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1 SummaryThe normalized least-mean-square (NLMS) algorithm, also known as the projection algorithm[1], is a useful method for adapting the coe�cients of a �nite-impulse-response (FIR) �lter for anumber of signal processing and control applications. The NLMS update is given byWk+1 = Wk + � ekXkLXm=1 x2m;k ; (1)whereWk = [w1;k � � �wL;k]T are the coe�cients of the adaptive �lter at time k,Xk = [x1;k � � �xL;k ]Tare the L samples of the input data in �lter memory at time k, ek = dk�WTkXk is the error betweenthe adaptive �lter output and the desired signal dk, and � is a user-speci�ed convergence param-eter. This algorithm has two distinct advantages over the least-mean-square (LMS) algorithm: 1)potentially-faster convergence speeds for both correlated and whitened input data [2, 3, 4], and2) stable behavior for a known range of parameter values (0 < � < 2), independent of the inputdata correlation statistics [1, 2]. The NLMS algorithm requires a minimum of one additional mul-tiply, divide and addition over the LMS algorithm to implement for shift-input data. Even so, themultiplies required for the algorithm update may still be prohibitive in certain high-data-rate appli-cations. In these situations, it is useful to determine modi�ed versions of the NLMS algorithm thatretain the fast convergence properties of the algorithm while reducing the amount of computationper iteration. One such modi�ed algorithm, �rst suggested by Nagumo and Noda [2], isWk+1 = Wk + �eksgn(Xk)LXm=1 jxm;kj : (2)This update is similar to that in (1) but allows nonlinear modi�cation of the data vector elements.In this letter, we derive a generalized class of normalized LMS algorithms of the formWk+1 = Wk + �ekFq(Xk) (3)[Fq(Xk)]i = 8>>>>><>>>>>: jxi;kjq�1sgn(xi;k)LXm=1 jxm;kjq if 1 � q <11xn;k �i�n if q =1, (4)where [Fq(�)]i denotes the ith element of the vector-valued function Fq(�), �j is the Kronneckerdelta function, and n is any one integer for which jxn;kj = max1�j�L jxj;kj. For q = 2, this update1
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reduces to that of the NLMS algorithm in (1), and for q = 1, this update reduces to the algorithmof Nagumo and Noda given in (2). We provide a theoretical derivation of these algoriths showingthat for � = 1, the algorithm in (3){(4) for any valid q is the solution to the following optimizationproblem: minimize jjWk+1 �Wk jjp (5)subject to dk �WTk+1Xk = 0; (6)where jj � jjp denotes the Lp norm and p is determined from the equation 1=p + 1=q = 1. Thus,the adaptive algorithm update in (3){(4) provides the minimum change in an Lp-norm sense of theweights to exactly satisfy the �ltering relationship between the input data and the desired responseat time k, similar to a projection in the L2-norm case.Examining the algorithm in (3){(4) for q = 1, we discover a simple but powerful adaptationalgorithm given by wi;k+1 = 8<: wi;k + � ekxi;k ; if jxi;kj = max1�j�Ljxj;kjwi;k; otherwise. (7)In this expression of the update, the maximum absolute data value jxi;kj = max1�j�L jxj;kj is as-sumed to be unique; if not, a single �lter coe�cient from the set fwi;k : jxi;kj = max1�j�L jxj;kjgis chosen randomly for updating. Thus, the only �lter coe�cient updated at time k is a coe�cientassociated with an input sample which has the largest absolute value of all input data samplescurrently in �lter memory. This algorithm requires a search through the input data vector ele-ments but only requires one multiply, one divide, and one addition per iteration, simplifying itsimplementation in hardware. E�cient methods for maintaining the maximum data element acrossa shift-input data window exist [5], and a divide-and-conquer strategy requires at most log2L com-pares at each iteration. Thus, the new algorithm may prove useful in situations where excessive�lter lengths preclude updating every weight at each iteration.2 DerivationWe now show that the family of NLMS algorithms described by (3){(4) solves the optimizationproblem in (5){(6). Our derivation follows a similar derivation presented in [6] for the Nagumo andNoda algorithm and uses the following theorem.2
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Theorem: Let A be a nonzero vector contained in the vector space RL, and let b be a scalarquantity. Then, the minimum Lp-norm solution vector Z to a consistent linear equation ATZ = bis given by Z = bFq(A); (8)where the vector function Fq(�) is given by (4).Proof:Let ai and zi denote the ith elements of the vectors A and Z, respectively. Then,jbj = ����� LXi=1 aizi����� (9)� jjZjjpjjAjjq (10)where (10) follows from (9) from the H�older inequality with 1=p+ 1=q = 1. Thus, for the nonzerovector A, we have jjZjjp � jbjjjAjjq : (11)Consequently, the following inequality holds:minATZ= b jjZjjp � jbjjjAjjq : (12)Let Z be a solution vector to the equation ATZ = b. Note that Z is not unique, but that itsatis�es jjZjjp � minATZ= b jjZjjp (13)for all Z in RL. Now, let Z = bFq(A): (14)It can be seen that, for 1 � q <1,jjZjjp = jbj PLi=1 jaijp(q�1)jjAjjpqq !1=p (15)= jbjjjAjjq  PLi=1 jaijp(q�1)jjAjjp(q�1)q !1=p : (16)3
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Using the relationship p = q=(q � 1), the term inside the parentheses of (16) can be shown to beequal to one. Thus, from (12) and (16), we havejjZjjp = minATZ= b jjZjjp: (17)Considering the case (p = 1; q =1), we �nd from (12) and (14) thatjjZjj1 = bjjAjj1 = minATZ= b jjZjj1: (18)Therefore, (8) follows. 2.To see how the theorem enables the solution to the problem posed in (5){(6), assign Z =Wk+1 �Wk, A = Xk, and b = ek . Then, from the de�nition of the error ek , we haveek = dk �XTkWk (19)= (dk �XTkWk+1) +XTk (Wk+1 �Wk): (20)If the constraint in (6) is satis�ed, then from our assignments of Z, A, and b,XTk (Wk+1 �Wk) = ek ! ATZ = b; (21)and thus the optimization problem in (5){(6) is the same as the minimization of jjZjjp subject toATZ = b. Therefore, from (17), the optimum update for Wk is given by (3){(4).3 SimulationsWe now present simulations of the simpli�ed update algorithm to compare its performance withthe standard NLMS and Nagumo and Noda algorithms for a six-coe�cient FIR system identi�cationtask. The input data for this system was generated asxi;k = sin�2�(k� i+ 1)15 �+ vk�i+1; (22)where vk is a white Gaussian data sequence with variance �2v = 0:01. The output of the systemto be identi�ed was generated by �ltering this input using a six-tap �lter with unity coe�cientsand adding white Gaussian noise with variance �2n = 0:01 to each sample. Step sizes for the threealgorithms were chosen by trial-and-error such that each algorithm produced the same averageexcess mean-square error at convergence. The initial coe�cients W0 were found by perturbing4
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