exhibit 1204C, Page 83
LG Electronics, Inc. v. Papst Licensing

Article 4: Structure of an Application Program

Wc_nning:' EXEMOD also functions correctly when used with packed EXE files created
using EXEPACI.(or thte /EXEPACK linker switch However, it is important to use the
iXEM(iD vers%z; sc}inpped with the linker or EXEPACK utility. Possible future changes in
e packing method may result in incompatibilities between EXEMOD i
linker/EXEPACK versions ndnonassociaed

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at least one
unspotted error If a program has been distributed to other users, the programmer will
probably need to provide those users with corrections when such bugs come to light One
zr.lexpensive updating approach used by many large companies consists of mailing out
smgtile-page instructions explaining how the user can patch the program to correct the
problem

Pr.ogx am patching usually involves loading the program file into the DEBUG utility sup-
plied Wxth MS-DOS, storing new bytes into the program image, and then saving thst; r}?)-
gram file back to disk Unfortunately, DEBUG cannot load a2 EXE program into merfox
and then save it back to disk in EXFE format. The programmer must trick DEBUG into ’
patching EXE program files, using the procedure outlined below See PROGRAMMING
UTILITIES: pEBUG

Note: Usets should be seminded to make backup copies of their pr
. O . i
ing the patching procedure Peer program before arempt

1 Rename the EXE file using a filename extension that does not have special meaning
for DEBUG (Avoid EXE, COM, and HEX) For instance, MYPROG BIN serves well as
a t.emporaxy new name for MYPROG EXE because DEBUG does not recognize a file
with a BIN extension as anything special DEBUG will load the entire image of
MYPROG BIN, including the EXE header and ielocation table, into memory starting
at offset 100H within a COM-style program segment (as discussed previously)

2. Locate the area within the load module section of the EXE file image that requires
patching The previous discussion of the EXE file image, together with compiler/
assembler Hstings and linker memory map reports, provides the information neces-
sary to locate the error within the EXE file image DEBUG loads the file image start-
ing at offset 100H within a COM-style program segment, so the programmer must
compensate for this offset when calculating addresses within the file image Also, the
compiler listings and linker memory map reports provide addresses relative to th:e
§tart of the program image within the EXE file, not relative to the start of the file
1;5;1}5 ;lhfgefore, the programmer must first check the information contained in the
{vithmlti ! Ezltgel io determine whete the load module (the program’s image) starts

3 Fjse DEBUG’s E (Enter Data) or A (Assemble Machine Instr uctions) command to
insert the corrections. (Normally, patch instructions to users would simply give an
address at which the user should apply the patch The user need not know how 1o

- determine the address)

4 After the patch has been applied, simply issue the DEBUG W (Write Fike or Sectors)
c9mmand to wrie the corrected image back to disk under the same filename, pro-
vided the patch has not increased the size of the program If program size ha;

Section IL. Programming in the MS-DOS Environmeni 141

Article 4: Structure of an Application Program

Part B: Programming for MS-DOS

increased, first change the appropriate size tields in the EXE header at the start of the Giving control to the .COM program
file and use the DEBUG R (Display or Modify Registers) command to modify the BX]
and CX registers so that they contain the file image’s new size Then use the W com- After allocating the largest block of free memory to the COM program, MS-DOS builds
mand to write the image back to disk undet the same name g a PSP in the lowest 100H bytes of the block. No difference exists between the PSP MS-DOS
5 Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then builds for COM programs and the PSP it builds for EXE programs Also with EXE pro-
rename the file to the original EXE filename extension _ grams, M3-DOS determines the initial values for the AL and AH registers at this time and
then loads the entire COM-lile image into memory immediately following the PSP,
EXE summary gfczl'lslf d(‘IOM files have no file-size header fields, MS-DOS relies on the size recorded in
: : e disk directo i i ' y :
To s.ummarize, the EXE program and file structur.eé provide considerable flexibility in the ' as it appears in :lzet cf)i;:t;[i?llori ikﬁziﬁiigftgtefgéigéﬁéiige' [tloads the program exacily
design of programs, providing the programmer with the necessary freedom to produce .
large-scale applications. Programs written using Microsoft’s high-Jevellanguage compilets - _ MS8-DOS then sets the DS, ES, and S8 segment registers to point to the start of the PSP If
have access to five standardized program structure mo dels (small, medium, compact, able to allocate at least 64 KB 1o the program, MS-DOS sets the SP register to offset FFFFH
large, and huge). These standardized models are excellent examples of ways o structure : + 1 (0000H) to establish an initial stack; if less than 64 KB are available for allocation to the
assembly-language programs : program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DOS then pushes a single word of 0000H onto the program’s stack for

use in terminating the program

Th e. COM Program B Finally, MS-DOS transfers control to the program by setting the CS register to the PSP’s
: E segment address and the IP register to 0100H. This means that the program’s entry point
The majority of differences between COMand EXE programs exist because COM ' must exist at the very start of the program’s image, as shown in later examples

program files are not prefaced by header information. Therefore, COM programs do not Figure 4-14 shows the overall structure of a .COM program as it receives control from

benefit from the features the EXE header provides. MS-DOS

The absence of a header leaves MS-DOS with no way of knowing how much memory the :

COM program requires in addition to the size of the program’s image. Therefore, MS-DOS -COM program memory image

must always allocate the largest free block of memory to the COM program, regardless of SPFEFEH* o on |

the program’s irie meMory requirements As was discussed for EXE programs, this allo- gk

cation of the largest block of free memory usually results in MS-DOS’s allocating all : Remaining free memory

remaining free memory — an action that can cause problews for multitasking supervisor : mmlz)ﬂésct)ﬁ ;if ?2;“‘“

programs {provided a full 64 KBgv!vaS available)

The EXE program header also includes the direct segment address relocation pointer :

table Because they lack this table, COM programs cannot make address references to the E 64 KB*
labels specified in SEGMENT directives, with the exception of SEGMENT AT address B COM program image from file

directives If a2 COM program did make these references, MS-DOS would have no way of : j

adjusting the addresses to correspond to the actual segment address into which MS-DOS COM program image

: < IP=0100H

loadled the program See Creating the COM Program below. Program segment prefix

The COM program structure exists primarily to support the vast number of CP/M pro- _ 4 CS,DS,ES,SS
grams ported to MS-DOS Currently, COM programs are most often used to avoid adding *The SP and 64 KB values are dependent upon

the 512 bytes or more of EXF header information onto small, simple programs that often MS-DOS having 64 KB or more of memory

do not exceed 512 bytes by themselves . Zﬁiﬁ;ﬁ aliocare to the COM program

The COM program siructuse has another advaniage: Its memory organization places the y ‘
- e] Figure 4-14 The COM program mem i i) .
PSP within the same address segment as the rest of the program. Thus, it is easier to access preg ory map diagram with regisier poiniers

fields within the PSP in . COM programs

142 The MS-DOS Encyclopedia Section IT: Programming in the MS-DOS Environment ~ 143

LG Exhibit 1204C, Page 84
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M5-DOS

Terminating the .COM program

A COM program can use all the termination methods describec.l for EXE programs b‘ut
should still use the MS-DOS Interrupt 21H Terminate Process Wlt'h Return (}ode f?.mcnon
(4CH) as the preferred method. If the COM program must remain com.pat{ble with ver-
sions of MS-DOS earlier than 2 0, it can easily use any of the older termination methodé,
including those described as difficult to use from EXE programs, because COM programs
execute with the CS register pointing to the PSP as tequired by these methods.

Creating the .COM program

144

A COM program is created in the same manner as a EXE program and then converted

using the MS-DOS EXEZBIN utility See PROGRAMMING UTILITIES: EXE2BIN.

Certain restrictions do apply to COM programs, however First, COM programs cannot

exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack

Next, only a single segment-—or atleast a single addressing group — should exist within

the program. The following two examples show ways 0 .SU ucture a COM program (o satk-1
isfy both this restriction 2nd MASM's need to have data fields precede program code in the
source file
COMPROG1 ASM (Figure 4-15) declares only a single segment (COMSEG), so no special
considerations apply when using the MASM OFEFSET operator See The MASM GROUP
Directive above. COMPROGZ ASM (Figure 4-16) declares separate code (C'S.EG) and data
(DSEG) segments, which the GROUP directive ties into a common add:lessmg block
Thus, the programmer can declare data fields at the start of the source.fﬂ-? gnd hav.e tbek
linker place the data fields segment (DSEG) after the code segment (CSEG) when. it links
the program, as discussed for the EXE program structure This second example sxmul?tes
the program structuring provided under CP/M by Microsoft’s old Macxo-SO (M80) macro
assembler and Link-80 (L80) linker The design also expands easily to accommodate
COMMON or other additional segments

COMSEG SEGMENI BYIE PUBLIC "CODE’
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG

ORG 01008

BEGIN:
TMP SIARI
;Place your data fields here.

;skip over data fields

SIART:

:Place your program text here

' MOV BX,4CO0H ;terminate (M8-DOS 2 .0 or later only)
INI Z1H

COMSEG ENDS
END BEGIN

Figure 4-15 COM program with data at start

The M$-DOS Encyclopedia

LG Exhibit 1204C, Page 85
LG Electronics,

Inc. v. Papst Licensing

Article 4: Structure of an Application Program

CSEG SEGMENI BYIE PUBLIC 'CODE’ :establish segment order
CSEG ENDS
DSEG SEGMENI BYIE PUBIIC 'DAIA'

DSEG ENDS

COMGRP GROUP CSEG, DSEG
DSEG SEGMENT

;Place your data fields here
DSEG ENDS

CSEG SEGMENT

;establish joint address base

ASSUME CS:COMGRP,DS:COMGRP, ES: COMGRP, 55 : COMGRP
CRG 0100H

BEGIN:
;Place your program text here Remember to use
:OFFSEI COMGRP:IABEL whenever you use OFFSET.

MOV AX,4C00H rterminate (MS-DOS 2.0 or later only)}
INI 21H

CSEG ENDS
END BEGIN

Figrre 4-16 .COM program with data at end

These examples demonstrate other significant requirements for producing a functioning

COM program For instance, the ORG 0100H statement in both examples tells MASM w©
start assembling the code at offset 100H within the encompassing segment This corre-
sponds to MS-DOS’s transferring control to the program at [P = 0100H In addition, the
entty-point label (BEGIN) immediately follows the ORG statement and appears again as a
parameter to the END statement Together, these factors satisfy the requirement that COM
programs declare their entry point at offset 100H If any facior is missing, the MS-DOS
EXEZBIN utility will not properly convert the EXE file produced by the linker inio a COM
file Specifically, ifa COM program declates an entry point (as 4 parameter to the END
statement) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the EXE file
when the programmer attempts to convert it If the program fails to declare an entry point
or declares an entry point at offset 0000H, EXE2BIN assumes that the FXE file is to be
converted to a binary image rather than to a COM image When EXE2BIN convertsa EXE
file 1o a non- COM binary file, it does not strip the exira 100H bytes the linker places in
front of the code as a result of the ORG 0I0CH instruction 1 hus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the 100H offset As 2 result, the
program — and probably the rest of the system as well —is likely to crash

A COM program also must not contain direct segment address references to any segments
that make up the program Thus, the .COM program cannot reference any segment labels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive)
Following are various examples of direct segment address references that are not per-
mitted as part of COM programs:

Section IT, Programming in the MS-DOS Environment 145

Part B: Programming for M5-DOS

PROC_A PROC FAR
PROC_A ENDP
CALL PROC_A . intersegment call
JMP PROC_A ;intersegment jump
ot

EXIRN PROC_A:FAR
sintersegment call

CALL PROC-A
JMP PROC_A :intersegment jump
or
MOV AX,SEG SEG_A ; segment address
DD LABEL A :segment :offset pointer

declare any segments with the STACK combine type I
h the STACK combine type, the linkerwill insert initial
S and SP values into the EXE file header, causing FEXE2BIN to reject the EXE file A COM
program does not have explicitly declared stacks, although it can reserve space in a pon-
STACK combine type segment to which it can initialize the SP register after it receives
control The absence of a stack segment will cause the linker to issue a harmless warning

message.

Finaily, COM progiams omist not
a program declares a segment wit

nd linked into a EXE file, it must be converted inio a

When the progtam is assembled a
shown in the following

binary file witha COM extension by using the EXE2BIN utility as
example for the file YOURPROG EXE:

C>EXE2BIN YOURPROG YOURPROG .COM <Enter>

a EXE file with the same filename as the COM

file as long as both remain in the same directory,

because MS-DOS’s order of execution is COM files first, then EXE files, and finally BAT
files However, the safest practice is to delete EXE file immediately after converting it to
a COM file in case the COM file is fater renamed or moved to a different ditectory. If a
EXE file designed for conversion (o a COM file is executed by accident, it is likely to crash

the system
Patching the .COM program using DEBUG

As discussed for EXE files, a programimet who distributes sof
want to send instructions on how to patch in error corrections
updates lends itself even better tO COM files than it does to EXE files

M files contain only the code image, they need not be renamed
only be instructed on how 10

it is not necessary to delete or rename
file before trying to execute the COM

tware 10 users will probably
This approach to software

For example, because .CO
in order to read and write them using DEBUG The user need
load the COM file into DEBUG, how to patch the program, and how to write the patched
image back to disk Calculating the addresses and patch values is even easier, because no
header exists in the COM file image to cause complications With the preceding excep-

tions, the details for patching COM programs remain the same as previously outlined for

EXE programs

146 . The MS-DQS Encyclopedia

LG Exhibit 1204C, Page 86
LG Electronics, Inc. v. Papst Licensing

Article 4; Structure of an Application Program

.COM summary

To sumrmarize, the .COM program and file stiuctures are a simpler but more restricted
aPpr'oach to writing programs than the EXE structure because the programmer has onk
single memory model from which to choose (the COM program segment mode]) Al(s?rl e
COM program files do not contain the 512-byte {or more) header inherent to EXE fileog
the COM program structure is well suited to small programs for which adding 512 bytse’sso

of header would probably at least double the file’s size

Summary of Differences

The following table summarizes the differences between COM and EXE programs

LCOM program EXE program
Maximum size 65536 bytes minus 256 bytes No limit
. . for PSP and 2 bytes for stack
Crsltg éanot:nt gg};:OIOGH Defined by END statement
v Segment containing program’s
entry point
iPat :
atentry 0100H Offset of entry point within its
DS at entry Psp nge’gmem
ESatentry PSP PSP
SSatentry psp
) Segment with STACK attribute
SP atentry FFFEH or top word in available End of segment defined with
Stk memeory, whichever is lower STACK attribute
ack at entry Zero word Initialized or uninitialized,
. depending on source
Stack size 65536 bytes minus 256 bytes Defined in segment with
for PSP and size of executable STACK attribute

Subroutine calls

code and data
NEAR

NEAR or FAR

Exit method Inten.upt 21H Function 4CH Interrupt 21H Function 4CH
preferred; NE'AR RET if preferred; indirect jump
MS-DOS versions 1 x to PSP:0000H if MS-DOS
. . ' versions 1 X
Size of file Exact size of program Size of program plus header (at

least 512 extra bytes)

Section IT. Programming in the MS5-DOS Environment 147

Article 5: Character Device input and Output

Part B: Programming for MS-DOS

»
Which format the programmer uses for an application usually depends on the pr‘og:‘am s 1 : AI'thle 5:
intended size, but the decision can also be influenced by a program’s need to address mul-

: .
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR- ' . Character Device It Iput and, Output
MP;\'I) are designed as COM programs; large programs (such as the Microsoft C Corn?ﬂer)
are designed as EXE programs The ultimate decision is, of course, the programmer’s

All functional computer systems are composed of a central processing unit (CPU), some
Keith Burgoyne memory, and peripheral devices that the CPU can use to store data or communicate with
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard
(for input), the display (for output), and one or more disk drives (for nonvolatile storage)
Additional devices such as printers, modems, and pointing devices extend the function-

ality of the computer or offer alternative methods of using the system

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com-
munications ports

The distinction between block and character devices is not always readily apparent, but
in general, biock devices transfer information in chunks, ot blocks, and character devices
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by
a drive letter assigned when the device’s controlling software, the device driver, is loaded
A character device, on the other hand, is identitied by a logical name (similar to a filename
and subject to many of the same restrictions) built into its device driver. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: CustoMizing ms-Dos: Installable Device Drivers.

Background Information

Versions 1x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices
with a fixed set of device drivers loaded during system initialization from the hidden fiie
10.8YS (or IBMBIO COM with PC-DOS) These versions of MS-DOS offered application
programs a high degree of input/output device independence by allowing character
devices tobe treated like files, but they did not provide an easy way to augment the built-in
set of drivers if the user wished 1o add a third-party peripheral device to the system

With the release of MS-DOS version 2 0, the hardware flexibility of the system was tremen-
dously enhanced Versions 2.0 and later support installable device drivers that can reside in
separate files on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIG SYS file on the startup disk See USER COMMANDS:
CONFIG sys: DEVICE A well-defined interface between installable drivers and the MS-DOS
kernel allows such drivers to be written for most types of peripheral devices without the
need for modification to the operating system itself

The CONFIG SYS file can contain a number of different DEVICE commands to load sepa-
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on Each
diiver, in rurn, is specialized for the hardware characteristics of the device it suppotts

Section IT. Programming in the MS-DOS Environment 149
148 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 87
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M5-DOS

When the system is turned on or restarted, the installable device drivets are added to the
chain, or linked list, of default device drivers loaded from IO 8Y5 during M3-DOS initializa-
tion Thus, the need for the system’s default set of device drivers to support a wide range of
optional device types and features at an excessive cost of system memory is avoided

One important distinction between block and character devices is that MS-DOS always
adds new block-device drivers to the tail of the driver chain but adds new character-device
drivers to the head of the chain Thus, because MS-DOS searches the chain sequentially
and uses the first driver it finds that satisties its search conditions, any existing character-
device driver can be superseded by simply installing another driver with an identical logi-
cal device name.

This article covers some of the details of working with MS-DOS chatacter devices: display-
ing text, keyboard input, and other basic character I/O functions; the definition and use of
standard input and output; redirection of the default character devices; and the use of the
TOCTL fanction (Interrupt 21H Function 44H) to communicate directly with a character-
device driver. Much of the information presented in this article is applicable only to
MS-DOS versions 2.0 and later

Acéessing Character Devices

150

Application programs can use either of two basic techniques to access character devices in
a portable manner under MS-DOS. First, a program can use the handle-iype function calls
that were added to MS-DOS in version 20 Alternatively, a program can use the so-called
“traditional” character-device functions that were present in versions 1x and have been
retained in the operating system for compatibility Because the handle functions ate more
powerful and flexible, they are discussed first

A handle is a 16-bit number returned by the operating system whenever a tile or device is
opened or created by passing a name to MS-DOS Interrupt 21H Function 3CH (Create File
with Handle), 3DH (Open File with Handle), SAH (Create Temporary File), or SBH (Create
New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the
computer’s memory and the file or device.

During an open or create function call, MS-DOS searches the device-driver chain sequen-
tially for a character device with the specified name (the extension is ignored) before
searching the digk directory Thus, a file with the saine name as any character device in the
driver chain — for example, the file NUL TXT — cannot be created, nor can an existing file
be accessed if a device in the chain has the same name

The second method for accessing character devices is through the traditional M3-DOS
character input and output functions, Interrupt 21H Functions 01H through OCH These
functions are designed to communicate directly with the keyboard, display, printet, and
serial port Each of these devices has its own function or group of functions, so neither

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 88
LG Electronics, Inc. v. Papst Licensing

Article 5: Character Device Input and Qutput

names nor handles need be used However, in MS-DOS versions 2 0 and later, these func-
tion calls are translated within MS-DOS to make use of the same roufines that are used by
the handle functions, so the traditional keyboard and display functions are affected by 1/0
redirection and piping

Use of either the traditional or the handle-based method for character device I/C results
in highly portable programs that can be used on any computer that runs MS-DOS. A third,
less portable access method is to use the hardware-specific routines resident in the read-
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func-
tions), and a fourth, definitely nonportable approach is 1o manipulate the peripheral
device’s adapter directly, bypassing the system software altogether Although these later
hardware-dependent metheds cannot be recommended, they are admittedly sometimes
necessary for performance reasons

The Basic MS-DOS Character Devices

Every MS-DOS system supports at least the following set of logical character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port
CLOCK$ System real-time clock

NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “iraditional”
function calls; strings can be read from or written to the devices according to their capabili-
ties on any MS-DCS system: Data written to the NUI device is discarded; reads from the
NUL device always return an end-of-file condition

PC-DOS and compatible implementations of MS-DOS typically also support the following
logical character-device names:

Device Meaning

COM1 First serial communications port
COM2 Second serial communications port
IPT1 First parallel printer port

1P12 Second paralle! printer port

IPI3 Third parallel printer port

Section IT. Programming in the MS-DOS Environment 151

Part B: Programming for MS-DOS

In such systems, PRN is an alias for IPT1 and AUX is an alias for COM1 The MODE com-
mand can be used to redirect an LPT device to another device See USER COMMANDS:
MODE.

As previously mentioned, any of these default character-device drivers can be superseded
by a user-installed device driver — for example, one that offers enhanced functionality or
changes the device’s apparent characteristics. One frequently used alternative character-
device driver is ANSI SYS, which replaces the standard MS-DOS CON device driver and
allows ANSI escape sequences to be used to perform tasks such as clearing the screen,
controlling the cursor position, and selecting character attributes See USER COMMANDS:
ANSLSYS

The standard devices

152

Under MS-DOS versions 2.0 and lates, each program owns five previously opened handles
for character devices (referred to as the standard devices) when it begins executing. These
handles can be used for input and output operations without further preliminaries The
five standard devices and their associated handles are

Standard Device Name Handle Default Assignment
Standard input (sidir) 0 CON
Standard output (stdoze) 1 CON
Standard error (stderr) 2 CON
Standard auxiliary (stdaux) 3 AUX
Standard printer (stcdprn) 4 PRN

The standard input and standard output handles are especially important because they are
subject to I/O redirection. Although these handles are associated by default with the CON
device so that read and wiite operations are implemented using the keyboard and video
display, the user can associate the handles with other character devices or with files by
using redirection parameters in a program’s command line:

Redirection Result

< file Causes read operations from standard input to obtain data from file

> file Causes data written to standard output to be placed in file.

>> file Causes data written to standard output to be appended to file

plip2 Causes data written to standard output by program p7 to appear as the

standard input of program p2

This ability to redirect 1/0 adds great flexibitity and power to the system. For example,
programs ordinarily controlled by keyboard entries can be run with “scripts” from files,
the output of a program can be captured in a file or on a printer for later inspection, and
general-purpose programs {filters) can be written that process text streams without regard
to the text’s origin or destination See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusToMIZING Ms-DOS: Writing MS-DOS Filters

The MS-DOS Encyclopedia

Article 5: Character Device Input and Cutput

Ordinarily, an application program is not aware that its input or output has been redi-
rected, although a write operation to standard output will fail unexpectedly if standard
output was redirected to a disk file and the disk is full An application can check for the
existence of /O redirection with an IOCTI (Interrupt 21H Function 44H) call, but it can-
not obtain any information about the destination of the redirected handle except whether
it is associated with a character device or with a file

Raw versus cooked mode

MS-DOS associates each handle for a character device with a mode that determines how
1/0O requests directed to that handle are treated When a handle is in raw mode, characters
are passed between the application program and the device driver without any filtering or
buffering by MS-DOS When a handle is in cooked mode, MS-DOS buffers any data that is
read from or written to the device and takes special actions when certain characters are
detected

Duiing cooked mode input, MS-DOS obtains characters from the device driver one at a
time, checking each character for a Control-C The characters are assembied into a string
within an internal MS-DOS buffer The input operation is terminated when a carriage
return (ODH) or an end-of-file mark (1AH) is received or when the number of characters
requested by the application have been accumulated If the sowrce is standard input, lone
linefeed characters are translated to cartiage-return/linefeed pairs The string is then
copied from the internal MS-DOS buffer to the application program’s buffer, and control
returns to the application program

During cooked mode output, MS-DOS transfers the characters in the application pro-
gram’s output buffer to the device driver one at a time, checking after each character for

a Control-C pending at the keyboard. If the destination is standard output and standard
output has not been redirected, tabs are expanded to spaces using eight-column tab stops
Output is terminated when the requested number of characters have been written or when
an end-of-file mark (1AH) is encountered in the output string

In conirast, during raw mode input or output, daia is transferred directly between the
application program'’s buffer and the device driver. Special characters such as carriage
return and the end-of-file mark are ignored, and the exact number of characters in the ap-
plication program’s request are always read or written. MS-DOS does not break the strings
into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entiies during the I/O operation Finally, characters read from standard input
in raw mode are not echoed to standard output

As might be expected from the preceding description, raw mode input or output is usu-
ally much faster than cooked mode input or ourput, because each character is not being
individually processed by the MS-DOS kernel Raw mode also allows programs to read
characters from the keyboard buffer that would otherwise be trapped by MS$-DQOS (for
example, Control-C, Control-P, and Control-S) (If BREAK is on, MS-DOS will still check for
Control-C entries during other function calls, such as disk operations, and transfer control

Section Il Programming in the M5-DOS Environment 153

LG Exhibit 1204C, Page 89
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M&-DOS

to the Control-C exception handler if a Control-C is detected) A program can use the
MS-DOS TIOCTI Get and Set Device Data sexvices (Interrupt 21H Function 44H Subfunc-
tions 00K and OIED to set the mode for a character-device handle. See IOCTL below

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was
obtained from a previous open operation and affects only the /0 operations requested
by the program that owns the handle. However, when a program uses IOCI1 to select raw
or cooked mode for one of the standard device handles, the selection has a global effect
on the behavior of the system because those handles are never closed. Thus, some of the
“traditional” keyboard input functions might behave in unexpected ways Consequently,
programs that change the mode on 2 standard device handle should save the handle’s
mode at entry and restore it before performing a final exit 1o MS-DOS, so that the opera-
tion of COMMAND COM and other applications will not be disturbed. Such programs
should also incorporate custom critical error and Control-C exception handlers so that the
programs cannot be terminated unexpectedly See PROGRAMMING IN THE M5-DOS

ENVIRONMEN T: CustoMiziNG Ms-DOs: Exception Handlers.

The keyboard

154

Among the MS-DOS Interrupt 21H functions are two methods of checking for and re.ceiv—
ing input from the keyboard: the traditional method, which uses MS-DOS character input
Functions OLH, 06H, 07H, 08H, 0AH, OBH, and 0CH (Table 5-1); and the handle method,
which uses Function 36H Each of these methods has its own advantages and disadvan-

tages See SYSTEM CALLS.

Table 5-1. Traditional MS-DOS Character Input Functions.

Read Muitiple Ccul-C

Function Name Characters Echo Check
01H Character Input with Echo No Yes Yes
06H Direct Console /O No No No
07H Unfiltered Character Input

Without Echo ‘ No No No
08H Character Input Without Echo No No Yes
0AH Buffered Keyboard Input Yes Yes Yes
0BH Check Keyboard Status No No Yes
0CH Flash Buffer, Read Keyboard * * *

*Varies depending on function {from above) called in the Al register

The first four traditional keyboard input calls are really very similar They all returna char-
acter in the Al register; they differ mainly in whether they echo that character 1o the dis-
play and whether they are sensitive to interruption by the user’s entry of a Control-C. Both
Functions 06H and 0BH can be used to test keyboard status (that is, whether a key has
been pressed and is waiting to be read by the program); Function OBH is simpler to use,
but Function 06H is immune to Control-C entries

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 90
LG Electronics, Inc. v. Papst Licensing

|

Article 5: Character Device Input and Ourput

Function 0AH is used to read 2 “buffered line” from the user, meaning that an entire line is
accepted by MS-DOS before control returns to the program. The line is terminated when
the user presses the Enter key or when the maximum number of characters (o 255) speci-
fied by the program have been received. While entry of the line is in progress, the usual
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and
compatibles) are active; only the final, edited line is delivered to the requesting program

Function OCH allows a program to flush the type-ahead buffer before accepting input
This capability is important for occasions when a prompt must be displayed unexpectedly
(such as when a critical error occurs) and the user could not have typed ahead a valid
response This function should also be used when the user is being prompted for a critical
decision (such as whether to erase a file), to prevent a character that was previously
pressed by accident from triggering an irrecoverable operation Function OCH is unusual
in that it is called with the number of one of the other keyboard input functions in register
AL After any pending input has been discarded, Function OCH simply transfers to the
other specified input function; thus, its other parameters (if any) depend on the function
that ultimately will be executed.

The primary disadvantage of the traditional function cails is that they handle redirected
input poorly If standard input has been redirected 1o a file, no way exists for a program
calling the traditional input functions to detect that the end of the file has been reached —
the inpui function will simply wait forever, and the system will appear to hang

A program that wishes to use handle-based 1/O to get input from the keyboard must use
the MS-DOS Read File or Device service, Intersupt 21H Function 3FH Ordinarily, the pro-
gram can employ the predefined handle for standard input (0), which does not need to be
opened and which allows the program’s input 1© be redirected by the user o another file
or device, If the program needs to circumvent redirection and ensure that its input is from
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the
handle obtained from that open operation instead of the standard input handle.

A program using the handle functions to read the keyboard can controi the echoing of
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the
IOCTL Get and Set Device Data services (default = cooked mode} To test the keyboard
status, the program can either issue an IOCTL Check Input Status call (Interrupt 21H Func-
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt
21H Function 0BH).

The primary advantages of the handle method for keyboard input are its symmetry with
file operations and its graceful handling of redirected input The handle function also
atllows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard
Input function allows a maximum of 255 characters to be read ata time This considera-
tion is important for programs that are frequently used with redirected input and output
(such as filters), because reading and writing larger blocks of data from files results in
more efficient operation The only real disadvantage to the handle method is that it is
limited to MS-DOS versions 2 0 and later (although this is no longer a significant
restriction),

Section Il Programming in the MS-DOS Environment 155

Part B: Programining for M$-DOS

Role of the ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard-
ware interrupt (09H) that is serviced by a routine in the ROM BIOS The ROM BIOS inter-
rupt handler reads I/O ports assigned to the keyboard controller and translates the key’s
scan code into an ASCII character code. The result of this translation depends on the cur-
rent state of the Numlock and CapsLock toggles, as well as on whether the Shift, Control,
or Alt key is being held down (The ROM BIOS maintains a keyboard flags byte at address

0000:0417H that gives the current status of each of these modifier keys)
After translation, both the scan code and the ASCH code are placed in the ROM BIOS’s

32-byte (16-character) keyboard input buffer In the case of “extended” keys such as the
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the
information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed
as a first-in/first-out queue . Because of the method used to determine when the buffer is
empty, one position in the buffer is always wasted; the maximum number of characters

that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are
discarded and a warning beep is sounded

The ROM BIOS provides an additional module, invoked by softwaze Interrupt 16H, that

allows programs to test keyboard status, determine whether characters are waiting in the
type-ahead buffer, and remove characters from the buffer See Appendix O: IBM PC BIOS
Calls Its use by application programs should ordinarily be avoided, however, to prevent

introducing unnecessary hardware dependence

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the

BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-
dependent work Thus, calls to MS-DOS for keyboard input by an application program are

subject to two layers of translation: The Interrupt 2IH function call is converted by the

MS-DOS kernel to calls to the CON driver, which in turn remaps the request onto a ROM

BIOS call that obtains the character

Keyboard programming examples

Example Use the ROM BIOS keyboard driver to read a character from the keyboard The

character is not echoed to the display

mov ah, 00h ; subfuncticn Q0H = read character
ing 16h ; transfer to ROM BIOS
; now AH = scan code, Al = character

Example Use the MS-DOS traditional keyboard input function to read a character from

the keyboard. The character is not echoed to the display The input can be interrupted
with a Ctrl-C keystroke

mov ah, 08h ; function 08H = character input
; without echo

int 21h i transfer to MS-DOS
; now Al = character

156 The MS-DOS Encyclopedia

Article 5: Character Device Input and Qutput

Example Use the MS-DOS traditional Buffered Keyboard Input function to read an entire
line from the keyhoard, specifying a maximurm line length of 80 characters All editing
keys are active during entry, and the input is echoed to the display

kbuf di 80 ; maximum length of read
db 4 ; actual length of read
db 80 dup (0) ; keyboard input goes here
mov dx, seqg kbuf 7 set DS:DX = address of
mov ds, dx ; keyboard input buffer
mov dx, offset kbuf
mov ah,Qah : function OAH = read buffered line
int 21h transfer to MS-DOS

and kbuf+1 = length of input,

i

; terminated by a carriage return,
i

; not inciuding the carriage return

Example: Use the MS-DOS handle-based Read File or Device function and the standard
input handle to read an entire line from the keyboatd, specifying a maximum line length
of 80 characters All editing keys are active during entry, and the input is echoed to the dis-
play (The input will not terminate on a carriage retuin as expected if standard input is in

raw mode)
kbuf db 80 dup (0) ¢ buffer for keybecard input
mov dx, seg kbuf ; set DS:DX = address of
mov ds, dx ; keyboard input buffer
mov dx,offset kbuf
mov ¢x, 80 { CX = maximum length of input
mov bx,d ¢ standard input handle = 0
mov ah, 3fh ; function 3FH = read file/device
int 21h ; transfer to MS-DOS
je error ¢ Jump if function failed
i otherwise AX = actual
: length of keyboard input,
;7 including carriage-return and
; linefeed, and the data is
; in the buffer 'kbuf'
The display

The output half of the MS-DQS logical character device CON is the video display. On IBM
PCs and compatibles, the video display is an “option” of sorts that comes in several forms
IBM has introduced five video subsystemns that support different types of displays: the
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics
Axray (MCGA} Othes, non-IBM-compatible video subsystems in common use include the
Hercules Graphics Card and its variants that support downloadable fonts

Section I1. Programming in the MS-DOS Environment 157

LG Exhibit 1204C, Page 91
LG Electronics, Inc. v. Papst Licensing

part B: Programming for M5-DOS

Two portable techniques exist for writing text to the video display with MS-DOS function
calls The traditional method is supported by Interrupt 21H Functions 02H (Character Out-
put), 06H (Direct Console 1/0), and 09H (Display String) The handle method is supported
by Function 40H (White File or Device) and is available oniy in MS-DOS versions 2 0 and
later See SYSTEM CAILLS: INTERRUPT 21t Functions 024, 06, 09H, 40H All these calls
treat the display essentiaily as a “glass teletype” and do not support bit-mapped graphics
d 06H are similar Both are called with the character to be

Traditional Functions 02H an
displayed in the DL register; they differ in that Function 02H is sensitive to interruption by

the user's entry of a Control-C, whereas Function 06H is immune to Control-C but cannot
be used to output the character OFFH (ASCII rubout). Both calls check specifically for car-
tiage return (ODH2, linefeed (PAH), and backspace (08H) characters and take the appro-

priate action if these characters are detected

Because making individual calls o MS-DOS for each character to be displayed is inefficient
and slow, the traditional Display Stiing function (09H) is generally used in preference ©
Functions 02H and 061 Function 09H is called with the address of a string that is termi-
nated with a dollar-sign character (§); it displays the entire string in one operation, regard-
less of its length The string can contain embedded control characters such as carriage

return and linefeed.

To use the handle method for screen display, programs must call the MS-DOS Write File
or Device service, Interrupt 21H Function 40 Ordinarily, a progsam should use the pre-

defined handle for standard output (1) to send text 10 the screen, so that any redirection
line will be honored. If the program

1equested by the user on the program’s command
needs o circumvent redirection and ensure that its ouiput goes to the screen, it can either

use the predefined handle for standard error (2) or explicitly open the CON device with

Interrupt 21H Function 3DH and use the resulting handle for its write operations

The handle technique for displaying text has several advantages over the traditional

calls. First, the length of the string to be displayed is passed as 2n explicit parameter, SO
the string need not contain a special terminating character and the § character can be dis-
played as part of the string. Second, the traditional calls are transiated to handle calis
{nside MS-DOS, so the handle calls have less intet nal overhead and are generally faster
Finally, use of the handle Write File or Device function to display text is symmetric with
the methods the program must Use o access its files. In short, the traditional functions
should be avoided unless the program must be capable of running under MS-DOS ver-

sionsix

Controlling the screen

158

One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen-

control capabilities The default CON driver has no buil-in routines to SUPPOLt CUIso

placement, screen clearing, display mode selection, and so on

In MS-DOS versions 2 0 and later, an optional replacement CON driver is supplied in the
£ the screen-control capabilities needed by text-

file ANSI SYS. This driver contains most O
oriented application programs The driver is installed by adding a DEVICE directive to the

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 92
LG Electronics, Inc. v. Papst Licensing

Article 5: Character Device Input and Outpui

COI.\I F 1G SYS file and restarting the system. When ANSLSYS is active, a program
position the cursor, inguire about the current cursor position, select fznrepro%md szin
background colors, and clear the current line or the entire sc;een by senfiin an iﬂ
sequence consisting of the ASCII Esc character (IBH) followed by various ffncti -
specific parameters to the standard output device See USER COMMANDS: anst ;Z_

Programs that use the ANSI SYS capabiliti :
. ‘ pabilities for screen control are portable 10 any M

. . S-D
1mplem§ntat1c?n that contains the ANSI 5YS driver. Programs that seek irnprovedypexfor-_os
i;laagce y calling t'he ROM BIOS video driver or by assuming direct conirol of the hard-

1€ are necessar ily léss portable and usually require modification when new PC model
or video subsystems are released v

Role of the ROM BIOS

;gret ‘:ggo Sszitgﬁj; in IBM PCs and compatibles use a hybrid of memory-mapped and
t-addresse range of the machine’s memory addr: i i

: idr . v addresses is typically reserved fi
v1c?eo refresh buffer th.aF holds the character codes and attributes to be dispslrayed on th:[:
screen; Ithe cursor position, display mode, palettes, and similar global display char-
acteristics are governed by writing control values to specific [/O ports

égi R\(f)é/i BIOS of IBM P.Cs and cqmpatibies contains a primitive driver for the MDA, CGA.
, , and MCGA video subsystems This driver supports the following functiox,Js: !

® Read or write characters with attributes at any screen position

Query or set the cursor position |

Clear or scroll an arbitrary portion of the screen

Select palette, background, foreground, and border colors

(ggli;rl']}ri cc;r Z(;t dtl;z Sils)play mode (40-column text, 80-column text, ail-points-addressable
® Read or write a pixel at any screen coordinate.

(T)}};:;(;/Ih;xéctions are invoked by a program through software Interrupt 10H See Appendix
(SII- fB;OS Calls. In PC-DOS-compatible implementations of MS-12OS, the display
E . ions of the MS-DOS CON and ANSI.SYS drivers use these ROM BIOS routines Video
bLé jzséemighat are t;zlolt IBM compatible either must contain their own ROM BIOS or must
with an installable device driver that captur OVl
D e st b captures Interrupt 10H and provides appro-

Text-only application programs should avoid use of the ROM BIOS functions or dir
access to the hardware whenever possible, to ensure maximum portability be[weer:Ct
MS-DOS systems However, because the MS-DOS CON driver contains no suppott for bit
mgppec? graphics, graphically oriented applications usually must resort to difect ‘ 11 _
of the video adapter and its refresh buffer for speed and precision come

Section II. Programming in ihe M5-DOS Environment 159

R e

Ppart B: Programming for MS-DOS

Display programming examples

Example: Use the ROM BIOS Interrup
display in text mode (In graphics mod

color)
mov ah,0eh
mov al,'#!
mov bh, 0
int 10h

s . ite
e: Use the MS-DOS traditional function t© wii
L, a Control-C is detected during

MS-DOS calls the Control-C exception

play If the user’s entry of
in cooked mode,
in the vecior for Interrupt 23H

mov ah, 02h
nov dl, *#’
int 21h

; subfunction OEH =

+ 10H function to write an asterisk character o the
e. BL must also be set to the desired foreground
bl

write character

: in teletype mode

: AL = character to display

; select display page o .

; transfer to ROM BIOS video driver

an asterisk character to the dis-
the output and standard outputis
handler whose address is found

; function QzH = display character

; DL = character to display
transfer to M§-DOS

i

Article 5: Character Device Input and Qutput

. . . ¢
Example: Use the MS-DOS wraditional function to write a string to the d1spl§y. Icifnzﬁfg ’
isﬁelminﬁted by the $ character and can be interrupred when the user enters 2

standard output is in cooked mode

msg

db 'This is a test message’', 'S’

. DS:DX = address of text

mov dx, seg msg
mov ds,dx ; to display

dx,of fset msg ‘ .
o ah'OBh . function 098 = display string
mov ’
int 2th . transfer to MS-DOS

Example: Use the MS-DOS hand.
handle for standard output 10 wiI
user’s entry of a Control-C if standard

nction and the predefined

g Write File or Device fu
le-based Wiite be interrupted by the

te a string to the display Outputcan
output is in cooked mode

‘ihis is a test message’

msg db
msg—len equ S-msg
oV dx,seg msg . DS:DX = address of text
m: B
Hov ds,dx ; to display
dx,offset msg
mov .
cx,msg—len ; €% = length of text
o b ’1 ; BX = handle for standard output
o a§r40h . function 408 = write file/device
mov
int 21; ; transfer to MS-DOS

160 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 93
LG Electronics, Inc. v. Papst Licensing

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,
identified as COM1 and COM2, by means of three drivers named AUX, COM1, and COM2
(AUX is ordinarily an alias for COM1)

The traditional MS-DOS method of reading from and writing to the serial ports is through
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output In MS-DOS
versions 2 0 and later, the handle-based Read File or Device and Write File or Device func-
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux-
iliary device A program can use the predefined handle for the standard auxiliary device
(3) with Functions 3FH and 40H, or it can explicitly open the COMI or COM2 devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to
perform read and write operations

MS-DOS supportt for the serial communications port is inadequate in several respects for
high-performance setial I/O applications First, MS-DOS provides no portable way to test
for the existence or the status of a particular serial port in a systern; if a program “opens”
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the
program may simply hang Similatly, if the serial port exists but no character has been
received and the program attempis to read a character, the program will hang until one is
available; there is no traditional function call to check if a character is waiting as there is
for the keyboard

MS-DOS also provides no portable method to initialize the communications adapter to a
particular baud rate, word length, and parity An application must resort to ROM BIOS
calls, manipulate the hardware directly, or rely on the user to configure the port properly
with the MODE command before running the application that uses it The default settings
for the setial pott on PC-DOS-compatible systems are 2400 baud, no patity, 1 stop bit, and
8 databits, See USER COMMANDS: MmoDE

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and
compatibles, however, is that it is not interrupt driven Accordingly, when baud rates above
1200 are selected, characters can be lost during time-consuming operations petformed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk
sector Because the MS-DOS AUX device diiver typically relies on the ROM BIOS serial port
driver (accessed through soft ware Interrupt 34H) and because the ROM BIOS driver is not
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not
usually improve matters

Because of all the probiems just described, telecommunications application programs
commonly take over complete control of the serial port and supply their own interrupt
handler and internal buffering for character read and write operations See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT : PROGRAMMING FOR Ms-Dos: Interrupt-Diriven
Communications

Section L. Programming in the Ms-DOS Environment 161

Article 5: Character Device Input and Qutput

Part B: Programming for MS-DOS }

The parallel port and printer
Serial port programiming examples P P . P . . o . ,
1al port driver to write a stiing to COM1 ; Most MS-DOS 1mpEerI_1entat.1onsl> contau} device drivers for four printer devices: LP11, IPT 2,
Example: Use the ROM BIOS seria: por LPT3, and PRN. PRN is ordinarily an alias for IPT1 and refers to the first parallel output
port in the system. To provide for list devices that do not have a paralle! interface, the IPT
nog_len equ S-nsg devices can be individually redirected with the MODE command to one of the serial com-
i munications ports. Se¢ USER COMMANDS: MoDE

msg db 'This is a test message’

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be

! . = e - . I . . .
mow bx, sag msg i DPS:BX = address of messag accessed with either traditional or handle-based function calls The tzaditional function
mov ds, bx call is Interrupt 21H Function 05H, which accepts a character in DI and sends it to the
,offset ms . .) . . .
mov Zi :\S;Sien L ¢x% = length of message physical device currently assigned to logical device name IPT1
mnov ’ — "
B = (0 for COMI : . .
nov dx, Db ; zzt ot sharacter into Al A program can petform handle-based output to the printer with Interrupt 21H Function
. 1 2 . . " . .
1 mov Zh’ ([)1; ! O amction 018 ~ output | 40H (Write File or Device). The predefined handle for the standard printer (4) can be used
mov ’ ' . : : ., .
int 4t ; transfer to ROM BIOS to send strings to logical device IPT1. Alternatively, the program can issue an open oper-
ine bx ; bump pointer to oubput Strl“gt ation for a specific printer device with Interrupt 21H Function 30H and use the handle
X : hars sen
loop 11 i and loop until all char obtained from that open operaiion with Function 40H. This latter method also allows
Example: Use the MS-DOS traditional function for auxiliary device output to wrile 2 Stng more than one printer to be used at a time from the same program
to COM1 _ Because the parallel ports are assumed to be output only, no traditional call exists for
. . input from the parallel port. In addition, no portable method exists to test printer port
msg db '*This is a test message i . K P p
msg_len squ S-msg : status under MS-DOS; programs that wish to avoid sending a character to the printer
- ‘ adapter when it is not ready or not physically present in the system must test the adapter’s
status by making a call to the ROM BIOS printer driver (by means of software Interrupt
ot DS:BX - address of message ' 17H; see Appendix O: IBM PC BIOS Calls) or by accessing the hardware directly
mov bx, seq msg H : =
mov ds,bx : Parallel port programming examples
mov bx,offset msg 7
mov cx,msg_len ; set CX = length of message Example. Use the ROM BIOS printer driver to send a string to the first parallel printer port
1 mov d1, [bx] : get next character inte DL) .
. mov ah,04h ; function 04H = auxiliary cutput ;) msg db 'This is a test message’
int 2th ; transfer to M5-BOS] ; msg—len equ s-msg
ine ox ; bump peinter to outpat string
loop L ; and loop until all chars sent
ite Fi ice f i redefined
Example: Use the M5-DOS handle-based Waite File o1 Device function and the p movr bx,seq msg i DS:BX — address of message
handle for the standard auxiliary device to write a string to CoML . : mov ds, bx
nov bx,ocffset msg
msg db 'This is & test message’ ? mov cx,msg_len ; CX = length of message
nsg_len equ 5-msg : mov dx, 0 ;) DX = 0 for IPIN
L1: mov al, [bx] ; get next character into AT
mov ah, 0Gh ; subfunction 00H = output
int 1Th ; transfer to ROM BIOS
wov dx, seq msg : DS:DX = address of message inc bx : bump pointer to output string
oV ds,dx . loop L1 i and loop until all chars. sent
mov dx,cffset msg ; ’
oV cx, msg_len ; CX = length of message
oV bx, 3 ; BX = handle for standard aux.
mov ah, 40h ; function 40H = write file/device
int 21h ; transfer to M$-DOS) .
je error ; jump if write operation failed : 7

Section II Programming in the MS-DOS Environment 163
162 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 94
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

Example Use the traditional MS-DOS function call to send a string 1o the first parallel

printer port.

‘This is a test message'

msg db

msg_len edu §-msg
mov bx,seq msg , DS8:BX = address of message
mov ds,bx
mov br,offset msg
mov cx,msg_len + Cx = length of meSS?ge

Ii- mov dl, [bx] ; get next characte% into DL

’ mov ah, 05h . function 05H = printer output

int 2th : transfer to M$-DOS B
inc bx ; bump pointer to output string
loop 11 ; and loop until all chars sent

Use the handle-based MS-DOS Wirite File o1 Device call and the predefined

xample. . '
ey io the system list device

handle for the standard printer to send a string

"this is a test message’

msg db
msg_len equ $~msg
mov dx, seg msg . DS:D¥ = address of message
mov ds,dx
mev dx,cffset msg
mov cx, msg-.len : c¥ = length of message
mov bx,4 ; BX = handle for standaFd p?lnFer
mov ah, 40n . function 40H = write file/qevice
int 21h ; transfer to MS-DOS '
jc error ; dump if write operatlion failed

IOCTL

In versions 2.0 and later, MS-DOS has provided applicatiox.ls with the ablhtz; to ;:()En'iileuxsl—
cate directly with device drivers through a set of subfunctions grouped'un 4e41HnTel'1e P
21H Function 44H (I0CTL) See SYSTEM CAILS: IntErRUPT 21H: Function e .
TOCT1 subfunctions that are particularly applicable to the character /O needs of app

cation programs are

Subfunction Name

00H Get Device Data

0IH Set Device Data .
0Z2H Receive Control Data from Character Device

(more)

164 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 95
LG Electronics, Inc. v. Papst Licensing

Article 5: Character Device Input and Output

Subfunction Name

03H Send Control Data to Character Device

0GH Check Input Stitus

07H : Check Qutput Status

0AH Check if Handle is Remote (version 3.1 or later)

0CH Generic I/0O Control for Handles: Get/Set Output Iteration Count

Varicus bits in the device information word returned by Subfunction 00H can be tested

by an application to determine whether a specific handie is associated with a character
device or a file and whether the driver for the device can process control strings passed by
Subfunctions 02H and 03H. The device information word also allows the program to test
whether a character device is the CLOCKS, standard input, standard output, or NUI device
and whether the device is in raw or cooked mode The program can then use Subfunction
01H to select raw mode or cooked mode for subsequent I/0 performed with the handle

Subfunctions 02H and 03H allow control strings to be passed between the device driver
and an application; they do not usually result in any physical I/O to the device For exam-
ple, a custom device driver might aliow an application program to configure the serial port
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi-
larly, the custom driver might respond to Subfunction 02ZH by passing the application a
series of bytes that defines the current configuration and status of the serial port

Subfunctions 06H and 07H can be used by application programs to test whether 2 device is
ready to accept an output character or has a character ready for input These subfunctions
are particularly applicable to the serial communications potts and parallel printer ports
because MS-DOS does not supply traditional function calls to test their status

Subfunction 0AH can be used to determine whether the character device associated

with a handle is local or remote — that is, attached to the computer the program is running
on or attached to another computer on a local area network A program should not or-
dinazily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.
This subfunction is available only if Microsoft Networks is running

Finally, Subfunction 0CH allows a program to query or set the number of times a device
driver tries 10 send output to the printer before assuming the device is not available

IOCTL programming examples

Example Use IOCTI Subfunction 00H to obtain the device information word for the stan-
dard input handle and save it, and then use Subfunction O1H to place standard input into
raw mode

info dw ? ; save device information word hers

(more)

Section IT: Programming in the M5-DOS Environment 165

Part B: Programming for MS-DOS

166

ax, 4400h ; AH function 44H, IOCII ‘
e ’ Al = subfunction 00H, get device
information word

bx,0 ; BX = handle for standard input
mov , 1
int 21n ; transfer to MS-DOS
. save device information word

" e ’ (assumes DS = data segment)
: de bit
o ii'§0h ; iiz z?:aZODH as MS-DOS requires
Ezz ax14401h ; AL :Vsubfuncﬁion 01H, set device
. ; information word
; (BX still contains handle)
int 2th ; transfer te MS-DOS

Example. Use IOCTL Subfunction 06 1o test whether a character is ready for in(}))(l)lé ofn ,:;e
f'it'st seriai port The function returns AL = OFFH if a character is ready and AL = i

+ AH = function 44H, IoCIL

" e 42058 ; Al = subfunction Q06H, get
; input status
mov bx,3 . BX = handle for standard aux
int 21h . transfer to MS-DOS .
or al,al ; test status of AUX driver
jnz ready ; jump if input character ready

else no character is walting

Jim Kyle
Chip Rabinowitz

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Article 6
Interrupt-Driven Communications

In the earliest days of personal-computer communications, when speeds were no faster
than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate The PC had time between characters to determine what it
ought to do next and could spend that time keeping track of the status of the remote
system

Modern data-transfer rates, however, are four to eight times faster and leave little or no
time to spare berween characters At 1200 bits per second, as many as three characters can
be lost in the time required to scroll the display up one line. At such speeds, a technique o
permit characters to be received and simultaneously displayed becomes necessary

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs
attention, it sends an interrupt request to the processor The processor interrupts its activ-
ity, services the request, and then goes back to what it was doing Because the response is
driven by the request, this type of processing is known as interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors

Successtul telecommunication with PCs at modern data rates demands an inter1 upt-driven
routine for data reception. This article discusses in detail the techniques for interrupt-
driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS-DOS to achieve this goal
To see what must be done to supplement M3-1DOS functions, the hardware (both the
modem and the serial port) is examined This leads to a discussion of the method MS-DOS
has provided since version 2 0 for solving the problems of special hardware interfacing;
the installable device driver

With the background established, alternate paths to interrupt-diiven communications are
discussed — one following recommended MS-DOS techniques, the other following stan-
dard industry practice -— and programs are developed for each

Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM
PC family MS-DOS systems not totally compatible with this architecture may require sub-
stantially different approaches at the derailed level, but the same general principles apply.

Purpose of Communications Programs

The primary purpose of any communications program is communicating — that is, trans-
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for

Section IT: Programming n the MS-DOS Environment 167

LG Exhibit 1204C, Page 96
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

iransmission to 2 remote computer via phone lines and, conversely, converting informa-
tion received from the remote computer into a display on the video screen {or data in a

file).

Some years ago, the most abstract form of all communications programs was dubbed a
modem engine, by analogy to Babbage’s analytical engine ot the inference-engine model
used in artificial-intelligence development The functions of the modem engine are com-
mon to all kinds of communications programs, from the simplest to the most complex,

and can be described in a type of pseudo-C as follows:
The Modem Engine Pseudocode

DO { IF (input character is avallable)
send..it_to_remote;
IF {remote character is available)

use_it_locally;
} UNIIL (told to_stop);
The essence of this modem-engine code is that the absence of an input character, or of a
character from the remote computer, does not hang the loop in a wait state Rather, the
engine continues 1o cycle: If it finds work to do, it does it; if not, the engine keeps looking

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message, it is nice to be able to pause and read the mes-
sage before the lines scroll into oblivion On the other hand, taking too long 1o study the
screen means that incoming characters are Jost. The answer is a technique called flow con-
trol, in which a special control character is sent to shut down transmission and some other

character is later sent to start it up again

Several conventions for flow control exist One of the most widespread is known as
XON/XOFE, from the old Teletype-33 keycap legends for the two control codes involved
In the original use, XOFF halted the paper tape reader and XON stasted it going again In
mid-1967, the General Flectric Company began using these signals in its time-sharing com-
puter services o control the flow of data, and the practice rapidly spread throughout the
industry

The sample program named ENGINE, shown later in this article, is an almost literal imple-
mentation of the modem-engine approach This sample represents one extreme of sim-
plicity in communications programs. The other sample program, CTERM C, is much more
complex, but the modem engine is stiil at its heart

Using Simple MS-DOS Functions

168

Because MS-DOS provides, among its standard service functions, the capability of sending
output to or reading input from the device named AUX (which defaults to COML, the first

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 97
LG Electronics, Inc. v. Papst Licensing

;t;;;{)l gg{ffu?lntr'nost mac}i]jnes), a first attempr at implementing the modem engine using
. ctions might look something like the ing i '
Microsoft Macro Assembler (MASM) codi: ioving incomplece f sgmentef

/Incomplete {and Unworkable) Implementation

1oce; MOV AH, 08h
i read keyb
o o yboard, no echo
523 i;,ﬁl / St up to send
r04h ; send to AU
o o X device
MOV AH, 03h ¢ re.
: ad fro i
. o m AUX device
zgg DL, AT i set up to send
AH,02Zh + send to screen
INI 21h
JMP 100P i .keep doing it

;g:r?::clie; t;fiti ltjl';(is code is that it violates the keep-looking principle both at the key.
e port: Interrupt 21H Function 08H do ‘ 1)
character is available, so no data from th cead until 2 key s pre)o0erd
' : € AUX port can be read unil is pr
locally Similarly, Function 03H wai walable o
, aits for a character to become availabl
. - : e from A
more ifeys can be recognized locally until the remote system sends a characy IEX’ hing
Is received, the loop waits forever T nothing

I‘ - "
ai ;:fercsotrzee ;he probéelr)n fat the keyboard end, Function 0BH can be used to determine if
pressed before an attempt | i i
Odif:]a o of e e pt is made to read one, as shown in the following

Improved, (but Stili Unworkable) Implementation

LOgP: MO AH, 0Bh it t Y. rd for char
v ; est keyboa
INT 21h
OR AL, AL i test for zero

Jz
RMI ¢ no char avail, skip

MOV AH, 08h i h

A ¢ nave char, re i
e jord ’ ad it in
ggz DI, Al i Set up to send

AH, 04h i send to Al
; UX d
INI 21h Trhes
RMT :

MOy AH,03h ix

B ead from AUX i
INT 21h ' Aevice
ggz DI,Ar set up to send
X AH, 02h send to screen
INI 21h
JMP 1.00P ; keep doing it

g iusrzcs)dedpgrm iifts any .inpui from AUX to be received without waiting for a lacal key to
o pk. Se }; ut if AUX is slgw about providing input, the program waits indefinitely before
ecring the keyboard again Thus, the problem is only partially solved

Section I1. Programming in the MS-DOs Environment 169

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

The

MS-DOS, however, simply does not p

rovide any direct method of making the required

tests for AUX or, for that mattet, any of the serial port devices That is why communications
programs must be treated differently from most other types of programs under M$-DOS
and why such programs must be intimately involved with machine details despite all

accepted principles of portable progzam design

Hardware Involved

Personal-computer communications require at least {two distinct pieces of hardware (sepa-
cate devices, even though they are often combined on a single board) These hardware
items are the serial port, which converts data from the computer’s internal bus into a bit
stream for transmission overa single external line, and the modem, which converts the bit

stream into a form suitable for telephone-line (or, sometimes, radio) transmission

The modem

170

dularon) is a device that converts 2

stream of bits, represented as sequential changes of voltage level, into audio frequency sig-
-grade telephone circuits (modulation) and con-

nals suitable for (ransmission over voice
verts these signals back into a stream of bits that duplicates the original input (demodu-

lation)

Specific characteristics of the audio signals involved were established by AT&T when that
company monopolized the modem industry, and those characteristics then evolved into
de facto standards when the monopoly vanished They take several forms, depending on

the data rate in use; these forms are normally identified by the original Bell specification
number, such as 103 (or 600 bps and below) or 212A (for the 1200 bps standard)

The data rate is measured in bits per second (bps), often mistermed baud or even “baud

» A baud measures the number of signals per second; as with knot (nautical

he time reference is built in If one signal change matks one bit, as is true
for the Bell 103 standard, then baud and bps have equal values However, they are not
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200
bps uses two one streams, each operating at 600 baud, to transmit data at 1200 bits pet

second

The modem (a word coined from MOdulator-DEMo

per second.
miles per hour), T

For accuracy, this article uses bps, rather than baud, except where widespread industry

misuse of baud has become standardized (as in “baud rate generator "

Originally, the modem itself was a box connected to the computer’s serial port via 2 cable
Characteristics of this cable, its connectors, and its signals were standardized in the 1960s
by the Electronic Industries Association (E14), in Standard RS232C Like the Bell standards
for modems, R§232C has survived almost unchanged. Its characteristics are listed in

Table 6-1

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 98
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupt-Driven Communications

Table 6-1, R§232C Signals.

DB25 Pin 232 Name Description
; A Slafety Ground
: o }Ié(%) Transmit Data
; o X Receive Data
5 o R.I S Request To Send
. o CTS Clear To Send
| : o DSR Data Set Ready
! . GND Signal Ground
- i g?D Data Catrier Detected
2 o R pata Terminal Ready
RI Ring Indicator

lth he iﬂcreasing pO Ial ly ‘ 1T50NAlt C te U] g nto ” c
W t le iy © pe SO l Ompu i '

) X p 15, inter nal modems Eha i
PC’s IIIOﬂlerboald aﬂd Comblne the IIlOdem and a Sefia}. pOit bECame avaﬂab e

The fir i ‘ :
e (1; it;:gf; i?ltsdwi; eFmanUfaC:iHEd by Hayes Corporation, and like Bell and the ETA
andard. Functionally, the internal modem i identi ’
' ’ m N
of a serial port, a connecting cable, and an external modenis identicatto the combination

The serial port

EaCh SeI‘ia.l POI'E Ofa Stﬂ.rldal'd IB 4 ty;)e
. . - C co 1€ S]Ileles] O thes stem toa ENSESZ ;“
Univer Sa] AS.YﬂChIOHOTJS RCCCIVET. TI ansmitter (LI_ART) integrated CiICUit (IC) Chip de v eI
()ped by I‘]atlollai SeIIlICOIldUCtO O ati i i i
v T C ipOI ation IhlS Chlp, along Wlth aSSOC].ated Cilcuits in

1 Converts data suppli i
pplied via the system data bus into a
. . sequence
, gle single TXD output line that represent binary digits ! ofvoltage levelson
. onve:ts data received as a se “bi RXD
(a sequence of b i i
o s o e o b inary levels on the single input line
groont.rc'(i)ls the quem’s actions through the DIR and RTS output lines
mog; ﬂfis :::t;]se 1]1;1;0];1{ rrlljaéion to the processot; this information comes from the
, , DCD, CTS, and RI input lines, a ithi
; ‘ CD, , , and from w i
which signals data available, data needed, o1 error detected i the UART fsefl

[NNL)

T he word ‘ i

T oo cc;z:;ﬁ;;zzgg}s} tiz. (;he nz;ln;: ’of the .IC comes from the Bell specifications When

s o dom i e of tr vy T et cbuious metboet o0 ko e b s

this e ne - ‘ wvious method is to keep the bit str

T th}; g?;i;ﬁr;:zes ;wnlst:l a cilocllc signal of known frequency and count thg cyclelsttscfli(:iaeﬁ—

onctimes b or binalissu)n 1181 %{nown as synchronous, often abbreviated to synch ot

s s the s 1?fosfync f;cljjr_lous The §econd method, first used with mechanical

Lcleprinters, marks the cach| it group W?Eh a defined start bit and the end with one
p bits, and it defines a duration for each bit time Detection of a start bit

Section I, Programming in the M5-DOS Environment .171

Part B: Programming for MS-DOS

marks the beginning of 2 received group; the signalist
the stop bitis encountered This met

the one used by the standard IBM PC

The start bit is, by
stop bit is the same as that indicating binary one

one signal is called MAREK, from terms use

During transmission, the Jeast significant bit of th
patity bit, if used, appears as the most significant
ot hits; it cannot be distingui
bit is sent, the line remains in MARK (sometimes ca

bit indicates the beginning of another group

In most PC uses, the serial port transfers o
fies a 16-bit quantity Int
the chip in each chunk T

during setup operations and can be 5,6, 7,0r 8 bits.
tions and refers to words, rather than to bytes

One special type of signal, not often used in P

necessary in communicating wi
SPACE condition that extends for
(Many systems require the BREAK to las
Because it cannot be generated by any normal dat
used to interrupt, or b eak into, normal opetation
the BREAK signal, butits duration
chip.
The 8250 UART architecture

The 8250 UART contains four major functional ar
and status circuits. Becaus
ing descriptions are, of necessity,

The major patts of the receiver are a shift register and

Data Register The shift register assciml
form by shifting the level of the
time, shifting previous bits over
to the data registes, the shift register is cleare
that indicates data ready is set
i the status circuits are also set

Similarly, the major parts of the tran

Holding Register and 2 chift register Fach word to be

172 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 99
LG Electronics, Inc. v. Papst Licensing

hod is known as async

definition, exactly the sameas that used
A zero signal is often called SPACE, and 2

d in the teleprinter industry

e data is sent first, after the start bit. A
bit in the data group, before the stop bit

shed from a databit except by its
lled idling) condition until a new start

he UART world, however, 4 word i

‘e word length is part of the contr
This discussion follows UART conven-

th mainframe systems, isa BREA
more than one word time, includ
¢ at least 150 milliseconds regardless of data rate)
a characte1 transmission, the BREAK is

The IBM PC’s 8250 UART can generate
must be determined by

e these areas are closely related,
forward references to subsequent pas agraphs

bles sequentially received
RXD line into its front end at eac

When the shift register is full, all bit
4 1o all zeros, and the bit in the status Circuits

1§ an ertor is detected during receipt of that word, other bits

smitter are a holding register cal

hen sampled at each bit time until

hronous (o just asynch) and is

to indicate binary ze1o, and the

position. Once the first stop

ne 8-hit byte at a time, and the term word speci-

< the unit of information sent by
ol information set into the chip

C-10-PC communications but sometimes

K The BREAKisan all-
ing the stop-bit time

a program, 1ather than by the

eas: receiver, transmitter, control circuits,

some terms used in the follow-

a data register called the Received
dara into word-parallel

1 bit time and, at the same
s in it are moved over

led the Transmit
transmitted is transferred from the

Article 6: Interrupt-Driven Communications

data bus to the holding register. If the holding regi i
o | I roldi g z'gglster is not empty when this is
previous o ﬂl;efr:)t:;:l i(:;:SSI he lt;ansg}l.tter s shift register converts word«paxalleldc(i);zlitr}:tz
e b o :I(:n hy"fst'uftmg the @ost significant bit out to the TXD line once
low end of the register '\7'0'E11.°,r1€l:flel 12;8;;2’;1 ll?lgz g‘;er aillldf Shélf e
tow end of the hen th en shifted out, any data in i
nogmore dat;) ;:;10 Ect) I;(l:ls Hslllllllft 1 :g(lisl':de]r, th'e _holding register is filled Wit]: idling bit:sl;i: Siglg
S — Sg, nd the 'bxt in the status circuits that indicates the Transmit
B Stz . set Fo indicate that another word can be transferred. The
patity bil i ar ,hif p bits are added to the transmiited stream after the last d i

s shifted out et

The control circuits establi
ish three communicati i

e | ions features: first, line o
pach: ;C:)vs;d ;f;l:;gth, Whetll',eeI or not (and how) paiity is checked, and theO:flﬁLZTmF .
thi;;i o raée o ;}1:1 ;o(ziltrol- values, such as the state of the DTR and RIS output Iio S.IOP
this é_bit i 1cd ata is s§nt altld received These control values are establis}?:;,];md
o S bl egisters ;nRe;)'r':: 16(—?2 I;;eglster, which are addressed as four 8-bit registers Tl'z;

L ister (LCR), the Modem Contr ister 4
BRG Divisor Latch, addressed as Baud(0 and Baudl fol Regisier (MCR), and the 6-bi

TheB ivisor
b :n nljfbg‘];ljgé Ii:;tch sets the data rate by defining the bit time produced by the Pri
S te Gez:ier‘.ator (PBRG), a major part of the control circuits X[he PEI;IDQ_G
LG ,F da I.Jspe"e : from a few bits per second to 38400 bps; in the BIOS of th
o thé o al; grt)he ;@;’etgoﬁlg-hﬁ o;ﬂy the range 110 through 9600’ bps is supported ©

. ablish their control val i
and how interrupts are enabled are discussed late‘:a s bow the PERG s programrned,

The fourth major area in the 8230 UART, the status circui

The fou teaint ART, us circuits, records (in a pai

an% . i ;E;c; ;:?::;;ZS 1;1 tlt_the receive and Ergnsmit circuits, any errors thitl;if cslztelcl:ied

e e arloi n[ee R5232C input .hnes from the modem When any status regis—

b ey T appI,OaCh 1etm;1pt request, if enabled, is generated to notify the rest of the

P system This approach 1¢ :] the PC att.end to other matters without having to continuall

monis erial port, yet it assures immediate action when something doesY
The 8250 programming interface

Not all the registers mentioned in the precedi :

The shift register preceding section ate accessible to progr _
O S e
seven distinct addre regl(sfl ° avgﬂame to the programmer, and they are accessed by oni
Iransmit Holding Ressit;: s gwn in Table 6-2). The Received Data Register and the v only
goes to the holdin Ii i Ny s) rean gle address (a read gets the received data; a write
Register (TER) are fhalge (siterl ;n ;.ddmon, b.Dt.h this address and that of the Inter’r upt Enable
called the Divisor Latch Azgzsst]; IZERG Divisor Ia.tch A bit in the Line Control Register
specific time it (DLAB) determines which registet is addressed at any

Section Il Pragramming in the MS-DOS Environtment 173

Part B: Programming for MS-DOS

In the IBM BC, the seven addresses used by the 8250 are selected by the low 3 bits of the
port number (the higher bits select the specific port). Thus, each serial port occupies eight
positions in the address space Howevet, only the lowest address used — the one in which
the low 3 bits are all 0 —need be remembered in order O aCCESS all eight addresses

Because of this, any serial port in the PC is referred to by an address that, in hexadecimal
notation, ends with either 0 or 8: The COM1 port normally uses address 03F8H, and COM2
uses 02F8H This lowest port address is usually calied the base port address, and each
addressable register is then referenced as an offset from this base value, as shown in

Table 6-2.

Table 6-2. 8250 Port Offsets from Base Address.

Offset Name Description

If DLAB bit in LCR = 0:
00H DATA Received Data Register if

read from, Transmit Holding
Register if written 10

0111 IER Interrupt Enable Register

T DLABbitinICR= L
BRG Divisor Latch, low byte

00H Baud0
01H Baudi BRG Divisor Latch, high byte
Not affected by DLAB bit:
02H D interrupt Identifier Register
03H ICR Line Control Register
04H MCR Modem Control Register
05H 1SR : Line Status Register
06H MSR * Modem Status Register

The control circuits

174

he Programmable Baud Rate Generator (PBRG),

The control circuits of the 8250 include t
m Control Register (MCR), and the Interrupt En-

the Line Control Register (LCR), the Mode
able Register (IER}. :

The PBRG establishes the bit time used for bo
ing an external clock signal. To selecta desired bit rate, the appropriate divisor is loaded
into the PBRG’s 16-bit Divisor Lateh by setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then
writing the divisor into Baud0 and Baudl After the bit rate is selected, DLAB is changed
back to 0, to permit normal operation of the DATA registers and the [ER

th tansmitting and receiving data by divid-

The MS-DOS Encyclopedia

Article é: Interrupt-Driven Communications

LG Exhibit 1204C, Page 100
LG Electronics, Inc. v. Papst Licensing

201"1;}51 (:115:1 1(‘36453(2 M;[;Iz fext;rnal UART clock frequency used in standard IBM systems
in decimal notation) for bit rates between 45 ' 7
Table 6-3. These speeds are establish A e st e
ed by a crystal contained in thy i “inter
modem) and are totally unrelated to the speed of the processor's cloe;cenal portforinternal

Table 6-3. Bit Rate Divisor Table for 8250/1BM.

BPS Divisor
455 2532
50 2304
75 1536
110 1047
1345 857
150 768
300 384
600 192
1200 9%
1800 64
2000 58
2400 48
4800 24
9600 12
15200 6
38400 3

2:5 tx}fénlaltmng control cucmFs are the Line Control Register, the Modem Contiol Register.

Uansmisgoe:;fp;] EnBalR);eAIEglster Bits in the L1CR control the assignment of offsets 0 and 1
e signal, parity generati i ,

length sent and received, as shown in T?b%e 6-4 ton, the number of sop bits, and the word

Table 6-4. 8250 Line Control Register Bit Values.

Bit Name Binary Meaning

Address Control:

7

DILAB)).v 0vvoed Offset 0 refers to DATA;
offset 1 refers to IER
IXXXKXXK Offsets O and 1 refer to

BRG Divisor Latch

BREAK Control:

6

) SETBRK KOO Normal UART operation

xIxoooox - Send BREAK signal

(more)

Section I Programming in the MS-DOS Environment 175

Article 6: Interrupt-Driven Communications
Part B: Programming for MS-DOS

The 8250 can generate any or all of four classes of interrupts, each individually enabled or

le 6-4. Continued’ disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6-6)
Table 6-4. con _ 4 Thus, setting the IER to 00H disables all the UART interrupts within the 8250 without
- Name Binary Meaning _ regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com-
E_/_/_/_—J——,——’_"/ : mands. The IER can be both read from and written to. Only the low 4 bits have any effect
};a;;y Checking: CENPAR No paIitY.biE) . & on the UART
’h wx001xEX Parity bit is .
*xO11x¥K Parity bit is EVEN . Table 6-6. 8250 Interrupt Enable Register Constants.
ol 1 Lok Parity bit is 0 Binary Action
oox X Enable Modem Status Interrupt.
. _ § ook 1xx Enable Line Status Interrupt
Stop Bits: XSTOP sooock0xX Only 1 stop bit 3 XOXKK1X Enable Transmit Register Interrupt
2 wxxxx1xx 2 stop bits) : xoooon] Enable Received Data Ready Interrupt
(15ifWL=5
The status circuits
Word Length: a1 h=5 The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status
xxxxxx00 Word lengt . oo . . : .
10 WD5 h=6 h Register (MSR), the Interrupt Identifier (11D) Register, and the intertupt-request generation
: WD6 xocexx(] Word lengt .
Word length =7 L system
wD7 xxoxxx 10
wD8 xooxx 11 Word length = 8 :

The 8250 includes circuitry that detects a received BREAK signal and also detects three
classes of data-reception errors Separate bits in the ISR (Table 6-7) are set o indicate that
a BREAK has been received and to indicate any of the following: a parity error (if lateral
parity is in use), a framing error (incoming bit = 0 at stop-bit time), or an overrun error
(word not yet read from receive buffer by the time the next word must be moved into it)

Two bits in the MCR (Table 6-5) contiol output lines]?TR and RTS; th Otfl":_fe:h l\gﬁfé’rbgssﬂ
(OUT1 and OUT2) are left free by the UART to be assigned by th_e user; a e
puts the UART intoa self-test mode of operation The upper 3 bits have no effec

UART The MCR can be both read from and written to

defined in the IBM PG OUTlis used by Hayes internal

Both of the user-assignable bits are n the iy
mc:)dems to cause a power-on reset of their circuits; OUT2 controls the passage of UAR

g P PC Urlless OU TTUP

enel ate upt res uest si 2115 to the est Of the T2 is set tO 1, inte: {
d inierr I q lgn €S :

Slgnals fIOm the UART cannot I‘eaCh the rest Of the I C, even though 9.11 OtheI CO[lU()lS are

propetly set. This feature is documented, but obscurely, in the 1BM Technical Reference

The remaining bits of the ISR indicate the status of the Transmit Shift Register, the
Transmit Holding Register, and the Received Data Register; the most significant bit of the
LSR is not used and is always 0 The LSR is a read-only register; writing to it has no effect

Table 6-7. 8250 Line Status Register Bit Values.

manuals and the asynchronous-adapter schematic; it is easy 1O overlook when wiiting an Bit Binary Meaning
interrupt-driven program for these machines 7 O300xRxx Always zero
. 6 KIXXHKKK Transmit Shift Register empty
' Bit Values.
Table 6-5. 8250 Modem Control Registet Bit 5 Polabeesve Transmit Holding Register empty
. 4 bo'sabieioiad BREAK received
Name Binary Description 3 oo Ixacx Framing exror
: = iguration 2 bovvsdbod Parity error
130X, Turns on UART self-test configura y
TES’[TZ };gcoclm Controls 8250 intertupt signals (Usei2 Qutput) 1 pov.ovedbd Overrun etror
OI{JJ’I 1 XoXK1XX Resets Hayes 1200b internal modem (Usetl Output) 0 boovesedl Received data ready
gTS XXEXXKIX Sets RTS output to R$232C connector
DTR peoseoedl Sets DTR output to R3232C connector.

Section I Programming in the MS-DOS Environmetit 177
176 TheMS-DOS Encyclopedia

~

LG Exhibit 1204C, Page 101
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

178

The MSR (Tabie 6-8) monitors the four RS232C lines that report modem sFatus. The uppf‘
4 bits of this register indicate the voltage level of the associa?ed RS232C line; the lower
bits indicate that the voltage level has changed since the register was last read.

Table 6-8. 8250 Modem Status Register Bit Values.

Bit Binary Meaning

7 1XREXTE Data Carrier Detected (DCD) level
6 pabe e e e ' Ring Indicator (RD) level

5 bedb e 904 Data Set Ready (DSR) level

4 hosdbv:e e d Clear To Send (CTS) level

3 bosodhoed DCD change

2 XXX 1XX RI change

1 XxREEX1X DSR change

0 hio'ssevedl CT'S change

As mentioned previously, four types of interrupts are generated The four_types are iden-
tified by flag values in. the ITD Register (Table 6-9). These flags are set as follows:

i i tiag
® Change of any bit value in the MSR sets the modem status g _
° Settingg of theyBREAK Received bit or any of the three error bits in the ISR sets the line

status flag N | .
® Setting of the Transmit Holding Register Empty bit in the 1SR sets the transmit flag.

® Setting of the Received Data Ready bit in the L SR sets the receive flag.

The 1ID register indicaies the intertupt type, even though the IER may b? disabling that
type of interrupt from generating any request The IID is a read-only register; attempts to

write to it have no effect

Table 6-9. 8250 Interrupt Identification and Causes.

Article 6: Interrupt-Driven Communications

NP content Meaning

xxxxoox1B No interr upt active .

xxxxx000B Modem Status Interrupt; bit changed in MSB . .

xxxxx010B Transmit Register Intersupt; Transmit Holding Register empty, bit
setin ISR . . ‘ ‘ :

xxxxx100B Received Data Ready Interrupt; Data Register full, bit set in TSR

xxxxx110B Line Status Interrupt; BREAK or error bit set in L3R

As shown in Tabie 6-9, an all-zero value (which in most of the th.er registersisa btotally |
disabling condition) means that 2 Modem Status Interrupt condition has not‘yet eex;1 .st?t;l
viced A modem need not be connected, however, for a Moderln Statl{s Inter: L;lpt COor tl t1eo
to occur; all that is required is for one of the RS$232C non-data input lines to change state,

thus changing the MSR

The MS-DOS Encyclopedia

Whenever a flag is set in the 1ID, the UART interrupt-request generator will, if enabled
by the UART programming, generate an interrupt request to the processor ITwo or more
interrupts can be active at the same time; if so, more than one flag in the 1ID register is set

The IID flag for each interrupt type (and the 1SR or MSR bits associated with it) clears
when the corresponding register is read (or, in one case, written to) For example, reading
the content of the MSR clears the modem status flag; writing a byte to the DATA register
clears the transmit flag; reading the DATA register clears the receive flag; reading the ISR
clears the Hne status flag. The 1SR or MSR bit does not elear until it has been read; the [ID
flag clears with the ISR or MSR bit.

Programining the UART

Each time power is applied, any serial-interface device must be programmed before it is
used This programming can be done by the computer’s bootstrap sequence or as a part of
the port initialization routines performed when a port driver is installed Often, both tech-
niques are used: The bootstrap provides default conditions, and these can be modified
during initialization to meet the needs of each port driver used in a session.

When the 8250 chip is programmed, the BRG Divisor Latch should be set for the proper
baud rate, the LCR and MCR should be loaded, the IER should be set, and all internal inter-
rupt requests and the receive buffer should be cleared The sequence in which these are
done is not especially critical, but any pending interrupt requests should be cleared before
they are permitted to pass on to the rest of the PC’

The following sample code performs these startup actions, setting up the chip in device
COMI (at port 03F8H) to operate at 1200 bps with a word length of 8 bits, no parity check-
ing, and all UART interrupts enabled (In practical code, all values for addresses and
operating conditions would not be built in; these values are included in the example to
clarify what is being done at each step)

MOV DX, 03FBh : base port COM!t (03F8) + LCR (3)
MOV AL, Q80Ch : enable Divisor Iatch

oul DX, AL

MOV DX, 03F8h ¢ set for Baudl

MOV aX, 96 ¢ set divisor to 1200 bps

OUL DX, AL

INC DX 5 to offset 1 for Baudl

MOV AL, AH i high byte of diviser

QUI DX, AL

MOV DX, 03EBh ; back toc the ICR offset

MOV AL, 03 i DIAB = 0, Parity = N, WI = 8
oo DX,AL

MOV DX, 03F9n ; offset 1 for IER

MOV AI,QFh ; enable all ints in 825Q

QUI DX, AL

MoV DX,03ECh ; COM1 + MCR {4)

MoV AL, OBh i OUL2 + RIS + DIR bits

o157 DX, AL

(more)

Section Il Programmiing in the M5-DOS Environment 179

LG Exhibit 1204C, Page 102
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

CIRGS:
MOV DX, 03FDh ; clear LSR
IN AL,DX
MOV DX, 03F8h ; clear RX reg
IN AL,DX
MOV DX, 03FEh ; clear MSR
N AL,DX
MOV DX, 03EAh : IID reg
IN AL, DX
IN AL, DX ; repeat to be sure
TESI AL, 1 " ; int pending?
JZ CLRGS ; yes, repeat

Note: This code does not completely set up the IBM ser ial port. Although it fully programs
the 8250 itself, additional work remains to be done T he system interrupt vectors must be
changed to provide linkage to the interrupt service routine (ISR) code, and the 8?59 |
Priority Interrupt Controller (PIC) chip must also be programimed to respond to interrupt
requests from the UART channels. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CUsTOMIZING Ms-Dos: Hardware Interrupt Handlers

Device Drivers

All versions of MS-DOS since 2.0 have permitted the installation ofuse‘r-prow.rided device
drivers. From the standpoint of operating-system theory, using'such drivers is the proper
way to handle generic communications intetfacing The following parags ap}}s are mtﬁ?nded
as a refresher and to explain this asticle’s departure from standard device-driver terminol-
ogy See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUusTOMIZING MS-DOS:
Installable Device Drivers

An installable device driver consists of (1) a driver header that links the dgV.er o
others in the chain maintained by MS-DOS, tells the system ﬂ’.le ch?racter:spcs of this spe-
cific driver, provides pointers to the two major routines contained in the driver, and (for a
character-device driver) identifies the driver by name; (2) any data and storage space the
driver may require; and (3) the two major code routines

The code routines are called the Strategy routine and the Interrupt routine_ in normal
device-driver descriptions Neither has any connection wiFh the hardware interrupts d.ealt
with by the drivers presented in this article Because of this, the term Request routine 18
used instead of Interrupt routine, so that hardware interrupt coc‘ie can be called an
interrupt service routine (ISR) with minimal chances for confusion

MS-DOS communicates with a device driver by reserving space for a Comnjland packet
of as many as 22 bytes and by passing this packet’s address to t?le dr'wer W1th'z?{ ca.H to the
Strategy routine. All data transfer berween MS-DOS and the driver, m.both directions,
oceurs via this command packet and the Request routine The operating system places a
command cade and, optionally, 2 byte count and a buffer address into the packet at the
specified locations, then calls the Request routine The driver petforms the command
and returns the status (and sometimes a byte count) in the packet

180 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 103
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupt-Driven Communications

Two Alternative Approaches

Now that the factors involved in creating interrupt-driven comumunications programs have
been discussed, they can be put together into practical program packages Doing so brings
out not only general principles but also minor details that make the difference between
success and failure of program design in this hardware-dependent and time-critical area

The traditional way: Going it alone

Because MS-DOS provides no generic functions suitable for communications use, virtually
all popular communications programs provide and install their own port driver code, and
then remove it before returning to MS-DOS. This approach entails the creation of a com-
munications handler for each program and requites the “uninstallation” of the handler on
exit from the program that uses it. Despite the extra requirements, most communications
programs use this method

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system
before returning to the command level, an installable device driver can be builtasa
replacement for COMx so that every program can have all features However, this

approach is not compatible with existing terminal programs because it has never been a
part of MS-DOS

Comparison of the two methods

The traditional approach has several advantages, the most obvious being that the driver
code can be fully tailored to the needs of the program Because only one program will
ever use the driver, no general cases need be considered

However, if a user wants to keep communications capability available in a terminate-and-
stay-resident (TSR) module for background use and also wants a different type of commu-
nications program running in the foreground (not, of course, while the background task is
using the port), the background program and the foreground job must each have its own
separate driver code And, because such code usually includes buffer areas, the duplicated
drivers represent wasted rescurces

A single communications device driver that is instalied when the system powers up and
that remains active until shutdown avoids wasting resources by allowing both the back-
ground and foreground tasks to share the driver code Until such drivers are common,
however, it is unlikely that commercial software will be able to make use of them In addi-
tion, such a driver must either provide totally general capabilities or it must include control
interfaces so each user program can dynamically alter the driver to suit its needs

At this time, the use of a single driver is an interesting exercise rather than a practical
application, although a possible exception is a dedicated system in which all software is
either custom designed or specially modified. In such a system, the generalized driver
can provide significant improvement in the efticiency of resource allocation

Section II. Programming in the MS-DOS Environment 181

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

14 : Push D1
15 : Push Ax
A. DCViCC-DI’iVCl’ Program PaCkage ‘ 16 : Les Di,Cs:Dbgptr ; get pointer to CRI
. he first of the two Complete : 1; : Mov A;.C, Es: [di]
. . . \ din SectIOﬂ,t eI H : Mov Bl,Ltrt ; move in letters
Despite the limitations mentlgﬂi‘iiéhfgg :C;Zpa.rgate device driver The driver handles all ! 19 Stosw
packages in this article usest he P “mits extreme simplicity in all other modules 20 : Mov Al,Ltr2
hardware-dependent interfaclnlg and thus pet <t because it is especially well suited for in- 21 : Stosw
of the package. This approach is pI‘?SE?lted fxrr(s)tgI :;fs S eever. the package is not mer ely ;j : gzv AL,Ttr3
. ications ' ¥ . » R : osw
troducing the’ conct?pts o Comizrfleatures tﬁat - re not available in most commercial ' 24 Cmp D1, 1600 ¢ top 10 lines only
a tutorial device: It includes so 25 . b wxx
rOErams i . 26 Xor Di,Di
pros self ists of three separate programs Firstis the device dnve‘r, Whld}{ 27 @ Xxx: Mov Word Ptr Cs:Dbgptr,Di
The package itself consists O FIG SYS file Second is the modem engine, which 28 - Fop ax
becomes a part of MS-DOS via the CON. éll imilar component forms the heart of every 29 : Bop Di
is the actual terminal program (A fu.n§t1on‘ y simi cmbly language or a high-level lan- 30 ; Pop Es
communications program, whether it is wx 1tter} in ass _Y Thirdis a separately exe- . 31 : Endm
aoe and regardless of the machine ot operating syStem in use) 1H s word length 32 * ¢ asterisk ends commented-out region
guag eram that permits changing such driver characteristics & » 33 ¢ ;
cuted support program P 34 Device Iype Codes
parity, and baud rate . ot Program 35 : DevChr Equ 8000h : this is a character device
, s that use the traditional approach, the driver and t}}e Support p : ; 36 : DevBlk Equ 0000k ¢ this is a block (disk) device
In most program o inele unit and the resulting mass of detai 37 : DevIioc Equ 4000h ; this device accepts IOCIL requests
are combined with the mOdem engine Inas I%[o the parls are presented as separate ; 38 : DevNon Egqu 2000h ; non-IBM disk driver {block only}
obscures the essential simplicity of each part Here, i€ p 39 : DevOI® Equ 2000h ; M$-DOS 3.x out until busy supported (char)
modules to emphasize that simplicity 40 : DevOCR Equ £800h : MS-DOS 3 x open/close/rm supported
i 41 : DevX32 Equ 0G640h ; MS-DCS 3.2 functions supported
The devicc dt’ivel': COMDVR-ASM)] 42 : DevSpc Equ 0010h ; accepts special interrupt 298
_ L i the default COM! and COM2 devices with othet 43 : DevClk Equ 0008h : this is the CLOCK device
The device driver is written (O augmen hvsical hardware but are logically sepa- 4 44 : DevNul Equ 0004n : this is the NUL device
devices named ASY1 and ASY?2 thatluse the samep &AsM and is shown in the listing in 45 : DevSto Equ 0002k ; this is standard output
(ate The driver (COMDVR ASM) is lmpleglel-lteﬁ;;;askeleton :+ is designed to permit : 4§ : DevSti Equ 0001h ¢ this is standard input
. i is wiitten basica ! . 5 47 1
Figure 61 Althou'gh the dnve!;:used as a general-purpose sample of device-driver 48 1 ; Error Status BIIS
extensive €xpansion and can 49 : StsErr Equ 8006h ; general error
source code 50 : StsBsy Equ 0200h ; device busy
51 : StsDne Equ 0100h ¢ request completed
The code 52 1
s itie coMpvR Driver Eof IBM COM Ports 53 @ ; Error Reason_values for lower-order bits
e Jim Kyle, 1987 54 : ErrWp Equ 0 : write protect error
3 o Based on ideas from many SOUrces : . 55 ¢ ErzrUu Equ 1 / unkngwn unit
4 ’ including Mike Higgins, C1M March 1985") 56 : ErrDnr Equ 2 ; drive not ready
E ' public-domain THIBIOS program fri)m BBS S'd 57 : ErrUe Ecqu 3 ; unknown command
; ' COMBIOS COM from CIS programmers’ SIG: an 58 : ExrrCrc Equ 4 i eyclical redundancy check error
; ' ADVANCED MS-DOS by Ray Duncan 23 : ErrBsl Egqu 5 ; bad drive request structure length
| e i i oo oo o
13 : Comment * [his comments out the Dbgv maCIOI‘ 62 : ErrSnf Equ 8 sector not found
: Ttri,Ltr2,Ltr3 used only to debug driver. 63 : ErrPop Equ 9 ; printer out of paper
11 : Dby Macro ' 64 : ErrWf Equ 10 ; write fault
12 ¢ Local XX
; save all regs used
13 : Push Es Figure 6-1. Continued (more}

(more)

Figure 6-1 COMDVR ASM

Section II: Programming in the MS-DOS Environment 183

182 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 104
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

65 : ErrRE Equ
66 : EBrrGf Equ
67T @ ;

68 @ ;

69 & ;

70 : Pack Struc
71 : Len Db
72 ¢ Prtng Db
73 : Code Bb
74 : Stat Dw
75 : Dosg Dd
76 : Devg Dd
77 ! Media Db
78 : Xfer Dw
7% : Xseg Dw
80 : Count Dw
81 : Sector Dw
82 : Pack Ends
83

84 : Subttl

85 : page

86 :

87

88 : PIC.b Equ
89 : PIC.e Egu
90 : EOI Bqu
81

92

93 : RxBuf Equ
94 : Baudl Equ
95 : IntEn Equ
96 : IntId Equ
97 : lctrl Equ
98 : Merrl Equ
99 : Istat Bqu
100 : Mstat Equ
101 = ;

102 :

143 : Dlab Equ
104 : SetBrk Equ
105 : StkPar Equ
106 : EvnPar Egqu
107 : GenPar Egu
108 : Xstop Equ
109 @ Wd8 Equ
110 : wWd7 Egu
111 ¢ Wd6 Equ
112

113 1 ;

114 : =zsre Equ
115 : xhre Equ

1M
12

3

H

read fault
general failure

Structure of an I/0 request packet header

~

length of record

unit code

command code

return status

{unused MS-DOS" queue link peinter)
(unused driver queue link pointer)
media code on read/write

xfer address offset

xfer address segment

transfer byte count

EVEEY

starting sector vaivne {block only)

IEM-PC Hardware Driver Definitions

Figure 6-1 Continued

184 The M5-DOS Encyclopedia

LG Exhibit 1204C, Page 105
LG Electronics, Inc. v. Papst Licensing

8259 data
020k H
021h i
020h i

8250 port
QF 8h

RxBut+i ;
RxBuf+1 ;
RxBuf+2 ¢
RxBuf+3 ;
RxBuf+4 :
RxBuf+5 ;
RXBuf+é ;

port for EOI
port for Int enabling
E0I control word

offsets

base address

paud divisor high byte

interrupt enable register
interrupt identification register
line control register

modem control reglster

line status register

modem status register

8250 LCR censtants

10000000b ; divisor latch access bit
01000000b ; send break contrel bit
00100000b ; stick parity comtrol bit
000t0000b ; even parity bit
00001000b ; generate parity bit
00000100 extra stop bit

00000011 ; word length = 8
00000010b : word length = 7
00000001b ; word length = &

g250 ISR constants
010006000 ; xmt SR empty
$0100000b ; xmt HR empty

Onong

i
i
[
¢
i
t

Article & Interrupi-Driven Communications

116 BrkRev
117 : FrmErr
118 : ParErr
119 : OveRun
120 : rdta
121 : AnyErr
122 :

123 : ;

124 LpBk
125 Usr2
126 Usr?
127 SetRT3
128 SetDIR
129 ¢ ;

130 @ ;

131 : ¢plvl
132 : RIlvl

133 : DSRIvl
134 : Cci18lvi
135 : CDchg

136 : Richg

137 : DSRchg
138 : CIschg
139 :

140 @ ;

147 ¢+ 5_Int

142 ¢+ E_Int

143 1 X Int

144 : R _Int

145 : Allint
146

147 : Subttl

148 : page
149
150 : ;
181 ¢ ;

152 : IinTdl
153 : Iinxof
134 : Linb&R
155 : LinCIS
156 @ :

157 @

158 : ;

152 : BadInp
160 : LostDt
161 : Offlin
162 : ;

163

164 .

165 : ;

166 &

Egu
Equ
Equ
Egu
Equ
Equ

Egqu
Equ
Egu
Equ
Equ

Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ

Equ
Egu
Equ
Egu

Equ

00010000b
00001000b »
00000100b
000000106 ;
00000001k

break received
framing error
parity error
overrun error
received data ready

BrkRov+FrmErr+ParErr+OveRun

8250 MCR constants

00010000 : UART out loops to in (test)
00061000b : Gates 8250 interrupts
00000100b ; aux userl output

00000010k ; sets RIS ouktput

00000001b ; sets DIR output

8250 MSR constants

10000000k ;

carrier detect level

01000000b ; ring indicator level

00100000b ; DSR lewel
00010000b ; CIS level
00Q01000b : Carrier Detect change
0000G100b ; Ring Indicator change
00006010b ; DSR change
00000001b Cis change

8250 IER constants

00001000b ; enable status interrupt
00000100b ; enable error interrupt
006000010b ; enable transmit interrupt
00000001b ; enable receive interrupt
000011116 ; enable all interrupts

Definitiens for IHIS Driver

Equ
Egu
Equ
Equ

Equ
Equ
Equ

Figure 6-1 Continued

Bit definitions for the ocutput status byte
{ this driver only)

0ffh ; if all bits off, xmitter is idle

i ; output is suspended by XOFE

2 ; output is suspended until DSR comes on again
4 ; output is suspended until CIS comes on again

Bit definitions for the input status byte
{ this driver only }

1 i input line errors have been detected
2 ¢ receiver buffer overflowed, data lost
4 i device is off line now

Bit definitiens for the special characteristics words
{ this driver only
InSpec controls how input from the UARI 1is treated

Section Ii. Programming in the M5-DOS Environment

{more)

185

Part B: Programming for M5-DO3

Article 6: Interrupt-Driven Communications

167 : InEpc Equ 00071h ;
168 7

169 1 QutSpec
170 s

17t : DutbSR Edqu 0001h ;
172 : OutCIs Equ 0002h i
173 : OutXon Equ 0004h ;
174 : Qutcdf Equ 0010h ;
175 : OutDrf Equ 0020h

176 @ 7

177 : Unit Struc H
178 : Port Dw ? ;
119 : Vect Dw ? ;
18¢ : Isradr Dw ?

181 : OtStat Db wd8 H
182 H
183 : InStat ©Db

184 ¢ ;
185 : InSpec Dw InEpc ;
186 : OutSpec Dw QutXom
187 : Baud Dw 96 ;
188 : Ifirst Dw 0 :
189 : Iavail ©Dw 0 :
190 : Ibuf Dw ? f

srrors translate to codes with parity bit on

controls how output to “he UARI is treated

DSR is used to throttle output data

Cc15 is used to throttle output data
XON/XOFF is used to throttle cutput data
carrier detect 1s off-line signal

. DSR is off-line signal

each unit has’é scructure defining its state:
I/0 port address

interrupt vector offset (NO1 interrupt number!)
offset to interrupt -service routine

default LCR bit settings during INII,

output status bits after

Usr2+SetRIS+3etDIR ; MCR bit settings during INII,

input status bits atter

special mode bits for INPUI

special mode bits £or OUIPUT

current baud rate divisor value (1200 b}
offset of first character in input buffer
offset of next available byte

pointer to input pbuffer

offset of first character in output buffer

197 : Ofirst ODw 0 ;

192 : Oavail Dw a ; offset of next avail byte in output buffer
153 : Obuf Dw ? pointer to output buffer

194 : Unit Ends

195

196 ¢ 7

197 ¢ Beginning of driver code ancd data

198 @

199 : Driver Segment

200 : Assume Cs:driver, ds:driver, es:driver

201 = org 0 ; drivers start at 0

202

203 Dw Async2, -1 ; pointer to next device

204 - Dw DevChr + DevIoc ; charactexr device with IOCIL

205 Dw Strtegy . offset of Strategy routine

206 ; Dw Request] : offset of interrupt entry point 1
207 = Db rASY1 ' ; device 1 name

208 : Async2:

200 Dw =1,-1 ; pointer to next device: MS-DOS £ills in
210 Dw DevChr + DevIoc ; character device with IOCII

211 @ Dw Strtegy . offset of Strategy routine

212 = Dw Request? ; offset of interrupt entry point 2
213 & Db 'ASY2 ' ; device 2 name

274

215 ; idbgptr bd 0p0000000h

216 @ 7 :

217 @ ¢ Following is the storage area for the request packet pointer

Figure 6-1 Continued

186 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 106
LG Electronics, Inc. v. Papst Licensing

Figure 6-1 Continued

218 :
219 : PackHd Dd 0
220 : ;
;j? HE baud rate conversion table
2 : Asy_baudt 5
on Y- g: ;2,??22 ; first value is desired baud rate
’ ; second 1 ivi -
or o oty is divisor register value
225 : Dw 134, 857
226 : Dw 150, 786
227 : Dw 300, 384
228 : Dw 600, 192
229 Dw 1200, 96
230 : Dw 1800, 64
231 Dw 2000, 58
232 Dw 2400, 48
233 Dw 3600, 32
234 Dw 4800, 24
235 Dw 7200, 16
236 = Dw 9600, 12
237
238 : ; table of structures
zzg F ASY1l defaults to the COM1 port, INI OCH vecter, XON
T no parity, 8 databits, 1 stop bi fs : '
i1 L ey cabi, p bit, and 1200 baud
242 i : i
e Unit <3£8h,3Ch,asylisr,, s+, inlbuf,, ,cutlbuf>
22: I ASYZ defaults to the COM2 port, INI OBH vector, XON
P no parity, 8 databits, 1 stop bit '
21t - mey_cabz, P bit, and 1200 baud
2471 Unit <2f8h sy2i
o ,2ch,asy2isx,,,,,,,,1i02buf,, ,out2bui>
j:g H Euisiz Equ 256 ¢ input buffer size
: Bu k =
ms Bufsiz-i : mask for calculasing offsets modulo bufsi
251 : Inlbuf Db Bufsliz DUP (?} o
252 1 Outibuf Db Bufsiz DUF {2}
253 :; Inzbuf Db Bufsiz DUE (?)
254 : OutZbuf Db Bufsiz DUR (?)
255 : ;
256 : i Following i £
2o g is a takle of offsets to all the driver functions
258 : Asy_funcs:
zzg f gw Init v 0 initialize driver
2 : Dw Mchek ;1 media check (block only}
i : W B1dBPB ; 2 bulld BPB (block only)
. Dw Ioctlin ; 3 IOCIL read
263 Dw Read 4 read
264 H Dw Ndread 5 nondestructive read
222 : Dw Rxstat 6 input status
: Dw Inflush 7 flush input bufferx
267 : Dw Write ; B write
268 rite
8 Dw Write ;9 write with verify

(more)

Section Il Programming in the MS-DOS Environment 187

Part B: Programming for MS-DOS

289 : Dw Ixstat ; 10 output status
270 Dw Izflush ; 11 flush output buffer
271 Dw Ioctlout ; 12 I0CII write
272 : ; Following are not used in this driver.
273 = Dw Zexit : 13 open (3.x only, not used)
274 = bw Zexit ; 14 close (3 .z only, not used)
275 Dw Zexit ; 15 rem med {3.x only, not used)
276 : Dw Zexit ; 16 out until bsy (3 x only, not used)
277 : Dw Zexit Pord
278 Dw zexit ;18
279 1 Dw Zexit ; 19 gemeric IOCII request (3.2 only)
280 ¢ Dw Zexit ;20
287 = Dw Zexit ;21
282 = Dw Zexit L 22
283 = Dw Zexit ; 23 get logical drive map (3.2 only)
284 = Dw Zaxit ; 24 set logieal drive map {3.2 only)
285
286 : gubttl Priver Code
287 : page
288 :
289 & lhe Strategy routine itself:
2580 .
291 : gstrtegy Proc Far
292 1 ; diog SR,
293 : Mov Word Ptr CS:PackHd,BX ; store the offset
294 = Mov Word Ptr CS:PackHd+2,ES ; store the segment
295 ¢ Ret
296 : gtrtegy Endp
297 &
2988 : Requestl: ; asyncl has been requested
299 : Push Si : save SI
300 ¢ lLea Si,Asy_tabl get the device unit table address
301 Jmp Short Gen_request
302
303 : Request2: ; async? has been reguested
304 Push Si ; save SI
305 : Lea Si, Asy_tab2 ; get unit table two's address
306 :
307 : Gen.request:
- 308 : ; dbg R, PR,
309 : Pushf ; save all regs
310 : crd
311 Push Bx
31z Push Bx
313 pPush Cx
314 Push bx
315 ¢ Push Di
316 = Push Bp
317 Push Ds
318 : push Es
312 Push Cs . set DS = CS

Figure 6-1 Comginued

188 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 107

LG Electronics, Inc. v. Papst Licensing

(more)

I
i
i
|
i

Article 6: Interrupt-Driven Communications

320
321
322
323
3214
325
326
327
328
329
330
337
332
333
334
11335
336
337
338
339
340
341
342
343
344
345
345
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

;
H

;

Exitp

Pop Ds

les Bx, PackHd

Lea Di,Asy funcs
Mov Al,es:code [bx]
Cbw ‘

Add AX,AX

Add Di,ax

Jmp [di]

Exit from driver reguest

Bsyexit:

Mchek:
BldBPB:
Zexit:
Exit:

ExitP

Subttl
Page

Read:

Proc Far

Mov Ax, StsBsy

Jmp Short Exit

Xor Ax, AX

Ies BX, PackHd ;
Or A%, StsDne

Moy Es:Stat [Bx],ax ;
Pop Es i
Bop Ds

Pop Bp

Pop Di

Pop 254

Fop Cx

Pop Bx

Pop Ax

Popf

Pop Si

Ret

Endp

Driver Service Routines

Read data from gevice

dbg 'RY, AT, !

Mov Cz,Es:Count {bx] ;
Mov Di,Es:Xfer [bx] ;
Mov Dx,Es:Xseq [bx]
Push Bx ;
Push Es

Mowv Es,Dx

lest InStat(si], BadInp
Je No_lerr H
Add Sp, 4 ;

Figure 6-1 Continued

get packet pointer
peint DI to jump table
command code

double to word

go do it

get packet pointer

set return status
restore registers

get requested nbr
det target pointer

save for count fixup

Or lostDt
no error so far
error, flush 5P

(more)

Section I Programming in the MS-DOS Environment 189

Part B: Programming for M8-DOS

371 and InStat[si],Not (BadInp Or LostDt)
37z Mov Ax,ErrRE ; error, report it
373 Jmp Exit

374 : Wo_lerr:

375 call Get_in ; go for one

376 : Oor Ah,Ah

377 Jnz Got_all ; none to get now
378 : Stosb : ; store it

379 1 Loop No..lerr ; go fcor more

380 : Got_all:

381 Pop Es

382 : Pop Bx

383 : Sub Di,Es:Xfer{bx] ; calc number stored
384 Mov Es:Count (bx],D1 ; return as count
385 : Jmp Zexit

386 :

387 @ Nondestructive read from device

388

389 : Ndread:

390 : Moy pi,ifirst(si]

391 Cop Di,iavaillsil

392 Jne Ndget

393 Jmp Bsyexit ; buffer emoty
394 : Ndget:

395 : Push Bx

396 Mow Bx,ibuflsi]

397 Mow Al, [bx+di]

398 : Pop Bx

389 : Mov Es:media{bx},al ; return char

400 Jrap Zexit

401 s

402 Input status reguest

403 :

404 : Rxstat:

405 Mov Di,ifirst[si}

406 Crp Di,iavail[si]

407 = Jne Rzful

408 : Jmp Bsyexit ; buffer empty
409 : Rxful:

410 = Jmp Zexilt ; have data

411 2

412 @ Input flush reguest

413

414 Inflush:

415 Mowv ax,iavail([si]

416 Mov Ifirst(si],ax

417 ¢ Jmp Zexit

418

419 : ¢ cutput data to device

420

Figure 6-1 Continued

190 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 108

LG Electronics, Inc. v. Papst Licensing

(more)

Article : Interrupt-Driven Communications

421 : Write:

422 dbg ‘W, e,

423 Mov Cx,es:count [bx]

424 : Mov Di,es:xfer(bx]

425 Mov Ax, es:xseq [bx]

426 Mov Es,ax

427 ¢ Wlup:

428 Mov Al,es: [di] ; get the byte
429 1 Inc Di

430 1 Wwait:

431 : Call Put__out ; put away

432 : Cmp Ah, 0

433 : Jne Wwait : wait for room!
434 : Call Start_output get it going
435 Loop Wlup

436

437 Jmp Zexit

438 :

439 : ; Output status request

440

4471 : Ixstat:

442 3 Mov Ax,ofirst([si]

443 Dec Ax

444 And Ax,bufmsk

445 cmp Ax,ocavail[si]

446 Jne Ixroom

447 hjcited Bsyexit 7 buffer full
448 : TIxroom:

449 Jmp Zexit ; room exists
450 :

451 : 5 IOCII read request, return line parameters
452

453 : Ioctlin:

454 - Mov Cx,eg:count {bx]

455 = Mov Di,es:xfer [bx]

456 : Mov Dy, es:xseg [bx]

457 Mov Es,dx

458 : cmp Cx,10

459 : Je Doiocin

460 Mov Ax,errbsl

461 Jmp Exit

462 : Doiocin:

463 : Mov Dx,port[si] base port
464 Mov Dl,Ictrl line status
465 Mov Cx,4 ICR, MCR, I3R, MSR
466 : Getport:

467 : In Al,dx

468 Stos Byte Ptr [DI]

463 Inc Dz

470 loop Getport

471

Figure 6-1. Continued

Secrion I1. Programming in the MS-DOS Environment

(more)

191

Part B: Programming for M5-DOS

472 Mov Ax, InSpecisil spec in flags
473 Stos Word Ptr [DT]
474 Mowv ax,OutSpecisil out flags
475 : Stos Word Ptr [DI]
476 : Mov Ax,baud[si] ; baud rate
477 : Mov Bx,di
478 = Mov Di,offset Asy-baudti2
479 Mov Cx,15
480 : Baudcin:
481 Cmp [di},ax
482 Je Yesinb
483 : Add Di,4
484 : Loop Baudcin
485 : Yesinb:
486 Mov Ax,-2[c¢i]
487 = Mov Di,bx
488 : Stos Word Ptxr [DI]
489 : Jmp Zexit
490
491 @ ; Flush output buffer reguest
492
493 : (xflush:
494 : Mowv Ax,ocavaillsi]
485 Mov Ofirst[sil,ax
486 Jmp Zexit
ros i for this driver
498 : I0CTT request: change line parameters o
499
500 : Ioctlout:
501 Mov Cx,es:count (bx]
502 Mov Di,es:xfer [bx]
503 : Mov Dx,es:xsegibx]
504 Mov Es,dx
505 Cmp Cx, 10
506 : Je Doiocout
567 : MoV Ax,errbsl
508 : Tip Exit
509
510 : Doiocout:
511 Mov Dx,port(sil ; base port
512 : Mov pl,letrl ; line ctrl
513 : Mov Al,es: [di]
514 Inc Da
513 : or al,Dlab ; set baud
516 out Dx,al
517 ¢ Cle
518 Jnc $+2
519 : Inc Dx ; mdm ctrl
520 Mov Al,es:[di]
521 ¢ Or al,Usr2 ; Int Gate
522 : Out Dx,al

Figure 6-1 Continsed

192 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 109

LG Electronics, Inc. v. Papst Licensing

(more)

Article &: Interrupt-Driven Communications

523 Add Di,3 ; skip LSR,MSR
524 Mov Ax,es:{di]

525 Add pi,2

526 : Mov InSpec[si],ax

527 : Mowv Ax,es:[di]

528 : Add Di,2

529 : Mov OutSpecisi],ax

530 : Mov Ax,es: [di] ; set baud
531 : Mov Bx,di

532 Mov Di,offset Asy_baudt

533 Mov Cx, 15

534 : Baudcout:

535 : Crp [di], ax

536 : Je Yescutb

537 : Add Di,4

538 Loop Baudcout

539

540 : Mov Dl,1ctrl ; line ctrl
541 : In Al,dx ; get LCR data
542 And Al,not Dlab ; strip

543 Clc

544 Jnc $+2

545 out Dx,al ; put back
546 : Mov Ax, ErrUm 7 "unknown media”
547 Jmp Exit

548 :

549 : Yesoutb:

550 : Mov Ax, 2[di] get divisor
551 : Mowv Baud[sil, ax : save to report later
552 : Mov Dx,portisi] ; set divisor
553 out Dx,al

554 : Clec

555 Inc 3+2

556 = Inc Dx

557 : Moy Al,ah

558 : Out Dx,al

559 : Cle

560 : Jnc 542

5671 Mov DL, lctrl ; line ctrl
562 : In al,dx ;i get LCR data
563 : And Al,not Dlab ¢ ostrip

564 : Clc

565 Jne 5+2

566 Out Dx,al put back

567 Jmp Zexit

568

569 : Subttl Ring Buffer Routines
570 : Page
571
572 : Put_out Proc Near ; puts AL into output ring buffer
573 Push Cx

Figure 6-1 Continued

(more)

Section IT: Programming in the MS-DOS Environment 193

Part B: Programming for MS-DOS

Article 6: Interrupt-Driven Communications

574 Push Di 625 & Push Cx
575 Pushf 626 : Push Di
576 Cli 627 : Pushf
577 Mowv Cx,o0avail[si] ; put ptr 628 : Cli
578 Mov Di,cx 629 : Mov Di,iavailisi]
579 Ing Cx ; bump 630 Mov Cx,di
580 : and Cx,bufmsk 631 Inc Cx
381 ¢ Cop Cx,ofirst[si} ; overflow? £32 And Cx,bufmsk
582 Je Poerr ; yes, don’t 633 Cmp Cx,ifirst(si]
583 Add Di,obuf[si] : no 634 : Ine Npierr
584 Mov [di),al ; put in- buffer 635 : Mov Ah, -1
585 : Mov oavaillsil,ex ' 636 : Jmp short Piret
586 : ; dbg ‘ptilot, 637 : Npierr:
587 : Mov Ah, 0 638 : Add Di,ibuf(si]
588 Jmp Short Poret 639 : Mov [dif,al
589 : Poerr: 640 Mov Iavail[si],cx
590 Mowv Ah, -1 641 ¢ ; dbg fpr, i, !
591 : Porset: 642 Mov ah,0
592 Popf 643 : piret:
593 Bop Di 644 Popf
594 Pop Ccx 645 Pop Di
595 ¢ Ret 646 : Pop Ccx
596 : Put_out Endp 647 Ret
597 : 648 : Put_in- Endp
598 : Get_out Proc Near ; gets next character from output ring buffer 649
599 : Push Cx 650 : Get_in Proc Near ; gets one from input ring buffer into AL
600 Push Di 631 Push Cx
601 Pushf 652 Push Di
602 Cli 653 : Pushf
603 Mov Di,ofirst(si] get ptr 654 : Cli
604 Crp Di,cavaillsi] put ptr 655 : Mov Di,ifirstisi]
605 : Jne Ngoery 856 Cmp Di,iavail[sil
606 Mowv Ah, -1 ;oempty 857 : Je Gierr
607 : Jup Short Goret 658 : Mowv Cx,di
608 : Ngoerr: 659 : Rdd Di,ibuf(si]
609 : ; dbg gt,'g', " ! 660 = Mov Al,{di]
810 Mov Cx, i 661 : Mov Ah, 0
611 Add Di, obuf [si] 6562 1 ¢ dbg gt i,
612 Mov Al, [di] ; get char 663 Inc Cz
613 Mov Ah, 0 664 : And Cx,bufrmsk
614 Inc Cx ; bump ptr 665 : Mov Ifirstlsil,cx
615 And Cx,bufmsk ; Wwrap 666 : Imp Short Giret
616 : Mov Ofizst{si],cx 667 : Gierr:
617 : Goret: 668 Mov ah, -1
618 Popt 669 : Giret:
619 Pop Di 570 : Popf
620 Pop Cx 671 Pop Di
621 : Rat 672 : Pop cx
622 : Get_out Endp 673 Ret
623 674 1 Get_in Endp
624 : Put_in Proc Near ; puts the char from AL into input ring buffer 675 :
Figure 6-1. Continued (more) Figure 6-1 Continued (more)

194 The MS-DOS Encyclopedia Section II. Programming in the M5-DQS Environment 195

LG Exhibit 1204C, Page 110
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

676 : Subttl Interrupt Dispatcher Routine

€77 : Page

678

679 : Asylisr:

680 : s5ti

681 Push si

682 lea §i,asy_tabl

683 Jmp Short Int. serve
684 :

685 : Asy2isr:

686 Sti

687 : Push si

688 : Iea 8i,asy_tabZ

689

690 : Int_serve:

691 Push Ax ;
692 = Push Bx

693 : Push Cx

694 Push Dx

£95 = Push pi

696 : Push Ds

697 = Push Cs ;
698 : Pop Ds

689 : Int_exit:

700 @ ; dbg i, x0T

701 = Mov Dx,Port [si]

702 Mov D1, IntId ;
103 = In Al,Dx

704 Crp Al, 00h i
705 - Je Int_modem

706 : Jmp Int_mo no

707 : Int_modem:

708 dbg MY,ET,

709 Mowv D1,Mstat

710 = In Al,dx ;
711 @ Iest 21,CDlvl ;
712 ¢ Jnz Msdsxr

713 Iest OutSpectsi],Qutldsf
714 Jz Msdsr

715 = or InStat([si],Cfflin
116 : Msdsr:

717 Test Al,D5R1lvl ;
718 : Jnz Dsron

719 : Test CutSpecisi],CutDSR
720 : Jz Dsroff

721 Or otStat{si],LinDsR
722 : Dsroff:

723 Test OutSpecfsi},Outbrf
724 : Jz Mscts

125 : Or InStat{si],OffIin
726 : Jnp Short Mscts

Figure 6-1 Continued

196 The MS5-DOS Encyclopedia

LG Exhibit 1204C, Page 111
LG Electronics, Inc. v. Papst Licensing

save all regs

set DS = C8

: base address

check Int ID

dispatch filter

read MSR content
carrier present?
yes, test for DER
; no, 15 CD off line?

DSR present?
yes, handle it

ne, is DSR throttle?

ves, throttle down

; is DSR off line?

ves, set flag

(more)

Article 6: Interrupt-Driven Communications

127
728
729
730
731
732
733
734
735
136
137
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

756
757
758
759
760
761
162
763
764
765
766
167
768
769
770
i
172
713
174
775
776
AN

755

Dsron:
Test
Jz

call
Mscis:

Test

Jnz

Iest

Ctson:

Jmp
Int.mo _no:
cmp
Jne
Int_txmit:
: dbg
Int_exitt:
Call
Int_exit2:
Jmp
Int_tx no:
Cmp
Jne
Int_receive:
H dbg
Mov
In
Iest
Jz
Cmp
Jne
Or
Jmp
Isq:
Cmp
Jne
Iest
Jz
Xor
Jmp
Int.rec_no:
Cmp
Jne
Int_rxstat;
dbg

Figure 6-1 Coniinued

OtStatisi),linDSR
Mscts
OtStat[si],LinDSR
Start_output

Al,CISlvl 7
Ctson ;

Qut8pec(si],OutCIs

Int_exit2
otStat [si],LinCIS
Short Int_exit2

OtS8tat [si],IinCIS
Int_exit?2

OtStat[si],IinCIS
Short Int_exitl

Al,02h
Int_tx no

g g,
Start_output

Int_exit

2Al,04h
Int_rec_no

throttled for DSR?

; yes, clear it out

CI5 present?
yes, handle it
; no, is CIS throttle?

; yes, shut it down

throttled for CIS?

ves, clear it out

try to send another

TR, Py, !
Dx,port{si]

Al,dx ; take char from 8250
CutSpec(sil,CutXon ; is XON/XOFE enabled?
Stuff_ in i one

Al,'S' And O1FH ves, is this XOFF?

Isg ; no, check for XON

GtsStat [s5i],IlinXof ves, disakle output
Int _exit2 ; don't store this one

A1,'Q' And Q1EH ;
stuff_in b
otStat [si],LinXof
Int_exit?
OtStat[sil,linXof
Int_exit]

Al,06h
Int_done

is this XON?
no, save it
yes, walting?
no, ignore it
; yes, clear the XOFF bit
and try to resume xmit

(more}

Section I1. Programming in the M5-DOS Environment 197

Part B: Programming for MS-DOS$

Dl,Istat
Al,dx

InSpec{si],InEpc 7

Nocode H
Al,AnyErr P
Al,080h

Put._in
Ah, 0 ;
Int_exit3 ;
InStat(si},fostDt

Int_exit

InStat(sil,BadInp
Int_exit3

$+2

AL,EOI ;
PIC.b,AlL

Ds

Di

Dx

Cx

Bx

Az

si

Proc Near
orsStat{sil,linldl
Dont_start
Dx,port (si}] ;
Dl,Ilstat

Al,Dx

Al, xhre H
Dont_start ;
Get_out
Ah,Ah
Dont_start H
Dl,RxBuf
Dx,al
s','o?,

Endp

retu
no, j
¥es,

rn them as codes?
ust set error alarm
mask off all but error bits

; put input char in buffer

did it fit?

yes,

all OK

; no, set Datalost bit

all dene now

restore regs

; Blocked?

yes,

no output

no, check UARI

empty?

no

yes, anything waiting?
no

yes, send it out

826 : Subttl Initialization Request Routine

778 : Mov
779 = in
780 : Iest
781 = Jz
782 : And
183 : or
784 : Stuff_in:
785 Call
786 : Crp
787 Je
788 : Or
789 : Int_exit3:
790 Jp
791 : Nocode:

792 or
793 Jmp
784 : Int_dene:
785 Clec
786 Jne
787 Mov
788 : Out
789 Eop
800 : Pop
801 = Pop
802 : Pop
803 : POP
804 : Fop
805 Pop
806 : Iret
807

808 : Start_output
809 : Iest
810 : Jnz
811 Mov
g1z : Mov
313 In
814 Test
815 : Jz
816 call
817 Or
818 : Inz
819 : Mow
820 : out
821 : ; dbg
8§22 : Dont_start:
823 : ret
324 : Start_output
825

827 : Page

828 =

Figure 6-1 Continued

198 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 112

(more)

Article 6: Interrupt-Driven Communications

829
830
831
832
833
834
835
836
837
g38
838
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
256
857
858
859
860
861
862
863
8a4
865
866
867
868
869
870
87
872
873
874
875
876
877
878
879

Init:

CiRgs:

Lea
Mov
Mov

Mov
Mov
Cut
Clc

Mov
Mo
out
Clc
Jnec
Inc
Mow
Cut
Cle
Inc

Mav
Mov
Out

Mov
In
Mov
In
Mov
In
Mov
In
In
Iest
Tz

Cli
Xor

Figure 6-1. Continued

Di,$

Es:Xfer[bx],Di
Es:Xseg[bx],Cs

Dx,Port[si]
bl,Ictrl
Al,blak
Dx,Al

$+2

D1, RxBuf
AX,Baudfsi]
Dx,Al

5+2
[3):4
A1, 2h
Dx, Al

$+2

Bl,Ictrl
Al,CtStat[si]
Dx,Al

otstat [si],0

$+2

Dl, IntEn
Al,Allint
Dx, Al

$+2

Bl,Mctrl

Al, InStat[si]
Dx,Al

InStat [si}, 0

D1,Istat
Al,Dx
Dl,RxBuf
Al,Dx
D1,Mstat
Al,Dx
Dl, IntId
Al,Dx
Al,Dx
Al
ClRgs

Ax,Ax

~

;

-~

release rest

base port

enable divisor

sat baud

sett LCR
from table

clear status

IER
enable ints in 8250

set MCR
from table

clear status

clear ISR

clear RX reg

clear MSR

IID req

int pending?
yes, repeat

set int wvec

{(more)

Section IT. Programming in the MS-DOS Environment 199

LG Electronics, Inc. v. Papst Licensing

Part B: Programaming for MS-DOS

200

880 Mov Es, Ax

881 : Mov Di,vect[si]

882 - Mov Ax,isrAdr(si] ; from table

883 : Stosw

884 : Mowv Es:[di],cs

285 :

886 : in Al,PIC_e : get 8259

887 : and Al,0E7h « comi/2 mask

888 Clic

889 1 Inb 3+2

890 : Qut PIC_e,Al

891 : sti

892 : ' ‘
8483 : Mov Al,EOQI ; now send EQOI just in case
894 : out PIC.b, AL

895 : .

896 : ; dbg pr,TIN, ; driver installed
897 : Jmp zZexit

898 :

899 : Driver Ends

200 : End

Figure 6-1 Continued

‘The first part of the driver source code (after the necessmy_MASM housekeeping c}lle.talis
in lines 1 through 8) is a commented-out macro definition (hr}es 10 thz'?ugh 32) T is |
macro is used only during debugging and is pait of a debugging technique that quul‘rea;
no sophisticated hardware and no more complex debugging program tl.lan the Venéf able
DEBUG COM. (Debugging techniques are discussed after the presentation of the driver

program itself)

Definitions . o .

The actual driver source program consists of three sets of EQU definitions (lines 34
through 194), followed by the modular code and data areas (lines 197 through.90‘0) The
first set of definitions (lines 34 through 82) gives symbolic names to the permissible values
for MS-DOS device-driver control bits and the device-driver structures

initi i .) assi he ports and bit
The second set of definitions (lines 84 through 145) assigns names o t
vahies that are associated with the IBM hardware —both the 8250 PIC and the 8250 UART.

The third set of definitions (lines 147 through 194) assigns names (o the control values and
structures associated with this driver

The definition method used here is recommended for all drivers To move this driver from
the TBM architecture to some other hardware, the major change required to the program

would be reassignment of the port addresses and bit values in lines 84 through 145

The control values and structures for this specific drivet (defined in the third EQU set}

provide the means by which the separate support program can modify the actif)ns of eacﬁl
of the two logical diivers They also permit the driver to return status information to bot

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 113
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupt-Driven Communications

the support program and the using program as necessary Only a few features are imple-
mented, but adequate space for expansion is provided The addition of a few more defini-
tions in this area and one or two extra procedures in the code section would do all that is
necessary to extend the driver’s capabilities to such features as automatic expansion of
tab characters, case conversion, and so forth, should they be desired

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for
ASYT (lines 201 through 207) and the other for AS¥.2 (lines 208 through 213). Following
the headers, in lines 215 through 236, are a commented-out space reservation used by the
debugging procedure (line 215), the pointer to the command packet (line 219), and the
baud-rate conversion table (lines 221 through 236)

The conversion tabie is followed by structure tables containing all data unique to ASY7
(lines 239 through 242) and 45Y2 (lines 244 through 247). After the structure tables,
buffer areas are reserved in lines 249 through 254 One input buffer and one output buffer
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a
name (at line 249) so that it can be changed by editing a single line of the program.

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be
able to hold at least 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dus-
ing wiites to disk Whatever size is chosen should be a power of 2 for simple pointer arith-
metic and, if video display is intended, should not be less than 8 bytes, to prevent losing
characters when the screen scrolls

If additional ports are desired, more headers can be added after line 213; corresponding
structure tables for each driver, plus matching pairs of buffers, would also be necessary
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets
of all request routines in the driver; its use is discussed below '

Strategy and Request routines

With all data taken cate of, the program code begins at the Strategy routine (lines 289
through 296), which is used by both ports This code saves the command packet address
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS

T he Request routines {lines 298 through 567) are also shared by both ports, but the two
drivets are distinguished by the address placed into the SI register This address points to
the structure table that is unique to each port and contains such data as the port’s base
address, the associated hardware interrupt vector, the interrupt service routine offset
within the driver’s segment, the base offsets of the input and output buffers for that port,
two pointers for each of the buffers, and the input and output status conditions (including
baud rate) for the port The only difference between one port’s diiver and the other’s is
the data pointed to by SI; all Request routine code is shared by both ports

Each diiver’s Request routine has a unique entry point (at line 298 for ASY7 and at line 303
for ASY2) that saves the original content of the SI register and then loads it with the ad-
dress of the structure table for that driver The routines then join as a common stream at
line 307 (Gen_ request)

Section IL Programming in the M5-DOS Environment 201

Part B: Programming for MS-DOS

202

This common code preserves all other registers used (lines 309 through 318), sets DS
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code
to calculate an offset into a table of addresses (lines 324 through 326), and performs an in-
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453,

500, or 829)

Although the device-driver specifications for MS-DOS version 3 2 list command request
codes ranging from 0 to 24, not all are used. Eailier versions of MS-DOS permitted only 0
to 12 (versions 2.x) or to 16 (versions 3.0 and 3 1) codes. In this driver, all 24 codes are
accounted for; those not implemented in this driver return a DONE and NO ERROR status
to the caller Because the Request routine is called only by MS-DOS itself, there is no check
for invalid codes. Actually, because the header attribute bits are nof set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entiies (lines 273
through 284) could be saved by omitring the entries They are included only 1o show

how nonexistent commands can be accommodated.

Immediately following the dispaich indexed jump, at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the command packet, restore the registers, and return to the caller. The
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an e1ror
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant
code but also improve readability of the code by providing unique single labels for BUSY,
NGO ERROR, and FRROR return conditions.

All of the Request routines, except for the Init code at line 829, immediately follow the
dispatching shell in lines 358 through 568 Each is simplified to perform just one task, such
4s read data in or write data out The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user’s buffer address are obtained from the command
packet Next, the pointer to the command packet is saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer to the port’s input buffer

Before the Get_in routine that actually accesses the input buffer is called, the input status
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error-return exit from
the driver If no error exists, line 375 calls Ger_in to access the input buffer and lines 376
and 377 determine whether a byte was cbtained If a byte is found, it is stored in the user’s
buffer by line 378, and line 379 loops back to get another byte until the requested count
has been obtained or until no more bytes are available In practice, the count is an upper
limit and the loop is normally broken when data runs out

No matter how it happens, control eventually reaches the Got_ail routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.
Lines 383 and 384 adjust the count value in the packet to reflect the actual number of bytes
obtained Finally, line 385 jumps to the normal, no-error exit from the driver.

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Buffering

Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here
for each buffer, one to put data into it and one to get data out. The ge? pointer always
points to the next byte to be read; the put pointer points 1o where the next byte will be
written, just past the last byte written to the buffer

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written The full-buffer condition is more difficult to test for: The 24 pointer
is incremented and compared with the ge? pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674) Put_out
(lines 572 through 596) writes a byte to the driver’s output buffer or returns a buffer-full
indication by setting AH to CFFH. Get...out (lines 598 through 622) gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available Pur_in (lines 624
through 648) and Get_in (lines 650 through 674) do exactly the same as Put_owt and
Get_out, but for the input buffer These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Interrupt service routines

The most complex part of this driver is the ISR (lines 676 through 806}, which decides
which of the four possible services for a port is to be performed and where like the
Request routines, the ISR provides unique entry points for each port (line 679 for AS¥7 and
line 685 for ASY2); these entry points first preserve the SI register and then load it with the
address of the port’s structure table With SI indicating where the actions are to be per-
formed, the two entries then merge at line 690 inte common code that first preserves alt
registets 10 be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although it could be used to prevemt
attempts to transmit while off line), these ISR options can be removed 5o that only the
Transmit and Receive intetrupts are serviced To do this, Allnt (at line 145) should be
changed from the OR of all four bits to include only the transmit and receive bits (03H,

or 00000011B)

The transmit and receive portions of the ISR incorporate XON/XOFF flow control (for
transmitted data only) by default. This control is done at the ISR level, rather than in the
using program, to minimize the time required to respond to an incoming XOFF signal.”
Presence of the flow-control decisions adds complexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec word in the structure table
with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Fune-
tion 44H) When flow control is enabled, any XOFF character (11H) that is received halts
all outgoing data until XON (13H) is received No XOFF or XON is retained in the input

Section IT. Programming in the MS-DOS Environment 203

LG Exhibit 1204C, Page 114
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

204

buffer to be sent on to any program, although all patterns other than XOFF and XON are
passed through by the driver When flow control is disabled, the driver passes all patterns
in both directions For binary file tansfer, flow control must be disabled

The transmit action is simple: The code merely calls the Start_output procedure at line
750 Start_ouiput is described in detail below

The receive action is almost as simple as transmit, except for the flow-control testing. First,
the ISR takes the received byte from the UART (lines 758 and 759) to avoid any chance of
an overrun error The ISR then tests the input specifier (at line 760) to determine whether
flow control is in effect. If it is not, processing jumps directly to line 784 to store the
received byte in the input buffer with Puz_in (line 785

If flow control is active, however, the received byte is compared with the XOFF charactet
(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored If
the byte is not XOFF, it is compared with XON (lines 766 through 768) If it is not XON

either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled

Regardless, the XON byte itself'is ignored

When control reaches Stuffin atline 784, Pui_in is called to store the received byte in
the input buffer If there is no room for it, a lost-databit is set in the input status flags (line
788); otherwise, the receive routine is finished

If the interrupt was a line-status action, the 1SR is read (lines 776 through 779) If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte
Otherwise, the Line Status interrupt merely sets the generic Badlnp error bit in the input
status flags, which can be read with the IOCTL Read function of the diiver

When all ISR action is complete, lines 794 through 806 testore machine conditions to those
existing at the time of the interrupt and return to the interrupted procedure

The Start_output routine
Start_outpuet (lines 808 through 824) is a routine that, like the four buffer procedures, is

used by both the Request routines and the 1SR Tts purpose is to initiate ransmission of a
byte, provided that output is not blocked by flow control, the UART Transmit Holding
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine
uses the Ger_out buffer routine to access the buffer and determine whether a byte is avail-
able If all conditions are met, the byte is sent to the UART holding register by lines 819

and 820

The Initialization Request routine

The Initialization Request routine (lines 829 through 897) is critical to successful operation
of the driver This routine is placed last in the package so that it can be discarded as soon
as it has served its purpose by installing the driver Itis essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop through this

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 115
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupr-Driven Communications

action until the 8250 finally shows no réquests pending The strange Cle e $+2
seqL;f.nce that appears repeatedly in this routine is 3 time delay required by high-speed
machines (6 MHz 2nd up) so that the 8250 has time 1o settle before anather access is
attempted; the delay does no harm on slower machines

Using COMDVR

lIlhe first step 11:1 using this device driver is assembling it with the Microsoft Macro Assem-
ther (MASM) 'Next, use the. Microsoft Object Linker (LINK) io create a EXF file. Convert
Dﬂevfé(; fg(ai;g ;R binary image file with the EXE2BIN utility. Finally, include the line

= SY¥$ in the CONFIG SYS file so that ill be i
the syotom VR ST at COMDVR will be installed when

Note; The number and colon at the beginni ine
: ginning of each line in the program listings in thi
article are for reference only and should not be included in the soicegfile fein s

2ggr§ &2 s(hows the sequence of actions required, assuming that EDLIN is used for
Cdllying (or creating) the CONFIG 8YS file and that al] ei ‘
root directory of the boot drive H e commandsare isued from the

Creating the driver:

C>MASM COMDVR; <Enter>
C>LINK COMDVR: <Enter»
C>EXE2BIN COMDVR.,EXE COMDVR . SYS <Enter>

Modifying CONFIG. SYS(MZ = press Ctt1-7):

C>EDLIN CONFIG SYS <Enter>
##I <Enter>

#*DEVICE=COMDVR . SYS <Enter>
#"Z2 <Enter>

*E <Enter>

Figure 6-2 Assembling, linking, and installing COMPVR

Because .the devices installed by COMDVR do nor use the standard MS-DOS device n

no conf‘hct occurs with any program that uses conventional port references Such a ?mei
gram will not use the driver, and no problems should result if the program is well b Péo' d
and restores all interrupt vectors before returning to MS-DOS. e

Device-driver debugging techniques

Tll?ce' debugging of device drivers, like debugging for any part of MS-DOS itself. is mor
difficult than normal program checking because the debugging program DEEzUG C(I)eM '
DEBUG EXE, itself uses MS-DOS functions 1o display output When thesé functions ”
being checked, their use by DEBUG destroys the data being examined And becauseare
MS.-DOS always saves its return address in the same location, any call 1o a function from
inside the operating system usually causes a system lockup that can be cured onl

shutting the system down and pOwering up again b

Section I Programming in the MS-DOS Environment 205

Article é: Interrupt-Driven Communications

Part B: Programming for MS-DOS

tg};e; Téf pl';th <Elata from and to the console and the serial port; the fifth is the JMP that closes
§ p. This structure underscores th f ine is si
ivoric T e fact that a basic modem engine is simply a data-

ulty is to purchase costly debugging tools An easier
_DOS functions to track program opera-

acto DBG (lines 10 through 32 of

One way to overcome this diffic
way is to bypass the problem: Instead of using M5
tion, write data directly 10 video RAM, as in the m

COMDVR.ASM)

ITIIE engine

1o
This macro is invoked with a three-chatacter pat ameter string at each point in the pro- 2
gram a progress report is desired. Each invocation has its own unique three-character ‘ 3 ; CODE SEGMENI PUBLIC 'CODE'
string so that the sequence of actions can be read from the screen When invoked, DBG } 4
expands into code that saves all registets and then writes the three-character string 10 Z ASSUME C35:CODE,DS: CODE, ES: CODE, S5: CODE
video RAM Only the top 10 lines of the screen {800 characters, or 1600 bytes) are used: ;. ORG 0100n
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer 8 :
The pointer, Dbgptr (line 215), is setup for use with the monochrome adapter and points 1 3 STARL: EZZ ::’ 3252? devom : open named device (ASY1)
to location BOOD:00008; to use a CGA or EGA (in CGA mode), the location should be 1M int Sin
changed to B800:0000H 1? : mov handle, ax . save the handle
Most of the frequently used Request routines, such as Read and Wrike, have calls to DBG 14 ; alltim: izll 2:; :ldm . main .
25 their first lines (for example, lines 361 and 422). As shown, these calls are commented 15 call putert ' engine loop
out, but for debugging, the source file should be edited so that all the calls and the macro _ 16 : call getkkd
itself are enabled. e call putmdm
18 : Jmp alltim
With DBG active, the top 10 lines of the display are overwritten with a continual sequence 19 ¢ quit: mov ah, dch : come here te quit
of reports, such as RR Tk, put directly into video RAM Because MS-DOS functions are not 2? e 2
used, no interference with the driver itself can occur _ 22 : getmdm proc - et input From moden
Although this technique prevents aormal use of the system during debugging, it greatly 22 ;Z: ;x , i 56
simplifies the problem of knowing what is happening in time-critical areas, such as hard- 25 . nov dz: O;’;z:: ouis
ware interrupt service In addition, all invocations of DBG in the critical areas are in con- : 26 mov ax, 3F00h
ditional code that is executed only when the driver is working as it should ' 27 : int 21h
28 : }
Failure to display the pi message, for instance, indicates that the received-data hardware : 29 : Ifu:v izizn, ax
interrupt is not being serviced, and absence of go after an Ix seport shows that data is not : 30 ret
being sent out as it should j; ; getmdn - endp
Of course, once debugging is complete, the calls to DBG should be deleted or commented 33 : getkbd proc . get input from keyboard
out Such calls are usually edited out of the source code before release In this case, they 34 mov kblen, 0 ¢ first zero the count
remain to demonstrate the technique and, most particularly, to show placement of the calls ;2 TEZ z?h} 1 i key pressed?
to provide maximum information with minimal clutter on the screen 17 . ine 0
A simple modem engine o jnz nogk ; no
: mov ah,7 ; ves, get it
The second part of this package is the modem engine itself (ENGINE ASM), shown inthe 40 int 21h
listing in Figure 6-3. The main lcop of this program consists of only a dozen lines of code :; ‘"j’;‘p al, 3 ; was it Ctrl-C?
(lines 9 through 20). Of these, five (lines 9 through 13) are devoted to establishing initial 4 ;ov ffzi; al P e T
contact between the program and the serial-port driver and two {lines 19 and 20) are fot 44 : inc kblen Pones save it
returning to command level at the program’s end : :2 : cmp al,13 . was it Enter?
Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro- ; e nok rne
gram as far as the main loop is concerned Four of these lines are calls to subroutines that ; Figure G-3. ENGINE ASM ' (more)

206 The MS-DOS Encyciopedia
-yclope Secrion IT: Programming in the M5-DOS Environment 207

LG Exhibit 1204C, Page 116
LG Electronics, Inc. v. Papst Licensing

R T S ——

Article 6; Interrupt-Driven Communications
Ppart B: Programming for MS-DOS .-
1
mov byte ptr kbufr+l,10 ¢ V&S, add IE
a7 :

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbuf?, and posts a
count in kblen; putmdm checks kblerr and, if the count is not zero, sends the required

1 number of bytes from kbuf 10 the serial device
a9 : nogk: ret !
5y : getkbd endp

48 : inc kblen

; Note that getkbd does not use the Read File or Device function, because that would wait
o1 . put output o modem : fpr a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS
52 : putmdm PToC . bien functions that test keyboard status (0BH) and read a key without echo (07H) In addition,
CXr . . . : : . .
53 : _ rj“‘;‘;z - ; special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
3 o px, hardle : kbufr immediately behind Enter and kblen is set to 2
> mov dx,offset Kpufr . . L . .
56 it e, 6000 A Ctrl-C keystroke ends program operation; it is detected in getkbd (line 41) and causes
2 ; : int 27h : immediate transfer to the guit label (line 19) at the end of the main loop. Because ENGINE
5o 3¢ quit : uses only permanently resident routines, there is no need for any uninstallation before
60 : nopm: ret returning to the MS-DOS command prompt.
g1 : putmdm endp . . . b
o . out output to CRI ENGINE ASM is written to be used as a COM file Assemble and link it the same as
§3 : putcrt proc " T COMDVR SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
K, en :
64 : mov ;’;pt‘ CONFIG SYS is needed
55 : jexz : . .
66 : mov bx, 1 . The driver-status utility: COVUTL.C
67 : mov dx,offset mouir
68 : mov ah, 40h . : The driver-status utiiity progiam CDVUTL C, presented in Figure 6-4, permits either of
69 int 21 §+ the two diivers (ASY1 and ASY2) to be reconfigured after being instailed, to suit different
0 ¢ Jct auss needs After one of the drivers has been specified (port 1 or port 2), the baud 1ate, word
. B re ks : . . .
o “Of’zrt endp : B length, parity, and number of stop bits can be changed; each change is made indepen-
H Ut . . . e +
7723 P E L1aneous data and buffers dently, with no effect on any of the other characteristics Additionally, flow control can be
H . isC an: .) . .
34 : devom db 'ASY1', 0 i misce switched between two types of hardware handshaking — the software XON/XOFF control
75 ; handle dw g or disabled — and error reporting can be switched between character-oriented and
76 : kblen d¥ o message-oriented operation
77 . mdlen OW
7% . mpufr db 256 dup (0) 1 . /% cdvutl.c - COMDVR Utility
79 : ¥oufr db 80 dup {0) 2. ¢ Jim Kyle - 1987
80 : 3. % for use with COMDVR SYS Device Driver
g1 : CODE ENDS 4 x/
as . END SIARI s .
¢ : %include <stdio . h> /% i/0 definitions */
Figure 6-3 Continued 7 : #include <conio h> /* special console ifo %/
i ch g : #include <stdlib.h> /% misc definitions */
. ‘ si < handled by the driver code, ea :
Because the details of timing and data convers o ?Ifr};wwhole pS:ocess 15 —essentially 2 9 . #incinde <dos.h> /% defines intdos{) x/
f the four subroutines js —10 show just how Slmp‘e e Fil Device routine 0 :
o — d File or Device ot Write Fiie or 11 S the following define the driver status bits L
puffered interface to the MS-DOS Rea
i hrough 31) asks MS-DOS t© yead 2 max- 12 2
<araple, the getmdm procedure (lines 22 throug ber actually read in @ 13 ; #define HWINI 0x080D /+ MCR, first word, HW Ints gated */
Ilior s ’b from the serial device and then stores the um _31 ac Y he not- 14 : #define o_DIR 0x0200 /% MCR, first word, output DIR 4/
imum of 256 bytes Ir dejver returns immediately, without waiting for dara, so the 15 : #define o_RIS 0x0100 /* MCR, first word, output RIS */
word named mdilen The daver et her 0 or 1. If screen scrolling causes the loop o be 16 '
mal number of bytes returned is either ' -exceed about a dozen characters 17 : #define m PG Gx0010 /% LCR, first word, parity ON «/
delayed, the count might be highet, but it should never ex¢) 18 : #define m PE 0x0008 /* ICR, Eirst word, parity EVEN */
| d, th tcrt procedure (lines 63 through 72) checks the value in mdlen If
When called, the putcr

pu ’ k = S wilte that Ill.llnbef ()f
lhe Vﬂhle is ZEro, ICY t dOeS n()thlng, OthEI W1s€e, it asks I\'Is DO to ‘ ‘
by tes fI om ﬂlbu/fT (Wllel'e gelﬂldﬁ‘l pl.]t then’l) o] the dlsp}ay, an.d then it returns

Figure 64 CDVUTIC {more)

Section II. Prograwnming in the MS-DOS Environment 209
208 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 117
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

Article & Interrupt-Driven Communications

19 : #define m XS 0x0004 /% LCR,
20 : #define m.ML 0x0003 /* LCR,
21

25 : #define 1_CD 0x8000 /% MSR,
23 . #define 1 RI 024000 /* MSR,
54 ; #define i_DSR 0x2000 /% MSR,
25 : #define i_c18 0x1000 /*® MSR,
26 :

27 : #define 1_SRE 0x0040 /* LSR,
25 : #define 1_HRE 0x0020 /* 1SR,
79 ; #define 1._BRK 0x0010 /* 18R,
30 : #define 1_ERI1 0x0008 /* L3R,
31 : #define 1_ER2 0x0004 /% ISR,
32 : #define 1_ER3 0x0002 /* LSR,
33 : #define 1_RRF 0x00071 /% 1SR,
34 :

35 @ /% now define CI$ string for
36 : fdefine CIS *033[2T"

37

38 : FILE * dvp/
39 : union REGS rvsj
40 : int iobf (5 1s

41 =

42 : main ()

43 : { cputs I \AnChVOIL
44 disp 07

45 @}

16

47 : disp O
48 : { int <,

first word, 2 stop bits
first word, wordlen mask

2nd word, Carrier Detect
2nd word, Ring Indicater
2nd word, Data Set Ready
2nd word, Clear to Send

2nd word, Xmtr SR Empty
2nd word, Xmtr HR Empty
2nd word, Break Received
2nd word, FrmErT

2nd word, Parfrr

2nd word, CveRan

2nd word, Revr DR Full

ANSI SYS */

- COMDVR Utility yversion 1 0 - 1987\a" Yi

/% do dispatch loop

/% dispatcher; infinite loop

49 u;

50 = u =1z

51 s while (1)

52 { cputs (w p\n\tCommand (2 for help): ™)7

53 : switch (tolower (& = getche (1)) /* dispatch
54 @ {

55 = case '1' /% select port 1
56 1 fclose (dvp)+

57 : dvp = fopen | “aSYI", "rbt")i

S8 : u=1;

59 preak;

60

61 : case '2' /% select port 2
62 @ feclose (dvp)i

53 dvp = fopen ! 135¢2", "rb+" b

64 o= 2;

65 : preak;

66

67 : case 'b' : /% set baud rate
68 : if { iobf [41 == 300)

69 iopf [4 1 = 1200;

Figure 64 Continued

210 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 118
LG Electronics, Inc. v. Papst Licensing

*/
=/

®/
#/
®/
*/
*/
“/
*/
%/
*/
*/
*/

*/

2/

#/

#/

*/

*/

70 else
Mo if (fobf [4] == 1200)
12 iobf [4 | = 2400;
73 else ’
74 : if { iobf [4] == 2400)
75 : iobf [4 } = 9600;
76 : else
77 iobf [4] = 300:
8 iccwr (}:
79 break;
80 :
8% : case ‘e’
82 : iobf [0] = { m PG + m_?é*).set periEy sven ”
83 : itocwr () '
34 : break;
85
86 : ca '
ol ii (inbf e : /* toggle flow control */
88 iobf [3] = 2;
89 : else
a0 : if {iobf [3] == 2)
91 lobf [21 = 4;
g2 else
53 : 1f (iobf [3] == 4
94 iobf [3] = O
95 : else
96 : ickf I 31 = 1;
87 : joewr ();
98 break;
99
100 : case '1i’ initi
ol e Lo (e s /% initialize MCR/LCR to BN1 : %/
102 locwr {): SR T e R
103 break;
104
105 case '?' g
ISl e e Ceis s /% this help list #/
I o - Y /% clear the display 5/
r ("COMMAND LISI \n");
108 : center (™M select port 1 I = toggle word
10% : center { "2 = select port 2 N = setgna ':l v
1':(1} : center ("B = set BAUD rate O = set iaaiit; ‘EZ gggE .

: A | "B - : aoy .
o z::tt::i E "‘E : set parity to EVEN R = toggle error REPORIS™)),
e i = toggle FLOW control 3 = toggle SIQP bits "

: er { "I = INIITIAIIZE ints, etc¢ Q = .
i14 continue; o U
115
116 : ca !

e jibfl[6 R /% toggle word length =/
118 iocwr ();

119 break;

120 :

Figure 6-4 Continued

(more)

Section II: Programming in the M5-DOS Environment 211

Part B: Programming for M5-DOS

121 = case 'n' : /* set parity off */
122 ; iebf [0 1 &=~ { mPG + m PE Yi
123 : iocwr {);
124 break;
122 : case 'co' /+ set parity odd x/
127 iohtf [01 i= m PG
128 ¢ iohf [0 } &= m PE;
129 : iocwzr {);
130 = break:
o ror reports */
32 case 'r' : /% toggle erro)
1 :
133 iobf [21 "= 1;
134 iocwr {}:
135 : break;
12? i case 's' : /+ toggle stop bits %/
138 : iobf [0] = m X5;
139 : iocwr ();
140 break:
141
142 = case 'g' :
: fclose (dvp):
;:Z . exit { Q)7 /#* break the loop, get out &/
. } .
:iz : cputs (CLS }: /% clear the display %/
147 : center ("CURRENI COMDVR SIAIUS™ };
148 : report { u, dvp }i /* report current status */
149 }
150 ¢)
l:; i center (s } char * s; /* centers a string on CRI %/
153 : { int 1 7 ‘
154 = for {(i = 80 - strlen (s)i 1 > B: 1 -= 2)
155 ¢ cputeh (7' g)
156 cputs (3);
157 cputs { "\rin")s
158 @}
oo i to COMDVR */
160 ; iocwr) /* IQOCIL Write t
161 3 { rvs % ax = 0x4403;
162 : Ivs X bx = fileno (dvp);:
163 : rvs = cx = 10;
164 1 rvs . X dx = (int) 1obf:
165 1 intdos (& rvs, & TVS };
166 @ 1
167
168 :+ char * onoff { x) int x
169 : | return (x 2 " ON" ¢ 7 OFE"™)
170 : }
171 :

Figure 64 Continued

212 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 119
LG Electronics, Inc. v. Papst Licensing

(more)

Article 6: Interrupt-Driven Communications

172
173
174
173
176
177
178
179
180
181

182
183
184
185

186 =

187
188

189

190
181
192
193
154 :
195
196
187
198
199
200 :
201 :
202
203
204 :
205 :
206 :
207
208 :
209
210 :
211
2i2
213
214
215
21¢
217
218
219 :
220 :
227
222

report (unit) int unit

{ char temp [80]; .
rvs X . ax = 0xr4402;
rvs x bx = fileno (dvp }:

rvs x cx = 10;

rvs ® . dx = (int) iobf:

intdos (& rvs, & rvs); /¥ use IOCII Read to get data */

sprintf { temp, "\nDevice ASY%d\t3%d BPS, %d-c-%c\ri\n\n",

anit, iobf [4], /# baud rate */
S+ (dickf [0] § m WL), /* word length */
{ iobf [0] & m.PG ?

{ iobf [O) & mePE 2 'E' : '0') : 'N' 3,
{(iobf [0] & mXS 2 2" ¢ '"1' }): /% stop bits &/

cputs (temp);
cputs "Hardware Interrupts are");
onoff { iobf [0] & EWINI));
", Data Ierminal Rdy" }:

{
cputs {
(

cputs (onoff (iobf [0] & o.DIR))
{
{
{

cputs

cputs ", Rgst Io Send”);
cputs oncff { iobf [0] & o_RIS }):
cputs . ArAn")
cputs ("Carrier Detect™ }:
cputs { onoff (icbf [1 } & i_CD });:
cputs { ", Data Set Rdy"):
cputs (oncff {(iobf [1] & i_DSR }));
cputs { ", Clear to Send");
cputs (onoff (iobf [1 1 & 1i.CIS));
cputs { ", Ring Indicator" }:
cputs { enoff { iobf [1] & 1i_RI });
cputs { " Arin");
cputs (1_SRF & iobf [1] ? "Xmtr SR Empty, " : "");
cputs { 1 _HRE & icbf [1] 2 "Xmtr HR Empty, " : "™);
cputs { 1_BRK & iobf [1] ? "Bréak Received, " : "')
cputs { 1_ER1 & iobf [t) ? "Framing Error, " : "" };
cputs (1_ERZ & iobf [1] ? "Parity Error, " : ""):
cputs (1_ER3 & icbf [1] ? "Overrun Error, " : "™ }:
cputs { 1_RRF & iobf [1] ? "Revr DR Full, * : "7 3):
cputs { "\b\b \r\n" j;
cputs ("Reception errors ™ };
if {(iobf [2] == 1)

cputs { "are encoded a&s graphics in buffer" j;
else

cputs ("set failure flag™ };
cputs (" . Ar\n" };

cputs ("Outgoing Flow Control ™)&
if (iobf [3] & 4)

Figure 64 Continued

Section IT: Programming in the M5-DOS Environmeni

(more)

213

Part B: Programming for MS-DOS

214

223 : cputs { "by XON and XOFF")/
224 : else

225 if (iobf [3] & 2)

226 : cputs ("by RIS and CIs8" }:
227 @ else

228 : if (iokf [3} & 1)

229 : cputs { "by DIR and DSR" };
230 : else

231 : cputs { "disabled" };

232 cputs (" \zdn")i

233 =}

234 :

235 : /*end of cdvutl ¢ */

Figure 6-4 Continued

Although CDVUTT appears complicated, most of the complexity is concentt ated in the
routines that map driver bit settings into on-screen display text Each such mapping

requires several lines of source code to generate only a few words of the display report.
Table 6-10 summarizes the functions found in this program

Table 6-10. CDVUTE Program Functions.

Lines Name Description
4245 main() Conventional entry point
47-150 disp() Main dispatching loop.
152-158 center() Centers text on CRT
160166 jocwr(} “Writes control string to driver with IOCTL Write
168-170 onoffl) Returns pointer to ON or OFF
172-233 report() Reads driver status and repoits it on display

The long list of #define operations at the start of the listing (lines 11 through 33} hglps '
make the bitmapping comprehensible by assigning a symbolic name to each significant bit
in the four UART registers.

The main()} procedure of CDVUTL displays a bannet line and then calls the dispatcher
routine, disp(), 10 start operation. CDVUTL makes no use of ejither command-line parame-
ters or the environment, so the usual argument declarations are omitted

Upon entry to disp(), the first action is to establish the default driver as ASY? py setting
w = 1 and opening ASY7 (line 50); the program then enters an apparent infinite loop
(lines 51 through 149)

With each repetition, the loop first prompts for a command (tine 52) and then gets the
next keystroke and uses it to control a huge swifch() statement (lines 53 through 145) .If
no case matches the key pressed, the switch() statement does nothing; the program sim-
ply displays a report of all current conditions at the selected driver (lines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

However, if the key pressed matches one of the cases in the switch() statement, the corre-
sponding command is executed The digits 7 (line 55) and 2 (line 61) select the driver o
be affected The ? key (line 105) causes the list of valid command keys to be displayed
The g key (line 142} causes the program to terminate by calling exi#{ 0) and is the only
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTI
control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-DOS IOCTI Write function (Interrupt 2IH Function 44H Sub-
function 03H) via function iocewr () (lines 160 through 166)

After the command is executed (except for the g command, which terminates operation
of CDVUTL and returns to MS-DCS command level, and the 7 command, which displays
the command list), the repor#(} function (lines 172 through 233) is called {at line 148) to
display all of the driver’s attributes, including those just changed. This function issues an
IOCTI Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through
178) to get new status information into the control string and then uses a sequence of bit
filtering (lines 179 through 232) to translate the obtained status information into words for
display

The special console I/O routines provided in Microsoft C libraries have been used exten-
sively in this routine Other compilers may require changes in the names of such library
routines as getch or dosint as well as in the names of #inciude files (lines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the diiver A full-featured communica-
tions program might make several changes at one time — for exampie, switching from
7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre-
vent losing any bytes with values of 11H ot 13H while performing a binary file ttansfer with
etror-cotrecting protocol In such a case, the program could make all required changes to
the control string before issuing a single IOCT L Write to put them into effect

The Traditional Approach

Because the necessary device ditver has never been a part of MS-DOS, most communica-
tions programs are written to provide and install their own port driver code and remove it
before returning to MS-DOS. The second sample program package in this article illustrates
this approach Although the major part of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou-
tines, the exception handier, and faster video display They are discussed first

The hardware ISR module

The first module is a handler to service UART interrupts Code for this handler, including
routines to install it at entry and remove it on exit, appears in CH1 ASM, shown in Figure
6-5

Section IL. Programming in the MS-DOS Environment 215

LG Exhibit 1204C, Page 120
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

[RN T N S S

w0

10
11

12
13
T4
15
16
17
18
18
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
48
50
51

H

_IEXI
_IEXI
_DAIA
_-DAIA
CONSI
CONST
_BSS

_BSS

DGROUP

_IEXI

bport
getiv
putiv
imrmsk
oiv_o
olv_s

bi_pp
bf gp

: - bf_bg

bf £1

in bf

b_last

bd _dv

_set_mdm proc

IIILE

CH1 AsSM

CH1 ASM -- support file for CIERM C terminal emulator

set up to work with COM2

for use with

segment byte
ends
segment byte
ends
segment byte
ends
segment hyte
ends

GROUP
assume

segment

Microsoft C and SMALL model only.
public 'CODE’
public 'DAIA’
public "CONSI'

public 'BSS!

CONSI, B35, _DAIA
¢s:_1EXI, DS:DGROUP, ES:DGROUP, S33:DGROUP

public _i m,_rdmdm,_Send Byte, _wrtmdm, set_mdm, 1 m

EQU J2F8h COM2 base address, use 03F8H for COM1
EQU 350Bh COM2 vectors, use (0CH for COM1
EQU 250Bh
EQU 000010000 COM2 mask, use 00000100b for COMI
DW 0 ; old int vector save space
D% 0
DW in_bf ; put pointer (last used)
oW in_bf : get pointer (next to use)
DwW in_bf ; start of buffer
DWW b_last end of buffer
DB 512 DUP {2} 7 input buffer
EQU $ address just past buffer end
DW 0417h : baud rate divisors (0=110 bps)
DwW 06300h : code 1 = 150 bps
DW 3180h ; code 2 = 300 bps
D Q0COh i code 3 = 600 bps
DW 0060h : cede 4 = 1200 bps
DW 0030h : code 5 = 2400 bps
DW 0018h ; cade 6 = 4800 bps
DW 000Cn ; code 7 = 95600 bps

near ; replaces BICS 'init® function
PUSH BP
MOV BF,SP ; establish stackframe pointer
PUSH ES ; save reglsters

Figure 6-5 CHI ASM

216 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 121
LG Electronics, Inc. v. Papst Licensing

(more}

Article 6: Interrupt-Driven Communications

52
53
54
55
56
57
58
59
&80
61
62
63
64
63
66
67
68
69
70
11
12
73
74
75
16
77
78
79
80
81
82
83
84
83
86
87
g8
89
8¢
91
92
93
94
a5
9€
97
98
99
100
101
102

PUSH
MOV
MOV
MOV
MoV
MoV
MOV
QuUI
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
OUT
MOV
MOV
OUI
MOV
AND
MOV
QUT
Mov
MOV
oul
POP
POP
MOV
BOP
REI

¢ —set.mdm endp

¢ _wrtmdm proc
¢ _.Send_Byte:

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
QoUl
MOV
MOV
CALL
JNZ
MOV

Figure 6-5 Continued

DS
2X,C5

DS, AX
ES,AX

AH, [BP+4}
DX, BPORI+3
AL, 80h

DX, AL

DL, AH

CL, 4

DI,CI
DX,00001110b

DI,0FESEI bd dv

DI, DX
DX, BPORI+1
AL, [DI+1]
DX, AL

DX, BPORT
A1, [DI]
DX, AL

AL, AH
AI,00011111Db
DX, BPORI+3
DX, AL

DX, BPORI+2
AL, 1

DX, AL

DS

ES

SP, BP

BP

neax

BP

BP, 5P

ES

DS

AX,Cs

DS, AX
ES,AX

DX, BPORI+4
AL, OBh

DX, AL

DX, BPORI+6
BH, 30h
w_.tmr
w_out

DX, BEORI+5S

i

point them to CODE segment

get parameter passed by C
point to iine Control Reg
set DIAB bit ({see text)

shift param to BAUD field

; mask out all cther bits

; make pointer to true divisor

sat to high byte first
put high byte into UARI

then te low byte

now use rest of parameter
to set Line Control Reg

Interrupt Enable Register
Receive type only

restore saved registers

write char to moden
name used by main program

set up pointer and save regs

establish DIR, RIS, and QUIZ

check for on line, CIS

timed out
check for UARI ready

Section II. Programming in the MS-DOS Environment

{more)

217

Part B: Programming for MS-DOS

103 MOV
104 CALL
105 JNG
106 : MOV
107 = MOV
108 : QUl
109 ¢ w_out: POP
110 ¢ POP
131 = MOV
112 = POP
113 : REI
114 ¢ _wrtmdm endp
115 =

116 : _rdmdm proc
117 PUSH
118 MOV
119 PUSH
120 : PUSH
121 MOV
122 : MOV
123 = MOV
124 MOV
125 = MoV
126 CcMP
127 @ Jz
128 INC
129 CMP
130 : JINZ
131 MOV
132 : nocend: MOV
133 : MOV
134 INC
135 : pnochr: POP
136 : POP
137 = MOV
138 POP
139 : REI
140 : _rdmdm endp
141

142 : w_tmr proc
143 MOV
144 @ y tmi: SUB
145 @ wotm2: IN
146 : MOV
147 AND
148 : CMP
149 : Iz
15Q = LOOP
151 DEC
152 : JNZ
153 : OR

Figure 6-5. Continued

218 The MS-DOS Encyclopedia

BH, 20k
w_tmr
w_out

DX, BPORI
AL, [BP+4]
DX, AL

Ds

ES

SP, BP

BP

near
BP

BP, 8P

ES

DS

AX,CS
D5, aX
ES,AX
AX,0FFFFh
BYX,bf gp
BX,bf pp
nechr

BX
BX,bf_fi
noend
BX,bf_bg
AL, [BX]
bf_gp,BX
AH

Ds

ES

SP, BP

BP

near
BI,?
CX,CX
AL, DX
AH, AT
AL, BH
AL, BH
w_tm3
w_.tm2
BL
w_tml
BH, BH

timed cut
send out to UARI port
get char passed from C

restore saved regs

reads byte from buffer

set up ptr, save regs

set for EOF flag
use "get" ptr
compare to "put”
same, empty

else char available
at end of bfr?
no

yes, set to beg
get the char
update "get" ptr
zero AR as flag
restore regs

wait timer, double loop

set up inner loop

check for requested response
save what came in

mask with desired bits

then compare

got it, return with ZF set
else keep trying

until double loop expires

timed out, return NI

(more)

Article 6: Interrupt-Driven Communications

154
155
156
157
158
153
160
161

162
163
164
165
166
167
168
189
170
171

172
173
174
175
176
177
178
179
180
187

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
207

202
203
204

w_tm3:
w_tmr

REI
endp

i hardware interrupt service routine

rts_m:

nofix:

—i_m

imil:

CLI
PUSH
PUSH
PUSH
PUSH
PUSH
rPUsSH
roP
MOV
IN
MOV
INC
CMP
JNZ
MOV
MOV
MOV
MoV
oUI1
poP
BOP
POP
POP
POP
IRET

proc
PUSH
MoV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
[993

MOV
IN
MOV
IESI

Figure G-5 Continued

DS

AX

BX

CX

DX

cs

DS

DX, BPORT
AL,DX
BX,bf_pp
BX
BX,bf_fi
nofix
BX, bf_bg
{BX],AL
bf_pp, BX
AL, 20h
20h, AL
254

CX

BX

AX

D3

neax
BP

BP, SP
ES

DS
AX,CS
DS, AX
ES,AX
DX, BPORI+1
AL, OFh
DX, AL

DX,BPORI+2
Al,DX
AH,AL

AT, 1

im5

BH,0

im2
DX,BPORI+6
AL,DX

i save all regs

; set DS same as (S
; grab the char from UARI

use "put" ptr
step to next slot

past end yet?

i no

yes, set to begin

put char in buffer
update "put" ptr

send EOI to 8259 chip

; restore regs

install modem service

save all regs used

; set DS,ES3=CS

Interrupt Enable Reg
enable all ints now

clear junk from UARI
read IID reg of UARI
; save what came in
; anything pending?
; no, ail clear now
yes, Mcdem Status?
no
; yes, read MSR to clear

Section 11, Programming in the MS-DOS Environment

(more)

219

LG Exhibit 1204C, Page 122

LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

205 : im2:
206
207

im3:

209

210

211 imé4:
212

213

214

215

216

217 1 imS:
218

219

220

221

222

223 :

224 :

225

226 =

227 =

228 :

229 =

230

231

232 =

233 :

234
235
236
237
238
239 :
240 : im
241

242 : _um
243

244

245 :

24¢6

247

248

249

250 :

251 =

252 =

253 :

264

255

CcMmp
JNZ
CcMp

MOV
IN
CMP

MOV
N

MOV
MOV
[o104%
MOV
MOV
oul
MOV
INT
MOV
MoV
MOV
MOV
INI
IN
AND
oul
MOV
oul
POP
POP
MOV
POP
REI
endp

proc
PUSH
MOV
IN
OR
out
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
QUI

Figure 6-5 Continued

220 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 123
LG Electronics, Inc. v. Papst Licensing

AR, 2
im3

AH, 4

imé

DX, BPORI
Al,DX

AH, 6

imt
DX,BPORI+S
AL, DX

iml

DX, BPORI+4
AL, OBh

DX, AL

AT,

DX, BPORIH1
DX, AL
AX,GEIIV
21h
oiv_o,BX
oiv_s,ES
DX,CEFSEI rts_m
AX,PUIIV
21h

AL, 21h
AI,NOT IMRMSK
21h, AL

AL, 20h
20h, AL

DS

ES

SP,BP

BD

near

EP

8P, SP
Al,21h
AL, IMRMSK
21h,AL

ES

DS

BX,CS

DS, AX
£5,AX

AL, 0

DX, BPORI+1
DX, AL

Iransmit HR empty?
no (no actien needed)
Received Data Ready?
noe

; yes, read it to clear

; get cld int vector

Iine Status?
no, check for more
yes, read ISR ta clear

then check for more

set up working conditions
DIR, RIS, OUI2 bits i

enable RCV interrupt only

save for restoring later

set in new one
now enable 8259 PIC

then send out an EOI

restore regs

uninstall modem service

save registers
disable COM int in 8259

set same as CS

disable UARI ints

(more)

Article é: Interrupt-Driven Communications

256 = MOV BX, oiv_o ; restore original vector
257 MOV DS, 0iv_s

258 MOV AX,PUITIV

259 : INI 21h

260 : POP Ds restore registers
261 POP ES

262 MOV 5P, BP

263 : . POP BP

264 : REI

265 : _um endp

266 :

267 : _IEXI ends

268

269 : END

Figure 6-5 Continued

The routines in CHI are set up to work only with port COM2; to use them with COMI, the
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to
match the COM1 values Also, as presented, this code is for use with the Microsoft C small
memory model only; for use with other memory models, the C compiler manuals should
be consulted for making the necessary changes See also PROGRAMMING IN THE
MS5-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOS: Structure of an Application Program

The parts of CH1 are listed in Table 6-11, as they occur in the listing The leading under-
score that is part of the name for each of the six functions is supplied by the C compiler;
within the C program that calls the function, the underscore is omitted

Table 6-11. CH1 Module Functions.

Lines Name Description
1-26 Administrative details
27-46 Data areas
48-84 _sel_mdm Initializes UART as specified by parameter passed
from C
86-114 _wrimdm Outputs character to UART
87 _Send__Byte Entry point for use if flow control is added to system
116~140 _rdmdm Gets character from buffer where ISR put it, or signals
that no character available
142-155 uLtmy Wait timer; internal routine used to prevent infinite
wait in case of problems
157-182 ris_m Hardware ISR; installed by _i_m and removed by
_u_m. _
184—240 _i_m Installs ISR, saving old interrupt vector
242-265 _l_m Uninstalls ISR, restoring saved interrupt vector

Section ii Programming in the MS-DOS Environment 221

Part B: Programming for MS-DOS

222

For simplest opetation, the 1SR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART
Each time a byte is received by the UART, the ISR puts it into the buffer The _rdmdm
code, when called by the C program, gets a byte from the buffer if one is available If not,
_rdmdm returns the C EOF code (-1) to indicate that no byte can be obtained

To send a byte, the C program can call either _Send__Byte or _writmdm,; in the package

as shown, these are alternative names for the same routine In the mote complex program
from which this package was adapted, _ Send__Byte is called when flow control is desired
and the flow-control routine calls _wrtmdm To implement flow control, line 87 should be
deleted from CH1 ASM and a control function named Send_Byte() should be added to the
main C program Flow-control tests must occur in Send_Byte(); _wrtmdm performs the
actual port interfacing.

To set the modem baud rate, word length, and parity, __set_.mdm is called from the C
program, with a setup parameter passed as an argument. The format of this parameter is
shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function 00H

(Initialization)

Table 6-12. set_mdm() Parameter Coding.

Binary Meaning

000xxxXxXX Set to 110 bps
00Txocox Set to 150 bps
010xxRHX Set to 300 bps

011xxxxx Set to 600 bps
100z Set to 1200 bps

101xxxxx Set to 2400 bps
11050xxxx Set to 4800 bps
11lxxxxx Set to 9600 bps
boveilieed No parity

xxx01xxx QDD Parity

xxxllxxx EVEN Parity

xxxxx0xx 1 stop bit

xoacklxx 2 stop bits (1 5 H WL = 5}

xxooxx00 Word length =5
socexxx(l Word length =6
boveoeell Word length =7
xxxxxx11 Word length = 8

The CH1 code provides a S12-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps without loss of data during scrolling

The MS-DOS Encyciopedia

i
H
{

Article 6: Interrupt-Driven Communications

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handler is needed to prevent return
of control to MS-DOS before _u_m restores the ISR vector to its original value. If a pro-
gram using this code returns to MS-DOS without calling 2, the system is virtually cer-
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer
in memory

A replacement exception handler (CHIA ASM), including routines for instailation, access,
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with
Microsoft C (again, the small memory model only)

Note: This module does not provide for fatal disk errors; if one occuss, immediate restart-
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING
Ms-Dos: Exception Handlers.

T IIIIE CH1A ASM

2 =

3 1 ; CHTA ASM —— support file for CIERM C terminal emulator

4 r ; this set of routines replaces Ctrl-C/Ctrl-BREARK

5 ¢ ; usage: void set_int{}, rst_int();

6 : int broke(): /% boolean if BREAK #/
70 for use with Microsoft € and SMAII model only.

g8 :

S _IEX1 segment byte public "CODE'

10 : _IEXI ends

11 : _DAIA segment. byte public 'DAIA’
2 : _DAIA ends

13 : CoONsI segment byte public 'CONSI'
14 : CONSI ends

15 : _BSS segment byte public 'BSS'
16 : _BSS ends

17 @

18 : DGROUP GRCUP CONSI, _BSS, _DAIA

19 ASSUME CS:_IEXI, DS:DGROUP, ES:DGROUP, S5S:DGROUP
20 :
21 ! _DAIA SEGMENI BYIE PUBLIC 'DAIA'
22
23 : OQOLDINITB DD 0 ; storage for original INI 1BH vector
24
25 : _Dala ENDS
26 :
27 1 _1EXI SEGMENI
28 =
29 : PUBLIC _set_int,_rst_int,_broke
30 »
31 : ayintib:
32 mov word ptr c¢s:brkflg, iBh : make 1t nonzero
33 : iret
Figure 6-6 CHIA ASM (more)

Section I Programming in the MS-DOS Environment 223

LG Exhibit 1204C, Page 124
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M$-DOS Articte 6: Interrupt-Driven Communications

34 original value for the Interrupt 1BH vector; and _broke, which returns the present value of
gz ¢ myine23: e rreLe aa ke it semsers an internal flag (and always clears the flag, just in case it had been set). The internal flag is
3. T::r. wora prr csibriiids Fomake 4t one set to a2 nonzero value in response to either of the revectored interrupts and is tested from
28 _ the main C program via the _broke function.

39 : prkfl \"] ; flag that BREAK occurred] =

o g d 0 9 The video display module

j; —broke i;:e Ziazx fzu;;‘: Soiie:;b;i:k The final assembly-language module (CH2.ASM) used by the second package is shown

43 = xchg ax: cs:brkflg ietzrn current flag 3.3 lue in Figure 6-7 This module provides convenient screen clearing and cursor positioning via
2q : ret _ direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-

tines that call its functions In the original, more complex program (DT115 EXE, available

45 : _broke endp
48 ¢ from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod-
47 ¢ _set_int pro¢ near ! ule provided windowing capability in addition to improved display speed
48 mov ax, 351bh ; get interrupt vector for 1BH '
49 int 21h ; {don't need to save for 23H) 1 TITILE CHZ2 .ASM
50 : mov word ptr oldintlb,bx ; save offset in first word 2
51 ¢ Mnov word ptr oldintlb+2,es i save segment in second word 3 ; CH2 ASM -- support file for CIERM C terminal emulator
52 4 ; for use with Microsoft C and SMALI model only
53 push ds ; save our data segment i 5
54 : mov ax, cs ; set DS to CS for now ! 6 : _IEXI segment byte public 'CODE’
55 : mov ds,ax : 7 i _IEXI ends
56 lea dx,myintlb ; DS:DX points to new routine i 8 : _DATIA segment byte public 'DAIA‘*
57 mov ax, 251bh : set interrupt vector ! 9 : pAIA ends
98 int 21h : 10 : CONSI segment byte public 'CONSI'
59 : mov ax,cs ; set DS to CS for now ! 11 ' coNSI ends
60 : mov ds, ax 12 : _pss segment byte public 'BSS’
61 = lea dx, myint23 ; DS:pX points to new routine 13 : _mss ends
62 mov ax,2523h ; set interrupt vector 14
63 ¢ int 21h 15 : DGROUFP GROUP CONSI, _BSS, _DAIA
64 pop ds ; restore data segment ; 16 : assume £§:.I1EXI, DS:DGROUP, ES:DGROUP, SS:DGROUP
65 : ret ; 17
66 ! _set_int endp ! 18 : _TEXT segment
87 ¢ : 19
68 : _rst_int proc near [20 : public ._cls,_ color,__deol, i v, __key,_wrchr, _wrpos
69 push ds : save our data segment I 21
70 1lds dx,oldint1b ; DS:DX points to original 22 atrin DB 0 . attribute
7o mov ax, 251oh ; set interrupt wvector i 23 : _colr DB i} ; coler
VZ o int 2%h i 24 : y_bas oW 0 ; wvideo segment
73 pop ds i restore data segment | 25 @ v_ulc DW 0 ; upper left corner cursor
74 ret i 26 v_1lrc DW 184%h : lower right corner cursor
75 : _rst_int endp ’ 27 v_col DW 0 : current cecl/row
76 : i 28
77 1 _IEXI ends E 29 1 __key proc near ; get keystroke
78 i 30 PUSH BF
79 END } 31 MOV AH,1 : check status via BIOS
o 32 INI 1
Figure 6-6 Continued : 33 : MO; AihOFFch
. - 34 JZ key00 ; none ready, return EOF
The three functions in CHIA are _ser__inf, which saves the old vector value for Interrupt 35 ¢ MOV AH, 0 : have one, read via BIOS
1BH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt .)
Figure 6-7 CH2 ASM (more)

23H (Control-C Handler Address) to internal ISR code; _rst_irit, which restores the

224 The MS-DOS Encyciopedia Section I Programming in the MS-DOS Environment 225

LG Exhibit 1204C, Page 125
LG Electronics, Inc. v. Papst Licensing

Article é: Interrupt-Driven Communications

Part B: Programming for MS-DOS

36 : INI 16h 87 : prchr: MOV A, colr ; process printing char
37 i key00: POP BP 88 : PUSH AX

38 : REI 85 : XOR AH, Al

39 : _key endp 90 MOV AL,byte ptr v_col+l

40 81 PUSH AxX

41 : _._wWrchr proc near 92 MoV AL,byte ptr v_col

42 PUSH BP 23 PUSH AX

43 : MOV BP, SP 94 CAII wrtvr

44 MOV AL, [BP+4] : get char passed by C 95 MOV SP, BP

45 cMP AL, ' ! 96 ¢ nxt_c: INC BYIE PIR v_col ; advance Lo next column
46 JNB prchr ; printing char, go do it 87 MOV al,byte ptr v_col

47 cMP AL, 8 98 CMP Al,byte ptr v_lrc

48 JNZ notbs 39 JIE norml

49 : DEC BYIE PIR v_col ; process backspace 100 : MOV AL,ODh ; went off end, do CR/II
50 : MOV AL,byte ptr v—col 101 PUSH AX

51 : CMP AL, byte ptr v_ulc , 102 CALL _.wrchr

52 JB nxt ¢ ; step to next column 103 : POP ax

53 : JMp norml. 104 : MOV AL, QAR

54 : 105 PUSH AX

55 : notbs: CMP AL, 9 i 106 CALL __wrchr

56 : JuzZ notht i 107 : POP AX

57 & MOV AL, byte ptr v_col ; process HIAB ! 108 : normi: CALL set_cur

58 ADD AL,8 109 : ignor: MOV SP, BP

59 : AND AL, 0F8h 1Mo POP BP

60 : MoV byte ptr v_col,AL 111 = REI

61 : cMP AL, byte ptr v_lrc : 112 : __wrchr endp

82 : Ja nxt_c : 113 ¢

63 : JMP SHORI norml 114 @ v proc near - ; establish video base segment
64 115 PUSH BP
.65 : notht: CMP AL,QAh 116 : MOV BP, 5P

56 : JNZ notlf 117 MOV AX, 0BOOOR ; mono, B800 for CGA

57 MOV al,byte ptr v_col+] i process linefeed 118 MOV v_bas, BX ; could be made automatic
68 INC AL 119 MOV sp,BP

69 CMP AL, byte ptr v-lrc+l 120 BOP BP

70 ¢ JBE noht1 121 REI

EA T CALL scrol 122 ¢+ _i v endp

72 MOV Al,byte ptr v_lrcet] 123

73 : nohti: MOV myte ptr v_col+l, AL ; 124 : __wrpos proc near . set cursor positien

74 JMP SHORI norml i 125 PUSH BP

15 - 126 MOV BP, 5P

76 : notif: CMP AL, 0Ch ' 127 MoV DE, [BP+4] : row from C program

77 INZ ck_cr / 128 Mav DI, [BP+6] ; col from C program

78 : CALL _.cls ; process formfeed 129 : MOV v_col,DX » curser position

79 JMpP SHORI ignor 130 MOV BH,atzib ; attribute

80 : 131 : MOV AH,2

81 : ck_gr: CMP AL, O0Dh i 132 PUSH BP

82 : TNZ ignor ; ignore all other CIL chars ! 133 ¢ INT 10h

83 : MOV AL,byte ptr v_ulc ; process CR 134 : POP BP

84 : MOV byte ptr v_col,AL 135 : MoV AX,v_col ; return cursor position
85 JME SHORI normkL 136 : MOV SP, BP

86 137 POP BP

(more) Figure 6-7 Continued) (maore)

Figure G-7 Continued

Section I Programming in the M$-DOS Environment 227

226 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 126
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

138 REI
139 ¢ _ _wrpos endp
140

141 : set_cur proc¢
142 : PUSH
143 ¢ MOV
144 MOV
145 MOV
146 : MOV
147 PUSH
148 INI
149 PCP
150 MOV
151 MOV
152 otoid
153 REI
154 ¢ set.cur endp
155 :

156 : _ _color proc
157 = PUSH
158 MOV
159 MOV
160 MOV
161 = MOV
162 SHL
163 AND
164 : OR
165 : MOV
166 : KOR
167 MOV
168 : POP
169 REI
170 __color endp
171

172 ¢ scrol pzoc
173 PUSH
174 MOV
175 ¢ MOV
176 MOV
177 MOV
178 MOV
179 MOV
180 : PUSH
181 INI
182 : POP
183 : MOV
184 POP
185 : REI
186 : scrol endp
187

188 : _.cls proc

Figure 6-7 Continued

228 The MS$-DOS Encyclopedia

LG Exhibit 1204C, Page 127

near

BP

BF, SP
D¥,v_col
BH,atrib
AH, 2

BP

10k

BP

A%, v_col
SP,BP

BP

near

BP

BP, 5P

AH, [BP+6]
AL, [BD+4)
C¥, 4
AH,CI
AL,OFh
AL ,AH
_colr,Al
AH, BH

SP, BP

EP

near

BP

BP, SP
AT, 1
CX,v_ulc
DX,v_lrc
BH, _cclr
AR, 6

BP

10h

BE

SP, BP

BF

near

LG Electronics, Inc. v. Papst Licensing

; set cursor to v_col

; use where v_col says

—coler{fg, bg)

background from C
foreground from C

; pack up into 1 byte
store for handler's use

scroll CRI up by one line

; count of lines te scroll

i use BIOS

clear CRI

(more)

Article &: Interrupt-Driven Communications

189 : PUSH
190 MOV
181 : MOV
182 Mov
193 MoV
194 Mov
195 : MOV
196 MOV
187 : PUSH
198 = INI
199 : POP
200 : CAIT
201 : MOV
202 : POP
203 : REI
204 1 —.cls endp
205 :

206 : —decl proc
207 : PUsSH
208 : MOV
208 : MOV
210 : MoV
211 & PUSH
212 : MOV
213 XOR
214 PUSH
215 : MoV
216 :

217 ; deoll: CMP
218 FA
219 PUSH
220 CAII
221 : POP
222 ENC
223 TMp
224

225 ; deoll2: MOV
226 ¢ MOV
227 POP
228 RET
229 : ——deocl endp
230 :

231 : wrtwzr proc
232 PUSH
233 MOV
234 MOV
235 : MOV
236 : MOV
237 MOV
238 : MUL
239 XOR

Figure 6-7 Continued

BFP

BP, SF

AL,O ; flags CIS to BIOS
CX, v.ualc

v_col,CX i set to HOME

DX, v_lrc

BH,_colr

AH, &

BP

10h ; use BIOS scroll up
BP

set_our i cursor to HOME
SP,BP

BP

near ; delete to end of line
BP

BP, 5P

AL, !

AR, _colr ; set up blanks

AX

Rl ,byte ptr v_col+t

AH,AB ; set up row value

AX

AL,byte ptr v_cel

Al,byte ptr v_lrc

decliz i at RE edge

AX ; current location

WItVr : write a blank

AX

AL ; next column

deoll i do it again

AX,v_col ; return cursor pesition
SP, BP

BP

near ; write video RAM ({(¢ol, row, char/atr)
BP

BE, 5P i set up arg ptr

DI, [BP+4] i ocolumn

DH, [BP+6] T orow

BX, [BP+8) ; char/atr

&L, 80 i calc offset

DH

DH, DH

(more)

Section I1. Programming in the MS-DOS Environment 229

et

Part B: Programming for MS-DOS

240 : apD AX, DX
241 ADD AX, AX
242 PUSH ES

243 : MOV DI,AX
244 MOV AX,v_bas
245 : MOV ES,AX
246 MOV AX, BX
247 : STOSW

248 : POP ES

249 MOV SP,BP
250 : POP Bp

251 : REL

252 ¢ wrove endp

253

254 ; _IEXI ends

255 =

256 : END

Figure 6-7 Continued

adjust bytes to words
; save seg reg

; set up segment

; get the data
; put on screen
; restore regs

The sample smarter terminal emulator: CTERM.C

Given the interrupt handler (CHD), exception handler (CHIA), and video handler (CH2), a
simple terminal emulation program (CTERM C) can be presented The major functions of
the program are written in Mictosoft C; the listing is shown in Figure 6-8.

/# lerminal Emulator
* Jim Kyle, 1987

Uses files CHI1,
#/

: #include <stdioc h>
#include <conic h>
#include <stdlib.h>

: #include <dos . h>

: #include <string.h>

¢ #define BRK 'C'-'@’

: #define ESC '[{'-'@'

#define XON 'Q'-'@"'

#define XOFF 'S'-'@’

W om oo B W R —

- o

¥define Irue 1
#define False 0

o e s
Celie R RS LF R PO L)

20 : #define Is_Function.XKey(

21

22 static char capbfr [40%6]:
23 : static int wh,

24 W3;

Figure 68 CTERM C

230 The MS-DOS Encyciopedia

{cterm.c)

CH1A, and CH2Z for MASM support

/% special console i/o
/* misc definitions
/* defines intdos(

/% control characters

¢y { (€} == ESC

/#* capture buffer

#/
®/
*/

*/

*/

(more)

LG Exhibit 1204C, Page 128
LG Electronics, Inc. v. Papst Licensing

i
|
i
|

Article 6: Interrupe-Driven Communications

25 :

26 : static int T,

27 waitechr = 0,

28 : viflag = False,

29 : capbp,

30 capbc,

31 Ch,

32 Want_7_Bit = Irue,

33 ESC_Seq_State = 0; /* escape seguence state variable */
34 :

35 ; int _ecx ,

36 : —C¥,

37 : —atr = 0x07, /* white on black */
38 : —pag = 0,

39 : oldtop = 0,

40 oldbot = 0x184f;

41 =

42 : FIIE * in file = NULL: /% start with keyboard input #/
43 :; FILE * cap file = NULI:

44

45 : #include "cterm h" /% external declarations, etc. %/
46

47 : int Wants_Io_Abort () /% checks for interrupt of script */f
48 : { return broke {};

49 : |

50 : void

51

52 : main (argc, argv) int argc /* main routine %/
53 : char * argv [];

54 ; { char * cp,

55 : * addext ()7

56 if (arge > 1) /* check for script filename #/
57 : in_£file = fopen (addext (-argv [1], " SCR")}, "r"):

53 - if { argc > 2} /% check for capture filename */
59 cap_file = fopen (addext (argv [2], " Cap"), "w");

60 set_int (}: /* install CH! module */
61 Sat_Vid () /% get videc setup *®/
62 : cls (); /* clear the screen */
63 : cputs { "Ierminal Emulator"™); /* tell who's working af
64 cputs { "\r\n< ESC for local commands >\r\n\n" }:

65 Want_7_Bit = Irue;

66 : ESC_Seq_State = 0;

67 : Init_Comm {}; /% set up drivers, etc. ®/
58 : while { 1) /* main loop */
a9 : { if ((Ch = kb_file {)) > 0) /* check local */
70 = { 1f { Is_Function_Key { Ch))

71 : { 1f (docmd () < 0) /% command */
72 break;

73 }

74 else

75 - Send_Byte { Ch & 0x7F); /#% else sand it */

Figure 6-8 Continued

(more)

Section I Programming in the MS-DOS Environment 231

Article é: Interrupt-Driven Communications

Part B: Programming for MS-DOS

76 1 127 3 ESC_Seq_state = 0;
77 : if {{ Ch = Read.Modem {})) »= 0) /¥ check remote */ 128 : break;
8 : { if { Want_7.Bit) 129
79 Ch &= Ox7F; /% trim off high bit */ 130 case 'H' : /* V152 home cursor */
80 : switech { ESC_Seg State) /* state machine L i 131 locate { 0, 0 };
81 = { 132 : ESC_Seg_sState = 0;
82 case 0 : /* no Esc sequence */ 133 : break;
83 . switch (Ch) 134
84 : { : 135 case 'J' : /% VIS2 Erase to EOS ®/
85 case ESC : /% Esc char received */ : 136 @ deos {);
86 : ESC_Seq _State = 1; 137 ESC_Seq_sState = 07
87 : break: 138 : break;
88 : 139 :
g9 default 140 case '[' : /% ANSI §YS - VI100 sequence */
90 : if { Ch == waitchr } /* walt if regquired #/ ; 141 : ESC_Seq_State = 2;
91 waitchr = 0; | 142 break;
92 if (Ch == 12) /* ¢clear screen on FE #/ 143
83 cls ()s 144 : default :
94 else 145 : putchx { ESC)¢ /* pass thru all othars */
95 if (Ch != 127 /¥ ignore rubouts */ 146 putchx { (char) Ch }:
96 { putchx { {(char) Ch):; /¥ handle all others */ 147 ESC_Seq State = 0;
97 put_cap ((char) Ch }: 148 : }
98 : } 149 = break;
99 } 150 =
100 : break; 151 = case 2 : /* BNST 3 .64 decoder x/
101 : 152 ESC_8eq State = {; /% not implemented #/
102 case 1 : /¥ ESC -- process any escape sequences here */ 153 }
103 switch (Ch } 154 : }
104 : { 155 if (broke ()) /#* check CH12 handlers */
105 case 'A' : /* VIS2 up ¥/ 156 : { cputs ("\r\n**#BREAK##**\r\n" };
106 : : /* nothing but stubs here %/ 157 break;
107 ESC_S5eq.State = 0: 158 : }
108 : break; 159 3 } /* end of main loop */
109 160 : if (cap-file) ' /* save any capture ¥/
110 - case 'B' : /* VI52 down */ 161 cap_flush ();
111 - ; 162 : Term Comm (}; /* restore when done #/
112 = ESC_Seqg_State = {: 163 rat_int (}: /* restore break handlers x=/
113 : break; 164 exit (0 }; /* be nice to MS-DOS ®/
114 : 165 : }
115 - case 'C' : /* V152 left =/ 166
116 : ; 167 : docmd {) /% local command shell 5/
117 : ESC_Seg_Stats = O 168 : { EIIE * getfil ()
118 : break; 169 : int wp;
119 170 wp = Irue:
120 : case 'D' : /% V152 right +/ 171 ¢ if { ! in_file || vflag }
121 ; 172 cputs { "\r\n\tCommand: "): /¥ ask for command =/
122 s ESC_Seg-State = 0; 173 ¢ else
123 break: 174 wp = False;
124 175 Ch = toupper (kbdwait ()): /* get response */
125 case 'E' : /* V152 Erase CRI */ . 176 : if { wp)
126 cls {}: /* actually do this one #/ - 177 putchx ((char} Ch };
Figure 6-8 Continued (more) Figure 6-8 Continued. (more)
232 The MS-DOS Encyclopedia Section Il Programming in the M5-DOS Environment 233

LG Exhibit 1204C, Page 129
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

/% and act on it

178 switch { Ch)

179 : {

180 : case 'S8’ :

181 = if (wp)

182 : cputs { “"low speedirin" }:

183 : get_Baud (300);

184 break;

185

186 case 'D’

187 : if { wp)

188 : cputs ("elay (1-9 secy: ")¢

189 : Ch = kbd_wait ():

180 if (wp)

191 : putchx ({char) Ch };

192 Delay { 1003 # (Ch - '0')}:

183 = 1f { wp)}

194 : putchx { 'wn'odg

195 break;

196

187 @ case 'E'

198 : if (wp)

199 : cputs ("ven Parity\e\n®™)i

200 : get_Parity (2)

207 = break;

202 =

203 : case ‘F'

204 if { wp)

205 : cputs { “ast speedizin")i

206 : get_Baud (1200);

207 break;

208

209 : case 'H'

210 @ if { wp)

211 = { cputs ["Ar\n\tVALID COMMANDS : \r\n");
212 = cputs ("\tD = delay 0-9 seconds. \r\n");
213 cputs { "\tE = even parity \ri\n”):

214 cputs ("\tE = (fast) 1200-baud \r\a" };:
215 @ cputs { "\N = no parity . \rin" }:

216 : cputs { '\tO = odd parity ZNrhn")i

217 : cputs { “\tQ = quit, return te DOS. \r\a™"):
218 : cputs ("\tR = reset modem. \r\n" };
219 : cputs ("\t = (slow) 300-baud. \rin");
220 = cputs { "\tU = use script file \z\n" }:
22% cputs ("\tV = verify file input.\rin" };
222 : cputs ("\tW = wait for char ™ }:

223)

224 break;

225

226 case 'N'

227 if { wp)

Figure 6-8 Continued

234 The MS-DOS Encyclopedia’

*/

(more)

Article 6 Interrupt-Driven Communications

LG Exhibit 1204C, Page 130
LG Electronics, Inc. v. Papst Licensing

228 cputs ("o Parity\r\n" };
229 Ser_Parity (1):
230 break;
231
232 case 'O’ :
233 : if {wp)
234 cputs { "dd Parity\r\n");
235 : Set_Parity { 3 };
236 : break:
237 ¢
238 : case 'R'
239 if (wp)
240 cputs { "ESEI Comm Porti\r\n" };
241 : Init_Comm {);
242 break;
243
244 case 'Q’
245 : if (wp)
246 : cputs (" = QUII Command\r\n");:
247 Ch={(-1):
248 break;
249
250 case 'Y
251 : 1f (in file && ! vilag)
252 putchxz { 'O };
253 cputs { "se file: "™ };
254 getfil ():
255 cputs ("File ");:
256 cputs { in_file ? "Open\r\n” : "Bad\r\n");:
257 : waitchr = 0;
258 : break;
259
260 case V'
261 if { wp)
262 : { cputs ("erify flag toggled " };
263 cputs { vilag ? "OFFA\r\n"™ : "ON\r\n");
264 }
265 vilag = vflag ? False : Irue;
266 : break;
287
268 case W’
269 if { wp)
270 cputs ("ait for: <"):
2711 waitchr = kbd _wait ()
272 if { waitchr == "' ')
273 waitchr = 0;
274 1f { wp)
275 : { if (waitchr }
276 putchx { (char) waitchr):
277 & else
278 : cputs ("no walt™ });
Figure 6-8 Continued (more)

Section II. Programming in the MS-DOS Environment 235

Part B: Programming for MS-DOS | . .
| Article &: Interrupt-Driven Communications

279 : cputs (">\r\n");: 330 }
280 : } ! 331 & else
281 : break; 332 ¢ = Read Keyboard () : ;j USING CON§OIE] */
282 - : 333 . return (o }; if not using file .
283 : default : | 334 1
284 : if { wp) | e
285 » { cputs { "Don’t know "); : 336 : esc () /s)
286 : putchx { (char) ch); = 337 : { int ¢ T Seript translacox #
287 1 cputs { "\r\nUse 'H' command for Help .\r\n" }; 338 © = getc (in_file);
288 } i ! 339 : switch (toupper (o . /% control chars in file by
288 : Ch = '7'; ; 340 : i
280 ¥ % 341 case 'E’
291 if (wp) /* if window open.. . */ : 342 ; ¢ = Esc;
292 : { cputs ("\ri‘niany keyliz"), : 343 break;
293 while (Read Keyboard () == ECE } /* wait for response */ 344 -
2584 ; 345 Case 'N°’
295 . } | 346 ¢ ¢ = "\nv
296 return Ch ; i 347 break:
297 : } 348
298 349 - case 'R'
299 : kbd wait () /% wait for input */ . 350 c = "\r";
300 : (dint ¢ ; 351 : break;
301 while ({ ¢ = kbfile (})} == (- 1)} 352 -
302 ¢ ; 353 case 'If
303 return ¢ & 255; 354 c o= "\tr;
304 =} 355 : break:
305 356
306 : kKb_file {) /* input from kb or file */ 357 : case 41
307 ¢ { int < ; 358 € = getc { in_file) g 31,
308 : 4if (in_file) /#* USING SCRIPL oy 359 : break; '
309 : { ¢ = Wants_Io_Abort {); /* use first as flag W/ 360 : }
340 . if (waitchr && ! ¢ } 361 return { ¢ };
311 c=(=-11; /* then for c¢har */ 362 :
312 else 363
313 : if (¢ !y (¢ ~getc (in_file)} == EOF |i ¢ == 26) 384 : FILE * getfil ()
314 { fclose (in_file 1: 385 1 { char fam [20 j,
315 ¢ cputs ("\r\nScript File Closed\r\n* }; 366 : getnam { fnm, 15). /s
316 : in.file = NULL: 367 Lf (1 { strehr fam 1y, get the name Y
317 waitehr = 0; _ 368 streat (fom, '.SCRY }:
318 c={(-11); 369 : retur i i =
319) 3710 ¢ P inte = fopen ¢ fon, v)y
320 else . 3711
321 = if (¢ == "\n'} /* ignore LEs in file */ 372 : void ge) .
32 . - (-1, 373 o ;J::nam (b, s) char *+ b /* take input to buffer v/
323 if (¢ == "\\' /* process Esc seguence */ 374 : { while (5 -- » 0
324 ¢ = esc {}; 375 P 3£ 10 * b = (char) kbd_wait ()) t= -
325 PE ((vElag &k € != 1 - 1)) /+ verify file char */ 376 : putchx (*+ b s+), AR
326 : { putchx { *{' }; 317 else
327 ¢ putchx { {(char) ¢): 378 : break :
328 « putchx ("}') 379 . '
329 } 38C : putehx ('\n'),
Figure 6-8. Continued (more) figure 6-8 Continued
(more)
236 The MS-DOS Encyclopedia Section 11 Programmng in the MS-DOS Enui yonment 237

LG Exhibit 1204C, Page 131
LG Electronics, Inc. v. Papst Licensing

Article &: Interrupt-Driven Communications

Part B: Programming for MS-DOS

: 432 ¢

3871 * b = 0:

382 @) 433

383 Lo 434 : void Start_Iimer (n } int n ; /% set timeout for n sec e/

3184 : cnar * addext { b, /* add default EXIension */) 435 ¢ { timr = getmr () + (long) n ¥ 1000I; :

385 ¢ e } char * b, > 136 @

385 : * e; L 437

387 : [statie char bfr [20 . 438 & Iimer Expired () /% if timeocut return 1 else zeturn 0 */

388 : if { strchr (b, "' 1) 439 : [zeturn { getmr () > timr);

389 : return (b };: 440 @

390 : strepy { bfr, b) 441

391 : streat (bfr, e) - E 442 : set_vid ()

362 return (bfr }: 443 { 1w () /* Llnitialize video %/

393 :) 444 return 0;

394 445 :

395 : wvoid put—cap { ¢) char ¢ 7 446

396 : { if { cap_file && c != 13) /% strip out CRs */) 447 : yoid locate (row, col) int row ,

397 : fputc { ¢, cap_file)i /% use MS-DOS buffering %/ 448 ; col:

398 : } : 449 : [gy = row % 25;

399 450 @ _cx = col % 80:

400 : void cap_flush (} /* end Capture mods */ ' 451 ¢ _wrpos (row, col); /* use ML from CHZ ASM */

407 : { if (cap-file) 452 :

402 { fcloge (cap_file)}, 453

403 cap_file = NULL; 454 : void deoil ()

104 : cputs { "\r\nCapture File closed\r\n"): 455+ [_deol (); /% use ML from CH2 ASM */

405 : ! 456 :)

406 : -} - 457 :

407 B 458 i void deos ()

408 @ /# TIMER SUPPORI SIUFF (IBMPC/MSDOS) 7 459 : [@eol ()

409 : static long timr; /* timecut register */ R 460 : if (_cy < 24) /% if not last, clear */

410 ’ 461 & { rgv.x ax = 0x0600;

411 : static union REGS rgv ; 462 : rgv.x.bx = { _atr << 8§ };

412 463 : rgv x cx = { _ecy + 1) << 8;

413 : long getmr () ‘I 464 rgv.x.dx = Ox184F;:

414 : { long now : /% msec since midnite &/ 465 : int86 { 0x10, & rgv, & rgv):

435 = rgv.x.ax = 0x2cl0; 1o 466 }

416 ¢ intdos (& rgv, & rgv)i 467 : locate { —cy, _cx J;

417 : now = rgv.h.chi /% hours =/ S 468 @}

418 now *= 60L: /% to minutes */ : 468

419 now += rgv.h.cl: /% plus min =/ 470 : woid els ()

420 @ now *= 60L; /¥ to seconds */ 4 41 1 [_cls () /* use ML %/

421 now += rgv.h. dh; /* plus sec */ : 472 1)

422 : now #= 100L; /x to 1/100 */ 473

423 : now += rgv.h.dl; /% plus 1/100 =/ Ee 474 : yoid cursor (yn) int yn

424 : return { 10L * mow }; /* msec value +/ 475 ¢ (rgv x.cx = yn ? 0x0607 : 0x2607; /% ON/OFF Y

425 : s 476 : rgv.x.ax = 0x0100;

426 - 477 int86 (0x10, & rgv, & rgv }:

427 : void Delay {(n) int n : /% sleep for n msec */ 478 :

428 : { long wakeup ; 4739

429 1 wakeup = getmr () + { long) a; /# wakeup time =/ 480 : void vevvid { yn)} int yn ;

430 ¢ while { getmr () < wakeup) 481 1 { if (yn)

431 : ; /* now sleep */ 482 _atr = _color (8, 7 }; /% biack on white .
(more) Figure 6-8 Continued (more)

Figure 6-8. Continued

238 The MS-DOS Encyclopedia Section IL Programniing in the MS-DOS Environment 239

LG Exhibit 1204C, Page 132
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

483 : aelse

484 _atr = —color { 15, 0 }: /% white on black 5/
485 =

486 :

487 4 putchx { ¢) char € ; /% put char to CRI */
488 ¢ { if (¢ == '‘\n' }

489 : puteh ("\r’ };

4390 : putch (¢)¢

491 : return c-;

492 @}

493 e

494 : Read _Keyboazrd () /* get keyboard character

495 ¢ returns -1 if none present */
496 : { int c ; . »
497 : if (kbhit () /% no char at all ®/
498 return { getch ()):

499 : return { EOF);

500 :

501

502 @ /% MODEM SUPPORI */

503 : static char mparm,

504 wrk [80 1:

505 :

506 * wvoid Init_Comm () /% initialize comm port stuff w/
507 : { static int ft = O: /# firstime flag */
508 ¢ if (ft ++ == 0)

509 : im {:

510 Set_Parity (1)i /% B,N,1 %/
511 = Set.Baud (1200): /* 1200 baud #/
512 @}

513

514 & #define B1200 0x80 /# baudrate codes %/
515 : $define B300 0x40

516 ¢

517 : Set_Baud { n) int n ; /+ n is baud rate £/
518 @ (if { n == 300

519 mparm = { mparm & Ox1F) + B300:

520 = else

521 : if (nm == 1200)

522 : mparm = { mparm & Ox1F) + B1200;

523 : else

524 : return 0; /% invalid speed w/
525 sprintf (wrk, "Baud rate = %dir\n", n };

526 : cputs { wrk }:

527 : set_mdm { mparm };

528 : return n

228 & 3

530 :

531 : #define PAREVN 0x18 /+ MCR bits for commands */

532 : #define PARODD 0x10
533 : fdefine PAROFF 0x00

Figure G-8 Continued.

240 The MS-DOS Encyclopedic

(more)

Article 6: Interrupt-Driven Communications

534 : #define SIOP2 0x40
535 : #define WORDS 0x03
536 : #define WORD7 0x02
537 : #define WORDG 0x01
538 :

539 : get_Parity (n) int n ; /¥ n is parity code %/
540 : { static int mmode;

541 if (n ==)

542 : mmode = (WORD8 | PAROEF); /% off */
543 : else

544 ; if (n==2)

545 mmode = { WORD? | PAREVHN); /* on and even L
546 : cise

547 if tn==13)

54§ : mmode = { WORD7 | PARODD): /% on and odd %/
549 : else

550 : return 0; /% invalid code */
551 mparm = (mparm & 0xEQ) + mmode:

552 - sprintf { wrk, "Parity is %s\r\n", == 1 ? "QFF"

553 : == 2 ? "EVEN" "0DD")));
554 : cputs { wrk }:

555« set_mdm { mparm):

356 : return n ;

557 3)

558 :

589 : Write_Medem {(¢)} char ¢ /% return 1 if ok, else 0 */
560 : { wrtmdm { < }:

561 return {1) /% never any error ®/
562 :

363

564 : Read.Modem {)

565 : { return { rdmdm ()};: /= from int bfr */
566 : }

567

368 : void lerm Comm {) /% uninstall comm port drivers */

569 : { um (),
570 :
371

3712 ¢ /% end of cterm.c */

Figure 6-8 Continved

CTERM features file-capture capabilities, a simple yet effective script langunage, anda
number of stub (that is, incompletely impiemented) actions, such as emulation of the VT52
and VT100 series terminals, indicating various directions in which it can be developed

The names of a script file and a capture file can be passed to CTERM in the command line
If no filename extensions are included, the default for the script file is SCR and that for the
capture file is CAP If extensions are given, they override the default values The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for

another with the same feature.

LG Exhibit 1204C, Page 133
LG Electronics, Inc. v. Papst Licensing

Section IT. Programming in the MS-DOS Environment 241

Part B: Programming for MS-DOS

242

The functions included in CTERM C are listed and summarized in Table 6-13

Table 6-13. CTERM.C Functions.

Lines Name Description

1-5 Program documentation

711 Include tiles

12-20 Definitions

22-43 Global data areas.

45 External prototype declaration

47-49 Wants_To_Abort() Checks for Ctri-Break or Curl-C being pressed

52-165 main{) Main program loop; includes modem engine and
sequential state machine 1o decode remote
comunands.

167297 docmd() Gets, interprets, and performs local (console or
script) command,

209-304 kbd_1wait() Waits for input from console or script file

306—334 kb_file() Gets keystroke from consele or sciipt; returns EOF
if no character available

336-362 esc() Translates script escape sequence

364-370 geyfil() Gets name of script file and opens the file

372-382 getnam() Gets string from console or script into designated
buifer

384-393 addexi(} Checks buffer for extension; adds one if none
given.

305308 put_cap() Writes character to capture file if capture in effect.

400-406 cap_ flush() Closes capture file and terminates capture mode if
capture in effect

408~411 Timer data locations.

413-425 getmr() Returns time since midnight, in milliseconds

427-432 Delay() Sleeps n milliseconds

434436 Start_Timer() Sets timer for # seconds

438440 Timer_ Expired() Checks timer versus clock

442445 Set_Vid() Initializes video data

447--452 locate() Positions cursor on display

454-456 deol() Deletes to end of line

458468 deos() Deletes to end of screen

470-472 clsC) Clears screen

474—-478 cursor() Turns cursor on or off

480—-485 revuid() Toggles inverse/normal video display attributes.

487-492 putchx() Writes char to display using putch() (Microsoft C
library)

(mora)
The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 134
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupt-Driven Communications

Table 6-13. Continued

Lines Name Description

494500 Read_Keyboard() Gets keystroke from keyboard.

502—-504 Modem data areas

506512 Init_Comm() Installs ISR and so forth and initializes modem
514-515 Baud-rate definitions

517-529 Set_ Baud() Changes bps rate of UART

531-537 Parity, W1 definitions

539-557 Set_ Parity() Establishes UART parity moede.

550562 Write_Modem() Sends character to UART

564-566 Read_ Modem() Gets character from ISR’s buffer

568-570 Term_Comm() Uninstalls ISR and so forth and restores original

vectors

For communication with the console, CTERM uses the special Microsoft C library func-
tions defined by CONIO H, augmented with the functions in the CH2 ASM handler Much
of the code may require editing if used with other compilers CTERM also uses the func-
tion prototype file CTERM H, listed in Figure 6-9, to optimize function calling within the

program

/% CIERM.H - function prototypes for CIERM.C %/
int Wants_To_Abort (void);

void main{int ,
int decmd {veid)

char * *);

int kbd wait (veid);

int kb _file{voi
int esc(void);

d);

FILE *getfil {void):

volid getnam{char *,int);
char *addext (char #*,char *):
void put_capf{char }:

vold cap_flush(

void};

long getmr (void):

void Pelay(int
void Start.Iime

i
r{int });

int limer Expired(void):

int Set.¥id(voi
void locate{int
void deol (void)
void decs {void}
void cls{void);
veid curseor(int
void revvid{int
int putchx(char

d) ;
,int)

)

T
yi

Figure 6-9 CTERM H

(more)

Section IT: Programming in the MS-DOS Environment 243

Part B: Programming for MS-DOS

244

int Read Keyboard(veid):
void Init_Comm{void);
int Set_Baud{int):

int Set_Parity{int };
int Write Modem{char):
int Read Modem{void);:
void Ierm Comm{void):

/% CH1 ASM functions — modem interfacing */
void i.m{wvoid):

void setmdm{int):

void wrtmdm{int);

void Send Byte{int):

int rdmdm{void);

void u_m(void);

/% CH1A ASM functions - exception handlers =/
void set_int (void);

volid rst_int (void);

int broke (void);

/% CH2.ASM functions - video interfacing */
void —i_w({void);

int _wrpos{int, int}:

void —deol (void)

void -cls{void};

int _—color(int, int};

Figure G-9 Continued

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CTERM opens the corresponding files Next, the program installs the exception handler
(line 60, initializes the video handler (line 61), clears the display (line 62}, and announces
its presence (lines 63 and 64) The serial driver is installed and initialized t0 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159)

T his loop is functionally the same as that used in ENGINE, but it has been extended to
detect an Esc from the keyboard as signalling the start of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog-
nize incoming escape sequences, such as the VIS2 or VI100 codes To specify a local com-
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local
command desired After the local command has been selected, press any key (such as
Enter or the spacebar) to continue To get a listing of all the commands available, press

Esc-H

The kb_file() routine of CTERM (called in the main loop at line 69} can get its input from
either a script file or the keyboard. If a script file is open (lines 308 through 330, it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input Otherwise,

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 135
LG Electronics, Inc. v. Papst Licensing

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given

To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translated according to the following rules:

Character Interpretation

Eore Translates to Esc.

Norn Translates to Linefeed

Rorr Translates to Enter (CR).

Tort Translates to Tab.

A Causes the next character input to be converted into a control character

Any other character, including another Y, is not translated at all

When the Esc character is detected from either the console or a script file, the docmd()
function (lines 167 through 297} is called to prompt for and decode the next input charac-
ter as a command and to petform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character Action

D Delay 0-9 seconds, then proceed Must be followed by a decimal
digit that indicates how long to delay

Set EVEN parity.

Set {fast) 1200 baud

Display list of valid commands

Set no parity

Set ODD parity.

Quit; return to MS-DOS command prompt.

Reset modem

Set (stow) 300 baud

Use script file (CTERM prompis for filename)

Verify file input Echoes each script-file byte

Wait for character; the next input character is the one that must be
matched

§<CYP=I o0z TW

Any other character input after an Esc and the resulting Command prompt generates the
message Dor’t know X (where X stands for the actual input character) followed by the
prompt Use ‘H' command for Help

Section II. Programming in the MS-DOS Environment 245

Part B: Programming for MS-DOS

246

1f input is taken from a script and the V flag is off, docmd() performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let-
ter, followed by a desctiptive phrase, is echoed to the screen Input, detection, and execu-
tion of the local commands are accomplished much as in CDVUTL, by way of a large
switch() statement (lines 178 through 200)

Although the listed commands are only a subset of the features available in CDVUTL for
the device-driver program, they are more than adequate for creating useful scripts The
predecessor of CTERM (DT115 EXE), which included the CompuServe B-Protocol file-
transfer capability but had no additional commands, has been in use since eatly 1986 to
handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files In conjunction with an auto-dialing modem, DT115 EXE
handles the entire transaction, from login through logout, without human intervention

All the bits and pieces of CTERM are put together by assembling the three handlers

with MASM, compiling CTERM with Microsoft C, and linking all four object modules into
an executable file Figure 6-10 shows the complete sequence and also the three ways of
using the finished program

Compiling:

C>MASM CH1; <Entez>
C>MASM CH1A; <Enter>
C>MASM CH2; <Enter>
C>MSC CIERM; <Enter>

Linking:
C>LINK CIERMH+CHT+CHI1A+CHZ; <Enter>

Use:
(no files)

C>CIERM <Enter>

or
(script only)

C>CIERM scriptfile <Enter>
or
C>CIERM scriptfile capturefile <Enter>

Figure 6-10 Puiting CTERM together and using it

Jim Kyle
Chip Rabinowitz

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 136
LG Electronics, Inc. v. Papst Licensing

Article 7: File and Record Management

Article 7
File and Record Management

The core of most application programs is the reading, processing, and writing of data
stored on magnetic disks. This data is organized into files, which are identified by name;
the files, in turn, can be organized by grouping them into directeries. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard to the hardware characteristics of the disk device Thus, applica-
tions can concern themselves solely with the form and content of the data, leaving the
details of the data’s location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files
(In some systermns, an additional class of directory functions allows applications o deal
with collections of files as well) This article discusses the MS-DOS function calls that
allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect or change the information (such as
artributes and date and time stamps) associated with disk filenames in disk directories
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCT URE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DOS: Disk Directories and Volume Labels

Historical Perspective

Current versions of MS-DOS provide two overlapping sets of file and record management
setvices to support application programs: the handle functions and the file control block
(FCB) functions Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: InTerrUPT 2181 The reasons for this surprising duplication ate strictly historical

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programmers in converting the many
existing CP/M application programs to the 16-bit MS-DOS environment; consequently,
MS-DOS versions 1 x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives

Accordingly, MS-DOS version 2 0 introduced the handle functions to provide a file and
record access method similar to that found in UNDI/XENIX. These functions are easier to
use and more flexible than their FCB counterparts and fully support a hierarchical (tree-
like) directory structure The handle functions also allow character devices, such as the

Section IT. Programming in the MS-DOS Environment 247

Article 7: File and Record Management

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver- Using the Handle Functions

sion 3.0 introduced additional handle functions, enhanced some of the existing handle |
functions for use in network environments, and provided improved error reporting for The initial link between an application program and the data stored on disk is the name of
all functions a disk file in the form

The handle functions, which offer far more capability and petformance than the ECB drtve:path\ filename ext

functions, should be used for all new applications Therefore, they are discussed fitst in where drive designates the disk on which the file resides, pash specifies the directory

this article on that disk in which the file is located, and filename ext identifies the file itself. If drive
and/or path is omitied, MS-DOS assumes the default disk drive and current directory

Table 7-1, Interrupt 21H Function Calls for File and Record Management, Examples of acceprable pathnames include

Handle FCB C:APAYROLINTAXES DAT
Operation Function Function IETTERS\MEMO . TXT
Create file 3CH 16H BUDGET DAT
Create new file 5BH Pathnames can be hard-coded into 2 program as part of its data More commonly, how-
Create temporary file SAH ; ever, they are entered by the user at the keyboaid, either as a command-line parameter or
Open file. 3DH 0FH in response to a prompt from the program If the pathname is provided as a command-
Close file 3EH 10H | line parameter, the application program must extract it from the other information in the
Delete file 411 13H | command line. T herefore, 1o allow a program to distinguish between pathnames and
Rename file 56H 17H other parameters when the two are combined in a command line, the other parameters,
Perform sequential read 3FH 14H such as switches, usually begin with a slash (/) or dash (-) character
Perform sequential write 40H gg All handle functions that use a pathname require the name to be in the form of an ASCIIZ
Perform r‘andom record re?.d' ZPH 22H string —that is, the name must be terminated by a null (zero) byte I the pathname is
Per}:ox:m r‘an(cjlom {)elcoi‘(d ?vrcllte 0K 27H hard-coded into a program, the null byte must be part of the ASCIIZ string If the path-
ﬁ:i fgi'rn; :ﬁ dgﬁ blgzk i:f;té. 28H name is obtained from keyboard input or from a command-line parameter, the null byte
Set disk transfer area address. 1AH must be appended by the program See Cpening an Existing File below
Get disk transfer area address 2FH To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
Parse filename 29H ; function with the ASCITZ pathname. MS-DOS checks the pathname for invalid characters
Position read/write pointer 42H ' and, if the open or create operation is successful, returns a 16-bit handle, or identification
Set random record number 24H : code, for the file. The program uses this handle for subsequent operations on the file, such
Get file size. 42H 23H . as record reads and writes
gﬁ;gﬁ 2;?:;?3:1 stamp gﬁ The total number of handles for simultanecusly open files is limited in two ways. First, the
Duplicate file handle 4SH per-process Iimit‘ is 20 file handles The process’s first five handles are always assigned to
Redigect file handle. 46H the standard devices, which default to the CON, AUX, and PRN character devices:
Handle Service Default

' 0 Standard input Keyboard (CON)

: 1 Standard output Video display (CON)

i 2 Standard error Video display (CON)

: 3 Standard auxiliary First communications port (AUX)

4 Standard list First parallel printer port (PRN)

248 The MS-DOS Encyclopedia . Section IT. Programming in the M$-DOS Environment 249

LG Exhibit 1204C, Page 137
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,
when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused.

Tn addition to the per-process limit of 20 file handles, there is a system-wide limit

MS-DOS miaintains an internal table that keeps track of all the files and devices opened
with file handles for all cusrently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file The size of this table, which is set when MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta-
neously The default limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process limit

To increase the size of MS-DOS's internal handle table, the statement FILES=nnn can be
included in the CONFIG SYS file. (CONFIG SYS settings take effect the next time the sys-
tem is turned on or restarted) The maximum value for FILES is 99 in MS-DOS versions 2 x
and 255 in versions 3 x See USER COMMANDS: CONFKG.5YS: FILES

Error handling and the handle functions

250

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register. The program should check the carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountesed error codes for file and record VO (exclusive of network

operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles left)
05 Access denied

06 Invalid handle

11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter
17 Not same device

18 No more files

The error codes used by MS-DOS in versions 3 0 and later are a superset of the MS-DOS
version 2.0 ertor codes See APPENDIX B: Critical Error Copes; APPENDIX C: EXTENDED
Error Copes Most MS-DOS version 3 error diagnostics relate to network operations,
which provide the program with a greater chance for error than does a single-user system.

The MS-DOS Encyclopedia

Article 7: File and Record Management

Programs that are to run in a network environment need to anticipate network problems
For example, the server can go down while the program is using shared files

Under MS-DOS versions 3 x, a program can also use Intexrrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a
failed handle function The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action,

Warning: Many [ile and record I/O operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom critical error exception handler (Interrupt 24H) See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusromMizinG Ms-Dos: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

3CH Create File with Handle (versions 2 0 and later)
SAH Create Temporary File (versions 3 0 and later)
SBH Create New File (versions 3 0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register The possible
attribute values are

Code Afttribute

00X Normal file
01H Read-only file
02H Hidden file
04H System file

Files with more than one attribute can be created by combining the values listed above
For example, to create a file that has both the read-only and system atributes, the value
05H is placed in the CX register

If the file is successfully created, MS-DOS returns a file handle in AX that mwust be used fot
subsequent access to the new file and sets the file read/write pointer to the beginning of
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX

Function 3CH is the only file-creation function available under MS-DOS versions 2 x It
must be used with caution, however, because if a file with the specified name already
exists, Function 3CH will open it and truncate it to zereo length, eradicating the previous
contents of the file This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call

Section . Programming in the MS-DOS Environment 251

LG Exhibit 1204C, Page 138
LG Electronics, Inc. v. Papst Licensing

Article 7: File and Record Management

Part B: Programming for MS-DOS

Under MS-DOS versions 3.0 and lates, Function 5BH is the preferred function in most cases mav dx, seg fname : DS:DX = address of

because it will fail if a file with the same name already exists In networking environments, mav ds, dx * path for temporary file
P s . . . : § mov dx,offset fname

this function can be used to implement semaphores, allowing the synchronization of pro-

. in differ I nod xor CX,CX 7 CX = normal attribute
grams running in different netwotk nodes mov ah, Sah ; Function 5AH = create
Function SAH is used to create a temporary work file that is guaranteed to have a unique it . ; ;:;“EOE aryt fl;: o8

s R : b : . s - : ; sfer to MS-
name This capability is important in networking environments, where several copies of ; ie error . jump if create failed
mov fhandle, ax : else save file handle

the same program, running in different nodes, may be accessing the same logical disk
volume on a server. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file MS-DOS generates 2 name for the
created file that is a sequence of alphanumeric characters derived from the current time
and teturns the entire ASCIIZ pathname to the program in the same buffer, along with the
file’s handle in AX The program must save the filename so that it can delete the file later, if ' F ion 3D L o _)
necessary; the file created with Function SAH is not destroyed when the program exits ‘ Function 3DH (Open F .1le W%th Handle) opens an existing notmal, system, or hidden file
in the current or specified directory When calling Function 3DH, the program supplies a

Example. Create 2 file named MEMO TXT in the \IET TERS directory on drive C using pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL

Function 3CH. Any existing file with the same name is truncated to zero length and register. This access code includes the read/write permissions, the file-sharing mode, and
an inheritance flag The bits of the access code are assigned as follows:

Opening an existing file

opened
fname db 'C:N\IEIIERS\MEMO IXI',0
fhandle dw : ' Bit(s) Description
0-2 Read/write permissions (versions 2 0 and later)
: “ . bsip% = acd . 3 Reserved
mov X, 5€g name ; H = a ress o . ‘. . ;
o o . pathname for file 4-6 Plle-sl.}anng mod¢ (ve_;s1ons 3.0 and later)
mov . dx,offset fname 7 Inheritance flag (versions 3 0 and later)
xor CX,CX% ; CX = normal attribute
mov ah, 3ch . Function 3CH = create The read/write permissions field of the access code specifies how the file will be used and
int 21 i transfer to MS-DOS can take the following values:
Jje error ; Jump if create failed
mov fhandle, ax : else save file handle
Bits 0—-2 Description
000 Read permission desired
Example Create a temporary file using Function SAH and place it in the \TEMP directory 001 Write permission desired .
on drive C MS-DOS appends the filename it generates to the original path in the buffer 010 Read and write permission desired
named frame The resulting file specification can be used later to delete the file ‘
‘ For the open to succeed, the permissions field must be compatible with the {ile’s attibute
fname db EeE \IEMP; ' ; generated ASCIIZ filename byte in the disk directory For example, if the program attempts to open an existing file
db 13 d P ded by M3-DOS . Iy .
dup (0) is appended by MS that has the read-only attribute when the permissions field of the access code byte is set to
fhandle dw 5 write or read/write, the open function will fail and an error code will be returned in AX

The sharing-mode field of the access code byte is important in a networking environment
It determines whether other programs will also be allowed tc open the file and, if so,
what operations they will be allowed to perform Following are the possible values of the
(more) file-sharing mode field:

252 The MS-DOS Encyclopedia Section II: Programming in the MS-DOS Environmen! 253

LG Exhibit 1204C, Page 139
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

Bits 4~6 Description

000 Compatibility mode Other programs can open the file and perform read or
write operations as long as no process specifies any sharing mode other than
compatibility mode

001 Deny all Other programs cannot open the file

010 Deny write. Other programs cannot open the file in compatibility mode or
with write permission

011 Deny read. Other programs cannot open the file in compatibility mode or with
read permission.)

100 Deny none Other programs can open the file and perform both read and

write operations but cannot open the file in compatibility mode

When file-sharing support is active (that is, SHARE EXE has previcusly been loaded),

the result of any open operation depends on both the contents of the permissions and file-
sharing fields of the access code byte and the permissions and file-sharing requested by
other processes that have already successfully opened the file

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle If the inheritance bit is cleared, the child can use the inherited handle to
access the file without performing its own open operation. Subsequent operations per-
formed by the child process on inherited file handles also affect the file pointer associated
with the parent’s file handle. If the inheritance bit is set, the child process does not inherit
the handle.

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry
flag and returns an error code in AX

Example. Copy the first parameter from the program’s command tail in the program
segment prefix (PSP) into the array frname and append a null character 1o form an ASCIIZ
filename Atternpt to open the file with compatibility sharing mode and read/write access
If the file does not already exist, create it and assign it a normal attribute

cmdtalil equ a0h : PSP offset of command tail
fname db %4 dup (7)
fhandie dw ?

i assume that DS already
i contains segment of PSP

{(more)

The MS-DOS Encyclopedia

Articie 7: File and Record Management

mov
mov

mov
cld

lodsb
or
jz

labell:
lodsb
cmp
jz

labelZ:

CIMp
Jjz
cmp
jz
stosb
lodsb
jmp

label3:

stosb

mov
mov
mowv
mov
int
jnc

cmp
inz

labeld:
mov

Closing a file

si,cmdtail
di,seg fname
as,di

di,offset fname

al,al
error

al,20h
labell

al,0dh
labell
al,20h
label3

label2

al,al

dx, seg fname
ds,dx

dx,offset fname
ax, 3d02h

21h

labeld

ax,2
erroxr

Cx, CX
ah, 3ch
21k

error

fhandle,ax

: prepare to copy fllename

DS:8I = command tail

ES:DI = buffer to receive
filename from command tail
safety first!

check length of command tail

jump, command tail empty

scan off leading spaces

; get next character

is it a space?

; yes, skip it

look for terminator
quit if return found

quit if space found
else copy this character
get next character

store final NULL to
create ASCIIZ string

now open the file
DS:DX = address of

: pathname fer file

Function 3DH = open r/w
transfer to MS-DOS
Jump if file found

error 2 = file not found
jump if other error

else make the file

CX = normal attribute
Function 3CH = create

: transfer to MS-DCS

jump if create failed

save handle for file

Function 3EH (Close File) closes a file created or opened with a file handle function. The
program must place the handle of the file to be closed in BX. If a write opetation was per-
formed on the file, M5-DOS updates the date, time, and size in the file’s directory entry

Section II Programming in the MS-DOS Environment 255

LG Exhibit 1204C, Page 140
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS Article 7: File and Record Management

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk 1 Example. Open the file MYFILE DAT, create the file MYFILE BAK, copy the contents of
and causes the disk’s file allocation table (FAT) to be updated if necessary ‘ the DAT file into the BAK file using 512-byte reads and writes, and then close both files
Good programming practice dictates that a program close files as soon as it finishes filet db "MYFILE DAI',0
using them This practice is particularly important when the file size has been changed, to tile2 db TMYFITE BAK',0
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the ‘
3 . . N . . N . an a W i h an e igr b "
user A method of updating the FAT without closing the file is outlined below under jandiel o : pancle for MUFTLE.DAI
D g g handle2 dw ? ; handle for MYFILE BAK
Duplicating and Redirecting Handles
. .ps . buff db 512 dup (? ¢ buffer for fil
Reading and writing with handles _ ! R nEfer for file 1/o
Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle Before calling Function 3FH, the program must set ; open MYEILE.DAI
the DS:DX registers to point to the beginning of a data buffer large enough to hold the mov dx, seg filel ; DS:DX - address of filename
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX mow ds, dx
The length requested can be a maximum of 65535 bytes. The program requesting the mey dx,offset filel
read operation is responsible for providing the data buffer mov ax, 3d00n i Function 3DH = open (read-only)
int 21h ¢ transfer to MS-DOS
If the read operation succeeds, the data is read, beginning at the current position of the je error ¢ jump if open failed
file read /write pointer, to the specified location in memory MS-DOS then increments its moy handiet,ax i save handle fox file
internal read/write pointer for the file by the length of the data transferred and returns . create MYFILE BAK
the length 1o the calling program in AX with the canry flag cleared. The only indication mov dx,offset file? ; DS:DX = address of filename
that the end of the file has been reached is that the length returned is less than the length mov ox, 0 ; CX = normal attribute
requested In contrast, when Function 3FH is used to read from a character device that is mov ah, 3ch ¢ Function 3CH - create
not in raw mode, the read will terminate at the requested length or at the receipt of a car- int 2th : ?ra“SFi" to ”:S'ios -
. . .) : . ! Je error ; jump 1f create faile
tiage return character, whichever comes first. See PROGRA'MMING IN THE MS-DOS . o handle?, ax ; save handle for file
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Character Device Input and Output If the :
read operation fails, MS-DOS returns with the carry flag set and an ervor code in AX loop: ; read MYFILE DAI
. . . } = ") . mov dx,offset buff DS:DX = buffer address
Function 40H (Wiite File or Device) writes from a buffer to a file (o1 device) using a handle Hov cx,512 : CX = length to read
previously obtained from an open or create operation Before calling Function 40H, the mov bx, handle? ; BX = handle for MYFILE DAI
program must set DS:DX to point to the beginning of the buffer containing the source data, mov ah, 3fh ¢ Function 3FH = read
put the file handle in BX, and put the number of bytes to write in CX The numbeér of bytes int 2ih 3 transfer to MS-DOS
. . i Jjc error ; Jjump if read failed
to write can be a2 maximum of 65535. : or ax. ax . were any bytes read?
If the write operation is successful, MS-DOS puts the number of bytes written in AX and iz done ¢ mo, end of file reached
increments the read/write pointer by th%s value; if the write operation fails, MS-DOS sets ‘ . write MYETLE BAK
the carry flag and returns an error code in AX : mov dx,0ffset buff ; DS:DX = buffer address
. . N " . . mov ox, ax ; CX = length te write
Records smaller than one sfector.(512 bytes)‘ale not wr.ltter.l dlrec.:tly to disk In.stead, - b, handle? . BY = handle for MYFILE BAK
MS-DOS stores the record in an internal buffer and writes it to disk when the internal | oV ah, 40k . Function 40H — write
buffer is full, when the file is closed, or when a call to Interrupt 21H Function 0DH (Disk int 2tn ¢ transfer to MS-DOS
ic i ’ je error ; jump if write failed
Reset) is fssued
cmp ax,cx ; was write complete?
Note: If the destination of the write operation is a disk file and the disk is full, the only 5 ine error i jump if disk full
indication to the calling program is that the length returned in AX is not the same as the | mp Loop i continue to end of file
length requested in CX Disk ful! is not returned as an etror with the canry flag set. | (more)

A special use of the Write function is 1o truncate or extend a file, If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location of
the file read/write pointer ‘

256 The M5-DOS Encyclopedia Section II. Programming in the MS-DOS Environment 257

LG Exhibit 1204C, Page 141
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M3-DOS

done: : now close files... |
MoV bx,handiel ; handle for MYFILE DAI
mov ah, 3eh ; Eunction 3EH = close file
int 21h ; transfer to MS-DOS
jc error ; dump if close failed
mov bx,handle2 ; handle for MYFIIE.BAK
nmov ah, 3eh ¢ Function 3EH = close file

int 27h ; transfer to M5-DOS

je error jump if close failed

Positioning the read/write pointer

258

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mede
in AlL:

Mode Significance

00 “Supplied offset is relative to beginning of file
01 Supplied offset is relative to current position of read/write pointer
02 Supplied offset is relative to end of file

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
file pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX A

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a value in DX:AX that represents the
offset of the end-of-file position relative to the beginning of the file

Example. Assume that the file MYFILE DAT was previously opened and its handle is
saved in the variable fhandle Position the file pointer 32768 bytes from the beginning of
the file and then read 512 byies of data starting at that file position

: handle from previous open
; buffer for data from £file

fhandle dw ?
buff db 512 dup (2}

(more)

The MS-DOS Encyclopedia

Article 7: File and Record Management

mov cx,0

mov dx, 32768
mov bx, thandle
mov al,0

MOV ah,4z2h

int 21h

jc error

mev dx, offset buff
mov cx, 512

mov bx, fhandle
mov ah,3fth

int 21h

Jjc error

cmp ax,512

jne error

; position the file pointer. ..

CX = high part of f£ile offset

; DX = low part of file offset

BX = handle for file

Al = positioning mode
Function 428 = position
transfer to MS-DOS

jump if functiocn call failed

; now read 512 bytes from file

DS:DX = address of buffer
CX = length of 512 bytes

: BX = handle for file

Function 3FH = read
transfer to MS-DOS

jump if read failed

was 512 bytes read?

jump if partial rec. or EOF

Example Assume that the file MYFILE DAT was previously opened and its handle is saved
in the variable fhandle Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file The returned offset, which is relative to the begin-

ning of the file, is the file’s size

fhandle dw ?

mov cx, 0

mov dx, 0

mov bx, fhandle
ROV al,z2

mov ah,42h

int 21h

jc error

Other handle operations

;

handle from previous open

positicn the file pointer

to the end of file

CX = high part of offset

DX = low part of offset

BX = handle for file

Al = positioning mode
Function 42H = position
transfer to MS-DOS

jump if function call failed

if call succeeded, DX:aX
now contains the file size

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a tile,
read or change a file’s attributes, read or change a file’s date and time stamp, and duplicate
orredirect a file handle The first three of these are “file-handle-like” because they use an
ASCIIZ string to specify the file; however, they do not return a file handle

Section II: Programming in the M5-DOS Environment 259

LG Exhibit 1204C, Page 142
LG Electronics, Inc. v. Papst Licensing

yramming for MS-DOS Article 7: File and Record Management

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its

ng afile
. . o e directory entry with a special character (OESH), making the entry subsequently unrecog-
unetion 561_{ (Rem.lme }_1116) renames an existing file ?nd/m moves the file from one 1.0 ol nizable. MS-DOS then updates the disk’s FAT so that the clusters that previously belonged
on in the hierarchical file structure to another. The file to be renamed cannot be a hidden he file are “free” and ‘ ‘) T e
¢ svstem file of a subdirectory and must not be curentl b j . attemptin ; to the file are “free” and returns to the program with the carty flag clear If the delete
Y Y Y ODEn Dy any process; alempting function fails, MS-DOS sets the carry flag and returns an error code in AX

> rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its
irectory entry; it inoves a file by removing its current directory entry and creating a new
ntry in the target directory that refers to the same file. The location of the file’s actual

ata on the disk is not changed

The actual contents of the clusters assigned to the file are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H

joth the current and the new filenames must be ASéIIZ strings and can include a drive Example Delete the file MYFILE DAT, located in the WORK directory on drive C.

nd path specification; wildcard characters (» and ?) are not permitted in the filenames. :

he program calls Punction 56H with the address of the current pathname in the DS:DX fame db 'C:WORKAMYFILE DAL, 0
agisters and the address of the new pathname in ES:DI If the path elements of the two
trings are not the same and both paths are valid, the file “moves” from the source direc- :

a1y to the target directory. If the paths match but the filenames differ, MS-DOS simply mov dx,seg fname ; DS:DX = address of filename
wdifies the directory entry to reflect the new filename, i mov ds, dx

. mov dxz,offset fname
{the function succeeds, MS-DOS returns to the calling program with the carry flag clear. i mov ah, 41k : Function 41H = delete

i int 21h ¢ transfer to MS-DOS

he function fails if the new filename is already in the target directory; in that case, | i - i :
15-DOS sets the carry flag and returns an error code in AX. 1e errox i Jump if delete failed

Ixample. Change the name of the file MYFILE DAT to MYFILE OLD Inthe same opera-

ion, move the file from the \WORK directory to the \BACKUP directory.
Getting/setting file attributes

ilel db *\WORK\MYFIIE DAI',Q

ilez db "\BACKUP\MIFILE OLD', 0 : Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file. To read the attributes, the program must set Al to zero; to set
mov dx, seg filel . DS:DX - old filename the attributes, it must set Al to 1 and place an attribute code in CX. See Creating a File
mov ds,dx above
mov es,dx
mov dx, offset filel If the function is successful, MS-DOS reads or sets the atisibute byte in the file's directory
nov di,offset file? ; ES:DI = new filename entry and returns with the carry flag clear and the file’s attribute in CX. If the function
mov ah, 56h ¢ Function 56H = rename fails, MS-DOS sets the cairy flag and returns an error code in AX
int 21h ¢ transfer to MS-DOS
jc error ; jump if rename failed Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of a file_ It also should not be used on a file that is currently open by any process
Example. Change the attributes of the file MYFILE DAT in the \BACKUP directory on
gafile drive C to read-only This prevents the file from being accidentally deleted from the disk
unction 41t (Delete File) effectively deletes a file from a disk Before calling the function, Frame b 'C\BACKUPAMYFLLE DRIT, 0
1 program must set the DS:DX registers to point to the ASCIIZ pathname of the file 1o be
ieleted The supplied pathname cannot specify a subdirectory or a read-only file, and the
ile must not be currently open by any process mov dx, seg fname : DS:DX = address of filename
mov ds, dx
mov dx, cffset fname
mov cx, b ; CX = attribute (read-only)
Thov al, 1 ; AL = mode (0 = get, 1 = set)

(more)

The MS$-DOS Encyclopedia Section IT: Programming in the M5-DOS Environment 261

LG Exhibit 1204C, Page 143
LG Electronics, Inc. v. Papst Licensing

gramming for MS-DOS

mov ah, 43h ; Function 43H = get/set attr
int 21h ; transfer to MS-DOS
jc error ; Jump if set attrib failed

1/setting file date and time

Punction S7H (Get/Set Date/ Time of File) reads or sets the directory time and date stamp
of an open file To set the time and date to a patticular value, the program must call Func-
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob-
tained from a previous open or create operation) in BX, and the value 1in AL Toread the
rime and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is returned
cleared; if the function fails, MS-DOS returns the carty flag set and an error code in AX

The formats used for the file time and date are the same as those used in disk directory
entries and FCBs, See Stucture of the File Control Block below

The main uses of Function 57H are to force the time and date entry for a file to be updated
when the file has 7ot been changed and to circumvent MS-DCS’s modification of a file
date and time when the file fizs been changed In the latter case, a program can use this
function with AL = 0 to obtain the file’s previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with AL =1 before

closing the file
ating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when

the file has been modified Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this is a relatively slow procedure and in a network environment can cause the program

to lose control of the file to another process.

Use of 2 second file handle, created by using Function 45H (Duplicate File Handle) 1o
duplicate the original handle of the file to be updated, can protect data added to a disk file
before the file is closed To use Function 45H, the program must put the handle to be
duplicated in BX If the operation is successful, MS-DOS clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an

error code in AX

1f the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3FH. This forces the desired update of the disk directory and FAT. The orig-
inal handle remains open and the program can continue to use it for file réad and write

operations

Note: While the second handle is open, moving the read/write pointer associated with
cither handle moves the pointer associated with the other

The MS-DOS Encyclopedia

Article 7: File ani Record Management

Example: Assume that the file MYFILE DAT was previously opened and the handle for
that file has been saved in the variable fhandle Duplicate the handle and then close the
duplicate to ensure that any data recently wiitten to the file is saved on the disk and that
the directory entry for the file is updated accordingly

fhandle dw ? i handle from previous open

duplicate the handle ..

mov bx, fhandle ; BX = handle for file

nov ah, 45h : Function 45H = dup handle
int 21h ; transfer to MS-DOS

jc error i Jump if function call failed

: now close the new handle .

mov bx,ax ; BX = duplicated handle

mov ah, 3eh ; Function 3EH = close

int 21h ; transfer to M5-DCS

jc error ; Jjump if clese failed

mov bx, fhandle ; replace closed handiewith active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle —in
other words, to refer to the same file or device at the same file read/write pointer location
The handle is then said to be redirected

T he most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro-
gram. In such cases, Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-DOs: Writing MS-DOS Filters

Using the FCB Functions

A tile control block is a data structure, located in the application program’s memory space,
that contains relevant information about an open disk file: the disk diive, the filename and
extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB The information in an FCB is maintained cooperatively by both MS-DOS and the
application program '

Section Il Programming in the M5-DOS Environment 263

LG Exhibit 1204C, Page 144
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for MS-DOS

Article 7: File and Record Management

MS-DOS moves data 10 and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA) The current address of the DTA isunder the
control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP} See PROGRAMMING IN THE MS-DOS
ENVIRONMEN I': PROGRAMMING FOR Ms-DOs: Structure of an Application Program

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers However, under MS-DOS versions 3 0 and later,
when file-sharing support (SHARE EXE) is loaded; MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files If the
application attempts to open oo many FCBs, MS-DOS simply closes the least recently used
FCBs to keep the total number within a limit

The CONFIG SYS file directive FCBS allows the user to control the aliowed maximum
number of FCBs and to specify a certain number of FCBs to be protected against automatic
closure by the system The default values are a maximum of four files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system See USER
COMMANDS: CONFIG 5YS: FCBS

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCB fike and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

264

Each FCB is a 37-byte array allocated from its own memory space by the application pro-
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps The FCB structure is shown in Table 7-3

Table 7-3. Structure of a Normal File Control Block.,

Offset Size :
Maintained by (bytes) (bytes) Description
Program 00H 1 Drive identifier
Program 0IH 8 Filename
Program 09H 3 File extension
MS-DOS OCH 2 Current block number
Program 0EH 2 Record size (bytes)
MS-DOS 10H 4 File size (bytes)
MS-DOS 14H 2 Date stamp
MS-DOS 16H 2 Time starmp
MS-DOS 18H 8 Reserved
MS-DOS 20H 1 Current record number
Program 21H 4 Random record number

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 145
LG Electronics, Inc. v. Papst Licensing

Drive identifier. Initialized by the application to designate the drive on which the file 1o
be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on . If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used, that is, after an open
or create operation, this drive will aiways contain a value of 1 or greater

Filename Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters A device
name (for example, PRN) can be used; note that there is no colon after a device name

File extension. Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters

Current block number: Initialized to zero by MS-DOS when the file is opened. The block
number and the record number together make up the record pointer during sequential file
access

Record size. The size of a record (in bytes) as used by the program. MS-DOS sets this field
to 128 when the file is opened or created, the program can modify the field afterward to
any desired record size If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program’s own code or data

File size- The size of the file in bytes MS-DOS initializes this field from the file’s directory
entry when the file is opened The first 2 bytes of this 4-byte field are the least significant
bytes of the file size

Date stamp The date of the Jast write operation on the file MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/ Time of File):

Date Format

Bit: 1 4 13 12 11 10 9 8 (7 6 5 4 3 2 1 0

Content: iY'Y?YiY‘Y‘Y]M M}M'M]DlD\DlD}D}

Bits Contents

0—4 Day of month (1-31)
5-8 Month (1-12)

5-15 Year (relative to 1980)

Time stamp The time of the last write operation on the file. MS-DOS initializes this field
from the file’s directory entry when the file is opened This field uses the same format
used by file handle Function S7H (Get/Set/Date/ Time of File):

Section I Programming in the M5-DOS Environment 265

Part B: Programming for MS-DOS

Time Format

Bit: 15 14 13 12 11 1w % 8

7 6 5 4 3 2 1 0

Content: IH‘H|H‘H}H‘M{M|M

wlufu]s]s[s[s]s]

Bits Conients

0—4 Number of 2-second increments (0—29)

5-10 Minutes (0-59)
11-15 Hours (0-23)

Current record number. Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127; thus, there
are 128 records per block. T he beginning of a file is record 0 of block 0

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21E, 22H, 27H, and 28H. If the record size is 64 bytes or larger,

only the first 3 bytes of this field are used MS-DOS updates this field after random block
teads and writes (Functions 27H and 28H) but not after random record reads and writes

(Functions 21H and 22H)

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only The extta 7 bytes of an ex-
tended FCB are simply prefixed to the normal FCB format (Table 7-4) The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes
of the file being manipulated he remainder of an extended FCB has exactly the same
Jayout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func-

tion call that accepts a normal FCB

Table 7-4. Structure of an Extended File Control Block,

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Extended FCB flag = OFFH
MS-DQOS 01H 5 Reserved
Program 06H 1 File attribute byte
Program 07H 1 Drive identifier
Program 08H 8 Filename

266 TheMS-DOS Encyclopedia

LG Exhibit 1204C, Page 146
LG Electronics, Inc. v. Papst Licensing

(more)

Article 7: File and Record Management

Table 7-4. Continued

Offset Size
Maintained by (bytes) (bytes) Description
Program 10H 3 File extension
MS-DOS 13H 2 Current block number
Program 15H 2 Record size (bytes)
MS-DOS 175 4 File size (bytes)
MS-DOS 1BH 2 Date stamp
MS-DOS 1DH 2 Time stamp
MS-DOS IFH 8 Reserved
MS-DOS 27H 1 Cutrent record number
Program 28H 4 Random record number

Extended FCB flag: When OFFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of a2 normal FCB (37 bytes).

File attribute byte. Must be initialized by the application when an extended FCB is used to
open or create a file The bits of this field have the following significance:

Bit Meaning
0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
5° Archive
6 Reserved
7 Reserved
FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the defauit FCBs, the default DTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

5CH 16 Default FCB #1

6CH 20 Default FCB #2

80H 1 Length of command tail

81H 127 Command-tail text

80H 128 Defauit disk transfer area (DTA)

Section IT Programming in the MS-DOS Environment 267

Part B: Programming for MS-DOS

When MS-DOS loads a prograrm inio memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets SCH and 6CH (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names) MS-DOS then sets the initial DTA address for the
program to PSP:0080H

For several reasons, the default FCBs and the DTA are often moved to another location
within the program’s memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs ovetlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict Finally, unless efther the command
tail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail. '

Function IAH (Set DTA Address) is used to alter the DTA address It is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX The DTA address
remains the same until ancther call to Function 1AH, regardless of other file and record
management calls; it does not need 1o be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the original address can be restored later

Parsing the filename

Before a file can be opened o1 created with the FCB function calls, its drive, filename, and
extension must be placed within the proper [ields of the FCB The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or
by prompting the user and reading it in with one of the several function calls for character
device input.

MS-DOS automatically parses the first two parameters in the program'’s command tail into
the default FCBs at PSP:005CH and PSP:006CH It does not, however, attempt to differenti-
ate berween switches and filenames, so the pre-parsed FCBs are not necessarily useful 1o
the application program If the filenames were preceded by any swiiches, the program
itself has to extract the filenames directly from the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends

After a filename has been located, Function 29H (Parse Filename) can be used to test it
for invalid characters and separators and to insert its various components into the propet
fields in an FCB. The filename must be a string in the standard form drivefilename ext
Wildcard characters are permitted in the filename and/or extension; asterisk (+) wildcards
are expanded to question mark (?) wildcards

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CALILS: IntTsrrupt 215: Function 20H

268. TheMS-DOS Encyclopedia

LG Exhibit 1204C, Page 147
LG Electronics, Inc. v. Papst Licensing

Article 7: File and Record Management

If a drive code is not included in the filename, MS-DOS inserts the drive number of the
current drive into the FCB Parsing stops at the first terminator character encountered in
the filename Terminators include the following:

i, =+ /"[]1<>spacetab
If a colon character (2 is not in the proper position to delimit the disk drive identifier or if
a petiod () is not in the proper position to delimit the extension, the character will also be

treated as a terminator For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF DAY will be parsed as ABC.

If an invalid drive is specified in the filename, Function 29H returns OFFH in Al; if the
filename contains any wiidcard characters, it returns 1. Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename

‘Note that this function simply parses the filename into the FCB It does not initialize any
other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor-
mation when a function fails Typically, an FCB function returns a zero in AT if the func-
tion succeeded and OFFH if the function failed Under MS-DOS versions 2 x, the progtam
is left to its own devices to determine the cause of the error Under MS-DOS versions 3 x,
however, a failed FCB function call can be followed by a call to Interrupt 21H Function
59H (Get Extended Error Information) Function 59H will return the same descriptive
codes for the error, including the etror locus and a suggested recovery stiategy, as would
be returned for the counterpart handle-oriented file or record function

Creating a file
Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/
write operations The function is called with DS:DX pointing to a valid, unopened FCB
MS-DOS searches the current directory for the specifed filename If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating it 1o a zero-

length file; if the filename is not found, MS-DOS creates a new file and opens it Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File

if the create operation succeeds, MS-DOS returns zero in AlL; if the operation fails, it
returns OFFH in Al This function will not ordinarily fail unless the file is being created in
the root directory and the directory is full

Warning; To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file

Section I1 Programming in the M5-DO5 Environmeni 269

Article 7: File and Record Management

Part B: Programming for MS-DOS

; try to open file.

Ope g afﬂe) mov dx,offset myfcbh ; DS:DX = rCB address
Function OFH opens an existing file. DS:I>X must point to a valid; unopened FCB contain- ; mov ah,0fh i Function OFH = open file
. h . . o o . . . = i 21hn ; -
ing the name of the file to be opened. If the specified file is found in the current directory, :II”: Ll : zi:ifi;izsm pos
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with AL set : iz pn;ceed jump if open sucesssful

to O0H; if the file is not found, MS-DOS returns with AL set to OFFH, indicating an error.

; else create file. ..

When the file is opened, Ms-DOS : mov dx,offset myich ; DS:DX = FCB address
. . s . ‘ . ,16h : 3 6H =
® Sets the drive identifier (offset O0H) to the actual drive (01= A, 02 = B, and so on) j T Jopunerion 1O o omeare
® Sets the current blqck numpber (offset 0CH) 16 zero. : or al,al © did create succesd?
® Sets the file size (offset 10H) to the value found in the directory entry for the file _ inz error ; jump if create failed
® Sets the record size (offset OEH) to 128 _
® Sers the date and time stamp (offsets 14H and 16H) to the values found in the direc- proceed:
tory entry for the file ; i file has been openred or
¥ ¥ P ; created, and FCB is walid
. ; ; for read/write operations.
The program may need to adjust the FCB — change the record size and the random record ‘ .
Closing a file

pointer, for example — before proceeding with record operations
Function 10H (Close File with FCB) closes a file previously opened with an FCB Asusual,
the function is called with DS:DX pointing to the FCB of the file to be closed MS-DOS
updates the directory, if necessary, to reflect any changes in the file’s size and the date and

|
|
i time last written

Example: Display a prompt and accept a filename from the user. Parse the filename into
an FCB, checking for an illegal drive identifier or the presence of wildcards If a valid,
unambiguous filename has been entered, attempt to open the file Create the file if it does

not already exist.
Kbuf db §4,0,64 dup (0) If the operation succeeds, MS-DOS returns 00H in AL; if the operation fails, MS-DOS
prompt db 0dh, Oah, 'Enter filensme: §° ! returns OFFH. :
myfch db 37 dup (0) : - sgs . .
Y : Reading and writing files with FCBs
’ MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.
7 display the prompt.. Sequential operations step through the file one record at a time MS-DOS increments the
mov dx, seg prompt ; D3:DX = prompt address | : . i i
nov ds, dx ,‘ current record and current block numbers after each file access so that they point to the
mov es,dx beginning of the next record. This method is particularly useful for copying or listing files.
mov dx,offset prompt .)) : .) e i . .
nov 2h, 09h . Function 0SH = print string _ Randpm r(lecord access al‘lows the program to read or write a I.ECCI'IC[fIOII:l any location in
int 21h : transfer to MS-DOS the file, without sequentially reading all records up to that point in the file The program
must set the tandom record number field of the FCB appropriately before the read or wiite
¢ now input [ilename. . is requested This method is useful in database applications, in which a program must
mov dx,offset kbuf ; DS:DX = buffer address ‘ i manipulate fixed-length records
mov ah,0ah ; Function 0AH = enter string
int 21n i transfer to M5-DOS f Random block opetations combine the features of sequential and random record access
‘ ‘ ! methods The program can set the record number to point to any record within a file, and
; parse filemame into ECE. | MS-DOS updates the record number af d or wiite operation Th tial
mov si,offset kbuf+2 ; DS:SI = address of filename : "~ i upadtes 'G ICCO'I . num et t@I-EL rea (.)I WIS Operation us, S_equen 'la
oy di,offset myfcb ; ES:DI = address of fcb operations can easily be initiated at any file location Random bleck operations with a
oy ax,2900n ; Function 29H — parse name record length of 1 byte simuiate file-handle access methods
int 21h ; transfer to MS-DOS 3 .) .
or al,al ; jump if bad drive or : : All three methods require that the FCB for the file be open, that DS:DX point to the FCB,
inz error ; wildcard characters in name that the DTA be large enough for the specified record size, and that the DTA address be

| previously set with Function 1AH if the default DTA in the program’s PSP is not being

(more)
more. used

270 | The MS-DOS Encyclopedia Section I Programming in the MS-DOS Environment 271

LG Exhibit 1204C, Page 148
LG Electronics, Inc. v. Papst Licensing

Part B: Programiming for MS-DOS

MS-DOS reports the success or failure of any FCB-related read operation {sequential,
random record, or random block) with one of four return codes in register AL:

Code Meaning

00H Successful read

O1H End of file reached; no data read into DTA

02H Segment wrap (DTA too close to end of segment); no data read into DTA
03H End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three
return codes in register AL:

Code Meaning

00H Successful write
01H Disk full; partial or no write
02H Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter-
rupt 21H Function 0DH (Disk Reset) is issued

Sequential access: reading

Function 14H {(Sequential Read) reads records sequentially from the file to the current
DTA address, which must point to an area at least as large as the record size specified in
the file's FCB After each read operation, MS-DOS updates the FCB block and record num-
bers (offsets 0CH and 20H) 1o point to the next record.

Sequential access: writing

Function 15H (Sequentiai Write) writes records sequentialily from memory into the file

The length written is specified by the record size field (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to point to the next record

Random record access: reading

272

Function 21H (Random: Read) reads a specific record from a file Before requesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA
address must also have been previously set with Function 1AH to point o a buffer of
adequate size if the default DTA is not large enough

The M5-DOS Encyclopedia

LG Exhibit 1204C, Page 149
LG Electronics, Inc. v. Papst Licensing

Article 7: File and Record Management

After the read, MS-DOS sets the curtent block and current record number fields (offsets
0CH and 20H) to point to the same record Thus, the program is set up to change to
sequential reads or writes, However, if the program wants to continue with random record
access, it must continue to update the random record field of the FCB before each random
record read ot write operation.

Random record access: writing

Function 22H (Random Wiite) writes a specific record from memory to a file. Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written

After the write, MS-DOS sets the current block and current record number fields (offsets
OCH and 20H) to point to the same record. T hus, the program is set up to change to
sequential reads or writes If the program wants to contintte with random record access, it
must continue to update the random record field of the FCB before each random record
read or write operation

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FCB (offsets OEH and 21H) and
must put the number of records to be read in CX The DTA address must have already been
set with Function 1AH to point to a buffer large enough to contain the group of records io
be read if the default DTA was not large enough The program can then issue the Function
27H call with DS:DX pointing to the FCB for the file

After the random block read operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H}
to point to the beginning of the next record not read and returns the number of records
actualiy read in CX

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer This simulates
(to some extent) the handle type of read operation (Function 3FH)

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random recotd pointer fields in the FCB (offsets OEH and 21H) If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function 1AH When Function 28H is called,
DS:DX must point to the FCB for the file and CX must contain the number of records to

be written

After the random block write operation, MS-DGS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next block of data and returns the number of records
actually written in CX

Section 1T Programming in the M$-DOS Environment 273

Part B: Programming for MS-DOS

1f the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer This simulates
(to some extent) the handle type of write operation (Function 40H)

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset
21H) multiplied by the contents of the record size field (offset CEH).

Example: Open the file MYFILE DAT and create the file MYFILE BAK on the current disk
drive, copy the contents of the DAT tile into the BAX file using 512-byte reads and writes,
and then close both files

febi db 0 ; drive = default
db 'MYFIIE ' ; B character filename
db ‘DAL’ ; 3 character extension
db 25 dup {(0) ; remainder of f£cbl
feb2 db 0 ; drive = default
db 'MYFIIE ' ; 8 character filename
db 'BaK' ; 3 character extension
db 25 dup (0 ; remainder of fcb?2
buff db 512 dup (?) ; buffer for file 1/0
;7 open MYFILE DAI
mov dx,seqg fcbl ; DS:DX = address of FCB
mov ds,dx
moev dx,offset fcbi
mov ah,0fh ; Function OFH = open
int 21h i transfer to M3-DQS
or alral ; did open succeed?
jnz erroxr i Jump if open failed
; create MYFILE . BAK
mov dx,offset fch2 : DS:DX = address of FCB
mov ah,16h : Function 16H = create
int 21h ; transfer to MS-DOS
or al,al ; did create succeed?
jnz error ; jump if create failed
; set record length to 512
mov word ptr fcbl+0eh,512
mov word ptr fob2+0eh, 512
i set DIA to our buffer.
mov dx,offset buff ; DS:DX = buifer address
mov ah,1ah ; Function 1AH = set DIA
int 21h i transfer to MS-DOS
loop: ; read MYSILE.DAI
mov dx,offset fcbl : DS$:DX = FCB address
mov ah,14h : Function 14H = seg. read
int 21h : transfer to M5-DOS
or al,al ; was read successful?
jnz done ; no, quit

; write MYFIIE BAK.

(more)

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 150
LG Electronics, Inc. v. Papst Licensing

[

Article 7: File and Record Management

mov dx,offset fcb2 ; DS:DX = FCB address

oV ah,15h ; Function 15H = seq. write

int 21h ; transfer to MS-DOS

or al,al : was write successful?

jnz error ; jump if write failed

jmp loop ; continue to end of file

dene: ; now close files.

mov dx,offset febi ; DS:DX = FECB for MYFILE.DAIL

mow ah, 10h ; Function 10E = close file

int 21h ; transfer to MS5-DOS

or al,al ; did close succeed?

inz error : jump if close failed

mov dx,offset fch2 : DS:DX = CB for MYFILE.BAK

mov ah, 10h ; Function 10H = close file

int 2th ; transfer to MS-DOS

or al,al ; did clese succeed?

jnz error ; Jump if close failed
Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters An additional FCB function allows the size or existence of a
file to be determined without actually opening the file

Renaming a file

Function 17H (Rename File) renames a file (or files) in the current directory The file to be
renamed cannot have the hidden or system attiibute Before calling Function 17H, the pro-
gram must create a special FCB that contains the drive code at offset 00H, the old filename
at offset 01H, and the new filename at offset 11H Both the current and the new filenames
can contain the ? wildcard character

When the function call is made, D$:DX must point to the special FCB structure MS-DCS
searches the current directory for the old filename If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no maiching filename, changes the
directory entrv for the old filename to reflect the new filename. If the old filename field of
the special FCB contains any wildcard characters, MS-DOS renames every matching file
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zeroin Al if the operation fails, it returns
OFFH The error condition may indicate either that no files were renamed o1 that at least
one file was renamed but the operation was then terminated because of a duplicate
filename

Example: Rename all the files with the extension ASM in the current directory of the
default disk drive to have the extension COD

Section 1. Programming in the M5-DOS Environment 275

Part B: Programming for MS-DOS

renfck db 0 ¢ default drive
db ez : wildcard filename
di "ASM’ ; old extension
db 5 dup (0) ; reserved area
db TERRRRRRRT ; wildcard filename
db *CoD?’ : new extension
db 15 dup (0} ; remainder of ECB
mov dx, seg renfcb ; D8:DX = address of
mov ds, dx i "special" FCB
mov dx,offset renfch
mov ah, 17h ¢y Function 17H = rename
int 2th ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if rename failed

Deleting a file

Function 13H (Delete File) deletes a file from the current directory. The tile should not be
currently open by any process If the file to be deleted has special attributes, such as read-
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted T he filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name 1f at least one file matches the FCB
and is deleted, MS-DOS retuins 00H in Al; if no matching filename is found, it retuins

OFFH

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When muttiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions 11H and 12H) to inspect candidate
filenames See PROGRAMMING IN THE MS-DOS ENVIRONMEN T: PROGRAMMING FOR
ms-pos: Disk Directories and Volume Labels The files can then be deleted individually

Example Delete all the files in the current directory of the current disk drive that have
the extension BAK and whose filenames have A as the first character

delicb db 0 . default drive
db A??I2IRRT ; wildcard filename
db '"BAK" ; extension
db 25 dup (@) ; remainder of FCB

(more)

The MS5-DOS Encyclopedia

LG Exhibit 1204C, Page 151
LG Electronics, Inc. v. Papst Licensing

Article 7: File and Record Management

mov dx, seg delfcb ; DS:DX = FCB address
mov ds,dx

MoV dx,offset delfcb

mov ah, 13h ; Function 13H = delete
int 21h ; transfer to MS-DOS

or al,al ; did function succeed?
jnz error ; jump if delete failed

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the
existence of a file Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset 0FH), and set the
DS:DX registers to point to the FCB.

When Function 23H returns, AL contains 00H if the file was found in the current directory
of the specified drive and OFFH if the file was not found

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 bytes, all 4 bytes are used To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call This method is not any faster than simply opening the file, but it does avoid the over-
head of closing the file afterward (which is necessary in a networking environment)

Summary

MS-DOS supports two distinct but overlapping sets of file and record management
services The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DQOS after a file
is opened or created The filenames can include a full path specifying the file’s location in
the hierarchical directory structure The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file's read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS

Section II. Programming in the M5-DOS Environment 277

Part B: Programming for MS-DOS

278

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program’s memory space, to specify the name and location of
the file. Aftera file is opened or created, the FCB is used by both MS-DOS and the applica-
tion to hold other information about the file, such as the current read/write file pointer,
while that file is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DCS version 2 0 and do not have room to hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci-
fiedt drive

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
environments because they do not support file sharing and locking Consequently, it is
strongly recommended that the handle-related file and record functions be used ex-
clusively in all new applications

Robert Byers
Code by Ray Duncan

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 152
LG Electronics, Inc. v. Papst Licensing

i
I
|
I

Arsticle 8: Disk Directories and Volume Labels

Article 8
Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for caialoging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk Directories are ac-
cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions

MS-DOS versions 1x support only one directory on each disk Versions 2 0 and larer,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
desctibe the location in the directory hierarchy in which the name appears This specifica-
tion, or path, is created by concatenating a disk drive specifier (for example, A: ot C2), the

CA\ (root directory)

subdirectory ~ ALPHA
subdirectory BETA
fite FILEL.COM
file FILE2 COM
1
CMALPHA : CNBETA

subdirectory .
subdirectory o
subdirectory EPSILON

subdirectory .
subdirectory . .
subdirectory GAMMA

subdirectory DELTA file FILE4 COM
file FILE3 COM
|
CNALPHAGAMMA CMLPHANDELTA CABETANEPSILON
subdirectory - subdirectory subd?rectory .
subdirectory o » subdirectory . . subdirectory - -
file FILE5 COM file FILEL COM

Figure 8-1 Typical hierarchical directory structure (MS-DOS versions 2 0 and later}

Section IL. Programming in the MS-DOS Environment 279

Part B: Programming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally
the name of the file or directory For example, in Figure 8-1, the complete pathname for
FILE5 COM is CAALPHANGAMMANFILES.COM . The two instances of FILE1 COM, in the
root directory and in the directory EPSILON, are distinguished by their pathnames:
C:\FILE1 COM in the first instance and C:ABETA\EPSILON\FILE1 COM i the second

Note: If no drive is specified, the current diive is assumed Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative to
the current directory For example, if the current direciory is CABETANEPSILON, the
specification \FILE1 COM indicates the file FILE1.COM in the root directory and the
specification FILE1.COM indicates the file FILEI.COM in the directory C:\BETAVEPSILON
See Figure 8-1

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip-
ulating directory contents and maintaining the links between directories This article
provides that information

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con-
rains 4 name and desciiptive information In MS-DOS versions 1 x, each name must be a
filename; in versions 2 0 and later, volume labels and directory names can also appear
in directory entries

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a direciory for a name, the search must proceed linearly from the first
name in the directory. in M$-DOS versions 1 x, a directory search continues until the spec-
ified name is found or until every entry in the directory has been examined. In versions 2 0
and later, the seaich continues until the specified name is found or until a null directory
entry (that is, one whose first byte is zero) is encountered This null entry indicates the
fogical end of the directory

Adding and deleting directory entrics

280

MS-DOS deletes a directory entry by marking it with OESH in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus-
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends
the new entry fo the list

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 153
LG Electronics, Inc. v. Papst Licensing

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter-
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated lates, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory).

Directory Format

The root directory is created by the MS-DOS FORMAT program See USER COMMANDS;
rormat . The FORMAT program places the root directory immediately after the disk’s file
allocation tables (FATs). FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks In contrast, the size
of subdirectories is limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DOS file The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE M3-DOS ENVIRONMENT: S1ruc-
TURE OF M5-DOs: M5-DOS Storage Devices

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an atiribute byte,
date and time stamps, and information that describes the file’s size and physical location
on the disk (Figure 8-2) The fields are formatted as described in the following paragraphs

Byte © OBH 0CH 16H 18H 1AH ICH iFH

Name Atiribuie (Reserved) Time | Date | Starting cluster File size

Figure 8-2 Formar of a dirvectory entry
T he name field (bytes 0~0AH) contains an 11-byte name unless the first byte of the field

indicates that the directory entry is deieted or nuil. The name can be an 11-byte filename
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section IT. Programming ir the MS-DOS Environment 281

Part B: Programming for M5-DOS

282

followed by a 3-byte extension), or an 11-byte volume label Names less than 8 bytes and
extensions less than 3 bytes are padded to the right with blanks so that the extension al-
ways appears in bytes 08-0AH of the name field The first byte of the name field can con-
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)

5 First character of name to be displayed.as the character represented by 0ESH
(MS-DOS version 3.2)

OESH Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly creaied directory The name . (an ASCII period) is an alias for the name of
the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory — that is, the directory in which the entry containing the name of the current
directory is found.

The attribute field (byte O0BH) is an 8-bit field that describes the way MS-DOS processes

the directory entry (Figure 8-3) Each bit in the attribute field designates a particular attri-
bute of that directory entry; more than one of the bits can be set at a time

Bit 7 6 5 4 3 2 1 0
(Reserved) | (Reserved) |~ Archive dii‘:'t’;ry Vi’;g:l‘e System file | Hidden file Reagl":ﬂly

Figure 8-3. Format of the attribute field in a directory entry

The read-only bit (bit 0) is set to 110 mark a file read-only Interrupt 21H Function 3DH
(Open File with Handle) will fail if it is used in an attempt 1o open this file for writing The
hidden bit {bit 1) is set to 1 to indicate that the entty is to be skipped in normal directory
searches —that is, in directory searches that do not specifically request that hidden entries
be included in the search The system bit (bit 2) is set to 1 to indicate that the entry refers to
a file used by the operating system Like the hidden bit, the system bit excludes a directory
entry from normal directory searches The volume label bit {(bit 3) is set to 1 to indicate that
the directory entry represents a volume label The subdirectory bit (bit 4) is set to 1 when
the directory entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the current directory (.} and the parent
directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to Simply openihg and closing a file is not sufficient to update the
archive bit in the file’s directory entry

The time and date fields (bytes 16~17H and 18-19H) are initialized by MS-DOS when
the directory entry is created These fields are updated whenever a file is written to. The
formats of these fields are shown in Figures 8-4 and 85

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 154
LG Electronics, Inc. v. Papst Licensing

Article 8: Disk Directories and Volume Labels

Bit 15 10 4 0

2-second
increments (0-29)

Hours (0-23) Minutes (0-59)

Figure 8-4 Format of the time field in a directory entry

Bit 15 g 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5 Format of the date field in a directory entry

The starting cluster field (bytes 1A—1BH) indicates the disk location of the first cluster
assigned to the file This cluster number can be used as an entry point to the file allacation
table (FAT) for the disk (Cluster numbess can be converted to logical sector numbers with
the aid of the information in the disk’s BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the
parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero

The file size field (bytes 1C—1FH) is a 32-bit integer thar indicates the file size in bytes

Volume Labels

The generic term volume refers o a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape In computer environments where many different volumes
might be used, the operating system can uniquely identify each volume by initializing it
with a volume label

Volume labels are implemented in MS-DOS versions 2 0 and later as a specific type of
directory entry specified by setting bit 3 in the attribute field to 1 In a volume label direc-
tory entry, the name field contains an 11-byte string specifying a name for the disk volume
A volume label can appear only in the root directary of a disk, and only one volume label
can be present on any given disk

In MS-DOS versions 2 Q and later, the FORMAT command can be used with the /V switch
1o initialize a disk with a volume label In versions 3.0 and later, the LABEL command can

be used to create, update, or delete a volume label Several commands can display a disk’s
volume label, including VOL, DIR, L ABEL, TREE, and CHKDSK See USER COMMANDS,

Section II: Programming in the MS-DOS Environment 283

Part B: Programming for MS-DOS

In MS-DOS versions 2 x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In MS-DOS versions 3 x, however, the
SHARE command examines a disk’s volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation,
Removable disk volumes should therefore be assigned unique volume names if they are

to contain shared files

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu-
late directories and their contents (Table 8-1) The routines can be broadly grouped into
two categories: those that use a modified tile control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H) See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR

ms-pos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Intertupt 21H function is called. The calling program inj-
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOS service routine in DS:DX The functions that use pathnames expect all path-
names to be in ASCIIZ format—that is, the last character of the name must be followed

by a zero byte

Names in pathnames passed to Interrupt 21H functions can be separated by either a back-
slash (\) or a forward slash (/). (The forward slash is the separator character used in path-
names in UNIX/XENIX systems) For example, the pathnames C:/MSF/SOURCE/RCSE PAS
and C:\MSP\SOURCE\ROSE PAS are equivalent when passed to an Interrupt 21H function
The forwaid slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENIX Howevet, the MS-DQS comand processor (COMMAND COM)
recognizes only the backslash as a pathname sepatator character, so forward slashes can-
not be used as separators in the command line

Table 8-1. MS-DOS Functions for Accessing Directories.

Function Call with

Returns

Comment

Find First File AH=11H
D&:DX = pointer to
unopened FCB
INT 21H

Find Next File AH =128
DS5:DX = pointer to

unopened FCB
INT 21H

284 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 155
LG Electronics, Inc. v. Papst Licensing

Al = 0 (ditectory eniry
found) or OFFH (not found)

DTA updated (if directory
entry found)

AL = 0 (directory entry
found) or OFFH (not found)

DTA updated (f directory
entry found)

if default not satisfac-
tory DTA must be
set before using
this function

Use the same FCB

for Function 11H and
Function 12H

(more)

Article 8: Disk Directories and Volume Labels

Table 8-1. Continued

Function Call With Returns Comment
Rename File AH=17H AL = 0 (file renamed) or
D3:DX = pointer to OFFH {no directory entry
modified FCB or duplicate filename)
INT 21H
Get File Size AH = 23H AL = 0 (directory entry
D8:DX = pointer 1o found) or OFFH (not found)
unopened FCB FCB updated with number
INT 21H of records in file
Create Directory AH = 39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)
ASCIIZ pathname
INT 21H
Remove Directory AH = 3AH Carry flag set (if error)
DS:DX = pointer o AX = error code (if error)
ASCIZZ pathname
INT 21H
Change Current AH = 3BH Carry flag set (if error)
Directory DS8:DX = pointer 10 AX = etror code (if error)
ASCIIZ pathname
INT 21H
Get/Set File AH = 43H Carry flag set (if etror) Cannat be used to
Attributes AL = 0{get attributes) AX = error code (if error) modify the volume
1 (set attributes) CX = auribute field from labeil or subdirectory
CX = atributes (Gf AL = 1) directory entry (if called bits
DS:DX = pointer to with AL =)
ASCIIZ pathname
INT 21H
Get Current AH=47H Carry flag set (if error)
Directory DS:SI = pointer to AX = error code (if error)
6d-byte buffer Buffer updated with
DI = drive mumber pathname of current
INI21H directory
Find First File AH = 4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer (o AX = error code (if error) tory, DTA must be
ASCHZ pathname DTA updated set before using
CX = file atrributes to this function
match
INT 21H
Find Next File AH=4FH Carry flag set Gf error)
INT 21H AX = error code (if error}
DTA updated

(more)

Section Il Programming in the MS-DOS Environment 285

Part B: Programming for MS-DOS

Table 8-1. continued

Function Call With Returns Comment
Rename File AH = 56H Carry flag set (if error)
DS:DX = pointer © AX = error code (if error)

ASCHZ pathname
ES:DI = pointer to

new ASCIIZ pathname
INT 21H
Get/Set Date/ Time AH=357H Carry flag set (if error)
of File Al = 0 (get date/time)} AX = error code (if error)
1 (set date/time) CX =time (if AL = 0)
BX = handle DX = date (if AL = 0)

CX=time (if AL=1)
DX =date Gf AL =1)
INT 21H

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches Functions 11H
and 121 use FCBs 1o transfer filenames to MS-DOS; these functions are available in all ver-
sions of MS-DOS, but they cannot be used with pathnames Functions 4EH and 4FH sup-
port pathnames, but these functions are unavailable in MS-DQS versions 1 x All four
functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked When Function 12H or 4FH is used, the current DTA must
be the same as the DTA for the preceding call to Function 11H or 4EH

The Interrupt 21H directory search functions are designed w be used in pairs The Find
First File funcrions return the first matching directory entry in the current directory (Func-
tion 11H) or in the specified directory (Function 4EH) The Find Next File functions
(Functions 12H and 4FH) can be called repeatedly after a successtul call to the corre-
sponding Find First File function. Each call to one of the Find Next File functions retuins
the next directory entry that matches the name originally specified to the Find First File
function. A directory search can thus be summarized as follows:

call "find first file" function

while { matching directory entiy returned }
call "find next file™ function

Wildcard characters

286

This search strategy is used because name specifications can include the wildcard charac-
ters ?, which matches any single charactey, and * (see below) When one or more wildcard
characters appear in the name specified to one of the Find First File functions, only the
nonwildcard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOO1, FOOZ, and so on; the specification
FOO?7?27 772 matches FOO4 COM, FOOBAR EXE, and FOONEW BAK, as well as FOO1 and

The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 156
LG Electronics, Inc. v. Papst Licensing

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character », which matches any remaining
characters in a filename or extension. MS-DOS expands the * wildcard character inter-
nally to question marks Thus, for example, the specification FOO # is the same as

Examining a directory entry

Al four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, aithough the format is different for the two pairs of functions:
Functions 11H and 12H return a copy of the 32-byte directory entry ~~ including the cluster
number— in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number See SYSTEM CAILS: In1ERRUPT 21H: Function
4FH

The attribute field of a directory entry can be examined using Function 43H (Get/Set File
Attributes) Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's
time or date. However, unlike the other functions discussed here, Function 57H is in-
tended only for files that are being actively used within an application —that is, Function
57H can be called to examine the file’s time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, ot SBH)

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directory entty Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid-
den or system files, subdirectories, and the volume label Related Function 56H (Rename
Eile) also changes the name field of a filename but cannot rename a volume label ot a hid-
den or system file However, it can be used to move a directory entry from one directory to
another (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H)

Functions 43H (Get/Set File Atiributes) and 57H (Get/Set Date/ Time of File) can be used
to medify specific fields in a directory entry Function 43H can mark a directory entry as a
hidden or system file, although i cannot modify the volume label or subdirectory bits
Function 57H, as noted above, can be used only with a previously opened file; it provides
a way to read or update a file’s time and date stamps without writing to the file itself

Creating and deleting directories

Function 39H (Create Directory) exisis only to create directories — that is, directory
entries with the subdirectory bit set to 1. (Interrupt 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory (The
subdirectory must be completely empty) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories

Section II. Programming in the MS-DOS Environment 287

Articie 8 Disk Directories and Volume Labels

Part B: Programming for M$-DOS

Specifying the current directory . pop bp
retc
A call to Interrupt 21H Function 47H {Get Current Directory) returns the pathname of the ;
current directory in use by MS-DOS to a uses-supplied buffer The converse operation, in ‘ —SexDIA ENDE
which a new current directory can be specified to MS-DOS, is performed by Function 3BH f N - e
{Change Current Direciory), Y ;
l . . for fil i ; int GetCurrentDir(*path); /* returns error code */
Programming examples: Searching for files :) .
1 H char #path; /* pointer to buffer to contain path */
The subroutines in Figure 8-6 below illusirate Functions 4EH and 4FH, which use path i
specifications passed as ASCIIZ strings to search for files Figure 8-7 applies these assem- _ T T T
bly-language subroutines in a simple C program that lists the attributes associated with PUBLIC _GetCurrentDir
each entry in the current directory Note how the directory search is performed in the _GetCurrentDir PROC near
WHILE loop in Figure 8-7 by using a global wildcard file specification (+ +) and by repeat-
ediy executing FindNextFile() until no further matching filenames are found (See Pro- ‘. push bp
. . 4 bp,
gramming Example: Updating a Volume Label for examples of the FCB-related search gﬁ:n si °®
functions, 11H and 21H) |
— , s asm mov =1, ARG1 ¢ DS:8I ~> buffer
I DIRS A xor dl,dl : DI = 0 {default drive number)
- mov ah,47h ; AH = INI 21H function number
; int 21h ; call M5-DOS: AX = error code
; Subroutines for DIRDUOMP C
' jo 161 ; Jump if error
xor ax, ax ; no error, return AX = 0
ARE; EQU {:Dp + 4] : stack frame addressirg for C arguments l 101: pop si
ARG EQU lbp + 6] pop bp
ret
_IEXI SEGMENI byte public 'CODE' _GetCurrentDir ENDP
ASSUME cs:_IEXI
; int FindFirstFile ath, attribut VA :
; void SetDIA(DIA }: . E : L p ’ ribute): /* returns error code */
' P : ¢har *path;
: char " : int attribute;
PUBL1C —SEt_DlA PUBIIC _FindFirstFile
~SetDIA PROC near ~FindTirstFile PROC near
push zp push bp
mov O, SP mov bp, sp
rov dx, ARG i DS:DX > DIA . mov dx, ARG1 : DS:DX -» path
hilenig ah, 1ah ; AH = INI 21H £function number .
. mov cx,ARGZ i CX = attribute
int 21h ; pass DIA to MS-DOS .
mov ah, 4Eh ; AH = INI Z21H function number
Figure 8-6 Subroutines illustrating Interrupt 21H Functions 4EH and 4FH (more) ' int Z1h i call M5-DOS; AX = arror code
: ic Loz : dump if error
Figure 8-6. Continued (more)
288 The M5-DOS Encyclopedia Section IL Programmiing in the MS-DOS Environment 289

LG Exhibit 1204C, Page 157
LG Electronics, Inc. v. Papst Licensing

Part B: Programming for M5-DOS

102:

_FindFirstfile

XOI

pop
ret

ENDP

ax, ax

bp

ne error, return AX = 0

_FindNextFile

103:

_FindNextFfile

_IEXT

_DAIA

CurrentdDir
DIA

_DAIA

PUBILIC
PROC

push
mov
int
jc
xor
BOoP
ret
ENDP

ENDS

SEGMENI

DB
DB

ENDS

END

Figure 8-6. Continued

290 The MS-DOS Encyclopedia

LG Exhibit 1204C, Page 158

_FindNextFile
near

bp
bp, sp
ah,4Eh
21h
103

aX,ax

bp

/% returns error code */

; AH = INI 21H function number
call M3-DOS; AX = error code
jump if error

; 1f no error, set AX = 0

word public 'DAIA’

64 dup{?)
64 dup{?)

LG Electronics, Inc. v. Papst Licensing

Article & Disk Directories and Volume Labels

/* DIRDUMP C */

#define AllAttributes 0x%3F

main {}

{
static
int
int

struct

{
char
char
int
int
long
char

/¥ bits set for all attributes =/

char CurrentDir([64]:
ErrorCode;
FileCount = 0;

reserved{?1];
attrib;

time;

date;

size;
name{13];
DIA;

/* display current directory name #/

ErrorCode = GetCurrentDir(CurrentDir };
if¢ ErrorCode)

{

printf{ "\nError %d: GetCurrentDir", ErrozCode):

exit (

13

print£("\nCurrent directory is \\%s", CurrentDir };

/* display files and attributes */

SetDIA(&DIA):

/% pass DIA to MS5-DCS #/

ErrorCode = FindFirstFile({ "+ #", AllAttributes);

while(!ErrorCode

{
printf{ "\n%12s -- ", DIA name):
ShowAttributes { DIA.attrib)
++FileCount;

ErroxrCode = FindNextEile(j:

/% display file count and exit #/

printf("\nCurrent directory contains %d files\n", FileCount);
return{ 0);

}

Figure 8-7. The complete DIRDUMP.C program

Section I Programming in the MS-DOS Environment

(more)

291

Part B: Programming for M5-DOS Article 8: Disk Directories and Volume Labeis

ShowAttributes{ a)}

int a:
{ char *GetVellabel(): /% returns pointer to volume label name */
int i ;
int mask = 1; 2 e e e e e e e

statiec char #AattribName{] = PUBLIC _GetVollabel

{ H _GetVollabel PROC near
"read-only ", :
"hidden ", : push bp
"system ", . mov bp, sp
"volume ™, push si
"subdirectory ', push di
"archive "
I call SetDIA ¢ pass DIA address to MS-DOS
; mov dx,cffset DGROUP:ExtendedECB
% mov ah,11h : AH = INT 2iH function number
for(i=0; i<6; i++) /% test each attribute bit */ § int 21h Search for First Entry
{ ; test al,al
if{ a & mask } inz Lot
printf{ AttribName{i}); /* display a message if bit is set */ ; label found so make a copy
mask = mask << 1; f mov si,offset DGROUP:DIA + 8
} | mov di,offset DGROUP:Vollabel
1 | call CopylName
_f} mev ax, cffset DGROUP:Voll abel ; return the copy’ s address
Figure 8-7 Continued Jmp short I02
Programm.ing example: Updati.ng aVOIllme label ‘ 107: xor ax,ax ; no label, return 0 (null pointer)
To create, modify, or delete a volume-tabel directory entry, the Interrupt 21H functions 102: pop di
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to : pop si
search for, rename, create, or delete a volume label in MS-DOS versions 2 0 and later ‘ Pop bp
ret

IIILE 'VOLS AsSM’®
—GetVeollabel ENDP

; C-callable routines for manipulating MS-DOS volume labels

; Wote: Ihese routines modify the current DIA address i int RenameVollabel (label); /% returns error code */

char *label: /#* pointer to new volume label name */

ARG BEQU [bp + 4] ; stack frame addressing
” PUBLIC _RenameVoilabel
DGROUP GROUP _DAIA _RenameVollabel FROC near
_IEXI SEGMENI bvte public 'CODE’ push bp
ASSUME c¢s:._1EXI,ds:DGROUP mov bp, sp

: push si

Figure 8-8 Subroutines for manipulating volume labels (more) push di
Figure 8-8 Continued (more)

292 The MS-DOS Encyclopedia Section II. Programming in the M$S-DOS Environment 293

LG Exhibit 1204C, Page 159
LG Electronics, Inc. v. Papst Licensing

Article 8 Disk Directories and Volume Labels

Part B: Programming for MS-DOCS

mov s5i,0ffset DGROUP:Vollabel ; DS:8I -» old volume name :
mov di,offset DGROUP:Name? ' i
call CopyMame ; copy old rame to FCB ; int DeleteVollabel(): /% returns error code */
mov si,ARG1 | e
mov di, offset DGROUP:Name?2 }
call CopyName ; copy new name into ECB : PUBLIC _Deletevoliabel
DeleteVollabel PRCC near
mov dx,offset DGROUP:ExtendedrCB : D5:DX -> FCB :
mov ah,17h ; aH — INI 21H function number i push bp
int 21h ; rename : mov bp, sp
xor ah, ah i AX = OOH (success) or OFFH (failure) push si
push di
pop di : restore registers and return i
pop si mov si,offset DGROUP:Vollabel
pop bp mov di,offset DGROUP:Namel
ret i call CopyName ; copy current voclume name to FCB
—RenameVollabel ENDP oV dx, offset DGROUP:ExtendedECB
mov ah,13h ; AH = INI 21H function number
JR—— R 1 int 21h : delete directory entry
i % HOr ah, ah ; BX = 00BH (success) or OFEH (failure)
/ int NewVollabel{ label): /# returns error code */ |
; char #label; /* pointer to new volume label name =/ ! Pop di ; restore registers and return
B pop si
— —— - [| pop bp
! ret

PUBLIC _NewVolLabel

_NewVollabel 2ROC near _DeleteVollabel ENDP

push bp 1
mov bp, sp :
push a1 ; miscellaneous subroutines
push di
mov si,ARGT .
mov di,offset DGRCUE:Namel SetDIA PROC near
call CopyName ; copy new name to FCB
push ax : preserve registers used
mov dx, of fset DGROUP:ExtendedFCB push dx
nov ah, 16nh ; AH = INI 2718 funcrion number
inr 21h . create directory entry jalelis dx,offset DGROUP:DIA : D5:DX -> DIA
xor ah, ah : AX = 00H (success) or OFFH (failure) mov ah, 1Ah ; AH = INI 21H function number
int 21h ; set DIA
pop di ; restore registers and return
pop si I pop dx ; restore registers and return
pop bp pop ax
ret i ret
~MNewVollabel ENDP SetDIA ENDP
Figure 8-8 Continued (more) Figure 8-8 Continued (more)

294 The MS-DOS Encyclopedia Section I Programming in the MS-DOS Ervironment 295

LG Exhibit 1204C, Page 160
LG Electronics, Inc. v. Papst Licensing

Article 9: Memory Management

Part B: Programming for MS-DOS

CopyName PROC near ; Caller: SI -» ASCIIZ source Article 9

; DI -> destination

ush ds
bop o &5 - posove Memory Management

pop
mov cx, 11 ; length of name field

11t lodsb ;i Copy new name into FCB
test al,al ! . X .
. : :) . Personal computers that are MS-DOS compatible can be outfitted with as many as three
jz L12 ; .. until null character is reached A) .
stosb : kinds of random-access memory (RAM): conventional memory, expanded memory, and
loop 111 extended memory.

112: mov al, " ! : pad new name with blanks ; All MS-DOS machines have at least some conventional memory, but the presence of ex-
panded or extended memory depends on the installed hardware options and the mode! of

rep stosb
microprocessor on which the computer is based. Each storage class has its own capabil-

ret
CopyName —_— ities, characreristics, and limitations. Each also has its own management techniques, which
. | are the subject of this chapter
_1IEXY ENDS
_pAla SEGMENI word public 'DAIA' Conventional Memor Y
voltabel bE H dup(0), 0 : Conventional memory is the term for the up to 1 MB of memory that is directly addressable
ExtendedECB o 0FFh , must be OFFH for extended FCB 5- by an Intel 8086/8088 mi.croprocessor ot by an 80286 or 80386 MICTOProcessor running in
DB 5 dup(0) ; (zeserved) ‘ _ real mode (8086-emulation mode) Physical addresses for references to conventional
DB 1000b i attribute byte (bit 3 = 1)) o --memory are genetated by a 16-bit segrnent register, which acts as a base register and hoids
DB 0 : default drive ID _ - a paragraph address, combined with a 16-bit offset contained in an index register or in the
Namel DB 11 dap('2") ; global wildcard name . instruction being executed
DB 5 dup(d) ; (unused) ‘
Name? DB 11 dup(0) ; second name {for renaming entry) : On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
DB 9 dup (0 ; (unused) i the bottom 640 KB or less of the conventional memory space The memory space above
DIR DB 84 dup (0) ‘ the 640 KB mark is partitioned among ROM (read-cnly memory) chips on the system
- board that contain various primitive device handlers and test programs and among RAM
~DAIA ENDS and ROM chips on expansion boards that are used for input and output buffers and for ad-
i ditional device-dependent routines
END !
The bottom 640 KB of memory administered by MS-DOS is divided into three zones
Figure 8-8 Continued 3 (Figure 9-1):

® The interrupt vector table
Richard Wilton ¢ The operating system area
® The tiansient program area
The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000-
003FFH); its address and length are hard-wired into the processor and cannot be changed
Each doubleword position in the table is called an interrupt vector and contains the seg-
ment and offset of an interrupt handler routine for the associated hardware or software in-
terrupt number. Interrupt handler routines are vsually built into the operating system,

296 The MS$-DOS Encyclopedin Section I Programming in the M5-DOS Environment 297

LG Exhibit 1204C, Page 161
LG Electronics, Inc. v. Papst Licensing

Praise for
The MS-DOS’ Encyclopedia:

“A superb, nearly inexhaustible ref- “For those with any technical in-
erence work ... Anyone serious volvement in the PC industry, this is
about programming for MS-DOS the one and the only volume worth
will not want to be without [THE . teading.” PC WEEK
MS-DOS ENCYCLOPEDIA_]" “If you like the idea of a one-stop
Online Today DOS reference book, then this book
“The ultimate authority ” 1s for you.” PC Magazine
Reference & Research Book News “There’s no doubting that this is a-
“A splendid volume.” superb reference work on MS-DOS.”
Dr. Dobb’s Journal of Software Tools EXEFE magazine

Here, from Microsoft Press, is the ultimate resource for wiiting, maintaining,
and upgrading well-behaved, efficient, reliable, and robust MS-DOS programs.
Covering all MS-DOS r1eleases through version 3.2, with a special section on
version 3.3, this encyclopedia is the standard reference for the working com-
munity of MS-DOS programmers and for anyone making stiategic decisions
about MS-DOS implementation. Included are version-specific technical data
and descriptions for:
B More than 100 system cails—each accompanied by C-callable
assembly-language routines and programmer’s notes
B More than 90 user commands -— the most comprehensive version-
specific analysis ever assembled
& Key MS-DOS programming utilities and debuggers

THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and
thousands of lines of great sample code plus in-depth articles on debugging,
wiiting filters, installable device drivers, TSRs, Windows, memory manage-
ment, the future of MS-DCS, and much more. There are also more than a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>