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10 Formulation of freeze-dried powders 

\Vith the advent of biotechnology medicines, freeze-drying formulation and process develop­
ment have embarked on new heights of importance in the parenteral industry. Roughly 40% 
of commercial biopharmaceutical products are freeze-dried; this percentage likely will keep 
increasing with time. Freeze-drying and lyophilization mean the same thing. Freeze-drying 
perhaps is more accurate because the process involves both freezing of a solution and then 
removing the solvent from that solution that involves drying procedures. Lyophilization means 
to "love the dry state," but the title does not emphasize the cooling/freezing segment. Freeze­
drying involves: 

1. Compounding, filtering, and filling drug formulations as solutions into vials historically 
although now more syringes are being used as primary container for lyophilized prod­
ucts. Most of the discussion in this chapter will focus on the vial being the primary 
package. 

2. Inserting a partially slotted rubber closure on the neck of the vial (Fig. 10-1) and transferring 
the containers into a freeze-drying chamber. If the vial, as well as syringes or cartridges, is 
to be part of a dual-chambered device (lyophilized powder in one compartment, diluent 
solution in the other compartment, separated by a rubber plunger), then no rubber closure 
is inserted prior to lyophilization. 

3. Cooling the product to a predetermined temperature that assures that the solution in all 
containers in the freeze-dryer become frozen. 

4. Adjusting the temperatur~ of the shelf/shelves of the freeze-dryer that is as high as pos­
sible without causing the temperature of any product container to be above its "critical 
temperature" (eutectic temperature, glass transition temperature, collapse temperature). 

5. Applying a predetermined vacuum that establishes the required pressure differential 
between the vapor pressure of the sublimation front of the product and the partial pres­
sure of gas in the freeze-drying chamber that allows the removal of frozen ice from all 
product containers-the process of sublimation. 

6. Increasing the shelf temperature once all the ice is sublimed in order to remove whatever 
remaining water is part of the solute composition to a residual moisture level predetermined 
to confer long-term stability of the drug product. 

7. Completely inserting the rubber closure into the container via hydraulic-powered lowering 
of the dryer shelves. 

8. Removing all freeze-dried containers, completing the sealing (or for syringes/cartridges 
adding the rubber septum), and carefully inspecting eacJ:l product unit (inspection criteria 
for lyophilized products covered in chap. 22, Table 22-4). 

This chapter will focus on the formulation of freeze-dried products, whereas chapter 20 
will focus on the process of freeze-drying. 

ADVANTAGES AND DISADVANTAGES OF FREEZE-DRYING 
Freeze-drying is required for active pharmaceutical ingredients that are insufficiently stable in 
the solution state. Insufficiently stable means that the drug will excessively degrade in solution 
·within a period of time not amendable to marketing the product as a ready-to-use solution. 
Many small and large molecules are labile in the presence of water and within several days 
to se\·eral weeks will degrade to a point that is unacceptable, usually more than 10% loss 
of activity or potency compared to the label claim amount of active ingredient. Were it not 
for freeze-drying technology, many important therapeutic agents would not be commercially 
available. 
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- re 10-1 Partially slotted stoppers in solution vials prior to loading into freeze-dryer. 

Tables 10-1 and 10-2 present two lists of commercial freeze-dried products. Table 10-1 
';"'?Sents general information about these products, whereas Table 10-2 focuses more on the 
-::;,ecilic quantitative formulations for each product. They are not exhaustive and will not be up 

J ate at the time of this publication, but provide excellent representative information about 
_eze-dried formulated products being successfully used to save and affect lives. 

Besides overcoming stability problems by converting a solution to a dry powder, freeze­
·::,ing also offers the advantages of processing the product in the liquid form. Sterile powders 
~ also be produced by other processes (not covered in this book) such as spray-drying, spray­
-e:eze drying, or sterile crystallization followed by powder filling. However, freeze-drying 

-'€rs certain advantages over other powder production processes including the fact that the 
uct can be dried without the need for elevated temperatures, product sterility is more easily 

..:hieved and maintained, the contents of the dried material remain homogeneously dispersed, 
, the reconstitution times generally are faster. Also, for drugs that are oxygen sensitive, 

~ e-drying is a better powder-producing alternative, because the environment during the 
7ceze-drying process can be an oxygen-free condition and an inert gas can fill the headspace of 
~~ container prior and during closing of the container. 

Freeze-drying also has certain limitations, perhaps the foremost being cost compared 
· other powder-producing processes and certainly more expensive than liquid filling and 
!oppering. Volatile compounds in the formulation could be removed if high vacuum levels 
~ required and high vacuum has been known to increase the extractable levels from the 
-:.ibber closure. The freezing and drying steps are known to cause stability problems with some 
;roteins that usually can be overcome using stabilizers called cryo- or lyoprotectants. Because 
· e product has been previously sterilized prior to loading into the freeze-drying chamber, 
~terility must be maintained during the loading and unloading process and also during the 
-eeze-drying process itself. The ability to maintain aseptic conditions during these processes 
.. · well as validating the sterilization of the freeze-dryer chamber and all connections and gases 
. .:ading into the chamber must be demonstrated. 

ATTRIBUTES AND REQUIREMENTS OF A FREEZE-DRIED PRODUCT 
The ideal freeze-dried product has a very pleasing aesthetic appearance (i.e., intact cake, uni­
:orm color, and appearance) (Fig. 10-2), sufficient strength of active ingredient, chemical and 
. hysical stability, sufficient dryness and other specifications that are maintained throughout the 
product shelf-life, sufficient porosity that permits rapid reconstitution times, and freedom from 
microorganisms (sterility}, pyrogens, and particulate matter after reconstitution. Also, after the 
d rug is in solution, it must remain within certain predetermined specifications (e.g., potency, 

(Text continues on page 154.) 
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154 STERILE DRUG PRODUCTS: FORMULATION, PACKAGING, MANUFACTURING, AND DUALITY 

(A) (8) 

Figure 10·2 Examples of a pharmaceutically elegant freeze-dry cakes. Source: Courtesies of Eli Lilly and 
Company (A) and Dr. Gregory Sacha, Baxter BioPharma Solutions (8). 

pH, freedom from particulate matter) for a certain period of time prior to administration. 
The desired minimum time for solution stability after reconstitution is 24 hours at ambient 
temperature although many products, especially biopharmaceuticals, are insufficiently stable 
at ambient temperature and must be refrigerated even for these short periods of time. Also, 
European requirements that generally have been applied throughout the world require prod­
ucts without antimicrobial preservatives to be used (administered) "immediately," generally 
meaning within three hours after reconstitution. Freeze-dried products reconstituted with dilu­
ents containing antimicrobial preservatives can be stored for much longer times depending 
more on drug stability in solution than on potential microbial contamination concerns. 

Freeze-dried formulation requirements usually are different depending on whether the 
active ingredient is a small molecule or large molecule. Formulation of a freeze-dried product 
containing a small molecule often does not need any additives, depending on the amount of 
active ingredient per container. For example, many freeze-dried antibiotic products contain 
only the antibiotic. If the active constituent of the freeze-dried products is present in a small 
quantity (usually less than 100 mg) where, if freeze-dried alone, its presence would be hard 
to detect visually, then additives are used. This is true for many small-molecule freeze-dried 
products, for example, those containing anticancer agents, and practically always true for large­
molecule freeze-dried products. The solid content of the original product ideally should be 
between 5% and 30%. Therefore, excipients often are added to increase the amount of solids. 
Such excipients are called "bulking agents"; the most commonly used bulking agent in freeze­
dried formulations is mannitol. However, most freeze-dried formulations must contain other 
excipients because of the need to buffer the product and /,or to protect the active ingredient 
from the adverse effects of freezing and/or drying. Thus, buffering agents such as sodium or 
potassium phosphate, sodium acetate, and sodium citrate are commonly used in freeze-dried 
formulations. Sucrose, trehalose, dextran, and amino acids such as glycine are commonly used 
lyoprotectants. Other types of stabilizing excipients often required in freeze-dried formulations 
are surface-active agents or competitive binding agents. Other reasons for adding excipients 
freeze-dried compositions, although typically these are part of the diluent formulation rather 
than the freeze-dried formulation, are tonicity-adjusting agents and antimicrobial preservatives 
for multiple-dose applications. 

Each of these substances contribute to the appearance characteristic of the finished dry 
product (plug), such as whether the appearance of the finished product is dull and spongy 
or sparkling and crystalline, firm or friable, expanded or shrunken, or uniform or striated. 
Therefore, the formulation of a product to be freeze-dried must include consideration not only 
of the nature and stability characteristics required during the liquid state, both freshly prepared 
and when reconstituted before use, but also the characteristics desired in the dried product as 
it is released for commercial use and distributed to the ultimate user. 
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FORMULATION OF FREEZE-DRIED POWDERS 

A "rule-of-thumb" for freeze-dried products containing small molecules is " the drier, ;:;1,,. 

better" because most stability problems with small molecules are moisture-related. How2 ·t?r 
for freeze-dried products containing large molecules, "drier is not necessarily better. " Eac· 
molecule is different, but in general for large molecules, the effects of freezing and dryin_, 
may be as much or more deleterious to the active constituent as the potential for hydrolytic 
degradation. 

FORMULATION COMPONENTS IN FREEZE-DRIED PRODUCTS 
Freeze-dried drug molecules, evidenced by the requirement to be freeze-dried, are relatively 
unstable molecules. Even in the dry state, freeze-dried formulations typically require additives 
for maintaining pH, isotonicity, or protection against adverse effects of the freezing and / or 
drying process. Additives may also be required, not for dry-state purposes, but to maintain 
stability and, in some cases, solubility of the drug in solution after adding a reconstitution 
diluent. Such additives to enhance solution stability and solubility include buffers, surface-active 
agents, and complexing agents. For drugs reconstituted to serve as multiple-dose products, 
an antimicrobial preservative system must be part of the freeze-dried formulation or part of 
the reconstitution diluent. Table 10-3 lists examples of formulation additives in freeze-dried 
formulations. 

Freeze-dried formulations containing small molecules either do not require any additive 
excipients because of the large quantity of drug to be freeze-dried, (typically more than 100 mg 
per container), or additives required are for relatively simple purposes such as adding bulk to 
the powder, buffering the formulation, providing isotonicity, or perhaps helping to maintain 
solubility of the drug. Formulation challenges for small molecule formulations are relatively 
simple at least for the experienced formulation scientist. 

Stabilizing large molecules during freeze-drying requires much more formulation exper­
tise and challenge. Freeze-dried formulations of large molecules typically contain one or more 
of the following additives: bulking agents, lyoprotectants, surfactants, and buffers. Some large­
molecule freeze-dried formulations, typically when the protein content is so dilute (low mg to 
ng/ mL levels), contain human serum albumin or some other component to serve as compet­
itive binders to minimize loss of protein due to adsorption to manufacturing surfaces (filters, 
tubing, disposable mixing bags, stainless steel) and primary container surfaces (glass and rub­
ber). Certain additives such as mannitol and sucrose also may serve as tonicity modifiers. Salts 
usually are avoided because they decrease the critical temperature of the formulation (lower 
eutectic or glass transition temperature) and are known to cause concentration-dependent desta­
bilization effects on proteins. Table 10-2 presents a listing of freeze-dried protein formulations, 
not to be exhaustive but to give the reader an idea of the qualitative composition of these 
formulations. 

Some protein molecules can be adversely affected by the freeze-drying process, that is, 
the process of freezing and / or drying can cause the protein to denature and aggregate and lose 
potency. Certain excipient stabilizers ha\·e been found to minimize or prevent the problems 
caused by freezing and / or drying. Excipients that stabilize the protein against the effects of 
freezing are called cryoprotectants. The primary theory, although not completely accepted, 

Table 10-3 Additive Categories and Examples for Freeze-Dried Formulations 

Category 

Bulking agents 
Stabilizers 

"Ridigizers" (prevent collapse) 
Minimize aggregation 
Cryoprotection 
Lyoprotection 
Minimize surface adsorption 

Buffers 
Collapse temperature modifiers 
Tonicity modifiers 

Example(s) 

Mannitol, lactose, glycine 

Mannitol, glycine 
Polysorbate 20 or 80; poloxamer 188 
Polyethylene glycol , some sugars 
Sucrose, trehalose 
Human serum albumin, polysorbates 
Acetate, citrate, phosphate, Tris, amino acids 
Dextran, polyethylene glycol , disaccharide sugars 
Mannitol, sodium chloride, glycerin 
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156 STERILE DRUG PRODUCTS: FORMULATION, PACKAGING, MANUFACTURING, AND QUALITY 

for explaining the cryoprotective effects of certain additives, is called the "excluded solute" 
or "preferential exclusion" theory (1-3). Some scientists have suggested that solutes that help 
protect the protein from dissociating during freezing do so because they are excluded from 
the surface of the protein, as can be demonstrated by dialysis experiments (where the protein 
and the excipient are not found together in the dialysate). When solutes are excluded from the 
protein surface, the chemical potential of both the protein and the solute increase. This presents 
a thermodynamically unfavorable environment for the denatured form of the protein as the 
denatured form is an unfolded form and yields a greater surface area to the solvent. The native 
form, with less surface area, is therefore thermodynamically favored. 

Another way of explaining the effects of cryoprotectants is the fact that they induce 
preferential hydration of the surface of the protein because by not binding at the protein surface, 
this favors water molecules to bind preferentially and this helps to stabilize the native protein 
state. 

Sugars (sucrose, lactose, glucose, trehalose), polyols (glycerol, mannitol, sorbitol), amino 
acids (glycine, alanine, lysine), and polymers (polyethylene glycol, dextran, polyvinylpyrroli­
done) all serve as potential cryoprotectants. The best or, at least, most preferred cryoprotectants 
appear to be polyethylene glycol (PEG) (molecular weight 3350 Daltons), sucrose, and trehalose. 

For proteins requiring both cryo- and lyoprotection, it may be judicious to employ both 
an agent such as PEG along with a sugar. An example of a marketed therapeutic with this 
combination is Venoglobulin-S, which contains PEG and sorbitol. A potential caveat to using 
PEG in lyophilized formulations is the possibility of a liquid-liquid phase separation induced 
by freeze-concentration, an event implicated in protein unfolding (4). 

Proteins may not denature or experience any loss of potency during freezing or in the 
frozen state, but may experience adverse effects when the sublimation process occurs and when 
stored in the dry state. Such proteins need stabilizers called lyoprotectants. Lyoprotectants 
appear to stabilize proteins from the effects of drying and the dry state by what is referred 
to as the "water-substitute" hypothesis or the "vitrification" hypothesis. Sugars are excellent 
lyoprotectants. They provide a glassy matrix that retards molecular motions and reduces the 
rates of deleterious reactions (5,6). They also decrease protein-protein contacts and inhibit 
deleterious reactions depending on such contacts (e.g., aggregation) (7-9). Sugars serve as water­
replacement substrates that form hydrogen bonds to proteins in the dried state (4). The water­
replacement or substitute hypothesis is supported by solid-state studies exploring techniques 
such as Fourier-transform infrared (10), water sorption (11,12), and dissolution calorimetry (13). 
It is likely sugars have all these possible mechanistic roles in their ability to stabilize proteins. 

Often the same excipient can provide both cryo- and / or lyoprotection. An example of 
cryoprotection is the stabilization effect of sucrose, trehalose, sorbitol, and gelatin on a recombi­
nant adenoviral preparation (14). An example of lyoprotection is the stabilizing effect of lactose 
and other sugars on recombinant human growth hormone (rhGH) (15). However, lactose, a 
reducing sugar, is not preferred because of its potential adduct formation. 

In both dry state theories, it is important that the excipient stabilizer, the lyoprotectant. 
exist in the amorphous state, hence the name "vitrification" (glass formation). Protein stabili~ 
in the dry state results from the protein existing with an amorphous solute in an inert, rigi • 
amorphic matrix where the water content in the matrix also helps to stabilize the protein. 
Obviously, too much excess water and the protein will degrade by chemical processes (e.g. 
deamidation), but proteins need a certain amount of water to maintain secondary and higher 
structure. Thus, excipients that remain amorphous during the freeze-dry process molecular!~ 
interact with the amorphous protein and together the matrix confers stability on the protein fo­
long-term stability in the dry state. It has been shown that, for optimal stabilization, the sugar 
excipient should remain in the same amorphous phase containing the peptide or protein (ah 
of the above mechanisms are consistent with this observation). For example, crystallization ; 
mannitol has been implicated to explain incomplete stabilization of lyophilized rhGH (16) an:: 
the structure of bovine serum albumin, ovalbumin, f3-lactoglobulin, and lactate dehydrogenax 
(LDH) upon freeze-drying (17). In addition to crystallization, separation of amorphous phases 
can also occur, particularly in the frozen state. 

Once excipients crystallize, they no longer molecularly interact with the protein and cann • 
protect it. Amorphous excipients, combined with the protein, have a unique glass transitio;:-

::ORMULATION OF FREEZ 

:empera ture (T g) in 
_ e physical state o 
_ ult in collapse or 
irtrimental to the s 
.znportant quality p 

Gradual com· 
_ ecre is adequate m 
~ .a term used to de 
~ er to lower the l 

ility of the am 
- ~ us solid is stor, 

occur at tempe 
• _Q). Molecular n 
· resonance (21 

;:_ and 13C solid­
~uity in lyophil i 

...\dditives in , 
molecular WE 

recombinant 
~rature, theret 

, re thought to 
- sral. 

.\1pha1 -anti tr 
· ;et does no 

Mylan Ex 1042, Page 7



1ANLJFACTURING, AND QUALITY 

d the "excluded solute" 
ed that solutes that help 
they are excluded from 

1ents (where the protein 
~s are excluded from the 
:e increase. This presents 
:m of the protein as the 
J the solvent. The native 

e fact that they induce 
1g at the protein surface, 
bilize the native protein 

mnitol, sorbitol), amino 
<tran, polyvinylpyrroli­
·eferred cryoprotectants 
, sucrose, and trehalose. 
dicious to employ both 
:l therapeutic with this 
Jtential caveat to using 
ase separation induced 

ring freezing or in the 
'Ocess occurs and when 
!Ctants. Lyoprotectants 
te by what is referred 
s. Sugars are excellent 
>tions and reduces the 
1 contacts and inhibit 
Sugars serve as water­
·d state (4). The water-
, exploring techniques 
ution calorimetry (13). 
to stabilize proteins. 
:ction. An example of 
l gelatin on a recombi­
lizing effect of lactose 
. However, lactose, a 

:er, the lyoprotectant, 
ion). Protein stability 
lute in an inert, rigid 
stabilize the protein. 
nical processes (e.g., 
econdary and higher 
process molecularly 
ity on the protein for 
1bilization, the sugar 
iptide or protein (all 
)le, crystallization of 
Llized rhGH (16) and 
:tate dehydrogenase 
f amorphous phases 

e protein and cannot 
que glass transition 

=; - \1LJLATION OF FREEZE-DR/ED POWDERS 

perature (Tg) in the dry state. If storage temperature exceeds the glass transition tempera:- _ 
physical state of the dried matrix changes from a glassy solid to a rubbery solid tha -.... -

..:ult in collapse or partial collapse of the freeze-dried cake. Product collapse is not necessa.r_:,· 
:,;,rrimental to the stability of some proteins, although pharmaceutical elegance still remains ar. 
-,portant quality parameter of freeze-dried products. 

Gradual conversion of excipients from the amorphous to the crystalline state occurs i,·hen 
_ -"re is adequate molecular mobility for nucleation and crystal growth (12). Molecular mobility 
_ a term used to describe the movement of molecules in a formulation . Water will act as a plas­

::izer to lower the glass transition temperature of amorphous solids and increase the molecular 
bility of the amorphous system (18). Molecular mobility typically occurs when the amor­

:: ous solid is stored at a temperature greater than its glass transition temperature, but can 
occur at temperatures below the glass transition temperature of certain amorphous solids 

~ -,20). Molecular mobility of protein molecules can be measured by solid-state 1 H nuclear mag­
· tic resonance (21), nuclear magnetic resonance relaxation based critical mobility temperature 

-2), and 13C solid-state nuclear magnetic resonance (23). All these techniques measure water 
- .ability in lyophilized formulations and this can be correlated to protein stability. 

Additives in a formulation can prevent crystallization of carbohydrates. Examples include 
'gh molecular weight polymers (e.g., dextran and polyvinylpyrrolidone, (24) and proteins 

0
., recombinant bovine somatotropin (BST) (12). Polymers can increase the glass transition 
perature, thereby decreasing the mobility of the amorphous solute, whereas proteins such as 

-:: 5r are thought to interfere with either nucleation rates or number of nuclei formed to support 
a .:rystal. 

Alpha1-antitrypsin (rAAT) is an example of a recombinant protein that must be freeze­
.:a."ied, yet does not need cryo- or lyoprotection (25). It is interesting that some proteins use 
~-o-and/or lyoprotectants while others do not (Table 10-2). Formulations without cryo­
, d / or lyoprotectants either truly are sufficiently stable (e.g., alteplase, a-1 proteinase inhibitor, 

= ucagon, human chorionic gonadotropin) without the need for these stabilizers or may not be 
,ill lliat stable and must be refrigerated in the solid state (e.g., aldesleukin, asparaginase). 

CONCENTRATIONS OF STABILIZERS 
.::.· cryoprotection is needed, the relevant concentration of the stabilizer in solution prior to 
=reezing should be on the order of 0.3 M or above. If lyoprotection is required, the relevant 
:.:mcentration depends on the level of protein present. The sugar stabilizer needs to be in the 
_:-roper ratio to the protein (either mole ratio to satisfy water "binding" sites or volume ratio 
• the relevant degradation mechanism(s) relate directly to glass dynamics and dilution of the 

?rotein in an inert solid matrix). In practice, a mass ratio of about 1:1 (sugar:protein) is usually 
-.ceded for proper stabilization, regardless of the mechanism(s) that might be operating . 

There are some data to suggest that the amount of sugar for optimum protection should be 
: nough to satisfy sites on the dried protein that have a strong affinity for water (e.g., charged or 
p,olar residues). Studies of water vapor sorption on solid proteins describe this level as a "water 
monolayer" (11,26). Satisfying these sites (by providing enough amorphous sugars to interact 

rith them in the dried state) stabilizes proteins. For instance, rhGH contains approximately 
~ixty-six strongly water binding sites per molecule protein; about this amount of various sugars 
was required for maximum stabilization of the lyophilizate upon accelerated storage (16). For 
:a:ombinant humanized monoclonal antibody (rhuMAb), a much larger molecule containing 
;;pproximately 500 such strongly water-binding sites, a ratio of about 360 to 500 moles of sugar 
?er mole protein afforded the best storage stability for freeze-dried protein (27). Formulations 
with combinations of sucrose (20 mM) or trehalose (20 mM) and mannitol (40 mM) had compa-
able stability to those with sucrose or trehalose alone at 60 mM. Formulations with mannitol 

;,Jone were less stable. 
In order to provide protection in the dried state, a stabilizing sugar should generally remain 

amorphous in the same phase as the protein. Even so, crystallizing sugars (e.g., mannitol) are 
widely used, either as a bulking agent or to promote stability. In this regard, a combination 
.:if amorphous and crystallizing stabilizing excipients may be employed. In this case, the pres­
ence of the amorphous agent could serve to retard crystallization of the other. For example, 
·t was reported for lyophilized rhuMAb that a combination of sucrose and mannitol pro ided 
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stabilization, provided that the total amount of sugar satisfied the level cited above (28). ENBREL 
provides an example of a marketed biopharmaceutical product in a freeze-dried form and con­
taining a combination of mannitol and sucrose. 

In addition to sugars, proteins such as gelatin and albumin are also employed to provide 
general stabilization in lyophilized biopharmaceutical products. In particular, human albumin 
(purified from plasma) is widely found in biopharmaceuticals (and, by itself, is also considered 
a biopharmaceutical product). 

CRYSTALLINE AND AMORPHOUS EXCIPIENTS 
In general, a freeze-dried formulation that is predominately crystalline will "look" better, that 
is, look more pharmaceutically elegant than a formulation that is predominately amorphous. 
Crystalline solutes are also much easier to dry because the water is adsorbed on the surface of 
the solute rather than within the molecular structure of the solute, as is the case with amorphous 
solutes. However, amorphous formulations offer stability advantages if the active ingredient is 
a protein, minimize the potential for overdrying of the product, and can adsorb moisture that 
over time may be released from the rubber closure. 

Moisture content of a freeze-dried product is obviously an important property to monitor. 
In general, too much moisture means that the product will eventually collapse and the active 
ingredient will degrade chemically. Each freeze-dried product must be studied for the moisture 
specifications required for long-term stability in the dry state. Residual moisture specifications 
for most products fall within the range of 0.5% to 3.0%. The amount of residual moisture is 
not as important as where the water resides in the freeze-dry matrix and what kind of solid 
morphology exists. If the matrix is crystalline, water exists as surface water and is not likely 
problematic. However, if the matrix is amorphous, or if the active is amorphous with the rest 
of the matrix crystalline, then excess water may interact molecularly with the drug and cause 
unacceptable degradation. 

The judicious use of excipients can greatly influence product stability. Methylprednisolone 
was freeze-dried in the presence of mannitol or lactose (29). Although moisture content in the 
two cakes was identical, the rate of hydrolysis was higher when mannitol was the bulking 
agent. Mannitol crystallized during freeze-drying and had little to no interaction with water in 
the microenvironment of the drug. In fact, crystallized mannitol is essentially anhydrous, and 
any residual water will localize in the amorphous drug phase only. Lactose, however, did not 
crystallize and served to interact with residual water, thus preventing it from interacting with 
and hydrolyzing the drug. The degree of crystallinity of the bulking agent can have significant 
effect on the distribution of water in the freeze-dried matrix. 

Distribution of residual moisture in the finished dried product is as important as the 
overall water content. Moisture content was measured immediately after freeze-drying in three 
sections of a lyophilized product (top, middle, and bottom of the plug) as well as moisture along 
the vial wall (30). They found that moisture content in the top section was less than moisture 
content in the bottom section and that the lowest moisture content of the entire plug existed 
along the walls in the vial (Fig. 10-3). Thus, drying along the vial walls occurs faster than drying 
in the plug core. They proposed that faster drying along the vial walls is a result of observed 
product shrinkage during drying, providing a low resistance pathway for vapor escape along 
the vial wall. 

Many freeze-dried formulations contain three solid components-the active, a crystalline 
bulking agent, and an amorphous stabilizer. A good example is the formulation for human 
growth hormone where both mannitol and glycine are additives with mannitol crystallizing 
during freeze-drying and glycine remaining amorphous. A review of the formulations listed 
in Table 10-2 shows that several contain more than one bulking agent/stabilizer that helps to 
maintain an amorphous component and form a protective amorphic matrix with the protein. 

MANNITOL 
Mannitol, being a major excipient used in lyophilized formulations, is the subject of many 
papers. Mannitol crystallization is highly influenced by freezing rate (31-33}, concentration 
(32), and other excipients present in the formulation such as sucrose, trehalose, citric acid, 
hydroxypropyl-1,-cyclodextrin, polysorbate 80 (34) and phosphate buffers and polymers (33). 
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Figure 10-3 Schematic of suggested geometry of the 
ice-vapor interface during primary drying: A compari­
son of the "ideal" planar geometry with the curved inter­
face geometry proposed. Source: From Ref. 30. 

: crose especially will affect degree of mannitol crystallization and cause higher levels of 
:nannitol hydrate and resultant residual moisture (35). 

Mannitol crystallizes into different polymorphic forms as a function of concentration (rel­
- ti ,·e to other components in the formulation) and freezing rate. Low concentrations of mannitol 
: rmed the o polymorph while higher concentrations favored the formation of the [3 polymorph 
:: ). At least three polymorphs of mannitol are present at different ratios in the lyophilized 

-: duct depending on the freezing rate. Rapid freezing produces the a polymorph predomi-
:.antly while slower rates (0.5'C / min) favor the formation of the o polymorph. Annealing the 
-:ozen product will result in the [3 polymorph being most prominent. One-year storage will 
.::ause the 8 polymorph to convert to a combination of a and [3 polymorphs. There is no evidence 
·:-.at the formation of the a, [3, or 'f polymorphic forms of mannitol, alone or in various combi­
- tions, has any effect on drying/ processing characteristics, cake appearance, and or product 
:,,w.bility. 

A hydrate of mannitol can form during freeze-drying, particularly in conditions not 
conducive for producing well-developed crystalline mannitol, for example, low temperatures 

d concentrated solutions (37). This seems impossible, but the authors show thermal and 
.:-rystallographic evidence for a hydrated form of mannitol that survives a freeze-dry cycle. This 
~. ·drate is metastable, able to convert to anhydrous poly morphs of mannitol upon heating. While 
- t specifically investigated, these authors theorized that mannitol hydrates can potentially 
·~ :luce the drying rates of mannitol-containing formulations and can redistribute residual water 
· .> the drug substance upon mannitol crystallization during storage at accelerated conditions. 
3ccause mannitol hydrate formation varied greatly from vial to vial, even in the same batch, this 

·o potentially could lead to problems with vial-to-vial variation in moisture levels. Annealing 
ring the freezing stage is the best approach to promote crystallization of the anhydrous form 

.:md reduce or eliminate the mannitol hydrate. 
The formation of mannitol hydrate formed during freezing may be desolvated and con­

. erted to the anhydrous form by conducting secondary drying at 4o~c or higher (38). In this 
N per it was also emphasized that mixtures of mannitol and sucrose in a 4 to 1 ratio suc­
::essfully produced stable lyophilized formulations of four proteins (daniplestim, leridistim, 
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promegapoietin, and progenipoietin) using a primary drying product temperature of -10°C. 
The crystalline mannitol allows primary drying to be performed at temperatures above the Tg' 
of amorphous sucrose in the formulation. 

Maintaining mannitol in the amorphous state during freeze-drying for optimal stabiliza­
tion can be accomplished (39). All the enzymes studied were protected when mannitol remained 
amorphous, but become unstable with an increase in mannitol crystallinity. Mannitol in freeze­
dried cakes containing enzyme and sodium phosphate buffer remained amorphous at lower 
concentrations ( < 200 mM), although annealing the frozen solution resulted in mannitol crys­
tallization. However, mannitol at higher concentrations(> 250 mM) in this enzyme-phosphate 
formulation crystallized and had no protective effects on preserving enzyme activity after 
freeze-drying. 

MORE ON STABILIZING EXCIPIENTS IN LYOPHILIZED FORMULATIONS 
Plasticizers (examples include glycerol, propylene glycol, ethylene glycol, or DMSO) will modify 
disaccharide and polymeric lyoprotective glasses (40). The proposed mechanism of protein 
stabilization was attributed to the following: the plasticizers fill small volumes left open by the 
larger (or stiffer) host glass-former, restricting motion, and thereby slowing the fast dynamics of 
the glass and subsequent protein degradation. This approach has narrow application because 
of the relatively large amounts of plasticizer required, and also because of the suggestion that 
the lower molecular weight oligomers like ethylene glycol are better stabilizers. 

Raffinose will not lyoprotect an unstable drug as well as sucrose or trehalose (41). This 
observation was in contrast to other studies (42-44) showing raffinose to be as effective as 
trehalose and superior to lactose, maltose, and sucrose in stabilizing several enzymes. A possible 
explanation for these differences may involve differences in dehydration conditions and storage 
temperatures. 

Mannitol and glycine in frozen solutions will influence the crystallization of each other 
(45). Glycine was shown to have a stronger initial tendency to crystallize, while it was easier 
to influence the crystallization of mannitol. Buffer salts, such as sodium phosphate, inhibited 
crystallization of both mannitol and glycine. The activity of LDH correlated with the extent of 
crystallization of these excipients (Fig. 10-4). 

LDH formulations containing maltodextrin protected LDH against inactivation during 
freeze-drying because of the amorphous nature of these partially hydrolyzed starches (46). 
Maltodextrins were also reported to be better lyoprotectants for LDH than sucrose or maltose, 
although the mechanism is unknown. 

The stabilization effects of amorphous additives on freeze-dried proteins are well accepted 
on the basis of several publications. ~-Galactosidase was stabilized with inositol as long as thi 
excipient stayed amorphous, but if inositol crystallized during storage, the enzyme activity 
declined (47). Inositol crystallization was prevented by addition of polymers such as dextran, 
Ficoll, and sodium carboxymethylcellulose. 

Stabilization of lyophilized proteins not only depends on the formulation and dehydra­
tion process parameters, but also depends sometimes on the formulation of the reconstitution 
medium (48). Keratinocyte growth factor aggregation upon reconstitution with water can occur 
readily, but several additives such as sulfated polysaccharides, surfactants, polyphosphates, 
and amino acids in the reconstitution medium will significantly reduce this aggregation. 

. [Wa Tga + k(l - Wa)Tgb] 
The Gordon-Taylor equat10n: Tg = [Wa + k(l _ Wa)l 

was applied to predict the glass transition temperature of a model tripeptide in the presence 
of different sugars (sucrose, lactose, trehalose, and maltose) in both frozen solutions and in 
lyophilized products (49). Correlation was excellent between the predicted and actual Tg for 
various ratios of tripeptide to sugars. The authors also showed a significant effect of sodium 
chloride on the Tg' of the tripeptide in frozen solution, but no effect after lyophilization. 
Figure 10-5 from this paper demonstrates the plasticizing effect of water on decreasing the 
glass transition temperature. 
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