1 UNITED STATES INTERNATIONAL TRADE COMMISSION 2 WASHINGTON, D.C 3 _____X 4 In the Matter of : 5 CERTAIN AUDIO PROCESSING : Investigation No. 6 HARDWARE AND SOFTWARE AND : 337-TA-1026 7 PRODUCTS CONTAINING THE SAME : 8 _____X 9 10 Videotaped Deposition of SCOTT CLINTON DOUGLAS, Ph.D. 11 Washington, D.C. 12 Friday, June 16, 2017 13 9:09 a.m. 14 15 16 17 18 19 20 Job No.: 148105 21 Pages: 1 - 248 22 Reported By: Dawn M. Hart, RPR/RMR/CRR

Г

1	Videotaped deposition of Scott Clinton Douglas,
2	Ph.D., held at the law offices of:
3	
4	COVINGTON & BURLING LLP
5	850 Tenth Street, Northwest
6	One City Center
7	Washington, DC 20001
8	(202) 662-6000
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	Pursuant to Notice, before Dawn M. Hart,
19	RPR/RMR/CRR and Notary Public in and for the District
20	of Columbia.
21	
22	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	APPEARANCES
2	ON BEHALF OF THE COMPLAINANT AND THE
3	WITNESS:
4	BRADLEY T. LENNIE, ESQUIRE
5	PEPPER HAMILTON LLP
6	Hamilton Square
7	600 Fourteenth Street, Northwest
8	Washington, DC 20005-2004
9	(202) 220-1200
10	
11	ON BEHALF OF THE SAMSUNG RESPONDENTS:
12	PETER A. SWANSON, ESQUIRE
13	MATTHEW A. KUDZIN, ESQUIRE
14	ROBERT T. HASLAM, ESQUIRE
15	(Via teleconference.)
16	COVINGTON & BURLING LLP
17	850 Tenth Street, Northwest
18	One City Center
19	Washington, DC 20001
20	(202) 662-6000
21	
22	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

3

ľ

4

1	APPEARANCES (Continued)
2	ON BEHALF OF THE RESPONDENT APPLE, INC.:
3	THOMAS A. BROUGHAN, III, ESQUIRE
4	STEVEN S. BAIK, ESQUIRE
5	SIDLEY AUSTIN LLP
6	1501 K Street, Northwest
7	Washington, DC 20005
8	(202) 736-8583
9	
10	ON BEHALF OF THE U.S. ITC INVESTIGATIVE STAFF:
11	R. WHITNEY WINSTON, ESQUIRE
12	UNITED STATES INTERNATIONAL TRADE COMMISSION
13	Office of Unfair Import Investigations
14	500 E Street, Southwest
15	Washington, DC 20436
16	(202) 205-2221
17	
18	ALSO PRESENT: Michael Rutigliano, Summer Intern
19	Elvis Centeno, Videographer
20	
21	
22	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

5

1		CONTENTS	
2	EXAMINATION O	F SCOTT CLINTON DOUGLAS	PAGE
3	By Mr. S	wanson	8
4	By Mr. B	roughan	152
5		EXHIBITS	
6	(Exhibi	ts are attached to the transcript	.)
7	S. DOUGLAS DE	POSITION EXHIBITS	PAGE
8	Exhibit 1	U.S. Patent 6,363,345	10
9	Exhibit 2	A Spatio-Temporal Power Method	19
10		for Time-Domain Multi-Channel	
11		Speech Enhancement	
12	Exhibit 3	Expert report re Kyriakakis	37
13	Exhibit 4	Boll paper Suppression of	51
14		Acoustic Noise in Speech Using	
15		Spectral Subtraction	
16	Exhibit 5	U.S. Patent 5,706,395	78
17	Exhibit 6	Expert report re Douglas	116
18	Exhibit 7	Martin paper An Efficient	122
19		Algorithm to Estimate the	
20		Instantaneous SNR of Speech Sign	als
21	Exhibit 8	Rebuttal expert report re	129
22		Douglas	

r

1		E X H I B I T S (Continued)	
2	(Exhibi	ts are attached to the transcript.)	
3	S. DOUGLAS DE	POSITION EXHIBITS	PAGE
4	Exhibit 9	U.S. Patent 6,035,048	131
5	Exhibit 10	Martin paper Spectral Subtraction	148
6		Based on Minimum Statistics	
7	Exhibit 11	U.S. Patent 8,374,854	188
8	Exhibit 12	Hirsch paper Noise Estimation	205
9		Techniques for Robust Speech	
10		Recognition	
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

7

1	PROCEEDINGS	09:09:56
2	THE VIDEOGRAPHER: Here begins Tape No. 1 in	08:36:30
3	the videotaped deposition of Dr. Scott Douglas in the	09:08:53
4	Matter of Certain Audio Processing Hardware and	09:08:56
5	Software, et al., Case No. 337-TA-1026.	09:09:00
6	Today's date is June 16, 2017. The time on	09:09:07
7	the video monitor is 9:09. The videographer today is	09:09:10
8	Elvis Centeno, representing Planet Depos. The video	09:09:13
9	deposition is taking place at 1501 K Street,	09:09:17
10	Northwest, Washington, DC.	09:09:21
11	Would counsel please identify themselves and	09:09:23
12	state whom they represent.	09:09:23
13	MR. SWANSON: Sure. Peter Swanson, from	09:09:26
14	Covington & Burling, on behalf of Samsung Electronics	09:09:30
15	Co. Limited and Samsung Electronics America, Inc.	09:09:34
16	Also with me from Covington is	09:09:37
17	Matthew Kudzin, and on the line is Robert Haslam, also	09:09:39
18	with Covington & Burling.	09:09:45
19	MR. BROUGHAN: Good morning. Tom Broughan,	09:09:49
20	Sidley Austin, on behalf of Respondent Apple. With me	09:09:50
21	is Steve Baik.	09:09:54
22	MR. WINSTON: Whitney Winston, from the	09:09:56

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1		Conducted on June 16, 2017	8	
1	Commissio	n Investigative Staff.		09:09:56
2		MR. LENNIE: And Brad Lennie, of		09:10:00
3	Pepper Ha	milton, representing the witness and also		09:10:00
4	Andrea El	ectronics.		09:10:05
5		THE WITNESS: And I'm Scott Douglas.		09:10:07
6		THE VIDEOGRAPHER: Would the Reporter please		09:10:14
7	swear in	the witness.		09:10:15
8		SCOTT CLINTON DOUGLAS, Ph.D.		09:10:15
9	bein	g first duly sworn or affirmed to testify to		09:10:15
10	the truth	, the whole truth, and nothing but the truth,		09:10:15
11	was exami	ned and testified as follows:		09:10:15
12	EXAMIN	ATION BY COUNSEL FOR THE RESPONDENT SAMSUNG		09:10:15
13	BY MR. SW	ANSON:		09:10:15
14	Q	Good morning.		09:10:27
15	A	Good morning.		09:10:29
16	Q	Would you please state your name for the		09:10:30
17	record.			09:10:32
18	A	Scott Clinton Douglas.		09:10:32
19	Q	And are you employed, Mr. Douglas?		09:10:34
20	A	I am employed, yes.		09:10:37
21	Q	Where are you employed?		09:10:38
22	А	I am a professor in the Department of		09:10:41

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

9

1	Electric	al Engineering at Southern Methodist	09:10:44
2	Universi	ty in Dallas, Texas.	09:10:46
3	Q	And you've been retained by	09:10:50
4	Andrea E	lectronics in this case as an expert witness?	09:10:52
5	A	Yes, I have.	09:10:54
6	Q	And you've been retained to provide opinions	09:10:55
7	on the i	ssues of invalidity; is that right?	09:10:57
8	A	That's one of the issues I've been retained	09:11:03
9	on, yes.		09:11:06
10	Q	Have you been deposed before?	09:11:08
11	A	Yes, I have.	09:11:09
12	Q	How many times?	09:11:10
13	A	I believe three other times.	09:11:15
14	Q	Okay. Do you understand the process for a	09:11:17
15	depositi	on, the ground rules?	09:11:20
16	A	I believe I do, yes.	09:11:24
17	Q	Okay. Just to briefly summarize, if you	09:11:25
18	don't un	derstand one of my questions, then please ask	09:11:29
19	for clar	ification. If you need a break, please ask	09:11:32
20	for it.	And please remember to give verbal answers.	09:11:37
21	A	Okay. I understand.	09:11:42
22	Q	Okay.	09:11:44

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	0
		7
1	(Exhibit 1 was marked for identification and	09:12:12
2	is attached to the transcript.)	09:12:12
3	Q Okay. I just handed you what's been marked	09:12:40
4	Exhibit 1. This is a copy of U.S. Patent No.	09:12:42
5	6,363,345.	09:12:48
6	Have you seen this patent before?	09:12:53
7	A Yes, I have.	09:12:55
8	Q Are you familiar with this patent?	09:12:56
9	A Iam.	09:12:58
10	Q Okay. And you've offered opinions on this	09:12:59
11	patent in this case?	09:13:01
12	A Yes, I have.	09:13:02
13	Q What's the invention described in the '345	09:13:06
14	patent?	09:13:10
15	MR. LENNIE: Objection. Form.	09:13:12
16	A Can you clarify your question?	09:13:16
17	Q Do you believe let me back up.	09:13:19
18	Does the '345 patent relates to the area	09:13:21
19	of noise suppression?	09:13:26
20	MR. LENNIE: Objection.	09:13:28
21	A '345 is a system, method and apparatus for	09:13:29
22	canceling noise.	09:13:38

Transcript of Scott Clinton Douglas Ph D

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.
Conducted on June 16, 2017

1	Conducted on June 16, 2017 11	1
1	Q Okay. Does it fall within the field are	09:13:39
2	you familiar with the field of noise suppression and	09:13:42
3	noise cancellation?	09:13:44
4	A I am familiar with the field of noise	09:13:45
5	suppression.	09:13:48
6	Q Okay. Do you consider yourself an expert in	09:13:48
7	that field?	09:13:50
8	A I have experience and understanding in the	09:13:52
9	field of noise suppression.	09:13:54
10	Q How how much experience? How long have	09:14:00
11	you been working in the field of noise suppression?	09:14:01
12	A I've been a professor for over 25 years at	09:14:08
13	two different institutions, and I've done work on	09:14:12
14	various different aspects of signal processing, things	09:14:15
15	related to adaptive filters and active noise control	09:14:18
16	and aspects that basically relate to noise	09:14:22
17	suppression.	09:14:25
18	Q Okay. And you've been doing that you said	09:14:26
19	for over 25 years?	09:14:28
20	A Yes.	09:14:30
21	Q So the '345 patent relates falls within	09:14:32
22	the field of noise suppression and noise cancellation?	09:14:36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.	
	Conducted on June 16, 2017 12	1
1	MR. LENNIE: Objection. Form.	09:14:39
2	A The '345 patent is a system, method and	09:14:40
3	apparatus for canceling noise. It's a technology	09:14:50
4	that's designed to process signals to make them	09:14:53
5	better.	09:14:58
6	Q Uh-huh. And "make them better" meaning to	09:14:59
7	try to suppress noise or to cancel noise?	09:15:02
8	A The technology within '345 can be used to	09:15:11
9	cancel noise.	09:15:14
10	Q Does the '345 patent also relate to spectral	09:15:16
11	subtraction?	09:15:20
12	MR. LENNIE: Objection. Form.	09:15:22
13	A (Reviewing.)	09:15:28
14	It is a spectral subtraction technique and	09:15:28
15	it's a method to further reduce the noise.	09:15:42
16	Q Do you see let me direct you to column 1,	09:15:50
17	lines 19 through 21, of the patent.	09:15:56
18	A Uh-huh.	09:15:59
19	Q Do you see that?	09:16:00
20	A Yes.	09:16:00
21	Q It says, "The present invention relates to	09:16:01
22	noise cancellation and reduction and, more	09:16:02

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

13

1	specifically, to noise cancellation and reduction	09:16:05
2	using spectral subtraction"?	09:16:08
3	A Yes.	09:16:10
4	Q Do you agree with that?	09:16:11
5	A I see that it says that, yes.	09:16:12
6	Q Do you agree that the present invention	09:16:14
7	relates to noise cancellation/reduction?	09:16:16
8	A Yes.	09:16:18
9	MR. LENNIE: Objection. Form.	09:16:19
10	Q Do you agree that the present invention of	09:16:19
11	the '345 patent relates more specifically to noise	09:16:20
12	cancellation/reduction using spectral subtraction?	09:16:22
13	MR. LENNIE: Objection. Form.	09:16:25
14	A The technology within the '345 patent can be	09:16:38
15	used for noise reduction.	09:16:41
16	Q And that technology is generally known as	09:16:46
17	spectral subtraction?	09:16:51
18	MR. LENNIE: Objection. Form.	09:16:53
19	Q Or falls within the field known as spectral	09:16:56
20	subtraction?	09:16:58
21	MR. LENNIE: Same objection.	09:16:59
22	A The technology is designed to remove the	09:17:04

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 14	
1	noise from signals and it relates to the	09:17:06
2	noise/cancellation reduction.	09:17:13
3	Q And it does so by using spectral	09:17:15
4	subtraction?	09:17:18
5	A It uses techniques that are related to the	09:17:28
6	methods within spectral subtraction.	09:17:30
7	Q Related to the method of spectral	09:17:34
8	subtraction. Are those techniques considered spectral	09:17:36
9	subtraction?	09:17:42
10	MR. LENNIE: Objection.	09:17:43
11	Q The techniques of the '345 patent?	09:17:44
12	MR. LENNIE: Objection. Form.	09:17:46
13	A The techniques described in the '345 patent	09:18:14
14	are essentially about the spectral subtraction	09:18:16
15	technique within the '345 and it uses methods that	09:18:20
16	are that are common in spectral subtraction.	09:18:25
17	Q All right. What is spectral subtraction?	09:18:28
18	A Can you give me a little more context?	09:18:38
19	Q Do you have an understanding of the idea	09:18:40
20	behind spectral subtraction?	09:18:42
21	A Yes, I do.	09:18:44
22	Q All right. What is that understanding?	09:18:45

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017	15
1	A The goal is a technique to estimate noise	09:18
2	and to be able to process the resulting signal to try	09:18
3	to remove that noise.	09:18
4	Q That idea that you just described, that idea	09:1
5	was known as of the time of the '345 patent the	09:19
6	filing of the '345 patent; is that right?	09:1
7	MR. LENNIE: Objection. Objection. Form.	09:1
8	A Techniques in spectral subtraction have been	09:1
9	described. The '345 patent is a system, method and	09:1
10	apparatus for canceling noise.	09:1
11	Q But what you just described as the concept	09:1
12	of spectral subtraction, that was already known as of	09:1
13	February 1999, right?	09:1
14	A There are methods and procedures and	09:1
15	techniques that people have been used that people	09:1
16	have used to apply to remove noise from signals prior	09:1
17	to this.	09:1
18	Q All right. Techniques to estimate noise and	09:1
19	to remove that noise from signals, right?	09:1
20	A Yes.	09:20
21	Q Okay. Let me direct you to column 1, line	09:20
22	64, the sentence beginning at line 64.	09:2

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

16

1		This method described in detail in	09:20:26
2	suppressi	on of acoustic noise in speech using spectral	09:20:28
3	subtracti	on, and then there is	09:20:32
4	А	Just just a moment.	09:20:34
5	Q	Yep.	09:20:36
6	А	I want to make sure I	09:20:36
7	Q	Sorry, column 1, line the sentence	09:20:37
8	beginning	at line 64.	09:20:40
9	А	Oh, 64. Thank you. Uh-huh.	09:20:42
10	Q	Do you see that sentence?	09:20:44
11	А	I do.	09:20:45
12	Q	Okay. And that sentence refers to a paper	09:20:46
13	titled "A	coustic Noise in Speech Using Spectral	09:20:50
14	Subtracti	on."	09:20:53
15		Do you see that?	09:20:53
16	А	Yes.	09:20:55
17	Q	And that paper is by Steven Boll?	09:20:55
18	А	Yes.	09:20:58
19	Q	Do you see that?	09:20:59
20		That paper that paper relates to the	09:21:01
21	field of	spectral subtraction, right?	09:21:07
22	А	Yes.	09:21:09

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	17
1	Q That was a well-known publication as of	09:21:11
2	1999?	09:21:14
3	A Yes.	09:21:21
4	Q A person of skill in the art as of 1999	09:21:22
5	would have been familiar with Boll's paper?	09:21:25
6	A A person working in signal processing in the	09:21:31
7	field of noise suppression would be aware of that	09:21:35
8	paper.	09:21:37
9	Q What was significant about the Boll paper?	09:21:38
10	MR. LENNIE: Objection. Form.	09:21:42
11	A Can you give me some context in the in	09:21:52
12	your question? It's not obvious what it is that	09:21:55
13	you're asking.	09:21:57
14	Q Well, you said it was you agree it was a	09:21:58
15	well-known publication as of 1999. Why why was it	09:22:00
16	so well known in the field?	09:22:03
17	MR. LENNIE: Objection. Form.	09:22:05
18	A It was a relatively early authored paper in	09:22:48
19	the field. It described techniques for digitally	09:22:51
20	processing signals to reduce noise.	09:22:56
21	Q Those techniques were spectral subtraction	09:23:00
22	techniques?	09:23:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

18

1	A He used the term "spectral subtraction" to	09:23:11
2	describe them. The techniques were oriented towards	09:23:13
3	removing noise.	09:23:18
4	Q And to noise estimation as well?	09:23:22
5	A He used methods of noise estimation within	09:23:28
6	his technique.	09:23:31
7	Q Is musical noise a problem with spectral	09:23:34
8	subtraction?	09:23:36
9	MR. LENNIE: Objection. Form.	09:23:37
10	A What do you mean by "musical noise"?	09:23:45
11	Q Do you have an understanding of that term?	09:23:48
12	A It's a term that can have different meaning	09:24:18
13	in different contexts.	09:24:21
14	Q Does it have a meaning in the context of	09:24:23
15	spectral subtraction?	09:24:25
16	MR. LENNIE: Objection. Form.	09:24:26
17	A It is not a precise term as I'm aware of it.	09:25:03
18	It's describing more of an effect of something that	09:25:07
19	someone might hear when when using a noise	09:25:10
20	reduction system.	09:25:13
21	Q What is that effect?	09:25:16
22	A As I've understood others who've considered	09:25:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

19

1	it, it's the effect of hearing sounds that basically	09:25:39
2	sound like their tones in nature.	09:25:45
3	Q And that effect, those those tones,	09:25:52
4	are are they caused by spectral subtraction?	09:25:54
5	MR. LENNIE: Objection. Form.	09:26:00
6	A They can be caused by many things, I think.	09:26:11
7	It's not obvious that they're caused by spectral	09:26:14
8	subtraction.	09:26:17
9	Q But is that one of the things that can cause	09:26:19
10	musical noise?	09:26:21
11	MR. LENNIE: Objection. Form.	09:26:24
12	A I again, as I heard about it in different	09:26:25
13	contexts, it's caused by the operation of the system	09:27:04
14	upon a signal that goes through it.	09:27:08
15	MR. SWANSON: Please mark this as Exhibit 2.	09:27:14
16	(Exhibit 2 was marked for identification and	09:27:15
17	is attached to the transcript.)	09:27:15
18	Q Are you familiar with this document?	09:27:38
19	A I am.	09:27:40
20	Q What is this?	09:27:41
21	A This is a paper on a spatio-temporal power	09:27:44
22	method for time-domain multi-channel speech	09:27:47

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	20
L	enhanceme	ent.	09:2
2	Q	Okay. Are you one of the authors on the	09:2
3	paper?		09:2
1	А	I am.	09:2
5	Q	Do you see under on the first page under	09:2
5	the headi	ng Introduction the first sentence reads,	09:2
	"Spectral	subtraction is one of the most popular	09:2
	speech er	nhancement techniques because of its	09:2
	simplicit	y and relative low computational complexity"?	09:2
0	А	I do.	09:2
1	Q	Do you agree with that?	09:2
2	А	I do.	09:2
3	Q	And the next sentence says, "This technique	09:2
4	performs	well in high signal-to-noise-ratio	09:2
5	environme	ents but tends to create a noticeable tonal	09:2
6	noise, mo	ore commonly known as the musical noise in low	09:2
7	SNR and r	non-stationary noise conditions."	09:2
8		Do you see that?	09:2
9	А	I do.	09:2
0	Q	Do you agree with that?	09:2
1	А	It can create a noticeable tonal noise, yes.	09:2
2	Q	And the next sentence says, "This drives	09:2

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

21

1	algorithm developers to be very conservative in noise	09:28:47
2	suppression and as a result the technique	09:28:51
3	under-performs in all noise scenarios."	09:28:52
4	Do you see that?	09:28:55
5	A I do see that.	09:28:56
6	Q Do you agree with that statement?	09:28:57
7	A It's a guidance in terms of how the	09:29:11
8	technique tends to be used and how the performance	09:29:13
9	may may be in certain situations.	09:29:18
10	Q And because of how that performance may be	09:29:24
11	in certain situations, algorithm developers tend to be	09:29:27
12	conservative in noise suppression? Is that what this	09:29:32
13	sentence is saying?	09:29:36
14	MR. LENNIE: Objection. Form.	09:29:37
15	A It's saying about algorithm developers and	09:29:48
16	their design processes have to be careful about	09:29:52
17	selecting parameters when designing such systems.	09:29:56
18	Q Uh-huh. And you agree that they tend to be	09:29:58
19	conservative because of the issue of musical noise?	09:30:02
20	A They tend to carefully design such systems	09:30:12
21	to mitigate any such effects that might occur.	09:30:16
22	Q And they do so by being conservative, that's	09:30:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 22	I
1	what you wrote here, right?	09:30:23
2	MR. LENNIE: Objection. Form.	09:30:25
3	A Designers of systems have to be careful	09:30:59
4	about how they use such systems when they apply them	09:31:01
5	in particular situations.	09:31:04
6	Q Okay. I don't think that answered my	09:31:09
7	question.	09:31:11
8	A Could you repeat your question?	09:31:12
9	Q Yes. You wrote here in this paper that the	09:31:13
10	issue of musical noise drives algorithm developers to	09:31:20
11	be very conservative in noise suppression.	09:31:23
12	Do you agree with that?	09:31:28
13	A I agree that algorithm developers have to	09:31:34
14	carefully design their systems to mitigate effects	09:31:37
15	that might occur as the result of the design.	09:31:40
16	Q Okay. I get that as a general principle.	09:31:45
17	I'm asking about the specific statement you wrote	09:31:47
18	here, which is you're talking about spectral	09:31:50
19	subtraction, you said one of the problems with	09:31:53
20	spectral subtraction was musical noise and you said,	09:31:55
21	quote, this drives algorithm developers to be very	09:31:57
22	conservative in noise suppression.	09:32:00

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph	.D.
Conducted on June 16, 2017	

23

1	Do you agree with the sentence that you	09:32:02
2	wrote in this paper or not?	09:32:04
3	MR. LENNIE: Objection. Form.	09:32:06
4	A What is important about the meaning of this	09:32:23
5	sentence is that one must consider aspects in the	09:32:27
6	design of such systems when implementing them to	09:32:31
7	mitigate any ill effects that can result from that	09:32:34
8	implementation.	09:32:37
9	Q Okay. I'm not asking what's important about	09:32:42
10	the meaning of the sentence; I'm asking whether the	09:32:45
11	sentence is accurate as you wrote it or not.	09:32:47
12	Can you please give me a yes or no ques	09:32:52
13	answer to that?	09:32:53
14	MR. LENNIE: Objection. Form.	09:32:54
15	A In order to make sure that the meaning of	09:32:58
16	what's here is clear, I'm providing clarification.	09:33:01
17	When algorithm developers are implementing	09:33:09
18	systems, one has to be careful about how one uses the	09:33:12
19	implementation in order to mitigate any ill effects.	09:33:16
20	Q Uh-huh. And in the case of spectral	09:33:20
21	subtraction and the problem of musical noise that	09:33:24
22	results from spectral subtraction, that is mitigated	09:33:27

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 24	1
1	by algorithm developers being conservative in how they	09:33:33
2	do noise suppression; is that right?	09:33:39
3	MR. LENNIE: Objection. Form.	09:33:41
4	A There are many ways to mitigate it.	09:33:42
5	Q Uh-huh. And one way to mitigate it is to be	09:33:45
6	conservative in how you do your noise suppression?	09:33:48
7	A I mean, there are methods for addressing	09:33:53
8	musical noise, so one can apply methods to be able to	09:33:58
9	address it as well.	09:34:02
10	Q And is one of those methods to be	09:34:03
11	conservative in how you do noise suppression?	09:34:04
12	MR. LENNIE: Objection. Form.	09:34:07
13	A Again, this sentence is really about how	09:34:10
14	one, when designing systems, has to consider the	09:34:18
15	potential effects of the implementation of that system	09:34:22
16	and any problems that might arise.	09:34:25
17	Q Uh-huh. You said there are many ways to	09:34:29
18	mitigate musical noise; is that right?	09:34:30
19	A There are there are methods that have	09:34:33
20	been proposed, yes.	09:34:35
21	Q And what are the different methods?	09:34:36
22	A (Reviewing.)	09:34:53

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

25

1	Sitting here today I don't have the	09:34:53
2	approaches sitting in front of me. I can't give you a	09:36:01
3	list of all the different methods.	09:36:03
4	Q Uh-huh. And sitting here today you're not	09:36:05
5	able to say whether musical noise drives algorithm	09:36:08
6	developers to be very conservative in noise	09:36:13
7	suppression?	09:36:15
8	MR. LENNIE: Objection. Form.	09:36:16
9	A As I've explained, those who are	09:36:22
10	implementing systems for reducing noise have to take	09:36:25
11	into account the effects that such systems might have	09:36:30
12	and mitigate any issues associated with them.	09:36:33
13	Q Uh-huh. But sitting here right now you	09:36:36
14	can't say whether one way developers address the	09:36:39
15	problem of musical noise is to be conservative?	09:36:43
16	MR. LENNIE: Objection.	09:36:47
17	Q In noise suppression?	09:36:48
18	A I	09:36:49
19	MR. LENNIE: Objection. Form.	09:36:49
20	A Again, it it comes down to the	09:36:50
21	implementation of the overall system.	09:36:54
22	Q Some developers might do that, though, for	09:36:57

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 26	1
1	some systems?	09:37:01
2	MR. LENNIE: Objection. Form.	09:37:02
3	A Again, developers, when they're designing	09:37:13
4	systems, have to consider the overall effects of that	09:37:20
5	implementation.	09:37:23
6	Q So you can't say, then, sitting here right	09:37:24
7	now whether that's that's one way a developer might	09:37:27
8	address the problem of musical noise?	09:37:30
9	MR. LENNIE: Objection. Form.	09:37:33
10	A Again, developers who are implementing	09:37:45
11	systems have to consider those ill effects.	09:37:51
12	Q Right. And I'm just asking if you're able	09:37:55
13	to say whether this is one possible way, not the only	09:37:59
14	way, just one possible way, of addressing the effect	09:38:02
15	of musical noise?	09:38:04
16	MR. LENNIE: Objection. Form.	09:38:09
17	A The techniques that people use to address	09:38:15
18	these ill effects can can vary.	09:38:18
19	Q Okay. If you turn back to the '345 patent,	09:38:23
20	Exhibit 1.	09:38:41
21	A Uh-huh.	09:38:42
22	Q And let's look at Figure 1.	09:38:44
]

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 2'	7
1	A	(Complying.)	09:38:58
2	Q	Figure 1 is a flow diagram; is that right?	09:39:06
3	А	It's a system that has input samples and	09:39:15
4	output sa	amples.	09:39:17
5	Q	Okay. And it's captioned "Spectral	09:39:19
6	Subtracti	on System"?	09:39:22
7	А	Yes.	09:39:24
8	Q	Okay. The first block, 104, of Figure 1	09:39:25
9	is say	vs "Collect Input Data."	09:39:33
10		Do you see that?	09:39:37
11	A	Yes.	09:39:38
12	Q	Do you agree that collecting input data was	09:39:40
13	known in	the art as of the time of the '345 patent?	09:39:44
14	А	Yes.	09:39:54
15	Q	The next block, 106, says "Combine 256 New	09:39:55
16	Point wit	ch 256 History."	09:40:01
17		Do you see that?	09:40:03
18	А	Yes.	09:40:04
19	Q	Is that describing the process of creating a	09:40:05
20	frame?		09:40:07
21		MR. LENNIE: Objection. Form.	09:40:10
22	А	(Reviewing.)	09:40:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

28

1	Block 104 is a temporary buffer that stores	09:41:03
2	input samples, and it stores 256 points, and block 106	09:41:08
3	is a combiner that takes the new 256 points and	09:41:15
4	provides combines with those with the previous	09:41:20
5	256 points to provide 512 input points.	09:41:24
6	Q Okay. Was block 106 known in the art?	09:41:28
7	MR. LENNIE: Objection. Form.	09:41:32
8	A I mean, systems that collect values are ones	09:41:37
9	that are known that I mean, they're part of systems	09:41:43
10	that people would have designed.	09:41:46
11	Q Uh-huh. Okay. So prior art systems would	09:41:49
12	have done step 106?	09:41:54
13	A What prior art systems are you talking	09:42:00
14	about?	09:42:01
15	Q Just the prior art in general, as of the	09:42:02
16	time of as of February 1999.	09:42:05
17	A Prior prior art in what context?	09:42:09
18	Q Prior art things predating the '345	09:42:12
19	patent.	09:42:14
20	A In all contexts?	09:42:16
21	Q At least in some contexts.	09:42:19
22	A Okay, what contexts are those?	09:42:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	29
1	Q Any	contexts.	
2	A But	that's that's all contexts. I mean,	
3	I I'm we	ell, I'm trying to figure out what it is	
4	that you're	- that you're trying to get me to to	
5	answer.		
6	Q In p	prior art spectral subtraction systems.	
7	So Figure 1 is	s about a spectral subtraction system,	
8	right?		
9	A Yes		
10	Q Oka <u>y</u>	y. Did prior art spectral subtraction	
11	systems perfor	rm the step 106?	
12	A So s	systems for processing signals would have	
13	collected poir	nts. The choice of the number of points	
14	would depend ı	upon the application.	
15	Q Okay	y. Step 108 says "Multiply By Hanning	
16	Window"?		
17	A Yes		
18	Q Was	that step known in the art?	
19	MR.	LENNIE: Objection. Form.	
20	A (Rev	/iewing.)	
21	108	is a multiplier that multiplies the	
22	input points w	with a shading window. Shading window	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

30

1	can be Hanning or it could be other types of windows.	09:44:30
2	Q But shading using Hanning windows or other	09:44:39
3	types of windows was known in the art as of 1999?	09:44:43
4	A The purpose of this block is to smooth	09:45:08
5	transients between two process blocks and to reduce	09:45:14
6	side loads.	09:45:18
7	Q I don't think that answers my question.	09:45:24
8	A The method for doing this would be something	09:45:26
9	that someone would be aware of, yes.	09:45:29
10	Q Okay. As of February 1999?	09:45:32
11	A This particular isolated block, yes.	09:45:35
12	Q Okay. The next block, 110, takes the output	09:45:38
13	of the Hanning window and applies a 512-point FFT; is	09:45:45
14	that right?	09:45:52
15	A Yes.	09:45:52
16	Q Was step 110 an FFT? Was that known in the	09:45:54
17	art?	09:45:59
18	A An FFT, Fast Fourier Transform processor,	09:46:16
19	which is what the block 110 is, is something that was	09:46:16
20	used in various systems.	09:46:22
21	Q Prior to the '345 patent?	09:46:27
22	A It was used in various systems for different	09:46:29

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	31
1	applications, yes.	09:46:31
2	Q And the next block, block 112, that's	09:46:37
3	labeled "Noise Processing"?	09:46:43
4	A Uh-huh.	09:46:45
5	Q And that's a that's representing that the	09:46:46
6	output of the FFT noise processing is performed on the	09:46:50
7	output of the FFT; is that right?	09:46:54
8	A Yes.	09:47:10
9	Q Okay. And the idea of doing noise	09:47:11
10	processing on the output of an FFT, that was known in	09:47:16
11	the art as of February 1999?	09:47:19
12	A Noise processing via FFT was known in the	09:47:29
13	technologies related to noise suppression within the	09:47:35
14	art.	09:47:38
15	Q As of 1999?	09:47:40
16	A Yes, but that's not referring to this	09:47:44
17	specific technique.	09:47:47
18	Q What do you mean by "this specific	09:47:49
19	technique"?	09:47:50
20	A Well, '345 is a system, method and apparatus	09:48:05
21	for canceling noise. So it describes a set of	09:48:07
22	processes for performing that.	09:48:11

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.Conducted on June 16, 201732	
1	Q Uh-huh. And are any of those processes	09:48:13
2	novel?	09:48:18
3	MR. LENNIE: Objection.	09:48:19
4	A Yes.	09:48:20
5	MR. LENNIE: Objection. Form.	09:48:20
6	Q Which?	09:48:21
7	MR. LENNIE: Same objection.	09:48:26
8	A The '345 patent is an apparatus for	09:52:07
9	canceling noise, and it's novel in many respects, one	09:52:10
10	of them being the use of threshold detection for	09:52:15
11	setting a threshold for each frequency bin using a	09:52:19
12	noise estimation process and for detecting for each	09:52:22
13	frequency bin whether the magnitude of the	09:52:32
14	(Reporter interruption.)	09:52:33
15	A Detecting for each frequency bin whether the	09:52:34
16	magnitude of the frequency bin is less than the	09:52:34
17	corresponding threshold, thereby detecting positions	09:52:36
18	of noise elements for each frequency bin.	09:52:40
19	Q And were you just reading from the language	09:52:43
20	of claim 1?	09:52:45
21	A I was.	09:52:47
22	Q Okay. Is there anything else novel in the	09:52:47

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017 33	3
1	'345 patent?	09:52:51
2	MR. LENNIE: Objection. Form.	09:52:52
3	A There are many aspects of the system that	09:52:59
4	are novel. All you know, those aspects which	09:53:02
5	relate to or depend upon claim 1 matter as well.	09:53:09
6	Q Uh-huh.	09:53:12
7	A As well as other claims within there.	09:53:13
8	Q Do you have an opinion as to what what	09:53:18
9	was inventive in the '345 patent over the prior art?	09:53:21
10	MR. LENNIE: Objection. Form.	09:53:26
11	A I've been asked to provide opinions that	09:53:56
12	relate to the report of Dr. Kyriakakis regarding the	09:53:59
13	validity of this patent. So I provided opinions along	09:54:09
14	that line.	09:54:12
15	Regarding your question, it's a challenge to	09:54:14
16	think of all the different possibilities of novelty	09:54:17
17	that one could consider for this.	09:54:20
18	Q Uh-huh. Is there anything can you name	09:54:22
19	anything in the '345 patent that was not just novel	09:54:28
20	but was inventive over the prior art?	09:54:32
21	MR. LENNIE: Objection. Form.	09:54:36
22	A An invention is a combination of its	09:54:39
		J

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	34
1	elements and, you know, the novelty can be in the	09:54:42
2	combination, it can be in the individual portions.	09:54:45
3	Q Okay. And what was the invention in your	09:54:52
4	view, what was the invention of the '345 patent?	09:54:55
5	MR. LENNIE: Objection. Form.	09:54:59
6	A I don't know if I have a view that points to	09:55:12
7	one specific thing or feature.	09:55:15
8	Q Can you point to anything in the patent that	09:55:18
9	was an invention over the prior art?	09:55:19
10	MR. LENNIE: Objection. Form.	09:55:22
11	A Again, the nature of the invention is in the	09:55:23
12	combination of its elements and how the various	09:55:27
13	different techniques are combined to produce the	09:55:30
14	processing that it does.	09:55:33
15	Q And the techniques in the '345 patent, were	09:55:36
16	those combined in a way that was inventive over the	09:55:40
17	prior art?	09:55:44
18	A Yes.	09:55:46
19	Q How so?	09:55:47
20	A In the specific way, I mean it's the	09:55:49
21	methodology that was used.	09:55:52
22	Q What techniques when you say "the	09:56:04

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

35

1	techniques of the patent," what techniques are you	09:56:06
2	referring to? Are you referring to the technique for	09:56:09
3	estimating noise?	09:56:12
4	MR. LENNIE: Objection. Form.	09:56:13
5	A Again, the novelty of the patent is in the	09:56:23
6	combination of the various elements to produce the	09:56:28
7	resulting processing that it does.	09:56:31
8	Q What elements are you referring to?	09:56:41
9	A (Reviewing.)	09:57:01
10	Well, the noise processing and the noise	09:57:11
11	estimation processing as well as the subtraction	09:57:14
12	processing and residual noise processing.	09:57:19
13	Q Are you saying each of those on their own	09:57:26
14	were inventive or the combination of those were	09:57:29
15	inventive was inventive?	09:57:33
16	MR. LENNIE: Objection. Form.	09:57:35
17	Q Strike that.	09:57:48
18	Was residual noise processing by itself an	09:57:50
19	invention over the prior art?	09:57:54
20	MR. LENNIE: Objection. Form.	09:58:00
21	A The general goal of residual noise	09:58:08
22	processing was under was a technique which was	09:58:11

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

36

1	investigated. There are methods for doing it there	09:58:16
2	are other methods, though excuse me, strike that	09:58:19
3	issue there are other methods.	09:58:24
4	The '345 patent uses residual noise	09:58:30
5	processing along with its other methods to provide the	09:58:34
6	capability of the patent that is described.	09:58:39
7	Q Was the residual noise processing described	09:58:43
8	in the '345 patent by itself an invention over the	09:58:45
9	prior art?	09:58:50
10	MR. LENNIE: Objection. Form.	09:58:53
11	A (Reviewing.)	09:58:54
12	As I understand it, the novelty of the	09:59:20
13	patent can be in the combination of its elements and	09:59:23
14	in the way the processing is combined to provide the	09:59:26
15	resulting system operation.	09:59:30
16	Q Uh-huh. But residual noise processing	09:59:35
17	predated the '345 patent, right?	09:59:37
18	A There was residual noise processing methods	09:59:42
19	prior to the '345 patent.	09:59:45
20	Q Okay. And there were noise estimation	09:59:46
21	processes prior to the '345 patent, right?	09:59:49
22	A Yes. There are methods for estimating noise	09:59:54

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
1		Conducted on June 16, 2017	37
1	in system	ns.	09:59:57
2	Q	Okay. And there were noise processing	09:59:58
3	methods p	prior to the '345 patent, right?	10:00:01
4	А	Yes, there was noise processing systems.	10:00:06
5	Q	And there were subtraction processing	10:00:10
6	methods p	prior to the '345 patent?	10:00:12
7	А	Yes, there were those as well.	10:00:16
8	Q	Uh-huh. Just going back to claim 1, is your	10:00:19
9	opinion t	that claim 1 is novel over the prior art?	10:00:40
10	A	Yes.	10:00:49
11		(Exhibit 3 was marked for identification and	10:01:09
12	is attach	ned to the transcript.)	10:01:09
13	Q	This is the expert report of	10:01:41
14	Chris Kyr	riakakis, the Respondents' expert on	10:01:44
15	invalidit	ty; is that right?	10:01:49
16	A	Yes.	10:01:50
17	Q	Have you seen this before?	10:01:51
18	A	Yes.	10:01:53
19	Q	Have you reviewed this?	10:01:54
20	A	Yes.	10:01:56
21	Q	And you were asked to respond to	10:01:57
22	Dr. Kyria	akakis's opinions expressed in this report; is	10:01:59

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	38
1	that righ	t?	10:02:03
2	A	Yes.	10:02:04
3	Q	Can you turn to Page 213 of the report?	10:02:20
4	A	Yes.	10:02:39
5	Q	And do you see Paragraph 648?	10:02:40
6	A	I do.	10:02:46
7	Q	Okay. And the first sentence of that	10:02:47
8	paragraph	reads, "It is my opinion that Diethorn"	10:02:49
9	D-I-E-T-H	-O-R-N.	10:02:53
10	A	Right.	10:02:57
11	Q	"anticipates claim 1 of the '345 patent	10:02:58
12	if the cl	aim is not subject to Section 112, Paragraph	10:03:01
13	6."		10:03:04
14	А	Uh-huh.	10:03:04
15	Q	Do you see that?	10:03:05
16	A	I do.	10:03:05
17	Q	Do you disagree with that opinion?	10:03:07
18	A	I haven't provided an opinion on this issue	10:03:28
19	in my rep	ort.	10:03:31
20	Q	Why not?	10:03:36
21	A	In the process of writing the report and	10:03:41
22	consideri	ng the technical issues in it, I was asked	10:03:45

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017 39)
1	not to consider this particular issue at the point of	10:03:52
2	preparing at in the process of preparing the	10:03:56
3	report.	10:03:59
4	Q You were asked by the lawyers for Andrea?	10:04:01
5	A It was part of our dis a dis our	10:04:06
6	discussion.	10:04:09
7	Q So they instructed you not to render an	10:04:10
8	opinion as to Diethorn?	10:04:13
9	MR. LENNIE: I'm just going to cau go	10:04:16
10	ahead and finish the question.	10:04:18
11	Q Did the lawyers instruct you not to analyze	10:04:19
12	whether Diethorn anticipates it?	10:04:22
13	MR. LENNIE: So I'm just going to interject	10:04:25
14	here that I understand that there's a discovery	10:04:27
15	stipulation that indicates that the discussions	10:04:29
16	between communications between counsel and the	10:04:34
17	witness are non-discoverable	10:04:37
18	MR. SWANSON: Uh-huh.	10:04:40
19	MR. LENNIE: unless the witness is	10:04:42
20	relying on those communications.	10:04:43
21	MR. SWANSON: I think I'm entitled to ask	10:04:47
22	him if what he was asked to do. Do you agree?	10:04:48

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 40	
1	MR. LENNIE: I do.	10:04:53
2	MR. SWANSON: All right.	10:04:53
3	BY MR. SWANSON:	10:04:53
4	Q Were you asked to analyze whether Diethorn	10:04:54
5	anticipates claim 1 of the '345 patent?	10:04:58
6	A I was asked to consider Diethorn in the	10:05:03
7	context of the patent and all of the aspects of	10:05:05
8	Diethorn with respect to all of the claims.	10:05:09
9	Q And did you form an opinion as to whether	10:05:12
10	Diethorn anticipates claim 1?	10:05:14
11	A I did not.	10:05:16
12	Q Why not?	10:05:17
13	A The report is long, almost 300 pages, I	10:05:25
14	believe. It it took some time to do and at some	10:05:30
15	point in looking at the issues, it became a	10:05:36
16	challenging issue to be able to address.	10:05:40
17	Q Challenging in what respect?	10:05:44
18	A In trying to think about the aspects, it	10:05:49
19	wasn't obvious to me, in terms of the amount of time.	10:05:51
20	I I had to take time on various different things to	10:05:55
21	be able to address the various different aspects of	10:05:58
22	the rebuttal response for my report.	10:06:02

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

41

1	Q Uh-huh. So are you saying you did not form	10:06:04
2	an opinion as to Diethorn on claim 1 because you ran	10:06:09
3	out of time?	10:06:14
4	MR. LENNIE: Objection. Form.	10:06:15
5	A We made choices with respect to what aspects	10:06:20
6	of various different portions of the rebuttal report	10:06:23
7	we would we would spend effort on. It wasn't	10:06:27
8	running out of time, though.	10:06:31
9	Q But you said you were asked to look at all	10:06:34
10	aspects of Diethorn with respect to all of the claims,	10:06:36
11	right?	10:06:39
12	A I was asked to consider various aspects. I	10:06:42
13	don't have an opinion at this point in time. I wasn't	10:06:46
14	able to form an opinion about them.	10:06:50
15	Q Okay. And why were you not able to form an	10:06:52
16	opinion?	10:06:57
17	MR. LENNIE: Objection. Form.	10:06:59
18	A I it just became a choice from the	10:07:01
19	standpoint of looking at the various different items.	10:07:08
20	I mean, I looked at different aspects of different	10:07:10
21	references.	10:07:15
22	Q Uh-huh. So you chose not form an opinion or	10:07:17

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

42

1	you were	10:07:23
2	A No, I didn't choose not to form an opinion.	10:07:28
3	Q Okay. Sitting here right now, do you	10:07:31
4	have do you have an opinion as to whether Diethorn	10:07:35
5	anticipates claim 1?	10:07:37
6	A I do not.	10:07:40
7	Q Was there a strike that.	10:08:07
8	Earlier in your testimony you said you have	10:08:18
9	an opinion. In your opinion claim 1 is novel, right?	10:08:21
10	A I believe I said that, yes.	10:08:32
11	Q Okay. Does that include by that did you	10:08:33
12	mean claim 1 is novel over Diethorn?	10:08:39
13	MR. LENNIE: Objection. Form.	10:08:42
14	A At this point I don't have an opinion on	10:08:52
15	that.	10:08:54
16	Q How are you able to form an opinion that	10:08:54
17	claim 1 is novel if if you are unable to form an	10:08:56
18	opinion as to whether it's novel over Diethorn?	10:08:59
19	MR. LENNIE: Objection. Form.	10:09:03
20	A I haven't gotten to conclusions regarding	10:09:34
21	Diethorn, so I I can't say about with respect to	10:09:40
22	that reference.	10:09:43

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1		Conducted on June 16, 2017	43	
1	Q	In the course of providing your opinions in		10:09:49
2	this cas	e, you looked at the Diethorn reference?		10:09:51
3	A	I did.		10:09:56
4	Q	And you studied that reference?		10:09:57
5	A	I spent time looking at it, yes.		10:10:00
6	Q	And you did render opinions on Diethorn with		10:10:02
7	respect	to other claims of the '345 patent, right?		10:10:05
8	A	Yes, I did.		10:10:08
9	Q	Can I direct you back to the '345 patent?		10:10:22
10	A	Sure.		10:10:26
11	Q	You can put the Kyriakakis report to the		10:10:27
12	side for	now.		10:10:30
13		Okay. Can you look at the claims?		10:10:55
14	A	Uh-huh.		10:11:00
15	Q	Specifically claim 13?		10:11:03
16	A	Uh-huh.		10:11:06
17	Q	Claim 13 depends from claim 1; is that		10:11:09
18	right?			10:11:12
19	A	Yes.		10:11:13
20	Q	And claim 13 adds a limitation of a		10:11:15
21	subtract	or for subtracting said noise elements		10:11:22
22	estimate	d at said positions determined by said		10:11:26

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.	D.
Conducted on June 16, 2017	

1	threshold detector from said audio signal sorry	10:11:28
2	to derive said audio signal substantially without said	10:11:30
3	noise.	10:11:37
4	Do you see that?	10:11:39
5	A I do.	10:11:40
6	Q Is that limitation describing the process of	10:11:43
7	spectral subtraction?	10:11:47
8	MR. LENNIE: Objection. Form.	10:11:48
9	A (Reviewing.)	10:12:16
10	It's describing elements of systems that	10:12:29
11	employ spectral subtraction. It's describing	10:12:37
12	methodologies that are within the '345 patent.	10 : 12 : 42
13	Q And within the prior art, correct?	10:12:45
14	MR. LENNIE: Objection. Form.	10:12:53
15	A It's not describing techniques in prior art	10:13:10
16	specifically because it's describing things related to	10:13:14
17	threshold detection and setting thresholds for each	10:13:19
18	frequency bin using a noise estimation process and	10:13:22
19	also detecting for each frequency bin where the	10:13:26
20	magnitude of the frequency bin is less than the	10:13:29
21	corresponding threshold, thereby detecting the	10:13:31
22	positions of noise elements.	10:13:34

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.	D.
Conducted on June 16, 2017	

1	Q Okay. I just want to focus on the	10:13:36
2	additional step in claim 13, subtracting said noise	10:13:38
3	elements.	10:13:43
4	The '345 did the '345 inventors invent	10:13:44
5	the idea of subtracting noise elements from an audio	10:13:52
6	signal?	10:13:58
7	MR. LENNIE: Objection. Form.	10:13:59
8	A (Reviewing.)	10:14:26
9	The '345 patent is an invention which	10:14:35
10	relates to noise cancellation and reduction and to	10:14:37
11	noise cancellation/reduction using spectral	10:14:41
12	subtraction.	10:14:44
13	Q Uh-huh. The step of subtracting noise	10:14:45
14	elements from an audio signal, was that known in the	10:14:52
15	art?	10:14:55
16	MR. LENNIE: Objection. Form.	10:15:02
17	A I mean, the general concept of being able to	10:15:03
18	do subtraction was known. The methodologies of	10:15:07
19	various techniques are different.	10:15:10
20	Q And the additional limitation of claim 13,	10:15:18
21	subtracting said noise and I won't read all of	10:15:21
22	it but the additional limitation of claim 13, was	10:15:24

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

46

1	that in the prior art as of the time of the patent?	10:15:28
2	MR. LENNIE: Objection. Form.	10:15:34
3	A No, it wasn't, because of the way the	10:15:37
4	methods have been combined in the '345 patent.	10:15:39
5	Q So it's your opinion that subtracting said	10:15:44
6	noise elements estimated at said positions determined	10:15:48
7	by said threshold detector from said audio signal was	10:15:51
8	novel?	10:15:57
9	A It was novel in relation to the	10:15:57
10	methodologies that are described in the '345 patent.	10:15:59
11	Q You agree there are prior art methods of	10:16:03
12	estimating noise, right?	10:16:06
13	A Yes.	10:16:08
14	Q Okay. So let's put aside the the '345's	10:16:08
15	technique for how you estimate the noise.	10:16:14
16	Once you have a noise estimate, was the step	10:16:18
17	of subtracting the estimated noise from an audio	10:16:21
18	signal known as of the time of the patent?	10:16:24
19	A There were methods that that were known	10:16:31
20	and could be applied to do that sort of technique.	10:16:32
21	Q Okay. In fact, Boll describes one of those	10:16:35
22	techniques, right?	10:16:58

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.	
Conducted on June 16, 2017	

1	A One of what technique?	10:17:00
2	Q The technique you just mentioned,	10:17:02
3	subtracting noise estimates from an audio signal.	10:17:04
4	A I mean, Boll describes a meth a	10:17:07
5	particular method of spectral subtraction	10:17:10
6	Q Uh-huh.	10:17:13
7	A that he's designed for that particular	10:17:13
8	problem using his particular techniques.	10 : 17 : 15
9	Q Right. Boll Boll described a process for	10 : 17 : 17
10	estimating noise, right?	10:17:21
11	A He used methods for estimating noise, yes.	10:17:28
12	Q And he also described how to subtract that	10:17:31
13	noise from an audio signal, correct?	10:17:35
14	A He described a technique for subtracting	10:17:38
15	that noise from an audio signal.	10:17:40
16	Q Okay. As of the time of the '345 patent,	10 : 17 : 45
17	would a person of skill in the art have been capable	10:18:25
18	of implementing the technique for subtracting noise	10:18:28
19	elements from an audio signal?	10:18:34
20	MR. LENNIE: Objection. Form.	10:18:37
21	A What do you mean by "subtracting noise	10:18:38
22	elements from an audio signal"?	10:18:40

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

48

1		
1	Q Do you have an understanding of what it	10 : 18 : 43
2	means to subtract noise elements from an audio signal?	10:18:44
3	A Well, in the context of the '345 patent,	10:18:48
4	there are techniques that are described for doing it.	10:18:50
5	The rea you used terms that are within the claim	10:18:52
6	language; that's the reason why I'm asking the	10:18:54
7	question.	10:18:56
8	Q What are the techniques for subtracting	10:18:57
9	noise elements in the '345 patent?	10:18:59
10	A (Reviewing.)	10:19:01
11	The specification describes a particular	10:19:54
12	embodiment of the invention. Figure 4 provides a	10:20:09
13	detailed description of the subtraction process and	10:20:13
14	indicates elements that are being used to perform	10:20:16
15	subtraction.	10:20:20
16	Q Can you turn to Figure 4?	10:20:32
17	A (Complying.)	10:20:36
18	Q What's what's being shown in Figure 4?	10:20:45
19	A It shows the processing of the subtraction	10:20:48
20	process.	10:20:52
21	Q There are there are two steps in Figure	10:20:54
22	4, 402 and 404; is that right?	10:20:55

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 49	
1	А	Yes, it contains those two blocks.	10:20:59
2	Q	Okay. What does step 402 show?	10:21:02
3	А	(Reviewing.)	10:21:19
4		Step 402 shows Y(n), the magnitude of the	10:21:20
5	current b	in, and N(n), the noise estimation of that	10:22:11
6	bin, bein	g used in a filter process to compute H(n).	10:22:16
7	Q	Is that process known as filter	10:22:25
8	multiplica	ation?	10:22:27
9	A	It is.	10:22:30
10	Q	And that was known in the art?	10:22:31
11	A	(Reviewing.)	10:22:45
12		The process of filter multiplication is one	10:24:09
13	way to imj	plement such systems.	10:24:12
14	Q	By "such systems" do you mean spectral	10:24:17
15	subtractio	on systems?	10:24:19
16	A	I mean systems that employ noise processing	10:24:20
17	and noise	reduction.	10:24:24
18	Q	And filter multiplication was known in the	10:24:26
19	art as of	the time of the '345 patent?	10:24:29
20		MR. LENNIE: Objection. Form.	10:24:46
21	A	The process of performing filtering with	10:24:47
22	multiplica	ation was understood. The process of	10:24:50

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 50)
1	performing filter multiplication in the context of all	10:24:52
2	the different aspects of this patent, you know,	10:24:56
3	I'm	10:24:59
4	Q Were you done with that answer?	10:25:04
5	A It it's in combination with other methods	10:25:09
6	where this patent is en is enabling its	10:25:11
7	functionality.	10:25:15
8	Q Uh-huh. But the process of filter	10:25:15
9	multiplication by itself was understood in the art as	10:25:18
10	of the time of the patent, right?	10:25:20
11	A The process of filter multiplication was	10:25:36
12	understood with respect to certain aspects of certain	10:25:39
13	systems being implemented. The relative advantages of	10:25:44
14	those lead one to use techniques in specific ways	10:25:48
15	for for a particular invention.	10:25:57
16	Q Had the particular formula shown in 402 of	10:26:01
17	Figure 4 of the '345 patent	10:26:04
18	A Uh-huh.	10:26:06
19	Q been used in prior art spectral	10:26:06
20	subtraction systems?	10:26:09
21	A The particular formula depends upon	10:26:12
22	quantities that are going into it. So the quantities	10:26:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

51

1	that are b	being used, you know, depend upon other	10:26:17
2	processing	g methods. So the overall computation is	10:26:20
3	not. I'm	saying the overall computation, including	10:26:24
4	the way Y	(n) is calculated, is not.	10:26:26
5	Q	Is not what?	10:26:30
6	А	Because of the techniques that are being	10:26:32
7	used to pe	erform those.	10:26:34
8		MR. SWANSON: Can you mark this as Exhibit	10:26:43
9	4.		10:26:44
10		(Exhibit 4 was marked for identification and	10:26:44
11	is attache	ed to the transcript.)	10:26:44
12	Q	Is Exhibit 4 the Boll paper that we talked	10:27:19
13	about earl	ier?	10:27:21
14	А	It is.	10:27:23
15	Q	This is the paper that's referenced in the	10:27:24
16	'345 pater	it?	10:27:26
17	А	It is.	10:27:28
18	Q	Okay. And you're familiar with this paper?	10:27:29
19	А	I am.	10:27:31
20	Q	Can you please turn to Page 116 of Boll?	10:27:39
21	А	(Complying.)	10:27:49
22	Q	The Bates number ends in 56673, for the	10:27:53

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D.	
		Conducted on June 16, 2017 5	2
1	record.		10:27:57
2		And can I direct to the right-hand column	10:28:01
3	A	Uh-huh.	10:28:07
4	Q	under the heading "Bias Removal and	10:28:07
5	Half-Wave	Rectification"?	10:28:10
6	А	Yes.	10:28:11
7	Q	And the first sentence under that heading	10:28:15
8	reads, "T	he spectral subtraction spectral estimate S	10:28:24
9	hat"		10:28:29
10	A	Uh-huh.	10:28:29
11	Q	"is obtained by subtracting the expected	10:28:29
12	noise mag	nitude spectrum from the magnitude signal	10:28:31
13	spectrum.	n	10:28:35
14		Do you see that?	10:28:38
15	A	I do.	10:28:39
16	Q	And then it provides two formulas?	10:28:39
17	A	Yes.	10:28:43
18	Q	Is the second formula showing filter	10:28:46
19	multiplica	ation?	10:28:51
20	A	The second formula is showing the	10:29:13
21	multiplica	ation of a quantity H, which is not here I	10:29:15
22	don't see	what H is oh, here it is H is here	10:29:19

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph	ı.D.
Conducted on June 16, 2017	

1			
1	which	by X(k), so it's showing multiplication.	10:29:22
2	Q	That's a filter multiplication?	10:29:26
3	A	It's a multiplication of an input signal by	10:29:32
4	a a co	pefficient.	10:29:35
5	Q	Uh-huh. The input signal here is	10:29:39
6	represent	ted by the variable X; is that right?	10:29:48
7	А	Yes.	10:29:50
8	Q	Okay. And Hk is representing the filter; is	10:29:50
9	that righ	nt?	10:29:56
10	A	That would be the coefficient.	10:29:58
11	Q	Right. So and that's the the first	10:30:00
12	part of t	that formula, where it says S hat equals H	10:30:05
13	H(k) time	es X(k)?	10:30:10
14	A	Yes.	10:30:13
15	Q	Is that right?	10:30:14
16		And after that there's a definition of H(k);	10:30:15
17	do you se	ee that?	10:30:21
18	A	I do.	10:30:23
19	Q	And that's showing the same formula as box	10:30:24
20	402 of th	ne '345 patent?	10:30:28
21	A	No, it's not.	10:30:32
22	Q	Why not?	10:30:33

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, F	h.D.
Conducted on June 16, 2017	

1	A In box 402 there is two bars to the left and	10:30:34
2	right of the numerator which performs a calculation	10:30:45
3	which is not part of Boll.	10:30:50
4	Q You're talking about the the absolute	10:30:54
5	values?	10:30:57
6	A Yes, I am.	10:30:57
7	Q Okay. Other than those absolute values, is	10:30:58
8	that the same mathematical formula?	10:31:04
9	A I don't understand what you mean.	10:31:07
10	Q Putting aside the abso the absolute	10:31:08
11	value bars that are missing in Boll	10:31:12
12	A Yes.	10:31:15
13	Q is that the same mathematical formula?	10:31:16
14	A It's if you change if you remove the	10:31:19
15	absolute value bars, you change the mathematical	10:31:21
16	formula.	10:31:24
17	Q Uh-huh. This is showing in Boll this is	10:31:25
18	showing the noise estimate divided by the signal,	10:31:34
19	correct?	10:31:39
20	A Noise estimate? I don't I'm I'm not	10:31:43
21	sure what you mean.	10:31:45
22	Q Do you see the Greek character Mu in Boll?	10:31:52

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	55
1	A	I do.	10:
2	Q	And the sentence before the formula is	10:
3	that's	it says that that's the expected noise	10:
4	magnitude	spectrum, right?	10:
5	A	I see it says that, yes.	10:
6	Q	Okay. So Mu is the noise estimate?	10:
7	А	Mu is the expected value of the noise	10:
8	magnitude	spectrum as he's defined it.	10:
9	Q	Right. Which is the noise estimate?	10:
10	A	It's an expected noise magnitude spectrum.	10:
11	Q	How is that different from a noise estimate?	10:
12	A	There are various ways to estimate noise.	10:
13	It doesn'	t describe how the estimation is done and how	10:
14	the expec	tation is done.	10:
15	Q	But in Boll that's treated as a noise	10:
16	estimate,	right?	10:
17	А	It's treated as an expected noise magnitude	10:
18	spectrum.		10:
19	Q	Which in Boll is his estimated noise?	10:
20	А	It's an estimate at each frequency bin.	10:
21	Q	An estimate of the noise?	10:
22	A	Of the expected value of the noise magnitude	10:

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	56
1	spectrum.	10 : 33
2	Q Is that different from the noise at each	10:33
3	frequency bin?	10:33
4	MR. LENNIE: Objection. Form.	10:33
5	A Where are you getting the second aspect of	10:33
6	the noise at each frequency where are you referring	10:33
7	to that?	10:33
8	Q Well, I was asking if Mu is Mu of K is	10:33
9	the noise estimate, and you keep saying that it's the	10:33
10	expected noise magnitude spectrum.	10:33
11	A Correct.	10:33
12	Q And I'm asking, is there a difference	10:33
13	between the noise estimate and the expected noise	10:33
14	magnitude spectrum?	10:33
15	A What noise estimate are you talking about?	10:33
16	Q Well, Boll estimates the noise at each	10:33
17	frequency bin, right?	10:33
18	A Boll uses an estimate of each frequency bin	10:34
19	of the expected value of the noise magnitude spectrum.	10:34
20	Q Which is Boll's estimate of the noise,	10:34
21	right?	10:34
22	MR. LENNIE: Objection. Form.	10:34

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	57
1	A Mun, as he describes it, is the expected	10:34:37
2	value of the noise magnitude spectrum at a frequency	10:34:41
3	bin.	10:34:47
4	MR. HASLAM: This is Bob Haslam. I have to	10:34:55
5	leave now, rejoin this deposition later.	10:34:56
6	Q Okay. You agree that Boll in the second	10:35:31
7	formula is showing a filter multiplication; is that	10:35:35
8	right?	10:35:39
9	A He's multiplying an input sample by a	10:35:51
10	coefficient.	10:35:54
11	Q And the coefficient is a filter?	10:35:56
12	A It is the val it is H, as indicated in	10:36:03
13	this expression.	10:36:06
14	Q And H in this expression is a filter?	10:36:08
15	A H represents one quantity within the system.	10:36:19
16	Doesn't represent a filter by itself.	10:36:24
17	Q What is that quantity?	10:36:27
18	A It's a coefficient that's multiplying the	10:36:32
19	the input sample.	10:36:34
20	Q How is it derived?	10:36:36
21	A There's an equation for it, 1 minus Mu K	10:36:42
22	over absolute value of X(k).	10:36:45

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, I	Ph.D.
Conducted on June 16, 2017	

		Conducted on June 16, 2017	58
1	Q	And what does that equation represent?	10:36:5
2	A	It represents a coefficient that's	10:36:5
3	multiply	ing the input sample.	10:36:5
4	Q	For the purpose of reducing the noise in the	10:37:0
5	signal?		10:37:C
6	А	Yeah, Boll speaks of a stand-alone noise	10:37:C
7	suppress	ion algorithm.	10:37:1
8	Q	Can you look at Page 114 under the heading	10:37:1
9	on the le	eft-hand column "Spectral Subtraction	10:37:2
10	Estimato	r"?	10:37:2
11		Do you see that?	10:37:2
12	А	I do.	10:37:2
13	Q	Okay. And the first sentence says, "The	10:37:3
14	spectral	subtraction filter H."	10:37:3
15		Do you see that?	10:37:3
16	А	Uh-huh. I do.	10:37:3
17	Q	So do you now agree that H is the spectral	10:37:3
18	subtract	ion filter?	10:37:4
19	А	He uses slightly different notation here.	10:37:4
20	The notat	tion he he is using considers values across	10:37:5
21	different	t frequencies.	10:38:0
22	Q	But it is a spectral subtraction filter?	10:38:0

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton I	Douglas, Ph.D.
Conducted on June 1	6, 2017

1	А	As Boll stated, it's the spectral	10:38:08
2	subtracti	on filter he's using.	10:38:13
3	Q	Okay. Turning back to the '345 patent and	10:38:16
4	just look	ing again at Figure 402, is there anything	10:38:27
5	unconvent	ional about this filter multiplication	10:38:36
6	formula?		10:38:42
7		MR. LENNIE: Objection. Form.	10:38:43
8	А	I don't understand what you mean by	10:38:48
9	"unconver	itional."	10:38:49
10	Q	Was this filter multiplication being done in	10:38:51
11	a way tha	at deviated from the prior art?	10:38:54
12		MR. LENNIE: Objection. Form.	10:38:57
13	А	What art are you referring to?	10:39:05
14	Q	Just the prior art in general	10:39:07
15	А	In general?	10:39:09
16	Q	as of 1999?	10:39:09
17	А	It deviates from Boll.	10:39:15
18	Q	Because of the absolute values?	10:39:17
19	А	Well, that's it performs an absolute	10:39:20
20	value cal	culation that changes the nature of the	10:39:23
21	calculati	.on.	10:39:26
22	Q	Is there any other way in which it deviates?	10:39:27

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.	
	Conducted on June 16, 2017 60	1
1	A Well, as I said, Y(n) and N(n) are used to	10:39:30
2	compute it and the methodologies for those which are	10:39:36
3	not described in this.	10:39:38
4	Q Uh-huh. But just the multi the filter	10:39:40
5	calculation itself	10:39:42
6	A Uh-huh.	10:39:44
7	Q is there any other way in which that	10:39:44
8	deviates from Boll?	10:39:46
9	A I mean, the calculations are different.	10:40:32
10	Q How?	10:40:36
11	A Well, there is the absolute value.	10:40:37
12	Q Uh-huh. Anything else?	10:40:40
13	A And again, the way Y(n) and N(n) are	10:40:45
14	computed as input into this with respect to other	10:40:49
15	parts of the patent.	10:40:53
16	Q I'm not talking about how they're computing,	10:40:54
17	but just this formula here in 402	10:40:56
18	A Uh-huh.	10:40:59
19	Q is there anything else other than the	10:41:00
20	absolute values that differs from Boll?	10:41:01
21	A There can be choices of lengths of windows	10:41:04
22	used in the processing, there can be other aspects of	10:41:09

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

61

1	the systems that are not represented in this	10:41:13
2	particular block in the way the calculations are done	10 : 41 : 15
3	which are not represented here.	10 : 41 : 18
4	Q Okay. But those any such differences	10:41:20
5	aren't represented here in 402?	10:41:23
6	A They are part of the implementation process	10:41:30
7	when one is implementing systems like this.	10:41:32
8	Q But they're not shown in 402?	10:41:45
9	A I don't know what you mean by "not shown in	10:41:48
10	402."	10:41:50
11	Q Those other strike that.	10:41:51
12	Can you turn to column 7 of the patent, and	10:41:59
13	starting at line 1, the sentence beginning,	10:42:19
14	"Alternative approach," then down through line 8 or 9,	10:42:22
15	shows that same formula as 402?	10:42:29
16	A Yes.	10:42:34
17	Q Is that that right?	10:42:34
18	The '345 patent doesn't say that this is a	10:42:35
19	new filter multiplication approach, does it?	10:42:38
20	A (Reviewing.)	10:42:52
21	THE WITNESS: Could you read back the	10:42:53
22	question?	10:45:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 62	1
1	(Pending question was read.)	10:45:03
2	A The '345 patent says, " the present	10:45:19
3	invention applies to filter multiplication to effect	10:45:21
4	the subtraction. The filter function, a Wiener filter	10:45:25
5	function for example, or an approximation of the	10:45:28
6	Wiener filter is multiplied by the complex data of the	10:45:30
7	frequency domain audio signal."	10:45:30
8	This is how it characterizes that.	10:45:31
9	Q Right, but the patent is not saying that the	10:45:38
10	filter multiplication used here is novel over the	10:45:42
11	prior art, does it?	10:45:46
12	A It's describing the methodology of how the	10:45:51
13	filter function may effect a full-wave rectification	10:45:57
14	or a half-wave rectification or otherwise negative	10:45:59
15	results of the subtraction process or simple	10:46:03
16	subtraction.	10:46:07
17	It's an element of the system which, in	10:46:10
18	combination with other elements, allows the system	10:46:14
19	to to be implemented.	10:46:16
20	Q Okay. But the patent does not claim to have	10:46:32
21	invented a new filter multiplication technique, does	10:46:39
22	it?	10:46:42

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

63

1	MR. LENNIE: Objection. Form.	10:46:44
2	A The patent claims an apparatus according to	10:47:20
3	claim 13 I'm reading from claim 14 wherein said	10:47:24
4	subtractor performs subtraction using a filter	10:47:28
5	multiplication which multiplies said audio signal by a	10:47:29
6	filter function.	10:47:34
7	Q Right. And the patent doesn't purport to	10:47:37
8	have invented a new filter multiplication technique?	10:47:40
9	A This technique should be viewed in	10:47:48
10	combination with the other features of the patent.	10:47:49
11	Q Let's assume claim 1 is invalid, okay?	10:47:58
12	Assuming claim 1 is invalid, does the additional	10:48:06
13	limitation of claim 13 make that claim patentable over	10:48:12
14	claim 1?	10:48:16
15	MR. LENNIE: Objection. Form.	10:48:19
16	A I I think that's why we're here in these	10:48:19
17	sorts of proceedings, to try to decide this. I don't	10:48:32
18	know as a technical expert whether I'm here to decide	10:48:35
19	that sort of aspect of the issue.	10:48:38
20	Q You don't have an opinion on that?	10:48:40
21	MR. LENNIE: Objection. Form.	10:48:45
22	A Well, the invention is or has aspects	10:48:46

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

64

1		
1	which are novel, and I'm not here to render an opinion	10:49:01
2	where, you know, said subtractor performs subtraction	10:49:11
3	using a filter multiplication which multiplies said	10:49:14
4	audio signal by a filter function is novel.	10 : 49 : 17
5	Q Okay. So you have no opinion on whether	10:49:21
6	claim 1 would be valid if claim 1 is invalid?	10 : 49:23
7	MR. LENNIE: Objection. Form.	10 : 49:28
8	A I I'm confused by your statement. You	10 : 49:30
9	said claim 1 is valid if claim 1 is invalid. This	10:49:35
10	doesn't make sense to me.	10:49:39
11	Q Okay, let me rephrase.	10 : 49 : 40
12	Do you have an understanding that as a legal	10:49:41
13	matter if an independent claim, like claim 1 here, is	10:49:44
14	invalid, the claims that depend from claim 1 can	10 : 49:49
15	nevertheless be found not invalid?	10:49:54
16	MR. LENNIE: Objection. Form.	10:49:58
17	Q If they are novel and nonobvious over the	10:49:59
18	independent claim?	10:50:02
19	MR. LENNIE: Same objection.	10:50:03
20	A (Reviewing.)	10:50:09
21	MR. BAIK: Just for the record, what is the	10:50:39
22	witness looking at?	10:50:40

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, P	h.D.
Conducted on June 16, 2017	

1	THE WITNESS: I'm looking at the rebuttal	10:50:42
2	expert report of my own.	10:50:44
3	A (Reviewing.)	10:52:19
4	I am not a lawyer, but I understand that a	10:52:19
5	patent claim that contains several elements may not be	10:52:21
6	obvious because all just because all of the claim	10:52:26
7	elements are individually known in the prior art.	10:52:28
8	Q Okay. And I'm asking about the difference	10:52:33
9	between independent and dependent claims,	10:52:35
10	understanding that you're not a lawyer, but do you	10:52:37
11	have an understanding that if an independent claim is	10:52:39
12	invalid, that a dependent claim can be not invalid if	10:52:43
13	it's novel and nonobvious over the independent claim?	10:52:49
14	MR. LENNIE: Objection. Form.	10:52:55
15	A Again, I'm not a lawyer. Could you	10:53:00
16	restate restate your question.	10:53:02
17	Q Sure. Was there something you didn't	10:53:04
18	understand about it or you just want me to repeat the	10:53:06
19	question?	10:53:10
20	A You can repeat the question.	10:53:10
21	Q Okay. Do you have an understanding that as	10:53:12
22	a legal matter if an independent claim is invalid, a	10:53:13

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 66	-
1	claim that depends from that independent claim can be	10:53:1
2	found not invalid if it's novel and nonobvious over	10:53:2
3	the independent claim?	10:53:2
4	MR. LENNIE: Same objection.	10:53:3
5	A I understand dependent claims depend upon	10:53:5
6	independent ones. The question of obviousness or	10:53:5
7	non-obviousness is something that I am here to provide	10:54:0
8	opinions on with respect to the report that	10:54:0
9	Dr. Kyriakakis has provided.	10:54:1
10	Q Okay. And are you let me just go back to	10:54:1
11	my earlier question, just trying to understand what	10:54:2
12	what you have opinions on and what you don't have	10:54:
13	opinions on in this case.	10:54:
14	If we assume claim 1 is invalid, is it your	10:54:2
15	opinion that claim 13 is novel and nonobvious over	10:54:
16	claim 1?	10:54:
17	A That's a difficult question. I would have	10:54:
18	to think about that.	10:54:
19	Q You haven't thought about that before today?	10:54:5
20	A I haven't been considering scenarios where	10:54:5
21	claim 1 is invalid, no. You case it in the context of	10:55:0
22	if claim 1 is invalid.	10:55:1

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

67

1	Q Even though you decided not to offer an	10:55:13
2	opinion, you decided not to dispute Dr. Kyriakakis's	10:55:15
3	opinion that claim 1 is invalid over Diethorn?	10:55:20
4	MR. LENNIE: Objection. Form.	10 : 55 : 27
5	A I haven't formed an opinion on that issue.	10:55:28
6	Q Okay. So sitting here today you have no	10:55:30
7	opinion as to whether claim 13 represents a novel and	10:55:33
8	nonobvious distinction over claim 1?	10:55:39
9	MR. LENNIE: Objection. Form.	10:55:47
10	A I would have to give it some specific	10:55:52
11	thought. I haven't thought through the process of	10:55:53
12	taking out claims to try to then insert other ones.	10:55:57
13	Q And you haven't yet rendered an opinion on	10:56:00
14	that issue in this case?	10:56:03
15	MR. LENNIE: Objection. Form.	10:56:05
16	A (Reviewing.)	10:56:21
17	Speaking with respect to Diethorn, Diethorn	10:56:22
18	does not anticipate claim 13 of the '345 patent. And	10 : 59 : 37
19	it doesn't guarantee, for example, that the gain value	10:59:42
20	is less than one when noise values are detected.	10:59:45
21	Q Uh-huh. Are you talking you're looking	10:59:48
22	at your expert report?	10:59:55

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, I	h.D.
Conducted on June 16, 2017	

1	A I'm using it to recall what I know about	10:59:58
2	Diethorn, yes.	11:00:00
3	Q Okay. So I'm not asking about Diethorn	11:00:02
4	specifically. I'm asking whether if you assume claim	11:00:05
5	1 is invalid, whether the additional limitation of	11:00:11
6	claim 13 represents makes that claim patentable	11:00:15
7	above and beyond claim claim 1?	11:00:22
8	A I I haven't thought through	11:00:24
9	MR. LENNIE: Objection. Form.	11:00:26
10	A I haven't thought through the process that	11:00:26
11	would allow me to make that determination at this	11:00:30
12	point in time.	11:00:32
13	Q Okay. If you assume claim 13 is invalid	11:00:33
14	over the prior art, do you have an opinion as to	11:00:36
15	whether the additional limitation of claim 14 let	11:00:38
16	me strike that.	11:00:42
17	Can we look at claim 14? Claim 14 depends	11:00:45
18	from claim 13; is that right?	11:00:49
19	A Yes.	11:00:51
20	Q And claim 14, the additional limitation is	11:00:52
21	that the said subtractor performs subtraction using a	11:00:57
22	filter multiplication which multiplies said audio	11:01:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 69	1
1	signal by a filter function?	11:01:05
2	A Uh-huh.	11:01:09
3	Q Right?	11:01:09
4	A Yes.	11:01:10
5	Q Sitting here today, do you have an	11:01:11
6	opinion let me start over.	11:01:12
7	Assuming claim 13 is invalid, do you have an	11:01:15
8	opinion as to whether the additional limitation of	11:01:20
9	claim 14 makes that claim patentable over claim 13?	11:01:25
10	MR. LENNIE: Objection. Form.	11:01:30
11	A Again, I haven't thought through processes	11:01:31
12	that would that would consider both claims 1 and	11:01:34
13	claims 13 invalid in order to try to decide whether 14	11:01:37
14	is valid. I haven't considered that issue.	11:01:43
15	Q And if you look at claim 15, claim 15	11:01:50
16	depends from claim 14; is that right?	11:01:57
17	A Yes.	11:01:59
18	Q The additional limitation of claim 15 is	11:02:02
19	that said filter function is a Wiener filter function	11:02:06
20	which is a function of said frequency bins of said	11:02:09
21	noise elements of magnitude.	11:02:12
22	Do you see that?	11:02:14

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	70
1	A III	-huh. Yes.	11:02:15
2		you have an understanding of what a	11:02:16
3	Wiener filte	ar is?	11:02:17
4		do	11.02.19
5		at is a Wieper filter?	11.02.19
6		iat is a Wiener fifter:	11.02.35
0	A It	is a fifter that is designed to reduce	11.02.33
/	noise accord	ling to a specific criterion.	11:02:43
8	Q Wł	at's the purpose of using a Wiener filter?	11:02:51
9	A Tł	e purpose of a Wiener filter is to reduce	11:02:55
10	noise.		11:02:58
11	Q Wł	at's the purpose of using a Wiener filter	11:02:59
12	over the fil	ter multiplication shown in Figure 4 of	11:03:01
13	the '345 pat	ent?	11:03:07
14	ME	R. LENNIE: Objection. Form.	11:03:09
15	A I	guess I don't understand the question.	11:03:14
16	Q Wł	ny would you so Figure 4 of the '345	11:03:18
17	patent shows	filter multiplication, right?	11:03:23
18	A Ye	es.	11:03:26
19	Q Wł	y would one use a Wiener filter as opposed	11:03:28
20	to the filte	er multiplication approach shown in Figure	11:03:32
21	4?		11:03:36
22	A Wł	ny are you	11:03:36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

71

1	MR. LENNIE: Objection. Form.	11:03:36
2	A I don't understand your question. "As	11:03:37
3	opposed to," that doesn't make sense to me.	11:03:40
4	Q What what's the advantage of a Wiener	11:03:43
5	filter over other types of filters?	11:03:46
6	A Are you speaking hypothetically and	11:03:49
7	generally?	11:03:51
8	Q Generally. In the art, in the field of	11:03:51
9	spectral subtraction and noise suppression, why would	11:03:55
10	one use a Wiener filter as opposed to some other type	11:03:57
11	of filter multiplication?	11:04:00
12	MR. LENNIE: Objection. Form.	11:04:02
13	A I I mean, speaking in the more	11:04:05
14	generally, a Wiener filter is designed to reduce noise	11:04:09
15	according to a specific criterion. It's simply a way	11:04:12
16	to design the filter.	11:04:15
17	Q Does it offer advantages over other types of	11:04:17
18	filters?	11:04:20
19	A It provides a method and specification for	11:04:24
20	setting filter coefficients.	11:04:28
21	Q Uh-huh. If you turn to column 8, line 52,	11:04:31
22	of the '345 patent?	11:04:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	72
1	A (Complying.)	11:04:37
2	Q The sentence beginning on line 52 reads,	11:04:41
3	"Although the straight forward approach may be used by	11:04:44
4	which phase is estimated and applied, the alternative	11:04:48
5	Wiener Filter is preferred since this saves processing	11:04:50
6	time and complexity."	11:04:54
7	Do you see that?	11:04:55
8	A I do.	11:04:56
9	Q Do you agree that the Wiener filter saves	11:04:57
10	processing time and complexity over the	11:04:59
11	straightforward approach?	11:05:01
12	A (Reviewing.)	11:05:36
13	So that the record is clear, the statement	11:05:56
14	"the straightforward approach" refers to the value of	11:05:58
15	the estimated bin noise magnitude is subtracted from	11:06:03
16	the current bin magnitude.	11:06:07
17	Q Uh-huh.	11:06:08
18	A The "alternative Wiener filter approach" is	11:06:11
19	referring to processing similar to block 400, because	11:06:16
20	this processing saves time and computation.	11:06:34
21	Q You agree that that processing saves time	11:06:37
22	and sorry, that process saves processing time and	11:06:42

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
73

1	,	
1	complexity?	11:06:46
2	A It does save processing time and complexity.	11:06:48
3	Q Okay. Did the inventors of the '345 patent	11:06:51
4	invent Wiener filters?	11:06:58
5	A Wiener filters were understood in the art	11:07:02
6	for various applications in in tasks more	11:07:05
7	generally.	11:07:09
8	Q Including spectral subtraction?	11:07:11
9	A The concept of a Wiener filter can be	11:07:24
10	applied in many in many places.	11:07:26
11	Q Uh-huh.	11:07:29
12	A It was not something that was common within	11:07:30
13	spectral subtraction to use.	11:07:33
14	Q Had it been used in spectral subtraction	11:07:35
15	prior to '345?	11:07:37
16	A The methodology for the filter design had	11:07:47
17	been used in techniques employing noise reduction.	11:07:49
18	THE WITNESS: Actually, could we take a	11:08:09
19	break? Is that	11:08:10
20	MR. SWANSON: Yeah, sure.	11:08:11
21	THE WITNESS: I mean, I know you were	11:08:11
22	MR. SWANSON: No, we've been going for a	11:08:11

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

74

1	while, yeah.	11:08:13
2	THE WITNESS: Yeah, let's do it.	11:08:14
3	MR. SWANSON: That's fine, sure.	11:08:14
4	THE VIDEOGRAPHER: Going off the record.	11:08:15
5	The time is 11:08.	11:08:15
6	(A recess was taken.)	11:20:42
7	THE VIDEOGRAPHER: Here begins Tape No. 2.	11 : 20 : 47
8	We're back on the record 11:21.	11 : 20 : 48
9	(Mr. Haslam has rejoined the proceedings.)	11:20:51
10	BY MR. SWANSON:	11 : 20 : 52
11	Q Dr. Douglas, you said earlier that a Wiener	11:20:56
12	filter is a filter that is designed to reduce noise	11:20:59
13	according to a specific criterion.	11:21:03
14	Do you remember that?	11:21:06
15	A I do.	11:21:06
16	Q What is the specific criterion that you're	11:21:08
17	referring to?	11:21:12
18	A So a Wiener filter is generally about trying	11:21:13
19	to reduce noise. So the goal is to try to improve the	11:21:18
20	quality of the signal relative to the noise.	11:21:28
21	Q Okay. And how does that relate to the	11:21:34
22	specific criterion that you mentioned?	11:21:36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

i		Conducted on June 16, 2017 75	1
1	A	Well	11:21:38
2	Q	What would those criterion be?	11:21:38
3	A	Well, one example criterion would be mean	11:21:41
4	squared	error, as one possibility.	11:21:44
5	Q	Anything else?	11:21:47
6	A	There are other ones. One I recall is the	11:22:00
7	maximiza	tion of the signal-to-noise-ratio.	11:22:04
8	Q	Do you recall any other examples?	11:22:11
9	A	Not not right now, but there may be	11:22:13
10	others.	There's different ways to formulate it.	11:22:15
11	Q	Is any filter that reduces noise a Wiener	11:22:18
12	filter?		11:22:21
13	A	No. Wiener filters, as I said, have been	11:22:26
14	designed	according to criterion.	11:22:29
15	Q	What differentiates a Wiener filter from a	11:22:34
16	non-Wien	er filter?	11:22:38
17	A	It's the design criterion.	11:22:41
18	Q	Just turning back to Figure 4 of the '345	11:22:47
19	patent,	the formula for H in block 402.	11:22:51
20	A	Uh-huh.	11:23:02
21	Q	Is H a Wiener filter?	11:23:02
22		MR. LENNIE: Objection. Form.	11:23:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

76

1	A H generally is a filter as part of a filter	11 : 23 : 24
2	function. It can be computed in various ways. One of	11 : 23 : 26
3	the ways in which this is this is an example of one	11 : 23 : 30
4	way in which it's computed.	11 : 23 : 34
5	Q And is this example a Wiener filter?	11 : 23 : 35
6	A (Reviewing.)	11 : 23 : 37
7	It's one way of estimating a Wiener filter	11 : 23 : 39
8	function.	11 : 24 : 55
9	Q How does how does this filter meet the	11:25:01
10	specific criterion that you mentioned?	11:25:08
11	A (Reviewing.)	11:25:11
12	This particular function computes H(n) as a	11:26:44
13	ratio of two quantities. The top quantity is the	11:26:49
14	absolute value of a signal magnitude that's been noise	11:26:57
15	reduced, and the bottom quantity is the signal	11:27:03
16	magnitude.	11:27:07
17	And there is understanding within how Wiener	11:27:09
18	filters work how that relates to Wiener filtering	11:27:18
19	processing in general; although, this uses estimates	11:27:22
20	of quantities to be able to compute it.	11:27:26
21	Q Uh-huh. How does this particular formula	11:27:28
22	relate to Wiener filtering processing?	11:27:37

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

77

1	A I mean, one of the ways is that the way the	11 : 27 : 46
2	ratio has been calculated and the fact the numerator	11:27:50
3	and the denominator have been chosen the way they are.	11:27:54
4	But it relates also to how the estimates are	11:27:58
5	performed.	11:28:01
6	Q Can you turn back to Boll, please? And on	11:28:06
7	Page 116	11:28:30
8	A Uh-huh.	11:28:30
9	Q the formula we were looking at earlier	11:28:33
10	A Yes.	11:28:36
11	Q in the right-hand column.	11:28:36
12	Is the formula for H in Boll, is that a	11:28:39
13	Wiener filter?	11:28:43
14	A No, it's not.	11:28:54
15	Q Why not?	11:28:56
16	A Well, one of the things that a Wiener filter	11:29:00
17	generally has is that the filter function is greater	11:29:03
18	than zero, and there's nothing in this that guarantees	11:29:07
19	that.	11:29:10
20	Q That	11:29:17
21	A That's one of the ways.	11:29:18
22	Q Is there anything else? Any other reason	11:29:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	78
1	why it's	not a Wiener filter?	11:29:21
2	А	Well, there's the ways in which Mu K and XK	11:29:24
3	are compu	ted, I would have to look at how how he	11:29:31
4	how he im	plements those. There's no it's not clear	11:29:34
5	from his	description that it is.	11:29:36
6		(Exhibit 5 was marked for identification and	11:29:38
7	is attach	ed to the transcript.)	11:29:38
8	Q	Exhibit 5 is the Arslan prior art reference;	11:30:51
9	is that r	ight?	11:30:55
10	А	Yes.	11:30:59
11	Q	U.S. Patent 5,706,395, for the record.	11:31:00
12	А	Yes.	11:31:06
13	Q	You've seen this before?	11:31:08
14	А	I have.	11:31:09
15	Q	And you're familiar with Arslan?	11:31:11
16	А	I am.	11:31:14
17	Q	Does Arslan disclose a Wiener filter?	11:31:17
18	А	Arslan talks about noncausal Wiener	11:31:27
19	filtering	which minimizes the mean squared error.	11:31:29
20	Q	Turning back to the '345 patent, Exhibit 1,	11:32:15
21	and just	going back to the claims.	11:32:19
22	А	Uh-huh.	11:32:36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 79	
1	Q So claim 15, do you see that?	11:32:40
2	A I do.	11:32:45
3	Q And claim 15 depends from claim 14; is that	11:32:46
4	right?	11:32:49
5	A Yes.	11:32:51
6	Q The additional limitation of claim 15 is	11:32:53
7	that the filter function of claim 14 is a Wiener	11:32:56
8	filter function which is a function of said frequency	11:33:01
9	bins of said noise elements and magnitude.	11:33:03
10	Is that right?	11:33:06
11	A That's what it says, yes.	11:33:07
12	Q If you assume that claim 14 is invalid, do	11:33:10
13	you have an opinion as to whether the addition of the	11:33:14
14	Wiener filter in claim 15 makes that claim patentable?	11:33:17
15	MR. LENNIE: Objection. Form.	11:33:23
16	A I haven't given thought to how, again, these	11:34:09
17	hypothetical situations of things being invalid	11:34:16
18	somehow allows me then to decide where systems that	11:34:18
19	happen to use Wiener filters are also invalid. I	11:34:21
20	haven't given that thought. That would take me more	11:34:25
21	time to think through in this specific case.	11:34:28
22	Q Okay. Can you look at claim 16? Claim 16	11:34:30

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 80			
1	depends from claim 15; is that right?	11 : 34 : 35	
2	A Yes.	11 : 34 : 43	
3	Q And claim 16 recites that the filter	11 : 34:44	
4	multiplication multiplies the complex elements of said	11 : 34:51	
5	frequency bins by said Wiener filter function?	11 : 34 : 54	
6	A Yes.	11 : 34 : 57	
7	Q If you assume that claim 15 is invalid, do	11:35:03	
8	you have an opinion as to whether the additional	11:35:06	
9	requirement of claim 16 makes that claim patentable?	11 : 35:10	
10	MR. LENNIE: Objection. Form.	11 : 35:17	
11	A Again, considering problems associated with	11:35:24	
12	claim dependence where you would say claim 16 depends	11 : 35 : 32	
13	upon 15 and 15 depends upon 14 and 14 depends upon 13	11:35:35	
14	and you're claiming that things are invalid, I haven't	11 : 35 : 40	
15	given thought to these processes of what portion of,	11 : 35 : 43	
16	you know, the system is I mean, I would need more	11 : 35 : 47	
17	thought to think through this.	11 : 35 : 52	
18	Q Okay. Are all of your opinions in this case	11 : 35 : 53	
19	based on the assumption that claim 1 is valid?	11:35:58	
20	MR. LENNIE: Objection. Form.	11:36:03	
21	A No, they're not.	11:36:06	
22	Q Looking back at claim 16, was it known in	11 : 36 : 17	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 8	1
1	the art as of the time of the '345 patent that the way	11:36:22
2	you would apply a Wiener filter to a signal is to	11:36:26
3	multiply the complex elements by the filter?	11:36:30
4	MR. LENNIE: Objection. Form.	11:36:35
5	A I'm sorry, could you repeat the question? I	11:36:42
6	want to make sure I get it right.	11:36:44
7	Q Uh-huh, yeah.	11:36:46
8	(Pending question read.)	11:36:46
9	A I mean, speaking more generally, a Wiener	11:37:21
10	filter is implemented in different ways depending upon	11:37:24
11	different systems, so (shrugging shoulders.)	11:37:27
12	The use of complex elements, I can't I	11:37:33
13	guess I don't understand exactly what you're asking in	11:37:38
14	terms of how it is that if someone would employ using	11:37:43
15	a Wiener filter.	11:37:47
16	Certainly the statement Wiener filter would	11:37:48
17	not would not imply that somebody is using complex	11:37:50
18	elements. Necessarily.	11:37:54
19	Q But that's one way you could do it?	11:37:59
20	A There are different ways to implement	11:38:03
21	filters.	11:38:05
22	Q Uh-huh.	11:38:06

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

82

1	A Employing complex processing is a way to	11:38:07
2	implement a filter.	11:38:11
3	Q And that was known prior to the '345 patent?	11:38:12
4	A What do you mean by "it"?	11:38:17
5	Q You said, "Employing complex processing is a	11:38:20
6	way to implement a filter."	11:38:24
7	A Yes. Employing complex processing is a way	11:38:25
8	to implement a filter was something that was known,	11:38:28
9	yes.	11:38:31
10	Q Okay. And by "employing complex	11:38:31
11	processing," do you mean that the filter would be	11:38:33
12	applied by multiplying the filter against the complex	11:38:35
13	elements of a signal?	11:38:39
14	A That's one way to perform the resulting	11 : 38 : 40
15	calculation.	11 : 38 : 43
16	Q Okay. Let's look at claim 17. Claim 17	11:38:44
17	depends from claim 13, right?	11:38:58
18	A Uh-huh.	11 : 39:03
19	Q And claim 17 recites the additional	11 : 39:03
20	limitation of a residual noise processor for reducing	11:39:07
21	residual noise remaining after said subtractor	11 : 39 : 12
22	subtracts that noise elements at said positions	11 : 39:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	83
1	determined by sorry determined by said threshold	
2	detector from said audio signal.	
3	Do you see that?	
4	A I do.	
5	Q And I believe you said earlier that residual	
6	noise processing was known in the art as of the time	
7	of the '345 patent?	
8	A There were techniques for performing	
9	residual noise processing on on signals after they	
10	had been processed.	
11	Q And in fact, Boll discloses a technique for	
12	performing residual noise	
13	A Boll has a specific technique that he has	
14	described for this.	
15	Q For residual noise processing?	
16	A For residual noise processing, yes.	
17	Q Are you familiar with the concept of	
18	residual noise processing?	
19	A Yes, I'm familiar with the general concept	
20	of it. I haven't been using it or practicing it in	
21	terms of implementing such systems.	
22	Q Is the purpose of residual noise processing	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 8	4
1	to reduce the artifacts that remain after spectral	11:40:29
2	subtraction?	11:40:33
3	A I mean can you give me a little more	11:40:37
4	context?	11:40:44
5	Q Do you have an understanding that after	11:40:47
6	spectral subtraction is performed that there can be	11:40:52
7	noise artifacts remaining in the signal? Is that	11:40:55
8	right?	11:40:58
9	A There can be noise remaining in the signal,	11:40:59
10	yes.	11:41:02
11	Q And is the purpose of residual noise	11:41:02
12	processing to reduce some of that remaining noise?	11:41:05
13	A Yes. The purpose of residual is the	11:41:10
14	concept the term "residual" refers to the idea that	11:41:13
15	you wish to further reduce the resulting, you know,	11:41:17
16	undesirable components within the signal after you've	11:41:23
17	done your initial filtering.	11:41:28
18	Q And that was known at the time of the '345	11:41:30
19	patent?	11:41:32
20	A Aspects of it were described in Boll in	11:41:34
21	specific ways.	11:41:36

22

Q

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

The '345 inventors didn't invent residual

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 84

11:41:38

	Conducted on June 16, 2017 85
1	noise processing, right?
2	MR. LENNIE: Objection. Form.
3	A The '345 patent contains many different
4	elements which comprise it. Those elements, put
5	together, yield the resulting system. A residual
6	noise processing is one of those aspects.
7	Q Was there anything novel about the way the
8	'345 patent performs residual noise processing?
9	MR. LENNIE: Objection. Form.
10	A Again, I'm not here to try to determine the
11	novelty of that particular residual noise processing.
12	My report rebuts the opinions of Dr. Kyriakakis in
13	terms of his determination of elements of the '345
14	patent. And other aspects.
15	Q Uh-huh. Does that mean you don't know if
16	there was anything novel about the way the '345 patent
17	performs residual noise processing?
18	MR. LENNIE: Objection. Form.
19	A Again, the '345 contains combinations of
20	different elements which include residual noise
21	processing. So the design of the '345 system as one
22	of its embodiments would allow residual noise

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 86	; ,
1	processing to be part of it.	11 : 4
2	Q But I'm I'm focusing just on the residual	11:4
3	noise processing element of the '345 patent.	11:4
4	Was there anything novel about their	11:4
5	technique for residual noise processing?	11:4
6	MR. LENNIE: Objection. Form.	11:4
7	A (Reviewing.)	11:4
8	The '345 describes methods for performing	11:4
9	residual noise reduction in both Figure 5 and Figure	11:4
10	5A, and Figure 5A employees a similar threshold used	11:4
11	by the noise estimator at 508 on the noise-free output	11:4
12	bin. So it uses thresholds and methods for estimating	11:4
13	thresholds.	11:4
14	Q And is there anything novel about that?	11:4
15	MR. LENNIE: Objection. Form.	11:4
16	A Again, the mechanism for estimating	11:4
17	thresholds and the mechanisms for performing that	11:4
18	noise processing are part of the '345 patent, and	11:4
19	those combinations yield results which are have	11:4
20	are indicative of, you know, system the system that	11:4
21	is being described in the '345 embodiment.	11:4
22	Q And is that novel, in your view, a novel way	11:4

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 87	
1	of performing residual noise reduction?	11:49:18
2	MR. LENNIE: Objection. Form.	11:49:21
3	A I mean, again, my purpose here is is to	11 : 49 : 22
4	provide opinions on rebuttal of Dr. Kyriakakis's	11:49:26
5	report. You know, '345 contains combinations of	11 : 49 : 32
6	systems which allow it to be a novel invention.	11 : 49 : 42
7	Q You consider yourself an expert in the area	11:49:45
8	of signal processing?	11:49:50
9	A I do.	11:49:53
10	Q You consider yourself an expert in the area	11:49:54
11	of noise cancellation?	11:49:56
12	A I've worked in noise cancellation and	11:49:58
13	systems that reduce noise, yes.	11:50:00
14	Q Do you that's a yes? You consider	11:50:02
15	yourself an expert in noise cancellation?	11:50:05
16	A In systems that reduce noise.	11:50:07
17	Q And you've been working in the field for 25	11:50:10
18	years?	11:50:12
19	A I so I've been working in the field of	11:50:13
20	signal processing and various aspects of of, you	11:50:16
21	know, the processing of audio signals in particular.	11:50:19

0.0

D

D1

11:50:23

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

For more than 25 years?

Q

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	88
1	A Yes.	11:50:25
2	Q And you've been a professor since 1998?	11:50:26
3	A Actually, I've been a processor since 1992	. 11:50:30
4	Q Oh. So more than I guess that's 25	11:50:34
5	years?	11:50:37
6	A Yes.	11:50:38
7	Q Okay. And that was before the '345 patent	11:50:38
8	was filed?	11:50:41
9	A Yes.	11:50:42
10	Q Okay. So based on those 25 years of	11:50:43
11	experience in the area of signal processing and nois	e 11:50:48
12	cancellation, do you have an opinion as to whether t	he 11:50:51
13	techniques described in the '345 patent for residual	11:50:56
14	noise processing were novel?	11:50:59
15	MR. LENNIE: Objection. Form.	11:51:02
16	A Again, I'm here to provide rebuttal on the	11:51:04
17	opinions that have been provided by Dr. Kyriakakis	11:51:09
18	that he has raised in his report.	11:51:12
19	Q So the answer is no, you don't have an	11:51:14
20	opinion?	11:51:16
21	MR. LENNIE: Objection. Form.	11:51:17
22	A Again, my I am here to provide opinions	11:51:22

PLANET DEPOS

888.433.3767 | WWW.PLANETDEPOS.COM

89

1	on the opinions that have been provided by the other	11:51:25
2	expert in his report.	11 : 51 : 30
3	Q Okay. So you don't have an opinion on that	11 : 51 : 32
4	issue?	11:51:34
5	MR. LENNIE: Objection. Form.	11:51:35
6	A Again, what makes the patent what makes	11:51:58
7	the patent novel is the combination of its elements	11:52:03
8	that allow the various different aspects of the system	11:52:06
9	to function in conjunction and that overall aspect of	11:52:09
10	the system made the system unique.	11:52:14
11	Q But sitting here today you're not able to	11:52:18
12	say whether or not the noise the residual noise	11:52:20
13	reduction techniques in the '345 patent were novel?	11:52:23
14	MR. LENNIE: Objection. Form.	11:52:27
15	A Again, the residual noise reduction	11:52:33
16	techniques use noise estimation processes and	11:52:38
17	threshold processes which are important features and	11 : 52 : 41
18	unique features of '345 patent.	11 : 52 : 45
19	Q Were those techniques novel as of the time	11:52:52
20	of the '345 patent? The residual noise reduction	11:52:55
21	techniques?	11:53:00
22	A The methodologies that were used in	11:53:01

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017	90
1	combination were, yes.	11:53:0
2	Q When you say "in combination," you mean in	11:53:0
3	combination with everything else in the patent?	11:53:1
4	MR. LENNIE: Objection. Form.	11:53:1
5	A I mean again, aspects of the patent	11:53:1
6	describes an embodiment which combines the resulting	11:53:2
7	elements.	11:53:2
8	Q Was there anything novel about the technique	11:53:3
9	for Wiener filtering described in the patent?	11:53:3
10	MR. LENNIE: Objection. Form.	11:53:3
11	A (Reviewing.)	11:53:5
12	Again, methodologies for performing the	11:54:0
13	noise estimation process and for detecting positions	11:54:0
14	of noise elements in order to do computations are an	11:54:1
15	important feature of the patent and novel in the	11:54:1
16	patent.	11:54:1
17	Q So your opinion is that the novelty was the	11:54:2
18	way in which noise was estimated and detected?	11:54:2
19	MR. LENNIE: Objection. Form.	11:54:3
20	A It's not the only novelty, no.	11:54:3
21	Q What are the other novelties?	11:54:3
22	A The way the system is combined together and	11:54:3

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

91

1	the way the aspects and, in fact, the way the	11 : 54 : 40
2	inventors considered the various different aspects to	11 : 54 : 43
3	be combined is an important aspect of its novelty.	11 : 54 : 46
4	Q So it's the combination of noise estimation	11:54:50
5	and noise detection along with the other features like	11 : 54 : 52
6	Wiener filters and residual noise processing, not	11 : 54 : 57
7	those features on their own?	11 : 55:01
8	A It	11 : 55:03
9	MR. LENNIE: Objection. Form.	11 : 55:04
10	A (Reviewing.)	11:55:05
11	Again, the methodologies for how the system	11 : 55 : 35
12	performs its computation is novel and in addition to	11 : 55 : 37
13	allowing the other methods to be combined with it.	11 : 55 : 43
14	Q What do you mean? What computation are you	11:55:48
15	referring to?	11:55:51
16	A For example, a threshold detector for	11:55:54
17	setting a threshold for each frequency bin using a	11:55:55
18	noise estimation process and for detecting for each	11:55:59
19	frequency bin whether the magnitude of the frequency	11 : 56 : 02
20	bin is less than the corresponding threshold, thereby	11 : 56:05
21	detecting the position of noise elements for each	11 : 56 : 07
22	frequency bin. That's an example.	11:56:10

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	92
1	Q Was the computation of the Wiener filter	11:56:13
2	novel?	11:56:15
3	A The way in which values are used to	11:56:20
4	calculate the Wiener filter function sorry. The	11 : 56 : 23
5	way in which the values are computed within the Wiener	11:56:27
6	filter function certainly bring it novelty.	11:56:30
7	Q Aside from how the variables themselves were	11:56:33
8	calculated, is the calculation for the Wiener filter	11:56:36
9	novel?	11:56:39
10	A I mean, it used also aspects of full-wave	11:56:41
11	rectification as mentioned, as an example.	11:56:44
12	Q Are you saying that full-wave rectification	11:57:01
13	was novel?	11:57:05
14	MR. LENNIE: Objection. Form.	11:57:10
15	A Again, when used with the techniques within	11:57:12
16	the patent to be able to perform the computation, it	11:57:17
17	provided it provided a a capable and novel	11:57:23
18	system.	11:57:27
19	Q You're talking about the noise estimation	11:57:28
20	techniques?	11 : 57 : 30
21	A For example.	11:57:31
22	Q Okay. But you're not saying that the Wiener	11:57:32

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Dough	las, Ph.D.
Conducted on June 16, 20	17

93

1	filter calculation itself was novel?	11:57:34
2	MR. LENNIE: Objection. Form.	11 : 57 : 39
3	A The concept and knowledge of a Wiener filter	11 : 57 : 59
4	was known. The methodologies of how to apply it can	11:58:01
5	be unique in various situations. And depending upon	11:58:04
6	the situation, those those evaluations can be	11:58:08
7	different.	11:58:13
8	Q Was it unique in this patent, the way in	11:58:15
9	which it was applied?	11:58:19
10	A Yes.	11 : 58 : 20
11	Q How so?	11 : 58 : 21
12	A Because it used computations of both noise	11 : 58 : 22
13	estimation and processing to allow the system to to	11 : 58 : 28
14	effectively yield an accurate estimation of the	11:58:35
15	output.	11:58:39
16	Q Okay. Turning back to the claims. Claim	11 : 58 : 42
17	17.	11:58:49
18	A Uh-huh.	11 : 58 : 52
19	Q Assuming so claim 17 depends from claim	11 : 58 : 55
20	13; is that right?	11 : 58 : 59
21	A It does.	11:59:01
22	Q Okay. Assuming that claim 13 is invalid, do	11:59:02

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 94	4
1	you have an opinion as to whether the additional	11:59:0
2	limitation of claim 17 makes that claim patentable	11:59:0
3	over claim 13?	11:59:1
4	A Claim 17 refers to said positions and said	12:00:4
5	threshold detector and these described techniques	12:00:4
6	within the '345 patent for setting a threshold for	12:00:4
7	each frequency bin using a noise estimation process	12:00:5
8	and for detecting positions of noise elements.	12:01:0
9	So there are features in this which are	12:01:0
10	pointing towards elements within '345 that have	12:01:0
11	that yield functionality for the overall patent.	12:01:1
12	Q You're talking about what's described in the	12:01:2
13	specification?	12:01:2
14	A That's one	12:01:2
15	Q [Inaudible.]	12:01:2
16	A That's one instantiation of that, yes.	12:01:2
17	Q Is it your opinion that what's described in	12:01:2
18	the specification for setting a threshold and	12:01:3
19	detecting a position of noise elements is required by	12:01:3
20	the threshold detector limitation in claim 1?	12:01:3
21	A It's not	12:01:3
22	MR. LENNIE: Objection. Form.	12:01:3

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 95	
1	A It's not required; it is an example	12:01:39
2	embodiment for the system.	12:01:41
3	Q Uh-huh. But the claim isn't limited to	12:01:44
4	that?	12:01:46
5	A The claim is not limited to that example	12:01:48
6	embodiment, no.	12:01:51
7	Q Okay. So going back to my question, then,	12:01:52
8	about claim 17, do you have an opinion if you	12:01:54
9	assume claim 13 is invalid, do you have an opinion as	12:01:58
10	to whether the additional limitation of claim 17 makes	12:02:01
11	it patentable over claim 13?	12:02:05
12	MR. LENNIE: Objection. Form.	12:02:08
13	A Again, I haven't gone through the thought	12:02:43
14	process of trying to determine where you know, if	12:02:45
15	these items are invalid, how this aspect of the system	12:02:48
16	would be.	12:02:54
17	Q Okay. Looking at	12:02:55
18	A Decided.	12:02:58
19	Q Sorry?	12:02:59
20	A Decided. I said decided.	12:03:00
21	Q Okay. Looking at claim 18, claim 18 depends	12:03:01
22	on claim 17, right?	12:03:06

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	96
1	A Yes.	12:03:09
2	Q And the additional limitation of claim 18 is	12:03:11
3	that said residual noise processor replaces said	12:03:15
4	frequency bins corresponding to non-speech segments of	12:03:19
5	said audio signal with a minimum value.	12:03:22
6	Is that right?	12:03:26
7	A It says that, yes.	12:03:27
8	Q Assuming claim 17 is invalid, do you have an	12:03:29
9	opinion as to whether the additional limitation of	12:03:33
10	claim 18 makes that claim patentable over claim 17?	12:03:35
11	MR. LENNIE: Objection. Form.	12:03:40
12	A (Reviewing.)	12:03:47
13	Again, I haven't considered that issue with	12:04:15
14	regard to my my response in my rebuttal report, and	12:04:17
15	I haven't gone through the thought processes of trying	12:04:25
16	to take out portions of the system's of the	12:04:29
17	validity of this to try to determine that.	12:04:30
18	Q Okay. Let's take a look at claim 21. Claim	12:04:33
19	21 refers to an estimator for estimating a magnitude	12:04:41
20	of each frequency bin?	12:04:45
21	A Uh-huh.	12:04:47
22	Q Do you see that?	12:04:47

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.	
	Conducted on June 16, 2017	9/
1	A I do.	12:04:48
2	Q Is that referring to the step in the	12:04:53
3	patent why don't we look at Figure 2 of the patent?	12:05:01
4	A (Complying.)	12:05:07
5	Q Is that referring to what's shown in Figure	12:05:16
6	204? Sorry, box 204 of Figure 2?	12:05:19
7	A (Reviewing.)	12:05:25
8	Box 204, Figure 2, describes an example of	12:05:46
9	an estimate of the magnitude of a frequency bin.	12:05:50
10	Q And that would be done instead of	12:05:58
11	calculating magnitude exactly, right?	12:06:01
12	MR. LENNIE: Objection. Form.	12:06:06
13	A (Reviewing.)	12:06:07
14	This is a method for estimating the	12:06:16
15	magnitude of a frequency bin.	12:06:20
16	Q And is the purpose of that to avoid the	12:06:25
17	complexity of calculating magnitude precisely?	12:06:30
18	MR. LENNIE: Objection to form.	12:06:34
19	A Are you speaking of this particular	12:06:37
20	calculation or are you speaking of in general methods	12:06:41
21	for estimating magnitude?	12:06:45
22	Q In general.	12:06:48

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

98

1		
1	A In general, I mean the purpose of estimating	12:06:49
2	magnitude is to try to determine the size of a signal,	12:06:52
3	and there are many ways to do it. This is an example	12:06:56
4	of one way.	12:06:59
5	Q You can calculate magnitude exactly, right?	12:07:01
6	MR. LENNIE: Objection. Form.	12:07:05
7	A The magnitude is the size of a signal.	12:07:17
8	Q Uh-huh.	12:07:20
9	A It involves a decision as to what that size	12:07:20
10	is and then methods to estimate the magnitude attempt	12:07:24
11	to come to values that are close in some sense to	12:07:30
12	that.	12:07:33
13	Q Is there a mathematical formula for	12:07:36
14	calculating magnitude?	12:07:39
15	Let me be more precise. Is there a formula	12:07:50
16	for calculating magnitude based on the output of a	12:07:52
17	FFT?	12:07:58
18	MR. LENNIE: Objection. Form.	12:08:00
19	A (Reviewing.)	12:09:31
20	For an FFT, the values that are computed can	12:11:38
21	be complex in value. In such contexts, the values can	12:11:42
22	be represented using an amplitude and a phase for a	12:11:49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

99

1	complex number. And the magnitude calculation can be	12:11:55
2	used to find the amplitude of that complex number.	12:12:00
3	Q And is the formula for that magnitude	12:12:06
4	calculation shown in column 5, line 39, recognizing	12:12:11
5	there is a mistake in that formula and that the	12:12:18
6	exponent should be one-half instead of negative 2?	12:12:22
7	A That is a way to compute the amplitude of a	12:12:30
8	complex number.	12:12:33
9	Q And then immediately after that formula	12:12:36
10	it's the patent says, "In order to save processing	12:12:43
11	time and complexity the signal magnitude is estimated	12 : 12 : 45
12	by an estimator using an approximation formula	12:12:49
13	instead."	12:12:52
14	Do you see that?	12:12:52
15	A I see the passage that you're pointing to.	12:12:54
16	Q Okay. And then following that there is a	12:12:58
17	another formula? Do you see that?	12:13:01
18	A Yes, I do.	12:13:05
19	Q And that's a formula for approximating	12:13:06
20	magnitude?	12:13:11
21	A That's an estimator of the magnitude.	12:13:13
22	Q And do you agree that one reason why you	12 : 13 : 18

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

100

1		
1	would estimate magnitude instead of using the formula	12:13:22
2	above is to save processing time and complexity?	12:13:27
3	A There are different ways or different	12:13:35
4	reasons, I should say for using estimation	12:13:38
5	processes. One of those is to reduce complexity.	12:13:42
6	Q Did the inventors of the '345 patent invent	12:13:52
7	this technique for estimating magnitude?	12:13:57
8	MR. LENNIE: Objection. Form.	12:14:02
9	A I haven't been asked to yield an opinion on	12:14:17
10	whether this particular technique was invented.	12:14:19
11	Q Was the magnitude calculation shown at	12:14:25
12	column 5, line 39, was that known in the art as of the	12:14:32
13	time of the '345?	12:14:37
14	A Versions of that equation were were known	12:14:54
15	with regard to calculations used with complex	12:15:04
16	processing. This system purports to use it in the	12:15:09
17	context of noise estimation.	12 : 15 : 13
18	Q Had this formula been used in the context of	12 : 15 : 20
19	noise estimation before the '345?	12:15:22
20	MR. LENNIE: Objection. Form.	12 : 15 : 26
21	A I I don't know how I could know that. I	12:15:27
22	don't have access to all the systems that have ever	12:15:30

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	101
1	been designed prior to this to try to figure that out.	12:15:33
2	Q Did Boll calculate the magnitude of signals?	12:15:37
3	MR. LENNIE: Objection. Form.	12:15:47
4	A Boll uses the absolute value of signal	12:15:50
5	quantities in his calculations.	12:15:55
6	Q And is that a calculation of magnitude?	12:15:58
7	MR. LENNIE: Objection. Form.	12:16:05
8	A It is a representation of amplitude.	12:16:08
9	Magnitude is a calculation designed to get at that.	12:16:11
10	Q Is it when you say it's a representation,	12:16:15
11	do you mean it's an estimation of amplitude or is it	12:16:19
12	an exact calculation of amplitude?	12:16:22
13	MR. LENNIE: Objection. Form.	12:16:25
14	A I don't understand what you mean in your	12:16:33
15	question.	12:16:36
16	Q What did you mean by "it's a representation	12:16:36
17	of amplitude"?	12:16:38
18	A Absolute value is one way to represent the	12:16:47
19	amplitude of a complex number and the way to	12:16:52
20	essentially look at the length of the complex vector	12:16:57
21	in real and imaginary space.	12:17:01
22	Q At the time of the '345 patent, were was	12:17:05

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

102

1	it known to use approximation formulas for magnitude	12:17:11
2	rather than calculating magnitude exactly?	12 : 17 : 16
3	MR. LENNIE: Objection. Form.	12:17:27
4	A (Reviewing.)	12:18:11
5	There were methods for approximating the	12:18:14
6	exact calculation of the magnitude of quadrature	12:19:08
7	components.	12:19:12
8	Q And just for the record, you were looking	12:19:12
9	back at your report; is that right?	12:19:14
10	A Yes, I was. I wanted to make sure that what	12 : 19 : 16
11	I said was consistent with it. I was aware of	12:19:19
12	methods, but I wanted to be sure that my wording was	12 : 19 : 23
13	precise.	12:19:26
14	Q Okay. And do those methods include	12:19:27
15	estimating	12:19:32
16	THE COURT REPORTER: I'm sorry, I lost you.	12:19:32
17	MR. SWANSON: Sorry.	12:19:32
18	THE COURT REPORTER: Go ahead. That was my	12:19:32
19	fault.	12 : 19 : 32
20	MR. SWANSON: Sure, no, no problem.	12:19:32
21	Q Did those methods include did those	12 : 19 : 41
22	methods include estimating magnitude as a function of	12 : 19 : 47

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	103
1	the maximum and minimum values of the complex element	12:19
2	of an FFT?	12:19
3	MR. LENNIE: Objection. Form.	12:19
4	A With regard to an FFT, I no, I'm not	12:20
5	I'm not considering situations where frequency domain	12:20
6	processing was was being done.	12:20
7	Q Uh-huh. What about just using the	12:20
8	maximum/minimum values of complex numbers generally?	12:20
9	A That that was known, yes.	12:20
10	Q Looking back at the claims again of the	12:20
11	'345, claim 21.	12:20
12	A Uh-huh.	12:2
13	Q Claim 21 depends on claim 1?	12:2
14	A Yes.	12:2
15	Q Correct?	12:2
16	And claim 21 adds the limitation of an	12:2
17	estimator for estimating a magnitude of each frequency	12:2
18	bin; is that right?	12:20
19	A Yes.	12:2
20	Q Assuming claim 1 is invalid, do you have an	12:20
21	opinion as to whether the additional limitation of	12:20
22	claim 21 makes it patentable over claim 1?	12:2

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clintor	Douglas, Ph.D.
Conducted on June	16, 2017

104

		1
1	MR. LENNIE: Objection to form.	12:21:04
2	A I wasn't considering scenarios where claim 1	12:22:48
3	was somehow invalid, and looking at claim 21, the	12:22:51
4	focus is on estimator for estimating a magnitude of	12:22:57
5	each frequency bin.	12:23:00
6	This is a technique which is something	12:23:02
7	that you know, estimating a magnitude of each	12:23:04
8	frequency bin depends upon a particular application,	12:23:11
9	so it's hard to know from that aspect exactly what	12:23:16
10	feature we're talking about in terms of what's valid	12:23:20
11	or invalid.	12:23:23
12	Q Are you saying you don't understand claim	12:23:25
13	21?	12:23:27
14	MR. LENNIE: Objection. Form.	12:23:29
15	A I understand what an estimator for	12 : 23 : 41
16	estimating a magnitude of each frequency bin is in the	12:23:42
17	general context of these of of this system.	12 : 23 : 46
18	Q All right. So going back to my question, do	12 : 23 : 49
19	you have an opinion as to whether if you assume claim	12 : 23 : 53
20	1 is invalid the additional limitation of claim 21	12 : 23 : 57
21	make its patentable over claim 21?	12:24:01
22	MR. LENNIE: Objection. Form.	12:24:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

105

1	A Again, there are systems that use processing	12 : 24:15
2	involving magnitudes. Speaking and this is a	12:24:18
3	hypothetical that's hard to put my head around in	12:24:23
4	terms of what it is that you're asking me to do.	12 : 24 : 26
5	Q Okay. So you have no opinion on that issue	12:24:31
6	sitting here today?	12:24:34
7	A I would have to give additional thought to	12 : 24 : 37
8	it.	12:24:39
9	Q Okay. And looking at claim 22, claim 22	12 : 24 : 40
10	depends from claim 21, right?	12:24:44
11	A Yes.	12:24:49
12	Q And claim 22 adds the limitation of said	12:24:50
13	estimator estimates said magnitude of each frequency	12:24:55
14	bin as a function of the maximum and the minimum	12:25:00
15	values of the complex element of said frequency bins	12:25:03
16	for a number n of frequency bins.	12:25:07
17	A Sure.	12:25:12
18	Q Assuming claim 21 is invalid, do you have an	12:25:14
19	opinion as to whether the additional limitation of	12:25:17
20	claim 22 makes it patentable over claim 21?	12:25:20
21	MR. LENNIE: Objection. Form.	12:25:24
22	A (Reviewing.)	12 : 26 : 55

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	.06
1	A system which estimates said magnitude of	12:28:48
2	each frequency bin as a function of the	12:28:51
3	maximum/minimum values of the complex elements of said	12:28:53
4	frequency bins for a number n of frequency bins	12:28:50
5	describes frequency domain processing.	12:29:00
6	Q Uh-huh.	12:29:02
7	A I'm aware of methods for performing	12:29:00
8	calculations using maximum and minimum values as	12:29:09
9	estimators. The context of this sort of processing	12:29:13
10	depends, though, on the overall context of the patent	12:29:1
11	and also of the system for which the methods are being	12:29:20
12	used.	12:29:24
13	Q So is that a yes, you do have an opinion or	12:29:2
14	no, you don't have an opinion on that?	12:29:33
15	A I it's an issue which I can't address	12:29:34
16	without I mean, if you're simply saying, you know,	12:29:3
17	a system which has just this feature, I mean it's in	12:29:42
18	combination with these other features which allows the	12:29:4
19	system to be able to to function.	12:29:49
20	So, you know, I I I've been asked to	12:29:53
21	render to look at issues related to the entire	12:30:01
22	patent, not to that specific one issue.	12:30:04

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

107

1	Q All right. And just to be clear, I mean my	12:30:06
2	question is, if you assume that claim 21 was either	12:30:13
3	that the apparatus of claim 21 was either anticipated	12:30:18
4	or obvious over the prior art, do you have an opinion	12:30:22
5	as to whether the additional feature recited in claim	12:30:26
6	22 would make that claim patentable over the apparatus	12:30:30
7	of claim 21?	12:30:36
8	A Well	12:30:36
9	MR. LENNIE: Objection. Objection. Form.	12:30:38
10	A Well, but the apparatus of 21 depends upon	12:30:39
11	claim 1.	12:30:43
12	Q Right.	12:30:44
13	A So it certainly could potentially be	12:30:45
14	patentable because of claim 1.	12 : 30 : 49
15	Q But if you assume so you understand that	12:30:51
16	claim 21 includes the limitations of claim 1, right?	12 : 30 : 53
17	A Yes.	12:30:57
18	Q Okay. So if the apparatus of claim 21,	12:30:58
19	including all the limitations of claim 1, was	12:31:00
20	anticipated or obvious over the prior art, you have no	12 : 31:05
21	opinion as to whether the additional limitation of	12 : 31 : 10
22	claim 22 makes that claim patentable over the	12 : 31:13

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas,	Ph.D.
Conducted on June 16, 2017	

108

1	apparatus of claim 21?	12:31:17
2	MR. LENNIE: Objection. Form.	12:31:19
3	A Again, I haven't been asked to consider	12:31:20
4	claim 22 in isolation without considering claim 1	12:31:23
5	or claim 21 as well as back to claim 1.	12:31:26
6	Q All right. What about claim 23? Claim 23	12:31:30
7	depends on claim 21, right?	12:31:35
8	A Yes.	12:31:39
9	Q And claim 21 adds the additional element of	12:31:39
10	a smoothing unit which smooths the estimate of each	12:31:44
11	frequency bin; is that right?	12:31:49
12	A That's	12:31:51
13	MR. LENNIE: Objection. Form.	12 : 31:54
14	A The apparatus, according to claim 21,	12 : 31 : 55
15	further comprising a smoothing unit which smooths the	12:31:56
16	estimate of each frequency bin is what the claim	12:31:59
17	states.	12:32:02
18	Q And if you again assume that the apparatus	12:32:04
19	of claim 21 is anticipated or obvious over the prior	12:32:08
20	art, do you have an opinion as to whether the	12 : 32 : 15
21	additional limitation of claim 23 makes that claim	12 : 32 : 17
22	patentable over the apparatus of claim 21?	12:32:22

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
Transcript of Scott Clinton Douglas, P	h.D.
Conducted on June 16, 2017	

109

1	MR. LENNIE: Objection. Form.	12 : 32 : 33
2	A (Reviewing.)	12:32:34
3	Again, the language of this claim is in	12:35:23
4	is written in the context of the patent, where the	12 : 35 : 26
5	patent describes a smoothing unit which smooths the	12:35:29
6	estimate of each frequency bin.	12 : 35 : 32
7	And I I don't understand how I'm supposed	12:35:34
8	to consider this smoothing unit in the context of that	12:35:38
9	without considering the entire system.	12 : 35 : 41
10	Q What's your understanding of what claim 23	12 : 35 : 46
11	requires?	12:35:50
12	A Well, it comprises a smoothing unit, and it	12:36:00
13	smooths the estimate of each frequency bin, so it's a	12 : 36:03
14	system which employs some form of smoothing and/or	12:36:07
15	averaging.	12:36:10
16	Q And can that be smoothing or averaging over	12 : 36 : 11
17	time?	12 : 36:13
18	A It can be smoothing and averaging over time	12 : 36 : 17
19	and over frequency.	12:36:19
20	Q Okay. Do you understand claim 23 to require	12:36:28
21	any specific type of smoothing or averaging?	12:36:34
22	A Can you be more specific?	12:36:43

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

110

1	Q Well, I was just going back to your answer a	12 : 36:45
2	moment ago about the you said you don't know how	12 : 36:48
3	you're supposed to consider the smoothing unit of	12 : 36 : 52
4	claim 23 without considering the entire system, and I	12 : 36:56
5	was just wondering if if you were saying that claim	12:37:01
6	23 requires some specific type of smoothing described	12 : 37:04
7	in the patent?	12:37:08
8	A It doesn't require a specific type of	12:37:09
9	smoothing.	12 : 37 : 11
10	Q Okay. So going back to my question, then,	12 : 37 : 11
11	if you assume that the apparatus of claim 21 was	12 : 37 : 17
12	anticipated or obvious over the prior art, do you have	12:37:22
13	an opinion as to whether the additional limitation in	12 : 37 : 25
14	claim 23 makes that claim patentable over the	12:37:28
15	apparatus of claim 21?	12:37:33
16	MR. LENNIE: Objection. Form.	12:37:36
17	A Again, I've considered all aspects of the	12:37:39
18	patent, including the various claims and those that	12:39:10
19	those independent claims that depend on the claim that	12:39:16
20	we're talking about.	12:39:22
21	If you take away 1 and 21 and 22 and we're	12:39:26
22	left with 23, this is the only claim we have, there	12:39:31

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 11	1
1	are systems that perform smoothing, but I don't	12:39:35
2	understand how I'm supposed to judge patentability of	12:39:40
3	things when you take away all of these other aspects.	12:39:44
4	Q By "systems that perform smoothing" you mean	12:39:49
5	prior art systems that perform smoothing?	12:39:52
6	A I mean the concept of smoothing in general	12:39:55
7	and the and yes, systems that would calculate	12:39:58
8	smoothing.	12:40:02
9	Q Were part of the prior art?	12:40:03
10	MR. LENNIE: Objection. Form.	12:40:08
11	A There are methods that smooth quantities	12:40:10
12	having to do with things that calculations that	12:40:12
13	occur. This is speaking to smoothing which smooths	12:40:17
14	estimates of frequency bins with respect to this	12:40:23
15	application. So this is pointing to a type of	12:40:27
16	smoothing within within the operation of the	12:40:31
17	patent.	12:40:33
18	Q Does Boll disclose smoothing of frequency	12:40:35
19	bins?	12:40:38
20	A (Reviewing.)	12:40:53
21	Q Let me point you specifically to Page 116 of	12:42:07
22	Boll.	12:42:10

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.				
			Conducted on June 16, 2017 11	2
1		A	Uh-huh. Yes.	12:42:11
2		Q	The right-hand column?	12:42:12
3		A	Yes.	12:42:14
4		Q	The very top of that column has a heading	12:42:14
5	that	says	"Magnitude Averaging"?	12:42:17
6		A	Yes.	12:42:19
7		Q	Is that talking about smoothing?	12:42:19
8		A	It is talking about smoothing.	12:42:21
9		Q	Okay. And	12:42:23
10		A	It is not describing smoothing in frequency,	12:42:30
11	no.			12:42:33
12		Q	It's talking about smoothing over time?	12:42:34
13		A	It's talking	12:42:36
14			(Reviewing.)	12:42:38
15			" the variance of the noise spectral	12:42:39
16	estir	nate	is reduced by averaging over as many spectral	12:42:44
17	magn:	itude	sets as possible," where "sets" refers to	12:42:47
18	diffe	erent	points in time.	12:42:52
19		Q	Right. Okay. So you haven't had a chance	12:42:55
20	to co	onsid	er whether the additional limitation of claim	12:42:58
21	23 ma	akes	that claim patentable over claim 21?	12:43:01
22			MR. LENNIE: Objection. Form.	12:43:06

	Conducted on June 16, 2017	113
1	A (Reviewing.)	12:43:19
2	Again, I haven't been asked to consider 23	12:43:20
3	in isolation to determine whether it's patentable or	12:44:46
4	not. The system I've been looking at is the system of	12:44:50
5	the '345 which includes many elements.	12:44:54
6	Q Okay. Just turning to claim 25 on the next	12:44:59
7	page.	12:45:04
8	A (Complying.)	12:45:05
9	Q Claim 25 depends from claim 1, right?	12:45:08
10	A Yes.	12:45:11
11	Q And claim 25 adds the limitation of an	12:45:13
12	adaptive array comprising a plurality of microphones	12:45:16
13	for receiving said audio signal?	12:45:20
14	A Yes.	12:45:23
15	Q Assuming claim 1 is invalid, do you have an	12:45:25
16	opinion as to whether the additional limitation of	12:45:29
17	claim 25 makes it patentable over claim 1?	12:45:31
18	MR. LENNIE: Objection. Form.	12:45:35
19	A (Reviewing.)	12:46:26
20	Can we be more specific about what it is	12:46:26
21	that you're talking about in claim 25 in terms of the	12:47:12
22	terms that you're asking about?	12:47:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	114
1	Q Do you not understand claim 25?	12:47:18
2	A I understand an adaptive what an adaptive	12:47:22
3	array is.	12:47:27
4	Q Is there something else you don't understand	12:47:28
5	in claim 25 or	12:47:30
6	A Well, I guess you're asking me the	12:47:32
7	question of trying to separate claim 25 from claim 1.	12:47:34
8	I'm I'm I'm trying to navigate that question.	12:47:37
9	Q Uh-huh. What I'm asking is if the claim	12:47:41
10	1 describes an apparatus for canceling noise, right?	12:47:45
11	A That's one yes, that's how it starts,	12:47:49
12	yes.	12:47:52
13	Q Okay. If you assume that the apparatus	12:47:53
14	covered by claim 1	12:47:57
15	A Right.	12:47:59
16	Q was already in the prior art as of the	12:47:59
17	time of the '345 patent, does the addition of an	12:48:02
18	adaptive array comprising a plurality of microphones	12:48:07
19	for receiving said audio signal represent a novel and	12:48:12
20	nonobvious variation on the apparatus of claim 1?	12:48:16
21	MR. LENNIE: Objection. Form.	12:48:20
22	A But how is it how are we talking about a	12:48:22

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton	Douglas, Ph.D.
Conducted on June	16, 2017

	Conducted on June 16, 2017	115
1	nonobvious variation of something that's already	12:48:26
2	I'm I'm trying to understand what it is that you're	12:48:29
3	asking me to to	12:48:32
4	Q Do you have an understanding that claim 25	12:48:34
5	narrows claim 1, it adds	12:48:37
6	A Yes.	12:48:39
7	Q a limitation to claim 1, right?	12:48:39
8	A Yes.	12:48:41
9	Q And you have an understanding of what that	12:48:42
10	limitation is?	12:48:44
11	A Yes.	12:48:45
12	Q That's the adaptive array comprising a	12:48:45
13	plurality	12:48:46
14	A Yes.	12:48:46
15	Q of microphones?	12:48:46
16	A It is using it in here as an adaptive array,	12:48:50
17	yes.	12:48:52
18	Q So if you assume that what's described in	12:48:53
19	claim 1 was in the prior art, would the addition of an	12 : 48 : 55
20	adaptive array with a plurality of microphones be a	12:48:58
21	novel or nonobvious addition to that apparatus?	12:49:03
22	MR. LENNIE: Objection. Form.	12:49:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, F	h.D.
Conducted on June 16, 2017	

116

1	A An adaptive array is a system that comprises	12:52:03
2	many parts to it. It can have many different	12:52:06
3	features.	12:52:09
4	Again, this problem of trying to determine	12:52:12
5	whether, you know, an adaptive array is patentable	12:52:17
6	based off of an invalidity or the statement about	12:52:22
7	whether the first element is in claim 1 is obvious	12:52:25
8	or not is something I haven't been asked to opine	12:52:29
9	upon.	12:52:32
10	Q All right.	12:52:33
11	MR. LENNIE: Be a good time to break for	12 : 52 : 40
12	lunch?	12 : 52 : 41
13	THE WITNESS: Yeah, I think it's a good time	12 : 52 : 42
14	to break, if that's okay.	12 : 52 : 43
15	THE VIDEOGRAPHER: Going off the record.	12 : 52 : 45
16	The time is 12:52.	12 : 52 : 46
17	(A recess was taken.)	12 : 52 : 48
18	AFTERNOON SESSION	12 : 52 : 48
19	(Exhibit 6 was marked for identification and	13:35:32
20	is attached to the transcript.)	13:35:32
21	THE VIDEOGRAPHER: Here begins Tape No. 3.	13:36:02
22	We're back on the record at 1:36.	13:36:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.			
	Conducted of June 16, 2017	/	
1	BY MR. SWANSON:	13:36:06	
2	Q Good afternoon.	13:36:06	
3	A Good afternoon.	13:36:07	
4	Q I've just handed you what's been marked as	13:36:09	
5	Exhibit 6. Is this a copy of your report in this	13:36:11	
6	case?	13:36:14	
7	A Yes.	13:36:15	
8	Q Okay. How was your report prepared?	13:36:16	
9	A I wrote my report and I wrote it with	13:36:29	
10	with consideration given to me from legal help,	13:36:33	
11	because I'm not a lawyer.	13:36:45	
12	I developed technical opinions on aspects of	13:36:48	
13	technology related to the matter at hand.	13:36:52	
14	(Mr. Haslam joined the proceedings.)	13:37:03	
15	A I worked with the legal assistants that I	13:37:07	
16	had to be able to, you know, take a shell in terms of	13:37:14	
17	an overall structure of of the document and I,	13:37:19	
18	along with help, populated portions of this which	13:37:24	
19	allows me to in to put in my technical opinions	13:37:28	
20	and also address legal considerations which are	13:37:32	
21	which are important with respect to this matter.	13:37:37	
22	Q When you say you wrote the report, did you	13:37:40	

118

1		
1	write everything in the report?	13:37:42
2	A As I said, there was a shell document that	13:37:44
3	we started with	13:37:47
4	Q Uh-huh.	13:37:48
5	A and that helped me understand the basic	13:37:48
6	structure that is appropriate for a report of this	13:37:51
7	type.	13:37:55
8	With regard to the technical opinions, those	13:37:56
9	opinions are ones that I developed, and in terms of	13:37:58
10	the technical understanding and so on, allowed me to	13:38:02
11	impart my opinion and also my expertise into the	13:38:09
12	matter.	13:38:13
13	Q But the actual language in the report was	13:38:14
14	written by the lawyers?	13:38:23
15	A No, the language was written by me where I	13:38:25
16	have technical opinion. It corresponds to the things	13:38:29
17	of that are important with respect to what I	13:38:36
18	thought would be a important description of a	13:38:38
19	particular piece of technology or issue that's	13:38:44
20	relevant to the matter at hand.	13:38:48
21	Q You said the language was written by you	13:38:52
22	where you have technical opinions. Does that mean	13:38:54

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.			
1	Conducted on June 16, 2017 11	9	
1	again, I'm just trying to understand	13:38:56	
2	A Yeah, sure.	13:38:58	
3	Q I'm trying to understand, did you write this	13:38:59	
4	entire thing or was it written by you in conjunction	13:39:01	
5	with the lawyers together?	13:39:04	
6	MR. LENNIE: Objection. Form.	13:39:05	
7	A Well, again, the document has structure	13:39:12	
8	which, you know, I received technical assistance or	13:39:14	
9	legal assistance on.	13:39:17	
10	From the technical aspects of the document,	13:39:19	
11	I provided input as to those particular issues and	13:39:24	
12	addressed concerns with respect to the you know,	13:39:29	
13	the concerns raised by the other expect.	13:39:34	
14	Q You when you say you provided input, you	13:39:40	
15	were providing input to the lawyers?	13:39:42	
16	A No. I'm actually providing content that	13:39:44	
17	goes into the document.	13:39:46	
18	Q Okay. So you provided some of the content	13:39:48	
19	that went into the document. Or did you provide all	13:39:50	
20	of the content?	13:39:54	
21	A I well, it's this was done in	13:39:55	
22	conjunction with with legal assistance. I provided	13:40:01	

120

1	most of the content, but I but the issue is, these	13:40:07
2	represent my opinions. So I reviewed everything	13:40:11
3	that's, you know, here in terms of the content and	13:40:14
4	they represent what is my opinion on on the matters	13:40:19
5	at hand.	13:40:22
6	Q Yeah. Okay. I'm just trying to understand,	13:40:23
7	again, kind of	13:40:26
8	A Yeah, I understand.	13:40:27
9	Q who reduced it to writing, and it sounds	13:40:27
10	like you reduced parts of it to writing and the	13:40:30
11	lawyers reduced parts of it to writing.	13:40:32
12	A Well, again, reduced parts of it to writing.	13:40:35
13	I you know, I didn't type it all by hand	13:40:39
14	Q Uh-huh.	13:40:40
15	A but I typed the portions associated with	13:40:40
16	aspects related to technology and also had the	13:40:44
17	opportunity to review those portions in conjunction	13:40:48
18	with other portions.	13:40:52
19	Again, I'm not a lawyer, so I'm looking for	13:40:54
20	legal assistance in forming my opinions with respect	13:40:56
21	to the report.	13:41:00
22	Q Okay. So the lawyers wrote parts of the	13:41:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.		
1	Conducted on June 16, 2017	121
1	report?	13:41:05
2	A The report is mine.	13:41:08
3	Q Right.	13:41:09
4	A It represents my opinions. I mean, I	13:41:10
5	received assistance with from lawyers, too.	13:41:13
6	Q Okay. Some of the drafting was done by the	13:41:15
7	lawyers?	13:41:18
8	A There's some aspects certainly legal	13:41:19
9	language and so on are things that they're best to	13:41:21
10	provide.	13:41:25
11	Q Okay. Let's turn to Paragraph 129.	13:41:25
12	A Okay.	13:42:05
13	Q And in Paragraph 129 you say that, "Martin	13:42:06
14	(1993) does not anticipate claim 25 because Martin	13:42:10
15	(1993) fails to disclose an adaptive array."	13:42:15
16	Do you see that?	13:42:19
17	A Yes.	13:42:20
18	Q Why does Martin 1993 fail to disclose an	13:42:20
19	adaptive array?	13:42:24
20	A (Reviewing.)	13:42:25
21	Martin 1993 describes applications of his	13:42:34
22	signal-to-noise-ratio estimation algorithm. When he	13:42:39

122

1		
1	is describing that, he is looking to apply his SNR	13:42:46
2	estimation technique on systems, and he mentions two	13:42:51
3	such systems, one of them being time delay estimation.	13:42:55
4	Time delay estimation is an aspect of	13:43:00
5	microphone processing when you have more than one	13:43:05
6	microphone, but it doesn't describe an adaptive array.	13:43:07
7	Q Why not?	13:43:12
8	A Because it doesn't describe how contents of	13:43:13
9	the microphone signals would be combined to be able to	13:43:18
10	produce a resulting signal that that achieves some	13:43:23
11	useful end.	13:43:27
12	Q Do you agree that Martin 1993 does talk	13:43:28
13	about using an adaptive array?	13:43:31
14	A (Reviewing.)	13:43:38
15	(Exhibit 7 was marked for identification and	13 : 43 : 47
16	is attached to the transcript.)	13:43:47
17	Q Why don't	13:43:52
18	A Yeah, he's	13:43:52
19	Q Oh, sorry.	13 : 43 : 52
20	A Oh, go ahead.	13:43:52
21	Q I was going to hand you a	13:43:52
22	A Oh.	13:43:54

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D	•
Conducted on June 16, 2017	

123

1	Q marked copy of Martin 1993.	13:43:55
2	A Thank you.	13:43:57
3	In the Application section for time delay	13:43:59
4	estimation he does talk about in-phase summation or	13:44:02
5	adaptive processing of these microphone signals	13:44:07
6	usually requires a time delay compensation.	13:44:10
7	Q And in the previous sentence he refers to	13:44:16
8	the array. Do you see that?	13:44:20
9	A I do. He says, "For microphone arrays where	13:44:22
10	the speaker is in a nonsymmetric position."	13 : 44 : 26
11	Q Okay. So you agree that Martin is Martin	13:44:29
12	refers to a microphone array?	13:44:31
13	A He doesn't describe the structure	13:44:34
14	Q Uh-huh.	13:44:35
15	A of the adaptive array or the processing.	13:44:37
16	Q Uh-huh. But he does disclose a microphone	13:44:41
17	array; is that right?	13:44:49
18	A Yeah, he he mentions a microphone array.	13:44:51
19	He doesn't describe how the microphone array works	13:44:53
20	or he actually is talking about time delay	13 : 44 : 57
21	estimation, which can be one component of an array,	13:44:59
22	but doesn't complete the array nor provide all of the	13:45:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

124

1	details that allows such an array to be realized.	13:45:07
2	Q So what are the details about the array that	13:45:10
3	you think Martin had to provide in order for you to	13:45:13
4	say that Martin discloses an adaptive array?	13:45:16
5	A I well	13 : 45:19
6	MR. LENNIE: Objection. Form.	13 : 45:20
7	A Yeah, to to have Martin describe an	13 : 45 : 21
8	adaptive array, he would have to provide additional	13 : 45 : 24
9	information about how the signals are processed. For	13 : 45 : 27
10	example, how the signals might be combined, what's the	13:45:31
11	method of combination, what is the procedure by which	13 : 45:34
12	one is using to to compute coefficients, for	13:45:38
13	example.	13 : 45 : 42
14	Q Is all of that required by claim 25?	13:45:43
15	MR. LENNIE: Objection. Form.	13 : 45:46
16	A (Reviewing.)	13:45:47
17	The understanding of what an adaptive array	13 : 46:02
18	is requires some description in order to provide, you	13 : 46:05
19	know, a statement that yes, the information is there	13:46:09
20	and there actually is an adaptive array. And there's	13 : 46 : 12
21	no signal computed off of this to determine that	13 : 46 : 17
22	actually, you know, a system has actually been	13:46:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

125

1	realized from it.	13:46:21
2	Q Where is that description provided in the	13:46:24
3	'345 patent?	13:46:27
4	A I'm sorry, I need to look at my report just	13:46:43
5	to be sure that I'm precise.	13:47:32
6	Q Sure.	13:47:35
7	A I hope it's okay that I take the time.	13:47:36
8	Q No, absolutely.	13:47:38
9	A Thank you. Yeah.	13:47:40
10	(Reviewing.)	13:47:42
11	With regard to the '345 patent there are, at	13:51:00
12	the very front, related applications incorporated by	13:51:04
13	reference.	13:51:07
14	Q Uh-huh.	13:51:08
15	A One of those applications is U.S. Patent No.	13:51:08
16	'898 issued October 20th, 1998.	13:51:14
17	The written description that supports and	13:51:23
18	provides structure for the adaptive array can be found	13:51:25
19	in the '898 patent which is incorporated by reference.	13:51:27
20	Q But it's not in the specification of the	13:51:32
21	'345 itself?	13:51:35
22	MR. LENNIE: Objection to form.	13:51:37

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	126
1	A It's incorporated by reference within the	13:51:38
2	patent.	13:51:40
3	Q Right, but what's written in the '345 patent	13:51:41
4	doesn't describe the adaptive processes that you're	13:51:45
5	talking about?	13:51:49
6	MR. LENNIE: Objection. Form.	13:51:50
7	A This patent incorporates this other patent	13:51:53
8	by reference, so the description for providing	13:51:55
9	structure is incorporated within the '898 patent.	13:51:58
10	Q Does claim 25 require any particular type of	13:52:05
11	adaptive processing for a microphone array?	13:52:08
12	MR. LENNIE: Objection. Form.	13:52:13
13	A It claims an adaptive array comprising a	13:52:24
14	plurality of microphones for receiving an audio	13:52:26
15	signal.	13:52:30
16	Q Does that require a specific algorithm or	13:52:30
17	technique for adaptive array processing?	13:52:34
18	A A particular adaptive array processing	13:52:49
19	algorithm is not required and a particular example or	13:52:52
20	embodiment of that is described in the '898 patent.	13:52:55
21	Q Okay. Were adaptive microphone arrays known	13:52:58
22	prior to the '345 patent?	13:53:03

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 12	7
1	A Methods for performing adaptive processing	13:53:07
2	of microphone arrays were available and were were	13:53:10
3	or could be used.	13 : 53:17
4	Q Okay. Is your report a complete statement	13 : 53 : 20
5	of your opinions in this case?	13 : 53:34
6	A The report represents my response to the	13 : 53:38
7	report by Dr. Kyriakakis. It's a rebuttal report. At	13 : 53:43
8	points within the report I indicate that	13:53:49
9	Dr. Kyriakakis has provided limited and, in some	13:54:17
10	cases, conclusory statements regarding the '345 patent	13:54:24
11	as well as the various references with respect to it,	13:54:31
12	and I found it challenging to respond to those	13:54:34
13	situations, so rather than try to construct a response	13:54:41
14	on something that wasn't there, I put in statements	13:54:46
15	that allowed me to reserve me right to rebut to such	13:54:52
16	arguments should some should such an argument come	13:54:56
17	in the future.	13:55:00
18	Q All right. But it's your complete response	13:55:00
19	to what is in Dr. Kyriakakis's report?	13:55:02
20	A It is a response to to the report that he	13:55:07
21	has provided and the arguments that he's provided at	13:55:10
22	this time.	13:55:13
]

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.	
Conducted on June 16, 2017	

128

1	Q And is it complete or do you have anything	13:55:13
2	to add to the report at this time?	13:55:15
3	A I don't have anything to add at this	13:55:20
4	particular time.	13 : 55 : 22
5	Q Okay. Is it a complete statement of your	13 : 55 : 23
6	reasons for your opinions?	13:55:26
7	A My reasons? I'm sure what do you mean?	13:55:28
8	Q Does the report contain all of the reasons	13:55:32
9	and bases for your opinions?	13:55:35
10	A I mean, it contains my opinions. Where	13:55:49
11	situations dictate that I'm required to elaborate I	13:55:53
12	think that's why I'm here, so I can elaborate on	13:55:56
13	aspects of it but it represents a response that	13:56:00
14	to Dr. Kyriakakis's report that I offer at this time.	13:56:04
15	Q Do you have any additional reasons, sitting	13:56:11
16	here today, that support your opinions, beyond what's	13:56:14
17	said in your report?	13:56:17
18	A I do not.	13:56:19
19	Q Are you aware of any mistakes in your	13:56:24
20	report?	13:56:26
21	A I tried to catch as many typographical	13:56:27
22	errors as possible. There may be some typographical	13:56:31

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

129

1	errors that I missed, but I believe my my report to	13:56:34
2	be accurate in that regard.	13:56:37
3	Q Sitting here today there's nothing you want	13:56:40
4	to correct in your report?	13:56:42
5	A There's no corrections that I wish to make	13:56:46
6	with the report at this time.	13:56:48
7	Q Okay.	13:56:50
8	MR. SWANSON: Let me mark Exhibit 8.	13:56:51
9	(Exhibit 8 was marked for identification and	13:56:55
10	is attached to the transcript.)	13:57:11
11	Q Okay. I'm showing you what's been marked as	13:57:12
12	Exhibit 8, beginning with the Bates number	13:57:14
13	Andrea_ITC_1026_00215947, with the ending Bates number	13:57:20
14	of 216215.	13:57:36
15	Is this a copy of your expert report in the	13:57:42
16	'949 investigation?	13:57:45
17	A It appears to be. It has certain	13:57:53
18	information, though, that's been redacted due to	13:57:56
19	confidentiality.	13:57:59
20	Q Okay. And the '949 investigation also	13:58:00
21	involved the '345 patent?	13:58:04
22	A It did.	13:58:06

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

130

1	Q Okay. One of the prior art references the	13:58:07
2	Respondents in that case were relying on was the	13:58:12
3	Martin 1993 paper; is that right?	13:58:15
4	A Yes.	13:58:17
5	Q That's the same paper we were just talking	13:58:18
6	about a moment ago, Exhibit 7?	13:58:20
7	A Yes.	13:58:22
8	Q Is that right?	13:58:23
9	Can you turn to Paragraph 245.	13:58:24
10	A (Complying.)	13 : 58:32
11	Q And the heading right before Paragraph 245	13:58:46
12	reads, "Alleged Combination of Hirsch with Martin	13:58:52
13	'93 "	13:58:54
14	A Uh-huh.	13:58:55
15	Q (Claim 25)," and then the following two	13:58:56
16	paragraphs, 245 and 246, are discussing claim 25 of	13:59:01
17	the '345 patent; is that right?	13:59:06
18	A It does.	13:59:11
19	Q Okay. And in this report in the '949 case,	13 : 59:12
20	you didn't argue that Martin '93 fails to disclose an	13:59:18
21	adaptive array, right?	13 : 59:26
22	A (Reviewing.)	13:59:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

131

1		MR. LENNIE: Objection. Form.	13:59:38
2	А	No, I didn't. What I argued was that one of	13:59:45
3	ordinary s	skill would not have been motivated to	13:59:49
4	combine th	hese references to obtain the apparatus.	13:59:52
5	Q	Okay. You can put that to the side.	13:59:57
6		(Exhibit 9 was marked for identification and	14:00:22
7	is attache	ed to the transcript.)	14:00:22
8	Q	Exhibit 9 is U.S. Patent No. 6,035,048.	14:01:02
9	This is th	he Diethorn patent; is that right?	14:01:10
10	А	Yes, it is.	14:01:16
11	Q	This is the same patent we were talking	14:01:17
12	about this	s morning, Diethorn?	14:01:19
13	A	It is.	14:01:21
14	Q	All right. You you familiar with this	14:01:22
15	patent?		14:01:26
16	А	I am.	14:01:27
17	Q	You provided opinions on this patent in your	14:01:28
18	report?		14:01:31
19	А	I have.	14:01:32
20	Q	Can you turn to Paragraph 741 of your	14:01:57
21	report?		14:02:03
22	А	Okay.	14:02:17

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 13	2
1	Q And in Paragraph 741 you say Diethorn does	14:02:18
2	not anticipate claim 13 of the patent?	14:02:21
3	A Yes.	14:02:24
4	Q And then in Paragraph 742 you say, "The	14:02:25
5	system of Diethorn does not guarantee that the gain	14:02:29
6	value is less than 1 when noise values are detected,	14:02:32
7	and therefore Diethorn does not teach a system that	14:02:36
8	includes a subtractor that subtracts said noise	14:02:40
9	elements."	14:02:43
10	Do you see that?	14:02:44
11	A Yes, I do.	14:02:45
12	Q What do you mean by "Diethorn does not	14:02:46
13	guarantee that the gain value is less than 1 when	14:02:50
14	noise values are detected"?	14:02:54
15	A In Diethorn, column 8, he describes the	14:03:06
16	operation of his system in Figure 9 this is at line	14:03:11
17	24 and he states, " the signal gain function	14:03:16
18	g(k,m) is determined by PHI(k,m), but has an upper	14:03:22
19	bound of unity." That is, g(k,m) is equal to the	14:03:27
20	minimum of 1.0 and PHI(k,m).	14:03:30
21	Q Uh-huh.	14:03:35
22	A And so he is describing a system which	14:03:38

10	`
13	53

1	processes the signal using PHI(k,m)). PHI(k,m) are	14:03:41
2	is computed from the normalized deflection	14:03:47
3	coefficients, and these deflection coefficients depend	14:03:50
4	upon other processes, including a noise estimate value	14:03:56
5	n(k,m).	14:04:00
6	The system, when it processes signals, its	14:04:09
7	PHI(k,m) value determines the processing, and it's not	14:04:14
8	clear how or I should say, a system which performs	14:04:23
9	noise detection of noise values would produce	14:04:33
10	noise sorry, would estimate noise and would produce	14:04:36
11	an output signal that would generally reduce it when	14:04:43
12	there's noise that's present.	14:04:48
13	Here is a system that's producing an output	14:04:51
14	which is not changing the gain when you know, for	14:04:54
15	some aspects of the system, and it's not clear that	14:04:58
16	this system when it's connected to the noise estimate	14:05:02
17	that it's actually being used to to do that	14:05:05
18	processing when detection of noise is is made.	14:05:08
19	Q Are you saying that Diethorn would never set	14:05:12
20	the gain function less than one when noise is	14:05:17
21	detected?	14:05:23
22	A No, I'm saying that the system, when it	14:05:37

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

134 14:05:40 1 detects noise, does not ensure that the gain is less 14:05:42 2 than one. 14:05:44 3 Why does it not ensure the gain is less than 0 14:05:47 4 one? 5 14:05:49 Because through the processing there's no Α 6 direct connection between this and -- sorry. When 14:05:52 7 14:05:56 computing the q(k,m), if a system is detecting noise, 14:06:03 8 then the gain of the system should then try to reduce 9 14:06:06 the resulting output. 10 14:06:10 0 So it may set the gain value less than one 14:06:13 11 when there's noise, but you're saying it also may not? 14:06:17 12 That's correct. А 14:06:20 13 Why -- why would you want to have a system Q 14 that -- where the gain value is one when you've 14:06:24 detected noise? 14:06:27 15 14:06:29 16 MR. LENNIE: Objection. Form. 14:06:30 17 Q What would --14:06:31 18 А I mean -- I'm --14:06:40 19 You know what, strike that question. Yeah. 0 20 14:06:42 Α You would want a system to detect noise to 21 14:06:46 be less than one when noise is detected. I think you 14:06:49 22 said the opposite.

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	135
1	Q Well, you're saying never mind.	14:06:51
2	Okay. So you mention so the gain	14:06:57
3	function is set based on the value of Phi? That's	14:07:04
4	what you said?	14:07:09
5	A Correct.	14:07:10
6	Q And Phi is set or is determined based on the	14:07:12
7	two deflection coefficients?	14:07:18
8	A Yes, the broadband and the narrowband	14:07:21
9	deflection coefficients.	14:07:24
10	Q Okay. And those are represented by	14:07:25
11	lowercase D and uppercase D	14:07:27
12	A Yes.	14:07:29
13	Q in Diethorn?	14:07:29
14	And in column 8, line I guess it's line	14:07:31
15	16, the formula for Phi, that's taking the maximum of	14:07:37
16	the narrowband deflection coefficient divided by	14:07:42
17	GAMMA_NB?	14:07:48
18	A Uh-huh.	14:07:50
19	Q And the broadband deflection coefficient	14:07:50
20	divided by GAMMA_BB?	14:07:53
21	A Uh-huh.	14:07:57
22	Q Is that right?	14:07:57

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	136
1	A Yes.	14:07:59
2	Q Okay. And if you go further up in column 8,	14:08:00
3	column 8 I guess the very top of column 8, line 1.	14:08:10
4	A Uh-huh.	14:08:14
5	Q According to the first of these formulas,	14:08:15
6	the narrowband and broadband deflection coefficients	14:08:16
7	are each normalized to a respective GAMMA_NB or	14:08:21
8	GAMMA_BB.	14:08:27
9	A Uh-huh.	14:08:29
10	Q Do you see that?	14:08:29
11	A Yes.	14:08:30
12	Q Okay. And then the next sentence says,	14:08:30
13	"These thresholds represent the respective levels at	14:08:30
14	which the deflection ratios are declared to indicate a	14:08:34
15	certainty of speech energy."	14:08:38
16	Do you see that?	14:08:41
17	A Yes.	14:08:42
18	Q That sentence in Diethorn is saying that	14:08:42
19	GAMMA NB and GAMMA BB would be set such that where,	14:08:45
20	unless you're certain that there is speech, the gain	14:08:51
21	value will be less than one so you can reduce noise?	14:08:56
22	MR. LENNIE: Objection. Form.	14:09:17

137

1	A These quantities, GAMMA NB and GAMMA BB, are	14:10:25
2	referred to by Diethorn as respective thresholds, but	14:10:28
3	there is no decision being made here with respect to	14:10:34
4	these quantities in regards to whether the signal	14:10:37
5	contains speech energy.	14:10:43
6	Q But isn't Diethorn saying that you should	14 : 10 : 47
7	set those two thresholds at a value where you're	14:10:50
8	certain that the signal is speech?	14:10:55
9	A It's not stating that one should set those	14:11:10
10	thresholds, it's saying that there's a value that he's	14 : 11 : 13
11	chosen for those parameters and there's no decision	14 : 11 : 16
12	being made here.	14 : 11 : 19
13	Q But the value he's chosen for those	14:11:22
14	parameters is the value where there's a certainty of	14:11:24
15	speech, right?	14:11:28
16	A Again, this description doesn't involve	14 : 11 : 33
17	making a decision on, you know, these deflection	14 : 11 : 40
18	coefficients as to whether they're speech or not.	14 : 11 : 45
19	Q What do you think that second sentence	14:11:54
20	means?	14:11:57
21	A Well, they represent the levels at which the	14:12:01
22	deflection ratios are declared to indicate a certainty	14:12:04

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

138

1		
1	of speech. So they're set according to a concept of,	14:12:09
2	well, what is in these particular values in terms of	14 : 12 : 13
3	what is it that they represent, but there is no	14 : 12 : 19
4	decision being made here in the system. There's no	14:12:23
5	calculation that's being done at this point.	14:12:26
6	Q Right. The actual calculation is the	14:12:31
7	calculation of Phi below, right?	14:12:34
8	A There is a calculation of Phi which is then	14:12:38
9	using those gamma values, yes.	14:12:40
10	Q Right. So in his system he sets the gamma	14:12:43
11	values to 30, right?	14:12:47
12	A Well, he is choosing the value 30 for both	14:12:48
13	GAMMA NB and GAMMA BB.	14:12:51
14	Q Right. And he says 30 is the level at which	14:12:54
15	you're certain that there is speech, right?	14 : 12 : 56
16	A Yeah. Again, he's not making a decision,	14 : 13 : 13
17	though, on those particular values. He's not looking	14:13:15
18	at particular values of deflection ratios to decide	14:13:18
19	whether they they contain speech or not.	14:13:22
20	Q But he is saying that the values that he's	14:13:28
21	chosen and that should be chosen for gamma are the	14 : 13 : 32
22	values at which speech is certain, right?	14 : 13 : 36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	139
1	A Well, they're chosen to allow PHI(k,m) to	14:13:47
2	to be run or calculated. And PHI(k,m) then combines	14:13:49
3	deflection ratios in a way to to produce a value	14:13:50
4	for PHI(k,m) which chooses one or the other.	14:14:00
5	Q So in Diethorn's system if the deflection	14:14:03
6	coefficients are less than 30, then the gain	14:14:06
7	function the gain value will be less than one,	14:14:10
8	right?	14:14:13
9	A I'm sorry, could you repeat your statement?	14:14:14
10	Q In Diethorn, if the deflection coefficients,	14:14:19
11	lowercase D and uppercase D, are less than 30, then	14:14:23
12	the value of the gain will be less than one?	14:14:30
13	A The value of the gain depends upon PHI(k,m),	14:14:40
14	which depends upon both small $d(k,m)$ and large $D(k,m)$,	14:14:50
15	which are these narrowband and broadband deflection	14:14:54
16	coefficients. There's not a decision being made that	14:15:00
17	says one or the other contains speech in this	14:15:04
18	equation.	14:15:07
19	Q That's not my question.	14:15:08
20	A Okay.	14:15:09
21	Q If the value of the narrowband deflection is	14:15:10
22	less than 30, and if the value of the broadband	14:15:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

140

1	deflection is less than 30, then the gain value will	14:15:18
2	be less than one, correct?	14:15:21
3	A For his chosen value, then both the small	14:15:27
4	d(k,m) divided by its gamma and the large $D(k,m)$	14:15:31
5	divided by its gamma will be less than one, and so the	14:15:34
6	maximum of those two will be less than one.	14:15:40
7	But that's for the first formula. There's	14 : 15 : 42
8	also the second formula, and that requires another	14:15:50
9	parameter P that needs to be chosen, but both of	14 : 15 : 54
10	sorry.	14:15:57
11	Q And would that would that affect the gain	14:15:58
12	value?	14:16:02
13	A Well, the value of P does.	14:16:03
14	Q Right, but P is an ex is an exponent,	14:16:08
15	right? Just being raised to a power?	14:16:11
16	A Yes, P is an exponent	14:16:18
17	Q Right.	14:16:19
18	A yes.	14:16:20
19	Q So if the deflection coefficient	14:16:21
20	A Yes.	14:16:23
21	Q divided by GAMMA NB is less than one	14:16:23
22	A Then it's it's the same situation.	14:16:26

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	141
1	0 Okay.	14:16:28
2	A From that regard.	14:16:28
3	Q And Diethorn in column 8, line 12, says P is	14:16:29
4	equal to unity, right?	14:16:34
5	A Right. So it's a linear function.	14:16:36
6	Q Right. Unity is one, right?	14:16:37
7	A Yes.	14:16:40
8	Q Okay. So it in this system, it wouldn't	14:16:40
9	actually affect the	14:16:42
10	A Right.	14:16:43
11	Q gain value?	14:16:43
12	A That is correct.	14:16:44
13	Q Okay. So in your opinion, claim 13 requires	14:16:45
14	a system in which the gain values always have to be	14:16:57
15	less than one when noise is detected?	14:17:01
16	A A system that's performing spectral	14:17:28
17	subtraction and performing noise reduction would	14:17:30
18	generally need to perform some amount of reduction of	14:17:34
19	that noise, and so if the noise is not zero, then	14:17:38
20	there will be some reduction in the overall gain of	14:17:45
21	the system.	14:17:47
22	Q Okay. I'm asking about your understanding	14:17:57

Transcript of Scott Clinton Douglas, Ph.D.
Conducted on June 16, 2017

	Conducted on June 16, 2017	142
1	of claim 13.	14:18
2	A Uh-huh.	14:18
3	Q You said Diethorn does not anticipate claim	14:18
4	13 because it does not guarantee that the gain value	14:18
5	is less than one.	14:18
6	A Right.	14:18
7	Q So is it your opinion that claim 13 requires	14:18
8	a system in which the gain values are always less than	14:18
9	one when noise is detected?	14:18
10	A My analysis of Diethorn with respect to	14:18
11	claim 13 applies to Diethorn. In other words, I am	14:18
12	I am and my analysis is appropriate with respect to	14:18
13	Diethorn's functioning of the system. I'd have to	14:18
14	look at the nature of the system to decide this	14:18
15	resulting issue.	14:18
16	Q But you're offering an opinion as to whether	14:18
17	Diethorn meets the requirements of the claim, right?	14:18
18	A Right.	14:18
19	Q So you must have an understanding of what	14:18
20	the claim requires.	14:18
21	A Yes.	14:18
22	Q Does the claim require a system in which the	14:10

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 14	3
1	gain value is always less than one when noise is	14:18:54
2	detected?	14:18:57
3	MR. LENNIE: Objection. Form.	14:18:58
4	A No, it does not, it depends upon the	14:19:02
5	operation of the overall system. It depends on the	14:19:04
6	nature of the resulting processing.	14:19:09
7	Q Okay. Let's turn to Paragraph 93 of your	14 : 19 : 13
8	report.	14 : 19 : 24
9	A Uh-huh.	14:19:39
10	Q And in Paragraph 93 you are discussing the	14 : 19 : 47
11	Martin 1993 reference; is that right?	14 : 19 : 52
12	A Yes.	14 : 19 : 55
13	Q Okay. And in the second sentence in	14 : 19 : 56
14	Paragraph 93 you say, "In my opinion, the value of	14:20:08
15	PMmin"	14:20:14
16	A Uh-huh.	14:20:18
17	Q "is not a threshold for a given frequency	14:20:20
18	bin"	14:20:25
19	What's your basis for that?	14:20:28
20	Let me ask a clearer question, actually.	14:20:31
21	A Uh-huh.	14:20:43
22	Q Why is PMmin not a threshold for a frequency	14:20:43

	Conducted on June 16, 2017 1	44
1	bin within the meaning of claim 1?	14:20:50
2	A Martin 1993 describes a system for	14:21:15
3	estimating the instantaneous signal-to-noise-ratio.	14:21:19
4	It applies to a full band signal. It's oriented	14:21:23
5	towards performing this signal-to-noise-ratio	14:21:33
6	estimation.	14:21:38
7	The value of PMmin is not being used within	14:21:55
8	the threshold detector for setting a threshold for	14:22:00
9	each frequency bin, and there are no frequency bins	14:22:05
10	associated with the system in Martin 1993.	14:22:09
11	Q So is your opinion that PMmin let me	14:22:15
12	start over.	14:22:20
13	So your opinion is that Martin '93 does not	14:22:27
14	have frequency bins and, therefore, PMmin is not a	14:22:33
15	threshold for a frequency bin?	14:22:39
16	A That's one of the reasons.	14:22:40
17	Q Okay. Do you have an additional reason?	14:22:42
18	A (Reviewing.)	14:22:56
19	The value PMmin is not a threshold for a	14:23:17
20	given frequency bin. It represents the value of	14:23:21
21	either P max or the smallest input sample within a	14:23:27
22	given subwindow. And there are multiple subwindows in	14:23:31

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
Transcript of Scott Clinton Douglas	, Ph.D.
Conducted on June 16, 2017	

145

1	a given data window. And only one of these subwindows	14:23:36
2	is used to update the value of PMmin.	14 : 23 : 39
3	Q So why does that mean that PMmin is not a	14 : 23 : 45
4	threshold?	14 : 23 : 49
5	A It's not being used for setting a threshold	14:24:00
6	for it's not being used to set a threshold.	14:24:03
7	Q Why is that?	14 : 24 : 07
8	A It doesn't use it. It doesn't use it in a	14 : 24 : 10
9	threshold calculation from the standpoint of setting a	14 : 24 : 13
10	threshold.	14 : 24:15
11	Q Is it used to detect the position of noise	14 : 24 : 17
12	elements?	14 : 24 : 19
13	A It's not used to detect the position of	14:24:28
14	noise elements.	14:24:30
15	Q Why not?	14:24:34
16	A Because it's not a threshold for well,	14:24:37
17	it's not a threshold, and it's not a threshold for a	14:24:39
18	frequency bin.	14:24:42
19	Q Do you have Martin '93 in front of you?	14:25:06
20	A I do.	14:25:08
21	Q Okay. The variable Pn in Martin '99	14:25:09
22	Martin 1993 that's the noise power estimate? Is	14 : 25 : 17

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

i	Conducted on June 16, 2017	146
1	that right?	14:25:28
2	A It's the estimated noise power, yes.	14:25:31
3	Q Is that a threshold within the meaning of	14:25:36
4	the claims?	14:25:38
5	A This system performs signal-to-noise-ratio	14:25:50
6	estimation. It is not used as a threshold within the	14:25:54
7	system. Within the meaning of the claims.	14:25:58
8	Q Is Pn used to detect noise elements within	14:26:12
9	the meaning of the claims?	14:26:16
10	A The value Pn(i) is not used as a role of a	14:26:34
11	threshold in making a decision within this algorithm.	14:26:39
12	Q Okay. Can I point you to Figure 2 of Martin	14:26:42
13	'93?	14:26:46
14	A Yes.	14:26:48
15	Q Do you have that? Okay.	14:26:48
16	And do you see on the left-hand side of the	14 : 26 : 50
17	figure the text is small, but the second block down	14:26:53
18	on the left, there's a formula, Pn(i) equals min of	14:27:00
19	Px(i), Pn(i)?	14:27:11
20	A Yes.	14:27:16
21	Q Do you see that?	14:27:17
22	Is that formula segment, Pn, the noise power	14:27:19

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	147
1	estimate, equal to the minimum of the current signal	14:25
2	power and the current noise power estimate?	14:27
3	A This block is taking there is a value in	14:27
4	Pn(i), and that value is either staying the same or	14:2 ⁻
5	changing depending upon the value of Px bar (i).	14:2 ⁻
6	Q Right. So if P Px(i) is less than Pn,	14 : 2
7	then Pn becomes Px.	14:28
8	Let me try that again.	14:28
9	If I what this formula is doing is if the	14:28
10	current signal power is less than the current noise	14:2
11	power estimate, then you set the noise power estimate	14:2
12	equal to the current signal power?	14 : 2
13	A Pn(i) stays the same unless Px bar (i) is	14:2
14	less than Pn (i), at which point it changes to Px bar	14:2
15	(i).	14:2
16	Q Right. And P Px (i), that's the signal	14 : 2
17	power?	14:2
18	A That is the signal power, yes.	14:28
19	Q Okay. And so when that's below the noise	14:2
20	power estimate, then Martin sets the noise power	14:28
21	estimate equal to the signal power?	14 : 2
22	A The value of PN (i) stays the same or it	14 : 2

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	148
1	changes. If it changes, it would happen because Px	14:29:07
2	bar is less than Pn.	14:29:11
3	Q Right. Is that a detection of noise element	14:29:13
4	within the meaning of the claims?	14:29:21
5	MR. LENNIE: Objection. Form.	14:29:23
6	A It's not a detection of noise elements	14:29:32
7	within the meaning of the claims. This is part of	14:29:35
8	some method for calculating Pn(i).	14:29:40
9	Q Can you turn to Paragraph 926.	14:30:01
10	A (Complying.)	14:30:14
11	MR. SWANSON: Actually, let me go ahead and	14:30:15
12	mark this as well.	14:30:25
13	(Exhibit 10 was marked for identification	14:30:26
14	and is attached to the transcript.)	14:30:38
15	Q I just handed you Exhibit 10. Is this the	14:30:49
16	Martin 1994 paper that's discussed in your report?	14:30:52
17	A It is.	14:30:56
18	Q Okay. And you're familiar with this paper?	14:30:57
19	A I am.	14:31:00
20	Q Okay. And in Paragraph 926 of your report	14:31:01
21	you say that neither PMact nor Pmin constitutes a	14:31:18
22	threshold for a frequency bin.	14:31:31

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	149
1	A That's correct.	
2	Q Why do those values not constitute	
3	thresholds for a frequency bin?	
4	A There's no test with respect to those values	
5	where you're using you are setting a threshold with	
6	those values to make some decision with respect to the	
7	overall process.	
8	Q Can you explain what you mean by that? I'm	
9	not sure I followed that answer.	
10	A PMact neither PMact nor Pmin are a	
11	threshold for a frequency bin. They are simply values	
12	that are used to track the minimum of the M samples	
13	across a window of M samples, which is a portion of a	
14	window of length D, considering the entire set of	
15	samples of a frequency bin.	
16	Q Okay. Can you turn back to your '949	
17	report?	
18	MR. LENNIE: Exhibit 8.	
19	Q And specifically Paragraph 566.	
20	A (Complying.)	
21	Q In Paragraph are you there?	
22	A Uh-huh, I am.	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.	50
		-30
1	Q Paragraph 566 is discussing the same Martin	14:34:39
2	1994 paper we were just looking at?	14:34:43
3	A Uh-huh. Yes.	14:34:46
4	Q Do you agree with what you said in Paragraph	14:34:49
5	566?	14:34:51
6	A (Reviewing.)	14:34:57
7	Sorry, I'm reading it, because I'm recalling	14:35:52
8	the argument. If you recall, this matter was some	14:35:55
9	time ago. I want to make sure I have the technical	14:35:58
10	ideas.	14:36:01
11	Q Absolutely, yeah.	14:36:02
12	A (Reviewing.)	14:36:04
13	Yes, I agree with this, and that enabled me	14:37:06
14	to orient myself on the arguments that are presented	14:37:11
15	here.	14:37:14
16	Q Okay. Is this saying the same thing as what	14:37:14
17	you're saying in your report in this case about Martin	14:37:18
18	1994?	14:37:21
19	A It's not saying the same thing, no. I don't	14:37:26
20	mean to have this in place of that. If I wanted this	14:37:31
21	in place of that, I would have put it there.	14:37:34
22	Q Okay. Why did you change what you said	14:37:36

Transcript of Scott Clinton Douglas, Ph.D
Conducted on June 16, 2017

151

1	about Martin 1994?	14:37:39
2	A My current report is a rebuttal report in	14:38:12
3	response to Dr. Kyriakakis's assertions.	14:38:15
4	Q Uh-huh.	14:38:21
5	A So this is a response to his.	14:38:21
6	Q Uh-huh.	14:38:24
7	A It doesn't contain everything that I've	14:38:24
8	written from other reports in every context.	14:38:27
9	Q Uh-huh.	14:38:29
10	A It is I've written it with the	14:38:30
11	understanding and and concept that I am responding	14:38:35
12	to what Dr. Kyriakakis has said in his report.	14:38:39
13	He makes the conclusory assertion that PMact	14:38:45
14	and PM teach the threshold detector limitation, and I	14:38:49
15	provided what I thought was sufficient detail to	14:38:57
16	address his assertion.	14:39:00
17	Q Okay.	14:39:03
18	MR. SWANSON: Go off the record.	14:39:07
19	THE VIDEOGRAPHER: Going off the record.	14:39:09
20	The time is 2:39.	14:39:09
21	(A recess was taken.)	14:39:11
22	(Back on the record at 2:50 p.m.)	14:39:11

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 15	2
1	THE VIDEOGRAPHER: We're back on the record.	14:50:15
2	EXAMINATION BY COUNSEL FOR RESPONDENT APPLE, INC.	14:50:20
3	BY MR. BROUGHAN:	14:50:20
4	Q Good afternoon, Professor Douglas.	14:50:21
5	A Good afternoon.	14:50:22
6	Q Tom Broughan. I'm going to ask you a few	14:50:23
7	questions on behalf of Apple and Respondents.	14:50:25
8	I want to continue with the Martin reference	14:50:28
9	that we were just discussing, but if you could open	14:50:30
10	your report, please	14:50:33
11	A Uh-huh.	14:50:34
12	Q to Paragraph 183.	14:50:34
13	A Uh-huh.	14:50:49
14	Q In the second or third sentence you state,	14:50:52
15	"Martin (1993) operates on a broadband, time domain	14:50:55
16	signal."	14:51:01
17	Do you see that?	14:51:02
18	A I do.	14:51:03
19	Q And then two sentences later you state, "In	14:51:05
20	my opinion, the Martin (1993) algorithm would require	14:51:07
21	non-trivial modifications in order to operate in the	14:51:13
22	frequency domain in the manner claimed by the '345	14:51:17

Transcript of Scott Clinton Douglas, Ph.D.
Conducted on June 16, 2017

	Conducted on June 16, 2017 15	3
1	patent."	14:51:20
2	Do you see that?	14:51:20
3	A I do.	14:51:22
4	Q You agree that the '345 patent requires	14:51:32
5	performing operations in the frequency domain?	14:51:35
6	A This '345 patent employs FFT processing	14:51:43
7	which generates frequency domain components from a	14:51:45
8	time domain signal, and those frequency domain	14:51:51
9	components are operated upon in a frame-by-frame	14:51:54
10	basis, thereby allowing them to have indexes in time.	14:51:57
11	Q Uh-huh. So you state that, Martin would	14:52:03
12	require nontrivial modifications to operate in the	14:52:07
13	frequency domain.	14:52:10
14	What sorts of modifications would be	14:52:12
15	required?	14:52:14
16	A Well, in order to operate in the frequency	14:52:19
17	domain in the matter claimed by the '345 patent. So	14:52:21
18	at a minimum at a minimum it would require	14:52:26
19	employing a device that would be computing frequency	14:52:30
20	bins because the system in '345 employs frequency bins	14:52:34
21	as a result of its processing.	14:52:41
22	And it would also require additional	14:52:44

	Conducted on June 16, 2017 15	54 T
1	modifications with regard to threshold detection and	14:52:48
2	also setting a threshold using a noise estimation	14:52:54
3	process. Those are some examples.	14:52:58
4	Q You agree that the '345 patent requires	14:53:01
5	generation of frequency bins?	14 : 53:05
6	A The '345 patent generates frequency domain	14:53:12
7	components in order to be essentially implemented to	14:53:17
8	allow the system to then do its processing on its	14:53:24
9	signals in time.	14:53:27
10	Q Earlier you stated that the system in the	14:53:30
11	'345 employs frequency bins as a result of its	14:53:33
12	processing. Is that correct?	14:53:36
13	A That's correct.	14:53:39
14	Q So you agree that the '345 patent requires	14:53:40
15	frequency bins as a result of its processing?	14:53:43
16	MR. LENNIE: Objection. Form.	14:53:47
17	A The '345 patent describes a system which	14:53:54
18	uses processing to generate frequency domain	14:53:59
19	components. There are many ways to perform that	14:54:04
20	frequency domain calculation. And '345 allows for	14:54:07
21	different methods to perform that calculation.	14:54:12
22	Q Uh-huh. Okay. Would you pick up the Martin	14:54:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	155
1	'93 article, please, and turn to Page 1096. Or the	14:54:19
2	back. On the right-hand side there's a heading called	14:54:29
3	"Spectral Subtraction."	14:54:33
4	Do you see that?	14:54:35
5	A I do.	14 : 54 : 37
6	Q And in this section Martin describes	14 : 54:37
7	experiments using a filter bank with 256 channels,	14:54:41
8	correct?	14:54:45
9	A He says, "In our experiments we used a	14:54:48
10	filter bank with 256 channels"	14:54:50
11	Q And he goes on to say that in his	14:54:55
12	experiments he estimated the minimum power of the	14:54:59
13	signal in each of those 256 channels, correct?	14:55:02
14	A He says he estimated the minimum power in	14:55:06
15	each of these channels.	14:55:09
16	Q There are 256 channels, correct?	14:55:24
17	A He says, we used a filter bank with 256	14:55:29
18	channels.	14:55:33
19	Q In this passage of Martin '93, is he	14:55:35
20	discussing operations performed in the frequency	14:55:39
21	domain?	14:55:42
22	A Martin 1993 is focused on the estimation of	14:55:56

l	Conducted on June 16, 2017	156
1	signal-to-noise-ratio, and its primary description and	14:56:00
2	technical discussion is around that that problem	14:56:05
3	and approach.	14:56:09
4	The description that he has here is brief	14:56:11
5	and does not provide very much detail with respect to	14:56:15
6	the overall processing that he does. It's not clear	14:56:20
7	from this what the exact structure is that he is	14:56:24
8	using.	14:56:27
9	Q So you don't know whether Martin 1993	14:56:35
10	discloses performing operations in the frequency	14:56:39
11	domain?	14:56:42
12	MR. LENNIE: Objection. Form.	14:56:43
13	A From this description it's not obvious what	14:56:46
14	exactly he is doing from the standpoint of his	14:56:48
15	processing.	14:56:51
16	Q Could he be operating in the time domain?	14:56:55
17	MR. LENNIE: Objection. Form.	14:57:02
18	A Again, there's not many much detail to be	14:57:08
19	able to determine exactly what the processing is that	14:57:11
20	he's using in this particular brief description of an	14:57:13
21	application.	14:57:17
22	Q In the Spectral Subtraction section on Page	14:57:19

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

l	Conducted on June 16, 2017 15	7
1	1096 of Martin 1993 he could be describing performing	14:57:22
2	operations in the time domain or he could be	14:57:28
3	describing operations performed in the frequency	14:57:30
4	domain? Is that your opinion?	14:57:33
5	A Again, it's not obvious what he is doing.	14 : 57 : 35
6	He hasn't provided enough sufficient detail with	14:57:37
7	regard to his processing to determine exactly what's	14 : 57 : 40
8	going on.	14:57:42
9	Q And you've looked at this passage of Martin	14:57:47
10	1993 and you can't figure it out?	14:57:49
11	MR. LENNIE: Objection. Form.	14:57:53
12	A There's not enough detail here to determine	14:57:55
13	exactly what is going on.	14:57:57
14	Q So you don't know whether each of the 256	14:58:06
15	channels of the filter bank is a frequency bin?	14:58:09
16	A Again, he has not provided enough detail to	14:58:14
17	determine exactly what the processing is that he is	14:58:17
18	using.	14:58:20
19	Q So you can't say for certain whether each of	14:58:36
20	the 256 channels of the filter bank is a frequency	14:58:39
21	bin?	14:58:42
22	A Whether each of the channels?	14:58:45

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	158
1	Q Yes.	14:58:48
2	A Again, the system structure is not detailed	14:58:49
3	enough to be able to determine what that is. He	14:58:52
4	doesn't aprive provide enough structure to really	14:58:57
5	figure out what's going on there.	14:59:01
6	Q So you can't say one way or the other	14:59:03
7	whether it's a frequency bin or not?	14:59:05
8	A I can't say one way or another with respect	14:59:07
9	to this description what he is doing.	14:59:08
10	Q Okay. In your report would you please turn	14:59:12
11	to Paragraph 97.	14:59:20
12	A Uh-huh.	14:59:21
13	Q You considered a figure from	14:59:39
14	Dr. Kyriakakis's report; is that correct?	14:59:43
15	A I did.	14:59:46
16	Q Are you pulling up the figure?	14:59:54
17	A Yeah, I'm getting to it, because we're	14:59:56
18	mentioning it.	14:59:58
19	Q It's Paragraph 402, if that's helpful.	15:00:02
20	A Uh-huh, yes.	15:00:06
21	Q In Paragraph 97 of your report you do not	15:00:09
22	note anything about Dr. Kyriakakis's figure that is	15:00:14

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

159

1		
1	inaccurate, correct?	15:00:17
2	A Can you be more specific with respect to the	15:00:48
3	inaccuracy that you're referring to?	15:00:49
4	Q Well, you state, " this hypothetical	15:00:52
5	system would eliminate a significant and integral	15:00:54
6	portion of the system of Martin (1993)."	15:00:58
7	Is that correct?	15:01:03
8	A Yes.	15:01:03
9	Q But you don't note anything about the figure	15:01:05
10	that is inaccurate or incorrect?	15:01:08
11	MR. LENNIE: Objection. Form.	15:01:14
12	A My statement is not being applied to this	15:01:16
13	particular figure; my statement applies to the to	15:01:19
14	the system of Martin 1993.	15:01:25
15	Q Which statement is not being applied to this	15:01:35
16	particular figure?	15:01:37
17	A "This hypothetical system would	15:01:38
18	eliminate" the "significant and integral portion."	15:01:40
19	I'm referring to the significant and integral portion	15:01:45
20	of Martin 1993 that's not represented in this figure.	15:01:49
21	Q And that significant and integral portion of	15:01:58
22	Martin 1993 are the subwindows?	15:02:00

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

160

1		
1	A One of the aspects of the system is the use	15:02:08
2	of subwindow processing within Martin 1993.	15:02:13
3	Q Uh-huh. And Dr. Kyriakakis's figure assumes	15:02:17
4	a system where the number of subwindows is one,	15:02:21
5	correct?	15:02:24
6	A Yes.	15:02:25
7	Q If the Martin algorithm were to run using	15:02:29
8	one as the number of subwindows, is the figure that	15:02:35
9	Dr. Kyriakakis provided accurate?	15:02:39
10	A The system is not specified for a value of	15:02:50
11	one subwindow. The system assumes that a data window	15:02:56
12	of length L is decomposed into W windows of length M.	15:03:02
13	Q Would you be able to configure the Martin	15:03:18
14	1993 algorithm to use a subwindow strike that.	15:03:21
15	Would you be able to configure the Martin	15:03:27
16	1993 algorithm to use a single subwindow?	15:03:30
17	A The Martin 1993 algorithm is created with	15:03:37
18	the specific design choice of W windows and its	15:03:45
19	structure assumes the use of multiple subwindows.	15:03:52
20	Q Would you be able to configure the Martin	15:03:59
21	1993 algorithm to use a single subwindow even though	15:04:00
22	the Martin 1993 paper describes using more than one	15:04:05

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	161
1	subwindow?	15:04:10
2	A Any attempt at some sort of configuration	15:04:13
3	would significantly change the method that's being	15:04:16
4	described in Martin 1993. It would cease to be the	15:04:18
5	algorithm that Martin 1993 is describing.	15:04:23
6	Q So you would be unable to change the Martin	15:04:29
7	1993 algorithm to use a single sub strike that.	15:04:33
8	So you would be unable to change the Martin	15:04:41
9	1993 algorithm to use a single subwindow; is that	15:04:43
10	correct?	15:04:48
11	MR. LENNIE: Objection. Form.	15:04:50
12	A Looking at the Martin 1993 algorithm, it	15:04:54
13	uses multiple subwindows in order for its processing.	15:04:57
14	If you're asking me to change the algorithm in some	15:05:02
15	hypothetical way, it would change it from Martin, it	15:05:06
16	would no longer be the algorithm that Martin 1993 is	15:05:09
17	describing.	15:05:13
18	Q But would you be able to make that change to	15:05:14
19	the Martin algorithm?	15:05:15
20	(Mr. Haslam joined the proceedings.)	15:05:17
21	A Well, the description of the algorithm	15:05:23
22	requires multiple subwindows. I don't see the point	15:05:25

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	162
1	of trying	to change it at this point.	15:05:28
2	Q	So you don't know how to do it?	15:05:31
3		MR. LENNIE: Objection. Form.	15:05:33
4	A	It's not something that's part of the Martin	15:05:36
5	1993 appr	oach.	15:05:39
6		MR. BAIK: Can whoever joined go on mute,	15:05:44
7	please?		15:05:47
8		(Pause in the proceedings.)	15:06:07
9	Q	You are a person of ordinary skill in the	15:06:15
10	art?		15:06:17
11	A	I am.	15:06:17
12	Q	So even though Martin 1993 does not describe	15:06:20
13	using a s	ingle subwindow, you would be unable to	15:06:23
14	modify Ma	rtin to use a single subwindow?	15:06:29
15	A	Martin 1993 contemplates using a data window	15:06:32
16	of length	L that's decomposed into W windows of length	15:06:36
17	М		15:06:41
18	Q	Uh-huh.	15:06:41
19	A	where W is two or more, because he says W	15:06:42
20	windows.		15:06:45
21	Q	Would a person of ordinary skill in the art	15:06:46
22	lack the	technical expertise to modify Martin to use a	15:06:49

	Conducted on June 16, 2017	163
1	single subwindow?	15:06:54
2	A If one were to try to contemplate the	15:06:58
3	change, it would change the algorithm away from	15:07:01
4	Martin, it would no longer be what the description of	15:07:04
5	Martin is, and it would remove significant portions of	15:07:07
6	the system to try to do so.	15:07:11
7	Q But that person would be able to make the	15:07:23
8	change?	15:07:25
9	A I don't see why someone would be motivated	15:07:47
10	to consider such a change.	15:07:50
11	Q Your opinion is that someone would not be	15:07:52
12	motivated to consider making that change, not that the	15:07:54
13	person would be unable to make the change?	15:07:58
14	A Well and to make the change would then	15:08:02
15	change the algorithm such that it would no longer be	15:08:05
16	what Martin is describing in his paper.	15:08:08
17	Q Does the Martin 1993 algorithm contemplate	15:08:18
18	using two subwindows?	15:08:22
19	A The algorithm describes typical window	15:08:32
20	parameters where W is equal to four, which would	15:08:35
21	correspond to four subwindows.	15:08:39
22	Q Could you adjust the Martin 1993 algorithm	15:08:41

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	64
1	to use two subwindows?	15:08:45
2	A Yes, you could.	15:08:47
3	Q Would a system strike that.	15:08:59
4	With respect to Dr. Kyriakakis's figure, do	15:09:13
5	you dispute the way he depicts the tracking of the	15:09:16
6	minimum values?	15:09:21
7	MR. LENNIE: Objection. Form.	15:09:22
8	A The figure describes some method which uses	15:09:34
9	a value of W equal to one, which would be one	15:09:39
10	subwindow, which doesn't make sense with respect to	15:09:43
11	Martin 1993. So I'm not sure how this particular	15:09:46
12	figure relates to Martin 1993.	15:09:50
13	Q So you are unable to perform the analysis	15:09:53
14	required to determine whether the figure in	15:09:55
15	Dr. Kyriakakis's report is accurate because it assumes	15:09:58
16	that the subwindow size in Martin is one?	15:10:03
17	A I'm not sure what the term "inaccurate"	15:10:22
18	means when it's describing a system which has the	15:10:24
19	number of subwindows which Martin doesn't consider.	15:10:28
20	Q Would you go to Paragraph 100, please, of	15:10:43
21	your report?	15:10:46
22	A (Complying.)	15:10:47

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.	D.
Conducted on June 16, 2017	

1	Conducted on June 16, 2017	165
1	Q Here you are discussing the array of PMmin?	15:10:57
2	PM M-I-N?	15:11:01
3	A Yes.	15:11:06
4	Q And you state, "The claim language states	15:11:07
5	that the current minimum is updated in accordance with	15:11:10
6	a single future minimum value of the frequency bin."	15:11:12
7	Correct?	15:11:16
8	A Yes.	15:11:17
9	Q Why do you think that the claim is limited	15:11:22
10	to a single future minimum value?	15:11:24
11	A Because current minimum value and future	15:11:33
12	minimum value imply that there's some connection	15:11:36
13	between those two. It doesn't make sense to call	15:11:41
14	something a future minimum and something a current	15:11:44
15	minimum and not have them be related to each other in	15:11:46
16	terms of the way they're calculated.	15:11:51
17	Q In your view, the fact that there is a	15:11:54
18	current minimum and a future minimum means that the	15:11:57
19	claim is limited to a single future minimum value?	15:12:00
20	MR. LENNIE: Objection. Form.	15:12:07
21	A The claim language says said current minimum	15:12:13
22	value being derived in accordance with a future	15:12:15

	Conducted on June 16, 2017	166
1	minimum value. A future minimum value would be over	15:12:18
2	an appropriate frequency bin.	15:12:21
3	Q You agree that claim 4 requires a single	15:12:29
4	future minimum value?	15:12:32
5	A It requires a future minimum value of the	15:12:37
6	corresponding frequency bin, that frequency bin being	15:12:41
7	a data window of an appropriate number of samples that	15:12:45
8	corresponds to the window associated with the current	15:12:51
9	minimum value.	15:12:53
10	Q Would a system that used two future minimum	15:12:56
11	values practice claim 4 of the '345 patent?	15:12:59
12	MR. LENNIE: Objection. Form.	15:13:05
13	A It's hard to contemplate an answer to that	15:13:31
14	question without looking at a specific structure	15:13:33
15	associated with that.	15:13:36
16	Q You state that, "The claim language states	15:13:39
17	that the current minimum is updated in accordance with	15:13:41
18	a single future minimum value of the frequency bin."	15:13:44
19	Correct?	15:13:48
20	A Correct. The future minimum value of the	15:13:49
21	corresponding frequency bin, that frequency bin being	15:13:54
22	of a size corresponding to that of the current	15:14:00

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	167
1	minimum.	15 : 14
2	Q "The frequency bin being a size	15 : 14
3	corresponding to that of the current minimum."	15 : 14
4	What do you mean?	15 : 14
5	A A frequency bin contains some number of	15 : 14
6	samples. We're talking about the minimum over a	15:14
7	frequency bin. We have to take a collection of	15:14
8	samples. We can't talk about a minimum of one value.	15:14
9	Q A frequency bin itself does not contain	15:14
10	multiple frequency bins?	15:14
11	A In the context of the '345 patent, we're	15:14
12	talking about processing of values in a frequency bin.	15:14
13	We have to be talking about the frequency bin values.	15:14
14	In this case, it's a future minimum value of	15:14
15	the corresponding frequency bin. That's referring to	15:14
16	the number of samples that are being computed for the	15:15
17	minimum value.	15:15
18	Q In Paragraph 100 of your report why do you	15:15
19	state that the claim language requires a single future	15:15
20	minimum value?	15:15
21	A I say, "The claim language states that the	15:15
22	current minimum is updated in accordance with a single	15:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

168 15:15:43 1 future minimum value of the frequency bin." 15:15:45 2 Why did you put the word "single" in that 0 15:15:48 3 sentence? 15:15:50 4 А Because by contrast, Martin 1993 in the case 5 15:15:58 of non-monetizing increasing power, stores several 6 values across subwindows, and these values are 15:16:03 7 basically over short time frames not corresponding to 15:16:08 8 15:16:13 the entire data window. There are multiple PMmins 9 15:16:20 that are being computed. 10 15:16:25 0 So if the claim permitted more than one 11 15:16:29 future minimum value, would you agree that the array 15:16:33 12 of PMmin values would be a future minimum value? 15:16:39 13 MR. LENNIE: Objection. Form. 14 А I -- the array of minimum values is not a --15:16:40 15 is not a minimum value. Any one of those values is 15:16:56 16 not a minimum value. 15:17:00 17 15:17:05 Q And if any one of those values is not a 18 minimum value --15:17:07 15:17:08 19 Α Over the data window of length L. 20 15:17:10 0 -- would each be a minimum value over the 21 15:17:14 window -- the subwindow of length M? 22 Yes. They're -- they're -- they are 15:17:18 А

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	169
1	calculations done over subwindows, yes.	15:17:2
2	Q And in your view, the future minimum value	15:17:2
3	requires that the minimum be calculated over an entire	15:17:2
4	window?	15:17:3
5	A Yes. The minimum has to be calculated over	15:17:3
6	an entire window or else it's not a minimum.	15:17:3
7	Q And a subwindow M would not be a data	15:17:3
8	window, in your view?	15:17:4
9	MR. LENNIE: Objection. Form.	15:17:4
10	A A subwindow M is not the entire data window	15:17:4
11	over which a current minimum or a future minimum would	15:17:5
12	be calculated.	15:17:5
13	Q It is a data window, though; is that	15:18:0
14	correct?	15:18:0
15	A It's a subwindow. It contains partial	15:18:1
16	information.	15:18:1
17	And I also want to point out that Martin	15:18:1
18	1993, we're talking about where we would have to add	15:18:2
19	additional well, it doesn't talk about frequency	15:18:2
20	the main processing in Martin 1993. So this is for	15:18:2
21	full band processing that he's referring to, so	15:18:3
22	There's additional constraints that are involved with	15:18:3

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

170

1	respect to this.	15:18:39
2	Q This algorithm would not be applied to each	15:18:39
3	of the 256 channels of the filter bank?	15 : 18 : 42
4	MR. LENNIE: Objection. Form.	15 : 18 : 46
5	A I can can you can you I'm not	15:18:51
6	sure what I'm to answer in that question.	15:18:55
7	Q On Page 1096 of Martin '93 it states, "In	15:18:57
8	our experiments we used a filter bank with 256	15:19:00
9	channels and estimated the minimum power in each of	15:19:04
10	these channels."	15 : 19:07
11	A Uh-huh. Yes.	15:19:08
12	Q So Martin applied his minimum estimation	15 : 19 : 10
13	algorithm to each of the 256 channels of the filter	15 : 19 : 14
14	bank; is that correct?	15 : 19 : 18
15	A That's what the words say. He he hasn't	15:19:24
16	described the structure of the filter bank, so it's	15 : 19 : 27
17	unclear what the processing is, but he indicates that	15 : 19 : 31
18	he has applied his algorithm for SNR estimation to the	15 : 19 : 34
19	data that he's generated.	15 : 19:40
20	Q He states that he used his algorithm for	15 : 19 : 42
21	estimating the minimum power in each of these	15 : 19 : 45
22	channels to each of the channels, correct?	15 : 19 : 48

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 17	1
1	A That's what he states, yes.	15:19:52
2	Q And you don't understand how the algorithm	15:19:55
3	would be applied to each of those channels because he	15:19:57
4	doesn't provide you with enough information?	15:20:00
5	A I don't understand how he has applied his	15:20:05
6	algorithm to each of these channels because he has not	15:20:07
7	provided the information about what he did.	15:20:11
8	Q So looking at his algorithm and looking at	15:20:14
9	the disclosure on Page 1096, you would be unable to	15:20:16
10	construct a system that applied Martin's algorithm to	15:20:22
11	each channel of the filter bank?	15:20:25
12	MR. LENNIE: Objection. Form.	15:20:30
13	A He has not described with sufficient detail	15:20:38
14	what exactly he is doing with respect to his	15:20:41
15	processing.	15:20:44
16	Q Based on the disclosure in Martin 1993, you	15:20:50
17	would be unable to make such a system?	15:20:53
18	MR. LENNIE: Objection. Form.	15:20:57
19	A I haven't been asked to consider the	15:21:01
20	creation of such a system.	15:21:04
21	Q Dr. Kyriakakis in his report did not suggest	15:21:09
22	the creation of such a system?	15:21:10

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	172
1	A (Reviewing.)	15:21:40
2	He has applied an algorithm to processing of	15:21:46
3	a sequence of values. It's unclear what those values	15:21:52
4	are or where they came from when he when he did his	15:21:56
5	application of his particular approach. In	15:22:01
6	particular, he chose W equal to one, which is not the	15:22:03
7	Martin 1993 system.	15:22:06
8	Q When you refer to "he," you were referring	15:22:16
9	to Dr. Kyriakakis?	15:22:18
10	A Yes.	15:22:19
11	Q So you don't understand that strike that.	15:22:28
12	It is not strike that.	15:22:32
13	Dr. Kyriakakis was not describing applying	15:22:39
14	the algorithm to the output of the filter bank?	15:22:41
15	A Can you point me to the paragraph to which	15:22:50
16	you refer?	15:22:52
17	Q You have no specific recollection of	15:22:54
18	Dr. Kyriakakis describing such a system?	15:22:57
19	Let me ask a different question.	15:23:14
20	You have not addressed such a system in your	15:23:16
21	report; is that correct?	15:23:18
22	MR. LENNIE: Objection. Form.	15:23:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

173

1	A My report contains rebuttal to the	15:23:53
2	contentions in Dr. Kyriakakis's report. Is there	15:23:55
3	something specific that you want me to address within	15:24:02
4	his report?	15:24:04
5	Q I'm I was asking you if you had such an	15:24:05
6	opinion, and it sounds like the answer is no; is that	15:24:08
7	correct?	15:24:10
8	MR. LENNIE: Objection. Form.	15:24:11
9	A My report contains my opinions with regard	15:24:12
10	to Dr. Kyriakakis's assertions.	15:24:15
11	Q And your report does not address a	15:24:18
12	configuration of Martin 1993 where Martin 1993's	15:24:22
13	algorithm is applied to each channel of a 256-channel	15:24:27
14	filter bank?	15:24:31
15	A Martin 1993 describes a system which uses	15 : 24 : 40
16	full band processing for SNR estimation. I provided	15:24:43
17	arguments with regard to an analysis of how this	15:24:49
18	functions vis-à-vis Dr. Kyriakakis's contentions.	15:24:52
19	Q If we can go back to the very exciting topic	15:24:56
20	of future minimums.	15:24:59
21	If Pn(i) is the smallest of the PMmin values	15 : 25:04
22	in the entire window, wouldn't that be the same as	15 : 25:10

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	74
1	using a single future minimum?	
2	MR. LENNIE: Objection. Form.	
3	A Again, Martin 1993 talks about SNR	
4	estimation across a full band signal. So we're not	
5	talking about frequency bin processing here in the	
6	context of frequency bins.	
7	Q I'm not asking about frequency bins, I'm	
8	asking about minimum values. And so let's set aside	
9	the issue of whether it's a frequency bin or not and	
10	just focus on whether it's a future minimum value of	
11	the signal.	
12	If Pn(i) is the smallest of the PMmin values	
13	in the entire window, isn't that the same as using a	
14	single future minimum value?	
15	A Can you point me to	
16	MR. LENNIE: Objection. Form.	
17	A Can you point me to the calculation that	
18	you're talking about? I want to be specific, that's	
19	the reason why.	
20	Q Yes. If you look at Figure 2?	
21	A Uh-huh.	
22	Q On the left-hand side below the SNR	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 175			
1	calculati	on box, Pn(i) is I'm sorry, that's not it.	15:26:30
2		It's in the bottom right-hand corner of	15:26:38
3	Figure 2.	Pn(i) is set equal to PMmin. Do you see	15:26:40
4	that?		15:26:46
5	А	I I do, uh-huh.	15 : 26 : 47
6	Q	If Pn(i) in this calculation is set equal to	15:27:03
7	the small	est of the PMmin values in the entire data	15:27:09
8	window, i	sn't that calculation the same as using a	15:27:13
9	single fu	ture minimum?	15:27:16
10		MR. LENNIE: Objection. Form.	15:27:20
11	A	Are you you're referring to this box here	15:27:30
12	(indicati	ng)?	15:27:32
13	Q	Yes.	15:27:33
14	A	I'm sorry, I want to make sure. I'm	15:27:33
15	sorry		15:27:34
16	Q	Yes.	15:27:34
17	A	the box to the right?	15:27:34
18	Q	That box there (indicating), yes. Pn(i)	15:27:38
19	equals PM	min, correct?	15 : 27 : 42
20	А	Okay. Yes, that box says Pn(i) is equal to	15:27:43
21	PMmin.		15:27:47
22	Q	And so it's setting Pn(i) equal to PMmin?	15:27:48

Transcript of Scott Clinton Douglas, I	Ph.D.
Conducted on June 16, 2017	

176

1	A That's correct. For monotonically	15:27:53
2	increasing power.	15:27:55
3	Q Right. And so that would be the last PMmin	15:27:57
4	in the data window?	15:28:02
5	A That's correct.	15:28:04
6	Q If that PMmin was the smallest value of	15:28:05
7	PMmin in the data window, wouldn't the calculation in	15:28:09
8	the bottom right of Figure 2 work the same as using a	15:28:14
9	single future minimum?	15:28:21
10	MR. LENNIE: Objection. Form.	15:28:23
11	A I couldn't see how that's possible. Because	15:28:25
12	the test above it says monotonically increasing power.	15 : 28 : 29
13	If the power is increasing monotonically, the last	15:28:35
14	PMmin would be the largest value, not the smallest	15:28:40
15	value.	15:28:44
16	Q Okay. So if we go to the left, there's	15:28:44
17	another box.	15 : 28 : 47
18	A I see that.	15:28:49
19	Q Pn(i) is equal to the min of the PMmin	15:28:50
20	values in the vector?	15:28:55
21	A That box is a minimum of a set of values.	15:28:59
22	Q And this assignment will result in assigning	15:29:07

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton	Douglas, Ph.D.
Conducted on June	16, 2017

177

1	Pn(i) to the smallest of the Pmin values in the entire	15:29:10
2	data window, correct?	15:29:16
3	A It results in the calculation of a Pn(i)	15:29:20
4	value which is the minimum of the min vec values.	15:29:22
5	Q And the min vec values are the PMmin values,	15:29:27
6	correct?	15:29:32
7	A They are the PMmin values.	15:29:33
8	Q So this assignment in Figure 2 of Martin	15:29:36
9	assigns Pn(i) to the smallest PMmin in the data	15:29:40
10	window, correct?	15:29:46
11	A Yes.	15:29:52
12	Q If the data window was segmented into four	15:30:01
13	subwindows, that would be the smallest of four PMmin	15:30:05
14	values, correct?	15:30:10
15	A That is correct.	15:30:11
16	Q In your view, using four minimum values is	15:30:16
17	different than using a single future minimum value?	15:30:21
18	MR. LENNIE: Objection. Form.	15:30:26
19	A The claim language states that a current	15:30:36
20	minimum is updated in accordance with a single future	15:30:39
21	minimum value of the frequency bin.	15:30:42
22	Q So if Pn(i) was the current minimum, setting	15:30:45

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	178
1	it equal	to the smallest of four future minimum values	15:30:51
2	is outsic	de the scope of the claim?	15:30:55
3	А	I'm I'm confused. I'm not sure what	15:30:58
4	you're sa	aying. You used the term "current minimum."	15:31:01
5	I don't s	see how that is appropriate here.	15:31:04
6	Q	Assume that the value of Pn(i) is a current	15:31:09
7	value.		15:31:14
8	А	Assume that.	15:31:15
9	Q	Please.	15:31:16
10	А	But this system I	15:31:16
11	Q	You can't you can't assume that?	15:31:19
12	A	The system is working on a full band signal.	15:31:33
13	Q	I'm not talking about the frequency bin	15:31:38
14	aspect; 1	'm talking about the minimum value aspect.	15:31:39
15		For the purposes of evaluating the minimum	15:31:42
16	value asp	pect of the claim, can you assume that Pn(i)	15:31:45
17	is the cu	arrent minimum value?	15:31:50
18		MR. LENNIE: Objection. Form.	15:31:52
19	A	I don't know I don't know what it means	15:31:59
20	to assume	e that something is, you know, a piece of the	15:32:00
21	claim lar	nguage that we're talking about.	15:32:05
22	Q	Does the claim indicate does claim 4 of	15:32:25

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017 17	9
1	the '345 patent indicate a time window?	15:32:27
2	A (Reviewing.)	15:32:41
3	MR. LENNIE: I'm going to object to the form	15:32:41
4	of the question.	15:32:56
5	A The claim language refers to a threshold	15:32:58
6	detector, the setting of a threshold detector for each	15:33:04
7	frequency bin, and doing so in accordance with the	15:33:11
8	current minimum value of the magnitude of the	15:33:12
9	corresponding frequency bin and said current minimum	15:33:14
10	value being derived in accordance with the future	15:33:20
11	minimum value of the magnitude of the corresponding	15:33:22
12	frequency bin.	15:33:25
13	Minimum values require that you have	15:33:26
14	multiple quantities in order to perform a calculation,	15:33:30
15	and in this context "frequency bin" refers to a range	15:33:34
16	of values in time to allow that calculation to happen.	15:33:41
17	Q When you refer to "a range of values in	15:33:48
18	time," are you referring to a frame? That the	15:33:50
19	frequency bin reflects the values in a frame that's	15:33:54
20	processed during FFT?	15:33:57
21	A As an example, yes.	15:33:59
22	Q So without a frame of an FFT, you cannot	15:34:17

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	80
		7
1	have a minimum value as that term is meant within	15:34:21
2	'345's claims?	15:34:26
3	MR. LENNIE: Objection. Form.	15 : 34 : 27
4	A There's nothing in claim 4 which restricts	15:34:36
5	the processing to that of an FFT. What is required is	15:34:38
6	the ability to calculate frequency bin.	15:34:45
7	Q So without a frame that's used in an	15:34:53
8	operation that converts a signal to the frequency	15:34:56
9	domain, you cannot have a minimum value as that term	15:35:01
10	is meant within the '345 claims?	15:35:04
11	MR. LENNIE: Objection. Form.	15:35:08
12	A The minimum value is computed off of the	15:35:17
13	magnitude of the corresponding frequency bin. One	15:35:21
14	needs to have a time extent in order to define the	15:35:27
15	minimum value from which the current minimum is found.	15:35:32
16	Q The minimum value being tracked over time?	15:35:36
17	A The minimum values are calculated over some	15:35:42
18	time frame, yes.	15:35:45
19	Q Claim 4 does not require the minimum values	15:35:53
20	to be tracked over any particular time frame, correct?	15:35:56
21	A Claim 4 does not specify a particular length	15:36:02
22	of time over which one must perform a calculation.	15:36:05

PLANET DEPOS

888.433.3767 | WWW.PLANETDEPOS.COM
181

1	Q Claim 4 does not specify that you must use a	15:36:12
2	data window as opposed to a data subwindow, correct?	15:36:15
3	MR. LENNIE: Objection. Form.	15:36:21
4	A The issue of window size is in relation to	15:36:31
5	how the current minimum value and the future minimum	15:36:36
6	value are calculated.	15:36:39
7	Q So claim 4 does not specify a window versus	15:36:49
8	a subwindow, correct?	15:36:55
9	MR. LENNIE: Objection. Form.	15:36:57
10	A A calculation over a subwindow is a partial	15:37:02
11	calculation; you haven't finished the job. One must	15:37:05
12	look at an entire set of samples in order to decide	15:37:09
13	what a minimum is.	15:37:13
14	Q So a subwindow is not an entire set of	15:37:32
15	samples in your view?	15:37:35
16	MR. LENNIE: Objection. Form.	15:37:38
17	A If we're talking about Martin 1993?	15:37:40
18	Q We were talking about the language of claim	15:37:46
19	1 or claim 4.	15 : 37 : 47
20	A In relation to Martin 1993? Because Martin	15:37:50
21	1993 provides context over which one is doing a	15:37:54
22	calculation of an entire data window over subwindows.	15:37:58

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph	ı.D.
Conducted on June 16, 2017	

182

1	Q But claim 4 of the '345 patent does not	15:38:02
2	specify a data window, correct?	15:38:05
3	A It's	15:38:06
4	MR. LENNIE: Objection. Form.	15:38:10
5	A Claim 4 describes threshold detector where	15:38:11
6	the setting of the threshold for each frequency bin in	15:38:20
7	accordance with a current minimum value of the	15:38:24
8	magnitude of the corresponding frequency bin. That	15:38:26
9	current minimum value has to be performed over a set	15:38:31
10	of samples. And the future minimum value of the	15:38:33
11	magnitude of the corresponding frequency bin must also	15:38:38
12	be computed over a set of samples.	15:38:41
13	Q Claim 4 does not specify how long that	15:38:49
14	window must be, correct?	15:38:52
15	A It's understood that the current minimum and	15:38:57
16	the future minimum share some relationship from the	15:39:00
17	standpoint of how they're calculated.	15:39:05
18	One of those understandings is that the	15:39:09
19	current minimum and future minimum have a same number	15:39:13
20	of samples associated with them from the standpoint of	15:39:17
21	minimum calculation.	15:39:21
22	Q Where does claim 4 say that?	15:39:22

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	183
1	A I'm providing explanation with respect to	15:39:30
2	what "current minimum" and "future minimum" mean.	15:39:32
3	Q And does that reflect the language of claim	15:39:36
4	4?	15:39:43
5	A There is an understanding of what a	15:39:43
6	frequency bin is. You have to be talking about	15:39:44
7	especially for a minimum of a frequency bin, you have	15:39:46
8	to be considering a time extent associated with a	15:39:49
9	signal to be able to calculate that minimum.	15:39:53
10	Q Claim 4 does not specify a particular time	15:39:56
11	extent that's used to calculate the minimum, correct?	15:39:58
12	A It does not specify that time extent.	15:40:02
13	Q It could be five seconds? Is one example?	15:40:06
14	A For example, yes.	15:40:13
15	Q It could be one second?	15:40:13
16	A It could be, yes.	15:40:18
17	Q Claim 4 doesn't say?	15:40:21
18	A It doesn't say what that choice is, but	15:40:23
19	there's a relation between the current minimum and the	15:40:26
20	future minimum with regard to the time extent	15:40:29
21	associated with the calculation.	15:40:33
22	Q If you'll look at Martin '94 briefly.	15:40:46

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	184
1	A Sure.	15:40:51
2	Q In particular, the Abstract. Let me know	15:40:52
3	when you have it. The Abstract, it's the third	15:40:55
4	sentence.	15:41:06
5	"The algorithm is capable to track non	15:41:07
6	stationary noise signals and compares favorably with	15:41:10
7	standard spectral subtraction methods in terms of	15:41:13
8	performance and computational complexity."	15:41:17
9	Do you see that?	15:41:20
10	A I do.	15:41:20
11	Q Do you agree with that sentence?	15:41:21
12	A He's describing the performance of his	15:41:44
13	system in a conference paper that he's written. I	15:41:47
14	haven't done an analysis of the performance of this	15:41:51
15	system with respect to other systems to try to decide	15:41:54
16	whether his claim is reasonable.	15:41:57
17	Q You agree that he claims that his system is	15:42:01
18	capable of tracking non-stationary noise, correct?	15:42:04
19	A I do.	15:42:07
20	Q And you agree that he claims that his system	15:42:08
21	compares favorably with standard spectral subtraction	15:42:11
22	methods in terms of performance and computational	15:42:14

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	85
1	complexity?	15:42:17
2	A I agree that he claims that.	15:42:18
3	Q As a person of ordinary skill in the art	15:42:25
4	reading this article, would you be inclined to	15:42:28
5	consider this article for an algorithm that has the	15:42:31
6	features that he describes in his Abstract?	15:42:35
7	A In what context?	15:42:41
8	Q Let's say you were looking to implement a	15:42:55
9	spectral subtraction noise reduction system. Can you	15:42:57
10	assume that?	15:43:04
11	A I'm not sure what would drive me to go to	15:43:05
12	this particular paper to consider that.	15:43:07
13	Q My question isn't whether you would go to	15:43:11
14	this paper to begin with, it was whether you could	15:43:13
15	assume that hypothetical?	15:43:15
16	A Can you repeat the hypothetical?	15:43:17
17	Q Yes. Can you assume that you are a person	15:43:19
18	of ordinary skill in the art looking to implement a	15:43:21
19	spectral subtraction noise reduction system?	15:43:26
20	A Okay. I am assuming that now.	15:43:29
21	Q Let's assume that you have a pile of papers	15:43:31
22	in front of you that have to do with spectral	15:43:34

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas,	Ph.D.
Conducted on June 16, 2017	

I	Conducted on June 16, 2017	186
1	subtraction. Can you do that?	15:43:38
2	A Okay.	15:43:41
3	Q For example, you selected these because they	15:43:41
4	used the words "spectral subtraction" in the title, as	15:43:43
5	one hypothetical.	15:43:46
6	A That's that's one possibility, yes, as a	15:43:46
7	hypothetical, sure.	15:43:49
8	Q And you were evaluating features that you	15:43:50
9	might want to incorporate into your system.	15:43:53
10	A Okay.	15:43:57
11	Q Reading Martin 1994's Abstract, would you	15:43:57
12	understand his system to be one possible way to	15:44:02
13	implement an algorithm that can track non-stationary	15:44:06
14	noise and that compares favorably with standard	15:44:09
15	spectral subtraction methods in terms of performance	15:44:14
16	and computational complexity?	15:44:16
17	A I would understand that he would state that	15:44:19
18	and that might factor into the evaluation of this	15:44:23
19	paper and the other papers in the pile but, you know,	15:44:26
20	sitting here today, it's not obvious that I would pick	15:44:30
21	up this particular paper as the choice, particularly	15:44:33
22	since I don't have the other papers with which to	15:44:37

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	187
1	compare.	15:44:40
2	Q But if you were looking through the articles	15:44:41
3	and you were interested in an algorithm that could	15:44:43
4	track non-stationary noise, you might consider the	15:44:48
5	Martin 1994 article based on his statements in the	15:44:52
6	Abstract?	15:44:55
7	MR. LENNIE: Objection. Form.	15:44:56
8	A I have to have a need to be able to consider	15:45:00
9	that. If I don't have the need for it, then I don't	15:45:03
10	see the reason to do it.	15:45:06
11	Q If that were a feature you were looking for,	15:45:15
12	would you evaluate Martin 1994 in more depth to	15:45:19
13	determine whether his statement in the Abstract is	15:45:23
14	true?	15:45:25
15	A I'm I'm not sure, because there could be	15:45:26
16	other papers in the pile that have a similar feature	15:45:28
17	and those other papers may have other desirable	15:45:30
18	aspects. It would depend upon the situation, and	15:45:34
19	sitting here today, I don't know if I could make that	15:45:37
20	choice.	15:45:40
21	Q Okay.	15:45:41
22	MR. BROUGHAN: Please mark this as the next	15:45:58

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	188
1	exhibit.		
2		(Exhibit 11 was marked for identification	
3	and is at	tached to the transcript.)	
4	Q	Do you recognize this document?	
5	А	I do.	
6	Q	Is this a patent on which you are a named	
7	inventor?		
8	А	I am.	
9	Q	Have you read the document before?	
10	A	Yes, I have.	
11	Q	Would you please turn to column 1.	
12	А	(Complying.)	
13	Q	For in most of column 1 and column 2	
14	there is	a list of references, correct?	
15	А	Yes.	
16	Q	And in the patent you state that this list	
17	of 20 ref	erences is a list of the various technologies	
18	reference	ed and described in the patent, correct?	
19	А	These are methods that that were used to	
20	evaluate	the technique that were used to determine	
21	informati	on that enabled us to to design systems	
22	with resp	ect to our speech enhancement technique.	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

189

1	Q Did you intend for the reader to pick up	15:47:42
2	these articles for more information about the systems	15:47:45
3	used in your article? Or in your patent, excuse me.	15:47:48
4	MR. LENNIE: Objection. Form.	15 : 47 : 52
5	A They represented recommendations for things	15:48:03
6	to look at from the standpoint of providing some	15:48:06
7	context to understand the processing.	15 : 48:08
8	Q Would you consider your patent in	15:48:14
9	combination with the references listed in columns 1	15 : 48 : 18
10	and 2 of your patent?	15 : 48 : 21
11	A In what context?	15 : 48 : 27
12	Q Did you expect the reader to consider your	15:48:35
13	patent in combination with the references listed in	15 : 48 : 37
14	columns 1 and 2 of your patent?	15:48:41
15	MR. LENNIE: Objection. Form.	15:48:44
16	A Did I expect the reader? Is that what	15:48:46
17	I'm sorry, could you repeat the question?	15:48:49
18	Q By listing these 20 references in columns 1	15 : 48 : 57
19	and 2 of your patent, was it your intention to allow	15 : 49:02
20	the reader to consider your patent in combination with	15 : 49:06
21	these references?	15 : 49 : 10
22	MR. LENNIE: Objection. Form.	15 : 49 : 13

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	190
1	A The reason for combining references is	15:49:21
2	driven by the system implementer, the person who	15:49:28
3	chooses to build the system.	15:49:32
4	Q If you were a person of ordinary skill in	15:49:36
5	the art reading your patent, would you consider this	15:49:38
6	patent in combination with the 20 references listed in	15:49:44
7	columns 1 and 2 of the patent?	15:49:48
8	MR. LENNIE: Objection. Form.	15:49:51
9	A Again, to solve what problem? I I I	15:49:53
10	need more context to understand the nature of the	15:49:55
11	question.	15:49:58
12	Q Would you consider them together?	15:50:00
13	A I'm I'm not sure why I'd want to consider	15:50:03
14	them together.	15:50:06
15	Q If you wanted more information sorry, I	15:50:08
16	didn't mean to cut you off.	15:50:10
17	A Well, I I just I don't know why I	15:50:11
18	don't understand the reason why I'm wanting to	15:50:13
19	consider these together. The reason that you're	15:50:18
20	providing.	15:50:25
21	Q So looking in columns 1 and 2 of your	15:50:26
22	patent, there'd be no reason for you to pick up any of	15:50:29

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	191
1	the 20 references that are listed here and consider	15:50:34
2	them?	15:50:37
3	A The reasons to consider the combination of	15:50:42
4	these references or other technology that's not listed	15:50:44
5	here would not be found within this patent, it would	15:50:47
6	be found within the application to which this	15:50:50
7	particular technology would would be applied.	15:50:52
8	Q So if a patent like yours listed 20	15:50:58
9	references, you would not be motivated in any way to	15:51:01
10	pick up one of those references and read it?	15:51:06
11	MR. LENNIE: Objection. Form.	15:51:11
12	A Again, the motivation to pick up a reference	15:51:15
13	is driven by the application and the need of the	15:51:17
14	designer.	15:51:20
15	Q So if you wanted more information about a	15:51:25
16	technique described in your patent, you wouldn't go to	15:51:28
17	one of these 20 references to fill in those details?	15:51:31
18	A The patent employs references, it provides	15:51:44
19	background information. If a person looking at	15:51:48
20	technology needs the background information, they may	15:51:52
21	go to that to determine more information. That would	15:51:55
22	be a reasonable reason to go look at references.	15:51:58

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	192
1	That's a	pretty common thing to do both in patents as	15:52:02
2	well as :	in technical papers.	15:52:06
3	Q	If you wanted more information about a	15:52:09
4	technique	e described in the paper, you might consult	15:52:11
5	the refe	rences that are cited by the paper?	15:52:14
6	A	That's correct.	15:52:17
7	Q	If you look at the bottom of column 2?	15:52:24
8	А	Uh-huh.	15:52:27
9	Q	Lines approximately 60 to 65, you describe	15:52:27
10	spectral	subtraction?	15:52:38
11	А	(Reviewing.)	15:52:43
12		Uh-huh, yes.	15:52:46
13	Q	Do you agree that spectral subtraction is a	15:52:47
14	simple an	nd popular single-channel speech enhancement	15:52:49
15	technique	e?	15:52:54
16	А	Yes.	15:52:54
17		MR. LENNIE: Objection. Form.	15:52:59
18	А	It is a simple and popular technique. It	15:53:00
19	can be u	sed in various applications. It depends on	15:53:03
20	the appl:	ication.	15:53:08
21	Q	You agree that spectral subtraction is a	15:53:10
22	popular	technique?	15:53:12

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

193

1	MR. LENNIE: Objection. Form.	15:53:14
2	A It can be used in many different contexts,	15:53:30
3	many different systems. The type of systems that	15:53:33
4	would use them, you know, would they would have to	15:53:38
5	have a need for them, but it is a technique that is	15:53:44
6	used.	15:53:47
7	Q In your patent you state that spectral	15:53:54
8	subtraction is a popular speech enhancement technique,	15:53:57
9	correct?	15:54:01
10	A It states that, "Spectral subtraction is a	15:54:08
11	simple and popular single channel speech enhancement	15:54:10
12	technique that achieved marked reduction in background	15:54:13
13	noise."	15:54:21
14	Q Are you able to answer my question, that	15:54:26
15	spectral subtraction whether spectral subtraction	15:54:30
16	is a popular technique with a yes or no answer?	15:54:31
17	MR. LENNIE: Objection. Form.	15:54:38
18	A Without having some information about the	15:54:43
19	context or the types of systems in which it's in, it's	15:54:45
20	not clear that one could easily say yes or no to that	15:54:49
21	question.	15:54:52
22	Q And in your patent you cite to Boll for	15:55:12

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	194
1	information about spectral subtraction; is that	15:55:18
2	correct?	15:55:20
3	A Yes, I do.	15:55:21
4	Q So a reader who might want more information	15:55:23
5	about spectral subtraction might go look at Boll?	15:55:27
6	A Within this particular patent and technique,	15:55:39
7	it certainly would make sense in particular because	15:55:42
8	we've referenced it.	15:55:45
9	Q If you had not referenced the Boll article,	15:56:00
10	would a person of ordinary skill in the art had reason	15:56:05
11	to go look at the Boll article for more information	15:56:09
12	about spectral subtraction?	15:56:12
13	MR. LENNIE: Objection. Form.	15:56:15
14	A Again, in what context? I want to be	15:56:16
15	precise.	15:56:19
16	Q The context is reading your patent.	15:56:19
17	A Okay.	15:56:22
18	Q We're deleting the reference to Boll.	15:56:22
19	If a person of ordinary skill in the art	15:56:24
20	wanted to know more about spectral subtraction as	15:56:28
21	described here in column 2 of your patent, would they	15:56:31
22	have had reason to go look at the Boll article?	15:56:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 19	5
1	A This particular spatio-temporal speech	15:56:47
2	enhancement technique is not focused on spectral	15:56:50
3	subtraction. There's no particular feature or need	15:56:54
4	for it with respect to its processing.	15:56:59
5	If the reference weren't there, it wouldn't	15:57:02
6	be the case that someone would say, I need to go to	15:57:05
7	that particular reference in order to figure out that	15:57:09
8	type of system.	15:57:12
9	What I mean is that particular reference,	15:57:21
10	assuming that it's not there.	15:57:23
11	Q Why did you choose to cite to the Boll	15:57:29
12	article for more information about spectral	15:57:32
13	subtraction?	15:57:34
14	A It was one of the first articles on spectral	15:57:36
15	subtraction using digital techniques to be published.	15:57:39
16	Q You selecting Boll as the reference for more	15:57:47
17	information about spectral subtraction seemed like a	15:57:50
18	natural choice?	15:57:54
19	A For purposes of describing the methods in	15:58:00
20	the introductory portion of this particular patent, it	15:58:04
21	made sense to provide a foundational reference in	15:58:08
22	order to orient the reader on the general set of	15:58:12
		J

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017	196
1 techniques associated with spectral subtraction.	
2 Q You agree that the Boll article is a	
3 foundational reference that describes spectral	
4 subtraction?	
5 A It is a reference, as I said, that is one of	
6 the first that provides implementation methods using	
7 digital techniques.	
Q Is the Boll article well known in your	
9 field?	
A So my research, I work on various problems	
1 in terms of the types of things that I process. With	
respect to audio signals, there's work I do in	
.3 microphone arrays, I've also done work in active noise	
4 control and adaptive filters. Depending upon the	
5 application, it may or may not require knowledge of	
6 Boll in order to implement things.	
7 Certainly it may not be the case that people	
.8 working in these fields would necessarily go to Boll	
9 because spectral subtraction may not be important to	
them.	
Q If a paper referenced spectral subtraction	
in combination with a noise reduction technique, would	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

197

1	you consider going to look at the Boll article?	16:00:08
2	MR. LENNIE: Objection. Form.	16:00:12
3	A So you used the words "the paper referenced	16:00:14
4	spectral subtraction," and I want to make sure that	16:00:19
5	it's clear that we're not talking about a reference,	16:00:21
6	we're talking about mention, for example.	16:00:24
7	Q Right. So for example, the Martin 1994	16:00:29
8	article has the uses the term "spectral	16:00:32
9	subtraction," correct?	16:00:35
10	A Correct.	16:00:36
11	Q Based on Martin 1994's reference to spectral	16:00:39
12	subtraction, might you go look at the Boll article	16:00:42
13	about spectral subtraction?	16:00:46
14	MR. LENNIE: Objection. Form.	16:00:49
15	A If you're talking about the implementation	16:00:51
16	of the method in Martin	16:00:53
17	Q I'm not talking about the implementation	16:00:55
18	method in Martin.	16:00:58
19	A Okay.	16:00:58
20	Q As a person of ordinary skill reading	16:00:59
21	Martin	16:01:01
22	A Yes.	16:01:02

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	198
1	Q you see the words "spectral subtraction,"	16:01:02
2	correct?	16:01:04
3	A I do.	16:01:05
4	Q And if you were not completely familiar with	16:01:06
5	that technique, you might go look at the Boll article	16:01:10
6	for more information about it, correct?	16:01:13
7	MR. LENNIE: Objection. Form.	16:01:15
8	A Well, the Boll article would be one of	16:01:17
9	several that I might consider. It wouldn't be a	16:01:22
10	necessary thing that I'd have to go to.	16:01:26
11	Q But you might consider it?	16:01:29
12	A Again, I would have to have a need to do so,	16:01:36
13	and that need would have to be driven by something in	16:01:38
14	an application. Again, hypothetically speaking. It's	16:01:42
15	not clear what exactly is going to be required when	16:01:45
16	you're trying to build a system to solve a particular	16:01:48
17	problem.	16:01:51
18	Q Do you know what a whitening filter is?	16:01:56
19	A I do.	16:02:00
20	Q Does a whitening filter spread the spectrum	16:02:01
21	of a microphone signal more evenly across the	16:02:04
22	bandwidth of the microphone signal?	16:02:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, I	Ph.D.
Conducted on June 16, 2017	

199

1	A Is there particular language that you're	16:02:12
2	pointing to?	16:02:14
3	Q Your patent discusses a whitening filter,	16:02:17
4	and I am asking you if I'm accurately describing what	16:02:21
5	a whitening filter is?	16:02:24
6	A Ah, okay. So you're saying in the context	16:02:26
7	of my patent.	16:02:29
8	Q Does the term "whitening filter" have a	16:02:31
9	meaning to you?	16:02:32
10	A It does.	16:02:33
11	Q What is a whitening filter? Let's talk	16:02:36
12	about generally	16:02:40
13	A Sure.	16:02:41
14	Q instead of in the context of your patent.	16:02:42
15	Can you sorry.	16:02:44
16	A Generally, a white it depends on the	16:02:46
17	nature of the signals being processed and also the	16:02:47
18	underlying assumptions of those signals.	16:02:53
19	Whitening, in the context of signal	16:02:56
20	processing, could be over time, it could actually be	16:02:59
21	over channel as well. It generally involves taking a	16:03:04
22	system and making the power or level of a signal in	16:03:12

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.
Conducted on June 16, 2017

200

1	the system more or less equal across different	16:03:20
2	channels and across different samples and/or	16:03:25
3	frequencies, as it turns out. It depends on the	16:03:28
4	resulting system.	16:03:32
5	MR. BROUGHAN: Do you want to take a quick	16:03:48
6	break?	16:03:49
7	THE WITNESS: Sure, we can take a break.	16:03:51
8	THE VIDEOGRAPHER: Going off the record.	16:03:52
9	The time is 4:04.	16:03:52
10	(A recess was taken.)	16:03:54
11	THE VIDEOGRAPHER: Here begins Tape No. 4.	16:20:44
12	We're back on the record at 4:20.	16:20:45
13	BY MR. BROUGHAN:	16:20:51
14	Q Would you get out the '345 patent, please.	16:20:51
15	A Okay.	16:20:54
16	Q And look at claim 1?	16:21:02
17	A Uh-huh.	16:21:06
18	Q Claim 1 recites three limitations, correct?	16:21:10
19	A It has, "An apparatus for canceling noise,	16:21:17
20	comprising" and then three different sections below	16:21:20
21	that.	16:21:24
22	Q You agree that an apparatus must include all	16:21:26

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, I	Ph.D.
Conducted on June 16, 2017	

1	Conducted on June 16, 2017	201
1	three limitations to anticipate claim 1?	16:21:30
2	A Yes.	16:21:38
3	Q You agree that if an apparatus does not	16:21:43
4	contain one of the limitations it does not anticipate	16:21:46
5	claim 1?	16:21:50
6	A Yes. And if it doesn't include 2 and if it	16:21:54
7	doesn't include 3.	16:22:02
8	Q Prior to this patent, an apparatus for	16:22:14
9	canceling noise existed; is that correct?	16:22:17
10	A There were systems for canceling noise, yes.	16:22:21
11	Q Andrea doesn't have a patent on all systems	16:22:26
12	for canceling noise, correct?	16:22:29
13	A All systems that cancel noise. Can you give	16:22:34
14	me a context? That's pretty broad.	16:22:38
15	Q There can exist an apparatus that cancels	16:22:40
16	noise that does not practice claim 1 of the '345	16:22:43
17	patent?	16:22:48
18	A Correct. Yes.	16:22:54
19	Q Andrea didn't invent the concept of spectral	16:23:14
20	subtraction, did it?	16:23:16
21	A Again, the concept of spectral subtraction	16:23:17
22	is fairly broad.	16:23:24

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas,	Ph.D.
Conducted on June 16, 2017	

I		Conducted on June 16, 2017	202
1	Q	Boll describes spectral subtraction,	16:23:27
2	correct?		16:23:28
3	A	Boll describes a technique for spectral	16:23:30
4	subtracti	on. I think the idea of having a concept of	16:23:32
5	a spectra	al subtraction is perhaps even broader than	16:23:3
6	that.		16:23:40
7	Q	Claim 1 doesn't cover the Boll patent	16:23:42
8	strike th	nat.	16:23:44
9		Claim 1 doesn't cover the Boll reference,	16:23:40
10	does it?		16:23:48
11	А	Yeah, again, what do you mean by "cover"?	16:23:55
12	Q	Boll doesn't anticipate claim 1 of the '345	16:23:5
13	patent, i	in your opinion?	16:24:0
14	А	Boll does not anticipate claim 1 associated	16:24:13
15	with the	system.	16:24:1
16	Q	Does Boll anticipate any other claim of the	16:24:1
17	'345 pate	ent?	16:24:22
18	А	Sorry, I want to make sure that I have	16:24:42
19	Q	Do you think you offered an opinion that	16:24:43
20	Boll anti	cipated claim 1 or any of the claims of the	16:24:45
21	'345 pate	ent?	16:24:4
22	А	No, I did not.	16:24:49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

i	Conducted on June 16, 2017	203
1	Q Okay.	16:24:51
2	A But I wanted to make sure that I had the	16:24:51
3	sections available should you should you become	16:24:53
4	more specific in your in your desire for	16:24:55
5	information.	16:25:00
6	Q Andrea didn't invent every sys strike	16:25:11
7	that.	16:25:14
8	Claim 1 of the '345 patent covers a system	16:25:23
9	that in part estimates a noise estimates noise,	16:25:27
10	correct?	16:25:32
11	A It certainly uses a threshold detector for	16:25:40
12	setting a threshold for each frequency bin using a	16:25:46
13	noise estimation process.	16:25:48
14	Q Systems can use a noise estimation process	16:25:55
15	without practicing claim 1 of the '345 patent?	16:25:57
16	A A noise estimation process is useful for	16:26:07
17	many different types of systems. A system can use	16:26:10
18	noise estimation in its processing, certainly.	16:26:13
19	Q And some of those systems do not practice	16:26:17
20	claim 1 of the '345 patent, correct?	16:26:20
21	A Certainly some of those systems can.	16:26:26
22	Q Some of those systems do not practice claim	16:26:34

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 20)4 T
1	1 of the '345 patent?	16:26:36
2	A Again, some of those systems can. We	16:26:40
3	we'd have to look at particular systems in order to	16:26:43
4	decide whether it does or it doesn't.	16:26:45
5	Q So if a system estimates noise, it	16:26:49
6	necessarily practices claim 1 of the '345 patent?	16:26:54
7	MR. LENNIE: Objection. Form.	16:26:57
8	A No. It's not the case that existence of a	16:27:00
9	noise estimator implies that it's practicing claim 1.	16:27:04
10	The noise estimation process is used to set a	16:27:10
11	threshold detector for sorry, it's used in a	16:27:14
12	threshold detector for setting a threshold for each	16:27:16
13	frequency bin in claim 1.	16:27:21
14	Q Could a prior art reference disclose a	16:27:26
15	threshold yet not disclose the threshold detector of	16:27:29
16	claim 1?	16:27:34
17	A The question it's a hypothetical question	16:27:44
18	because it's not clear I would have to see the	16:27:46
19	language of the particular reference to decide what	16:27:49
20	"threshold" means.	16:27:52
21	A threshold detector is pretty clear. The	16:27:55
22	term "threshold" is is something that's used in a	16:27:57

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.	
Conducted on June 16, 2017	

205

1	way specifically in the '345 patent. I certainly	16:28:01
2	wouldn't want to claim that somebody using a word	16:28:06
3	means that they have a particular feature of '345.	16:28:08
4	Q The Hirsch article describes an adaptive	16:28:14
5	threshold, correct? You don't have it.	16:28:17
6	MR. BROUGHAN: Please mark this as the next	16:28:40
7	exhibit.	16:28:41
8	(Exhibit 12 was marked for identification	16:28:42
9	and is attached to the transcript.)	16:28:43
10	Q If you look on the right-hand column, middle	16:28:47
11	paragraph, "In contrast to these approaches an	16:28:49
12	adaptive threshold is introduced here."	16:28:53
13	A Yes. That that is what Hirsch says in	16:28:58
14	his paper.	16:29:02
15	Q Is it your opinion that Hirsch does not	16:29:12
16	disclose the thresh the threshold detector of	16:29:14
17	claim 1 of the '345 patent?	16:29:18
18	A It does not disclose the threshold detector	16:29:20
19	of claim 1.	16:29:23
20	Q A reference could use a threshold yet not	16:29:27
21	disclose the threshold detector of claim 1?	16:29:32
22	A The threshold detector of claim 1 has	16:29:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 20)6 T
1	additional limitations for setting a threshold for	16:29:39
2	each frequency bin using a noise estimation process.	16:29:41
3	Q So if you set a threshold without using a	16:29:44
4	noise estimation process, that would not practice	16:29:47
5	claim 1 of the '345 patent?	16:29:50
6	MR. LENNIE: Objection. Form.	16:29:55
7	A Just because one particular feature I'm	16:29:58
8	sorry, could you repeat the question?	16:30:04
9	Q If a reference set a threshold without using	16:30:07
10	a noise estimation process, would that reference	16:30:10
11	disclose claim 1 of the '345 patent?	16:30:13
12	MR. LENNIE: Same objection.	16:30:21
13	A I'm sorry, if you could repeat the question,	16:30:46
14	I apologize. It's legal terminology and I want to	16:30:48
15	make sure that I'm understanding it correctly.	16:30:51
16	Q If a reference disclosed a system that set a	16:30:53
17	threshold without using a noise estimation process,	16:30:58
18	would that reference disclose claim 1 of the '345	16:31:02
19	patent?	16:31:05
20	MR. LENNIE: Objection. Form.	16:31:08
21	A Again, we're speaking in a hypothetical way.	16:31:13
22	One would have to examine the reference to determine	16:31:18

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 20	7
1	that the reference is implementing a threshold	16:31:22
2	detector for setting a threshold for each frequency	16:31:25
3	bin using a noise estimation process and, in addition,	16:31:29
4	having these other limitations.	16:31:31
5	It would also have the other limitations as	16:31:35
6	well in terms of the input for inputting the	16:31:37
7	system or signal as well as a frequency spectrum	16:31:42
8	generator.	16:31:44
9	Q Claim 1 requires a threshold to be set using	16:31:48
10	a noise estimation process?	16:31:51
11	A It requires setting a threshold for each	16:32:01
12	frequency bin using a noise estimation process.	16:32:04
13	Q If for each frequency bin the threshold was	16:32:06
14	always set to a particular value, would that disclose	16:32:10
15	setting a threshold using a noise estimation process?	16:32:15
16	MR. LENNIE: Objection. Form.	16:32:18
17	A I don't understand the operation of setting	16:32:20
18	a threshold to a particular value. Without some form	16:32:23
19	of context, I can't really evaluate the question.	16:32:27
20	Q If you look at Hirsch, it sets an adaptive	16:32:35
21	threshold for each frequency bin, correct?	16:32:41
22	A It sets a threshold.	16:32:50

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.	D.
Conducted on June 16, 2017	

208

1	Q Hirsch calls it an adaptive threshold.	16:32:54
2	A Correct, he calls it an adaptive threshold,	16:32:57
3	yes.	16:33:00
4	Q And the adaptive threshold is set as the	16:33:00
5	noise estimate Ni hat (k) times an overestimation	16:33:04
6	factor beta, correct?	16:33:12
7	A No. The threshold is Ni hat $(k - 1)$ times	16:33:17
8	beta. The value is used to determine when the actual	16:33:25
9	spectral component X(i) exceeds the threshold to	16:33:34
10	determine a rough detection of speech. And it stops	16:33:39
11	the recursive accumulation.	16:33:43
12	Q What is Ni hat (k -1)?	16:33:45
13	A Ni hat k is an estimation of the noise	16:33:54
14	magnitude. Ni hat (k -1) is its previous value.	16:33:58
15	Q If the threshold is beta times the noise	16:34:08
16	estimate, you agree that the threshold is set using a	16:34:11
17	noise estimation process?	16:34:15
18	MR. LENNIE: Objection. Form.	16:34:20
19	A To understand how Hirsch works, he has a	16:34:26
20	statement, "The simple processing is illustrated in	16:34:31
21	figure 1 as part of a complete noise reduction	16:34:33
22	scheme," as part of that paragraph.	16:34:36

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	209
1	Q Uh-huh.	16:34:38
2	A And I'm informed about how it works by	16:34:38
3	looking at Figure 1.	16:34:42
4	Q Are you informed about how it works by the	16:34:46
5	text in column 2 on Page 153 of Hirsch?	16:34:48
6	A Yes, but to understand it fully, Figure 1	16:34:52
7	enables me to determine what is meant by the	16:34:57
8	description in the paper.	16:35:01
9	Q If you stay on Page 153, the bottom	16:35:12
10	right-hand column?	16:35:17
11	A Uh-huh.	16:35:20
12	Q Beta is an overestimation factor; is that	16:35:22
13	correct?	16:35:25
14	A He refers to it as an overestimation factor,	16:35:26
15	beta.	16:35:30
16	Q And he multiplies N hat i by the	16:35:31
17	overestimation factor beta?	16:35:34
18	A He does.	16:35:37
19	Q And Hirsch subtracts from Xi the value of	16:35:42
20	beta times N hat i, correct?	16:35:50
21	A That is correct; although, to be clear, the	16:35:57
22	quantity being subtracted is beta times Ni hat (k -1).	16:36:02

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, I	Ph.D.
Conducted on June 16, 2017	

210

1	This is what Figure 1 shows on the next page.	16:36:09
2	Q In your view, is beta times Ni hat (k -1) a	16:36:18
3	threshold within the meaning of the '345 claim 1?	16:36:22
4	A No, it's not.	16:36:27
5	Q Why not?	16:36:30
6	A Well, it's being used to subtract a noise	16:36:41
7	estimate from X(i) to produce an estimate S i of	16:36:48
8	hat in this case of the clean speech, as he	16:36:54
9	describes in the text as well. But as shown in Figure	16:36:59
10	1.	16:37:02
11	The test that he uses is to determine	16:37:05
12	whether X i minus beta times Ni hat (k -1) is greater	16:37:09
13	than zero. And this is the test that he uses, at	16:37:19
14	which point this detects the onset of speech.	16:37:22
15	Q In that test, is beta times Ni hat and k -1	16:37:27
16	a threshold?	16:37:35
17	A It's not. It's being used to subtract	16:37:39
18	sorry. It's being used to subtract from X i hat, and	16:37:41
19	it is a value that is employed to both determine	16:37:49
20	whether the system stops adjusting, thereby stopping	16:37:56
21	the method of estimation, and to remove the resulting	16:38:02
22	value from the original spectral magnitude to estimate	16:38:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	211
1	the clean speech.	16:38:14
2	Q Hirsch removes the value beta times Ni ha	it 16:38:17
3	k -1 from the signal magnitude Xi, correct?	16:38:21
4	A He does.	16:38:28
5	Q And then he compares that value to zero,	16:38:29
6	correct?	16:38:33
7	A He does.	16:38:34
8	Q In that comparison, is zero a threshold	16:38:37
9	within the meaning of the '345 claim 1?	16:38:41
10	A It's not because zero is not set using th	le 16:38:49
11	noise estimation process. Zero is zero.	16:38:53
12	Q So Hirsch describes two algorithms for	16:39:07
13	estimating the noise level in a signal, correct?	16:39:12
14	A He has a second approach as well.	16:39:20
15	Q The first approach is called the weighted	16:39:26
16	average approach? I'll direct you to	16:39:29
17	A Yes.	16:39:37
18	Q the Introduction section.	16:39:38
19	A He refers to the first approach as the	16:39:39
20	weighted average approach and the second, a histogr	am 16:39:41
21	technique.	16:39:45
22	Q If you turn to Page 154, there's a headin	lg 16:39:51

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas,	Ph.D.
Conducted on June 16 2017	

	Conducted on June 16, 2017	212
1	"Recognition of Noisex Data"?	16:39:57
2	A I see it.	16:40:02
3	Q All right. Hirsch is describing a series	of 16:40:03
4	experiments involving speech recognition in this	16:40:08
5	section, correct?	16:40:13
6	A Yes, he's he's looking at the problem	of 16:40:21
7	speech recognition using hidden Markov models. Tha	t's 16:40:24
8	what "HMM" means.	16:40:30
9	Q And near the end of this last paragraph o	n 16:40:31
10	Page 154 he states, "Both above mentioned estimatio	n 16:40:33
11	techniques are applied to the nonlinear spectral	16:40:38
12	subtraction as a preprocessing step to recognition.	" 16:40:42
13	Correct?	16:40:46
14	A Yes, I can see that. He states this.	16:40:47
15	Q So Hirsch combined his algorithms with a	16:40:50
16	speech recognition system?	16:40:56
17	A He it appears that he did and he repor	ts 16:40:59
18	on it.	16:41:02
19	Q If you flip over to Page 155. Below the	16:41:03
20	figure?	16:41:09
21	A Uh-huh.	16:41:10
22	Q Hirsch is describing improvements that we	re 16:41:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 21	3
1	made to the noise recognition strike that.	16:41:18
2	Hirsch is describing improvements that were	16:41:21
3	made to the speech recognition system?	16:41:23
4	A He is describing improvements that can be	16:41:28
5	achieved.	16:41:31
6	Q And they can be achieved by integrating his	16:41:33
7	noise estimation techniques into those systems,	16:41:35
8	according to him, correct?	16:41:38
9	A He is; although, he's also stating the	16:41:49
10	detection of speech pauses as implemented to obtain	16:41:52
11	these results. So he's doing multiple modifications.	16:41:55
12	Q And Hirsch says, "The detection is based on	16:42:01
13	the evaluation of all the SNRs and all subbands."	16:42:04
14	What does "SNRs" mean in that sentence?	16:42:09
15	A It means signal-to-noise-ratios. He	16:42:17
16	typically when you're using an acronym, one would	16:42:21
17	actually use it before and define it, but "SNR"	16:42:24
18	generally means signal-to-noise-ratio.	16:42:28
19	Q And he's describing signal-to-noise-ratio as	16:42:31
20	the ratio of N divided by X?	16:42:41
21	A It's not clear. He hasn't actually given an	16:42:45
22	equation for it here.	16:42:49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.I).
Conducted on June 16, 2017	

214

1	Q If you read the it's right below the	16:42:50
2	figure, the last sentence before equation 3. "A	16:42:54
3	relative measure of NXrel of the ratio N divided by X	16:42:57
4	(noise to noise & signal) is calculated for each	16:43:01
5	subband."	16:43:05
6	A Ah, yes. Actually, he he's defined an	16:43:05
7	Xrel, which is noise to noise and signal. This is a	16:43:12
8	little different than signal to noise. So he's been	16:43:20
9	rather specific in the equation in the	16:43:25
10	specification of what NXrel means here.	16:43:28
11	Q If you follow after equation 3 he states	16:43:46
12	that the values NXmin and NXmax are determined from	16:43:49
13	past segments of about 600 milliseconds?	16:43:54
14	A I see that.	16:43:58
15	Q So Hirsch has integrated his algorithm into	16:44:00
16	a system that calculates the noise estimate from past	16:44:03
17	segments of about 600 milliseconds?	16:44:08
18	A Again, it's not clear from the description	16:44:17
19	here that he has. The fact that he's mentioned the	16:44:19
20	detection of speech pauses and he said that he needs	16:44:24
21	that to obtain these results, I'm not sure if the	16:44:28
22	speech pauses are important, and the detection of	16:44:32

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

215

1		
1	those speech pauses are important to obtain what	16:44:36
2	he's what he's produced here.	16:44:38
3	Q If you look back to claim 1 of the '345	16:45:26
4	patent. What does it mean to "thereby detecting the	16:45:29
5	position of noise elements for each frequency bin"?	16:45:38
6	A (Reviewing.)	16:45:54
7	The '345 patent describes an interpretation	16:46:03
8	of this particular statement in the specification. It	16:46:10
9	says, "In the preferred embodiment" and I'm reading	16:46:14
10	from column 3, line 28 "the present invention	16:46:17
11	obviates the need for a voice switch by precisely	16:46:20
12	determining the non-speech segments using a separate	16:46:24
13	threshold detector for each frequency bin. The	16:46:27
14	threshold detector precisely detects the positions of	16:46:30
15	the noise elements, even within continuous speech	16:46:33
16	segments, or by determining whether frequency spectrum	16:46:37
17	elements, or bins, of the input signal are within a	16:46:40
18	threshold set"	16:46:45
19	And we could talk about how it's set.	16:46:46
20	Q That's your understanding of what "detecting	16:46:48
21	the position of noise elements for each frequency bin"	16:46:51
22	means?	16:46:54

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	216
1	A That's what's described in the preferred	16:46:5
2	embodiment in the '345 patent. It shows an example of	16:46:5
3	how the detection could be done.	16:47:0
4	Q Does detecting the position of noise	16:47:0
5	elements for each frequency bin require a binary	16:47:0
6	decision as to whether the frequency bin contains	16:47:0
7	noise or not?	16:47:
8	MR. LENNIE: Objection. Form.	16:47:1
9	A A threshold detector is generally a decision	16:47:3
10	and that decision is a decision is generally binary	16:47:
11	valued. It's not restricted to a single binary value	16:47:
12	from the standpoint of having a threshold detector	16:47:
13	sorry, having a threshold detector has a single binary	16:47:
14	value, but the presence of a sing of a threshold	16:47:
15	detector is what's needed for '345 patent.	16:48:
16	Q For a threshold detector to detect the	16:48:
17	position of noise elements for each frequency bin,	16:48:
18	does it need to make a noise/no noise decision with	16:48:1
19	respect to each frequency bin?	16 : 48:1
20	MR. LENNIE: Objection. Form.	16:48:2
21	A It needs to make a noise/no noise decision	16:48:2
22	and be able to use that. It could use a system which	16:48:3

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
Transcript of Scott Clinton Douglas, Ph.D.	
Conducted on June 16, 2017	

	Conducted on June 16, 2017 2	17
1	calculates a noise decision.	16:48:51
2	Q What is a system that calculates	16:49:00
3	A Sorry, I'm not done yet.	16:49:02
4	Q Sorry.	16:49:04
5	A Depending upon different thresholds. So it	16:49:05
6	could include a system which has a threshold detector	16:49:10
7	but in combination with a for example, a second	16:49:22
8	threshold detector.	16:49:26
9	Q Does the threshold detector strike that.	16:49:40
10	Does the threshold detector of claim 1 of	16:49:55
11	the '345 patent require the use of a single threshold?	16:49:58
12	A Again, I would have to have some context;	16:50:09
13	i.e., something to look at to decide. One can't	16:50:13
14	simply say yes, it must be one. One has to see the	16:50:19
15	nature of the system and how it processes the	16:50:23
16	resulting signals in order to make that determination.	16:50:26
17	Q Does the apparatus of claim 1 require	16:50:51
18	setting a single threshold for each frequency bin	16:50:57
19	using a noise estimation process?	16:51:02
20	MR. LENNIE: Objection. Form.	16:51:06
21	A Again, one would want to look at what the	16:51:12
22	system is to try to make a decision, but it does not	16:51:14

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	218
1	require a single threshold.	16 : 51:17
2	Q Claim 1 of the '345 patent does not require	16:51:22
3	a single threshold that is set using a noise	16:51:25
4	estimation process.	16:51:28
5	MR. LENNIE: Objection. Form. Is that a	16:51:31
6	question?	16:51:36
7	MR. BROUGHAN: It's a bad question. Let me	16:51:37
8	strike that.	16:51:39
9	A Yeah, I'm I'm trying to interpret	16:51:39
10	Q Yeah, I'll	16:51:41
11	A Okay, thank you.	16:51:42
12	Q I will attempt to fix it.	16:51:50
13	Earlier you testified that claim 4 was	16:51:55
14	limited to a system that had a single future minimum	16:51:58
15	value. Is that correct?	16:52:03
16	A It was in the context of the analysis of one	16:52:15
17	of the Martin references where we were considering how	16:52:21
18	that processing was being done. In the context of	16:52:25
19	that processing, the multiple values that were being	16:52:30
20	computed, none of those were future minimum.	16:52:33
21	Q The term "a future minimum value" in claim 4	16:52:45
22	is not limited to being a single future minimum value,	16 : 52 : 49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017	219
1	correct?	16:52:52
2	MR. LENNIE: Objection. Form.	16:53:01
3	A (Reviewing.)	16:53:19
4	With regard to claim 4, the current minimum	16 : 53 : 28
5	value is being derived in accordance with a future	16:53:32
6	minimum value. So there's a correspondence between a	16:53:34
7	current minimum value and a future minimum value.	16:53:39
8	Q Do you have an opinion as to whether claim 4	16:53:46
9	of the '345 patent is limited to requiring a single	16:53:49
10	future minimum value?	16:53:55
11	MR. LENNIE: Objection. Form.	16:53:57
12	A There is a correspondence between the	16:54:02
13	current minimum value and a future minimum value.	16:54:04
14	Q So because there's the correspondence to the	16:54:06
15	future minimum value and the current minimum value, in	16:54:09
16	your view, that means there's one of each?	16:54:13
17	MR. LENNIE: Objection. Form.	16:54:16
18	A It's there may not necessarily be one of	16:54:17
19	each, but for each current minimum value there is a	16:54:33
20	corresponding future minimum value.	16:54:37
21	Q You agree, then, that claim 4 of the '345	16:54:46
22	patent covers a system with multiple future minimum	16:54:48

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 2	20
1	values?	16:54:53
2	MR. LENNIE: Objection. Form.	16:54:56
3	A Again, I would have to examine what that	16:54:57
4	system is. It's unclear the operation of the system	16:55:01
5	speaking hypothetically.	16:55:06
6	Q Based on the language of claim 4 of the '345	16:55:14
7	patent, you cannot say whether it encompasses a system	16:55:17
8	that uses more than one future minimum value?	16:55:21
9	MR. LENNIE: Objection. Form.	16:55:26
10	A The system must have a current minimum value	16:55:37
11	and it must be derived in accordance with a future	16:55:40
12	minimum value. So it must have a current minimum	16:55:43
13	value. There is a correspondence to the future	16:55:47
14	minimum value which is being used to derive the	16:55:50
15	current minimum value.	16:55:55
16	Q So claim 4 is limited to a system that has a	16:56:02
17	single current minimum value and a single future	16:56:07
18	minimum value?	16:56:10
19	A No	16 : 56 : 12
20	MR. LENNIE: Objection. Form.	16:56:14
21	A no. Claim 4 describes a system where a	16:56:14
22	threshold detector of the system sets the threshold	16:56:24

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 22	l
1	for each frequency bin in accordance with a current	16:56:27
2	minimum value, said current minimum value being	16:56:30
3	derived in accordance with a future minimum value.	16:56:34
4	There is a correspondence between a current minimum	16:56:38
5	value and its corresponding future minimum value.	16:56:42
6	Q Claim 4 requires a single threshold, a	16:56:48
7	single current minimum value, and a single future	16:56:51
8	minimum value?	16:56:54
9	MR. LENNIE: Objection. Form.	16:56:55
10	A Again, there's no there's not a term here	16:56:58
11	that says "single" in the resulting claim, so I don't	16:57:01
12	understand why that particular word is being used	16:57:06
13	here.	16:57:08
14	Q The teachings of the '345 patent require	16:57:19
15	that the current minimum for each frequency bin be	16:57:23
16	derived in accordance with a single future minimum of	16:57:25
17	the corresponding frequency bin.	16:57:29
18	Do you agree with that statement?	16:57:32
19	MR. LENNIE: Objection. Form.	16:57:35
20	A The '345 patent describes an embodiment of	16:57:39
21	the invention in which there is a single future	16:57:43
22	minimum for a particular frequency bin being derived	16:57:49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

222

1	in accordance with its corresponding future minimum	16:57:52
2	value.	16:57:55
3	Q Claim 1 of the '345 patent specifies	16:58:26
4	detecting the position of noise elements for each	16:58:29
5	frequency bin.	16:58:32
6	Is that element satisfied by detecting the	16:58:33
7	position of speech elements for each frequency bin?	16:58:36
8	MR. LENNIE: Objection. Form.	16:58:45
9	A Detecting speech and detecting noise are	16:58:52
10	different. A system that detects speech is not one	16:58:55
11	that then necessarily is detecting noise and vice	16:59:00
12	versa.	16:59:05
13	Q Detecting the position of speech elements is	16:59:06
14	different than detecting the position of noise	16:59:08
15	elements in your view?	16:59:10
16	A Generally, yes. It would depend on the	16:59:13
17	resulting system in terms of providing some additional	16:59:15
18	context in order to evaluate the statement.	16:59:22
19	Q The Hirsch article describes detecting the	16:59:45
20	onset of speech?	16:59:49
21	A Yes.	16:59:53
22	Q When Hirsch detects the onset of speech, is	16:59:56

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.		
	Conducted on June 16, 2017 22.	3
1	that the same as detecting the position of noise?	16:59:59
2	A No, it's not.	17:00:04
3	Q Prior to when Hirsch detects the onset	17:00:11
4	strike that.	17:00:13
5	Does claim 1 of the '345 patent require	17:00:43
6	subtracting noise from each frequency bin?	17:00:47
7	MR. LENNIE: Objection. Form.	17:00:54
8	A Claim 1 requires an apparatus for canceling	17:01:01
9	noise, and the elements for the noise cancellation are	17:01:04
10	here indicated, as we've discussed.	17:01:09
11	Q So claim 1 specifies an input for inputting	17:01:14
12	an audio signal, correct?	17:01:19
13	A It does.	17:01:22
14	Q And it specifies a frequency spectrum	17:01:22
15	generator for turning the audio signal into a	17:01:26
16	frequency spectrum, correct?	17:01:30
17	A For generating the frequency spectrum of	17:01:31
18	said audio signal.	17:01:36
19	Q Then it specifies a threshold detector,	17:01:37
20	correct?	17:01:40
21	A "A threshold detector for setting a	17:01:40
22	threshold for each frequency bin using a noise	17:01:44

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 22	24
1	estimation process" and then continuing with respect	17:01:4 ⁻
2	to the language of the claim.	17:01:48
3	Q So claim 1 requires detecting the position	17:01:53
4	of noise but it does not require removing the noise?	17:01:54
5	A It requires an apparatus for canceling	17:02:02
6	noise.	17:02:05
7	Q It is not necessary to remove noise from the	17:02:00
8	signal to practice claim 1 of the '345 patent?	17:02:13
9	MR. LENNIE: Objection. Form.	17:02:20
10	A I'm trying to understand what you mean by	17:02:22
11	"remove." Is there a context that you can give the	17:02:2
12	term in? Because it's an apparatus for canceling	17:02:23
13	noise.	17:02:3
14	Q Does claim 1 of the '345 patent require	17:02:43
15	canceling noise?	17:02:43
16	A It requires an apparatus for canceling	17:02:4
17	noise.	17:02:53
18	Q Do one of the three elements of claim 1	17:02:53
19	specify the step of canceling noise?	17:02:50
20	A Those three steps do not indicate how the	17:03:08
21	noise is canceled in the apparatus for canceling	17:03:1
22	noise.	17:03:20

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017	225
1	Q	Practicing those three steps would not	17:03:20
2	result in	canceling noise?	17:03:23
3		MR. LENNIE: Objection. Form.	17:03:27
4	А	Those three steps could be used in an	17:03:29
5	apparatus	for canceling noise, which is what the claim	17:03:32
6	is about.		17:03:35
7	Q	Claim 13 specifies the apparatus of claim 1,	17:03:36
8	further c	omprising a subtractor for subtracting the	17:03:38
9	noise ele	ments, and it goes on.	17:03:42
10	A	Yes.	17:03:44
11	Q	Is that correct?	17:03:45
12	A	I see that.	17:03:45
13	Q	Claim 13 would result in canceling noise,	17:03:48
14	correct?		17:03:57
15	A	It is a system that would have a subtractor	17:03:58
16	for subtr	acting said noise elements estimated at said	17:04:02
17	positions	determined by said threshold detector.	17:04:05
18	Q	Would it cancel noise?	17:04:09
19		MR. LENNIE: Objection. Form.	17:04:10
20	A	Again, an apparatus for canceling noise	17:04:22
21	employing	both the the limitations in claim 1 and	17:04:30
22	in claim	12 would operate on a signal to again,	17:04:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

226

	,	l
1	cancel noise one would have to look at the	17:04:41
2	resulting system to decide. Again, it's a	17:04:45
3	hypothetical, I don't I don't have a system in	17:04:52
4	front of me to make a	17:04:53
5	Q Did you mean claim 13?	17:04:56
6	A I'm sorry, it's claim 13. I meant claim 13,	17:04:57
7	thank you.	17:05:00
8	Q Looking at the steps of claim 1 and claim	17:05:02
9	13, you cannot tell if practicing those steps would	17:05:05
10	result in canceling noise?	17:05:09
11	A Again, using both 1 and 13 in the design of	17:05:22
12	the system, it could result in a system that would	17:05:26
13	cancel noise, yes. It would depend upon the	17:05:28
14	implementation of the overall system.	17:05:33
15	Q A system that includes the limitations of	17:05:37
16	claims 1 and 13 does not necessarily cancel noise?	17:05:40
17	MR. LENNIE: Objection. Form.	17:05:46
18	A Yeah. I mean, a system which practices both	17:05:50
19	of these limitations is one that's oriented towards	17:05:55
20	canceling noise. But again, having the system in	17:05:58
21	front of me and with sufficient time, one could judge	17:06:03
22	basically the functionality of it.	17:06:08

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, H	h.D.
Conducted on June 16, 2017	

227

1	This is somewhat of a hypothetical situation	17:06:11
2	is the reason why I'm I'm saying this.	17:06:13
3	Q So if a reference disclosed the three	17:06:20
4	elements of claim 1 and the subtractor of claim 13,	17:06:25
5	that reference would not necessarily disclose	17:06:29
6	canceling noise?	17:06:32
7	MR. LENNIE: Objection. Form.	17:06:35
8	A Again, a system that would have these	17:07:14
9	elements could be an apparatus for canceling noise and	17:07:16
10	would have the subtractor. It depends on the nature	17:07:19
11	of the overall system.	17:07:25
12	Again, it's a hypothetical. I'm trying	17:07:26
13	I'm trying to figure out, you know, the nature of the	17:07:28
14	question, that's why.	17:07:30
15	Q If Respondents showed that a reference	17:07:32
16	disclosed the three elements of claim 1, would they	17:07:35
17	have shown that that same reference discloses an	17:07:39
18	apparatus for canceling noise?	17:07:45
19	MR. LENNIE: Objection. Form.	17:07:48
20	A Again, it it depends on the overall	17:07:53
21	system. I I can't provide an opinion about this.	17:07:56
22	I would need to be able to see the resulting system.	17:08:00

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		Conducted on June 16, 2017	228
1	But claim	1 describes an apparatus for canceling noise	17:08:03
2	that incl	udes these particular elements.	17:08:08
3	Q	Does claim 1 require an apparatus for	17:08:12
4	canceling	noise?	17:08:14
5		MR. LENNIE: Objection. Form.	17:08:16
6	А	Claim 1 discloses an apparatus for canceling	17:08:55
7	noise wit	h these specific elements as part of that	17:08:59
8	apparatus		17:09:02
9	Q	Do you know what the preamble of claim 1 is?	17:09:05
10	A	Yes, it's the apparatus for canceling noise.	17:09:08
11	Q	Is the preamble of claim 1 limiting?	17:09:11
12		MR. LENNIE: Objection. Form.	17:09:13
13	A	I'm not a lawyer, so I'm not exactly sure	17:09:17
14	how to ap	ply the term. I don't want to necessarily	17:09:21
15	misspeak	with respect to that.	17:09:26
16	Q	You don't know whether practicing claim 1	17:09:32
17	requires	an apparatus for canceling noise?	17:09:37
18		MR. LENNIE: Objection. Form.	17:09:39
19	A	Claim 1 discloses an apparatus for canceling	17:09:50
20	noise wit	h these particular elements in it.	17:09:53
21	Q	Could I have an apparatus that detects noise	17:09:56
22	without c	anceling noise?	17:09:59

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

229

1	MR. LENNIE: Objection. Form.	17:10:01
2	A Yeah. I mean, hypothetically you could have	17:10:02
3	such a system.	17:10:05
4	Q Would claim 1 cover such a system?	17:10:07
5	MR. LENNIE: Objection. Form.	17:10:10
6	A I'm again, just a moment.	17:10:12
7	(Reviewing.)	17:10:27
8	Claim 1 discloses an apparatus for canceling	17:12:05
9	noise, and it comprises these three elements, as we've	17:12:08
10	described. The system, if designed for canceling	17:12:12
11	noise and has these three inputs, then that system	17:12:17
12	would be covered under claim 1.	17:12:21
13	Q When were you first hired by Andrea?	17:12:34
14	A For this matter?	17:12:38
15	Q No, first. Like, for example	17:12:40
16	A Yeah, I mean	17:12:44
17	Q you were retained by Andrea in the	17:12:45
18	previous '949 investigation?	17:12:47
19	A Yes. I'm I'm trying to remember. I	17:12:49
20	believe it was maybe about two years ago, I want to	17:12:51
21	say, something like this.	17:12:59
22	Q For the '949 investigation?	17:13:01

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clintor	Douglas, Ph.D.
Conducted on June	16, 2017

i	Conducted on June 16, 2017	230
1	A For the '949 investigation, yes.	17:13:02
2	Q Prior to being retained by Andrea, had you	17:13:05
3	heard of the Hirsch article?	17:13:07
4	A I was not aware of the Hirsch article prior	17:13:15
5	to my engagement with Andrea.	17:13:17
6	Q Before you were retained by Andrea, were you	17:13:23
7	familiar with the Martin 1993 article?	17:13:29
8	A I I don't believe so, but I'm again, I	17:13:34
9	mean, we're going pretty far back in time.	17:13:39
10	Q Prior to being retained by Andrea, had you	17:13:44
11	heard of Rainer Martin?	17:13:46
12	A Oh, yes, yes. I know Rainer Martin.	17:13:49
13	Q Why do you know Rainer Martin?	17:13:52
14	A He attends signal processing conferences as	17:13:54
15	I do.	17 : 13 : 57
16	Q When did you first meet Rainer Martin?	17:13:58
17	A It's again, I can't pull from memory	17:14:05
18	exactly when we first met. I'm sure I'm I'm	17:14:09
19	confident it was likely at an ICASSP conference.	17:14:12
20	Which is I-C-A-S-S-P.	17:14:14
21	Q Ten years ago, five years ago, 20 years ago?	17:14:18
22	Just ballpark, not	17:14:21

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 23	1
1	A Ballpark, it's it's probably closer to	17:14:22
2	20. What's interesting is when I came across the	17:14:24
3	article, I could picture his face. So I know I met	17:14:28
4	him. But, you know, I don't know if it was in an	17:14:31
5	elevator or exactly where.	17:14:35
6	Q Is Rainer Martin well known in his field?	17:14:43
7	A That's a hard judgment call for me to make.	17:14:55
8	There are many famous people in signal processing. I	17:15:02
9	certainly wouldn't want to be on the record to call	17:15:06
10	out one and not leave out others.	17:15:10
11	Q Were you familiar with Dr. Martin's work	17:15:15
12	prior to being retained by Andrea in this case?	17:15:19
13	A I recall that he did audio processing, but I	17:15:30
14	can't say and again, this is based off of memory	17:15:34
15	whether yes, I had this I had this work in mind.	17:15:37
16	But again, this is this is going back some time.	17:15:44
17	Q Was your deposition taken in the '949	17:16:13
18	investigation?	17:16:15
19	A Was it taken, did you say?	17:16:19
20	Q Yes.	17:16:21
21	A Yes, it was. There was a deposition taken.	17:16:21
22	Q Do you happen to have the transcript?	17:16:35

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.	D.
Conducted on June 16, 2017	

232

1	A I don't. In fact, I have been asked this	17:16:36
2	question before, and I don't recall getting it. So I	17 : 16 : 42
3	can't say that I have even seen it.	17 : 16 : 47
4	Q Have you done expert reports on invalidity	17 : 16 : 52
5	or validity for anyone else aside from Andrea?	17 : 16 : 57
6	A Yes, I have.	17:17:02
7	Q Was it directed to patent validity or patent	17:17:04
8	invalidity?	17:17:07
9	A It was directed towards patent invalidity.	17 : 17 : 11
10	I've also done work related to interference. But I	17:17:14
11	I don't want to say too much about those cases because	17:17:20
12	they're they fall under Protective Order, so I	17:17:23
13	don't want to be describing features of those cases if	17:17:25
14	I can help it.	17:17:28
15	Q Approximately how long ago did you prepare a	17:17:30
16	report on patent invalidity?	17:17:32
17	A What do you mean?	17:17:37
18	Q Well, when did you prepare that expert	17:17:38
19	report, five years ago, two years ago?	17:17:40
20	A What what report are you talking about?	17:17:42
21	I mean, I guess I'm	17:17:47
22	Q Sorry. Earlier you said you had done an	17:17:49

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	expert report on invalidity for	17:17:51
2	A Yeah.	17:17:54
3	Q someone else?	17:17:54
4	A I'm I'm trying to remember. Well and	17:17:55
5	you're referring to the term "expert report." I've	17:18:15
6	I've done I've certainly done reports I mean	17:18:17
7	legal reports. I don't know if it was an expert	17:18:22
8	report.	17:18:25
9	Again, I'm I the legal term of what an	17:18:26
10	expert report is, I don't want to be in a position to	17:18:29
11	try to claim or declare.	17:18:32
12	Q You offered opinions about whether a patent	17:18:34
13	was invalid previously?	17:18:36
14	A Yes.	17:18:40
15	Q Approximately when did you offer those	17:18:41
16	opinions?	17:18:42
17	A (Reviewing.)	17:18:50
18	It would have been around the time	17:19:07
19	between sometime between August and December of	17:19:08
20	2015.	17:19:12
21	Q So some time ago?	17:19:20
22	A Uh-huh.	17:19:21

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1		Conducted on June 16, 2017	234
1	Q	Do you know what a beamformer is?	17:19:36
2	A	Are you speaking generally or	17:19:41
3	Q	In general.	17:19:42
4	А	Yes, I do.	17:19:44
5	Q	In the context of like audio signal	17:19:49
6	processin	g for microphones, do you know what a	17:19:54
7	beamforme	r is?	17:19:56
8	А	Yes, I mean, again in general, in terms	17:19:57
9	of		17:19:59
10	Q	Would a beamformer require more than one	17:19:59
11	microphon	e?	17:20:02
12		MR. LENNIE: Objection. Form.	17:20:12
13	A	Again, we're speaking hypothetically. It is	17:20:13
14	possible	to have a system I mean, you say more than	17:20:16
15	one micro	phone. It gets into the structure of the	17:20:22
16	resulting	acoustic device and that in addition to the	17:20:26
17	resulting	processing that you might have.	17:20:31
18	Q	Uh-huh.	17:20:34
19	А	I mean, there could be multiple signals that	17:20:35
20	come off	of the one device, there could be multiple	17:20:38
21	devices t	hat produce multiple signals, there could be	17:20:42
22	systems t	hat have multiple elements that combine	17:20:46

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.Conducted on June 16, 201723:	5
1	values to produce one signal. I mean, there's many	17:20:49
2	different ways to to calculate a beam.	17:20:52
3	Q Could a beamformer be an array of	17:20:57
4	microphones?	17:21:01
5	A Yes, it can. Or, sorry, it can one of	17:21:01
6	the elements of a beamformer could be an array of	17:21:06
7	microphones.	17 : 21 : 11
8	Q And an array of microphones is not	17:21:14
9	necessarily adaptive, correct?	17:21:16
10	MR. LENNIE: Objection. Form.	17:21:24
11	A Again, I'd have to look at the system to	17:21:28
12	decide whether a particular system with multiple	17:21:31
13	microphones is adaptive.	17:21:34
14	Q Earlier you mentioned an adaptive array	17:22:01
15	included coefficients. Does that sound familiar to	17:22:04
16	you?	17:22:07
17	A An adaptive array can include coefficients,	17:22:08
18	yes.	17 : 22 : 12
19	Q What would the coefficients of an adaptive	17:22:13
20	array be used for?	17 : 22 : 15
21	A A system having multiple sensors and	17:22:21
22	adaptive coefficients	17:22:24

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	Conducted on June 16, 2017 23	6
1	Q What	17:22:27
2	A would have I'm sorry, I'm	17:22:28
3	continuing would have some method of tuning the	17:22:29
4	coefficients in order to attain some useful outcome	17:22:33
5	with respect to the overall processing of the system.	17:22:37
6	Q What is an example of a useful outcome with	17:22:41
7	respect to the overall processing of the system?	17:22:44
8	A For example, one could use such a system to	17:22:47
9	steer a null in a particular direction to reduce the	17:22:52
10	gain associated with a particular interferer.	17:22:57
11	Q The coefficients are used to steer the	17:23:07
12	adaptive array?	17:23:13
13	A They are used to adjust the gain; i.e.,	17:23:17
14	what's so-called steer, and to create gain as a	17:23:21
15	function of a particular direction to allow the system	17:23:28
16	to, for example, emphasize certain directions or, as	17:23:33
17	another example, deemphasize certain directions in	17:23:39
18	terms of the overall gain.	17:23:43
19	Q Is that what it means for the array to be	17:23:46
20	adaptive?	17:23:48
21	A That's an example of a system that is an	17:23:49
22	adaptive array.	17:23:52

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Transcript of Scott Clinton Douglas, Ph.D.	7
		/
1	MR. BROUGHAN: Why don't we take a break	17:24:29
2	real quick. We might be close.	17:24:30
3	THE WITNESS: Okay.	17:24:30
4	THE VIDEOGRAPHER: Going off the record.	17:24:32
5	The time is 5:24.	17:24:32
6	(A recess was taken.)	17:36:39
7	THE VIDEOGRAPHER: Back on the record. The	17:36:56
8	time is 5:37.	17:36:56
9	BY MR. BROUGHAN:	17:37:00
10	Q Prior to analyzing whether the prior art	17:37:04
11	anticipated any of the claims, did you determine the	17:37:07
12	scope of the claim?	17:37:11
13	Strike that.	17:37:16
14	Prior to analyzing whether any of the prior	17:37:18
15	art references anticipated claim 1 of the '345 patent,	17:37:20
16	did you determine the scope of the '345 patent, claim	17:37:24
17	1?	17:37:28
18	A I read the '345 patent, particularly the	17:37:44
19	specification, to understand what the invention was	17:37:48
20	about.	17:37:51
21	Q Did you analyze each of the claims of the	17:37:54
22	'345 patent?	17:37:57

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 23	38 T
1	A I I have a question. I'm not sure if	17:38:44
2	you're talking about when I first examined the '345	17:38:46
3	patent and is it with respect to this matter or	17:38:50
4	previous matters?	17:38:53
5	Q Prior to analyzing Dr. Kyriakakis's report	17:38:55
6	and the prior art references he identified, did you	17:38:58
7	determine the scope of claim 1 of the '345 patent?	17:39:01
8	A The specification for the '345 patent	17:40:22
9	informed me as to the elements of the individual	17:40:24
10	claims with respect to the patent.	17:40:31
11	I didn't try to figure out all possible	17:40:42
12	systems that would be the systems that would	17:40:45
13	correspond to these to these particular claims.	17:40:52
14	Q So first you looked at the prior art that	17:40:55
15	Dr. Kyriakakis identified, then you determined the	17:40:58
16	scope of claim 1 of the '345 patent?	17:41:01
17	MR. LENNIE: Objection. Form.	17:41:04
18	A I looked at the patent to inform myself of	17:41:09
19	the technology that's contained within the patent to	17:41:12
20	understand the claims and their I mean, basically	17:41:15
21	the technology that those claims cover. That informed	17:41:22
22	me in my analysis of Dr. Kyriakakis's positions with	17:41:25

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 2	39
1	regard to those claims.	17:41:31
2	Q The art provided by Dr. Kyriakakis helped	17:41:53
3	you understand the scope of claim 1 of the '345	17:41:57
4	patent?	17:42:03
5	A No. The description that the inventors	17:42:16
6	described in their specification informed me of how	17:42:23
7	the system functions and, in particular, the various	17 : 42 : 27
8	different features and how they are implemented.	17:42:30
9	Q Did you analyze the scope of claim 1 in the	17:42:37
10	context of the '345 specification prior to reading	17:42:40
11	Dr. Kyriakakis's report?	17:42:46
12	A I read the patent; in particular, the	17:43:02
13	specification of the patent and the description of the	17:43:06
14	technology within it to understand the meaning of the	17:43:08
15	elements within the claims and this enabled me to	17:43:14
16	understand and to respond to, along with my own	17:43:18
17	experience and my own knowledge, the assertions made	17:43:23
18	by Dr. Kyriakakis in his report.	17:43:28
19	Q The '345 specification describes a threshold	17:43:47
20	detector that uses a single threshold; is that	17:43:52
21	accurate?	17:43:55
22	A The '345 specification includes an	17:44:04

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

I	Conducted on June 16, 2017	240
1	embodiment which uses a threshold detector for setting	17:44:06
2	a threshold for each frequency bin using a noise	17:44:11
3	estimation process.	17:44:15
4	Q Ant it sets a single threshold for each	17:44:16
5	frequency bin using a noise estimation process,	17:44:19
6	correct?	17:44:19
7	A It uses a threshold detector for setting a	17:44:26
8	threshold for each frequency bin. There is a	17:44:31
9	threshold for each frequency bin.	17:44:34
10	Q There is	17:44:36
11	A Threshold detector.	17:44:37
12	Q The '345 specification describes a threshold	17:44:38
13	detector that uses just one threshold for each	17:44:42
14	frequency bin?	17:44:46
15	A It uses a threshold detector and it sets a	17:45:00
16	single threshold for each frequency bin.	17:45:04
17	Q Claim 1 describes a system that includes a	17:45:21
18	threshold detector for setting a threshold for each	17:45:25
19	frequency bin using a noise estimation process,	17:45:29
20	correct?	17:45:33
21	A Yes.	17:45:34
22	Q The threshold detector of claim 1 requires	17 : 45 : 41

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 241	l
1	setting a single frequency strike that.	17:45:43
2	The threshold detector of claim 1 requires	17:45:48
3	setting a single threshold for each frequency bin?	17:45:51
4	MR. LENNIE: Objection. Form.	17:45:55
5	A It doesn't require setting a single	17 : 45 : 57
6	threshold. The '345 specification provides an example	17:46:00
7	embodiment which uses a single threshold. But there	17:46:04
8	is no limitation of that sort shown in claim 1.	17:46:08
9	Q The '345 specification described a process	17:46:35
10	for setting the threshold that uses a current minimum	17:46:39
11	value and a future minimum value for each frequency	17:46:45
12	bin, correct?	17:46:48
13	A It does, yes.	17 : 46 : 50
14	Q The process described in the specification	17 : 46 : 52
15	of the '345 patent uses a single future minimum and	17:46:54
16	single current minimum for each future each	17 : 46 : 57
17	frequency bin, correct?	17:47:02
18	A It has a current minimum and a corresponding	17:47:06
19	future minimum a current minimum value and	17:47:19
20	corresponding future minimum value as part of the	17:47:22
21	description of the specification, yes, in the	17:47:26
22	embodiment.	17:47:28

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.		
	Conducted on June 16, 2017	242
1	Q Is claim 4 limited to that embodiment?	17:47:36
2	A Claim 4 is not limited to that particular	17:47:40
3	embodiment.	17:47:42
4	Q How did you apply the preamble of claim 1 in	17:48:06
5	the analysis in your report?	17:48:09
6	A What do you mean by "apply the preamble of	17:48:19
7	claim 1"?	17:48:21
8	Q In your report did you treat the preamble of	17:48:22
9	claim 1 as limiting?	17:48:26
10	A I considered systems that are examples of an	17:48:44
11	apparatus for canceling noise.	17:48:50
12	Q Did you consider challenging whether any	17:49:12
13	reference anticipated claim 1 because it did not	17:49:14
14	disclose an apparatus for canceling noise?	17:49:17
15	A Again, just to be sure of clarity, can you	17:49:44
16	repeat the question?	17:49:47
17	Q Did you consider challenging whether any	17:49:50
18	reference anticipated claim 1 because it did not	17:49:52
19	disclose an apparatus for canceling noise?	17:49:55
20	A There were references that I considered	17:50:47
21	whose focus was on particular aspects of elements of	17:50:50
22	the '345 patent and in terms of an alleged relation	17:50:55

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 24	3
1	according to Dr. Kyriakakis's report.	17:51:03
2	I looked at those systems in combination	17:51:08
3	with other ones that were an apparatus for canceling	17:51:10
4	noise to consider how those systems might read on the	17:51:16
5	individual claims.	17:51:21
6	Q Claim 17 of the '345 patent is directed	17:51:27
7	towards the apparatus of claim 1 and 13 that also	17:51:30
8	includes a residual noise processor?	17:51:35
9	A I see that, yes.	17:51:41
10	Q If you look at claim 19, it specifies that	17:51:44
11	the residual noise processor includes a voice switch	17:51:51
12	for detecting non-speech segments?	17:51:55
13	A I see that, yes.	17:51:58
14	Q What is a voice switch for detecting	17:51:59
15	non-speech segments?	17:52:03
16	A Well, generally it's a system that is	17:52:05
17	designed to determine whether there is speech or noise	17:52:08
18	present within a particular segment of time.	17:52:12
19	Q For example, it would determine whether a	17:52:22
20	frame is a speech frame or a noise frame?	17:52:24
21	A It's actually looking for segments which are	17:52:39
22	non-speech segments.	17:52:48

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

	Conducted on June 16, 2017 24	4
1	Q So it determines whether a frame or series	17:53:04
2	of frames corresponds to noise only?	17 : 53:06
3	A Well, again, speaking generally and	17:53:21
4	hypothetically, without having the system in front of	17 : 53 : 23
5	me to analyze, it's a system for detecting non-speech	17 : 53 : 25
6	segments, which means segments which don't contain	17:53:34
7	speech.	17:53:38
8	Q Why do you need a system in front of you to	17:53:47
9	determine the scope of one of the claims of the	17:53:49
10	patent?	17 : 53 : 52
11	A I'm	17:53:56
12	MR. LENNIE: Objection. Form.	17:53:59
13	A So I've been asked to provide opinions as a	17:54:09
14	rebuttal to Dr. Kyriakakis's report. So I have	17:54:12
15	performed an analysis of the assertions made by the	17:54:17
16	other expert. I have been using those the	17:54:23
17	references mentioned by that other expert, or	17:54:28
18	indicated by the other expert, as part of my analysis.	17:54:31
19	Q You cannot determine the scope of this claim	17:54:35
20	without seeing a system to apply it to?	17:54:39
21	A In the process of doing this analysis, I	17:55:12
22	used the specification of the '345 patent as well as	17:55:15
]

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

245

	~	
1	my own experience to determine the understanding of	17:55:19
2	what these individual elements are and in the process	17 : 55 : 23
3	of providing my opinions, I've looked at the	17 : 55 : 27
4	references that have been provided by the other expert	17:55:30
5	in order to perform my analysis.	17:55:34
6	Q Were you able to come to an understanding of	17 : 55 : 44
7	what each claim of the '345 patent meant before	17 : 55 : 46
8	applying it to a system identified by Dr. Kyriakakis?	17 : 55 : 50
9	A I have an understanding of what these	17 : 56:04
10	individual elements and claims mean that has informed	17:56:06
11	to me from the specification as well as my own	17:56:10
12	experience and my knowledge and expertise in the area	17 : 56 : 13
13	that allows me to perform an analysis of the	17 : 56 : 16
14	assertions made by Dr. Kyriakakis in his report.	17 : 56 : 20
15	Q And what is that understanding for a	17 : 56 : 34
16	threshold detector for setting a threshold for each	17 : 56 : 42
17	frequency bin using a noise estimation process for	17 : 56 : 45
18	claim 1?	17 : 56 : 48
19	A It is an understanding as informed by the	17:56:54
20	embodiment, as an example, where the embodiment tells	17 : 56 : 56
21	me how one can implement a threshold detector for	17:57:01
22	setting a threshold for each frequency bin using a	17:57:06

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

F	Conducted on June 16, 2017	246
1	noise estimation process as an example.	17:5
2	MR. BROUGHAN: Apple doesn't have anything	17:5
3	further.	17:5
4	MR. SWANSON: No further questions.	17:5
5	MR. WINSTON: I don't have any questions.	17:5
6	MR. LENNIE: I don't have any questions	17:5
7	either.	17:5
8	THE VIDEOGRAPHER: This marks end of the	17:5
9	deposition. We're going off the record at 5:57.	17:5
10	(Off the record at 5:57 p.m.)	17:5
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	ACKNOWLEDGMENT OF DEPONENT
2	I, Scott Clinton Douglas, Ph.D., do hereby
3	acknowledge that I have read and examined the
4	foregoing testimony, and the same is a true, correct
5	and complete transcription of the testimony given by
6	me, and any corrections appear on the attached Errata
7	sheet signed by me.
8	
9	
10	
11	(DATE) (SIGNATURE)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

1	CERTIFICATE OF SHORTHAND REPORTER - NOTARY PUBLIC
2	I, Dawn M. Hart, the officer before whom the
3	foregoing deposition was taken, do hereby certify that
4	the foregoing transcript is a true and correct record
5	of the testimony given; that said testimony was taken
6	by me stenographically and thereafter reduced to
7	typewriting under my direction; that reading and
8	signing was requested; and that I am neither counsel
9	for, related to, nor employed by any of the parties to
10	this case and have no interest, financial or
11	otherwise, in its outcome.
12	IN WITNESS WHEREOF, I have set my hand and
13	affixed my notarial seal this 20th day of June 2017.
14	My Commission Expires:
15	July 14, 2020
16	1 States
17	
18	Daw to Vant
19	NOTARY PUBLIC IN AND FOR THE
20	DISTRICT OF COLUMBIA
21	
22	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcript of Scott Clinton Douglas, Ph.D.

Conducted on June 16, 2017

A	according	243:21	153:22, 169:19,
ability	63:2, 70 [.] 7,	adaptive	169:22, 206:1,
180.6	71:15, 74:13,	11:15, 113:12,	222:17
able	75:14, 108:14,	114:2, 114:18,	address
15.2 24.8	136:5, 138:1,	115:12, 115:16,	24:9, 25:14,
25.5 26.12	213:8, 243:1	115:20, 116:1,	26:8, 26:17,
40.16 40.21	account	116:5, 121:15,	40:16, 40:21,
41.14. 41.15.	25:11	121:19, 122:6,	106:15, 117:20,
42:16. 45:17.	accumulation	122:13, 123:5,	151:16, 173:3,
76.20, 89.11.	208:11	123:15, 124:4,	173:11
92:16. 106:19.	accurate	124:8, 124:17,	addressed
117:16, 122:9,	23:11, 93:14,	124:20, 125:18,	119:12, 172:20
156:19, 158:3,	129:2, 160:9,	126:4, 126:11,	addressing
160:13, 160:15,	164:15, 239:21	126:13, 126:17,	24:7, 26:14
160:20, 161:18,	accurately	126:18, 126:21,	adds
163:7, 183:9,	199:4	127:1, 130:21,	43:20, 103:16,
187:8, 193:14,	achieved	196:14, 205:4,	105:12, 108:9,
216:22, 227:22,	193:12, 213:5,	205:12, 207:20,	113:11, 115:5
245:6	213:6	208:1, 208:2,	adjust
above	achieves	208:4, 235:9,	163:22, 236:13
68:7, 100:2,	122:10	235:13, 235:14,	adjusting
176:12, 212:10	acknowledge	235:17, 235:19,	210:20
abso	247:3	235:22, 236:12,	advantage
54:10	acknowledgment	236:20, 236:22	71:4
absolute	247:1		advantages
54:4, 54:7,	acoustic	128:2, 128:3,	50:13, 71:17
54:10, 54:15,	5:14, 16:2,	109:18	affect
57:22, 59:18,	16:13, 234:16		140:11, 141:9
59:19, 60:11,	acronym	/9:13, 91:12, 114.17 115.10	affirmed
60:20, 76:14,	213:16	114.17, 113.19, 115.21, 207.3	8:9
101:4, 101:18	across	234.16	affixed
absolutely	58:20, 149:13,	additional	248:13
125:8, 150:11	168:6, 174:4,	15.2 15.20	after
abstract	198:21, 200:1,	15.22 63.12	53:16, 82:21,
184:2, 184:3,	200:2, 231:2	68.5 68.15	83:9, 84:1,
185:6, 186:11,	active	68.20 69.8	84:5, 84:16,
187:6, 187:13	11:15, 196:13	69.18, 79.6	99:9, 214:11
access	actual	80:8, 82:19,	afternoon
100:22	118:13, 138:6,	94:1, 95:10,	116:18, 117:2,
accordance	208:8	96:2, 96:9,	117:3, 152:4,
165:5, 165:22,	actually	103:21, 104:20,	152:5
166:17, 167:22,	73:18, 88:3,	105:7, 105:19,	again
177:20, 179:7,	119:16, 123:20,	107:5, 107:21,	19:12, 24:13,
179:10, 182:7,	124:20, 124:22,	108:9, 108:21,	25:20, 26:3,
219:5, 220:11,	133:17, 141:9,	110:13, 112:20,	26:10, 34:11,
221:1, 221:3,	143:20, 148:11,	113:16, 124:8,	35:5, 59:4,
221:16, 222:1	199:20, 213:1/,	128:15, 144:17,	00:13, 00:15, 00.16
	213:21, 214:0,		09.11, 19.10,
	I		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 249

Transcript of Scott Clinton Douglas, Ph.D.

250

Conducted on June 16, 2017

80.11 85.10	23.1 27.12	algorithms	115.1
85.19 86.16	39.22 46.11	211.12 212.15	also
87.3 88.16	57.6 58.17	-11	4.10 7.16
88.22 89.6	72.9 72.21	AII 14.17 14.00	7.17 9.3
89.15 90.5	99.22 122.12	14:17, 14:22, 15:10 01:0	12.10 44.10
00.12 01.11	123.11 150.4	15.10, 21.3,	12.10, 44.19,
90.12, 91.11, 02.15, 05.13	150.13 153.4	25:3, 28:20,	4/.12, 7/.4,
92.13, 93.13, 96.13	154.4 154.14	29:2, 33:4,	106.11 117.20
105.13, 103.10, 105.1	166.2 160.11	33:16, 40:2,	110.11 120.10
103.1, 100.3,	100.3, 100.11,	40:7, 40:8,	120.20 124.11
100:10, 109:3, 110.17, 112.2	104:11, 104:17,	41:9, 41:10,	129:20, 152:22
110.17, 113.2,	102.12 102.21	45:21, 50:1,	140:8, 155:22,
110:4, 119:1,	192:13, 192:21,	65:6, 8U:18,	102.11 106.12
120.12 120.10	201.2 200.22,	100:22, 104:18,	182:11, 196:13,
120:12, 120:19,	201:3, 208:10,	10/:1, 10/:19,	199:17, 207:5,
147.0 150.10,	219:21, 221:10	108:6, 110:17,	213:9, 232:10,
147:8, 156:18,		111:3, 116:10,	243:7
15/:5, 15/:16,	199:6, 214:6	119:19, 120:13,	alternative
158:2, 1/4:3,	anead	123:22, 124:14,	61:14, 72:4,
190:9, 191:12,	39:10, 102:18,	127:18, 128:8,	72:18
194:14, 198:12,	122:20, 148:11	131:14, 200:22,	although
198:14, 201:21,	al	201:11, 201:13,	72:3, 76:19,
202:11, 204:2,	7:5	212:3, 213:13,	209:21, 213:9
206:21, 214:18,	algorithm	238:11	always
21/:12, 21/:21,	5:19, 21:1,	alleged	141:14, 142:8,
220:3, 221:10,	21:11, 21:15,	130:12, 242:22	143:1, 207:14
225:20, 225:22,	22:10, 22:13,	allow	america
226:2, 226:11,	22:21, 23:17,	68:11, 85:22,	7:15
226:20, 227:8,	24:1, 25:5,	87:6, 89:8,	amount
227:12, 227:20,	58:7, 121:22,	93:13, 139:1,	40:19, 141:18
229:6, 230:8,	126:16, 126:19,	154:8, 179:16,	amplitude
230:17, 231:14,	146:11, 152:20,	189:19, 236:15	98:22, 99:2,
231:16, 233:9,	160:7, 160:14,	allowed	99:7, 101:8,
234:8, 234:13,	160:16, 160:17,	118:10, 127:15	101:11, 101:12,
235:11, 242:15,	160:21, 161:5,	allowing	101:17, 101:19
244:3	161:7, 161:9,	91:13, 153:10	analysis
against	161:12, 161:14,	allows	142:10, 142:12,
82:12	161:16, 161:19,	62:18, 79:18,	164:13, 173:17,
ago	161:21, 163:3,	106:18, 117:19,	184:14, 218:16,
110:2, 130:6,	163:15, 163:17,	124:1, 154:20,	238:22, 242:5,
150:9, 229:20,	163:19, 163:22,	245:13	244:15, 244:18,
230:21, 232:15,	170:2, 170:13,	almost	244:21, 245:5,
232:19, 233:21	170:18, 170:20,	40:13	245:13
agree	171:2, 171:6,	along	analyze
13:4, 13:6,	171:8, 171:10,	33:13, 36:5,	39:11, 40:4,
13:10, 17:14,	172:2, 172:14,	91:5, 117:18,	237:21, 239:9.
20:11, 20:20,	173:13, 184:5,	239:16	244:5
21:6, 21:18,	185:5, 186:13,	already	analyzing
22:12, 22:13,	187:3, 214:15	15:12, 114:16.	237:10, 237:14.
		,,,	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

		,	
238:5	32:1, 59:22,	227:18, 228:1,	approach
andrea	60:7, 61:4,	228:3, 228:6,	61:14, 61:19,
8:4, 9:4, 39:4,	75:8, 75:11,	228:8, 228:10,	70:20, 72:3,
201:11, 201:19,	77:22, 109:21,	228:17, 228:19,	72:11, 72:14,
203:6, 229:13,	126:10, 128:15,	228:21, 229:8,	72:18, 156:3,
229:17, 230:2,	128:19, 161:2,	242:11, 242:14,	162:5, 172:5,
230:5, 230:6,	168:15, 168:17,	242:19, 243:3,	211:14, 211:15,
230:10, 231:12,	180:20, 190:22,	243:7	211:16, 211:19,
232:5	191:9, 202:16,	appear	211:20
andrea_itc_	202:20, 237:11,	247:6	approaches
129:13	237:14, 242:12,	appears	25:2, 205:11
another	242:17, 246:5,	129:17, 212:17	appropriate
99:17, 140:8,	246:6, 247:6,	apple	118:6, 142:12,
158:8, 176:17,	248:9	4:2, 7:20,	166:2, 166:7,
236:17	anyone	152:2, 152:7,	178:5
answer	232:5	246:2	approximately
23:13, 29:5,	anything	application	192:9, 232:15,
50:4, 88:19,	32:22, 33:18,	29:14, 104:8,	233:15
110:1, 149:9,	33:19, 34:8,	111:15, 123:3,	approximating
166:13, 170:6,	59:4, 60:12,	156:21, 172:5,	99:19, 102:5
173:6, 193:14,	60:19, 75:5,	191:6, 191:13,	approximation
193:16	77:22, 85:7,	192:20, 196:15,	62:5, 99:12,
answered	85:16, 86:4,	198:14	102:1
22:6	86:14, 90:8,	applications	aprive
answers	128:1, 128:3,	31:1, 73:6,	158:4
9:20, 30:7	158:22, 159:9,	121:21, 125:12,	area
ant	240:2	125:15, 192:19	10:18, 87:7,
240:4		applied	87:10, 88:11,
anticipate	200:14	46:20, 72:4,	245:12
67:18, 121:14,		73:10, 82:12,	aren't
132:2, 142:3,	10:21, 12:3,	93:9, 159:12,	61:5
201:1, 201:4,	15:10, 51:20,	159:15, 170:2,	argue
202:12, 202:14,	107.3 107.6	171.2 171.5	130:20
202:16	107.10 107.18	1/1:3, 1/1:3, 171.10, 172.2	argued
	108.1 108.14	173.13 101.7	131:2
107:3, 107:20,	108.18 108.22	212.11	argument
108:19, 110:12, 202.20, 227.11	110:11. 110:15.	applies	127:16, 150:8
202.20, 257.11, 237.12	114:10, 114:13,	30.13 62.3	arguments
237.13, 242.13, 242.13	114:20, 115:21,	$142 \cdot 11$ $144 \cdot 4$	127:16, 127:21,
anticipates	131:4, 200:19,	159.13	150:14, 1/3:1/
$38 \cdot 11$ $30 \cdot 12$	200:22, 201:3,	apply	arise
40.5 40.10	201:8, 201:15,	15:16. 22:4.	24:16
40.5, 40.10,	217:17, 223:8,	24:8. 81:2.	
anv	224:5, 224:12,	93:4, 122:1.	105:3, 156:2,
21.21, 23.7	224:16, 224:21,	228:14, 242:4,	200:10
23.19, 24.16	225:5, 225:7,	242:6, 244:20	array
25:12, 29:1.	225:20, 227:9,	applying	111.10 115.10
,, _,		172:13, 245:8	114:10, 113:12,
		• • • •	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 251

115:16, 115:20,	83:6, 100:12,	65:8, 68:3,	121:5
116:1, 116:5,	107:4, 107:20,	68:4, 81:13,	assistants
121:15, 121:19,	108:20, 110:12,	105:4, 113:22,	117:15
122:6. 122:13.	111:5. 111:9.	114:6. 114:9.	associated
123:8. 123:12.	114:16. 115:19.	115:3. 141:22.	25.12 80.11
123.15. 123.17.	130.1. 162.10.	161.14. 173.5.	120.15 $1/1.10$
$123 \cdot 18$ $123 \cdot 19$	162.21 185.3	174.7 174.8	166.0 166.15
123.10, 123.10, 102.00	102.21, 103.3,	100.4	100:0, 100:13,
123:21, 123:22,	185:18, 190:5,	199:4	182:20, 183:8,
124:1, 124:2,	194:10, 194:19,	aspect	183:21, 196:1,
124:4, 124:8,	204:14, 237:10,	56:5, 63:19,	202:14, 236:10
124:17, 124:20,	237:15, 238:6,	89:9, 91:3,	assume
125:18, 126:11,	238:14, 239:2	95:15, 104:9,	63:11, 66:14,
126:13, 126:17,	article	122:4, 178:14,	68:4, 68:13,
126:18, 130:21,	155:1, 185:4,	178:16	79:12. 80:7.
165:1, 168:11,	185:5, 187:5,	aspects	95.9 104.19
168:14. 235:3.	189.3. 194.9.	11•14 11•16	107.2 107.15
235.6. 235.8.	194.11 194.22	23.5 23.3	109.18 110.11
235.14 235.17	195.12 196.2	23.3, 33.3, 33.3, 33.3, 33.4, 40.7	114.12 115.10
235.20 236.12	106.0 107.1	10.10 10.01	170.6 170.0
235.20, 230.12,	196:8, 197:1,	40:18, 40:21,	1/8:6, 1/8:8,
236:19, 236:22	197:8, 197:12,	41:5, 41:10,	178:11, 178:16,
arrays	198:5, 198:8,	41:12, 41:20,	178:20, 185:10,
123:9, 126:21,	205:4, 222:19,	50:2, 50:12,	185:15, 185:17,
127:2, 196:13	230:3, 230:4,	60:22, 63:22,	185:21
arslan	230:7, 231:3	84:20, 85:6,	assumes
78:8, 78:15,	articles	85:14, 87:20,	160:3, 160:11,
78:17, 78:18	187:2, 189:2,	89:8, 90:5,	160:19, 164:15
art	195:14	91:1, 91:2,	assuming
17.4. 27.13.	artifacts	92:10, 110:17,	63.12 69.7
$28 \cdot 6$ $28 \cdot 11$	84.1 84.7	111.3 117.12	03.12, 03.7, 03.10
20.0, 20.11	acido	119.10 120.16	95.19, 95.22,
20.13, 20.13, 20.10		121.0 120.12	96:8, 103:20,
20.17, 20.10,	46:14, 54:10,	121.0, 120.13, 122.15, 160.1	105:18, 113:15,
29:0, 29:10,	92:7, 174:8,	107.10 040.01	185:20, 195:10
29:18, 30:3,	232:5	18/:18, 242:21	assumption
30:17, 31:11,	asked	assertion	80:19
31:14, 33:9,	33:11, 37:21,	151:13, 151:16	assumptions
33:20, 34:9,	38:22, 39:4,	assertions	199:18
34:17, 35:19,	39:22, 40:4,	151:3, 173:10,	attached
36:9, 37:9,	40:6, 41:9,	239:17, 244:15,	5:6, 6:2, 10:2,
44:13, 44:15,	41:12, 100:9,	245:14	19:17, 37:12,
45:15, 46:1,	106:20, 108:3,	assigning	51.11. 78.7.
46:11, 47:17,	113:2, 116:8,	176:22	116.20 122.16
49:10, 49:19,	171:19. 232:1.	assignment	120.10 131.7
50:9. 50:19.	244.13	176.22 177.8	140.14 100.2
59.11 59.13	acking	1/0.22, 1//.0	140:14, 100:3,
59.14 62.11	17.13 22.17		203:9, 24/:6
65.7 68.11	\perp	1//:9	
71.0 72.5	23:9, 23:10,	assistance	236:4
11.0, 13.3, 70.0, 01.1	26:12, 48:6,	119:8, 119:9,	attempt
/0:0, 0⊥:⊥,	56:8, 56:12,	119:22, 120:20,	98:10, 161:2,
	1		

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 252
Conducted on June 16, 2017

218:12	37:8, 43:9,	135:6, 171:16,	224:12, 232:11,
attends	59:3, 61:21,	187:5, 197:11,	242:13, 242:18
230:14	66:10, 74:8,	213:12, 220:6,	become
audio	75:18, 77:6,	231:14	203:3
1:5, 7:4, 44:1,	78:20, 78:21,	bases	becomes
44:2. 45:5.	80:22, 93:16,	128:9	147:7
45:14.46:7.	95:7, 102:9,	basic	been
46:17. 47:3.	103:10, 104:18,	118:5	9.3. 9.6. 9.8.
47.13. 47.15.	108:5, 110:1,	basically	9.10 10.3
47.19 47.22	110:10. 116:22.	11.16 19.1	11.11 11.12
48.2 62.7	149:16. 151:22.	168.7 226.22	11.10 15.0
63.5 61.1	152.1 155.2	220.22,	15.15 17.5
69.22 93.2	173.19 200.12	238.20	13.13, 17.3, 24.20, 22.11
00.22, 05.2,	215.3 230.9		24:20, 33:11, AC:A A7:17
0/:21, 90:5, 112.12, 114.10	231.16 237.7	143:19, 153:10	40:4, 47:17,
115:15, 114:19,	background	Dates	50:19, 66:20,
126:14, 196:12,		51:22, 129:12,	/3:14, /3:1/,
223:12, 223:15,	191:19, 191:20,	129:13	/3:22, /5:13,
223:18, 231:13,	195:12	dd	/6:14, //:2,
234:5		136:19, 137:1,	//:3, 83:10,
		138:13	83:20, 87:17,
233:19		beam	87:19, 88:2,
austin	4:4, 7:21,	235:2	88:3, 88:17,
4:5, 7:20	64:21, 162:6	beamformer	89:1, 100:9,
authored	ballpark	234:1, 234:7,	100:18, 101:1,
17:18	230:22, 231:1	234:10, 235:3,	106:20, 108:3,
authors	band	235:6	113:2, 113:4,
20:2	144:4, 169:21,	became	116:8, 117:4,
available	173:16, 174:4,	40:15, 41:18	124:22, 129:11,
127:2, 203:3	178:12	because	129:18, 131:3,
average	bandwidth	20:8, 21:10,	171:19, 214:8,
211:16, 211:20	198:22	21:19, 41:2,	232:1, 233:18,
averaging	bank	44:16, 46:3,	244:13, 244:16,
109:15, 109:16,	155:7, 155:10,	51:6, 59:18,	245:4
109:18, 109:21,	155:17, 157:15,	65:6, 72:19,	before
112:5, 112:16	157:20, 170:3,	93:12, 107:14,	2:18, 9:10,
avoid	170:8, 170:14,	117:11, 121:14,	10:6, 37:17,
97:16	170:16, 171:11,	122:8, 134:5,	55:2, 66:19,
aware	172:14, 173:14	142:4, 145:16,	78:13, 88:7,
17:7, 18:17,	bar	148:1, 150:7,	100:19, 130:11,
30:9, 102:11,	147:5, 147:13,	153:20, 158:17,	188:9, 213:17,
106:7, 128:19,	147:14, 148:2	162:19, 164:15,	214:2, 230:6,
230:4	bars	165:11, 168:4,	232:2, 245:7,
away	54:1, 54:11,	171:3, 171:6,	248:2
110:21, 111:3,	54:15	176:11, 181:20,	begin
163:3	based	186:3, 187:15,	185:14
B	6:6, 80:19,	194:7, 196:19,	beginning
	88:10, 98:16,	204:18, 206:7,	15:22, 16:8,
10.17 26.10	116:6, 135:3,	211:10, 219:14,	61:13, 72:2,
10.17, 20:19,			

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

129.12	hest	boll	175.1 175.11
begins	121.9	5.13 16.17	175.17 175.18
$7 \cdot 2 7 \cdot 7$	beta	17.9 16.21	175.20 176.17
116.21 200.11	208.6 208.8	47.4 47.9	176.21
behalf	208.15 209.12	51.12. 51.20.	brad
$3 \cdot 2 3 \cdot 11 4 \cdot 2$	209.15 209.17	54:3. 54:11.	8:2
4.10. 7.14.	209.20, 209.22,	54:17. 54:22.	bradlev
7.20. 152.7	210.2. 210.12.	55:15, 55:19,	3.4
behind	210:15, 211:2	56:16, 56:18,	break
14.20	better	57:6, 58:6,	9.19. 73.19.
being	12.5. 12.6	59:1, 59:17,	116.11. 116.14.
8.9. 21.22.	between	60:8, 60:20,	200:6. 200:7.
$24 \cdot 1$, $32 \cdot 10$.	30.5, 39.16.	77:6, 77:12,	237:1
45:17. 48:14.	56:13. 65:9.	83:11, 83:13,	brief
48:18. 49:6.	134:6. 165:13.	84:20, 101:2,	156:4. 156:20
50:13, 51:1,	183:19, 219:6,	101:4, 111:18,	briefly
51:6, 59:10.	219:12, 221:4.	111:22, 193:22,	9:17, 183:22
79:17, 86:21,	233:19	194:5, 194:9,	bring
103:6, 106:11,	bevond	194:11, 194:18,	92 · 6
122:3, 133:17,	68:7, 128:16	194:22, 195:11,	broad
137:3, 137:12,	bias	195:16, 196:2,	201:14, 201:22
138:4, 138:5,	52:4	196:8, 196:16,	broadband
139:16, 140:15,	binarv	196:18, 197:1,	135.8. 135.19.
144:7, 145:5,	216:5, 216:10,	197:12, 198:5,	136:6, 139:15,
145:6, 159:12,	216:11, 216:13	198:8, 202:1,	139:22, 152:15
159:15, 161:3,	bins	202:3, 202:7,	broader
165:22, 166:6,	69:20, 79:9,	202:9, 202:12,	202:5
166:21, 167:2,	80:5, 96:4,	202:14, 202:16,	broughan
167:16, 168:9,	105:15, 105:16,	202:20	4:3, 5:4, 7:19,
179:10, 180:16,	106:4, 111:14,	boll's	152:3, 152:6,
199:17, 209:22,	111:19, 144:9,	17:5, 56:20	187:22, 200:5,
210:6, 210:17,	144:14, 153:20,	both	200:13, 205:6,
210:18, 218:18,	154:5, 154:11,	69:12, 86:9,	218:7, 237:1,
218:19, 218:22,	154:15, 167:10,	93:12, 138:12,	237:9, 246:2
219:5, 220:14,	174:6, 174:7,	139:14, 140:3,	buffer
221:2, 221:12,	215:17	140:9, 192:1,	28:1
221:22, 230:2,	block	210:19, 212:10,	build
230:10, 231:12	27:8, 27:15,	225:21, 226:11,	190:3, 198:16
believe	28:1, 28:2,	226:18	burling
9:13, 9:16,	28:6, 30:4,		2:4, 3:16,
10:17, 40:14,	30:11, 30:12,	/6:15, 1/5:2,	7:14, 7:18
42:10, 83:5,	30:19, 31:2,	1/6:8, 192:7,	C
129:1, 229:20,	61:2, 72:19,	209:9	calculate
230:8	75:19, 146:17,	Bound	$92 \cdot 4$ $98 \cdot 5$
	147:3	132:19	101:2. 111:7.
130:7, 147:19, 174.22, 200.20	blocks	52.10 54.1	180:6, 183:9.
1/4:22, 200:20,	30:5, 49:1	55:19, 54:1,	183:11, 235:2
ZIZ:19, ZI4:1	bob	۶/:0, ۶/:8,	,,
	57:4		

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 254

Conducted on June 16, 2017

calculated	26:6, 42:21,	220:7, 226:9,	129:17, 136:20,
51.4 77.2	81.12. 106.15.	244.19	137.8. 138.15.
92.8 139.2	157.10 157.19	capability	138.22 157.19
165.16 169.3	158.6 158.8	36.6	236.16 236.17
103.10, 109.3,	167.0 170.11		230.10, 230.17
109:5, 109:12,	107.0, 170.11, 207.10, 217.12		
180:17, 181:6,	207:19, 217:13,	4/:1/, 92:1/,	81:16, 92:6,
182:17, 214:4	22/:21, 230:17,	184:5, 184:18	107:13, 121:8,
calculates	231:14, 232:3	captioned	194:7, 196:17,
214:16, 217:1,	cancel	27:5	203:11, 203:18,
217:2	12:7, 12:9,	careful	203:21, 205:1,
calculating	201:13, 225:18,	21:16, 22:3,	231:9, 233:6
97:11, 97:17,	226:1, 226:13,	23:18	certainty
98:14, 98:16,	226:16	carefully	136:15, 137:14,
102:2, 148:8	canceled	21:20, 22:14	137:22
calculation	224:21	case	certificate
54:2, 59:20,	canceling	7.5 9.4	248:1
59.21 60.5	10.22. 12.3.	10.11 23.20	certify
82.15 92.8	15.10 31.21	12.2 66.12	248.3
02.10, 52.0, 02.1	32.9 114.10	43.2, 00.13,	challenge
95.1, 97.20,	200.10 201.0	66:21, 67:14,	
99:1, 99:4, 100:11 101:C	200.19, 201.9,	/9:21, 80:18,	33:15
100:11, 101:6,	201:10, 201:12,	117:6, 127:5,	challenging
101:9, 101:12,	223:8, 224:5,	130:2, 130:19,	40:16, 40:17,
102:6, 138:5,	224:12, 224:15,	150:17, 167:14,	127:12, 242:12,
138:6, 138:7,	224:16, 224:19,	168:4, 195:6,	242:17
138:8, 145:9,	224:21, 225:2,	196:17, 204:8,	chance
154:20, 154:21,	225:5, 225:13,	210:8, 231:12,	112:19
174:17, 175:1,	225:20, 226:10,	248:10	change
175:6, 175:8,	226:20, 227:6,	cases	54:14, 54:15,
176:7, 177:3,	227:9, 227:18,	127:10, 232:11,	150:22, 161:3,
179:14, 179:16,	228:1, 228:4,	232:13	161:6, 161:8,
180:22, 181:10,	228:6, 228:10,	catch	161:14, 161:15,
181:11, 181:22,	228:17, 228:19,	128.21	161.18. 162.1.
182:21, 183:21	228:22, 229:8,	Call	163.3 163.8
calculations	229:10, 242:11,	30.0	163.10 163.12
60:9. 61:2.	242:14, 242:19,	59.9 639.9	163.13 163.14
100.15. 101.5.	243:3		163.15
106.8 111.12	cancellation	19:9	changes
169.1	11.3. 11.22.	Caused	
	12.22 13.1	19:4, 19:6,	59:20, 147:14,
165.12 221.7	13.7 13.12	19:7, 19:13	148:1
105:13, 231:7,	14.2 45.10	cease	changing
231:9	45.11 07.11	161:4	133:14, 147:5
Called	4J:11, 0/:11,	centeno	channel
155:2, 211:15	8/:12, 8/:15,	4:19, 7:8	171:11, 173:13,
calls	88:12, 223:9	center	193:11, 199:21
208:1, 208:2	cancels	2:6, 3:18	channels
came	201:15	certain	155:7, 155:10,
172:4, 231:2	cannot	1:5, 7:4, 21:9.	155:13, 155:15,
can't	179:22, 180:9,	21.11. 50.12	155:16, 155:18,
25:2, 25:14,			
			1

Conducted on June 16, 2017

157:15, 157:20,	69:12, 69:13,	coefficients	190:6, 191:3,
157:22, 170:3,	78:21, 93:16,	71:20, 124:12,	196:22, 217:7,
170:9, 170:10,	103:10, 110:18,	133:3, 135:7,	243:2
170:13, 170:22,	110:19, 126:13,	135:9, 136:6,	combinations
171:3, 171:6,	146:4, 146:7,	137:18, 139:6,	85:19, 86:19,
200:2	146:9, 148:4,	139:10, 139:16,	87:5
character	148:7, 180:2,	235:15, 235:17,	combine
54:22	180:10, 184:17,	235:19, 235:22,	27:15, 131:4,
characterizes	184:20, 185:2,	236:4, 236:11	234:22
62:8	202:20, 226:16,	collect	combined
choice	237:11, 237:21,	27:9, 28:8	34:13, 34:16,
29:13, 41:18,	238:10, 238:13,	collected	36:14, 46:4,
160:18, 183:18,	238:20, 238:21,	29:13	90:22, 91:3,
186:21, 187:20,	239:1, 239:15,	collecting	91:13, 122:9,
195:18	243:5, 244:9,	27:12	124:10, 212:15
choices	245:10	collection	combiner
41:5, 60:21	clarification	167:7	28:3
choose	9:19, 23:16	columbia	combines
42:2, 195:11	clarify	2:20, 248:20	28:4, 90:6,
chooses	10:16	column	139:2
139:4, 190:3	clarity	12:16, 15:21,	combining
choosing	242:15	16:7, 52:2,	190:1
138:12	clean	58:9, 61:12,	come
chose	210:8, 211:1	71:21, 77:11,	98:11, 127:16,
41:22, 172:6	clear	99:4, 100:12,	234:20, 245:6
chosen	23:16, 72:13,	112:2, 112:4,	comes
77:3, 137:11,	78:4, 107:1,	132:15, 135:14,	25:20
137:13, 138:21,	133:8, 133:15,	136:2, 136:3,	commission
139:1, 140:3,	156:6, 193:20,	141:3, 188:11,	1:1, 4:12, 8:1,
140:9	197:5, 198:15,	188:13, 192:7,	248:14
chris	204:18, 204:21,	194:21, 205:10,	common
37:14	209:21, 213:21,	209:5, 209:10,	14:16, 73:12,
cite	214:18	215:10	192:1
193:22, 195:11	clearer	columns	commonly
cited	143:20	189:9, 189:14,	20:16
192:5	clinton	189:18, 190:7,	communications
city	1:10, 2:1, 5:2,	190:21	39:16, 39:20
2:6, 3:18	8:8, 8:18, 247:2	combination	compare
claimed	CLOSE	33:22, 34:2,	187:1
152:22, 153:17	98:11, 237:2	34:12, 35:6,	compares
claiming	closer	35:14, 36:13,	184:6, 184:21,
80:14	231:1	50:5, 62:18,	186:14, 211:5
claims	coefficient	63:10, 89:7,	comparison
33:7, 40:8,	53:4, 53:10,	90:1, 90:2,	211:8
41:10, 43:7,	57:10, 57:11,	90:3, 91:4,	compensation
43:13, 63:2,	5/:18, 58:2,	100:10, 124:11,	123:6
64:14, 65:9,	135:16, 135:19,	130:12, 189:9,	complainant
66:5, 67:12,	140:19	109:13, 189:20,	3:2

Conducted on June 16, 2017

complete	225.8	confident	considerations
$123 \cdot 22 127 \cdot 4$	computation	230.19	117.20
127:18. 128:1.	51:2. 51:3.	confidentiality	considered
128:5, 208:21,	72:20, 91:12,	129:19	14:8. 18:22.
247:5	91:14, 92:1,	configuration	69:14, 91:2,
completely	92:16	161:2, 173:12	96:13, 110:17,
198:4	computational	configure	158:13, 242:10,
complex	20:9, 184:8,	160:13, 160:15,	242:20
62:6, 80:4,	184:22, 186:16	160:20	considering
81:3, 81:12,	computations	confused	38:22, 66:20,
81:17, 82:1,	90:14, 93:12	64:8, 178:3	80:11, 103:5,
82:5, 82:7,	compute	conjunction	104:2, 108:4,
82:10, 82:12,	49:6, 60:2,	89:9, 119:4,	109:9, 110:4,
98:21, 99:1,	76:20, 99:7,	119:22, 120:17	149:14, 183:8,
99:2, 99:8,	124:12	connected	218:17
100:15, 101:19,	computed	133:16	considers
101:20, 103:1,	60:14, 76:2,	connection	58:20
103:8, 105:15,	76:4, 78:3,	134:6, 165:12	consistent
106:3	92:5, 98:20,	conservative	102:11
complexity	124:21, 133:2,	21:1, 21:12,	constitute
20:9, 72:6,	167:16, 168:9,	21:19, 21:22,	149:2
/2:10, /3:1,	180:12, 182:12,	22:11, 22:22,	constitutes
/3:2, 9/:1/,	218:20	24:1, 24:6,	148:21
99:11, 100:2,	computes	24:11, 25:6,	constraints
100:5, 184:8,	76:12	25:15	169:22
105:1, 100:10	computing	consider	construct
27.1 40.17	60:16, 134:7,	11:6, 23:5,	127:13, 171:10
51.21, 40.17 , 51.21, 72.1	153:19	24:14, 26:4,	consult
$97 \cdot 1 113 \cdot 8$		26:11, 33:17,	192:4
130.10 148.10	13:11, 43:17, 72.0, 92.17	39:1, 40:6,	contain
149.20. 164.22.	73.9, 03.17, 03.17, 03.10, 00.17	41:12, 69:12,	128:8, 138:19,
188:12	93.3 111.6	8/:/, 8/:LU, 97.1/ 109.3	151:7, 167:9,
component	138.1 151.11	100.8 110.3	201:4, 244:0
123:21, 208:9	201.19. 201.21.	112.20 113.2	220.10
components	202:4	163.10 163.12	containing
84:16, 102:7,	concerns	164:19, 171:19.	1.7
153:7, 153:9,	119:12, 119:13	185:5. 185:12.	contains
154:7, 154:19	conclusions	187:4, 187:8,	19.1 65.5
comprise	42:20	189:8, 189:12,	85.3 85.19
85:4	conclusory	189:20, 190:5,	87.5 128.10
comprises	127:10, 151:13	190:12, 190:13,	137:5. 139:17.
109:12, 116:1,	conditions	190:19, 191:1,	167:5, 169:15,
229:9	20:17	191:3, 197:1,	173:1, 173:9,
comprising	conference	198:9, 198:11,	216:6
108:15, 113:12,	184:13, 230:19	242:12, 242:17,	contemplate
114:18, 115:12,	conferences	243:4	163:2, 163:17,
126:13, 200:20,	230:14	consideration	166:13
		117:10	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

contemplates		0.05 0.040 6	
concempraces	converts	235:9, 240:6,	217:6, 225:4,
162:15	180:8	240:20, 241:12,	226:12, 226:21,
content	copy	241:17, 247:4,	227:9, 228:21,
119:16, 119:18,	10:4, 117:5,	248:4	229:2, 231:3,
119:20, 120:1,	123:1, 129:15	corrections	234:19, 234:20,
120:3	corner	129:5, 247:6	234:21, 235:3,
contentions	175.2	correctly	235:6, 236:8
173.2. 173.18	correct	206:15	couldn't
contents	11.13 17.13	correspond	176:11
122.0	54.10 56.11	163.21 238.13	counsel
122.0	102.15 120.4	correspondence	7.11 8.12
	124.10 125.5		39.16 152.2
14:18, 1/:11,	134:12, 135:5,	219:6, 219:12,	240.0
18:14, 28:17,	140:2, 141:12,	219:14, 220:13,	240.0
40:7, 48:3,	149:1, 154:12,	221:4	
50:1, 66:21,	154:13, 155:8,	corresponding	43:1
84:4, 100:17,	155:13, 155:16,	32:17, 44:21,	court
100:18, 104:17,	158:14, 159:1,	91:20, 96:4,	102:16, 102:18
106:9, 106:10,	159:7, 160:5,	166:6, 166:21,	cover
109:4, 109:8,	161:10, 165:7,	166:22, 167:3,	202:7, 202:9,
151:8, 167:11,	166:19, 166:20,	167:15, 168:7,	202:11, 229:4,
174:6, 179:15,	169:14, 170:14,	179:9, 179:11,	238:21
181:21, 185:7,	170:22, 172:21,	180:13, 182:8,	covered
189:7, 189:11,	173:7, 175:19,	182:11, 219:20,	114:14, 229:12
190:10, 193:19,	176:1, 176:5,	221:5, 221:17,	covers
194:14, 194:16,	177:2, 177:6,	222:1, 241:18,	203:8, 219:22
199:6, 199:14,	177:10, 177:14,	241:20	covington
199:19, 201:14,	177:15, 180:20,	corresponds	2:4, 3:16,
207:19, 217:12,	181:2, 181:8,	118:16, 166:8,	7:14, 7:16, 7:18
218:16, 218:18,	182:2, 182:14,	244:2	create
222:18, 224:11,	183:11, 184:18,	could	20:15, 20:21,
234:5, 239:10	188:14, 188:18,	22:8, 30:1,	226.14
		22.0, 00.1,	230.14
contexts	192:6, 193:9,	33:17, 46:20,	created
contexts 18:13, 19:13,	192:6, 193:9, 194:2, 197:9,	33:17, 46:20, 61:21, 65:15,	created 160:17
contexts 18:13, 19:13, 28:20, 28:21,	192:6, 193:9, 194:2, 197:9, 197:10, 198:2,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5,	created 160:17 creating
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1,</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21,	created 160:17 creating 27:19
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21,</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3,	created 160:17 creating 27:19 creation
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9,	created 160:17 creating 27:19 creation 171:20, 171:22
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15.
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16.
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 create
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1.22 2.19
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast 168:4, 205:11</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12, 223:16, 223:20,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8, 206:13, 215:19,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current 49:5, 72:16
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast 168:4, 205:11 control</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12, 223:16, 223:20, 225:11, 225:14,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8, 206:13, 215:19, 216:3, 216:22,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current 49:5, 72:16, 147:1 147:2
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast 168:4, 205:11 control 11:15, 196:14</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12, 223:16, 223:20, 225:11, 225:14,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8, 206:13, 215:19, 216:3, 216:22,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current 49:5, 72:16, 147:1, 147:2,
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast 168:4, 205:11 control 11:15, 196:14</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12, 223:16, 223:20, 225:11, 225:14,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8, 206:13, 215:19, 216:3, 216:22,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current 49:5, 72:16, 147:1, 147:2,
<pre>contexts 18:13, 19:13, 28:20, 28:21, 28:22, 29:1, 29:2, 98:21, 193:2 continue 152:8 continued 4:1, 6:1 continuing 224:1, 236:3 continuous 215:15 contrast 168:4, 205:11 control 11:15, 196:14</pre>	192:6, 193:9, 194:2, 197:9, 197:10, 198:2, 198:6, 200:18, 201:9, 201:12, 201:18, 202:2, 203:10, 203:20, 205:5, 207:21, 208:2, 208:6, 209:13, 209:20, 209:21, 211:3, 211:6, 211:13, 212:5, 212:13, 213:8, 218:15, 219:1, 223:12, 223:16, 223:20, 225:11, 225:14,	33:17, 46:20, 61:21, 65:15, 73:18, 81:5, 81:19, 100:21, 107:13, 127:3, 139:9, 152:9, 156:16, 157:1, 157:2, 163:22, 164:2, 183:13, 183:15, 183:16, 185:14, 187:3, 187:15, 187:19, 189:17, 193:20, 199:20, 204:14, 205:20, 206:8, 206:13, 215:19, 216:3, 216:22,	created 160:17 creating 27:19 creation 171:20, 171:22 criterion 70:7, 71:15, 74:13, 74:16, 74:22, 75:2, 75:3, 75:14, 75:17, 76:10 crr 1:22, 2:19 current 49:5, 72:16, 147:1, 147:2,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

147:10, 147:12,	dawn	136:6, 136:14,	deponent
151:2, 165:5,	1:22, 2:18,	137:17, 137:22,	247:1
165.11. 165.14.	248.2	138.18, 139.3,	denos
$165 \cdot 18$ $165 \cdot 21$	dav	139.5 139.10	7.0
166.8 166.17	049.12	130.15 130.21	1.0
166.22 167.3	240:13	140.1 140.10	
167.22, 167.3,		dolor	9:10
107:22, 109:11,	2:7, 3:8, 3:19,		deposition
177:19, 177:22,	4:7, 4:15, 7:10	122:3, 122:4,	1:10, 2:1, 5:7,
178:4, 178:6,	december	123:3, 123:6,	6:3, 7:3, 7:9,
1/8:1/, 1/9:8,	233:19	123:20	9:15, 57:5,
179:9, 180:15,	decide	deleting	231:17, 231:21,
181:5, 182:7,	63:17, 63:18,	194:18	246:9, 248:3
182:9, 182:15,	69:13, 79:18,	denominator	depth
182:19, 183:2,	138:18, 142:14,	77:3	187:12
183:19, 219:4,	181:12, 184:15,	department	derive
219:7, 219:13,	204:4, 204:19,	8:22	44:2, 220:14
219:15, 219:19,	217:13, 226:2,	depend	derived
220:10, 220:12,	235.12	29.14 33.5	57.20 165.22
220:15, 220:17,	decided	$51 \cdot 1$ $64 \cdot 14$	170.10 210.5
221:1, 221:2,	67.1 67.2	66.5 110.19	220.11 221.3
221:4, 221:7,	07.1, 07.2,	133.3 197.19	220:11, 221:3,
221:15. 241:10.	95:10, 95:20	100.16 206.12	221:10, 221:22
241.16, 241.18,		222:10, 220:13	describe
241.19	98:9, 137:3,	dependence	18:2, 55:13,
	137:11, 137:17,	80:12	122:6, 122:8,
100.16	138:4, 138:16,	dependent	123:13, 123:19,
190:10	139:16, 146:11,	65:9, 65:12,	124:7, 126:4,
D	149:6, 216:6,	66 : 5	162:12, 192:9
d(k	216:9, 216:10,	depending	described
139:14, 140:4	216:18, 216:21,	81:10, 93:5,	10:13, 14:13,
d-i-e-t-h-o-r-n	217:1, 217:22	147:5, 196:14,	15:4, 15:9,
38:9	declare	217:5	15:11, 16:1,
dallas	233:11	depends	17:19, 36:6,
9:2	declared	43:17, 50:21,	36:7, 46:10,
data	136:14, 137:22	66:1, 68:17,	47:9, 47:12,
27.9 27.12	decomposed	69:16, 79:3,	47:14, 48:4,
$62 \cdot 6 145 \cdot 1$	160:12. 162:16	80:1, 80:12,	60:3, 83:14,
160.11 162.15	deemphasize	80:13. 82:17.	84:20, 86:21,
166.7 168.8	236.17	93:19. 95:21.	88:13, 90:9,
168.10 169.7	define	103.13. 104.8.	94.5. 94.12.
160.10, 160.12	100.14 012.17	105.10 106.10	94.17 110.6
170.10 175.7	dofined	107.10 108.7	115.18 126.20
170:19, 175:7,		113.9 139.13	161.1 170.16
1/0:4, 1/0:7,	55:8, 214:6	130.11 $1/3.1$	171.13 188.18
177.10.101.0	definition	$1/3 \cdot 5$ $1/2 \cdot 10$	101.16 102.1
101.00 100 0	53:16	199.16 200.2	10/·21 216·1
181:22, 182:2,	deflection	227.10, 200.3 ,	$\begin{array}{c} 1 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
	133:2, 133:3,	doni ata	229.10, 239.0,
date	135:7, 135:9,		241:9, 241:14
7:6, 247:11	135:16, 135:19,	104:5	
			31:21, 46:21,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

47:4, 48:11,	85:21, 160:18,	222:4, 222:6,	96:17, 98:2,
57:1, 86:8,	188:21, 226:11	222:9, 222:11,	113:3, 116:4,
90:6, 97:8,	designed	222:13, 222:14,	124:21, 156:19,
106:5, 109:5,	12:4, 13:22,	222:19, 223:1,	157:7, 157:12,
114:10, 121:21,	28.10. 47.7.	224:3. 243:12.	157:17. 158:3.
132.15, 144.2.	70.6 71.14	243.14. 244.5	164.14, 187.13.
154.17, 155.6.	$74 \cdot 12$ $75 \cdot 14$	detection	188.20. 191.21.
160.22 163.19	101.1 101.9	$32 \cdot 10$ $44 \cdot 17$	206.22 208.8
$164 \cdot 8$ 173 · 15	229.10 $2/3.17$	01.5 133.0	208.10 209.7
182.5 185.6	designer	122.10 1/0.2	210.11 210.19
102.3, 103.0, 106.3, 202.1		140.6 154.1	237.11 237.16
202.3 205.4		140.0, 104.1, 212.10	237.11, 237.10, 230.7, 242.17
202:3, 203:4,	designers	208:10, 213:10,	230:7, 243:17,
210:9, 211:12,	22:3	213:12, 214:20,	243:19, 244:9,
215:7, 220:21,	designing	214:22, 216:3	244:19, 245:1
221:20, 222:19,	21:17, 24:14,	detector	determined
228:1, 239:19,	26:3	44:1, 46:7,	43:22, 46:6,
240:12, 240:17	desirable	83:2, 91:16,	83:1, 132:18,
describing	187:17	94:5, 94:20,	135:6, 214:12,
18:18, 27:19,	desire	144:8, 151:14,	225:17, 238:15
44:6, 44:10,	203:4	179:6, 182:5,	determines
44:11, 44:15,	detail	203:11, 204:11,	133:7, 244:1
44:16, 62:12,	16:1, 151:15,	204:12, 204:15,	determining
112:10, 122:1,	156:5. 156:18.	204:21, 205:16,	215:12, 215:16
132:22, 157:1,	157:6, 157:12,	205:18, 205:21,	developed
157:3, 161:5,	157:16. 171:13	205:22, 207:2,	117:12, 118:9
161:17, 163:16,	detailed	215:13, 215:14,	developer
164:18, 172:13,	48.13 158.2	216:9, 216:12,	26:7
172:18, 184:12,	details	216:13, 216:15,	developers
195:19, 199:4,	124.1 124.2	216:16, 217:6,	21.1 21.11
212:3, 212:22,	101.17	217:8, 217:9,	21.15. 22.10.
213:2, 213:4,	dotoct	217:10, 220:22,	22.13 22.21
213:19, 232:13		223:19, 223:21,	$23 \cdot 17$ $24 \cdot 1$
description	134:20, 145:11,	225:17, 239:20,	$25 \cdot 17, 2 \cdot 17, 2 \cdot 17, 25 \cdot 6, 25 \cdot 17, 25 \cdot 6, 25 \cdot 17, 25 \cdot $
48:13, 78:5,	145:13, 146:8,	240:1, 240:7,	25.0, 25.14,
118:18, 124:18,		240:11, 240:13,	26.10
125:2. 125:17.	detected	240:15, 240:18,	deviated
126:8. 137:16.	67:20, 90:18,	240:22. 241:2.	
156:1. 156:4.	132:6, 132:14,	245:16. 245:21	doviatos
156.13. 156.20.	133:21, 134:15,	detects	
158.9. 161.21.	134:21, 141:15,	134.1 210.14	59:17, 59:22,
163.4, 209.8 .	142:9, 143:2	215.14 222.10	
214.18. 239.5.	detecting	222.20	
239.13 241.21	32:12, 32:15,	228.21	153:19, 234:16,
design	32:17, 44:19,	determination	234:20
21.16 21.20	44:21, 90:13,	68.11 85.13	devices
$22 \cdot 14$ $22 \cdot 15$	91:18, 91:21,	00.11, 00.15, 017.16	234:21
22.17, 22.10, 23.6, 71.16	94:8, 94:19,	dotormino	diagram
23.0, /1.10, 73.16 75.17	134:7, 215:4,		27:2
/J.IU, /J.I/,	215:20, 216:4,	00:10, 95:14,	dictate
			100.11
			120:11
			120:11

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

	000 17 014 0		154 00 155 01
diethorn	203:17, 214:8,	disclosure	154:20, 155:21,
38:8, 39:8,	217:5, 222:10,	171:9, 171:16	156:11, 156:16,
39:12, 40:4,	222:14, 235:2,	discovery	157:2, 157:4,
40:6, 40:8,	239:8	39:14	180:9
40:10, 41:2,	differentiates	discussed	done
41:10, 42:4,	75:15	148:16, 223:10	11:13, 28:12,
42:12, 42:18,	differs	discusses	50:4, 55:13,
42:21, 43:2,	60:20	199:3	55:14, 59:10,
43:6, 67:3,	difficult	discussing	61:2, 84:17,
67:17, 68:2,	66:17	130:16, 143:10,	97:10, 103:6,
68:3, 131:9,	digital	150:1, 152:9,	119:21, 121:6,
131:12, 132:1,	195:15, 196:7	155:20, 165:1	138:5, 169:1,
132:5, 132:7,	digitally	discussion	184:14, 196:13,
132:12, 132:15,	17:19	39:6, 156:2	216:3, 217:3,
133:19, 135:13,	direct	discussions	218:18, 232:4,
136:18, 137:2,	12:16, 15:21,	39:15	232:10, 232:22,
137:6, 139:10,	43:9, 52:2,	dispute	233:6
141:3, 142:3,	134:6, 211:16	$67 \cdot 2 \cdot 164 \cdot 5$	douglas
142:10, 142:11,	directed	distinction	1:10, 2:1, 5:2,
142:17	232:7. 232:9.	67.8	5:7, 5:17, 5:22,
diethorn's	243:6	district	6:3, 7:3, 8:5,
139:5, 142:13	direction	$2 \cdot 19 248 \cdot 20$	8:8, 8:18, 8:19,
difference	236.9 236.15	divided	74:11, 152:4,
56:12, 65:8	248.7	54.10 125.16	247:2
differences	directions	125.20 140.4	down
61:4	236.16 236.17	140.5 140.4,	25:20, 61:14,
different	die	140.3, 140.21,	146:17
11:13, 11:14,	39.5	213.20, 214.3	dr
18:12, 18:13,	disagree		7:3, 33:12,
19:12, 24:21,	20.17	19:18, 11/:1/,	37:22, 66:9,
25:3, 30:22,		118:2, 119:7,	67:2, 74:11,
33:16. 34:13.		119:10, 119:17,	85:12, 87:4,
40:20, 40:21,	/8:1/, 111:18,	119:19, 188:4,	88:17, 127:7,
41:6. 41:19.	121:15, 121:18,	100:9	127:9, 127:19,
41:20, 45:19,	123:16, 130:20,	doing	128:14, 151:3,
50:2. 55:11.	204:14, 204:15,	11:18, 30:8,	151:12, 158:14,
56:2, 58:19,	205:16, 205:18,	31:9, 36:1,	158:22, 160:3,
58:21, 60:9,	205:21, 206:11,	48:4, 14/:9,	160:9, 164:4,
75:10, 81:10,	206:18, 207:14,	156:14, 157:5,	164:15, 171:21,
81:11, 81:20,	227:5, 242:14,	158:9, 1/1:14,	172:9, 172:13,
85:3, 85:20,	242:19	1/9:/, 181:21,	172:18, 173:2,
89:8, 91:2,		213:11, 244:21	173:10, 173:18,
93:7. 100:3.	206:16, 227:3,	domain	231:11, 238:5,
112:18, 116:2,	227:10	62:7, 103:5,	238:15, 238:22,
154:21, 172:19,	discloses	106:5, 152:15,	239:2, 239:11,
177:17, 193:2.	83:11, 124:4,	152:22, 153:5,	239:18, 243:1,
193:3, 200:1.	156:10, 227:17,	153:/, 153:8,	244:14, 245:8,
200:2, 200:20.	228:6, 228:19,	153:13, 153:17,	245:14
	229:8	154:6, 154:18,	

Conducted on June 16, 2017

drafting	216.5, 216.17,	electronics	eliminate
121.6	216.19. 217.18.	7.14 7.15	159.5 159.18
drive	219:16. 219:19.	8.4 9.4	else
185.11	221:1. 221:15.	element	32.22 60.12
driven	222:4, 222:7,	62:17, 86:3,	60.19, 75.5.
190.2 191.13	223:6. 223:22.	$103 \cdot 1$ $105 \cdot 15$	77.22 90.3
198.13	237:21, 240:2,	108:9, 116:7,	114.4. 169.6.
drives	240:4, 240:8,	148.3. 222.6	232.5. 233.3
20.22 22.10	240:9, 240:13,	elements	elvis
$22 \cdot 21$ $25 \cdot 5$	240:16, 240:18,	32:18. 34:1.	4:19. 7:8
due	241:3, 241:11,	34:12, 35:6,	embodiment
129.18	241:16, 245:7,	35:8, 36:13,	48.12. 86.21.
dulv	245:16, 245:22	43:21, 44:10,	90:6. 95:2.
8.9	earlier	44:22, 45:3,	95:6, 126:20,
during	42:8, 51:13,	45:5, 45:14,	215:9, 216:2,
179.20	66:11, 74:11,	46:6, 47:19,	221:20, 240:1,
F	77:9, 83:5,	47:22, 48:2,	241:7, 241:22,
<u> </u>	154:10, 218:13,	48:9, 48:14,	242:1, 242:3,
each	232:22, 235:14	62:18, 65:5,	245:20
32:11, 32:12,	early	65:7, 69:21,	embodiments
32:15, 32:18,	17:18	79:9, 80:4,	85:22
35:13, 44:17, 44:10 EE:20	easily	81:3, 81:12,	emphasize
44:19, 55:20,	193:20	81:18, 82:13,	236:16
56.16 56.19	effect	82:22, 85:4,	employ
50:10, 50:10, 01.10	18:18, 18:21,	85:13, 85:20,	44:11, 49:16,
91.17, 91.10, 91.21, 94.7	19:1, 19:3,	89:7, 90:7,	81:14
91.21, 94.7,	26:14, 62:3,	90:14, 91:21,	employed
104.5 104.7	62:13	94:8, 94:10,	8:19, 8:20,
104.16 105.13	effectively	94:19, 106:3,	8:21, 210:19,
104.10, 103.13, 106.2, 108.10	93:14	113:5, 132:9,	248:9
108:16 109:6	effects	145:12, 145:14,	employees
109:13, 136:7,	21:21, 22:14,	146:8, 148:6,	86:10
144.9. 155.13.	23:7, 23:19,	215:5, 215:15,	employing
155:15, 157:14,	24:15, 25:11,	215:17, 215:21,	73:17, 82:1,
157:19, 157:22,	26:4, 26:11,	216:5, 216:17,	82:5, 82:7,
165:15, 168:20,	26:18	222:4, 222:7,	82:10, 153:19,
170:2, 170:9,	efficient	222:13, 222:15,	225:21
170:13, 170:21,	5:18	223:9, 224:18,	employs
170:22, 171:3,	effort	225:9, 225:16,	109:14, 153:6,
171:6, 171:11,	41:7	227:4, 227:9,	153:20, 154:11,
173:13, 179:6,	either	227:10, 220:2,	191:18
182:6, 203:12,	107:2, 107:3,	220.7, 220.20,	en
204:12, 206:2,	144:21, 147:4,	235.6 238.9	50:6
207:2, 207:11,	246:7	239.15 242.21	enabled
207:13, 207:21,		245.2. 245.10	150:13, 188:21,
214:4, 215:5,	128:11, 128:12	elevator	239:15
215:13, 215:21,	electrical	231.5	enables
	9:1		209:7

Conducted on June 16, 2017

		·	
enabling	176:19, 178:1,	46:17, 55:19,	207:12, 207:15,
50:6	200:1	72:4, 72:15,	208:13, 208:17,
encompasses	equals	90:18, 99:11,	210:21, 211:11,
220.7	53.12 146.18	146.2. 155.12.	212.10, 213.7.
end	175.19	155.14 170.9	217.19 218.4
122.11 212.0	equation	225.16	$224 \cdot 1$ $240 \cdot 3$
122:11, 212:9,	57.21 59.1	estimates	240.5 240.19
246:8	57:21, 50:1, 100:14 120:10		240.3, 240.13,
ending	100:14, 139:18,	47.3, 30.10,	octimator
129:13	213:22, 214:2,	105.12 106.1	
ends	214:9, 214:11	105:13, 106:1,	58:10, 86:11,
51:22	errata	111:14, 203:9,	96:19, 99:12,
energy	247:6	204:5	99:21, 103:17,
136:15, 137:5	error	estimating	104:4, 104:15,
engagement	75:4, 78:19	35:3, 36:22,	105:13, 204:9
230:5	errors	46:12, 47:10,	estimators
engineering	128:22, 129:1	47:11, 76:7,	106:9
9:1	especially	86:12, 86:16,	et
enhancement	183:7	96:19, 97:14,	7:5
5:11. 20:1.	esquire	97:21, 98:1,	evaluate
20.8 188.22	3:4, 3:12,	100:7, 102:15,	187:12, 188:20,
$192 \cdot 14$ 193 · 8	3:13. 3:14. 4:3.	102:22, 103:17,	207:19, 222:18
193.11 195.2	4 • 4 . 4 • 1 1	104:4, 104:7,	evaluating
epough	essentially	104:16, 144:3,	178:15, 186:8
157.6 157.12	14.14 101.20	170:21, 211:13	evaluation
157:0, 157:12,	154.7	estimation	186.18 213.13
15/:10, 138:3,	estimate	6:8, 18:4,	evaluations
158:4, 1/1:4		18:5. 32:12.	
ensure	5:19, 15:1,	35:11. 36:20.	95.0
134:1, 134:3	15:18, 46:15,	44.18. 49.5.	
entire	46:16, 52:8,	55.13 89.16	67:1, 160:21,
106:21, 109:9,	54:18, 54:20,	90.13 91.4	162:12, 202:5,
110:4, 119:4,	55:6, 55:9,	91.18 92.19	215:15, 232:3
149:14, 168:8,	55:11, 55:12,	93.13 93.14	evenly
169:3, 169:6,	55:16, 55:20,	93.13, 93.14, 94.7, 100.4	198:21
169:10, 173:22,	55:21, 56:9,	100.17 100.10	ever
174:13, 175:7,	56:13, 56:15,	100.17, 100.19,	100:22
177:1, 181:12,	56:18, 56:20,	101.11, 121.22, 122.2	every
181:14, 181:22	97:9, 98:10,	122.2, 122.3,	151:8, 203:6
entitled	100:1, 108:10,	122:4, 123:4,	everything
39:21	108:16, 109:6,	146.6 154.0	90:3, 118:1,
environments	109:13, 112:16,	140:0, 134:2,	120:2, 151:7
20:15	133:4, 133:10,	155:22, 170:12,	ex
equal	133:16, 145:22,	170:18, 173:16,	140:14
132:19, 141:4,	147:1, 147:2,	1/4:4, 203:13,	exact
147:1, 147:12,	147:11, 147:20,	203:14, 203:16,	101:12, 102:6,
147:21, 163:20.	147:21, 208:5,	203:18, 204:10,	156:7
164:9, 172:6.	208:16, 210:7,	206:2, 206:4,	exactly
175:3, 175:6.	210:22, 214:16	206:10, 206:17,	81:13, 97:11.
175:20. 175:22	estimated	207:3, 207:10,	98:5. 102:2.
± · · · · · · · · · · · · · · · · · · ·	43:22, 46:6,		,

		,	
104:9, 156:14,	19:16, 26:20,	89:2, 129:15,	falls
156:19, 157:7,	37:11, 51:8,	232:4, 232:18,	11:21, 13:19
157:13, 157:17,	51:10, 51:12,	233:1, 233:5,	familiar
171:14, 198:15,	78:6, 78:8,	233:7, 233:10,	10:8. 11:2.
228:13, 230:18,	78:20, 116:19,	244:16, 244:17,	11:4, 17:5,
231:5	117:5, 122:15,	244:18, 245:4	19:18, 51:18,
examination	129:8, 129:9,	expertise	78:15, 83:17,
5:2, 8:12,	129:12, 130:6,	118:11, 162:22,	83:19, 131:14,
152:2	131:6, 131:8,	245:12	148:18, 198:4,
examine	148:13, 148:15,	expires	230:7, 231:11,
206:22, 220:3	149:18, 188:1,	248:14	235:15
examined	188:2, 205:7,	explain	famous
8:11, 238:2,	205:8	149:8	231:8
247:3	exhibits	explained	far
example	5:6, 5:7, 6:2,	25:9	230:9
62:5, 67:19,	6 : 3	explanation	fast
75:3, 76:3,	exist	183:1	30:18
76:5, 91:16,	201:15	exponent	fault
91:22, 92:11,	existed	99:6, 140:14,	102:19
92:21, 95:1,	201:9	140:16	favorably
95:5, 97:8,	existence	expressed	184:6, 184:21,
98:3, 124:10,	204:8	37:22	186:14
124:13, 126:19,	expect	expression	feature
179:21, 183:13,	119:13, 189:12,	57:13, 57:14	34:7, 90:15,
183:14, 186:3,	189:16	extent	104:10, 106:17,
197:6, 197:7,	expectation	180:14, 183:8,	107:5, 187:11,
216:2, 217:7,	55:14	183:11, 183:12,	187:16, 195:3,
229:15, 236:6,	expected	183:20	205:3, 206:7
236:8, 236:16,	52:11, 55:3,	F	features
236:17, 236:21,	55:7, 55:10,	face	63:10, 89:17,
241:6, 243:19,	55:17, 55:22,	231.3	89:18, 91:5,
245:20, 246:1	56:10, 56:13,	£	01.7 01.0
examples		таст	91.7, 94.9,
	56:19, 57:1	1act 46.21 77.2	106:18, 116:3,
75:8, 154:3,	experience	46:21, 77:2, 83:11, 91:1.	106:18, 116:3, 185:6, 186:8,
75:8, 154:3, 242:10	<pre>s6:19, 57:1 experience 11:8, 11:10,</pre>	46:21, 77:2, 83:11, 91:1, 165:17, 214:19,	106:18, 116:3, 185:6, 186:8, 232:13, 239:8
75:8, 154:3, 242:10 exceeds	experience 11:8, 11:10, 88:11, 239:17,	46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1	106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february
75:8, 154:3, 242:10 exceeds 208:9	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12	46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor	<pre>106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments	46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6.	<pre>106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9,	46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14.	<pre>106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8,	<pre>46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17</pre>	106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4	<pre>46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert	<pre>46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12,	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17,	<pre>46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16,	<pre>so:19, 57:1 experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6,</pre>	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:20	<pre>s6:19, 57:1 experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 62, 10, 65, 20</pre>	<pre>46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly</pre>	<pre>91.7, 94.9, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:21, 6:4, 6:5, 6:7, 6:4, 6:5,	<pre>s6:19, 57:1 experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 63:18, 65:2, 67:00, 07.7</pre>	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly 201:22</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17, 98:20, 103:2,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:21, 6:4, 6:5, 6:7, 6:8, 10:1, 10:4	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 63:18, 65:2, 67:22, 87:7, 5:11, 57:12, 57:12, 5:12, 57:12, 57:12, 5:12, 57:12, 57:12, 5:12, 57:	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly 201:22 fall</pre>	<pre>91.7, 94.9, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17, 98:20, 103:2, 103:4, 153:6,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:21, 6:4, 6:5, 6:7, 6:8, 10:1, 10:4, 19:15,	<pre>s6:19, 57:1 experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 63:18, 65:2, 67:22, 87:7, 87:10, 87:15,</pre>	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly 201:22 fall 11:1, 232:12</pre>	<pre>106:18, 116:3, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17, 98:20, 103:2, 103:4, 153:6, 179:20, 179:22,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:21, 6:4, 6:5, 6:7, 6:8, 10:1, 10:4, 19:15,	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 63:18, 65:2, 67:22, 87:7, 87:10, 87:15,	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly 201:22 fall 11:1, 232:12</pre>	<pre>91.7, 94.9, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17, 98:20, 103:2, 103:4, 153:6, 179:20, 179:22,</pre>
75:8, 154:3, 242:10 exceeds 208:9 exciting 173:19 excuse 36:2, 189:3 exhibit 5:8, 5:9, 5:12, 5:13, 5:16, 5:17, 5:18, 5:21, 6:4, 6:5, 6:7, 6:8, 10:1, 10:4, 19:15,	experience 11:8, 11:10, 88:11, 239:17, 245:1, 245:12 experiments 155:7, 155:9, 155:12, 170:8, 212:4 expert 5:12, 5:17, 5:21, 9:4, 11:6, 37:13, 37:14, 63:18, 65:2, 67:22, 87:7, 87:10, 87:15,	<pre>fact 46:21, 77:2, 83:11, 91:1, 165:17, 214:19, 232:1 factor 186:18, 208:6, 209:12, 209:14, 209:17 fail 121:18 fails 121:15, 130:20 fairly 201:22 fall 11:1, 232:12</pre>	<pre>91.7, 94.9, 106:18, 116:3, 185:6, 186:8, 232:13, 239:8 february 15:13, 28:16, 30:10, 31:11 few 152:6 fft 30:13, 30:16, 30:18, 31:6, 31:7, 31:10, 31:12, 98:17, 98:20, 103:2, 103:4, 153:6, 179:20, 179:22,</pre>

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 264

Conducted on June 16, 2017

180:5	76:22, 78:19,	followed	177:16, 178:1
field	84:17, 90:9	149:9	fourier
11:1, 11:2,	filters	following	30:18
11:4, 11:7,	11:15, 71:5,	99:16, 130:15	fourteenth
11:9, 11:11,	71:18, 73:4,	follows	3:7
11:22, 13:19,	73:5, 75:13,	8:11	frame
16:21, 17:7,	76:18, 79:19,	foregoing	27:20, 179:18,
17:16, 17:19,	81:21, 91:6,	247:4, 248:3,	179:19, 179:22,
71:8, 87:17,	196:14	248:4	180:7, 180:18,
87:19, 196:9,	financial	formed	180:20, 243:20,
231:6	248:10	67:5	244:1
fields	find	forming	frame-by-frame
196:18	99:2	120:20	153:9
figure	fine	formula	frames
26:22, 27:2,	74:3	50:16, 50:21,	168:7, 244:2
27:8, 29:3,	finish	52:18, 52:20,	frequencies
29:7, 48:12,	39:10	53:12, 53:19,	58:21, 200:3
48:16, 48:18,	finished	54:8, 54:13,	friday
48:21, 50:17,	181:11	54:16, 55:2,	1:12
59:4, 70:12,	first	57:7, 59:6,	front
70:16, 70:20,	8:9, 20:5,	60:17, 61:15,	25:2, 125:12,
75:18, 86:9,	20:6, 27:8,	75:19, 76:21,	145:19, 185:22,
86:10, 97:3,	38:7, 52:7,	77:9, 77:12,	226:4, 226:21,
97:5, 97:6,	53:11, 58:13,	98:13, 98:15,	244:4, 244:8
97:8, 101:1,	116:7, 136:5,	99:3, 99:5,	full
132:16, 146:12,	140:7, 195:14,	99:9, 99:12,	144:4, 169:21,
146:17, 157:10,	196:6, 211:15,	99:17, 99:19,	173:16, 174:4,
158:5, 158:13,	211:19, 229:13,	100:1, 100:18,	178:12
158:16, 158:22,	229:15, 230:16,	135:15, 140:7,	full-wave
159:9, 159:13,	230:18, 238:2,	140:8, 146:18,	62:13, 92:10,
159:16, 159:20,	238:14	146:22, 147:9	92:12
160:3, 160:8,	five	formulas	fully
164:4, 164:8,	183:13, 230:21,	52:16, 102:1,	209:6
164:12, 164:14,	232:19	136:5	function
174:20, 175:3,	fix	formulate	62:4, 62:5,
1/6:8, 1//:8,	218:12	75:10	62:13, 63:6,
195:7, 208:21,	flip	forward	64:4, 69:1,
209:3, 209:6,	212:19	72:3	69:19, 69:20,
210:1, 210:9,	flow	found	76:2, 76:8,
212:20, 214:2, 227:13 230:11	27:2	64:15, 66:2,	76:12, 77:17,
£ilod	focus	125:18, 127:12,	79:7, 79:8,
00.0	45:1, 104:4,	180:15, 191:5,	80:5, 89:9,
oo.o filing	174:10, 242:21	191:6	92:4, 92:6,
15.6	focused	foundational	102:22, 105:14,
fill	155:22, 195:2	195:21, 196:3	106:2, 106:19,
▲▲▲▲ 1 0 1 • 1 7	focusing	four	132:17, 133:20,
filtering	86:2	163:20, 163:21,	135:3, 139:7,
$19\cdot21$ 76·10	follow	177:12, 177:13,	141:5, 236:15
49.21, 10:10,	214:11		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

functionality	134:7	generate	39:13, 50:22,
50:7. 94:11.	gain	154:18	73:22, 74:4,
226.22	67.19, 132.5.	generated	78:21, 95:7,
functioning	132:13. 132:17.	170.19	104:18, 110:1,
142:13	133:14, 133:20,	generates	110:10, 116:15,
functions	134:1, 134:3,	153:7. 154:6	122:21, 151:19,
173:18, 239:7	134:8, 134:10,	generating	152:6, 157:8,
further	134:14, 135:2,	223:17	157:13, 158:5,
12:15, 84:15,	136:20, 139:6,	generation	179:3, 197:1,
108:15, 136:2,	139:7, 139:12,	154:5	198:15, 200:8,
225:8, 246:3,	139:13, 140:1,	generator	230:9, 231:16,
246:4	140:11, 141:11,	207:8, 223:15	237:4, 246:9
future	141:14, 141:20,	getting	gone
127:17, 165:6,	142:4, 142:8,	56:5, 158:17,	95:13, 96:15
165:10, 165:11,	143:1, 236:10,	232:2	good
165:14, 165:18,	236:13, 236:14,	give	7:19, 8:14,
165:19, 165:22,	236:18	9:20, 14:18,	8:15, 116:11,
166:1, 166:4,	gamma	17:11, 23:12,	116:13, 117:2,
166:5, 166:10,	136:19, 137:1,	25:2, 67:10,	117:3, 152:4,
166:18, 166:20,	138:9, 138:10,	84:3, 105:7,	152:5
167:14, 167:19,	138:13, 138:21,	201:13, 224:11	gotten
168:1, 168:11,	140:4, 140:5,	given	42:20
168:12, 169:2,		79:16, 79:20,	greater
169:11, 1/3:20,	125.20 126.9	80:15, 117:10,	//:1/, 210:12
174:1, 174:10,	135:20, 138:8	143:17, 144:20,	greek
1/4:14, 1/5:9,	125.17 126.7	144:22, 145:1,	54:22
177.20 170.1	general	213:21, 247:5,	0.15
179.10 181.5	22.16 28.15	248:5	9:10
$182 \cdot 10$ $182 \cdot 16$	35.21 /5.17	go	
182.19 183.2	59.14 59.15	39:9, 66:10,	07:19, 132:5, 132:4
183.20 218.14	76.19 83.19	102:18, 122:20,	132.13, 142.4 Marantees
218:20, 218:21.	97:20. 97:22.	151.10 162.6	77.18
218:22, 219:5,	98:1, 104:17,	151:10, 102:0, 164.20, 172.10	
219:7, 219:10,	111:6, 195:22,	176.16 185.11	70.15 81.13
219:13, 219:15,	234:3, 234:8	185.13 191.16	88.4. 114.6.
219:20, 219:22,	generally	191.21, 191.22.	135:14. 136:3.
220:8, 220:11,	13:16, 71:7,	194:5. 194:11.	232:21
220:13, 220:17,	71:8, 71:14,	194:22, 195:6,	quidance
221:3, 221:5,	73:7, 74:18,	196:18, 197:12,	21:7
221:7, 221:16,	76:1, 77:17,	198:5, 198:10	н
221:21, 222:1,	81:9, 103:8,	goal	<u> </u>
241:11, 241:15,	133:11, 141:18,	15:1, 35:21,	53.13
241:16, 241:19,	199:12, 199:16,	74:19	b(k)
241:20	199:21, 213:18,	goes	53.16
G	216:9, 216:10,	19:14, 119:17,	b (n
g(k	222:16, 234:2,	155:11, 225:9	49.6 76.12
132:18, 132:19,	243:16, 244:3	going	1.5.0, 10.12
		37:8, 39:9,	

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 266

Conducted on June 16, 2017

half-wave	230:11	high	84:14, 202:4
52:5, 62:14	hearing	20:14	ideas
hamilton	19:1	hired	150:10
3:5, 3:6, 8:3	held	229:13	identification
hand	2:2	hirsch	10:1, 19:16,
117:13, 118:20,	help	6:8, 130:12,	37:11, 51:10,
120:5, 120:13,	117:10, 117:18,	205:4, 205:13,	78:6, 116:19,
122:21, 248:12	232:14	205:15, 207:20,	122:15, 129:9,
handed	helped	208:1, 208:19,	131:6, 148:13,
10:3, 117:4,	118:5, 239:2	209:5, 209:19,	188:2, 205:8
148:15	helpful	211:2, 211:12,	identified
hanning	158:19	212:3, 212:15,	238:6, 238:15,
29:15, 30:1,	here	212:22, 213:2,	245:8
30:2, 30:13	7:2, 22:1,	213:12, 214:15,	identify
happen	22:9, 22:18,	222:19, 222:22,	7:11
79:19, 148:1,	23:16, 25:1,	223:3, 230:3,	iii
179:16, 231:22	25:4, 25:13,	230:4	4:3
hard	26:6, 39:14,	histogram	ill
104:9, 105:3,	42:3, 52:21,	211:20	23:7, 23:19,
166:13, 231:7	52:22, 53:5,	history	26:11, 26:18
hardware	58:19, 60:17,	27:16	illustrated
1:6, 7:4	61:3, 61:5,	hk	208:20
hart	62:10, 63:16,	53:8	imaginary
1:22, 2:18,	63:18, 64:1,	hmm	101:21
248:2	64:13, 66:7,	212:8	immediately
haslam	67:6, 69:5,	hope	99:9
3:14, 7:17,	74:7, 85:10,	125:7	impart
57:4, 74:9,	87:3, 88:16,	hypothetical	118:11
117:14, 161:20	88:22, 89:11,	79:17, 105:3,	implement
hat	105:6, 115:16,	159:4, 159:17,	49:13, 81:20,
52:9, 53:12,	116:21, 120:3,	161:15, 185:15,	82:2, 82:6,
208:5, 208:7,	128:12, 128:16,	185:16, 186:5,	82:8, 185:8,
208:12, 208:13,	129:3, 133:13,	186:7, 204:17,	185:18, 186:13,
208:14, 209:16,	13/:3, 13/:12,	206:21, 226:3,	196:16, 245:21
209:20, 209:22,	158:4, 150:15, 156.4, 157.10	227:1, 227:12	implementation
210:2, 210:8,	165.1 174.5	nypotnetically	23:8, 23:19,
210:12, 210:15,	175.11 178.5	/1:6, 198:14,	24:15, 25:21,
210:18, 211:2	186.20 187.19	220:5, 229:2,	26:5, 61:6,
nead	$191 \cdot 1$ $191 \cdot 5$	234:13, 244:4	196:6, 197:15,
105:3	$194 \cdot 21 \cdot 200 \cdot 11$	I	197:17, 226:14
neading	205.12, 213.22.	i-c-a-s-s-p	implemented
20:6, 52:4,	214:10, 214:19,	230:20	50:13, 62:19,
52:7, 58:8,	215.2. 221.10.	icassp	81:10, 154:7,
112:4, 130:11,	221:13. 223:10	230:19	213:10, 239:8
155:2, 211:22	hereby	idea	implementer
	247:2, 248:3	14:19, 15:4,	
10:19	hidden	31:9, 45:5,	
	212:7		23:0, 23:1/,
19:12, 230:3,	-		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

25:10, 26:10,	243:11	129:18, 169:16,	integral
47:18, 61:7,	including	171:4, 171:7,	159:5, 159:18,
83:21, 207:1	51:3, 73:8,	188:21, 189:2,	159:19, 159:21
implements	107:19, 110:18,	190:15, 191:15,	integrated
78:4	133:4	191:19, 191:20,	214:15
implies	incorporate	191:21, 192:3,	integrating
204:9	186:9	193:18, 194:1,	213:6
imply	incorporated	194:4, 194:11,	intend
81:17, 165:12	125:12, 125:19,	195:12, 195:17,	189:1
import	126:1, 126:9	198:6, 203:5	intention
4:13	incorporates	informed	189:19
important	126:7	209:2, 209:4,	interest
23:4, 23:9,	incorrect	238:9, 238:21,	248:10
89:17, 90:15,	159:10	239:6, 245:10,	interested
91:3, 117:21,	increasing	245:19	187:3
118:17, 118:18,	168:5, 176:2,	initial	interesting
196:19, 214:22,	176:12, 176:13	84:17	231:2
215:1	independent	input	interference
improve	64:13, 64:18,	27:3, 27:9,	232:10
74:19	65:9, 65:11,	27:12, 28:2,	interferer
improvements	65:13, 65:22,	28:5, 29:22,	236:10
212:22, 213:2,	66:1, 66:3,	53:3, 53:5,	interject
213:4	66:6, 110:19	5/:9, 5/:19,	39:13
in-phase	indexes	58:3, 60:14,	intern
123:4	153:10	119:11, 119:14,	4:18
inaccuracy	indicate	119:15, 144:21,	international
159:3	127:8, 136:14,	207:6, 215:17,	1:1, 4:12
inaccurate	137:22, 178:22,	223:11	interpret
159:1, 159:10,	179:1, 224:20	220.11	218:9
164:17	indicated	229:11	interpretation
inc	57:12, 223:10,		215:7
4:2, 7:15,	244:18	207:6, 223:11	interruption
152:2	indicates	67.12	32:14
inclined	39:15, 48:14,		introduced
185:4	170:17	5.20 144.3	205:12
include	indicating	instantiation	introduction
42:11, 85:20,	1/5:12, 1/5:18	9/.16	20:6, 211:18
102:14, 102:21,	indicative	instead	introductory
102:22, 200:22,	86:20	97.10 99.6	195:20
201:6, 201:7,	individual	99.13 100.1	invalid
21/:6, 235:17	34:2, 238:9,	199.14	63:11, 63:12,
	243:5, 245:2,	institutions	64:6, 64:9,
235:15	245:10	11.13	64:14, 64:15,
		instruct	65:12, 65:22,
10/:16, 113:5,		39.11	66:2, 66:14,
132.0, 220.15, 220.22		instructed	66:21, 66:22,
220:2, 239:22,		39.7	67:3, 68:5,
24U:1/, 243:8,			68:13, 69:7,
	124:9, 124:19,		
	1		

Conducted on June 16, 2017

69:13, 79:12,	231:18	joined	228:16, 230:12,
79:17, 79:19,	investigations	117:14, 161:20,	230:13, 231:3,
80.7. 80.14.	4.13	162.6	231.4 233.7
93.22 95.9	investigative		$231 \cdot 1$ $231 \cdot 6$
05.15 06.9			knowlodgo
95.15, 90.8,	4:10, 8:1	111:2, 226:21	
103:20, 104:3,	involve	judgment	93:3, 196:15,
104:11, 104:20,	137:16	231:7	239:17, 245:12
105:18, 113:15,	involved	july	known
233:13	129:21, 169:22	248:15	13:16, 13:19,
invalidity	involves	june	15:5, 15:12,
9:7, 37:15,	98.9 199.21	1.12 7.6	17:16, 20:16,
116:6. 232:4.	involuting	240.12	27.13 28.6
232.8 232.9		240.13	$28 \cdot 9$ 20.18
232.0, 232.0,	105:2, 212:4	K	20.2, 20.10
232.10, 233.1	isolated	k	50:5, 50:10,
invent	30:11	208:5, 208:7,	31:10, 31:12,
45:4, 73:4,	isolation	208.12 208.14	45:14, 45:18,
84:22, 100:6,	108:4, 113:3	200.12, 200.11, 200.21	46:18, 46:19,
201:19, 203:6	issue	210.12	49:7, 49:10,
invented	21.19 22.10		49:18, 65:7,
62:21, 63:8,	26.2 20.10	keep	80:22, 82:3,
100:10	30.3, 30.10,	56:9	82:8, 83:6,
invention	39:1, 40:16,	kind	84:18, 93:4
10.12 12.21	63:19, 67:5,	120:7	100.12 100.14
10:13, 12:21, 12:6, 12:10	67:14, 69:14,	know	102.1 102.0
13:6, 13:10,	89:4, 96:13,	33:4, 34:1,	102.1, 103.9,
33:22, 34:3,	105:5, 106:15,	34.6. 50.2.	126:21, 196:8,
34:4, 34:9,	106:22, 118:19,	$51 \cdot 1$ $61 \cdot 9$	231:6
34:11, 35:19,	120:1, 142:15,	(2.10, 61.2)	kudzin
36:8, 45:9,	174:9. 181:4	03.10, 04.2,	3:13, 7:17
48:12, 50:15,	issued	68:1, /3:21,	kyriakakis
62:3, 63:22,	125.16	80:16, 84:15,	5:12, 33:12,
87:6, 215:10,	123.10	85:15, 86:20,	37:14. 43:11.
$221 \cdot 21$ $237 \cdot 19$	issues	87:5, 87:21,	66.9 85.12
inventive	9:7, 9:8,	95:14, 100:21,	88.17 127.7
	25:12, 38:22,	104:7, 104:9,	107.0 151.12
33:9, 33:20,	40:15, 106:21,	106:16, 106:20,	127:9, 151:12,
34:16, 35:14,	119:11	110:2, 116:5,	160:9, 1/1:21,
35:15	itc	117.16 119.8	172:9, 172:13,
inventor	4:10	119.12 120.3	172:18, 238:15,
188:7	items	120.13 124.19	239:2, 239:18,
inventors	41.19 95.15	120.13, 121.13, 121.13, 124.23	245:8, 245:14
45:4, 73:3,	itcolf	124:22, 133:14,	kyriakakis's
84:22, 91:2,		134:19, 13/:17,	37:22, 67:2,
100.6. 239.5	35:18, 36:8,	156:9, 15/:14,	87:4, 127:19,
investigated	50:9, 57:16,	162:2, 178:19,	128.14. 151.3.
	60:5, 93:1,	178:20, 184:2,	158.14 158.22
	125:21, 167:9	186:19, 187:19,	160.3 164.4
investigation	J	190:17, 193:4,	161.15 172.0
1:5, 129:16,	job	194:20, 198:18,	172.10 172.10
129:20, 229:18,	1.20 101.11	227:13, 228:9,	1/3:10, 1/3:18,
229:22, 230:1,	1.20, 101.11	,,	238:5, 238:22,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

		· · · · · · · · · · · · · · · · · · ·	
239:11, 243:1,	146:18, 176:16	limitation	188:16, 188:17
244.14	left-hand	13.20 11.6	listed
-		45.20, 45.22	100.0 100.12
L	174.00	43:20, 43:22,	109:9, 109:13,
labeled	1/4:22	63:13, 68:5,	190:6, 191:1,
31:3	legal	68:15, 68:20,	191:4, 191:8
lack	64:12, 65:22,	69:8, 69:18,	listing
162.22	117:10, 117:15,	79:6, 82:20,	189:18
	117:20, 119:9,	94:2, 94:20,	little
	119:22, 120:20,	95:10, 96:2,	14:18, 84:3,
32:19, 40:0,	121:8, 206:14,	96:9, 103:16,	214:8
109:3, 118:13,	233:7. 233:9	103:21, 104:20,	11p
118:15, 118:21,	length	105.12, 105.19	$2 \cdot 4$ 2.5 2.16
121:9, 165:4,	101.20 140.14	107.21 108.21	2.4, 5.5, 5.10,
165:21, 166:16,	101:20, 149:14, 160:10	110.12 112.20	4:5
167:19, 167:21,	160:12, 162:16,	110.13, 112.20,	Loads
177:19, 178:21,	168:19, 168:21,	113:11, 113:10,	30:6
179:5, 181:18,	180:21	115:/, 115:10,	long
183:3, 199:1,	lengths	151:14, 241:8	11:10, 40:13,
204:19, 220:6,	60 : 21	limitations	182:13, 232:15
224.2	less	107:16, 107:19,	longer
large	32:16, 44:20,	200:18, 201:1,	161:16, 163:4,
120.14 140.4	67:20, 91:20,	201:4, 206:1,	163.15
159:14, 140:4	132:6. 132:13.	207:4, 207:5,	look
largest	133.20 134.1	225:21, 226:15,	26.22 41.0
1/6:14	131.3 131.10	226:19	20:22, 41:9,
last	134.21 136.21	limited	43:13, 50:0,
176:3, 176:13,	134.21, 130.21, 120.7	7.15 05.3	68:17, 69:15,
212:9, 214:2	139:0, 139:7,	7.13, 95.5, 05.5	78:3, 79:22,
later	139:11, 139:12,	35.5, 127.9, 165.10	82:16, 96:18,
57:5, 152:19	139:22, 140:1,	165:9, 165:19,	97:3, 101:20,
law	140:2, 140:5,	218:14, 218:22,	106:21, 125:4,
2.2	140:6, 140:21,	219:9, 220:16,	142:14, 174:20,
lawer	141:15, 142:5,	242:1, 242:2	181:12, 183:22,
$(5 \cdot 4) (5 \cdot 10)$	142:8, 143:1,	limiting	189:6, 191:22,
(5.4, 05.10, -6.16, 117.11)	147:6, 147:10,	228:11, 242:9	192:7, 194:5,
05:15, 117:11,	147:14, 148:2,	line	194:11, 194:22,
120:19, 228:13	200:1	7:17, 15:21,	197:1. 197:12.
Lawyers	let's	15:22, 16:7,	198:5. 200:16.
39:4, 39:11,	26:22, 46:14,	16:8, 33:14,	204.3. 205.10.
118:14, 119:5,	63:11, 74:2.	61:13, 61:14,	$207 \cdot 20$ 215 · 3
119:15, 120:11,	82.16. 96.18.	71:21. 72:2.	217.13 217.21
120:22, 121:5,	$121 \cdot 11$ $143 \cdot 7$	99.4. 100.12.	217.13, 217.21, 226.1, 225.11
121:7	171.8 185.8	$132 \cdot 16 135 \cdot 14$	220.1, 233.11,
lead	105.21 100.11	136.3 1/1.3	
50:14	105:21, 199:11	216.10	Tooked
least		215:10	41:20, 43:2,
28:21	138:14, 199:22,	TTHEAT	157:9, 238:14,
leave	211:13	141:5	238:18, 243:2,
57.5 231.10	levels	lines	245:3
10ft	136:13, 137:21	12:17, 192:9	looking
	likely	list	40:15, 41:19,
04:1, 11U:22,	230:19	25:3, 188:14,	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 270

12.5 50.1	44.20 40.4	104.7 107.4	
43:5, 59:4,	44:20, 49:4,	194:/, 19/:4,	marks
64:22, 65:1,	52:12, 55:4,	202:18, 203:2,	246:8
67:21, 77:9,	55:8, 55:10,	206:15, 216:18,	martin's
80:22, 95:17,	55:17, 55:22,	216:21, 217:16,	171:10, 231:11
95:21, 102:8,	56:10, 56:14,	217:22, 226:4,	mathematical
103:10. 104:3.	56:19, 57:2,	231:7	51.8 51.13
105.9. 113.4.	69:21, 72:15.	makes	54.15 00.13
120.19 122.1	72.16 76.14	69.6 60.0	54.15, 90.15
120.17, 122.1,	76.16 70.0	70.14 00.0	
150.17, 150.2,	10.10, 19.9,	79:14, 80:9,	1:4, 7:4, 33:5,
101:12, 100:14,	91:19, 96:19,	89:6, 94:2,	64:13, 65:22,
1/1:8, 185:8,	97:9, 97:11,	95:10, 96:10,	117:13, 117:21,
185:18, 187:2,	97:15, 97:17,	103:22, 105:20,	118:12, 118:20,
187:11, 190:21,	97:21, 98:2,	107:22, 108:21,	150:8, 153:17,
191:19, 209:3,	98:5, 98:7,	110:14, 112:21,	229:14, 238:3
212:6, 226:8,	98:10, 98:14,	113:17, 151:13	matters
243:21	98:16, 99:1,	making	120:4. 238:4
lost	99:3, 99:11,	137:17, 138:16,	matthew
102:16	99:20, 99:21,	146:11, 163:12,	3.13 7.17
low	100:1, 100:7,	199.22	5.15, 7.17
20.9 20.16	100:11. 101:2.	manner	
	101.6. 101.9.	152.22	144:21
125.11 120.11	$102 \cdot 1 102 \cdot 2$	1JZ.ZZ	maximization
135:11, 139:11 Jun ah	102.1, 102.2, 102.6, 102.22		75:7
lunch	102.0, 102.22,	9:12, 19:6,	maximum
116:12	103:17, 104:4,	24:4, 24:17,	103:1, 103:8,
M	104:7, 104:16,	32:9, 33:3,	105:14, 106:3,
m	105:13, 106:1,	73:10, 85:3,	106:8, 135:15,
132:18. 132:19.	112:5, 112:17,	98:3, 112:16,	140:6
$132 \cdot 20$ $133 \cdot 1$	179:8, 179:11,	113:5, 116:2,	mavbe
133.5 133.7	180:13, 182:8,	128:21, 154:19,	229.20
124.7 120.1	182:11, 208:14,	156:18, 193:2,	mean
120.2 120.4	210:22, 211:3	193:3, 203:17,	19.10 24.7
139.2, 139.4, 120.12	magnitudes	231:8, 235:1	20.0 20.0
139:13, 139:14,	105:2	mark	20.0, 20.9,
140:4	main	19.15 51.8	29:2, 31:18,
m)	169:20	129.8 148.12	34:20, 41:20,
133:1	make	187.22 205.6	42:12, 45:17,
m-i-n	12.4 12.6	markod	47:4, 47:21,
165:2	16.6 23.15		49:14, 49:16,
made	62.13 64.10	10:1, 10:3,	54:9, 54:21,
41:5, 89:10,	0.10, 0.10, 0.4:10, 0.0.11, 0.100	19:10, 3/:11,	59:8, 60:9,
133:18, 137:3,	08:11, /1:3,	51:10, 78:6,	61:9, 71:13,
137:12, 138:4,	81:6, 102:10,	116:19, 117:4,	73:21, 75:3,
139.16. 195.21.	104:21, 107:6,	122:15, 123:1,	77:1, 78:19,
213.1 213.3	129:5, 149:6,	129:9, 129:11,	80:16, 81:9,
239.17 211.57	150:9, 161:18,	131:6, 148:13,	82:4, 82:11,
235.17, 244.13, 245.14	163:7, 163:13,	188:2, 193:12,	84:3, 85:15
magnitudo	163:14, 164:10,	205:8	87:3. 90:2-
	165:13, 171:17,	markov	90.5 91.14
32:13, 32:16,	175:14, 187:19,	212:7	$92 \cdot 10$ $98 \cdot 1$
			52.10, 50.1,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 271

101:11, 101:14,	meet	24:21, 25:3,	198:9, 198:11,
101:16, 106:16,	76:9. 230:16	36:1, 36:2,	234:17, 237:2,
106:17, 107:1,	meets	36:3, 36:5,	243:4
111:4, 111:6,	142.17	36:18, 36:22,	milliseconds
118:22, 121:4,	memory	37:3, 37:6,	214:13. 214:17
128:7, 128:10,	230.17 231.14	46:4, 46:11.	min
132:12, 134:18,	mention	46:19, 47:11,	146.18, 176.19,
145:3, 149:8,	135.2 197.6	50:5, 51:2,	177.4. 177.5
150:20, 167:4,	mentioned	86:8, 86:12,	mind
183:2, 190:16,	$17 \cdot 2$ $71 \cdot 22$	91:13, 97:20,	135.1, 231.15
195:9, 202:11,	76.10 92.11	98:10, 102:5,	mine
213:14, 215:4,	$212 \cdot 10$ $214 \cdot 19$	102:12, 102:14,	121.2
224:10, 226:5,	$235 \cdot 14$ $244 \cdot 17$	102:21, 102:22,	minimizes
226:18, 229:2,	mentioning	106:7, 106:11,	78.19
229:16, 230:9,	158.18	111:11, 127:1,	minimums
232:17, 232:21,	mentions	154:21, 184:7,	173.20
233:6, 234:8,	122.2 123.18	184:22, 186:15,	minus
234:14, 234:19,	met	188:19, 195:19,	57.21 210.12
235:1, 238:20,	230.18 231.3	196:6	missed
242:6, 245:10	meth	michael	129.1
meaning	$A 7 \cdot A$	4:18	missing
12:6, 18:12,	method	microphone	54.11
18:14, 23:4,	$5 \cdot 9 10 \cdot 21$	122:5, 122:6,	misspeak
23:10, 23:15,	12.2 12.15	122:9, 123:5,	228.15
144:1, 146:3,	14.7 15.9	123:9, 123:12,	mistake
146:7, 146:9,	16.1. 19.22.	123:16, 123:18,	99.5
148:4, 148:7,	30.8. 31.20.	123:19, 126:11,	mistakes
199:9, 210:3,	47:5. 71:19.	126:21, 127:2,	128.19
211:9, 239:14	97:14. 124:11.	196:13, 198:21,	mitigate
means	148:8, 161:3,	198:22, 234:11,	21.21 22.14
48:2, 137:20,	164:8, 197:16,	234:15	23.7 23.19
164:18, 165:18,	197:18, 210:21,	microphones	$24 \cdot 4$ $24 \cdot 5$
178:19, 204:20,	236:3	113:12, 114:18,	24.18 25.12
205:3, 212:8,	methodist	115:15, 115:20,	mitigated
213:15, 213:18,	9:1	126:14, 234:6,	23.22
214:10, 215:22,	methodologies	235:4, 235:7,	models
219:16, 236:19,	44:12, 45:18,	235:8, 235:13	212.7
244:6	46:10, 60:2,	middle	modifications
meant	89:22, 90:12,	205:10	152.21 153.12
180:1, 180:10,	91:11, 93:4	might	153.14, 154.1.
209:7, 226:6,	methodology	18:19, 21:21,	213:11
245:7	34:21, 62:12,	22:15, 24:16,	modify
measure	73:16	25:11, 25:22,	162:14, 162:22
214:3	methods	26:7, 124:10,	moment
	14:6, 14:15,	107.4 100.4	16:4, 110:2.
	15:14, 18:5,	10/.4, 19/.4,	130:6, 229:6
	24:7, 24:8,	194:4, 194:5,	monitor
00:1/	24:10, 24:19,	19/:12, 198:3,	7:7

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

273

monotonically	161:13, 161:22,	181:11, 182:11,	need
176.1 176.12	167.10 168.8	182.14 200.22	9.19 80.16
176.12	170.14 213.11	217.14 220.10	125.4 141.19
170.13	210.10 210.22	217.14, 220.10,	107.0 107.0
more	218:19, 219:22,	220:11, 220:12	18/:8, 18/:9,
12:22, 13:11,	234:19, 234:20,	mute	190:10, 191:13,
14:18, 18:18,	234:21, 234:22,	162:6	193:5, 195:3,
20:16, 71:13,	235:12, 235:21	myself	195:6, 198:12,
73:6, 79:20,	multiplication	150:14, 238:18	198:13, 215:11,
80:16, 81:9,	49:8, 49:12,	N	216:18, 227:22,
84:3, 87:22,	49:18, 49:22,	n (k	244:8
88:4, 98:15,	50:1, 50:9,	133.5	needed
109:22, 113:20,	50:11, 52:19,	n/n	216:15
122:5, 159:2,	52:21, 53:1,		needs
160:22, 162:19,	53:2, 53:3,	49:5, 60:1,	140:9, 180:14,
168:10, 187:12,	57:7, 59:5,	60:13	191.20. 214.20.
189.2. 190.10.	59:10. 61:19.	name	216.21
190.15 191.15	62.3 62.10	8:16, 33:18	negative
101.21 102.3	$62 \cdot 21$ $63 \cdot 5$	named	
191.21, 192.3,	63.9 61.3	188:6	62:14, 99:6
194.4, 194.11, 104.20, 105.12	69.22 70.12	narrowband	neither
194:20, 195:12,	70.17 70.20	135:8, 135:16,	148:21, 149:10,
195:16, 198:6,	70:17, 70:20,	136:6, 139:15,	248:8
198:21, 200:1,	/1:11, 80:4	139:21	never
203:4, 220:8,	multiplied	narrows	133:19, 135:1
234:10, 234:14	62:6	115.5	nevertheless
morning	multiplier	natural	64:15
7:19, 8:14,	29:21	105.10	new
8:15, 131:12	multiplies	195:18	27:15, 28:3,
most	29:21, 63:5,		61:19, 62:21,
20:7, 120:1,	64:3, 68:22,	19:2, 34:11,	63:8
188:13	80:4, 209:16	59:20, 142:14,	next
motivated	multiply	143:6, 190:10,	20.13 20.22
131:3, 163:9,	29:15. 81:3	199:17, 217:15,	27.15 30.12
163:12. 191:9	multiplying	227:10, 227:13	21.2 112.6
motivation	57.9 57.18	navigate	126.12 107.22
101.12	59.3 92.12	114:8	150:12, 107:22,
1 J 1 • 1 Z	min	nb	205:6, 210:1
		136:19, 137:1,	
54:22, 55:6,		138:13, 140:21	208:5, 208:7,
55:7, 56:8,		near	208:12, 208:13,
5/:21, /8:2	18:/, 18:10,	212:9	208:14, 209:22,
much	19:10, 20:16,	necessarily	210:2, 210:12,
11:10, 156:5,	21:19, 22:10,	81·18 196·18	210:15, 211:2
156:18, 232:11	22:20, 23:21,	204.6 219.18	noise-free
multi	24:8, 24:18,	204.0, 219.10,	86:11
60 : 4	25:5, 25:15,	222.11, 220.10,	noisex
multi-channel	26:8, 26:15	227:5, 228:14,	212:1
5:10, 19:22	must	233:9	non
multiple	23:5, 142:19,	necessary	184:5
144:22, 160:19,	180:22, 181:1,	198:10, 224:7	non-discoverable
. , ,			39.17
			JJ•1

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

non-monetizing	noticeable	nxmin	once
168:5	20:15, 20:21	214:12	46:16
non-obviousness	novel	nxrel	one-half
66:7	32:2, 32:9,	214:3, 214:10	99:6
non-speech	32:22, 33:4,	0	ones
96:4, 215:12,	33:19, 37:9,	object	28:8, 66:6,
243:12, 243:15,	42:9, 42:12,	179.3	67:12, 75:6,
243:22, 244:5	42:17, 42:18,	obtain	118:9, 243:3
non-stationary	46:8, 46:9,	131:4. 213:10.	only
20:17, 184:18,	62:10, 64:1,	214:21, 215:1	26:13, 90:20,
186:13, 187:4	64:4, 64:17,	obtained	110:22, 145:1,
non-trivial	65:13, 66:2,	52:11	244:2
152:21	66:15, 67:7,	obviates	onset
non-wiener	85:7, 85:16,	215:11	210:14, 222:20,
75:16	86:4, 86:14,	obvious	222:22, 223:3
noncausal	86:22, 87:6,	17:12, 19:7,	open
78:18	88:14, 89:7,	40:19, 65:6,	152:9
none	89:13, 89:19,	107:4, 107:20,	operate
218:20	90:0, 90:13,	108:19, 110:12,	152:21, 153:12,
nonlinear	91.12, 92.2, 92.9, 92.13	116:7, 156:13,	153:16, 225:22
212:11	92.9, 92.13, 92.13, 92.17, 93.1	157:5, 186:20	operated
nonobvious	114.19 115.21	obviousness	153:9
64:17, 65:13,	novelties	66:6	operates
66:2, 66:15,	90.21	occur	152:15
6/:8, 114:20,	novelty	21:21, 22:15,	operating
115:1, 115:21	33.16. 34.1.	111:13	156:16
nonsymmetric	35:5. 36:12.	october	operation
123:10	85:11, 90:17,	125:16	19:13, 36:15,
nontrivial	90:20, 91:3,	offer	111:10, 132:10,
153:12	92:6	67:1, 71:17,	143:5, 180:8,
	null	128:14, 233:15	207:17, 220:4
133:2, 130:7	236:9	offered	153.5 155.20
	number	10:10, 202:19,	156.10 157.20,
2:5, 3:7, 5:17,	29:13, 51:22,	233:12	157.3
1.0, 7.10	99:1, 99:2,	offering	opine
2/18.13	99:8, 101:19,	142:16	116.8
notary	105:16, 106:4,	office	opinion
$2 \cdot 19 248 \cdot 1$	129:12, 129:13,	4:13	33:8. 37:9.
248.19	160:4, 160:8,	officer	38:8, 38:17,
notation	164:19, 166:7,	248:2	38:18, 39:8,
$58 \cdot 19$, $58 \cdot 20$	167:5, 167:16,	offices	40:9, 41:2,
note	182:19	2:2	41:13, 41:14,
158:22, 159:9	numbers		41:16, 41:22,
nothing	103:8	10:9, 32:22, 99.4 122.10	42:2, 42:4,
8:10, 77:18.	numerator	00.4, 122:19, 199.90 199.99	42:9, 42:14,
129:3, 180:4	54:2, 77:2	122,20, 122;22, 230,12	42:16, 42:18,
notice	nxmax	200.12	46:5, 63:20,
2:18	214:12		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

64:1, 64:5,	71:10, 181:2	133:4, 139:4,	68:14, 69:6,
66:15, 67:2,	opposite	139:17, 142:11,	69:9, 70:12,
67:3. 67:5.	134.22	151:8. 158:6.	71:5. 71:17.
67.7 67.13	order	165.15 184.15	72.10 94.3
68.14. 69.6.	23.15 23.19	186.19, 186.22.	95.11, 96.10.
69.8 79.13	60.13 00.14	187.16 187.17	103.22 104.21
80.8 88.12	09.10, 104.2	191.4 202.16	105.20 107.4
88.20 89.3	104.10 150.01	$207 \cdot 1$ $207 \cdot 5$	107.6 107.20
90.17 91.1	124:10, 152:21,	207.3, 207.3, 207.3, 213.3	107.00, 107.20, 107.20, 107.22
0.1.17 $0.5.0$	101.12 170.14	243.3, 244.10,	109.22 100.15,
94.17, 95.0,	161:13, 1/9:14,	244.17, 244.10,	100.10 100.10
100.0 102.01	180:14, 181:12,	24J.4	110.10 110.14
100:9, 103:21,	195:7, 195:22,		110:12, 110:14,
104:19, 105:5,	196:16, 204:3,	18:22, 75:10,	112:12, 112:16,
105:19, 106:13,	217:16, 222:18,	231:10	112:21, 113:17,
106:14, 107:4,	232:12, 236:4,	otherwise	144:12, 166:1,
107:21, 108:20,	245:5	62:14, 248:11	167:6, 168:7,
110:13, 113:16,	ordinary	out	168:19, 168:20,
118:11, 118:16,	131:3, 162:9,	29:3, 41:3,	169:1, 169:3,
120:4, 141:13,	162:21, 185:3,	41:8, 67:12,	169:5, 169:11,
142:7, 142:16,	185:18, 190:4,	96:16, 101:1,	180:16, 180:17,
143:14, 144:11,	194:10, 194:19,	157:10, 158:5,	180:20, 180:22,
144:13, 152:20,	197:20	169:17, 195:7,	181:10, 181:21,
157:4, 163:11,	orient	200:3, 200:14,	181:22, 182:9,
173:6, 202:13,	150:14, 195:22	227:13, 231:10,	182:12, 199:20,
202:19, 205:15,	oriented	238:11	199:21, 212:19
219:8, 227:21	18.2 144.4	outcome	overall
opinions	226.19	236.4 236.6	25:21, 26:4,
9:6, 10:10,	original	248.11	51:2, 51:3,
33:11, 33:13,	210.22		89:9, 94:11,
37:22, 43:1.	ather	$27 \cdot 4$ 30 · 12	106:10. 117:17.
43:6, 66:8,		21.7, 50.12, 31.6, 31.7	141:20, 143:5,
66.12. 66.13.	9:13, 30:1,	51.0, 51.7,	149.7. 156.6.
80.18. 85.12.	30:2, 33:7,	51:10, 00:11, 02.15, 00.16	226.14. 227.11.
87.4 88.17	36:2, 36:3,	95:15, 96:10,	227.20 236.5
88.22 89.1	36:5, 43:7,	133:11, 133:13, 124.0, 172.14	236.7 236.18
117.12 117.19	50:5, 51:1,	134:9, 172:14	overestimation
118.8 118.9	54:7, 59:22,	outside	200.5 200.12
118.22 120.2	60:7, 60:14,	1/8:2	200.3, 209.12,
120.22, 120.2,	60:19, 60:22,	over	209.14, 209.17
120.20, 121.4,	61:11, 62:18,	11:12, 11:19,	
127.3, 120.0, 120.10	63:10, 67:12,	33:9, 33:20,	35:13, 65:2,
120.9, 120.10,	71:5, 71:10,	34:9, 34:16,	91:7, 239:16,
128:10, 131:17,	71:17, 75:6,	35:19, 36:8,	239:17, 245:1,
1/3:9, 233:12,	75:8, 77:22,	37:9, 42:12,	245:11
233:10, 244:13,	85:14, 89:1,	42:18, 57:22,	P
243:3	90:21, 91:5,	62:10, 63:13,	page
opportunity	91:13, 106:18,	64:17, 65:13,	5:2, 5:7, 6:3,
	111:3, 119:13,	66:2, 66:15,	20:5, 38:3,
opposea	120:18, 126:7,	67:3, 67:8,	
/U:19, /1:3,			

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 275

Conducted on June 16, 2017

F1 00 F0 0	010 0	0.07 1.0 015 0	
51:20, 58:8,	212:9	207:18, 215:8,	periorm
//:/, 111:21,	paragraphs	221:12, 221:22,	29:11, 48:14,
113:7, 155:1,	130:16	228:2, 228:20,	51:7, 82:14,
156:22, 170:7,	parameter	235:12, 236:9,	92:16, 111:1,
171:9, 209:5,	140:9	236:10, 236:15,	111:4, 111:5,
209:9, 210:1,	parameters	238:13, 239:7,	141:18, 154:19,
211:22, 212:10,	21:17, 137:11,	239:12, 242:2,	154:21, 164:13,
212:19	137:14, 163:20	242:21, 243:18	179:14, 180:22,
pages	part	particularly	245:5, 245:13
1:21, 40:13	28:9. 39:5.	186:21, 237:18	performance
paper	53.12. 54.3.	parties	21:8, 21:10,
5:13, 5:18,	61.6 76.1	248:9	184:8, 184:12,
6:5. 6:8. 16:12.	86.1 86.18	parts	184:14, 184:22,
16.17. 16.20.	111.9 148.7	60.15 116.2	186.15
17.5, 17.8 .	162.1 203.9	120.10 120.11	performed
17.9 17.18	208.21 208.22	120.12 120.22	31.6 77.5
19.21 20.3	200.21, 200.22, 228.7, 241.20		84.6 155.20
$22 \cdot 9$ $23 \cdot 2$	220.7, 241.20,	passage	157.3 182.9
$51 \cdot 12$ $51 \cdot 15$	244.10	157.0	2/1.5, 102.9,
$51 \cdot 18$ $130 \cdot 3$	100.15 101.10		2
130.5 1/8.16	169:15, 181:10		
1/8.18 150.2	particular	214:13, 214:16	51:22, 49:21,
160.22 163.16	22:5, 30:11,		00:1, 00:0, 00.0
184.13 185.12	39:1, 47:5,	111:2	0.017 0.071
104.13, 105.12, 105.14, 106.10	4/:/, 4/:8,	patentable	00:17, 07:17, 000:17, 000:100, 10000, 1000, 1000, 1000, 1000, 1000, 10
186.21 102.4	48:11, 50:15,	63:13, 68:6,	90:12, 100:7,
100.21, 192.4, 102.5, 106.21	50:16, 50:21,	69:9, 79:14,	12/:1, 141:10,
192:3, 190:21, 107.2, 205.14	61:2, 76:12,	80:9, 94:2,	141:17, 144:5,
200.0	76:21, 85:11,	95:11, 96:10,	153:5, 156:10,
209:8	87:21, 97:19,	103:22, 104:21,	157:1
	100:10, 104:8,	105:20, 107:6,	periorms
185:21, 186:19,	118:19, 119:11,	107:14, 107:22,	20:14, 54:2,
186:22, 187:16,	126:10, 126:18,	108:22, 110:14,	59:19, 63:4,
18/:1/, 192:2	126:19, 128:4,	112:21, 113:3,	64:2, 68:21,
paragraph	138:2, 138:17,	113:17, 116:5	85:8, 85:17,
38:5, 38:8,	138:18, 156:20,	patents	91:12, 133:8,
38:12, 121:11,	159:13, 159:16,	192:1	146:5
121:13, 130:9,	164:11, 172:5,	pause	perhaps
130:11, 131:20,	172:6, 180:20,	162:8	202:5
132:1, 132:4,	180:21, 183:10,	pauses	permitted
143:7, 143:10,	184:2, 185:12,	213:10, 214:20,	168:10
143:14, 148:9,	186:21, 191:7,	214:22, 215:1	person
148:20, 149:19,	194:6, 194:7,	pending	17:4, 17:6,
149:21, 150:1,	195:1, 195:3,	62:1, 81:8	47:17, 162:9,
150:4, 152:12,	195:7, 195:9,	people	162:21, 163:7,
158:11, 158:19,	195:20, 198:16,	15:15, 26:17.	163:13, 185:3,
158:21, 164:20,	199:1, 204:3,	28:10, 196:17,	185:17, 190:2,
167:18, 172:15,	204:19, 205:3,	231:8	190:4, 191:19,
205:11, 208:22,	206:7, 207:14,	pepper	194:10, 194:19,
		3:5. 8:3	
			1

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

197:20	115:13, 115:20,	111:21, 138:5,	possibility
peter	126:14	146:12, 147:14,	75:4, 186:6
3:12, 7:13	pm	161:22, 162:1,	possible
ph	151:14, 165:2	169:17, 172:15,	26:13, 26:14,
1:10, 2:2, 8:8,	pmact	174:15, 174:17,	112:17, 128:22,
247:2		210:14	176:11, 186:12,
phase	151:13	pointing	234:14, 238:11
72:4, 98:22	pmin	94:10, 99:15,	potential
phi	148:21, 149:10,	111:15, 199:2	24:15
135.3 135.6	177:1	points	potentially
$135 \cdot 15$ $138 \cdot 7$	nimma	28:2, 28:3,	107.13
138.8	1/3·15 1/3·22	28.5. 29.13.	
rbi(k	143.15, 143.22, 144.7, 144.11	29.22. 34.6.	5.9 19.21
122.10 122.20	1//.1/ 1//.10	112.18 127.8	140.15 145.22
132:10, 132:20, 132.7	144.14, 144.19, 145.0, 145.2	popular	140:15, 145:22,
120.1 120.2	165.1 160.10	20.7 102.14	140:2, 140:22,
139:1, 139:2,	100:1, 100:12,	20.7, 192.14, 102.10, 102.22	14/:2, 14/:10,
139:4, 139:13	175:21, 174:12, 175:2 175:7	102.0 102.11	14/:11, 14/:12,
pick	175:3, 175:7, 175:10, 175:01	102.16	14/:1/, 14/:18,
154:22, 186:20,	175:19, 175:21,	193:10	14/:20, 14/:21,
189:1, 190:22,	175:22, 176:3,		155:12, 155:14,
191:10, 191:12	1/6:6, 1/6:7,	11/:18	168:5, 170:9,
picture	176:14, 176:19,	portion	170:21, 176:2,
231:3	1//:5, 1//:/,	80:15, 149:13,	1/6:12, 1/6:13,
piece	1//:9, 1//:13	159:6, 159:18,	199:22
118:19, 178:20	pmmins	159:19, 159:21,	practice
pile	168:8	195:20	166:11, 201:16,
185:21, 186:19,	pn	portions	203:19, 203:22,
187:16	145:21, 146:8,	34:2, 41:6,	206:4, 224:8
place	146:22, 147:6,	96:16, 117:18,	practices
7:9, 150:20,	147:7, 147:14,	120:15, 120:17,	204:6, 226:18
150:21	147:22, 148:2	120:18, 163:5	practicing
places	pn(i	position	83:20, 203:15,
73:10	146:10, 146:18,	91:21, 94:19,	204:9, 225:1,
planet	146:19, 147:4,	123:10, 145:11,	226:9, 228:16
7:8	147:13, 148:8,	145:13, 215:5,	preamble
please	173:21, 174:12,	215:21, 216:4,	228:9, 228:11,
7:11, 8:6,	175:1, 175:3,	216:17, 222:4,	242:4, 242:6,
8:16, 9:18,	175:6, 175:18,	222:7, 222:13,	242:8
9:19, 9:20,	175:20, 175:22,	222:14, 223:1,	precise
19:15, 23:12,	176:19, 177:1,	224:3, 233:10	18:17, 98:15,
51:20, 77:6,	177:3, 177:9,	positions	102:13, 125:5,
152:10, 155:1,	177:22, 178:6,	32:17, 43:22,	194:15
158:10, 162:7,	178:16	44:22, 46:6,	precisely
164:20, 178:9,	point	82:22, 90:13,	97:17, 215:11,
187:22, 188:11,	27:16, 30:13,	94:4, 94:8,	215:14
200:14, 205:6	34:8, 39:1,	215:14, 225:17,	predated
plurality	40:15, 41:13,	238:22	36:17
113:12, 114:18	42:14, 68:12,	possibilities	predating
,		33:16	28:18
		1	1

Conducted on June 16, 2017

c 1	CE E CO 14	70 00 00 10	1
preferred	65:7, 68:14,	72:22, 90:13,	proposed
72:5, 215:9,	73:15, 78:8,	91:18, 94:7,	24:20
216:1	82:3, 101:1,	95:14, 149:7,	protective
prepare	107:4, 107:20,	154:3, 196:11,	232.12
232.15 232.18	108.19. 110.12.	203.13, 203.14,	provide
232.13, 232.10	111.5 111.9	$203 \cdot 16$ $204 \cdot 10$	
	11/.16 115.19	206.2 206.4	9.0, 20.J,
11/:8	126.22 120.1	200.2, 200.4,	33:11, 36:5,
preparing	120:22, 130:1,	208:10, 208:17,	36:14, 66:7,
39:2	201:8, 204:14,	207:3, 207:10,	87:4, 88:16,
preprocessing	223:3, 230:2,	20/:12, 20/:15,	88:22, 119:19,
212:12	230:4, 230:10,	208:17, 211:11,	121:10, 123:22,
presence	231:12, 237:10,	217:19, 218:4,	124:3, 124:8,
216:14	237:14, 238:5,	224:1, 240:3,	124:18, 156:5,
present	238:6, 238:14,	240:5, 240:19,	158:4, 171:4,
4.18 12.21	239:10	241:9, 241:14,	195:21, 227:21,
13.6 13.10	probably	244:21, 245:2,	244:13
(2.2) (2.12) (2.12)	231:1	245:17, 246:1	provided
02.2, 133.12, 015.10	problem	processed	33.13 38.18
215:10, 243:18	18.7 23.21	83.10 124.9	66.0 00.17
presented	25.15 26.8	179.20 199.17	00.9, 00.17, 00.17
150:14	47.9 102.20		09:1, 92:17,
pretty	4/:0, 102:20, 1102:20		119:11, 119:14,
192:1, 201:14,	116:4, 156:2,	21:16, 31:22,	119:18, 119:22,
204:21, 230:9	190:9, 198:17,	32:1, 36:21,	125:2, 127:9,
previous	212:6	69:11, 80:15,	127:21, 131:17,
28.4. 123.7.	problems	89:16, 89:17,	151:15, 157:6,
208.14 229.18	22:19, 24:16,	96:15, 100:5,	157:16, 160:9,
238.1	80:11, 196:10	126:4, 133:1,	171:7, 173:16,
	procedure	133:4, 133:6,	239:2, 245:4
	124:11	217:15	provides
233:13	procedures	processor	$28 \cdot 4$ $48 \cdot 12$
primary	15.1/	30.18. 82.20.	52.16 71.19
156:1	n n n n n n n n n n n n n n n n n n n	88.3 96.3	125.10, 101.01
principle		$2/3 \cdot 8 = 2/3 \cdot 11$	125:10, 101:21,
22:16	63:17, 74:9,	243.0, 243.11	191:18, 190:0,
prior	11/:14, 161:20,		241:6
15:16, 28:11,	162:8	34:13, 35:6,	providing
28:13, 28:15,	process	122:10, 133:9,	23:16, 43:1,
28.17. 28.18.	9:14, 12:4,	133:10, 139:3,	119:15, 119:16,
29.6 29.10	15:2, 27:19,	210:7, 234:21,	126:8, 183:1,
30.21 33.9	30:5, 32:12,	235:1	189:6, 190:20,
22.20 24.0	38:21, 39:2,	produced	222:17, 245:3
33:20, 34:9,	44:6, 44:18,	215:2	public
34:17, 35:19,	47.9. 48.13.	producing	2.19. 248.1.
36:9, 36:19,	18.20 19.6	133.13	2/8.19
36:21, 37:3,	10.20, 10.10, 10.7, 10.12	products	publication
37:6, 37:9,	49.7, 49.12,	1.7	
44:13, 44:15,	$4 \forall : \angle \bot$, $4 \forall : \angle \angle$,		1/:1, 1/:15
46:1, 46:11,		processor	published
50:19, 59:11,	61:6, 62:15,	8:22, 11:12,	195:15
59:14, 62:11,	6/:11, 68:10,	88:2, 152:4	pull
			230:17
	I		

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

pulling	question	214:9	reasons
158:16	10:16, 17:12,	ratio	100:4, 128:6,
purport	22.7 22.8	76.13 77.2	128.7 128.8
	30.7 33.15	213.20 214.3	128.15 $1/1.16$
03:7	30.7, 33.13,	213.20, 214.3	101.2
	59:10, 40:7,		191:5
100:16	61:22, 62:1,	136:14, 137:22,	
purpose	65:16, 65:19,	138:18, 139:3	127:15
30:4, 58:4,	65:20, 66:6,	rea	rebuts
70:8, 70:9,	66:11, 66:17,	48:5	85:12
70:11, 83:22,	70:15, 71:2,	read	rebuttal
84:11, 84:13,	81:5, 81:8,	45:21, 61:21,	5:21, 40:22,
87:3, 97:16,	95:7, 101:15,	62:1, 81:8,	41:6, 65:1,
98:1	104:18, 107:2,	188:9, 191:10,	87:4, 88:16,
purposes	110:10, 114:7,	214:1, 237:18,	96:14, 127:7,
178:15. 195:19	114:8, 134:19,	239:12, 243:4,	151:2, 173:1,
pursuant	139:19, 143:20,	247:3	244:14
2.18	166:14, 170:6,	reader	recall
	172:19, 179:4,	180.1 180.12	68.1 75.6
	185.13, 189.17.	109.16 109.12,	75.0 150.0
43:11, 46:14,	190.11 193.14	109.10, 109.20, 104.4, 105.20	75.0, 150.0,
85:4, 105:3,	193.21 204.17	194:4, 195:22	231:13, 232:2
117:19, 127:14,	206.9 206.13	reading	recalling
131:5, 150:21,	200.8, 200.13,	32:19, 63:3,	150:7
168:2	207:19, 210:0,	150:7, 185:4,	received
putting	218:/, 22/:14,	186:11, 190:5,	119:8, 121:5
54:10	232:2, 238:1,	194:16, 197:20,	receiving
рх	242:16	215:9, 239:10,	113:13, 114:19,
147:5, 147:7,	questions	248:7	126:14
147:13, 147:14,	9:18, 152:7,	reads	recess
147.16 148.1	246:4, 246:5,	20:6, 38:8,	74.6 116.17
nx(i)	246:6	52.8. 72.2.	151.21 200.10
146.19 147.6	quick	130.12	237.6
140.19, 147.0	200:5, 237:2	real	regited
Q	quote	101.21 237.2	107.5
quadrature	22:21	roaligod	
102:6			recites
quality	K	124:1, 125:1	80:3, 82:19,
74:20	rainer	really	200:18
quantities	230:11, 230:12,	24:13, 158:4,	recognition
50:22, 76:13,	230:13, 230:16,	207:19	6:10, 212:1,
76.20 101.5	231:6	reason	212:4, 212:7,
111.11 137.1	raised	48:6, 77:22,	212:12, 212:16,
137.1 179.11	88:18, 119:13,	99:22, 144:17,	213:1, 213:3
augustitu	140:15	174:19, 187:10,	recognize
	ran	190:1, 190:18,	188:4
52:21, 57:15,	41.2	190:19, 190:22,	recognizing
5/:17, 76:13,	range	191:22, 194:10.	99.4
76:15, 209:22	179.15 179.17	194:22, 227:2	recollection
ques	r_{2}	reasonable	172,17
23:12		184.16 191.22	
	102:2, 12/:13,	101.10, 191.22	
			189:5

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

record	89:15, 89:20,	referring	232:10, 248:9
8.17. 52.1.	141:17. 141:18.	31.16. 35.2.	relates
64.21 72.12	1/1.20 185.9	25.0 56.6	10.10 11.01
74.21, 72.13, 74.0	195.10 102.12	50.0, 50.0,	10.10, 11.21,
74:4, 74:8,	105:19, 195:12,	59:13, 72:19,	12:21, 13:7,
/8:11, 102:8,	196:22, 208:21	/4:1/, 91:15,	13:11, 14:1,
116:15, 116:22,	reter	97:2, 97:5,	16:20, 45:10,
151:18, 151:19,	172:8, 172:16,	159:3, 159:19,	76:18, 77:4,
151:22, 152:1,	179:17	167:15, 169:21,	164:12
200:8, 200:12,	reference	172:8, 175:11,	relation
231:9, 237:4,	42:22, 43:2,	179:18, 233:5	46:9, 181:4,
237:7, 246:9,	43:4, 78:8,	refers	181:20, 183:19,
246:10, 248:4	125.13. 125.19.	16.12, 72.14.	242.22
rectification	126.1 126.8	84.14 94.4	relationship
E2.E 62.12	142.11 152.0	06.10 112.17	100.10
52:5, 62:15, 62:11	143:11, 132:0,	90:19, 112:17,	182:10
62:14, 92:11,	191:12, 194:18,	123:7, 123:12,	relative
92:12	195:5, 195:7,	1/9:5, 1/9:15,	20:9, 50:13,
recursive	195:9, 195:16,	209:14, 211:19	74:20, 214:3
208:11	195:21, 196:3,	reflect	relatively
redacted	196:5, 197:5,	183:3	17:18
129:18	197:11, 202:9,	reflects	relevant
reduce	204:14, 204:19,	179:19	118:20
12:15, 17:20,	205:20, 206:9,	regard	relving
30:5, 70:6,	206:10, 206:16,	96:14, 100:15,	39:20, 130:2
70:9. 71:14.	206:18, 206:22,	103:4. 118:8.	remain
74:12. 74:19.	207:1, 227:3,	125:11. 129:2.	84.1
84.1 84.12	227:5, 227:15,	141.2 154.1	romaining
84.15 87.13	227:17. 242:13.	157.7 173.9	
97.16 100.5	242.18	172.17 102.20	82:21, 84:7,
122.11 124.0	referenced	210.4 220.1	84:9, 84:12
126.21 226.0	51.15 188.18	219.4, 239.1 maganding	remember
150:21, 250:9	104.9 104.0		9:20, 74:14,
reduced	100.01 107.2	33:12, 33:15,	229:19, 233:4
/6:15, 112:16,	196:21, 197:3	42:20, 12/:10	removal
120:9, 120:10,	references	regards	52:4
120:11, 120:12,	41:21, 12/:11,	137:4	remove
248:6	130:1, 131:4,	rejoin	13:22, 15:3,
reduces	188:14, 188:17,	57:5	15:16, 15:19,
75:11	189:9, 189:13,	rejoined	54:14. 163:5.
reducing	189:18, 189:21,	74:9	210.21. 224.7.
25:10, 58:4,	190:1, 190:6,	relate	224.11
82:20	191:1, 191:4,	11.16 12.10	
reduction	191:9, 191:10,	33.5 33.12	
12.22 13.1	191:17, 191:18,	74.21 76.22	211:2
13.7 13.12	191:22, 192:5,	related	removing
12.15 14.2	218:17, 237:15,		18:3, 224:4
10.20 45.10	238:6, 242:20.	14.7 21.12	render
10:20, 40:10, 45:11 40:17	244.17. 245.4	14:/, 31:13,	39:7, 43:6,
40:11, 49:1/,	referred	44:16, 106:21,	64:1, 106:21
/3:1/, 86:9,	137.2	117:13, 120:16,	rendered
8/:1, 89:13,	1.57.2	125:12, 165:15,	67:13

repeat	232:19, 232:20,	216:5, 217:11,	85:11, 85:17,
22:8, 65:18,	233:1, 233:5,	217:17, 218:1,	85:20, 85:22,
65:20. 81:5.	233:8, 233:10,	218:2, 221:14,	86:2, 86:5,
139.9. 185.16.	238:5. 239:11.	223:5. 224:4.	86:9, 87:1,
189.17 206.8	239.18 242.5	224.14 228.3	88.13 89.12
206.13 242.16	242.8 243.1	234.10 241.5	89.15 89.20
200.15, 242.10	242.0, 243.1,	roguirod	0.1.6 $0.6.3$
rephrase	244.14, 24J.14		91.0, 90.3,
64:11	reported	94:19, 95:1,	243:8, 243:11
replaces	1:22	124:14, 126:19,	respect
96:3	reporter	128:11, 153:15,	40:8, 40:17,
report	8:6, 32:14,	164:14, 180:5,	41:5, 41:10,
5:12, 5:17,	102:16, 102:18,	198:15	42:21, 43:7,
5:21, 33:12,	248:1	requirement	50:12, 60:14,
37:13, 37:22,	reports	80:9	66:8, 67:17,
38:3, 38:19,	151:8, 212:17,	requirements	111:14, 117:21,
38:21, 39:3,	232:4, 233:6,	142:17	118:17, 119:12,
40:13, 40:22,	233:7	requires	120:20, 127:11,
41:6. 43:11.	represent	109:11. 110:6.	137:3, 142:10,
65:2. 66:8.	7.12. 57.16.	123.6. 124.18.	142:12, 149:4,
67.22 85.12	58.1 101.18	140.8 141.13	149:6. 156:5.
87.5 88.18	114.19 120.2	$1/2 \cdot 7$ $1/2 \cdot 20$	158:8, 159:2,
80.2 06.14	120.4 126.12	152.4 154.4	164.4 164.10
09:2, 90:14,	120:4, 130:13,	153:4, 154:4,	170.1 171.14
102:9, 117:5,	13/:21, 138:3	154:14, 161:22,	102.1 101.15
11/:8, 11/:9,	representation	166:3, 166:5,	100.00 105.1
117:22, 118:1,	101:8, 101:10,	167:19, 169:3,	100:22, 195:4,
118:6, 118:13,	101:16	207:9, 207:11,	196:12, 216:19,
120:21, 121:1,	represented	221:6, 223:8,	224:1, 228:15,
121:2, 125:4,	53:6, 61:1,	224:3, 224:5,	236:5, 236:7,
127:4, 127:6,	61:3, 61:5,	224:16, 228:17,	238:3, 238:10
127:7, 127:8,	98:22, 135:10,	240:22, 241:2	respective
127:19, 127:20,	159:20, 189:5	requiring	136:7, 136:13,
128:2, 128:8,	representing	219:9	137:2
128:14, 128:17,	7:8, 8:3, 31:5,	research	respects
128:20, 129:1,	53:8	196:10	32:9
129:4, 129:6,	represents	reserve	respond
129:15, 130:19,	57·15 58·2	127.15	37:21, 127:12,
131:18, 131:21,	67.7 68.6	residual	239:16
143:8. 148:16.	121.4 127.6	25.12 25.10	respondent
148.20. 149.17.	121.4, 127.0, 120.12, 144.20	25.21 26.4	4.2 7.20
150.17 151.2	120:13, 144:20	35:21, 36:4,	8.12 152.2
151.12 152.10	requested	36:7, 36:16,	rospondenta
150.10 150.14	248:8	36:18, 82:20,	
150.10, 150.14,	require	82:21, 83:5,	3:11, 37:14,
150:21, 164:15,	109:20, 110:8,	83:9, 83:12,	130:2, 152:7,
164:21, 167:18,	126:10, 126:16,	83:15, 83:16,	227:15
172 1 172 0	142:22, 152:20,	83:18, 83:22,	responding
1/3:1, 1/3:2,	153:12, 153:18,	84:11, 84:13,	151:11
173:4, 173:9,	153:22, 179:13,	84:14, 84:22,	response
173:11, 232:16,	180:19, 196:15,	85:5, 85:8,	40:22, 96:14,
L	1	1	<u> </u>

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 281

Conducted on June 16, 2017

127.6 127.12	64.20 65.2	anid	175.0 176.0
127.10 127.10	(7.16, 70.10)	Salu 11.10 17.14	102.10 200.12
12/:18, 12/:20,	6/:16, /2:12,	11:18, 1/:14,	182:19, 206:12,
128:13, 151:3,	/6:6, /6:11,	22:19, 22:20,	223:1, 22/:1/,
151:5	86:7, 90:11,	24:17, 41:9,	24/:4
restate	91:10, 96:12,	42:8, 42:10,	sample
65:16	97:7, 97:13,	43:21, 43:22,	57:9, 57:19,
restricted	98:19, 102:4,	44:1, 44:2,	58:3, 144:21
216:11	105:22, 109:2,	45:2, 45:21,	samples
restricts	111:20, 112:14,	46:5, 46:6,	27:3, 27:4,
180:4	113:1, 113:19,	46:7, 60:1,	28:2, 149:12,
result	121:20, 122:14,	63:3, 63:5,	149:13, 149:15,
21:2, 22:15,	124:16, 125:10,	64:2, 64:3,	166:7, 167:6,
23:7, 153:21,	130:22, 144:18,	64:9, 68:21,	167:8, 167:16,
154:11, 154:15,	150:6, 150:12,	68:22, 69:19,	181:12, 181:15,
176:22, 225:2,	172:1, 179:2,	69:20, 74:11,	182:10, 182:12,
225:13, 226:10,	192:11, 215:6,	75:13, 79:8,	182:20, 200:2
226:12	219:3, 229:7,	79:9, 80:4,	samsung
resulting	233:17	80:5, 82:5,	3:11, 7:14,
15:2. 35:7.	right-hand	82:21, 82:22,	7:15, 8:12
36.15. 82.14.	52:2, 77:11,	83:1, 83:2,	satisfied
84.15. 85.5.	112:2, 155:2,	83:5, 94:4,	222:6
90.6.122.10.	175:2, 205:10,	95:20, 96:3,	save
$134 \cdot 9$, $142 \cdot 15$.	209:10	96:5, 102:11,	73.2. 99.10.
143.6 200.4	rmr	105:12, 105:13,	100.2
210.21 217.16	1:22, 2:19	105:15, 106:1,	Saves
$221 \cdot 11$ $222 \cdot 17$	robert	106:3, 110:2,	72.5 72.9
226.2. 227.22.	3:14, 7:17	113:13, 114:19,	72.20 72.21
234.16 234.17	robust	118:2, 118:21,	72.20, 72.21,
results	6:9	128:17, 132:8,	Sav
23.22 62.15	role	134:22, 135:4,	25.5 25.14
86.19 177.3	146:10	142:3, 150:4,	26.6 26.13
$213 \cdot 11$ $214 \cdot 21$	rough	150:22, 151:12,	34.22 42.21
retained	208.10	165:21, 179:9,	61.18 80.12
9.3 9.6 9.8	rpr	196:5, 214:20,	89.12 90.2
229.17 230.2	-F- 1·22 2·19	221:2, 223:18,	100.4 101.10
230.6 230.10	rules	225:16, 225:17,	117.22 119.14
231.12	9.15	232:22, 248:5	121.13 124.4
review	קוות	same	132.1. 132.4.
120.17	139.2 160.7	1:7, 13:21,	133.8. 143.14.
reviewed	rupping	32:7, 53:19,	148:21. 155:11.
37.19 120.2	11 · 8	54:8, 54:13,	157:19, 158:6.
reviewing	rutialiano	61:15, 64:19,	158:8. 167:21.
12.13 24.22	1.10	66:4, 130:5,	170:15. 182:22.
27.22 29.20		131:11, 140:22,	183:17, 183:18,
35.9 36.11	<u>ع</u>	147:4, 147:13,	185:8, 193:20.
44.9 45.8	s	147:22, 150:1,	195:6, 217:14.
48.10 49.3	173:12, 186:11,	150:16, 150:19,	220:7, 229:21.
49.11 61.20	197:11	173:22, 174:13,	231:14, 231:19.
19.11, 01.20,			,,
L	1	1	1

Conducted on June 16, 2017

0.00 0.000 11	-	•	
232:3, 232:11,	seal	seeing	sequence
234:14	248:13	244:20	172:3
saying	second	seemed	series
21:13, 21:15,	52:18, 52:20,	195:17	212:3, 244:1
35:13, 41:1,	56:5, 57:6,	seen	session
51:3, 56:9,	137:19, 140:8,	10:6, 37:17,	116:18
62:9, 92:12,	143:13, 146:17,	78:13, 232:3	set
92:22, 104:12,	152:14, 183:15,	segment	31:21, 133:19,
106:16, 110:5,	211:14, 211:20,	146:22, 243:18	134:10, 135:3,
133:19, 133:22,	217:7	segmented	135:6, 136:19,
134:11, 135:1,	seconds	177:12	137:7, 137:9,
136:18, 137:6,	183:13	segments	138:1, 145:6,
137:10, 138:20,	section	96:4, 214:13,	147:11, 149:14,
150:16, 150:17,	38:12, 123:3,	214:17, 215:12,	174:8, 175:3,
150:19, 178:4,	155:6, 156:22,	215:16, 243:12,	175:6, 176:21,
199:6, 227:2	211:18, 212:5	243:15, 243:21,	181:12, 181:14,
says	sections	243:22, 244:6	182:9, 182:12,
12:21, 13:5,	200:20, 203:3	selected	195:22, 204:10,
20:13, 20:22,	see	186:3	206:3, 206:9,
27:9, 27:15,	12:16, 12:19,	selecting	206:16, 207:9,
29:15, 53:12,	13:5, 16:10,	21:17, 195:16	207:14, 208:4,
55:3, 55:5,	16:15, 16:19,	sense	208:16, 211:10,
58:13, 62:2,	20:5, 20:18,	64:10, 71:3,	215:18, 215:19,
79:11, 96:7,	21:4, 21:5,	98:11. 164:10.	218:3, 248:12
99:10, 112:5,	27:10, 27:17,	165:13. 194:7.	sets
123:9, 136:12,	38:5, 38:15,	195:21	112:17, 138:10,
138:14, 139:17,	44:4, 52:14,	sensors	147:20, 207:20,
141:3, 155:9,	52:22, 53:17,	235.21	207:22, 220:22,
155:14, 155:17,	54:22, 55:5,	sentence	240:4, 240:15
162:19, 165:21,	58:11, 58:15,	15.22 16.7	setting
175:20, 176:12,	69:22, 72:7,	16.10 16.12	32:11, 44:17,
205:13, 213:12,	79:1, 83:3,	20.6 20.13	71:20, 91:17,
215:9, 221:11	96:22, 99:14,	20.22 21.13	94:6, 94:18,
scenarios	99:15, 99:17,	$23 \cdot 1$, $23 \cdot 5$.	144:8, 145:5,
21:3, 66:20,	121:16, 123:8,	$23 \cdot 10, 23 \cdot 11,$	145:9, 149:5,
104:2	132:10, 136:10,	24.13. 38.7.	154:2, 175:22,
scheme	136:16, 146:16,	52.7. 55.2.	177:22, 179:6,
208:22	146:21, 152:17,	58.13. 61.13.	182:6, 203:12,
scope	153:2, 155:4,	72.2. 123.7.	204:12, 206:1,
178:2, 237:12,	161:22, 163:9,	136:12. 136:18.	207:2, 207:11,
237:16, 238:7,	175:3, 176:11,	137.19, 143.13,	207:15, 207:17,
238:16, 239:3,	176:18, 178:5,	152.14. 168.3.	217:18, 223:21,
239:9, 244:9,	184:9, 187:10,	184.4. 184.11.	240:1, 240:7,
244:19	198:1, 204:18,	213:14, 214:2	240:18, 241:1,
scott	212:2, 212:14,	sentences	241:3, 241:5,
1:10, 2:1, 5:2,	214:14, 217:14,	152.19	241:10, 245:16,
7:3, 8:5, 8:8,	225:12, 227:22,	separate	245:22
8:18, 247:2	243:9, 243:13	114.7 215.12	several
		····// ····	65:5, 168:5,
		1	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 283

Conducted on June 16, 2017

198:9	signal	121:22, 144:3,	88:3, 186:22
shading	11:14, 15:2,	144:5, 146:5,	sing
29:22, 30:2	17:6, 19:14,	156:1, 213:18,	216:14
share	44:1, 44:2,	213:19	single
182:16	45:6, 45:14,	signal-to-noise	160:16, 160:21,
sheet	46:7, 46:18,	ratios	161:7, 161:9,
247:7	47:3, 47:13,	213:15	162:13, 162:14,
shell	47:15, 47:19,	signals	163:1, 165:6,
117:16, 118:2	47:22, 48:2,	5:20, 12:4,	165:10, 165:19,
short	52:12, 53:3,	14:1, 15:16,	166:3, 166:18,
168:7	53:5, 54:18,	15:19, 17:20,	167:19, 167:22,
shorthand	58:5, 62:7,	29:12, 83:9,	168:2, 174:1,
248:1	63:5, 64:4,	87:21, 101:2,	174:14, 175:9,
should	69:1, 74:20,	122:9, 123:5,	176:9, 177:17,
63.9. 99.6.	76:14, 76:15,	124:9, 124:10,	177:20, 193:11,
100.4 127.16	81:2, 82:13,	133:6, 154:9,	216:11, 216:13,
133.8 134.8	83:2, 84:7,	184:6, 196:12,	217:11, 217:18,
137.6 137.9	84:9, 84:16,	199:17, 199:18,	218:1, 218:3,
138.21 203.3	87:8, 87:20,	217:16, 234:19,	218:14, 218:22,
shoulders	88:11, 96:5,	234:21	219:9, 220:17,
81.11	98:2, 98:7,	signature	221:6, 221:7,
show	99:11, 101:4,	247:11	221:11, 221:16,
10.2	113:13, 114:19,	signature-t8eut	221:21, 239:20,
showed	122:10, 124:21,	248:16	240:4, 240:16,
207.15	126:15, 132:17,	signed	241:1, 241:3,
227:15	133:1, 133:11,	247.7	241:5, 241:7,
snowing	137:4, 137:8,	significant	241:15, 241:16
52:18, 52:20,	144:4, 147:1,	17.0 150.5	single-channel
53:1, 53:19,	147:10, 147:12,	150.18 150.10	192:14
54:17, 54:18,	147:16, 147:18,	159.10, 159.19, 159.19, 150.21, 162.5	sitting
5/:/, 129:11	147:21, 152:16,	significantly	25.1. 25.2.
shown	153:8, 155:13,		25.4. 25.13.
48:18, 50:16,	174:4, 174:11,	101:5	26.6 42.3
61:8, 61:9,	178:12, 180:8,		67.6. 69.5.
70:12, 70:20,	183:9, 198:21,	248:8	89.11. 105.6.
97:5, 99:4,	198:22, 199:19,		128.15. 129.3.
100:11, 210:9,	199:22, 207:7,	12:19, 86:10,	186:20, 187:19
227:17, 241:8	211:3, 211:13,	18/:16	situation
shows	214:4, 214:7,	simple	93.6 140.22
48:19, 49:4,	214:8, 215:17,	62:15, 192:14,	187.18 227.1
61:15, 70:17,	223:12, 223:15,	192:18, 193:11,	situations
210:1, 216:2	223:18, 224:8,	208:20	$21 \cdot 9 21 \cdot 11$
shrugging	225:22, 230:14,	simplicity	21.9, 21.11, 22.5, 79.17
81:11	231:8, 234:5,	20:9	22.5, 19.17,
side	235:1	simply	$33.3, \pm 03.3,$ 107.13, 100.11
30:6, 43:12,	signal-to-noise	71:15, 106:16,	12/113, 120:11
131:5, 146:16,	ratio	149:11, 217:14	
155:2, 174:22	20.14, 75.7	since	90:2, 90:1, 00.0, 164.10
sidley		72:5, 88:2,	JO:J, 104:10,
4:5, 7:20			

Conducted on June 16, 2017

1((,2) 1(7.2	a of the same		07.10 07.20
100:22, 107:2,			97:19, 97:20,
181:4	1:6, /:5	233:19	105:2, 111:13,
SKILL	solve	somewhat	198:14, 206:21,
17:4, 47:17,	190:9, 198:16	227:1	220:5, 234:2,
131:3, 162:9,	some	sorry	234:13, 244:3
162:21, 185:3,	17:11, 25:22,	16:7, 44:1,	speaks
185:18, 190:4,	26:1, 28:21,	72:22, 81:5,	58:6
194:10, 194:19,	40:14, 67:10,	83:1, 92:4,	specific
197:20	71:10, 84:12,	95:19, 97:6,	22:17, 31:17,
slightly	98:11, 109:14,	102:16, 102:17,	31:18, 34:7,
58:19	110:6, 119:18,	122:19, 125:4,	34:20, 50:14,
small	121:6, 121:8,	133:10, 134:6,	67:10, 70:7,
139:14, 140:3,	122:10, 124:18,	139:9, 140:10,	71:15, 74:13,
146:17	127:9, 127:16,	150:7, 175:1,	74:16, 74:22,
smallest	128:22, 133:15,	175:14, 175:15,	76:10, 79:21,
144:21, 173:21,	141:18, 141:20,	189:17, 190:15,	83:13, 84:21,
174:12, 175:7	148:8, 149:6.	199:15, 202:18.	106:22, 109:21,
176:6, 176:14.	150:8, 154:3,	204:11, 206:8.	109:22, 110:6,
$177 \cdot 1 177 \cdot 9$	161:2. 161:14.	206:13. 210:18.	110:8, 113:20,
$177 \cdot 13 \cdot 178 \cdot 1$	164:8. 165:12.	216:13. 217:3.	126:16, 159:2,
smooth	167:5. 180:17.	217:4. 226:6.	160:18, 166:14,
30.1 111.11	182.16. 189.6.	232.22. 235.5.	172:17, 173:3,
smoothing	193.18, 203.19,	236:2	174:18, 203:4.
108.10 108.15	203.21, 203.22,	sort	214:9, 228:7
100.10, 100.	204.2. 207.18.	46.20 63.19	specifically
109.3, 109.0, 100.12, 100.14	217.12 222.17	106.9 161.2	13.1 13.11
109.12, 109.14, 100.10	231.16 233.21	2/1.8	43.15 44.16
109:10, 109:10, 109:10, 100.21, 110.2	236.3 236.4	sorts	68.4 111.21
110.6 110.0	somebody	63.17 153.14	149.19 205.1
111.1 111.4	81·17 205·2	cound	specification
111.E 111.C	somehow	10.2 22E.1E	18.11 71.10
111.0 111.12	70.10 104.3	19:2, 235:15	9/.13 $9/.18$
111.10, 111.10	79.10, 104.3		$125 \cdot 20 214 \cdot 10$
112.7 112.0		172.6	215.8 237.19
112:7, 112:0,	10:19, 50:9,	1/3:6	238.8 239.6
	81:14, 103:9, 162:11 105:6	southern	230.0, 239.0, 230.10, 230.13
	103:11, 193:0,	9:1	239.10, 239.13, 239.13, 239.10, 239.22
100.5 100.12	200.0	southwest	240.12 241.6
109:5, 109:13,		4:14	240.12, 241.0,
111:13	18:18, 30:8,	space	211.0, 211.11, 211.00
	50:19, 05:17, 05:17, 05:17	101:21	245.11
5:20, 20:17,	66:7, 73:12,	spatio-temporal	specified
122:1, 170:18,	82:8, 104:0,	5:9, 19:21,	160.10
1/3:16, 1/4:3,	114:4, 115:1, 116:0, 107:14	195:1	specifies
1/4:22, 213:1/	116:8, 12/:14,	speaker	
snrs	162:4, 165:14,	123:10	222:3, 223:11,
213:13, 213:14	1/3:3, 1/8:20, 100.12, 204.22	speaking	223:14, 223:19, 225.7 242.10
so-called	198:13, 204:22,	67:17, 71:6,	223:1, 243:10
236:14	ZII:IJ, ZZ9:ZI	71:13, 81:9,	PECTTÀ
			180:21, 181:1,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 285

Conducted on June 16, 2017

$\begin{array}{llllllllllllllllllllllllllllllllllll$	181:7, 182:2,	198:1, 201:19,	staff	177:19, 193:10,
183:12, 224:19 202:3, 202:5, 38:6 214:11 spectral 208:9, 210:22, 58:6 standard 131:10, 12:14, 39:11, 131:9, 51:4, 55:8, 51:10, 55:10, 55:18, 41:19, 145:9, 55:10, 55:18, 55:10, 55:18, 15:10, 55:16, 55:10, 55:18, 15:12, 14:11, 14:14, 14:16, 55:14, 55:19, 15:12, 15:17, 223:14, 223:14, 223:14, 223:14, 18:2:17, 14:14, 14:16, 55:14, 15:19, 18:2:20, 189:6, 209:9, 14:17, 14:20, 55:4, 209:19, 214:11 staying 15:18, 15:12, 207:7, 215:16, 52:11, 18:12, 147:4 56:14, 18:2:17, 14:12, 147:4 staying 16:2, 16:13, 223:14, 223:17, 223:14, 223:17 started 147:13, 147:22 18:1, 18:7, 39:ech 118:3 sterographically 12:16, 12:, 17:21, 223:17, 223:14, 223:17 started 147:13, 147:22 18:1, 18:7, 19:4, 5:11, 5:14, 5:13, 19:22, 23:10, 236:11, 236:19, 236:11, 236:19, 236:11, 236:19, 236:11, 236:19, 236:11, 236:19, 236:19, 236:11, 236:19, 236:12, 236:19, 236:11, 236:12, 236:19, 236:11, 236:12, 236:19, 236:11, 236:12, 236:19, 236:11, 236:12, 236:19, 236:12, 236:19, 236:12, 236:12, 236:11, 257:13, 136:15, 136:10, 136:15, 136:10, 136:15, 248:16, 139:17, 138:11, 138:11, 138:14, 138:16, 193:17, 138:14, 138:16, 193:17, 138:14, 14:11, 224:14, 14:14, 248:16, 224:19, 244:14, 14:14, 248:16, 224:19, 244:16, 224:19, 244:14, 14:14, 248:16, 224:19, 244:14, 14:14, 248:16, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224:19, 224	182:13, 183:10,	201:21, 202:1,	4:10, 8:1	212:10, 212:14,
spectral208:9, 210:22, 212:11 $5:15$, 6:5, 317:9, 213:9 $tating5:15, 6:5,12:10, 12:14,13:12, 13:12,13:12, 13:12,13:12, 13:12,13:12, 13:12,13:12, 13:19,5:14, 55:16,5:16,14:17, 14:26,14:7, 14:27,14:14, 14:16,14:17, 14:20,14:12, 16:13,12:14, 22:116,16:21, 17:21,22:112, 22:117,22:117, 22:117,22:117, 22:117,18:15, 19:14,16:12, 16:13,22:117, 22:117,22:117, 22:117,22:117, 22:117,18:15, 19:14,16:12, 16:13,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:117, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:117, 22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:12, 22:117,22:117, 22:12, 22:13, 22:13, 22:13, 22:13, 22:13, 22:13, 22:13, 22:13, 22:14, 22:14, 22:14, 24:14, 14:17, 22:14,$	183:12, 224:19	202:3, 202:5,	stand-alone	214:11
5:15, 6:5, $212:11$ $21:14,$ $3pectrum$ $13:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:12,$ $31:13,$ $31:14,$ $31:14,$ $31:13,$ $31:14,$ $31:14,$ $31:13,$ $31:14,$	spectral	208:9, 210:22,	58:6	stating
12:10, 12:14, spectrum 184:7, 184:21, stationary 13:17, 13:12, 52:12, 52:13, 186:14 104:6 14:3, 14:6, 55:10, 55:18, 41:19, 145:9, 6:6 14:7, 14:8, 56:1, 56:10, 156:14, 182:17, statistics 14:17, 14:8, 56:1, 56:10, 156:14, 182:17, staty 14:17, 14:20, 57:2, 198:20, 216:12 stays 16:21, 17:21, 223:17, 236:14 51:10, 51:16, 16:22, 16:13, 223:14, 223:16, 51:10, 51:14, 51:20, 6:9, 16:12, 18:15, 19:4, 5:11, 5:14, 5:20, 6:9, 16:2, 14:11 236:14 21:19, 22:20, 16:13, 19:22, 5:13, 14:11 236:14 248:6 21:20, 23:22, 20:8, 136:15, 114:11 248:6 5tep 21:21, 29:11, 137:18, 138:19, 13:11, 159:14, 152:14, 152:19, 29:118, 29:11, 41:47, 44:11, 138:12, 138:11, 138:12, 138:11, 138:12, 139:11, 165:4, 166:16, 45:2, 21:47, 29:11, 137:18, 138:19, 13:11, 159:14, 152:14, 152:19, 29:118, 30:16, 45:2, 21:12, 99:11,	5:15, 6:5,	212:11	standard	137:9, 213:9
13:2, 13:12, 52:12, 52:13, 186:14 184:6 13:17, 13:19, 55:4, 55:18, standpoint statistics 14:3, 14:6, 55:10, 55:18, 119:11, 145:9, 6:6 14:14, 14:6, 56:14, 56:19, 156:14, 182:17, stay 14:14, 14:16, 56:14, 56:19, 16:2, 189:6, 209:9 14:17, 14:20, 57:2, 198:20, 216:12 staying 16:21, 17:21, 223:17 statt 147:4 18:15, 19:4, 5:10, 55:4, 69:6, 144:12 stays 18:15, 19:4, 5:10, 5:14, 18:3 steer 18:15, 19:4, 5:10, 5:14, 5:20, 6:9, 16:2, 61:3 236:9, 236:11, 23:20, 23:22, 20:8, 136:15, 114:11 248:6 236:9, 236:11, 23:20, 23:22, 20:8, 136:15, 114:11 248:6 236:14, 23:20, 23:22, 20:8, 136:15, 114:11 248:6 249:14, 41:7, 44:11, 137:18, 137:15, 7:12, 8:16, 28:12, 29:11, 23:20, 23:22, 20:8, 136:19, 155:14, 166:16, 45:12, 24:24:20, 24:1, 45:1, 138:12, 138	12:10, 12:14,	spectrum	184.7 184.21	stationary
13:17, 13:19, 55:4, 55:8, standpoint statistics 14:3, 14:6, 55:10, 55:18, 11:19, 145:9, 6:6 14:7, 14:8, 56:1, 56:10, 156:14, 182:17, stay 14:14, 14:8, 56:1, 56:10, 156:14, 182:17, stay 14:17, 14:20, 57:2, 198:20, 20:9 staying 15:8, 15:12, 20:7, 215:16, start 147:13, 147:22 16:21, 17:21, 223:14, 223:16, 69:6, 144:12 stays 18:15, 19:4, 5:11, 5:14, 51:1, 5:14, 51:1, 5:14, 147:13, 147:22 19:7, 20:7, 20:8, 136:15, 114:11 236:14 236:14 21:20, 23:22, 20:8, 136:15, 114:11 248:6 step 27:7, 29:10, 137:8, 138:19, 153:11, 159:4, 30:16, 45:2, 24:12, 29:11, 45:11, 47:5, 188:22, 139:17, 193:6, 133:11, 159:4, 30:16, 45:2, 24:19 45:12, 79:16, 138:22, 139:17, 193:6, 16:16, 45:13, 46:16, 45:12, 24:4, 52:8, 58:9, 188:22, 193:11, 186:4, 166:16, 45:13, 46:16, 45:12, 24:19, 71:9, 73:8, 210:6, 21:7, 22	13:2. 13:12.	52:12. 52:13.	186.14	184.6
14:3, 14:6, 55:10, 55:18, 11:19, 145:9, 6:6 14:17, 14:8, 56:11, 56:10, 156:14, 182:17, stay 14:14, 14:16, 56:12, 56:10, 156:14, 182:17, stay 14:14, 14:16, 56:11, 56:10, 156:14, 182:17, stay 14:17, 14:20, 57:2, 199:20, 216:12 staying 15:8, 15:12, 207:7, 215:16, 51:1, 56:14, 59:6, 144:12 stays 16:12, 17:21, 223:17 start 147:13, 147:22 18:1, 18:7, Speech 118:3 starts 18:15, 19:4, 5:11, 5:14, 51:13, 236:14 starts 19:7, 20:7, 5:20, 6:9, 16:2, 61:13 236:14 starts 14:11, 17:18, 138:15, 114:11 248:6 step starts 23:20, 23:22, 20:8, 136:15, 114:11 248:6 step 45:11, 47:5, 138:27, 139:17, 165:4, 166:16, 45:13, 46:16, 45:14, 58:17, 138:12, 193:11, 153:11, 159:4, 30:16, 45:2, 19:14, 58:17, 138:12, 193:10, stated 24:19 30:16, 45:2, 119:7, 19:38, <td< th=""><th>13:17, 13:19,</th><th>55:4, 55:8,</th><th>standpoint</th><th>statistics</th></td<>	13:17, 13:19,	55:4, 55:8,	standpoint	statistics
14:7, 14:8, 56:1, 56:10, 116:1, 12, 14:12, stay 14:17, 14:8, 56:1, 56:10, 156:14, 182:17, stay 14:17, 14:20, 57:2, 198:20, 216:12 staying 15:1, 12, 207:7, 215:16, start 147:13, 147:22 16:21, 17:21, 223:17 started 147:13, 147:22 18:15, 19:4, 5:11, 5:14, 51:1, 5:14, start starting 23:20, 23:22, 20:8, 136:15, 118:3 steer starting 23:20, 23:22, 20:8, 136:15, 114:11 248:6 step 23:20, 23:22, 20:8, 136:15, 114:11 248:6 step 24:7, 29:10, 137:6, 137:15, 114:11 248:6 step 29:7, 29:10, 137:8, 137:15, 114:11 248:6 step 51:1, 47:5, 138:15, 138:19, 153:11, 159:4, 166:16, 45:12, 49:4, 51:1, 20:10, 138:22, 192:14, 167:19, 186:17, 49:2, 49:4, 58:12, 59:1, 138:12, 128:19, 153:11, 159:4, 166:16, 45:12, 42:19, 58:12, 59:1, 138:22, 129:11, 188:16, 193:7 97:2, 212:12, 28:18,	14:3. 14:6.	55:10. 55:18.	11.19 $1/5.9$	6.6
14:14, 14:16, 56:14, 56:19, 10:11, 10:1	14:7, 14:8,	56:1, 56:10,	$156 \cdot 11$ 182 · 17	stav
14:17, 14:20, 57:2, 199:20, 216:12 staying 15:8, 15:12, 207:7, 215:16, 216:12 staying 16:2, 16:13, 223:17 start 147:4 16:1, 19:7, 223:17 started 147:1, 13, 147:22 18:15, 19:4, 5:11, 5:14, started 147:13, 147:22 18:15, 19:4, 5:11, 5:14, started 147:13, 147:22 22:18, 22:20, 16:13, 19:22, started steer 23:20, 23:22, 20:6, 136:15, 114:11 248:6 27:5, 29:6, 136:20, 137:5, state step 29:7, 29:10, 137:8, 137:15, 712, 6:16, 25:12, 29:11, 44:7, 44:11, 137:18, 138:19, 152:14, 152:19, 29:15, 29:18, 15:12, 15:15, 138:12, 139:17, 165:4, 166:16, 45:13, 46:16, 52:2, 58:9, 188:22, 192:14, 165:17, 199:186:17, 49:2, 49:4, 58:12, 59:1, 193:10, 193:8, 193:11, 188:16, 193:7 97:2, 212:12, 18:12, 112:16, 12:12, 12:16, 21:6, 22:17, 22:12, 22:14, 22:19, 12:15, 12:15:1, 215:15, 14:10, 12:14, 59:1, 154:10	14.14. 14.16.	56.14. 56.19.	182.20 189.6	200.0
15:8, 15:12, 16:21, 15:12, 16:21, 17:21, 18:1, 18:7,207:7, 215:16, 223:14, 223:16, 223:14, 223:16, 223:17110:12 start147:13 147:13, 147:22 stays18:15, 19:4, 19:7, 20:7, 21:61, 5:14, 22:18, 22:20, 21:22, 20:6, 136:15, 21:75, 29:6, 136:20, 137:5, 137:8, 137:15, 29:7, 29:10, 137:8, 137:15, 137:16, 138:15, 138:19, 138:16, 138:17, 138:15, 138:19, 152:14, 152:19, 29:15, 29:16, 29:15, 29:16, 29:15, 29:18, 30:16, 45:2, 29:15, 29:18, 30:16, 45:2, 19:14, 50:19, 138:22, 139:17, 165:4, 166:16, 165:4, 166:16, 45:11, 64:16, 165:4, 166:16, 45:13, 46:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:13, 46:16, 165:4, 166:16, 45:12, 49:14, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:12, 193:17, 188:16, 193:17, 188:16, 193:17, 188:12, 222:12, 222:12, 222:12, 222:13, 121:15, 122:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 21:16, 22:17, 22:11, 22:12, 22:12, 22:12, 22:10, 22:13, 159:13, 14:11, 16:17, 159:13, 14:12, 159:13, 14:11, 16:17, 159:13, 14:12, 159:13, 14:11, 16:17, 159:13, 14:12, 159:13, 14:12, 159:13, 14:11, 16:17, 159:13, 14:12, 12:14, 159:13, 22:10, 22:13, 159:13, 14:11, 16:17, 159:13, 14:12, 12:14, 159:13, 14:12, 12:14, 159:13, 14:12, 12:14, 159:13, 14:12, 12:14, 159:13, 14:11, 16:17, 159:13, 14:12, 12:14, 159:13, 14:11, 16:17, 159:13, 14:12, 12:18, 120:120, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14:14, 16:17, 159:13, 14	14:17. 14:20.	57:2. 198:20.	216.12	staving
16:2, 16:13, 223:14, 223:16, Start stays 16:2, 16:13, 223:14, 223:16, 69:6, 144:12 stays 18:1, 18:7, speech 118:3 started 147:13, 147:22 18:1, 18:7, speech 118:3 started 147:13, 147:22 18:15, 19:4, 5:11, 5:14, starting 236:14, 236:14, 22:18, 22:20, 16:13, 19:22, starts stenographically 23:20, 23:22, 20:8, 136:15, 114:11 248:6 29:7, 29:10, 137:8, 137:15, 7:12, 8:16, 28:12, 29:11, 44:7, 44:11, 137:18, 138:19, 153:11, 159:4, 30:16, 45:2, 9:14, 50:19, 138:22, 139:17, 165:1, 166:16, 45:13, 46:16, 52:8, 58:9, 188:22, 192:14, 167:19, 186:17, 49:2, 49:4, 58:14, 55:17, 193:8, 193:11, 188:16, 193:7 97:2, 212:12, 58:22, 59:1, 193:12, 208:10, stated 22:14 112:15, 112:16, 21:27, 212:16, 21:6, 22:17, 22:12, 12:15, 12:27, 212:16, 21:6, 22:17, 22:14, 25:1, 22:14, 24:19 12:112:15, 12:27, 21:	15.8. 15.12.	207.7. 215.16.	ctart	1 47.4
16:21, 17:21, 23:17 started 147:13, 147:22 18:15, 18:7, speech 118:3 steer 18:15, 19:4, 5:11, 5:14, started 147:13, 147:22 22:18, 22:20, 16:13, 19:22, starting 236:14 23:20, 23:22, 20:8, 136:15, 114:11 248:6 27:5, 29:6, 136:20, 137:5, state step 29:7, 29:10, 137:8, 137:15, 712, 8:16, 29:15, 29:11, 44:7, 44:11, 137:18, 138:19, 153:11, 159:4, 30:16, 45:2, 49:14, 50:19, 138:22, 139:17, 165:4, 166:16, 45:13, 46:16, 52:8, 58:9, 188:22, 192:14, 167:19, 186:17, 49:2, 49:4, 58:14, 58:17, 193:8, 193:11, 188:16, 193:7, 97:2, 212:12, 58:22, 59:1, 195:1, 208:10, stated 224:19 71:9, 73:8, 210:8, 210:14, 59:1, 154:10 steps 71:12, 18:1, 12:24, statement 48:21, 224:20, 12:17, 212:16, 21:16, 22:17, 22:12, 22:12, 13:14, 18:1, 12:15, 12:14, 112:13, 13:14, 15:17, 13:12, 15:2, <td< th=""><th>16:2. 16:13.</th><th>223:14. 223:16.</th><th>60.6 144.12</th><th></th></td<>	16:2. 16:13.	223:14. 223:16.	60.6 144.12	
18:1, 18:7, spech 18:3 14/113, 14/122 18:1, 18:7, spech 18:3 stern 18:1, 19:7, 5:20, 6:9, 16:2, 13:3 stern 19:7, 20:7, 5:20, 6:9, 16:2, 13:13 236:14 22:18, 22:20, 16:13, 19:22, starts stepgr 23:20, 23:22, 20:8, 136:15, 114:11 248:6 27:5, 29:6, 136:20, 137:5, state step 29:7, 29:10, 137:8, 137:15, 7:12, 8:16, 28:12, 29:11, 44:7, 44:11, 137:18, 138:19, 152:14, 152:19, 29:15, 29:18, 45:11, 47:5, 188:12, 19:17, 165:4, 166:16, 45:13, 46:16, 52:8, 58:9, 188:22, 19:11, 167:19, 186:17, 49:2, 49:4, 58:12, 59:1, 19:12, 20:14, 59:1, 154:10 steps 73:13, 73:14, 210:8, 200:14, 59:1, 154:10 steps 73:14, 64:6, 212:7, 212:16, 21:6, 22:17, 22:12, 22:4:20, 141:16, 155:3, 214:20, 214:22, 154:10 steps 156:22, 184:7, 22:13, 22:10, 22:17, 22:14, 19:17, 159:12, 167:13, 12:14:10	16.21, 17.21	223.17	startod	147.12 147.00
18:15, 19:4, 5:11, 5:14, 5tarting 236:9, 236:11, 19:7, 20:7, 5:20, 6:9, 16:2, 61:13 236:9, 236:11, 22:18, 22:20, 16:13, 19:22, starts steepgraphically 23:20, 23:22, 20:8, 136:15, 114:11 248:6 27:5, 29:6, 136:20, 137:5, starts steep 29:7, 29:10, 137:8, 137:15, 7:12, 8:16, 28:12, 29:11, 44:7, 44:11, 137:18, 138:19, 155:11, 159:4, 30:16, 45:2, 99:7, 29:10, 133:8, 137:15, 7:12, 8:16, 28:12, 29:11, 44:7, 44:11, 137:18, 138:19, 155:11, 159:4, 30:16, 45:2, 99:7, 29:10, 138:12, 139:17, 165:4, 166:16, 45:13, 46:16, 58:22, 59:1, 198:12, 20:14, 167:19, 186:17, 97:2, 212:12, 58:24, 59:1, 195:1, 20:10, stated 224:19 71:9, 73:8, 210:6, 21:01, 51:1, 154:10 steps 73:13, 73:14, 211:1, 212:4, stated 48:21, 224:20, 141:16, 155:3, 214:20, 214:22, 124:19, 127:4, 7:21, 141:16, 155:3, 214:20, 214:22, 124:19, 127	18:1. 18:7.	speech	110.2	14/:13, 14/:22
19:7, 20:7,Sill, 6:9, 16:2,Starling236:19, 236:11,22:18, 22:20,16:13, 19:22,startsstenographically23:20, 23:22,20:8, 136:15,114:11246:627:5, 29:6,136:20, 137:5,statestep29:7, 29:10,137:8, 137:15,7:12, 8:16,28:12, 29:11,44:7, 44:11,137:18, 138:19,152:14, 152:19,29:15, 29:18,49:14, 50:19,138:22, 139:17,155:4, 166:16,45:13, 46:16,52:8, 58:9,188:22, 192:14,167:19, 186:17,49:2, 49:4,58:14, 58:17,195:1, 208:10,stated224:1971:9, 73:8,210:8, 200:14,59:1, 154:10steps73:13, 73:14,211:1, 212:4,stated224:1971:15, 112:16,213:3, 213:10,64:8, 72:13,226:8, 226:9141:16, 155:3,224:20, 222:13,128:5, 139:9,steve156:22, 184:7,215:1, 215:15,124:19, 127:4,7:21184:12, 185:9,222:7, 222:10, 222:13,159:12, 159:13,4:4, 16:17192:10, 192:13,243:17, 243:20,208:20, 215:8,39:15192:11, 193:15,spend11:1, 4:12,10:20194:12, 194:12,198:20108:17, 132:17,168:4, 166:16,195:2, 195:12,198:2011:1, 4:12,28:1, 28:2,195:14, 195:17,198:20108:17, 132:17,168:5196:19, 196:21,198:2011:1, 4:12,28:1, 28:2,195:14, 195:17,198:20108:17, 132:17,168:5196:14, 196:3,198:20 <th>18.15. 19.4.</th> <th>$5 \cdot 11 5 \cdot 14$</th> <th>118:3</th> <th></th>	18.15. 19.4.	$5 \cdot 11 5 \cdot 14$	118:3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19.7.20.7.	5.20 6.9 16.2		236:9, 236:11,
23:20, 23:22, 20:8, 136:15, 114:11 Starts Stenographically 27:5, 29:6, 136:20, 137:5, 29:7, 29:10, 137:8, 137:15, 7:12, 8:16, 28:12, 29:11, 14:11 Step 44:7, 44:11, 137:18, 138:1, 152:14, 152:19, 29:15, 29:18, 138:12, 138:12, 153:11, 159:4, 30:16, 45:2, 19:12, 22:13, 153:11, 159:4, 166:16, 49:2, 49:4, 152:13, 46:16, 167:19, 186:17, 49:2, 49:4, 158:22, 59:1, 19:12, 208:10, 167:19, 186:17, 49:2, 49:4, 158:22, 59:1, 19:12, 208:10, 167:19, 186:17, 224:20, 224:19 73:13, 73:14, 211:1, 212:4, 8tatement 48:21, 224:20, 224:19 73:13, 73:14, 211:1, 212:4, 8tatement 48:21, 224:20, 224:19 73:13, 73:14, 211:1, 212:4, 184:6, 212:7, 212:16, 21:6, 22:17, 225:1, 225:4, 226:9 21:6, 22:17, 225:1, 225:4, 226:9 141:16, 155:3, 214:20, 214:22, 81:16, 116:6, 8teve 12:6, 12:17, 22:14, 22:13, 12:12, 12:14, 185:19, 12:7, 12:15, 12:15, 12:15, 12:15, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:12, 12:14, 13:12, 12:14, 13:12, 12:14, 13:12, 12:14, 13:12, 12:14, 13:12, 12:14, 13:12, 12:14, 13:12, 12:14, 12:14, 12:14,	22.18 22.20	16.13 19.22	61:13	236:14
114:11248:627:5, 29:6,136:20, 137:5,114:1129:7, 29:10,137:8, 137:15,state44:7, 44:11,137:18, 138:1,152:14, 152:19,45:11, 47:5,138:15, 138:19,153:11, 159:4,49:14, 50:19,138:22, 192:14,155:4, 166:16,52:8, 58:9,188:22, 192:14,165:4, 166:16,58:22, 59:1,195:1, 208:10,stated71:9, 73:8,210:8, 210:14,59:1, 154:1058:22, 59:1,195:1, 208:10,stated71:9, 73:8,210:8, 210:14,59:1, 154:1059:12, 112:16,213:3, 213:10,64:8, 72:13,226:8, 226:981:16, 116:6,steve141:16, 155:3,214:20, 214:22,141:16, 155:3,214:20, 222:13,159:12, 185:9,222:7, 222:19,185:19, 185:22,22:10, 222:13,192:10, 192:13,243:7, 243:20,192:21, 193:7,244:7192:21, 193:7,244:7193:10, 193:15,spent194:12, 194:20,spent195:2, 195:12,127:10, 127:14,195:2, 195:12,13:5195:14, 195:17,spent195:14, 195:17,spent195:14, 195:17,spent195:14, 195:17,sic196:11, 196:3,198:20196:11, 197:13,sic197:41, 197:13,3:6197:41, 197:13,3:6197:41, 197:14,3:6197:41, 197:13,3:6197:41, 197:14,197:41, 197:13,197:41, 197:13,197	$23 \cdot 20$ $23 \cdot 22$	20.8 136.15	starts	stenographically
100, 100, 100, 100, 100, 100, 100, 100,	27.5. 29.6.	136.20 137.5		248:6
1211, 121, 121, 121, 121, 121, 121, 121	29.7 29.10	137.8 137.15	state	step
111, 111, 111, 111, 111, 111, 111, 111	44.7 44.11	137.18 138.1	7:12, 8:16,	28:12, 29:11,
13:11, 15:11, 15:14, 30:16, 45:2, 13:12, 15:11, 15:19:4, 16:14, 50:19, 52:8, 58:9, 18:22, 19:14, 18:22, 19:14, 18:22, 19:14, 19:1, 208:10, 19:1, 21:1, 21:2, 11:1, 21:2, 11:1, 21:1, 21:2, 11:1, 21:1, 21:2, 11:1, 21:1, 21:1, 21:1, 21:14, 11:1, 21:14, 11:1, 21:15, 11:1, 21:15, 12:1	45.11 47.5	138.15 138.19	152:14, 152:19,	29:15, 29:18,
12:17, 30:17, 13:17, 13:17, 15:17, 165:4, 166:16, 44:16, 16:17, 19:18:12, 19:14, 19:19, 13:11, 19:11, 20:14, 18:16, 19:17, 19:13, 10:11, 20:14, 20:11:1, 21:24, 18:16, 19:17, 19:11, 19:11, 21:24, 21:12, 22:10, 22:13, 21:10, 22:17, 22:10, 22:13, 21:6, 21:17, 22:12, 22:10, 22:13, 21:6, 21:17, 22:12, 22:10, 22:13, 21:6, 21:16, 116:6, 14:16:6, 14:16:17, 15:15, 12:15:15, 12:15:15, 12:15:12, 15:12, 15:12, 15:13, 15:12, 15:12, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:13, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:12, 15:12, 15:13, 15:13, 15:12, 15:13, 15:12, 15:13, 15:12, 15:13, 15:12, 15:13, 15:12, 15:13, 15:12, 15:13, 15:13, 15:12, 15:13, 15:13, 15:12, 15:13, 15:13, 15:13, 15:12, 15:13, 15:1	49.14 50.19	138.22 139.17	153:11, 159:4,	30:16, 45:2,
32:07, 50, 50, 70, 103:17, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 193:11, 195:1, 208:10, 210:2, 193:10, 195:1, 208:10, 210:2, 194:10, 193:17, 213:3, 213:10, 484:1, 84:6, 212:7, 212:16, 21:6, 22:17, 212:16, 21:6, 22:17, 212:13, 213:3, 213:10, 448:21, 224:20, 214:22, 114:116, 155:3, 214:20, 214:22, 21:6, 22:17, 22:13, 124:19, 127:4, 125:15, 124:19, 127:4, 122:13, 185:19, 185:22, 222:10, 222:13, 128:10, 116:6, 126:6, 126:10, 192:13, 222:10, 222:13, 128:10, 116:6, 126:10, 192:13, 144:10, 127:14, 194:15, 192:10, 192:13, 244:7 222:20, 222:22, 129:15, 137:13, 129:15, 187:15, 120:120, 127:10, 127:14, 194:12, 194:20, 128:14, 195:17, 139:10, 130:17, 132:17, 165:4, 166:16, 167:21, 170:7, 172:3, 170:20, 171:1, 197:14, 141:10, 14	52.8 58.9	188.22 192.11	165:4, 166:16,	45:13, 46:16,
38:11, 95:11, 195:11, 195:11, 195:11, 195:11, 208:10, 195:11, 195:17, 197:12, 212:12, 188:16, 193:7 97:2, 212:12, 224:12, 224:19 71:9, 73:8, 73:14, 210:8, 210:14, 211:1, 212:4, 84:6, 212:7, 212:16, 21:6, 22:17, 225:1, 225:4, 226:9 141:16, 155:3, 214:20, 214:22, 81:16, 116:6, 166, 166, 166, 156:22, 184:7, 215:15, 124:19, 127:4, 7:21 226:18, 226:9 141:16, 155:3, 214:20, 214:22, 155:15, 124:19, 127:4, 185:19, 185:22, 222:7, 222:9, 128:5, 139:9, 159:12, 159:13, 166:6, 159:12, 159:13, 166:6, 159:12, 159:13, 159:12, 159:13, 169:12, 159:13, 159:12, 159:15, 187:13, 208:20, 215:8, 39:15 192:21, 193:7, 244:7 221:18, 222:18 193:10, 193:15, 199:13, 199:13, 199:12, 199:13, 199:13, 199:15, 127:10, 127:14, 197:12, 194:20, 43:5 39:15 194:12, 194:20, 194:12, 194:20, 195:12, 195:12, 127:10, 127:14, 187:5 30:15 195:14, 195:17, 196:1, 196:21, 39:62, 198:20 108:17, 132:17, 165:5, 166:16, 167:21, 170:7, 126:17, 132:17, 165:4, 166:16, 167:21, 170:7, 127:14, 168:5 197:41, 197:13, 197:13, 197:13, 197:13, 197:14, 197:13, 197:14, 197:13, 197:14, 197:1	58.14 58.17	103.8 103.11	167:19, 186:17,	49:2, 49:4,
30:22, 39:17, 73:18, 73:14, 210:18, 210:14, 211:1, 212:4, 84:1, 84:6, 212:7, 212:16, 21:6, 22:17, 225:1, 225:4, 226:8, 226:9 3tatement 48:21, 224:20, 48:21, 224:20, 225:1, 225:4, 225:1, 225:4, 226:8, 226:9 112:15, 112:16, 155:3, 214:20, 214:22, 164:8, 72:13, 156:22, 184:7, 215:1, 215:15, 124:19, 127:4, 156:16, 116:6, 124:19, 127:4, 125:19, 125:19, 125:19, 124:19, 127:4, 129:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 14:4, 16:17 steve 184:21, 185:9, 222:7, 222:9, 128:5, 139:9, 185:19, 185:22, 222:0, 222:22, 129:12, 159:13, 159:12, 159:13, 199:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 14:4, 16:17 steven 192:10, 192:13, 243:17, 243:20, 208:20, 215:8, 199:19 39:15 stopping 193:10, 193:15, 199:10, 193:15, 199:11, 194:5, 119 statements 210:20 194:12, 194:20, 194:12, 194:20, 195:12, 155:12, 137:13, 198:20 127:10, 127:14, 187:5 208:10, 210:20 195:14, 195:17, 196:1, 198:20 states 11:1, 4:12, 168:5 166:4, 166:16, 166:16, 167:21, 170:7, 122:14 195:14, 197:13, 197:13, 166 3:6 167:21, 170:7, 122:3 168:5 197:11, 197:13, 197:14, 197:1	58.22 59.1	195.0, 195.11, 195.11	188:16, 193:7	97:2, 212:12,
11.9, 13.0, 73:14, 84:1, 84:6, 112:15, 112:16, 141:16, 155:3, 141:16, 155:3, 141:20, 214:22, 215:1, 215:1, 215:15, 124:20, 214:22, 215:1, 215:1, 215:15, 124:19, 127:4, 128:5, 139:9, 185:19, 185:22, 186:4, 186:15, 192:21, 193:7, 192:21, 193:17, 193:10, 193:15, 194:1, 194:5, 194:1, 194:5, 194:1, 194:5, 195:14, 195:17, 195:14, 195:17, 196:19, 196:21, 197:11, 197:13,110:10, 120, 120, 120, 120, 120, 120, 120, 1	71.9 73.8	210.8 210.14	stated	224:19
34:13, 84:6, 84:1, 84:6, 112:15, 112:16, 112:15, 112:16, 141:16, 155:3, 156:22, 184:7, 185:19, 185:22, 185:19, 185:22, 192:10, 192:13, 193:10, 193:15, 194:12, 194:20, 194:12, 194:5, 195:12, 195:12, 195:12, 195:12, 195:14, 195:17, 195:14, 195:17, 195:12, 195:17, 195:12, 195:12, 195:14, 195:17, 195:14, 195:17, 197:4, 197:8, 197:11, 197:13,211:1, 212:4, 212:7, 212:16, 212:7, 212:16, 213:3, 213:10, 64:8, 72:13, 81:16, 116:6, 124:19, 127:4, 124:19, 127:4, 124:19, 127:4, 124:19, 127:4, 124:19, 127:4, 124:19, 127:4, 125:15, 187:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:14, 195:17, 196:19, 196:21, 197:4, 197:8, 197:11, 197:13,statement 210:20 222:00 222:00 222:00 222:00 222:22, 222:10, 222:22, 222:10, 222:22, 222:20, 222:22, 222:20, 222:22, 222:20, 222:22, 222:10, 222:22, 221:10, 221:13, 208:20, 215:8, 208:10, 210:20 208:10, 2	73.13 73.14	210.0, 210.14, 211.1, 212.4	59:1, 154:10	steps
112:17, 112:16, 112:15, 112:16, 111:16, 155:3, 156:22, 184:7, 	84.1 84.6	212.7 212.7	statement	48:21, 224:20,
111:10, 112:10,	112.15 112.16	212.7, 212.10, 213.3, 213.10	21:6, 22:17,	225:1, 225:4,
111.10, 193.3, 183.3, 183.3, 184.20, 214.22, 184.27, 214.22, 194.22, 184.27, 215.15, 215.15, 1215.15, 181.16, 116:6, 124.19, 127:4, 7:21 steve 156:22, 184:7, 222:10, 222:13, 185:19, 185:22, 222:0, 222:22, 22:22, 22:20, 222:22, 22:22, 193.17, 243:17, 243:20, 208:20, 215:8, 199.15, 187.13, 208:20, 215:8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208:20, 215.8, 199.15, 187.13, 208.10, 210.20 194:1, 194:5, 41:7 127:10, 127.14, 187.5, 187.13, 210.20 194:12, 194:20, 195:12, 195:12, 43:5 127:10, 127.14, 187.5, 199.15, 187.13, 208.10, 210.20 195:2, 195:12, 195:12, 195:12, 195:12, 198.20 127:10, 127.14, 187.5, 208.10, 210.20 195:14, 195:17, 196:3, 198.20 1:1, 4:12, 168.5, 166.16, 167.21, 170.7, 168.5, 146.51, 167.21, 170.7, 127.14, 158.5, 170.20, 171.1, 197.13, 170.20, 171.1, 197.13, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 197.14, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1, 170.20, 171.1,	141.16 155.3	214.20 214.22	64:8, 72:13,	226:8, 226:9
1361.2, 1051.2, 1051.7, 213.13, 124:19, 127:4, 184:21, 185:9, 222:7, 222:9, 222:29, 222:21, 128:5, 139:9, 128:5, 139:9, 128:5, 139:9, 128:5, 139:9, 128:5, 139:9, 128:5, 139:9, 128:5, 139:9, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:12, 159:13, 159:15, 187:13, 199:15, 187:13, 159:15, 187:13, 159:15, 187:13, 199:15, 189:14, 189:14, 199:15, 189:14, 199:15, 189:14, 199:14, 1	$156 \cdot 22$ 184 · 7	214.20, 214.22, 215.1, 215.15	81:16, 116:6,	steve
185:19, 185:22, 122:10, 222:13, 128:5, 139:9, steven 186:4, 186:15, 222:20, 222:22, 159:12, 159:13, 4:4, 16:17 192:10, 192:13, 243:17, 243:20, 208:20, 215:8, 39:15 192:21, 193:7, 244:7 208:20, 215:8, 39:15 193:10, 193:15, spend statements 210:20 194:1, 194:5, 41:7 127:10, 127:14, stopping 195:2, 195:12, spent 187:5 208:10, 210:20 195:1, 196:3, spend 11, 4:12, 208:10, 210:20 196:1, 196:3, 198:20 11, 4:12, 28:1, 28:2, 197:4, 197:8, 3:6 1:1, 4:12, 168:5 197:11, 197:13, squared 75:4, 78:19 170:20, 171:1, 72:3	184.21 185.9	213.1, 213.13, 222.9	124:19, 127:4,	7:21
186:19, 103.12, 1 222.10, 222:22, 22:22:22, 22:22:22, 22:22:22, 22:22, 22:22, 22:22, 22:22, 22:22, 22:22,	185.19 185.22	$222 \cdot 7, 222 \cdot 3,$ $222 \cdot 10, 222 \cdot 13$	128:5, 139:9,	steven
192:10, 192:13, 223:17, 243:20, 159:15, 187:13, stipulation 192:21, 193:7, 244:7 208:20, 215:8, 39:15 193:10, 193:15, spend 221:18, 222:18 stopping 194:1, 194:5, 41:7 243:5 statements 210:20 195:2, 195:12, 43:5 spend 187:5 208:10, 210:20 195:14, 195:17, spread 187:5 208:10, 210:20 196:1, 196:3, 198:20 1:1, 4:12, 28:1, 28:2, 196:19, 196:21, square 3:6 1:1, 4:12, 28:1, 28:2, 197:11, 197:13, 3:6 1:65:4, 166:16, straight 197:21, 197:13, 75:4, 78:19 75:4, 78:19 72:11, 72:14	186.4. 186.15.	$222 \cdot 10, 222 \cdot 13, 222 \cdot 22$	159:12, 159:13,	4:4, 16:17
192:21, 193:7, 244:7 208:20, 215:8, 39:15 193:10, 193:15, 244:7 221:18, 222:18 stopping 194:1, 194:5, 41:7 127:10, 127:14, stops 194:12, 194:20, spent 127:10, 127:14, stops 195:2, 195:12, 43:5 states 208:10, 210:20 195:14, 195:17, spread 198:20 1:1, 4:12, 208:10, 210:20 196:1, 196:3, 198:20 1:1, 4:12, 28:1, 28:2, 168:5 197:14, 197:8, 3:6 3:6 1:65:4, 166:16, straight 197:11, 197:13, Squared 75:4, 78:19 170:20, 171:1, 72:11, 72:14	$192 \cdot 10 192 \cdot 13$	$243 \cdot 17$ $243 \cdot 20$	159:15, 187:13,	stipulation
193:10, 193:15, spend 193:10, 193:15, spend 194:1, 194:5, 41:7 194:12, 194:20, spent 195:2, 195:12, 43:5 195:14, 195:17, spread 196:1, 196:3, 198:20 196:19, 196:21, 198:20 197:4, 197:8, 3:6 197:11, 197:13, squared 75:4, 78:19 75:4, 78:19	192.21, 193.7.	243.17, 243.20,	208:20, 215:8,	39:15
194:1, 194:5, 41:7 statements 210:20 194:12, 194:20, spent 127:10, 127:14, stops 195:2, 195:12, 43:5 states 208:10, 210:20 195:14, 195:17, spread 187:5 stores 196:1, 196:3, 198:20 1:1, 4:12, 28:1, 28:2, 196:19, 196:21, square 165:4, 166:16, straight 197:4, 197:8, 3:6 167:21, 170:7, 72:3 197:11, 197:13, squared 75:4, 78:19 170:20, 171:1, 72:11, 72:14	193.10 193.15	spend	221:18, 222:18	stopping
194:12, 194:20, spent 194:12, 194:20, spent 195:2, 195:12, 43:5 195:14, 195:17, spread 196:1, 196:3, 198:20 196:19, 196:21, square 197:4, 197:8, 3:6 197:11, 197:13, squared 75:4, 78:19 75:4, 78:19	$194 \cdot 1$ $194 \cdot 5$	11.7	statements	210:20
195:12, 195:12, 43:5 195:2, 195:12, 43:5 195:14, 195:17, spread 196:1, 196:3, 198:20 196:19, 196:21, square 197:4, 197:8, 3:6 197:11, 197:13, squared 75:4, 78:19 75:4, 78:19	194.12 194.20	spent	127:10, 127:14,	stops
195:12, 195:12, 195:12, 195:12, 196:3, 196:19, 196:21, 196:21, 197:4, 197:8, 197:11, 197:13, 197:11, 197:13, 197:11, 197:13, 197:11, 197:13, 197:10, 19	$195 \cdot 2$ $195 \cdot 12$	12.5	187:5	208:10, 210:20
195:14, 195:17, Spread 196:1, 196:3, 198:20 196:19, 196:21, square 197:4, 197:8, 3:6 197:11, 197:13, squared 75:4, 78:19 75:4, 78:19	195.2, 195.12, 195.14, 195.17	43:5 annod	states	stores
196:19, 196:21, 198:20 108:17, 132:17, 168:5 197:4, 197:8, 3:6 165:4, 166:16, 167:21, 170:7, 197:11, 197:13, 5:4, 78:19 75:4, 78:19 108:17, 132:17, 168:5 107:11, 197:13, 108:17, 132:17, 168:5 167:21, 170:7, 172:3 107:11, 197:13, 108:17, 132:17, 168:5 167:21, 170:7, 168:5	196.1. 196.3	100.00	1:1, 4:12,	28:1, 28:2,
197:17, 197:18, 3:6 197:11, 197:13, squared 75:4, 78:19 75:4, 78:19	196.19 196.21	190:20	108:17, 132:17,	168:5
197:11, 197:13, 3:6 squared 75:4, 78:19 167:21, 170:7, 72:3 straightforward 72:11, 72:14	197.4. 197.8	Square	165:4, 166:16,	straight
squared 170:20, 171:1, straightforward 75:4, 78:19 170:20, 171:1, 72:11, 72:14	197.11, 197.13	3:0	167:21, 170:7,	72:3
72:11, 72:14		squared	170:20, 171:1,	straightforward
		/5:4, /8:19		72:11, 72:14

Conducted on June 16, 2017

	005 0 005 16	111 0	
street	225:8, 225:16	111:2	swear
2:5, 3:7, 3:17,	subtractor	suppress	8:7
4:6, 4:14, 7:9	43:21, 63:4,	12:7	switch
strike	64:2, 68:21,	suppression	215:11, 243:11,
35:17, 36:2,	82:21, 132:8,	5:13, 10:19,	243:14
42:7, 61:11,	225:8, 225:15,	11:2, 11:5,	sworn
68:16, 134:19,	227:4, 227:10	11:9, 11:11,	8:9
160:14, 161:7,	subtracts	11:17, 11:22,	sys
164:3, 172:11,	82:22, 132:8,	16:2, 17:7,	203:6
172:12, 202:8,	209:19	21:2, 21:12,	system's
203:6, 213:1,	subwindow	22:11, 22:22,	96:16
217:9, 218:8,	144:22, 160:2,	24:2, 24:6,	systems
223:4, 237:13,	160:11, 160:14,	24:11, 25:7,	21.17. 21.20.
241:1	160:16, 160:21,	25:17, 31:13,	22.3. 22.4.
structure	161:1. 161:9.	58:7, 71:9	$22 \cdot 14$ 23 · 6
117:17. 118:6.	162:13. 162:14.	sure	23.18 24.14
119:7, 123:13.	163:1, 164:10.	7:13, 16:6.	25.10 25.11
125:18, 126:9.	164:16, 168:21.	23:15, 43:10.	26.1 26.4
156:7. 158:2.	169:7. 169:10.	54:21, 65:17,	26.11 28.8
158.4. 160.19.	169.15. 181.2.	73.20. 74.3.	20.11, 20.0, 28.0, 28.11
166.14. 170.16.	181.8. 181.10.	81.6. 102.10.	20.12 20.6
234.15	181.14	$102 \cdot 12$ $102 \cdot 20$	20.11 20.12
studied	subwindows	102.12, 102.20, 105.17, 119.2	29:11, 29:12,
13.1	144.22 145.1	125.5 125.6	30:20, 30:22,
4J.4	150.22 160.4	129.7 $1/9.9$	3/:1, 3/:4,
	160.9 160.10	150.9 164.11	44:10, 49:13,
	161.12 161.22	164.17 170.6	49:14, 49:15,
	162.10 162.21	175.14 170.2	49:16, 50:13,
214:5	103.10, 103.21,	19/11 195.11	50:20, 61:1,
subbands	169.6 160.1	104.1, 103.11,	61:7, 79:18,
213:13	100.0, 109.1,	100.13 107.13,	81:11, 83:21,
subject	1//:13, 101:22	100.13 200.7	8/:6, 8/:13,
38:12		202.10 202.2	87:16, 100:22,
substantially	171.12 200.01	202.10, 203.2,	
44:2	1/1:13, 220:21	200.13, 214.21, 220.13, 220.10	111:4, 111:5,
subtract	suggest	220.13, 230.10,	111:7, 122:2,
47:12, 48:2,	1/1:21	230.1, 242.13	122:3, 184:15,
210:6, 210:17,	summarize		188:21, 189:2,
210:18	9:17	3:12, 3:3, 7.12, 0.12	193:3, 193:19,
subtracted	summation	/:13, 8:13, 10.15 20.10	201:10, 201:11,
72:15, 209:22	123:4	19:15, 39:18,	201:13, 203:14,
subtracting	summer	39:21, 40:2,	203:17, 203:19,
43:21, 45:2,	4:18	40:3, 51:8,	203:21, 203:22,
45:5, 45:13,	support	73:20, 73:22,	204:2, 204:3,
45:21, 46:5,	128:16	/4:3, /4:1U,	213:7, 234:22,
46:17, 47:3,	supports	117.1 100.0	238:12, 242:10,
47:14, 47:18,	125:17	11/:1, 129:8,	243:2, 243:4
47:21, 48:8,	supposed	140:11, 101:18,	T
52:11, 223:6,	109:7, 110:3,	240:4	ta
			1:6, 7:5

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

take	tape	20:8, 26:17,	199:8, 204:22,
25:10, 40:20,	7:2, 74:7,	34:13, 34:15,	218:21, 221:10,
73:18, 79:20,	116:21, 200:11	34:22, 35:1,	224:12, 228:14,
96:16. 96:18.	tasks	44:15, 45:19,	233:5, 233:9
110.21 111.3	73.6	46.22. 47.8.	terminology
117.16 125.7	teach	48.4. 48.8.	206.14
167.7 200.5	122.7 151.14	50.14 51.6	terms
200.7 237.1	132:7, 131:14	73.17 83.8	21.7 40.10
takon		88.13 89.13	21.7, 40.19, 40.5 01.14
	221:14	00.16 00.10	40:0, 01:14, 02:01, 05:12
/4:6, 116:1/,	technical	09.10, 09.19,	83:21, 85:13,
151:21, 200:10,	38:22, 63:18,	89:21, 92:15,	104:10, 105:4,
231:17, 231:19,	117:12, 117:19,	92:20, 94:5,	113:21, 113:22,
231:21, 237:6,	118:8, 118:10,	195:15, 196:1,	117:16, 118:9,
248:3, 248:5	118:16, 118:22,	196:7, 212:11,	120:3, 138:2,
takes	119:8, 119:10,	213:7	165:16, 184:7,
28:3, 30:12	150.9. 156.2.	technologies	184:22, 186:15,
taking	$162 \cdot 22$ 192 · 2	31:13, 188:17	196:11, 207:6,
7.9 67.12	technique	technology	222:17. 234:8.
135.15 147.3		12.3 12.8	236.18 242.22
100.21	12:14, 14:15,	13.14 13.16	tost
199.21	15:1, 18:6,	12.22 117.12	140.4 176.12
	20:13, 21:2,	110.10 120.16	149.4, 170.12,
122:12, 123:4,	21:8, 31:17,	101.4 101.7	210:11, 210:13,
167:8, 169:19,	31:19, 35:2,	191:4, 191:7,	210:15
199:11, 215:19	35:22, 46:15,	191:20, 238:19,	testified
talked	46:20, 47:1,	238:21, 239:14	8:11, 218:13
51:12	47:2, 47:14,	teleconference	testify
talking	47:18, 62:21,	3:15	8:9
22:18, 28:13,	63:8, 63:9,	tell	testimony
54:4, 56:15,	83:11, 83:13,	226:9	42:8, 247:4,
60:16. 67:21.	86:5, 90:8,	tells	247:5, 248:5
92:19, 94:12,	100:7. 100:10.	245:20	texas
104.10. 110.20.	104:6. 122:2.	temporary	9.2
112.7 112.8	126.17. 188.20.	28.1	text
112.12 112.07	188.22 191.16	ten	146.17 200.5
112.12, 112.13, 112.13, 112.21, 114.22	$192 \cdot 1$ $192 \cdot 15$	220.21	140.17, 209.3,
122.20 126.5	102.10 102.20	230.21	210:9
123:20, 120:3,	102.5 102.0		
130:5, 131:11,	193:3, 193:0,	21:11, 21:18,	125:16, 248:13
16/:6, 16/:12,	193:12, 193:16,	21:20	thank
167:13, 169:18,	194:6, 195:2,	tends	16:9, 123:2,
174:5, 174:18,	196:22, 198:5,	20:15, 21:8	125:9, 218:11,
178:13, 178:14,	202:3, 211:21	tenth	226:7
178:21, 181:17,	techniques	2:5, 3:17	themselves
181:18, 183:6,	6:9, 14:5,	term	7:11, 92:7
197:5, 197:6,	14:8, 14:11,	18:1, 18:11,	thereafter
197:15, 197:17,	14:13, 15:8,	18:12, 18:17.	248:6
232:20, 238:2	15:15, 15:18,	84:14, 164:17.	thereby
talks	17:19, 17:21,	178.4. 180.1	32.17 44.21
78:18, 174:3	17:22, 18:2,	180.9 197.8	92.17, 77.21, 91.20, 153.10
	, , ,		JI.20, IJJ:IU,

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM
Conducted on June 16, 2017

	Ĩ		
210:20, 215:4	86:13, 86:17,	183:10, 183:12,	144:5, 226:19,
therefore	136.13 137.2	183.20 100.20	232.0 213.7
	127.7 127.10	103.20, 199.20, 200.00	232.9, 243.7
132:/, 144:14	13/:/, 13/:10,	200:9, 226:21,	track
thing	149:3, 217:5	230:9, 231:16,	149:12, 184:5,
34:7, 119:4,	through	233:18, 233:21,	186:13, 187:4
150:16, 150:19,	12:17, 19:14,	237:5, 237:8,	tracked
192:1. 198:10	61:14, 67:11,	243:18	180:16, 180:20
things	68.8. 68.10.	time-domain	tracking
11.14 10.0	69.11 79.21	5.10 10.22	164.5 104.10
11:14, 19:0,	09.11, 79.21, 00.17, 05.12	5.10, 19.22	104:5, 184:18
19:9, 28:18,	80:17, 95:13,	times	trade
40:20, 44:16,	96:15, 134:5,	9:12, 9:13,	1:1, 4:12
77:16, 79:17,	187:2	53:13, 208:5,	transcript
80:14, 111:3,	time	208:7, 208:15,	5:6, 6:2, 10:2,
111:12, 118:16,	7:6, 15:5,	209:20, 209:22,	19:17. 37:12.
121.9, 189.5,	27:13, 28:16,	210:2, 210:12,	51.11 78.7
196.11 196.16	40.14 40.19	210.15 211.2	116.20 122.16
+hink	40.20 41.3	+i+10	110:20, 122:10,
	40.20, 41.3,		129:10, 131:7,
19:6, 22:6,	41:8, 41:13,	186:4	148:14, 188:3,
30:7, 33:16,	43:5, 46:1,	titled	205:9, 231:22,
39:21, 40:18,	46:18, 47:16,	16:13	248:4
63:16, 66:18,	49:19, 50:10,	today	transcription
79:21, 80:17,	68:12, 72:6,	7.7.25.1.	247.5
116.13 124.3	72:10, 72:20,	25.4 66.19	transform
128.12 134.21	72.21 72.22	67.6 60.5	
120.12, 154.21,	72.21, 72.22, 73.5	07:0, 09:5,	30:18
137:19, 165:9,	73.2, 74.3,	89:11, 105:6,	transients
202:4, 202:19	/9:21, 81:1,	128:16, 129:3,	30:5
third	83:6, 84:18,	186:20, 187:19	treat
152:14, 184:3	89:19, 99:11,	today's	242:8
thomas	100:2, 100:13,	7:6	treated
4:3	101:22, 109:17,	together	55.15 55.17
thought	109:18, 112:12,	85.5 90.22	
$66 \cdot 10 67 \cdot 11$	112:18, 114:17,	110.5 100.12	tried
66:19, 67:11,	116.11 116.13	119:5, 190:12,	128:21
68:8, 68:10,	116.16 122.3	190:14, 190:19	true
69:11, 79:16,	100.10, 122.3,	tom	187:14, 247:4,
79:20, 80:15,	122:4, 123:3,	7:19, 152:6	248:4
80:17, 95:13,	123:6, 123:20,	tonal	truth
96:15, 105:7,	125:7, 127:22,	20:15, 20:21	8.10
118:18, 151:15	128:2, 128:4,	tones	
three	128:14, 129:6,	19.2 19.3	
9.13 200.18	150:9, 151:20,	19.2, 19.3	12:7, 15:2,
200.20 201.1	152:15, 153:8,		63:17, 67:12,
200:20, 201:1,	153.10 154.9	40:14	69:13, 74:19,
224:18, 224:20,	156.16 157.2	top	85:10, 96:17,
225:1, 225:4,	100.7 170.1	76:13, 112:4,	98:2, 101:1,
227:3, 227:16,	100:/, 1/9:1,	136:3	127:13, 134:8,
229:9, 229:11	1/9:16, 1/9:18,	topic	147.8. 163.2
thresh	180:14, 180:16,	173.19	163.6 184.15
205:16	180:18, 180:20,	towarde	$\begin{array}{cccc} \pm \cup \cup \bullet \cup \bullet & \pm \cup \pm \cup \pm \bullet \\ 0 & 1 & 7 & \bullet 0 & 0 & 0 & 0 & 1 & 1 \end{array}$
thresholds	180:22, 183:8,		ZI/:ZZ, Z33:II,
44.17 06.10		10:2, 94:10,	238:11
44:1/, 00:12,			

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

IPR No. 2017-00627 Apple Inc. v. Andrea Electronics Inc. - Ex. 1030, p. 289

Transcript of Scott Clinton Douglas, Ph.D. Conducted on June 16, 2017

290

trving	typed	120:14, 123:14,	109:7, 109:20,
29.3 29.1	120.15	123.16 125.14	111.2 111.1
40.10 (0.11	±20.10	120.14 120.01	114.0 114.4
40:18, 66:11,	types	130.14, 132.21,	114.2, 114.4,
74:18, 95:14,	30:1, 30:3,	135:18, 135:21,	115:2, 118:5,
96:15, 114:7,	71:5, 71:17,	136:4, 136:9,	119:1, 119:3,
114:8, 115:2,	193:19, 196:11,	142:2, 143:9,	120:6, 120:8,
116:4, 119:1,	203:17	143:16, 143:21,	171:2, 171:5,
119:3, 120:6,	typewriting	149:22, 150:3,	172:11, 186:12,
162.1 198.16	248.7	151:4. 151:6.	186:17. 189:7.
218.9 224.10	240.7	151.9 152.11	190.10 190.18
210.9, 224.10, 007.10	typical	152.12 152.11	207.17 200.10
227:12, 227:13,	163:19	152.13, 153.11,	207.17, 208.19,
229:19, 233:4	typically	154:22, 158:12,	209:6, 221:12,
tuning	213:16	158:20, 160:3,	224:10, 237:19,
236:3	typographical	162:18, 170:11,	238:20, 239:3,
turn	128.21. 128.22	174:21, 175:5,	239:14, 239:16
26:19. 38:3.		192:8, 192:12,	understanding
48.16 51.20	0	200:17, 209:1,	11:8. 14:19.
(1,12) $(1,12)$ $(1,12)$	uh-huh	209.11 212.21	14.22 18.11
77.6 101.11	12:6, 12:18,	233.22 234.18	10.1 61.12
//:0, 121:11,	16:9, 21:18,	200.22, 204.10	40.1, 04.12,
130:9, 131:20,	23:20. 24:5.		65:10, 65:11,
143:7, 148:9,	$24 \cdot 17$ $25 \cdot 4$	42:17, 161:6,	65:21, 70:2,
149:16, 155:1,	25.12 26.21	161:8, 162:13,	76:17, 84:5,
158:10, 188:11,	23:13, 20:21,	163:13, 164:13,	109:10, 115:4,
211:22	28:11, 31:4,	171:9, 171:17	115:9, 118:10,
turning	32:1, 33:6,	unclear	124:17, 141:22,
59·3 75·18	33:18, 36:16,	170:17. 172:3.	142:19, 151:11,
78.20 02.16	37:8, 38:14,	220.1	183.5 206.15
112.6 202.15	39:18, 41:1,	unconvontional	$215 \cdot 20$ $245 \cdot 1$
113:6, 223:15	41:22, 43:14,		215.20, 245.1,
turns	43:16, 45:13,	59:5, 59:9	245:6, 245:9,
200:3	47.6 50.8	under	245:15, 245:19
two	50.18 52.3	20:5, 35:22,	understandings
11:13, 30:5,	50.10, 52.5, E2.10, E2.E	52:4, 52:7,	182:18
48:21, 49:1,	52:10, 55:5,	58:8, 229:12,	understood
52:16. 54:1.	54:17, 58:16,	232:12, 248:7	18:22, 49:22,
76.13 122.2	60:4, 60:6,	under-performs	50:9, 50:12,
120.15 125.7	60:12, 60:18,	21.3	73.5 182.15
127.7 140.6	67:21, 69:2,		undesirable
13/:/, 140:0,	70:1, 71:21,		
152:19, 162:19,	72:17, 73:11,	199:18	84:10
163:18, 164:1,	75:20, 76:21,	understand	unfair
165:13, 166:10,	77.8. 78.22.	9:14, 9:18,	4:13
211:12, 229:20,	81.7 81.22	9:21, 36:12,	unique
232:19	02.10 05.15	39:14, 54:9,	89:10, 89:18,
type	02.10, 05.13,	59:8, 65:4,	93:5, 93:8
71.10 109.21	93:18, 95:3,	65.18 66.5	unit
110.6 110.9	96:21, 98:8,	66.11 70.15	100.10 100.15
111.15 110.7	103:7, 103:12,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5 100.0
100 10 100 10	106:6, 112:1,	/1:2, 01:13,	109:5, 109:8,
120:13, 126:10,	114:9, 118:4,	101:14, 104:12,	109:12, 110:3
193:3, 195:8		104:15, 107:15,	united
			1:1, 4:12
	1		1

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

unity	239.20 240.1	walid	wariation
122.10 141.4	239.20, 240.1,		114.20 115.1
132:19, 141:4,	240.7, 240.13,	64:6, 64:9,	114:20, 115:1
university	240.13, 241.7, 241.10, 241.15	104.10	11.14 20.20
0.2	using		11:14, 50:20,
9.2 uploss	5.1/ 13.2	22.12 06.17	35.6 40.20
20.10 126.20	13.12 14.3	33.13, 90.17, 232.5, 232.7	10·21 <i>1</i> 1·6
39:19, 130:20, 147.13	16.2 16.13	232.3, 232.7	40.21, 41.0, 11.12, 11.10
	18.19 30.2	216.11	45.19 55.12
	32.11, 44.18.		73.6 76.2
updated	45.11, 47.8.		87.20 89.8
165.5 166.17	58:20. 59:2.	54.7 58.20	91.2 93.5
167.22 177.20	63:4. 64:3.	59.18 60.20	110.18. 127.11.
107.22, 177.20	68:1, 68:21.	67.20 92.3	188.17. 192.19.
	70:8, 70:11,	$92 \cdot 5 98 \cdot 11$	196:10. 239:7
	81:14, 81:17,	98.20. 98.21.	varv
135.11 130.11	83:20, 91:17,	103.1. 103.8.	26:18
155.11, 155.11	94:7, 98:22,	105:15, 106:3,	vec
$22 \cdot 1 26 \cdot 17$	99:12, 100:1,	106:8, 132:6,	177:4, 177:5
$32 \cdot 10 50 \cdot 14$	100:4, 103:7,	132:14, 133:9,	vector
70.19 71.10	106:8, 115:16,	138:2, 138:9,	101:20, 176:20
73.13, 79.19.	122:13, 124:12,	138:11, 138:17,	verbal
81:12, 89:16.	133:1, 138:9,	138:18, 138:20,	9:20
100:16. 102:1.	149:5, 154:2,	138:22, 141:14,	versa
105:1. 145:8.	155:7, 156:8,	142:8, 149:2,	222:12
160:1, 160:14,	156:20, 157:18,	149:4, 149:6,	versions
160:16, 160:19,	160:7, 160:22,	149:11, 164:6,	100:14
160:21, 161:7,	162:13, 162:15,	166:11, 167:12,	versus
161:9, 162:14,	163:18, 174:1,	167:13, 168:6,	181:7
162:22, 164:1,	174:13, 175:8,	168:12, 168:14,	via
181:1, 193:4,	176:8, 177:16,	168:15, 168:17,	3:15, 31:12
203:14, 203:17,	1//:1/, 195:15,	172:3, 173:21,	vice
205:20, 213:17,	196:6, 203:12,	174:8, 174:12,	222:11
216:22, 217:11,	205:2, 206:2,	175:7, 176:20,	video
236:8	206:3, 206:9,	176:21, 177:1,	7:7, 7:8
useful	200:17, 207:3,	177:4, 177:5,	videographer
122:11, 203:16,	207.9, 207.12,	177.10 170.1	4:19, 7:2, 7:7,
236:4, 236:6	211.10 212.7	170.12 170.10	8:6, 74:4, 74:7,
uses	213.16 215.12	1/9:13, 1/9:10, 170.10	116:15, 116:21,
14:5, 14:15,	217.19, 218.3.	19:17, 179:19,	151:19, 152:1,
23:18, 36:4,	223.22. 226.11.	214.12 218.19	200:8, 200:11,
56:18, 58:19,	240:2. 240:5.	214.12, 210.19, 220.1, 235.1	237:4, 237:7,
76:19, 86:12,	240:19, 244:16,	variable	246:8
101:4, 154:18,	245:17, 245:22	53.6 145.21	videotaped
161:13, 164:8,	usually	variables	1:10, 2:1, 7:3
1/3:13, 19/:0,	123:6	92:7	Vlew
203.11, 210.11,	v	variance	34:4, 34:6,
210.13, 220.0,	val	112:15	86:22, 165:17,
	57.12		
	····		
			1

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

169.2. 169.8.	60.13, 61.2,	weren't	199.3, 199.5,
177.16. 181.15.	71:15, 76:4,	195.5	199.8. 199.11.
210.2. 219.16.	76.7. 77.1.	wherein	199.19
222:15	77:3, 81:1,	63.3	whitney
viewed	81:19, 82:1,	whereof	4:11, 7:22
63:9	82:6, 82:7,	248:12	who've
vis-à-vis	82:14, 85:7,	whether	18:22
173:18	85:16, 86:22,	23:10, 25:5,	whoever
voice	90:18, 90:22,	25:14, 26:7,	162:6
215:11, 243:11,	91:1, 92:3,	26:13, 32:13,	whole
243:14	92:5, 93:8,	32:15, 39:12,	8:10
W	98:4, 99:7,	40:4, 40:9,	wiener
want	101:18, 101:19,	42:4, 42:18,	62:4, 62:6,
16.6. 45.1.	139:3, 158:6,	63:18, 64:5,	69:19, 70:3,
65:18. 81:6.	158:8, 161:15,	67:7, 68:4,	70:5, 70:8,
129:3. 134:13.	164:5, 165:16,	68:5, 68:15,	70:9, 70:11,
134:20, 150:9,	186:12, 191:9,	69:8, 69:13,	70:19, 71:4,
152:8, 169:17,	205:1, 206:21	79:13, 80:8,	71:10, 71:14,
173:3, 174:18,	ways	88:12, 89:12,	72:5, 72:9,
175:14, 186:9,	24:4, 24:1/,	91:19, 94:1,	72:18, 73:4,
190:13, 194:4,	50:14, 55:12,	95:10, 96:9,	73:5, 73:9,
194:14, 197:4,	/5:LU, /6:2,	100:10, 103:21,	74:11, 74:18,
200:5, 202:18,	70:3, 77:1,	104:19, 105:19,	75:11, 75:13,
205:2, 206:14,	81.10 81.20	107:5, 107:21,	75:15, 75:21,
217:21, 228:14,	81.21 98.3	108:20, 110:13,	/6:5, /6:/,
229:20, 231:9,	100.3 154.19	112:20, 113:3,	/6:1/, /6:18, 7(-22, 77-12
232:11, 232:13,	235.2	116.7 137.4	70:22, 77:13, 77:16, 70:1
233:10	we're	137.18 138.19	78.17 78.18
wanted	63:16, 74:8,	142.16 156.9	79.7 79.1/
102:10, 102:12,	104:10, 110:20,	157.14, 157.19 .	79.19 80.5
150:20, 190:15,	110:21, 116:22,	157:22, 158:7,	81.2. 81.9.
191:15, 192:3,	152:1, 158:17,	164:14, 174:9,	81:15, 81:16,
194:20, 203:2	167:6, 167:11,	174:10, 184:16,	90:9, 91:6,
	169:18, 174:4,	185:13, 185:14,	92:1, 92:4,
190:10	178:21, 181:17,	187:13, 193:15,	92:5, 92:8,
1.2 1.11 2.7	194:18, 197:5,	204:4, 210:12,	92:22, 93:3
1.2, 1.11, 2.7, 3.8, 3.10, 1.7	197:6, 200:12,	210:20, 215:16,	window
<i>1</i> .15 7.10	206:21, 230:9,	216:6, 219:8,	29:16, 29:22,
4.10, 7.10 Way	234:13, 246:9	220:7, 228:16,	30:13, 145:1,
24.5 25.14	we've	231:15, 233:12,	149:13, 149:14,
26.7.26.13	73:22, 194:8,	235:12, 237:10,	160:11, 162:15,
26:14, 34:16,	223:10, 229:9	237:14, 242:12,	163:19, 166:7,
34:20, 36:14,	weighted	242:17, 243:17,	166:8, 168:8,
46:3, 49:13,	211:15, 211:20	243:19, 244:1	168:19, 168:21,
51:4, 59:11,		wnite	169:4, 169:6,
59:22, 60:7,	1/:1, 1/:15	199:16	169:8, 169:10,
			169:13, 173:22,
	113:13	190:10, 198:20,	

Conducted on June 16, 2017

104 10 105 0	100 10 000 15	100 10 100 11	07 10 07 00
174:13, 175:8,	193:18, 203:15,	120:10, 120:11,	87:18, 87:22,
176:4, 176:7,	206:3, 206:9,	120:12	88:5, 88:10,
177:2, 177:10,	206:17, 207:18,	written	229:20, 230:21,
177:12, 179:1,	228:22, 244:4,	109:4, 118:14,	232:19
181:2, 181:4,	244:20	118:15, 118:21,	уер
181:7, 181:22,	witness	119:4, 125:17,	16:5
182:2, 182:14	3:3, 8:3, 8:5,	126:3, 151:8,	yield
windows	8:7, 9:4, 39:17,	151:10, 184:13	85:5, 86:19,
30:1, 30:2,	39:19, 61:21,	wrote	93:14, 94:11,
30:3, 60:21,	64:22, 65:1,	22:1, 22:9,	100:9
160:12, 160:18,	73:18, 73:21,	22:17, 23:2,	yourself
162:16, 162:20	74:2, 116:13,	23:11, 117:9.	11:6. 87:7.
winston	200:7. 237:3.	117:22. 120:22	87.10 87.15
4:11. 7:22.	248:12	<u> </u>	7
246:5	wondering	A	4
wish	110:5	X	zero
84.15, 129.5	word	53:6	//:18, 141:19,
within	168.2 205.2	X(1	210:13, 211:5,
11.1 11.01	221.12	208:9, 210:7	211:8, 211:10,
12.9 13.14	wording	x(k	211:11
12.0, 13.14, 12.10, 14.6	102.12	53:1, 53:13,	\'
14.0, $14.0,$ $14.15,$ 19.5	worde	57:22	's
14.10, 10.0,	WOLUS	xi	46:14, 180:2
31:13, 33:7,	142:11, 1/0:15, 107.2	209:19, 211:3	0
44:1 <i>2</i> , 44:1 <i>3</i> ,	100:4, 197:3,	xk	00015047
40:5, 5/:15,		78:2	
/3:12, /0:1/,	WORK	xrel	129:13
84:16, 92:5,	11:13, 76:18,	214:7	04
92:15, 94:6,	176:8, 196:10,	Y Y	200:9
92:15, 94:6, 94:10, 111:16,	176:8, 196:10, 196:12, 196:13,	<u>Y</u>	200:9 08
92:15, 94:6, 94:10, 111:16, 126:1, 126:9,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15,	Y Y Y	200:9 08 74:5
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10	Y Y Y Y Y Y Y Y Y Y	200:9 08 74:5 09
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked	Y y (n 49:4, 51:4, 60:1, 60:13	200:9 08 74:5 09 1:13, 7:7
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15	Y y (n 49:4, 51:4, 60:1, 60:13 yeah	200:9 08 74:5 09 1:13, 7:7 1
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working	Y y (n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20,	200:9 08 74:5 09 1:13, 7:7 1 1
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6,	Y y (n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 100	200:9 08 74:5 09 <u>1:13, 7:7</u> <u>1</u> <u>1</u> 43:17, 116:22
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13,	200:9 08 74:5 09 1:13, 7:7 <u>1</u> 1 43:17, 116:22, 208:7 208:12
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1 0
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 1 2
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9.	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 140.15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9, 110:4, 166:14,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write 118:1, 119:3	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years 11:12, 11:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9, 110:4, 166:14, 179:22, 180:7,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write 118:1, 119:3 writing	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years 11:12, 11:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9, 110:4, 166:14, 179:22, 180:7,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write 118:1, 119:3 writing 38:21 120:9	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years 11:12, 11:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9, 110:4, 166:14, 179:22, 180:7,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write 118:1, 119:3 writing 38:21, 120:9,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years 11:12, 11:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15
92:15, 94:6, 94:10, 111:16, 126:1, 126:9, 127:8, 144:1, 144:7, 144:21, 146:3, 146:6, 146:7, 146:8, 146:11, 148:4, 148:7, 160:2, 173:3, 180:1, 180:10, 191:5, 191:6, 194:6, 210:3, 211:9, 215:15, 215:17, 238:19, 239:14, 239:15, 243:18 without 44:2, 106:16, 108:4, 109:9, 110:4, 166:14, 179:22, 180:7,	176:8, 196:10, 196:12, 196:13, 231:11, 231:15, 232:10 worked 87:12, 117:15 working 11:11, 17:6, 87:17, 87:19, 178:12, 196:18 works 123:19, 208:19, 209:2, 209:4 wouldn't 141:8, 173:22, 176:7, 191:16, 195:5, 198:9, 205:2, 231:9 write 118:1, 119:3 writing 38:21, 120:9,	Y y(n 49:4, 51:4, 60:1, 60:13 yeah 58:6, 73:20, 74:1, 74:2, 81:7, 116:13, 119:2, 120:6, 120:8, 122:18, 123:18, 124:7, 125:9, 134:19, 138:16, 150:11, 158:17, 202:11, 218:9, 218:10, 226:18, 229:2, 229:16, 233:2 years 11:12, 11:19,	200:9 08 74:5 09 1:13, 7:7 1 1 43:17, 116:22, 208:7, 208:12, 208:14, 209:22, 210:2, 210:12, 210:15, 211:3, 242:7 1.0 132:20 10 5:8, 6:5, 148:13, 148:15

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Transcr	ipt o	of Sco	ott (Clinton	Do	uglas,	Ph.D.

Conducted on June 16, 2017

100	69:7, 69:9,	93:17, 93:19,	186:11, 187:5,
161.20 167.18	69.13 80.13	91.2 91.1	187.12 197.7
104.20, 107.10	00.17 00.19,	$\mathcal{I}_{\mathcal{I}}$	107.11
1026	82:17, 93:20,	95:8, 95:10,	197:11
1:6, 7:5,	93:22, 94:3,	95:22, 96:8,	1998
129:13	95:9, 95:11,	96:10, 243:6,	88:2, 125:16
104	132:2, 141:13,	248:13	1999
27.0 20.1	142.1 142.4	18	15.13 17.2
27.0, 20.1	142.7 142.11	05.01 0(.0	
106	142.7, 142.11,	95:21, 96:2,	1/:4, 1/:15,
27:15, 28:2,	225:7, 225:13,	96:10	28:16, 30:3,
28:6, 28:12,	226:5, 226:6,	183	30:10, 31:11,
29:11	226:9, 226:11,	152:12	31:15, 59:16
108	226:16, 227:4,	188	2
	243.7	6.7	
29:15, 29:21	121	0:/	2
1096	131	19	151:20, 151:22
155:1, 157:1,	6:4	5:9, 12:17,	20
170:7, 171:9	14	243:10	125.16 100.17
11	63:3, 68:15,	1992	123.10, 100.17,
 6.7 74.5	68:17. 68:20	88.3	τομ:το, τηυ:6,
v:/, /4:3,	69.9 69.13	100.3	191:1, 191:8,
/4:8, 188:2	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	T332	191:17, 200:12,
110	09:10, /9:3,	121:14, 121:15,	230:21, 231:2,
30:12, 30:16,	79:7, 79:12,	121:18, 121:21,	248.13
30.19	80:13, 248:15	122:12, 123:1,	20001
112	148	130.3 143.11	
	6.5	144.2 144.10	2:7, 3:19
31:2, 38:12	149105	144.2, 144.10,	20005
114	140105	145:22, 152:15,	3:8, 4:7
58:8	1:20	152:20, 155:22,	2004
116	15	156:9, 157:1,	3.8
5.17 51.20	69:15, 69:18,	157:10, 159:6,	0.1 F
$3 \cdot 17, 51 \cdot 20, 77 \cdot 7, 111 \cdot 01$	79:1. 79:3.	159.14 159.20	2015
//:/, 111:21	79.6 79.14	159.22 160.2	233:20
12	00.1 00.7	100.22, 100.2,	2017
6:8, 116:16,	80:1, 80:7,	160:14, 160:16,	1:12, 7:6,
141:3, 205:8,	80:13	160:17, 160:21,	248.13
225:22	1501	160:22, 161:4,	202
1200	4:6, 7:9	161:5, 161:7,	
2.0	152	161:9, 161:12,	2:8, 3:9, 3:20,
3:9	5.4	161.16 162.5	4:8, 4:16
122	152	162.12 162.15	2020
5:18		162.17 162.00	248:15
129	209:5, 209:9	103:17, 103:22,	204
5.21 121.11	154	164:11, 164:12,	07.6 07.9
101.12	211:22, 212:10	168:4, 169:18,	97:0, 97:0
121.13	155	169:20, 171:16,	20436
13	212.10	172.7. 173.12.	4:15
43:15, 43:17,	212:19	173.15 174.3	205
43:20, 45:2,	10	101.17 101.00	4:16. 6:8
45:20, 45:22,	1:12, 7:6,	181:17, 181:20,	21
63.3. 63.13.	79:22, 80:3,	181:21, 230:7	
66.15 67.7	80:9, 80:12,	1994	12:1/, /4:8,
(7.10 (0.)	80.22 135.15	148:16, 150:2,	96:18, 96:19,
0/:18, 68:6,	17	150:18. 151:1	103:11, 103:13,
68:13, 68:18,	± /	,,,	
	82:16, 82:19,		
			-

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM

Conducted on June 16, 2017

	1	,	
103:16, 103:22,	114:5, 114:7,	5	662
104:3. 104:13.	115:4. 121:14.		2.8. 3.20
104.20 104.21	124.14 126.10	5	
105.10 105.18	130.15 130.16	237:5, 237:8,	/
105.10, 103.10,	256	246:9, 246:10	736
103:20, 107:2,		5,706,395	4:8
10/:3, 10/:/,	27:15, 27:16,	5:16, 78:11	741
107:10, 107:16,	28:2, 28:3,	50	131.20. 132.1
107:18, 108:1,	28:5, 155:7,	151.22	742
108:5, 108:7,	155:10, 155:13,	F00	122.4
108:9, 108:14,	155:16, 155:17,	500	152:4
108:19, 108:22,	157:14, 157:20,	4:14	78
110:11. 110:15.	170.3. 170.8.	508	5:16
110.21 112.21	170.13 173.13	86:11	8
213	29	51	8 374 854
215	20	5:13	6.7
38:3	215:10	512	0:7
216215	3	28.5 30.13	850
129:14	30	52	2:5, 3:17
22	138.11 138.12		8583
105:9, 105:12,	120.14 120.6	/1:21, /2:2,	4:8
105:20. 107:6.	100.11, 100.00	116:16	898
107.22 108.4	139:11, 139:22,	566	125.16, 125.19,
110.21	140:1	149:19, 150:1,	126.9 126.20
220	300	150:5	120.3, 120.20
220	40:13	56673	9
3:9	337	51.22	9
2221	1:6, 7:5	57	1:13, 7:7
4:16	36		926
23	116.22	246:9, 246:10	148.9 148.20
108:6, 108:21,	27	5a	03
109:10. 109:20.	57	86:10	120.12 120.20
110.4 110.6	5:12, 237:8	6	130:13, 130:20,
110.14 110.22	39	6 035 048	143:7, 143:10,
110.14, 110.22,	99:4, 100:12,	6,035,040	143:14, 144:13,
112:21, 113:2	151:20	6:4, 131:0	145:19, 146:13,
24	4	6,363,345	155:1, 155:19,
132:17, 237:5	<u> </u>	5:8, 10:5	170:7
245		60	94
130:9, 130:11,	200:9, 200:12	192:9	183:22
130:16	400	600	949
246	72:19	3:7, 214:13,	120.16 120.20
130:16	402	214:17	120.10, 120.16
248	48:22, 49:2,	6000	130.19, 149.10,
1.21	49:4, 50:16,	2.8 3.20	229:18, 229:22,
25	53:20, 54:1,	2.0, J.20	230:1, 231:17
25	59·4. 60·17.		97
11:12, 11:19,	61.5 61.8	15:22, 16:8,	158:11, 158:21
87:17, 87:22,	61.10 61.15	16:9	99
88:4, 88:10,	75.10 150.10	648	145:21
113:6, 113:9,	10:19, 108:19	38:5	
113:11, 113:17,	404	65	
113:21, 114:1,	48:22	192:9	

PLANET DEPOS 888.433.3767 | WWW.PLANETDEPOS.COM