
SECOND EDITION 

SIGNALS 
& 

SYSTEMS 

ALAN V. OPPENHEIM 

. ALAN s. w ILLSl(Y 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

WITH 

s. HAMID NAWAB
BOSTON UNIVERSITY

• 
PRENTICE HALL 

UPPER SADDLE RIVER, NEW JERSEY 07458 

Petitioner Apple Inc.
Ex. 1014, Cover



Library of Congress Cataloging-in-Publication Data 

Oppenheim, Alun V. 
Signals und systems I Alan V. Oppenheim, Alan S. Willsky, with 

S. Hamid Nawab. - 2nd ed .. 
p. em. - Prentice-Hall signal processing series 

Includes bibliographical references and index. 
ISBN 0· 13-814757·4 
I. System analysis. 2. Signal theory (Telecommunication) 

I. Willsky, Alan S. II. Nawab, Syed Hamid. III. Title. 
IV. Series. 
QA402.063 1996 
621.382 '23-dc20 96 ·19945 

CIP 

Acquisitions editor: Tom Robbins 
Production service: TKM Productions 
Editorial/production supervision: Sharyn VItrano 
Copy editor: Brian Baker 
Interior and cover design: Patrice Van Acker 
Art director: Amy Rosen 
Managing editor: Dayan! Mendoza DeLeon 
Editor-in-Chief: Marcia Horton 
Director of production and manufacturing: David W. Riccardi 
Manufacturing buyer: Donna Sullivan 
Editorial assistant: Phyllis Morgan 

© 1997 by Alan V. Oppenheim and Alan S. Willsky 
© 1983 by Alan V. Oppenheim, Alan S. Willsky, and Jan T. Young 

Pearson Education 
Upper Saddle River, New Jersey 07458 

All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without permission in writing from the publisher. 

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the 
development, research, and testing of the theories and programs to determine their effectiveness. The author and 
publisher make no warranty of any kind, expressed or implied, with regard to these progranl~ or the documentation 
contained in this book. The author and publi~her shall not be liable in any event for incidental or consequential damages 
in connection with, or arising out of, the furnishing, performance, or use of these programs. 

P!jnted in the United States of America 

30 31 32 33 34 35 36 37 38 39 40 V092 18 17 16 15 14 

ISBN 0-13-814757-4 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Prentice-Hall (Singapore) Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil. Ltda., Rio de Janeiro 

Petitioner Apple Inc.
Ex. 1014, Cover-2



eword 

these 
icular 
e that 
1ly of 
tg. 
g his-
vhich 
:antly 
s. We 
>ossi-
ques. 
1ding 
naly-
ineer. 
esen-
eader 
lin an 
mtals 
mdto 
tch to 

1 
SIGNALS AND SYSTEMS 

1.0 INTRODUCTION 

As described in the Foreword, the intuitive notions of signals and systems arise in a rich va-
riety of contexts. Moreover, as we will see in this book, there is an analytical framework-
that is, a language for describing signals and systems and an extremely powerful set of tools 
for analyzing them-that applies equally well to problems in many fields. In this chapter, 
we begin our development of the analytical framework for signals and systems by intro-
ducing their mathematical description and representations. In the chapters that follow, we 
build on this foundation in order to develop and describe additional concepts and methods 
that add considerably both to our understanding of signals and systems and to our ability 
to analyze and solve problems involving signals and systems that arise in a broad array of 
applications. 

1.1 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS 

1 . 1 . 1 Examples and Mathematical Representation 

Signals may describe a wide variety of physical phenomena. Although signals can be rep-
resented in many ways, in all cases the information in a signal is contained in a pattern of 
variations of some form. For example, consider the simple circuit in Figure 1.1. In this case, · 
the patterns of variation over time in the source and capacitor voltages, Vs and Vc, are exam-
ples of signals. Similarly, as depicted in Figure 1.2, the variations over time of the applied 
force f and the resulting automobile velocity v are signals. As another example, consider 
the human vocal mechanism, which produces speech by creating fluctuations in acous-
tic pressure. Figure 1.3 is an illustration of a recording of such a speech signal, obtained by 

1 
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2 Signals and Systems Chap. 1 
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Figure 1. 1 A simple RC circuit with source 
voltage Vs and capacitor voltage Vc. 

Figure 1.2 An automobile responding to an 
applied force f from the engine and to a re­
tarding frictional force pv proportional to the 
automobile's velocity v. 
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Figure 1.3 Example of a record­
ing of speech. [Adapted from Ap­
plications of Digital Signal Process­
ing, A.V. Oppenheim, ed. {Englewood 
Cliffs, N.J.: Prentice-Hall, Inc., 1978), 
p. 121 .] The signal represents acous­
tic pressure variations as a function 
of time for the spoken words "should 
we chase." The top line of the figure 
corresponds to the word "should," 
the second line to the word "we," 
and the last two lines to the word 
"chase." {We have indicated the ap­
proximate beginnings and endings 
of each successive sound in each 
word.) 

using a microphone to sense variations in acoustic pressure, which are then converted into 
an electrical signal. As can be seen in the figure, different sounds correspond to different 
patterns in the variations of acoustic pressure, and the human vocal system produces intel-
ligible speech by generating particular sequences of these patterns. Alternatively, for the 
monochromatic picture, shown in Figure 1.4, it is the pattern of variations in brightness 
across the image that is important. 
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Sec. 1.1 Continuous-Time and Discrete-Time Signals 

Figure 1.4 A monochromatic 
picture. 

3 

Signals ru;e represented mathematically as functions of one or more independent 
variables. For example, a speech signal can be represented mathematically by acoustic 
pressure as a function of time, and a picture can be represented by brightness as a func-
tion of two spatial variables. In this book, we focus our attention on signals involving a 
single independent variable. For convenience, we will generally refer to the independent 
variable as time, although it may not in fact represent time in specific applications. For 
example, in geophysics, signals representing variations with depth of physical quantities 
such as density, porosity, and electrical resistivity are used to study the structure of the 
earth. Also, knowledge of the variations of air pressure, temperature, and wind speed with 
altitude are extremely important in meteorological investigations. Figure 1.5 depicts a typ-
ical example of annual average vertical wind profile as a function of height. The measured 
variations of wind speed with height are used in examining weather patterns, as well as 
wind conditions that may affect an aircraft during final approach and landing. 

Throughout this book we will be considering two basic types of signals: continuous-
time signals and discrete-time signals. In the case of continuous-time signals the inde-
pendent variable is continuous, and thus these signals are defined for a continuum of values 
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Figure 1.5 Typical annual vertical 
wind profile. (Adapted from Crawford 
and Hudson, National Severe Storms 
Laboratory Report, ESSA ERLTM-NSSL 
48, August 1970.) 
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4 Signals and Systems Chap. 1 
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Figure 1.6 An example of a discrete-time signal: The weekly Dow-Jones 
stock market index from January 5, 1929, to January 4, 1930. 

of the independent variable. On the other hand, discrete-time signals are defined only at 
discrete times, and consequently, for these signals, the independent variable takes on only 
a discrete set of values. A speech signal as a function of time and atmospheric pressure 
as a function of altitude are examples of continuous-time signals. The weekly Dow-Jones 
stock market index, as illustrated in Figure 1.6, is an example of a discrete-time signal. 
Other examples of discrete-time signals can be found in demographic studies in which 
various attributes, such as average budget, crime rate, or pounds of fish caught, are tab-
ulated against such discrete variables as family size, total population, or type of fishing 
vessel, respectively. 

To distinguish between continuous-time and discrete-time signals, we will use the 
symbol t to denote the continuous-time independent variable and n to denote the discrete-
time independent variable. In addition, for continuous-time signals we will enclose the 
independent variable in parentheses ( · ), whereas for discrete-time signals we will use 
brackets [ · ] to enclose the independent variable. We will also have frequent occasions 
when it will be useful to represent signals graphically. Illustrations of a continuous-time 
signal x(t) and a discrete-time signal x[n] are shown in Figure 1.7. It is important to note 
that the discrete-time signal x[n] is defined only, for integer values of the independent 
variable. Our choice of ~raphical representation for x[n] emphasizes this fact, and for 
further emphasis we will on occasion refer to x[n] as a discrete-time sequence. 

A discrete-time signal x[n] may represent a phenomenon for which the independent 
variable is inherently discrete. Signals such as demographic data are examples of this. On 
the other hand, a very important class of discrete-time signals arises from the sampling of 
continuous-time signals. In this case, the discrete-time signal x[n] represents successive 
samples of an underlying phenomenon for which the independent variable is continuous. 
Because of their speed, computational power, and flexibility, modem digital processors are 
used to implement many practical systems, ranging from digital autopilots to digital audio 
systems. Such systems require the use of discrete-time sequences representing sampled 
versions of continuous-time signals-e.g., aircraft position, velocity, and heading for an 
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Sec. 1.1 Continuous-Time and Discrete-Time Signals 

x(t) 

0 

(a) 

x[n) 

x[O) 

t 

n 

Figure 1. 7 Graphical representations of (a) continuous-time and (b) discrete­
time signals. 

5 

autopilot or speech and music for an audio system. Also, pictures in newspapers-or in this 
book, for that matter-actually consist of a very fine grid of points, and each of these points 
represents a sample of the brightness of the corresponding point in the original image. No 
matter what the source of the data, however, the signal x[n] is defined only for integer 
values of n. It makes no more sense to refer to the 3 ~th sample of a digital speech signal 
than it does to refer to the average budget for a family with 24 family members. 

Throughout most of this book we will treat discrete-time signals and continuous-time 
signals separately but in parallel, so that we can draw on insights developed in one setting 
to aid our understanding of another. In Chapter 7 we will return to the question of sampling, 
and in that context we will bring continuous-time and discrete-time concepts together in 
order to examine the relationship between a continuous-time signal and a discrete-time 
signal obtained from it by sampling. 

1.1.2 Signal Energy and Power 

From the range of examples provided so far, we see that signals may represent a broad 
variety of phenomena. In many, but not all, applications, the signals we consider are di-
rectly related to physical quantities capturing power and energy in a physical system. For 
example, if v(t) and i(t) are, respectively, the voltage and current across a resistor with 
resistance R, then the instantaneous power is 

p(t) = v(t)i(t) = ~v2 (t). (1.1) 

Petitioner Apple Inc.
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6 Signals and Systems Chap. 1 

The total energy expended over the time interval ft :::;; t :::;; tz is 

J
tz p(t)dt = Jtz ~v2(t)dt, 

IJ /1 
(1.2) 

and the average power over this time interval is 

-- p(t) dt = -- -v2(t) dt. 1 J tz 1 J tz 1 
tz - ft 11 tz - t1 11 R 

(1.3) 

Similarly, for the automobile depicted in Figure 1.2, the instantaneous power dissipated 
through friction is p(t) = bv2(t), and we can then define the total energy and average 
power over a time interval in the same way as in eqs. (1.2) and (1.3). 

With simple physical examples such as these as motivation, it is a common and 
worthwhile convention to use similar terminology for power and energy for any continuous-
time signal x(t) or any discrete-time signal x[n]. Moreover, as we will see shortly, we will 
frequently find it convenient to consider signals that take on complex values. In this case, 
the total energy over the time interval t 1 :::;; t :::;; t2 in a continuous-time signal x(t) is 
defined as 

(1.4) 

where lxl denotes the magnitude of the (possibly complex) number x. The time-averaged 
power is obtained by dividing eq. (1.4) by the length, t2 - t1, of the time interval. Simi-
larly, the total energy in a discrete-time signal x[n] over the time interval n1 :::;; n :::;; n2 is 
defined as 

nz 

L lx[nll2• (1.5) 
n=n 1 

and dividing by the number of points in the interval, n2 - n1 + 1, yields the average power 
over the interval. It is important to remember that the,terms "power" and "energy" are used 
here independently of whether the quantities in eqs. (1.4) and (1.5) actually are related to 
physical energy. 1 Nevertheless, we will find it convenient to use these terms in a general 
fashion. 

Furthermore, in many systems we will be interested in examining power and energy 
in signals over an infinite time interval, i.e., for -oo < t < +oo or for -oo < n < +oo. In 
these cases, we define the total energy as limits of eqs. (1.4) and (1.5) as the time interval 
increases without bound. That is, in continuous time, 

IT J +oo 
Eoo ~ )~ -T lx(t)l2 

dt = -oo lx(t)l2 
dt, (1.6) 

and in discrete time, 
+N +oo 

Eoo ~ lim L lx[nll2 = L lx[n]jZ. 
N ..... oo 

n=-N n= -«> 
(1.7) 

1Even if such a relationship does exist, eqs. (1.4) and (1.5) may have the wrong dimensions and scalings. 
For example, comparing eqs. (1.2) and (1.4), we see that if x(t) represents the voltage across a resistor, then 
eq. (1.4) must be divided by the resistance (measured, for example, in ohms) to obtain units of physical energy. 

1.: 
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Sec. 1.2 Transformations of the Independent Variable 7 

Note that for some signals the integral in eq. (1.6) or sum in eq. (1.7) might not converge-
e.g., if x(t) or x[n] equals a nonzero constant value for all time. Such signals have infinite 
energy, while signals with Eoo < oo have finite energy. 

In an analogous fashion, we can define the time-averaged power over an infinite 
interval as 

/:::, 1 IT 
Poo = lim ZT lx(t)l2 dt 

T->oo -T 
(1.8) 

and 
1 +N 

Poo ~ Ji~ ZN + l L lx[n]l
2 

n=-N 
(1.9) 

in continuous time and discrete time, respectively. With these definitions, we can identify 
three important classes of signals. The first of these is the class of signals with finite total 
energy, i.e., those signals for which Eoo < oo. Such a signal must have zero average power, 
since in the continuous time case, for example, we see from eq. (1.8) that 

1. Eoo O 
Poo = 1m ZT = . 

T-.oo 
(1.10) 

An example of a finite-energy signal is a signal that takes on the value 1 for 0 :5 t :5 1 
and 0 otherwise. In this case, Eoo = 1 and Poo = 0. 

A second class of signals are those with finite average power Poo. From what we 
have just seen, if Poo > 0, then, of necessity, Eoo = oo. This, of course, makes sense, since 
if there is a nonzero average energy per unit time (i.e., nonzero power), then integrating 
or summing this over an infinite time interval yields an infinite amount of energy. For 
example, the constant signal x[n] = 4 has infinite energy, but average power Poo = 16. 
There are also signals for which neither Poo nor Eoo are finite. A simple example is the 
signal x(t) = t. We will encounter other examples of signals in each of these classes in 
the remainder of this and the following chapters. 

I .2 TRANSFORMATIONS OF THE INDEPENDENT VARIABLE 

A central concept in signal and system analysis is that of the transformation of a signal. 
For example, in an aircraft control system, signals corresponding to the actions of the pilot 
are transformed by electrical and mechanical systems into changes in aircraft thrust or 
the positions of aircraft control surfaces such as the rudder or ailerons, which in turn are 
transformed through the dynamics and kinematics of the vehicle into changes in aircraft 
velocity and heading. Also, in a high-fidelity audio system, an input signal representing 
music as recorded on a cassette or compact disc is modified in order to enhance desirable 
characteristics, to remove recording noise, or to balance the several components of the 
signal (e.g., treble and bass). In this section, we focus on a very limited but important class 
of elementary signal transformations that involve simple modification of the independent 
variable, i.e., the time axis. As we will see in this and subsequent sections of this chapter, 
these elementary transformations allow us to introduce several basic properties of signals 
and systems. In later chapters, we will find that they also play an important role in defining 
and characterizing far richer and important classes of systems. 
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8 Signals and Systems Chap. 1 

1.2.1 Examples of Transformations of the Independent Variable 

A simple and very important example of transforming the independent variable of a signal 
is a time shift. A time shift in discrete time is illustrated in Figure 1.8, in which we have 
two signals x[n] and x[n- n0 ] that are identical in shape, but that are displaced or shifted 
relative to each other. We will also encounter time shifts in continuous time, as illustrated 
in Figure 1.9, in which x(t- to) represents a delayed (if to is positive) or advanced (if to 
is negative) version of x(t). Signals that are related in this fashion arise in applications 
such as radar, sonar, and seismic signal processing, in which several receivers at different 
locations observe a signal being transmitted through a medium (water, rock, air, etc.). In 
this case, the difference in propagation time from the point of origin of the transmitted 
signal to any two receivers results in a time shift between the signals at the two receivers. 

A second basic transformation of the time axis is that of time reversal. For example, 
as illustrated in Figure 1.1 0, the signal x[- n] is obtained from the signal x[ n] by a reflec-
tion about n = 0 (i.e., by reversing the signal). Similarly, as depicted in Figure 1.11, the 
signal x(- t) is obtained from the signal x(t) by a reflection about t = 0. Thus, if x(t) rep-
resents an audio tape recording, then x( -t) is the same tape recording played backward. 
Another transformation is that of time scaling. In Figure 1.12 we have illustrated three 
signals, x(t), x(2t), and x(t/2), that are related by linear scale changes in the independent 
variable. If we again think of the example of x(t) as a tape recording, then x(2t) is that 
recording played at twice the speed, and x(t/2) is the recording played at half-speed. 

It is often of interest to determine the effect of transforming the independent variable 
of a given signal x(t) to obtain a signal of the form x(at + /3), where a and f3 are given 
numbers. Such a transformation of the independent variable preserves the shape of x(t), 
except that the resulting signal may be linearly stretched if Ia I < 1, linearly compressed 
if Ia I > 1, reversed in time if a < 0, and shifted in time if f3 is nonzero. This is illustrated 
in the following set of examples. 

x[n] 

x[n-nol 

0 

n 

Figure 1.8 Discrete-time signals 
related by a time shift. In this figure 
no > 0, so that x[n - n0] is a delayed 

n verson of x[n] (I.e., each point in x[n] 
occurs later in x[n - no]). 
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Sec. 1.2 Transformations of the Independent Variable 

x[n) 

n 

x[-n) 

n 

(b) 
Figure 1.9 Continuous-time signals related 
by a time shift. In this figure to < 0, so that 
x(t - to) Is an advanced version of x(t) (i.e., 
each point In x( t) occurs at an earlier time in 
x(t- to)). 

Figure 1.1 o (a) A discrete-time signal x[n]; (b) its reflec­
tion x[- n] about n = 0. 

x(t) 

(a) 

x(-t) 

(b) 

Figure 1.11 (a) A continuous-time signal x(t); (b) its 
reflection x(- t) about t = 0. 

x(t) 

d\ 
x(2t) 

& 
x(V2) 

~ 
Figure 1. 12 Continuous-time signals 
related by time scaling. 

9 

Petitioner Apple Inc.
Ex. 1014, p. 9



10 Signals and Systems Chap. 1 

Example 1.1 

·" Given the signal x(t) shown in Figure 1.13(a), the signal x(t + 1) corresponds to an 
advance (shift to the left) by one unit along the taxis as illustrated in Figure 1.13(b). 
Specifically, we note that the value of x(t) at t = to occurs in x(t + 1) at t = to - 1. For 

'j x(U 

0 1 2 
(a) 

-----~-:~ :----1::-~-x(-t+-1)-~----=----- t 

-1 0 1 2 

-1 0 

(b) 

1 
(c) 

0 2/3 4/3 
(d) 

-2/3 0 2/3 
(e) 

Figure 1.13 (a) The continuous-time signal x(t) used in Examples 1.1- 1.3 
to Illustrate transformations of the Independent variable; (b) the time-shifted 
signal x(t + 1 ); (c) the signal x( - t + 1} obtained by a time shift and a time 
reversal; (d) the time-scaled signal x(~t); and (e) the signal x( ~ t + 1) obtained 
by time-shifting and scaling. 
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Sec. 1.2 Transformations of the Independent Variable 11 

example, the value of x(t) at t = 1 is found in x(t + 1) at t = 1 - 1 = 0. Also, since 
•. x(t) is zero fort < 0, we have x(t + 1) zero fort < -1. Similarly, since x(t) is zero for 
-~ t > 2, x(t + 1) is zero fort > 1. 

'i~ ... ~ Let us also consider the signal x(- t + 1 ), which may be obtained by replacing t 
with-tin x(t + 1). That is, x(-t + 1) is the time reversed version of x(t + 1). Thus, 
x( -t + 1) may be obtained graphically by reflecting x(t + 1) about the taxis as shown 

w) in Figure 1.13(c). 

Example 1.2 

1 Given the signal x(t), shown in Figure l.l3(a), the signal x( ~ t) corresponds to a linear 
~¥ • compression of x(t) by a factor of ~ as illustrated in Figure 1.13( d). Specifically we note 

• that the value of x(t) at t = to occurs in x(~t) at t = j to . For example, the value of 
· x(t) at t = 1 is found in x(~t) at t = ~ (1) == j. Also, since x(t) is zero fort < 0, we 
· have x(~t) zero fort< 0. Similarly, since x(t) is zero fort> 2, x(~ t) is zero fort> ~· 

Example 1.3 
' 

Suppose that we would like to determine the effect of transforming the independent vari-
able of a given signal, x(t), to obtain a signal of the form x(at + {3), where a and {3 are 
given numbers. A systematic approach to doing this is to first delay or advance x(t) in 

. "'' accordance with the value of {3, and then to perform time scaling and/or time reversal on 
· , , the resulting signal in accordance with the value of a. The delayed or advanced signal is 
' linearly stretched if /a I < 1, linearly compressed if /a I > 1, and reversed in time if a < 0. 

To illustrate this approach, let us show how x( ~t + 1) may be determined for the 
signal x(t) shown in Figure l.l3(a). Since {3 = 1, we first advance (shift to the left) x(t) 
by 1 as shown in Figure l.13(b). Since /a/ = ~.we may linearly compress the shifted 
signal of Figure 1.13(b) by a factor of~ to obtain the signal shown in Figure 1.13(e). 

In addition to their use in representing physical phenomena such as the time shift 
in a sonar signal and the speeding up or reversal of an audiotape, transformations of the 
independent variable are extremely useful in signal and system analysis. In Section 1.6 
and in Chapter 2, we will use transformations of the independent variable to introduce and 
analyze the properties of systems. These transformations are also important in defining 
and examining some important properties of signals. 

1.2.2 Periodic Signals 

An important class of signals that we will encounter frequently throughout this book is 
the class of periodic signals. A periodic continuous-time signal x(t) has the property that 
there is a positive value of T for which 

x(t) = x(t + T) (1.11) 

for all values oft. In other words, a periodic signal has the property that it is unchanged by a 
time shift ofT. In this case, we say that x(t) is periodic with period T. Periodic continuous-
time signals arise in a variety of contexts. For example, as illustrated in Problem 2.61, 
the natural response of systems in which energy is conserved, such as ideal LC circuits 
without resistive energy dissipation and ideal mechanical systems without frictional losses, 
are periodic and, in fact, are composed of some of the basic periodic signals that we will 
introduce in Section 1.3. 
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12 Signals and Systems Chap. 1 

···/\ 1\! 1\ ~ ... Figure 1 . 14 A continuous-time 
periodic signal. -2T -T 0 T 2T 

An example of a periodic continuous-time signal is given in Figure 1.14. From the 
figure or from eq. (1.11), we can readily deduce that if x(t) is periodic with period T, then 
x(t) = x(t + mT) for all t and for any integer m. Thus, x(t) is also periodic with period 
2T, 3T, 4T, .... The .fundamental period To of x(t) is the smallest positive value ofT for 
which eq. (1.11) holds. This definition of the fundamental period works, except if x(t) is 
a constant. In this case the fundamental period is undefined, since x(t) is periodic for any 
choice ofT (so there is no smallest positive value). A signal x(t) that is not periodic will 
be referred to as an aperiodic signal. 

Periodic signals are defined analogously in discrete time. Specifically, a discrete-
time signal x[n] is periodic with period N, where N is a positive integer, if it is unchanged 
by a time shift of N, i.e., if 

x[n] == x[n + N] (1.12) 

for all values of n. If eq. (1.12) holds, then x[n] is also periodic with period 2N, 3N, .... 
The .fundamental period No is the smallest positive value of N for which eq. (1.12) holds. 
An example of a discrete-time periodic signal with fundamental period No = 3 is shown 
in Figure 1.15. 

x[n] 

Figure 1.15 A discrete-time pe-
n riodic signal with fundamental period 

No= 3. 

Example 1.4 

Let us illustrate the type of problem solving that may be required in determining whether 
• or not a given signal is periodic. The signal whose periodicity we wish to check is given 

,'' by 

., 

( ) = { cos(t) if t < 0 
X t , ( ) 'f 0 . smt 112:: 

(1.13) 

From o·igonometry, we know that cos{t + 2'71') = cos(t) and sin(t + 2'71') = sin(t). Thus 
conside.ring t > 0 and 1 < 0 separately, we see that x(t) does repeat itself over every 
interval of length 2'71'. However as illustrated in Figure 1.16, x(t) also has a discontinuity 
at tbe time origin that does not recur at any other time. Since every featuJ·e in the shape of 
a periodic signal must recur periodically, we conclude that ihe signal x(c) is not periodic. 
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' ' x(t) 

Figure 1. 16 The signal x(t) considered in Example 1.4. 

1.2.3 Even and Odd Signals 

Another set of useful properties of signals relates to their symmetry under time reversal. 
A signal x(t) or x[n] is referred to as an even signal if it is identical to its time-reversed 
counterpart, i.e., with its reflection about the origin. In continuous time a signal is even if 

x( -t) = x(t), 

while a discrete-time signal is even if 

A signal is referred to as odd if 

x[-n] = x[n]. 

x(-t) = -x(t), 

x[-n] = -x[n]. 

(1.14) 

(1.15) 

(1.16) 
(1.17) 

An odd signal must necessarily be 0 att = 0 or n = 0, since eqs. (1.16) and (1.17) require 
that x(O) = - x(O) and x[O] = - x[O]. Examples of even and odd continuous-time signals 
are shown in Figure 1.17. 

x(t) 

x(t) 

Figure 1.17 (a) An even con­
tinuous-time signal; (b) an odd 
continuous-time signal. 
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n 

n 

n Figure 1 . I s Example of the even­
odd decomposition of a discrete-time 
signal. 

An important fact is that any signal can be brolf.en into a sum of two signals, one of 
which is even and one of which is odd. To see this, consider the signal 

1 
Sv{x(t)} == 2 [x(t) + x(-t)], (1.18) 

which is referred to as the even part of x(t). Similarly, the odd part of x(t) is given by 

1 
0d{x(t)} = 2[x(t)- x(-t)]. (1.19) 

It is a simple exercise to check that the even part is in fact even, that the odd part is odd, 
and that x(t) is the sum of the two. Exactly analogous definitions hold in the discrete-
time case. An example of the even -odd decomposition of a discrete-time signal is given 
in Figure 1.18. 

I .3 EXPONENTIAL AND SINUSOIDAL SIGNALS 

Iil this section and the next, we introduce several basic continuous-time and discrete-time 
signals. Not only do these signals occur frequently, but they also serve as basic building 
blocks from which we can construct many other signals. 

.I 
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Sec. 1.3 Exponential and Sinusoidal Signals 

1.3.1 Continuous-Time Complex Exponential 
and Sinusoidal Signals 

The continuous-time complex exponential signal is of the form 

x(t) = cea1
, 

15 

(1.20) 

where C and a are, in general, complex numbers. Depending upon the values of these 
parameters, the complex exponential can exhibit several different characteristics. 

RealExponennalSignah 
As illustrated in Figure 1.19, if C and a are real,[in which case x(t) is called a real 
exponential], there are basically two types of behavior. H a is positive, then as t in-
creases x(t) is a growing exponential, a form that is used in describing many different 
physical proces~es, including chain reactions in atomic explosions and complex chemical 
reactions. If a is negative, then x(t) is a decaying exponential, a signal that is also used 
to describe a wide variety of phenomena, including the process of radioactive decay and 
the responses of RC circuits and damped mechanical systems. In particular, as shown 
in Problems 2.61 and 2.62, the natural responses of the circuit in Figure 1.1 and the 
automobile in Figure 1.2 are decaying exponentials. Also, we note that for a = 0, x(t) 
is constant. 

x(t) 

(a) 

x(t) 

(b) 

Figure 1.19 Continuous-time real 
exponential x(t) = Clf1: (a) a > 0; 
(b) a< 0. 
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16 Signals and Systems Chap. 1 

Periodic Complex Exponential and Sinusoidal Signals 

A second important class of complex exponentials is obtained by constraining a to be 
purely imaginary. Specifically, consider 

x(t) = ejwot. (1.21) 

An important property of this signal is that it is periodic. To verify this, we recall from 
eq. ( 1.11) that x( t) will be periodic with period T if 

(1.22) 

Or, since 

it follows that for periodicity, we must have 

eiwoT = 1. (1.23) 

If w0 = 0, then x(t) = 1, which is periodic for any value ofT. If w0 -¥- 0, then the fun-
damental period To of x(t)-that is, the smallest positive value ofT for which eq. (1.23) 
holds-is 

21T 
To= lwol' 

(1.24) 

Thus, the signals eiwot and e- jwut have the same fundamental period. 
A signal closely related to the periodic complex exponential is the sinusoidal signal 

x(t) = A cos(wot + </1 ), (1.25) 

as illustrated in Figure 1.20. With seconds as the uniliS oft, the units of </J and w 0 are radians 
and radians per second, respectively. It is also common to write w0 = 21T f 0 , where fo has 
the units of cycles per second or hertz (Hz). Like the complex exponential signal, the si-
nusoidal signal is periodic with fundamental period To given by eq. (1.24). Sinusoidal and 

x(t) = A cos (w0t + ljl) 

Figure 1.20 Continuous-time sinu­
soidal signal. 
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Sec. 1.3 Exponential and Sinusoidal Signals 17 

complex exponential signals are also used to describe the characteristics of many physical 
processes-in particular, physical systems in which energy is conserved. For example, as 
shown in Problem 2.61, the natural response of an LC circuit is sinusoidal, as is the simple 
harmonic motion of a mechanical system consisting of a mass connected by a spring to a 
stationary support. The acoustic pressure variations corresponding to a single musical tone 
are also sinusoidal. 

By using Euler's relation,2 the complex exponential in eq. (1.21) can be written in 
terms of sinusoidal signals with the same fundamental period: 

eiwot = cos wot + j sin wot. (1.26) 

Similarly, the sinusoidal signal of eq. (1.25) can be written in terms of periodic complex 
exponentials, again with the same fundamental period: · 

A ·.~o. A . .~. . 
Acos(w0t + c/J) = 2e1'~'eJwot + 2 e-J'~'e-Jwot. (1.27) 

Note that the two exponentials in eq. (1.27) have complex amplitudes. Alternatively, we 
can express a sihusoid in terms of a complex exponential signal as 

A cos(wot + c/J) = A<R..e{ei(wot+<Pl}, (1.28) 

where, if c is a complex number, ffi..e{ c} denotes its real part. We will also use the notation 
dm{c} for the imaginary part of c, so that, for example, 

A sin(wot + c/J) = Adm{ej(wot+c/>)}. (1.29) 

From eq. (1.24), we see that the fundamental period T0 of a continuous-time sinu-
soidal signal or a periodic complex exponential is inversely proportional to lwol. which 
we will refer to as the fundamental frequency. From Figure 1.21, we see graphically what 
this means. If we decrease the magnitude of w0 , we slow down the rate of oscillation and 
therefore increase the period. Exactly the opposite effects occur if we increase the mag-
nitude of wo. Consider now the case w0 = 0. In this case, as we mentioned earlier, x(t) 
is constant and therefore is periodic with period T for any positive value of T. Thus, the 
fundamental period of a constant signal is undefined. On the other hand, there is no am-
biguity in defining the fundamental frequency of a constant signal to be zero. That is, a 
constant signal has a zero rate of oscillation. 

Periodic signals-and in particular, the complex periodic exponential signal in 
eq. (1.21) and the sinusoidal signal in eq. (1.25)-provide important examples of signals 
with infinite total energy but finite average power. For example, consider the periodic ex-
ponential signal of eq. (1.21), and suppose that we calculate the total energy and average 
power in this signal over one period: 

f
To _ jwot 2 

Eperiod -
0 

ie I dt 

(To 
= Jo 1 · dt = T0, 

(1.30) 

2Euler's relation and other basic ideas related to the manipulation of complex numbers and exponentials 
are considered in the mathematical review section of the problems at the end of the chapter. 
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(a) 

(b) 

(c) 

Signals and Systems Chap. 1 

Figure 1.21 Relationship between 
the fundamental frequency and period 
for continuous-time sinusoidal signals; 
here, w1 > W2 > W3, which implies 
that r, < T2 < Ta. 

1 
Pperiod = To Eperiod = 1. (1.31) 

Since there are an infinite number of periods as t ranges from -oo to +oo, the total energy 
integrated over all time is infinite. However, each period of the signal looks exactly the 
same. Since the average power of the signal equals 1 over each period, averaging over 
multiple periods always yields an average power of 1. That is, the complex periodic ex-
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Sec. 1.3 Exponential and Sinusoidal Signals 19 

ponential signal has finite average power equal to 

P"' =lim -1-JT Jeiwotj
2

dt = 1. 
T-+"' 2T -T 

(1.32) 

Problem 1.3 provides additional examples of energy and power calculations for periodic 
and aperiodic signals. 

Periodic complex exponentials will play a central role in much of our treatment of 
signals and systems, in part because they serve as extremely useful building blocks for 
many other signals. We will often find it useful to consider sets of harmonically related 
complex exponentials-that is, sets of periodic exponentials, all of which are periodic with 
a common period T0. Specifically, a necessary condition for a complex exponential eiwt to 
be periodic with period T 0 is that 

eiwTo = 1, (1.33) 

which implies that w1'0 is a multiple of 27T, i.e., 

wTo = 27Tk, k = 0, ±1, ±2, .... (1.34) 

Thus, if we define 

(1.35) 

we see that, to satisfy eq. (1.34), w must be an integer multiple of w0• That is, a harmoni-
cally related set of complex exponentials is a set of periodic exponentials with fundamental 
frequencies that are all multiples of a single positive frequency w0 : 

k = 0, ±1, ±2, .... (1.36) 

For k = 0, cfJk(t) is a constant, while for any other value of k, cfJk(t) is periodic with fun-
damental frequency lklwo and fundamental period 

27T To 
lklwo - Tkf' (1.37) 

The kth harmonic cfJk(t) is still periodic with period To as well, as it goes through exactly 
lkl of its fundamental periods during any time interval oflength T0• 

Our use of the term "harmonic" is consistent with its use in music, where it refers 
to tones resulting from variations in acoustic pressure at frequencies that are integer mul-
tiples of a fundamental frequency. For example, the pattern of vibrations of a string on an 
instrument such as a violin can be described as a superposition-i.e., a weighted sum-Qf 
harmonically related periodic exponentials. In Chapter 3, we will see that we can build a 
very rich class of periodic signals using the harmonically related signals of eq. (1.36) as 
the building blocks. 

Example 1.5 
, It is sometimes desirable to express the sum of two complex exponentials as the product 

of a single complex exponential and a single sinusoid. For example, suppose we wish to 
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plot the magnitude of the signal 

(1.38) 

To do this, we first factor out a complex exponential from the right side of eq. (1.38), 
where the frequency of this exponential factor is taken as the average of the frequencies 
of the two exponentials in the sum. Doing this, we obtain 

(1.39) 

which, because of Euler's relation, can be rewritten as 

x(t) = 2ej2·51 cos(0.5t). (1.40) 

From this, we can directly obtain an expression for the magnitude of x(t): 

jx(t)j = 2j cos(0.5t)j. (1.41) 

:, Here, we have used the fact that the magnitude of the complex exponential ej2·51 is always 
unity. Thus, jx(t) j is what is commonly referred to as a full-wave rectilied sinusoid, as 
shown in Figure 1.22. 

Figure 1 .22 The full-wave rectified sinusoid of Example 1.5. 

General Complex Exponential Signals 

The most general case of a complex exponential can be expressed and interpreted in terms 
of the two cases we have examined so far: the real exponential and the periodic complex 
exponential. Specifically, consider a complex exponential C eat, where C is expressed in 
polar form and a in rectangular form. That is, 

C = JCJej/1 

and 

a= r + }wo. 

Then 

C eat = JCJejll e<r+ jwo)t = JCJert ej(wot+li). (1.42) 

Using Euler's relation, we can expand this further as 

Ceat = JCJert cos(wot + 0) + JICJert sin(wot + 0). (1.43) 
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Thus, for r = 0, the real and imaginary parts of a complex exponential are sinusoidal. For 
r > 0 they correspond to sinusoidal signals multiplied by a growing exponential, and for 
r < 0 they correspond to sinusoidal signals multiplied by a decaying exponential. These 
two cases are shown in Figure 1.23. The dashed lines in the figure correspond to the func-
tions ±ICier1• From eq. (1.42), we see that 1Cier1 is the magnitude of the complex expo-
nential. Thus, the dashed curves act as an envelope for the oscillatory curve in the figure 
in that the peaks of the oscillations just reach these curves, and in this way the envelope 
provides us with a convenient way to visualize the general trend in the amplitude of the 
oscillations. 

x(t) 

(a) 

x(t) 

(b) 

t 

Figure 1.23 (a) Growing sinusoidal 
signal x(t) = cert cos (wot + o), 
r > 0; (b) decaying sinusoid x(t) = 
cert cos (wot + o), r < o. 

Sinusoidal signals multiplied by decaying exponentials are commonly referred to as 
damped sinusoids. Examples of damped sinusoids arise in the response of RLC circuits 
and in mechanical systems containing both damping and restoring forces, such as automo-
tive suspension systems. These kinds of systems have mechanisms that dissipate energy 
(resistors, damping forces such as friction) with oscillations that decay in time. Examples 
illustrating such systems and their damped sinusoidal natural responses can be found in 
Problems 2.61 and 2.62. 

1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals 

As in continuous time, an important signal in discrete time is the complex exponential 
signal or sequence, defined by 

(1.44) 
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where C and a are, in general, complex numbers. This could alternatively be expressed 
in the form 

x[n] = cef3n, (1.45) 

where 

a = ef3. 

Although the form of the discrete-time complex exponential sequence given in eq. ( 1.45) is 
more analogous to the form of the continuous-time exponential, it is often more convenient 
to express the discrete-time complex exponential sequence in the form of eq. (1.44). 

RealExponennalSignah 
If C and a are real, we can have one of several types of behavior, as illustrated in Fig-
ure 1.24. If Ia I > 1 the magnitude of the signal grows exponentially with n, while if Ia I < 1 
we have a decaying exponential. Furthermore, if a is positive, all the values of can are of 
the same sign, but if a is negative then the sign of x[n] alternates. Note also that if a = 1 
then x[ n] is a constant, whereas if a = -1, x[n] a1ternates in value between + C and -C. 
Real-valued discrete-time exponentials are often used to describe population growth as 
a function of generation and total return on investment as a function of day, month, or 
quarter. 

Sinusoidal Signals 
Another important complex exponential is obtained by using the form given in eq. (1.45) 
and by constraining f3 to be purely imaginary (so that Ia I = 1). Specifically, consider 

(1.46) 

As in the continuous-time case, this signal is closely related to the sinusoidal signal 

x[n] = A cos(wow+ </>). (1.47) 

If we taken to be dimensionless, then both wo and 4> have units of radians. Three examples 
of sinusoidal sequences are shown in Figure 1.25. 

As before, Euler's relation allows us to relate complex exponentials and sinusoids: 

ejwon = cos won + j sin won (1.48) 

and 

(1.49) 

The signals in eqs. (1.46) and (1.47) are examples of discrete-time signals with infinite 
total energy but finite average power. For example, since lejwonl2 = 1, every sample of 
the signal in eq. (1.46) contributes 1 to the signal's energy. Thus, the total energy for 
-oo < n < oo is infinite, while the average power per time point is obviously equal to 1. 
Other examples of energy and power calculations for discrete-time signals are given in 
Problem 1.3. 
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(a) 

... 

(b) 

(c) 

(d) 

n 

n 

n 

Figure 1.24 The real exponential 
signal x[n] = can: 
(a) a> 1; (b) 0 <a< 1; 
(c) -1 <a < 0; (d) a< -1. 

23 
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x[n] = cos (2'1Tn/12 ) 

(a) 

x[n] =cos (B'll'n/31) 

(b) 

x[r1] = cos (n/6) 

(c) 

Figure 1.25 Discrete-time sinusoidal signals. 

General Complex Exponential Signals 

n 

n 

n 

Chap. 

1 
I . 

The general discrete-time complex exponential can be written and interpreted in terms o 
real exponentials and sinusoidal signals. Specifically, if we write C and a in polar form, 
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viz., 

and 

then 

can = ICilaln cos(won + 0) + jiCIIaln sin(won + 0). (1.50) 

Thus, for Ia I = 1, the real and imaginary parts of a complex exponential sequence are 
sinusoidal. For Ia I < 1 they correspond to sinusoidal sequences multiplied by a decaying 
exponential, while for Ia I > 1 they correspond to sinusoidal sequences multiplied by a 
growing exponential. Examples of these signals are depicted in Figure 1.26. 

(a) 

--
(b) 

' ' 

' ' 

' ' ' ' 

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying 
discrete-time sinusoid. 

n 

n 

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials 

While there are many similarities between continuous-time and discrete-time signals, 
there are also a number of important differences. One of these concerns the discrete-time 
exponential signal ejwon. In Section 1.3.1, we identified the following two properties of its 

Petitioner Apple Inc.
Ex. 1014, p. 25



26 Signals and Systems Chap. 1 

continuous-time counterpart eiwot: ( 1) the larger the magnitude of w0 , the higher is the rate 
of oscillation in the signal; and (2) eiwot is periodic for any value of w0• In this section we 
describe the discrete-time versions of both of these properties, and as we will see, there 
are definite differences between each of these and its continuous-time counterpart. 

The fact that the first of these properties is different in discrete time is a direct conse-
quence of another extremely important distinction between discrete-time and continuous-
time complex exponentials. Specifically, consider the discrete-time complex exponential 
with frequency w0 + 21T: 

(1.51) 

From eq. (1.51), we see that the exponential at frequency wo + 21T is the same as that 
at frequency w0. Thus, we have a very different situation from the continuous-time case, 
in which the signals eiwut are all distinct for distinct values of w0• In discrete time, these 
signals are not distinct, as the signal with frequency w0 is identical to the signals with 
frequencies wo ± 21T, w0 ± 41T, and so on. Therefore, in considering discrete-time com-
plex exponentials, we need only consider a frequency interval of length 21T in which to 
choose w 0. Although, according to eq. (1.51), any interval of length 21T will do, on most 
occasions we will use the interval 0 ::5 w0 < 21T or the interval -?T ::5 wo < 1T. 

Because of the periodicity implied by eq. (1.51), the signal eiwon does not have a 
continually increasing rate of oscillation as w0 is increased in magnitude. Rather, as il-
lustrated in Figure 1.27, as we increase w0 from 0, we obtain signals that oscillate more 
and more rapidly until we reach wo = 1T. As we continue to increase w0, we decrease the 
rate of oscillation until we reach w0 = 21T, which produces the same constant sequence as 
w0 = 0. Therefore, the low-frequency (that is, slowly varying) discrete-time exponentials 
have values of w0 near 0, 21T, and any other even multiple of 1T, while the high frequen-
cies (corresponding to rapid variations) are located near w0 = ± 1T and other odd multiples 
of 1T. Note in particular that for w0 = 1T or any other odq multiple of 1T, 

(1.52) 

' so that this signal oscillates rapidly, changing sign at each point in time [as illustrated in 
Figure 1.27(e)]. 

The second property we wish to consider concerns the periodicity of the discrete-
time complex exponential. In order for the signal eiwon to be periodic with period N > 0, 
we must have 

(1.53) 

or equivalently, 

eiwoN = 1. (1.54) 

For eq. (1.54) to hold, woN must be a multiple of 21T. That is, there must be an integer m 
such that 

w0N = 21Tm, (1.55) 

or equivalently, 

m = N' 
(1.56) 
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According to eq. (1.56), the signal eiwon is periodic if w0!2Tr is a rational number and is 
not periodic otherwise. These same observations also hold for discrete-time sinusoids. For 
example, the signals depicted in Figure 1.25(a) and (b) are periodic, while the signal in 
Figure 1.25(c) is not. 

Using the calculations that we have just made, we can also determine the funda-
mental period and frequency of discrete-time complex exponentials, where we define the 
fundamental frequency of a discrete-time periodic signal as we did in continuous time. 
That is, if x[n] is periodic with fundamental periodN, its fundamental frequency is 2TriN. 
Consider, then, a periodic complex exponential x[n] = eiwon with wo ~ 0. As we have 
just seen, w0 must satisfy eq. (1.56) for some pair of integers m and N, with N > 0. In 
Problem 1.35, it is shown that if w0 ~ 0 and if Nand m have no factors in common, then 
the fundamental period of x[n] is N. Using this fact together with eq. (1.56), we find that 
the fundamental frequency of the periodic signal eiwon is 

2Tr w0 
N"-n; (1.57) 

Note that the fundamental period can also be written as 

(1.58) 

These last two expressions again differ from their continuous-time counterparts. In 
Table 1.1, we have summarized some of the differences between the continuous-time sig-
nal eiwot and the discrete-time signal eiwon. Note that, as in the continuous-time case, the 
constant discrete-time signal resulting from setting w0 = 0 has a fundamental frequency 
of zero, and its fundamental period is undefined. 

TABLE 1.1 Comparison of the signals elwot and efwon. 

Distinct signals for distinct values of w0 Identical signals for values of w0 

separated by multiples of 27T 

Periodic for any choice of w0 Periodic only if wo = 1mn/N for some integers N > 0 and m. 

Fundamental.frequency w0 Fundamental frequency' w0/m 

Fundamental period Fundamental period' 
w0 = 0: undefined wo = o: undefined 
wo¥0:~ wo¥0:m(~) 

• Assumes that m and N do not have any factors in common. 

To gain some additional insight into these properties, let us examine again the signals 
depicted in Figure 1.25. First, consider the sequence x[n] = cos(2Trnl12), depicted in 
Figure 1.25(a), which we can think of as the set of samples of the continuous-time sinusoid 
x(t) = cos(2Trt/12) at integer time points. In this case, x(t) is periodic with fundamental 
period 12 and x[n] is also periodic with fundamental period 12. That is, the values of x[n] 
repeat every 12 points, exactly in step with the fundamental period of x(t). 
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In contrast, consider the signal x[n] = cos(87Tn/31), depicted in Figure 1.25(b), 
which we can view as the set of samples of x(t) = cos (87Tt/31) at integer points in time. 
In this case, x(t) is periodic with fundamental period 31/4. On the other hand, x[n] is pe-
riodic with fundamental period 31. The reason for this difference is that the discrete-time 
signal is defined only for integer values of the independent variable. Thus, there is no 
sample at timet = 3114, when x(t) completes one period (starting from t = 0). Similarly, 
there is no sample at t = 2 · 3114 or t = 3 · 31/4, when x(t) has completed two or three 
periods, but there is a sample at t = 4 · 3114 = 31, when x(t) has completed four periods. 
This can be seen in Figure 1.25(b), where the pattern of x[n] values does not repeat with 
each single cycle of positive and negative values. Rather, the pattern repeats after four 
such cycles, namely, every 31 points. 

Similarly, the signal x[n] = cos(n/6) can be viewed as the set of samples of the 
signal x(t) = cos(t/6) at integer time points. In this case, the values of x(t) at integer 
sample points never repeat, as these sample points never span an interval that is an exact 
multiple of the period, 121'1", of x(t). Thus, x[n] is not periodic, although the eye visually 
interpolates between the sample points, suggesting the envelope x(t), which is periodic. 
The use of the concept of sampling to gain insight into the periodicity of discrete-time 
sinusoidal sequences is explored further in Problem 1.36. 

Example 1.6 

Suppose that we wish to determine the fundamental period of the discrete-time signal 

(1.59) 

The first exponential on the right-hand side of eq. (1.59) has a fundamental period of 3. 
While this can be verified from eq. (1.58), there is a simpler way to obtain that answer. In 
particular, note that the angle (27r/3)n ofthe first term must be incremented by a multiple 
of 27r for the values of this exponential to begin repeating. We then immediately see that 
if n is incremented by 3, the angle will be incremented by a single multiple of 27r. With 

, regard to the second term, we see that incrementing the angle (37r/4)n by 27r would 
require n to be incremented by 8/3, which is impossible, since n is restricted to being an 
integer. Similarly, incrementing the angle by 47r would require a noninteger increment 

, of 16/3 to n. However, incrementing the angle by 67r requires an increment of 8 to n, 
and thus the fundamental period of the second term is 8. 

Now, for the entire signal x[n] to repeat, each of the terms in eq. (1.59) must go 
through an integer number of its own fundamental period. The smallest increment of n 
that accomplishes this is 24. That is, over an interval of 24 points, the first term on the 
right-hand side of eq. (1 .59) will have gone through eight of its fundamental periods, the 
second term through three of its fundamental periods, and the overall signal x[n] through 
exactly one of its fundamental periods. 

As in continuous time, it is also of considerable value in discrete-time signal and 
system analysis to consider sets of harmonically related periodic exponentials-that is, 
periodic exponentials with a common period N. From eq. (1 .56), we know that these are 
precisely the signals which are at frequencies which are multiples of 21TIN. That is, 

k = 0, ±1, .... (1.60) 
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As the preceding examples suggest, the mathematical descriptions of systems from 
a wide variety of applications frequently have a great deal in common, and it is this fact 
that provides considerable motivation for the development of broadly applicable tools for 
signal and system analysis. The key to doing this successfully is identifying classes of 
systems that have two important characteristics: (1) The systems in this class have prop­
erties and structures that we can exploit to gain insight into their behavior and to develop 
effective tools for their analysis; and (2) many systems of practical importance can be 
accurately modeled using systems in this class. It is on the first of these characteristics 
that most of this book focuses, as we develop tools for a particular class of systems re­
ferred to as linear, time-invariant systems. In the next section, we will introduce the prop­
erties that characterize this class, as well as a number of other very important basic system 
properties. 

The second characteristic mentioned in the preceding paragraph is of obvious impor­
tance for any system analysis technique to be of value in practice. It is a well-established 
fact that a wide tange of physical systems (including those in Examples 1.8-1.10) can 
be well modeled within the class of systems on which we focus in this book. However, 
a critical point is that any model used in describing or analyzing a physical system rep­
resents an idealization of that system, and thus, any resulting analysis is only as good 
as the model itself. For example, the simple linear model of a resistor in eq. (1.80) 
and that of a capacitor in eq. (1.81) are idealizations. However, these idealizations are 
quite accurate for real resistors and capacitors in many applications, and thus, analy­
ses employing such idealizations provide useful results and conclusions, as long as the 
voltages and currents remain within the operating conditions under which these simple 
linear models are valid. Similarly, the use of a linear retarding force to represent fric­
tional effects in eq. (l .83) is an approximation with a range of validity. Consequently, 
although we will not address this issue in the book, it is important to remember that 
an essential component of engineering practice in using the methods we develop here 
consists of identifying the range of validity of the assumptions that have gone into a 
model and ensuring that any analysis or design based on that model does not violate those 
assumptions. 

1.5.2 Interconnections of Systems 

An important idea that we will use throughout this book is the concept of the interconnec­
tion of systems. Many real systems are built as interconnections of several subsystems. 
One example is an audio system, which involves the interconnection of a radio receiver, 
compact disc player, or tape deck with an amplifier and one or more speakers. Another is 
a digitally controlled aircraft, which is an interconnection of the aircraft, described by its 
equations of motion and the aerodynamic forces affecting it; the sensors, which measure 
various aircraft variables such as accelerations, rotation rates, and heading; a digital au­
topilot, which responds to the measured variables and to command inputs from the pilot 
(e.g., the desired course, altitude, and speed); and the aircraft's actuators, which respond 
to inputs provided by the autopilot in order to use the aircraft control surfaces (rudder, 
tail, ailerons) to change the aerodynamic forces on the aircraft. By viewing such a system 
as an interconnection of its components, we can use our understanding of the component 

Petitioner Apple Inc.
Ex. 1014, p. 41



42 Signals and Systems Chap. 1 

Input Output 

(a) 

Input Output 

(b) 

Input___... )---!~~output 
System 3 

(c) 

Figure 1.42 Interconnection of two systems: (a) series (cascade) intercon­
nection; (b) parallel interconnection; (c) series-parallel interconnection. 

systems and of how they are interconnected in order to analyze the operation and behavior 
of the overall system. In addition, by describing a 'system in tenns of an interconnection of 
simpler subsystems, we may in fact be able to define useful ways in which to synthesize 
complex systems out of simpler, basic building blocks. 

While one can construct a variety of system interconnections, there are several basic 
ones that are frequently encountered. A series or cascade interconnection of two systems 
is illustrated in Figure 1.42(a). Diagrams such as this are referred to as block diagrams. 
Here, the output of System 1 is the input to System 2, and the overall system transforms 
an input by processing it first by System 1 and then by System 2. An example of a series 
interconnection is a radio receiver followed by an amplifier. Similarly, one can define a 
series interconnection of three or more systems. 

A parallel interconnection of two systems is illustrated in Figure 1.42(b ). Here, the 
same input signal is applied to Systems 1 and 2. The symbol "EEl" in the figure denotes 
addition, so that the output of the parallel interconnection is the sum of the outputs of 
Systems 1 and 2. An example of a parallel interconnection is a simple audio system with 
several microphones feeding into a single amplifier and speaker system. In addition to the 
simple parallel interconnection in Figure 1.42(b ), we can define parallel interconnections 
of more than two systems, and we can combine both cascade and parallel interconnections 
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+../ System 1 Output 

System 2 

43 

Figure 1 .43 Feedback interconnec­
tion. 

to obtain more complicated interconnections. An example of such an interconnection is 
given in Figure 1.42(c).4 

Another important type of system interconnection is a feedback interconnection, an 
example of which is illustrated in Figure 1.43. Here, the output of System 1 is the input to 
System 2, while the output of System 2 is fed back and added to the external input to pro-
duce the actual input to System 1. Feedback systems arise in a wide variety of applications. 
For example, a cruise control system on an automobile senses the vehicle's velocity and 
adjusts the fuel flow in order to keep the speed at the desired level. Similarly, a digitally 
controlled aircraft is most naturally thought of as a feedback system in which differences 
between actual and desired speed, heading, or altitude are fed back through the autopilot 
in order to correct these discrepancies. Also, electrical circuits are often usefully viewed 
as containing feedback interconnections. As an example, consider the circuit depicted in 
Figure 1.44(a). As indicated in Figure 1.44(b), this system can be viewed as the feedback 
interconnection of the two circuit elements. 

i(t) + 
~ + 

i1 (t) ~ l2 (I)~ 
1 i(t) ·:: C ~ A 

11 (t) Capacitor 

v(t) = ~/_~i1 (T)dT 

~7 
A 

12 (t) Resistor 
. (t) _ v(t) 
•2 -'A 

+ 

v(t) 

v(t) 

Figure 1.44 (a) Simple electrical 
circuit; (b) block diagram In which the, 
circuit is depicted as the feedback inter­
connection of two circuit elements. 

40n occasion, we will also use the symbol ® in our pictorial representation of systems to denote the 
operation of multiplying two signals (see, for example, Figure 4.26). 
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1.6 BASIC SYSTEM PROPERTIES 

In this section we introduce and discuss a number of basic properties of continuous-time 
and discrete-time systems. These properties have important physical interpretations and 
relatively simple mathematical descriptions using the signals and systems language that 
we have begun to develop. 

1.6. 1 Systems with and without Memory 

A system is said to be memoryless if its output for each value of the independent variabl 
at a given time is dependent on the input at only that same time. For example, t b 
system specified by the relationship 

(1.90) 

is memoryless, as the value of y[n] at any particular time no depends only on the value of 
x[n] at that time. Similarly, a resistor is a memory less system; with the input x(t) taken as 
the current and with the voltage taken as the output y(t), the input-output relationship of a 
resistor is 

y(t) = Rx(t), (1.91) 

where R is the resistance. One particularly simple memory less system is the identity sys­
tem, whose output is identical to its input. That is, the input-output relationship for the 
continuous-time identity system is 

y(t) = x(t), 

and the corresponding relationship in discrete time is 

y[n] = x[n]. 

' An example of a discrete-time system with memory is an accumulator or summer 

n 

y[n] = .2: x[k], (1.92) 
k= -00 

and a second example is a delay 

y[n] = x[n - 1]. (1.93) 

A capacitor is an example of a continuous-time system with memory, since if the input is 
taken to be the current and the output is the voltage, then 

1 Jl y(t) = C -oo X(T)dT, (1.94) 

where Cis the capacitance. 
Roughly speaking, the concept of memory in a system corresponds to the presence 

of a mechanism in the system that retains or stores information about input values at times 
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other than the current time. For example, the delay in eq. (1.93) must retain or store the 
preceding value of the input. Similarly, the accumulator in eq. (1.92) must "remember" or 
store information about past inputs. In particular, the accumulator computes the running 
sum of all inputs up to the current time, and thus, at each instant of time, the accumulator 
must add the current input value to the preceding value of the running sum. In other words, 
the relationship between the input and output of an accumulator can be described as 

n-1 

y[n] = L, x[k] + x[n], (1.95) 
k=-00 

or equivalently, 

y[n] = y[n - 1] + x[n]. (1.96) 

Represented in t:p.e latter way, to obtain the output at the current time n, the accumulator 
must remember the running sum of previous input values, which is exactly the preceding 
value of the accumulator output. 

In many physical systems, memory is directly associated with the storage of energy. 
For example, the capacitor in eq. (1.94) stores energy by accumulating electrical charge, 
represented as the integral of the current. Thus, the simple RC circuit in Example 1.8 
and Figure 1.1 has memory physically stored in the capacitor. Similarly, the automobile in 
Figure 1.2 has memory stored in its kinetic energy. In discrete-time systems implemented 
with computers or digital microprocessors, memory is typically directly associated with 
storage registers that retain values between clock pulses. 

While the concept of memory in a system would typically suggest storing past input 
and output values, our formal definition also leads to our referring to a system as having 
memory if the current output is dependent on future values of the input and output. While 
systems having this dependence on future values might at first seem unnatural, they in fact 
form an important class of systems, as we discuss further in Section 1.6.3. 

1.6.2 lnvertibility and Inverse Systems 

A system is said to be invertible if distinct inputs lead to distinct outputs. As illustrated in 
Figure 1.45(a) for t:Qe discrete-time case, if a system is invertible, then an inverse system 
exists that, when" cascaded with the original system, yields an output w[n] equal to the 
input x[n] to the first system. Thus, the series interconnection in Figure 1.45(a) has an 
overall input-output relationship which is the same as that for the identity system. 

An example of an invertible continuous-time system is 

for which the inverse system is 

y(t) = 2x(t), 

1 
w(t) = 2 y(t). 

(1.97) 

(1.98) 

This example is illustrated in Figure 1.45(b). Another example of an invertible system 
is the accumulator of eq. (1.92). For this system, the difference between two successive 
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x[n] ~ System 
y[n] .. 

(a) 

Inverse 
system 

Signals and Systems 

w[n] = x[n] 

x(t) ~ y(t) = 2x(t) I y(t) •I w(t) = ty(t) I ., w[t] = x(t) 

(b) 

Chap. 1 

x[n]--+-.... I_Y_In_J_=k_~_~_"'_x_[k_J ~ y(n] , I w[n] = y(n] - y[n -1] ~ w[n] = x[n] 

(c) 

Figure 1 .45 Concept of an inverse system for: (a) a general invertible sys­
tem; (b) the invertible system described by eq. (1.97); (c) the invertible system 
defined in eq. (1.92). 

values of the output is precisely the last input value. Therefore, in this case, the inverse 
system is 

w[n] = y[n] - y[n - 1], (1.99) 

as illustrated in Figure 1.45(c). Examples of noninvertible systems are 

y[n] = 0, (1.100) 

that is, the system that produces the zero output sequence for any input sequence, and 

(1.101) 

in which case we cannot determine the sign of the input from knowledge of the output. 
The concept of invertibility is important in many contexts. One example arises in 

systems for encoding used in a wide variety of communications applications. In such a 
system, a signal that we wish to transmit is first applied as the input to a system known 
as an encoder. There are many reasons for doing this, ranging from the desire to encrypt 
the original message for secure or private communication to the objective of providing 
some redundancy in the signal (for example, by adding what are known as parity bits) 
so that any errors that occur in transmission can be detected and, possibly, corrected. For 
lossless coding, the input to the encoder must be exactly recoverable from the output; i.e., 
the encoder must be invertible. 

1.6.3 Causality 

A system is causal if the output at any time depends on values of the input at only the 
present and past times. Such a system is often referred to as being nonanticipative, as 
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the system output does not anticipate future values of the input. Consequently, if two inputs 
to a causal system are identical up to some point in time to or n0, the corresponding outputs 
must also be equal up to this same time. The RC circuit of Figure 1.1 is causal, since 
the capacitor voltage responds only to the present and past values of the source voltage. 
Similarly, the motion of an automobile is causal, since it does not anticipate future actions 
of the driver. The systems described in eqs. (1.92)- (1.94) are also causal, but the systems 
defined by 

y[n] = x[n] - x[n + 1] (1.102) 

and 

y(t) = x(t + 1) (1.103) 

are not. All memory less systems are causal, since the output responds only to the current 
value of the input. 

Although causal systems are of great importance, they do not by any means constitute 
the only systems that are of practical significance. For example, causality is not often an 
essential constraint in applications in which the independent variable is not time, such as in 
image processing. Furthennore, in processing data that have been recorded previously, as 
often happens with speech, geophysical, or meteorological signals, to name a few, we are 
by no means constrained to causal processing. As another example, iri many applications, 
including historical stock market analysis and demographic studies, we may be interested 
in determining a slowly varying trend in data that also contain high-frequency fluctuations 
about that trend. In this case, a commonly used approach is to average data over an interval 
in order to smooth out the fluctuations and keep only the trend. An example of a noncausal 
averaging system is 

Example 1 . 1 2 

1 +M 

y[n] = 2M + 1 L x[n - k]. 
k=-M 

(1.104) 

,1 When checking the causality of a system, it is important to look carefully at the input-
~. output relation. To illustrate some of the issues involved in doing this, we will check the 

causality of two particular systems. 
The first system is defined by 

y[n] = x[ -n]. (1.105) 

Note that the output y[no] at a positive time n0 depends only on the value of the input 
signal x[- n0] at time (-no), which is negative and therefore in the past of no. We may 
be tempted to conclude at this point that the given system is causal. However, we should 
always be careful to check the input-output relation for all times. In particular, for n < 0, 
e.g. n = -4, we see that y[ -4] = x[4], so that the output at this time depends on a future 
value of the input. Hence, the system is not causal. 

It is also important to distinguish carefully the effects of the input from those of 
any other functions used in the definition of the system. For example, consider the system 

y(t) = x(t) cos(t + 1 ). (1.106) 
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If we write 

y[n] = rcos(~ n + 6). (3.136) 

For example, if N = 4, 

1 1 ej(-tun-l(cx)) 

1 - ae i21114 = 1 + aj = ~ ' 

and thJs, 

We note that for expressions such as eqs. (3.124) and (3.131) to make sense, the 
frequency responses H(jw) and H(eiw) in eqs. (3.121) and (3.122) must be well defined 
and finite. As we will see in Chapters 4 and 5, this will be the case if the LTI systems 
under consideration are stable. For example, the LTI system in Example 3.16, with impulse 
response h(t) = e-t u(t), is stable and has a well-defined frequency response given by 
eq. (3.125). On the other hand, an LTI system with impulse response h(t) = e1u(t) is 
unstable, and it is easy to check that the integral in eq. (3.121) for H(jw) diverges for 
any value of w. Similarly, the LTI system in Example 3.17, with impulse response h[n] = 
anu[n], is stable for Ia I < 1 and has frequency response given by eq. (3.134). However, 
if Ia I > 1, the system is unstable, and then the summation in eq. (3.133) diverges. 

3.9 FILTERING 

In a variety of applications, it is of interest to change the relative amplitudes of the fre-
quency components in a signal or perhaps eliminate some frequency components entirely, 
a process referred to as .filtering. Linear time-invariant systems that change the shape of the 
spectrum are often referred to as frequency-shaping filters. Systems that are designed to 
pass some frequencies essentially undistorted and significantly attenuate or eliminate oth-
ers are referred to as frequency-selective filters. As indicated by eqs. (3.124) and (3.131), 
the Fourier series coefficients of the output of an LTI system are those of the input multi-
plied by the frequency response of the system. Consequently, filtering can be conveniently 
accomplished through the use of LTI systems with an appropriately chosen frequency re-
sponse, and frequency-domain methods provide us with the ideal tools to examine this 
very important class of applications. In this and the following two sections, we take a first 
look at filtering through a few examples. 
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3. 9. 1 Frequency-Shaping Filters 

One application in which frequency-shaping filters are often encountered is audio sys-
tems. For example, LTI filters are typically included in such sy terns to permit the listener 
to modify the relative amounts of low-frequency energy (bass) and high-frequency en-
ergy (treble). These filters correspond to LTI systems whose frequency responses can be 
changed by manipulating the tone controls. Also, in high-fidelity audio systems, a so-called 
equalizing filter is often included in the preamplifier to compensate for the frequency-
response cbaracteri tics of the speakers. Overall, these cascaded filtering . stages are fre-
quently referred to as the equalizing or equalizer circuits for the audio system. Figure 3.22 
illustrates the three stages of the equalizer circuits for one particular series of audio speak-
ers. In this figure, the magnitude of the frequency response for each of these stages is shown 
on a log-log plot. Specifically, the magnitude is in units of 20log10 IH(jw )I, referred to as 
decibels or dB. The frequency axis is labeled in Hz (i.e., w/2-rr) along a logarithmic scale. 
As will be discussed in more detail in Section 6.2.3, a logarithmic display of the magnitude 
of the frequency response in this form is common and useful. 

Taken together, the equalizing circuits in Figure 3.22 are designed to compensate for 
the frequency response of the speakers and the room in which they are located and to allow 
the listener to control the overall frequency response. In particular, since the three systems 
are connected in cascade, and since each ystem modifies a complex exponential input 
K ejwt by multiplying it by the system frequency response at that frequency, it follows that 
the overall frequency response of the cascade of the three systems is the product of the three 
frequency responses. The first two filters, indicated in Figures 3.22(a) and (b), together 
make up the control stage of the system, as the frequency behavior of these filters can be 
adjusted by the listener. The third filter, illustrated in Figure 3.22(c), is the equalizer stage, 
which has the fixed frequency response indicated. The filter in Figure 3.22(a) is a low-
frequency :filter controlled by a two-position switch, to provide one of the two frequency 
response indicated. The second filter in the control stage has two continuously adjustable 
slider switches to vary the frequency response within the limits indicated in Figure 3.22(b). 

Another class of frequency-shaping filters often encountered is that for which the 
filter output is the derivative of the filter input, i.e., y(t) = dx(t)ldt. With x(t) of the form 
x(t) = eJwt, y(t) will be y(r) = jwej wt, from which it follows that the frequency response 
is 

H(jw) = jw. (3.137) 

The frequency response characteristics of a differentiating filter are shown in Figure 3.23. 
Since H(jw) is complex in general, and in this example in particular, H(jw) is frequently 
displayed (as in the figure) as separate plots of IH(jw)l and W(jw). The shape of this fre-
quency response implies that a complex exponential input e j wt will receive greater ampli-
fication for larger values of w. Consequently, differentiating filters are useful in enhancing 
rapid variations or transitions in a signal. 

One purpose for which differentiating filters are often used is to enhance edges in 
picture processing. A black-and-white picture can be thought of as a two-dimensional 
"continuous-time" signal x(t1, t2), where t1 and t2 are the horizontal and vertical coordi-
nates, respectively, and x(t1, t2) is the brightness of the image. If the image .is repeated 
perjodically in the horizontal and vertical directions, then it can be represented by a two-
dimensional Fourier series (see Problem 3.70) consisting of sums of p'roducts of complex 
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Figure 3.23 Characteristics of the 
frequency response of a filter for which 
the output is the derivative of the in­
put. 

exponentials, ejw,r, and ejw2t2, that oscillate at possibly different frequencies in each of 
the two coordinate directions. Slow variations in brightness in a particular direction are 
represented by the lower harmonics in that direction. For example, consider an edge cor-
responding to a sharp transition in brightness that runs vertically in an image. Since the 
brightness is constant or slowly varying along the edge, the frequency content of the edge 
in the vertical direction is concentrated at low frequencies . In contrast, since there is an 
abrupt variation in brightness across the edge, the frequency content of the edge in the 
horizontal direction is concentrated at higher frequencies. Figure 3.24 illustrates the effect 
on an image of the two-dimensional equivalent of a differentiating filter. 11 Figure 3.24(a) 
shows two original images and Figure 3.24(b) the result of processing those images with 
the filter. Since the derivative at the edges of a picture is greater than in regions where the 
brightness varies slowly with distance, the effect of the filter is to enhance the edges. 

Discrete-time LTI filters also find a broad array of applications. Many of these in-
' volve the use of discrete-time systems, implemented using general- or special-purpose 

digital processors, to process continuous-time signals, a topic we discuss at some length in 
Chapter 7. In addition, the analysis oftime series information, including demographic data 
and economic data sequences such as the stock market average, commonly involves the 
use of discrete-time filters. Often the long-term variations (which correspond to low fre-
quencies) have a different significance than the short-term variations (which correspond to 
high frequencies), and it is useful to analyze these components separately. Reshaping the 
relative weighting of the components is typically accomplished using discrete-time filters . 

As one example of a simple discrete-time filter, consider an LTI system that succes· 
sively takes a two-point average of the input values: 

1 
y[n] = 2(x[n] + x[n- 1]). (3.138) 

"Specifically each image in Figure 3.24(b) is the magnitude of the two-dimensional gradient of its 
counterpart image in Figure 3.24(a) where the magnitude of the gradient off (x, y) is 

[(a~~~ y) )
2 

+ (a~~~ y) Jr 
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Figure 3.24 Effect of a differentiating filter on an image: (a) two original images; 
(b) the result of processing the original images with a differentiating filter. 
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In this case h[n] = 4<ll[n] + ll[n- 1]), and from eq. (3.122), we see that the frequency 
response of the system is 

H(eiw) = ~[1 + e-Jw] = e-Jw12 cos(w/2). (3.139) 

The magnitude of H(eiw) is plotted in Figure 3.25(a), and <r:.H(elw) is shown in Figure 
3.25(b). As discussed in Section 1.3.3, low frequencies for discrete-time complex expo-
nentialsoccurnearw = 0, ±27T, ±47T, ... , andhighfrequenciesnearw = ±7T, ±37T, .. . . 
This is a result of the fact that eJ<w+27T)n = eJwn, so that in discrete time we need only con-
sider a 27T interval of values of w in order to cover a complete range of distinct discrete-
time frequencies. As a consequence, any discrete-time frequency responses H(elw) must 
be periodic with period 27T, a fact that can also be deduced directly from eq. (3.122). 

For the specific filter defined in eqs. (3.138) and (3.139), we see from Figure 3.25(a) 
that jH(elw)j is large for frequencies near w = 0 and decreases as we increase jwj toward 
7T, indicating that higher frequencies are attentuated more than lower ones. For exam-
ple, if the input to this system is constant-i.e., a zero-frequency complex exponential 

• 
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Figure 3.25 (a) Magnitude and 
(b) phase for the frequency response 
of the discrete-time LTI system 
y(n] = 1/2(x[n) + x[n- 1 )). 

x[n] = KeiO·n = K-then the output will be 

y[n] = H(ej-0 )KeiwO·n = K = x[n]. 

On the other hand, if the input is the high-frequency signal x[n] = KeJ'TTn = K(-1)", 
then the output will be 

y[n] = H(ei'TT)Kei'TT·n = 0. 

Thus, this system separates out the long-term constant value of a signal from its high-
frequency fluctuations and, consequently, represents a first example of frequency-selective 
filtering, a topic we look at more carefully in the next 8Uh8ection. 

3.9.2 Frequency-Selective Filters 

Frequency-selective filters are a class of filters specifically intended to accurately or 
approximately select some bands of frequencies and reject others. The use of frequency-
selective filters arises in a variety of situations. For example, if noise in an audio recording 
is in a higher frequency band than the music or voice on the recording is, it can be 
removed by frequency-selective filtering. Another important application of frequency-
selective filters is in communication systems. As we discuss in detail in Chapter 8, the 
basis for amplitude modulation (AM) systems is the transmission of information frorn 
many different sources simultaneously by putting the information from each channel into 
a separate frequency band and extracting the individual channels or bands at the receiver 
using frequency-selective filters. Frequency-selective filters for separating the individual 

Petitioner Apple Inc.
Ex. 1014, p. 236



Sec. 3.9 Filtering 237 

channels and frequency-shaping filters (such as the equalizer illustrated in Figure 3.22) 
for adjusting the quality of the tone form a major part of any home radio and television 
receiver. 

While frequency selectivity is not the only issue of concern in applications, its broad 
importance has led to a widely accepted set of terms describing the characteristics of 
frequency-selective filters. In particular, while the nature of the frequencies to be passed 
by a frequency-selective filter varies considerably from application to application, several 
basic types of filter are widely used and have been given names indicative of their func-
tion. For example, a lowpass filter is a filter that passes low frequencies-i.e., frequencies 
around w = 0-and attenuates or rejects higher frequencies. A highpass filter is a filter 
that passes high frequencies and attentuates or rejects low ones, and a bandpass filter is a 
filter that passes a band of frequencies and attenuates frequencies both higher and lower 
than those in the band that is passed. In each case, the cutoff frequencies are the frequen-
cies defining the boundaries between frequencies that are passed and frequencies that are 
rejected-i.e., the frequencies in the passband and stopband. 

Numerous questions arise in defining and assessing the quality of a frequency-
selective filter. How effective is the filter at passing frequencies in the passband? How 
effective is it at attentuating frequencies in the stopband? How sharp is the transition 
near the cutoff frequency-i.e., from nearly free of distortion in the passband to highly 
attenuated in the stopband? Each of these questions involves a comparison of the charac-
teristics of an actual frequency-selective filter with those of a filter with idealized behavior. 
Specifically, an ideal frequency-selective filter is a filter that exactly passes complex ex-
ponentials at one set of frequencies without any distortion and completely rejects signals 
at all other frequencies. For example, a continuous-time ideal lowpass filter with cutoff 
frequency We is an LTI system that passes complex exponentials ejwt for values of win the 
range -we :5 w ::::; W e and rejects signals at all other frequencies. That is, the frequency 
response of a continuous-time ideallowpass filter is 

H(jw) = { l, 
0, 

as shown in Figure 3.26. 

H(jw) 

'I 
-we 0 We w 

lwl :$We 

lwl>we ' (3 .140) 

-+----Stopband--j-+--Passband--j-+--_stopband-... Figure 3.26 Frequency response of 
an ideallowpass filter. 

Figure 3.27(a) depicts the frequency response of an ideal continuous-time highpass 
filter with cutoff frequency we, and Figure 3.27(b) illustrates an ideal continuous-time 
bandpass filter with lower cutoff frequency wc1 and upper cutoff frequency W cz · Note that 
each of these filters is symmetric about w = 0, and thus, there appear to be two passbands 
for the highpass and bandpass filters. This is a consequence of our having adopted the 

• 
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U!c2 
Figure 3.27 (a) Frequency re­
sponse of an ideal highpass filter; 
(b) frequency response of an Ideal 
bandpass filter. 

use of the complex exponential signal eiwt, rather than the sinusoidal signals sin wt and 
cos wt, at frequency w. Since ejwt = cos wt t j sin wt and e- jwt = cos wt- j sinwt, both 
of these complex exponentials are composed of sinusoidal signals at the same frequency w. 3 
For this reason, we usually define ideal filters so that they have the symmetric frequency 
response behavior seen in Figures 3.26 and 3.27. 

In a similar fashion, we can define the corresponding set of ide,al discrete-time 
frequency-selective filters, the frequency responses for which are depicted in Figure 3.28. 

H(ei"') 

I~ 'I 
- we 0 

(a) 

H(el"') 

I 
(b) 

H(ei"') 

I II 
-2'1T 

(c) 

We 'IT 

'IT 

2'1T w 

Figure 3.28 Discrete-time ideal 
frequency-selective filters: (a) lowpass; 
(b) highpass; (c) bandpass. 
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In particular, Figure 3.28(a) depicts an ideal discrete-time lowpass filter, Figure 3.28(b) 
is an ideal highpass filter, and Figure 3.28(c) is an ideal bandpass filter. Note that, as 
discussed in the preceding section, the characteristics of the continuous-time and discrete-
time ideal filters differ by virtue of the fact that, for discrete-time filters, the frequency 
response H(ejw) must be periodic with period 21T, with low frequencies near even multi-
ples of 1T and high frequencies near odd multiples of 1T. 

As we will see on numerous occasions, ideal filters are quite useful in describing ide-
alized system configurations for a variety of applications. However, they are not realizable 
in practice and must be approximated. Furthermore, even if they could be realized, some of 
the characteristics of ideal filters might make them undesirable for particular applications, 
and a nonideal filter might in fact be preferable. 

In detail, the topic of filtering encompasses many issues, including design and imple-
mentation. While we will not delve deeply into the details of filter design methodologies, 
in the remainder of this chapter and the following chapters we will see a number of other 
examples of both bontinuous-time and discrete-time filters and will develop the concepts 
and techniques that form the basis of this very important engineering discipline. 

3.1 0 EXAMPLES OF CONTINUOUs-TIME FILTERS DESCRIBED 
BY DIFFERENTIAL EQUATIONS 

In many applications, frequency-selective filtering is accomplished through the use ofLTI 
systems described by linear constant-coefficient differential or difference equations. The 
reasons for this are numerous. For example, many physical systems that can be inter-
preted as performing filtering operations are characterized by differential or difference 
equations. A good example of this that we will examine in Chapter 6 is an automobile 
suspension system, which in part is designed to filter out high-frequency bumps and ir-
regularities in road surfaces. A second reason for the use of filters described by differen-
tial or difference equations is that they are conveniently implemented using either analog 
or digital hardware. Furthermore, systems described by differential or difference equa-
tions offer an extremely broad and flexible range of designs, allowing one, for example, 
to produce filters that are close to ideal or that possess other desirable characteristics. In 
this and the next section, we consider several examples that illustrate the implementation 
of continuous-time and discrete-time frequency-selective filters through the use of dif-
ferential and difference equations. In Chapters 4-6, we will see other examples of these 
classes of filters and will gain additional insights into the properties that make them so use-
ful. 

3.1 0.1 A Simple RC Lowpass Filter 

Electrical circuits are widely used to implement continuous-time filtering operations. One 
of the simplest examples of such a circuit is the first-order RC circuit depicted in Fig-
ure 3.29, where the source voltage vs(t) is the system input. This circuit can be used to 
perform either a lowpass or highpass filtering operation, depending upon what we take 
as the output signal. In particular, suppose that we take the capacitor voltage vc(t) as the 
output. In this case, the output voltage is related to the input voltage through the linear 
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