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ABSTRACT 
This contribution presents an efficient algorithm to esti­

mate the instantaneous signal-to-noise ratio of speech signals. 
The algorithm is capable to track non stationary noise signals 
and has a low computational complexity. It does not need a 
speech activity detector nor histograms to Jearn signal statis­
tics. The algorithm is based on the observation that a noise 
power estimate can be obtained using minimum values of a 
smoothed power estimate. This paper will present this algo­
rithm, its performance, its limits, and some applications. 
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1. INTRODUCTION 
Instantaneous SNR estimation is an essential component 

of speech processing algorithms which are sensitive to vary­
ing noise levels. An instantaneous SNR estimate is based 
on short time power estimates with time constants of inte­
gration in the range of 0.02 - 0.1 s. Typical applications are 
time delay estimation and speech enhancement (e.g. spectral 
subtraction). 

To acquire noise statistics the conventional approach to 
SNR estimation employs a voice activity detector to extract 
the noise only segments of the disturbed speech signal. The 
identification of noise segments might be based on the signal 
power, on a statistical evaluation by means of histograms 
or on combinations thereof [1 J. In all cases the update of 
the noise power estimate requires a signal segment where 
no speech is present. Depending on the method tracking of 
varying noise levels might be slow and confined to periods 
of no speech activity. 

The proposed algorithm, however, does not need an 
explicit speech/nospeech decision to gather noise statistics 
and is capable to track varying noise levels during speech 
activity. The algorithm is based on the observation that the 
smoothed power estimate of a noisy speech signal exhibits 
distinct peaks and valleys (see Figure 1). While the peaks 
correspond to speech activity the valleys of the smoothed 
noise estimate can be used to obtain a noise power estimate. 
To estimate the noise floor our algorithm takes the minimum 
of a smoothed power estimate within a window of finite 
length. The SNR estimates obtained by this method are fairly 
accurate. 
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In section 2 and 3 we will present the algorithm and 
discuss some of its statistical properties. Section 4 will 
present experimental results. We conclude in section 5 with 
two applications. 

2. DESCRIPTION OF ALGORITHM 
In what follows we assume that the bandlirnited and 

sampled disturbed signal x(i) is a sum of a speech signal 
s(i) and a noise signal n(i), x(i) = s(i) + n(i), where i 
denotes the time index. We further assume that s( i) and n( i) 
are statistically independent, hence E { x2 ( i)} = E { s2 ( i)} + 
E{n2 (i)}. 

SN R,(i) will denote the estimated signal-to-noise ratio 
of signal x(i) at time i. The algorithm works on a sample 
basis, i.e. a new output sample SN R,(i) is computed for 
each input sample x(i). 

xl07 Estimated short time power and noise floor 
lOr---~--~--~--~--~--~--~--~--~ 

Figure 1: Smoothed power and estimated noise floor of noisy 
speech signal (f.=8kHz, segmental SNR ca. 5 dB, car noise) 

The computation of SN R,(i) is based on a noise power 
estimate Pn(i) which is obtained as the minimum of the 
smoothed short time power estimate P, ( i) within a window 
of L samples. 
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Besides initialization the algorithm can be split into three 
major parts which will be discussed below (see Figure 2): 

1. Computation of a smoothed short time power estimate 
P.,(i) of signal :~:(i) 

2. Computation of the noise power estimate P,.(i) 
3. Computation of the SNR.,(i) 

SNRx(i)• 

Px(i)- miD(o&dor •Pa(i).Px(i)) 

o&ctor•Pa(i) 

Figure 2: Flowchart of the SNR estimation algorithm 

Computation of a smoothed power estimate 

Computation of the short time signal power P., ( i) and 
smoothing of the power estimate is done in two steps. 
The power estimate may be obtained recursively or non­
recursively. We here use a sliding rectangular window of 
length N with N=128. In many applications, however, a 
power estimate is already available. 

Let P.,(i) denote the smoothed short time power esti­
mate at time i. Smoothing of the power estimate is done 
by means of a first order recursive system. The smoothing 
constant is typically set to values between cr = 0.95 ... 0.98. 
The recursion for i > N is given by equation 1: 

P.,(i) = P.,(i- 1) + :~:(i) * x(i)- x(i- N) * x(i- N) 
.P.,(i) =a* P.,(i- 1) + (1- a)* P.,(i) 

(1) 

Noise power estimation 

The noise power estimate is based on the minimum of 
signal power within a window of L samples. For reasons 
of computational complexity and delay the data window of 
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length L is decomposed into W windows of length M such 
that M * W = L. For a sampling rate of f5 =8 kHz typical 
window parameters are M::1250 and W::4, thus ~5000 
corresponding to a time window of 0.625 s. 

The minimum power of the last M samples is found by 
a samplewise comparison of the actual minimum PMmin(i) 
and the smoothed power ..P., ( i). 

Whenever M samples have been read, i.e. i = r * 
M, we store the minimum power of the last M sam­
ples and reset PMmin(i = r * M) to its maximum value: 
PMmin(i=r*M+) = Pmaz· 

To determine the noise power estimate we distinguish 
two cases: 

1. slowly varying noise power, 
2. rapidly varying noise power. 

If the minimum power of the last W windows with 
M samples each is monotonically increasing we decide on 
rapid noise power variation. In this case the noise power 
estimate equals the power minimum of the last M samples 
P,.(i) = PMmin.(i = r * M). 

In case of non monotonic power the noise power esti­
mate is set to the minimum of the length L window, i.e.: 
P,. ( i) = PLmin ( i). The minimum power of the length L 
window is easily obtained as the minimum of the last W 
minimum power estimates: 

PLmin.(i) = min(PMmin(i = r * M), 
PMmin(i = (r- 1) * M), (2) 

... , PMmin.(i = (r- W + 1) * M)) 

If the actual smoothed power is smaller than the esti­
mated noise power P,.,(i) the noise power is updated im­
mediately independent of window adjustment: P,.,(i) = 
min(P.,(i), P,.(i)). 

Computation of SNR 

The estimated SNR is computed on the basis of the 
estimated minimum noise power P,.,(i). A factor ofar:tor 
accounts for the fact that the minimum power estimate is 
smaller than the true noise power. ofar:tor is typically set 
to values between 1.3 and 2 (see section 3): 

SNR(i) = 
l (

P.,(i)-min(ofactor*Pn.(i), P.,(i))) (3) 
10 * 0910 f ... P. ( ") o a~e.or * n z 

Figure 1 plots the smoothed power estimate and the es­
timated noise floor for a noisy speech sample. The window 
length L = M * W must be large enough to bridge any peak 
of speech activity, but short enough to follow non stationary 
noise variations. Experiments with different speakers, differ­
ent languages, and modulated noise signals have shown that 
a window length of 0.625 s is a good value. 

In case of slowly varying noise power the update of 
noise estimates is delayed by L + M samples. If a rapid 
noise power increase is detected this delay is reduced to M 
samples, thus improving the noise tracking capability of the 
algorithm. 
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3. STATISTICS OF MINIMUM ESTIMATES 
In this section we compute the density function of the 

minimum noise power estimate and justify our choice of the 
overestimation factor ofador. To facilitate the analytical 
evaluation of minimum estimates we assume that the noise 
process n is zero mean white Gaussian noise with variance u 2 

and that the computation of the smoothed power estimate is 
entirely done by means of non recursive accumulation, i.e.: 

N-1 

Pa:(i) = L x 2(i- m) (4) 
m=O 

Then, the power estimate Pz( i) is chi-square distributed 
[2] with mean N * u2 and density: 

fp:(Y) = 1 * yN/2-1 * e-v/2u" * U(y) (5) 
(uv'2( r(N/2) 

where r() and U() denote the Gamma function and the unit 
step function, respectively. 

The density of the minimum of Lw independent power 
estimates is given by [2]: 

/min(Y) = Lw * (1- Fp: (y))L.,-1 * fp: (y) (6) 

where Fp: (y) denotes the distribution function of the chi­
square density: 

N/2-1 
1 

Fp: (y) = 1- e-v/2u' * L I* ( ~)m * U(y) (7) 
m=O m. 2u 

Clearly, successive values of Pa:(i) are correlated but if 
we shift the sliding window of equ. 4 by ~i > N /2 we 
obtain sufficiently uncorrelated power estimates. 

Figure 3 plots the density functions fp: (y) and /min(Y) 
and corresponding histograms of Pa: ( i) and P,. ( i) for a car 
noise signal. 
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Figure 3: Density functions fp:(-g) (dotted) and fmin('V) 
(solid) for u 2 = 0.09, N = 80, and L'W = 20 (left 

graph) and corresponding histograms of P.,(i) (dotted) 
and Pn(i) (solid) for car noise signals (right graph) 
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We now choose the overestimation factor of actor such 
that the noise power estimate is approximately unbiased, i.e. 
E{P,.} * ofador ~ E{Pa:}· Since fp:(Y) and /min(Y) are 
scaled by the noise variance u2 of actor does not depend on 
u 2 • Figure 4 shows the dependency of of actor on N and 
Lw and allows the selection of an appropriate overestimation 
factor. 

Lw 

Figure 4: Overestimation factor of actor versus N and L'W 

4. EXPERIMENTAL RESULTS 
Figure 5 plots the true and the estimated instantaneous 

SNR of the same noisy speech signal as in Figure 1. The 
true SNR was computed on the basis of separate speech and 
noise signals. Our SNR estimate shows good agreement with 
the true SNR during speech activity. In agreement with the 
statistical evaluation the estimate is biased when no speech 
is present. 

samples 

samples 

Figure 5: True and estimated instantaneous 
SNR of noisy speech signal (ofactor = 1.5) 

To test the algorithm with non stationary noise the noise 
signal was modulated with a sine function and then added to 
a speech signal: x(i) = s(i)+n(i)* (1.5 + sin(2• .. ;~0~3•i)). 
The modulation frequency was set to fm = 0.33 Hz. 
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Figure 6 plots the corresponding short time power and 
the estimated noise floor. Note the delay of the noise power 
values in case of increasing noise power. Figure 7 shows 
the true and estimated SNR. Due to the window length of 
0.625 s rapid noise variations might result in erroneous SNR 
estimates. 

xl07 Estimated sbort timepowerandnoisefioor (modulated noise) 
16,---~--~--~--~--~--~--~--~--. 
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Figure 6: Short time power of modulated noisy 
speech signal and noise estimate for fm=0.33 Hz 

samples 

Figure 7: True and estimated SNR of 
modulated noisy speech signal for fm=0.33 Hz 

5. APPLICATIONS 

xl04 

xl04 

The algorithm was tested with varying noise levels and 
successfully incorporated in several speech processing sys­
tems. In what follows we briefly discuss two applications, 
namely time delay estimation and spectral subtraction. 

TIME DElAY ESTIMATION 

Time delayed speech signals originate e.g. from mi­
crophone arrays where the speaker is in a non symmetric 
position relative to the array and possibly moving. In-phase 
summation or adaptive processing of these microphone sig­
nals usually requires a time delay compensation. 

The SNR estimator was implemented to support time 
delay estimation by means of (generalized) correlation. To 
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determine the delay between microphone signals we com­
pute the maximum of a smoothed cross correlation estimate. 
Whenever the SNR is below a preset threshold the update 
of smoothed correlation functions is frozen. Figure 8 plots 
the delay estimate without and with SNR estimation. The 
enhanced algorithm clearly eliminates all large deviations of 
the time delay estimate. 
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Figure 8: Time delay of microphone channel 1 with respect to 
channel 2 of a noisy speech sample with moving speaker 

without (upper graph) and with (lower graph) SNR estimation. 

SPECTRAL SUBTRACTION 

To reduce the noise level within a disturbed speech 
signal the spectral subtraction method modifies the short time 
spectral magnitude of the disturbed speech signal. In our 
experiments we used a filter bank with 256 channels and 
estimated the minimum power in each of these channels. 

Our informal listening test reveal relatively few annoy­
ing musical tones. However, due to the fact that we subtract 
slightly biased noise power estimates ( ofactor = 1.5) the noise 
suppression is limited. Power spectra of the disturbed and of 
the improved signal show an improvement of about 10 dB. 

6. CONCLUSION 
Varying noise levels have a significant impact on the 

performance of many speech processing algorithms. The 
algorithm proposed in this paper provides a computational 
inexpensive and effective mean to cope with this problem. 
The algorithm is accurate for medium to high SNR conditions 
but necessarily biased when no speech is present. A priori 
knowledge of noise variation and noise correlation is helpful 
to adapt window length and to control the estimation bias. 
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