
Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

608. (Currently amended) The system of claim 542, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

609. (Currently amended) The system of claim 543, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

61 0. (Currently amended) The system of claim 544, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

135

Petitioner Microsoft Corporation, Ex. 1002, p. 1001

611. (Currently amended)

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

The system of claim 549, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

612. (Currently amended) The system of claim 550, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

613. (Currently amended) The system of claim 551, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

614. (Currently amended) The system of claim 555, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

136

Petitioner Microsoft Corporation, Ex. 1002, p. 1002

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

615. (Currently amended) The system of claim 556, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

616. (Currently amended) The system of claim 557, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

617. (Currently amended) The system of claim 559, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

618. (Currently amended) The system of claim 560, wherein the pointer is a

137

Petitioner Microsoft Corporation, Ex. 1002, p. 1003

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

619. (Currently amended) The system of claim 561, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

620. (Currently amended) The system of claim 566, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

621. (Currently amended) The system of claim 567, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

138

Petitioner Microsoft Corporation, Ex. 1002, p. 1004

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

622. (Currently amended) The system of claim 568, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

623. (Currently amended) The system of claim 572, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

624. (Currently amended) The system of claim 573, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

625. (Currently amended) The system of claim 574, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

139

Petitioner Microsoft Corporation, Ex. 1002, p. 1005

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

626. (Currently amended) The system of claim 576, wherein the pointer is a

pointer that produces a pointer triggered message on demand the computer system associates

each said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

627. (Currently amended) The system of claim 577, wherein the data

represents a pointer that a pointer triggered message on demand the computer system

associates each said user identity in the group with a respective particular user's stored access

rights, and determines whether the corresponding said user identity is censored from receiving,

and whether the corresponding said user identity is censored from sending, in the

communications, data presenting at least one of a pointer, video, audio, a graphic, or

multimedia.

628. (Currently amended) The system of claim 578, wherein the data

represents a pointer that a pointer triggered message on demand the computer system

associates each said user identity in the group with a respective particular user's stored access

rights, and determines whether the corresponding said user identity is censored from receiving,

and whether the corresponding said user identity is censored from sending, in the

140

Petitioner Microsoft Corporation, Ex. 1002, p. 1006

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

communications, data presenting at least one of a pointer, video, audio, a graphic, or

multimedia.

629. (Currently amended) The system of claim 579, wherein the data

represents a pointer that a pointer triggered message on demand the computer system

associates each said user identity in the group with a respective particular user's stored access

rights, and determines whether the corresponding said user identity is censored from receiving,

and whether the corresponding said user identity is censored from sending, in the

communications, data presenting at least one of a pointer, video, audio, a graphic, or

multimedia.

630. (Currently amended) The system of claim 580wherein the data represents

a pointer that a pointer triggered message on demand the computer system associates each

said user identity in the group with a respective particular user's stored access rights, and

determines whether the corresponding said user identity is censored from receiving, and

whether the corresponding said user identity is censored from sending, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

631. (Currently amended) The system of claim 515, wherein the data

represents a pointer that a pointer triggered message on demand the computer system

associates each said user identity in the group with a respective particular user's stored access

rights, and determines whether the corresponding said user identity is censored from receiving,

and whether the corresponding said user identity is censored from sending, in the

communications, data presenting at least one of a pointer, video, audio, a graphic, or

multimedia.

141

Petitioner Microsoft Corporation, Ex. 1002, p. 1007

632. - 725. (Cancelled)

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

726. (Currently amended) The method of claim 884, wherein at least one of the

communications includes data [[re]]presenting sound.

727. (Currently amended) The method of claim 884, wherein at least one of the

communications includes data [[re]]presenting video.

728. (Currently amended) The method of claim 884, wherein at least one of the

communications includes data [[re]]presenting sound and video.

729. (Currently amended) The method of claim 884, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

730. (Currently amended) The method of claim 726, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

142

Petitioner Microsoft Corporation, Ex. 1002, p. 1008

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

731. (Currently amended) The method of claim 727, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

732. (Currently amended) The method of claim 884 ... based on the

authorization, presenting the graphical multimedia data at the output device corresponding to

the second user identity, and wherein one of the determining steps includes determining

whether a parameter corresponding to the first user identity has been determined by a user

corresponding to another of the user identities.

733. (Previously presented) The method of claim 729, wherein the graphical

data includes graphical multimedia data.

734. (Currently amended) The method of claim 885, wherein at least one of the

communications includes data [[re]]presenting sound.

735. (Currently amended) The method of claim 885, wherein at least one of the

communications includes data [[re]]presenting video.

736. (Currently amended) The method of claim 885, wherein at least one of the

communications includes data [[re]]presenting sound and video.

143

Petitioner Microsoft Corporation, Ex. 1002, p. 1009

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

737. (Currently amended) The method of claim 885, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

738. (Currently amended) The method of claim 734, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

739. (Currently amended) The method of claim 735, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presenting allowing presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

740. (Currently amended) The method of claim 736, further including:

storing, for the first user identity, an authorization associated with presentation of

graphical data; and

144

Petitioner Microsoft Corporation, Ex. 1002, p. 1010

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

based on the authorization, presenting allowing presentation of the graphical data

at one of the plurality of participator computer[[s]] corresponding to the second user identity.

741. (Currently amended) The system of claim 891, wherein at least one of the

communications includes data [[re]]presenting sound.

742. (Currently amended) The system of claim 891, wherein at least one of the

communications includes data [[re]]presenting video.

743. (Currently amended) The system of claim 891, wherein at least one of the

communications includes data [[re]]presenting sound and video.

744. (Currently amended) The system of claim 891, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

745. (Currently amended) The system of claim 741, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

746. (Currently amended) The system of claim 742, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

145

Petitioner Microsoft Corporation, Ex. 1002, p. 1011

identity.

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

747. (Currently amended) The system of claim 743, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

748. (Currently amended) The system of claim 892, wherein at least one of the

communications includes data [[re]]presenting sound.

749. (Currently amended) The system of claim 892, wherein at least one of the

communications includes data [[re]]presenting video.

750. (Currently amended) The system of claim 892, wherein at least one of the

communications includes data [[re]]presenting sound and video.

751. (Currently amended) The system of claim 892, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

752. (Currently amended) The system of claim 748, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

146

Petitioner Microsoft Corporation, Ex. 1002, p. 1012

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

753. (Currently amended) The system of claim 749, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

754. (Currently amended) The system of claim 750, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

755. - 844. (Cancelled)

845. (Currently amended) The system of claim 877, wherein the computer

system is further programmed to:

send and receive communications between members in a group, the

communications including data [[re]]presenting at least one of video, sound, a graphic, or

multimedia, aA9

receive the communications being sent and received in real time via the Internet

network.

846. (Currently amended) The system of claim 845, wherein the data includes

data [[re]]presenting sound.

847. (Currently amended) The system of claim 845, wherein the data includes

data [[re]]presenting video.

147

Petitioner Microsoft Corporation, Ex. 1002, p. 1013

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

848. (Currently amended) The system of claim 845, wherein the data includes

data [[re]]presenting sound and video.

849. (Currently amended) The system of claim 845, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

850. (Currently amended) The system of claim 846, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

851. (Currently amended) The system of claim 847, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

852. (Currently amended) The system of claim 848, wherein the computer

system is further programmed to provide§. the participator computer corresponding to the first

user identity with access to a member-associated image corresponding to the second user

identity.

853. (Currently amended) The method of claim 878, further including sending

and receiving communications between members in a group, the communications including

data [[re]]presenting at least one of video, sound, a graphic, or multimedia, the receiving in real

148

Petitioner Microsoft Corporation, Ex. 1002, p. 1014

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

time via the Internet network.

854. (Currently amended) The method of claim 853, wherein the data

[[re]]presents sound.

855. (Currently amended) The method of claim 853, wherein the data

[[re]]presents video.

856. (Currently amended) The method of claim 853, wherein the data

[[re]]presents sound and video.

857. (Currently amended) The method of claim 878, further including sending

and receiving communications between members in a group, the communications including

data [[re]]presenting a member-associated image, sound, and video.

858. (Currently amended) The method of claim 878, further including:

store, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presentfacilitate presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

859. (Currently amended) The method of claim 853, further including:

store, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

149

Petitioner Microsoft Corporation, Ex. 1002, p. 1015

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

based on the authorization, presentfacilitate presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

860. (Currently amended) The method of claim 854, further including:

store, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presentfacilitate presentation of the graphical

multimedia at one of the plurality of participator computer[[s]] corresponding to the second user

identity.

861. (Currently amended) The method of claim 855, further including:

store, for the first user identity, an authorization associated with presentation of

graphical multimedia; and

based on the authorization, presentfacilitate presentation of the graphical

multimedia one of the plurality of participator computer[[s]] corresponding to the second user

identity.

862 - 876. (Withdrawn)

877. (Currently amended) An Internet network communication system, the

system including:

a plurality of computers, each of the plurality of computers being connected to a

respective input device and to a respective output device, the plurality of computers being

connected, responsive to each of the plurality of computers sending a respective login name

150

Petitioner Microsoft Corporation, Ex. 1002, p. 1016

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

and password corresponding to a respective user identity to a computer system programmed

store a respective particular user's access rights corresponding to each said

user identity, a controller computer system including a controller computer and a database

which serves as a repository of tokens for other programs to access, thereby affording

information to participator computers that are otherwise independent of each other, in

communication with each of the participator computers responsive to a respective authenticated

user identity, the computers configured so as to

respond to one of the plurality of the participator computers communicating a

pointer in real time and via the Internet, wherein the pointer is a pointer that produces a pointer-

triggered message on demand, by determining whether [[a]] the first ef-tl:l.e user identity[[ies]]y

is censored by the user's stored access rights from content in the pointer-triggered message,

if the content is censored, disallow the pointer-triggered message from being

presented at [[the]] an output device of the participator computer corresponding to the first ef.

tAe-user identity, and

if the content is not censored, allow the pointer-triggered message to be

presented at the output device of the computer corresponding to the first of the user identities.

878. (Currently amended) A method of communicating via an Internet

network, the method including:

receiving a respective login name and password corresponding to a respective

user identity, each said user identity corresponding to a respective particular user's stored

access rights, the receiving being carried out so as to connect a plurality of computers to a

computer system, wherein each of the plurality of computers is connected to a respective input

device and to a respective output device; by using a computer system including a controller

151

Petitioner Microsoft Corporation, Ex. 1002, p. 1017

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity; and

affording some of the information to a second of the participator computers via

the Internet network, responsive to an authenticated second user identity;

responsive to at least one of the plurality first of the participator computers

communicating a pointer in real time and via the Internet, the pointer producing a pointer-

triggered message on demand, determining whether [[a]] the first ef-tl:l.e user identity[[ies]]y is

censored by the corresponding user's stored access rights from content in the pointer-triggered

message;

if the content is censored, disallowing the pointer-triggered message to be

presented at [[the]] an output device of the first of the participator computer§. corresponding to

the first of the user identities; and

if the content is not censored, allowing the pointer-triggered message to be

presented at the output device of the computer corresponding to the first of the user identities.

879-883. (Withdrawn)

884. (Currently amended) A method of communicating via an Internet

network, the method including:

receiving a respective login name and password corresponding to a respective

user identity, each said user identity corresponding to a respective particular user's stored

access rights, the receiving being carried out so as to connect a plurality of computers to a

152

Petitioner Microsoft Corporation, Ex. 1002, p. 1018

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

computer system, wherein each of the plurality of computers is connected to a respective input

device and to a respective output device; by using a computer system including a controller

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity; and

affording some of the information to a second of the participator computers via

the Internet network, responsive to an authenticated second user identity;

determining whether at least one of [[a]] the first user identity and [[a]] the

second user identity, individually, is censored by the corresponding user's stored access rights,

from receiving data comprising a pointer in communications that include at least one of text or

ascii, the pointer being a pointer that produces a pointer-triggered message on demand;

determining whether the first and the second of the user identities are able to

form a group; and

if the first and the second user identities are able to form the group, then forming

the group and facilitating receiving the communications that are sent and not censored from

one of the participator computers to another of the participator computers for sending the

communications, facilitating receiving and presenting the communications that are not censored

based on the individual user identity, the receiving being in real time and over the Internet

network, and not allowing the data that is censored to be presented at [[the]] an output device

corresponding to the user identity that is censored from receiving the data.

885. (Currently amended) A method of communicating via an Internet

network, the method including:

153

Petitioner Microsoft Corporation, Ex. 1002, p. 1019

connecting a computer system to a plurality of computers;

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

receiving a respective login name and password corresponding to a respective

user identity from each of the plurality of computers;

determining whether a first of the user identities and a second of the user identities are able to

form a group for sending and receiving communications in real time; by using a computer

system including a controller computer and a database which serves as a repository of tokens

for other programs to access, thereby affording information to each of a plurality of participator

computers which are otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity; and

affording some of the information to a second of the participator computers via

the Internet network, responsive to an authenticated second user identity;

determining whether the first user identity and the second of the user identity are

able to form a group to send and to receive communications;

determining whether at least one of the first user identity and the second user

identity, individually, is censored from sending a pointer in the communications including at

least one of text or ascii, the pointer being a pointer that produces producing a pointer-triggered

message on demand; and

if the first and the second user identities are able to form the group, then forming

the group and facilitating sending the communications that are not censored from one of the

participator computers to another of the participator computers in real time over the Internet

network and not facilitating sending a pointer that is censored.

sending and receiving the communications that are not censored based on the

individual user identity, the receiving being in real time over the Internet network.

154

Petitioner Microsoft Corporation, Ex. 1002, p. 1020

886-890. (Withdrawn)

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

891. (Currently amended) A system to communicate via an Internet network,

the system including:

a plurality of participator computers, each of the plurality of computers being

connected to a respective input device and to a respective output device, the plurality of

computers being connected, responsive to each of the plurality of computers sending a

respective login name and password corresponding to a respective user identity, to a computer

system programmed to:

store a respective particular user's access rights corresponding to each said

user identity,

form a group corresponding to a first of the user identities and a second of the

user identities, each member of the group being capable of sending and receiving

communications in real time,

a computer system including a controller computer and a database which serves

as a repository of tokens for other programs to access, thereby affording information to each of

a plurality of participator computers which are otherwise independent of each other, the

controller computer system in communication with a first of the participator computers

responsive to a first authenticated user identity and with a second of the participator computers

responsive to a second authenticated user identity, wherein the computers are configured to

determine whether at least one of the first user identity and the second user

identity, individually, is censored based on the corresponding user's access rights from

receiving, in [[the]] communications, data comprising a pointer, the pointer producing a pointer-

triggered message on demand, and

thereafter cau-se allow the participator computers to receive, in real time via the

155

Petitioner Microsoft Corporation, Ex. 1002, p. 1021

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

Internet network, and present the communications that are not censored, and to not present the

data that is censored at [[the]] an output device corresponding to the user identity that is

censored from receiving the data, 'Nherein at least some of the communications include data

representing at least text or ascii.

892. (Currently amended) A system to communicate via an Internet network,

the system including:

a plurality of computers, each of the plurality of computers being connected to a

respective input device and to a respective output device, the plurality of computers being

connected, responsive to each of the plurality of computers sending a respective login name

and password corresponding to a respective user identity, to a computer system programmed

form a group corresponding to a first of the user identities and a second of the

user identities, each member of the group being capable of sending and receiving

communications in real time, a computer system including a controller computer and a

database which serves as a repository of tokens for other programs to access, thereby

affording information to each of a plurality of participator computers which are otherwise

independent of each other, the controller computer system in communication with a first of the

participator computers responsive to a first authenticated user identity and with a second of the

participator computers responsive to a second authenticated user identity, wherein the

computers are configured to

determine whether at least one of the first user identity and the second user

identity, individually, is censored from sending, in [[the]] communications, a pointer that

produces a pointer-triggered message on demand, and

thereafter cau-se allow the participator computers to receive, in real time via the

156

Petitioner Microsoft Corporation, Ex. 1002, p. 1022

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

Internet network, and present the communications that are not censored based on the

individual user identity, and to not present the communications that are censored at [[the]] an

output device corresponding to the user identity that is censored from the sending-from.

receiving the data, at least some of the communications including data representing at least

text or ascii.

893. - 954. (Cancelled)

955. (Currently amended) A method communicating via an Internet network.,...#le

method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity; by using a

computer system including a controller computer and a database which serves as a repository

of tokens for other programs to access, thereby affording information to each of a plurality of

participator computers which are otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the Internet

network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity;

storing a respective particular user's access rights corresponding to each said

user identity;

determining whether the first user identity and the second user identity a first of

the user identities and a second of the user identities are able to form a group to send and to

receive communications for sending and for receiving communications in real time;

157

Petitioner Microsoft Corporation, Ex. 1002, p. 1023

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determining whether at least one of the first user identity and the second user

identity, individually, is censored by the corresponding user's stored access rights from

receiving data in the communications, the data presenting at least one of a pointer, video,

audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, forming the

group and facilitating receiving the communications, including receiving at least some of the

communications with the data that is not censored, that are sent from one of the participator

computers to another of the participator computers for sending the communications, and

facilitating receiving the communications that are not censored based on the individual user

identity, wherein the receiving is in real time via the Internet network, and facilitating not

allowing the data that is censored by the corresponding user's stored access rights to be

presented at an output device of the participator computer corresponding to the user identity

that is censored receiving the communications that are censored.

956. (Currently amended) A method communicating via an Internet network,

the method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity; by using a

computer system including a controller computer and a database which serves as a repository

of tokens for other programs to access, thereby affording information to each of a plurality of

participator computers which are otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

158

Petitioner Microsoft Corporation, Ex. 1002, p. 1024

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

authenticated second user identity;

storing a respective particular user's access rights corresponding to each said

user identity;

determining whether the first user identity and the second user identity a first of

the user identities and a second of the user identities are able to form a group to send and to

receive data in for sending and for receiving communications in real time by determining

whether at least one of the first user identity and the second user identity, individually, is

censored by the corresponding user's stored access rights from receiving the data in the

communications, the data presenting at least one of a pointer, video, audio, graphic, or

multimedia; and

if the first and the second user identities are determined to be able to form the

group, forming the group and facilitating receiving the communications, including receiving at

least some of the communications with the data that is not censored, that are sent from one of

the participator computers to another of the participator computers for sending the

communications, and facilitating receiving the communications in real time via the Internet

network; and

if the first and the second user identities are determined to not be able to form

the group with respect to receiving the data that is censored, not forming the group.

957. (Currently amended) A method communicating via an Internet network,

the method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity; by using a

computer system including a controller computer and a database which serves as a repository

159

Petitioner Microsoft Corporation, Ex. 1002, p. 1025

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

of tokens for other programs to access, thereby affording information to each of a plurality of

participator computers which are otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity;

storing a respective particular user's access rights corresponding to each said

user identity;

determining whether the first user identity and the second user identity a first of

the user identities and a second of the user identities are able to form a group to send and to

receive communications; for sending and for receiving communications in real time;

determining 'Nhether at least one of the first user identity and the second user

identity, individually, is censored from sending in the communications at least one of a pointer,

video, audio, graphic, or multimedia; and determining whether at least one of the first user

identity and the second user identity, individually, is censored by the corresponding user's

stored access rights from sending data in the communications, the data presenting at least one

of a pointer, video, audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, forming the group

and facilitating sending the communications, including sending at least some of the

communications with the data that is not censored, from one of the participator computers to

another of the participator computers, wherein the sending is in real time via the Internet

network, and not allowing sending the data that is censored by the corresponding user's stored

access rights facilitating sending the communications that are not censored based on the

individual user identity, and facilitating receiving the communications that are sent, the receiving

in real time via the Internet network.

160

Petitioner Microsoft Corporation, Ex. 1002, p. 1026

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

958. (Currently amended) A method communicating via an Internet network,

the method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity; by using a

computer system including a controller computer and a database which serves as a repository

of tokens for other programs to access, thereby affording information to each of a plurality of

participator computers which are otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the

Internet network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity;

determining whether a first of the user identities and a second of the user

identities are able to form a group to send and to receive for sending and for receiving

communications in real time by determining whether at least one of the first user identity and

the second user identity, individually, is censored from sending data in the communications, the

data presenting at least one of a pointer, video, audio, graphic, or multimedia; and

if the first and the second user identities are determined to be able to form the

group, forming the group for sending the communications, and facilitating receiving the sent

sending the communications, including sending at least some of the communications with the

data that is not censored, from one of the participator computers to another of the participator

computers in real time via the Internet network; and

if the first and the second user identities are determined to not be able to form

the group with respect to sending the data that is censored, not forming the group.

161

Petitioner Microsoft Corporation, Ex. 1002, p. 1027

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

959. (Currently amended) A system to communicate via an Internet network,

the system including:

a plurality of computers connected to a computer system, each of the plurality of

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to: a computer system including a controller computer

and a database which serves as a repository of tokens for other programs to access, thereby

affording information to each of a plurality of participator computers which are otherwise

independent of each other, the controller computer system in communication with a first of the

participator computers responsive to a first authenticated user identity and with a second of the

participator computers responsive to a second authenticated user identity, wherein the

computers are arranged so as to

store a respective particular user's access rights corresponding to each said

user identity JI;]]

determine whether a first of the user identities and a second of the user identities

the first user identity and the second user identity are able to form a group capable of sending

and receiving to send and to receive communications ... in real time;

determine whether at least one of the first user identity and the second user

identity, individually, is censored by saiG the corresponding user's stored access rights from

receiving data in the communications, the data presenting at least one of a pointer, video,

audio, graphic, or multimedia, and

if the first and the second user identities are able to form the group, form the

group and facilitate receiving the communications that are sent and not censored from one of

the participator computers to another of the participator computers, wherein the receiving is in

162

Petitioner Microsoft Corporation, Ex. 1002, p. 1028

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

real time via the Internet network, and

not allow the data that is censored by the corresponding user's stored access

rights to be presented at an output device of the participator computer corresponding to the

user identity that is censored for sending the communications, and

cause the plurality of computers in the group to receive, in real time via the

Internet net'Nork, the communications that are not censored based on the individual user

identity, and

cause the plurality of computers in the group to not receive the communications

that are censored based on the individual user identity.

960. (Currently amended) A system to communicate via an Internet network,

the system including:

a plurality of computers connected to a computer system, each of the plurality of

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to:

store a respective particular user's access rights corresponding to each said

user identity, a computer system including a controller computer and a database which serves

as a repository of tokens for other programs to access, thereby affording information to each of

a plurality of participator computers which are otherwise independent of each other, the

controller computer system in communication with a first of the participator computers

responsive to a first authenticated user identity and with a second of the participator computers

responsive to a second authenticated user identity, wherein the computers are arranged so as

determine whether the first user identity and the second user identity a first of the

163

Petitioner Microsoft Corporation, Ex. 1002, p. 1029

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

user identities and a second of the user identities are able to form a group capable of sending

and receiving to send and to receive communications in real time by determining whether at

least one of the first user identity and the second user identity, individually, is censored 9y-tl:l-e

corresponding user's stored access rights from receiving data in the communications, the data

presenting at least one of a pointer, video, audio, graphic, or multimedia.JI;]] and

if the first and the second user identities are determined to be able to form the

group, form the group and facilitate receiving the communications from one of the participator

computers to another of the participator computers cause the group to be formed to send the

communications, and cause the plurality of computers in the group to receive, in real time via

the Internet network, and

if the first and the second user identities are determined to not be able to form

the group with respect to receiving the data that is censored, not form the group #le

communications that are not censored.

961. (Currently amended) A system to communicate via an Internet network, the

system including:

a plurality of computers connected to a computer system, each of the plurality of

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to:

determine whether a first of the user identities and a second of the user identities

are able to form a group for sending and for receiving communications in real time; a computer

system including a controller computer and a database which serves as a repository of tokens

for other programs to access, thereby affording information to each of a plurality of participator

computers which are otherwise independent of each other, the controller computer system in

164

Petitioner Microsoft Corporation, Ex. 1002, p. 1030

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

communication with a first of the participator computers responsive to a first authenticated user

identity and with a second of the participator computers responsive to a second authenticated

user identity, wherein the computers are arranged so as to

store a respective particular user's access rights corresponding to each said

user identity,

determine whether the first user identity and the second user identity are able to

form a group to send and to receive communications,

determine whether at least one of the first user identity and the second user

identity, individually, is censored from sending in the communications at least one of a pointer,

video, audio, graphic, or multimedia; and

determine whether at least one of the first user identity and the second user

identity, individually, is censored by the corresponding user's stored access rights from sending

data in the communications, the data including at least one of a pointer, video, audio, graphic,

or multimedia, and

if the first and the second user identities are able to form the group, and facilitate

sending the communications that are not censored from one of the participator computers to

another of the participator computers, wherein the sending is in real time via the Internet

network, and not allow sending the data that is censored by the corresponding user's stored

access rights cause the group to be formed and the communications that are not censored

based on the individual user identity to be sent, and cause the communications that are sent to

be received in real time via the Internet network.

962. (Currently amended) A system to communicate via an Internet network, the

system including:

a plurality of computers connected to a computer system, each of the plurality of

165

Petitioner Microsoft Corporation, Ex. 1002, p. 1031

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to: a computer system including a controller computer

and a database which serves as a repository of tokens for other programs to access, thereby

affording information to each of a plurality of participator computers which are otherwise

independent of each other, the controller computer system in communication with a first of the

participator computers responsive to a first authenticated user identity and with a second of the

participator computers responsive to a second authenticated user identity, wherein the

computers are arranged so as to

determine whether a first of the user identities and a second of the user identities

are able to form a group to send and to receive capable of sending and receiving

communications in real time by determining whether at least one of the first user identity and

the second user identity, individually, is censored from sending data in the communications, the

data presenting at least one of a pointer, video, audio, graphic, or multimedia.JI;]] and

if the first and the second user identities are determined to be able to form the

group, form the group and facilitate sending the communications from one of the participator

computers to another of the participator computers, wherein the sending is in real time via the

Internet network, and cause the group to be formed to send and receive the communications

between members of the group, wherein the communications are received in real time via the

Internet net'Nork

if the first and the second user identities are determined to not be able to form

the group with respect to sending the data that is censored, not form the group.

963-972. (Withdrawn)

166

Petitioner Microsoft Corporation, Ex. 1002, p. 1032

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

973. (Currently amended) A method communicating via an Internet network

by using a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the Internet

network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity; and

storing a respective particular user's access rights corresponding to each said user

identity;

determining whether the first user identity and the second user identity are able to form

a group to send and to receive communications; and

determining, based on the access rights of the first user identity, whether the first user

identity is censored from receiving content in the communications;

if the user identities are determined to be able to form the group, forming the group and

facilitating receiving the communications that are sent and not censored from the second

participator computer to the first participator computer, wherein the receiving is in real time and

via the Internet network, and

if the first user identity is censored, not allowing the content that is censored to be

presented from the second participator computer to a user of the first participator computer.,...#le

method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity, each said user

167

Petitioner Microsoft Corporation, Ex. 1002, p. 1033

identity corresponding to a respective particular user's stored access rights;

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determining 'Nhether a first of the user identities and a second of the user

identities are able to form a group for sending and for receiving communications in real time;

determining 'Nhether at least one of the first user identity and the second user

identity, individually, is censored by the corresponding user's stored access rights from

receiving in the communications at least one of a pointer, video, audio, graphic, or multimedia;

if the first and the second user identities are able to form the group, forming the

group for sending the communications, and facilitating receiving the communications that are

not censored based on the individual user identity, wherein the receiving is in real time via the

Internet net'Nork, and facilitating not receiving the communications that are censored.

974. (Currently amended) A method communicating via an Internet network

by using a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the Internet

network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity; and

storing a respective particular user's access rights corresponding to each said user

identity;

determining whether the first user identity and the second user identity are able to form

a group to send and to receive communications; and

168

Petitioner Microsoft Corporation, Ex. 1002, p. 1034

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determining, based on the access rights of the first user identity, whether the first user

identity is censored from sending content in the communications;

if the user identities are determined to be able to form the group, forming the group and

facilitating sending the communications that are not censored from the first participator

computer to the second participator computer, wherein the sending is in real time and via the

Internet network, and

if the first user identity is censored, not allowing the content that is censored to be sent

from the first participator computer the second participator computer, the method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity, each said user

identity corresponding to a respective particular user's stored access rights;

determining 'Nhether a first of the user identities and a second of the user

identities are able to form a group for sending and for receiving communications in real time by

determining whether at least one of the first user identity and the second user identity,

individually, is censored by the corresponding user's stored access rights from receiving in the

communications at least one of a pointer, video, audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, forming the

group for sending the communications, and facilitating receiving the communications in real

time via the Internet net'Nork.

975. (Currently amended) A method communicating via an Internet network

by using a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

169

Petitioner Microsoft Corporation, Ex. 1002, p. 1035

otherwise independent of each other, the method including:

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

affording some of the information to a first of the participator computers via the Internet

network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity; and

determining whether the first user identity and the second user identity are able to form

a group to send and to receive communications; and

determining whether the first user identity is censored from data in the communications,

the data presenting at least one of an Internet URL, video, audio, a graphic, or multimedia; and

if the user identities are determined to be able to form the group, forming the group and

facilitating receiving the communications that are sent and not censored from the second

participator computer to the first participator computer, wherein the receiving is in real time and

via the Internet network, and

if the first user identity is censored, not allowing the data that is censored to be

presented from the second participator computer to a user of the first participator computer.,...#le

method including:

connecting a plurality of computers to a computer system, each of the plurality of

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity;

determining 'Nhether a first of the user identities and a second of the user

identities are able to form a group for sending and for receiving communications in real time;

determining 'Nhether at least one of the first user identity and the second user

identity, individually, is censored from sending in the communications at least one of a pointer,

video, audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, forming the

170

Petitioner Microsoft Corporation, Ex. 1002, p. 1036

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

group, facilitating sending the communications that are not censored based on the individual

user identity, and facilitating receiving the communications that are sent, the receiving in real

time via the Internet net'Nork.

976. (Currently amended) A method communicating via an Internet network

by using a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the method including:

affording some of the information to a first of the participator computers via the Internet

network, responsive to an authenticated first user identity, and affording some of the

information to a second of the participator computers via the Internet network, responsive to an

authenticated second user identity; and

determining whether the first user identity and the second user identity are able to form

a group to send and to receive communications; and

determining whether the first user identity is censored from sending data in the

communications, the data presenting at least one of an Internet URL, video, audio, a graphic, or

multimedia; and

if the user identities are determined to be able to form the group, forming the group and

facilitating sending the communications that are not censored from the first participator

computer to the second participator computer, wherein the sending is in real time and via the

Internet network, and

if the first user identity is censored, not allowing sending the data that is censored from

the first participator computer to the second participator computer , the method including:

connecting a plurality of computers to a computer system, each of the plurality of

171

Petitioner Microsoft Corporation, Ex. 1002, p. 1037

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

computers connected responsive to receiving at the computer system information indicative of a

respective login name and password corresponding to a respective user identity;

determining whether a first of the user identities and a second of the user identities are

able to form a group for sending and for receiving communications in real time by determining

whether at least one of the first user identity and the second user identity, individually, is

censored from sending in the communications at least one of a pointer, video, audio, graphic,

or multimedia; and

if the first and the second user identities are able to form the group, forming the group

for sending the communications, and facilitating receiving the sent communications in real time

via the Internet network.

977. (Withdrawn)

978. (Currently amended) A system to communicate via an Internet network,

the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are arranged so as to

determine whether the first user identity is censored from receiving content in the

communications,

if the user identities are determined to be able to form the group, form the group and

172

Petitioner Microsoft Corporation, Ex. 1002, p. 1038

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

facilitate receiving the communications that are sent and not censored from the second

participator computer to the first participator computer, wherein the receiving is in real time and

via the Internet network, and

if the first user identity is censored, not allow the content that is censored to be

presented from the second participator computer at the first participator computer a plurality of

computers connected to a computer system, each of the plurality of computers being connected

responsive to receipt at the computer system of information indicative of a respective login

name and password corresponding to a respective user identity, the computer system being

programmed to:

store a respective particular user's access rights corresponding to each said

user identity,

determine whether a first of the user identities and a second of the user identities

are able to form a group capable of sending and receiving communications in real time;

determine whether at least one of the first user identity and the second user

identity, individually, is censored by the corresponding user's stored access rights from

receiving in the communications at least one of a pointer, video, audio, graphic, or multimedia,

if the first and the second user identities are able to form the group, form the

group for sending the communications, and

cause the plurality of computers in the group to receive, in real time via the

Internet net'Nork, the communications that are not censored based on the individual user

identity, and

cause the plurality of computers in the group to not receive the communications

that are censored based on the individual user identity.

173

Petitioner Microsoft Corporation, Ex. 1002, p. 1039

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

979. (Currently amended) A system to communicate via an Internet network,

the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are arranged so as to

determine whether the first user identity and the second user identity are able to form a

group to send and to receive communications, and

determine whether the first user identity is censored from sending content in the

communications,

if the user identities are determined to be able to form the group, form the group and

facilitate sending the communications that are not censored from the first participator computer

to the second participator computer, wherein the sending is in real time and via the Internet

network, and

if the first user identity is censored, not allow the content that is censored to be sent

from the first participator computer the second participator computer a plurality of computers

connected to a computer system, each of the plurality of computers being connected

responsive to receipt at the computer system of information indicative of a respective login

name and password corresponding to a respective user identity, the computer system being

programmed to:

store a respective particular user's access rights for each corresponding user

identity,

174

Petitioner Microsoft Corporation, Ex. 1002, p. 1040

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determine whether a first of the user identities and a second of the user identities

are able to form a group capable of sending and receiving communications in real time by

determining whether at least one of the first user identity and the second user identity,

individually, is censored by the corresponding user's stored access rights from receiving in the

communications at least one of a pointer, video, audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, cause the

group to be formed to send the communications, and cause the plurality of computers in the

group to receive, in real time via the Internet netv;ork, the communications that are not

censored based on the individual user identity so as to carry out the corresponding user's

stored access rights.

980. (Currently amended) A system to communicate via an Internet network,

the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are arranged so as to

determine whether the first user identity and the second user identity are able to form a

group to send and to receive communications, and

determine whether the first user identity is censored from sending content in the

communications,

if the user identities are determined to be able to form the group, form the group and

175

Petitioner Microsoft Corporation, Ex. 1002, p. 1041

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

facilitate sending the communications that are not censored from the first participator computer

to the second participator computer, wherein the sending is in real time and via the Internet

network, and

if the first user identity is censored, not allow the content that is censored to be sent

from the first participator computer the second participator computer

a plurality of computers connected to a computer system, each of the plurality of

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to:

store a respective particular user's access rights for each corresponding user

identity;

determine whether a first of the user identities and a second of the user identities

are able to form a group for sending and for receiving communications in real time;

determine whether at least one of the first user identity and the second user

identity, individually, is censored from sending in the communications at least one of a pointer,

video, audio, graphic, or multimedia; and

if the first and the second user identities are able to form the group, cause the

group to be formed and the communications that are not censored based on the individual user

identity to be sent, and cause the sent communications to be received in real time via the

Internet net'Nork so as to carry out the corresponding user's stored access rights.

981. (Currently amended) A system to communicate via an Internet network, the

system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

176

Petitioner Microsoft Corporation, Ex. 1002, p. 1042

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are arranged so as to

determine whether a first of the user identities and a second of the user identities are

able to form a group to send and to receive communications in real time by determining

whether at least one of the first user identity and the second user identity, individually, is

censored from data in the communications, the data presenting at least one of a pointer, video,

audio, graphic, or multimedia, and

if the first and the second user identities are determined to be able to form the group,

form the group and facilitate receiving the communications that are sent and include said data

that is not censored from one of the participator computers to another of the participator

computers, wherein the receiving is in real time via the Internet network, and

if the first and the second user identities are determined to not be able to form the

group, not form the group

a plurality of computers connected to a computer system, each of the plurality of

computers being connected responsive to receipt at the computer system of information

indicative of a respective login name and password corresponding to a respective user identity,

the computer system being programmed to:

determine whether a first of the user identities and a second of the user identities

are able to form a group capable of sending and receiving communications in real time by

determining whether at least one of the first user identity and the second user identity,

individually, is censored from sending in the communications at least one of a pointer, video,

audio, graphic, or multimedia; and

177

Petitioner Microsoft Corporation, Ex. 1002, p. 1043

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

if the first and the second user identities are able to form the group, cause the

group to be formed to send and receive the communications betv;een members of the group,

wherein the communications are received in real time via the Internet network.

982. (Currently amended) A method of communication over an Internet

network, the method including:

connecting a computer system 'Nith a plurality of computers;

receiving information indicative of a respective login name and password

corresponding to a first user identity from a first of the plurality of computers, the first user

identity corresponding to a particular user's stored access rights;

receiving information indicative of a login name and a password corresponding to

a second user identity from a second of the plurality of computers, the second user identity

corresponding to a particular user's stored access rights; and

A system to communicate via an Internet network, the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are configured so as to

allow[[ing]] the first user identity and the second user identity to send

communications and !Q_receive communications sent by another user identity on at least one of

a plurality of channels, wherein at least some of the communications are received in real time

via the Internet network, the computer system being programmed to determine except that if

178

Petitioner Microsoft Corporation, Ex. 1002, p. 1044

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

whether at least one of the user identities, individually, is censored from data in one of the

channels, the data [[re]]presenting at least one of a pointer, video, audio, graphic, or

multimedia, such that the data that is censored by the corresponding user's stored access

fi§-Rts is not presented by the participator computer corresponding to the user identity that is

censored from the data computer.

983. (Currently amended) The method of claim 980, wherein the data includes

a pointer that produces a pointer triggered message on demand each said user identity in the

group is associated with a respective particular user's stored access rights, which determine

whether the corresponding said user identity is censored from receiving, in the communications,

data presenting at least one of a pointer, video, audio, a graphic, or multimedia.

984. (Previously presented) The method of claim 980, further including:

determining whether the first user identity is censored from the data by

determining whether a parameter corresponding to the first user identity has been determined

by a user corresponding to an other of the user identities.

985. (Currently amended) A method of communicating via an Internet network,

the method including: A system to communicate via an Internet network, the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

179

Petitioner Microsoft Corporation, Ex. 1002, p. 1045

wherein the computers are configured so as to

censor communications based on:

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

whether the first user identity and the second of the user identity are able to form

a group to send and to receive communications, and

whether the first user identity, is censored from sending data in the

communications, the data presenting at least one of a pointer, video, audio, a graphic, or

multimedia; and

if the user identities are able to form the group, form the group and facilitate

receiving the communications that are sent and not censored from the first participator

computer to the second participator computer, wherein the sending is in real time and via the

Internet network;

if the first user identity is censored, not allowing the data that is censored to be

sent from the first participator computer to the second participator computer

connecting a computer system 'Nith a plurality of computers;

receiving, from each of the plurality of computers, a respective user identity

associated with a login name and a password, each said user identity corresponding to a

respective particular user's stored access rights;

determining 'Nhether at least one of a first of the user identities is censored by

the corresponding user's stored access rights from graphical multimedia; and

allowing at least a first of the user identities and a second of the user identities to

form a group; and

facilitating sending and receiving the communications in real time, via the

Internet net'Nork, between the computers in the group, wherein at least some of the

communications include data representing at least one of a pointer, video, audio, a graphic,

multimedia, or at least one of text or ascii, and not allowing the graphical multimedia that is

180

Petitioner Microsoft Corporation, Ex. 1002, p. 1046

censored to be presented at a corresponding one of the computers.

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

986. (Currently amended) A method of communicating via an Internet net'Nork 8.

system to communicate via an Internet network, the system including:

a computer system including a controller computer that is an Internet service

provider computer and a database which serves as a repository of tokens for other programs to

access, thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are configured so as to

censor communications based on:

whether the first user identity and the second of the user identity are able to form

a group to send and to receive communications, and

whether the first user identity, is censored from receiving data in the

communications, the data presenting at least one of a pointer, video, audio, a graphic, or

multimedia; and

if the user identities are able to form the group, form the group and facilitate

receiving the communications that are sent and not censored from the second participator

computer to the first participator computer, wherein the receiving is in real time and via the

Internet network;

if the first user identity is censored, not allowing the data that is censored to be

presented from the second participator computer at an output device of the first participator

computer, the method including:

connecting a computer system 'Nith a plurality of computers;

181

Petitioner Microsoft Corporation, Ex. 1002, p. 1047

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

receiving, from each of the plurality of computers, a respective user identity

associated with a login name and a password, each said user identity associated 'Nith a

respective particular user's stored access rights;

determining 'Nhether at least one of a first of the user identities is censored by

said user's stored access rights from graphical data; and

allowing at least a first of the user identities and a second of the user identities to

form a group; and

facilitating sending and receiving the communications in real time, via the

Internet net'Nork, between the computers in the group, wherein at least some of the

communications include data representing at least one of a pointer, video, audio, a graphic,

multimedia, or at least one of text or ascii, and not allowing the graphical data that is censored

to be presented at a corresponding one of the computers.

987. (Currently amended) A system to communicate via an Internet network,

the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are configured so as to

store a respective particular user's access rights corresponding to each said user

identity, and

determine whether the first user identity and the second of the user identity are able to

182

Petitioner Microsoft Corporation, Ex. 1002, p. 1048

form a group to send and to receive communications, and

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

determine whether the first user identity, is censored from sending data in the

communications, the data presenting at least one of a pointer, video, audio, a graphic, or

multimedia, such that

if the user identities are determined to be able to form the group, form the group

and facilitate receiving the communications that are sent and not censored from the first

participator computer to the second participator computer, wherein the sending is in real time

and via the Internet network, and

if the first user identity is censored, not send of the data that is censored from

the first participator computer to the second participator computer

A method of communicating via an Internet network, the method including:

connecting a computer system 'Nith a plurality of computers;

receiving, from each of the plurality of computers, a respective user identity

associated with a login name and a password, each said user identity associated 'Nith a

respective particular user's stored access rights;

determining 'Nhether at least one of a first of the user identities is censored by

the respective user's stored access rights from data representing graphical multimedia; and

allowing at least a first of the user identities and a second of the user identities to

form a group; and

allowing sending and receiving the communications in real time, via the Internet

network, between the computers in the group, wherein at least some of the communications

include data representing at least one of a pointer, video, audio, a graphic, multimedia, or at

least one of text or ascii, and not allowing the data representing graphical multimedia that is

censored to be presented at a corresponding one of the computers.

183

Petitioner Microsoft Corporation, Ex. 1002, p. 1049

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

988. (Currently amended) A system to communicate via an Internet network,

the system including:

a computer system including a controller computer that is an Internet service provider

computer and a database which serves as a repository of tokens for other programs to access,

thereby affording information to each of a plurality of participator computers which are

otherwise independent of each other, the controller computer system in communication with a

first of the participator computers responsive to a first authenticated user identity and with a

second of the participator computers responsive to a second authenticated user identity,

wherein the computers are configured so as to

store a respective particular user's access rights corresponding to each said user

identity, and

determine whether the first user identity and the second user identity are able to form a

group to send and to receive communications, and

determine whether the first user identity is censored from sending data in the

communications, the data presenting at least one of an Internet URL, video, audio, a graphic, or

multimedia, such that

if the user identities are determined to be able to form the group, forming the group and

facilitating sending the communications that are not censored from the first participator

computer to the second participator computer, wherein the sending is in real time and via the

Internet network, and

if the first user identity is censored, not allowing sending the data that is censored from

the first participator computer to the second participator computer

A method of communicating via an Internet network, the method including:

connecting a computer system 'Nith a plurality of computers;

receiving, from each of the plurality of computers, a respective user identity

184

Petitioner Microsoft Corporation, Ex. 1002, p. 1050

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

associated with a login name and a password, each said user identity associated 'Nith a

respective particular user's stored access rights;

determining 'Nhether at least one of a first of the user identities is censored by

the corresponding user's stored access rights from graphical data; and

allowing at least a first of the user identities and a second of the user identities to

form a group; and

allowing sending and receiving the communications in real time, via the Internet

network, between the computers in the group, wherein at least some of the communications

include data representing at least one of a pointer, video, audio, a graphic, multimedia, or at

least one of text or ascii, and not allowing the graphical data that is censored to be presented at

a corresponding one of the computers.

989-995. (Withdrawn)

185

Petitioner Microsoft Corporation, Ex. 1002, p. 1051

II. REMARKS

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

Amendments have been made to tidy up the claims, and Applicant further relies on the

Declaration of DR. CHANDRAJIT BAJAJ, which has previously been filed, especially with

regard to evidence that the rejections fail to contend a proper reason to combine or modify and

that the rejection of the claims is improper because the claims have not been shown to be

unpatentable over the cited art. Again, if the rejections are maintained, Applicant requests an

Interview including the supervisor.

Applicant maintains that the claims have not been shown to be unpatentable over the

cited art, and Applicant offers any assistance that may be of help in furthering prosecution.

With respect to the present application, the Applicant hereby rescinds any disclaimer of

claim scope made in the parent application or any predecessor or related application. The

Examiner is advised that any previous disclaimer, if any, and the prior art that it was made to

avoid, may need to be revisited. Nor should a disclaimer, if any, in the present application be

read back into any predecessor or related application.

The application is believed to be in condition for allowance, and favorable action is

requested. If the prosecution of this case can be in any way advanced by a telephone

discussion, the Examiner is requested to call the undersigned at (312) 240-0824.

APPLICANT CLAIMS LARGE ENTITY STATUS. The Commissioner is hereby authorized

to charge any fees associated with the above-identified patent application or credit any

overcharges to Deposit Account No. 50-0235, and if any extension of time is needed, this shall be

deemed a petition therefore.

186

Petitioner Microsoft Corporation, Ex. 1002, p. 1052

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

Please direct all communication to the undersigned at the address given below.

Date: October 27, 2011

P.O. Box 7131
Chicago, I L 60680-7131
(312) 240-0824

Respectfully submitted,

Peter K. Trzyna
(Reg. No. 32,601)
(Customer No. 2871 0)

187

Petitioner Microsoft Corporation, Ex. 1002, p. 1053

Ser. No. 09/399,578
Atty. Ref: AIS-P 1-99

Art Unit 2452

Please direct all communication to the undersigned at the address given below.

Respectfully submitted,

Date: October 27, 2011

Peter K. Trzyna
(Reg. No. 32,601)

P.O. Box 7131 (Customer No. 28710)
Chicago, IL 60680-7131
(312) 240-0824

187

Petitioner Microsoft Corporation, Ex. 1002, p. 1053

Electronic Acknowledgement Receipt

EFSID: 11280046

Application Number: 09399578

International Application Number:

Confirmation Number: 2427

Title of Invention: REAL TIME COMMUNICATIONS SYSTEM

First Named Inventor/Applicant Name: DANIELL. MARKS

PETER K TRZYNA

P.O.BOX 7131

-

Correspondence Address: -

CHICAGO IL 606807131

us -

-

Filer: Peter K. Trzyna

Filer Authorized By:

Attorney Docket Number: AIS-P99-1

Receipt Date: 27-0CT-2011

Filing Date: 20-SEP-1999

TimeStamp: 14:36:53

Application Type: Utility under 35 USC 111 (a)

Payment information:

Submitted with Payment I no

File Listing:

Petitioner Microsoft Corporation, Ex. 1002, p. 1054

Document
Document Description File Name

File Size(Bytes)/ Multi Pages
Number Message Digest Part /.zip (ifappl.)

54378

1 Miscellaneous Incoming Letter AISP991 Transsec.pdf no 2
7609dc579b6eebcfa439b3ba31 0195efeda

89acb

Warnings:

Information:

562642

2
Supplemental Response or AISP199AmendRespFinaiDraft.

no 187
Supplemental Amendment pdf

1 a2bb51 f90aec16bfd8f80560cb 1 f4813524
cced

Warnings:

Information:

Total Files Size (in bytes) 617020

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New A~~lications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International A~~lication under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/E0/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International A~~lication Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 181 0), a Notification of the International Application Number
and of the International Filing Date (Form PCT/R0/1 OS) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Petitioner Microsoft Corporation, Ex. 1002, p. 1055

PATENT

Paper No.

Our File No.: AIS-P99-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor

Serial No.

Filed

For

Group Art Unit

Confirmation No.

Examiner

MS: No Fee Amendment
Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

SIR:

MARKS, Daniel L.

09/399,578

September 20, 1999

GROUP COMMUNICATIONS MULTIPLEXING
SYSTEM

2452

2427

WINDER, Patrice L.

TRANSMITTAL LETTER

Transmitted herewith for filing in the above-identified patent application is the following:

1. Second Supplemental Amendment and Response.

APPLICANT CLAIMS LARGE ENTITY STATUS. The Commissioner is hereby authorized

to charge any fees associated with the above-identified patent application or credit any

overcharges to Deposit Account No. 50-0235.

Petitioner Microsoft Corporation, Ex. 1002, p. 1056

Ser. No. 09/399,578
Atty. Ref. AIS-P1-99

Art Unit 2452

Please direct all correspondence to the undersigned at the address given below.

Date: October 27, 2011

P.O. Box 7131
Chicago, I L 60680-7131
(312) 240-0824

Respectfully submitted,

Peter K. Trzyna
(Reg. No. 32,601)
(Customer No. 2871 0)

2

Petitioner Microsoft Corporation, Ex. 1002, p. 1057

Ser. No. 09/399,578
Atty. Ref. AIS-P1-99

Art Unit 2452

Please direct all correspondenceto the undersigned at the address given below.

Respectfully submitted,

Date: October 27, 2011

Peter K. Trzyna
(Reg. No. 32,601)

P.O. Box 7131 (Customer No. 28710)
Chicago, IL 60680-7131
(312) 240-0824

2

Petitioner Microsoft Corporation, Ex. 1002, p. 1057

PTO/SB/06 (07-06)
Approved for use through t/3t/2007. OMB 065t -0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of t 995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number Filing Date

Substitute for Form PT0-875 09/399,578 09/20/1999 D To be Mailed

APPLICATION AS FILED- PART I OTHER THAN

(Column t) (Column 2) SMALL ENTITY D OR SMALL ENTITY

FOR NUMBER FILED NUMBER EXTRA RATE($) FEE($) RATE($) FEE($)

D BASIC FEE N/A N/A N/A N/A
(37 CFR 1.16(a), (b), or (c))

D SEARCH FEE N/A N/A N/A N/A
(37 CFR 116(k), (i), or (m))

D EXAMINATION FEE
(37 CFR 1.16(o), (p), or (q))

N/A N/A N/A N/A

TOTAL CLAIMS
minus 20 = . X$ OR X $

(37 CFR 1.16(i)) = =

INDEPENDENT CLAIMS . X$ X $ (37 CFR 1.16(h)) minus 3 = = =

If the specification and drawings exceed 100

0APPLICATION SIZE FEE
sheets of paper, the application size fee due
is $250 ($125 for small entity) for each

(37 CFR 1.16(s)) additional 50 sheets or fraction thereof. See
35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

D MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.16(j))

• If the difference in column 1 is less than zero, enter "0" in column 2. TOTAL TOTAL

APPLICATION AS AMENDED- PART II
OTHER THAN

(Column 1) (Column 2) (Column 3) SMALL ENTITY OR SMALL ENTITY

CLAIMS HIGHEST

11/17/2006 REMAINING NUMBER PRESENT
RATE($)

ADDITIONAL
RATE($)

ADDITIONAL
f-- AFTER PREVIOUSLY EXTRA FEE($) FEE($)
z AMENDMENT PAID FOR
w

Total (37 CFR :;:;;:
1.16(i)) • 995 Minus •• 949 = 46 X$ = OR X $50= 2300

0 Independent z • 52 Minus ... 28 = 24 X$ = OR X $200= 4800
w (37 CFR 1 .16(h))

:;:;;: D Application Size Fee (37 CFR 1.16(s))
<(

D FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16(j)) OR

TOTAL TOTAL
ADD'L OR ADD'L 7100
FEE FEE

(Column 1) (Column 2) (Column 3)

CLAIMS HIGHEST

10/27/2011 REMAINING NUMBER PRESENT
RATE($)

ADDITIONAL
RATE($)

ADDITIONAL
AFTER PREVIOUSLY EXTRA FEE($) FEE($)

f--
AMENDMENT PAID FOR

z Total (37 CFR • 995 Minus •• 995 = 0 X$ = OR X $60 = 0 w 1.16(i))

:;:;;: Independent • 52 Minus ••• 52 0 X$ = OR X $250 = 0 0 (37 CFR 1 .16(h)) =

z D Application Size Fee (37 CFR 1.16(s)) w
:;:;;: D FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16(j)) <(OR

TOTAL TOTAL
ADD'L OR ADD'L 0
FEE FEE

* If the entry in column 1 is less than the entry in column 2, write "0" in column 3. Legal Instrument Examiner:
•• If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20". /GLENN BURNS JR/
••• If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter "3".

The "Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

Th1s collection of mformat1on 1s requ1red by 37 CFR 1.16. The mformat1on 1s requ1red to obta1n or reta1n a benefit by the public wh1ch 1s to f1le (and by the USPTO to
process) an application. Confidentiality is governed by 35 U.S. C. 122 and 37 CFR 1 .14. This collection is estimated to take 12 minutes to complete, including gathering,
preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S.
Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, ca/11-800-PT0-9199 and select option 2.

Petitioner Microsoft Corporation, Ex. 1002, p. 1058

UNITED STA 1ES p A 1ENT AND TRADEMARK OFFICE

APPLICATION NO. FILING DATE

09/399,578 09/2011999

7590

PETER K TRZYNA
P.O.BOX 7131
CHICAGO, IL 606807131

10/13/2011

FIRST NAMED INVENTOR

DANIELL. MARKS

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

ATTORNEY DOCKET NO. CONFIRMATION NO.

AIS-P99-1 2427

EXAMINER

WINDER, PATRICE L

ART UNIT PAPER NUMBER

2452

MAIL DATE DELIVERY MODE

10/13/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

Petitioner Microsoft Corporation, Ex. 1002, p. 1059

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO.

09/399,578 09/20/1999

7590

PETER K TRZYNA

P.O.BOX 7131

CHICAGO,IL 606807131

10/13/2011

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

CONFIRMATIONNO.

DANIEL L. MARKS AIS-P99-1 2427

EXAMINER

WINDER, PATRICE L

ART UNIT PAPER NUMBER

2452

MAIL DATE DELIVERY MODE

10/13/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

Petitioner Microsoft Corporation, Ex. 1002, p. 1059

Application/Control Number: 09/399,578

Art Unit: 2452

Miscellaneous Action with Response Period

Response to Request for Interview

Page 2

Applicant representative requested an interview by phone during the preparing of the next

office action. The examiner was unable to schedule an interview with applicant. In the effort to

promote compact prosecution and prevent a request for interview after final, please respond to

this communication with an interview request or a letter confirming that an interview is not

desired.

Applicant is given ONE (1) MONTH or THIRTY (30) DAYS from the mailing date of

this notice, whichever is longer, within which to supply the omission or correction in order to

avoid abandonment. EXTENSIONS OF THIS TIME PERIOD MAY BE GRANTED UNDER

37 CPR 1.136(a).

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to PATRICE WINDER whose telephone number is (571)272-3935.

The examiner can normally be reached on Monday-Friday, 12:00 pm- 8:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Thu V. Nguyen can be reached on 571-272-6967. The fax phone number for the

organization where this application or proceeding is assigned is 571-273-8300.

Petitioner Microsoft Corporation, Ex. 1002, p. 1060

Application/Control Number: 09/399,578

Art Unit: 2452

Information regarding the status of an application may be obtained from the Patent

Page 3

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would

like assistance from a USPTO Customer Service Representative or access to the automated

information system, call800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Patrice L Winder/
Primary Examiner, Art Unit 2452

October 11, 2011

Petitioner Microsoft Corporation, Ex. 1002, p. 1061

PATENT

Paper No.

Our File No. AIS-P99-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor

Serial No.

Filed

For

Group Art Unit

Confirmation No.

Examiner

MS: No Fee Amendment
Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

SIR:

MARKS, Daniel L.

09/399,578

September 20, 1999

GROUP COMMUNICATIONS MULTIPLEXING
SYSTEM

2452

2427

WINDER, Patrice L.

SUPPLEMENTAL RESPONSE

In further response to the Office Action mailed on January 21, 2011, and to supplement

the filing of July 20, 2011, please reconsider the application in view of the remarks set forth

below.

Petitioner Microsoft Corporation, Ex. 1002, p. 1062

I. Remarks

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

Applicant respectfully requests that the Examiner reconsider the application in view of

the Declaration of Dr. Chandrajit Bajaj and Information Disclosure Statement submitted

herewith.

With respect to the present application, the Applicant hereby rescinds any disclaimer of

claim scope made in the parent application or any predecessor or related application. The

Examiner is advised that any previous disclaimer, if any, and the prior art that it was made to

avoid, may need to be revisited. Nor should a disclaimer, if any, in the present application be

read back into any predecessor or related application.

An amendment will be filed shortly, and if the Examiner will be taking the case up for

examination prior to the receipt of the amendment, the Examiner is required to call the

undersigned. If the prosecution of this case can be in any way advanced by a telephone

discussion, the Examiner is requested to call the undersigned at (312) 240-0824.

APPLICANT CLAIMS LARGE ENTITY STATUS. The Commissioner is hereby authorized

to charge any fees associated with the above-identified patent application or credit any

overcharges to Deposit Account No. 50-0235, and if any extension of time is needed, this shall be

deemed a petition therefore. Please direct all communication to the undersigned at the address

given below.

Date: August 18, 2011

P.O. Box 7131
Chicago, Illinois 60680-7131
(312) 240-0824

Respectfully submitted,
.......

Peter K. Trzyna
(Reg. No. 32,601)
(Customer No. 2871 0)

2

Petitioner Microsoft Corporation, Ex. 1002, p. 1063

Ser. No. 09/399,578
Atty. Ref: AIS-P1-99

Art Unit 2452

l. Remarks

Applicant respectfully requests that the Examiner reconsider the application in view of

the Declaration of Dr. Chandrajit Bajaj and Information Disclosure Statement submitted

herewith.

With respect to the present application, the Applicant hereby rescinds any disclaimerof

claim scope madein the parent application or any predecessoror related application. The

Examineris advised that any previous disclaimer, if any, and the prior art that it was made to

avoid, may need to berevisited. Nor should a disclaimer, if any, in the present application be

read back into any predecessororrelated application.

An amendmentwill be filed shortly, and if the Examinerwill be taking the case up for

examination prior to the receipt of the amendment, the Examineris required to call the

undersigned. If the prosecution of this case can be in any way advancedbya telephone

discussion, the Examineris requestedto call the undersigned at (312) 240-0824.

APPLICANT CLAIMS LARGE ENTITY STATUS. The Commissioneris hereby authorized

to charge any fees associated with the above-identified patent application or credit any

overcharges to Deposit Account No. 50-0235, andif any extension of time is needed, this shall be

deemeda petition therefore. Please direct all communication to the undersigned at the address

given below.

Respectfully submitted,
i

Date:_August 18, 2011

Peter K. Trzyna
(Reg. No. 32,601)

P.O. Box 7131 (Customer No. 28710)
Chicago, Illinois 60680-7131
(312) 240-0824

2

Petitioner Microsoft Corporation, Ex. 1002, p. 1063

PATENT

Paper No.

Our File No.: AIS-P99-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor

Serial No.

Filed

For

Group Art Unit

Confirmation No.

Examiner

MS: Fee Amendment
The Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

MARKS, DanielL.

09/399,578

September 20, 1999

GROUP COMMUNICATIONS MULTIPLEXING
SYSTEM

2452

2427

WINDER, Patrice L.

DECLARATION OF DR. CHANDRAJIT BAJAJ

SIR:

1. My name is Chandrajit Bajaj. I am a Computational Applied Mathematics Chair

in Visualization, Professor of Computer Sciences, and Director of the Center for Computational

Visualization at the Institute of Computational Engineering and Sciences, University of Texas at

Austin, where I have been a faculty member since 1997. My resume is provided herewith.

2. I am a co-author of the article titled "SHASTRA- An Architecture for

Development of Collaborative Applications" ('Shastra').

3. The other co-author is Vinod Anupam, who was my graduate student when I was

a Professor of Computer of Science and the Director of the Center for Image Analysis and

Visualization, at Purdue University.

Petitioner Microsoft Corporation, Ex. 1002, p. 1064

Ser. No. 09/399,578
Atty. Ref. AIS-P1-99

Art Unit 2452

4. I was the chairman of the Ph.D Dissertation Committee for Vinod Anupam, one

of his main advisors, and a signer of his Dissertation.

5. Under my direct supervision, Vinod Anupam wrote the computer code which was

the basis of his Dissertation, this code being provided herewith.

6. In view of my familiarity with the Shastra article, the Dissertation, and the code

('Shastra system'), I have been retained to provide information regarding these in this

declaration, for which I am being compensated.

7. As evidenced by the code, there was no capability of "a database which serves

as a repository of tokens for other programs to access, thereby affording information to

otherwise independent participator computers."

8. This capability also is not disclosed in the Shastra article, the Dissertation, or any

co-authored prior art articles about the Shastra system.

9. This capability would not have been contemplated for the reason that adding the

capability would defeat the otherwise contemplated objective of collaborative multimedia, as set

out in the title and otherwise discussed in the Dissertation.

10. I hereby declare that all statements made herein of my own knowledge are true

and that all statements made on information and belief are believed to be true, and further that

these statements were made with knowledge that willful false statements and the like so made

are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United

States Code, and that such willful false statement may jeopardize the validity of the application

or any patent issued thereon.

Date: July 14, 2011
Chandrajit Bajaj, Ph.D.

Petitioner Microsoft Corporation, Ex. 1002, p. 1065

Ser. No. 09/399,578

Atty. Ref. AlS-P1-99
Art Unit 2452

4. | was the chairman of the Ph. D Dissertation Committee for Vinod Anupam, one

of his main advisors, and a signerof his Dissertation.

5. Under mydirect supervision, Vinod Anupam wrote the computer code which was

the basis of his Dissertation, this code being provided herewith.

6. In view of my familiarity with the Shastra article, the Dissertation, and the code

(‘Shastra system’), | have been retained to provide information regarding thesein this

declaration, for which | am being compensated.

7. As evidenced by the code, there was no capability of “a database which serves

as a repository of tokens for other programsto access, thereby affording information to

otherwise independentparticipator computers.”

8. This capability also is not disclosed in the Shastra article, the Dissertation, or any

co-authored prior art articles about the Shastra system.

9. This capability would not have been contemplated for the reason that adding the

capability would defeat the otherwise contemplated objective of collaborative multimedia, as set

out in the title and otherwise discussed in the Dissertation.

10. | hereby declare that all statements made herein of my own knowledgeare true

and that all statements made on information and belief are believed to be true, and further that

these statements were made with knowledge thatwillful false statements and the like so made

are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United

States Code, and that such willful false statement may jeopardize the validity of the application

or any patent issued thereon.

Date: July 14, 2011

Chandrajit Bajaj, Ph.D.

Petitioner Microsoft Corporation, Ex. 1002, p. 1065

Biographical Sketch: Chandrajit L. Bajaj

Dr. Bajaj is Computational Applied Mathematics Chair in Visualization, Professor of Computer Sciences,
and Director of the Center for Computational Visualization at the Institute of Computational Engineering
and Sciences, University of Texas at Austin.
(http://www.cs.utexas.edu/-bajaj and http://www.ices.utexas.edu/-bajaj)

Research Areas

Dr. Bajaj's research areas of interest include Image Processing, Computational Geometry, Geometric
Modeling, Computer Graphics, Visualization, Computational Biology and Bioinformatics. He is currently
involved in developing integrated approaches to computational modeling, mathematical analysis and
interrogative visualization, especially for dynamic bio-medical structures and phenomena.

Education

• B.Tech. in Electrical Engineering Indian Institute of Technology, Delhi 1980
• M.S in Computer Science Cornell University 1983
• Ph.D. in Computer Science Cornell University 1984

Professional Experience

• Assistant Professor of Computer Science, Purdue University, 1984-89
• Associate Professor of Computer Science, Purdue University, 1989-93
• Visiting Associate Professor of Computer Science, Cornell University, 1990-91
• Professor of Computer Sciences, Purdue University, 1993-97
• Director of Image Analysis and Visualization Center, Purdue University, 1996-97
• Computational Applied Mathematics Chair in Visualization, University of Texas, 1997-
• Professor of Computer Sciences, University of Texas 1997-
• Director of Center for Computational Visualization, University of Texas, 1997-

Recent Selected Honors and Awards

• Best paper award at Computer Aided Design (CAD) 2006
• Panel Member of the National Academy of Sciences, Vietnam Education Foundation, 2006, 2007
• Member of the NSF-CISE Board of Visitors, 2004, ETH Zurich, CS Dept Evaluation Committee

(2004), INRIA Evaluation Committee 2007
• King Abdullah University of Science and Technology Center Director Chair search committee, 2008
• Member of Consolider Scientific Committee of the Spanish Ministerio de Ciencia e lnnovacion, 2008,

2009
• Member of the N IH-NCRR National Biomedical Computation Resource Advisory Committee, 2006 -
• Charter Member of Molecular Structure Function (MSFD) "Computational BioPhysics" Study Section,

National Institute of Health, 2008-
• Fellow of the Association for Computing Machinery (ACM), 2009-
• Fellow of the American Association for the Advancement of Science (AAAS), 2008-
• Moncrief Grand Challenge Faculty Award, 2009
• Fellow of the Association of Computing Machinery (ACM), 2009-

Ten Significant Publications (out of over 200 publications in full CV)

1. "Volumetric Feature Extraction and Visualization of Tomographic Molecular Imaging", (with Z. Yu, M.
Auer), Journal of Structural Biology, 144:1-2, (2003), 132-143.

1

Petitioner Microsoft Corporation, Ex. 1002, p. 1066

2. "Automatic Ultra-structure Segmentation of Reconstructed Cryo-EM Maps of Icosahedral Viruses",
(with Z. Yu), IEEE Transactions on Image Processing: Special Issue on Molecular and Cellular
Bioimaging, Sep;14, 9, (2005):1324-37

3. "Computational Approaches for Automatic Structural Analysis of Large Bio-molecular Complexes",
(with Z. Yu), IEEEIACM Transactions on Computational Biology and Bioinformatics, (digital library) 22
June 2007, PMID: 18989044, PMC Journal in Process

4. "F2Dock: Fast Fourier Protein-Protein Docking", (with R. Chowdhury, V. Siddahanavalli), IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2009, Accepted for publication,
N IHMSID153460, PMC Journal in Process

5. "Fast Molecular Solvation Energetics and Force Computation", (with W. Zhao), SIAM Journal on
Scientific Computing, Accepted for publication, NIHMSID153453, PMC Journal in Process

6. "Anisotropic Diffusion of Surfaces and Functions on Surfaces" (with G. Xu), ACM Transactions on
Graphics, 22:1, (2003), 4- 32.

7. "Dynamic Maintenance and Visualization of Molecular Surfaces", (with V. Pascucci, A. Shamir, R.
Holt, A. Netravali), Fourth issue in the special series of Discrete Applied Mathematics on
Computational Molecular Biology, 127, (2003), 24-51.

8. "Application of New Multiresolution Methods for the Comparison of Biomolecular Electrostatic
Properties in the Absence of Structural Similarity", (with N. Baker, B. Kwon, T. Dolinsky, J. Nielsen, X.
Zhang), Multisca/e Modeling and Simulation, (2006), 5 (4), 1196-1213, PMID: 18841247, PMCID:
PMC2561295

9. "Geometric Modeling and Quantitative Visualization of Virus Ultrastructure", Modeling Biology:
Structures, Behaviors, Evolution, ed. by L. da Fontoura Costa, M. Laublichler, MIT Press, 2007.

10. "The Capsid Proteins of a Large, Icosahedral dsDNA Virus", (with X. Yan, Z. Yu, P. Zhang, A. Batistti,
P. Chipman, M. Bergoin, M. Rossman and T. Baker), Journal of Molecular Biology, Available online
from doi:10.1016/j.jmb.2008.11.002, PMID: 19027752, PMC Journal in Process

Synergistic Activities

• Editor, ACM Transactions on Graphics, 1995-
• Editor, International Journal of Computational Geometry and Applications, 1994-
• Editor, ACM Computer Surveys, 2004 -
• Editor, Computational Vision and Biomechanics, 2006 -
• Editor, SIAM Journal of Imaging Sciences, 2007-
• Chair, Inti. Symposium on Symbolic and Algebraic Computation (ISSAC), UK, 2000, and ACM Annual

Symposium on Computational Geometry (Applied Track), 2002
• Keynote Addresses at Computer Graphics 2002, Volume Graphics 2003, EuroGraphics 2003,

Cyberworlds 2005, Jacques Morgenstern Colloquium, INRIA-Sophia Antipolis 2006, Institute of
Mathematics and Applications 2007, Computational Modeling of Objects Presented in Images , 2010

Expert Witness/Patent Infringement Cases in Recent Years

• Patent Case, American Video Graphics, L.P. versus Electron Arts Inc., et al, 2004-2005
• Patent Case, Landmark Graphics Corp. and Magic Earth Inc. versus Seismic Microtechnology, 2006
• Patent Case, Paradigm Geophysical Corp. versus Magic Earth, 2006
• Patent Case, Symbol Technologies versus Metrologic Instruments, 2006-2007

Industry Consultancy in Recent Years

• AT&T Research Labs, Murray Hill, NJ
• Earth Simulator Center, Yokohama, Japan
• eCalibre Technologies Inc., Austin, TX
• Lucent Technologies, Murray Hill, NJ
• Shinko Denki Corp., lse, Japan
• Seimens Research Corp., Princeton, NJ
• Schlumberger Research Corp., Austin, TX

2

Petitioner Microsoft Corporation, Ex. 1002, p. 1067

INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrougb, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
Un1vers1ty M1crof1lms International

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M148106-1346 USA

3131761-4700 8001521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1068

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1069

Order Number 9512924

Collaborative multimedia environments for problem-solving

Anupam, Vinod, Ph.D.

Purdue University, 1994

U·M·I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1070

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1071

(_
Graduate School Form 9
(Revised 8/89)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

By Vinod Anupam

Entitled
Collaborative Multimedia Environments For Problem Solving

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

.:__., ":<:JC}
1/J!f

For the degree of __ D_o_c=-t;..;o;..;r~o_f_P..:..:h..:..:i..:..:l..:..o.=.so-=-p~h:..::Y::..._ _________________ _

Signed by the fin~~,

~
, chair

k. k.'~
Approved by:

1..t...te.~#f.. ...
r~Head ~Itt~ - Date •

0 is
This thesis ~ is not to be regarded as confidential

--

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1072

Graduate School Form 9 PURDUE UNIVERSITY
(Revised 8/89) GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

By Vinod Anupam

Entitled .
Collaborative Multimedia Environments For Problem Solving

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

For the degree of Doctor of Philosophy

Signed by thefinal ex

Approved by:
o ° OO

7 C Departmen Head 7 S Li ’

L] is
This thesis Lx] is not to be regarded as confidential

~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1072

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1073

'.(

COLLABORATIVE MULTIMEDIA ENVIRONMENTS

FOR

PROBLEM SOLVING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Vinod Anupam

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1994

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1074

11

To my parents ..

·(_.-.,
•,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1075

(
I

lll

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Chandrajit Bajaj, for many things, culmi

nating in this thesis : for giving me great latitude in this exploratory process; for his

constant support, encouragement and guidance; for the many fruitful discussions we

have had; and for his invaluable help both within and outside the world of academics.

To my many teachers through the years, especially at Sainik School Ghorakhal,

at Kendriya Vidyalaya Jalahalli, at Birla Institute of Technology and Science (BITS)

Pilani, and at Purdue University, I owe a heartfelt debt of gratitude. They led me

along the path of knowledge, and taught me to learn and grow.

For all that I am and all that I have, I thank my parents. My father, Vinod

Prakash Saxena, and my mother, Manjulika Saxena, inculcated in me a thirst for

knowledge, stressed on the importance of a well rounded education, and encouraged

me to strive to excel - to be all I could be. To my wife, my life, Mary - thanks

for your patience and perseverance, and for all your help. I thank my twin brother

Atulya and my younger brother Ashwini for all the learning we have done together.

Many thanks to all my collaborators and lab-mates through the times - Steve

Klinkner, Dr. Tarnal Dey, Dr. Insung Ihm, Dr. Andrew Royappa, Steve Cutchin,

Jindon Chen, Susan Evans, Dan Schikore, Fausto Bernardini, Peinan Zhang, Dr. Xu

Guoliang, Dr. Youming Lin, and Dr. Zhang Xuan. We have had many stimulating

discussions on a multitude of topics, often not academic. Too numerous to thank

are the many friends I made during the course of my stay at Purdue. They made

sure there was a life besides academic pursuits. And many thanks to all my squash

buddies for our frequent encounters on the courts of the Co-Rec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1076

., ·.(. ...-

(

IV

My graduate committee, Prof. John Rice, Prof. Aditya Mathur and Prof. Vincent

Russo, contributed valuable advice. Prof. Dan Marinescu and Prof. Prasun Dewan

offered much input and constructive criticism.

I gratefully acknowledge the intellectual and material support provided by the

fine environs and the great staff of the Computer Sciences Department of Purdue

University. Rich Bingle, Doug Crabill, Adam Hammer and Dan Trinkle were always

available to help get troublesome demons out of the system. Georgia Conarroe, Patti

Minniear and Daloris Williamson provided much infrastructural support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1077

,c· .,

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . 1x

ABSTRACT . Xl

1. INTRODUCTION 1

1.1 Computer Supported Cooperative Work
1.1.1 Human Factors
1.1.2 Applications
1.1.3 Asynchronous Collaboration
1.1.4 Physical Meeting Support
1.1.5 Media Spaces
1.1.6 Desktop Conferencing ..

1.2 Enabling Technologies
1.2.1 Shared Data Management
1.2.2 Concurrency Control
1.2.3 Distribution Control
1.2.4 Session Control . . .
1.2.5 Interaction Control .
1.2.6 Coordination Control .
1.2. 7 Multimedia and Graphics
1.2.8 User Interfaces
1.2.9 General Requirements

1.3 Related Work .. .
1.3.1 Groupware
1.3.2 Multimedia
1.3.3 Concurrent Engineering

1.4 Motivation
1.5 Highlights

1.5.1 Structural Model
1.5.2 Media Model . .
1.5.3 Collaboration Model

3
4
6
8
9

10
11
13
13
15
15
16
16
16
18
20
20
21
21
26
28
30
33
33
33
34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1078

VI

Page

1.5.4 Distribution Substrate 34
1.5.5 Collaboration Substrate 34
1.5.6 Portable Graphics 35
1.5.7 Collaborative Graphics Substrate 35
1.5.8 Portable Multimedia 35
1.5.9 Collaborative Multimedia Substrate . 35
1.5.10 Collaborative Applications 36

2. MODELS 37

2.1 Structural Model 37
2.1.1 Core ... 39
2.1.2 Contexts . 39
2.1.3 Interfaces 40
2.1.4 State .. 40
2.1.5 Events .. 40
2.1.6 Mapper 41
2.1.7 Messaging 41
2.1.8 Routing 43
2.1.9 Interoperation . 43

(2.2 Media Model 44 ·.!.

2.2.1 Agents . 45
2.2.2 Sources 47
2.2.3 Sinks .. 47
2.2.4 Filters 49
2.2.5 Interoperation . 49
2.2.6 Media Widgets 51
2.2.7 Heterogeneity . 52
2.2.8 Communication . 52
2.2.9 Media-Enhanced Interaction 53
2.2.10 Multimodal Interfaces 54

2.3 Collaboration Model 55
2.3.1 Tools 56
2.3.2 Consistency 57
2.3.3 Collaboration 57

2.4 Meeting CSCW Requirements 64
2.4.1 Shared Data Management 64
2.4.2 Distribution Control 65
2.4.3 Concurrency Control 65
2.4.4 Session Control ... 65
2.4.5 Interaction Control 66
2.4.6 Coordination Control . 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1079

2.4.7
2.4.8

Multimedia and Graphics ..
Collaborative User Interfaces.

3. SYSTEM ARCHITECTURE

3.1 Introduction
3.1.1 Requirements
3.1.2 Features ...
3.1.3 Two Level Enabling

3.2 Architecture
3.2.1 Distribution Substrate
3.2.2 Collaboration Substrate
3.2.3 Portable Graphics
3.2.4 Collaborative Graphics Substrate
3.2.5 Portable Multimedia
3.2.6 Collaborative Multimedia Substrate .

3.3 Tools
3.3.1 Kernels
3.3.2 Brokers
3.3.3 Session Managers
3.3.4 Fronts
3.3.5 Toolkits
3.3.6 Services

3.4 Runtime Environment
3.4.1 Communication & Session Initiation
3.4.2 Collaborative Interaction .

3.5 Computation Model
3.5.1 Replication ..
3.5.2 Centralization .

3.6 CSCW Environments .
3.6.1 Distributed Multimedia
3.6.2 Collaborative Problem Solving .
3.6.3 Quasi-Collaborative Problem Solving

4. THE SYSTEM AND APPLICATIONS .

4.1 Runtime System
4.1.1 Introduction
4.1.2 Scientific Manipulation Environments .
4.1.3 System Features
4.1.4 Tools

4.2 Collaborative Problem Solving .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vll

Page

67
67

68

68
69
70
71
71
74
76
83
86
87
89
91
91
92
93
95
97
97
98
98
99

101
103
103
104
104
105
105

107

107
107
108
109
111
120

Petitioner Microsoft Corporation, Ex. 1002, p. 1080

(

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10

Motivation
Startup Problem
Design Outline .
The Shastra Setting
Collaborative Interaction .
Access Regulation and Collaboration Modes
Heterogeneity Issues
Collaborative Design
Collaborative Smoothing in Shastra .
Heterogeneous Collaboration .

5. CONCLUSIONS AND FUTURE WORK.

5.1 Conclusions
5.1.1 Models
5.1.2 Infrastructure
5.1.3 Tools
5.1.4 Collaborative Tools
5.1.5 Collaborative Applications

5.2 Applications
5.3 Future Work

5.3.1 Language Based Generation
5.3.2 Collaborative Hypermedia
5.3.3 Shared Visual Programming
5.3.4 Multimodal Interaction .
5.3.5 Virtual Environments .
5.3.6 Implementation Issues

5.4 Shastra ..

BIBLIOGRAPHY

APPENDICES

Appendix A: Graphics Support
Appendix B: Multimedia Support
Appendix C: Geometric Modeling Support
Appendix D: Collaborative Games .

VITA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vlll

Page

120
121
122
123
127
127
129
129
129
135

137

137
137
139
142
142
142
143
143
144
144
144
144
145
145
147

148

159
168
181
186

191

Petitioner Microsoft Corporation, Ex. 1002, p. 1081

IX

LIST OF FIGURES

Figure Page

2.1 Structural Application Model 38

2.2 Distribution Model 42

2.3 Multimedia Application Model 46

2.4 Distributed Multimedia Model 48

2.5 Centralized Collaboration Model 59

2.6 Replicated Collaboration Model . 61

(
~

/

...
2. 7 Session Model of Collaboration . 63

3.1 High Level Architecture of a Tool in the Shastra Environment . 72

3.2 High Level Architecture of XS. 85

3.3 Information Flow in the Shastra Environment 96

3.4 Multimedia Communication Support for Session Initiation 98

3.5 Architecture of a Collaborative Session . 102

4.1 The Shastra Layer 110

4.2 Collaborative Polyhedron Smoothing using Shilp and Ganith 113

4.3 Collaborative Custom Hip Implant Design - Contour Generation 114

4.4 Stress Analysis Visualization in Collaborative Custom Implant Design 116

4.5 One Site in a Three-Way Text Conference using Sha-Talk 117

4.6 Shared Visualization of Volume Data using Vaidak and Sha-Poly 118

4. 7 Video Support for Design - Visual Topological Verification . 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1082

X

Figure Page

4.8 Using Sha-Draw for Shared 2D Sketching 121

4.9 One Site in a Design Collaboration using Shilp and Sha-Draw 124

4.10 Another Site, at the End of a Collaborative Design Session 126

4.11 One Site in a Collaborative Smoothing Scenario in Shilp 132

4.12 Another Site in the Collaborative Smoothing Session 133

Appendix
Figure

A.1 Sha-Draw User Interface 160

A.2 High Level Architecture of Sha-Draw . 161

A.3 High Level Architecture of Sha-Poly 164

A.4 Sha-Poly User Interface 166

(B.1 High Level Architecture of Sha-Talk 169

B.2 Sha-Talk User Interface 171

B.3 Sha-Phone User Interface 172

B.4 High Level Architecture of Sha-Phone 174

B.5 Sha-Video User Interface 176

B.6 High Level Architecture of Sha-Video 179

C.1 Components of Shilp . 182

C.2 Shilp User Interface 182

C.3 Application Architecture of Shilp 183

D.1 Sha-Chess User Interface 187

D.2 High Level Architecture of Sha-Chess . 189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1083

(_

XI

ABSTRACT

Anupam, Vinod. Ph.D., Purdue University, August 1994. Collaborative Multimedia
Environments for Problem Solving. Major Professor: Chandrajit Bajaj.

A new method of designing collaborative multimedia environments for computer

assisted problem solving is described. These environments support computer medi

ated interaction between multiple physically separated users joined by a communi

cation network. Users interact using application specific models and objects, text,

audio, video and graphics. Computer mediation enables both synchronous and asyn

chronous interaction, empowering users to transcend barriers of space and time.

Proliferation of high performance multimedia workstations and high speed and

capacity networks provides us with the mechanism to realize real-time multi-user tools

for computer-supported cooperative work. However, development and deployment of

groupware, and consequent popular adoption, has been impeded by the absence of

general models and enabling infrastructures. This thesis is a step towards developing

formalisms for designing and implementing collaborative systems and groupware.

Requirements for the infrastructure from the developer's and the user's perspec

tives are identified and previous work is surveyed to highlight lessons learnt, and to

isolate desired features that are lacking. Application models that are amenable to dis

tributed and collaborative operation on heterogeneous platforms are then developed.

In these models, software tools consist of contexts that are characterized by a state

that is modified by events and can be thought of as event driven distributed data

flow machines. These models are used to build an enabling infrastructure for rapid

prototyping of real-time groupware. Mechanisms for routing events to different states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1084

Xll

and contexts are provided, as are mechanisms for distribution functionality like syn

chronous and asynchronous remote procedure calling, and collaboration functionality

like session control, interaction control, and high level access regulation. Identified

shortcomings of extant work are overcome and mechanisms to implement policies

derived from related research efforts are provided. The solution is justified from the

technical and human factors viewpoints.

In this dissertation, the models and the infrastructure are described. Details of an

implemented collaborative multimedia environment are presented, demonstrating the

viability of the infrastructure. Possible applications of this technology are identified,

and the facilitation of groupware prototyping by the model and infrastructure IS

described. Open issues and possible research directions are identified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1085

(

1

1. INTRODUCTION

Proliferation of high performance multimedia workstations and high speed and

high capacity networks provides us with the mechanisms to realize real-time multi

user tools for computer supported cooperative work. However, development and

deployment of groupware, and consequent popular adoption, has been impeded by

the absence of an enabling infrastructure. This thesis is a step towards developing

formalisms and models for designing and implementing collaborative systems and

groupware.

We propose a new method of designing collaborative multimedia environments for

computer assisted problem solving. These environments support computer mediated

interaction between multiple users joined by a communication network. Computer

mediation enables both synchronous and asynchronous interaction, enabling users to

transcend barriers of space and time. Users interact using application specific models

and objects, text, audio, video and graphics.

This section (Section 1) introduces essential concepts of Computer Supported

Cooperative Work and surveys the state of the art, to put this thesis into context.

We present requirements for a CSCW infrastructure from the application developer's

and the user's standpoints. We survey previous work in groupware, multimedia and

concurrent engineering, highlight lessons learnt, and identify desired features that are

lacking. We then present an overview of the main features of the work described in

this thesis.

In Section 2, we develop application models that are amenable to distributed and

collaborative operation on heterogeneous platforms. The structural model proposes

an architecture for developing software tools in a distributed multi-user setting. In

this model, tools consist of contexts that are characterized by a state that is modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1086

(

2

by events. Tools readily interoperate with other tools. The media model allows inte

gration of multiple media types into tools. The collaboration model enables groupware

development. In the context of these models, multi-user applications can be thought

of as event driven distributed data flow machines.

In Section 3 we describe how the models we propose can be used to implement

an enabling infrastructure for rapid prototyping of real-time groupware. The infras

tructure provides mechanisms for routing events to different states and contexts. It

provides mechanisms for distribution functionality like remote procedure calling, and

collaboration functionality like session control and high level interaction control and

access regulation. It provides techniques for advanced interaction functionality, such

as multimedia and graphics. The infrastructure overcomes identified shortcomings of

extant work and provides mechanisms to implement policies derived from other re

lated research efforts. We defend the infrastructure from the technical point of view

of the application developer.

We describe the runtime system in Section 4. It consists of cooperating tools built

upon the described models using the enabling infrastructure. We present details of

the collaborative multimedia environment that we have implemented on the desktop.

We discuss the viability and flexibility of the infrastructure and how it supports a

heterogeneous mix of platforms. We describe collaborative tools and present coopera

tive interaction in different problem solving scenarios and applications. We highlight

the relevance of computer-enhanced media-rich interaction for cooperative tasks. We

defend the system from the human factors point of view of the application user.

Finally, in Section 5, we highlight the main features of this work. We identify

other applications of this technology, and describe how the models and infrastructure

facilitate rapid prototyping of sophisticated multi-user applications. We identify open

issues and possible research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1087

(

3

1.1 Computer Supported Cooperative Work

CSCW refers to computer assisted coordinated activity carried out by a group

of collaborating individuals. Groupware refers to multi-user software that supports

CSCW systems. It is essentially the information technology that is used to help

people work together. It often includes styles and practices of group process and

dynamics that are essential for group activity.

Groupware and CSCW systems emphasize human-human coordination, commu

nication and problem solving. By supporting audio and video communication and

allowing work to be performed synchronously as well as asynchronously, they allow

users to transcend the traditional requirement of being in the same place and working

together at the same time.

In [44] Ellis et al review CSGW technology in depth, and introduce the major

issues in that area. They define groupware as characterized by a common task per

formed in a shared environment. They present perspectives from distributed systems,

communications, human-computer interaction, artificial intelligence, and social the

ory and discuss design issues like group interfaces and group processes. Bannon and

Schmidt [19] discuss two main CSCW requirements - sharing an information space,

and designing effective socio-technical systems, and assert that CSCW should aim

at supporting self-organization of cooperative ensembles as opposed to disrupting

cooperative work by computerizing formal procedures.

Researchers from behavioral science, sociology, management, and, of course, com

puter science have addressed issues in CSCW. In this section we attempt to glean

lessons from the state of the art, in order to identify the main elements of collabora

tive work, and to point out requirements of an enabling infrastructure that makes it

easy to build groupware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1088

(

(

4

1.1.1 Human Factors

Kraut et al stress the importance of informal, unplanned communication in sci

entific research [76]. They compare and contrast formal and informal communica

tion. They discuss the surface characteristics of informal communication - frequency,

method of initiation, location and duration. They discuss the content and uses of

informal communication, including its perceived value for production and social func

tion, its effect on personal perception, its role in sustaining momentum in collabo

rations, and its effect on the frequency of collaborative activity. Based on multi

ple interviews in collaborative work contexts, Bullen and Bennett [27] report that

groupware and software tools that parallel non-electronic activity have great value in

collaboration.

Clement [32] argues that the primary determinants of individual productivity are

timely access to appropriate expertise and the ability of users to cooperate amongst

themselves. He suggests that support for cooperative work and informal communica

tion needs to be included in all modern computer systems.

Based on an ethnographic study, Nardi and Miller [94] assert that collaborative

spreadsheet development is more a rule than an exception. Spreadsheets support

sharing of programming expertise. The visual format for structuring and present

ing data supports sharing of domain knowledge. In [106] Posner and Baecker report

on how people write together based on interviews of many people involved in that

line of work. They reveal the highly textured, multifaceted nature of collaborative

activity. They examine participant roles, writing activities, writing strategies, and

document control methods in the course of the process, and show how real collabora

tion flows smoothly between phases of brainstorming, planning, writing, and editing,

and between synchronous and asynchronous activities.

Tang uses in-depth behavioral observations and video analysis of collaborative

drawing to illustrate the design process [128]. He analyzes drawing space activity in

terms of actions like listing, drawing and gesturing and functions like storing infor

mation, expressing ideas and mediating interaction. He emphasizes that gesture is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1089

(

(

5

vital to effective collaborative interaction, and that the process of creating and using

drawings conveys significant information not subsequently contained in the drawings.

He shows that drawing space is an important resource for mediating collaboration.

Key concepts and theories of group and organizational process have been addressed

by researchers. Flor and Hutchins [49] analyze the issue of distributed cognition -a

new branch of cognitive science devoted to the study of representations of knowledge

both inside and outside the heads of individuals. It deals with the propagation of

knowledge among different individuals and the transformations that external struc

tures undergo when operated on by individuals and artifacts. Distributed cognition

helps us understand the behavior of teams of people engaged in complex cognitive

tasks. It promotes reuse of system knowledge, and sharing of goals and plans, and

provides shared memory for old plans and methodologies. It enables creation of ef

ficient communication, and supports the ability to search through a larger space of

alternatives. It supports joint production of ambiguous plan segments, division of

labour, and specification of functional roles. Flor and Hutchins assert that a common

problem in dealing with group processes is the failure to account for the complex

cognitive processes in group problem solving.

Effective groupware can facilitate many kinds of group processes - discussing,

planning, problem solving, writing, and designing etc. Behavioral and social studies

show that successful groupware must proceed from an informed view of the dynamics

of small groups, and that to be successful, even excellent groupware technology must

be adopted and deployed with great sensitivity to the work context.

Ethno-methodology, the study of work cultures, and conversation analysis, the

study of interaction, help understand and characterize group processes and groupware

usage. Conversation analysis has become a vital tool for understanding the impact of

groupware. Common ground in cooperative work refers to mutual knowledge, beliefs

and assumptions. It is this grounding that contributes to collaboration.

Participatory design is a collaborative method for design of collaborative software.

Studies indicate that for maximal benefit groupware design must be an iterative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1090

(

(

6

process that is user-centered, and needs to involve multi-disciplinary input. Bullen

and Bennett [27] call groupware social and technical intervention and assert that such

tools are not used if the benefit derived from the technology does not outweigh the

resources to be invested in using it.

In an investigation into lack of popularity of early groupware, Grudin [62] identi

fies factors responsible. He asserts that if users who make the most changes to adopt

groupware do not receive the most benefits, or if the technology threatens existing

socio-political structures, the technology will not be adopted. The same holds if

groupware does not allow for a wide range of exception handling and improvisation,

and if group enabled applications are hard to learn to use. He argues that success

ful groupware needs to have unobtrusive group work features, and must be skillfully

introduced and deployed in order to reach the critical mass needed for popular adop

tion.

1.1.1.1 Lessons

Cooperation in tasks is an integral part of work, and involves both synchronous

and asynchronous interaction. It is important to keep in mind social aspects of group

dynamics when designing multi-user interfaces and group algorithms for computer

mediated cooperation. Usability and ergonomic considerations are major factors for

technology adoption. From the human factors viewpoint, it is useful to provide fa

cilities for initiating and conducting informal communication for collaborative work.

Drawing is an important aspect of communication, as is the associated gesturing and

the very process of drawing creation. Cognition and awareness in the shared context

streamlines the collaborative process.

1.1.2 Applications

In [73] Johansen identified some main applications that provided computer support

for business teams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1091

7

• face to face meeting facilitation

• group decision support systems

• computer extensions to telephony

• presentation support software

• project management software

• calendar management for groups

• group authoring software

• computer supported face-to-face meetings

• computer screen sharing software

• computer conferencing systems

• text filtering software

• computer assisted audio-video conferences

• conversational structuring

• group memory management

• computer supported spontaneous interaction

• comprehensive work team support

• non-human participants in team meetings.

Instances of all but the last of these applications have been implemented and reported

in the literature [50, 80, 134, 43]. Robinson [112] reviews and critiques classic first

generation CSCW applications. This includes group authoring, calendar manage

ment, conversation management, work team support, group decision support, and

spontaneous interaction. Group facilitation, a dynamic process involving managing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1092

(

8

relationships between people, tasks and technology, and contributing to effective ac

complishment of the outcomes of meetings is discussed in [43].

1.1.2.1 Lessons

The current trend of using todays powerful desktop workstations to mediate com

puter based communication and interaction gives incredible scope and breadth to the

field of CSCW. It is likely that most software tools in the future will be group aware,

as opposed to most current tools that attempt to preserve the illusion of being the

sole user of a system.

1.1.3 Asynchronous Collaboration

Asynchronous groupware refers to group tools in which activity at the endpoints

is completely delinked, and there is a possibly unbounded temporal separation be

tween cooperative tasks. This class has achieved greatest prominence, and includes

electronic mail, and computer conferencing in the form of electronic newsgroups and

bulletin board systems.

Electronic mail is definitely the most successful form of groupware to date. Not

only has it performed exceedingly well as a substitute for physical mail, it has also

radically affected work culture. [124, 131, 123,47, 46] report on various organizational,

operational, and enabling effects of electronic mail and bulletin board systems as

collaboration tools in the workplace.

A popular application of asynchronous groupware is in implementing intelligent

agents that exploit mail message structure. Electronic mail is being extended by

embedding intelligence that aids in the structuring, routing and filtering of messages.

The motivation of these factors increases as more information is provided through the

medium of electronic mail. They provide better methods of organizing, classifying and

managing messages. One goal is the creation of intelligent messaging systems where

specifiable tasks are delegated to computer processes. Applications are message

enabled by use of a store-and-forward messaging transport mechanism that moves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1093

9

information from one person to another, and notifies participants in the process.

This includes forms-routing, scheduling and calendar programs. Messages may also

define, embody and manage workflows. [86, 78] describe environments for intelligent

electronic mail management and CSCW systems based on them. These systems

are similar to those in the intelligent office systems field, where researchers attempt

to develop formal descriptions of office procedures and systems that embody these

procedures.

Another application area is that of active mail, which involves sending active

"agents" via electronic mail, that already has a well established infrastructure. Boren

stein [21] describes the concept of computational electronic mail, defined as the em

bedding of programs within electronic messages. He discusses the promise of this

technology, and key problems like security and portability. Goldberg et al propose

active mail as a tool for maintaining persistent interactive connections and list appli

cations of the concept [57].

1.1.3.1 Lessons

Asynchronous group work is an integral part of work culture. Computer medi

ated communication allows us to move large amounts of information quickly between

multiple members of a group. It is important to maintain human and computer

processable forms of this information, and to provide mechanisms to create, store,

transmit, retransmit, organize, filter, and search through it.

1.1.4 Physical Meeting Support

This includes environments and software to support electronic meeting rooms and

decision rooms within one physical space, and has been addressed by much research.

Mantei [89] describes the Capture Lab, a computer based meeting room, and dis

cusses different physical factors that affect the effectiveness and usability of the entire

system. [100, 105, 99] study and analyze electronic meeting support system technol

ogy. Liveboard is a whiteboard size interactive electronic display used by speakers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1094

(

(

10

for sketching, gesturing and presenting slides [45]. [135] argues that typing takes up

too much cognitive capacity to participate fully in computer-based meetings for many

people, and describes a pen-based meeting support tool.

1.1.4.1 Lessons

Physical spaces can always be constructed to optimize any kind of group inter

action when collaborators are copresent. Computer based mechanisms can be used

to augment the physical space. It is important to minimize the processing overhead

of the computer based mechanisms in order to maximize participation and input,

especially for real-time synchronous interaction.

1.1.5 Media Spaces

A media space is a computer controlled teleconferencing or videoconferencing sys

tem where audio and video are used to transcend physical barriers, to create shared

interpersonal spaces across a distance. Media spaces can be used to link geographi

cally separated collaborators. [77, 2, 90, 65] discuss some systems and issues. They

demonstrate the use of video both as a viable alternative to face-to-face interaction,

and as a means of sharing a workspace. However, though the sense of presence is

conveyed, verbal and nonverbal cues are not transmitted as well as in a face-to-face

situation. [28] stresses the role of gaze, body language and eye contact in shared "per

son space" - the collective sense of copresence between group participants. Dourish

and Bly [42] argue that full bandwidth video is not absolutely necessary as there is

much useful information even in low bandwidth video.

Heath and Luff [66] discuss social aspects of media spaces that have significantly

different characteristics from shared physical spaces. Team WorkStation [71 J is an

exploration into the potential payoff from special purpose hardware for visually com

bining displays of shared digital surfaces with the displays of physical work surfaces

and materials. Clearboard [70] uses elaborate hardware and attempts to remove the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1095

(

11

seam between shared personal space and shared task space, and provides smooth

transitions between face to face conversations and shared drawing activities.

1.1.5.1 Lessons

Media spaces provide mechanisms to simulate physical copresence in the visual

and audio sense. Though gesture and other forms of visual conduct are less effective

in a media space than in face-to-face communication, the very availability of video

and audio greatly enhances the quality of interaction. The utility of audio diminishes

significantly with loss of quality. Video, however, is useful even at very low frame

rates as it promotes awareness.

1.1.6 Desktop Conferencing

This area deals with using desktop computers and communication networks to

support group activity. The Colab project [127] is one of the earliest demonstrations

of a variety of synchronous multi-user interfaces. They describe brainstorming tools

for small groups of physically colocated people, based on the WYSIWIS paradigm

- what you see is what I see. Arguments in support of WYSIWIS are presented in

[129]. [24] discusses the utility of desktop conferencing in providing "conversational

props" to aid communication, and describe a shared whiteboard. Greif [61] discusses

issues in designing desktop conferencing systems and group enabled applications via

explicit asynchronous transmission of shared information.

Screen sharing is a simple mechanism that allows collaborative use of interac

tive software without modification. Here, the display of the program is distributed

to multiple workstations. Sarin and Greif [116] discuss implementation issues for

real-time conferencing systems. Greenberg reviews the history of screen sharing ap

plications, and discusses technical problems that must be solved in order to achieve

viable implementations [59]. MMConf [38) implements an alternative to screen shar

ing - window sharing, where users continue to work in their private workspace while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1096

(

12

collaborating within the window that represents the public workspace. Issues in win

dow sharing in the context of current windowing system technology are discussed in

[82, 81). SharedX [53) allows users to share existing X based applications by replicat

ing the window interface. Matrix [72) is an infrastructure to make existing single-user

systems collaborative, and supports synchronous and asynchronous work. XTV (X

Teleconferencing and Viewing) [1) and COMIX [16) are other window sharing sys

tems. CECED [37) and MOb Views [63) are other desktop conferencing systems built

using window sharing technologies.

Collaboration aware multi-user sketching and drawing systems are described in

[60, 98, 133, 83). SEPIA is a collaborative hypertext browser that allows individual

and shared browsing [64). Quilt [48) and PREP [96) are asynchronous collaborative

editing and authoring tools. GROVE [44) and ShrEdit [41) are synchronous multi-user

editors. ICICLE [26) is a multiuser tool for program source code inspection.

1.1.6.1 Lessons

Desktop conferencing is emerging as a powerful mechanism that supports collab

orative work by enabling accessibility and sharability. The technology is applicable

to numerous problem solving domains. Screen and window sharing provide a very

simple means of cooperative use of existing desktop applications by multiple users.

The primary advantage is that the user does not need to learn new systems. The dis

advantage is that the application cannot benefit from the fact that there are multiple

users since it is collaboration transparent. This permits a very limited form of shared

interaction - Users must take turns interacting with the application, though every

one shares the view. Window sharing systems can implement different floor control

strategies to regulate turn-taking. Collaboration-aware desktop conferencing systems

are harder to implement, and can support more complex forms of shared interaction.

Developers of such multiuser tools for different application areas have addressed and

independently, albeit repetitively, solved the same core set of problems in domain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1097

13

specific manners. This is due to the absence of general models and infrastructures

that enable groupware development.

1.2 Enabling Technologies

Collaboration involves performing common tasks in a shared environment. In gen

eral, synchronous collaboration has more infrastructural demands than asynchronous

collaboration. An infrastructure for groupware must provide and enable easy incor

poration of the core technologies in order to promote development of collaborative

systems. The technologies most critical for collaboration are

• shared data management

• concurrency control

• distribution

• session control

• interaction control

• coordination control

• multimedia and graphics

• user interfaces

An important requirement of an enabling infrastructure is that it provide the

requisite mechanism, and also the flexibility to implement different application spe

cific policies. These mechanisms should support both synchronous and asynchronous

collaborations.

1.2.1 Shared Data Management

(
At the lowest level, the notion of a common task in a shared environment manifests

itself as shared data that is manipulated by software tools. Sharing of data can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1098

l

(

14

implemented via database systems, hypertext webs, distributed object systems, or by

application specific means.

An enabling infrastructure must a flexible data sharing mechanism. In addition

to the core requirement of sharability, important issues are ease of integration, porta

bility, heterogeneity, efficiency and flexibility.

1.2.1.1 Database Systems

Modern database systems, based on very mature technology, are ideal for imple

menting the data sharing substrate. They provide a high level of abstraction and

provide concurrency control as well as access control. Distributed database systems

provide replication and support regulated simultaneous manipulation of data. Per

formance of traditional disk-based database systems, however, is an issue, since all

data accesses and updates must occur via disk.

1.2.1.2 Hypertext and Hypermedia

The hypertext concept enables the creation of complex webs of information and

provides computer based mechanisms of navigating this structured recorded informa

tion space. Hypertext blurs the distinction between authors and readers, enabling

a new kind of reading, writing, teaching and learning. Conklin [35] introduces hy

pertext, and describes its characteristics, building blocks and application areas. The

flexibility and power of hypertext make it a foundation technology for groupware.

Hypermedia extends the hypertext concept to include multimedia. Important ap

plications include collaborative knowledge building [118, 117], computer supported

education [79], asynchronous collaborative writing [96], organizational memory to

record methodologies and procedures [34], and general information infrastructures

like the World-Wide Web [20]. SEPIA, a collaborative hypertext browser that allows

individual and shared browsing is described in [64].

The decentralized nature of the hypertext model lends itself very well to collab

oration scenarios, since it supports flexibility and promotes shared access, especially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1099

(

(

15

in the asynchronous setting. The challenge lies in being able to harness the great

freedom in creating and navigating complex information webs for group work.

1.2.1.3 Distributed Object Systems

These systems provide very flexible mechanisms for maintaining portable data in

multi-platform and multi-language settings. Shared data substrates built on these

systems have the advantage of efficiency and flexibility. This is still an evolving

technology.

1.2.2 Concurrency Control

Simultaneous multi-party interaction over shared data in a distributed setting can

result in anomalous conditions and data inconsistency. Concurrency control mecha

nisms allow consistent simultaneous access and manipulation of shared data. A vari

ety of locking and timestamp based techniques have been researched in the database

community.

The infrastructure must provide flexible concurrency control mechanisms that

fulfill the efficiency requirement for real-time concurrent interaction.

1.2.3 Distribution Control

Groupware relies on linking individual workstations using communication net

works. Networking technology is at the core of CSCW. [30] presents an overview

of this field. The need for control in the distributed system that underlies group

ware is discussed in [113]. Distribution control provides mechanisms to interact with

programs and users across a communication network.

Requirements at this level include convenient and flexible connection setup, and

synchronous and asynchronous data transport. The transport mechanism is used to

support communication using different media types, which may or may not tolerate

losses. Unreliable data transport is more efficient than reliable communication. It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1100

(

16

therefore important for the infrastructure to offer both reliable and unreliable chan

nels, and high bandwidth. The infrastructure must also deal with issues of platform,

system and language heterogeneity.

1.2.4 Session Control

Collaboration control mechanisms regulate how multiple users assemble and in

teract over shared data. They regulate session setup and tear down, formation of

collaborative groups, and dynamic inclusion and removal of participants. Different

application domains have differing needs for methods of initiation and conduction of

collaborative activity in a distributed setting.

The infrastructure must provide flexible collaboration control methods to initiate

and terminate collaborative sessions, to join or leave ongoing sessions, and to invite

participation in collaborative tasks.

1.2.5 Interaction Control

Interaction control mechanisms govern issues like floor control and interaction

regulation. Different applications, as well as different usage scenarios of applications,

require differing kinds of interaction.

The infrastructure must provide mechanisms that allow turn based interaction as

well as simultaneous multi-party interaction. For turn-taking based mechanisms, it

must provide flexible and intuitive mechanisms to implement protocols for requesting,

taking and giving up turns.

1.2.6 Coordination Control

Coordination is the act of managing interdependencies between different activities

performed to achieve a goal. Coordination is necessary for rapid progress towards

targets. Coordination theory is a body of principles about how people can work

together harmoniously. The importance of coordination for group activity is discussed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1101

(

(
;

17

in [87]. Coordination, though very domain specific, is achieved via the promotion of

awareness of group activity and is enforced via access control over shared contexts.

1.2.6.1 Awareness

Awareness of individual and group activities is an important issue when perform

ing collaborative tasks. Awareness is fundamental to coordination of activities and

sharing of information, which is critical to successful collaboration. Sharing the char

acter of activity allows users to structure their tasks to avoid duplication. Awareness

of content allows fine-grained shared working. A study of awareness and coordination

in collaborative activity is available in [41]. The authors define awareness as "an un

derstanding of the activity of others, which provides a context for your own activity,"

and assert that it is especially important in semi-synchronous shared workspaces in

the form of past shared activity.

The infrastructure must provide computer mediated mechanisms for promotion

of awareness in a collaborative setting. This includes active and passive methods.

In active methods users explicitly provide information about their tasks. In passive

methods the system automatically collects and disseminates background information

that conveys remote presence and the notion of remote activity via shared feedback

presented in a shared workspace.

1.2.6.2 Coupling

Coupling refers to the degree of connectedness between collaborating interfaces as

perceived by the user. At one extreme is WYSIWIS- what you see is what I see. In

this setup there is maximal coherence between the views of shared activity that are

available at all sites. At the other extreme is the scenario of totally decoupled views,

and that of asynchronous interaction. Different users can have completely different

views. Coupling of state refers to the connectedness of content of shared activity.

Coupling of interaction deals with synchronicity of shared user interaction. Though

the general requirement for CSCW is the maintenance of coherent shared state, [93]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1102

(

18

argues for "lazy" consistency in distributed settings for coarse grained activity. A

general framework for undoing actions in collaborative systems that allows users to

reverse their own changes is presented in [107]. [40] discusses the notion of flexible

coupling.

An infrastructure must provide flexible coupling mechanisms. This would allow

application developers to implement coupling policies based on efficiency and perfor

mance considerations. It would also allow users to control the degree of synchronicity

of state and interaction.

1.2.6.3 Access Control

Access control is a critical issue, since it provides control over what tasks can be

performed by which individual in a collaborative setting. It provides the mechanism

for enforcement of coordination, enables division of labor, and provides access reg

ulation over shared state and interaction. Dewan and Shen [121] argue that "user

interaction with a collaborative application can be interpreted as concurrent editing

of data structures of the session". They develop a general access control model based

on read, write, viewing, coupling and domain-specific rights.

The infrastructure must provide a flexible access control mechanism that allows

application developers to implement specific policies, and users to dynamically control

shared task progress.

1.2.7 Multimedia and Graphics

Communication is at the core of collaborative effort. A media-rich communication

substrate greatly facilitates information sharing. Audio support is very useful for

collaboration and video promotes awareness in this scenario. Graphics provides visual

realism for many application domains.

The critical issues that need to be addressed by an infrastructure are support for

platform heterogeneity, support for communication, and mechanisms for incorporat

ing multimedia and graphics facilities to create sophisticated applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1103

(_

19

1.2.7.1 Multimedia

Rice and Steinfield [111] characterize communication media along the dimensions

of constraints, bandwidth, interaction and network factors, and discuss issues in asyn

chronous multimedia communication. An overview of advances in interactive digital

multimedia systems is presented in [51]. The promise of multimedia as an enabling

technology for computer supported cooperative work is discussed in [25].

In [69], Hollan and Stornetta conjecture that communication via electronic me

dia that imitates face-to-face communication can never achieve the social presence

and media richness of a physical setting. However, computer mediation of this com

munication affords us added richness in terms of asynchronicity, archivability and

reviewability- features that go beyond what the physical setting offers. Gaver [54]

shows how non-speech audio can assist in cooperative work by helping to maintain

common awareness. Auditory cues enable a relatively unconscious awareness of on

going events and effectively enrich shared spaces by reinserting cues lost due to the

absence of face-to-face interaction. Borenstein and Thyberg [23] describe the Andrew

Message System that has multimedia mail capabilities and active messages for user

support in a distributed computing environment.

Developers of multimedia tools and applications deal with a complex environment

due to the variety of media and supporting equipment. Audio and video networking

has made it possible to build distributed multimedia applications with multiple con

current users, requiring real-time responses and dealing with multiple data streams.

For rapid prototyping in the context of distributed multimedia applications, we need

to identify general abstractions found in multimedia applications and integrate them

into a framework that provides basic functionality and media integration mechanisms,

promoting development through reuse.

1.2. 7.2 Graphics

The quest for visual realism in computer based interaction has resulted in signifi

cant advances in graphics technology. Standards like PEX, PHIGS and OpenGL have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1104

(

20

evolved. High speed networking has made it possible to build distributed graphics

applications with multiple concurrent users. This enables sophisticated interaction

functionality like shared virtual worlds.

Once again, developers of 3D graphics tools and applications deal with a com

plex environment due to the variety of hardware graphics platforms available. For

rapid prototyping in the context of distributed graphics applications, we need to

identify general abstractions found in graphics applications and integrate them into

a framework that provides basic functionality and graphics integration mechanisms,

promoting development through reuse.

1.2.8 User Interfaces

The user interface is the mechanism that ultimately expresses the sharing and

cooperation paradigm. Groupware needs to support the notion of private and shared

work in private and shared workspaces, and methods for moving work between these

workspaces. The user interface must flexibly support customization and coupling,

and must serve as a medium for expressing feedback to promote awareness and coor

dination. It must provide intuitive methods for session, interaction, and coordination

control, and support media-rich communication.

The infrastructure must provide mechanisms for building such distributed and

collaborative user interfaces. Interface design criteria and policies, and ergonomic

issues should be addressed via participatory design to effectively capture multi-user

processes.

1.2.9 General Requirements

In order to be maximally effective, groupware needs to bridge the traditional gaps

between

• individual and group work and process

• work with conventional software and groupware

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1105

(_

21

• work in private and shared space, in local and distributed settings

• synchronous and asynchronous work

In order to support design and deployment of such groupware, the enabling in

frastructure must provide a rich set of flexible mechanisms for the described require

ments.

1.3 Related Work

1.3.1 Groupware

Groupware refers to multi-user software that enables computer supported coop

erative work. It focuses on using the computer to facilitate human interaction for

problem solving. Ellis et al present an overview of the state of the art, and identify

the main issues in this area that is centered around performing common tasks in a

shared environment [44].

There are three traditional approaches to developing groupware. In the centralized

collaboration-transparent approach, there is one instance of a single user software tool

that is shared by multiple users by means of an underlying screen or window sharing

mechanism. E.g. systems like SharedX [53], XTV [1] and COMIX [16] intercept

the X [119] event stream and simultaneously drive windows on multiple displays.

This approach allows users to share existing X based applications by replicating their

window interfaces.

Lauwers et al [81] claimed that existing window managers are not well suited to

supporting groupware. They suggested that changes would be required of window sys

tems to support adequate spontaneous interactions, shared workspace management,

floor control, and annotation and telepointing in collaboration transparent applica

tions. MMConf [38], Matrix [72], MONET [125], CECED [37], BERKOM [6] and

MOb Views [63] are desktop conferencing systems built using window sharing tech

nologies. The main advantage of the centralized collaboration-transparent approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1106

l

(

22

is that it eases groupware generation, since applications do not have to be changed.

Users continue to employ familiar single-user software tools for group work.

There are many disadvantages to this approach. Users are forced to take turns,

since the tools are not designed for multi-user interaction. The turn-taking mechanism

itself is part of the window sharing system, and is thus external to the tool. Tools do

not support inter-user interaction or communication, and all users are forced to have

identical views. In a heterogeneous distributed environment tools need to operate

on a greatest common denominator platform, and cannot take advantage of machine

specific features like hardware graphics facilities etc. There is a lot of network traffic

generated since all events must travel to and from the central tool. Centralized view

generation in the shared tool and window sharing system does not scale well as the

number of users increases.

In the centralized collaboration-aware approach, there is one instance of a multi

user software tool that drives multiple interfaces and is thus shared by multiple users.

Systems like Rendezvous [104] and Weasel [58] provide mechanisms to implement this

approach. A familiar tool that adopts this technique is Wscrawl [133]. The advan

tage of this approach is that it enables tools to implement floor control mechanisms

internally, and allows multiple users to interact concurrently. Inter-user communi

cation facilities can be provided, and it is possible to support different views and

user customization. Centralization of the handling of collaborative interaction eases

concurrency control.

However, there are disadvantages to this approach. In a heterogeneous distributed

environment such tools either operate on a greatest common denominator platform,

or are burdened with the complexity of taking advantage of machine specific features.

There is a lot of network traffic generated since all events must travel to and from the

central tool. There is a performance penalty for every additional user of the tool since

the central tool does all view generation, and this does not scale well as the number

of users increases. Both centralized approaches are susceptible to distribution issues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1107

(
'·

23

like network delays and throughput. They are also less robust, since the state of the

shared task is centralized in one tool.

In the replicated collaboration-aware approach there are multiple instances of tools

in the distributed environment. Each maintains a local interface and provides access

to the shared task. The multiple tools cooperate to maintain the notion of shared

state and interaction. [81] is a deep analysis of serious implementation challenges that

must be tackled to keep copies of shared synchronous applications running under a

replicated architecture synchronized with one another. It is asserted that to do this,

one must guarantee input consistency, output consistency and startup consistency for

the applications. One solution is to make some system components like the underlying

window managers collaboration aware.

MMConf [38], LIZA [55] and GroupKit [114] provide facilities to implement repli

cated groupware systems. Rapport [4] and Diamond [38] are systems that implement

this approach. The advantage of the replicated collaboration-aware approach is that

it enables tools to implement floor control mechanisms internally, and allows multiple

users to interact concurrently. Inter-user communication facilities can be provided,

and it is possible to support different views and user customization. Tools can be

built to operate on multiple platforms, taking advantage of available facilities, and

sharing can be implemented in a heterogeneous environment. Since the notion of a

shared task is maintained in a replicated distributed system, this approach is robust.

The disadvantage of this approach is that tools are burdened with the complexity

of maintaining shared state and interaction in a replicated setting. Concurrency

control is harder. Most importantly, scalability of performance becomes an issue

when the number of users in the shared space increases. This is because a larger

number of sites need to be kept in sync for fine grained shared interaction. For

coarse-grained sharing, however, performance is better. Network traffic is reduced

since tools can perform functions locally. Ahuja et al [5] present a comparison of

architecturally different versions of the Rapport desktop multimedia conferencing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1108

24

system. They discuss performance issues and recommend the single site centralized

approach.

In addition to investigation of operating system issues for supporting groupware,

recent research effort has been directed towards the design and construction of toolkits

and languages for building groupware. The advantage of a language based approach

is that it enforces formalisms, and enables automatic generation. The problem with

this approach is the implicit requirement that shared tools be implemented in that

language. This imposes many artificial restrictions on application development from

the point of view of the underlying user interface system, graphics system, multi

media system, networking and communication system and implementation platform.

This effectively works against widespread adoption and deployment of language based

mechanisms.

Language based approaches to generating multi-user applications are described

in [68], where Hill presents the Rendezvous collaborative user interface development

environment. The Rendezvous system proposes an architecture for multi-user appli

cations [104]. It implements a centralized collaboration-aware approach. The authors

identify three dimensions of programming complexity that seriously affect multiuser

applications - concurrency, that enables parallel activity, abstraction, that separates

interface from underlying application, and roles, that address the need to provide

different interfaces to different users. The Rendezvous language extends Common

Lisp to support objects, message passing, event handling, graphics and constraint

maintenance. The paper discusses the concepts and implementation experience in

detail. The centralized approach, however, has inherent problems of scalability and

performance.

Dewan and Choudhary [40] discuss the Suite system that provides primitives for

programming multi-user interfaces. Suite is a language and system for developing

both collaboration transparent and collaboration aware multiuser programs. Concur

rent tasks can be implemented by a set of communicating distributed objects. Suite

develops the notion of active variables, attributes and value groups, and supports

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1109

l

(

2.5

multi-user objects and a multi-user user interface management system. The authors

describe flexible coupling that determines which user actions are seen by other users,

and when they are seen. They discuss implementation experience and present ideas

about applying the approach to other system and language contexts. On similar

lines, Oval [88] is a tailorable tool for cooperative work. Users create applications

using Objects, Views, Agents and Links. Objects represent data, Views summarize

collections of objects and allow editing, Agents perform active tasks for users, and

Links represent relationships between objects.

Weasel is another system for implementing multi-user applications [58]. It imple

ments the relational view model- a user interface is described as a relation between

a program's data structures and the view on a display. Users manipulate views of

the data that are bound to application programs via relations. The Weasel architec

ture has multiple client views controlled by a central server. Views are specified in

RVL, a declarative language. Weasel creates a distributed implementation from the

specification, hiding network communication, concurrency control, synchronization

and customization. The centralized server has inherent problems of scalability and

performance.

CB (Conversation Builder) [74] is a support tool that provides active support for

collaborative work activities. It assumes coarse grained collaboration, where users

work independently on actual tasks and periodically synchronize their independent

activity by resolving dependencies. CB Protocols allow different activity types and

policies to be defined to the system. Obligations provide a mechanism to weave

individual activities together. CB allows users to be aware of activities engaged in,

the relations among activities, legal actions in an activity, and relevant actions of

co-workers.

GroupKit presents a mechanism for creation of real-time work surfaces that are

essentially shared visual environments [114]. It is structured around an extensible

object oriented runtime environment that manages distributed processes and inter

process communication. GroupKit uses transparent window overlays to create shared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1110

l

(

(

26

work surfaces, and supports open protocols for creation of interface and interaction

policies. It supports gesturing and graphical annotation.

In [65], Harrison and Minneman investigate the use of media spaces as design

tools. They characterize design as the creation of experiences, fundamentally a social

activity, and assert that it is characterized by ambiguous communication, continual

negotiations, and the enrollment of participants into a group process. They argue that

video can help designers connect across space- through transmission over a network

and across time - through recording and review. They define the concept of a media

space, and review case studies of PARC media spaces. They show that designers can

learn quickly to make effective use of video both as a viable alternative to face-to

face interaction, and as a means of sharing a workspace. Reeves and Shipman [110]

propose a method for integration of the design of an artifact, which is the target of

a task, and communication between designers. They assert that discussions about

the design must be embedded in the design, integrated in a manner that provides a

seamless environment for individual and group work.

Teledesign [122] is an application of synchronous groupware in 3D Computer Aided

Design. The authors report experiences with a two-person replicated design tool from

the perspectives of simultaneous versus turn based access, and degree of sharing. They

posit that two-person meetings do not need a moderator, simultaneous editing is not

chaotic, and telepointers are useful, as are visual cues of remote viewing position.

1.3.2 Multimedia

In the direction of shared multimedia environments, research in colocation has

resulted in systems like MONET [125], MMConf [38], Rapport [4], CECED [37],

and MERMAID [132]. These systems primarily provide audio-video communication.

Some of these systems also provide conference management facilities and content

independent sharing of drawing and viewing surfaces.

A paradigm for modeling multimedia collaborations and their system requirements

is presented in [109]. The authors propose a three-level hierarchy. Streams consist

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1111

I

\

/
i

27

of media communication modulated by access rights within a collaboration. Sessions

are collections of semantically related streams. Conferences are temporally related

sequences of sessions. They assert that a common software framework with rich

semantic expressibility is essential to support the diverse range of interactions required

for synchronous and asynchronous collaboration.

AudioFile [84] is a network-transparent system for distributed computer audio

applications built using lessons from X [119]. It provides an abstract audio device

interface via a simple network protocol. AudioFile is a step towards systems that

deal with media at an abstract, semantic level.

KWrite [52] is a system based on the Apple Macintosh System 7 Inter Applica

tion Protocol. The authors describe an open architecture for multimedia documents

that offers the possibility that any application that interacts with a user through a

window can also interact with the user through an active picture in such documents.

This enables interactive applications to use the document as a user interface while

appearing seamlessly embedded to the user.

Gibbs [56] proposes the notion of an active multimedia object that has the au

tonomous ability to send multimedia data to outside entities like screens and networks.

Gibbs and Mey [92] propose a method for rapid prototyping of multimedia applica

tions. They include general abstractions of multimedia applications into an extensible

set of related classes that provide basic functionality and composition mechanisms.

They adopt a component-oriented view, using visual tools for constructing and con

figuring applications.

Traditional work in distributed multimedia systems has focused on transmission,

synchronization, and operating system support for continuous media streams. Inte

grated control of remote multimedia devices like cameras and speakers is addressed in

[75]. The authors discuss an application level architecture, and a protocol for control

of external devices. The VidBoard [3] is a standalone network based video capture

and processing peripheral capable of capturing and transmitting live television source.

The system is described in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1112

(

28

Electronic mail is the most pervasive groupware technology to date. Network

ing and communication technology have been effectively applied to allow creation,

storage, transmission and retransmission of messages. MIME (Multipurpose Internet

Mail Extensions) [22] proposes a method for extending and using the existing mail

infrastructure to enable a richer form of asynchronous messaging. The method leaves

the message content as flat ASCII text. It redefines the format of message bodies to

allow multi-part textual and non-textual message bodies to be represented and ex

changed without loss of information. It provides facilities to include multiple objects

in a single message, to represent body text in character sets other than US-ASCII, to

represent formatted multi-font text messages, to represent non-textual material such

as images and audio fragments, and generally to facilitate later extensions defining

new types of Internet mail for use by cooperating mail agents.

MHEG [108] is an upcoming standard for hypermedia object interchange. Its

objective is to address "the coded representation of final form multimedia and hy

permedia objects that will be interchanged across services and applications by any

means like storage media, local area networks, and wide area telecommunication and

broadcast networks." The MHEG Object is the basic component, and is intended to

play a federating role, enabling different applications to share the basic information

resource. HyTime (Hypermedia/Time-Based Structuring Language) [97] is a stan

dard that specifies how concepts considered universal to all hypermedia documents

can be represented using SGML (Standard Generalized Markup Language) [31]. This

allows hyperdocuments to be represented as character files that can be interchanged

between and processed by any platform.

1.3.3 Concurrent Engineering

Concurrent Engineering is an applied area of Computer Supported Cooperative

Work that centers around methodologies and tools that enable cooperative decision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1113

(

29

making by geographically distributed people engaged in all aspects of product devel

opment. The primary issues dealt with are colocation, information sharing, integra

tion, coordination, and corporate memory. Collocation provides virtual copresence

via media-enhanced communication. Information sharing deals with aspects of ac

tual sharing of artifacts and targets of design and design process. Integration deals

with inter-operation of different tools and techniques used in the design process. Co

ordination deals with mechanisms to keep track of team progress, and to regulate

team activity. Corporate memory is concerned with capture and use of decision ra

tionale. We are specifically interested in the areas of colocation, information sharing,

integration and coordination.

DICE (DARPA Initiative in Concurrent Engineering) contains many projects that

emphasize the combination and reuse of existing heterogeneous tools. Tools use wrap

pers to communicate in a mutually understood language, protocol and representation.

PACT (Palo Alto Collaborative Testbed) [39] addresses the problem of linking exist

ing collaborative engineering environments, to enable their use in other projects. Its

architecture encapsulates functionality in agents. Facilitators are used to link agents

across environment boundaries, using a standard language to communicate between

environments.

SWIFT [85] is a computer environment under development that is aimed at en

hancing group problem-solving productivity. It consists of a Knowledge Layer and a

Kernel Layer that underly a Collaboration Layer being built to enable rapid applica

tion development by retargeting existing functionality.

DICE (Distributed and Integrated Environment for Computer-Aided Engineer

ing) [126] is centered around a persistent shared blackboard implemented by a global

object oriented database. It contains negotiation, coordination and solution com

ponents. Knowledge modules interact with the blackboard and are responsible for

translation of representation formats. A control mechanism evaluates and propagates

results of action by message passing between knowledge modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1114

30

The SHARE Project [130] is a concurrent engineering environment directed to

wards applying information technologies to help design teams gather, organize, access

and communicate design information. It is being built around existing software tools,

multimedia-enhanced electronic mail, window sharing methods for sharing applica

tions between multiple users, and mail-based tool interoperation using ServiceMail.

(

CORBA (Common Object Request Broker Architecture) [103] and DCE (Dis

tributed Computing Environment) [115] are standardizing distributed systems and

enabling cross platform and cross language communication. Research effort (cj. [39])

has resulted in technologies like EXPRESS - a language for describing information

models, PDES - Product Data Exchange Standard, KIF - Knowledge Interchange

Format, and KQML - Knowledge Query and Manipulation Language. They enable

cross-discipline and cross-application communication of information. giBIS [36] -

a graphical issue based information system, and DRIM - Design Recommendation

Intent Model, provide methods to capture and express design rationale.

1.4 Motivation

Computer systems have evolved from single user to time-shared multi-user sys

tems. Traditional database systems and file systems allow sharing of data, while

attempting to present to the system user the illusion of isolation. Research in Com

puter Supported Cooperative Work has entailed a paradigm shift, enabling users to be

aware of others using the system, as well as interacting with them. This has extended

the notion of sharing beyond simple sharing of data to sharing of computation.

Most current systems for CSCW and concurrent engineering are built on top of

general technologies like databases and shared window systems to support informa

tion sharing. Systems that provide content independent sharing support concurrent

access via serialized interaction. They can support only coarse grained concurrency,

since they are not cognizant of the structure of the actual information being shared.

Therefore, they provide limited flexibility in controlling the degree of sharing, and in

the actual sharing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1115

31

As described earlier in this section, many of the underlying technologies are well

understood, and are the focus of much research. Proliferation of high performance

multimedia workstations and high speed and capacity networks, coupled with other

support technologies, provides us with the mechanism to realize real-time multi-user

tools for computer supported cooperative work. However, development and deploy

ment of groupware, and consequent popular adoption, has been impeded by the ab

sence of general models and enabling infrastructures. Groupware developers have to

deal with the difficult task of marrying these multiple technologies due to the absence

of high level semantic models that relate them, and infrastructures that ease the task

of using them. The requirement of operating in a heterogeneous distributed setting

further compounds the problem.

(

Our aim is threefold. We attempt to define high level semantic models for tools, in

teraction, and sharing. We also attempt to create an infrastructure that understands

the core underlying technologies, and provides abstractions that enable application

developers to build groupware. The abstractions stress on semantic level handling

hiding actual details of lower level implementation. We accept and acknowledge

heterogeneity in the real world, and capture and encapsulate it in the abstractions.

Finally, we attempt to build multi-user tools and collaborative problem solving envi

ronments using the models and infrastructure.

A very central theme is that of openness and extensibility. It is unlikely that

any specific software tool will ever encompass all the functionality that a user might

reasonably require. We propose an open architecture tool model that supports inte

gration with independent tools. The model provides cooperation via interoperation.

It has a highly generalized architecture for integrating a heterogeneous range of in

formation technologies. Interoperation allows function and content of any tool to be

accessed by another tool. Various tools can be cross coupled and linked in a variety

of interactive ways. We develop a media model for interaction in which any form of

structured data with defined interaction semantics is treated as a media type. This

model enables integration of audio, video, 2D and 3D graphics, and text into tools,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1116

(

(
I

32

and extends to support application specific objects, spreadsheets, databases, anima

tions, simulations, and hypertext and hypermedia. We develop a sharing model that

extends the content and function sharing of interoperation by providing mechanisms

to control and regulate synchronous and asynchronous shared interaction.

Reviewing the core technology requirements of CSCW infrastructures, shared data

management tends to be domain dependent, and can be implemented on any of the

mentioned technologies, or by using combinations of those technologies. Existing

systems tend to use domain specific methods. Concurrency control is a mature field,

and well known techniques exist. It is closely tied in to the data sharing model. We do

not propose any new ideas in these areas. Coordination control is inherently domain

and task specific, and we do not attempt to specify general models and techniques.

It can be implemented on top of an effective communication infrastructure.

However, high level abstractions for the following areas are inadequate in the state

of the art

• Distribution Control

• Collaboration Control

• Multimedia

• Graphics

• User Interfaces

We present an infrastructure that attempts to fill the gaps in order to support virtual

spaces for flexible collaborative interaction. The infrastructure lets us build tools

with shared drawing and viewing surfaces by supporting content dependent sharing -

the tools are collaboration aware, and support synchronous multi-user manipulations

of application-specific objects. This adds a new dimension to the kind of coopera

tion that can occur in collaborative problem solving, because it permits cooperative

browsing of objects and interaction in the context of tools that manipulate those ob

jects. Since tools understand the structure of the data they manipulate, this allows a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1117

/

33

great degree of flexibility in sharing and concurrency control. It supports cooperation

in the design and problem-solving phase, as well as in the review and analysis phase.

1.5 Highlights

We describe the main features of our groupware enabling infrastructure that sep

arate it from related work. We also introduce how we have used it to build a collab

orative multimedia environment for problem solving.

1.5.1 Structural Model

We have developed an architectural model for distributed and collaborative tools

that emphasizes the separation of interface and function. In this model tools consist

of "contexts" (views) that are characterized by "state" that is modified by "events".

Contexts may be local or remote. State may be private or shared. Events may be

user "actions" or "triggers". Events affect the private or shared state and can cause

multiple local and remote contexts to be altered simultaneously, synchronously or

asynchronously. The tool can be thought of as an event driven data flow machine

that has mechanisms for routing events to different states and contexts. Distributed

and collaborative tools are built by setting up the appropriate state and contexts,

and by describing how events alter them. This model is described in Section 2.1.

1.5.2 Media Model

We propose a model for media enabled tools. Any form of structured data with

well defined interaction semantics is treated as media. In this model tools interact

with media "agents" that receive input from "sources", apply "filters" to the media

stream, and generate output to "sinks". In conjunction with the Structural Model,

this enables multimodal user interaction, distributed interoperation, and synchronous

and asynchronous conferencing. This model is described in Section 2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1118

l

(

34

1.5.3 Collaboration Model

We propose a model for collaboration based on the Structural and Media Models.

This is a flexible collaboration model that supports media-enhanced synchronous and

asynchronous multi-user interaction. The model can implement traditional central

ized and replicated collaborative tools, and also supports a new Session Model for

collaboration, that allows for persistence and asynchronous interaction. This model

is described in Section 2.3.

1.5.4 Distribution Substrate

This fulfills the need for distribution control, and provides a mechanism to im

plement shared data management for CSCW. It enables client-server and peer-peer

interaction. The substrate provides mechanisms of setting up connections across the

network, and flexibly managing data in a distributed setting. It provides device inde

pendent data transport for heterogeneous environments. It implements synchronous

and asynchronous remote procedure calling and provides multiple-connection manage

ment between instances of tools. It supports several application level communication

protocols. This substrate is described in Section 3.2.1.

1.5.5 Collaboration Substrate

This fulfills the need for Collaboration control and provides mechanism for inter

action control and access regulation. It enables multi-user interaction. The substrate

uses the distribution substrate to implement shared state and context in a distributed

setting. It provides session management, interaction control and access regulation

facilities that enable rapid prototyping and development of collaborative tools and

groupware. This substrate is described in Section 3.2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1119

(

' I

35

1.5.6 Portable Graphics

This is an abstract 3D graphics system that lets us access hardware graphics fa

cilities of workstations in a device-independent manner, by presenting a high level

interface to 3D graphics. It provides source code level compatibility across different

graphics platforms in a heterogeneous setting, by implementing a hardware inde

pendent graphics library. It deals with the issue of heterogeneity for CSCW. It is

described in Section 3.2.3.

1.5. 7 Collaborative Graphics Substrate

It is based on the Structural Model and uses the distribution, collaboration and

graphics substrates to implement device independent distributed and collaborative

graphics. It supports synchronous and asynchronous 2D and 3D graphical interaction

in a heterogeneous setting. It enables incorporation of graphics facilities into tools.

It provides high level control of display and visualization parameters and supports

telepointing. This substrate is described in Section 3.2.4.

1.5.8 Portable Multimedia

This abstract multimedia system provides access to available hardware audio and

video facilities on a workstation in a device-independent manner, providing source

code level compatibility across multiple platforms. It encapsulates details of media

format and device specific interaction, providing a high level abstraction for develop

ment of multimedia tools. It deals with the issue of heterogeneity for CSCW. It is

described in Section 3.2.5.

1.5.9 Collaborative Multimedia Substrate

It is based on the Structural Model and uses the distribution, collaboration and

multimedia substrates to implement device independent distributed and collaborative

multimedia. It enables incorporating multimedia features and facilities into tools, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1120

(
\.

36

supports collaborative multimedia interaction. This substrate is described in Section

3.2.6.

1.5.10 Collaborative Applications

Sha-Draw and Sha-Poly are collaborative graphics tools. They are described in

Appendix A. Sha-Phone, Sha-Video, and Sha-Talk are multimediaconferencing tools

that have been implemented. They are described in Appendix B. Sha-Chess is

the implementation of a virtual chess board that supports synchronous multi-user

interaction in a distributed setting. It is described in Appendix D. Shilp is a solid

modeling toolkit that supports synchronous participatory collaborative design. It

is built using the media-rich substrates of the Shastra environment (Shastra is the

Sanskrit word for a branch of knowledge or a science.) It is described in Appendix C.

We describe Shastra, a collaborative multimedia environment, and some problem

solving scenarios in Section 4. The environment for collaborative geometric design is

described in [8, 10]. The environment for collaborative custom design of artificial im

plants for human limbs is described in [14]. It uses the distribution and multimedia

conferencing facilities of Shastra in conjunction with scientific design and manipu

lation tools. A distributed and collaborative volume visualization environment is

described in [15].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1121

(

37

2. MODELS

Building collaborative environments is not a very straightforward task because of

the large number of factors that need to be taken into consideration. The process

is made all the more daunting if media-enhanced tools are to be created. However,

developing a foundational model and expressing it in terms of formulated abstractions

can greatly ease the task of building such systems.

In this chapter we propose a model for the structure of tools that makes them

amenable to collaborative multimedia interaction. We also propose a model for in

corporating multiple media facilities into tools that emphasizes inter-operation. This

eases the task of building tools since the developer can build on top of high level

abstractions that implement much functionality. Also, tools based on these models

can very easily be group enabled, and support collaborative media-rich user interac

tion. Finally, we propose a collaboration model based on the structural and media

models. This model provides an infrastructure for building collaborative multimedia

environments for problem solving.

2.1 Structural Model

We have developed an architectural model amenable to distributed and collabora

tive tools. The model emphasizes the separation of interface and function. Tools are

the building blocks of distributed and collaborative environments. In this model tools

consist of "Contexts" that are characterized by "State" that is modified by "Events"

using the functionality in the "Core" via a dispatch mechanism, the "Mapper".

The model is depicted in Figure 2.1. The Application Core implements actual

data manipulation functionality. Applications consist of possibly multiple Contexts,

which may be local or remote. State may be private or shared. Events may be user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1122

(

User User Interface

Interface

Context

Mapper

Router

:· ----~~:~---- 'l
. .
••• •••••••••••••• •••••••••••••• ••••• •••••••••••••• ••••••••••••••• .I

Core
.......................... . .
i Global State i

Application

Context

Figure 2.1 Structural Application Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Petitioner Microsoft Corporation, Ex. 1002, p. 1123

38

UserInterface

[|Tene
Mapper

Application

Figure 2.1 Structural Application Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1123

(_

(

39

actions or synthetic triggers. The tool can be thought of as an event driven data flow

machine that has mechanisms for routing Events to different States and Contexts.

Distributed and collaborative tools are built by setting up the appropriate States

and Contexts, and by describing how Events alter them. Such tools operate on top

of connection and transport mechanisms that are orthogonal to the tool model. Data

sharing for collaboration is implemented by mechanisms that are also orthogonal to

the model.

2.1.1 Core

The Core of a tool is the basic set of functions that it provides as a usable system.

The Core uses state information and user input to respond to the user, alter state

information, and produce output.

2.1.2 Contexts

A Context is essentially a view of the state of a tool, and the data it is manipulat

ing. It is also the mechanism of expressing user interaction. It provides an Interface,

usually a GUI, via which the user interacts with a tool and accesses its functionality.

Applications can consist of multiple independent or dependent contexts. Dependent

Contexts allow the user to maintain different views of the same shared State data.

Independent Contexts contain unrelated State data. All Contexts utilize the tool

Core to manipulate the data. Contexts present the results of manipulation through

their Interfaces. A Context is associated with a unique identifier that serves as an

address.

The concept of Context is policy free. Contexts may be Local, expressing results of

local user interaction. Alternately, they may be Remote, expressing results of remote

interaction. Applications may disallow user interaction with Remote Contexts, using

it only to express remote state information. Or they can allow the user to interact

with Remote Contexts for shared interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1124

(

(

40

2.1.3 Interfaces

The Interface is the medium via which a tool Context expresses itself. The In

terface concept is policy free. Different Contexts may share the same actual user

interface. In this case the user interface of the tool would typically provide meth

ods of switching between different Contexts. Also, Contexts would be responsible

for correctly displaying the State information in the shared interface. Alternately,

Contexts may have physically separate user interfaces. The actual implementation of

an Interface is dictated by domain and tool specific requirements.

2.1.4 State

State of a Context is essentially the data that is being manipulated by the tool in

that Context, as well as meta-information about how the data is translated to a view.

The tool operates by performing actions on data in a Context and expressing results

via the corresponding Interface. State may be private or shared. Private State is the

usual notion of data manipulated by a tool. Independent Contexts in a tool have

private State. Private State can be manipulated only by local Events. Dependent

Contexts have shared State. Data in a shared State may be manipulated by Events

of local and remote origin.

2.1.5 Events

An Event is the unit of user interaction with a Context of a tool. Tools perform

actions on data in response to events. Our notion of Event is at a high level of

abstraction, and is policy free. Tools may maintain the notion of Events at as low

a level as key strokes or user interface management system and windowing system

events. Alternately, they may maintain the high level notion of tool actions.

In this model, Events may be user Actions or Triggers. User Actions represent

actual interaction sequences that cause the tool to perform an operation on Context

data. Triggers are synthetic events in the sense that they are not initiated directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1125

(

41

by a user. They are generated as a result of the operations performed by a tool due

to an Event.

Events identify the Context of origin, and the Context they affect. They cause

modifications in Context State. Events that affect shared State can cause multi

ple local and remote Contexts to be altered simultaneously, synchronously or asyn

chronously. This is achieved by sending messages to the other Contexts.

2.1.6 Mapper

The Mapper of a Tool is a dispatch mechanism for Events. It is built on top of

a messaging system. The messaging system implements a router. The messaging

system and routing mechanism is orthogonal to the Structural Model, and is largely

transparent to the Mapper. For Events that affect a local Context, the Mapper

invokes functionality embedded in the Core. For Events that affect remote Contexts,

the messaging system lets the Mapper direct events to remote Contexts in the form

of messages.

2.1. 7 Messaging

Messaging is the mechanism by which Contexts communicate. Contexts communi

cate with the Core via the messaging subsystem in the Mapper to cause it to perform

actions in response to Events. Contexts communicate with each other to maintain

shared State information. Shared State in a Context is set up to generate Trigger

Events whenever its data is altered. The location of generation of these Triggers is

significant. If Triggers are generated before state is altered, we we can achieve input

replication. If triggers are generated after state is altered, we can achieve output

replication. Every Context is associated with a unique identifier that serves as an

address to which messages are directed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1126

42

Interface

Connection

Context

Connection and Transport System

.. ·········· ·········· ······················ ······················ Network .. .

Figure 2.2 Distribution Model

(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1127

42

Logical

Connection

om.

Network errttrtttetesssssssssssecerssnenrnensnaaaartsere®

Figure 2.2 Distribution Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1127

43

2.1.8 Routing

The messaging subsystem maintains information for all Contexts, local and re

mote. It uses the connection and transport mechanisms that underly the distributed

architecture to acquire remote information and transmit local addressing information.

It implements a distributed messaging system via which messages are routed to the

appropriate contexts. The actual mechanism of routing, and a messaging system are

described later in Section dist...substrate.

2.1.9 Interoperation

The model implicitly emphasizes the delinking of cause and effect as perceived

by a user at the interface. User interactions cause the generation of Action Events,

which are routed to the Core via the Mapper and the messaging subsystem. This

makes the tool amenable to interoperation with other tools. Context messages can

be routed to remote tool Contexts to cause actions to be performed. Tools can

therefore access remote functionality of any other tool built around a similar model by

simply sending the right messages for a request with requisite data, and updating the

Context Interface when the response message is received. Tools can block, if desired,

while waiting for responses, as in traditional remote procedure calling. Since the

only requirement this mechanism imposes is that cooperating tools operate on top of

compatible communication mechanisms, this allows for heterogeneous interoperation

which transcends implementation language and platform issues. The cooperating

units may be instances of the same tool, or even be different tools that operate on

the same data.

Different application level protocols can be implemented to support tool-tool in

teroperation. Support for distribution in the Structural Model is depicted in Figure

2.2. Mechanisms to set up shared Contexts also work in a distributed setting, on top

of the messaging subsystem. This is the fundamental feature that enables support

for collaboration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1128

(

(

44

2.2 Media Model

In the previous section we proposed a model that enables us to develop tools

amenable to distributed and collaborative operation. In this section we extend the

model to build media enabled tools. Once again, the model emphasizes the separation

of interface and function, and relies on high level abstraction to enable incorporation of

audio, video, graphics, text and domain specific media into tools. In this formulation,

any form of structured data that has well defined interaction semantics- documents,

spreadsheets, databases, domain specific models, process control data, device control

data etc. can be treated as a media type. Multimedia systems have the ability to

represent disparate forms of information as a bitstream, enabling a unified storage,

processing and communication infrastructure. Here we propose a model for unified

sharing and interaction semantics, allowing us to focus on the information rather than

on the means of acquiring and presenting it.

The noticeable lack of popularity of multimedia features in current tools, in spite

of the vast functionality available for capture and rendition of such information, is

primarily due to the lack of an easy way of integrating those facilities into tools.

As the use of multimedia become more popular, we will see more tools incorporate

multimedia facilities. Our objective is to provide a media-rich substrate for the design

of media-enabled tools, by relieving application developers of the burden of low-level

device and media manipulation. The model we describe provides a very convenient

mechanism to the application developer to incorporate different media facilities into

tools without having to deal with any low level issues.

We differentiate the notion of media objects and media streams. A media object

is the representation format - raw digital data. Media streams have temporal at

tributes and denote time based interaction. Thus media objects can be considered

discrete, and media streams continuous. Media streams consist of media objects with

implicitly or explicitly stored presentation control information. Except for rendition

and presentation, the Media Model does not distinguish between the two.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1129

(

(
i

45

The model is built around the concept of media Agents that are characterized

by high-level specifications and a description of their functionality. They provide

device independent handling of multiple media types like audio, video, images, 2D

and 3D graphics, text, and domain specific models in a heterogeneous setting. Device

independence is achieved via abstractions that isolate idiosyncrasies of device specific

handling and media formats.

Tools incorporate multimedia facilities by inter-operating with these media Agents.

Agents are built around the Structural Model. They support the notion of media

Sources, Sinks and Filters that provide the mechanism of interacting with the media

type. Agents support transport and manipulation of the media object and streams.

Sources provide media input. Sinks support media output. Filters are used to apply

transformations to the media object or stream after it is input and before it is output.

2.2.1 Agents

An Agent is the actual site of media interaction for a user. It may actually im

plement media interaction functionality, or may use orthogonal abstract mechanisms

to achieve the same effect. Tools are mostly unaware of the existence of the media

Agent, The Agent reacts to messages from tools but is otherwise completely transpar

ent to them. It is responsible for managing media real estate, and preventing anarchy

in media interaction.

This is especially true in the case of device based media like audio and video. The

Agent concept allows for simultaneous use of desktop audio hardware by multiple

tools. Similarly, it localizes the issue of camera control for video, allowing it to

be used by multiple tools. The same applies for external media device control, like

when the computer drives external video and audio playback, recording and transport

control hardware, and process control, when the computer drives external machinery

or process.

Different media access policies can be implemented in Agents, which implement

basic media interaction mechanism. They provide facilities to set up Sources and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1130

(_

(

(
\

User

Multimedia Agent

Interface

Context

................... ··-··············· . .. :................ : :
~ Filter ~ iJ
: ~···

Figure 2.3 Multimedia Application Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Petitioner Microsoft Corporation, Ex. 1002, p. 1131

46

UserInterface

Interface

Filter. .Sevevecessovanccan®

Multimedia Agent

Figure 2.3 Multimedia Application Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1131

(

47

Sinks for the media, and to specify Filters that redirect and transform the media

stream. The Structural Model that Agents are built around enables interoperation

with other Agents and tools. Agents also provide a substrate with a well defined

Application Programming Interface (API) to facilitate developers of tools that need

low level media access.

2.2.2 Sources

Media Sources are the starting point of media streams in the address space of

the Agent. They may be external processes that actually receive input from media

hardware and are capable of communicating with the Agent. They may be local

devices, like cameras or microphones, driven directly by the Agent. They may be

local streams from secondary storage devices. Or they may be remote streams from

other Agents in a distributed setting, brought into the Agent's address space via the

messaging system and an orthogonal transport process.

2.2.3 Sinks

Media Sinks are the termination point of media streams in the address space of

the Agent. As in the case of Sources, they may be external processes that actually

send output to media hardware and are capable of communicating with the Agent.

They may be local devices, like speakers and video recorders. They may be local

streams to secondary storage devices. Or they may be media streams to other Agents

in a distributed setting, sent into the remote Agent's address space via the messaging

system and an orthogonal transport process.

Users perceive media streams at the Sinks. Implementation of Sinks takes into

account media specific parameters like its temporal and persistence attributes, pre

sentation and rendition control, etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1132

48

1-1 Connection 1-n Connection

(

n-1 Connection m-n Connection

Figure 2.4 Distributed Multimedia Model

/
'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1133

48

1-1 Connection

n-1 Connection m-n Connection

Figure 2.4 Distributed Multimedia Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1133

(

49

2.2.4 Filters

Filters are used to apply transformations to the media stream between Source

and Sink. They encapsulate the process of applying these transformations. The

fundamental filters provide a mechanism of setting up and tearing down Source to Sink

connections. We refer to them as Redirection Filters. They are media independent

and enable a single Source to be connected to multiple Sinks, multiple Sources to

be connected to a single Sink, and multiple Sources to be connected to multiple

Sinks. The semantics of the multiple connections are domain specific. The Distributed

Multimedia Model is depicted in Figure 2.4.

Transformation Filters are media specific, and implement functionality like media

resampling, format translation, and media processing. E.g. in the audio setting they

are used to implement amplitude and pitch adjustment, stream mixing, and special

effects like echo and reverberation. In the video setting they implement transfor

mation, format translation, brightness and contrast control etc. Since Agents are

responsible for managing media real estate, and preventing anarchy in media interac

tion, they allow simultaneous access to media devices. This process usually employs

Filters to enable simultaneous presentation. E.g. allowing multiple audio streams to

be presented at a sink may involve resampling and mixing if the sampling rates of

the streams are different, and differential rate mixing is not supported in the hard

ware. Many Transformation Filters are mechanisms of user interaction with the media

stream.

Filters can also implement media conversion. Speech recognition technology and

text to speech technology are now fairly mature. Natural language systems are evolv

ing. Filters implementing these features allow one kind of media stream to be con

verted and subsequently redirected to Sinks for a different media type.

2.2.5 Interoperation

The Media Model coupled with the Structural Model provides a very convenient

mechanism to the application developer to incorporate different media facilities into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1134

(

50

applications without having to directly deal with any low level media issues. This is

enabled by tool-Agent interoperation. Adding a new media Agent enriches the entire

interoperating environment.

2.2.5.1 Media-Unaware Interoperation

In the simplest case the tool is media-unaware, but media-enabled by interoper

ating with an Agent. It uses the distributed messaging mechanism to request the

Agent that deals with the media type to create a Context on its behalf, and sets up

the relevant Sources, Sinks and Filters. Actual media interaction thus occurs within

the Agent. The Sources and Sinks may exist in the Agent, on stable secondary store

or in other tools that this tool is inter-operating with. Their location governs the

extent and nature of interaction through the Agent.

In a more complex scenario, tools create media interaction Contexts within their

own Contexts. This is usually accomplished using the Agent substrate that provides

mechanisms for programmer interaction with the media type, for setting up Contexts,

Sources, Sinks and Filters. Agents are dynamically configured to use these client

Contexts to render the media data. Media-Unaware Interoperation is based on coarse

grained tool-Agent interaction, and is sufficient for many media-enabled tools.

2.2.5.2 Media-Aware lnteroperation

Tools that need to implement low level manipulation of a media type, and require

low level control are said to be media-aware. Such tools use the Agent substrate to

manipulate the media stream, implement new Source, Sink and Filter mechanisms,

or to provide new user interaction methods. This interoperation with the Agent is

based on fine-grained interaction with its substrate. This is especially useful when

the tool needs low level access, but doesn't need to dynamically interact with the

agent, e.g. in software only playback of a media stream with a new transport control

method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1135

(

51

2.2.6 Media Widgets

Media Widgets are an abstraction mechanism to provide a convenient API to

application developers for incorporating media facilities into tools.

For Media-Unaware Interoperation, described above, this is a very lightweight

mechanism. Media Widgets in this case are simply stubs that interact with remote

Agents that actually implement the functionality. They encapsulate Agent commu

nication and interaction, and provide a well defined API to trigger the interaction,

hiding the low level details of actual messaging. In this method the tool instantiates

the stub, and uses the API to send messages to the Agent. The tool interacts with

the Widget at a very abstract level, in terms of high level media functionality. The

stub communicates with the Agent to fulfill requests, and automatically responds to

requests from Agents. The application developer is thus shielded from all low-level

details.

In Media-Aware Interoperation, tools instantiate a Media Widget. The Widget

encapsulates all functionality for the media type. It does not need to communicate

with the Agent, except for device control and device based interaction.

The Widgets can implement different levels of functionality. They may support

one-shot rendition of the media information, or may support reviewable rendition. Or

they may support filtering and manipulation operations supported by Widget-Agent

interaction. An example of this scenario is one-time video playback, video playback

with transport control, and video playback with image processing capability.

An advantage of separation of Widget and Agent, is that it permits scenarios

where a single Agent regulates a device (for example, a video capture board or audio

recording hardware). This simplifies contention resolution by centralizing it in the

Agent. It provides a mechanism for implementing policy for issues like who can use

video or audio hardware, whether or not it can be concurrently used by multiple users,

how multiple simultaneous record and playback requests are resolved, and privacy and

access issues related to media device usage etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1136

(

52

The logical and physical separation of Widget and Agent contributes to modu

larity, since it is essentially a separation of interface and function. Agents can use

different hardware and software platforms for implementing the media type, and

present only an abstract view to the Widget. Media-Enabled applications are thus

made portable across hardware platforms by simply creating an Agent for the new

platform.

2.2. 7 Heterogeneity

Todays networked environment presents a distributed, heterogeneous hardware

setting. Therefore media-enabled tools need to be able to operate on a variety of

platforms, in order to be truly useful. The Structural Model emphasizes separation

of interface and function, and enables interoperability. The Media Model provides

for very high level interaction between tools and Agents. To support heterogeneity,

Agents are built on abstract media models that deal with media in a device indepen

dent manner. Filters permit the translation to platform specific formats. Thus the

Media Model is very amenable to heterogeneity.

2.2.8 Communication

The Media Model assumes the existence of a connection and transport mechanism

that underlies the messaging system. Though the implementation issues and inter

process communication platform of that layer are orthogonal to the model, the ability

to connect multiple Sources to multiple Sinks imposes some requirements on the

communication infrastructure. The substrate should provide mechanisms for 1-1, 1-

n, n-1 and m-n communication, corresponding to the single Source - single Sink,

single Source - multiple Sink, multiple Source - single Sink, and multiple Source -

multiple Sink scenarios respectively.

Media properties also dictate certain qualities of the communication substrate.

Audio, and especially video, is tolerant to data loss, and can be implemented very

efficiently on a datagram based system. However other media types such as models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1137

(

53

and spreadsheets need a reliable stream based mechanism for transport. All control

information being channeled through the messaging system needs to be passed over

reliable mechanisms to prevent inconsistencies. Thus the communication substrate

needs to support both reliable and unreliable transport. Available or simulated multi

cast mechanisms can be employed to implement then-way transmission requirement.

The Media Model is based on Agents, Sources, Sinks and Filters, as well as

portable media streams. All of these units are associated with unique identifiers

that serve as their addresses. The distributed messaging system transports routing

information to different tools. This allows Source-Filter-Sink connections to be set up

and controlled dynamically, and allows media streams to be directed to remote Sinks.

This is the fundamental mechanism by which media rich communication occurs in

the distributed setting.

We introduce the concept of user gestures, differentiated from user actions in a

distributed setting. The notion is domain specific. In general, however, gestural

input is usually low level interaction at an interface that causes the tool state ma

chine to make transitions through transient states, and eventually leads to an action.

User actions cause transitions between stable states, and are critical units of shared

interaction. Gestures, on the other hand, represent interaction that would convey

information, but is not critical to the action.

The utility of gestures in a distributed setting may be overshadowed by the cost

of transmitting the information. Hence the distinction. Gestures form an important

element of interaction, and can be communicated using datagram based non-reliable

mechanisms that are used for loss-tolerant media.

2.2.9 Media-Enhanced Interaction

The Media Model coupled with the Structural Model provides a very convenient

mechanism to the application developer to incorporate different media facilities into

applications without having to directly deal with any low level media issues. Agents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1138

(

(

54

can easily inter-operate with other tools that utilize Agent services to transparently

incorporate high level multimedia functionality.

Tool-Agent interoperation can easily be used by mail reader programs built on

the Structural Model to present media-rich information to the user, or to capture it

from him. It can also be used to build in speech and non-speech audio facilities into

tools. The high level of abstraction provided makes it easy to incorporate graphics

facilities into tools. In fact, tools can communicate with Agents for different media

types which can run simulations, execute database queries, evaluate spreadsheets

and perform any sort of domain specific processing before presenting it to the user.

Tools achieve extensibility by interoperation, and behave as if Agent functionality is

implemented in them.

The Agent Source-Filter-Sink mechanism can be used to implement desktop com

munication and conferencing facilities. Since Agents transcend simple conferencing

and support actual sharing of media objects and streams, they enable maintenance of

the notion of a shared information space with reviewable shared material. This can

be exploited to support collaborative hypermedia browsing.

An important point to note is that Agents are potentially portable across any

platforms because of the high level of abstraction they implement. The Media Model

conveniently brings multiple media into the developers realm, and eventually to the

users desktop.

Media-enabling facilities of this model are relevant for computer enhanced inter

action, computer aided instruction and training, participatory collaborative design,

and other cooperative activity involving group processes like discussing, planning,

and problem solving.

2.2.10 Multimodal Interfaces

The state transitions in Context state in response to Events can be thought of as

the interpretive execution of an embedded command language. In the case of Agents,

this takes the form of a media control language. Thus, fundamentally any tool is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1139

(_

(

(

55

interpreter of an abstract command language. The underlying state machine makes a

transition whenever it encounters a complete expression. This abstraction enables us

to build tools with multimodal interfaces, where users simultaneously employ multiple

input modes to interact with tools. The different methods generate expressions in the

command language. Evaluation of these expressions is tantamount to tool execution.

The separation of interface and function enables different interface mechanisms

to be plugged in separately or simultaneously to the tool. Agents provide the mech

anism to build in multimedia input mechanisms. Thus tools can use speech-to-text

conversion filters to have voice or audio cue driven interfaces, and text-to-speech fil

ters for audible interfaces. Alternately, they may have mouse based graphical user

interfaces, head and eye tracking based interfaces, pen based interfaces, or touch

screen based interfaces etc. Filters for low level event streams from these interfaces

can be constructed to produce appropriate expressions in the command language.

The different command media can be synergetically used to generate command lan

guage expressions from simultaneous multimodal input. Advances in natural language

based systems and AI techniques for user interfaces will enable even higher levels of

sophistication.

2.3 Collaboration Model

The Structural Model and Media Model, coupled with connection and transport

mechanisms, provide a framework for implementing groupware - multi-user tools.

These tools are collaboration aware in the sense that they are built around a model

that assumes the possibility of simultaneous distributed multi-user interaction. The

mechanisms enabled by the described models are policy-free. Here we use them to

develop a flexible collaboration model that supports media-enhanced synchronous

and asynchronous multi-user interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1140

(_

(

(

56

2.3.1 Tools

The Structural Model implicitly emphasizes the separation of cause and effect in

a tool. User interactions cause the generation of Action Events that are routed to the

Core via the Mapper and the messaging subsystem. This makes the tool amenable

to interoperation with other tools. Context messages can be routed to remote tool

Contexts to cause actions to be performed. Tools can therefore access remote func

tionality of any other tool built around a similar model by simply sending the right

messages for a request with requisite data, and updating the Context Interface when

the response message is received.

The process of creation of a tool can abstractly be thought of as a process of

specifying handling mechanisms for Events. Events may be Actions initiated by the

user or Triggers originating from some change in tool state or some internal condition.

The tool behaves as a state machine that reacts to Events by making state transitions,

possibly generating synthetic Events in the process. If we assume the immutability of

tool state other than by this process, we have a model for collaborative tools. In this

model, a shared Context receives Events simultaneously from multiple tools via the

messaging system. These Events cause a state change in the shared Context. This

activates Triggers that cause messages to be sent to other instances of the shared

Context.

A distributed tool provides output to multiple remote Contexts and does not

accept or handle remote input. It just provides a mechanism of displaying state in a

distributed setting. A collaborative tool handles local and remote input. It provides

the mechanism for synchronous and asynchronous collaborative interaction. Tools

create and manage Contexts on behalf of other tools that they are linked to. This

process of Proxy Context management is the fundamental mechanism for building

distributed and collaborative tools.

In the case of a local Context, and for output-only remote Contexts, only one

thread of control modifies state of the Context. In the collaborative case multiple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1141

(

57

threads of control, one local and multiple remote, modify Context state. This ne

cessitates handling of issues of atomicity of operations and concurrency control to

prevent inconsistencies. Separation of user interface and Context state, which allows

state to be altered by mechanisms other than the user interface, is crucial.

Tight coupling of state and interface is desirable, so that the interface always

depicts current state. In this model, there is little difference between collaborative

and non-collaborative use of tools. All Events identify the Context they occur in and

the Contexts they affect, and alter State of those Contexts. This change is subse

quently reflected at the Interface. Delinking of cause and effect makes distributed

interoperation transparent, barring performance considerations in the synchronous

case.

2.3.2 Consistency

Collaborative interoperation centers around the maintenance of mutual consis

tency. All shared Contexts need to have identical state, though States may be par

tially mutated temporarily for performance reasons.

Interaction of tools with external state, like files on a local disk, must explicitly be

captured and introduced into the shared State, if shared interaction over that infor

mation is required. Multi-user tools can therefore be guaranteed input consistency,

output consistency, and startup consistency for shared State.

The separation of Context State and Interface allows for different views of the same

state, and even allows different kinds of interaction simultaneously. This allows for

implementation of different degrees of coupling between Interfaces, and of undo-redo

models for flexible shared interaction.

2.3.3 Collaboration

The Structural Model and Media Model allow us to implement different Collabo

ration Models by setting up shared remote Contexts between tools. These tools are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1142

(

58

collaboration aware in the sense that they are built around a model that assumes the

possibility of simultaneous distributed multi-user interaction.

We discuss how we can more efficiently and easily implement the two traditional

approaches and also propose a new approach. The simplest is the Centralized model,

where one instance of a tool maintains multiple interfaces in a distributed setting,

and is thus shared. In the Replicated model, multiple instances of tools cooperatively

maintain shared state and interfaces. The Session model incorporates the desirable

features of the two traditional models, and enables persistence.

2.3.3.1 Centralized Model

The simplest collaboration model is the Centralized model. In this model one tool

in the cooperative environment maintains multiple interfaces in a distributed setting.

User interaction may occur at any interface, and the tool and its state is thus shared.

The Centralized model is implemented in the Collaboration Model by setting up

a Context in a tool, and sharing it with remote Contexts. Events from all inter

faces are routed to the central Context, and state change information is relayed to all

the remote Contexts, generating Triggers that generate updated views at the Inter

faces. Collaborative tasks are implemented in the shared Context and State of the

single central tool. Simultaneous interaction is supported from multiple distributed

interfaces.

Screen and window sharing is one traditional mechanism of implementing cen

tralized collaborative tools. Here, low level mechanisms are employed to intercept

interface display commands from a collaboration unaware tool. The streams are re

layed to multiple distributed sites where the interfaces are recreated. Events from

all the interfaces are directed to the central application. The interception mechanism

implements and enforces a turn taking policy to prevent inconsistency. A major draw

back of the screen sharing approach is that existing systems are built on the greatest

common denominator platform, and cannot take advantage of available local facilities

in a heterogeneous setting. View generation for all interfaces is done in the central

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1143

(

59

Centralized Model

r···: r···l t __ _._....._. __

Context Context
.......................... ,

·· ~~-~~~~---·····
...... --············ .. ··:
·. Router •••

~ ··············•···········•··•·• ~ ~--············ ~
·::::::··· Connection and Transport System ···:::::::-

··
....... t----1., .. Physical Interaction •········ ~Logical Interaction -cCI:)-----It:o> Control Flow

Figure 2.5 Centralized Collaboration Model

site. This is a major bottleneck in the distributed setting, and does not scale well as

number of interfaces managed is increased. More intelligent interception mechanisms

can be built, in theory. In practice, however, they would often need to understand

the application domain to be able to translate interface streams.

Another traditional centralized model is based on collaboration aware tools. Here,

one instance of a tool internally creates and manages multiple distributed interfaces.

Such tools implement a finer degree of sharing than the earlier approach, by handling

multi-party interaction. Centralized view generation is still a bottleneck. Also, every

element of interaction involves transmission over the network, and computation in the

central tool. This doesn't scale well as the number of managed interfaces is increased,

since there is a performance penalty for every added interface. This is especially true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1144

59

CL Centralized Model

sosoooeo
Connection and Transport System

te,ae
OO ease vccncnenes

~+—> Physical Interaction 9s"> Logical Interaction <-> Control Flow

Figure 2.5 Centralized Collaboration Model

site. This is a major bottleneck in the distributed setting, and does not scale well as

numberof interfaces managedis increased. Moreintelligent interception mechanisms

can be built, in theory. In practice, however, they would often need to understand

the application domain to be able to translate interface streams.

Anothertraditional centralized model is based on collaboration aware tools. Here,

one instance of a tool internally creates and manages multiple distributed interfaces.

Such tools implementa finer degree of sharing than the earlier approach, by handling

multi-party interaction. Centralized view generationis still a bottleneck. Also, every

elementof interaction involves transmission over the network, and computation in the

central tool. This doesn’t scale well as the numberof managedinterfaces is increased,

since there is a performance penalty for every added interface. This is especially true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1144

(_

(

60

if the tool operates in a heterogeneous environment and uses different techniques to

generate views on different platforms. Centralized systems thus implement the Single

Input Replicated-Output or the Serialized-Input Replicated-Output paradigm.

Our model offers a better implementation of the collaboration aware centralized

single application model. Even though functionality is centralized in the Core of the

central tool, the Interfaces of shared Contexts are intelligent and maintain enough

state information to be efficient in a distributed setting. The implementation is

depicted in Figure 2.5.

The decentralization of interface and view generation makes it much more efficient

in a distributed setting by minimizing the amount of communication between collab

oration Contexts. This reduces the performance penalty involved in adding more

interfaces. An additional advantage is that Interfaces can present different views of

the same State, and can offer different interaction mechanisms. The model provides

mechanisms for enforcement of different floor control policies, and supports simul

taneous interaction streams that are eventually serialized in the central tool Core.

The biggest advantage is that such systems are easy to build because the central

tool only has to set up new shared Contexts when they are added, and tear them

down when they are removed. The messaging system automatically channels Event

streams, and handles collaborative interaction. Tools can be involved in multiple

independent collaborations using independent Contexts.

2.3.3.2 Replicated Model

Another collaboration model is the Replicated model. In this model multiple

collaboration-aware tools in the cooperative environment cooperatively maintain the

notion of shared state and interaction at multiple interfaces in a distributed setting.

User interaction may occur at any interface to affect the collaborative state. Collab

orative tools based on the Replicated model have the advantage that they support

cooperative manipulation of shared state, and thus support simultaneous multi-party

interaction in the true sense. They can be set up to provide independent views of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1145

l

(

61

Replicated Model

t

Context Context Context

................................ ~ ~ ······ ······ ·::::. Connection and Transport System .:.:·:.•
··

...... 1----l.,~ Physicallnteraction ~------ «> Logical Interaction ~ Control Flow

Figure 2.6 Replicated Collaboration Model

shared state. They are potentially more amenable to platform heterogeneity. Tools

based on this model are built around replicated data management facilities.

A drawback of traditional replicated systems is that they operate on the premise of

shared input. Computationally expensive tasks are performed at every participating

site, losing the benefit of sharing from distribution. Also, for highly inter-related

tasks and the associated data updates, replicated data management facilities do not

scale very well, since all data sites have to be kept synchronized. They outperform

centralized systems when tasks and data updates are unrelated.

The Replicated model is implemented in our Collaboration Model by setting up

connected shared Contexts in multiple tools. In one method, Events from all interfaces

are routed to all Contexts. Context State changes generate Triggers that update views

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1146

61

C Replicated Model

“. Router +

—<——_ PhysicalInteraction Movoeee: > Logical Interaction <—> Control Flow

Figure 2.6 Replicated Collaboration Model

shared state. They are potentially more amenable to platform heterogeneity. Tools

based on this model are built around replicated data managementfacilities.

A drawbackof traditional replicated systemsis that they operate on the premise of

shared input. Computationally expensive tasks are performed at every participating

site, losing the benefit of sharing from distribution. Also, for highly inter-related

tasks and the associated data updates, replicated data managementfacilities do not

scale very well, since all data sites have to be kept synchronized. They outperform

centralized systems when tasks and data updates are unrelated.

The Replicated model is implemented in our Collaboration Model by setting up

connected shared Contexts in multiple tools. In one method, Events from all interfaces

are routed to all Contexts. Context State changes generate Triggers that update views

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1146

(_

(

/

62

at the Interfaces. Tools explicitly implement replicated data management facilities.

In another method, Contexts handle user Actions locally, and use an underlying

replicated data management system to update shared State. State changes generate

Triggers that update views at the Interfaces. In both methods, collaborative tasks

are implemented in the shared Context and shared State of all tools. Simultaneous

interaction is supported from multiple distributed interfaces. The implementation is

depicted in Figure 2.6.

One advantage of our model is that it allows both input and output replication.

Input replication for low computation tasks allows us to exploit the parallelism that

stems from distribution. Output replication for compute intensive tasks allows us to

take advantage of the sharing that distribution enables. The biggest advantage of our

model is that such systems are easy to build because the tools only have to set up new

shared Contexts when they are added, and tear them down when they are removed

(The notions of Adding and Removing group members). The messaging system au

tomatically channels Event streams, and handles collaborative interaction. Tools can

be involved in multiple independent collaborations using independent Contexts.

2.3.3.3 Session Model

In this model, a Session is the unit of collaborative activity. A Session is essen

tially a Context without an Interface. Session Model based collaborative tools are

implemented in our Collaboration Model by instantiating a Session, that causes the

setting up of connected shared Contexts in multiple tools. These shared Contexts

are collaborative task aware. Events that are associated with low computation tasks

are routed to the Session Context, which relays them to all shared Contexts. Events

that are associated with compute-intensive tasks are acted upon in the tool Context,

and the associated Triggers are routed to the Session Context. Context State changes

generate Triggers that are routed to tools and update views at their Interfaces. The

implementation is depicted in Figure 2.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1147

(_

(

Session Model

Context

I(State ~

Session

Context

(·····~~-~;~·; ·····:
..

t

Context Context

·············~························· ·········•· ~ ~
·::::::"" Connection and Transport System ""··:.:-.•

···
... ~---t.,.. Physicallnteraction -<~- ••• ••• -c> Logical Interaction <1 c:r Control Flow

Figure 2. 7 Session Model of Collaboration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Petitioner Microsoft Corporation, Ex. 1002, p. 1148

63

Session Model

4

‘J

Interface Interface)‘ D

Connection and Transport System

~——_ PhysicalInteraction et eveoee > Logical Interaction <———>Control Flow

Figure 2.7 Session Model of Collaboration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1148

(_

(

64

Since Sessions are collaborative task-aware, they can choose between centralized

and replicated data management facilities based on the number of sites in the collab

oration, degree of dependence between collaborative tasks, and performance of the

underlying mechanisms.

Collaborative tasks are thus implemented in the shared Context and State of a

Session. Simultaneous interaction is supported from multiple distributed interfaces.

A major advantage of this approach is that Sessions can be made persistent,

since they are delinked from user level tools and interfaces. They can be saved and

restarted, and thus support asynchronous and synchronous collaborative interaction.

Also, participating in collaborative tasks is further simplified, since tools do not have

to keep track of group membership, or set up routing information. Tools create

Contexts that are shared with the Session Context when they join a Session, and tear

them down when they leave.

2.4 Meeting CSCW Requirements

We have developed a model for groupware, based on models for tool structure

and media integration. The model enables convenient development of synchronous

and asynchronous multi-user tools, based on different collaboration models. The pro

posed model is abstract, and makes no assumption about implementation language

and platform of groupware, and imposes no restrictions. The only requirement it has

is that the underlying messaging system allow for communication in a distributed set

ting. It makes certain recommendations about the underlying transport mechanism

in the interest of runtime performance.

In this section we revisit the requirements of a CSCW enabling infrastructure,

and discuss how the model fulfills or supports the requirements.

2.4.1 Shared Data Management

The Collaboration Model is flexible in terms of the actual mechanisms for trans

porting data between shared Contexts in a collaboration. Centralized or replicated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1149

l

(

65

data management facilities may be part of the underlying messaging system, or can

be implemented on top of it. Alternately, mechanisms can be an independent subsys

tems like distributed databases, or distributed object sharing systems. Shared data

management mechanisms need to support the ability to trigger changes in views when

data is changed.

The notion of multiple Contexts in tools, some private and some shared, allows

for easy support of separation of private and shared workspaces. Tools can provide

mechanisms to move data from private to shared workspaces, and vice versa.

2.4.2 Distribution Control

The Structural Model emphasizes the separation of cause and effect, that en

ables distributed interoperation. Actions can be routed to remote Contexts, and data

transfer activates Triggers that update the interface. The Collaboration Model is or

thogonal to connection and transport mechanisms, and can use existing technologies.

Mechanisms that offer both datagram (unreliable) and stream (reliable) communica

tion, and support 1-1, 1-n, n-1 and m-n way communication are recommended for

efficient implementation.

2.4.3 Concurrency Control

If shared data management is implemented on top of shared independent systems

like distributed databases, concurrency control is automatically taken care of, since

those technologies implement it internally. The separation of cause and effect, that

of interface and function, enables the implementation of any of the well known con

currency control mechanisms. Concurrency control is simpler if data management is

centralized.

2.4.4 Session Control

The model allows for flexible collaboration control mechanisms that regulate how

multiple users assemble and interact over shared data. The Structural Model allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1150

l

(

66

for interoperation with agents in the environment that keep track of user location and

activity in the distributed setting. This interoperation can be exploited to regulate

session setup and tear down, formation of collaborative groups, and dynamic inclu

sion and removal of participants. Flexible collaboration control methods to initiate

and terminate collaborative sessions, to join or leave ongoing sessions, and to invite

participation in collaborative tasks can thus be implemented.

2.4.5 Interaction Control

The Collaboration Model allows for synchronous multi-party interaction. How

ever, interoperation can be used to implement floor control and interaction regulation

policies for users by dynamically controlling which Interfaces are allowed to affect

shared Contexts. This can be exploited to efficiently implement flexible scenarios

where specific numbers of individuals interact in shared Contexts. Different flexible

and intuitive protocols for requesting, taking and giving up turns can be implemented.

2.4.6 Coordination Control

The Collaboration Model allows for synchronous multi-party interaction, where

everyone is allowed to do everything in a shared context. Shared Context Interfaces

present continually updated views of collaborative activity, and provide awareness.

Flexible coupling policies can be implemented that control the granularity of trans

mission of awareness information. Facilities that dynamically control rates at which

Gestures and other communication elements are transmitted, can be provided to both

tools and users.

Tool interoperation can be used to implement access regulation policies for users by

dynamically controlling which Events are allowed to affect shared Contexts. Further,

if all objects in shared Contexts are assigned unique identifiers, mechanisms that

regulate finer grained access can be implemented. This can be used to convey notions

of object ownership, and to regulate what actions different users can perform on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1151

l

(

67

different objects and their parts. This can also be used to specify divisions of labor

to coordinate collaborative activity.

2.4.7 Multimedia and Graphics

The Structural and Media Models enable painless integration of multiple media

facilities into applications, enabling media rich communication. Media is treated

as structured data with specific interaction semantics, and is therefore subject to

Interaction Control and Coordination Control, allowing for flexible interaction over

shared media.

2.4.8 Collaborative User Interfaces

The Structural, Media and Collaboration Models provide a mechanism for building

sophisticated multi-user interfaces for collaborative tools. A collaborative tool can be

thought of as a distributed data-flow machine. Interoperation provides a mechanism

for dynamically controlling the behavior of the virtual machine. Media integration

in conjunction with novel input and output mechanisms can be exploited to build

collaborative environments for problem solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1152

(

_

(
\

68

3. SYSTEM ARCHITECTURE

3.1 Introduction

Recent strides in electronics, computer and communication technology have re

sulted in proliferation of multimedia workstations. This has provided us with ex

tremely powerful tools on the desktop. The need for architectures and abstractions to

build computer mediated cooperation mechanisms is heightened by our rapid progress

towards the information revolution that will be ushered in by facilities built on top

of these desktop machines. Computer supported cooperative interaction, incorporat

ing information exchange and multimedia communication will revolutionize how we

collaborate to solve problems and how we work.

In Section 1 we introduced CSCW, and described the requirements on an enabling

infrastructure. In Section 2 we proposed models for tool structure, media integra

tion and collaborative interoperation that support high levels of abstraction to aid

in groupware development. In this section we describe a prototype for an enabling

CSCW infrastructure, based on those models, that targets and fulfills all the require-

ments.

The proposed models enable us to transcend implementation details. Tools can

be built using any language and will interoperate as long as they are built around the

Structural Model, and use a compatible messaging and communication mechanism.

We use the pervasive implementation environment of C, Unix, Xll [102, 101], and

the networking platform of TCP /IP [33] to express the substrate. We create multiple

layers of abstraction with well defined interfaces. This provides us the flexibility of

switching to more advanced mechanisms as they evolve.

In the Structural Model we described a cooperative tool paradigm that defined

tool architectures amenable to building conferenced tools. This approach entails

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1153

(_

(

(

69

integrating a collection of function-specific tools into a distributed and extensible en

vironment. In this setup a tool can easily use facilities provided by other tools using

remote procedure calling. This tool-level cooperation allows us to exploit the com

monality that is inherent to related tools. An infrastructure of communication and

interaction tools, display and visualization facilities, symbolic processing substrates,

and simulation and animation tools saves avoidable re-implementation of existing

functionality, and speeds up the application development process.

3.1.1 Requirements

A communication substrate needs to provide facilities for connection setup in a

distributed setting, as well as mechanisms for transport of data between multiple

hardware platforms in a heterogeneous network. In order to empower media-rich

communication, the substrate needs to support text, audio, video, 2D graphics and

3D graphics messaging, in addition to application-specific models and data. It needs

to facilitate synchronous and asynchronous exchange of multimedia information. Such

information is useful to successfully communicate at the time of design, and to share

the results of tasks, and is often necessary to actually solve problems.

A collaboration substrate needs to facilitate startup of conferences - multi-user

collaborative sessions, between users linked by a network. This entails mechanisms

for initiation of sessions, invitation to sessions, and assimilation into sessions. The

infrastructure must support conduction of such collaborative sessions via notions of

collaborating groups and shared contexts. It must perform access regulation and

should be dynamically configurable to support different kinds of multi-user interaction

modes, so that users can cooperate in turn-taking based scenarios or synchronous

multi-point conferences.

Importantly, the CSCW infrastructure must provide a convenient abstraction to

the application developer, shielding him from lower level details, while providing

him with a rich substrate of high level mechanisms. This would make it easy to

design multi-user tools, effectively harnessing current technology to build powerful

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1154

(_

(. .,_

/
I

70

collaborative virtual machines. At the same time, the CSCW infrastructure should

enable a convenient, non-intrusive environment to motivate end users to cooperate in

their problem solving efforts.

3.1.2 Features

Shastra is an extensible, distributed and collaborative geometric design and sci

entific manipulation environment. It consists of a static and a dynamic component.

The static component is a CSCW infrastructure for building scientific CSCW tools.

We call it the Shastra Layer. It defines an architectural paradigm that specifies

guidelines on how to construct tools that are amenable to interoperation. Its connec

tion and distribution substrate facilitates inter-tool cooperation. Its communication

substrate supports data sharing and transport of multimedia information. Together

they promote distributed problem solving for concurrent engineering. The collabo

ration substrate supports building synchronous multi-user tools by providing session

management and interaction control and access regulation facilities.

In addition to the distribution, communication and collaboration framework, Shas

tra provides a powerful numeric, symbolic and graphics and multimedia substrate.

It enables rapid prototyping and development of collaborative software tools for the

creation, manipulation and visualization of multi-dimensional geometric data.

The dynamic component of Shastra is a runtime environment that exploits the

benefits of the architectural philosophy and provides runtime support for conferenced

tools. It is described in Section 4.1.

The CSCW infrastructure of the Shastra system facilitates creation of collabora

tive multimedia tools. We adopt an abstract tool architecture that enables inter-tool

communication and cooperation. It supports remote task invocation and brokering.

We propose a hybrid computation model for CSCW tools that is very effective in a

heterogeneous environment. The system provides intuitive session initiation methods,

flexible interaction modes, and dynamic access regulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1155

l

71

3.1.3 Two Level Enabling

The design of Shastra is the embodiment of a simple idea - software tools can

abstractly be thought of as objects that provide specific functionality. These objects

exchange messages, automatically or under user command, to request other objects

to perform operations. The CSCW infrastructure of Shastra specifies architectural

guidelines and provides communication facilities that let tools cooperate and exchange

information to utilize the functionality they offer. This enables cooperation at the tool

level. The infrastructure provides collaboration and multimedia facilities allowing the

development of tools in which users collaborate to solve problems. This enables user

level cooperation. A synergistic union of these two ideas lets us design sophisticated

problem solving virtual machines.

3.2 Architecture

Tools in Shastra are built with the underlying idea of inter-tool cooperation. Every

tool is abstractly composed of three layers. The Core is accessed through any of the

Interfaces via a Mapper. The application-specific Core implements the functionality

offered by the tool. Above the Core is a functional Interface Mapper that invokes

functionality embedded in the Core in response to requests from the Graphical User

Interface, ASCII Interface or the Network Interface. It also maps requests to alter

the user interface or to send messages on the Network Interface. The Mapper is

essentially a command interpreter that invokes registered event handlers when events

of interest occur. Tools register event handlers with the Mapper for events they are

interested in, and unregister those that cease to be of interest.

The separation of Core and Interface, that of function and interface, makes it easy

to build multi-user systems, since it enables the maintenance and display of shared

state at a user interface via remote commands in a distributed system.

The CUI is application-specific. The ASCII interface is a shell-like front end for

the tool. Tools communicate with other tools in the environment, via the Shastra

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1156

l

(

/

Tools

I Kernels '--~-~--~-~....::i~~~-rs_..J ~..._B_ro_k_e_r_s_..JII Services II Toolkits
... -.............................. -... .

Application Engine

Interface Mapper

Network Interface

THE SHASTRA LAYER

Collaboration Substrate Initiate, Terminate, Join, Leave, Invite ...

..
Communication Substrate Send, Receive ...

Models, Audio, Video, 2D & 3D Graphics, Images, Text

rt•···:
~ Connection Substrate Connect, Disconnect ... ~ •.. ..

Figure 3.1 High Level Architecture of a Tool in the Shastra Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Petitioner Microsoft Corporation, Ex. 1002, p. 1157

72

Tools

Application Engine

Interface Mapper

NetworkInterface

THE SHASTRA LAYER

 Initiate, Terminate, Join, Leave, Invite ..

: Communication Substrate Send, Receive ...

Models, Audio, Video, 2D & 3D Graphics, Images, Text
Ptscuenssusossves Decuscessenoscosusconcnsccasseunse SOoucesocsonscunscancccussecussconeusoucee

? Connection Substrate Connect, Disconnect ..

Figure 3.1 High Level Architecture of a Tool in the Shastra Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1157

(

(
\

73

substrate, through an abstract Network Interface. This implements the underlying

messaging system that provides connection and transport facilities. The Network

Interface multiplexes multiple simultaneous network connections, and implements

the different application level communication protocols [8]. Functionality available

at a network interface is described to the communication substrate using a signature

that specifies callback functions for the different kinds of network events that the tool

is interested in. The signature provides an abstract interface to remote systems, and

describes functionality offered by the tool. It also serves as a regulatory mechanism,

since different levels of service can be offered at different interfaces by specifying the

appropriate signatures.

To take advantage of the integration facilities of the infrastructure, the Core uses

the Network Interface to access functionality already implemented in other tools. The

main benefit from this setup is modularity and reuse- tools isolate the functionality

they offer, and provide a functional interface to peers. The high level block archi

tecture of tools in Shastra is depicted in Figure 3.1. The architecture makes it easy

for tools to connect to other tools and request operations, synchronously as well as

asynchronously.

These architectural guidelines accord us the benefit of uniformity since all tools

are built upon a common infrastructure and have identical connection, communi

cation and collaboration mechanisms. The concept of cooperation awareness thus

pervades the architecture. The entire set of connected Network Interfaces of Shastra

tools manifests itself as the abstract Shastra layer at runtime (see Figure 3.1). It

maintains the collaborative environment, provides access to functionality of different

systems, and provides facilities for initiating, terminating, joining, leaving and con

ducting collaborations. The connected network interfaces of Shastra tools comprise

a distributed virtual machine on which we build problem solving applications.

The enabling substrates use the event paradigm to provide functionality. Tools use

the application programming interface of the substrate to cause request messages to

be sent over connections. Tools interested in any event register handler functions for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1158

(

(

74

it with the Mapper. The handler functions are invoked when that event is received.

This allows tools to take action appropriate to the event when it occurs.

3.2.1 Distribution Substrate

It provides mechanisms of setting up and tearing down tool-to-tool connections

in a distributed setting. It provides device independent data structure transport for

heterogeneous environments. It implements synchronous and asynchronous remote

procedure calling and provides multiple-connection management between instances of

tools. It supports several application level communication protocols. Coupled with

the data communication facility, this enables flexible management of tool state.

Tools interact with the connection subsystem using the following messages and

events.

• Connect_Request - Tools send this message to initiate a connection with a

remote tool. Arguments specify the destination, whether a reliable or unreliable

connection is desired, and the protocol to be used for that connection.

At the other end, the connection subsystem sends this event to the Mapper

when a remote tool attempts to connect to the local tool. The event handler

function allows a tool to control whether or not to accept a connection request,

and to set up the local side for remote interaction if the request is accepted. A

Connect.Notify message is then usually sent by the tool, with the appropriate

information.

• ConnecLNotify - The connection subsystem sends this event to the Mapper

when a connection is established from the local tool to a remote tool, or when

the connection is refused, typically in response to a Connect_Request. The event

handler function allows a tool to set up the local side for remote interaction.

• DisconnecLRequest - Tools send this message to terminate an existing connec

tion with a remote tool. Arguments identify the connection to be torn down.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1159

(_

(

/
\

75

The connection subsystem gracefully terminates the connection, and frees as

sociated data structures.

• DisconnecLNotify- The connection subsystem sends this event to the Mapper

when an established connection is terminated. The event handler for this event

allows a tool to clean up the local side at the end of remote interaction.

• QueryState__Request - Tools send this message to the communication subsystem

to query the state of a connection, that is identified by the argument.

The interface of this substrate specifies only mechanism. The current implementation

uses Unix sockets to establish connections across the network. Stream, datagram, and

multicast connections are currently supported, implemented on top of the TCP, UDP

and UDP Multicast. Application level protocols with and without acknowledgement,

and with and without sequencing are implemented.

Tools interact with the transport subsystem using the following messages and

events.

• Send_Request - Tools use this message to cause the transport subsystem to

transmit data.

At the other end, the transport subsystem sends this event to the Mapper when

data is received on the connection. The event handler function lets tools take

appropriate action when data is received.

• Send_Notify - This message is used only if the application level protocol uses

acknowledgement. The receiving site sends this message on receipt of data.

The transport subsystem of the data transmitting site sends this event to the

Mapper when data is successfully sent on an established connection. The reg

istered event handler enables the tool to take appropriate action.

• Receive-Request- Tools use this message to synchronously wait for data on an

established connection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1160

(_

(
'·-

(

76

At the remote end, the transport subsystem sends this event to the Mapper.

The event handler for this event usually responds with a Send-Request, to send

data to the waiting tool.

• Receive..Notify - The transport subsystem sends this event to the Mapper,

typically when it receives response data from a Receive..Request. This indicates

delivery of requested data.

The distribution substrate operates m a heterogeneous setting by using XDR

(External Device Representation) encoding and decoding of Sun RPC for maintaining

platform independent data structure representations.

By default, data transport in an event based system is asynchronous. The trans

mitter writes to the virtual pipe. When the entire packet is received at the receiver's

end, a Send..Request event is generated, and the data is handled. If the protocol uses

acknowledgement, the receiver sends an acknowledgement, and a Send_Notify event

is generated in the sender. Connections can be operated synchronously by blocking

on responses by invoking registered event handlers immediately after sending request

messages. In this mode, remote interaction is completely transparent to the tool,

except for performance considerations.

The distribution substrate provides its functionality via the abstraction of Dis

tribution Widgets. These widgets encapsulate the underlying messaging, and trans

parently provide distributed functionality like remote procedure calling. Distributed

features are incorporated in tools by creating and manipulating these widgets. They

support the notion of callback functions to allow tools to take actions when different

events occur.

3.2.2 Collaboration Substrate

It uses the distribution toolkit to implement distributed shared state and context.

It provides a session management, interaction control, and access regulation facilities.

It provides the mechanism to implement policies governing these issues. It enables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1161

77

rapid prototyping and development of collaborative tools and groupware. The main

features are described in [11, 9].

Tools interact with the session control subsystem using the following session con

trol messages and events.

• Initiate.Request- This message is used by a tool to create a new collaborative

session. A session is the unit of collaborative activity, and encapsulates shared

state and interaction. Arguments specify initial properties of the session.

• Initiate..Notify- The session control subsystem generates this event after a new

session is created by a tool. The event handler, invoked when this event is

processed, provides tools with a mechanism to take action when a collaborative

session starts. It usually involves the creation of a shared Context for the

collaborative activity.

• Join_Request - A tool uses this message to request admittance to an ongoing

collaborative session. The session is identified using arguments.

At the receiving end, the handler for this event enables tools to implement dif

ferent policies and user control over session participation. It sends a Join..Notify

message which indicates whether or not the requesting tool is allowed to join

the ongoing session.

• Join_Notify- The session subsystem sends this event to the Mapper, typically

when it receives a Join_Notify message from a remote tool. The handler function

allows the tool to set up a shared Context if it was admitted to the session.

• Leave.Request - Tools use this message to leave a collaborative session.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function sends a Leave..Notify message, and deletes data structures

associated with the shared Context specific to the leaving tool.

• Leave..Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Leave.Request. The handler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1162

l

(

(
\

78

function allows the tool to delete the shared Context associated with the session,

and free associated data structures.

• Invite..Request- Tools send this message to invite other tools to join an ongoing

session that the inviter is a part of. The session is identified using arguments.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function allows tools to implement session joining policies, and user

interface mechanisms to prompt the user for invitation. The handler function

sends an Invite..N otify with the user response.

• Invite..Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to an Invite..Request. The handler

function usually sends a positive Join..Notify message to the responding tool if

it accepted to join.

• Remove..Request - Tools send this message to request removal of other tools

from the session. Target tools are specified as arguments.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements policies for removal of tools from sessions. A

Remove..N otify message is sent to the sender, and the target tool is removed if

the implemented policy allows it.

• Remove..Notify - The session subsystem sends this event to the Mapper, typ

ically when it receives this message in response to a Remove..Request. The

handler function allows tools to take appropriate action.

• Terminate..Request - Tools use this message to request the stopping of a col

laborative session.

At the receiving end, the session subsystem sends this event to the Mapper. The

handler function implements session termination policies. A Terminate..Notify

message is sent to the sender, with the appropriate information about whether

or not the session was allowed to terminate. If allowed, the session terminates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1163

(

(

79

• Terminate.Notify - The sessiOn subsystem sends this event to the Mapper,

typically when it receives this message in response to a Terminate..Request.

The handler function allows tools to take appropriate action.

• Suspend-Request- Tools use this message to request a session to save its state

on stable store for future restoration.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements session suspension policies. A Suspend_Notify

message is sent to the sender, with the appropriate information about whether

or not the session was allowed to suspend. If allowed, the session saves its state

to stable store.

• Suspend_Notify- The session subsystem sends this event to the Mapper, typ

ically when it receives this message in response to a Suspend_Request. The

handler function allows tools to take appropriate action.

• Restore_Request - Tools use this message to restore a session that was sus

pended, by instantiating a new session and overlaying its state with that from

stable store. The saved file from which restoration occurs is specified via argu

ments.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements session restoration policies. A Restore.Notify

message is sent to the sender, with the appropriate information about whether

or not the session was allowed to restore. If allowed, a session is instantiated,

and its state is restored from stable store.

• Restore_Notify - The session subsystem sends this event to the Mapper, typ

ically when it receives this message in response to a Restore..Request. The

handler function allows tools to take appropriate action.

Tools interact with the interaction control subsystem using the following interac

tion control messages and events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1164

(

,-
!

80

• Format.Request - Tools use this message to request specification of the format

of a session. The requested format is specified as an argument. Session format

is a policy that governs how users (via other tools) are inducted into sessions.

E.g. sessions may be open to all users or may be based on invitations alone.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements the desired session format policies. A For

maLNotify message is sent to the sender, with the appropriate information.

• Format_N otify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Format.Request. The handler

function allows tools to take actions appropriate to the set format. The session

format is provided.

• Mode.Request- Tools use this message to request specification of the interaction

mode of a session. The requested mode is specified as an argument. Session

mode governs issues like whether all participants can interact synchronously

over the shared Context, or whether they need to take turns to interact.

At the receiving end, the session subsystem sends this event to the Mapper. The

handler function implements the desired session mode policies. A Mode_Notify

message is sent to the sender, with the appropriate information.

• Mode_Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Mode_Request. The set mode is

provided. The handler function allows tools to take actions appropriate to the

set mode.

• Floor _Request - Tools use this message to request granting of the floor of the

session. Floor essentially refers to a "turn" to interact.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements the desired floor request handling policies. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1165

(_

(
,_

81

Floor_Notify message is sent to the sender, with appropriate information about

whether or not it was granted the floor.

• Floor_Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Floor..Request. It specifies the

tool which gets granted the floor. The handler function allows tools to take

actions appropriate to whether or not they have the floor.

• FloorControLRequest - Tools use this message to request specification of the

floor control policy of the session. Floor control policy governs issues of how

floor is relinquished and assigned, whether or not it is preemptable, etc.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements the desired floor control policies. A FloorCon

troLNotify message is sent to the sender, with information about the current

floor control policy.

• FloorControLNotify- The session subsystem sends this event to the Mapper,

typically when it receives this message in response to a FloorControLRequest.

It specifies the floor control policy. The handler function allows tools to take

actions appropriate to the set policy.

Tools interact with the access regulation subsystem using the following access

regulation control messages and events.

• Set Capability ..Request - Tools use this message to request setting of capabilities

of a tool in the session. The target tool and the capability specification are

specified as arguments. Capability governs issues of what actions users (tools)

are allowed to perform in the session context - whether they can modify session

state etc.

Reproduced with permission of the copyright owner_ Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1166

(_

(

' I

82

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements the capability control policies. A SetCapa

bility_Notify message is sent to the sender, with information about the current

capability specification of the specified tool.

• SetCapability_Notify- The session subsystem sends this event to the Mapper,

typically when it receives this message in response to a Set Capability .Request.

It specifies the target tool and the capability specification of that tool. The

handler function allows tools to take appropriate action.

• Get Capability .Request - Tools use this message to request querying of the ca

pabilities of a tool. The target tool is specified as an argument.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function returns the capability specification of the specified tool.

A GetCapability_Notify message is sent to the sender, with information about

the current capability specification of the specified tool.

• Get Capability _Notify - The session subsystem sends this event to the Mapper,

typically when it receives this message in response to a GetCapability .Request.

It specifies the target tool and the capability specification of that tool. The

handler function allows tools to take appropriate action.

• SetPermissions.Request - Tools use this message to request setting of permis

sions for shared objects in the session. The target object and the permissions

specification are specified as arguments. Permissions govern issues of what ac

tions users (tools) are allowed to perform on session objects- whether they can

modify those objects etc.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function implements the permissions control policies. A SetPermis

sions_Notify message is sent to the sender, with information about the current

permissions specification of the specified object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1167

(

83

• SetPermissions..Notify- The session subsystem sends this event to the Mapper,

typically when it receives this message in response to a SetPermissions.Request.

It specifies the target object and the permissions specification of that object.

The handler function allows tools to take appropriate action.

• GetPermissions...Request - Tools use this message to request querying of the

permissions of a shared object. The target object is specified as an argument.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function returns the capability specification of the specified tool.

A GetPermissions..Notify message is sent to the sender, with information about

the current permissions specification of the specified object.

• GetPermissions..Notify- The session subsystem sends this event to the Mapper,

typically when it receives this message in response to a GetPermissions...Request.

It specifies the target object and the permissions specification of that object.

The handler function allows tools to take appropriate action.

The collaboration substrate provides its functionality via the abstraction of Col

laboration Widgets. These widgets encapsulate the underlying messaging, and trans

parently provide collaborative functionality like session control, interaction control,

and access regulation. Collaborative features are incorporated in tools by creating

and manipulating these widgets. They support the notion of callback functions to

allow tools to take actions when different events occur.

3.2.3 Portable Graphics

The XS Hardware-Independent Graphics System is described in detail in [12]. XS

is a powerful mechanism for engineering 3D graphics based user interfaces for soft

ware tools. It consists of a suite of libraries that provide access to system-dependent

graphics facilities in a uniform, system-independent manner. This makes these tools

portable to different hardware or software graphics platforms. Each graphics system

supported in XS is represented by a library in the suite. All libraries implement the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1168

;(
'\\
··~

(

84

same graphics paradigm and present the same application programming interface,

permitting maintenance of source-level portability across several systems in applica

tion programs.

The current XS suite includes libraries for

• SGI workstations which implement the GL graphics library.

• HP workstations which implement the Starbase graphics library.

• Xll based workstations which implement Xlib, the X graphics library

• IBM-compatible personal computers which implement Windows graphics li

brary.

Figure 3.2 shows the block architecture of XS and the platforms supported. XS

provides facilities for graphics window manipulation, viewing and modeling control, as

well as facilities for drawing 3D objects via primitives like points, lines and polygons.

It also provides control over color and material properties of graphical objects, scene

illumination, and shading and texturing control. The vector and matrix manipulation

substrate is used to implement a powerful graphics engine, supporting the notion of

nested coordinate spaces.

XS implements graphics features in software if they are not available in hardware.

E.g. the Xll/Xlib version of XS is a purely software implementation. Adding libraries

for new hardware platforms to XS automatically supports XS based tools on that

arc hi teet ure.

XS enables application developers to maintain and manipulate a high level ab

straction for 3D graphics, and enables rapid prototyping of portable graphics tools.

Graphics Agents (The notion of Agents was introduced in Section 2.2) in the Shastra

environment are built on top of XS. They enable inclusion of 3D graphics facilities

into tools, based on very high level interaction.

Universal adoption of standards like PEX, PHIGS and OpenGL would eliminate

the need for a system like XS. However, it seems unlikely that any one of those systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1169

85

l

Portable Graphics

XS Library

... -........ -.. -......... -- -........ -.

Window Manipulation Viewing Control Modeling Control I Drawing I
Illumination

(
I I Points, Lines, Multilines, Polygons Shading

I I Texturing

1
Matrix Manipulation Vector Manipulation

X11/XIib SGI!GL HP/Starbase Windows/WGL ...

Figure 3.2 High Level Architecture of XS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1170

(_

86

will prevail, since all of them have large and intransigent following. This makes XS

truly valuable as a portable graphics engine.

3.2.4 Collaborative Graphics Substrate

It is based on the structural model and uses the distribution substrate and the

graphics substrate to implement device independent distributed and collaborative

graphics. It supports synchronous and asynchronous 2D and 3D graphical interaction

in a heterogeneous setting. It provides high level control of display and visualization

parameters and telepointing.

Tools interact with the graphics subsystem using the following graphics stream

control messages and events.

• Context-Request - Tools use this message to request operations on shared Con

text for the collaborative session. The target context is specified as an argument,

as are the control parameters. Graphics context control includes operations like

creating, setting up, tearing down, and deleting session contexts. It implements

manipulation of shared 3D graphics windows.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function performs the appropriate Context control operations. A

ContexLNotify message is sent to the sender, with control information about

the session context.

• Context_Notify- The session subsystem sends this event to the Mapper, typi

cally when it receives this message in response to a Context-Request. It specifies

the target context and control information. The handler function allows tools

to take appropriate action.

• Stream-Request- Tools use this message to request operations on shared graph

ics interaction streams for the collaborative session. The target context and

stream are specified as arguments, as are the control parameters. Graphics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1171

(_

(

87

stream control includes operations like transporting models, setting up view

ing and modeling parameters, transmitting dynamic viewing information and

control parameters for the very process of interacting in a 3D window etc.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function performs the appropriate Stream control operations. A

Stream.Notify message is sent to the sender, with control information about

the graphics interaction stream.

• Stream.Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Stream-Request. It specifies the

target context and stream, as well as control information. The handler function

allows tools to take appropriate action.

Sha-Poly and Sha-Draw are collaborative tools that have been implemented on

this substrate. They are described in Appendix A.

The collaborative graphics substrate provides its functionality via the abstrac

tion of 2D and 3D Graphics Widgets. These widgets encapsulate the underlying

messaging, and transparently provide collaborative functionality for shared graphical

interaction. 2D and 3D graphics features are incorporated in tools by creating and

manipulating these widgets. They support the notion of callback functions to allow

tools to take actions when different events occur.

3.2.5 Portable Multimedia

This abstract multimedia system provides access to available hardware audio and

video facilities on a workstation in a device-independent manner, providing source

code level compatibility across multiple platforms. It encapsulates details of media

format and device specific interaction, providing a high level abstraction for develop

ment of multimedia tools. The current implementation supports Sun, SGI and HP

workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1172

(~

(

88

Tools interact with the media subsystem using the following media control mes

sages and events.

• ControLRequest - Tools use this message to request operations of the actual

media system via the media context. The target context is specified as an ar

gument, as are the control parameters. Multimedia control includes operations

activating audio and video hardware, controlling input and output volume, or

sampling frequency, and other general media control mechanisms.

At the receiving end, the media subsystem sends this event to the Mapper. The

handler function performs the appropriate media control operations, via the

media substrate. A ControLNotify message is sent to the sender, with control

information about the media context.

• ControLNotify- The media subsystem sends this event to the Mapper, typically

when it receives this message in response to a ControLRequest. It specifies the

target context and control information. The handler function allows tools to

take appropriate action, like updating the user interface etc.

3.2.5.1 Audio

The audio component of the device independent multimedia library provides a

high level abstraction of the underlying physical device. It consists of a suite of

device-specific libraries. Each audio system supported is represented by a library

in the suite. All libraries implement the same audio paradigm and present the same

application programming interface. This API presents the notion of an abstract audio

device, permitting maintenance of source-level portability across several systems in

application programs. It allows programmatic control of capture and playback of

audio information from the hardware. It provides mechanisms for controlling sampling

frequency, sample size, external device output volume and input sensitivity. Audio

data is maintained in a portable, device-independent format for transport. It is

translated to a device specific form before actual playback.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1173

l_

89

3.2.5.2 Video

The video component of the device independent multimedia library provides a

high level abstraction of the underlying physical device. It consists of a suite of

device-specific libraries. Each video system supported is represented by a library

in the suite. All libraries implement the same video paradigm and present the same

application programming interface. This API presents the notion of an abstract video

device, permitting maintenance of source-level portability across several systems in

application programs. It allows programmatic control of capture and playback of

video information from the hardware. It provides mechanisms for controlling frame

frequency, frame size, and color issues. Video data is maintained in a portable,

device-independent format for transport. It is translated to a device specific form

before actual playback.

3.2.6 Collaborative Multimedia Substrate

It is based on the structural model and uses the development substrate and the

multimedia substrate to implement device independent distributed and collaborative

multimedia. It enables incorporating multimedia features and facilities into tools,

and supports collaborative multimedia interaction.

Tools interact with the media subsystem using the following media stream control

messages and events.

• ContexLRequest - Tools use this message to request operations on shared Con

text for the collaborative session. The target context is specified as an argument,

as are the control parameters. Multimedia context control includes operations

like creating, setting up, tearing down, and deleting shared contexts for mul

timedia interaction. It implements manipulation of video windows and audio

contexts.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function performs the appropriate Context control operations. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1174

(

/

(

90

Context..Notify message is sent to the sender, with control information about

the session context.

• Context..Notify- The session subsystem sends this event to the Mapper, typi

cally when it receives this message in response to a Context..Request. It specifies

the target context and control information. The handler function allows tools

to take appropriate action.

• Stream.Request - Tools use this message to request operations on shared mul

timedia streams for the collaborative session. The target context and stream

are specified as arguments, as are the control parameters. Multimedia stream

control includes operations like transporting data, setting up viewing parame

ters, transmitting transport control information, and control parameters for the

very process of interacting with the media.

At the receiving end, the session subsystem sends this event to the Mapper.

The handler function performs the appropriate Stream control operations. A

Stream..Notify message is sent to the sender, with control information about

the multimedia interaction stream.

• Stream..Notify- The session subsystem sends this event to the Mapper, typically

when it receives this message in response to a Stream.Request. It specifies the

target context and stream, as well as control information. The handler function

allows tools to take appropriate action.

Sha-Phone, Sha-Video, and Sha-Talk are conferencing tools that have been im

plemented on this substrate. They are described in [8, 10].

The collaborative multimedia substrate provides its functionality via the abstrac

tion of Audio and Video Widgets. These widgets encapsulate the underlying mes

saging, and transparently provide collaborative functionality for shared multimedia

interaction. Audio and video features are incorporated in tools by creating and ma

nipulating these widgets. They support the notion of callback functions to allow tools

to take actions when different events occur.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1175

(

(

91

3.3 Tools

Shastra Tools are the building blocks of the runtime system. Kernels and Session

Managers are management tools, responsible for maintaining the distributed and

collaborative environment. Brokers offer distribution and task brokering facilities.

Toolkits implement scientific design and manipulation functionality, and Service Tools

provide mechanisms for communication and animation.

3.3.1 Kernels

The Shastra Kernel is responsible for maintenance of the runtime environment. It

consists of a group of cooperating Kernel processes. It maintains information about

all instances of tools in the distributed system, and keeps track of all environment

relevant activity. A Directory facility lets users dynamically discover what tools (and

users) are active in the environment at any time, as well as what functionality they

provide. This includes information about ongoing collaborative sessions and their

membership. A Location facility provides contact information about where the tools

are running, letting tools dynamically connect to each other to access functionality.

A Routing facility enables transport of data and control information between tool

instances. The Kernel supports the following environment maintenance requests.

• Register - Request to become part of the runtime environment.

• Unregister- Request to leave the Shastra environment.

• Terminate - Request to cause the termination of another tool.

• Message - Request to send a data or control message to another tool.

• Session Start - Request to instantiate a new collaborative session.

• Join - Request to join an ongoing collaborative session.

A Kernel process executes at a well known port on all active hosts. Kernel pro

cesses communicate with each other and exchange Directory, Location and Routing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1176

(

/
I
I

92

information. All Shastra tools on a host Register with the Kernel at startup, and

become part of the runtime environment. They can access environment information

via the Kernel, and use its facilities. They provide information about availability of

audio, video and graphics hardware on their hosts and their ability to interact with

it. The Unregister message is used when tools are ready to leave the environment,

typically before termination. Abnormally terminated tools are unregistered automat

ically. Tools can cause the termination of other tools by using the Terminate message,

if they have the appropriate capability. Tools that are not directly connected can send

multimedia messages to one another using the Message request. Messages are routed

via the Kernels. Collaborative sessions are started using the Session Start message.

Tools can request assimilation into an ongoing collaborative session by sending the

Join message to the Kernel. The Kernel routes the message to the appropriate Session

Manager. Tools can also invite other tools tools to participate in the collaborative

activity by sending the Invite message to the Kernel. The Kernel routes the message

to the appropriate tool.

3.3.2 Brokers

Brokers are specialized Service Tools in the Shastra environment. Brokers create

many instances of server tools for the different services offered in the environment.

This occurs automatically or under control of tools using the Broker. In the simple

case a Broker behaves as a surrogate client. Tools send multiple service requests to

a Broker that uses its set of connected servers to service the multiple requests, and

sends the results back to the client tools. All Brokers service the following brokering

control requests.

• Start - Request to start a server tool.

• Stop - Request to terminate a server tool.

• Connect - Request to connect across the network to an existing server tool.

• Disconnect - Request to terminate a server connection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1177

(_

(

93

• Service - Request to service a computational task.

Tools use the Start message to control creation of server instances, and the Stop

message to terminate them. They can choose the server instances to be used for

the task by sending Connect and Disconnect requests to the Broker. They use the

Service message to request the Broker to perform operations on their behalf. The

Broker forwards the request to an appropriate server.

In a more complicated scenario, tools send large computational tasks to application

specific Brokers which partition them, in a task-dependent manner, into independent

subtasks. These subtasks are then serviced using the connected pool of server tools.

The results are put together and transmitted to the requesting tools. Application

specific Brokers are created from the basic Broker, by extending the message set to

understand new requests.

Brokers exploit tool-level cooperation to perform multiple tasks in parallel in a

distributed setting, by harnessing the computational power of clusters of idle work

stations on a network. They use load balancing criteria to optimize computation time

of large tasks that can be decomposed into independent subtasks.

3.3.3 Session Managers

Collaborative Sessions, or Sessions, are instances of synchronous multi-user col

laborations or conferences in the Shastra environment. A collaboration in Shastra

consists of a group of cooperating tools regulated by a Session Manager, the con

ference management tool of Shastra. One Session Manager runs per collaborative

session. It maintains the session and handles details of connection and session man

agement, interaction control and access regulation. It keeps track of membership

of the collaborative group, and serves as a repository of the shared objects in the

collaboration. It supports a multicast facility needed for information exchange in a

synchronous multi-user conferencing scenario. It has a constraint management sub

system that resolves conflicts that arise as a result of multi-user interaction, enabling

maintenance of mutual consistency of operations. It has a regulatory subsystem that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1178

(

94

controls synchronous multi-party interaction, and provides a floor control facility

based on turn-taking. Every Session Manager implements functionality to service

the following session control requests.

• Invite- Request to invite a tool to an ongoing session.

• Join- Request to join an ongoing session.

• Remove - Request to remove a tool from a session.

• Leave - Request to leave a session that the tool is a member of.

• End- Request to terminate a collaborative session.

It also serves the following interaction control requests.

• Format - Request to set session format.

• Capabilities - Request to set access regulation capabilities.

• Interaction Mode - Request to set interaction mode for the session.

• Request Floor - Request to get floor control for the session.

• Release Floor - Request to release floor control for the session.

• Assign Floor - Request to assign floor control for the session.

A collaborative session in Shastra is started by a tool when it sends the Session

Start message to the local Kernel. This causes the instantiation of a Session Man

ager for the incipient session. The initiating tool becomes the Session Leader. A

tool sets session format using the Format message. Sessions may be Formal, where

participation is by invitation only, or Informal where any tool can dynamically join

the conference. The Leader assigns capabilities of other participants for collabora

tive activity in the session using the Capabilities message. The interaction mode for

a session is specified using the Interaction Mode message. Interaction can occur in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1179

(

(

95

the Regulated or Free mode. In the Regulated mode, tools request and relinquish

the floor using Request Floor and Release Floor messages. The leader can explicitly

assign floor control using the Assign Floor message. In the Free mode, interaction is

regulated via capabilities assigned to session participants. Capabilities are described

in a later section. Other tools are invited to participate in a session by sending them

the Invite request via the Kernel. Tools can dynamically join ongoing sessions by

sending the Join message to the relevant Session Manager via the Kernel. The Ses

sion Manager uses session format information to control dynamic incorporation of

tools. The Leader can remove a participating tool from the session using the Remove

message. Tools can discontinue participation in the session by sending the Leave

message to the Session Manager. A session is terminated by the Leader using the

End message.

Application-specific Session Managers for different collaborative tasks are created

from the basic Session Manager that provides application independent connection,

communication and collaboration control facilities. Such session managers support

additional messages for collaborative operations specific to the application.

3.3.4 Fronts

Front End or Front is the term used to collectively refer to all tools in the Shas

tra environment that a user directly interacts with. This includes Toolkits - actual

engineering and design tools, Services- special purpose tools primarily for communi

cation, and Games - recreational tools. Fronts are created by specializing the basic

Front End which is a minimal collaboration-aware tool which understands Shastra

protocol messages, and generates requests to interface with the Kernel, Session Man

agers, Brokers and standard Services. Figure 3.3 shows a view of the Shastra world,

where different tools interact to support a collaborative environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1180

96

(_

(D Host
.......... . .

Session '········ -- Session Link
I I I I I

Control Link - Client/Server Link

I I I I I

:::~·: I I I t

!... !:::::::::~:::::::.~.
~ Peer/Peer Link

Figure 3.3 Information Flow in the Shastra Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1181

96

(Host
Session

Session Link

Control Link

——© Client/Server Link

~<—> Peer/PeerLink

Figure 3.3 Information Flow in the Shastra Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1181

l

97

Fronts add core functionality to the Application Engine. They extend Network In

terface signatures to understand new requests, and to offer different services in the en

vironment. This makes it possible for Fronts to connect to each other in client/server

and peer/peer settings to access functionality, and to exchange data.

3.3.5 Toolkits

Currently Ganith, Shilp, Vaidak, Bhautik, Splinex and Rasayan are scientific

Toolkits under the Shastra umbrella. They inter-operate to permit concurrent en

gineering and distributed problem solving. They are described in detail in [13], and

are presented in a later section.

3.3.6 Services

The current set of Services contains communication and animation tools. In keep

ing with the Shastra philosophy of application-level cooperation, Services provide

access to their functionality to other tools. Service tools behave as interface agents

that understand different media types. Application developers are shielded from low

level manipulation of devices and media formats, This builds an abstract media-rich

substrate for the design of sophisticated collaborative applications, since it enables

use and transport of multimedia information. In the scientific setting, especially in

design and analysis, a lot of the information shared by a collaborating team is ex

pressed using structured 3D graphics. Inclusion of facilities for text, image, audio and

video communication has greatly enhanced the quality of interaction, enabling more

effective cooperation.

Sha-Talk, Sha-Phone, Sha-Video, Sha-Draw and Sha-Poly are services that are

currently provided by the Shastra environment. They are described in detail in [8, 10].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1182

(

\.

/
(

. do you bav. tiM right now to do a dem
of • bip i"'''lont.

r-···-·-···-··-·,
1l DisaiBB 1:
l. :

Figure 3.4 Multimedia Communication Support for Session Initiation

3.4 Runtime Environment

98

Figure 3.3 depicts the composition of the runtime system. The environment typi

cally consists of a collection of instances of Kernels, Session Managers, and Brokers, as

well as Fronts (Toolkits and Service Applications). The tools interoperate to support

a dynamic collaborative environment.

3.4.1 Communication & Session Initiation

Fronts use the Directory and Location facilities of the Kernel, in conjunction

with messaging facilities of the system to set up multimedia communication panels.

By default, the panel allows textual conversations. The environment keeps track

of availability of audio, video and graphics facilities on hosts. This lets tool users

configure the panel appropriately, if higher level facilities can be used. The control

panels drive Service Tools to conduct conversations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1183

98

(; Control Options Help fi
Invitation Comamication Panel ;

j jarjun.cs.purdue.edu shastrafc anupapmakhil.cs.purdue.edu shavideo drs
Ramote: Selected Session Invitees

fj sure,
Hii°1l be glad to join.. who else is around?

Nibey dan.. do you have time right now to do
§|design of a hip implant.

B|1°1l have to check. |

Local: arjun.cs.purdue.edu shastrafr anupan
Figure 3.4 Multimedia Communication Support for Session Initiation

\ 3.4 Runtime Environment

Figure 3.3 depicts the composition of the runtime system. The environment typi-

cally consists of a collection of instances of Kernels, Session Managers, and Brokers,as

well as Fronts (Toolkits and Service Applications). The tools interoperate to support

a dynamic collaborative environment.

3.4.1 Communication & Session Initiation

Fronts use the Directory and Location facilities of the Kernel, in conjunction

with messaging facilities of the system to set up multimedia communication panels.

By default, the panel allows textual conversations. The environment keeps track

of availability of audio, video and graphics facilities on hosts. This lets tool users

configure the panel appropriately, if higher level facilities can be used. The control

panels drive Service Tools to conduct conversations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1183

(

(

99

The communication facilities of the environment are of great utility in the session

initiation procedure. A Session is started by a user of a tool by sending a Session Start

request. The Kernel instantiates a Session Manager. The session creator becomes the

session leader, and is automatically inducted into the conference. He queries the

system to discover other active users in the environment, and invites them to join

the session using the Invite request. The invitees are prompted via their Kernels for

participation in the session, and a communication panel is created at each invited

site. The leader can broadcast to the invited group, or communicate with individual

invitees, through his communication panel. The invitation specifies the capabilities

the invitee will have when he joins. Communication permits rapid convergence to

acceptance or declining of the invitation. Invitees that accept are inducted into the

conference. (Invitees can be participants in multiple conferences simultaneously).

Figure 3.4 depicts a session invitation control panel. Users of tools query the environ

ment to discover sessions of interest, and use the Join message to request admittance.

The request is routed to the session leader via Kernels and the Session Manager. If

session format is Informal, where any tool is allowed to join the "open" session, the

remote tool is incorporated into the conference by the Session Manager. For Formal

"closed" sessions, a communication panel is created to enable negotiation between

the requester and the leader, who may allow the remote tool to be assimilated into

the conference.

3.4.2 Collaborative Interaction

Collaborative interaction in Shastra occurs in two modes. In the Regulated mode,

which is based on baton passing, tools request control of the "floor", the collaboration

context, using the Request Floor message. This results in a Master-Slave interaction,

where all interaction occurs at the Master site that has the baton, and appropriate

information is relayed to all Slave sites. Application developers utilize the broadcast

facility of the Session Manager to distribute the input of low computation tasks

and the output of high computation tasks to benefit from the distributed setting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1184

(

(

100

Baton passing itself may be Non-Preemptive, based on voluntary relinquishment of

the baton, or Preemptive. Users relinquish the floor using the Release Floor message.

The Regulated mode is useful to simulate blackboarding, demonstration and walk

through scenarios, as such interactions are naturally expressed using a turn taking

mechanism. The leader can explicitly assign turns using the Assign Floor message.

In the Free interaction mode, activity is regulated via capabilities assigned to

session participants by the leader. The Capabilities message is used to dynamically

control capabilities of session participants in this truly collaborative setting, which

allows simultaneous multi-participant interaction. The collaboration infrastructure

of Shastra has a two-tiered regulatory subsystem used to control dynamic interac

tion. Site-based capabilities control the interaction of a user in the context of the

collaboration. Shastra collaborations support the following capabilities.

• Access - controls whether or not a user sees shared context and collaborative

interaction.

• Browse- regulates whether or not a user has independent local viewing control.

• Modify- regulates whether or not a user can modify shared state.

• Copy -controls whether or not a user can copy shared objects.

• Grant -controls whether or not a user can perform session regulation operations.

The Access capability is roughly equivalent to a "Read" permission for the shared

collaboration context, e.g. a shared window. It is useful in scenarios requiring some

form of hiding. The Browse capability governs browsing and independent local view

ing of the shared context. It is roughly equivalent to an "Execute" permission.

The Modify capability, which is roughly equivalent to a "Write" permission, controls

whether or not a participant can modify the state of the collaboration by introducing

objects to the session, or by interacting with shared objects. The Copy capability reg

ulates copy propagation of shared objects in the collaboration. The Grant capability

defines whether a user can set site capabilities or invite users to join the session.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1185

(

101

Object permissions are application specific, though they are generally modeled

after the site capabilities. They regulate what actions the participant can take on

shared objects. Users specify Access, Browse, Modify and Copy permissions for shared

objects, to control whether other users can Read, Write, Execute and Copy shared ob

jects that they introduce to the collaborative session. In general, the more restrictive

of Site Capability and Object Permission applies for shared objects.

Access regulation information is maintained in the Session Manager. Site capabili

ties are regulated by the leader or a user with the Grant capability. Object permissions

are regulated by the owners of collaboration objects. Different capability and per

mission settings for participants and objects generate a variety of interaction modes

at runtime. E.g. giving all participants only Access capability and one participant

Modify capability, effectively simulates a turn-taking situation, where one participant

alters the state of the collaboration, and everyone else observes the results. Adding

Browse capability at all sites results in a flexible Master-Slave situation, with every

site capable of independent local views. Allowing everybody to Modify the state of

the collaboration creates a free interaction situation. Similarly, setting permissions

for an object regulates the operations a participant can perform on it.

3.5 Computation Model

Shastra collaborations are implemented using a Hybrid Centralized-Replicated

computation model. A central Session Manager regulates collaborative activity of

multiple tool instances. The core part of a Session Manager communicates with an

abstract Collaboration Slave in the tool via Shastra Network Interfaces. The Slave

maintains shared state and context and performs collaboration-relevant operations

under directives from the Session Manager. The application-specific parts of the

Session Manager and the tools inter-operate in a similar manner. This method of

operation is termed as Proxy shared window management. The architecture of a

typical collaborative session in Shastra is depicted in Figure 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1186

(_

(_

/

(

Private
Windows

Shared
Windows

Models

Audio

Video

Graphics

Images

Text Shared
Windows

Figure 3.5 Architecture of a Collaborative Session

Private
Windows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Petitioner Microsoft Corporation, Ex. 1002, p. 1187

102

Session Manager

Application Collab. Driver

Collaboration Core

Models

Application Collab. DriverApplication Collab. Driver Audio

Collaboration Slave Core i Video Collaboration Slave Core
Graphics

Images

Private Shared i Shared Private
i Windows i : Windows WindowsWindows

Figure 3.5 Architecture of a Collaborative Session

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1187

(

/
I

103

3.5.1 Replication

In the hybrid computation model for the multiple user system, a copy of the tool

runs at each site involved in the collaboration. In the scientific setting, where 3D

graphics is used to express a lot of information, the replicated Front instances pro

vide performance benefits, since no central site is weighed down by view-generation

computation. The replication scheme supports heterogeneity - the Session Manager

communicates with Fronts at an abstract level, and doesn't concern itself with details

of how the Front actually executes its directives. In a heterogeneous environment,

this is a big win, because replication allows Fronts to execute on a variety of hardware

platforms. Another benefit of the replication scheme with Proxy shared window man

agement is that it intrinsically supports the notions of Private and Shared workspaces

and interaction. Only activity in the collaboration context (windows and work ar

eas) is regulated by the Collaboration Slave part of a tool, and is shared between

participants. Local windows isolate private interaction. Fronts provide regulated

mechanisms for moving work between private and shared workspaces. The underly

ing notion is to provide a non-intrusive environment for collaborative work, where

users can choose to perform some tasks in private contexts, and some in shared ones.

In the simple case, Session Managers deal with multiple, functionally identical

Fronts. We call this kind of situation a Homogeneous Collaboration. In a more

complicated scenario, functionally different Fronts collaborate over mutually relevant

tasks. Though this increases the complexity of the Session Manager, which cannot

rely any more on the assumption of identical contexts, Heterogeneous Collaborations

are no harder to implement, since Session Managers and Fronts inter-operate at an

abstract level.

3.5.2 Centralization

Collaborations between Fronts in Shastra are regulated by a central Session Man

ager that is responsible for maintaining and regulating collaborative activity. It serves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1188

l

(
'

/
'

104

as a repository for shared objects in the collaboration. The centralization of collab

oration state in the Session Manager makes it convenient and efficient to bring late

joiners up to date when they are assimilated into the session. The Session Manager

serves as a context for regulation of interaction during collaborations. Importantly,

serialization of input from all participating sites is conveniently performed in the

Session Manager.

The Session Manager also performs constraint management to maintain consis

tency and regulate mutually conflicting tasks. In collaborative interaction different

participants can attempt contradictory modifications to the state of the collaboration.

Session Managers can identify and deal with these inconsistencies, which are inherent

to synchronous and distributed multi-party interaction. The current method involves

registering constraint databases for operations, and dynamically checking operations

for constraint violations. Fronts that have actions denied due to constraint violations

are notified appropriately, using available messaging facilities. In Heterogeneous Col

laborations, between instances of different toolkits, constraint management involves

dealing with the coupling of related data structures and operations for mutual con

sistency.

3.6 CSCW Environments

The Shastra system is targeted towards two main problem solving scenarios. The

first involves synchronous conferencing of collaboration aware tools. We call this

a Collaborative problem solving scenario. The other case involves problem solving

using a mix of collaboration aware services and collaboration-unaware but cooperative

tools. We call this a Quasi-Collaborative problem solving scenario.

3.6.1 Distributed Multimedia

The distributed multimedia system is at the core of the collaborative environment.

It is built around multimedia Agents that provide device independent handling of mul

tiple media types. Agents are built on top of the Shastra layer which is a connection,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1189

(
~._

105

communication, and collaboration substrate. The connection layer provides connec

tion setup and maintenance facilities over a network, and implements the protocols

needed in the system. The communication layer supports platform independent data

exchange between connected agents. The collaboration layer provides session manage

ment and regulation facilities. In this system, agents are cooperation aware both at

the application level and at the user level. They provide 1-1 personal communication

services for spontaneous cotemporal interaction, as well as asynchronous multimedia

messaging.

These agents are used to build multimedia conferencing facilities in a distributed

setting by specifying behavior in the connection, communication and collaboration

layers. They use application level communication protocols for 1-1, 1-n and n-n

interaction using the different media types.

3.6.2 Collaborative Problem Solving

This involves the creation of synchronously conferenced systems built from sci

entific toolkits. The process involves adoption of Shastra architectural guidelines in

the toolkits by building them in accordance with the requirements, or by wrapping

them in functionality that provides the same abstract architecture. Session Man

agers are then created from the core Session Manager to deal with the interaction

and collaboration details of the specific task. This includes the specification of a

constraint management subsystem to deal with inconsistencies arising from multi

user interaction. Application conferencing provides a facility for shared manipulation

of application-specific objects. Shastra Services are used for colocation to aid the

collaborative effort. This provides support for Text Conferences, Audio and Video

conferences, Collaborative 2D Sketching, and 3D Visualization.

3.6.3 Quasi-Collaborative Problem Solving

This scenario is more suited to tools that will be hard to conference synchronously

due to their complexity or due to intractability in the architectural paradigm of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1190

(~

106

Shastra. In these problem solving situations, Shastra facilities are used for colocation

to aid in the problem solving effort as well as in the review and analysis phase. The

Shastra architecture facilitates Client-Server and Peer-Peer mode interconnections

between systems for collaborative problem solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1191

l

(

107

4. THE SYSTEM AND APPLICATIONS

4.1 Runtime System

4.1.1 Introduction

Multimedia workstations have become commonplace because of recent advances

in electronics, computer and communication technology. Current audio, video, and

graphics processor architectures, coupled with high speed networking and compres

sion techniques, have presented us with a very powerful tool - the desktop system.

Computer mediated mechanisms built on top of these systems provide us with the

means to exchange multimedia information, and will revolutionize how we collaborate

in the scientific setting. This is especially true in the scientific domain, where problem

solving is cooperation-intensive.

Much recent research and developmental effort has been directed towards multi

user systems. Our goal is to depart from traditional single-user scientific manipulation

systems to use computing and multimedia technology to build multi-user (collabo

rative) scientific design and analysis environments. The objective is to develop the

next generation of scientific software environments where multiple users, e.g. geo

graphically distributed collaborative engineering design teams, create, share, manip

ulate, analyze, simulate, and visualize complex three dimensional geometric designs

over a heterogeneous network of workstations and supercomputers. Scientific CSCW

would benefit greatly from applications with shared drawing and viewing surfaces that

support content dependent sharing - the applications are collaboration-aware, and

support simultaneous multi-user manipulation of application-specific objects. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1192

l

(

/
{

108

would add a new dimension to the kind of cooperation that can occur in collabora

tive problem solving, because it would permit cooperative manipulation and browsing

of objects in the context of applications that manipulate them.

We have adopted the approach of integrating a collection of function-specific tools

into a distributed and extensible environment, where tools can easily use facilities

provided by other tools. Isolation of functionality makes the environment modular,

and makes tools easy to develop and maintain. Distribution lets us benefit from the

cumulative computation power of workstation clusters. Tool-level cooperation allows

us to exploit the commonality that is inherent to many scientific manipulation sys

tems. An enabling infrastructure of communication and interaction tools, display and

visualization facilities, symbolic processing substrates, and simulation and animation

tools saves avoidable re-implementation of existing functionality, and speeds up the

application development process.

The collaborative scientific environment provides mechanisms to support a variety

of multi-user interactions spanning the range from demonstrations and walk-throughs,

to synchronous multi-user collaboration. In addition, it facilitates synchronous and

asynchronous exchange of multimedia information that is useful to successfully com

municate at the time of design, and to share the results of scientific tasks, and often

necessary to actually solve problems. The infrastructure provides facilities to dis

tribute the input of low computation tasks - to obtain the parallelism benefit of

distribution, and the output of compute intensive tasks - to emphasize sharing of

resources among applications. It provides a convenient abstraction to the application

developer, shielding him from lower level details, while providing him with a rich

substrate of high level mechanisms to tackle progressively larger problems.

4.1.2 Scientific Manipulation Environments

Shastra is an extensible, distributed and collaborative geometric design and sci

entific manipulation environment. At its core is a powerful collaboration substrate -

to support synchronous multi-user applications, and a distribution substrate - that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1193

(_

(_

/.

{
\

109

emphasizes distributed problem solving for concurrent engineering. Shastra provides

a framework for distribution, collaboration, session management, data sharing and

multimedia communication along with a powerful numeric, symbolic and graphics

substrate. It enables rapid prototyping and development of software tools for the

creation, manipulation and visualization of multi-dimensional geometric data.

The Shastra environment consists of multiple interacting tools. Some tools imple

ment scientific design and manipulation functionality (the Shastra Toolkits). Other

tools are responsible for managing the collaborative environment (Kernels and Session

Managers). Yet others offer specific services for communication and animation (Ser

vice Applications). Tools register with the environment at startup, providing informa

tion about the kind of services that they offer (Directory), and how and where they can

be contacted for those services (Location). The environment supports mechanisms

to create remote instances of applications and to connect to them in client-server or

peer-peer mode (Distribution). In addition, it provides facilities for different types

of multi-user interaction ranging from master-slave blackboarding (Turn Taking) to

synchronous multiple-user interaction (Collaboration). It implements functionality

for starting and terminating collaborative sessions, and for joining or leaving them.

It also supports dynamic messaging between different tools. Tools are thus built on

top of the abstract Shastra layer, which is depicted in Figure 4.1. The Shastra Layer

is a connection, communication and collaboration management substrate. Shastra

tools inter-operate using facilities provided by this layer.

4.1.3 System Features

The Shastra architecture is described in detail in [8]. The scientific toolkits are

presented in [13]. Here, we present salient features. The design of Shastra is the em

bodiment of a simple idea- scientific manipulation toolkits can abstractly be thought

of as objects that provide specific functionality. These objects exchange messages,

automatically or under user command, to request other objects to perform operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1194

l

(

...
(

~-~~r:.J_ .. 1~~--t~: .. _IL:~1::J
The SHASTRA lAyer

..
Collaboration Substrate

Initiate, Termlnale, Join, Leave, Invite ... ,
Communication Substrate

Send, Receive ...

Models, Audio, Video, 30 & 20 Graphics,
Images, Text
~ Connection Substrate 1

~ :.~~~.~~· ... ~~~~~.~~.~~~ .. ::: !

Figure 4.1 The Shastra Layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Petitioner Microsoft Corporation, Ex. 1002, p. 1195

(

111

At the system level, Shastra specifies architectural guidelines and provides commu

nication facilities that let toolkits cooperate and exchange information to utilize the

functionality they offer. At the application level, it provides collaboration and mul

timedia facilities allowing the development of applications in which users cooperate

to solve problems. A synergistic union of these two ideas lets us design sophisticated

problem solving virtual machines.

The high level block architecture of all tools in Shastra is depicted in Figure

3.1. This architecture makes it easy for tools to connect to other tools and request

operations, synchronously as well as asynchronously. A tool has an application specific

core - the Application Engine, which implements the core functionality offered by

the tool. Above the core is a Functional Interface Mapper that invokes functionality

embedded in the Engine in response to requests from the the Graphical User Interface,

ASCII Interface or the Network Interface. The GUI is application specific. The ASCII

interface is a shell-like front end for the application. Tools communicate with other

tools in the environment, via the Shastra substrate, through an abstract Network

Interface that multiplexes multiple simultaneous network connections and implements

the Shastra communication protocol [8].

The entire set of connected Network Interfaces of Shastra tools implements the

abstract Shastra layer at runtime (see Figure 4.1). It maintains the collaborative en

vironment, provides access to functionality of different systems, and provides facilities

for initiating, terminating, joining, leaving and conducting collaborations.

4.1.4 Tools

Shastra Tools are the building blocks of the runtime system. Kernels and Session

Managers are management tools, responsible for maintaining the distributed and col

laborative environment. Shastra Toolkits provide scientific design and manipulation

functionality, and Service Tools provide mechanisms for communication and anima

tion. Toolkits and Service Tools are collectively referred to as Front Ends, or simply

Fronts, since they are the actual sites of user interaction. Any Front can access the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1196

l

(

112

Shastra environment to instantiate tools locally or on remote sites, and to terminate

previously instantiated tools. Fronts can connect directly to each other to exchange

data in client-server or peer-peer settings using the Shastra substrate.

4.1.4.1 The Kernel

The Shastra Kernel is responsible for maintenance of the runtime environment.

It keeps track of all instances of tools in the distributed system. It consists of a

group of cooperating Kernel processes. A Directory facility lets users dynamically

discover what tools are active in the environment at any time. A Location facility

provides contact information about where the tools are running, letting applications

dynamically connect to each other to access functionality.

4.1.4.2 Session Managers

A Session Manager is a management tool in the Shastra environment. It maintains

a collaborative session and handles details of connection and session management, in

teraction control and access regulation. It is a repository of the shared objects in a

collaboration, and keeps track of membership of the collaborative group. A collabora

tive session in Shastra is started by a user through a Front. One instance of a Session

Manager runs per collaborative session. The Session Manager provides a multicast

facility needed for information exchange in synchronous multi-user conferencing. It

has a constraint management subsystem that resolves conflicts that arise as a result

of multi-user interaction, enabling maintenance of mutual consistency of operations.

It also provides a floor control facility based on baton-passing. The architecture of

a typical collaborative session in Shastra is depicted in Figure 3.5. Figure 3.3 shows

a view of the Shastra world, where different tools interact to support a collaborative

environment. The Shastra collaboration architecture uses a replicated computation

model for the multiple user system- a copy of the application (the Front) runs at each

site involved in the collaboration. The main benefits derived from this replication are

heterogeneity and performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1197

~-

(

(
_

113

Figure 4.2 Collaborative Polyhedron Smoothing using Shilp and Ganith

4.1.4.3 Toolkits

Currently Ganith, Shilp, Vaidak, Bhautik, Splinex and Rasayan are scientific tools

under the Shastra umbrella. These toolkits are powerful standalone systems that op

erate on application-specific models. They have been integrated into the Shastra

environment, and permit concurrent engineering and distributed problem solving by

providing access to their functionality to other toolkits. This interoperability en

hances the functionality of each toolkit.

The Ganith algebraic geometry toolkit manipulates arbitrary degree polynomials

and power series [8]. It is used to solve a system of algebraic equations and visu

alize its multiple solutions. It incorporates techniques for multivariate interpolation

and least-squares approximation to an arbitrary collection of points and curves, and

C1-smoothing using low-degree implicit patches. Other Shastra toolkits use the alge

braic manipulation capability it provides at its network interface- curve and surface

intersection, interpolation, and approximation functionality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1198

(

114

Figure 4.3 Collaborative Custom Hip Implant Design - Contour Generation

Splinex is a curve and surface modeling toolkit that provides interactive creation

and manipulation of implicit and parametric splines in Bernstein-Bezier and A-spline

bases [8]. It provides Bezier and A-spline surface manipulation capability in the

environment.

Shilp is a boundary representation based geometric modeling system [8]. Current

functionality of the toolkit includes extrude, revolve and offset operations, edit oper

ations on solids, pattern matching and replacement, boolean set operations, fleshing

of wireframes with smooth algebraic surface patches, and blending and rounding of

solid corners and edges. These operations can be invoked by local users and by re

mote toolkits. Figure 4.2 shows a site during collaborative polyhedron smoothing in

Shastra using Shilp and Ganith. Conferenced Shilp instances use multiple remote in

stances of Ganith to interpolate faces of a polyhedral car model in parallel, to produce

a curved surface model with C1-continuous surface patches. The toolkits communi

cate via their network interfaces, and Ganith services Shilp requests. The original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1199

l

(
~--

/
!

115

polyhedral car model (top-center), one designer's part of the shared task (bottom

left) and the shared, partially complete curved surface car model (bottom-right) are

shown. Images of a supporting video-conference are also shown.

The Vaidak Medical Image Reconstruction Toolkit is used to construct accurate

cross-sectional, surface and solid models of skeletal and soft tissue structures from CT

(Computed Tomography), MRI (Magnetic Resonance Imaging) or LSI (Laser Surface

Imaging) data. These models can be used by Shilp for design activity, and by Bhautik

for physical simulations. In a distributed problem solving scenario, a geometric model

of a human femur is reconstructed in Vaidak and manipulated in Shilp. In Figure 4.3,

a designer uses Shilp to interactively create a geometric model of a hip implant (right

top), by generating cross-sectional contours of the implant (bottom-center and right)

from a sectional model of the femur (center) created in Vaidak. A video conference

is used for communication.

The Bhautik physical analysis toolkit provides mesh generation facilities and a

graphics interface to set up, perform and visualize physical simulations on geometric

models created interactively using Shilp, or models reconstructed from imaging data

by Vaidak. Figure 4.4 shows a load transfer finite element analysis used in custom

design of hip implants [8], using Vaidak, Shilp and Bhautik toolkits.

Rasayan can compute and visualize the "docking" of drug and protein molecules

under molecular Brownian motion. It provides mechanisms for analysis and visual

ization of the potential energy surfaces of the molecules and the stationary points on

these surfaces.

4.1.4.4 Services

The current set of Shastra services contains communication and animation tools.

The objective is to provide a media-rich communication substrate for the design of

multimedia applications, by relieving application developers of the burden of low-level

manipulation of devices and media formats. In the scientific setting, especially in de

sign and analysis, most of the information shared by a collaborating team is oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1200

116

(

Figure 4.4 Stress Analysis Visualization in Collaborative Custom Implant Design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1201

(

117

Figure 4.5 One Site in a Three-Way Text Conference using Sha-Talk

towards structured 3D graphics, and is typically application specific. However, inclu

sion of facilities for text, image, audio and video communication has greatly enhanced

the quality of interaction, enabling the design of more sophisticated applications.

Sha-Talk is a text communication tool that supports synchronous n-way textual

conversations. It is useful for designers who do not have multimedia communication

facilities on the desktop. In Figure 4.5 we depict how Sha-Talk provides a simple tex

tual conferencing facility that is especially useful when other communication methods

are unavailable. Image bitmaps identify the owner of a text panel.

Sha-Draw is a Shastra environment sketching tool that facilitates the generation

and display of simple 2D pictures using a rich set of primitive operations. A col

laborative session consisting of Sha-Draw applications lets a group of collaborators

synchronously create and edit simple 2D sketches on shared whiteboards. Figure 4.8

depicts one site in a collaborative sketching session.

Sha-Poly is a collaborative visualization and graphical-object browsing and ma

nipulation tool. It supports shared viewing of 3D models using different display and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1202

118

(

Figure 4.6 Shared Visualization of Volume Data using Vaidak and Sha-Poly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1203

(_

(

119

Figure 4. 7 Video Support for Design - Visual Topological Verification

visualization techniques in a synchronously conferenced setting. Figure 4.6 shows one

of three sites with independent private windows, and a shared conference window,

for volume visualization of large medical data sets. Here a group of researchers uses

Sha-Poly to share volume visualization images of a head with cutaways (top-center

and right), and a cadaver (center). The images are generated by Vaidak from volume

data.

The Sha-Phone service is used to record and playback audio information stored

m multimedia objects. An n-way audio conference is conducted by setting up a

collaborative session consisting of Sha-Phone instances.

Sha-Video handles image data (without sound) - both still images and motion

video. It is used, both directly and by other tools, to playback and record video

information stored in multimedia objects. A collaborative session consisting of Sha

Video applications provides the mechanism to conduct a silent video conference. In

Figure 4.7 a researcher (top-right) uses a live video window (top-left) to confirm the

topological accuracy of a reconstructed femur (bottom-left, bottom-right) in Vaidak.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1204

(

(

120

Gati is an animation server that provides distributed and collaborative real-time

interactive animation in two and three dimensions. The system supports a high level

animation language based on a commands/event paradigm.

4.2 Collaborative Problem Solving

We now describe an example of multi-user cooperative design in the context of

Shastra. We have built an application for collaborative set operation based design

using Shilp and Sculpt, two Shastra toolkits. It permits a group of designers to

cooperatively create a 3D model by performing set operations on simpler models

in Shilp using Sculpt as a hack end to perform the actual operations. Shilp is a

geometric modeling system. Sculpt is optimized to perform set operations - Union,

Intersection, Difference and Complementation on polyhedral geometric models [95].

We use Shastra's application level cooperation substrate and user level collaboration

substrate to link the two applications. The result is a powerful multi-user interactive

design facility.

4.2.1 Motivation

The design paradigm in Shilp emphasizes creation of complex models by perform

ing operations on simpler models in a hierarchical fashion. Set operation based design

(Constructive Solid Geometry) is a very flexible way of creating intricate 3D designs.

Conventional systems support this method in the single user setting. A designer cre

ates a design by going through the multiple steps involved. This application presents

a departure from the traditional method - a collaborative design environment where

a group of designers cooperatively create large designs. It provides facilities to enable

cooperation between multiple users.

In boundary representation based solid modeling systems, generation of the results

of set operations is compute intensive. Also, the design process can he represented

as a tree in which the lower levels are often parallelizable - a group of designers

can work independently on those parts. The application improves throughput of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1205

(

121

Figure 4.8 Using Sha-Draw for Shared 2D Sketching

design operation by providing a collaborative environment from the conception phase

through the final design realization phase.

4.2.2 Startup Problem

One of the challenges of this design scenario is establishing a starting point. This

issue is traditionally resolved by conducting a physical meeting where a design team is

identified. Communication and information exchange between team members enables

them to synchronize at a starting point, and gives them all an idea of the final design.

Shastra eliminates the need for such a physical meeting by providing mechanisms to

create a design group and media-rich support for a design brainstorming session. In

Figure 4.8 Collaborating designers (top row) use shared windows to create a sketch

(bottom-right) and a design graph (bottom left). In conjunction with a Sha-Video

and Sha-Phone conference, Sha-Draw provides a powerful interaction environment.

A user running an instance of Shilp, queries Shastra to find out other active users

m the environment. He uses the messaging facilities of Shastra to invite some of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1206

l

/

(

122

them to a text conference, using Sha-Talk, and explores their interest in a particular

design. Subsequently, he decides on his working group. Before the design process

is started, some members of the team may have a mental picture of the object that

they are attempting to design, while others may not. One of the designers initiates a

collaborative brainstorming session using Sha-Draw, the multi-user sketching tool. If

audio and video processing hardware is available, he invokes instances of Sha-Phone

and Sha-Video, and initiates the relevant sessions. Sites without video hardware can

use the software-only playback facility to display incoming video streams and generate

outgoing streams. Audio-visual communication, provided by concurrent Sha-Phone

and Sha-Video sessions (see Figure 4.8), leads to rapidly establishing the design goal.

The group interactively creates a rough sketch of the intended design. Alternately,

a stored image, or a live image of an actual physical object, or of its picture, can be

broadcast to the group using Sha-Video. At the end of this phase, the entire team

has a good idea of the task at hand.

The designers use Sha-Draw to set up the dependencies of various parts of the

intended design in graphical form. A directed design graph, where nodes are solid

models and edges are dependencies of the destination nodes, is subsequently created.

The leaf (0 in-degree) nodes represent existing or primitive solid models, and inter

nal nodes are intermediate models in the design process. A designated root node

represents the final design goal. Directed edges indicate that the destination node

is the result of an operation on all of the source nodes. Annotations in the graph

indicate the operation needed to obtain the destination node from the source nodes

(see Figure 4.8).

4.2.3 Design Outline

The operation is performed in two phases - design graph generation and model

computation. The design graph, which is created in a Sha-Draw collaboration in

the context of a sketch or video image of the final model, is a succinct summary of

the entire design task. The image and/or the sketch is stored with the graph for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1207

l

/
(

123

future reference. The graph is converted into a form amenable to this operation, with

maximum in-degree of the nodes being 2, since only unary and binary operations

are supported. An automatic DNF (Disjunctive Normal Form) decomposition is the

simplest transformation, but doesn't produce the most efficient design graph. The

design team cooperatively restructures the design graph, in a Sha-Draw collaboration,

to meet the requirements.

In the model computation phase, a designer graphically positions models using

the Shilp user interface. This is done to set up models in appropriate configurations

for set operations. The actual operations to generate intermediate and final models

of the design graph are performed in Shilp by automatically requesting geometric

services from Sculpt.

4.2.4 The Shastra Setting

In a single user setting, a designer would compute the various nodes of the graph

sequentially. The final model would be checked for goodness, and the computation

process repeated till a satisfactory model was obtained.

In the multi-user setting, a collaborative Shilp session is initiated by one of the

Shilp users in the environment. He specifies, to the local Kernel, the Shilp users

who will be invited to participate in the session, and (by default) becomes the group

leader. The Kernel instantiates a Session Manager, which starts a session with the

group leader as its sole participant, and then invites the specified users of concurrently

executing remote Shilp instances to participate. Users who accept are incorporated

into the session. The Session Manager is responsible for providing access to shared

objects and context at all participating sites.

Any participant can leave the session at any time, by simply de-linking from it.

Users of other instances of Shilp in the environment can query the system to discover

ongoing sessions, and request participation. The group leader regulates whether or

not they are allowed to join the session. He can also invite other Shilp instances to

participate in the session.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1208

124

(

Figure 4.9 One Site in a Design Collaboration using Shilp and Sha-Draw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1209

(

/

125

Every participating Shilp session creates two shared windows in which all the

cooperative interaction occurs. More local windows can be created if desired. One

shared window contains the design graph that is used to regulate the entire operation.

The second window contains models as they are created or introduced to the session.

Users introduce leaf node objects into the session by selecting them into the shared

window.

The Session Manager partitions the design graph into slightly overlapping zones.

The partitioning is based on the number of people in the collaborating group, and

on the number of subtasks left in the operation (the number of uncomputed nodes

in this case). It aims to minimize the number of shared nodes of partitions. Shared

nodes in the graph are regions of contention in this collaboration scenario since they

constitute dependencies in an otherwise parallelizable situation. The partitioning

also aims to distribute the leaf nodes equally among the designers, since they usually

represent nodes that have to be interactively created. It defines a scenario for fair,

minimal-conflict cooperative interaction. The partitioning is dynamically altered as

users join and leave the session. The group leader can explicitly specify and alter

the partitioning. The partitioned design graph is displayed in a shared window, and

serves as a context to regulate the collaborative operation, since it captures the state

of the operation.

The partitioned zones are assigned to the collaborating designers, and are colored

differently for identification. Every user is responsible for filling the intermediate

nodes in his zone by first positioning the models on the incoming edges, and subse

quently performing the actual set operation. This process is repeated till a satisfactory

design is created. Figure 4.9 shows one site in the design of a simple windmill model.

Here, the design graph (bottom-left) is used as a context to monitor progress and

regulate the task. The designer sees the incomplete shared model (right) and the

locally designed part (top-left). Figure 4.10 shows another site at the end of the op

eration. Here, the designer sees a completed shared model (left), the locally designed

part (top-right) and the shared design graph (bottom-right).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1210

126

(.,_

Figure 4.10 Another Site, at the End of a Collaborative Design Session

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1211

{
--

l27

4.2.5 Collaborative Interaction

The Session Manager regulates all interaction relevant to the operation at partic

ipating sites. Interaction can occur in two modes.

In the Regulated mode, the user responsible for a zone creates all the models

internal to the zone. All other users are denied access to the interior of a zone by the

session manager. If the source nodes for an intermediate node are filled, a user locks

the intermediate node by selecting it in the Graph Window. The session manager

allows him access to models in the source nodes. The user interactively positions

these models and performs the appropriate set operation, and the resulting model is

assigned to the intermediate node, which is subsequently unlocked. At the boundary

of a partition, users of adjacent zones must agree about the models at the boundary

nodes so that inconsistencies are not created in the design.

A good group design protocol for this setting is to resolve boundary condition is

sues at the start of the operation, to prevent unnecessary cycles due to inconsistencies

later on. This involves computing the subgraphs rooted at boundary nodes first, till

satisfactory models at those nodes are obtained.

All operations are performed via the (central) session manager that is responsible

for keeping all sites up-to-date, so that the users have a dynamically changing and

continuously updated view of the operation in the shared windows - the design graph

and intermediate models. Changing a node requires all of its dependencies to be re

evaluated. The operation is completed when all the nodes of the design graph have

been evaluated. Any site with Copy permission can then extract the model from the

session and save it.

4.2.6 Access Regulation and Collaboration Modes

The collaboration infrastructure of Shastra supports a two-tiered permissions

based access regulation mechanism. It is used to structure a variety of multi-user

interaction modes at run-time. It allows a high degree of tailorability and flexibility

in Shastra's CSCW applications in the domain of interaction as well as data sharing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1212

/
i

128

and access control. The regulatory subsystem supports Access, Browse, Modify, Copy

and Grant permissions for collaboration sites as well as for shared objects [8]. These

permissions control what actions different users in the conference can take, and what

objects they can operate on. In addition, tools can define and use new permissions for

tool-specific actions. Permissions are controlled by the group leader or his designees.

The regulatory subsystem also provides a mechanism to enforce and regulate floor

control based on turn taking. Users can dynamically configure the interaction mode

and permissions to suit the task.

In the brainstorming phase, for example, it is useful to allow everyone equal access

to all operations and objects, to support free flow of ideas.

In the Unregulated mode for this operation, the partitioning merely suggests a

minimal-conflict setting, and the session manager doesn't regulate interaction beyond

what is specified by collaboration permission settings for the site and the object. In

this mode a user can access any node if he has Access and Modify permissions for the

collaboration.

The session manager allows only one user to manipulate a "hot spot" in the graph

where there is a possibility of contention - at any particular instant. It uses the first

come-first-served paradigm to decide which user gets temporary exclusive control.

The last completed operation specifies the model associated with the node.

The baton passing facility of the system can be used for floor control- to take turns

to set boundary nodes. Alternately, designers can use the auxiliary communication

channels to regulate access, and to decide which users will set those nodes.

At one extreme, the Shastra implementation for collaborative design can be used

by a single designer to design a solid model much like in a non-collaborative setting.

Allowing other users to join the session with only Access and Browse permissions

sets up the environment like an electronic blackboard to teach novice users the basics

of the design mechanism. An appropriate setting of collaboration permissions and

turn-taking can be used to allow hands on experience with the task. In conjunction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1213

(

129

with the audio and video communication services of Shastra, this becomes a powerful

instructional environment.

In a different situation, a group of n designers can set up an Regulated collab

orative design session and collaborate to design an object. Each designer performs

only the designated part of the shared design, and a speedup of as much as problem

size j maximum partition size, can be achieved. Novice designers can join the on

going session with only Access and Browse permissions, and get familiar with group

dynamics of a collaborative session. In yet another situation, a group of n designers

can start an Unregulated collaborative design session. Judicious use of the auxiliary

communication facilities (Audio, Video and Text) to regulate design operations in a

cooperative manner can let the team acquire a speedup factor of up ton.

4.2. 7 Heterogeneity Issues

A Shastra conference consists of multiple tool instances at different sites. This

localizes platform specific dependencies in the tool. It permits the Session Manager

to view tools as high level application objects, without having to concern itself with

low level details of how things are actually done. This approach supports the Shastra

system on a wide variety of hardware platforms. Specifically, tools can take advantage

of available hardware graphics facilities, video compression and decompression, and

audio processing hardware. This greatly simplifies multimedia interaction manage

ment.

4.2.8 Collaborative Design

4.2.9 Collaborative Smoothing in Shastra

An example of multi-user cooperative design in the context of Shastra is Collab

orative Smoothing using Shilp and Ganith toolkits. This permits a group of users

to collectively smooth out a rough polyhedral model by fitting C1 or CO continuous

patches using Hermite interpolation [17]. Ganith is optimized to perform algebraic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1214

130

manipulation -· curve-curve, curve-surface, and surface-surface intersection, as well

as interpolation [18]. Shilp is optimized for Boundary Representation based solid

modeling. A coordinated nexus between the two applications lets us add a powerful

design facility to the environment by drawing upon the functionality-sharing appli

cation level cooperation substrate, and the user level collaboration substrate of the

Shastra environment.

4.2.9.1 Motivation

The smoothing operation we describe arises in our geometric design environment

in two different situations. It provides an easy method for generating solid models

with curved surfaces from approximate polyhedral models that have been created

interactively. The operation is also used as the last phase of solid model creation from

reconstruction of medical images. Medical image reconstruction results in polyhedral

models with very high feature density(vertices, edges, and faces). A density reduction

step generates a rough polyhedral model from the dense model by collecting features

into groups. The smoothing operation results in a low feature density model that

accurately represents the medical image [7].

Generation of the surface patch is a compute intensive operation. Also, patch

computation for a face is independent of that for other faces, except for continuity

requirements, and can be done in parallel. However, surface curvature parameters

often require interactive twiddling by the designer, in order to adhere to global or local

requirements, and to control the goodness of fit. Collaborative Smoothing parallelizes

this step, by allowing multiple designers concurrent access, and thus significantly

improves design throughput.

4.2.9.2 Operation Outline

Smoothing is performed in two phases - curved wireframe generation and interpo

lating surface computation. The curved wireframe is generated in Shilp by specifying

continuity parameters, as well as edge curvature and vertex normals. The curved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1215

(

131

wireframe specifies the intersection of the interpolating surfaces, where they satisfy

the specified continuity requirement (C1 or CO). Parameters for controlling normal

values and edge curvature are specified graphically through the Shilp user interface.

Actual fleshing of the wireframe is done by requesting service from Ganith, which is

an algebraic geometry toolkit. In a single user setting, the designer specifies the pa

rameters for all the faces, based on the requirements for the design, and subsequently

computes the interpolating surfaces by making calls to Ganith servers. The obtained

model is checked for goodness using still images, motion video or some calculated

metric for reference, parameters are twiddled and the computation process repeated

till a satisfactory model is obtained.

4.2.9.3 The Shastra setting

The Shastra environment for this operation consists of a collection of instances of

the Shastra Kemel, Shilp and Ganith. A collaborative session is initiated by one of

the Shilp users in the environment. He specifies, to the local Kernel, the list of Shilp

users that will be invited to participate in the session, and becomes the group leader.

The Kernel instantiates a Session Manager, which starts a session with the group

leader as its sole participant, and then invites the specified users of concurrently

executing remote Shilp sessions to participate. Users that accept are incorporated

into the session. The Group Leader uses the access regulation mechanism to specify

what the other participants can/ can not do. He can invite other users to join the

session at any point in the collaboration. Other remote users can request to join the

session, and current participants can leave the session at any time.

4.2.9.4 The Collaborative Operation

Every participating Shilp session creates a shared window in which all the cooper

ative interaction occurs. A local window which displays only the user's sub-problem

can also be created. A user introduces the object to be smoothed by selecting it

into the Collaboration Window. The Session Manager is responsible for providing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1216

l

(

(

132

~:-·-r=¥·----... .: :. .-· -· ---- .,. ---· .. 't. . i ~

Figure 4.11 One Site in a Collaborative Smoothing Scenario in Shilp

access to the object at all participating sites that have the Access permission, and for

permitting interaction relevant to the operation at sites that have Modify permission

for the collaboration.

The Session Manager partitions the object into non-overlapping zones when the

smoothing operation is initiated. The partitioning is based on the number of people

in the collaboration, and on the number of subtasks left in the operation (the number

of uninterpolated faces, in this case). It aims to minimize the number of boundary

edges of partitions, which are regions of contention in this collaboration, since adjacent

faces have to obey the continuity requirement along shared edges. The partitioning

defines a scenario for minimal-conflict cooperative interaction. The partitioning can

be dynamically altered as users join/leave the session. The group leader can explicitly

specify and alter the partitioning.

The partitioned zones are assigned to the collaborating designers, and are colored

differently for identification. Every user is responsible for smoothing his zone by first

generating a satisfactory curved wireframe and subsequently using instances of the

algebraic geometry toolkit, Ganith, to perform the actual interpolation and cycling

through this process till a satisfactory design is created. Figures 4.11 and 4.12 show

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1217

133

l

/
_

Figure 4.12 Another Site in the Collaborative Smoothing Session

(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1218

(

134

a view of the interaction at two sites, with the users' own zone in a local window, and

the status of the operation in the shared window.

4.2.9.5 Collaborative Interaction

Interaction can occur in two modes. In the Regulated mode, the user responsible

for a zone controls the normals and curvature control parameters for vertices, edges

and faces internal to the zone. All other users are denied access to the interior by

the session manager. In the Unregulated mode, the partitioning merely suggests a

minimal-conflict setting, and the session manager doesn't regulate interaction beyond

what is specified by the permission settings for the site and the object. In this mode

any user can alter any parameter if he has Access and Modify permissions for the

collaboration.

The algebraic continuity requirement imposes constraints at the boundary of a

partition. Users of adjacent zones must agree about parameter settings for boundary

edges so that continuity requirements are not violated. A good group design protocol

for this setting is to resolve boundary condition issues at the start of the operation,

to prevent unnecessary cycles due to inconsistencies later on.

The session manager allows only one user to manipulate a "hot spot" - where

there is a possibility of contention - at any particular instant. It uses the first-come

first-served paradigm to decide which user gets temporary exclusive control. The last

validly specified parameter value takes effect. Designers can agree on a parameter

adjustment protocol using the token passing facility of the system to take turns to

specify vertex normals and edge curvature along boundary edges. Alternately, they

can use auxiliary communication channels (audio or text) by initiating Sha-Phone

or Sha-Talk sessions to decide mutually acceptable values, and which users will set

those values. A Sha-Video session can be used to inspect a physical model or picture

to visually establish goodness of the smoothing operation.

All operations are performed via the centrall session manager which is responsible

for keeping all sites up-to-date, so that the users have a dynamically changing and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1219

(

135

continuously updated view of the operation in the shared window - the curved wire

frame and interpolated patches of the object. Changing a parameter requires all of its

dependencies to be re-evaluated. The operation is completed when all the polyhedral

faces have been smoothed. Any site with Copy permission can then extract the model

from the session and save it.

4.2.9.6 Regulation Context

A point to note is that the topology of the object, as defined by the connectivity

of vertices and edges, does not change in the entire operation. Thus the wireframe

skeleton of the desired result serves as a context for the collaborative task and is always

available to the collaborating designers - in some sense they know what the resulting

object will look like, and it provides a very convenient medium to express partitioning

information as well as collaborative task status information. A collaborator who joins

an ongoing collaboration late can quickly come up-to-date, and infer the status of the

operation.

4.2.10 Heterogeneous Collaboration

The above described application is an example of a homogeneous collaboration -

the collaborative design task is supported on a collection of instances of the same tool

(Shilp in this case). We are currently building an environment for collaborative design

of custom hip and knee implants, using different toolkits of Shastra coupled with a

computer aided manufacturing facility. This puts us in the realm of heterogeneous

collaborations - here collaborations are supported between instances of different tools,

which operate on different types of models or data.

The architecture paradigm of Shastra has greatly facilitated the kind of inter

application cooperation required to build such a system. The Medical Image Re

construction toolkit (Vaidak) is used to build a model of the patients femur from

cross-section information (CT/MRI images). A designer uses Shilp to custom design

an implant for the femur (see Figure 4.3). A physical analyst using Bhautik conducts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1220

l

(

/

136

a stress-strain analysis to evaluate the load transfer occurring between implant and

bone. In Figure 4.4 a designer uses Bhautik to analyze stress under loading pat

terns to optimize custom implant shape for an artificial implant for a human femur

(top-left). The designers use video-conferencing for communication. The design team

iterates over this custom design process till an optimally shaped customized implant is

obtained. Multimedia communication facilities in the form of Sha-Video, Sha-Phone

and Sha-Poly conferences permit a rapid exchange of rationales for design choices,

interpretations of analyses and iterative shape modification and analysis. This is

described in detail in [14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1221

(

137

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

We have defined high level semantic models for tool architecture, media integra

tion and interaction, and for collaboration and sharing. We have created an infras

tructure that understands the core underlying technologies of CSCW and provides

abstractions that enable application developers to build groupware. Finally, we have

demonstrated the viability of our models and infrastructure by building multi-user

tools and collaborative problem solving environments.

5.1.1 Models

We have attempted to fill the need for high level semantic models that will enable

developers to build groupware more easily. The model stresses openness and exten

sibility because it is unlikely that any specific software tool will ever encompass all

the functionality that a user might reasonably require. The open architecture of the

tool model supports extensibility by integration with independent tools. It provides

cooperation via interoperation. It provides a highly generalized mechanism for inte

grating a heterogeneous range of information technologies. Interoperation allows the

function and content of any tool to be accessed by another tool. Various tools can be

cross coupled and linked in a variety of interactive ways.

5.1.1.1 Structural Model

The Structural Model described in Section 2.1 is an architectural model for dis

tributed and collaborative tools that emphasizes the separation of interface and func

tion. In this model tools consist of "contexts" that are characterized by "state" that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1222

(_

(
·~--

/

138

is modified by "events". Contexts may be local or remote. State may be private

or shared. Events may be user "actions" or "triggers". Events affect the private or

shared state and can cause multiple contexts, both local and remote, to be altered

simultaneously, synchronously or asynchronously.

The tool is thought of as an event driven data flow machine that has mechanisms

for routing events to different states and contexts. Distributed and collaborative tools

are built by setting up the appropriate state and contexts, and by describing how

events alter them. This model is amenable to implementing the core requirements for

enabling groupware. An important point to note is that the model provides a means

of structuring tool design. It makes no assumptions about language or platform of

implementation. In fact, tools built using this model can freely interoperate with

others built on the same principles but on different platforms, as long as they use a

compatible messaging mechanism.

5.1.1.2 Media Model

The Media Model described m Section 2.2 is a formalism that enables media

integration into tools. Any form of structured data with well defined interaction se

mantics is treated as media. In this model tools interact with media "agents" that

receive input from "sources", apply "filters" to the media stream, and generate out

put to "sinks". In conjunction with the Structural Model, this enables multimodal

user interaction, distributed interoperation, and synchronous and asynchronous con

ferencing.

This model enables integration of audio, video, 2D and 3D graphics, and text into

tools, and extends to support application specific objects, spreadsheets, databases,

animations, simulations, and hypertext and hypermedia. The recommendation that

media agents be built using the Structural Model, and that they provide their func

tionality through the abstractions of Stub Widgets and Media Widgets enables easy

integration of any media type into other tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1223

(

139

5.1.1.3 Collaboration Model

The Collaboration Model is described in Section 2.3. This is a flexible model

for collaboration that supports media-enhanced multi-user interaction. The sharing

model extends the content and function sharing of interoperation by providing mecha

nisms to control and regulate synchronous and asynchronous shared interaction. The

model can implement traditional centralized and replicated collaborative tools more

efficiently than the state of the art. It also supports a new Session Model for collab

oration. The Session Model allows for persistence and asynchronous interaction.

5.1.2 Infrastructure

The abstractions stress on semantic level handling, hiding actual details of lower

level implementation. We accept and acknowledge heterogeneity in the real world,

and capture and encapsulate it in the abstractions.

Of the core technological requirements of CSCW infrastructures, shared data man

agement tends to be domain dependent, and can be implemented using many meth

ods. We implement a method based on the simplicity of the Session Model. For

concurrency control, a mature field for which well known techniques exist, we imple

ment a simple method which, again, exploits the simplicity of the Session Model. We

do not propose any new ideas in these areas. Coordination control is inherently do

main and task specific, We do not attempt to specify general models and techniques,

and implement it on top of the communication infrastructure. We use a flexible

method for access control that meets the needs for interaction control.

We target the inadequacies of high level abstractions for distribution control,

collaboration control, multimedia, graphics, and user interfaces We present an infras

tructure that attempts to fill the gaps in order to support virtual spaces for flexible

collaborative interaction. The infrastructure lets us build tools with shared drawing

and viewing surfaces by supporting content dependent sharing - the tools are col

laboration aware, and support synchronous multi-user manipulations of application

specific objects. This adds a new dimension to the kind of cooperation that can occur

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1224

(_

140

in collaborative problem solving, because it permits cooperative browsing of objects

and interaction in the context of tools that manipulate those objects. Since tools

understand the structure of the data they manipulate, this allows a great degree of

flexibility in sharing and concurrency control. It supports cooperation in the design

and problem-solving phase, as well as in the review and analysis phase.

The CSCW infrastructure of Shastra facilitates creation of collaborative multi

media applications. Shastra provides intuitive session initiation methods, flexible

interaction modes, and dynamic access regulation.

5.1.2.1 Distribution Substrate

The Distribution Substrate is described in Section 3.2.1. This fulfills the need

for distribution control, and provides a mechanism to implement shared data man

agement for CSCW. It enables client-server and peer-peer interaction. The substrate

provides mechanisms of setting up connections across the network, and flexibly man

aging data in a distributed setting. It provides device independent data transport for

heterogeneous environments. It implements synchronous and asynchronous remote

procedure calling and provides multiple-connection management between instances

of tools. It supports several application level communication protocols.

5.1.2.2 Collaboration Substrate

The Collaboration Substrate is described in Section 3.2.2. This fulfills the need

for Collaboration control and provides mechanism for interaction control and access

regulation. It enables multi-user interaction. The substrate uses the distribution

substrate to implement shared state and context in a distributed setting. It provides

session management, interaction control and access regulation facilities that enable

rapid prototyping and development of collaborative tools and groupware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1225

/
i

141

5.1.2.3 Portable Graphics

The Portable Graphics Substrate is described in Section 3.2.3. This is an abstract

3D graphics system that enables dealing with 3D graphical interaction at a semantic

level. It lets tools access hardware graphics facilities of workstations in a device

independent manner, by presenting a high level interface to 3D graphics. It provides

source code level compatibility across different graphics platforms in a heterogeneous

setting, by implementing a hardware independent graphics library.

5.1.2.4 Collaborative Graphics Substrate

The Collaborative Graphics Substrate is described in Section 3.2.4. It is based on

the Structural Model and uses the distribution, collaboration and graphics substrates

to implement device independent distributed and collaborative graphics. It supports

synchronous and asynchronous 2D and 3D graphical interaction in a heterogeneous

setting. It enables incorporation of graphics facilities into tools. It provides high level

control of display and visualization parameters and supports telepointing.

5.1.2.5 Portable Multimedia

The Portable Multimedia Substrate is described in Section 3.2.5. This abstract

multimedia system provides access to available hardware audio and video facilities

on a workstation in a device-independent manner. It enables semantic handling of

audio and video streams and interaction. It provides source code level compatibility

across multiple platforms. It encapsulates details of media format and device specific

interaction, providing a high level abstraction for development of multimedia tools.

It deals with the issue of heterogeneity for CSCW.

5.1.2.6 Collaborative Multimedia Substrate

The Collaborative Multimedia Substrate is described in Section 3.2.6. It is based

on the Structural Model and uses the distribution, collaboration and multimedia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1226

(
··~

142

substrates to implement device independent distributed and collaborative multimedia.

It enables incorporating multimedia features and facilities into tools, and supports

collaborative multimedia interaction.

5.1.3 Tools

We have described applications that demonstrate that collaboration in the sci

entific design setting is facilitated by multimedia support as well as information ex

change.

5.1.4 Collaborative Tools

Sha-Draw and Sha-Poly (described in Appendix A) are collaborative graphics

tools. Sha-Phone, Sha-Video, and Sha-Talk are multimedia conferencing tools. They

are described in Appendix B. Sha-Chess (described in Appendix D) is the imple

mentation of a virtual chess board that supports synchronous multi-user interaction

in a distributed setting. Shilp is a solid modeling toolkit that supports synchronous

participatory collaborative design. It is described in Appendix C.

5.1.5 Collaborative Applications

We have described Shastra, a collaborative multimedia environment, and some

problem solving scenarios in Section 4. The environment for collaborative geometric

design is also described in [8, 10]. The environment for collaborative custom design of

artificial implants for human limbs is described in [14]. A distributed and collaborative

volume visualization environment is described in [15].

Shastra is a distributed and collaborative toolkit prototyping environment. It

provides a substrate for design of collaborative systems. The multimedia aspect

brings communication primitives to the desktop. The integration of 3D graphics

into the environment adds a new dimension to the potency of this environment, as

visual processing on powerful graphics engines becomes more common. Collaboration

support in the environment, in the form of communication facilities and application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1227

(

143

development substrate, makes it easy to develop synchronous multi-user applications,

and problem solving tools.

5.2 Applications

In the scientific domain, Carlborn et al [29] present a teleconferencing approach

to modeling and analysis of empirical data, and discuss a collaborative scientific vi

sualization environment, with output images of visualizations shared among multiple

users. The Shastra environment makes it convenient to build collaborative visualiza

tion facilities that not only share results of visualizations but also the input data and

models. This sharing allows multiple users to interact over the data set while ana

lyzing multiple simultaneous renderings with different viewing directions, cutaways

and independent visualization parameters. Mercurio et al [91] describe an interac

tive visualization environment for 3D imaging where an electron microscope is used

as a computer peripheral. The Shastra layer promotes sharing of such unusual and

expensive resources among multiple users across a network by enabling application

level cooperation.

Though a scientific manipulation environment has been the focus of our imple

mentation, the facilities easily abstract out to a variety of situations requiring similar

substrates. The collaborative layer is generic and can be used to implement the heart

of systems for collaborative editing, code viewing and quality assurance tools, soft

ware development environments, multi-user electronics CAD, architecture CAD and

mechanical CAD tools, and interactive multi-player games etc.

5.3 Future Work

The Shastra infrastructure provides us with powerful prototyping facilities for

sophisticated distributed multimedia applications and groupware. We briefly discuss

some research issues and applications of this substrate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1228

(

144

5.3.1 Language Based Generation

An interesting issue is that of automatic generation of groupware from appropri

ately structured single-user tools based on a high level description language. The

language would provide mechanisms to capture and express the elements of user in

teraction with the application, and generate a multiuser version based on the Shastra

infrastructure. This would automate and further ease the task of groupware creation.

5.3.2 Collaborative Hypermedia

The Shastra infrastructure can be used to build environments for collaborative

hypermedia browsing. As opposed to shared visual surfaces that existing systems

allow us to build, Shastra enables shared application interfaces and provides facilities

to let the user interact with and manipulate reviewable shared material. This entails

developing a general formalism that captures navigation through webs of information

for both private and shared interaction.

5.3.3 Shared Visual Programming

The Shastra infrastructure can be used to build visual programming and direct

manipulation interfaces to systems. This can be used to implement concept maps

and semantic networks, and to control animations and simulations.

5.3.4 Multimodal Interaction

The Shastra models emphasize and build on the separation of interface and func

tion. Shastra tools are essentially interpreters of embedded command languages that

respond to commands from multiple interfaces. Any system or tool that can generate

expressions in the embedded command language can thus drive these tools. This eases

integration of non-conventional input and output devices like touch-screens, graphics

tablets, 3D mouse etc. The infrastructure can be used in conjunction with speech

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1229

l

(_

/

(

145

recognition systems to build voice or audio-cue driven tools (cf. [120]). It can be used

in conjunction with image-processing systems to build visual-cue driven systems.

5.3.5 Virtual Environments

The collaborative multimedia and graphics facilities of Shastra enable the creation

of virtual environments. Many domain-specific applications can be implemented on

top of such environments. The communication facilities can be harnessed to provide

collaborative navigation through these virtual worlds, along with facilities to express

remote presence, and to interact with it.

5.3.6 Implementation Issues

The current implementation of the Shastra infrastructure needs testing and en

hancements that would make it a richer substrate.

5.3.6.1 Testing

Groupware adoption is very sensitive to ergonomic issues, and design and deploy

ment needs to be a participatory process involving user feedback. We need to conduct

more usability and performance tests, and incorporate the results into the control and

interaction policies that have been implemented.

5.3.6.2 Constraint Management

We currently implement constraint management in an ad hoc manner. Though

it is sufficient for the applications we have implemented, the infrastructure would

benefit from the use of more formal techniques, in the interest of generality. We

are investigating language based constraint specification and resolution systems (cf.

[39]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1230

l

(
.,

146

5.3.6.3 Concurrency Control

The Session Model for collaboration centralizes shared activity in the Session Man

ager and greatly eases the task of concurrency control, since it simplifies serialization.

The current implementation assumes that the Session Model will be used. We need

to implement a more general and powerful technique that is appropriate for other

models of collaboration.

5.3.6.4 Access Control

Though the current access control mechanism works well for low level session and

interaction control, we need to use a more formal, inheritance based model for general

specification and regulation of access control of application objects [121].

5.3.6.5 Distribution Platform

The current system is implemented on Unix platforms and uses a custom dis

tributed system built on top of TCP /IP. A DCE [115] based distributed implemen

tation, that would make the system more portable, is planned.

5.3.6.6 Language Support

The Structural Model makes no assumptions about the language and platform

of tool implementation, as long as it is compatible with the underlying messaging

system. The current system is implemented in C. Bindings to other languages are

planned.

5.3.6. 7 Persistence

We need to complete implementing persistence of collaborative sessions. This will

allow session state to be saved to stable store, transported, and subsequently restored,

permitting asynchronous cooperative interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1231

(
·-

147

5.4 Shastra

Shastra supports the paradigm shift in Computer Supported Cooperative Work

that has enabled users to be aware of other users of systems and tools, and allows

interaction among the users. This has extended the notion of sharing beyond the

simple sharing of data to the sharing of computation. We have attempted to aid the

development and deploymer..t nf groupware by providing general models and enabling

infrastructures. Groupware developers using the Shastra substrate do not have to

deal with the difficult task of marrying the multiple underlying technologies in a het

erogeneous distributed setting. They use the high level semantic models implemented

in the infrastructure to relate them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1232

l

BIBLIOGRAPHY

(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1233

l

(

148

BIBLIOGRAPHY

[1] H. Abdel-Wahab and M. Feit, XTV: A Framework for Sharing X Windows
Clients in Remote Synchronous Collaboration, Proc. IEEE Conference on Com
munications Software (1991), 159-167.

[2] M. Abel, Experiences in an Exploratory Organization, Intellectual Teamwork:
Social and Technological Foundations of Cooperative Work, Lawrence Erlbaum
Associates (1990), 489-510.

[3] J. Adam and D. Tennenhouse, The Vidboard: A Video Capture and Processing
Peripheral for a Distributed Multimedia System, Proc. ACM Conference on
Multimedia (1993), 113-120.

[4] S. Ahuja, J. Ensor, and D. Horn, The Rapport Multimedia Conferencing System,
Proc. ACM Conference on Office Information Systems (1988), 1-8.

[5] S. Ahuja, J. Ensor, and S. Lucco, A Comparison of Applications Sharing Mech
anisms in Realtime Desktop Conferencing Systems, Proc. ACM Conference on
Office Information Systems (1990), 238-248.

[6] M. Altenhofen, J. Dittrich, R. Hammerschmidt, T. Kappner, C. Kruschel,
A. Kuckes, and T. Steinig, The BERI<OM Multimedia Collaboration Service,
Proc. ACM Conference on Multimedia (1993), 457-463.

[7] V. Anupam and C. Bajaj, The Shilp Solid Modeling and Display Toolkit, v1.1
- A User's Guide, Tech. Report CSD-TR-92-072, Purdue University, 1992.

[8] , Collaborative Multimedia Scientific Design in Shastra, Proc. ACM Con-
ference on Multimedia (1993), 447-456.

[9] , Shastra: An Architecture for Development of Collaborative Applica-
tions, Proc. Second Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (1993), 155-166.

[10] , Collaborative Multimedia in Scientific Design, IEEE Multimedia Jour-
nal (1994), 39-49.

[11] ___ , Shastra: An Architecture for Development of Collaborative Applica
tions, International Journal of Intelligent and Cooperative Information Systems
(IJICIS) (1994), in press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1234

149

[12] V. Anupam, C. Bajaj, A. Burnett, S. Cutchin, M. Fields, A. Royappa, and
D. Schikore, XS: A Hardware Independent Graphics and Windowing Library,
Tech. Report CSD-TR-91-062, Purdue University, 1991.

[13] V. Anupam, C. Bajaj, S. Cutchin, S. Evans, I. Ihm, J. Chen, A. Royappa,
D. Schikore, and G. Xu, Scientific Problem Solving in a Distributed and Col
laborative Geometric Environment, Journal of Mathematics and Computers in
Simulation (1994), in press.

[14] V. Anupam, C. Bajaj, and D. Schikore, Custom Prosthesis Design and Pro
totyping, Multimedia Medical Education, Roy Rada ed., Intellect Books, U.K.
(1994), in press.

[15] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore, Distributed and Collabo
rative Volume Visualization, IEEE Computer (1994), in press.

[16] A. Babadi, COM/X: A Tool to Share X Applications, Proc. Second Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises (1993),
192-196.

[17] C. Bajaj and I. Ihm, Algebraic Surface Design with Hermite Interpolation, ACM
Transactions on Graphics 11 (1992), no. 1, 61-91.

[18] C. Bajaj and A. Royappa, The GANITH Algebraic Geometry Toolkit, Proc.
First International Symposium on the Design and Implementation of Symbolic
Computation Systems (1990), no. 429, 268-269.

[19] L. Bannon and K. Schmidt, CSCW: Four Characters in Search of a Context,
Studies in Computer-Supported Cooperative Work: Theory, Practice and De
sign, J. M. Bowers and S.D. Benford eds., Proc. First European Conference on
Computer-Supported Cooperative Work (1991), 3-16.

[20] T. Berners-Lee and R. Cailliau, World- Wide Web, Proc. Conference on Com
puting In High Energy Physics (1992), 23-27.

[21] N. Borenstein, Computational Mail as Network Infrastructure for Computer
Supported Cooperative Work, Proc. ACM Conference on Computer-Supported
Cooperative Work (1992), 67-74.

[22] N. Borenstein and N. Freed, Multipurpose Internet Mail Extensions: Mechanism
for Specifying and Describing the Format of Internet Message Bodies, Tech.
Report Internet RFC 1341, Network Information Center, 1992.

[23] N. Borenstein and C. Thyberg, Power, Ease of Use and Cooperative Work in
a Practical Multimedia Message System, International Journal of Man-Machine
Studies 34 (1991), no. 2, 229-259.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1235

(
\

150

[24] T. Brinck and L. M. Gomez, A Collaborative Medium for the Support of Con
versational Props, Proc. ACM Conference on Computer-Supported Cooperative
Work (1992), 171-178.

[25] D. Brittan, Being There: The Promise of Multimedia Communications, MIT
Technology Review 95 (1992), no. 4, 42-50.

[26] L. Brothers, V. Sembugamoorthy, and M. Muller, ICICLE: Groupware For
Code Inspection, Proc. Conference on Computer-Supported Cooperative Work
(1990), 169-181.

[27] C. Bullen and J. Bennett, Groupware in Practice: An Interpretation of Work
Experiences, Computerization and Controversy: Value Conflicts and Social
Choices, C. Dunlop and R. Kling eds., Academic Press (1991), 257-287.

[28] W. Buxton, Proc. Graphics Interface , Morgan Kaufmann, 1992.

[29] I. Carlbom, W. Hsu, G. Klinkner, R. Szeliski, K. Waters, M. Doyle, J. Gettys,
K. Harris, T. Levergood, R. Palmer, M. Picart, D. Terzopoulos, D. Tonnesen,
M. Vannier, and G. Wallace, Modeling and Analysis of Empirical Data in Col
laborative Environments, Comm. of the ACM 41 (1992), no. 6, 73-84.

[30] V. Cerf, Networks, Scientific American 265 (1991), no. 3, 72-81.

[31] D. Chamberlin and C. Goldfarb, Graphic Applications of the Standard Gener
alized Markup Language (SGML}, Computer Graphics 11 (1987), no. 4, 54-63.

[32] A. Clement, Cooperative Support for Computer Work: A Social Perspective
on the Empowering of End Users, Proc. Conference on Computer-Supported
Cooperative Work, F. Halasz ed., ACM (1990), 223-236.

[33] D. Comer, Internetworking with TCP /IP, Prentice-Hall, 1987.

[34] E. Conklin, Capturing Organizational Memory, Proc. Groupware, Morgan
Kaufmann (1992), 133-137.

[35] J. Conklin, Hypertext: An Introduction and Survey, IEEE Computer 20 (1987),
no. 9, 17-41.

[36] J. Conklin and M. Begema.n, giBIS: A hypertext tool for exploratory policy dis
cussion, Proc. Conference on Computer-Supported Cooperative Work (1988),
140-152.

[37] E. Craighill, R. Lang, M. Schlager, and J. Garcia-Luna, Environments to Enable
Informal Collaborative Design Processes, Proc. First Workshop on Enabling
Technologies for Concurrent Engineering 1 (1992), 32-42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1236

(_

(_

151

[38] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson, MMConf: An
Infrastructure for Building Shared Multimedia Applications, Proc. Conference
on Computer-Supported Cooperative Work, F. Halasz ed., ACM (1990), 329-
342.

[39] M. Cutkosky, M. Genesereth, R. Englemore, R. Fikes, T. Gruber, W. Mark,
J. Tenenbaum, and J. Weber, PACT: An Experiment in Integrating Concurrent
Engineering Systems, IEEE Computer 26 (1993), no. 1, 28-37.

[40] P. Dewan and R. Chaudhary, Primitives for Programming Multi- User Inter
faces, Proc. ACM Symposium on User Interface Software and Technology
(1991), 41-48.

[41] P. Dourish and V. Belloti, Awareness and Coordination in Shared Workspaces,
Proc. ACM Conference on Computer-Supported Cooperative Work (1992),
107-114.

[42] P. Dourish and S. Bly, Portholes: Supporting Awareness in a Distributed Work
Group, Proc. ACM Conference on Computer Human Interaction (1992), 541-
547.

[43] S. Dubs and S. Hayne, Distributed Facilitation: A Concept Whose Time Has
Come?, Proc. ACM Conference on Computer-Supported Cooperative Work
(1992), 314-321.

[44] C. Ellis, S. Gibbs, and G. Rein, Groupware: Some Issues and Experiences,
Comm. of the ACM 34 (1991), no. 1, 38-58.

[45] S. Elrod, R. Bruce, R. Gold, F. Halasz, W. Janssen, D. Lee, K. McCall, E. Ped
erson, K. Pier, J. Tang, and B. Welch, Liveboard: A Large Interactive Display
Supporting Group Meetings, Presentations and Remote Collaboration, Proc.
ACM Conference on Computer Human Interaction (1992), 599-607.

[46] J. Eveland and T. Bikson, Work Group Structures and Computer Support: A
Field Experiment, ACM Transactions on Office Information Systems 6 (1988),
no. 4, 344-379.

[47] T. Finholt and L. Sproull, Electronic Groups at Work, Organization Science 1
(1990), no. 1, 41-64.

[48] R. Fish, R. Kraut, M. Leland, and M. Cohen, Quilt - A Collaborative Tool
for Cooperative Writing, Proc. ACM Conference on Office Information Systems
(1988), 85-113.

[49] N. Flor and E. Hutchins, Analyzing Distributed Cognition in Software Teams:
A Case Study of Team Programming During Perfective Software Maintenance,
Proc. Fourth Workshop on Empirical Studies of Programmers, Ablex (1991),
36-64.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1237

l

(
,_

/

152

[50] F. Flores, M. Graves, B. Hartfiels, and T. Winograd, Computer Systems and the
Design of Organizational Interaction, ACM Transactions on Office Information
Systems 6 (1988), no. 2, 153-172.

[51] E. Fox, Advances in Interactive Digital Multimedia Systems, IEEE Computer
24 (1991), no. 10, 9-21.

[52] B. Gaines and M. Shaw, Open Architecture Multimedia Documents, Proc. ACM
Conference on Multimedia (1993), 137-146.

[53] D. Garfinkel, P. Gust, M. Lemon, and S. Lowder, The SharedX Multi-user Inter
face User's Guide, Version 2.0, Tech. Report STL-TM-89-07, Hewlett Packard
Laboratories, Palo Alto, California, 1989.

[54] W. Gaver, Sound Support for Collaboration, Readings in Groupware and
Computer-Supported Cooperative Work: Assisting Human-Human Collabora
tion, Ronald M. Baecker ed., Morgan Kaufman (1993), 355-362.

[55] S. Gibbs, LIZA : An Extensible Groupware Toolkit, Tech. Report Report STP-
042-88, MCC Software Technology Program, 1988.

[56] , Composite Multimedia and Active Objects, Proc. Conference on Object
Oriented Programming Systems, Languages and Applications (1991), 97-112.

[57] Y. Goldberg, M. Safran, and E. Shapiro, Active Mail- A Framework for lm
plem~nting Groupware, Proc. ACM Conference on Computer-Supported Coop
erative Work (1992), 75-83.

[58] T. Graham and T. Urnes, Relational Views as a Model for Automatic Dis
tributed Implementation of Multi-User Applications, Proc. ACM Conference on
Computer-Supported Cooperative Work (1992), 59-66.

[59] S. Greenberg, Sharing Views and Interactions with Single-User Applications,
Proc. ACM Conference on Office Information Systems (1990), 227-237.

[60] S. Greenberg, M. Roseman, D. Webster, and R. Bohnet, Issues and Experiences
Designing and Implementing Two Group Drawing Tools, Proc. Twenty-Fifth
Annual Hawii International Conference on the System Sciences 4 (1992), 139-
150.

[61] I. Greif, Designing Group-enabled Applications: A Spreadsheet example, Proc.
Groupware, D. Coleman ed., Morgan Kaufmann (1992), 515-525.

[62] J. Grudin, Groupware and Cooperative Work: Problems and Prospects, The Art
of Human-Computer Interface Design, B. Laureled., Addison-Wesley (1990),
171-185.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1238

' i,

,.

153

[63] N. Guimaraes, P. Silva, J. Santos, and A. Siemaszko, MOb Views: A Multiuser
Worksheet for a Mechanical Enginering Environment, Proc. Second Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises (1993),
182-186.

[64] J. Haake and B. Wilson, Supporting Collaborative Writing Of Hyperdocuments
in SEPIA, Proc. ACM Conference on Computer-Supported Cooperative Work
(1992), 138-146.

[65] S. Harrison and S. Minneman, The Media Space: A Research Project into the
use of Video as a Design Medium, Proc. Conference on Participatory Design
(1990), 43-58.

[66] C. Heath and P. Luff, Disembodied Conduct: Communication Through Video
in a Multi-Media Office Environment, Proc. ACM Conference on Computer
Human Interaction (1991), 99-103.

[67] D. Heller and P. Ferguson, Motif Programming Manual, vol. 6A, O'Reilly &
Associates Inc., December 1993.

[68] R. Hill, Languages for Construction of Multi-User, Multi-Media Synchronous
(MUMMS) Applications, Languages for Developing User Interfaces, Brad Mey
ers ed., Jones and Bartlett (1992), 125-143.

[69] J. Hollan and S. Stornetta, Beyond Being There, Proc. ACM Conference on
Computer Human Interaction (1992), 119-125.

[70] H. Ishi and M. Kobayashi, Clearboard: A Seamless Medium for Shared Draw
ing and Conversation with Eye Contact, Proc. ACM Conference on Computer
Human Interaction (1992), 525-532.

[71] H. Ishi and M. Ohkubo, Design of Team WorkStation: A Realtime Shared
Workspace Fusing Desktops and Computer Screens, Multi-User Interfaces and
Applications, S. Gibbs and A. Verrijn-Stuart eds., North Holland (1990), 131-
142.

[72] K. Jeffay, J. Lin, J. Menges, F. Smith, and J. Smith, Architecture of the Artifact
Based Collaboration Matrix, Proc. ACM Conference on Computer-Supported
Cooperative Work (1992), 195-202.

[73] R. Johansen, Computer Support for Business Teams, The Free Press, 1988.

[74] S. Kaplan, W. Tolone, D. Bogia, and C. Bignoli, Flexible, Active Support
for Collaborative Work with ConversationBuilder, Proc. ACM Conference on
Computer-Supported Cooperative Work (1992), 378-385.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1239

(

154

[75] R. Keller and W. Effelsberg, MCAM: An Application Layer Protocol for Movie
Control, Access and Management, Proc. ACM Conference on Multimedia
(1993), 21-28.

[76] R. Kraut, R. Fish, R. Root, and B. Chalfonte, Informal Communication in
Organizations: Form, Function, and Technology, People's Reactions to Tech
nology in Factories, Offices and Aerospace, S. Oskampand and S. Spacapan
eds., Sage Publications (1990), 145-199.

[77] M. Krueger, Artificial Reality, Addison-Wesley, 1991.

[78] K. Lai, T. Malone, and K. Yu, Object Lens: A "Spreadsheet" for Cooperative
Work, ACM Transactions on Office Information Systems 6 (1988), no. 4, 332-
396.

[79] G. Landow, Hypertext and Collaborative Work: The Example of Intermedia,
Intellectual Teamwork: Social and Technological Foundations of Cooperative
Work, J. Galegher, R. Kraut and C. Egido eds., Lawrence Erlbaum Associates
(1990), 407-428.

[80] B. Lange, Electronic Group Calendaring, Proc. Groupware, D. Coleman ed.,
Morgan Kaufmann (1992), 428-432.

[81] J. Lauwers, T. Joseph, K. Lantz, and A. Romanov, Replicated Architectures
for Shared Window Systems: A Critique, Proc. ACM Conference on Office
Information Systems (1990), 249-260.

[82] J. Lauwers and K. Lantz, Collaboration Awareness in Support of Collaboration
Transparency: Requirements for the Next Generation of Shared Window Sys
tems, Proc. ACM Conference on Computer Human Interaction (1990), 303-311.

[83] J. Lee, XSketch: A Multi-User Sketching Tool for Xll, Proc. ACM Conference
on Office Information Systems (1990), 169-173.

[84] T. Levergood, A. Payne, J. Gettys, G. Treese, and L. Stewart, AudioFile: A
Network-Transparent System for Distributed Audio Applications, Proc. Usenix
Summer Conference (1993), 22-33.

[85] S. Lu, K. Smith, A. Herman, D. Mattox, M. Silliman, M. Lucenti, J. Jacobs,
D. Chazin, M. Lawley, and M. Case, SWIFT: Software Workbench for Integrat
ing and Facilitating Teams, Proc. Second Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (1993), 48-59.

[86] T. Malone, , K. Grant, K. Lai, R. Rao, and D. Rosenblitt, The Information
Lens: An Intelligent System for Information Sharing and Coordination, Tech
nological Support for Work Group Collaboration, M. H. Olson ed., Lawrence
Erlbaum Associates (1989), 65-88.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1240

l

155

[87] T. Malone and K. Crowston, What is Coordination Theory and How Can it Help
Design Cooperative Work Systems., Proc. Conference on Computer-Supported
Cooperative Work, F. Halasz ed., ACM (1990), 357-370.

[88] T. Malone, K. Lai, and C. Fry, Experiments with Oval: A Radically Tailorable
tool for Cooperative Work, Proc. ACM Conference on Computer-Supported
Cooperative Work (1992), 289-297.

[89] M. Mantei, Observation of Executives Using a Computerized Supported Meeting
Environment., International Journal of Decision Support Systems 5 (1989),
153-166.

[90] , Adoption Patterns for Media Space Technology in a University Research
Environment, Friend '21 Conference (1991), 1-8.

[91] P. Mercurio, T. Elvine, S. Young, P. Cohen, K. Fall, and M. Ellisman, The
Distributed Laboratory, Comm. of the ACM 41 (1992), no. 6, 54-63.

[92] V. Mey and S. Gibbs, A Multimedia Component Kit: Experiences with Visual
Composition of Applications, Proc. ACM Conference on Multimedia (1993),
291-300.

[93] K. N arayanaswamy and N. Goldman, "Lazy" Consistency: A Basis for Coop
erative Software Development, Proc. ACM Conference on Computer-Supported
Cooperative Work (1992), 257-264.

[94] B. Nardi and J. Miller, Twinkling lights and Nested Loops: Distributed Problem
Solving and Spreadsheet Development, Computer-Supported Cooperative Work
and Groupware, S. Greenberg ed., Academic Press (1991), 29-52.

[95] B. Naylor and W. Thibault, Set Operations on Polyhedra using Binary Space
Partitioning Trees, IEEE Computer Graphics 21 (1987), no. 4, 65-77.

[96] C. Neuwirth, D. Kaufer, R. Chandhok, and J. Morris, Issues in the Design
of Computer Support for Co-Authoring and Commenting, Proc. Conference on
Computer-Supported Cooperative Work, F. Halasz ed., ACM (1990), 183-195.

[97] S. Newcomb, N. Kipp, and V. Newcomb, Hytime: Hypermedia/Time-based Doc
ument Structuring Language, Comm. of the ACM (1991), 67-83.

[98] R. Newman-Wolfe, M. Webb, and M. Montes, Implicit Locking in the Ensem
ble Concurrent Object-Oriented Graphics Editor, Proc. ACM Conference on
Computer-Supported Cooperative Work (1992), 265-272.

[99] J. Nunamaker, A. Dennis, J. Valacich, D. Vogel, and J. George, Electronic
Meeting Systems to Support Group Work., Comm. of the ACM 34 (1991),
no. 7, 40-61.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1241

(_

156

[100] J. Nunamaker, D. Vogel, A. Heminger, B. Martz, R. Grohowski, and C. Mc
Goff, Experiences at IBM with Group Support Systems: A Field Study, Decision
Support Systems 5 (1989), no. 2, 183-196.

[101] A. Nye, Xlib Programming Manual, vol. 1, O'Reilly & Associates Inc., February
1992.

[102] A. Nye and T. O'Reilly, X Toolkit Intrinsics Programming Manual, vol. 4M,
O'Reilly & Associates Inc., August 1992.

[103] OMG, The Common Object Request Broker: Architecture and Specification,
Tech. Report OMG Document #91.12.1, Object Management Group, December
1991.

[104] J. Patterson, R. Hill, S. Rohall, and M. Meeks, Rendezvous: An Architecture
for Synchronous Multi-User Applications, Proc. ACM Conference on Computer
Supported Cooperative Work (1990), 317-328.

[105] A. Pinsonneault and K. Kraemer, The Impact of Technological Support on
Groups: An Assesment of Empirical Research, Decision Support Systems 5
(1989), no. 2, 197-216.

[106] I. Posner and R. Baecker, How People Write Together, Proc. Twenty-Fifth
Annual Hawaii International Conference on the System Sciences 4 (1992), 127-
138.

[107] A. Prakash and M. Knister, Undoing Actions in Collaborative Work, Proc. ACM
Conference on Computer-Supported Cooperative Work (1992), 273-280.

[108] R. Price, MHEG: An Introduction to the Future International Standard for
Hypermedia Object Interchange, Proc. ACM Conference on Multimedia (1993),
121-128.

[109] V. Rangan and H. Vin, System Support for Computer Mediated Multimedia
Collaborations, Proc. ACM Conference on Computer-Supported Cooperative
Work (1992), 203-209.

[110] B. Reeves and F. Shipman, Supporting Communication between Designers
with Artifact-Centered Evolving Information Spaces, Proc. ACM Conference
on Computer-Supported Cooperative Work (1992), 394-401.

[111] R. Rice and C. Steinfield, Experiences with New Forms of Organizational Com
munication via Electronic Mail and Voice Messaging, Telematics and Work, J.
Andriessen and R. Roe eds., Lawrence Erlbaum Associates (1991), 32-45.

[112] M. Robinson, Computer-Supported Cooperative Work: Cases and Concepts,
Groupware 91: The Potential of Team and Organisational Computing, P. Hen
driks ed., SERC (1991), 59-75.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1242

(_

157

[113] T. Rodden and G. Blair, CSCW and Distributed Systems: The Problem of
Control., Proc. Second European Conference on Computer-Supported Cooper
ative Work, L. Bannon, M. Robinson and K. Schmidt eds., Kluwer Academic
Publishers (1991), 49-64.

[114] M. Roseman and S. Greenberg, A Groupware Toolkit for Building Real- Time
Conferencing Applications, Proc. ACM Conference on Computer-Supported Co
operative Work (1992), 43-50.

[115] W. Rosenberry, D. Kenney, and G. Fisher, Understanding DCE, O'Reilly &
Associates, Inc., 1993.

[116] S. Sarin and I. Greif, Computer-based Real-time Conferencing Systems, IEEE
Computer 18 (1985), no. 10, 33-45.

[117] M. Scardamalia and C. Bereiter, High Levels of Agency for Children in Knowl
edge Building: A Challenge for the Design of New Knowledge Media, The Jour
nal of the Learning Sciences 1 (1991), no. 1, 37-68.

[118] B. Schatz, Building an Electronic Scientific Community., Proc. Twenty-Fifth
Annual Hawaii International Conference on the System Sciences (1991), 739-
748.

[119] R. Scheifler, J. Gettys, and R. Newman, The X Window System, ACM Trans
actions on Graphics 5 (1986), no. 2, 79-109.

[120] C. Schmandt, Phoneshell: the Telephone as Computer Terminal, Proc. ACM
Conference on Multimedia (1993), 373-382.

[121] H. Shen and P. Dewan, Access Control for Collaborative Environments, Proc.
ACM Conference on Computer-Supported Cooperative Work (1992), 51-58.

[122] L. Shu and W. Flowers, Groupware Experiences in Three Dimensional Com
puter Aided Design, Proc. ACM Conference on Computer-Supported Coopera
tive Work (1992), 179-186.

[123] L. Sproull and S. Kiesler, Connections: New Ways of Working in the Networked
Organization, The MIT Press, 1991.

[124] R. Sproull, A Lesson in Electronic Mail., Connections: New Ways of Working
in the Networked Organization, L. Sproull and S. Kiesler eds., The MIT Press
(1991), 177-184.

[125] K. Srinivas, R. Reddy, A. Babadi, S. Kamana, V. Kumar, and Z. Dai, MONET:
A Multi-media System for Conferencing and Application Sharing in Distributed
Systems, Proc. First Workshop on Enabling Technologies for Concurrent Engi
neering 1 (1992), 21-37.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1243

(

158

[126] D. Sriram, R. Logcher, A. Wong, and S. Ahmed, An object-oriented framework
for collaborative engineering design, Computer Aided Product Development,
MIT-JSME Workshop, MIT (1991), 51-92.

[127] M. Stefik, D. Bobrow, G. Foster, S. Lanning, and D. Tatar, WYSIWIS Revised:
Early Experiences with Multiuser Interfaces, ACM Transactions on Office In
formation Systems 5 (1987), no. 2, 147-167.

[128] J. Tang, Findings from Observational Studies of Collaborative Work, Interna
tional Journal of Man-Machine Studies 34 (1991), no. 2, 143-160.

[129] D. Tatar, G. Foster, and D. Bobrow, Design for Conversation: Lessons from
Cognotor, International Journal of Man-Machine Studies 34 (1991), no. 2, 185-
209.

[130] G. Toye, M. Cutkosky, L. Leifer, J. Tenenbaum, and J. Glicksman, SHARE:
A Methodology and Environment for Collaborative Product Development, Proc.
Second Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (1993), 33-47.

[131] M. Turoff, Computer Mediated Communication Requirements for Group Sup
port, Journal of Organizational Computing 1 (1991), 85-113.

[132] K. Watabe, S. Sakata, K. Maeno, H. Fukuoka, and T. Ohmori, A Distributed
Multiparty Desktop Conferencing System, Proc. ACM Conference on Computer
Supported Cooperative Work (1990), 27-38.

[133] S. Whittaker, S. Brennan, and H. Clark, Coordinating Activity: An analysis
of interaction in CSCW, Proc. Conference on Computer Human Interaction:
Human Factors in Computing Systems 1 (1991), 441-442.

[134] T. Winograd, Groupware and the Emergence of Business Technology, Proc.
Groupware, D. Coleman ed., Morgan Kaufmann (1992), 69-72.

[135] C. Wolf, J. Rhyne, and L. Briggs, Communication and Information Reh·ieval
with a Pen-based Meeting Support Tool, Proc. ACM Conference on Computer
Supported Cooperative Work (1992), 322-329.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1244

l

APPENDICES

(
-~-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1245

l

159

Appendix A: Graphics Support

A.l Sha-Draw

Sha-Draw is an Agent in the Shastra environment, built on the Structural and

Media Models. (The notion of Agents, and these Models, is described in Section 2.)

Sha-Draw uses structured 2D graphics and interaction as its media type.

Sha-Draw is used as a sketching tool, and facilitates the generation and display

of simple 2D sketches and pictures, using a rich set of primitives. The typical user

interface is shown in Figure A.l. It depicts the drawing toolbox (at left) that is

used to choose drawing primitives, and a drawing canvas (at right) that shows some

primitives drawn. Also shown are a few pointers or markers, which are typically used

to point to features of a drawing.

Sha-Draw allows the user to create and use multiple canvases (Contexts in the

Model). Drawings can be moved to and from different canvases using interface fa

cilities. Sha-Draw supports input and output of 2D drawings from files. They are

the data objects that it manipulates. Figure A.2 depicts the block architecture of

Sha-Draw.

In Sha-Draw, the actual interactive process of creation of drawings is captured

using an embedded command language. This interaction contains data with tem

poral attributes and constitutes a media stream. Sources for this media stream can

be the actual canvas, local files, or remote sources like other tools. Sinks for this

media stream can be the local canvas, local files, or remote sinks like other tools.

The embedded command language can be used as a scripting language for simple

animations using 2D graphics primitives for drawing. Filters allow the application of

2D transformations, color changes and stream mixing.

Drawings are recorded into files by setting up the canvas as a Source, and the file

as a Sink. They are played back from files by setting up the file as a Source, and the

canvas as a Sink. The interface provides transport control facilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1246

160

:l··············l.<J'·:·: .. :.[J· :: ' ·u·
. : :.: .. : :CJ: :: ... : ·
::.: ... : .. : ... [}:.··.: : .. :

[]····· : : : :: :: .:.: .· ..

Figure A.l Sha-Draw User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1247

160

—

on
a

i i

ine
a:
|

pos aeaoe
Figure A.1 Sha-Draw User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1247

161

User

L--__ R_o...,.ut_e_r __ 1-o
············· _ .. , :·· ..

• ••••••••••••••••••••• --:" Remote ':}
\ Tool /'

•················

Context

........................
,.,._.•••••••••••••••• I

•• ~ Filter r·-~ :"' : ,.·· : !··· •· r··················:
: Transform :' '·····:.~····•::::··· : Render :
.......................... ::::r::::........ , · .. ·:.·: ·.·.·.;···········-····

! Edit : ! Mix : : :

Sha-Draw

Figure A.2 High Level Architecture of Sha-Draw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1248

161

 Graphics

Window

User
Interface

Perey‘

etssssceeseecereaeet Filter eeseeeeees
Core f Transform f° besser! “i Render |

prteeenneee Blewnwwees poceses?

Figure A.2 High Level Architecture of Sha-Draw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1248

(_

162

In the distributed setting, Sha-Draw allows a user to draw into canvases of other

Sha-Draw instances running on different machines across the network. This is done by

setting up the local canvas as a Source, and the remote canvases as Sinks. Alternately,

the user plays back recorded files into multiple remote canvases by setting up the

local file as a Source, and the local and remote canvases as Sinks. Only the user

controlling the Source can draw into the canvas, though everyone sees the interaction

or the drawing. The telepointing facility is exploited for gesturing and pointing.

In the collaborative setting, Sha-Draw is used as a multi-user 2D graphics system

and sketchpad. A collaborative session consisting of Sha-Draw instances lets a group

of collaborators synchronously create and edit 2D sketches on shared virtual white

boards. When a user joins the session, Sha-Draw creates a shared canvas. Drawing

and interaction streams from all sites are mixed and rendered into this canvas. In

the simple implementation, only graphical objects that are drawn into this canvas

are shared with every other user in the session, by transporting the appropriate data

object. In the more complex case, the interaction involved in drawing is shared, by

redirecting the input media stream to the shared Session Context, i.e. the new canvas

is the Source and the shared Session Context is the Sink. This mechanism supports

synchronous multi-party interaction.

The interaction control system can be used to set up different multi-user interac

tion scenarios. For example, in the Free Interaction mode, only users with Modify

capability can alter Session State by creating or modifying drawings. Users with only

Browse capability can independently apply viewing transformations like panning and

zooming. Users with only Access capability simply observe shared interaction on the

canvas. In the Regulated Interaction mode, users take turns to use the canvas to edit

primitive objects and change Session State. Access regulation methods can be used

for fine grained interaction control. Permissions attached to drawings and primitive

objects regulate what operations users can perform on those objects. For example,

a user can protect something he draws by removing the Modify permission of that

object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1249

(_

l
\ "·-

163

Sha-Draw is built on the Structural and Media Models. and uses the Collaborative

Graphics Substrate of the Shastra environment. This high level of abstraction, and

the common messaging system, lets it interoperate with any tool in the environment

that speaks the same command language. The Collaborative Graphics Substrate

provides a 2D Graphics Widget Stub, which encapsulates the command language

and communication. Any tool can instantiate a stub. It can then participate in

the collaborative process in a media-aware manner by using its own mechanisms

for local drawing and interaction, or by using substrate facilities to do the same.

The substrate also provides a 2D Graphics Widget that implements canvases and

is bundled with interaction functionality. Tools can instantiate a widget for media

unaware interoperation.

A.2 Sha-Poly

Sha-Poly is an Agent in the Shastra environment, built on the Structural and

Media Models. (The notion of Agents, and these Models, is described in Section 2.)

It uses structured 3D graphics, models, and the associated interaction as its media

type.

Sha-Poly is used as a visualization and graphical-object browsing and manipula

tion tool. It allows graphical objects to be manipulated and visualized in platform

independent XS graphics windows. XS based tools transparently use available hard

ware graphics facilities whenever available.

Sha-Poly allows the user to create and use multiple graphics canvases (Contexts

in the Model). Models can be moved to and from different canvases using interface

facilities. It supports input and output of 3D models from files, and understands

a variety of 3D model representation formats. Models are the data objects that it

manipulates. Figure A.3 depicts the block architecture of Sha-Poly.

In Sha-Poly, the actual process of 3D graphical interaction is captured using an

embedded command language. This interaction, containing data with temporal at

tributes, constitutes a media stream. Sources for this media stream can be the local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1250

164

User

L-__ R_o..,.ut_e_r __ _,1-o

Context

I ••••••••••••••••••~ ••••••••••••••••••: o"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'

l Transform ~-.. :-~---············: t.·{ Mix •

:~~~~~~~~~~~~~~~~~~~~: ::l Filter [J.:~:~~:::::::::::::::~.-. 1
: View :" ······;;.·····=:::··· : Render :
'• •••"' •••• •• ••• • ·; ::: .. • I!::: •• ••• .-· • :.· .. ·:: • •" .. • · .. · .. : :· • •• • ••• •• • •• • • •

l Model l l Edit l
: ! : :

Sha-Poly

Figure A.3 High Level Architecture of Sha-Poly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1251

164

Graphics
Window

User
Interface

pate wrwnewscneweces

PO Mecencnseteesrroee! : Render:weeee

Figure A.3 High Level Architecture of Sha-Poly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1251

(

r
!

165

graphics canvas, local files, or remote tools. Sinks for this media stream can be the

local canvas, local files, or remote tools. The embedded command language can be

used as a scripting language for simple animations using 3D graphics. Filters allow

the application of 3D transformations, illumination and lighting model specification,

material property specification and stream mixing.

Graphical interaction is recorded in a file by setting up the canvas as a Source,

and the file as a Sink. Interaction is played back from a file by setting up the file as

a Source, and the canvas as a Sink.

Sha-Poly supports graphical interaction in a distributed setting, by interoperating

with other tools on heterogeneous platforms. Support for heterogeneous graphics is

enabled by XS (see Section 3.2.3). Sha-Poly allows a user to interact in canvases of

other Sha-Poly instances running on different machines across the network. This is

done by setting up the local canvas as a Source, and the remote canvases as Sinks. Al

ternately, the user plays back recorded interaction files into multiple remote canvases

by setting up the local file as a Source, and the local and remote canvases as Sinks.

Only the user controlling the Source can draw into the canvas, though everyone sees

the graphical interaction.

In the collaborative setting, Sha-Poly is used as a multi-user 3D graphics system.

A collaborative session consisting of Sha-Poly instances lets a group of collaborators

synchronously interact over a shared 3D canvas. It supports shared viewing of 3D

models using different display and visualization techniques. When a user joins the

session, Sha-Poly creates a shared canvas. 3D models are introduced into the shared

canvas using interface facilities. These data objects are transported to all participat

ing sites. Graphical interaction with the models is shared, by redirecting the input

media stream to the shared Session Context, i.e. the new canvas is the Source and the

shared Session Context the Sink. This mechanism supports synchronous multi-party

interaction.

The typical user interface for collaboration is shown in Figure A.4. It depicts

the shared canvas (at bottom) with a shared object. Also shown are telepointers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1252

166

l

(

Figure A.4 Sha-Poly User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1253

(

167

which are typically used to point at features of the shared model, and for gesturing.

The upper part of the figure shows an example of integrating a Video Widget, which

allows for transparent, media-unaware in\eroperation with a Video Agent. It depicts

the participating users.

The interaction control system can be used to set up different kinds of multi-user

interaction scenarios. For example, in the Free Interaction mode, only users with

Modify capability can alter Session State by changing illumination parameters, or

viewing and modeling parameters of the scene. Users with only Browse capability

can independently apply viewing transformations and modeling transformations, al

lowing them to maintain independent views of the shared state. Users with only

Access capability simply observe shared interaction on the canvas. In the Regulated

Interaction mode, users take turns to use the canvas to change Session State.

Access regulation methods can be used for fine grained interaction control. Per

missions attached to models regulate what operations users can perform on them. For

example, a user can disallow others from changing material properties of a model, or

its 3D location, removing its Modify.

Sha-Poly is built on the Structural and Media Models. and uses the Collaborative

Graphics Substrate of the Shastra environment. This high level of abstraction lets

it interoperate with any tool in the environment that speaks the same command

language. The Collaborative Graphics Substrate provides a 3D Graphics Widget

Stub, which encapsulates the command language, and communication. Any tool can

instantiate a stub. It can then participate in the collaborative process in a media

aware manner by using its own mechanisms for display and interaction, or by using

substrate facilities to do the same. The substrate also provides a 3D Graphics Widget

that implements canvases and is bundled with interaction and display functionality

on top of XS. Tools can instantiate a widget for media-unaware interoperation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1254

l

i
\ ,_

168

Appendix B: Multimedia Support

B.l Talk

Sha-Talk is a very simple Agent in the Shastra environment, built on the Structural

and Media Models. (The notion of Agents, and of these Models, is described in Section

2.) Sha-Talk uses text as its media type.

Sha-Talk is used as a text notepad. Sha-Talk allows the user to create and use

multiple canvases (Contexts in the Model). Text can be moved to and from different

canvases using interface facilities. Sha-Talk supports input and output of text from

files. They are the data objects that it manipulates. Figure B.l depicts the block

architecture of Sha-Talk.

In Sha-Talk, textual interaction is captured using an embedded command lan

guage. This interaction is basically textual data with some control information, and

constitutes a media stream. Sources for this media stream can be the local canvas,

local files, or remote sources like other tools. Sinks for this media stream can be the

local canvas, local files, or remote sinks like other tools.

Text interaction is recorded into files by setting up the canvas as a Source, and

the file as a Sink. It is played back from files by setting up the file as a Source, and

the canvas as a Sink. The interface provides transport control facilities.

In the distributed setting, Sha-Talk allows a user to write into canvases of other

Sha-Talk instances running on different machines across the network. This is done by

setting up the local canvas as a Source, and the remote canvases as Sinks. Alternately,

the user plays back recorded files into multiple remote canvases by setting up the

local file as a Source, and the local and remote canvases as Sinks. Only the user

controlling the Source can type into the canvas, though everyone sees the interaction.

A telepointing facility is implemented, and exploited for gesturing and pointing.

In the collaborative setting, Sha-Talk is used as a multi-user notepad. A col

laborative session consisting of Sha-Talk instances lets a group of collaborators syn

chronously communicate using text. When a user joins the session, Sha-Talk creates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1255

169

l

L-. __ R_o..,.ut_e_r __ _.!~

Context

................................ :·-···············: :
• Filter • • i !··:

r••·······:~;~::·~~~~··:~::·~·~:,
l Process l l Mix ! :

Sha-Talk

Figure B.l High Level Architecture of Sha-Talk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1256

169

Figure B.1 High Level Architecture of Sha-Talk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1256

l

170

a a panel in a shared canvas. Interaction streams from all sites are rendered into

their respective panel on this canvas. The interaction is shared, by redirecting the

input media stream to the shared Session Context, i.e. the new canvas is the Source

and the shared Session Context is the Sink. This mechanism supports synchronous

multi-party interaction. It is particularly useful when we do not have multimedia

communication facilities on the desktop.

The interaction control system can be used to set up different multi-user interac

tion scenarios. For example, in the Free Interaction mode, only users with Modify

capability can alter Session State by sending it text. Users with only Browse capabil

ity can independently apply viewing transformations like scrolling. Users with only

Access capability simply observe shared interaction on the canvas.

The typical user interface is shown in Figure B.2. It depicts a canvas with two

text panels. Bitmap images of users are used to identify owners of panels.

Sha-Talk is built on the Structural and Media Models. and uses the Collaboration

Substrate of the Shastra environment. This high level of abstraction, and the common

messaging system, lets it interoperate with any tool in the environmant that speaks

the same command language. The Collaboration Substrate provides a Text Widget

Stub, which encapsulates the command language, and communication. Any tool can

instantiate a stub. It can then participate in the collaborative process in a media

aware manner by using its own mechanisms for local interaction, or by using substrate

facilities to do the same. The substrate also provides a Text Widget that implements

canvases and is bundled with interaction functionality. Tools can instantiate a widget

for media-unaware interoperation.

Sha-Talk provides the infrastructure to implement multi-user text editors and text

processing systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1257

171

(_

(

Figure B.2 Sha-Talk User Interface

/
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1258

(
I

172

Figure B.3 Sha-Phone User Interface

B.2 Sha-Phone

Sha-Phone is an Audio Agent in the Shastra environment, built on the Structural

and Media Models. (The notion of Agents, and these Models, is described in Section

2.) Sha-Phone uses digital audio as its media type.

Sha-Phone is used as an audio processing tool, and facilitates capture, playback

and processing of audio signals. It provides different kinds of filtering, and special

effects, and supports audio transformations like mixing, pitch-shifting and amplitude

adjust>Ilent. The Motif-based [67] user interface is shown in Figure B.3.

Sha-Phone allows the user to create and use multiple audio contexts, which are

logical representations of external devices like microphones, speakers etc. Audio ob

jects can be moved to and from different contexts using interface facilities. Sha-Phone

supports input and output of audio clips from files. They are the data objects that

it manipulates. Figure B.4 depicts the block architecture of Sha-Phone.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1259

l

' I

173

In Sha-Phone, audio interaction is captured using an embedded command lan

guage. This interaction is basically audio data with some control information, and

constitutes a media stream. Sources for this media stream can be the local audio

context, local files, or remote sources like other tools. Sinks for this media stream

can be the local audio context, local files, or remote sinks like other tools. The em

bedded command language can be used as a scripting language for dynamic control

of audio rendition. Filters allow the implementation of special effects, pitch shifting

and amplitude adjustment, as well as stream mixing.

Audio is recorded into files by setting up the microphone as a Source, and the file

as a Sink. They are played back from files by setting up the file as a Source, and local

speakers as a Sink. The interface provides transport control and filtering facilities.

In the distributed setting, Sha-Phone allows a user to redirect audio signals into

audio contexts of other Sha-Phone instances running on different machines across the

network. This is done by setting up the local context as a Source, and the remote

contexts as Sinks. Alternately, the user plays back recorded files into multiple remote

contexts by setting up the local file as a Source, and the local and remote canvases

as Sinks. Only the user controlling the Source can control rendition via transport

control or filters. Everyone else just receives the audio stream.

In the collaborative setting, Sha-Phone is used as a multi-user audio processing

system. A collaborative session consisting of Sha-Phone instances lets a group of

collaborators conduct an audio conference. When a user joins the session, Sha-Phone

creates a shared context. Audio interaction streams from all sites are mixed and ren-

dered via this context. Thus Sha-Phone can be used as a desktop audio conferencing

tool. Audio objects are shared by transporting them to all sites. Audio interaction is

shared, by redirecting the input media stream to the shared Session Context, i.e. the

new context is the Source and the shared Session Context is the Sink. Sha-Phone can

operate as a collaborative audio manipulation system. This mechanism supports syn

chronous multi-party manipulation of audio objects. Besides supporting multi-point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1260

174

l

.__ __ R_o...,.u_te_r __ _.l-........

Context

...........................!..................... :
r··················: ... ·< Filter t::k ... : .
• Resample : ·-----·~·· .. •:·----· · M1x •
:. ;::: :::::·..... ...::· .. · .. ·::: :::· .. :···············=

i Process i i Render i : :

Sha-Phone

Figure B.4 High Level Architecture of Sha-Phone

/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1261

174

 Interface

pe,

Sha-Phone

Figure B.4 High Level Architecture of Sha-Phone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1261

' r

175

recording and playback, the conferenced system allows collaborative manipulation of

live and stored audio streams- interaction with reviewability.

The interaction control system can be used to set up different multi-user interac

tion scenarios. For example, in the Free Interaction mode, only users with Modify

capability can alter Session State by sending it audio data or streams. Users with

only Access capability simply receive shared audio in the context. In the Regulated

Interaction mode, users take turns to use the context to broadcast audio.

Sha-Phone is built on the Structural and Media Models. and uses the Collabora

tive Audio Substrate of the Shastra environment. This high level of abstraction, and

the common messaging system, lets it interoperate with any tool in the environment

that speaks the same command language. The Collaborative Graphics Substrate

provides an Audio Widget Stub, which encapsulates the command language, and

communication. Any tool can instantiate a stub. It can then participate in the col

laborative process in a media-aware manner by using its own mechanisms for audio

presentation and control, or by using substrate facilities to do the same. The sub

strate also provides a Audio Widget that implements contexts and is bundled with

interaction functionality. Tools can instantiate a widget for media-unaware interoper

ation. Thus inter-operable with other Shastra tools, Sha-Phone is used to record and

playback audio information stored in multimedia objects maintained by other tools,

by setting up appropriate contexts and filters.

B.3 Video

Sha-Video is a Video Agent in the Shastra environment, built on the Structural

and Media Models. (The notion of Agents, and these Models, is described in Section

2.) Sha-Video uses still images and live and stored video streams as its media type.

Sha-Video is a video processing toolkit that supports video recording and playback

(without sound), as well as image processing. The typical user interface is shown in

Figure B.5. It depicts a control panel (at left) that is used to create two video canvases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1262

176

(

Figure B.5 Sha-Video User Interface

!

(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1263

(_

(

(

177

(at right) that show unfiltered (at top-right) and filtered (at bottom-right) playback

of a stored video stream.

Sha-Video allows the user to create and use multiple video contexts. Video con

texts are abstractions that encapsulate the notion of external devices like cameras,

video cassette players and recorders, frame grabbers for television signal capture, or

simply canvases for desktop visual output. Sha-Video supports input and output

of images and video clips from files. Images and video clips, can be moved to and

from different contexts using interface facilities. They are the data objects that it

manipulates. Figure B.6 depicts the block architecture of Sha-Video.

In Sha-Video, the actual process of video interaction is captured using an em

bedded command language. This interaction contains video and control data with

temporal attributes and constitutes a media stream. Sources for this media stream

can be the video context, local files, or remote sources like other tools. Sinks for

this media stream can be the video context, local files, or remote sinks like other

tools. The embedded command language can be used as a scripting language for sim

ple video stream control. Filters allow the application of 2D transformations, color

changes, image processing, and special effects.

Video is recorded into files by setting up a video context as a Source, and the file

as a Sink. It is played back from files by setting up the file as a Source, and the video

context as a Sink. The user interface provides transport control facilities, as well as

filtering and image processing control.

In the distributed setting, Sha-Video allows a user to display video into video con

texts of other Sha-Video instances running on different machines across the network.

This is done by setting up the local video context as a Source, and the remote video

contexts as Sinks. Alternately, the user plays back recorded files into multiple remote

video contexts by setting up the local file as a Source, and the local and remote video

contexts as Sinks. Only the user controlling the Source can control the video stream,

though everyone sees the images and interaction. A telepointing facility is provided,

and is exploited for gesturing and pointing to features in the video images.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1264

l

178

In the collaborative setting, Sha-Video is used as a multi-user video and image

processing system. Sha-Video can be used as a desktop video conferencing tool A

collaborative session consisting of Sha-Video instances lets a group of collaborators

synchronously conduct a silent video conference. Sha-Video also serves as a collabo

rative video and image manipulation system. allowing multiple users to edit images

on shared virtual white boards. When a user joins the session, Sha-Video creates a

shared video context. Video and interaction streams from all sites are rendered into

this video context. Video objects that are introduced into this context are shared with

every other user in the session, by transporting the underlying data object. Video

streams are shared by redirecting the input media stream to the shared Session Con

text, i.e. the new context is the Source and the shared Session Context is the Sink.

This mechanism supports synchronous multi-party interaction. Besides supporting

multi-point recording and playback, the conferenced system allows collaborative ma

nipulation of live and stored video streams and still images, providing interaction

with reviewability.

The interaction control system can be used to set up different multi-user interac

tion scenarios. For example, in the Free Interaction mode, only users with Modify

capability can alter Session State by sending it video streams or objects. Users with

only Access capability simply observe shared interaction in the video context. In the

Regulated Interaction mode, users take turns to edit objects and change Session State.

Access regulation methods can be used for fine grained interaction control. Permis

sions attached to drawings and primitive objects regulate what operations users can

perform on those objects. For example, a user can protect a shared image by removing

the Modify permission of that object.

Sha-Video is built on the Structural and Media Models. and uses the Collabo

rative Video Substrate of the Shastra environment. This high level of abstraction,

and the common messaging system, lets it interoperate with any tool in the en

vironment that speaks the same command language. The Collaborative Graphics

Substrate provides a Video Widget Stub, which encapsulates the command language,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1265

179

l

L...-__ R_ou..,..t_e_r __ ...JI<t·

Context

:·················:
: Process ~-. :-~---············: l.·{ Mix •

:~::::::::::::::::::~: ... ~::l Filter f:} .. :~:~~::::::~.·-·::::::~ ... 1
: Resample :" ······:.-.·····=:::··· : Display : ·--................. ---·::::: 1::::. ···: :-···"-·::: :::~-

: Shape : ~ Edit : •.................................

Sha-Video

Figure B.6 High Level Architecture of Sha-Video

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1266

179

 Video
Hardware

Interface

Sha-Video

Figure B.6 High Level Architecture of Sha-Video

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1266

(_

180

and communication. Any tool can instantiate a stub. It can then participate in the

collaborative process in a media-aware manner by using its own mechanisms for local

drawing and interaction, or by using substrate facilities to do the same. The substrate

also provides a Video Widget that implements video contexts and is bundled with

interaction functionality. Tools can instantiate a widget for media-unaware interop

eration. Sha-Video inter-operates in the Shastra environment and is used by other

tools, to playback and record video information stored in multimedia objects that

they manipulate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1267

l

181

Appendix C: Geometric Modeling Support

C.1 Shilp

Shilp is a Geometric Modeling Agent in the Shastra environment, built on the

Structural and Media Models. (The notion of Agents, and these Models, is described

in Section 2.) Shilp uses solid models and modeling interaction as its media type.

Shilp is a boundary representation based geometric modeling system. Current

functionality of the toolkit includes extrude, revolve and offset operations, edit op

erations on solids and laminas, pattern matching and replacement, boolean set op

erations and assembly, fleshing of wireframes with smooth algebraic surface patches,

and blending and rounding of solid corners and edges. Shilp provides mechanisms for

creating complex solid models from simple ones. The typical user interface is shown

in Figure C.2. It depicts a control panel (at left) and an XS based modeling context,

with some geometric models. The components of Shilp are depicted in Figure C.l.

Shilp allows the user to create and use multiple modeling contexts (Contexts in the

Model). Models can be moved to and from different contexts using interface facilities.

Shilp supports input and output of geometric models from files, and understands a

variety of 3D model representation formats. Models are the data objects that it

manipulates. Figure C.3 depicts the block architecture of Shilp.

In Shilp, the actual interactive process of creation of models is captured using

an embedded command language. This interaction contains data with temporal at

tributes and constitutes a media stream. Sources for this media stream can be the

actual modeling context, local files, or remote sources like other tools. Sinks for this

media stream can be the local context, local files, or remote sinks like other tools.

Filters allow the application of transformations and editing operations, and stream

miXIng.

Modeling interaction is recorded into files by setting up the context as a Source,

and the file as a Sink. Interaction is played back from files by setting up the file as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1268

182

SHILP

User Interface

Control System

Graph Manipulation Lamina Manipulation Solid Manipulation

Substrate Substrate Substrate

CREATE MODIFY
CREATE CREATE

DECOMPOSE TRANSFORM
EDIT EDIT

FLESH BOOLEAN OP

Math Substrate

Figure C.l Components of Shilp

Figure C.2 Shilp User Interface .-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1269

182

~

Input SHILP
POINTS, GRAPHS

LAMINAS, SOLIDS

Output
GRAPHS

UserInterface LAMINAS

Control System SOLIDS

Graph Manipulation Lamina Manipulation Solid Manipulation
Substrate Substrate Substrate

CREATE MODIFY
CREATE CREATE

DECOMPOSE
EDIT EDIT

- Figure C.2 Shilp User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1269

183

(

L.-__ R_o....,.ut_e_r __~1<)

(
''-

Context

.......................
••.,•••••••••••••••• I . . .

I 1' I I 1

:~~----~--~--~~~---~~~~~~~-~-)~ Filter j::i·-··--.f"········.·········j
• Edit ~ ·--·····-··'"•:·····' • MIX •
:. --.... ---- .. -- ;: :::----.. 1:::::·. ··; :":::·.-.-:, ••... --.':: :~. --.----.. -.. --.

: Transform 1 : Render :
Shilp

Figure C.3 Application Architecture of Shilp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1270

183

~

 Graphics

Window

 User
Interface

Figure C.3 Application Architecture of Shilp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1270

l

(

184

a Source, and the canvas as a Sink. The interface provides basic transport control

facilities for the media stream.

Shilp supports graphical interaction in a distributed setting, by interoperating

with other tools on heterogeneous platforms. Support for heterogeneous graphics is

enabled by XS (see Section 3.2.3). In the distributed setting, Shilp allows a user

to redirect modeling interaction into contexts of other Shilp instances running on

different machines across the network. This is done by setting up the local context as

a Source, and the remote contexts as Sinks. Alternately, the user plays back recorded

interaction files into multiple remote contexts by setting up the local file as a Source,

and the local and remote contexts as Sinks. Only the user controlling the Source

can interact in the context, though everyone sees the interaction and modeling. A

telepointing facility is implemented, and is exploited for gesturing and pointing.

In the collaborative setting, Shilp is used as a multi-user geometric modeling sys

tem. A collaborative session consisting of Shilp instances lets a group of collaborators

synchronously create and edit geometric designs. When a user joins the session, Shilp

creates a shared context. Modeling and interaction streams from all sites are mixed

and rendered into this context. In the simple implementation, only models that are

introduced into this canvas by modeling operations are shared with every other user

in the session, by transporting the underlying data object. In the more complex

case, the actual interaction involved in modeling is shared, by redirecting the in

put media stream to the shared Session Context, i.e. the new context is the Source

and the shared Session Context is the Sink. This mechanism supports synchronous

multi-party interaction.

The interaction control system can be used to set up different multi-user interac

tion scenarios. For example, in the Free Interaction mode, only users with Modify

capability can alter Session State by creating or modifying models. Users with only

Browse capability can independently apply viewing transformations to the 3D scene.

Users with only Access capability simply observe shared interaction in the context.

In the Regulated Interaction mode, users take turns to use the context to create and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1271

(
,_

(

185

edit models and change Session State. Access regulation methods can be used for fine

grained interaction control. Permissions attached to models regulate what operations

users can perform on those objects. For example, a user can protect a model by

removing the Modify permission of that object.

Shilp is built on the Structural and Media Models. and uses the Collaborative

Graphics Substrate of the Shastra environment. This high level of abstraction, and

the common messaging system, lets it interoperate with any tool in the environment

that speaks the same command language.

Shilp is described in detail in [7].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1272

(
":_.

186

Appendix D: Collaborative Games

D .1 Sha-Chess

Sha-Chess supports a shared virtual 3D chess board and typifies virtual collabora

tive environments for games and entertainment-oriented interaction. It demonstrates

how any structured data with well defined interaction semantics can be treated as a

media type in the Media Model of Shastra.

Sha-Chess is an Agent in the Shastra environment, built on the Structural and

Media Models. (The notion of Agents, and these Models, is described in Section 2.)

Sha-Chess uses interaction over a virtual chess board as its media type.

As a stand-alone application, it provides a 3D graphical interface on which chess

games can be played. It is built on top of XS, a hardware independent 3D graphics

system (see Section 3.2.3). Sha-Chess lets a user play against a chess playing program,

or against another user, locally. It supports a regulated mode where it allows only

legal moves, and enforces turns to make moves. It also supports an unregulated mode,

where the system just provides a game playing surface without regulating interaction,

much like a physical chess board. The typical user interface is shown in Figure D.l. It

depicts a control panel (at top-left) with bitmap images of the players, and a graphics

window (at right) that shows the status of the chess game in progress. The other

graphics window (at bottom-left) shows an alternate view of the same board (the

other player's view in this case).

Sha-Chess allows the user to create and use multiple contexts, which are essentially

virtual chess boards. Games can be moved to and from different contexts using inter

face facilities. Sha-Chess supports input and output of chess games from files. They

are the data objects that it manipulates. Figure D.2 depicts the block architecture

of Sha-Chess.

In Sha-Chess, the actual interactive process of playing a game is captured using

an embedded command language. This interaction contains data with temporal at

tributes and constitutes a media stream. Sources for this media stream can be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1273

187

(_

(

Figure D.l Sha-Chess User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1274

/

188

actual canvas, local files, or remote sources like other tools, and chess playing pro

grams. Sinks for this media stream can be the local canvas, local files, or remote sinks

like other tools and chess playing programs.

Chess games are recorded into files by setting up the context as a Source, and the

file as a Sink. They are played back from files by setting up the file as a Source, and

the context as a Sink. The interface provides transport control facilities for playing

back games.

In the distributed setting, Sha-Chess allows a user to show other users a chess

game by redirecting the live local stream into contexts of other Sha-Chess instances

running on different machines across the network. This is done by setting up the

local context as a Source, and the remote contexts as Sinks. Alternately, the user

plays back recorded games into multiple remote contexts by setting up the local file

as a Source, and the local and remote contexts as Sinks. Only the user controlling

the Source can interact with the context, though everyone sees the interaction as the

game progresses.

In the collaborative setting, Sha-Chess is used as a shared multi-user chess board.

A collaborative session consisting of Sha-Chess instances lets a group of collaborators

play chess games on a shared chess board. When a user joins the session, Sha-Chess

creates a shared context. Interaction streams from all sites are mixed and rendered

into this context. In the simple implementation, only actual moves are transmitted

to every other user in the session, by transporting the appropriate control data.

In the more complex case, the all interaction involved in making the move, e.g.

picking a piece and placing it, is shared by redirecting the input media stream to

the shared Session Context, i.e. the new context is the Source and the shared Session

Context is the Sink. This mechanism supports synchronous multi-party interaction.

A collaboration of Sha-Chess instances thus creates a virtual world and provides an

interface that lets a group of geographically separated chess players synchronously

interact over a shared virtual chess board.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1275

l

(.,_

, ... ·::::::::·····
.__ __ R_o_u_te_r __ _.l~ ···••. ··~ •1>: Remote :.:

• •• Tool /'

Context

..................... . .
r~----~--~~~~~~-~--~~~--=-~~·::r·--~~;:~~---.. u r······· .. :···· .. ··l
: Edit ~ • :...... • MIX :
'·· ~-: .. ·: z:::::·...... , .. ::::· .. ·:: :::::· •

! Validate i ! Render i : • :

Sha-Chess

Figure D.2 High Level Architecture of Sha-Chess

················•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Petitioner Microsoft Corporation, Ex. 1002, p. 1276

189

 Chess

Program

User

Graphics
Window

Interface

a,Ses“we

‘@, Pd“enannent®

Sha-Chess

Figure D.2 High Level Architecture of Sha-Chess

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1276

(

i
I

190

Sha-Chess exploits the interaction control mechanism of Shastra to support a

variety of modes in which the multiple users interact in the virtual environment.

At one extreme, Sha-Chess performs no move or turn regulation. It simply trans

mits moves made by different players who have Modify permission and updates the

view at all sites with Access permission. Using audio, video and text communication

channels to coordinate matters, users can play a game successfully in this mode. Al

ternately, if exactly two people are given Modify permission for the session, and they

would be the only active participants, with everyone else getting a current view of

the board. If Sha-Chess is also switched to regulated mode, allowing only legal moves

in turn, a tournament situation is simulated in this virtual environment. Alternately,

the group of users can be divided into two teams such that any member of a team can

make a move for that team. In yet another scenario, using the Regulated Interaction

mode for the collaborative session, a single user can to teach others fundamentals of

the game of chess, or discuss strategy.

Sha-Chess is built on the Structural and Media Models. and uses the Collaborative

Graphics Substrate of the Shastra environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1277

(_

(.

/
;

VITA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1278

(

191

VITA

Vinod Anupam was born on the twenty-first of October 1967, in Meerut, India.

He cleared the All India Secondary School Examination (lOth Grade) from Sainik

School, Ghorakhal (Nainital) in March 1982 and the All India Senior School Cer

tificate Examination (12th Grade) from Kendriya Vidyalaya, Jalahalli (Bangalore) in

March 1984. He obtained a bachelor's degree in Computer Science from Birla Insti

tute of Technology and Science (BITS), Pilani in May 1988. He joined the Ph.D.

program in the Department of Computer Sciences of Purdue University in August

1988 and was awarded the Ph.D. in August 1994. He is a member of Upsilon Pi

Epsilon.

His research interests include computer-supported cooperative work and group

ware, networking and distributed systems, geometric modeling, computer aided design

and concurrent engineering, graphics and visualization, multimedia, and graphical

user interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Petitioner Microsoft Corporation, Ex. 1002, p. 1279

audioBite.c 7/5/11 12:27 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>

#include <shastraldatacommlaudioBiteH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
audioBiteOut(fd,

int
audioBite

{
XDR
int

#ifdef STANDALONE
{

pABite)
fd;

*PABite;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_audioBite(&xdrs, pABite)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
*I

Page 1 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1280

audioBite.c 7/5/11 12:27 PM

if (!xdr_audioBite(mplexXDRSEnc(fd), pABite)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
audioBitein(fd,

int
audioBite

pABite)
fd;

*PABite;
{

XDR
int

xd rs;
retVal = 0;

audioBiteXDRFree(pABite);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_audioBite(&xdrs, pABite)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_audioBite(mplexXDRSDec(fd), pABite)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
aud ioBi teMemOut (buf, size, pABi te)

{

}

char *buf;
int size;
audioBite *PABite;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_audioBite(&xdrs, pABite)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

Page 2 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1281

audioBite.c

int
audioBiteMemin(buf, size, pABite)

{

}

char *buf;
int size;
audioBite *PABite;

XDR
int

xd rs;
retVal = 0;

audioBiteXDRFree(pABite);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_audioBite(&xdrs, pABite)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
audioBitesOut(fd,

int
audioBites

pABites)
fd;

*PABites;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_audioBites(&xdrs, pABites)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:27 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_audioBites(mplexXDRSEnc(fd), pABites)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
audioBitesin(fd,

int
audioBites

{
XDR
int

pABites)
fd;

*PABites;

xd rs;
retVal = 0;

Page 3 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1282

audioBite.c 7/5/11 12:27 PM

audioBitesXDRFree(pABites);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_audioBites(&xdrs, pABites)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_audioBites(mplexXDRSDec(fd), pABites)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
aud ioBi tesMemOut (buf, size, pABi tes)

{

}

int

char *buf;
int size;
audioBites *PABites;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_audioBites(&xdrs, pABites)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

audioBitesMemin(buf, size, pABites)

{

char *buf;
int size;
audioBites *PABites;

XDR
int

xd rs;
retVal = 0;

audioBitesXDRFree(pABites);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_audioBites(&xdrs, pABites)) {

retVal = -1;
}

Page 4 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1283

audioBite.c

xdr_destroy(&xdrs);
return retVal;

}

int
audioClipOut(fd,

int
audioClip

{
XDR
int

#ifdef STANDALONE
{

pAClip)
fd;

*PAClip;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_audioClip(&xdrs, pAClip)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:27 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_audioClip(mplexXDRSEnc(fd), pAClip)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
audioClipin(fd,

int
audioClip

pAClip)
fd;

*PAClip;
{

XDR
int

xd rs;
retVal = 0;

audioClipXDRFree(pAClip);
#ifdef STANDALONE

{

}
#else

I*

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_audioClip(&xdrs, pAClip)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR_DECODE);

Page 5 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1284

audioBite.c

*I
if (!xdr_audioClip(mplexXDRSDec(fd), pAClip)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
aud ioC lipMemOut (buf, size, pAC lip)

{

}

int

char *buf;
int size;
audioClip *PAClip;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_audioClip(&xdrs, pAClip)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

audioClipMemin(buf, size, pAClip)

{

}

char *buf;
int size;
audioClip *PAClip;

XDR
int

xd rs;
retVal = 0;

audioClipXDRFree(pAClip);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_audioClip(&xdrs, pAClip)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

void
freeAudioBite(pABite)

{
audioBite *PABite;

if (pABite == NULL) {
return;

}
if (pABite->data.data_val !=NULL) {

free(pABite->data.data_val);
}

7/5/11 12:27 PM

Page 6 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1285

audioBite.c 7/5/11 12:27 PM

memset(pABite, 0, sizeof(audioBite));
}

void
freeAudioBites(pABites)

{

}

audioBites *PABites;

audioBitesXDRFree(pABites);

audioBite *
copyAudioBite(pABite, destpABite)

{

}

audioBite *PABite;
audioBite *destpABite;

audioBite
int

*newpABite;
i;

if (pABite NULL) {
return NULL;

}
if (destpABite == NULL) {

newpABite = (audioBite *) malloc(sizeof(audioBite));
} else {

newpABite = destpABite;
}

memcpy(newpABite, pABite, sizeof(audioBite));
newpABite->data.data_val = (char *) malloc(newpABite->data.data_len *

sizeof(newpABite->data.data_val[0]));
memcpy(newpABite->data.data_val,pABite->data.data_val,

newpABite->data.data_len * sizeof(newpABite->data.data_val[0]));
return newpABite;

audioBites *
copyAudioBites(pABites, destpABites)

{

audioBites *PABites;
audioBites *destpABites;

int
audioBites

i;
*newpABites;

if (pABites NULL) {
return NULL;

}
if (destpABites == NULL) {

newpABites = (audioBites *) malloc(sizeof(audioBites));
} else {

newpABites = destpABites;
}
memcpy(newpABites, pABites, sizeof(audioBites));

Page 7 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1286

audioBite.c

}

void

newpABites->audioBites_val = (audioBite *)
malloc(newpABites->audioBites_len * sizeof(audioBite));

for (i = 0; i < newpABites->audioBites_len; i++) {
copyAudioBite(&pABites->audioBites_val[i] 1

&newpABites->audioBites_val[i]);
}
return newpABites;

inputAudioBite(fp 1 pABite)

{

}

void

FILE *fp;
audioBite *PABite;

int i 1 n;

fscanf(fp 1 "%ld" 1 &pABite->lidTag);
fscanf(fp 1 "%ld" 1 &pABite->lSidTag);
fscanf(fp 1 "%ld" 1 &pABite->lPerms);
fscanf (fp 1 "%hd" 1 &pABi te->bi teFo rmat);
fscanf (fp 1 "%hd" 1 &pABi te->bi teComp);
fscanf(fp 1 "%ld" 1 &pABite->biteMode);
fscanf(fp 1 "%ld" 1 &pABite->biteSize);
fscanf(fp 1 "%ld" 1 &pABite->biteRate);
fscanf(fp 1 "%ld" 1 &pABite->data.data_len);
pABite->data.data_val = (char *) malloc(pABite->data.data_len *

sizeof(pABite->data.data_val[0]));
for (i = 0; i < pABite->data.data_len; i++) {

fscanf(fp 1 "%hd" 1 &n);
pABite->data.data_val[i] = n;

}

outputAudioBite(fp 1 pABite)

{

FILE *fp;
audioBite *PABite;

int i;

fprintf(fp 1 "%ld\n" 1 pABite->lidTag);
fprintf(fp 1 "%ld\n" 1 pABite->lSidTag);
fprintf(fp 1 "%ld\n" 1 pABite->lPerms);
fprintf(fp 1 "%hd\n" 1 pABite->biteFormat);
fprintf(fp 1 "%hd\n" 1 pABite->biteComp);
fprintf(fp 1 "%ld\n" 1 pABite->biteMode);
fprintf(fp 1 "%ld\n" 1 pABite->biteSize);
fprintf(fp 1 "%ld\n" 1 pABite->biteRate);
fprintf(fp 1 "%ld\n" 1 pABite->data.data_len);
for (i = 0; i < pABite->data.data_len; i++) {

if (!(i% 8)) {
fprintf(fp 1 "\n");

7/5/11 12:27 PM

Page 8 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1287

audioBite.c

}
fprintf(fp 1 "%d" pABite->data.data_val[i]);

}
fprintf(fp 1 "\n");

}

void
inputAudioBites(fp 1 pABites)

{

}

void

FILE *fp;
audioBites *PABites;

int i;

fscanf(fp 1 "%d" 1 &pABites->audioBites_len);
pABites->audioBites_val = (audioBite *)

malloc(pABites->audioBites_len * sizeof(audioBite));
for (i = 0; i < pABites->audioBites_len; i++) {

inputAudioBite(fp 1 &pABites->audioBites_val[i]);
}

outputAudioBites(fp 1 pABites)

{

}

FILE *fp;
audioBites *PABites;

int i;

fprintf(fp 1 "%d\n" 1 pABites->audioBites_len);
for (i = 0; i < pABites->audioBites_len; i++) {

outputAudioBite(fp 1 &pABites->audioBites_val[i]);
}

void
audioBiteXDRFree(pABite)

{

}

audioBite *PABite;

xdr_free(xdr_audioBite 1 (char*) pABite);
memset(pABite 1 0 1 sizeof(audioBite));

void
audioBitesXDRFree(pABites)

{

}

void

audioBites *PABites;

xdr_free(xdr_audioBites 1 (char*) pABites);
memset(pABites 1 0 1 sizeof(audioBites));

7/5/11 12:27 PM

Page 9 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1288

audioBite.c

audioClipXDRFree(pAClip)

{

}

audioClip *PAClip;

xdr_free(xdr_audioClip 1 (char*) pAClip);
memset(pAClip 1 0 1 sizeof(audioClip));

#ifdef STANDALONE
main(argc 1 argv)
#else
audioBiteMain(argc 1

#end if

I* STANDALONE *I
a rgv)
I* STANDALONE *I

{

int
char

a rgc;
**argv;

static audioBite aBite;
static audioBites aBites;
audioBites *CpABites;
audioBite *CpABite;

switch (argc) {
case 1: I* receive aBite *I

audioBitein(0 I* stdin *I 1 &aBite);
outputAudioBite(stdout 1 &aBite);
cpABite = copyAudioBite(&aBite 1 NULL);
outputAudioBite(stdout 1 cpABite);
freeAudioBite(cpABite);

break;
case 2: I* receive aBite *I

inputAudioBite(stdin 1 &aBite);
#ifdef DEBUG

outputAudioBite(stderr 1 &aBite);
#end if

audioBiteOut(l I* stdout *I 1 &aBite);

break;
case 3: I* receive aBites *I

audioBitesin(0 I* stdin *I 1 &aBites);
outputAudioBites(stdout 1 &aBites);
cpABites = copyAudioBites(&aBites 1 NULL);
outputAudioBites(stdout 1 cpABites);
freeAudioBites(cpABites);

break;
case 4: I* receive aBites *I

inputAudioBites(stdin 1 &aBites);
#ifdef DEBUG

outputAudioBites(stderr 1 &aBites);
#end if

audioBitesOut(l I* stdout *I 1 &aBites);

7/5/11 12:27 PM

Page 10 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1289

audioBite.c 7/5/11 12:27 PM

break;
}

}

Page 11 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1290

audioBite.c 7/5/11 12:27 PM

break;

Page 11 of 11

Petitioner Microsoft Corporation, Ex. 1002, p. 1290

audioBite_xdr.c 7/5/11 12:27 PM

I*
* Please do not edit this file.
* It was generated using rpcgen.
*I

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <rpclrpc.h>
#include <shastraldatacommlaudioBite.h>

bool_t
xdr_audioBite(xdrs, obj p)

XDR *Xdrs;
audioBite *Objp;

{
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->biteFormat)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->biteComp)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->biteMode)) {

return (FALSE);

Page 1 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1291

audioBite_xdr.c 7/5/11 12:27 PM

}

}
if (!xdr_u_long(xdrs, &objp->biteSize)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->biteRate)) {

return (FALSE);
}
if (!xdr_bytes(xdrs, (char **)&objp->data.data_val, (u_int *)&objp->

data.data_len, ~0)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_audioBite_P(xdrs, objp)

XDR *Xdrs;
audioBite_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(audioBite), xdr_audioBite)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_audioBites(xdrs, objp)

XDR *Xdrs;
audioBites *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->audioBites_val, (u_int *)&objp->

audioBites_len, ~0, sizeof(audioBite), xdr_audioBite)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_audioBites_P(xdrs, objp)

XDR *Xdrs;

{

}

audioBites_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(audioBites),
xdr_audioBites)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_audioClip(xdrs, objp)

XDR *Xdrs;

Page 2 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1292

audioBite_xdr.c 7/5/11 12:27 PM

{

}

audioClip *Objp;

if (!xdr_vector(xdrs, (char *)objp->sbName, 32, sizeof(char), xdr_char)
) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_long(xdrs, &objp->lType)) {

return (FALSE);
}
if (!xdr_long(xdrs, &objp->lPointer)) {

return (FALSE);
}
if (!xdr_pointer(xdrs, (char **)&objp->pABites, sizeof(audioBites),

xdr_audioBites)) {
return (FALSE);

}
return (TRUE);

Page 3 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1293

ipimage_xdr.c 7/5/11 12:28 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <shastraldatacommlipimage.h>

bool_t
xdr_ipimageData(xdrs, objp)

XDR *Xdrs;
ipimageData *Objp;

{
if (!xdr_vector(xdrs, (char *)objp->sbName, 32, sizeof(char), xdr_char)

) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_vector(xdrs, (char *)objp->centroid, 3, sizeof(double),

xd r _daub le)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->dispMode)) {

return (FALSE);
}
if (!xdr_int(xdrs, &objp->color)) {

Page 1 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1294

ipimage_xdr.c

}

return (FALSE);
}
if (!xdr_int(xdrs, &objp->shade)) {

return (FALSE);
}
if (!xdr_int(xdrs, &objp->dispinfo)) {

return (FALSE);
}

7/5/11 12:28 PM

if (!xdr_pointer(xdrs, (char **)&objp->iPoly, sizeof(iPoly), xdr_iPoly)
) {
return (FALSE);

}
return (TRUE);

Page 2 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1295

iPoly.c 7/5/11 12:29 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <ctype.h>
#include <malloc.h>

#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>
#include <ipolyliPolyH.h>
#include <ipolylipolyutil.h>
#include <shastraldatacommlipimage.h>

void ipimageDataXDRFree(Protl(ipimageData*));
bool_t xdr_ipimageData();
#define STANDALONEnn

#define DEBUGnn

int
ipimageDataOut(fd,

int
ipimageData

{

pimage)
fd;
*Pimage;

XDR xdrs;
int retVal = 0;

#ifdef STANDALONE
{

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);

Page 1 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1296

iPoly.c

}

if(!xdr_ipimageData(&xdrs, pimage)){
retVal = -1;

}

#else I* STANDALONE *I
I*

xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if(!xdr_ipimageData(mplexXDRSEnc(fd), pimage)){
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
ipimageDatain(fd,

int
ipimageData

pimage)
fd;
*Pimage;

{
XDR xdrs;
int retVal = 0;

ipimageDataXDRFree(pimage);
#ifdef STANDALONE

{

}

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if(!xdr_ipimageData(&xdrs, pimage)){

retVal = -1;
}

#else I* STANDALONE *I
I*

xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if(!xdr_ipimageData(mplexXDRSDec(fd), pimage)){
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
ipimageDataMemOut(buf, size, pimage)

char *buf;
int size;
ipimageData *Pimage;

{
XDR xdrs;
int retVal = 0;

7/5/11 12:29 PM

Page 2 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1297

iPoly.c

}

xdrmem_create(&xdrs, buf, size, XDR ENCODE);
if(!xdr_ipimageData(&xdrs, pimage)){

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
ipimageDataMemi n (buf, size, pimage)

char *buf;

{

}

int size;
ipimageData *Pimage;

XDR xdrs;
int retVal = 0;

ipimageDataXDRFree(pimage);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if(!xdr_ipimageData(&xdrs, pimage)){

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

void
ipimageDataXDRFree(pimage)

{

}

ipimageData *Pimage;

xdr_free(xdr_ipimageData, (char*) pimage);
memset(pimage, 0, sizeof(ipimageData));

int
IPolyOut(fd,

int
iPoly

pi Poly)
fd;

*PI Poly;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_iPoly(&xdrs, piPoly)) {

retVal = -1;
}

#else I* STANDALONE *I
if (!xdr_iPoly(mplexXDRSEnc(fd), piPoly)) {

7/5/11 12:29 PM

Page 3 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1298

iPoly.c 7/5/11 12:29 PM

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
IPolyin(fd,

int
iPoly

pi Poly)
fd;

*PI Poly;
{

XDR
int

xd rs;
retVal = 0;

IPolyXDRFree(piPoly);
#ifdef STANDALONE

{

}

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_iPoly(&xdrs, piPoly)) {

retVal = -1;
}

#else I* STANDALONE *I
if (!xdr_iPoly(mplexXDRSDec(fd), piPoly)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
IPolyMemOut(buf, size, piPoly)

char *buf;

{

}

int size;
iPoly *PIPoly;

XDR xdrs;
int retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR ENCODE);
if(!xdr_iPoly(&xdrs, piPoly)){

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
IPolyMemin(buf, size, piPoly)

char *buf;
int size;

Page 4 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1299

iPoly.c

{

}

iPoly *PI Poly;

XDR xdrs;
int retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR DECODE);
if(!xdr_iPoly(&xdrs, piPoly)){

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

void
inputiPoly(fp,

FILE
iPoly

pi Poly)
*fp;

*PI Poly;
{

int i,j;

IPolyXDRFree(piPoly);

fscanf(fp,"%d", &IPolyNVerts(piPoly));
if(IPolyNVerts(piPoly) > 0){

}

IPolyVerts(piPoly) = (iPolyPoint*)malloc(IPolyNVerts(piPoly)*
sizeof(iPolyPoint));

for (i = 0; i < IPolyNVerts(piPoly); i++) {
fscanf(fp,"%lf%lf%lf", &IPolyVert(piPoly, i) [0],

&IPolyVert(piPoly, i) [1], &IPolyVert(piPoly, i) [2]);
}
fscanf(fp,"%d", &IPolyNVertFaceAdjs(piPoly));
if(IPolyNVertFaceAdjs(piPoly) > 0){

7/5/11 12:29 PM

IPolyVertAdjFaces(piPoly) = (iFaces *)malloc(IPolyNVertFaceAdjs(piPoly)
*

sizeof(iFaces));
}
for (i = 0; i < IPolyNVertFaceAdjs(piPoly); i++) {

fscanf(fp,"%d", &IPolyVertNFaceAdj (piPoly, i));
if(IPolyVertNFaceAdj(piPoly, i) > 0){

IPolyVertFaceAdjs(piPoly, i) = (int *)malloc(IPolyVertNFaceAdj(piPoly
1 i)

}

* sizeof(int));
}
for (j = 0; j < IPolyVertNFaceAdj (piPoly, i); j++) {

fscanf(fp, "%d", &IPolyVertFaceAdj(piPoly, i, j));
}

fscanf(fp,"%d", &IPolyNVertEdgeAdjs(piPoly));
if(IPolyNVertEdgeAdjs(piPoly) > 0){

IPolyVertAdjEdges(piPoly) = (iEdges *)malloc(IPolyNVertEdgeAdjs(piPoly)
*

Page 5 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1300

iPoly.c

sizeof(iEdges));
}
for (i = 0; i < IPolyNVertEdgeAdjs(piPoly); i++) {

fscanf(fp 1
11 %d 11

1 &IPolyVertNEdgeAdj(piPoly 1 i));
if(IPolyVertNEdgeAdj(piPoly 1 i) > 0){

7/5/11 12:29 PM

IPolyVertEdgeAdjs(piPoly 1 i) = (int *)malloc(IPolyVertNEdgeAdj(piPoly
1 i)

}

* sizeof(int));
}
for (j = 0; j < IPolyVertNEdgeAdj (piPoly 1 i); j++) {

fscanf(fp 1
11 %d 11

1 &IPolyVertEdgeAdj(piPoly 1 i 1 j));
}

f s can f (f p 1 II %d II 1 & I Pol yN V e r t No rm s (pI Po l y)) ;
if(IPolyNVertNorms(piPoly) > 0){

IPolyVertNorms(piPoly) = (iPolyNormal*)malloc(IPolyNVertNorms(piPoly)*
sizeof(iPolyNormal));

}
for (i = 0; i < IPolyNVertNorms(piPoly); i++) {

fscanf(fp 1
11 %f%f%f 11

1 &IPolyVertNorm(piPoly 1 i) [0] 1

&IPolyVertNorm(piPoly 1 i) [1] 1 &IPolyVertNorm(piPoly 1 i) [2]);
}
fscanf(fp 1

11 %d 11
1 &IPolyNVertSizes(piPoly));

if(IPolyNVertSizes(piPoly) > 0){
IPolyVertSizes(piPoly) = (iPolySize *)malloc(IPolyNVertSizes(piPoly)*

sizeof(iPolySize));
}
for (i = 0; i < IPolyNVertSizes(piPoly); i++) {

fscanf(fp 1
11 %lf 11

1 &IPolyVertSize(piPoly 1 i));
}
switch(IPolyVertColorCode(piPoly)){
case Colorindex:

fscanf(fp 1
11 %d 11

1 &IPolyNVertColors(piPoly));
if(IPolyNVertColors(piPoly) > 0){

IPolyVertColorArr(piPoly) = (int *)malloc(IPolyNVertColors(piPoly) *
sizeof(int));

}
for (i = 0; i < IPolyNVertColors(piPoly); i++) {

fscanf(fp 1
11 %d 11

1 &IPolyVertColor(piPoly 1 i));
}
break;

case Shadeindex:
fscanf(fp 1

11 %d 11
1 &IPolyNVertShades(piPoly));

if(IPolyNVertShades(piPoly) > 0){
IPolyVertShadeArr(piPoly) = (int *)malloc(IPolyNVertShades(piPoly) *

sizeof(int));
}
for (i = 0; i < IPolyNVertShades(piPoly); i++) {

fscanf(fp 1
11 %d 11

1 &IPolyVertShade(piPoly 1 i));
}
break;

case ColorMapVal:
fscanf(fp 1

11 %d 11
1 &IPolyNVertValues(piPoly));

Page 6 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1301

iPoly.c 7/5/11 12:29 PM

if(IPolyNVertValues(piPoly) > 0){
IPolyVertValueArr(piPoly) = (float *)malloc(IPolyNVertValues(piPoly)

*
sizeof(float));

}
for (i = 0; i < IPolyNVertValues(piPoly); i++) {

fscanf(fp 1 "%f" 1 &IPolyVertValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fscanf(fp 1 "%d" 1 &IPolyNEdges(piPoly));
if(IPolyNEdges(piPoly) > 0){

}

IPolyEdges(piPoly) = (iPolyEdgeVerts*)malloc(IPolyNEdges(piPoly)*
sizeof(iPolyEdgeVerts));

for (i = 0; i < IPolyNEdges(piPoly); i++) {
fscanf(fp 1 "%d%d" 1 &IPolyEdgeVl(piPoly 1 i) 1 &IPolyEdgeV2(piPoly 1 i));

}
fscanf(fp 1 "%d" 1 &IPolyNEdgeFaceAdjs(piPoly));
if(IPolyNEdgeFaceAdjs(piPoly) > 0){

IPolyEdgeAdjFaces(piPoly) = (iFaces *)malloc(IPolyNEdgeFaceAdjs(piPoly)
*

sizeof(iFaces));
}
for (i = 0; i < IPolyNEdgeFaceAdjs(piPoly); i++) {

fscanf(fp 1 "%d" 1 &IPolyEdgeNFaceAdj(piPoly 1 i));
if(IPolyEdgeNFaceAdj(piPoly 1 i) > 0){

IPolyEdgeFaceAdjs(piPoly 1 i) = (int *)malloc(IPolyEdgeNFaceAdj(piPoly
1 i)

}

* sizeof(int));
}
for (j = 0; j < IPolyEdgeNFaceAdj (piPoly 1 i); j++) {

fscanf(fp 1 "%d" 1 &IPolyEdgeFaceAdj(piPoly 1 i 1 j));
}

fscanf(fp 1 "%d" 1 &IPolyNEdgeSizes(piPoly));
if(IPolyNEdgeSizes(piPoly) > 0){

}

IPolyEdgeSizes(piPoly) = (iPolySize*)malloc(IPolyNEdgeSizes(piPoly)*
sizeof(iPolySize));

for (i = 0; i < IPolyNEdgeSizes(piPoly); i++) {
fscanf(fp 1 "%lf" 1 &IPolyEdgeSize(piPoly 1 i));

}
switch(IPolyEdgeColorCode(piPoly)){
case Colorindex:

fscanf(fp 1 "%d" 1 &IPolyNEdgeColors(piPoly));
if(IPolyNEdgeColors(piPoly) > 0){

IPolyEdgeColorArr(piPoly) = (int *)malloc(IPolyNEdgeColors(piPoly) *
sizeof(int));

Page 7 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1302

iPoly.c

}
for (i = 0; i < IPolyNEdgeColors(piPoly); i++) {

fscanf(fp 1 "%d" 1 &IPolyEdgeColor(piPoly 1 i));
}
break;

case Shadeindex:
fscanf(fp 1 "%d" 1 &IPolyNEdgeShades(piPoly));
if(IPolyNEdgeShades(piPoly) > 0){

7/5/11 12:29 PM

IPolyEdgeShadeArr(piPoly) = (int *)malloc(IPolyNEdgeShades(piPoly) *
sizeof(int));

}
for (i = 0; i < IPolyNEdgeShades(piPoly); i++) {

fscanf(fp 1 "%d" 1 &IPolyEdgeShade(piPoly 1 i));
}
break;

case ColorMapVal:
fscanf(fp 1 "%d" 1 &IPolyNEdgeValues(piPoly));
if(IPolyNEdgeValues(piPoly) > 0){

IPolyEdgeValueArr(piPoly) = (float *)malloc(IPolyNEdgeValues(piPoly)
*

sizeof(float));
}
for (i = 0; i < IPolyNEdgeValues(piPoly); i++) {

fscanf(fp 1 "%f" 1 &IPolyEdgeValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fscanf(fp 1 "%d" 1 &IPolyNEdgeFaces(piPoly));
if(IPolyNEdgeFaces(piPoly) > 0){

}

IPolyEdgeFaces(piPoly) = (iEdges*)malloc(IPolyNEdgeFaces(piPoly)*
sizeof(iEdges));

for (i = 0; i < IPolyNEdgeFaces(piPoly); i++) {
fscanf(fp 1 "%d" 1 &IPolyNFaceEdges(piPoly 1 i));
if(IPolyNFaceEdges(piPoly 1 i) > 0){

IPolyFaceEdges(piPoly 1 i) = (int *)malloc(IPolyNFaceEdges(piPoly 1 i)*
sizeof(int));

}

}
for (j = 0; j < IPolyNFaceEdges(piPoly 1 i); j++) {

fscanf (fp 1 "%d" 1 &I Po lyFaceEdge (pi Poly 1 i 1 j));
}

fscanf(fp 1 "%d" 1 &IPolyNVertFaces(piPoly));
if(IPolyNVertFaces(piPoly) > 0){

}

IPolyVertFaces(piPoly) = (iVerts*)malloc(IPolyNVertFaces(piPoly)*
sizeof(iVerts));

for (i = 0; i < IPolyNVertFaces(piPoly); i++) {
fscanf(fp 1 "%d" 1 &IPolyNFaceVerts(piPoly 1 i));

Page 8 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1303

iPoly.c 7/5/11 12:29 PM

if(IPolyNFaceVerts(piPoly 1 i) > 0){
IPolyFaceVerts(piPoly 1 i) = (int *)malloc(IPolyNFaceVerts(piPoly 1 i)*

sizeof(int));

}

}
for (j = 0; j < IPolyNFaceVerts(piPoly 1 i); j++) {

fscanf(fp 1 "%d" 1 &IPolyFaceVert(piPoly 1 i 1 j));
}

fscanf(fp 1 "%d" 1 &IPolyNFaceSizes(piPoly));
if(IPolyNFaceSizes(piPoly) > 0){

}

IPolyFaceSizes(piPoly) = (iPolySize*)malloc(IPolyNFaceSizes(piPoly)*
sizeof(iPolySize));

for (i = 0; i < IPolyNFaceSizes(piPoly); i++) {
fscanf(fp 1 "%lf" 1 &IPolyFaceSize(piPoly 1 i));

}
fscanf(fp 1 "%d" 1 &IPolyNFaceNorms(piPoly));
if(IPolyNFaceNorms(piPoly) > 0){

IPolyFaceNorms(piPoly) = (iPolyNormal*)malloc(IPolyNFaceNorms(piPoly)*
sizeof(iPolyNormal));

}
for (i = 0; i < IPolyNFaceNorms(piPoly); i++) {

fscanf(fp 1 "%f%f%f" 1 &IPolyFaceNorm(piPoly 1 i) [0] 1

&IPolyFaceNorm(piPoly 1 i) [1] 1 &IPolyFaceNorm(piPoly 1 i) [2]);
}
switch(IPolyFaceColorCode(piPoly)){
case Colorindex:

fscanf(fp 1 "%d" 1 &IPolyNFaceColors(piPoly));
IPolyFaceColorArr(piPoly) = (int *)malloc(IPolyNFaceColors(piPoly) *

sizeof(int));
for (i = 0; i < IPolyNFaceColors(piPoly); i++) {

fscanf(fp 1 "%d" 1 &IPolyFaceColor(piPoly 1 i));
}
break;

case Shadeindex:
fscanf(fp 1 "%d" 1 &IPolyNFaceShades(piPoly));
if(IPolyNFaceShades(piPoly) > 0){

IPolyFaceShadeArr(piPoly) = (int *)malloc(IPolyNFaceShades(piPoly) *
sizeof(int));

}
for (i = 0; i < IPolyNFaceShades(piPoly); i++) {

fscanf(fp 1 "%d" 1 &IPolyFaceShade(piPoly 1 i));
}
break;

case ColorMapVal:
fscanf(fp 1 "%d" 1 &IPolyNFaceValues(piPoly));
if(IPolyNFaceValues(piPoly) > 0){

IPolyFaceValueArr(piPoly) = (float *)malloc(IPolyNFaceValues(piPoly)
*

sizeof(float));
}
for (i = 0; i < IPolyNFaceValues(piPoly); i++) {

fscanf(fp 1 "%f" 1 &IPolyFaceValue(piPoly 1 i));

Page 9 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1304

iPoly.c

}
break;

case NoColor:
default:

break;
}

fscanf(fp,"%d", &IPolyNElmts(piPoly));
if(IPolyNElmts(piPoly) > 0){

}

IPolyElmts(piPoly) = (iFaces*)malloc(IPolyNElmts(piPoly)*
sizeof(iFaces));

for (i = 0; i < IPolyNElmts(piPoly); i++) {
fscanf(fp,"%d", &IPolyNElmtFaces(piPoly, i));
if(IPolyNElmtFaces(piPoly, i) > 0){

7/5/11 12:29 PM

IPolyElmtFaces(piPoly, i) = (int *)malloc(IPolyNElmtFaces(piPoly, i)*
sizeof(int));

}

}
for (j = 0; j < IPolyNElmtFaces(piPoly, i); j++) {

fscanf(fp, "%d", &IPolyElmtFace(piPoly, i, j));
}

fscanf(fp,"%d", &IPolyNElmtSizes(piPoly));
if(IPolyNElmtSizes(piPoly) > 0){

IPolyElmtSizes(piPoly) = (iPolySize*)malloc(IPolyNElmtSizes(piPoly)*
sizeof(iPolySize));

}
for (i = 0; i < IPolyNElmtSizes(piPoly); i++) {

fscanf(fp,"%lf", &IPolyElmtSize(piPoly,i));
}
switch(IPolyElmtColorCode(piPoly)){
case Colorindex:

fscanf(fp,"%d", &IPolyNElmtColors(piPoly));
IPolyElmtColorArr(piPoly) = (int *)malloc(IPolyNElmtColors(piPoly) *

sizeof(int));
for (i = 0; i < IPolyNElmtColors(piPoly); i++) {

fscanf(fp,"%d", &IPolyElmtColor(piPoly,i));
}
break;

case Shadeindex:
fscanf(fp,"%d", &IPolyNElmtShades(piPoly));
if(IPolyNElmtShades(piPoly) > 0){

IPolyElmtShadeArr(piPoly) = (int *)malloc(IPolyNElmtShades(piPoly) *
sizeof(int));

}
for (i = 0; i < IPolyNElmtShades(piPoly); i++) {

fscanf(fp,"%d", &IPolyElmtShade(piPoly,i));
}
break;

case ColorMapVal:
fscanf(fp,"%d", &IPolyNElmtValues(piPoly));
if(IPolyNElmtValues(piPoly) > 0){

IPolyElmtValueArr(piPoly) = (float *)malloc(IPolyNElmtValues(piPoly)

Page 10 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1305

iPoly.c

*
sizeof(float));

}
for (i = 0; i < IPolyNElmtValues(piPoly); i++) {

fscanf(fp 1 "%f" 1 &IPolyElmtValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fscanf(fp 1 "%d" 1 &IPolyNEGroups(piPoly));
if(IPolyNEGroups(piPoly) > 0){

}

IPolyEGroups(piPoly) = (iRanges *)malloc(IPolyNEGroups(piPoly)*
sizeof(iRanges));

for (i = 0; i < IPolyNEGroups(piPoly); i++) {
fscanf(fp 1 "%d" 1 &IPolyEGroupLen(piPoly 1 i));
if(IPolyEGroupLen(piPoly 1 i) > 0){

7/5/11 12:29 PM

IPolyEGroupVal(piPoly 1 i) = (range *)malloc(IPolyEGroupLen(piPoly 1 i)

}

*
s izeof (range)) ;

}
for (j = 0; j < IPolyEGroupLen(piPoly 1 i); j++){

fscanf(fp 1 "%d%d" 1 &IPolyEGroupLow(piPoly 1 i 1 j) 1

&IPolyEGroupHigh(piPoly 1 i 1 j));
}

fscanf(fp 1 "%d" 1 &IPolyNFGroups(piPoly));
if(IPolyNFGroups(piPoly) > 0){

}

IPolyFGroups(piPoly) = (iRanges *)malloc(IPolyNFGroups(piPoly)*
sizeof(iRanges));

for (i = 0; i < IPolyNFGroups(piPoly); i++) {
fscanf(fp 1 "%d" 1 &IPolyFGroupLen(piPoly 1 i));
if(IPolyFGroupLen(piPoly 1 i) > 0){

IPolyFGroupVal(piPoly 1 i) = (range *)malloc(IPolyFGroupLen(piPoly 1 i)

}

*
s izeof (range)) ;

}
for (j = 0; j < IPolyFGroupLen(piPoly 1 i); j++){

fscanf(fp 1 "%d%d" 1 &IPolyFGroupLow(piPoly 1 i 1 j) 1

&IPolyFGroupHigh(piPoly 1 i 1 j));
}

fscanf(fp 1 "%d" 1 &IPolyNColors(piPoly));
if(IPolyNColors(piPoly) > 0){

}

IPolyColors(piPoly) = (iPolyRGB*)malloc(IPolyNColors(piPoly)*
sizeof(iPolyRGB));

Page 11 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1306

iPoly.c

for (i = 0; i < IPolyNColors(piPoly); i++) {
fscanf(fp 1

11 %f%f%f 11
1 &IPolyColor(piPoly 1 i) [0] 1

&IPolyColor(piPoly 1 i) [1] 1 &IPolyColor(piPoly 1 i) [2]);
}

}

void
outputiPoly(fp 1 piPoly)

FILE *fp;

{
iPoly *PIPoly;

int i 1 j;

fprintf(fp 1
11 /*IPoly Vertex Coordinates*/\n 11

);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN V e r t s (p I Po l y)) ;
for (i = 0; i < IPolyNVerts(piPoly); i++) {

fprintf(fp 1
11 %lf %lf %lf\n 11

1 IPolyVert(piPoly 1 i) [0] 1

IPolyVert(piPoly 1 i) [1] 1 IPolyVert(piPoly 1 i) [2]);
}
fprintf(fp 1

11 /*IPoly Vertex Face Adjacencies*/\n 11
);

f p r in t f (f p 1 II %d \ n II 1 I Pol yN V e r t Face Ad j s (pI Poly)) ;
for (i = 0; i < IPolyNVertFaceAdjs(piPoly); i++) {

fprintf(fp 1
11 %d 11

1 IPolyVertNFaceAdj(piPoly 1 i));
for (j = 0; j < IPolyVertNFaceAdj (piPoly 1 i); j++) {

fprintf(fp 1
11 %d 11

1 IPolyVertFaceAdj(piPoly 1 i 1 j));
}
fprintf(fp 1

11 \n 11
);

}
fprintf(fp 1

11 /*IPoly Vertex Edge Adjacencies*/\n 11
);

f p r in t f (f p 1 II %d \ n II 1 I Pol yN V e r t Ed g e Ad j s (pI Poly)) ;
for (i = 0; i < IPolyNVertEdgeAdjs(piPoly); i++) {

fprintf(fp 1
11 %d 11

1 IPolyVertNEdgeAdj(piPoly 1 i));
for (j = 0; j < IPolyVertNEdgeAdj (piPoly 1 i); j++) {

fprintf(fp 1
11 %d 11

1 IPolyVertEdgeAdj(piPoly 1 i 1 j));
}
fprintf(fp 1

11 \n 11
);

}
fprintf(fp 1

11 /*IPoly Vertex Normals*/\n 11
);

f p r in t f (f p 1 II %d \ n II 1 I Pol yN V e r t No r m s (pI Poly)) ;
for (i = 0; i < IPolyNVertNorms(piPoly); i++) {

}

fprintf(fp 1
11 %f %f %f\n 11

1 IPolyVertNorm(piPoly 1 i) [0] 1

IPolyVertNorm(piPoly 1 i) [1] 1 IPolyVertNorm(piPoly 1 i) [2]);

fprintf(fp 1
11 /*IPoly Vertex Sizes*/\n 11

);

f p r in t f (f p 1 II %d \ n II 1 I Pol yN V e r t 5 i z e s (pI Poly)) ;
for (i = 0; i < IPolyNVertSizes(piPoly); i++) {

fprintf(fp 1
11 %lf\n 11

1 IPolyVertSize(piPoly 1 i));
}
switch(IPolyVertColorCode(piPoly)){
case Colorindex:

fprintf(fp 1
11 /*IPoly Vertex Colors*/\n 11

);

fprintf(fp 1
11 %d\n 11

1 IPolyNVertColors(piPoly));

7/5/11 12:29 PM

Page 12 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1307

iPoly.c

for (i = 0; i < IPolyNVertColors(piPoly); i++) {
f p r in t f (f p 1 II %d \ n II 1 I Pol yVe r t Colo r (pIP o l y 1 i)) ;

}
break;

case Shadeindex:
fprintf(fp 1

11 /*IPoly Vertex Shades*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNVertShades(piPoly));
for (i = 0; i < IPolyNVertShades(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyVertShade(piPoly 1 i));
}
break;

case ColorMapVal:
fprintf(fp 1

11 /*IPoly Vertex Color Values*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNVertValues(piPoly));
for (i = 0; i < IPolyNVertValues(piPoly); i++) {

fprintf(fp 1
11 %f\n 11

1 IPolyVertValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fprintf(fp 1
11 /*IPoly Edge Vertex Pairs*/\n 11

);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN Ed g e s (p I Po l y)) ;
for (i = 0; i < IPolyNEdges(piPoly); i++) {

7/5/11 12:29 PM

fprintf(fp 1
11 %d %d\n 11

1 IPolyEdgeVl(piPoly 1 i) 1 IPolyEdgeV2(piPoly 1 i));
}
fprintf(fp 1

11 /*IPoly Edge Face Adjacencies*/\n 11
);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN Edge Fa c e Ad j s (pI Poly)) ;
for (i = 0; i < IPolyNEdgeFaceAdjs(piPoly); i++) {

}

fprintf(fp 1
11 %d 11

1 IPolyEdgeNFaceAdj(piPoly 1 i));
for (j = 0; j < IPolyEdgeNFaceAdj (piPoly 1 i); j++) {

fprintf(fp 1
11 %d 11

1 IPolyEdgeFaceAdj(piPoly 1 i 1 j));
}
fprintf(fp 1

11 \n 11
);

fprintf(fp 1
11 /*IPoly Edge Sizes*/\n 11

);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN Edge 5 i z e s (pI Poly)) ;
for (i = 0; i < IPolyNEdgeSizes(piPoly); i++) {

fprintf(fp 1
11 %lf\n 11

1 IPolyEdgeSize(piPoly 1 i));
}
switch(IPolyEdgeColorCode(piPoly)){
case Colorindex:

fprintf(fp 1
11 /*IPoly Edge Colors*/\n 11

);

fprintf(fp 1
11 %d\n 11

1 IPolyNEdgeColors(piPoly));
for (i = 0; i < IPolyNEdgeColors(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyEdgeColor(piPoly 1 i));
}
break;

case Shadeindex:
fprintf(fp 1

11 /*IPoly Edge Shades*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNEdgeShades(piPoly));

Page 13 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1308

iPoly.c

for (i = 0; i < IPolyNEdgeShades(piPoly); i++) {
fprintf(fp 1

11 %d\n 11
1 IPolyEdgeShade(piPoly 1 i));

}
break;

case ColorMapVal:
fprintf(fp 1

11 /*IPoly Edge Color Values*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNEdgeValues(piPoly));
for (i = 0; i < IPolyNEdgeValues(piPoly); i++) {

fprintf(fp 1
11 %f\n 11

1 IPolyEdgeValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fprintf(fp 1
11 /*IPoly Faces by Edge*/\n 11

);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN Edge Fa c e s (pI Poly)) ;
for (i = 0; i < IPolyNEdgeFaces(piPoly); i++) {

}

fprintf(fp 1
11 %d 11

1 IPolyNFaceEdges(piPoly 1 i));
for (j = 0; j < IPolyNFaceEdges(piPoly 1 i); j++) {

fprintf(fp 1
11 %d II 1 IPolyFaceEdge(piPoly 1 i 1 j));

}
fprintf(fp 1

11 \n 11
);

fprintf(fp 1
11 /*IPoly Faces by Vertex*/\n 11

);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN V e r t Fa c e s (pI Poly)) ;
for (i = 0; i < IPolyNVertFaces(piPoly); i++) {

}

fprintf(fp 1
11 %d 11

1 IPolyNFaceVerts(piPoly 1 i));
for (j = 0; j < IPolyNFaceVerts(piPoly 1 i); j++) {

fprintf(fp 1
11 %d II 1 IPolyFaceVert(piPoly 1 i 1 j));

}
fprintf(fp 1

11 \n 11
);

fprintf(fp 1
11 /*IPoly Face Sizes*/\n 11

);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN Face 5 i z e s (pI Poly)) ;
for (i = 0; i < IPolyNFaceSizes(piPoly); i++) {

fprintf(fp 1
11 %lf\n 11

1 IPolyFaceSize(piPoly 1 i));
}
fprintf(fp 1

11 /*IPoly Face Normals*/\n 11
);

fp rintf (fp 1
11 %d\n 11

1 I Po lyN FaceNo rms (pi Poly)) ;
for (i = 0; i < IPolyNFaceNorms(piPoly); i++) {

fprintf(fp 1
11 %f %f %f\n 11

1 IPolyFaceNorm(piPoly 1 i) [0],
IPolyFaceNorm(piPoly 1 i) [1] 1 IPolyFaceNorm(piPoly 1 i) [2]);

}
switch(IPolyFaceColorCode(piPoly)){
case Colorindex:

fprintf(fp 1
11 /*IPoly Face Colors*/\n 11

);

f p r in t f (f p 1 II %d \ n II 1 I Pol yN Face Colo r s (pIP o l y)) ;
for (i = 0; i < IPolyNFaceColors(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyFaceColor(piPoly 1 i));
}
break;

7/5/11 12:29 PM

Page 14 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1309

iPoly.c

case Shadeindex:
fprintf(fp 1

11 /*IPoly Face Shades*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNFaceShades(piPoly));
for (i = 0; i < IPolyNFaceShades(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyFaceShade(piPoly 1 i));
}
break;

case ColorMapVal:
fprintf(fp 1

11 /*IPoly Face Color Values*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNFaceValues(piPoly));
for (i = 0; i < IPolyNFaceValues(piPoly); i++) {

fprintf(fp 1
11 %f\n 11

1 IPolyFaceValue(piPoly 1 i));
}
break;

case NoColor:
default:

break;
}

fprintf(fp 1
11 /*IPoly Elements*/\n 11

);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN E l m t s (p I Po l y)) ;
for (i = 0; i < IPolyNElmts(piPoly); i++) {

}

fprintf(fp 1
11 %d\n 11

1 IPolyNElmtFaces(piPoly 1 i));
for (j = 0; j < IPolyNElmtFaces(piPoly 1 i); j++) {

fprintf(fp 1
11 %d II 1 IPolyElmtFace(piPoly 1 i 1 j));

}
fprintf(fp 1

11 \n 11
);

fprintf(fp 1
11 /*IPoly Element Sizes*/\n 11

);

f p r in t f (f p 1 II% d \ n II 1 I Pol yN Elm t 5 i z e s (pI Poly)) ;
for (i = 0; i < IPolyNElmtSizes(piPoly); i++) {

fprintf(fp 1
11 %lf\n 11

1 &IPolyElmtSize(piPoly 1 i));
}
switch(IPolyElmtColorCode(piPoly)){
case Colorindex:

fprintf(fp 1
11 /*IPoly Element Colors*/\n 11

);

fprintf(fp 1
11 %d\n 11

1 IPolyNElmtColors(piPoly));
for (i = 0; i < IPolyNElmtColors(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyElmtColor(piPoly 1 i));
}
break;

case Shadeindex:
fprintf(fp 1

11 /*IPoly Element Shades*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNElmtShades(piPoly));
for (i = 0; i < IPolyNElmtShades(piPoly); i++) {

fprintf(fp 1
11 %d\n 11

1 IPolyElmtShade(piPoly 1 i));
}
break;

case ColorMapVal:
fprintf(fp 1

11 /*IPoly Element Values*/\n 11
);

fprintf(fp 1
11 %d\n 11

1 IPolyNElmtValues(piPoly));
for (i = 0; i < IPolyNElmtValues(piPoly); i++) {

fprintf(fp 1
11 %f\n 11

1 IPolyElmtValue(piPoly 1 i));

7/5/11 12:29 PM

Page 15 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1310

iPoly.c 7/5/11 12:29 PM

}

}
break;

case NoColor:
default:

break;
}

fprintf(fp 1

11 /*IPoly Edge Groups*/\n 11
);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN E G r o u p s (p I Po l y)) ;
for (i = 0; i < IPolyNEGroups(piPoly); i++) {

fprintf(fp 1

11 %d\n 11

1 IPolyEGroupLen(piPoly 1 i));
for (j = 0; j < IPolyEGroupLen(piPoly 1 i); j++){

fprintf(fp 1

11 %d %d\n 11

1

IPolyEGroupLow(piPoly 1 i 1 j) 1 IPolyEGroupHigh(piPoly 1 i 1 j));
}

}

fprintf(fp 1

11 /*IPoly Face Groups*/\n 11
);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN F G r o u p s (p I Po l y)) ;
for (i = 0; i < IPolyNFGroups(piPoly); i++) {

fprintf(fp 1

11 %d\n 11

1 IPolyFGroupLen(piPoly 1 i));
for (j = 0; j < IPolyFGroupLen(piPoly 1 i); j++){

fp rintf (fp 1
11 %d %d\n 11

1

IPolyFGroupLow(piPoly 1 i 1 j) 1 IPolyFGroupHigh(piPoly 1 i 1 j));
}

}

fprintf(fp 1

11 /*IPoly Colors*/\n 11
);

f p r in t f (f p 1 II % d \ n II 1 I Po l yN C o l o r s (p I Po l y)) ;
for (i = 0; i < IPolyNColors(piPoly); i++) {

fprintf(fp 1

11 %f %f %f\n 11

1 IPolyColor(piPoly 1 i) [0] 1

IPolyColor(piPoly 1 i) [1] 1 IPolyColor(piPoly 1 i) [2]);
}

void
freeiPoly(piPoly)

{

}

iPoly *PIPoly;

IPolyXDRFree(piPoly);

iPoly *
copyiPoly(piPoly 1 destpiPoly)

{

iPoly *PIPoly;
iPoly *destpiPoly;

char *buf;
int bufSize = 65536;
iPoly *newiPoly;

buf = malloc(bufSize);

Page 16 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1311

iPoly.c

}

while(IPolyMemOut(buf, bufSize, piPoly)== -1){
bufSize *=2;
buf = realloc(buf, bufSize);

}
if(destpiPoly){

newiPoly = destpiPoly;
}
else{

}

newiPoly = (iPoly *)malloc(sizeof(iPoly));
memset(newiPoly, 0, sizeof(iPoly));

IPolyMemin(buf, bufSize, newiPoly);
free(buf);

return newiPoly;

void
IPolyXDRFree(piPoly)

{

}

iPoly *PIPoly;

xdr_free(xdr_iPoly, (char*) piPoly);
memset(piPoly, 0, sizeof(iPoly));

int
IPolysOut(fd,

int
iPolys

piPolys)
fd;

*PIPolys;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_iPolys(&xdrs, piPolys)) {

retVal = -1;
}

#else I* STANDALONE *I
if (!xdr_iPolys(mplexXDRSEnc(fd), piPolys)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int

7/5/11 12:29 PM

Page 17 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1312

iPoly.c

IPolysin(fd, piPolys)

{
XDR
int

int fd;
iPolys *PIPolys;

xd rs;
retVal = 0;

IPolysXDRFree(piPolys);
#ifdef STANDALONE

{

}

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_iPolys(&xdrs, piPolys)) {

retVal = -1;
}

#else I* STANDALONE *I
if (!xdr_iPolys(mplexXDRSDec(fd), piPolys)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
IPolysMemOut(buf, size, piPolys)

char *buf;

{

}

int size;
iPolys *PIPolys;

XDR xdrs;
int retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if(!xdr_iPolys(&xdrs, piPolys)){

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
IPolysMemin(buf, size, piPolys)

char *buf;
int size;
iPolys *PIPolys;

{
XDR xdrs;
int retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR DECODE);

7/5/11 12:29 PM

Page 18 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1313

iPoly.c

}

if(!xdr_iPolys(&xdrs, piPolys)){
retVal = -1;

}
xdr_destroy(&xdrs);
return retVal;

void
inputiPolys(fp,

FILE
iPolys

piPolys)
*fp;

*PIPolys;
{
/*read from stream*/

memset(piPolys, 0, sizeof(iPolys));
}

void
outputiPolys(fp,

FILE
piPolys)

*fp;
*PIPolys;

{

}

iPolys

int i;
fprintf(fp, "/*N Ipolys*/\n");
fp rintf (fp, "%d\n");
for(i=0; i<piPolys->iPolys_len; i++){

outputiPoly(fp, &piPolys->iPolys_val[i]);
}

void
freeiPolys(piPolys)

{

}

iPolys *PIPolys;

IPolysXDRFree(piPolys);

iPolys *
copyiPolys(piPolys, destpiPolys)

{

iPolys *PIPolys;
iPolys *destpiPolys;

char *buf;
int bufSize = 65536;
iPolys *newiPolys;

buf = malloc(bufSize);

while(IPolysMemOut(buf, bufSize, piPolys)== -1){
bufSize *=2;
buf = realloc(buf, bufSize);

}
if(destpiPolys){

newiPolys = destpiPolys;

7/5/11 12:29 PM

Page 19 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1314

iPoly.c

}

}
else{

}

newiPolys = (iPolys *)malloc(sizeof(iPolys));
memset(newiPolys 1 0 1 sizeof(iPolys));

IPolysMemin(buf 1 bufSize 1 newiPolys);
free(buf);

return newiPolys;

void
IPolysXDRFree(piPolys)

{

}

iPolys *PIPolys;

xdr_free(xdr_iPolys 1 (char*) piPolys);
memset(piPolys 1 0 1 sizeof(iPolys));

#ifdef STANDALONE
main(argc 1 argv)
#else I* STANDALONE *I

IPolyMain(argc 1 argv)
#endif I* STANDALONE *I

{

int
char

iPoly siPoly;
iPoly cpiPoly;
iPolys siPolys;
iPolys cpiPolys;

switch (argc) {

a rgc;
**argv;

case 1: I* receive sid *I
IPolyin(0 I* stdin *I 1 &siPoly);
outputiPoly(stdout 1 &siPoly);
cpiPoly = siPoly;
outputiPoly(stdout 1 &cpiPoly);

break;
case 2: I* receive sid *I

inputiPoly(stdin 1 &siPoly);
#ifdef DEBUG

outputiPoly(stderr 1 &siPoly);
#end if

IPolyOut(l I* stdout *I 1 &siPoly);

break;
case 3: I* receive sid *I

IPolysin(0 I* stdin *I 1 &siPolys);
outputiPolys(stdout 1 &siPolys);
cpiPolys = siPolys;

7/5/11 12:29 PM

Page 20 of 21
Petitioner Microsoft Corporation, Ex. 1002, p. 1315

iPoly.c

outputiPolys(stdout, &cpiPolys);

break;
case 4: I* receive sid *I

inputiPolys(stdin, &siPolys);
#ifdef DEBUG

outputiPolys(stderr, &siPolys);
#end if

IPolysOut(l I* stdout *I , &siPolys);

break;
}

}

7/5/11 12:29 PM

Page 21 of 21

Petitioner Microsoft Corporation, Ex. 1002, p. 1316

iPoly_xdr.c 7/5/11 12:28 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommliPoly.h>

bool_t
xdr_iPolyPoint(xdrs, objp)

XDR *Xdrs;

{

}

iPolyPoint objp;

if (!xdr_vector(xdrs, (char *)objp, 3, sizeof(double), xdr_double)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolySize(xdrs, objp)

XDR *Xdrs;

{

}

iPolySize *Objp;

if (!xdr_double(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

Page 1 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1317

iPoly_xdr.c 7/5/11 12:28 PM

bool_t
xdr_iPolyNormal(xdrs 1 objp)

XDR *Xdrs;

{

}

iPolyNormal objp;

if (!xdr_vector(xdrs 1 (char *)objp 1 3 1 sizeof(float) 1 xdr_float)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolyRGB(xdrs 1 objp)

XDR *Xdrs;

{

}

iPolyRGB objp;

if (!xdr_vector(xdrs 1 (char *)objp 1 3 1 sizeof(float) 1 xdr_float)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolyEdgeVerts(xdrs 1 objp)

XDR *Xdrs;

{

}

iPolyEdgeVerts objp;

if (!xdr_vector(xdrs 1 (char *)objp 1 2 1 sizeof(int) 1 xdr_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_range(xdrs 1 objp)

XDR *Xdrs;

{

}

range obj p;

if (!xdr_vector(xdrs 1 (char *)objp 1 2 1 sizeof(int) 1 xdr_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iRanges(xdrs 1 objp)

XDR *Xdrs;

{
iRanges *Objp;

if (!xdr_array(xdrs 1 (char **)&objp->iRanges_val 1 (u_int *)&objp->
iRanges_len 1 ~0 1 sizeof(range) 1 xdr_range)) {
return (FALSE);

Page 2 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1318

iPoly_xdr.c

}
return (TRUE);

}

bool_t
xdr_iEdges(xdrs, objp)

XDR *Xdrs;

{

}

iEdges *Objp;

if (!xdr_array(xdrs, (char **)&objp->iEdges_val, (u_int *)&objp->
iEdges_len, ~0, sizeof(int), xdr_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iVerts(xdrs, objp)

XDR *Xdrs;

{

}

iVerts *Objp;

if (!xdr_array(xdrs, (char **)&objp->iVerts_val, (u_int *)&objp->
iVerts_len, ~0, sizeof(int), xdr _int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iFaces(xdrs, objp)

XDR *Xdrs;

{

}

iFaces *Objp;

if (!xdr_array(xdrs, (char **)&objp->iFaces_val, (u_int *)&objp->
iFaces_len, ~0, sizeof(int), xdr_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_colorCode(xdrs, objp)

XDR *Xdrs;

{

}

colorCode *Objp;

if (!xdr_enum(xdrs, (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolyColors(xdrs, objp)

7/5/11 12:28 PM

Page 3 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1319

iPoly_xdr.c

{

}

7/5/11 12:28 PM

XDR *Xdrs;
iPolyColors *Objp;

if (!xdr_colorCode(xdrs 1 &objp->code)) {
return (FALSE);

}
switch (objp->code) {
case Colorindex:

if (!xdr_array(xdrs 1 (char **)&objp->iPolyColors_u.colors.
colors_val 1 (u_int *)&objp->iPolyColors_u.colors.colors_len 1 ~0
1 sizeof(int) 1 xdr_int)) {
return (FALSE);

}
break;

case Shadeindex:
if (!xdr_array(xdrs 1 (char **)&objp->iPolyColors_u.shades.

shades_val 1 (u_int *)&objp->iPolyColors_u.shades.shades_len 1 ~0
1 sizeof(int) 1 xdr_int)) {
return (FALSE);

}
break;

case ColorMapVal:

}

if (!xdr_array(xdrs 1 (char **)&objp->iPolyColors_u.values.
values_val 1 (u_int *)&objp->iPolyColors_u.values.values_len 1 ~0
1 sizeof(float) 1 xdr_float)) {
return (FALSE);

}
break;

return (TRUE);

bool_t
xdr_iPolyVerts(xdrs 1 objp)

XDR *Xdrs;

{
iPolyVerts *Objp;

if (!xdr_array(xdrs 1 (char **)&objp->points.points_val1 (u_int *)&objp
>points.points_len1 ~0 1 sizeof(iPolyPoint) 1 xdr_iPolyPoint)) {
return (FALSE);

}
if (!xdr_array(xdrs 1 (char **)&objp->aFaces.aFaces_val1 (u_int *)&objp

>aFaces.aFaces_len1 ~0 1 sizeof(iFaces) 1 xdr_iFaces)) {
return (FALSE);

}
if (!xdr_array(xdrs 1 (char **)&objp->aEdges.aEdges_val 1 (u_int *)&objp

>aEdges.aEdges_len1 ~0 1 sizeof(iEdges) 1 xdr_iEdges)) {
return (FALSE);

}
if (!xdr_array(xdrs 1 (char **)&objp->normals.normals_val 1 (u_int *)&

objp->normals.normals_len 1 ~0 1 sizeof(iPolyNormal) 1 xdr_iPolyNormal
)) {
return (FALSE);

Page 4 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1320

iPoly_xdr.c

}

7/5/11 12:28 PM

}
if (!xdr_array(xdrs, (char **)&objp->sizes.sizes_val, (u_int *)&objp->

sizes.sizes_len, ~0, sizeof(iPolySize), xdr_iPolySize)) {
return (FALSE);

}
if (!xdr_iPolyColors(xdrs, &objp->colors)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_iPolyEdges(xdrs, objp)

XDR *Xdrs;

{

}

iPolyEdges *Objp;

if (!xdr_array(xdrs, (char **)&objp->verts.verts_val, (u_int *)&objp->
verts.verts_len, ~0, sizeof(iPolyEdgeVerts), xdr_iPolyEdgeVerts)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->aFaces.aFaces_val, (u_int *)&objp

>aFaces.aFaces_len, ~0, sizeof(iFaces), xdr_iFaces)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->sizes.sizes_val, (u_int *)&objp->

sizes.sizes_len, ~0, sizeof(iPolySize), xdr_iPolySize)) {
return (FALSE);

}
if (!xdr_iPolyColors(xdrs, &objp->colors)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_iPolyFaces(xdrs, objp)

XDR *Xdrs;

{
iPolyFaces *Objp;

if (!xdr_array(xdrs, (char **)&objp->eFaces.eFaces_val, (u_int *)&objp
>eFaces.eFaces_len, ~0, sizeof(iEdges), xdr_iEdges)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->vFaces.vFaces_val, (u_int *)&objp

>vFaces.vFaces_len, ~0, sizeof(iVerts), xdr_iVerts)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->sizes.sizes_val, (u_int *)&objp->

sizes.sizes_len, ~0, sizeof(iPolySize), xdr_iPolySize)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->normals.normals_val, (u_int *)&

objp->normals.normals_len, ~0, sizeof(iPolyNormal), xdr_iPolyNormal

Page 5 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1321

iPoly_xdr.c 7/5/11 12:28 PM

}

)) {
return (FALSE);

}
if (!xdr_iPolyColors(xdrs, &objp->colors)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_iPolyElmts(xdrs, objp)

XDR *Xdrs;
iPolyElmts *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->fElmts.fElmts_val, (u_int *)&objp

>fElmts.fElmts_len, ~0, sizeof(iFaces), xdr_iFaces)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->sizes.sizes_val, (u_int *)&objp->

sizes.sizes_len, ~0, sizeof(iPolySize), xdr_iPolySize)) {

}

return (FALSE);
}
if (!xdr_iPolyColors(xdrs, &objp->colors)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_iPoly(xdrs, objp)

XDR *Xdrs;

{
iPoly *Objp;

if (!xdr_iPolyVerts(xdrs, &objp->verts)) {
return (FALSE);

}
if (!xdr_iPolyEdges(xdrs, &objp->edges)) {

return (FALSE);
}
if (!xdr_iPolyFaces(xdrs, &objp->faces)) {

return (FALSE);
}
if (!xdr_iPolyElmts(xdrs, &objp->elmts)) {

return (FALSE);
}
if (!xdr_array(xdrs, (char **)&objp->eGroups.eGroups_val, (u_int *)&

objp->eGroups.eGroups_len, ~0, sizeof(iRanges), xdr_iRanges)) {
return (FALSE);

}
if (!xdr_array(xdrs, (char **)&objp->fGroups.fGroups_val, (u_int *)&

objp->fGroups.fGroups_len, ~0, sizeof(iRanges), xdr_iRanges)) {
return (FALSE);

}

Page 6 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1322

iPoly_xdr.c 7/5/11 12:28 PM

if (!xdr_array(xdrs 1 (char **)&objp->rgb. rgb_val 1 (u_int *)&objp->rgb.
rgb_len 1 ~0 1 sizeof(iPolyRGB) 1 xdr_iPolyRGB)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_iPoly_P(xdrs 1 objp)

XDR *Xdrs;

{

}

iPoly_P *Objp;

if (!xdr_pointer(xdrs 1 (char **)objp 1 sizeof(iPoly) 1 xdr_iPoly)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolys(xdrs 1 objp)

XDR *Xdrs;

{

}

iPolys *Objp;

if (!xdr_array(xdrs 1 (char **)&objp->iPolys_val 1 (u_int *)&objp->
iPolys_len 1 ~0 1 sizeof(iPoly) 1 xdr_iPoly)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolys_P(xdrs 1 objp)

XDR *Xdrs;

{

}

iPolys_P *Objp;

if (!xdr_pointer(xdrs 1 (char **)objp 1 sizeof(iPolys) 1 xdr_iPolys)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolyObj(xdrs 1 objp)

XDR *Xdrs;
iPolyObj *Objp;

{
if (!xdr_vector(xdrs 1 (char *)objp->sbName 1 IPOLY_NMLEN 1 sizeof(char) 1

xdr_char)) {
return (FALSE);

}
if (!xdr_u_long(xdrs 1 &objp->lidTag)) {

return (FALSE);
}

Page 7 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1323

iPoly_xdr.c

}

7/5/11 12:28 PM

if (!xdr_u_long(xdrs, &objp->lSidTag)) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lType)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lMode)) {

return (FALSE);
}
if (!xdr_pointer(xdrs, (char **)&objp->piPoly, sizeof(iPoly), xdr_iPoly

)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_iPolyObj_P(xdrs, objp)

XDR *Xdrs;

{

}

iPolyObj_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(iPolyObj), xdr_iPolyObj))
{
return (FALSE);

}
return (TRUE);

Page 8 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1324

pictData.c 7/5/11 12:31 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>

#include <shastraldatacommlpictDataH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
pictPieceOut(fd,

int
pictPiece

pPictCData)
fd;

*PPictCData;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_pictPiece(&xdrs, pPictCData)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
*I

Page 1 of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1325

pictData.c 7/5/11 12:31 PM

if (!xdr_pictPiece(mplexXDRSEnc(fd), pPictCData)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
pictPiecein(fd,

int
pictPiece

pPictCData)
fd;

*PPictCData;
{

XDR
int

xd rs;
retVal = 0;

pictPieceXDRFree(pPictCData);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_pictPiece(&xdrs, pPictCData)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_pictPiece(mplexXDRSDec(fd), pPictCData)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
pictPieceMemOut(buf, size, pPictCData)

{

}

char *buf;
int size;
pictPiece *PPictCData;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_pictPiece(&xdrs, pPictCData)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

Page2of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1326

pictData.c

int
pictPieceMemin(buf, size, pPictCData)

{

}

char *buf;
int size;
pictPiece *PPictCData;

XDR
int

xd rs;
retVal = 0;

pictPieceXDRFree(pPictCData);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_pictPiece(&xdrs, pPictCData)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
pictPiecesOut(fd,

int
pictPieces

pPictCDatas)
fd;

*PPictCDatas;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_pictPieces(&xdrs, pPictCDatas)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:31 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_pictPieces(mplexXDRSEnc(fd), pPictCDatas)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
pictPiecesin(fd,

int
pictPieces

{
XDR
int

pPictCDatas)
fd;

*PPictCDatas;

xd rs;
retVal = 0;

Page3of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1327

pictData.c 7/5/11 12:31 PM

pictPiecesXDRFree(pPictCDatas);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_pictPieces(&xdrs, pPictCDatas)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_pictPieces(mplexXDRSDec(fd), pPictCDatas)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
pictPiecesMemOut(buf, size, pPictCDatas)

{

}

int

char *buf;
int size;
pictPieces *PPictCDatas;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_pictPieces(&xdrs, pPictCDatas)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

pictPiecesMemin(buf, size, pPictCDatas)

{

char *buf;
int size;
pictPieces *PPictCDatas;

XDR
int

xd rs;
retVal = 0;

pictPiecesXDRFree(pPictCDatas);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_pictPieces(&xdrs, pPictCDatas)) {

retVal = -1;
}

Page4of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1328

pictData.c

xdr_destroy(&xdrs);
return retVal;

}

int
pictCollexnOut(fd,

int
pictCollexn

pPictCollexn)
fd;

*PPictCollexn;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_pictCollexn(&xdrs, pPictCollexn)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:31 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_pictCollexn(mplexXDRSEnc(fd), pPictCollexn)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
pictCollexnin(fd,

int
pictCollexn

pPictCollexn)
fd;

*PPictCollexn;
{

XDR
int

xd rs;
retVal = 0;

pictCollexnXDRFree(pPictCollexn);
#ifdef STANDALONE

{

}
#else

I*

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_pictCollexn(&xdrs, pPictCollexn)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR_DECODE);

Page5of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1329

pictData.c

*I
if (!xdr_pictCollexn(mplexXDRSDec(fd), pPictCollexn)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
pictCollexnMemOut(buf, size, pPictCollexn)

{

}

int

char *buf;
int size;
pictCollexn *PPictCollexn;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_pictCollexn(&xdrs, pPictCollexn)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

pictCollexnMemin(buf, size, pPictCollexn)

{

}

char *buf;
int size;
pictCollexn *PPictCollexn;

XDR
int

xd rs;
retVal = 0;

pictCollexnXDRFree(pPictCollexn);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_pictCollexn(&xdrs, pPictCollexn)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

void
freePictPiece(pPictCData)

pictPiece *PPictCData;
{

}

if (pPictCData == NULL) {
return;

}
memset(pPictCData, 0, sizeof(pictPiece));

7/5/11 12:31 PM

Page6of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1330

pictData.c

void
freePictPieces(pPictCDatas)

pictPieces *PPictCDatas;
{

}

int i;

if (pPictCDatas NULL) {
return;

}
for (i = 0; i < pPictCDatas->pictPieces_len; i++) {

freePictPiece(&pPictCDatas->pictPieces_val[i]);
}
free(pPictCDatas->pictPieces_val);
memset(pPictCDatas, 0, sizeof(pictPieces));

pictPiece *
copyPictPiece(pPictCData, destpPictCData)

pictPiece *PPictCData;

{

}

pictPiece *destpPictCData;

pictPiece
int

*newpPictCData;
i;

if (pPictCData == NULL) {
return NULL;

}
if (destpPictCData == NULL) {

newpPictCData = (pictPiece *) malloc(sizeof(pictPiece));
} else {

newpPictCData = destpPictCData;
}

memcpy(newpPictCData, pPictCData, sizeof(pictPiece));
return newpPictCData;

pictPieces *
copyPictPieces(pPictCDatas, destpPictCDatas)

pictPieces *PPictCDatas;

{
pictPieces *destpPictCDatas;

int
pictPieces
char

i;
*newpPictCDatas;

buf [65536] ;

if (pPictCDatas == NULL) {
return NULL;

}
if (destpPictCDatas == NULL) {

newpPictCDatas = (pictPieces *) malloc(sizeof(pictPieces));
memset(newpPictCDatas, 0, sizeof(pictPieces));

7/5/11 12:31 PM

Page7of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1331

pictData.c

}

void

} else {
newpPictCDatas = destpPictCDatas;

}
pictPiecesMemOut(buf, 65536, pPictCDatas);
pictPiecesMemin(buf, 65536, newpPictCDatas);
return newpPictCDatas;

inputPictPiece(fp, pPictCData)

{

}

void

FILE *fp;
pictPiece *PPictCData;

memset(pPictCData, 0, sizeof(pictPiece));

outputPictPiece(fp, pPictCData)

{

}

void

FILE *fp;
pictPiece *PPictCData;

fprintf(stderr, "outputPictPiece() not complete\n");

inputPictPieces(fp, pPictCDatas)

{

}

void

FILE *fp;
pictPieces *PPictCDatas;

int i;

fscanf(fp, "%d", &pPictCDatas->pictPieces_len);
pPictCDatas->pictPieces_val = (pictPiece *)

malloc(pPictCDatas->pictPieces_len * sizeof(pictPiece));
for (i = 0; i < pPictCDatas->pictPieces_len; i++) {

inputPictPiece(fp, &pPictCDatas->pictPieces_val[i]);
}

outputPictPieces(fp, pPictCDatas)

{

FILE *fp;
pictPieces *PPictCDatas;

int i;

fprintf(fp, "%d\n", pPictCDatas->pictPieces_len);
for (i = 0; i < pPictCDatas->pictPieces_len; i++) {

outputPictPiece(fp, &pPictCDatas->pictPieces_val[i]);
}

7/5/11 12:31 PM

Page8of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1332

pictData.c

}

void
pictPieceXDRFree(pPictCData)

pictPiece *PPictCData;
{

}

xdr_free(xdr_pictPiece, (char*) pPictCData);
memset(pPictCData, 0, sizeof(pictPiece));

void
pictPiecesXDRFree(pPictCDatas)

pictPieces *PPictCDatas;
{

}

xdr_free(xdr_pictPieces, (char*) pPictCDatas);
memset(pPictCDatas, 0, sizeof(pictPieces));

void
pictCollexnXDRFree(pPictCollexn)

pictCollexn *PPictCollexn;
{

}

xdr_free(xdr_pictCollexn, (char*) pPictCollexn);
memset(pPictCollexn, 0, sizeof(pictCollexn));

#ifdef STANDALONE
main(argc, argv)
#else
pictPieceMain(argc,
#end if

I* STANDALONE *I
a rgv)
I* STANDALONE *I

{

int
char

a rgc;
**argv;

static pictPiece pictCData;
static pictPieces pictCDatas;
pictPieces *CPPictCDatas;
pictPiece *CPPictCData;

switch (argc) {
case 1: I* receive pictPiece *I

pictPiecein(0 I* stdin *I , &pictCData);
outputPictPiece(stdout, &pictCData);
cpPictCData = copyPictPiece(&pictCData, NULL);
outputPictPiece(stdout, cpPictCData);
freePictPiece(cpPictCData);

break;
case 2: I* receive pictPiece *I

inputPictPiece(stdin, &pictCData);
#ifdef DEBUG

outputPictPiece(stderr, &pictCData);
#end if

7/5/11 12:31 PM

Page9of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1333

pictData.c

pictPieceOut(l I* stdout *I 1 &pictCData);

break;
case 3: I* receive pictPieces *I

pictPiecesin(0 I* stdin *I 1 &pictCDatas);
outputPictPieces(stdout 1 &pictCDatas);
cpPictCDatas = copyPictPieces(&pictCDatas 1 NULL);
outputPictPieces(stdout 1 cpPictCDatas);
freePictPieces(cpPictCDatas);

break;
case 4: I* receive pictPieces *I

inputPictPieces(stdin 1 &pictCDatas);
#ifdef DEBUG

outputPictPieces(stderr 1 &pictCDatas);
#end if

pictPiecesOut(l I* stdout *I 1 &pictCDatas);

break;
}

}

7/5/11 12:31 PM

Page 10 of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1334

pictData_xdr.c 7/5/11 12:29 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlxsCntlData.h>
#include <shastraldatacommlpictData.h>

bool_t
xdr_lineMode(xdrs, objp)

XDR *Xdrs;

{

}

lineMode *Objp;

if (!xdr_enum(xdrs, (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_mLineMode(xdrs, objp)

XDR *Xdrs;

{
mLineMode *Objp;

if (!xdr_enum(xdrs, (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

Page 1 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1335

pictData_xdr.c

}

bool_t
xdr_objectMode(xdrs 1 objp)

XDR *Xdrs;

{

}

objectMode *Objp;

if (!xdr_enum(xdrs 1 (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_editModes(xdrs 1 objp)

XDR *Xdrs;

{

}

editModes *Objp;

if (!xdr_enum(xdrs 1 (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_pictMode(xdrs 1 objp)

XDR *Xdrs;

{

}

pictMode *Objp;

if (!xdr_enum(xdrs 1 (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_pntData(xdrs 1 objp)

XDR *Xdrs;
pntData objp;

{

7/5/11 12:29 PM

if (!xdr_vector(xdrs 1 (char *)objp 1 3 1 sizeof(double) 1 xdr_double)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_unitData(xdrs 1 objp)

XDR *Xdrs;

{
unitData *Objp;

if (!xdr_vector(xdrs 1 (char *)objp->start 1 3 1 sizeof(double) 1

xd r _daub le)) {

Page2of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1336

pictData_xdr.c 7/5/11 12:29 PM

return (FALSE);
}
if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)

) {
return (FALSE);

}
return (TRUE);

}

baal_t
xdr_rndData(xdrs 1 abjp)

XDR *Xdrs;

{
rndData *abjp;

if (!xdr_vectar(xdrs 1 (char *)abjp->start 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)

) {

}

return (FALSE);
}
if (!xdr_dauble(xdrs 1 &abjp->factar)) {

return (FALSE);
}
return (TRUE);

baal_t
xdr_pllgmData(xdrs 1 abjp)

XDR *Xdrs;

{
pllgmData *abjp;

if (!xdr_vectar(xdrs 1 (char *)abjp->start 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)

) {

}

return (FALSE);
}
if (!xdr_dauble(xdrs 1 &abjp->factar)) {

return (FALSE);
}
return (TRUE);

baal_t
xdr_madeLineData(xdrs 1 abjp)

XDR *Xdrs;
madeLineData *abjp;

{
if (!xdr_vectar(xdrs 1 (char *)abjp->start 1 3 1 sizeaf(dauble) 1

Page3of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1337

pictData_xdr.c

}

xdr_dauble)) {
return (FALSE);

7/5/11 12:29 PM

if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)
) {

}

return (FALSE);
}
if (!xdr_lineMade(xdrs 1 &abjp->made)) {

return (FALSE);
}
return (TRUE);

baal_t
xdr_angLineData(xdrs 1 abjp)

XDR *Xdrs;

{
angLineData *abjp;

if (!xdr_vectar(xdrs 1 (char *)abjp->start 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)

) {

}

return (FALSE);
}
if (!xdr_int(xdrs 1 &abjp->angle)) {

return (FALSE);
}
return (TRUE);

baal_t
xdr_arcData(xdrs 1 abjp)

XDR *Xdrs;

{
arcData *abjp;

if (!xdr_vectar(xdrs 1 (char *)abjp->start 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->end 1 3 1 sizeaf(dauble) 1 xdr_dauble)

) {

}

return (FALSE);
}
if (!xdr_int(xdrs 1 &abjp->angStart)) {

return (FALSE);
}
if (!xdr_int(xdrs 1 &abjp->angSpan)) {

return (FALSE);
}
return (TRUE);

Page4of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1338

pictData_xdr.c 7/5/11 12:29 PM

bool_t
xdr_nGonData(xdrs 1 objp)

XDR *Xdrs;

{

}

nGonData *Objp;

if (!xdr_vector(xdrs 1 (char *)objp->start 1 3 1 sizeof(double) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_vector(xdrs 1 (char *)objp->end 1 3 1 sizeof(double) 1 xdr_double)

) {
return (FALSE);

}
if (!xdr_int(xdrs 1 &objp->n)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_pictElmt(xdrs 1 objp)

XDR *Xdrs;

{
pictElmt *Objp;

if (!xdr_pictMode(xdrs 1 &objp->picType)) {
return (FALSE);

}
switch (objp->picType) {
case pmNULL:

break;
case pmDUMMY_UNIT:

if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.unit)) {
return (FALSE);

}
break;

case pmDUMMY_HYBR:
if (!xdr_nGonData(xdrs 1 &objp->pictElmt_u.hybrid)) {

return (FALSE);
}
break;

case pmDUMMY_AGGR:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.aggreg.aggreg_val 1

(u_int *)&objp->pictElmt_u.aggreg.aggreg_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmDUMMY_COMP:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.compound.

compound_val 1 (u_int *)&objp->pictElmt_u.compound.compound_len 1

~0 1 sizeof(unitData) 1 xdr_unitData)) {
return (FALSE);

Page5of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1339

pictData_xdr.c

}
break;

case pmDUMMY_LAM:

7/5/11 12:29 PM

if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.dumlam.dumlam_val 1

(u_int *)&objp->pictElmt_u.dumlam.dumlam_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmPOINT:
if (!xdr_pntData(xdrs 1 objp->pictElmt_u.point)) {

return (FALSE);
}
break;

case pmLINE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.line)) {

return (FALSE);
}
break;

case pmH_LINE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.hline)) {

return (FALSE);
}
break;

case pmV_LINE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.vline)) {

return (FALSE);
}
break;

case pmA_LINE:
if (!xdr_angLineData(xdrs 1 &objp->pictElmt_u.aline)) {

return (FALSE);
}
break;

case pmP_LINE:
if (!xdr_angLineData(xdrs 1 &objp->pictElmt_u.pline)) {

return (FALSE);
}
break;

case pmMULTI_LINE:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.lines.lines_val 1

(u_int *)&objp->pictElmt_u.lines.lines_len 1 ~0 1 sizeof(pntData)
1 xdr_pntData)) {
return (FALSE);

}
break;

case pmMULTI_SEG:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.segs.segs_val 1

(u_int *)&objp->pictElmt_u.segs.segs_len 1 ~0 1 sizeof(unitData) 1

xd r _uni tData)) {
return (FALSE);

}
break;

Page6of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1340

pictData_xdr.c 7/5/11 12:29 PM

case pmPOLYGON:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.polygon.polygon_val

1 (u_int *)&objp->pictElmt_u.polygon.polygon_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmRECTANGLE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.rect)) {

return (FALSE);
}
break;

case pmREGNGON:
if (!xdr_nGonData(xdrs 1 &objp->pictElmt_u.ngon)) {

return (FALSE);
}
break;

case pmSQUARE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.square)) {

return (FALSE);
}
break;

case pmELLIPSE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.ellipse)) {

return (FALSE);
}
break;

case pmCIRCLE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.circle)) {

return (FALSE);
}
break;

case pmDIAMOND:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.diamond)) {

return (FALSE);
}
break;

case pmPLLOGRAM:
if (!xdr_pllgmData(xdrs 1 &objp->pictElmt_u.pllgm)) {

return (FALSE);
}
break;

case pmRNDSQUARE:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.rndsq)) {

return (FALSE);
}
break;

case pmRNDRECT:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.rndrect)) {

return (FALSE);
}
break;

case pmPRNDSQUARE:

Page7of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1341

pictData_xdr.c

if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.prndsq)) {
return (FALSE);

}
break;

case pmPRNDRECT:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.prndrect)) {

return (FALSE);
}
break;

case pmARNDSQUARE:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.arndsq)) {

return (FALSE);
}
break;

case pmARNDRECT:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.arndrect)) {

return (FALSE);
}
break;

case pmBERN_MLINE:

7/5/11 12:29 PM

if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.bernline.
bernline_val 1 (u_int *)&objp->pictElmt_u.bernline.bernline_len 1

~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmBERN_LAMINA:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.bernlam.bernlam_val

1 (u_int *)&objp->pictElmt_u.bernlam.bernlam_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmSPLINE_MLINE:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.splineline.

splineline_val 1 (u_int *)&objp->pictElmt_u.splineline.
splineline_len 1 ~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmSPLINE_LAMINA:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.splinelam.

splinelam_val 1 (u_int *)&objp->pictElmt_u.splinelam.
splinelam_len 1 ~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmFREE_MLINE:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.freeline.

freeline_val 1 (u_int *)&objp->pictElmt_u.freeline.freeline_len 1

~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}

Page8of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1342

pictData_xdr.c 7/5/11 12:29 PM

break;
case pmFREE_LAMINA:

if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.freelam.freelam_val
1 (u_int *)&objp->pictElmt_u.freelam.freelam_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmCVRECTANGLE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.cvrect)) {

return (FALSE);
}
break;

case pmCVREGNGON:
if (!xdr_nGonData(xdrs 1 &objp->pictElmt_u.cvngon)) {

return (FALSE);
}
break;

case pmCVSQUARE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.cvsq)) {

return (FALSE);
}
break;

case pmCVELLIPSE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.cvell)) {

return (FALSE);
}
break;

case pmCVCIRCLE:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.cvcircle)) {

return (FALSE);
}
break;

case pmCVDIAMOND:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.cvdiamond)) {

return (FALSE);
}
break;

case pmCVPLLOGRAM:
if (!xdr_pllgmData(xdrs 1 &objp->pictElmt_u.cvpllgm)) {

return (FALSE);
}
break;

case pmCVRNDSQUARE:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.cvrndsq)) {

return (FALSE);
}
break;

case pmCVRNDRECT:
if (!xdr_rndData(xdrs 1 &objp->pictElmt_u.cvrndrect)) {

return (FALSE);
}
break;

Page9of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1343

pictData_xdr.c

case pmCVPRNDSQUARE:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.cvprndsq)) {

return (FALSE);
}
break;

case pmCVPRNDRECT:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.cvprndrect)) {

return (FALSE);
}
break;

case pmCVARNDSQUARE:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.cvarndsq)) {

return (FALSE);
}
break;

case pmCVARNDRECT:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.cvarndrect)) {

return (FALSE);
}
break;

case pmCRREGNGON:
if (!xdr_nGonData(xdrs, &objp->pictElmt_u.crngon)) {

return (FALSE);
}
break;

case pmCRSQUARE:
if (!xdr_unitData(xdrs, &objp->pictElmt_u.crsq)) {

return (FALSE);
}
break;

case pmCRRNDSQUARE:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.crrndsq)) {

return (FALSE);
}
break;

case pmCRPRNDSQUARE:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.crprndsq)) {

return (FALSE);
}
break;

case pmCRARNDSQUARE:
if (!xdr_rndData(xdrs, &objp->pictElmt_u.crarndsq)) {

return (FALSE);
}
break;

case pmCRCIRCLE:
if (!xdr_unitData(xdrs, &objp->pictElmt_u.crcircle)) {

return (FALSE);
}
break;

case pmMNH_MLINE:

7/5/11 12:29 PM

if (!xdr_array(xdrs, (char **)&objp->pictElmt_u.mnhmline.
mnhmline_val, (u int *)&objp->pictElmt_u.mnhmline.mnhmline_len,

Page 10 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1344

pictData_xdr.c

}

~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

break;
case pmMNH_POLYGON:

7/5/11 12:29 PM

if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.mnhpoly.mnhpoly_val
1 (u_int *)&objp->pictElmt_u.mnhpoly.mnhpoly_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmMTN_MLINE:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.mtnmline.

mtnmline_val 1 (u_int *)&objp->pictElmt_u.mtnmline.mtnmline_len 1

~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmMTN_POLYGON:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.mtnpoly.mtnpoly_val

1 (u_int *)&objp->pictElmt_u.mtnpoly.mtnpoly_len 1 ~0 1 sizeof
(pntData) 1 xd r _pntData)) {
return (FALSE);

}
break;

case pmMTNMNH_MLINE:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.mtnmnhmline.

mtnmnhmline_val 1 (u_int *)&objp->pictElmt_u.mtnmnhmline.
mtnmnhmline_len 1 ~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmMTNMNH_POLYGON:
if (!xdr_array(xdrs 1 (char **)&objp->pictElmt_u.mtnmnhpoly.

mtnmnhpoly_val 1 (u_int *)&objp->pictElmt_u.mtnmnhpoly.
mtnmnhpoly_len 1 ~0 1 sizeof(pntData) 1 xdr_pntData)) {
return (FALSE);

}
break;

case pmTEXT:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.text)) {

return (FALSE);
}
break;

case pmTEXTPOLYGON:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.textpoly)) {

return (FALSE);
}
break;

case pmFTEXTPOLYGON:
if (!xdr_unitData(xdrs 1 &objp->pictElmt_u.ftextpoly)) {

return (FALSE);
}

Page 11 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1345

pictData_xdr.c

break;
case pmGRAPH:

7/5/11 12:29 PM

if (!xdr_array(xdrs, (char **)&objp->pictElmt_u.graph.graph_val,
(u_int *)&objp->pictElmt_u.graph.graph_len, ~0, sizeof(pntData)
, xdr_pntData)) {

}

return (FALSE);
}
break;

case pmFLOWCHART:
if (!xdr_array(xdrs, (char **)&objp->pictElmt_u.flowchart.

flowchart_val, (u_int *)&objp->pictElmt_u.flowchart.
flowchart_len, ~0, sizeof(pntData), xdr_pntData)) {
return (FALSE);

}
break;

case pmARC:
if (!xdr_arcData(xdrs, &objp->pictElmt_u.arc)) {

return (FALSE);
}
break;

case pmCVARC:
if (!xdr_arcData(xdrs, &objp->pictElmt_u.cvarc)) {

return (FALSE);
}
break;

case pmCARC:
if (!xdr_arcData(xdrs, &objp->pictElmt_u.carc)) {

return (FALSE);
}
break;

case pmCVCARC:
if (!xdr_arcData(xdrs, &objp->pictElmt_u.cvcarc)) {

return (FALSE);
}
break;

case pmCRCARC:
if (!xdr_arcData(xdrs, &objp->pictElmt_u.crcarc)) {

return (FALSE);
}
break;

case pmFRENCH:

}

if (!xdr_unitData(xdrs, &objp->pictElmt_u.french)) {
return (FALSE);

}
break;

return (TRUE);

bool_t
xdr_pictPiece(xdrs, objp)

XDR *Xdrs;
pictPiece *Objp;

Page 12 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1346

pictData_xdr.c

{

}

if (!xdr_objid(xdrs, &objp->objectid)) {
return (FALSE);

}
if (!xdr_pictElmt(xdrs, &objp->pict)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_pictPiece_P(xdrs, objp)

XDR *Xdrs;
pictPiece_P *Objp;

{

7/5/11 12:29 PM

if (!xdr_pointer(xdrs, (char **)objp, sizeof(pictPiece), xdr_pictPiece)
) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_pictPieces(xdrs, objp)

XDR *Xdrs;
pictPieces *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->pictPieces_val, (u_int *)&objp->

pictPieces_len, ~0, sizeof(pictPiece), xdr_pictPiece)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_pictPieces_P(xdrs, objp)

XDR *Xdrs;

{

}

pictPieces_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(pictPieces),
xdr_pictPieces)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_pictCollexn(xdrs, objp)

XDR *Xdrs;
pictCollexn *Objp;

{
if (!xdr_vector(xdrs, (char *)objp->sbName, 32, sizeof(char), xdr_char)

) {

Page 13 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1347

pictData_xdr.c 7/5/11 12:29 PM

}

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_long(xdrs, &objp->lType)) {

return (FALSE);
}
if (!xdr_long(xdrs, &objp->lPointer)) {

return (FALSE);
}
if (!xdr_pointer(xdrs, (char **)&objp->pPPieces, sizeof(pictPieces),

xdr_pictPieces)) {
return (FALSE);

}
return (TRUE);

Page 14 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1348

shastraData.c 7/5/11 12:33 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <string.h>

#include <shastraldatacommlshastraDataH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

int
shaCharOut(fd,

int
shaChar

{

pShaChar)
fd;

*PShaChar;

if(!xdr_shaChar(mplexXDRSEnc(fd), pShaChar)){
return -1;

}
return 1;

}

int
shaCharin(fd,

int
shaChar

{

pShaCha r)
fd;

*PShaChar;

if(!xdr_shaChar(mplexXDRSDec(fd), pShaChar)){
return -1;

}
return 1;

}

Page 1 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1349

shastraData.c

int
shaCharsOut(fd,

int
shaChars

pShaChars)
fd;

*PShaChars;
{

}

if(!xdr_shaChars(mplexXDRSEnc(fd), pShaChars)){
return -1;

}
return 1;

int
shaCharsin(fd,

int
shaChars

pShaChars)
fd;

*PShaChars;
{

}

shaCharsXDRFree(pShaChars);
if(!xdr_shaChars(mplexXDRSDec(fd), pShaChars)){

return -1;
}
return 1;

void
freeShaChars(pShaChars)

{

}

shaChars *PShaChars;

int i;

if (pShaChars == NULL) {
return;

}
free(pShaChars->shaChars_val);
memset(pShaChars, 0,sizeof(shaChars));

shaChars *
copyShaChars(pShaChars, destpShaChars)

{

shaChars *PShaChars;
shaChars *destpShaChars;

int
shaChars

i;
*newpShaChars;

if (pShaChars == NULL) {
return NULL;

}
if (destpShaChars == NULL) {

newpShaChars = (shaChars *) malloc(sizeof(shaChars));
} else {

newpShaChars = destpShaChars;
}

7/5/11 12:33 PM

Page 2 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1350

shastraData.c

}

void

memcpy(newpShaChars 1 pShaChars 1 sizeof(shaChars));
newpShaChars->shaChars_val = (shaChar *)

malloc(newpShaChars->shaChars_len * sizeof(shaChar));
memcpy(newpShaChars->shaChars_val 1 pShaChars->shaChars_val 1

pShaChars->shaChars_len * sizeof(shaChar));
return newpShaChars;

inputShaChars(fp 1 pShaChars)

{

}

void

FILE *fp;
shaChars *PShaChars;

int i;

fscanf(fp 1 "%d" 1 &pShaChars->shaChars_len);
pShaChars->shaChars_val = (shaChar *)

malloc(pShaChars->shaChars_len * sizeof(shaChar));
for (i = 0; i < pShaChars->shaChars_len; i++) {

pShaChars->shaChars_val[i] = fgetc(fp);
}

outputShaChars(fp 1 pShaChars)

{

}

FILE *fp;
shaChars *PShaChars;

int i;

fp r int f (fp 1 "%d\n" 1 pShaCha rs->s haCha rs_len) ;
for (i = 0; i < pShaChars->shaChars_len; i++) {

fputc(pShaChars->shaChars_val[i] 1 fp);
}

void
shaCharsXDRFree(pShaChars)

{

}

shaChars *PShaChars;

xdr_free(xdr_shaChars 1 (char*) pShaChars);
memset(pShaChars 1 0 1 sizeof(shaChars));

int
shaUCharOut(fd 1

int
shaUChar

pShaUChar)
fd;

*PShaUChar;
{

if(!xdr_shaUChar(mplexXDRSEnc(fd) 1 pShaUChar)){
return -1;

7/5/11 12:33 PM

Page 3 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1351

shastraData.c

}
return 1;

}

int
shaUCharin(fd,

int
shaUChar

pShaUChar)

{

}

fd;
*PShaUChar;

if(!xdr_shaUChar(mplexXDRSDec(fd), pShaUChar)){
return -1;

}
return 1;

int
shaUCharsOut(fd,

int
shaUChars

pShaUChars)
fd;

*PShaUChars;
{

}

if(!xdr_shaUChars(mplexXDRSEnc(fd), pShaUChars)){
return -1;

}
return 1;

int
shaUCharsin(fd,

int
shaUChars

pShaUChars)
fd;

*PShaUChars;
{

}

shaUCharsXDRFree(pShaUChars);
if(!xdr_shaUChars(mplexXDRSDec(fd), pShaUChars)){

return -1;
}
return 1;

void
freeShaUChars(pShaUChars)

{

}

shaUChars *PShaUChars;

int i;

if (pShaUChars == NULL) {
return;

}
free(pShaUChars->shaUChars_val);
memset(pShaUChars, 0,sizeof(shaUChars));

shaUChars *

7/5/11 12:33 PM

Page 4 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1352

shastraData.c

copyShaUChars(pShaUChars 1 destpShaUChars)

{

}

shaUChars *PShaUChars;
shaUChars *destpShaUChars;

int
shaUChars

i;
*newpShaUChars;

if (pShaUChars == NULL) {
return NULL;

}
if (destpShaUChars == NULL) {

newpShaUChars = (shaUChars *) malloc(sizeof(shaUChars));
} else {

newpShaUChars = destpShaUChars;
}
memcpy(newpShaUChars 1 pShaUChars 1 sizeof(shaUChars));
newpShaUChars->shaUChars_val = (shaUChar *)

malloc(newpShaUChars->shaUChars_len * sizeof(shaUChar));
memcpy(newpShaUChars->shaUChars_val 1 pShaUChars->shaUChars_val 1

pShaUChars->shaUChars_len * sizeof(shaUChar));
return newpShaUChars;

void
inputShaUChars(fp 1

FILE
pShaUChars)
*fp;

*PShaUChars;
{

}

void

shaUChars

int i;

fscanf(fp 1 "%d" 1 &pShaUChars->shaUChars_len);
pShaUChars->shaUChars_val = (shaUChar *)

malloc(pShaUChars->shaUChars_len * sizeof(shaUChar));
for (i = 0; i < pShaUChars->shaUChars_len; i++) {

pShaUChars->shaUChars_val[i] = fgetc(fp);
}

outputShaUChars(fp 1 pShaUChars)

{

}

void

FILE *fp;
shaUChars *PShaUChars;

int i;

fp r int f (fp 1 "%d\n" 1 pShaUCha rs->s haUCha rs_len) ;
for (i = 0; i < pShaUChars->shaUChars_len; i++) {

fputc(pShaUChars->shaUChars_val[i] 1 fp);
}

7/5/11 12:33 PM

Page 5 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1353

shastraData.c

shaUCharsXDRFree(pShaUChars)
shaUChars *PShaUChars;

{
xdr_free(xdr_shaUChars, (char *) pShaUChars);
memset(pShaUChars, 0,sizeof(shaUChars));

}

int
shaShortOut(fd,

int
shaShort

{

pShaShort)
fd;

*PShaShort;

if(!xdr_shaShort(mplexXDRSEnc(fd), pShaShort)){
return -1;

}
return 1;

}

int
shaShortin(fd,

int
shaShort

pShaShort)

{

fd;
*PShaShort;

if(!xdr_shaShort(mplexXDRSDec(fd), pShaShort)){
return -1;

}
return 1;

}

int
shaShortsOut(fd,

int
shaShorts

{

pShaShorts)
fd;

*PShaShorts;

if(!xdr_shaShorts(mplexXDRSEnc(fd), pShaShorts)){
return -1;

}
return 1;

}

int
shaShortsin(fd,

int
shaShorts

{

pShaShorts)
fd;

*PShaShorts;

shaShortsXDRFree(pShaShorts);

}

if(!xdr_shaShorts(mplexXDRSDec(fd), pShaShorts)){
return -1;

}
return 1;

7/5/11 12:33 PM

Page 6 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1354

shastraData.c

void
freeShaShorts(pShaShorts)

{

}

shaShorts *PShaShorts;

int i;

if (pShaShorts == NULL) {
return;

}
free(pShaShorts->shaShorts_val);
memset(pShaShorts,0,sizeof(shaShorts));

shaShorts *
copyShaShorts(pShaShorts, destpShaShorts)

{

}

shaShorts *PShaShorts;
shaShorts *destpShaShorts;

int
shaShorts

i;
*newpShaShorts;

if (pShaShorts == NULL) {
return NULL;

}
if (destpShaShorts == NULL) {

newpShaShorts = (shaShorts *) malloc(sizeof(shaShorts));
} else {

newpShaShorts = destpShaShorts;
}
memcpy(newpShaShorts, pShaShorts, sizeof(shaShorts));
newpShaShorts->shaShorts_val = (shaShort *)

malloc(newpShaShorts->shaShorts_len * sizeof(shaShort));
memcpy(newpShaShorts->shaShorts_val, pShaShorts->shaShorts_val,

pShaShorts->shaShorts_len * sizeof(shaShort));
return newpShaShorts;

void
inputShaShorts(fp,

FILE
pShaShorts)
*fp;

*PShaShorts;
{

}

void

shaSho rts

int i;

fscanf(fp, "%d", &pShaShorts->shaShorts_len);
pShaShorts->shaShorts_val = (shaShort *)

malloc(pShaShorts->shaShorts_len * sizeof(shaShort));
for (i = 0; i < pShaShorts->shaShorts_len; i++) {

fscanf(fp,"%h", &pShaShorts->shaShorts_val[i]);
}

7/5/11 12:33 PM

Page 7 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1355

shastraData.c

outputShaShorts(fp 1 pShaShorts)

{

}

FILE *fp;
shaShorts *PShaShorts;

int i;

fp r int f (fp 1 "%d\n" 1 pShaSho rt s->s haSho rt s_len) ;
for (i = 0; i < pShaShorts->shaShorts_len; i++) {

fprintf(fp 1 "%h" 1 pShaShorts->shaShorts_val[i]);
}

void
shaShortsXDRFree(pShaShorts)

shaShorts *PShaShorts;
{

xdr_free(xdr_sha5horts 1 (char*) pShaShorts);
memset(pShaShorts 1 0 1 sizeof(shaShorts));

}

int
shaUShortOut(fd 1

int
shaUShort

{

pShaUShort)
fd;

*PShaUShort;

if(!xdr_shaUShort(mplexXDRSEnc(fd) 1 pShaUShort)){
return -1;

}
return 1;

}

int
shaUShortin(fd 1

int
shaUShort

pShaUShort)

{

fd;
*PShaUShort;

if(!xdr_shaUShort(mplexXDRSDec(fd) 1 pShaUShort)){
return -1;

}
return 1;

}

int
shaUShortsOut(fd 1

int
shaUShorts

{

pShaUShorts)
fd;

*PShaUShorts;

if(!xdr_shaUShorts(mplexXDRSEnc(fd) 1 pShaUShorts)){
return -1;

}
return 1;

}

7/5/11 12:33 PM

Page 8 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1356

shastraData.c 7/5/11 12:33 PM

int
shaUShortsin(fd,

int
shaUShorts

pShaUShorts)
fd;

*PShaUShorts;
{

}

shaUShortsXDRFree(pShaUShorts);
if(!xdr_shaUShorts(mplexXDRSDec(fd), pShaUShorts)){

return -1;
}
return 1;

void
freeShaUShorts(pShaUShorts)

{

}

shaUShorts *PShaUShorts;

int i;

if (pShaUShorts NULL) {
return;

}
free(pShaUShorts->shaUShorts_val);
memset(pShaUShorts,0,sizeof(shaUShorts));

shaUShorts *
copyShaUShorts(pShaUShorts, destpShaUShorts)

{

}

void

shaUShorts *PShaUShorts;
shaUShorts *destpShaUShorts;

int
shaUShorts

i;
*newpShaUShorts;

if (pShaUShorts == NULL) {
return NULL;

}
if (destpShaUShorts == NULL) {

newpShaUShorts = (shaUShorts *) malloc(sizeof(shaUShorts));
} else {

newpShaUShorts = destpShaUShorts;
}
memcpy(newpShaUShorts, pShaUShorts, sizeof(shaUShorts));
newpShaUShorts->shaUShorts_val = (shaUShort *)

malloc(newpShaUShorts->shaUShorts_len * sizeof(shaUShort));
memcpy(newpShaUShorts->shaUShorts_val, pShaUShorts->shaUShorts_val,

pShaUShorts->shaUShorts_len * sizeof(shaUShort));
return newpShaUShorts;

inputShaUShorts(fp, pShaUShorts)

Page 9 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1357

shastraData.c

{

}

void

FILE
shaUShorts

int

*fP;
*PShaUShorts;

i;

fscanf(fp 1 "%d" 1 &pShaUShorts->shaUShorts_len);
pShaUShorts->shaUShorts_val = (shaUShort *)

malloc(pShaUShorts->shaUShorts_len * sizeof(shaUShort));
for (i = 0; i < pShaUShorts->shaUShorts_len; i++) {

fscanf(fp 1 "%h" 1 &pShaUShorts->shaUShorts_val[i]);
}

outputShaUShorts(fp 1 pShaUShorts)

{

}

FILE *fp;
shaUShorts *PShaUShorts;

int i;

fp r int f (fp 1 "%d\n" 1 pShaUSho rt s->s haUSho rt s_len) ;
for (i = 0; i < pShaUShorts->shaUShorts_len; i++) {

fprintf(fp 1 "%h" 1 pShaUShorts->shaUShorts_val[i]);
}

void
shaUShortsXDRFree(pShaUShorts)

shaUShorts *PShaUShorts;
{

xdr_free(xdr_shaUShorts 1 (char*) pShaUShorts);
memset(pShaUShorts 1 0 1 sizeof(shaUShorts));

}

int
shaintOut(fd 1

int
shaint

{

pShaint)
fd;

*PShaint;

if(!xdr_shaint(mplexXDRSEnc(fd) 1 pShaint)){
return -1;

}
return 1;

}

int
shaintin(fd 1

int
shaint

{

pShaint)
fd;

*PShaint;

if(!xdr_shaint(mplexXDRSDec(fd) 1 pShaint)){
return -1;

7/5/11 12:33 PM

Page 10 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1358

shastraData.c

}
return 1;

}

int
shaintsOut(fd,

int
shaints

pShaints)
fd;

*PShaints;
{

}

if(!xdr_shaints(mplexXDRSEnc(fd), pShaints)){
return -1;

}
return 1;

int
shaintsin(fd,

int
shaints

pShaints)
fd;

*PShaints;
{

}

shaintsXDRFree(pShaints);
if(!xdr_shaints(mplexXDRSDec(fd), pShaints)){

return -1;
}
return 1;

void
freeShaints(pShaints)

{

}

shaints *PShaints;

int

if (pShaints
return;

}

i;

NULL) {

free(pShaints->shaints_val);
memset(pShaints,0,sizeof(shaints));

shaints *
copyShaints(pShaints, destpShaints)

{

shaints *PShaints;
shaints *destpShaints;

int
shaints

i;
*newpShaints;

if (pShaints == NULL) {
return NULL;

}
if (destpShaints NULL) {

7/5/11 12:33 PM

Page 11 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1359

shastraData.c

}

void

newpShaints = (shaints *) malloc(sizeof(shaints));
} else {

newpShaints = destpShaints;
}
memcpy(newpShaints, pShaints, sizeof(shaints));
newpShaints->shaints_val = (shaint *)

malloc(newpShaints->shaints_len * sizeof(shaint));
memcpy(newpShaints->shaints_val, pShaints->shaints_val,

pShaints->shaints_len * sizeof(shaint));
return newpShaints;

inputShaints(fp, pShaints)

{

}

void

FILE *fp;
shaints *PShaints;

int i;

fscanf(fp, "%d", &pShaints->shaints_len);
pShaints->shaints_val = (shaint *)

malloc(pShaints->shaints_len * sizeof(shaint));
for (i = 0; i < pShaints->shaints_len; i++) {

fscanf(fp,"%h", &pShaints->shaints_val[i]);
}

outputShaints(fp, pShaints)

{

}

FILE *fp;
shaints *PShaints;

int i;

fprintf(fp, "%d\n", pShaints->shaints_len);
for (i = 0; i < pShaints->shaints_len; i++) {

fprintf(fp,"%h", pShaints->shaints_val[i]);
}

void
shaintsXDRFree(pShaints)

shaints *PShaints;
{

xdr_free(xdr_shaints, (char*) pShaints);
memset(pShaints,0,sizeof(shaints));

}

int
shaUintOut(fd,

int
shaUint

pShaUint)
fd;

*PShaUint;

7/5/11 12:33 PM

Page 12 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1360

shastraData.c

{

}

if(!xdr_shaUint(mplexXDRSEnc(fd), pShaUint)){
return -1;

}
return 1;

int
shaUintin(fd,

int
shaUint

pShaUint)
fd;

*PShaUint;
{

}

if(!xdr_shaUint(mplexXDRSDec(fd), pShaUint)){
return -1;

}
return 1;

int
shaUintsOut(fd,

int
shaUints

pShaUints)
fd;

*PShaUints;
{

}

if(!xdr_shaUints(mplexXDRSEnc(fd), pShaUints)){
return -1;

}
return 1;

int
shaUintsin(fd,

int
shaUints

pShaUints)
fd;

*PShaUints;
{

}

shaUintsXDRFree(pShaUints);
if(!xdr_shaUints(mplexXDRSDec(fd), pShaUints)){

return -1;
}
return 1;

void
freeShaUints(pShaUints)

{
shaUints *PShaUints;

int i;

if (pShaUints == NULL) {
return;

}
free(pShaUints->shaUints_val);
memset(pShaUints,0,sizeof(shaUints));

7/5/11 12:33 PM

Page 13 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1361

shastraData.c

}

shaUints *
copyShaUints(pShaUints 1 destpShaUints)

{

}

shaUints *PShaUints;
shaUints *destpShaUints;

int
shaUints

i;
*newpShaUints;

if (pShaUints == NULL) {
return NULL;

}
if (destpShaUints == NULL) {

newpShaUints = (shaUints *) malloc(sizeof(shaUints));
} else {

newpShaUints = destpShaUints;
}
memcpy(newpShaUints 1 pShaUints 1 sizeof(shaUints));
newpShaUints->shaUints_val = (shaUint *)

malloc(newpShaUints->shaUints_len * sizeof(shaUint));
memcpy(newpShaUints->shaUints_val 1 pShaUints->shaUints_val 1

pShaUints->shaUints_len * sizeof(shaUint));
return newpShaUints;

void
inputShaUints(fp 1

FILE
pShaUints)
*fp;

*PShaUints;
{

}

shaUints

int i;

fscanf(fp 1 "%d" 1 &pShaUints->shaUints_len);
pShaUints->shaUints_val = (shaUint *)

malloc(pShaUints->shaUints_len * sizeof(shaUint));
for (i = 0; i < pShaUints->shaUints_len; i++) {

fscanf(fp 1 "%h" 1 &pShaUints->shaUints_val[i]);
}

void
outputShaUints(fp 1

FILE
pShaUints)
*fp;

*PShaUints;
{

shaUints

int i;

fp rint f (fp 1 "%d\n" 1 pShaUint s->shaUI nt s_len);
for (i = 0; i < pShaUints->shaUints_len; i++) {

fprintf(fp 1 "%h" 1 pShaUints->shaUints_val[i]);
}

7/5/11 12:33 PM

Page 14 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1362

shastraData.c

}

void
shaUintsXDRFree(pShaUints)

shaUints *PShaUints;
{

xdr_free(xdr_shaUints, (char*) pShaUints);
memset(pShaUints,0,sizeof(shaUints));

}

int
shaLongOut(fd,

int
shalong

{

pShaLong)
fd;

*PShaLong;

if(!xdr_shaLong(mplexXDRSEnc(fd), pShaLong)){
return -1;

}
return 1;

}

int
shaLongin(fd,

int
shalong

pShaLong)

{

fd;
*PShaLong;

if(!xdr_shaLong(mplexXDRSDec(fd), pShaLong)){
return -1;

}
return 1;

}

int
shaLongsOut(fd,

int
shalongs

{

pShaLongs)
fd;

*PShaLongs;

if(!xdr_shaLongs(mplexXDRSEnc(fd), pShaLongs)){
return -1;

}
return 1;

}

int
shaLongsin(fd,

int
shalongs

{

pShaLongs)
fd;

*PShaLongs;

shaLongsXDRFree(pShaLongs);
if(!xdr_shaLongs(mplexXDRSDec(fd), pShaLongs)){

return -1;
}
return 1;

7/5/11 12:33 PM

Page 15 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1363

shastraData.c

}

void
freeShaLongs(pShaLongs)

{

}

shaLongs *PShaLongs;

int i;

if (pShaLongs == NULL) {
return;

}
free(pShaLongs->shaLongs_val);
memset(pShaLongs,0,sizeof(shaLongs));

shaLongs *
copyShaLongs(pShaLongs, destpShaLongs)

{

}

void

shaLongs *PShaLongs;
shaLongs *destpShaLongs;

int
shaLongs

i;
*newpShaLongs;

if (pShaLongs == NULL) {
return NULL;

}
if (destpShaLongs == NULL) {

newpShaLongs = (shaLongs *) malloc(sizeof(shaLongs));
} else {

newpShaLongs = destpShaLongs;
}
memcpy(newpShaLongs, pShaLongs, sizeof(shaLongs));
newpShaLongs->shaLongs_val = (shaLong *)

malloc(newpShaLongs->shaLongs_len * sizeof(shaLong));
memcpy(newpShaLongs->shaLongs_val, pShaLongs->shaLongs_val,

pShaLongs->shaLongs_len * sizeof(shaLong));
return newpShaLongs;

inputShaLongs(fp, pShaLongs)

{

FILE *fp;
shaLongs *PShaLongs;

int i;

fscanf(fp, "%d", &pShaLongs->shaLongs_len);
pShaLongs->shaLongs_val = (shaLong *)

malloc(pShaLongs->shaLongs_len * sizeof(shaLong));
for (i = 0; i < pShaLongs->shaLongs_len; i++) {

fscanf(fp,"%h", &pShaLongs->shaLongs_val[i]);
}

7/5/11 12:33 PM

Page 16 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1364

shastraData.c

}

void
outputShaLongs(fp, pShaLongs)

{

}

FILE *fp;
shalongs *PShaLongs;

int i;

fprintf(fp, "%d\n", pShaLongs->shaLongs_len);
for (i = 0; i < pShaLongs->shaLongs_len; i++) {

fprintf(fp,"%h", pShaLongs->shaLongs_val[i]);
}

void
shaLongsXDRFree(pShaLongs)

shalongs *PShaLongs;
{

xdr_free(xdr_shalongs, (char*) pShaLongs);
memset(p5halongs,0,sizeof(shalongs));

}

int
shaULongOut(fd,

int
shaULong

{

pShaULong)
fd;

*PShaULong;

if(!xdr_shaULong(mplexXDRSEnc(fd), pShaULong)){
return -1;

}
return 1;

}

int
shaULongin(fd,

int
shaULong

pShaULong)

{

fd;
*PShaULong;

if(!xdr_shaULong(mplexXDRSDec(fd), pShaULong)){
return -1;

}
return 1;

}

int
shaULongsOut(fd,

int
shaULongs

{

pShaULongs)
fd;

*PShaULongs;

if(!xdr_shaULongs(mplexXDRSEnc(fd), pShaULongs)){
return -1;

7/5/11 12:33 PM

Page 17 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1365

shastraData.c

}
return 1;

}

int
shaULongsin(fd,

int
shaULongs

pShaULongs)
fd;

*PShaULongs;
{

}

shaULongsXDRFree(pShaULongs);
if(!xdr_shaULongs(mplexXDRSDec(fd), pShaULongs)){

return -1;
}
return 1;

void
freeShaULongs(pShaULongs)

{

}

shaULongs *PShaULongs;

int i;

if (pShaULongs == NULL) {
return;

}
free(pShaULongs->shaULongs_val);
memset(pShaULongs,0,sizeof(shaULongs));

shaULongs *
copyShaULongs(pShaULongs, destpShaULongs)

{

}

shaULongs *PShaULongs;
shaULongs *destpShaULongs;

int
shaULongs

i;
*newpShaULongs;

if (pShaULongs == NULL) {
return NULL;

}
if (destpShaULongs == NULL) {

newpShaULongs = (shaULongs *) malloc(sizeof(shaULongs));
} else {

newpShaULongs = destpShaULongs;
}
memcpy(newpShaULongs, pShaULongs, sizeof(shaULongs));
newpShaULongs->shaULongs_val = (shaULong *)

malloc(newpShaULongs->shaULongs_len * sizeof(shaULong));
memcpy(newpShaULongs->shaULongs_val, pShaULongs->shaULongs_val,

pShaULongs->shaULongs_len * sizeof(shaULong));
return newpShaULongs;

7/5/11 12:33 PM

Page 18 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1366

shastraData.c

void
inputShaULongs(fp 1

FILE
pShaULongs)
*fP;

*PShaULongs;
{

}

void

shaULongs

int i;

fscanf (fp 1 "%d" 1 &pShaULongs->shaULongs_len);
pShaULongs->shaULongs_val = (shaULong *)

malloc(pShaULongs->shaULongs_len * sizeof(shaULong));
for (i = 0; i < pShaULongs->shaULongs_len; i++) {

fscanf(fp 1 "%h" 1 &pShaULongs->shaULongs_val[i]);
}

outputShaULongs(fp 1 pShaULongs)

{

}

FILE *fp;
shaULongs *PShaULongs;

int i;

fprintf(fp 1 "%d\n" 1 pShaULongs->shaULongs_len);
for (i = 0; i < pShaULongs->shaULongs_len; i++) {

fprintf(fp 1 "%h" 1 pShaULongs->shaULongs_val[i]);
}

void
shaULongsXDRFree(pShaULongs)

shaULongs *PShaULongs;
{

xdr_free(xdr_shaULongs 1 (char*) pShaULongs);
memset(pShaULongs 1 0 1 sizeof(shaULongs));

}

int
shaFloatOut(fd 1

int
shaFloat

{

pShaFloat)
fd;

*PShaFloat;

if(!xdr_shaFloat(mplexXDRSEnc(fd) 1 pShaFloat)){
return -1;

}
return 1;

}

int
shaFloatin(fd 1

int
shaFloat

pShaFloat)
fd;

*PShaFloat;

7/5/11 12:33 PM

Page 19 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1367

shastraData.c

{

}

if(!xdr_shaFloat(mplexXDRSDec(fd), pShaFloat)){
return -1;

}
return 1;

int
shaFloatsOut(fd,

int
shaFloats

pShaFloats)
fd;

*PShaFloats;
{

}

if(!xdr_shaFloats(mplexXDRSEnc(fd), pShaFloats)){
return -1;

}
return 1;

int
shaFloatsin(fd,

int
shaFloats

pShaFloats)
fd;

*PShaFloats;
{

}

shaFloatsXDRFree(pShaFloats);
if(!xdr_shaFloats(mplexXDRSDec(fd), pShaFloats)){

return -1;
}
return 1;

void
freeShaFloats(pShaFloats)

{

}

shaFloats *PShaFloats;

int i;

if (pShaFloats == NULL) {
return;

}
free(pShaFloats->shaFloats_val);
memset(pShaFloats,0,sizeof(shaFloats));

shaFloats *
copyShaFloats(pShaFloats, destpShaFloats)

{

shaFloats *PShaFloats;
shaFloats *destpShaFloats;

int
shaFloats

i;
*newpShaFloats;

if (pShaFloats == NULL) {

7/5/11 12:33 PM

Page 20 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1368

shastraData.c

}

return NULL;
}
if (destpShaFloats == NULL) {

newpShaFloats = (shaFloats *) malloc(sizeof(shaFloats));
} else {

newpShaFloats = destpShaFloats;
}
memcpy(newpShaFloats 1 pShaFloats 1 sizeof(shaFloats));
newpShaFloats->shaFloats_val = (shaFloat *)

malloc(newpShaFloats->shaFloats_len * sizeof(shaFloat));
memcpy(newpShaFloats->shaFloats_val 1 pShaFloats->shaFloats_val 1

pShaFloats->shaFloats_len * sizeof(shaFloat));
return newpShaFloats;

void
inputShaFloats(fp 1

FILE
pShaFloats)
*fp;

*PShaFloats;
{

}

void

shaFloats

int i;

fscanf(fp 1 "%d" 1 &pShaFloats->shaFloats_len);
pShaFloats->shaFloats_val = (shaFloat *)

malloc(pShaFloats->shaFloats_len * sizeof(shaFloat));
for (i = 0; i < pShaFloats->shaFloats_len; i++) {

fscanf(fp 1 "%h" 1 &pShaFloats->shaFloats_val[i]);
}

outputShaFloats(fp 1 pShaFloats)

{

}

FILE *fp;
shaFloats *PShaFloats;

int i;

fp rint f (fp 1 "%d\n" 1 pSha Float s->shaFloat s_len);
for (i = 0; i < pShaFloats->shaFloats_len; i++) {

fprintf(fp 1 "%h" 1 pShaFloats->shaFloats_val[i]);
}

void
shaFloatsXDRFree(pShaFloats)

{

}

int

shaFloats *PShaFloats;

xdr_free(xdr_shaFloats 1 (char*) pShaFloats);
memset(pShaFloats 1 01 sizeof(shaFloats));

7/5/11 12:33 PM

Page 21 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1369

shastraData.c

shaDoubleOut(fd, pShaDouble)

{

}

int fd;
shaDouble *PShaDouble;

if(!xdr_shaDouble(mplexXDRSEnc(fd), pShaDouble)){
return -1;

}
return 1;

int
shaDoublein(fd,

int
shaDouble

pShaDouble)
fd;

*PShaDouble;
{

}

if(!xdr_shaDouble(mplexXDRSDec(fd), pShaDouble)){
return -1;

}
return 1;

int
shaDoublesOut(fd,

int
shaDoubles

pShaDoubles)
fd;

*PShaDoubles;
{

}

if(!xdr_shaDoubles(mplexXDRSEnc(fd), pShaDoubles)){
return -1;

}
return 1;

int
shaDoublesin(fd,

int
shaDoubles

pShaDoubles)
fd;

*PShaDoubles;
{

}

shaDoublesXDRFree(pShaDoubles);
if(!xdr_shaDoubles(mplexXDRSDec(fd), pShaDoubles)){

return -1;
}
return 1;

void
freeShaDoubles(pShaDoubles)

shaDoubles *PShaDoubles;
{

int i;

if (pShaDoubles NULL) {
return;

7/5/11 12:33 PM

Page 22 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1370

shastraData.c 7/5/11 12:33 PM

}

}
free(pShaDoubles->shaDoubles_val);
memset(pShaDoubles 1 01 sizeof(shaDoubles));

shaDoubles *
copyShaDoubles(pShaDoubles 1 destpShaDoubles)

{

}

void

shaDoubles *PShaDoubles;
shaDoubles *destpShaDoubles;

int
shaDoubles

i;
*newpShaDoubles;

if (pShaDoubles == NULL) {
return NULL;

}
if (destpShaDoubles == NULL) {

newpShaDoubles = (shaDoubles *) malloc(sizeof(shaDoubles));
} else {

newpShaDoubles = destpShaDoubles;
}
memcpy(newpShaDoubles 1 pShaDoubles 1 sizeof(shaDoubles));
newpShaDoubles->shaDoubles_val = (shaDouble *)

malloc(newpShaDoubles->shaDoubles_len * sizeof(shaDouble));
memcpy(newpShaDoubles->shaDoubles_val 1 pShaDoubles->shaDoubles_val 1

pShaDoubles->shaDoubles_len * sizeof(shaDouble));
return newpShaDoubles;

inputShaDoubles(fp 1 pShaDoubles)

{

}

void

FILE *fp;
shaDoubles *PShaDoubles;

int i;

fscanf(fp 1 "%d" 1 &pShaDoubles->shaDoubles_len);
pShaDoubles->shaDoubles_val = (shaDouble *)

malloc(pShaDoubles->shaDoubles_len * sizeof(shaDouble));
for (i = 0; i < pShaDoubles->shaDoubles_len; i++) {

fscanf(fp 1 "%h" 1 &pShaDoubles->shaDoubles_val[i]);
}

outputShaDoubles(fp 1 pShaDoubles)

{

FILE *fp;
shaDoubles *PShaDoubles;

int i;

fp rint f (fp 1 "%d\n" 1 pShaDoub les->shaDoub les_len);
for (i = 0; i < pShaDoubles->shaDoubles_len; i++) {

Page 23 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1371

shastraData.c

fprintf(fp,"%h", pShaDoubles->shaDoubles_val[i]);
}

}

void
shaDoublesXDRFree(pShaDoubles)

shaDoubles *PShaDoubles;
{

xdr_free(xdr_shaDoubles, (char*) pShaDoubles);
memset(pShaDoubles,0,sizeof(shaDoubles));

}

int
shaStringOut(fd,

int
shaString

{

pShaString)
fd;

*PShaString;

if(!xdr_shaString(mplexXDRSEnc(fd), pShaString)){
return -1;

}
return 1;

}

int
shaStringin(fd,

int
shaString

pShaString)

{

fd;
*PShaString;

if(!xdr_shaString(mplexXDRSDec(fd), pShaString)){
return -1;

}
return 1;

}

int
shaStringsOut(fd,

int
shaStrings

{

pShaStrings)
fd;

*PShaStrings;

if(!xdr_shaStrings(mplexXDRSEnc(fd), pShaStrings)){
return -1;

}
return 1;

}

int
shaStringsin(fd,

int
shaStrings

{

pShaStrings)
fd;

*PShaStrings;

shaStringsXDRFree(pShaStrings);
if(!xdr_shaStrings(mplexXDRSDec(fd), pShaStrings)){

7/5/11 12:33 PM

Page 24 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1372

shastraData.c

return -1;
}
return 1;

}

void
freeShaStrings(pShaStrings)

{

}

shaStrings *PShaStrings;

int i;

if (pShaStrings NULL) {
return;

}
for(i=0;i<pShaStrings->shaStrings_len;i++){

free(pShaStrings->shaStrings_val[i]);
}
free(pShaStrings->shaStrings_val);
memset(pShaStrings,0,sizeof(shaStrings));

shaStrings *
copyShaStrings(pShaStrings, destpShaStrings)

{

}

void

shaStrings *PShaStrings;
shaStrings *destpShaStrings;

int
shaStrings

i;
*newpShaStrings;

if (pShaStrings == NULL) {
return NULL;

}
if (destpShaStrings == NULL) {

newpShaStrings = (shaStrings *) malloc(sizeof(shaStrings));
} else {

newpShaStrings = destpShaStrings;
}
memcpy(newpShaStrings, pShaStrings, sizeof(shaStrings));
newpShaStrings->shaStrings_val = (shaString *)

malloc(newpShaStrings->shaStrings_len * sizeof(shaString));
for(i=0; i<pShaStrings->shaStrings_len;i++){

newpShaStrings->shaStrings_val[i] =
strdup(pShaStrings->shaStrings_val[i]);

}
return newpShaStrings;

inputShaStrings(fp, pShaStrings)
FILE *fp;
shaStrings *PShaStrings;

{
int i;

7/5/11 12:33 PM

Page 25 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1373

shastraData.c

}

void

fscanf (fp 1 "%d" 1 &pShaSt rings->shaSt rings_ len);
pShaStrings->shaStrings_val = (shaString *)

malloc(pShaStrings->shaStrings_len * sizeof(shaString));
for (i = 0; i < pShaStrings->shaStrings_len; i++) {

pShaStrings->shaStrings_val[i] = malloc(1024);
fgets(pShaStrings->shaStrings_val[i] 1 1024 1 fp);
pShaStrings->shaStrings_val[i] =

}

realloc(pShaStrings->shaStrings_val[i] 1

strlen(pShaStrings->shaStrings_val[i]));

outputShaStrings(fp 1 pShaStrings)

{

}

FILE *fp;
shaStrings *PShaStrings;

int i;

fprintf(fp 1 "%d\n" 1 pShaStrings->shaStrings_len);
for (i = 0; i < pShaStrings->shaStrings_len; i++) {

fprintf(fp 1 "%s\n" 1 pShaStrings->shaStrings_val [i]);
}

void
shaStringsXDRFree(pShaStrings)

shaStrings *PShaStrings;
{

xdr_free(xdr_sha5trings 1 (char*) pShaStrings);
memset(pShaStrings 1 01 sizeof(shaStrings));

}

int
shaBunchOut(fd 1

int
shaBunch

{

pShaBunch)
fd;

*PShaBunch;

if(!xdr_shaBunch(mplexXDRSEnc(fd) 1 pShaBunch)){
return -1;

}
return 1;

}

int
shaBunchin(fd 1

int
shaBunch

{

pShaBunch)
fd;

*PShaBunch;

shaBunchXDRFree(pShaBunch);
if(!xdr_shaBunch(mplexXDRSDec(fd) 1 pShaBunch)){

7/5/11 12:33 PM

Page 26 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1374

shastraData.c

return -1;
}
return 1;

}

int
shaBunchsOut(fd,

int
shaBunchs

pShaBunchs)
fd;

*PShaBunchs;
{

}

if(!xdr_shaBunchs(mplexXDRSEnc(fd), pShaBunchs)){
return -1;

}
return 1;

int
shaBunchsin(fd,

int
shaBunchs

pShaBunchs)
fd;

*PShaBunchs;
{

}

shaBunchsXDRFree(pShaBunchs);
if(!xdr_shaBunchs(mplexXDRSDec(fd), pShaBunchs)){

return -1;
}
return 1;

void
freeShaBunch(pShaBunch)

{

}

shaBunch *PShaBunch;

int i;

if (pShaBunch == NULL) {
return;

}
free(pShaBunch->shaBunch_val);
memset(pShaBunch,0, sizeof(shaBunch));

void
freeShaBunchs(pShaBunchs)

{
shaBunchs *PShaBunchs;

int i;

if (pShaBunchs == NULL) {
return;

}
for(i=0;i<pShaBunchs->shaBunchs_len;i++){

freeShaBunch(&pShaBunchs->shaBunchs_val[i]);

7/5/11 12:33 PM

Page 27 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1375

shastraData.c

}

}
free(pShaBunchs->shaBunchs_val);
memset(pShaBunchs,0,sizeof(shaBunchs));

shaBunch *
copyShaBunch(pShaBunch, destpShaBunch)

{

}

shaBunch *PShaBunch;
shaBunch *destpShaBunch;

int
shaBunch

i;
*newpShaBunch;

if (pShaBunch == NULL) {
return NULL;

}
if (destpShaBunch == NULL) {

newpShaBunch = (shaBunch *) malloc(sizeof(shaBunch));
} else {

newpShaBunch = destpShaBunch;
}
memcpy(newpShaBunch, pShaBunch, sizeof(shaBunch));
newpShaBunch->shaBunch_val = (char *)

malloc(newpShaBunch->shaBunch_len);
memcpy(newpShaBunch->shaBunch_val, pShaBunch->shaBunch_val,

pShaBunch->shaBunch_len);
return newpShaBunch;

shaBunchs *
copyShaBunchs(pShaBunchs, destpShaBunchs)

{

}

shaBunchs *PShaBunchs;
shaBunchs *destpShaBunchs;

int
shaBunchs

i;
*newpShaBunchs;

if (pShaBunchs == NULL) {
return NULL;

}
if (destpShaBunchs == NULL) {

newpShaBunchs = (shaBunchs *) malloc(sizeof(shaBunchs));
} else {

newpShaBunchs = destpShaBunchs;
}
memcpy(newpShaBunchs, pShaBunchs, sizeof(shaBunchs));
newpShaBunchs->shaBunchs_val = (shaBunch *)

malloc(newpShaBunchs->shaBunchs_len * sizeof(shaBunch));
for(i=0; i<pShaBunchs->shaBunchs_len;i++){

copyShaBunch(&pShaBunchs->shaBunchs_val[i],
&newpShaBunchs->shaBunchs_val[i]);

}
return newpShaBunchs;

7/5/11 12:33 PM

Page 28 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1376

shastraData.c

void
inputShaBunch(fp 1 pShaBunch)

{

}

void

FILE *fp;
shaBunch *PShaBunch;

int i;

fscanf (fp 1 "%d" 1 &pShaBunch->shaBunch_len);
pShaBunch->shaBunch_val = (char *)

malloc(pShaBunch->shaBunch_len);
for (i = 0; i < pShaBunch->shaBunch_len; i++) {

pShaBunch->shaBunch_val[i] = fgetc(fp);
}

outputShaBunch(fp 1 pShaBunch)

{

}

void

FILE *fp;
shaBunch *PShaBunch;

int i;

fp rintf (fp 1 "%d\n" 1 pShaBunch->shaBunch_len);
for (i = 0; i < pShaBunch->shaBunch_len; i++) {

fputc(pShaBunch->shaBunch_val[i] 1 fp);
}

inputShaBunchs(fp 1 pShaBunchs)

{

}

void

FILE *fp;
shaBunchs *PShaBunchs;

int i;

fscanf(fp 1 "%d" 1 &pShaBunchs->shaBunchs_len);
pShaBunchs->shaBunchs_val = (shaBunch *)

malloc(pShaBunchs->shaBunchs_len * sizeof(shaBunch));
for (i = 0; i < pShaBunchs->shaBunchs_len; i++) {

inputShaBunch(fp 1 &pShaBunchs->shaBunchs_val[i]);
}

outputShaBunchs(fp 1 pShaBunchs)
FILE *fp;
shaBunchs *PShaBunchs;

{
int i;

fprintf(fp 1 "%d\n" 1 pShaBunchs->shaBunchs_len);

7/5/11 12:33 PM

Page 29 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1377

shastraData.c

}

for (i = 0; i < pShaBunchs->shaBunchs_len; i++) {
outputShaBunch(fp, &pShaBunchs->shaBunchs_val[i]);

}

void
shaBunchXDRFree(pShaBunch)

{

}

shaBunch *PShaBunch;

xd r _free (xd r _shaBunch, (char *) pShaBunch);
memset(pShaBunch,0,sizeof(shaBunch));

void
shaBunchsXDRFree(pShaBunchs)

{

}

shaBunchs *PShaBunchs;

xdr_free(xdr_shaBunchs, (char*) pShaBunchs);
memset(pShaBunchs,0,sizeof(shaBunchs));

7/5/11 12:33 PM

Page 30 of 30
Petitioner Microsoft Corporation, Ex. 1002, p. 1378

shastraData_xdr.c 7/5/11 12:32 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlshastraData.h>

bool_t
xdr_shaObjid(xdrs, objp)

XDR *Xdrs;

{

}

shaObjid *Objp;

if (!xdr_u_long(xdrs, &objp->lSidTag)) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_shaObjid_P(xdrs, objp)

XDR *Xdrs;
shaObjid_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaObjid), xdr_shaObjid))

{

Page 1 of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1379

shastraData_xdr.c 7/5/11 12:32 PM

return (FALSE);
}
return (TRUE);

}

bool_t
xdr_shaObjids(xdrs, objp)

XDR *Xdrs;

{

}

shaObjids *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaObjids_val, (u_int *)&objp->
shaObjids_len, ~0, sizeof(shaObjid), xdr_shaObjid)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaObjids_P(xdrs, objp)

XDR *Xdrs;
shaObjids_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaObjids), xdr_shaObjids)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaChar(xdrs, objp)

XDR *Xdrs;

{

}

shaChar *Objp;

if (!xdr_char(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaChars(xdrs, objp)

XDR *Xdrs;

{

}

shaChars *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaChars_val, (u_int *)&objp->
shaChars_len, ~0, sizeof(char), xdr_char)) {
return (FALSE);

}
return (TRUE);

bool t

Page2of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1380

shastraData_xdr.c 7/5/11 12:32 PM

xdr_shaChars_P(xdrs, objp)
XDR *Xdrs;
shaChars_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaChars), xdr_shaChars))

{
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaUChar(xdrs, objp)

XDR *Xdrs;

{

}

shaUChar *Objp;

if (!xdr_u_char(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaUChars(xdrs, objp)

XDR *Xdrs;

{

}

shaUChars *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaUChars_val, (u_int *)&objp->
shaUChars_len, ~0, sizeof(u_char), xdr u char)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaUChars_P(xdrs, objp)

XDR *Xdrs;
shaUChars_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaUChars), xdr_shaUChars)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaShort(xdrs, objp)

XDR *Xdrs;

{
shaShort *Objp;

if (!xdr_short(xdrs, objp)) {
return (FALSE);

Page3of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1381

shastraData_xdr.c 7/5/11 12:32 PM

}
return (TRUE);

}

bool_t
xdr_shaShorts(xdrs, objp)

XDR *Xdrs;

{

}

shaShorts *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaShorts_val, (u_int *)&objp->
shaShorts_len, ~0, sizeof(short), xdr_short)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaShorts_P(xdrs, objp)

XDR *Xdrs;
shaShorts_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaShorts), xdr_shaShorts)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaUShort(xdrs, objp)

XDR *Xdrs;

{

}

shaUShort *Objp;

if (!xdr_u_short(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaUShorts(xdrs, objp)

XDR *Xdrs;
shaUShorts *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shaUShorts_val, (u_int *)&objp->

shaUShorts_len, ~0, sizeof(u_short), xdr_u_short)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaUShorts_P(xdrs, objp)

Page4of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1382

shastraData_xdr.c 7/5/11 12:32 PM

{

}

XDR *Xdrs;
shaUShorts_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaUShorts),
xdr_shaUShorts)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaint(xdrs, objp)

XDR *Xdrs;

{

}

shaint *Objp;

if (!xdr_int(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaints(xdrs, objp)

XDR *Xdrs;

{

}

shaints *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaints_val, (u_int *)&objp->
shaints_len, ~0, sizeof(int), xdr_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaints_P(xdrs, objp)

XDR *Xdrs;
shaints_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaints), xdr_shaints)) {

return (FALSE);
}
return (TRUE);

}

bool_t
xdr_shaUint(xdrs, objp)

XDR *Xdrs;

{
shaUint *Objp;

if (!xdr_u_int(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

Page5of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1383

shastraData_xdr.c 7/5/11 12:32 PM

}

bool_t
xdr_shaUints(xdrs, objp)

XDR *Xdrs;

{

}

shaUints *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaUints_val, (u_int *)&objp->
shaUints_len, ~0, sizeof(u_int), xdr_u_int)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaUints_P(xdrs, objp)

XDR *Xdrs;
shaUints_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaUints), xdr_shaUints))

{
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaLong(xdrs, objp)

XDR *Xdrs;

{

}

shaLong *Objp;

if (!xdr_long(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaLongs(xdrs, objp)

XDR *Xdrs;

{

}

shaLongs *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaLongs_val, (u_int *)&objp->
shaLongs_len, ~0, sizeof(long), xdr_long)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaLongs_P(xdrs, objp)

XDR *Xdrs;
shaLongs_P *Objp;

Page6of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1384

shastraData_xdr.c 7/5/11 12:32 PM

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaLongs), xdr_shaLongs))

{
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaULong(xdrs, objp)

XDR *Xdrs;

{

}

shaULong *Objp;

if (!xdr_u_long(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaULongs(xdrs, objp)

XDR *Xdrs;

{

}

shaULongs *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaULongs_val, (u_int *)&objp->
shaULongs_len, ~0, sizeof(u_long), xdr_u_long)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaULongs_P(xdrs, objp)

XDR *Xdrs;
shaULongs_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaULongs), xdr_shaULongs)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaFloat(xdrs, objp)

XDR *Xdrs;

{

}

shaFloat *Objp;

if (!xdr_float(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

Page7of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1385

shastraData_xdr.c 7/5/11 12:32 PM

bool_t
xdr_shaFloats(xdrs, objp)

XDR *Xdrs;

{

}

shaFloats *Objp;

if (!xdr_array(xdrs, (char **)&objp->shaFloats_val, (u_int *)&objp->
shaFloats_len, ~0, sizeof(float), xdr_float)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaFloats_P(xdrs, objp)

XDR *Xdrs;
shaFloats_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaFloats), xdr_shaFloats)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaDouble(xdrs, objp)

XDR *Xdrs;

{

}

shaDouble *Objp;

if (!xdr_double(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaDoubles(xdrs, objp)

XDR *Xdrs;
shaDoubles *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shaDoubles_val, (u_int *)&objp->

shaDoubles_len, ~0, sizeof(double), xdr_double)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaDoubles_P(xdrs, objp)

XDR *Xdrs;
shaDoubles_P *Objp;

{

Page8of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1386

shastraData_xdr.c 7/5/11 12:32 PM

}

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaDoubles),
xdr_shaDoubles)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaString(xdrs, objp)

XDR *Xdrs;

{

}

shaString *Objp;

if (!xdr_string(xdrs, objp, rv0)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaStrings(xdrs, objp)

XDR *Xdrs;
shaStrings *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shaStrings_val, (u_int *)&objp->

shaStrings_len, "'0, sizeof(shaString), xdr_shaString)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaStrings_P(xdrs, objp)

XDR *Xdrs;

{

}

shaStrings_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaStrings),
xdr_shaStrings)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shaBunch(xdrs, objp)

XDR *Xdrs;

{

}

shaBunch *Objp;

if (!xdr_bytes(xdrs, (char **)&objp->shaBunch_val, (u_int *)&objp->
shaBunch_len, rv0)) {
return (FALSE);

}
return (TRUE);

Page9of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1387

shastraData_xdr.c 7/5/11 12:32 PM

bool_t
xdr_shaBunchs(xdrs, objp)

XDR *Xdrs;
shaBunchs *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shaBunchs_val, (u_int *)&objp->

shaBunchs_len, ~0, sizeof(shaBunch), xdr_shaBunch)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shaBunchs_P(xdrs, objp)

XDR *Xdrs;
shaBunchs_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(shaBunchs), xdr_shaBunchs)

) {
return (FALSE);

}
return (TRUE);

}

Page 10 of 10
Petitioner Microsoft Corporation, Ex. 1002, p. 1388

shastraHdr.c 7/5/11 12:36 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>

#include <shastraldatacommlshastraHdrH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
shastraHdrOut(fd,

int
pSHd r)

fd;
*PSHd r; shast raHd r

{
XDR xdrs;
int retVal = 0;

#ifdef STANDALONE
{

}

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (! x d r _ s h a s t r a H d r (&x d r s , p S H d r)) {

retVal = -1;
}

#else I* STANDALONE *I
I*
xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
*I

Page 1 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1389

shastraHdr.c

if(!xdr_shastraHdr(mplexXDRSEnc(fd) 1 pSHdr)){
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shast raHd rin (fd 1

int
pSHd r)

fd;
*PSHd r; shast raHd r

{
XDR xdrs;
int retVal = 0;

shastraHdrXDRFree(pSHdr);
#ifdef STANDALONE

{

}

FILE *fp;
fp = stdin I* fdopen(fd 1 "r") *I ;
xdrstdio_create(&xdrs 1 fp 1 XDR_DECODE);
if (! x d r _ s h a s t r a H d r (&x d r s 1 p S H d r)) {

retVal = -1;
}

#else I* STANDALONE *I
I*
xdrstdio_create(mplexXDRSDec(fd) 1 mplexinStream(fd) 1 XDR DECODE);
*I
if(!xdr_shastraHdr(mplexXDRSDec(fd) 1 pSHdr)){

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

void
inputHd r (fp 1 pSHd r)

FILE *fp;
shastraHdr *PSHdr;

{
fscanf(fp 1 "%c"l &pSHdr->bProtocol);
fscanf(fp 1 "%c"l &pSHdr->bVersion);
fscanf(fp 1 "%lu" 1 &pSHd r-> lSize);
fscanf(fp 1 %lu I &pSHdr->lMesgid);
fscanf(fp 1 %lu I &pSHdr->senderTag);
fscanf(fp 1 %lu I &pSHdr->recvrTag);
fscanf(fp 1 %lu I &pSHdr->lOpCode);
fscanf(fp 1 %hu I &pSHdr->sMsgType);
fscanf(fp 1 %hu I &pSHdr->sNumMsgs);
fscanf(fp 1 "%hu" 1 &pSHdr->sSeqNum);

7/5/11 12:36 PM

Page 2 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1390

shastraHdr.c

}

void
outputHdr(fp 1 pSHdr)

{

}

FILE *fp;
shastraHdr *PSHdr;

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

"%hu\ n" 1 &pSHd r->bP rotoco l) ;
"%hu\n" 1 &pSHdr->bVersion);
%lu\n 1 &pSHdr->lSize);
%lu\n 1 &pSHdr->lMesgid);
%lu\n 1 &pSHdr->senderTag);
%lu\n 1 &pSHdr->recvrTag);
%lu\n 1 &pSHdr->lOpCode);
%hu\n 1 &pSHdr->sMsgType);

"%hu\n" 1 &pSHdr->sNumMsgs);
"%hu\n" 1 &pSHdr->sSeqNum);

void
freeHdr(pSHdr)

shast raHd r *PSHd r;
{

int i;

if (pSHdr NULL) {
return;

}
memset(p5Hdr 1 01 sizeof(shastraHdr));

}

shast raHd r
copyHd r (pSHd r I

shast raHd r
shast raHd r

*
destpSHdr)

*PSHd r;
*destpSHdr;

{
shast raHd r
int

*newpSHdr;
i;

if (pSHdr NULL) {
return NULL;

}
if (destpSHdr == NULL) {

newpSHdr = (shastraHdr *) malloc(sizeof(shastraHdr));
} else {

newpSHdr = destpSHdr;
}

memcpy(newp5Hdr 1 p5Hdr 1 sizeof(shastraHdr));
return newpSHdr;

7/5/11 12:36 PM

Page 3 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1391

shastraHdr.c

}

#ifdef STANDALONE
main(argc 1 argv)
#else I* STANDALONE *I
shastraHdrMain(argc 1 argv)
#endif I* STANDALONE *I

{

int
char

a rgc;
**argv;

static shastraHdr sHdr;
shastraHdr *CpSHdr;

switch (argc) {
case 1: I* receive sHdr *I

shastraHdrin(0 I* stdin *I 1 &sHdr);
outputHdr(stdout 1 &sHdr);
cpSHdr = copyHdr(&sHdr 1 NULL);
outputHdr(stdout 1 cpSHdr);
f reeHd r (cpSHd r);

break;
case 2: I* receive sHdr *I

inputHdr(stdin 1 &sHdr);
#ifdef DEBUG

outputHdr(stderr 1 &sHdr);
#end if

shastraHdrOut(l I* stdout *I 1 &sHdr);

break;
}

}

void
shastraHdrXDRFree(pSHdr)

{

}

shastraHdr *PSHdr;

xdr_free(xdr_shastraHdr 1 (char*) pSHdr);
memset(pSHdr 1 0 1 sizeof(shastraHdr));

7/5/11 12:36 PM

Page 4 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1392

shastraHdr_xdr.c 7/5/11 12:33 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlshastraHdr.h>

bool_t
xdr_shastraHdr(xdrs, objp)

XDR *Xdrs;
shastraHdr *Objp;

{
if (!xdr_u_char(xdrs, &objp->bProtocol))

return (FALSE);
}
if (!xdr_u_char(xdrs, &objp->bVersion))

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSize)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lMesgid)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->senderTag))

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->recvrTag))

{

{

{

{

Page 1 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1393

shastraHdr_xdr.c

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lOpCode)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->sMsgType))

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->sNumMsgs))

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->sSeqNum))

return (FALSE);
}
return (TRUE);

}

bool_t
xdr_shastraHdr_P(xdrs, objp)

XDR *Xdrs;
shastraHdr_P *Objp;

{

{

{

{

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shastraHdr),
xdr_shastraHdr)) {
return (FALSE);

}
return (TRUE);

}

7/5/11 12:33 PM

Page 2 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1394

shastrald.c 7/5/11 12:37 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <string.h>

#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>
#include <shastralshastra.h>
#include <shastraldatacommlshastraidH.h>

#define STANDALONEnn

int
shastraidOut(fd,

int

{
shast raid

XDR
int

#ifdef STANDALONE
{

pSid)
fd;

*PSid;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (! x d r _ s hast raId (&x d r s , pSI d)) {

retVal = -1;
}

I* STANDALONE *I

Page 1 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1395

shastrald.c 7/5/11 12:37 PM

* xdrstdio_create(mplexXDRSEnc(fd) 1 mplexOutStream(fd) 1 XDR ENCODE);
*I

if (!xdr_shastraid(mplexXDRSEnc(fd) 1 pSid)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shastraidin(fd 1

int
pSid)

fd;
*PSid;

{
shast raid

XDR
int

xd rs;
retVal = 0;

shastraidXDRFree(pSid);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd 1 "r") *I ;
xdrstdio_create(&xdrs 1 fp 1 XDR_DECODE);
if (! x d r _ s hast raId (&x d r s 1 pSI d)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd) 1 mplexinStream(fd) 1 XDR DECODE);
*I

if (!xdr_shastraid(mplexXDRSDec(fd) 1 pSid)) {
retVal = -1;

}
#endif I* STANDALONE *I
#ifdef SHASTRA4IRIX6

{

}

int temp;
temp = pSid->liPAddr;
pSid->liPAddr = 0;
pSid->liPAddr = temp;
pSid->liPAddr = pSid->liPAddr & 0x00000000ffffffff;

#end if
return retVal;

}

int
sha st raidMemOut (buf 1 size 1 pSid)

char *buf;
int size;
shastraid *PSid;

{

Page2of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1396

shastrald.c

}

int

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (! x d r _ s hast raId (&x d r s , pSI d)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

sha st raidMemin (buf, size, pSid)

{

}

char *buf;
int size;
shastraid *PSid;

XDR
int

xd rs;
retVal = 0;

shastraidXDRFree(pSid);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (! x d r _ s hast raId (&x d r s , pSI d)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
shastraidsOut(fd,

int
pSids)

fd;
*PSids; shast raids

{
XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (! x d r _ s hast raIds (&x d r s , pSI d s)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:37 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_shastraids(mplexXDRSEnc(fd), pSids)) {
retVal = -1;

}

Page3of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1397

shastrald.c 7/5/11 12:37 PM

#end if I* STANDALONE *I
return retVal;

}

int
shastraidsin(fd,

int
pSids)

fd;
*PSids;

{
shast raids

XDR
int

xd rs;
retVal = 0;

shastraidsXDRFree(pSids);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (! x d r _ s hast raIds (&x d r s , pSI d s)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_shastraids(mplexXDRSDec(fd), pSids)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shastraidsMemOut(buf, size, pSids)

{

}

int

char *buf;
int size;
shastraids *PSids;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (! x d r _ s hast raIds (&x d r s , pSI d s)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

shastraidsMemin(buf, size, pSids)
char *buf;

Page4of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1398

shastrald.c

{

}

void

int
shast raids

XDR
int

size;
*PSids;

xd rs;
retVal = 0;

shastraidsXDRFree(pSids);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (! x d r _ s hast raIds (&x d r s , p 5 Ids)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

inputid(fp, pSid)
FILE *fP;

*PSid;
{

}

void

shast raid

int i;
char sbBuf [128];

fscanf(fp, "%s", sbBuf);
pSid->nmHost = strdup(sbBuf);
fscanf(fp, "%s", sbBuf);
pSid->nmDisplay = strdup(sbBuf);
fscanf(fp, "%s", sbBuf);
pSid->nmApplicn = strdup(sbBuf);
fscanf(fp, "%s", sbBuf);
pSid->nmUser = strdup(sbBuf);
fscanf(fp, "%s", sbBuf);
pSid->nmPasswd = strdup(sbBuf);
fscanf(fp, "%l", &pSid->liPAddr);
fscanf (fp, "%l", &pSid-> lSIDTag);
fscanf(fp, "%d", &pSid->iPort);
fscanf(fp, "%d", &pSid->iProcid);
fscanf(fp, "%d", &pSid->lPerms);
fscanf (fp, "%d", &pSid-> lHWState);
fscanf(fp, "%lf", &pSid->dLoadAvg);
pSid->iProcid = getpid();

outputid(fp, pSid)
FILE *fP;

*PSid;
{

shast raid

int i;

fprintf(fp, "%s\n", pSid->nmHost);
fprintf(fp, "%s\n", pSid->nmDisplay);

7/5/11 12:37 PM

Page5of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1399

shastrald.c

}

void

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

fprintf(fp 1

"%s\n" 1 pSid->nmApplicn);
"%s\n" 1 pSid->nmUser);
"%s\n" 1 pSid->nmPasswd);
%s\n" 1 ipaddr2str(pSid->liPAddr));
%lu\n" 1 pSid->lSIDTag);
%d\n" 1 pSid->iPo rt);
%d\n" 1 pSid->iProcid);
%d\n" 1 pSid->lPerms);
%d\n" 1 pSid->lHWState);

"%lf\n" 1 pSid->dLoadAvg);

inputids(fp 1 pSids)

{

FILE *fp;
shastraids *PSids;

int i;

fscanf(fp 1 "%d" 1 &pSids->shastraids_len);
pSids->shastraids_val = (shastraid_P *)

malloc(pSids->shastraids_len * sizeof(shastraid_P));
for (i = 0; i < pSids->shastraids_len; i++) {

7/5/11 12:37 PM

pSids->shastraids_val[i] = (shastraid_P) malloc(sizeof(shastraid));
inputid(fp 1 pSids->shastraids_val[i]);

}
}

void
outputids(fp 1 pSids)

{

}

FILE *fp;
shastraids *PSids;

int i;

fprintf(fp 1 "%d\n" 1 pSids->shastraids_len);
for (i = 0; i < pSids->shastraids_len; i++) {

outputid(fp 1 pSids->shastraids_val[i]);
}

void
freeid(pSid)

shast raid *PSid;
{

int

if (pSid
return;

i;

NULL) {

Page6of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1400

shastrald.c

}

}
free(pSid->nmHost);
free(pSid->nmDisplay);
free(pSid->nmApplicn);
free(pSid->nmUser);
memset(pSid, 0, sizeof(shastraid));

void
freeids(pSids)

shast raids *PSids;
{

}

int i;

if (pSids NULL) {
return;

}
for (i = 0; i < pSids->shastraids_len; i++) {

freeid(pSids->shastraids_val[i]);
}
free(pSids->shastraids_val);
memset(pSids, 0, sizeof(shastraids));

shastraid *
copyid(pSid, destpSid)

{

shastraid *PSid;
shastraid *destpSid;

shast raid
int

*newpSid;
i;

if (pSid NULL) {
return NULL;

}
if (destpSid == NULL) {

newpSid = (shastraid *) malloc(sizeof(shastraid));
} else {

newpSid = destpSid;
}

memcpy(newpSid, pSid, sizeof(shastraid));
if(pSid->nmHost){

newpSid->nmHost = strdup(pSid->nmHost);
}
if(pSid->nmDisplay){

newpSid->nmDisplay = strdup(pSid->nmDisplay);
}
if(pSid->nmApplicn){

newpSid->nmApplicn = strdup(pSid->nmApplicn);
}
if(pSid->nmUser){

7/5/11 12:37 PM

Page7of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1401

shastrald.c

}

newpSid->nmUser = strdup(pSid->nmUser);
}
if(pSid->nmPasswd){

newpSid->nmPasswd = strdup(pSid->nmPasswd);
}
return newpSid;

shastraids
copyids(pSids,

shast raids
shast raids

*
destpSids)

*PSids;
*destpSids;

{
int
shast raids

i;
*newpSids;

if (pSids == NULL) {
return NULL;

}
if (destpSids == NULL) {

newpSids = (shastraids *) malloc(sizeof(shastraids));
} else {

newpSids = destpSids;
}
memcpy(newpSids, pSids, sizeof(shastraids));
newpSids->shastraids_val = (shastraid_P *)

malloc(newpSids->shastraids_len * sizeof(shastraid_P));

7/5/11 12:37 PM

for (i = 0; i < newpSids->shastraids_len; i++) {
newpSids->shastraids_val[i] = copyid(pSids->shastraids_val[i], NULL

) ;
}
return newpSids;

}

#ifdef STANDALONE
main(argc, argv)
#else
shastraidMain(argc,
#end if

I* STANDALONE *I
a rgv)
I* STANDALONE *I

{

int
char

a rgc;
**argv;

static shastraid sid;
static shastraids sids;
shastraids *CpSids;
shastraid *CpSid;

switch (argc) {
case 1: I* receive sid *I

shastraidin(0 I* stdin *I , &sid);
outputid(stdout, &sid);
cpSid = copyid(&sid, NULL);

Page8of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1402

shastrald.c

outputid(stdout 1 cpSid);
f reeid (cpSid) ;

break;
case 2: I* receive sid *I

inputid(stdin 1 &sid);
#ifdef DEBUG

outputid(stderr1 &sid);
#end if

shastraidOut(l I* stdout *I 1 &sid);

break;
case 3: I* receive sids *I

shastraidsin(0 I* stdin *I 1 &sids);
outputids(stdout 1 &sids);
cpSids = copyids(&sids 1 NULL);
outputids(stdout 1 cpSids);
freeids(cpSids);

break;
case 4: I* receive sids *I

inputids(stdin 1 &sids);
#ifdef DEBUG

outputids(stderr1 &sids);
#end if

shastraidsOut(l I* stdout *I 1 &sids);

break;
}

}

I*
* Function
*I

char *
ipadd r2st r (add r)

unsigned long add r;
{

}

static char
unsigned int

add rBuf [32];
bll b21 b31 b4;

b4 = addr % 256;
addr = addr I 256;
b3 = addr % 256;
addr = addr I 256;
b2 = addr % 256;
addr = addr I 256;
bl = addr % 256;
sprintf(addrBuf 1 "%d.%d.%d.%d" 1 b1 1 b2 1 b3 1 b4);

return addrBuf;

7/5/11 12:37 PM

Page9of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1403

shastrald.c

I*
* Function
*I

char *
pSid2Str(pSid,

shast raid
fMask)

*PSid;
fMask;

{
int

char *buf, *bufptr, tmpHost[256], *tmp;
int i;
int StrMaxLen = 128;

I* shastraid has 9 displayable fields 4+n names, rest num *I
buf = malloc((StrMaxLen + 1) * 6);
bufptr = buf;

if ((fMask == 0) I I (fMask == PSIDSHOWALL)) {
strcpy(tmpHost, pSid->nmHost);
tmp = strchr(tmpHost, I. I);
if(tmp){

*tmp= 1 \0 1
;

}
#ifndef VERBOSE
if (pSid->webname)
{

}
else
{

}

sprintf(buf, "%s@%S 1 S %s (Tag: %u)\n",
pSid->webname, tmpHost, pSid->nmApplicn, pSid->lSIDTag);

sprintf(buf, "%s@%S 1 S %s (Tag: %u)\n",
pSid->nmUser, tmpHost, pSid->nmApplicn, pSid->lSIDTag);

#else I* VERBOSE *I

7/5/11 12:37 PM

sprintf(buf, "%s@%S 1 S %s (pid %d, ip %s, port %d) on display %s\n",
pSid->nmUser, tmpHost, pSid->nmApplicn, pSid->iProcid,

ipaddr2str(pSid->liPAddr), pSid->iPort, pSid->nmDisplay);
#endif I* VERBOSE *I

} else {
if (fMask & PSIDNMUSER) {

}

sprintf(bufptr, "%s ", pSid->nmUser);
bufptr += strlen(bufptr);

if (fMask & PSIDNMHOST) {
if(fMask == PSIDNMHOST){

sprintf(bufptr, "%s " pSid->nmHost);
}
else{

strcpy(tmpHost, pSid->nmHost);
tmp = strchr(tmpHost, I. I);
if(tmp){

Page 10 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1404

shastrald.c

}

I*

}

*tmp= '\0';
}
sprintf(bufptr 1

11 %S II tmpHost);
}
bufptr += strlen(bufptr);

}
if (fMask & PSIDNMAPPL) {

}

sprintf(bufptr 1
11 %S II 1 pSid->nmApplicn);

bufptr += strlen(bufptr);

if (fMask & PSIDNMDISP) {

}

sprintf(bufptr 1
11 %S II 1 pSid->nmDisplay);

bufptr += strlen(bufptr);

if (fMask & PSIDIPADDR) {

}

sprintf(bufptr 1
11 %S II 1 ipaddr2str(pSid->liPAddr));

bufptr += strlen(bufptr);

if (fMask & PSIDPORT) {

}

sprintf(bufptr 1
11 %d II 1 pSid->iPort);

bufptr += strlen(bufptr);

if (fMask & PSIDPROCID) {

}

sprintf(bufptr 1
11 %d II 1 pSid->iProcid);

bufptr += strlen(bufptr);

if (pSid->lPerms && (fMask & PSIDPERMS)) {

}

char *tmp;
tmp = perms2Str(pSid->lPerms);
sprintf(bufptr 1

11 %S II 1 tmp);
free(tmp);
bufptr += strlen(bufptr);

buf = realloc(buf 1 strlen(buf) + 1);
return buf;

* Function --
*1

char *
perms2Str(perms)

unsigned long
{

char

perms;

buf = malloc(16);
sprintf(buf 1

11 (%c%c%c%c%c) II

I

(perms & SHASTRA_PERM_ACCESS)
(perms & SHASTRA_PERM_BROWSE)
(perms & SHASTRA_PERM_MODIFY)

? 'A' I I

? I B I I I

? 'M' I I

7/5/11 12:37 PM

Page 11 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1405

shastrald.c

}

(perms & SHASTRA_PERM_COPY) ? I C I : I I,

(perms&SHASTRA_PERM_GRANT)? 1 G1
: I

1
);

return buf;

* Function
*I

char **
pSids2StrTab(pSids, fMask)

{

shastraids *PSids;
int fMask;

int
char

i;
**buf;

7/5/11 12:37 PM

buf = (char**) malloc(sizeof(char *) * (pSids->shastraids_len + 1));
for (i = 0; i < pSids->shastraids_len; i++) {

buf[i] = pSid2Str(pSids->shastraids_val[i], fMask);
}
buf[pSids->shastraids_len] =NULL;
return buf;

}

I*
* Function
*I

char *
pSid2StrDetail(pSid, lPerms)

shastraid *PSid;
unsigned long lPerms;

{
char *Sb, *SbBuf;

sbBuf = malloc(1024);

sb = sbBuf;
sprintf(sb, "Application
sb += strlen(sb);
sprintf(sb, "User Name
sb += strlen(sb);
sprintf(sb, "X Display
sb += strlen(sb);
sprintf(sb, "Host Name
sb += strlen(sb);
sprintf(sb, "IP Address
sb += strlen(sb);
sprintf(sb, "Load Average
sb += strlen(sb);
sprintf(sb, "Host ID Tag
sb += strlen(sb);
sprintf(sb, "TCP Port
sb += strlen(sb);
sprintf(sb, "Process ID

%s\n",

%s\n",

%s\n",

%s\n",

%s\n",

%lf\n",

%lu\n",

%d\n",

%d\n",

pSid->nmApplicn);

pSid->nmUser);

pSid->nmDisplay);

pSid->nmHost);

ipaddr2str(pSid->liPAddr));

pSid->dLoadAvg);

pSid->lSIDTag);

pSid->iPort);

pSid->iProcid);

Page 12 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1406

shastrald.c

}

sb += strlen(sb);
if (lPerms) {

}

sprintf(sb, "Permissions : (%c%c%c%c%c)\n",
(pSid-> lPe rms & SHASTRA_PERM_ACCESS) ? I A I I I

(pSid-> lPe rms & SHASTRA_PERM_BROWSE) ? I B I I I

(pSid->lPerms & SHASTRA_PERM_MODIFY) ? 1 M1
I I

(pSid-> lPe rms & SHASTRA_PERM_COPY) ? I C I : I I,

(pSid-> lPe rms & SHASTRA_PERM_GRANT) ? I G I : I I);

sb += strlen(sb);

sprintf(sb, "\n");

return sbBuf;

void
shastraidXDRFree(pSid)

{

}

shastraid *PSid;

xdr_free(xdr_shastraid, (char*) pSid);
memset(pSid, 0, sizeof(shastraid));

void
shastraidsXDRFree(pSids)

{

}

shastraids *PSids;

xdr_free(xdr_shastraids, (char*) pSids);
memset(pSids, 0, sizeof(shastraids));

7/5/11 12:37 PM

Page 13 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1407

shastrald_xdr.c 7/5/11 12:37 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlshastraidTag.h>
#include <shastraldatacommlshastraid.h>

bool_t
xdr_shastraid(xdrs, objp)

XDR *Xdrs;

{
shastraid *Objp;

if (!xdr_string(xdrs, &objp->nmHost, ~0)) {
return (FALSE);

}
if (!xdr_string(xdrs, &objp->nmDisplay, ~0)) {

return (FALSE);
}
if (!xdr_string(xdrs, &objp->nmApplicn, ~0)) {

return (FALSE);
}
if (!xdr_string(xdrs, &objp->nmUser, ~0)) {

return (FALSE);
}
if (!xdr_string(xdrs, &objp->nmPasswd, ~0)) {

return (FALSE);
}

Page 1 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1408

shastrald_xdr.c

if (!xdr_shastraidTag(xdrs, &objp->lSIDTag)) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->liPAddr)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lWindowid))

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lApplicn))

return (FALSE);
}
if (!xdr_int(xdrs, &objp->iPort)) {

return (FALSE);
}
if (!xdr_int(xdrs, &objp->iProcid)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->iXPort))

return (FALSE);
}

{

if (!xdr_u_short(xdrs, &objp->iXScreen))
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lHWState))

return (FALSE);
}

{

{

if (!xdr_u_long(xdrs, &objp->lTimeStamp))
return (FALSE);

}
if (!xdr_double(xdrs, &objp->dLoadAvg)) {

return (FALSE);
}

{

{

if (!xdr_string(xdrs, &objp->webname, rv0))
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shastraid_P(xdrs, objp)

XDR *Xdrs;
shastraid_P *Objp;

{

{

{

7/5/11 12:37 PM

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shastraid), xdr_shastraid)
) {
return (FALSE);

}
return (TRUE);

}

Page 2 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1409

shastrald_xdr.c 7/5/11 12:37 PM

bool_t
xdr_shastraids(xdrs, objp)

XDR *Xdrs;
shastraids *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shastraids_val, (u_int *)&objp->

shastraids_len, ~0, sizeof(shastraid_P), xdr_shastraid_P)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_shastraidGrp(xdrs, objp)

XDR *Xdrs;
shastraidGrp *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shastraidGrp_val, (u_int *)&objp->

shastraidGrp_len, ~0, sizeof(shastraid), xdr_shastraid)) {
return (FALSE);

}
return (TRUE);

}

Page 3 of 3
Petitioner Microsoft Corporation, Ex. 1002, p. 1410

shastraldTag.c 7/5/11 12:39 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <malloc.h>

#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
shastraidTagOut(fd,

int
shastraidTag

{
XDR
int

#ifdef STANDALONE
{

pSidTag)
fd;

*PSidTag;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_shastraidTag(&xdrs, pSidTag)) {

retVal = -1;
}

I* STANDALONE *I

Page 1 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1411

shastraldTag.c 7/5/11 12:39 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_shastraidTag(mplexXDRSEnc(fd), pSidTag)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shastraidTagin(fd,

int
shastraidTag

pSidTag)
fd;

*PSidTag;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_shastraidTag(&xdrs, pSidTag)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_shastraidTag(mplexXDRSDec(fd), pSidTag)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shastraidTagsOut(fd, pSidTags)

{

int fd;
shastraidTags *PSidTags;

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_shastraidTags(&xdrs, pSidTags)) {

retVal = -1;
}

Page 2 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1412

shastraldTag.c 7/5/11 12:39 PM

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_shastraidTags(mplexXDRSEnc(fd), pSidTags)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
shastraidTagsin(fd,

int
shastraidTags

pSidTags)
fd;

*PSidTags;
{

XDR
int

xd rs;
retVal = 0;

shastraidTagsXDRFree(pSidTags);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_shastraidTags(&xdrs, pSidTags)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_shastraidTags(mplexXDRSDec(fd), pSidTags)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

void
inputidTag(fp, pSidTag)

FILE *fp;
shastraidTag *PSidTag;

{
int i;

fscanf(fp, "%lu", pSidTag);
}

void

Page 3 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1413

shastraldTag.c

outputidTag(fp 1 pSidTag)
FILE *fp;
shastraidTag *PSidTag;

{
int i;

fprintf(fp 1 "%lu\n" 1 *PSidTag);
}

void
inputidTags(fp 1 pSidTags)

*fP;
*PSidTags;

{

}

FILE
shastraidTags

int i;

fscanf (fp 1 "%u" 1 &pSidTags->shast raidTags_len);
pSidTags->shastraidTags_val = (shastraidTag *)

malloc(pSidTags->shastraidTags_len * sizeof(shastraidTag));
for (i = 0; i < pSidTags->shastraidTags_len; i++) {

inputidTag(fp 1 &pSidTags->shastraidTags_val[i]);
}

void
outputidTags(fp 1

FILE
shastraidTags

pSidTags)
*fP;
*PSidTags;

{

}

void

int i;

fp rintf (fp 1 "%u\n" 1 pSidTags->shast raidTags_len);
for (i = 0; i < pSidTags->shastraidTags_len; i++) {

outputidTag(fp 1 &pSidTags->shastraidTags_val[i]);
}

freeidTags(pSidTags)
shastraidTags *PSidTags;

{

}

int

if (pSidTags
return;

}

i;

NULL) {

free(pSidTags->shastraidTags_val);
memset(pSidTags 1 0 1 sizeof(shastraidTags));

7/5/11 12:39 PM

Page 4 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1414

shastraldTag.c

shastraidTags *
copyidTags(pSidTags, destpSidTags)

shastraidTags *PSidTags;
shastraidTags *destpSidTags;

{

}

int
shastraidTags

i;
*newpSidTags;

if (pSidTags == NULL) {
return NULL;

}
if (destpSidTags == NULL) {

newpSidTags = (shastraidTags *) malloc(sizeof(shastraidTags));
} else {

newpSidTags = destpSidTags;
}
memcpy(newpSidTags, pSidTags, sizeof(shastraidTags));
newpSidTags->shastraidTags_val = (shastraidTag *)

malloc(newpSidTags->shastraidTags_len * sizeof(shastraidTag));
for (i = 0; i < newpSidTags->shastraidTags_len; i++) {

newpSidTags->shastraidTags_val[i] =
pSidTags->shastraidTags_val[i];

}
return newpSidTags;

#ifdef STANDALONE
main(argc, argv)
#else I* STANDALONE *I
shastraidTagMain(argc, argv)
#endif I* STANDALONE *I

{

int
char

a rgc;
**argv;

static shastraidTag sidTag;
static shastraidTags sidTags;
shastraidTags *CpSidTags;
shastraidTag cpSidTag;

switch (argc) {
case 1: I* receive sid *I

shastraidTagin(0 I* stdin *I , &sidTag);
outputidTag(stdout, &sidTag);
cpSidTag = sidTag;
outputidTag(stdout, &cpSidTag);

break;
case 2: I* receive sid *I

inputidTag(stdin, &sidTag);
#ifdef DEBUG

outputidTag(stderr, &sidTag);

7/5/11 12:39 PM

Page 5 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1415

shastraldTag.c

#end if
shastraidTagOut(l I* stdout *I 1 &sidTag);

break;
case 3: I* receive sids *I

shastraidTagsin(0 I* stdin *I 1 &sidTags);
outputidTags(stdout 1 &sidTags);
cpSidTags = copyidTags(&sidTags 1 NULL);
outputidTags(stdout 1 cpSidTags);
freeidTags(cpSidTags);

break;
case 4: I* receive sids *I

inputidTags(stdin 1 &sidTags);
#ifdef DEBUG

outputidTags(stderr 1 &sidTags);
#end if

shastraidTagsOut(l I* stdout *I 1 &sidTags);

break;
}

}

void
shastraidTagsXDRFree(pSidTags)

shastraidTags *PSidTags;
{

}

I*

xdr_free(xdr_shastraidTags 1 (char*) pSidTags);
memset(pSidTags 1 0 1 sizeof(shastraidTags));

* Function
*I

char *
pSidTag2Str(pSidTag 1 fMask)

shastraidTag *PSidTag;

{

}

I*

int fMask;

I* if fMask 1 then convert Tag to Id and show that *I
char *buf;
int StrMaxLen = 16;

buf = malloc(StrMaxLen);
sprintf(buf 1 "%lu" 1 *PSidTag);
return buf;

* Function --

7/5/11 12:39 PM

Page 6 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1416

shastraldTag.c

*I
char **
pSidTags2StrTab(pSidTags, fMask)

shastraidTags *PSidTags;
int fMask;

{
int i;
char **buf;

7/5/11 12:39 PM

buf = (char **) malloc(sizeof(char *) * (pSidTags->shastraidTags_len +
1)) ;

}

for (i = 0; i < pSidTags->shastraidTags_len; i++) {
buf[i] = pSidTag2Str(&pSidTags->shastraidTags_val[i], fMask);

}
buf[pSidTags->shastraidTags_len] =NULL;
return buf;

Page 7 of 7
Petitioner Microsoft Corporation, Ex. 1002, p. 1417

shastraldTag_xdr.c 7/5/11 12:38 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlshastraidTag.h>

bool_t
xdr_shastraidTag(xdrs, objp)

XDR *Xdrs;

{

}

shastraidTag *Objp;

if (!xdr_u_long(xdrs, objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_shastraidTags(xdrs, objp)

XDR *Xdrs;
shastraidTags *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->shastraidTags_val, (u_int *)&objp

>shastraidTags_len, ~0, sizeof(shastraidTag), xdr_shastraidTag)) {
return (FALSE);

}
return (TRUE);

Page 1 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1418

shastraldTag_xdr.c

}

bool_t
xdr_shastraidTags_P(xdrs, objp)

XDR *Xdrs;

{

}

shastraidTags_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(shastraidTags),
xdr_shastraidTags)) {
return (FALSE);

}
return (TRUE);

7/5/11 12:38 PM

Page 2 of 2
Petitioner Microsoft Corporation, Ex. 1002, p. 1419

videolmg.c 7/5/11 12:39 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>

#include <shastraldatacommlvideoimgH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
videoimgOut(fd,

int
videoimg

pVImg)

{
XDR
int

fd;
*PVImg;

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_videoimg(&xdrs, pVImg)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
*I

Page 1 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1420

videolmg.c 7/5/11 12:39 PM

if (!xdr_videoimg(mplexXDRSEnc(fd), pVImg)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
videoimgin(fd,

int
videoimg

pVImg)
fd;

*PVImg;
{

XDR
int

xd rs;
retVal = 0;

videoimgXDRFree(pVImg);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_videoimg(&xdrs, pVImg)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_videoimg(mplexXDRSDec(fd), pVImg)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
videoimgMemOut(buf, size, pVImg)

{

}

char *buf;
int size;
videoimg *PVImg;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_videoimg(&xdrs, pVImg)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

Page 2 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1421

videolmg.c

int
videoimgMemin(buf,

char
size, pVImg)
*buf;

{

}

int
videoimg

XDR
int

size;
*PVImg;

xd rs;
retVal = 0;

videoimgXDRFree(pVImg);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_videoimg(&xdrs, pVImg)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
videoimgsOut(fd,

int
videoimgs

pVImgs)
fd;

*PVImgs;
{

XDR
int

xd rs;
retVal = 0;

#ifdef STANDALONE
{

}
#else

I*

FILE *fp;
fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_videoimgs(&xdrs, pVImgs)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:39 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_videoimgs(mplexXDRSEnc(fd), pVImgs)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
videoimgsin(fd,

int
videoimgs

{
XDR
int

pVImgs)
fd;

*PVImgs;

xd rs;
retVal = 0;

Page 3 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1422

videolmg.c 7/5/11 12:39 PM

videoimgsXDRFree(pVImgs);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_videoimgs(&xdrs, pVImgs)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_videoimgs(mplexXDRSDec(fd), pVImgs)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
v ideoimg sMemOut (buf, size, pVImg s)

{

}

int

char *buf;
int size;
videoimgs *PVImgs;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_videoimgs(&xdrs, pVImgs)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

videoimgsMemin(buf, size, pVImgs)

{

char *buf;
int size;
videoimgs *PVImgs;

XDR
int

xd rs;
retVal = 0;

videoimgsXDRFree(pVImgs);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_videoimg(&xdrs, pVImgs)) {

retVal = -1;
}

Page 4 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1423

videolmg.c

xdr_destroy(&xdrs);
return retVal;

}

int
videoClipOut(fd,

int
videoClip

{
XDR
int

#ifdef STANDALONE
{

pVClip)
fd;

*PVClip;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_videoClip(&xdrs, pVClip)) {

retVal = -1;
}

I* STANDALONE *I

7/5/11 12:39 PM

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_videoClip(mplexXDRSEnc(fd), pVClip)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
videoClipin(fd,

int
videoClip

pVClip)
fd;

*PVClip;
{

XDR
int

xd rs;
retVal = 0;

videoClipXDRFree(pVClip);
#ifdef STANDALONE

{

}
#else

I*

FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_videoClip(&xdrs, pVClip)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR_DECODE);

Page 5 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1424

videolmg.c

*I
if (!xdr_videoClip(mplexXDRSDec(fd), pVClip)) {

retVal = -1;
}

#end if I* STANDALONE *I
return retVal;

}

int
videoClipMemOut(buf, size, pVClip)

{

}

int

char *buf;
int size;
videoClip *PVClip;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_videoClip(&xdrs, pVClip)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

videoClipMemin(buf, size, pVClip)

{

}

char *buf;
int size;
videoClip *PVClip;

XDR
int

xd rs;
retVal = 0;

videoClipXDRFree(pVClip);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_videoimg(&xdrs, pVClip)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

void
freeVideoimg(pVImg)

videoimg *PVImg;
{

if (pVImg == NULL) {
return;

}
if (pVImg->data.data_val != NULL) {

7/5/11 12:39 PM

Page 6 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1425

videolmg.c 7/5/11 12:39 PM

}

free(pVImg->data.data_val);
}
memset(pVImg, 0, sizeof(videoimg));

void
freeVideoimgs(pVImgs)

{

}

videoimgs *PVImgs;

videoimgsXDRFree(pVImgs);

videoimg *
copyVideoimg(pVImg, destpVImg)

{

}

videoimg *PVImg;
videoimg *destpVImg;

videoimg
int

*newpVImg;
i;

if (pVImg NULL) {
return NULL;

}
if (destpVImg == NULL) {

newpVImg = (videoimg *) malloc(sizeof(videoimg));
} else {

newpVImg = destpVImg;
}

memcpy(newpVImg, pVImg, sizeof(videoimg));
newpVImg->data.data_val = (char*) malloc(newpVImg->data.data_len *

sizeof(newpVImg->data.data_val[0]));
memcpy(newpVImg->data.data_val,pVImg->data.data_val,

newpVImg->data.data_len * sizeof(newpVImg->data.data_val[0]));
return newpVImg;

videoimgs *
copyVideoimgs(pVImgs, destpVImgs)

{

videoimgs *PVImgs;
videoimgs *destpVImgs;

int
videoimgs

i;
*newpVImgs;

if (pVImgs NULL) {
return NULL;

}
if (destpVImgs == NULL) {

newpVImgs = (videoimgs *) malloc(sizeof(videoimgs));
} else {

newpVImgs = destpVImgs;

Page 7 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1426

videolmg.c

}

void

}
memcpy(newpVImgs 1 pVImgs 1 sizeof(videoimgs));
newpVImgs->videoimgs_val = (videoimg *)

malloc(newpVImgs->videoimgs_len * sizeof(videoimg));

7/5/11 12:39 PM

for (i = 0; i < newpVImgs->videoimgs_len; i++) {
copyVideoimg(&pVImgs->videoimgs_val[i] 1 &newpVImgs->videoimgs_val[i

]) ;
}
return newpVImgs;

inputVideoimg(fp 1 pVImg)

{

}

void

FILE *fp;
videoimg *PVImg;

int i 1 n;

videoimgXDRFree(pVImg);
fscanf(fp 1 "%ld" 1 &pVImg->lidTag);
fscanf(fp 1 %ld 1 &pVImg->lSidTag);
fscanf(fp 1 %ld 1 &pVImg->lPerms);
fscanf(fp 1 %hd 1 &pVImg->imgFormat);
fscanf(fp 1 %hd 1 &pVImg->imgComp);
fscanf(fp 1 %hd 1 &pVImg->imgMode);
fscanf(fp 1 %hd 1 &pVImg->imgXSize);
fscanf (fp 1 "%hd" 1 &pVImg->imgYSize);
fscanf(fp 1 "%hd" 1 &pVImg->imgDepth);
/*read colors*/
fscanf(fp 1 "%d" 1 &n);
if(n > 0){

}

pVImg->pColorMap = (viColorMap*)malloc(sizeof(viColorMap));
pVImg->pColorMap->viColorMap_len = n;
pVImg->pColorMap->viColorMap_val = (viColor*)malloc(

n * sizeof(viColor));
for (i = 0; i < n; i++) {

}

fscanf (fp 1 "%hd%hd%hd" 1

&pVImg->pColorMap->viColorMap_val [i] [0] 1

&pVImg->pColorMap->viColorMap_val [i] [1] 1

&pVImg->pColorMap->viColorMap_val [i] [2]);

fscanf(fp 1 "%d" 1 &pVImg->data.data_len);
pVImg->data.data_val = (char*) malloc(pVImg->data.data_len *

sizeof(pVImg->data.data_val[0]));
for (i = 0; i < pVImg->data.data_len; i++) {

fscanf(fp 1 "%d" 1 &n);
pVImg->data.data_val[i] = n;

}

Page 8 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1427

videolmg.c

outputVideoimg(fp 1 pVImg)

{

}

void

FILE *fp;
videoimg *PVImg;

int i;

fprintf(fp 1 "%ld\n" 1 pVImg->lidTag);
fprintf(fp 1 "%ld\n" 1 pVImg->lSidTag);
fprintf(fp 1 "%ld\n" 1 pVImg->lPerms);
fprintf(fp 1 %hd\n 1 pVImg->imgFormat);
fprintf(fp 1 %hd\n 1 pVImg->imgComp);
fprintf(fp 1 %hd\n 1 pVImg->imgMode);
fprintf(fp 1 %hd\n 1 pVImg->imgXSize);
fprintf(fp 1 %hd\n 1 pVImg->imgYSize);
fprintf(fp 1 %hd\n 1 pVImg->imgDepth);
if(pVImg->pColorMap != NULL){

}

fprintf(fp 1 "%ld\n" 1 pVImg->pColorMap->viColorMap_len);
for (i = 0; i < pVImg->pColorMap->viColorMap_len; i++) {

}

fprintf(fp 1 "%hd %hd %hd\n" 1

pVImg->pColorMap->viColorMap_val [i] [0] 1

pVImg->pColorMap->viColorMap_val [i] [1] 1

pVImg->pColorMap->viColorMap_val [i] [2]);

fp rint f (fp 1 "% ld\n" 1 pVImg->data. data_ len) ;
for (i = 0; i < pVImg->data.data_len; i++) {

}

if (!(i% 8)) {
fprintf(fp 1 "\n");

}
fprintf(fp 1 "%d " 1 pVImg->data.data_val[i]);

fprintf(fp 1 "\n");

inputVideoimgs(fp 1 pVImgs)

{

}

void

FILE *fp;
videoimgs *PVImgs;

int i;

videoimgsXDRFree(pVImgs);
fscanf(fp 1 "%d" 1 &pVImgs->videoimgs_len);
pVImgs->videoimgs_val = (videoimg *)

malloc(pVImgs->videoimgs_len * sizeof(videoimg));
for (i = 0; i < pVImgs->videoimgs_len; i++) {

inputVideoimg(fp 1 &pVImgs->videoimgs_val[i]);
}

outputVideoimgs(fp 1 pVImgs)

7/5/11 12:39 PM

Page 9 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1428

videolmg.c

{

}

FILE
videoimgs

int

*fP;
*PVImgs;

i;

fp r int f (fp 1 "%d\n" 1 pVImg s->v ideoimg s_len) ;
for (i = 0; i < pVImgs->videoimgs_len; i++) {

outputVideoimg(fp 1 &pVImgs->videoimgs_val[i]);
}

void
videoimgXDRFree(pVImg)

{

}

videoimg *PVImg;

xdr_free(xdr_videoimg 1 (char*) pVImg);
memset(pVImg 1 0 1 sizeof(videoimg));

void
videoimgsXDRFree(pVImgs)

{

}

videoimgs *PVImgs;

xdr_free(xdr_videoimgs 1 (char*) pVImgs);
memset(pVImgs 1 0 1 sizeof(videoimgs));

void
videoClipXDRFree(pVClip)

{

}

videoClip *PVClip;

xdr_free(xdr_videoClip 1 (char*) pVClip);
memset(pVClip 1 0 1 sizeof(videoClip));

#ifdef STANDALONE
main(argc 1 argv)
#else
videoimgMain(argc 1

#end if

I* STANDALONE *I
a rgv)
I* STANDALONE *I

{

int
char

a rgc;
**argv;

static videoimg vimg;
static videoimgs vimgs;
videoimgs *CpVImgs;
videoimg *CpVImg;

switch (argc) {
case 1: I* receive vimg *I

videoimgin(0 I* stdin *I 1 &vimg);
outputVideoimg(stdout 1 &vimg);

7/5/11 12:39 PM

Page 10 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1429

videolmg.c

cpVImg = copyVideoimg(&vimg 1 NULL);
outputVideoimg(stdout 1 cpVImg);
freeVideoimg(cpVImg);

break;
case 2: I* receive vimg *I

inputVideoimg(stdin 1 &vimg);
#ifdef DEBUG

outputVideoimg(stderr 1 &vimg);
#end if

videoimgOut(l I* stdout *I 1 &vimg);

break;
case 3: I* receive vimgs *I

videoimgsin(0 I* stdin *I 1 &vimgs);
outputVideoimgs(stdout 1 &vimgs);
cpVImgs = copyVideoimgs(&vimgs 1 NULL);
outputVideoimgs(stdout 1 cpVImgs);
freeVideoimgs(cpVImgs);

break;
case 4: I* receive vimgs *I

inputVideoimgs(stdin 1 &vimgs);
#ifdef DEBUG

outputVideoimgs(stderr 1 &vimgs);
#end if

videoimgsOut(l I* stdout *I 1 &vimgs);

break;
}

}

7/5/11 12:39 PM

Page 11 of 11
Petitioner Microsoft Corporation, Ex. 1002, p. 1430

videolmg_xdr.c 7/5/11 12:39 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlvideoimg.h>

bool_t
xdr_viColor(xdrs, objp)

XDR *Xdrs;
viColor objp;

{
if (!xdr_vector(xdrs, (char *)objp, 3, sizeof(u_short), xdr u short)) {

return (FALSE);
}
return (TRUE);

}

bool_t
xdr_viColorMap(xdrs, objp)

XDR *Xdrs;
viColorMap *Objp;

{
if (!xdr_array(xdrs, (char **)&objp->viColorMap_val, (u_int *)&objp->

viColorMap_len, ~0, sizeof(viColor), xdr_viColor)) {
return (FALSE);

}
return (TRUE);

Page 1 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1431

videolmg_xdr.c 7/5/11 12:39 PM

}

bool_t
xdr_videoimg(xdrs, objp)

XDR *Xdrs;
videoimg *Objp;

{
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgFormat)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgComp)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgMode)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgXSize)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgYSize)) {

return (FALSE);
}
if (!xdr_u_short(xdrs, &objp->imgDepth)) {

return (FALSE);
}
if (!xdr_pointer(xdrs, (char **)&objp->pColorMap, sizeof(viColorMap),

xdr_viColorMap)) {

}

return (FALSE);
}
if (!xdr_bytes(xdrs, (char **)&objp->data.data_val, (u_int *)&objp->

data.data_len, ~0)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_videoimg_P(xdrs, objp)

XDR *Xdrs;
videoimg_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(videoimg), xdr_videoimg))

{
return (FALSE);

Page 2 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1432

videolmg_xdr.c 7/5/11 12:39 PM

}
return (TRUE);

}

bool_t
xdr_videoimgs(xdrs, objp)

XDR *Xdrs;

{

}

videoimgs *Objp;

if (!xdr_array(xdrs, (char **)&objp->videoimgs_val, (u_int *)&objp->
videoimgs_len, ~0, sizeof(videoimg), xdr_videoimg)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_videoimgs_P(xdrs, objp)

XDR *Xdrs;
videoimgs_P *Objp;

{
if (!xdr_pointer(xdrs, (char **)objp, sizeof(videoimgs), xdr_videoimgs)

) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_videoClip(xdrs, objp)

XDR *Xdrs;
videoClip *Objp;

{
if (!xdr_vector(xdrs, (char *)objp->sbName, 32, sizeof(char), xdr_char)

) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lSidTag)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPerms)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lType)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lMode)) {

return (FALSE);
}
if (!xdr_u_long(xdrs, &objp->lPointer)) {

Page 3 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1433

videolmg_xdr.c

}

return (FALSE);
}
if (!xdr_pointer(xdrs, (char **)&objp->pVImgs, sizeof(videoimgs),

xdr_videoimgs)) {
return (FALSE);

}
return (TRUE);

7/5/11 12:39 PM

Page 4 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1434

xsCntiData.c 7/5/11 12:41 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>

#include <shastraldatacommlxsCntlDataH.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklrpc.h>

#define STANDALONEnn

int
xsCntlDataOut(fd,

int
xsCntlData

{
XDR
int

#ifdef STANDALONE
{

pXSData)
fd;

*PXSData;

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_xsCntlData(&xdrs, pXSData)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
*I

Page 1 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1435

xsCntiData.c 7/5/11 12:41 PM

if (!xdr_xsCntlData(mplexXDRSEnc(fd), pXSData)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
xsCntlDatain(fd,

int
xsCntlData

pXSData)
fd;

*PXSData;
{

XDR
int

xd rs;
retVal = 0;

xsCntlDataXDRFree(pXSData);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_xsCntlData(&xdrs, pXSData)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_xsCntlData(mplexXDRSDec(fd), pXSData)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
xsCnt lDataMemOut (buf, size, pXSData)

{

}

char *buf;
int size;
xsCntlData *PXSData;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_xsCntlData(&xdrs, pXSData)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

Page 2 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1436

xsCntiData.c 7/5/11 12:41 PM

int
xsCnt lDataMemin (buf, size, pXSData)

{

}

char *buf;
int size;
xsCntlData *PXSData;

XDR
int

xd rs;
retVal = 0;

xsCntlDataXDRFree(pXSData);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_xsCntlData(&xdrs, pXSData)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

int
xsCntlDatasOut(fd,

int
xsCntlDatas

pXSDatas)
fd;

*PXSDatas;
{

XDR
int

#ifdef STANDALONE
{

xd rs;
retVal = 0;

FILE *fp;

}
#else

I*

fp = stdout I* fdopen(fd,"w") *I ;
xdrstdio_create(&xdrs, fp, XDR_ENCODE);
if (!xdr_xsCntlDatas(&xdrs, pXSDatas)) {

retVal = -1;
}

I* STANDALONE *I

* xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR ENCODE);
*I

if (!xdr_xsCntlDatas(mplexXDRSEnc(fd), pXSDatas)) {
retVal = -1;

}
#end if

return retVal;
}

int
xsCntlDatasin(fd,

int
xsCntlDatas

{
XDR
int

I* STANDALONE *I

pXSDatas)
fd;

*PXSDatas;

xd rs;
retVal = 0;

Page 3 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1437

xsCntiData.c 7/5/11 12:41 PM

xsCntlDatasXDRFree(pXSDatas);
#ifdef STANDALONE

{
FILE *fp;
fp = stdin I* fdopen(fd,"r") *I ;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
if (!xdr_xsCntlDatas(&xdrs, pXSDatas)) {

retVal = -1;
}

}
#else

I*
I* STANDALONE *I

* xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR DECODE);
*I

if (!xdr_xsCntlDatas(mplexXDRSDec(fd), pXSDatas)) {
retVal = -1;

}
#end if I* STANDALONE *I

return retVal;
}

int
xsCntlDatasMemOut(buf, size, pXSDatas)

{

}

int

char *buf;
int size;
xsCntlDatas *PXSDatas;

XDR
int

xd rs;
retVal = 0;

xdrmem_create(&xdrs, buf, size, XDR_ENCODE);
if (!xdr_xsCntlDatas(&xdrs, pXSDatas)) {

retVal = -1;
}
xdr_destroy(&xdrs);
return retVal;

xsCnt lDatasMemi n (buf, size, pXSDatas)

{

char *buf;
int size;
xsCntlDatas *PXSDatas;

XDR
int

xd rs;
retVal = 0;

xsCntlDatasXDRFree(pXSDatas);
xdrmem_create(&xdrs, buf, size, XDR_DECODE);
if (!xdr_xsCntlDatas(&xdrs, pXSDatas)) {

retVal = -1;
}

Page 4 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1438

xsCntiData.c

}

xdr_destroy(&xdrs);
return retVal;

void
freeXSCntlData(pXSData)

{

}

xsCntlData *PXSData;

if (pXSData == NULL) {
return;

}
memset(pXSData, 0, sizeof(xsCntlData));

void
freeXSCntlDatas(pXSDatas)

{

}

xsCntlDatas *PXSDatas;

int

if (pXSDatas
return;

}

i;

NULL) {

for (i = 0; i < pXSDatas->xsCntlDatas_len; i++) {
freeXSCntlData(&pXSDatas->xsCntlDatas_val[i]);

}
free(pXSDatas->xsCntlDatas_val);
memset(pXSDatas, 0, sizeof(xsCntlDatas));

xsCntlData *
copyXSCntlData(pXSData, destpXSData)

{

}

xsCntlData *PXSData;
xsCntlData *destpXSData;

xsCntlData
int

*newpXSData;
i;

if (pXSData NULL) {
return NULL;

}
if (destpXSData == NULL) {

newpXSData = (xsCntlData *) malloc(sizeof(xsCntlData));
} else {

newpXSData = destpXSData;
}

memcpy(newpXSData, pXSData, sizeof(xsCntlData));
return newpXSData;

xsCntlDatas *

7/5/11 12:41 PM

Page 5 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1439

xsCntiData.c

copyXSCntlDatas(pXSDatas, destpXSDatas)

{

}

void

xsCntlDatas *PXSDatas;
xsCntlDatas *destpXSDatas;

int
xsCntlDatas
char

i;
*newpXSDatas;

buf [65536] ;

if (pXSDatas == NULL) {
return NULL;

}
if (destpXSDatas == NULL) {

newpXSDatas = (xsCntlDatas *) malloc(sizeof(xsCntlDatas));
memset(newpXSDatas, 0, sizeof(xsCntlDatas));

} else {
newpXSDatas = destpXSDatas;

}
xsCntlDatasMemOut(buf, 65536, pXSDatas);
xsCntlDatasMemin(buf, 65536, newpXSDatas);
return newpXSDatas;

inputXSCntlData(fp, pXSData)

{

}

void

FILE *fp;
xsCntlData *PXSData;

memset(pXSData, 0, sizeof(xsCntlData));

outputXSCntlData(fp, pXSData)

{

}

void

FILE *fp;
xsCntlData *PXSData;

fprintf(stderr, "outputXSCntlData() not complete\n");

inputXSCntlDatas(fp, pXSDatas)

{

FILE *fp;
xsCntlDatas *PXSDatas;

int i;

fscanf(fp, "%d", &pXSDatas->xsCntlDatas_len);
pXSDatas->xsCntlDatas_val = (xsCntlData *)

malloc(pXSDatas->xsCntlDatas_len * sizeof(xsCntlData));
for (i = 0; i < pXSDatas->xsCntlDatas_len; i++) {

inputXSCntlData(fp, &pXSDatas->xsCntlDatas_val[i]);
}

7/5/11 12:41 PM

Page 6 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1440

xsCntiData.c

}

void
outputXSCntlDatas(fp 1 pXSDatas)

{

}

FILE *fp;
xsCntlDatas *PXSDatas;

int i;

fp rintf (fp 1 "%d\n" 1 pXSDatas->xsCnt lDatas_len);
for (i = 0; i < pXSDatas->xsCntlDatas_len; i++) {

outputXSCntlData(fp 1 &pXSDatas->xsCntlDatas_val[i]);
}

void
xsCntlDataXDRFree(pXSData)

{

}

xsCntlData *PXSData;

xdr_free(xdr_xsCntlData 1 (char*) pXSData);
memset(pXSData 1 0 1 sizeof(xsCntlData));

void
xsCntlDatasXDRFree(pXSDatas)

{

}

xsCntlDatas *PXSDatas;

xdr_free(xdr_xsCntlDatas 1 (char*) pXSDatas);
memset(pXSDatas 1 0 1 sizeof(xsCntlDatas));

#ifdef STANDALONE
main(argc 1 argv)
#else I* STANDALONE *I
xsCntlDataMain(argc 1 argv)
#endif I* STANDALONE *I

{

int
char

a rgc;
**argv;

static xsCntlData xsCData;
static xsCntlDatas xsCDatas;
xsCntlDatas *CpXSDatas;
xsCntlData *CpXSData;

switch (argc) {
case 1: I* receive xsCntlData *I

xsCntlDatain(0 I* stdin *I 1 &xsCData);
outputXSCntlData(stdout 1 &xsCData);
cpXSData = copyXSCntlData(&xsCData 1 NULL);
outputXSCntlData(stdout 1 cpXSData);
freeXSCntlData(cpXSData);

7/5/11 12:41 PM

Page 7 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1441

xsCntiData.c

break;
case 2: I* receive xsCntlData *I

inputXSCntlData(stdin 1 &xsCData);
#ifdef DEBUG

outputXSCntlData(stderr 1 &xsCData);
#end if

xsCntlDataOut(l I* stdout *I 1 &xsCData);

break;
case 3: I* receive xsCntlDatas *I

xsCntlDatasin(0 I* stdin *I 1 &xsCDatas);
outputXSCntlDatas(stdout 1 &xsCDatas);
cpXSDatas = copyXSCntlDatas(&xsCDatas 1 NULL);
outputXSCntlDatas(stdout 1 cpXSDatas);
freeXSCntlDatas(cpXSDatas);

break;
case 4: I* receive xsCntlDatas *I

inputXSCntlDatas(stdin 1 &xsCDatas);
#ifdef DEBUG

outputXSCntlDatas(stderr 1 &xsCDatas);
#end if

xsCntlDatasOut(l I* stdout *I 1 &xsCDatas);

break;
}

}

7/5/11 12:41 PM

Page 8 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1442

xsCntiData_xdr.c 7/5/11 12:41 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* Please do not edit this file.
* It was generated using rpcgen.
*I

#include <rpclrpc.h>
#include <shastraldatacommlxsCntlData.h>

bool_t
xdr_objid(xdrs, objp)

XDR *Xdrs;

{

}

objid *Objp;

if (!xdr_u_long(xdrs, &objp->lSidTag)) {
return (FALSE);

}
if (!xdr_u_long(xdrs, &objp->lidTag)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_objids(xdrs, objp)

XDR *Xdrs;

{
objids *Objp;

if (!xdr_array(xdrs, (char **)&objp->objids_val, (u_int *)&objp->
objids_len, ~0, sizeof(objid), xdr_objid)) {

Page 1 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1443

xsCntiData_xdr.c

return (FALSE);
}
return (TRUE);

}

bool_t
xdr_xsOpcode(xdrs, objp)

XDR *Xdrs;

{

}

xsOpcode *Objp;

if (!xdr_enum(xdrs, (enum_t *)objp)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_xsMouseData(xdrs, objp)

XDR *Xdrs;

{

}

xsMouseData *Objp;

if (!xdr_int(xdrs, &objp->event)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->x)) {

return (FALSE);
}
if (!xdr_int(xdrs, &objp->y)) {

return (FALSE);
}
if (!xdr_int(xdrs, &objp->value)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsPersData(xdrs, objp)

XDR *Xdrs;

{
xsPersData *Objp;

if (!xdr_int(xdrs, &objp->fov)) {
return (FALSE);

}
if (!xdr_double(xdrs, &objp->aspect)) {

return (FALSE);
}
if (!xdr_double(xdrs, &objp->near)) {

return (FALSE);
}
if (!xdr_double(xdrs, &objp->far)) {

return (FALSE);
}

7/5/11 12:41 PM

Page2of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1444

xsCntiData_xdr.c 7/5/11 12:41 PM

return (TRUE);
}

baal_t
xdr_xsOrthaData(xdrs 1 abjp)

XDR *Xdrs;
xsOrthaData *abjp;

{
if (!xdr_dauble(xdrs 1

return (FALSE);
}
if (!xdr_dauble(xdrs 1

return (FALSE);
}
if (!xdr_dauble(xdrs 1

return (FALSE);
}
if (!xdr_dauble(xdrs 1

return (FALSE);
}
if (!xdr_dauble(xdrs 1

return (FALSE);
}
if (!xdr_dauble(xdrs 1

return (FALSE);
}
return (TRUE);

}

baal_t
xdr_xsViewData(xdrs 1 abjp)

XDR *Xdrs;
xsViewData *abjp;

{

&abjp->left)) {

&abjp->right))

&abjp->battam))

&abjp->tap)) {

&abjp->near)) {

&abjp->far)) {

{

{

if (!xdr_vectar(xdrs 1 (char *)abjp->eyePt 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {

}

return (FALSE);
}
if (!xdr_vectar(xdrs 1 (char *)abjp->refPt 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
if (!xdr_int(xdrs 1 &abjp->twist)) {

return (FALSE);
}
return (TRUE);

baal_t
xdr_xsPalarData(xdrs 1 abjp)

XDR *Xdrs;
xsPalarData *abjp;

{

Page3of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1445

xsCntiData_xdr.c 7/5/11 12:41 PM

}

if (!xdr_double(xdrs 1 &objp->distance)) {
return (FALSE);

}
if (!xdr_int(xdrs 1 &objp->azim)) {

return (FALSE);
}
if (!xdr_int(xdrs 1 &objp->inci)) {

return (FALSE);
}
if (!xdr_int(xdrs 1 &objp->twist)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsF4vect(xdrs 1 objp)

XDR *Xdrs;

{

}

xsF4vect objp;

if (!xdr_vector(xdrs 1 (char *)objp 1 4 1 sizeof(float) 1 xdr_float)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_xsF4mat(xdrs 1 objp)

XDR *Xdrs;
xsF4mat objp;

{
if (!xdr_vector(xdrs 1 (char *)objp 1 4 1 sizeof(xsF4vect) 1 xdr_xsF4vect))

{
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_xsORGBData(xdrs 1 objp)

XDR *Xdrs;

{
xsORGBData *Objp;

if (!xdr_objids(xdrs 1 &objp->objects)) {
return (FALSE);

}
if (!xdr_vector(xdrs 1 (char *)objp->rgb 1 3 1 sizeof(double) 1 xdr_double)

) {
return (FALSE);

}
return (TRUE);

}

Page4of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1446

xsCntiData_xdr.c 7/5/11 12:41 PM

bool_t
xdr_xsOShadeData(xdrs, objp)

XDR *Xdrs;

{

}

xsOShadeData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->shade)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsORGBMData(xdrs, objp)

XDR *Xdrs;

{

}

xsORGBMData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->rgbModel)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsOCMapData(xdrs, objp)

XDR *Xdrs;

{

}

xsOCMapData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->colorMap)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsODispData(xdrs, objp)

XDR *Xdrs;

{
xsODispData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_int(xdrs, &objp->dispMode)) {

return (FALSE);
}

Page5of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1447

xsCntiData_xdr.c

return (TRUE);
}

baal_t
xdr_xsOTransData(xdrs 1 abjp)

XDR *Xdrs;

{

}

xsOTransData *abjp;

if (!xdr_abjids(xdrs 1 &abjp->abjects)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->trans 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
return (TRUE);

baal_t
xdr_xsORatateData(xdrs 1 abjp)

XDR *Xdrs;

{

}

xsORatateData *abjp;

if (!xdr_abjids(xdrs 1 &abjp->abjects)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->ratate 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
return (TRUE);

baal_t
xdr_xsOScaleData(xdrs 1 abjp)

XDR *Xdrs;

{

}

xsOScaleData *abjp;

if (!xdr_abjids(xdrs 1 &abjp->abjects)) {
return (FALSE);

}
if (!xdr_vectar(xdrs 1 (char *)abjp->scale 1 3 1 sizeaf(dauble) 1

xd r _daub le)) {
return (FALSE);

}
return (TRUE);

baal_t
xdr_xsOAppMatData(xdrs 1 abjp)

XDR *Xdrs;
xsOAppMatData *abjp;

{

7/5/11 12:41 PM

Page6of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1448

xsCntiData_xdr.c

}

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_xsF4mat(xdrs, objp->appMat)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsOSetMatData(xdrs, objp)

XDR *Xdrs;

{

}

xsOSetMatData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
if (!xdr_xsF4mat(xdrs, objp->setMat)) {

return (FALSE);
}
return (TRUE);

bool_t
xdr_xsOGroupData(xdrs, objp)

XDR *Xdrs;

{

}

xsOGroupData *Objp;

if (!xdr_objids(xdrs, &objp->objects)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_xsCntlData(xdrs, objp)

XDR *Xdrs;

{
xsCntlData *Objp;

if (!xdr_xsOpcode(xdrs, &objp->opcode)) {
return (FALSE);

}
switch (objp->opcode) {
case xs_NoOp:

break;
case xs_Mouse:

if (!xdr_xsMouseData(xdrs, &objp->xsCntlData_u.mouse)) {
return (FALSE);

}
break;

case xs_WinSelect:
if (!xdr_objid(xdrs, &objp->xsCntlData_u.winindex)) {

return (FALSE);

7/5/11 12:41 PM

Page7of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1449

xsCntiData_xdr.c

}
break;

case xs_WinForeRGB:

7/5/11 12:41 PM

if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.foreRGB 1 3 1 sizeof
(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_WinBackRGB:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.backRGB 1 3 1 sizeof

(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_WinShade:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.shade)) {

return (FALSE);
}
break;

case xs_WinRGBModel:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.rgbModel)) {

return (FALSE);
}
break;

case xs_WinColorMap:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.colorMap)) {

return (FALSE);
}
break;

case xs_WinTexture:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.texture)) {

return (FALSE);
}
break;

case xs_WinEnvMap:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.envMap)) {

return (FALSE);
}
break;

case xs_WinDispMode:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.dispMode)) {

return (FALSE);
}
break;

case xs_WinViewMode:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.viewMode)) {

return (FALSE);
}
break;

case xs_WinPersMode:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.persMode)) {

return (FALSE);
}

Page8of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1450

xsCntiData_xdr.c

break;
case xs_WinSelMode:

if (!xdr_int(xdrs 1 &objp->xsCntlData_u.selMode)) {
return (FALSE);

}
break;

case xs_WinPers:
if (!xdr_xsPersData(xdrs 1 &objp->xsCntlData_u.pers)) {

return (FALSE);
}
break;

case xs_WinOrtho:
if (!xdr_xsOrthoData(xdrs 1 &objp->xsCntlData_u.ortho)) {

return (FALSE);
}
break;

case xs_WinView:
if (!xdr_xsViewData(xdrs 1 &objp->xsCntlData_u.view)) {

return (FALSE);
}
break;

case xs_WinPolar:
if (!xdr_xsPolarData(xdrs 1 &objp->xsCntlData_u.polar)) {

return (FALSE);
}
break;

case xs_WinViewEye:

7/5/11 12:41 PM

if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.eyePt 1 3 1 sizeof
(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_WinViewRef:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u. refPt 1 3 1 sizeof

(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_WinViewTwist:
if (!xdr_int(xdrs 1 &objp->xsCntlData_u.twist)) {

return (FALSE);
}
break;

case xs_WinTrans:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.trans 1 3 1 sizeof

(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_WinScale:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.scale 1 3 1 sizeof

(double) 1 xdr_double)) {
return (FALSE);

Page9of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1451

xsCntiData_xdr.c

}
break;

case xs_WinRotate:

7/5/11 12:41 PM

if (!xdr_vector(xdrs, (char *)objp->xsCntlData_u. rotate, 3, sizeof
(double), xdr_double)) {
return (FALSE);

}
break;

case xs_WinSetMat:
if (!xdr_xsF4mat(xdrs, objp->xsCntlData_u.setMat)) {

return (FALSE);
}
break;

case xs_WinAppMat:
if (!xdr_xsF4mat(xdrs, objp->xsCntlData_u.appMat)) {

return (FALSE);
}
break;

case xs_WinResetMat:
break;

case xs_ObjWireRGB:
if (!xdr_vector(xdrs, (char *)objp->xsCntlData_u.objRGB, 3, sizeof

(double), xdr_double)) {
return (FALSE);

}
break;

case xs_ObjShade:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objShade)) {

return (FALSE);
}
break;

case xs_ObjRGBModel:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objRgbModel)) {

return (FALSE);
}
break;

case xs_ObjColorMap:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objColorMap)) {

return (FALSE);
}
break;

case xs_ObjTexture:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objTexture)) {

return (FALSE);
}
break;

case xs_ObjEnvMap:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objEnvMap)) {

return (FALSE);
}
break;

case xs_ObjDispMode:
if (!xdr_int(xdrs, &objp->xsCntlData_u.objDispMode)) {

Page 10 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1452

xsCntiData_xdr.c

return (FALSE);
}
break;

case xs_ObjTrans:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.objTrans 1 3 1

sizeof(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_ObjScale:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.objScale 1 3 1

sizeof(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_ObjRotate:
if (!xdr_vector(xdrs 1 (char *)objp->xsCntlData_u.objRotate 1 3 1

sizeof(double) 1 xdr_double)) {
return (FALSE);

}
break;

case xs_ObjSetMat:
if (!xdr_xsF4mat(xdrs 1 objp->xsCntlData_u.objSetMat)) {

return (FALSE);
}
break;

case xs_ObjAppMat:
if (!xdr_xsF4mat(xdrs 1 objp->xsCntlData_u.objAppMat)) {

return (FALSE);
}
break;

case xs_ObjSetindex:
if (!xdr_objids(xdrs 1 &objp->xsCntlData_u.objindex)) {

return (FALSE);
}
break;

case xs_ObjDisplay:
if (!xdr_objids(xdrs 1 &objp->xsCntlData_u.objDisplay)) {

return (FALSE);
}
break;

case xs_ObjUndisplay:
if (!xdr_objids(xdrs 1 &objp->xsCntlData_u.objUndisplay)) {

return (FALSE);
}
break;

case xs_ObjDelete:
if (!xdr_objids(xdrs 1 &objp->xsCntlData_u.objDelete)) {

return (FALSE);
}
break;

case xs_ObjResetMat:
break;

7/5/11 12:41 PM

Page 11 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1453

xsCntiData_xdr.c 7/5/11 12:41 PM

case xs_ObjsWireRGB:
if (!xdr_xsORGBData(xdrs, &objp->xsCntlData_u.objsRGB)) {

return (FALSE);
}
break;

case xs_ObjsShade:
if (!xdr_xsOShadeData(xdrs, &objp->xsCntlData_u.objsShade)) {

return (FALSE);
}
break;

case xs_ObjsRGBModel:
if (!xdr_xsORGBMData(xdrs, &objp->xsCntlData_u.objsRGBM)) {

return (FALSE);
}
break;

case xs_ObjsColorMap:
if (!xdr_xsOCMapData(xdrs, &objp->xsCntlData_u.objsCMap)) {

return (FALSE);
}
break;

case xs_ObjsTexture:
if (!xdr_xsOCMapData(xdrs, &objp->xsCntlData_u.objsTexture)) {

return (FALSE);
}
break;

case xs_ObjsEnvMap:
if (!xdr_xsOCMapData(xdrs, &objp->xsCntlData_u.objsEnvMap)) {

return (FALSE);
}
break;

case xs_ObjsDispMode:
if (!xdr_xsODispData(xdrs, &objp->xsCntlData_u.objsDispMode)) {

return (FALSE);
}
break;

case xs_ObjsTrans:
if (!xdr_xsOTransData(xdrs, &objp->xsCntlData_u.objsTrans)) {

return (FALSE);
}
break;

case xs_ObjsRotate:
if (!xdr_xsORotateData(xdrs, &objp->xsCntlData_u.objsRotate)) {

return (FALSE);
}
break;

case xs_ObjsScale:
if (!xdr_xsOScaleData(xdrs, &objp->xsCntlData_u.objsScale)) {

return (FALSE);
}
break;

case xs_ObjsSetMat:
if (!xdr_xsOSetMatData(xdrs, &objp->xsCntlData_u.objsSetMat)) {

return (FALSE);

Page 12 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1454

xsCntiData_xdr.c 7/5/11 12:41 PM

}
break;

case xs_ObjsResetMat:
if (!xdr_xsOGroupData(xdrs, &objp->xsCntlData_u.objsResetMat)) {

return (FALSE);
}
break;

case xs_ObjsAppMat:
if (!xdr_xsOAppMatData(xdrs, &objp->xsCntlData_u.objsAppMat)) {

return (FALSE);
}
break;

case xs_ObjsSetindex:
if (!xdr_xsOGroupData(xdrs, &objp->xsCntlData_u.objsindex)) {

return (FALSE);
}
break;

case xs_ObjsDisplay:
if (!xdr_xsOGroupData(xdrs, &objp->xsCntlData_u.objsDisplay)) {

return (FALSE);
}
break;

case xs_ObjsUndisplay:
if (!xdr_xsOGroupData(xdrs, &objp->xsCntlData_u.objsUndisplay)) {

return (FALSE);

}

}
break;

case xs_ObjsDelete:

}

if (!xdr_xsOGroupData(xdrs, &objp->xsCntlData_u.objsDelete)) {
return (FALSE);

}
break;

return (TRUE);

bool_t
xdr_xsCntlData_P(xdrs, objp)

XDR *Xdrs;

{

}

xsCntlData_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(xsCntlData),
xdr_xsCntlData)) {
return (FALSE);

}
return (TRUE);

bool_t
xdr_xsCntlDatas(xdrs, objp)

XDR *Xdrs;
xsCntlDatas *Objp;

{

Page 13 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1455

xsCntiData_xdr.c 7/5/11 12:41 PM

if (!xdr_array(xdrs, (char **)&objp->xsCntlDatas_val, (u_int *)&objp->
xsCntlDatas_len, ~0, sizeof(xsCntlData), xdr_xsCntlData)) {
return (FALSE);

}
return (TRUE);

}

bool_t
xdr_xsCntlDatas_P(xdrs, objp)

XDR *Xdrs;

{

}

xsCntlDatas_P *Objp;

if (!xdr_pointer(xdrs, (char **)objp, sizeof(xsCntlDatas),
xdr_xsCntlDatas)) {
return (FALSE);

}
return (TRUE);

Page 14 of 14
Petitioner Microsoft Corporation, Ex. 1002, p. 1456

ciSvrCntl.c 7/5/11 11 :50 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* clSvrCntl. c
*I

#include <stdio.h>
#include <string.h>

#include <shastralshastra.h>

#include <shastralutilsllist.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslgenui.h>

#include <shastralshautilslclientHosts.h>
#include <shastralshautilslkernelFronts.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>

#include <shastralfrontlfront.h>
#include <shastralfrontlfrontP.h>
#include <shastralfrontlfront_client.h>
#include <shastralfrontlclSvrCntl.h>
#include <shastralfrontlclSvrCntlP.h>
#include <shastralfrontlshastraCntl.h>

static ShastraToolMode iClSvrModeMine;
static ShastraToolMode iClSvrMode;

Page 1 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1457

ciSvrCntl.c 7/5/11 11 :50 AM

static shastraid defServerSid = { NULL, NULL, TEST_SERVICE_NAME};
extern chooseOne *PCOClSvr;
hostData *PHostShaCurrClnt;
static shastraidTag currClntSidTag;

void
clSvrSetSelfModeOprn()
{

iClSvrModeMine = shastraNameToMode(pFrontSid->nmApplicn);
}

char **
getServerNameList(pSid)

shastraid* pSid;
{

}

char **SbNames;

if(pSid NULL){
if(iClSvrMode == 0){

defServerSid.nmApplicn = pFrontSid->nmApplicn;
}
else{

defServerSid.nmApplicn = shastraModeToName(iClSvrMode);
}
sbNames = clHosts2StrTab(&defServerSid, PSIDNMHOST I PSIDNMAPPL);

}
else{

sbNames = clHosts2StrTab(pSid, PSIDNMHOST I PSIDNMAPPL);
}
return sbNames;

char **
getServerNameListByService(iService)

int iSe rv ice;
{

}

char **SbNames;

defServerSid.nmApplicn = shastraServiceToName(iService);
sbNames = clHosts2StrTab(&defServerSid, PSIDNMHOST I PSIDNMAPPL);
return sbNames;

void
setClSvrServerNamesOprn(pSid)

shastraid *PSid;
{

char **SbNames, *SService;

if(pcoClSvr == NULL){
return;

Page 2 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1458

ciSvrCntl.c

}

}
sService = shastraModeToName(iClSvrMode);
if(strcmp(pSid->nmApplicn,sService)){

return; /*not current service type*/
}
sbNames = getServerNameList(pSid);
chooseOneChangeList(pcoClSvr, sbNames, coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}

I*
* Function
*I

void
clSvrSetCurrHostOprn(pHost, fForce)

hostData *PHost;

{
int fForce;

if(!fForce && (pHostShaCurrClnt !=NULL)){
return; /*only set if not already set*/

}
pHostShaCurrClnt = pHost;
if(pHostShaCurrClnt != NULL){

currClntSidTag = pHostShaCurrClnt->lSIDTag;
#ifdef DEBUG

fprintf(stderr,"currClntSidTag = %ld, pHost = %ld\n",
currClntSidTag, pHost);

#endif I* DEBUG *I

}

}
else{

clSvrUnselectOprn();
}

set and update user interface element flags .. mode etc
*I

I*
* Function
*I

void
clSvrResetCurrHostOprn(pHost, fForce)

hostData *PHost;

{
int fForce;

if(!fForce && (pHostShaCurrClnt != pHost)){
return; /*only set if not already set*/

}
else{

clSvrUnselectOprn();
}

7/5/11 11 :50 AM

Page 3 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1459

ciSvrCntl.c 7/5/11 11 :50 AM

}

hostData *
clSvrHostFromService(iService, iClSvr)

int iSe rv ice;
int iClSvr;

{
hostData *PHost;

defServerSid.nmApplicn = shastraServiceToName(iService);
pHost = getClntHostByindex(&defServerSid, iClSvr);

return pHost;
}

hostData *
getClSvrHostFromindex(iClSvr)

{
int iClSvr;

hostData
shast raid

*PHost;
*PSid = NULL;

if(currClntSidTag){
pSid = mapSidTag25Id(&currClntSidTag);

}
if(pSid == NULL){

pSid = &defServerSid;
defServerSid.nmApplicn = shastraModeToName(iClSvrMode);

}
pHost = getClntHostByindex(pSid, iClSvr);

#ifdef DEBUG
fprintf(stderr,"getClSVrHostFromindex()->smidTag = %ld, pHost = %ld\n",

pHost->lSIDTag, pHost);
#endif I* DEBUG *I

return pHost;
}

void
clSvrSetModeOprn(iMode)

ShastraToolMode
{

iClSvrMode = iMode;
/*update the shown set*/

iMode;

defServerSid.nmApplicn = shastraModeToName(iClSvrMode);

setClSvrServerNamesOprn(&defServerSid);
}

I*
* Function
*I

void
clSvrUnselectOprn()

Page 4 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1460

ciSvrCntl.c

{

}

pHostShaCurrClnt = NULL;
currClntSidTag = 0;

I*
* Function
*I

void
clSvrSelectOprn(i)

{

}

int i;

hostData *PHost;
pHost = getClSvrHostFromindex(i);
clSvrSetCurrHostOprn(pHost, True);
if (clientSelectFunc ! = NULL) {

(*clientSelectFunc) (pHostShaCurrClnt);
}

I*
* Function
*I

void
clSvrRenameOprn(i, name)

{

}

int i;
char *name;

I*
* Function
*I

void
clSvrDisconnectOprn(i)

{

}

int i;

hostData *PHost;
pHost = getClSvrHostFromindex(i);
if(clntTerminateReq(NULL, pHost) == -1){

}

clSvrUtilPopupMessage("clntTerminateReq() Error!\n");
return;

I*
* Function
*I

void
clSvrTerminateOprn(i)

int i;

7/5/11 11 :50 AM

Page 5 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1461

ciSvrCntl.c

{

}

hostData *PHost;
pHost = getClSvrHostFromindex(i);
if(clntTerminateReq(NULL 1 pHost) == -1){

}

clSvrUtilPopupMessage("clntTerminateReq() Error!\n");
return;

clSvrUtilPopupMessage("This operation is presently disabled!\n");

I*
* Function
*I

void
clSvrCreateOprn(sbName)

char *SbName;
{

}

printf("create %s on %s\n" 1 shastraModeToName(iClSvrMode) 1 sbName);
/*execute a starter script*/

I*
* Function
*I

void
c lSv rSe rve rOp rn (s bName 1 iPo rt)

char *SbName;

{
int iPort;

shastraid sid;
shaCmdData *PCmdData = NULL;

if(!strcmp(pFrontSid->nmApplicn 1 sbName) &&
(pFrontSid->iPort == iPort)){

clSvrUtilPopupMessage("Warning: Connecting to self!\n");
}
memset(&sid 1 0 1 sizeof(shastraid));
sid.nmApplicn = shastraModeToName(iClSvrMode);
sid.nmHost = sbName;
sid.iPort = iPort;

/*CHECK*/
sid.lSIDTag = mplexGetUniqueid();
sid.liPAddr = hostName2IPAddress(sbName);
/*check if already connected*/
if(getClntHostByidTag(&sid 1 &sid.lSIDTag) !=NULL){

clSvrUtilPopupMessage("Warning: Already connected to host!\n");
}
printf("server connect to %son %s\n" 1 sid.nmApplicn 1 sbName);
I* connect using non-shastra info *I
if(clientControlDataFunc){

7/5/11 11 :50 AM

(*clientControlDataFunc)(shastraModeToService(iClSvrMode) 1 &pCmdData);
if(pCmdData == NULL){

clSvrUtilPopupMessage("Invalid Control Data!\n");

Page 6 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1462

ciSvrCntl.c

}

I*

return;
}

}
else{

}

clSvrUtilPopupMessage("Can't Obtain Control Data!\n");
return;

if(clntConnectReq(NULL, &sid, pCmdData) == -1){
clSvrUtilPopupMessage("clntConnectReq() Error!\n");
return;

}

* Function
*I

void
clSvrConnectOprn(iWhich)

int iWhich;
{

shastraidTag *PSidTag;
shastraid *PSid;
shaCmdData *PCmdData = NULL;

pSidTag = krFrNdx2SidTag(iWhich);
pSid = mapSidTag2Sid(pSidTag);
if(pSid == NULL){

}

clSvrUtilPopupMessage("Invalid System!\n");
return;

if(*pSidTag == pFrontSid->lSIDTag){
clSvrUtilPopupMessage("Warning: Connecting to self!\n");

}
/*check if already connected*/
if(getClntHostByidTag(pSid, pSidTag) != NULL){

clSvrUtilPopupMessage("Warning: Already connected!\n");
}
if(clientControlDataFunc){

(*clientControlDataFunc)(shastraNameToService(pSid->nmApplicn), &
pCmdData);

if(pCmdData == NULL){
clSvrUtilPopupMessage("Invalid Control Data!\n");
return;

}
}
else{

}

clSvrUtilPopupMessage("Can't Obtain Control Data!\n");
return;

if(clntConnectReq(NULL, pSid, pCmdData) == -1){
clSvrUtilPopupMessage("clntConnectReq() Error!\n");
return;

7/5/11 11 :50 AM

Page 7 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1463

ciSvrCntl.c

}
}

void
clSvrOperationsOprn(pMgrCD, fUp)

mgrCntlData *PMgrCD;

{

}

int fUp;

if(pHostShaCurrClnt == NULL){
clSvrUtilPopupMessage("Invalid Current Server!\n");
return;

}
if (client Ope rata rFunc ! = NULL) {

(*clientOperatorFunc) (pHostShaCurrClnt);
}

7/5/11 11 :50 AM

Page 8 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1464

ciSvrCntiUI.c 7/5/11 11 :51 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* clSvrCntlUI.c
*I

#include <stdio.h>

#include <XmiCascadeB.h>
#include <XmiRowColumn.h>
#include <XmiToggleB.h>
#include <XmiTextF.h>
#include <Xmllabel.h>
#include <XmiForm.h>
#include <XmiPushB.h>
#include <XmiSelectioB.h>
#include <XmiSeparator.h>
#include <XmiXm.h>
#include <XlliShell.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslmenu.h>
#include <shastraluitoolsltoggles.h>
#include <shastraluitoolslbuttons.h>
#include <shastraluitoolslgenui.h>
#include <shastraluitoolsldialog.h>
#include <shastraluitoolslchoose.h>
#include <shastraluitoolsltext.h>
#include <shastraluitoolslcontrolPanel.h>

#include <shastralfrontlfrontState.h>
#include <shastralfrontlfrontP.h>

Page 1 of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1465

ciSvrCntiUI.c

#include <shastra/front/clSvrCntl.h>
#include <shastra/front/clSvrCntlP.h>
#include <shastra/front/shastraCntl.h>

7/5/11 11 :51 AM

static void clSvrSysGenChooseOneSetup(Prot2(Widget, optChooseCntlData*));
static void clSvrSysGenChooseOneCB(Prot3(Widget, XtPointer, XtPointer));

Widget createHelpPD();

static Widget createClSvrControlPD();
static Widget createClSvrDebugPD();
static void clSvrSetModeCB();
static void clSvrShowTraceCB();
static void clSvrConnectCOCB();
static void clSvrOperationCB();
static void clSvrDismissCB();
static void clSvrDlgChooseCB();
static void chooseOneClSvrCB();
static void clSvrCmdCB();
static void clSvrConnectCB();

chooseOne *PCOClSvr;
static chooseOne *PCOClSvrSys;

static mgrCntlData *PClSvrDismissData;
static int fDebugTrace = 1;
static textCntlData clSvrMsgBufCntl = {"clSvrMsgBuffer", NULL, NULL};

static Widget
createClSvrMenuBar(wgParent, sName, argList)

{

Widget wgParent;
char *SName;
XtVarArgsList argList;

Widget wgMenuBar;
Widget wgToolPD, wgControlPD, wgDebugPD, wgHelpPD;
Arg args[8];
int n;
static menuitem serversPD[] = {

};

{"Shilp", (XtPointer) Shastra_OSHILP, False, clSvrSetModeCB},
{"Ganith", (XtPointer) Shastra_OGANITH, False, clSvrSetModeCB},
{"Vaidak", (XtPointer) Shastra_OVAIDAK, False, clSvrSetModeCB},
{"Bhautik", (XtPointer) Shastra_OBHAUTIK, False, clSvrSetModeCB},
{"Sculpt", (XtPointer) Shastra_OSCULPT, False, clSvrSetModeCB},
{"Splinex", (XtPointer) Shastra_OSPLINEX, False, clSvrSetModeCB},
{"Gati", (XtPointer) Shastra_OGATI, False, clSvrSetModeCB},
{NULL}

static menuitem toolkitsPD[] = {
{"Shilp", (XtPointer) Shastra_SHILP, False, clSvrSetModeCB},
{"Gan i th", (XtPointe r) Shast ra_GANITH, False, c lSv rSetModeCB},
{"Vaidak", (XtPointer) Shast ra_VAIDAK, False, clSvrSetModeCB},

Page2of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1466

ciSvrCntiUI.c 7/5/11 11 :51 AM

}

};

{"Bhautik", (XtPointer) Shast ra_BHAUTIK, False, clSvrSetModeCB},
{"Sculpt", (XtPointer) Shastra_SCULPT, False, clSvrSetModeCB},
{"Splinex", (XtPointer) Shast ra_SPLINEX, False, clSvrSetModeCB},
{"Gati", (XtPointer) Shastra_GATI, False, clSvrSetModeCB},
{"Rasayan", (XtPointer) Shastra_RASAYAN, False, clSvrSetModeCB},
{NULL}

static menuitem servicesPD[] = {

};

{"Test", (XtPointer) Shastra_TEST, False, clSvrSetModeCB},
{"Talk", (XtPointer) Shastra_TALK, False, clSvrSetModeCB},
{"Draw", (XtPointer) Shastra_DRAW, False, clSvrSetModeCB},
{"Poly", (XtPointer) Shastra_POLY, False, clSvrSetModeCB},
{"Phone", (XtPointe r) Shast ra_PHONE, False, clSv rSetModeCB},
{"Video", (XtPointer) Shastra_VIDEO, False, clSvrSetModeCB},
{NULL}

static menuitem gamesPD[] = {

};

{"Chess", (XtPointer) Shastra_CHESS, False, clSvrSetModeCB},
{NULL}

static menuitem toolsPD[] = {

};

{"Toolkits", NULL, False, NULL, NULL, NULL, toolkitsPD, MENU_RADI0_0},
{"Services", NULL, False, NULL, NULL, NULL, servicesPD, MENU_RADI0_0},
{"Games", NULL, False, NULL, NULL, NULL, gamesPD, MENU_RADI0_0},
{"Servers", NULL, False, NULL, NULL, NULL, serversPD, MENU_RADI0_0},
{NULL}

n = 0;
if (argList) {

XtSetArg(args[n], XtVaNestedList, argList);
n++;

}
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;

wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);
wgControlPD = createClSvrControlPD(wgMenuBar);
wgToolPD = pulldownMenuCreate(wgMenuBar, "Tools", MENU_CHECK,

toolsPD, NULL);
wgDebugPD = createClSvrDebugPD(wgMenuBar);
wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static void
createClSvrCntlAreaCB(wgParent, xpClient, xpCall)

Widget wgParent;
XtPointer xpClient, xpCall;

Page3of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1467

ciSvrCntiUI.c

{

}

Widget wgDbgText;
Arg args[16];
int n;

n=0;
XtSetArg(args[n], XmNrows, S);n++;
XtSetArg(args[n], XmNcolumns, 32);n++;
XtSetArg(args[n], XmNeditable, False);n++;
XtSetArg(args[n], XmNeditMode, XmMULTI_LINE_EDIT);n++;
XtSetArg(args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg(args[n], XmNvisualPolicy, XmCONSTANT); n++;
XtSetArg(args[n], XmNscrollBarDisplayPolicy, XmAS_NEEDED); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM);n++;
XtSetArg(args[n], XmNscrollHorizontal, False); n++;
XtSetArg(args[n], XmNscrollVertical, True); n++;
XtSetArg(args[n], XmNwordWrap, True); n++;

wgDbgText = createMessageBuffer(wgParent, "clSvrTextMsgs",
&clSvrMsgBufCntl, args,n);

XtManageChild(wgDbgText);

static Widget
createClSvrDebugPD(wgMenuBar)

{

}

Widget wgMenuBar;

Widget wgDebugPD;
static menuitem syncPD[] = {

};

{"Foo", (XtPointer) NULL, False, NULL},
{"Bar", (XtPointer) NULL, False, NULL},
{NULL}

static menuitem debugPD[] = {

};

{"Sync.", NULL, False, NULL, NULL, NULL, syncPD, MENU_PUSH},
{"Trace", (XtPointer) NULL, True, clSvrShowTraceCB, NULL,

&xmToggleButtonWidgetClass},
{NULL}

wgDebugPD = pulldownMenuCreate(wgMenuBar, "Debug", MENU_MIXED,
debugPD, NULL);

return wgDebugPD;

static void
clSvrShowTraceCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

7/5/11 11 :51 AM

Page4of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1468

ciSvrCntiUI.c

{

}
fDebugTrace = cbs->set;

void
frontClSvrsCB(wgTgl, pMgrCD, xpFoo)

{

}

Widget wgTgl;
mgrCntlData *PMgrCD;
XtPointer xpFoo;

Widget wgShell;
panelCntlData *PPanelCntl;
int fToggles;
static buttonitem panelBtns[] = {

{"Create",(XtPointer)ClSvrCmd_CREATE, clSvrCmdCB},
{"Server",(XtPointer)ClSvrCmd_SERVER, clSvrCmdCB},
{"Connect", (XtPointer)ClSvrCmd_CONNECT, clSvrConnectCB},
{NULL}

};

if (pMgrCD->wgCntl) {
return;

}
pMgrCD->wgTgl = wgTgl;

pPanelCntl = (panelCntlData *) malloc(sizeof(panelCntlData));
memset(pPanelCntl, 0, sizeof(panelCntlData));

pPanelCntl->sName = "ClSvr";
pPanelCntl->fnMenuBar = createClSvrMenuBar;
pPanelCntl->panelBtns = panelBtns;
pPanelCntl->fnChooseCB = chooseOneClSvrCB;
pPanelCntl->fCntlArea = True;

fToggles = PANEL_SELECT I PANEL_UNSELECT I PANEL_RENAME
PANEL_DISCONNECT I PANEL_TERMINATE ;

pMgrCD->wgCntl = wgShell =
createPanelControl(pMgrCD->wgParent, "serverControl",

wgTgl, pPanelCntl,
fToggles, PANEL_CHOOSEONE, NULL);

createClSvrCntlAreaCB(pPanelCntl->wgCntlArea, NULL, NULL);

pClSvrDismissData = pPanelCntl->pDismiss;
pcoClSvr = pPanelCntl->pChooseOne;

static void
clSvrDismissCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{

7/5/11 11 :51 AM

Page5of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1469

ciSvrCntiUI.c

defaultShellDismissCB(wg, (XtPointer)pClSvrDismissData, cbs);
}

static dialogCntlData dlgChooseClSvr;
static void
clSvrCmdCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

dialogCntlData *PDialogCD = &dlgChooseClSvr;

if(pDialogCD->wgDialog ==NULL){
Widget wgLabel, wgTextF;
XmSt ring st r;

pDialogCD->fFlags = DIALOG_OK I DIALOG_CANCEL I DIALOG_HELP;
pDialogCD->fMode = XmDIALOG_APPLICATION_MODAL;
pDialogCD->sMessage ="Choose a Host:";
pDialogCD->sName ="Host";
pDialogCD->fnCallback = clSvrDlgChooseCB;
pDialogCD->fnNoMatchCallback = clSvrDlgChooseCB;
pDialogCD->sbitems = NULL;

createSelectionDialog(wg, "hostNameDialog", pDialogCD, NULL);
#ifdef WANT

XtVaSetValues(pDialogCD->wgDialog,
XmNchildPlacement, XmPLACE_BELOW_SELECTION,
NULL);

str = XmStringCreateSimple("Port Number");
wgLabel =

XtVaCreateManagedWidget("portLabel", xmLabelWidgetClass,
pDialogCD->wgDialog,
XmNalignment, XmALIGNMENT_BEGINNING,
XmN label 5 t ring , s t r,
NULL);

XmStringFree(str);
wgTextF =

XtVaCreateManagedWidget("portText", xmTextFieldWidgetClass,
pDialogCD->wgDialog,
XmN v a l u e , " 0" ,
NULL);

#endif /*WANT*/
}

}

pDialogCD->xpClient = xpClient;
defaultSelectionDialogPopup(pDialogCD, "Choose a Host:", "Host",

getHostNameList());

static void
clSvrDlgChooseCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;

7/5/11 11 :51 AM

Page6of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1470

ciSvrCntiUI.c

{
XmSelectionBoxCallbackStruct *Cbs;

dialogCntlData *PDialogCD = (dialogCntlData*)xpClient;
ClSvrCmd iClSvrCmd = (ClSvrCmd)pDialogCD->xpClient;
char *SName, *SPort = NULL;
Widget wgList, wgTextF;
static dialogCntlData dlgErrorMsgCD;
dialogCntlData *PMsgDlgCD = &dlgErrorMsgCD;
char nmBuf [256];
int fKeepUp = 0, iPort = 0;

#ifdef WANT

7/5/11 11 :51 AM

wgTextF = XmSelectionBoxGetChild(pDialogCD->wgDialog, XmDIALOG_WORK_AREA)

if(wgTextF){

}

sPort= XmTextFieldGetString(wgTextF);
if (sPort) {

iPort = atoi(sPort);
Xt Free (sPort) ;

}
else{

iPort = 0;
}

iPort = (iPort < 0)7 0: iPort;
#endif /*WANT*/

switch(cbs->reason){
default:

break;
case XmCR_OK:

XmStringGetLtoR(cbs->value, XmSTRING_DEFAULT_CHARSET, &sName);
switch(iClSvrCmd){
case ClSvrCmd_CREATE:

clSvrCreateOprn(sName);
break;

case ClSvrCmd_SERVER:
clSvrServerOprn(sName, iPort);
break;

}
XtFree(sName);
break;

case XmCR_NO_MATCH:
XmStringGetLtoR(cbs->value, XmSTRING_DEFAULT_CHARSET, &sName);
if(verifyHostNameOprn(sName)){

wgList = XmSelectionBoxGetChild(wg, XmDIALOG_LIST);
XmListAdditem(wgList, cbs->value, 0);
switch(iClSvrCmd){
case ClSvrCmd_CREATE:

clSvrCreateOprn(sName);
break;

case ClSvrCmd_SERVER:
clSvrServerOprn(sName, iPort);

Page7of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1471

ciSvrCntiUI.c

}

break;
}

}
else{ /*tell invalid name*/

if(pMsgDlgCD->wgDialog == NULL){
pMsgDlgCD->fFlags = DIALOG_OK I DIALOG_HELP;
pMsgDlgCD->fMode = XmDIALOG_APPLICATION_MODAL;
pMsgDlgCD->sName ="Error";
pMsgDlgCD->sMessage ="Bad Host!";

createErrorDialog (wg, "errorDialog", pMsgDlgCD, NULL);
}

}

sprintf(nmBuf, "Unknown Host %s!", sName);
defaultDialogPopupMessage(pMsgDlgCD, nmBuf);
fKeepUp = 1;

Xt Free (sName) ;
break;

if(!fKeepUp){

7/5/11 11 :51 AM

defaultDialogCancelCB(pDialogCD->wgDialog, (XtPointer)pDialogCD, cbs);
}

}

static void
disconnectClSvrsCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

clSvrDisconnectOprn((int)pGenCD->xpCall);

static void
terminateClSvrsCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

clSvrTerminateOprn((int)pGenCD->xpCall);

static void
renameClSvrsCB(wg, xpClient, cbs)

Widget wg;

{

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

Page8of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1472

ciSvrCntiUI.c

clSvrRenameOprn((int)pGenCD->xpCall 1 pGenCD->sbName);
}

static void
chooseOneClSvrCB(wg 1 xpClientData 1 xpCallData)

{

Widget wg;
XtPointer xpClientData 1 xpCallData;

int iWhich = (int) xpCallData;
panelCntlData *PPanelCntl = (panelCntlData *) xpClientData;
static panelAxnCntlData genCDConfirm;
static panelAxnCntlData genCDRename;

switch (pPanelCntl->iMode) {
case PANEL_SELECT:

clSvrSelectOprn(iWhich);
break;

case PANEL_UNSELECT:
I* old code clSvrUnselectOprn(iWhich); *I

clSvrUnselectOprn();

}

break;
case PANEL_RENAME:

genCDRename.fnCallback = renameClSvrsCB;
genCDRename.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDRename;
panelDefaultRenamePUCB(wg 1 xpClientData 1 xpCallData);
break;

case PANEL_DISCONNECT:
genCDConfirm.fnCallback = disconnectClSvrsCB;
genCDConfirm.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDConfirm;
panelDefaultConfirmPUCB(wg 1 xpClientData 1 xpCallData);
break;

case PANEL_TERMINATE:
genCDConfirm.fnCallback = terminateClSvrsCB;
genCDConfirm.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDConfirm;
panelDefaultConfirmPUCB(wg 1 xpClientData 1 xpCallData);
break;

default:
break;

}

static Widget
createClSvrControlPD(wgMenuBar)

{
Widget wgMenuBar;

Widget wgControlPD;
static mgrCntlData cntlOperation;
static menuitem controlPD[] = {

7/5/11 11 :51 AM

{"Ope rat ions" 1 (XtPointe r) &cnt lOpe rat ion 1 False 1 c lSv rOpe rat ionCB} 1

Page9of 12
Petitioner Microsoft Corporation, Ex. 1002, p. 1473

ciSvrCntiUI.c 7/5/11 11 :51 AM

{"sep", (XtPointer) NULL, False, NULL, NULL, &xmSeparatorWidgetClass}

}

I

{"Dismiss", (XtPointer) NULL, False, clSvrDismissCB},
{NULL}

};
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

controlPD, NULL);

return wgControlPD;

static void
clSvrOperationCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

{
mgrCntlData *mgrCntl = (mgrCntlData*)xpClient;

clSvrOperationsOprn(mgrCntl, cbs->set);
}

static void
clSvrSetModeCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

static Widget wgCurrSet;

if (cbs->set) {

}

if(wgCurrSet && (wgCurrSet != wg)){
XmToggleButtonSetState(wgCurrSet, False, True);

}
wgCurrSet = wg;
clSvrSetModeOprn((ShastraToolMode)xpClient);

static void
clSvrConnectCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

static optChooseCntlData connecteD;
connectCD.fnCallback = clSvrConnectCOCB;
connectCD.xpClient = (XtPointer) NULL;
clSvrSysGenChooseOneCB(wg, (XtPointer) & connecteD, NULL);

static void

Page 10 of 12

Petitioner Microsoft Corporation, Ex. 1002, p. 1474

ciSvrCntiUI.c

clSvrConnectCOCB(wg, xpClient, xpCall)
Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

clSvrConnectOprn(iWhich);
}

I*
* Function
*I

void
clSvrShowinfo(s)
char *S;
{

}

if(clSvrMsgBufCntl.wgText && fDebugTrace){
wprintf(&clSvrMsgBufCntl,"%s", s);

}

void
clSvrUtilPopupMessage(msg)
char *msg;
{

}

static dialogCntlData infoDlgCD;

clSvrShowinfo(msg);
if(infoDlgCD.wgDialog == NULL){

infoDlgCD.fFlags = DIALOG_OK;
infoDlgCD.fBehave = DIALOG_AUTOLOWER;
infoDlgCD.iDelay = 5000;

}

infoDlgCD.sName = "Shastra Information";
infoDlgCD.sMessage = "Yo, User Dude!\nThis is, like, cool!!";

createinformationDialog(pFrontAppData->wgTop, "infoDialog",
&infoDlgCD, NULL);

defaultDialogPopupMessage(&infoDlgCD, msg);

static void
clSvrSysGenChooseOneSetup(wg, pOptCD)

{

Widget wg;
optChooseCntlData *POptCD;

static String asDef[] ={NULL};
static optChooseCntlData *PChooseOneCD;

pChooseOneCD = pOptCD;

if (pcoClSvrSys == NULL) {
pcoClSvrSys = chooseOneCreate(asDef, coNoinitialHighlight,

7/5/11 11 :51 AM

Page 11 of 12

Petitioner Microsoft Corporation, Ex. 1002, p. 1475

ciSvrCntiUI.c

}
}

wg, genCntlChooseCOCB,
(XtPointer) & pChooseOneCD, wg,
"Choose System", 200, NULL);

static void
clSvrSysGenChooseOneCB(wg, xpClient, xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

clSvrSysGenChooseOneSetup(wg, (optChooseCntlData *) xpClient);
sbNames = getSystemNameList();
chooseOneChangeList(pcoClSvrSys, sbNames, coNoinitialHighlight);
if (sbNames) {

strlistDestroy(sbNames);
}
chooseOneMobExec(pcoClSvrSys, wg);

7/5/11 11 :51 AM

Page 12 of 12

Petitioner Microsoft Corporation, Ex. 1002, p. 1476

collabCntl.c 7/5/11 11 :51 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* co llabCnt l. c
*I

#include <stdio.h>
#include <string.h>

#include <shastralutilsllist.h>

#include <shastraluitoolslgenui.h>
#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolsltext.h>
#include <shastraluitoolsldialog.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslclientHosts.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFronts.h>

#include <shastralfrontlcollabCntl.h>
#include <shastralfrontlcollabCntlP.h>
#include <shastralfrontlfront.h>
#include <shastralfrontlfrontP.h>
#include <shastralfrontlfrontCollClient.h>
#include <shastralfrontlfront_client.h>
#include <shastralfrontlfrontState.h>

Page 1 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1477

collabCntl.c 7/5/11 11 :51 AM

hostData *PHostShaCurrColl;
extern chooseOne *PCOCollab;
extern chooseOne *PCOCollabFronts;
static shastraid defSesmSid = { NULL, NULL, TESTSESM_SERVICE_NAME};

static shastraidTag currCollSidTag;
static CollabOptionState collOptionState;
static unsigned long collixnMode;
static unsigned long collFloorMode;
static unsigned long collFormat;
static unsigned long collPermissions = SHASTRA_PERM_ACCESS
SHASTRA_PERM_BROWSE I SHASTRA_PERM_MODIFY;
static int fFreeFloor = False;
static shastraidTag sidTagToken;

char **
getCollabNameList(lSidTag)

shastraidTag lSidTag;
{

}

char
shast raid

**SbNames;
*PSid;

if(lSidTag 0){
lSidTag = currCollSidTag;

}
if(lSidTag == 0){

sbNames = clHosts2StrTab(&defSesmSid, PSIDNMHOST I PSIDNMAPPL);
}
else{

}

pSid = getSidByTaginSids(&lSidTag, &shastraSesmids);
sbNames = clHosts2StrTab(pSid, PSIDNMHOST I PSIDNMAPPL);

return sbNames;

char **
getCollabFrontNameList(lSidTag)

shastraidTag lSidTag;
{

char
shastraidTags

**SbNames;
*PSidTags;

if(lSidTag == 0){
lSidTag = currCollSidTag;

}
if(lSidTag == 0){

return NULL;
}
pSidTags = getSesmFrontSidTags(&lSidTag);
if(pSidTags == NULL){

}

/*shouldn't happen!*/
return NULL;

Page 2 of 38
Petitioner Microsoft Corporation, Ex. 1002, p. 1478

collabCntl.c

sbNames = mapSidTags2StrTab(pSidTags,
PSIDNMHOST I PSIDNMAPPL I PSIDNMUSER);

return sbNames;
}

void
setCollabNamesOprn(lSidTag)

shastraidTag lSidTag;
{

}

char
int

**SbNames;
iWhich;

if(pcoCollab ==NULL){
return;

}
iWhich = getCollabindex(lSidTag);
sbNames = getCollabNameList(lSidTag);
chooseOneChangeList(pcoCollab, sbNames, iWhich);
if (sbNames) {

strListDestroy(sbNames);
}

void
setCollabFrontNamesOprn(lSidTag)

shastraidTag lSidTag;
{

}

char **SbNames;

if((pcoCollabFronts ==NULL) I I (lSidTag != currCollSidTag)){
return;

}
sbNames = getCollabFrontNameList(currCollSidTag);
chooseOneChangeList(pcoCollabFronts, sbNames, coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}

void
setCollabFrontPermsOprn(lSidTag)

shastraidTag lSidTag;
{

}

unsigned long lPerms;

if((pcoCollab ==NULL) I I (lSidTag != currCollSidTag)){
return;

}
lPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
collabSetPermToggles(lPerms);

void

7/5/11 11 :51 AM

Page 3 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1479

collabCntl.c

setCollabFrontFloorOprn(smSidTag, lSidTag)
shastraidTag smSidTag, lSidTag;

{

}

unsigned long lPerms;
char *SName;
int fHave, fFree;

if((pcoCollab ==NULL) I I (smSidTag != currCollSidTag)){
return;

}
sidTagToken = lSidTag;
sName = mapSidTag2Str(&lSidTag, PSIDNMHOST I PSIDNMUSER);
fHave = (lSidTag == pFrontSid->lSIDTag);
fFree = False;
collabSetFloorinfo(sName, fHave, fFree);
free (sName);

int
getCollabindex(lSidTag)

shastraidTag lSidTag;
{

}

int
shast raid

iSession;
*PSid;

lSidTag = (lSidTag == 0) 7 currCollSidTag : lSidTag;
pSid = getSidByTaginSids(&lSidTag, &shastraSesmids);
if(pSid != NULL){

iSession = clHostsGetSidTagindex(pSid, &lSidTag);
}
else{

iSession = -1;
}
return iSession;

shastraidTag
getCollabSidTagFromindex(iSession)

{
int iSession;

shast raid
shastraidTags

*PSid = NULL;
*PSidTags;

if(currCollSidTag){
pSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);

}
if(pSid == NULL){

pSid = &defSesmSid; /*WONT WORK FOR OTHER SESSION TYPES*/
}
pSidTags = getClntHostSidTags(pSid);
if((iSession < 0) I I (iSession >= pSidTags->shastraidTags_len)){

return 0;
}

7/5/11 11 :51 AM

Page 4 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1480

collabCntl.c

else{
return pSidTags->shastraidTags_val[iSession];

}
}

hostData *
getCollabHostFromindex(iSession)

{
int iSession;

hostData
shast raid

*PHost;
*PSid = NULL;

if(currCollSidTag){
pSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);

}
if(pSid == NULL){

pSid = &defSesmSid; /*WONT WORK FOR OTHER SESSION TYPES*/
}
pHost = getClntHostByindex(pSid, iSession);

#ifdef DEBUG

7/5/11 11 :51 AM

fprintf(stderr,"getCollabHostFromindex()->smidTag = %ld, pHost = %ld\n",
pHost->lSIDTag, pHost);

#endif I* DEBUG *I
return pHost;

}

I*
* Function
*I

void
collabSetCurrHostOprn(pHost, fForce)

hostData *PHost;

{
int fForce;

if(!fForce && (pHostShaCurrColl !=NULL)){
return; /*only set if not already set*/

}
pHostShaCurrColl = pHost;
if(pHostShaCurrColl !=NULL){

currCollSidTag = pHostShaCurrColl->lSIDTag;
#ifdef DEBUG

fprintf(stderr,"currCollSidTag = %ld, pHost = %ld\n",
currCollSidTag, pHost);

#endif I* DEBUG *I

I*

}
else{

collabUnselectOprn(0);
}
if(currCollSidTag){

setCollabFrontNamesOprn(currCollSidTag);
}

set and update user interface element flags .. sidTagToken, perms, etc etc

Page 5 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1481

collabCntl.c

}

I*
* Function
*I

void
collabResetCurrHostOprn(pHost, fForce)

hostData *PHost;

{

}

int fForce;

if(!fForce && (pHostShaCurrColl != pHost)){
return; /*only set if not already set*/

}
else{

collabUnselectOprn(0);
}

I*
* Function
*I

void
collabSelectOprn(i)

int i;
{

}

hostData *PHost;
pHost = getCollabHostFromindex(i);
collabSetCurrHostOprn(pHost, True);
if (collabSelectFunc != NULL) {

(*collabSelectFunc) (pHostShaCurrColl);
}

I*
* Function
*I

void
collabUnselectOprn(i)

int i;
{

pHostShaCurrColl =NULL;
currCollSidTag = 0;

}

I*
* Function
*I

void
collabRenameOprn(i,

int
int

{

iMode)
i;
iMode;

7/5/11 11 :51 AM

Page 6 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1482

collabCntl.c

I*
* Function
*I

void
collabLeaveOprn(i)

{

}

int i;

hostData *PHost;

pHost = getCollabHostFromindex(i);
if (pHost == NULL) {

collabUtilPopupMessage("Invalid Session!\n");
return;

}
if(collLeaveReq(pHost) == -1){

collabUtilPopupMessage("collLeaveReq() Error!\n");
return;

}
if(pHost->lSIDTag == currCollSidTag){

collabUnselectOprn(0);
}

I*
* Function
*I

void
collabTerminateOprn(i)

{
int i;

hostData *PHost;
unsigned long myPerms;

pHost = getCollabHostFromindex(i);
if (pHost == NULL) {

collabUtilPopupMessage("Invalid Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Terminate!\n");
return;

if(collTerminateReq(pHost) == -1){
collabUtilPopupMessage("collTerminateReq() Error!\n");
return;

}
if(pHost->lSIDTag == currCollSidTag){

collabUnselectOprn(0);
}

7/5/11 11 :51 AM

Page 7 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1483

collabCntl.c

}

I*
* Function
*I

void
collabinitiateOprn(aiWhich)

int *aiWhich;
{

shastraidTags *PSidTags;
shastraidTag lSidTag;
shastraidTag *PSidTag;
shaCommCntlData *PCommCD;
int i;

pSidTag = &pFrontSid->lSIDTag;
pSidTags = (shastraidTags*)malloc(sizeof(shastraidTags));
memset(pSidTags, 0, sizeof(shastraidTags));
krFrNdxs25IdTags(aiWhich, pSidTags);

I* here make sure I myself am the first tag on the list *I
i = getSidTagindexinSidTags(pSidTag, pSidTags);
if (i == -1) { I* not in this *I

addSidTag2SidTags(pSidTag, pSidTags);
i = getSidTagindexinSidTags(pSidTag, pSidTags);

}
if (i > 0) { I* exchange first with this *I

}

pSidTags->shastraidTags_val[i] = pSidTags->shastraidTags_val[0];
pSidTags->shastraidTags_val[0] = pFrontSid->lSIDTag;

lSidTag = mplexGetUniqueid();
if(collOptionState.iForceJoinOpt == CollabOpt_FORCEJOIN){

if(collAutoinitiateReq(pHostKernel, pSidTags, collPermissions,
lSidTag) == -1){

collabUtilPopupMessage("collAutoinitiateReq() Error!\n");
return;

}
}
else{

}

if(collinitiateReq(pHostKernel, pSidTags, collPermissions,
lSidTag) == -1){

collabUtilPopupMessage("collinitiateReq() Error!\n");
return;

}

if(pSidTags->shastraidTags_len == 1){
return;

}
if((pCommCD = getCollabCommData(lSidTag, pFrontSid->lSIDTag,

ShaComm_INITIATE)) ==NULL){
pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;

7/5/11 11 :51 AM

Page 8 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1484

collabCntl.c

}

pCommCD->remSidTag = lSidTag;
pCommCD->smSidTag = lSidTag;
pCommCD->pSidTags = pSidTags;
pCommCD->fShowList = True;
pCommCD->iCommMode = ShaComm_INVITE;
setupCollabinviteCommDialog(pCommCD);
setCollabCommData(lSidTag, pFrontSid->lSIDTag,

ShaComm_INITIATE, pCommCD);
}
defaultDialogPopup(pCommCD->pDialogCD);

void
collabDeleteinvitePanelOprn(smSidTag)

shastraidTag smSidTag;
{

}

shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,
ShaComm INVITE);

if(pCommCD !=NULL){

}

freeCollabCommData(smSidTag, pFrontSid->lSIDTag, ShaComm_INVITE);
free (pCommCD) ;

I*
* Function
*I

void
collabSetLeaderOprn(sidTag, smSidTag, lidTag)

shastraidTag sidTag;

{

shastraidTag smSidTag;
unsigned long lidTag;

shaCommCntlData *PCommCD;

if(sidTag != pFrontSid->lSIDTag){
fprintf(stderr,"collabSetLeaderOprn()-> not for me!!\n");

}
if(lidTag == 0){

return; /*nothing needs to happen*/
}
pCommCD = getCollabCommData(lidTag, sidTag, ShaComm INITIATE);
if(pCommCD !=NULL){

freeCollabCommData(lidTag, sidTag, ShaComm_INITIATE);
pCommCD->smSidTag = smSidTag;
pCommCD->remSidTag = smSidTag;

7/5/11 11 :51 AM

setCollabCommData(smSidTag, sidTag, ShaComm_INVITE, pCommCD);
shastraCommAppendText(pCommCD, "\nThis Front is the Group Leader!\n");

}
else{

collabUtilPopupMessage("This Front is the Group Leader!\n");

Page 9 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1485

collabCntl.c

}

}
setCollabFrontPermsOprn(smSidTag);

I*
* Function
*I

void
collabinviteOprn(aiWhich)

int *aiWhich;
{

int i, n;
shastraidTags *PSidTags;
shastraid *PSesmSid;
shaCommCntlData *PCommCD;
unsigned long myPerms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Current Session!\n");
return;

myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Invite!\n");
return;

pSidTags = (shastraidTags*)malloc(sizeof(shastraidTags));
memset(pSidTags, 0, sizeof(shastraidTags));
krFrNdxs25IdTags(aiWhich, pSidTags);

if(pSidTags->shastraidTags_len == 0){

}

free(pSidTags);
return;

if(collOptionState.iForceJoinOpt == CollabOpt_FORCEJOIN){ }
else{ }

for(i=0, n = 0;i <pSidTags->shastraidTags_len;i++){
if(!frontisinCollSession(pSidTags->shastraidTags_val[i],

currCollSidTag)){
n++;
if(collinviteJoinReq(pHostKernel, &currCollSidTag,

&pSidTags->shastraidTags_val[i],
&pFrontSid->lSIDTag,
(shastraidTag*)&collPermissions) == -1){

collabUtilPopupMessage("collinviteJoinReq() Error!\n");
return;

}
}
else{

collabUtilPopupMessage("System Already In Session!\n");

7/5/11 11 :51 AM

Page 10 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1486

collabCntl.c

}

}
}
if(n == 0){

return;
}
if((pCommCD = getCollabCommData(currCollSidTag, pFrontSid->lSIDTag,

ShaComm_INVITE)) ==NULL){
pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = currCollSidTag;
pCommCD->smSidTag = currCollSidTag;
pCommCD->pSidTags = pSidTags;
pCommCD->fShowList = True;
pCommCD->iCommMode = ShaComm_INVITE;
setupCollabinviteCommDialog(pCommCD);
setCollabCommData(currCollSidTag, pFrontSid->lSIDTag,

ShaComm_INVITE, pCommCD);
}
defaultDialogPopup(pCommCD->pDialogCD);

I*
* Function
*I

void
collabSetinviteStatusOprn(smSidTag, toSidTag, lStatus)

shastraidTag smSidTag;

{

}

shastraidTag toSidTag;
unsigned long lStatus;

shastraid *PSesmSid;
shastraid *PRemSid;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Inviter Session!\n");
return;

pRemSid = krFrSidTag2Sid(toSidTag);
if(pRemSid ==NULL){

}

collabUtilPopupMessage("Invalid Inviter Session Leader!\n");
return;

if(collinviteStatusReq(pHostKernel, &smSidTag, &toSidTag,
&pFrontSid->lSIDTag,

}

lStatus) == -1){
collabUtilPopupMessage("collinviteStatusReq() Error!\n");
return;

7/5/11 11 :51 AM

Page 11 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1487

collabCntl.c

* Function
*I

void
collabJoinOprn(smSidTag, permTag)

{

}

shastraidTag smSidTag;
shastraidTag permTag;

shastraid *PSid;
shastraidTag *PSidTag;
shaCmdData *PCmdData = NULL;

pSidTag = & pFrontSid->lSIDTag;
pSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSid == NULL){

}

collabUtilPopupMessage("Invalid Session!\n");
return;

if (frontisinCollSession(*pSidTag, smSidTag)) {
collabUtilPopupMessage("Already In Session!\n");
return;

}
I* disallow multiple connexns to same sesMgr *I
if(collabControlDataFunc){

(*collabControlDataFunc)(shastraNameToService(pSid->nmApplicn), &
pCmdData);

if(pCmdData == NULL){
collabUtilPopupMessage("Invalid Control Data!\n");
return;

}
}
else{

}

collabUtilPopupMessage("Can't Obtain Control Data!\n");
return;

if(collJoinReq((hostData*)NULL, pSid, &permTag, pCmdData) -1){
collabUti lPopupMessage("collJoinReq () Error! \n");
return;

}

void
collabinviteAcceptOprn(smSidTag, ldrSidTag)

shastraidTag smSidTag;

{
shastraidTag ldrSidTag;

unsigned long lStatus = 1;
shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, ldrSidTag, ShaComm INVRESP);
if(pCommCD !=NULL){

collabSetinviteStatusOprn(smSidTag, ldrSidTag, lStatus);
collabJoinOprn(smSidTag, pCommCD->lPerms);
freeCollabCommData(smSidTag, ldrSidTag, ShaComm_INVRESP);

7/5/11 11 :51 AM

Page 12 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1488

collabCntl.c

}

free (pCommCD) ;
}
else{

collabJoinOprn(smSidTag, 0xff);
}

void
collabinviteDeclineOprn(smSidTag, ldrSidTag)

shastraidTag smSidTag;

{

}

shastraidTag ldrSidTag;

unsigned long lStatus = 0;
shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, ldrSidTag, ShaComm_INVRESP);
if(pCommCD !=NULL){

}

collabSetinviteStatusOprn(smSidTag, ldrSidTag, lStatus);
freeCollabCommData(smSidTag, ldrSidTag, ShaComm_INVRESP);
free (pCommCD) ;

I*
* Function
*I

void
collabinvitePromptOprn(smSidTag, leaderSidTag, frontPerms)

shastraidTag smSidTag, leaderSidTag;

{
unsigned long frontPerms;

shastraidTags *PSidTags;
shastraid *PSesmSid, *PRemSid;
shaCommCntlData *PCommCD;
unsigned long lRespStatus;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Invite Session!\n");
return;

pRemSid = krFrSidTag25Id(leaderSidTag);
if(pRemSid ==NULL){

}

collabUtilPopupMessage("Invalid Session Leader!\n");
return;

if(frontisinCollSession(pFrontSid->lSIDTag, smSidTag)){
collabUtilPopupMessage("System Already In Session!\n");
return;

}
pSidTags = getSesmFrontSidTags(&smSidTag);

7/5/11 11 :51 AM

Page 13 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1489

collabCntl.c 7/5/11 11 :51 AM

}

switch(collOptionState.iinviteOpt){
case CollabOpt_ACCEPT:

collabUtilPopupMessage("Automatically Accepted Session Invitation!\n");
lRespStatus = 1;
if(collinviteStatusReq(pHostKernel, &smSidTag, &leaderSidTag,

&pFrontSid->lSIDTag, lRespStatus) == -1){
collabUtilPopupMessage("collinviteStatusReq() Error!\n");
return;

}
collabJoinOprn(smSidTag, frontPerms);
return;
break;

case CollabOpt_DECLINE:
collabUtilPopupMessage("Automatically Declined Session Invitation!\n");
lRespStatus = 0;
if(collinviteStatusReq(pHostKernel, &smSidTag, &leaderSidTag,

&pFrontSid->lSIDTag, lRespStatus) == -1){
collabUtilPopupMessage("collinviteStatusReq() Error!\n");
return;

}
return;
break;

default:
break;

}

if((pCommCD = getCollabCommData(smSidTag, leaderSidTag, ShaComm_INVRESP))

}

== NULL){
pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = leaderSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->lPerms = frontPerms;
pCommCD->pSidTags = pSidTags;
pCommCD->fShowList = True;
pCommCD->iCommMode = ShaComm_INVRESP;
setupCollabinvRespCommDialog(pCommCD);
setCollabCommData(smSidTag, leaderSidTag, ShaComm_INVRESP, pCommCD);

/*got another invite for same conference .. ignore??*/
defaultDialogPopup(pCommCD->pDialogCD);

I*
* Function
*I

void
collabShowinviteStatusOprn(smSidTag, toSidTag, sidTag, lStatus)

shastraidTag smSidTag,toSidTag,sidTag;
unsigned long lStatus;

{
char msgBuf[256];

Page 14 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1490

collabCntl.c 7/5/11 11 :51 AM

}

char *SName;
shaCommCntlData *PCommCD;

sName = mapSidTag2Str(&sidTag, PSIDNMHOST I PSIDNMAPPL I PSIDNMUSER);

if (lStatus) {
sprintf(msgBuf,"(%s)\n has accepted invitation\n", sName);

}
else{

sprintf(msgBuf,"(%s)\n has declined invitation\n", sName);
}
free (sName);
if((pCommCD = getCollabCommData(smSidTag, toSidTag, ShaComm_INVITE))

!= NULL){
shastraCommAppendText(pCommCD, msgBuf);

}
else{

collabUtilPopupMessage(msgBuf);
}

void
collabSendinviteMessageOprn(smSidTag, pToSidTags, msg)

shastraidTag smSidTag;

{

}

shastraidTags *PToSidTags;
char *msg;

shastraidTag toSidTag;
shastraid *PSesmSid;
int i;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

f*unique-id not yet clobbered*/
collabUtilPopupMessage("Session not Started .. Please Retry!\n");
return;

if((pToSidTags ==NULL) I I (pToSidTags->shastraidTags_len == 0)){
collabUtilPopupMessage("Null Recipients for Invite Message!\n");
return;

}
for(i=0; i< pToSidTags->shastraidTags_len;i++){

}

toSidTag = pToSidTags->shastraidTags_val[i];
if(toSidTag != pFrontSid->lSIDTag){

if(collinviteMsgReq(pHostKernel, &smSidTag, &toSidTag,
&pFrontSid->lSIDTag, msg) == -1){

collabUtilPopupMessage("collinviteMsgReq() Error!\n");
return;

}
}

Page 15 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1491

collabCntl.c 7/5/11 11 :51 AM

void
collabSendUniinviteMessageOprn(smSidTag, toSidTag, msg)

shastraidTag smSidTag;

{

}

shastraidTag toSidTag;
char *msg;

shastraid *PSesmSid;
int i;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

f*unique-id not yet clobbered*/
collabUtilPopupMessage("Session not Started .. Please Retry!\n");
return;

if(toSidTag != pFrontSid->lSIDTag){
if(collinviteMsgReq(pHostKernel, &smSidTag, &toSidTag,

&pFrontSid->lSIDTag, msg) == -1){
collabUtilPopupMessage("collinviteMsgReq() Error!\n");
return;

}
}

void
collabRecvdinviteMessageOprn(smSidTag, fromSidTag, msg)

shastraidTag smSidTag;
shastraidTag fromSidTag;
char *msg;

{
shaCommCntlData *PCommCD;

if((pCommCD = getCollabCommData(smSidTag, fromSidTag, ShaComm_INVRESP))
!= NULL){

}
}

/*should've been prompted, so if no panel, commited*/
shastraCommDisplayText(pCommCD, msg);

void
collabSendinvRespMessageOprn(smSidTag, toSidTag, msg)

shastraidTag smSidTag;

{

shastraidTag toSidTag;
char *msg;

shastraid *PSesmSid;
shastraid *PRemSid;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Inviter Session!\n");
return;

Page 16 of 38
Petitioner Microsoft Corporation, Ex. 1002, p. 1492

collabCntl.c

}

pRemSid = krFrSidTag2Sid(toSidTag);
if(pRemSid ==NULL){

}

collabUtilPopupMessage("Invalid Inviter Session Leader!\n");
return;

if(collinvRespMsgReq(pHostKernel, &smSidTag, &toSidTag,
&pFrontSid->lSIDTag, msg) == -1){

collabUtilPopupMessage("collinvRespMsgReq() Error!\n");
return;

}

void
collabRecvdinvRespMessageOprn(smSidTag, fromSidTag, msg)

shastraidTag smSidTag;

{

shastraidTag fromSidTag;
char *msg;

shaCommCntlData *PCommCD;

/*many such messages may come from the invitees FIX*/
if((pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,

ShaComm_INVITE)) ! = NULL) {

}

/*also check if i'm in the SidTag list, else ignore*/
shastraCommAppendText(pCommCD, msg);

#ifdef WANTSEPARATEPANELS

7/5/11 11 :51 AM

if((pCommCD = getCollabCommData(smSidTag, fromSidTag, ShaComm_UNIINVRESP)
)

== NULL){
pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = fromSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->iCommMode = ShaComm_UNIINVRESP;
setupCollabinviteCommDialog(pCommCD);
setCollabCommData(smSidTag, fromSidTag, ShaComm_UNIINVRESP, pCommCD);

}
shastraCommDisplayText(pCommCD, msg);

#endif I* WANTSEPARATEPANELS *I
}

I*
* Function
*I

void
collabAskJoinOprn(i)

int i;
{

shastraidTag smSidTag;
shaCommCntlData *PCommCD;
shastraid *PSesmSid;

Page 17 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1493

collabCntl.c

}

if ((i < 0) I I (i >= shastraSesmids.shastraids_len)){
return;

}
smSidTag = shastraSesmids.shastraids_val[i]->lSIDTag;
if(frontisinCollSession(pFrontSid->lSIDTag, smSidTag)){

}

collabUtilPopupMessage("System Already In Session!\n");
return;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Ask-Join Session!\n");
return;

if(collAskJoinReq(pHostKernel, &smSidTag,
&pFrontSid->lSIDTag) == -1){

collabUtilPopupMessage("collAskJoinReq() Error!\n");
return;

}

if((pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,
ShaComm_ASKJOIN)) ==NULL){

pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = smSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->iCommMode = ShaComm_ASKJOIN;
setupCollabAskJoinCommDialog(pCommCD);
setCollabCommData(smSidTag, pFrontSid->lSIDTag,

ShaComm_ASKJOIN, pCommCD);
}
defaultDialogPopup(pCommCD->pDialogCD);

void
collabDeleteAskJoinPanelOprn(smSidTag)

shastraidTag smSidTag;
{

}

shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,
ShaComm ASKJOIN);

if(pCommCD !=NULL){

}

freeCollabCommData(smSidTag, pFrontSid->lSIDTag, ShaComm_ASKJOIN);
free (pCommCD) ;

I*
* Function
*I

7/5/11 11 :51 AM

Page 18 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1494

collabCntl.c

void
collabTellJoinOprn(smSidTag, sidTag)

{

}

shastraidTag smSidTag;
shastraidTag sidTag;

if (frontisinCollSession(sidTag, smSidTag)) {
collabUtilPopupMessage("Already in this Session!\n");
return;

}
if(collTellJoinReq(pHostKernel, &smSidTag, &sidTag,

(shastraidTag *) & collPermissions) == -1){
collabUtilPopupMessage("collTellJoinReq() Error!\n");
return;

}

I*
* Function
*I

void
collabAskJoinPromptOprn(smSidTag, fromSidTag)

shastraidTag smSidTag, fromSidTag;
{

shastraidTags *PSidTags;
shastraid *PSesmSid, *PRemSid;
shaCommCntlData *PCommCD;
unsigned long lRespStatus;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Ask-Join Session!\n");
return;

pRemSid = krFrSidTag25Id(fromSidTag);
if(pRemSid ==NULL){

}

collabUtilPopupMessage("Invalid Join Requestor!\n");
return;

if(frontisinCollSession(fromSidTag, smSidTag)){
collabUtilPopupMessage("Requestor Already in Session!\n");
return;

}

pSidTags = getSesmFrontSidTags(&smSidTag);

switch(collOptionState.iAskJoinOpt){
case CollabOpt_ALLOW:

collabUtilPopupMessage("Automatically Allowed Session Join!\n");
lRespStatus = 1;
if(collAskJnStatusReq(pHostKernel, &smSidTag, &fromSidTag,

&pFrontSid->lSIDTag, lRespStatus) == -1){
collabUtilPopupMessage("collAskJnStatusReq() Error!\n");
return;

7/5/11 11 :51 AM

Page 19 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1495

collabCntl.c 7/5/11 11 :51 AM

}
collabTellJoinOprn(smSidTag, fromSidTag);
return;
break;

case CollabOpt_DENY:
collabUtilPopupMessage("Automatically Denied Session Join!\n");
lRespStatus = 0;
if(collAskJnStatusReq(pHostKernel, &smSidTag, &fromSidTag,

&pFrontSid->lSIDTag, lRespStatus) == -1){
collabUtilPopupMessage("collAskJnStatusReq() Error!\n");
return;

}
return;
break;

default:
break;

}

if((pCommCD = getCollabCommData(smSidTag, fromSidTag, ShaComm_ASKJNRESP))
== NULL){

pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = fromSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->iCommMode = ShaComm_ASKJNRESP;
setupCollabAskJnRespCommDialog(pCommCD);
setCollabCommData(smSidTag, fromSidTag, ShaComm_ASKJNRESP, pCommCD);

}

}
/*got another askjoin from same tool for same conference .. ignore??*/
defaultDialogPopup(pCommCD->pDialogCD);

I*
* Function
*I

void
collabSetAskJoinStatusOprn(smSidTag, toSidTag, lStatus)

shastraidTag smSidTag;

{

shastraidTag toSidTag;
unsigned long lStatus;

shastraid *PSesmSid;
shastraid *PRemSid;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Join Session!\n");
return;

pRemSid = krFrSidTag2Sid(toSidTag);
if(pRemSid ==NULL){

collabUtilPopupMessage("Invalid Join Requester!\n");

Page 20 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1496

collabCntl.c

}

return;
}
if(collAskJnStatusReq(pHostKernel, &smSidTag, &toSidTag,

&pFrontSid->lSIDTag, lStatus) == -1){
collabUtilPopupMessage("collAskJnStatusReq() Error!\n");
return;

}

void
collabAskJoinAllowOprn(smSidTag, toSidTag)

shastraidTag smSidTag;

{

}

shastraidTag toSidTag;

unsigned long lStatus = 1;
shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, toSidTag, ShaComm_ASKJNRESP);
if(pCommCD !=NULL){

}

collabSetAskJoinStatusOprn(smSidTag, toSidTag, lStatus);
freeCollabCommData(smSidTag, toSidTag, ShaComm_ASKJNRESP);
free (pCommCD) ;

collabTellJoinOprn(smSidTag, toSidTag);

void
collabAskJoinDenyOprn(smSidTag, toSidTag)

shastraidTag smSidTag;

{

}

shastraidTag toSidTag;

unsigned long lStatus = 0;
shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, toSidTag, ShaComm_ASKJNRESP);
if(pCommCD !=NULL){

}

collabSetAskJoinStatusOprn(smSidTag, toSidTag, lStatus);
freeCollabCommData(smSidTag, toSidTag, ShaComm_ASKJNRESP);
free (pCommCD) ;

I*
* Function
*I

void
collabShowAskJoinStatusOprn(smSidTag, toSidTag, sidTag, lStatus)

shastraidTag smSidTag,toSidTag,sidTag;

{
unsigned long lStatus;

char msgBuf[256];
char *SName;
shaCommCntlData *PCommCD;

7/5/11 11 :51 AM

Page 21 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1497

collabCntl.c 7/5/11 11 :51 AM

}

sName = mapSidTag2Str(&sidTag, PSIDNMHOST I PSIDNMAPPL I PSIDNMUSER);

if (lStatus) {
sprintf(msgBuf,"(%s)\n has allowed participation\n", sName);

}
else{

sprintf(msgBuf,"(%s)\n has denied participation\n", sName);
}
free (sName);
if((pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,

ShaComm_ASKJOIN)) ! = NULL) {
shastraCommAppendText(pCommCD, msgBuf);

}
else{

collabUtilPopupMessage(msgBuf);
}

void
collabSendAskJoinMessageOprn(smSidTag, msg)

shastraidTag smSidTag;

{

}

char *msg;

shastraid *PSesmSid;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Join Session!\n");
return;

if(collAskJoinMsgReq(pHostKernel, &smSidTag,
&pFrontSid->lSIDTag, msg) == -1){

collabUtilPopupMessage("collAskJoinMsgReq() Error!\n");
return;

}

void
collabRecvdAskJoinMessageOprn(smSidTag, fromSidTag, msg)

shastraidTag smSidTag;
shastraidTag fromSidTag;
char *msg;

{
shaCommCntlData *PCommCD;

if((pCommCD = getCollabCommData(smSidTag, fromSidTag, ShaComm_ASKJNRESP))
!= NULL){

}

/*should've been prompted, so if no panel, commited*/
shastraCommDisplayText(pCommCD, msg);

else if(fromSidTag == pFrontSid->lSIDTag){ /*joined empty collab*/
pCommCD = getCollabCommData(smSidTag, fromSidTag, ShaComm ASKJOIN);

Page 22 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1498

collabCntl.c 7/5/11 11 :51 AM

if(pCommCD != NULL){
shastraCommDisplayText(pCommCD, msg);

/*should we terminate*/
}
else{

collabUtilPopupMessage("You're the Session Leader!\n");
}

}
}

void
collabSendAskJnRespMessageOprn(smSidTag, toSidTag, msg)

shastraidTag smSidTag;

{

}

shastraidTag toSidTag;
char *msg;

shastraid *PSesmSid;
shastraid *PRemSid;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

}

collabUtilPopupMessage("Invalid Join Session!\n");
return;

pRemSid = krFrSidTag2Sid(toSidTag);
if(pRemSid ==NULL){

}

collabUtilPopupMessage("Invalid Requestor for Join!\n");
return;

if(collAskJnRespMsgReq(pHostKernel, &smSidTag, &toSidTag,
&pFrontSid->lSIDTag, msg) == -1){

collabUtilPopupMessage("collAskJnRespMsgReq() Error!\n");
return;

}

void
collabRecvdAskJnRespMessageOprn(smSidTag, fromSidTag, msg)

shastraidTag smSidTag;

{

}

shastraidTag fromSidTag;
char *msg;

shaCommCntlData *PCommCD;

if((pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,
ShaComm_ASKJOIN)) ! = NULL) {

shastraCommDisplayText(pCommCD, msg);
}

I*
* Function
*I

Page 23 of 38
Petitioner Microsoft Corporation, Ex. 1002, p. 1499

collabCntl.c

void
collabRemoveOprn(i)

int i;
{

}

shast raid
shastraidTag
shastraidTags
unsigned long

*PSesmSid;
*PSidTag;
*PSidTags;

myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Remove!\n");
return;

pSidTags = getSesmFrontSidTags(&currCollSidTag);
if ((i < 0) I I (i >= pSidTags->shastraidTags_len)) {

collabUtilPopupMessage("System not in Current Session!\n");
return;

}
pSidTag = &pSidTags->shastraidTags_val[i];

if(collRemoveReq(pHostShaCurrColl, pSidTag) == -1){

}

collabUtilPopupMessage("collRemoveReq() Error!\n");
return;

I*
* Function
*I

void
collabCommConnectOprn(i)

int i;
{

shastraid *PSesmSid;
shastraid *PRemSid;
shastraidTag lSidTag;
shastraidTags *PSidTags;
shaCommCntlData *PCommCD;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
pSidTags = getSesmFrontSidTags(&currCollSidTag);
if ((i < 0) I I (i >= pSidTags->shastraidTags_len)) {

collabUtilPopupMessage("System not in Current Session!\n");

7/5/11 11 :51 AM

Page 24 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1500

collabCntl.c

return;
}
lSidTag = pSidTags->shastraidTags_val[i];

if(lSidTag == pFrontSid->lSIDTag){
/*wasteful, so disallow*/

}

7/5/11 11 :51 AM

if((pCommCD = getCollabCommData(currCollSidTag, lSidTag, ShaComm_COLLAB))
== NULL){

pRemSid = krFrSidTag2Sid(lSidTag);
if(pRemSid == NULL){

}

collabUtilPopupMessage("Couldn't Locate Remote System!\n");
return;

pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = lSidTag;
pCommCD->smSidTag = currCollSidTag;
pCommCD->iCommMode = ShaComm_COLLAB;
setupCollabCommDialog(pCommCD);
setCollabCommData(currCollSidTag, lSidTag, ShaComm_COLLAB, pCommCD);
collabCommSendMessageOprn(currCollSidTag, pRemSid->lSIDTag, "");
/*force remote popup*/

}

}
defaultDialogPopup(pCommCD->pDialogCD);

void
collabCommSendMessageOprn(smSidTag, lSidTag, msg)

shastraidTag smSidTag;

{

}

shastraidTag lSidTag;
char *msg;

if(collCommMsgTextReq(pHostShaCurrColl, &smSidTag, &lSidTag,
&pFrontSid->lSIDTag, msg) == -1){

collabUtilPopupMessage("collCommMsgTextReq() Error!\n");
return;

}

void
collabCommRecvdMessageOprn(smSidTag, lSidTag, msg)

shastraidTag smSidTag;

{

shastraidTag lSidTag;
char *msg;

shastraid *PSesmSid;
shastraid *PRemSid;
shaCommCntlData *PCommCD;

pSesmSid = getSidByTaginSids(&smSidTag, &shastraSesmids);
if(pSesmSid == NULL){

Page 25 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1501

collabCntl.c

}

return;
}
if((pCommCD = getCollabCommData(smSidTag, lSidTag, ShaComm_COLLAB))

== NULL){

}

pRemSid = krFrSidTag2Sid(lSidTag);
if(pRemSid == NULL){

}

collabUtilPopupMessage("Couldn't Locate Remote System!\n");
return;

pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = lSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->iCommMode = ShaComm_COLLAB;
setupCollabCommDialog(pCommCD);
setCollabCommData(smSidTag, lSidTag, ShaComm_COLLAB, pCommCD);

shastraCommDisplayText(pCommCD, msg);

void
collabCommDisconnectOprn(smSidTag, remSidTag)

shastraidTag smSidTag;

{

}

shastraidTag remSidTag;

shaCommCntlData *PCommCD;

pCommCD = getCollabCommData(smSidTag, remSidTag, ShaComm_COLLAB);
if(pCommCD !=NULL){

}

freeCollabCommData(smSidTag, remSidTag, ShaComm_COLLAB);
free (pCommCD) ;

void
collabOperationsOprn(pMgrCD, fUp)

mgrCntlData *PMgrCD;

{

}

int fUp;

if(pHostShaCurrColl ==NULL){
collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
if (co llabOpe rata rFunc ! = NULL) {

(*collabOperatorFunc) (pHostShaCurrColl);
}

I*
* Function
*I

7/5/11 11 :51 AM

Page 26 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1502

collabCntl.c

void
collabSetPermOprn(iPerm, fSet)

CollabPermission iPerm;
int fSet;

{

}

switch(iPerm){
case CollabPerm_ACCESS:

if(fSet){
collPermissions I= SHASTRA_PERM_ACCESS;

}
else{

collPermissions &= ~SHASTRA_PERM_ACCESS;
}
break;

case CollabPerm BROWSE:
if(fSet){

collPermissions I= SHASTRA_PERM_BROWSE;
}
else{

collPermissions &= ~SHASTRA_PERM_BROWSE;
}
break;

case CollabPerm_MODIFY:
if(fSet){

collPermissions I= SHASTRA_PERM_MODIFY;
}
else{

collPermissions &= ~SHASTRA_PERM_MODIFY;
}
break;

case CollabPerm GRANT:
if(fSet){

collPermissions I= SHASTRA_PERM_GRANT;
}
else{

collPermissions &= ~SHASTRA_PERM_GRANT;
}
break;

case CollabPerm COPY:
if(fSet){

}

collPermissions I= SHASTRA_PERM_COPY;
}
else{

collPermissions &= ~SHASTRA_PERM_COPY;
}
break;

I*
* Function
*I

void

7/5/11 11 :51 AM

Page 27 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1503

collabCntl.c

collabSetixnModeOprn(iMode)
CollabixnMode iMode;

{

}

shast raid
unsigned long

*PSesmSid;
myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Set Mode!\n");
return;

if(iMode == Collabixn_REGULATED){
collixnMode = SHASTRA_MODE_REGUL;

}
else{

collixnMode = SHASTRA_MODE_UNREG;
}
if(collSetixnModeReq(pHostShaCurrColl, collixnMode) == -1){

collabUtilPopupMessage("collSetixnModeReq() Error!\n");
return;

}

I*
* Function
*I

void
collabPermSetOprn(aiWhich)

int *aiWhich;
{

shast raid
shastraidTag
shastraidTags
int i;
unsigned long

*PSesmSid;
*PSidTag;
*PSidTags;

myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Set Permissions!\n");
return;

pSidTags = getSesmFrontSidTags(&currCollSidTag);
for(i = 0; i < pSidTags->shastraidTags_len; i++){

7/5/11 11 :51 AM

Page 28 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1504

collabCntl.c 7/5/11 11 :51 AM

}
}

if(aiWhich [i]){
pSidTag = &pSidTags->shastraidTags_val[i];
if(collSetPermsReq(pHostShaCurrColl, pSidTag,

collPermissions) == -1){
collabUtilPopupMessage("collSetPermsReq() Error!\n");
return;

}
}

I*
* Function
*I

void
collabPermCheckOprn(iWhich)

int iWhich;
{

}

shastraid *PSesmSid;
shastraidTag *PSidTag;
shastraidTags *PSidTags;
unsigned long perms;
char msgBuf[256], *SName, *SPerms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
pSidTags = getSesmFrontSidTags(&currCollSidTag);
if ((iWhich < 0) 11 (iWhich >= pSidTags->shastraidTags_len)) {

collabUtilPopupMessage("System not in Current Session!\n");
return;

}
pSidTag = &pSidTags->shastraidTags_val[iWhich];
perms= getSesmFrontPerms(&currCollSidTag, pSidTag);

sName = mapSidTag2Str(pSidTag, PSIDNMHOST I PSIDNMAPPL I PSIDNMUSER);
sPerms= perms2Str(perms);
sprintf(msgBuf,"%s has %s\n", sName, sPerms);
free(sName); free(sPerms);
collabUtilPopupMessage(msgBuf);

if(*pSidTag == pFrontSid->lSIDTag){
setCollabFrontPermsOprn(currCollSidTag);

}

I*
* Function
*I

static textDlgCntlData *PCollabTextDCD;
void

Page 29 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1505

collabCntl.c 7/5/11 11 :51 AM

collabDescribeOprn(iWhich)
int iWhich;

{

}

shastraid *PSesmSid, *PSid;
shastraidTag *PSidTag;
shastraidTags *PSidTags;
char *Str, *SPerms, msgBuf[128];
unsigned long perms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
pSidTags = getSesmFrontSidTags(&currCollSidTag);
if ((iWhich < 0) 11 (iWhich >= pSidTags->shastraidTags_len)) {

collabUtilPopupMessage("System not in Current Session!\n");
return;

}
pSidTag = &pSidTags->shastraidTags_val[iWhich];
pSid = mapSidTag2Sid(pSidTag);
if(pSid == NULL){

}

collabUtilPopupMessage("Invalid System!\n");
return;

if(pCollabTextDCD ==NULL){

}

pCollabTextDCD = (textDlgCntlData*)malloc(sizeof(textDlgCntlData));
memset(pCollabTextDCD, 0, sizeof(textDlgCntlData));
pCollabTextDCD->sName = "Shastra Description";
pCollabTextDCD->fnDestroyCallback = collabShowTextDestroyOprn;
pCollabTextDCD->fBehave = DIALOG_AUTOLOWER;
pCollabTextDCD->iDelay = 60000;
setupTextDialog(pFrontAppData->wgTop, pCollabTextDCD, NULL);

str = pSid2StrDetail(pSid, 0);
textDialogAppendText(pCollabTextDCD, str);
free (s t r) ;
perms= getSesmFrontPerms(&currCollSidTag, pSidTag);
sPerms= perms2Str(perms);
sprintf(msgBuf,"Permissions : %s\n", sPerms);
free(sPerms);
textDialogAppendText(pCollabTextDCD, msgBuf);

void
collabShowTextDestroyOprn(pTextCD)

textDlgCntlData *PTextCD;
{

if(pTextCD != pCollabTextDCD){
return;

}
if(pCollabTextDCD !=NULL){

Page 30 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1506

collabCntl.c

}
}

free(pCollabTextDCD);
pCollabTextDCD =NULL;

I*
* Function
*I

void
collabFloorSetOprn(iWhich)

int iWhich;
{

}

shast raid
shastraidTag
shastraidTags
unsigned long

*PSesmSid;
*PSidTag;
*PSidTags;

myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Set Floor!\n");
return;

pSidTags = getSesmFrontSidTags(&currCollSidTag);
if ((iWhich < 0) 11 (iWhich >= pSidTags->shastraidTags_len)) {

collabUtilPopupMessage("System not in Current Session!\n");
return;

}
pSidTag = &pSidTags->shastraidTags_val[iWhich];
if(collTellTokenReq(pHostShaCurrColl, pSidTag) == -1){

}

collabUtilPopupMessage("collTellTokenReq() Error!\n");
return;

I*
* Function
*I

void
collabSetSesFormatOprn(iMode)

CollabFmtMode iMode;
{

shast raid
unsigned long

*PSesmSid;
myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

7/5/11 11 :51 AM

Page 31 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1507

collabCntl.c

}

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

}

collabUtilPopupMessage("No Capability to Set Format!\n");
return;

if(iMode == Collabfmt_FORMAL){
collFormat = SHASTRA_FORMAT_FORMAL;

}
else{

collFormat = SHASTRA_FORMAT_INFORMAL;
}
if(collSetSesFormatReq(pHostShaCurrColl, collFormat) == -1){

collabUtilPopupMessage("collSetSesFormatReq() Error!\n");
return;

}

I*
* Function
*I

void
collabSetFloorModeOprn(iMode)

CollabFlrMode iMode;
{

shast raid
unsigned long

*PSesmSid;
myPe rms;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
myPerms = getSesmFrontPerms(&currCollSidTag, & pFrontSid->lSIDTag);
if (!(myPerms & SHASTRA_PERM_GRANT)) {

collabUtilPopupMessage("No Capability to Set Format!\n");
return;

}
switch(iMode){
case CollabFlr_MODERATED:

collFloorMode = SHASTRA_FLOOR_MODERATED;
break;

case CollabFlr_VOLUNTARY:
collFloorMode = SHASTRA_FLOOR_VOLUNTARY;
break;

case CollabFlr_CYCLIC:
collFloorMode = SHASTRA_FLOOR_CYCLIC;
break;

case CollabFlr_PREEMPTIVE:
collFloorMode = SHASTRA_FLOOR_PREEMPTIVE;
break;

case CollabFlr_HANDOFF:
collFloorMode = SHASTRA_FLOOR_HANDOFF;

7/5/11 11 :51 AM

Page 32 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1508

collabCntl.c

}

break;
case CollabFlr QUEUED:

collFloorMode = SHASTRA FLOOR QUEUED; - -
break;

default:
return;

}
if(collSetFloorModeReq(pHostShaCurrColl, collFloorMode) == -1){

collabUtilPopupMessage("collSetFloorModeReq() Error!\n");
return;

}

I*
* Function
*I

void
collabFreeFloorOprn(fSet)

int fSet;
{

}

shast raid *PSesmSid;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
if(sidTagToken == pFrontSid->lSIDTag){

if(collFreeTokenReq(pHostShaCurrColl) == -1){
collabUtilPopupMessage("collFreeTokenReq() Error!\n");
return;

}
}
fFreeFloor = fSet;

I*
* Function
*I

void
collabRequestFloorOprn()
{

shast raid *PSesmSid;

pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
if(sidTagToken != pFrontSid->lSIDTag){

if(collGrabTokenReq(pHostShaCurrColl) == -1){
collabUtilPopupMessage("collGrabTokenReq() Error!\n");
return;

7/5/11 11 :51 AM

Page 33 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1509

collabCntl.c

}
}

}

void
collabSetinviteOption(iCollOpt)

CollabOption iCollOpt;
{

}
collOptionState.iinviteOpt = iCollOpt;

void
collabSetAskJoinOption(iCollOpt)

CollabOption iCollOpt;
{

}
collOptionState.iAskJoinOpt = iCollOpt;

void
collabSetStartOption(iCollOpt)

CollabOption iCollOpt;
{

}
collOptionState.iStartOpt = iCollOpt;

void
collabSetForceJoinOption(iCollOpt)

CollabOption iCollOpt;
{

}
collOptionState.iForceJoinOpt = iCollOpt;

void
collabSyncOprn(iCmd)

CollabCmd iCmd;
{

shast raid *PSesmSid;

if(iCmd != CollabCmd_SYNCSESSION){
pSesmSid = getSidByTaginSids(&currCollSidTag, &shastraSesmids);
if((pSesmSid ==NULL) I I (pHostShaCurrColl ==NULL)){

collabUtilPopupMessage("Invalid Current Session!\n");
return;

}
}
switch(iCmd){
case CollabCmd_SYNCSESSION:

if(getShaSesmidReq(pHostKernel) == -1){
collabUtilPopupMessage("getShaSesmidReq() Error!\n");
return;

}
break;

case CollabCmd SYNCSESSFR:

7/5/11 11 :51 AM

Page 34 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1510

collabCntl.c

}

if(getShaSesmFridReq(pHostKernel, &currCollSidTag) == -1){
collabUtilPopupMessage("getShaSesmFridReq() Error!\n");
return;

}
break;

case CollabCmd_SYNCFORMAT:
if(collGetSesFormatReq(pHostShaCurrColl) == -1){

collabUtilPopupMessage("collGetSesFormatReq() Error!\n");
return;

}
break;

case CollabCmd_SYNCIXNMODE:
if(collGetixnModeReq(pHostShaCurrColl) == -1){

collabUtilPopupMessage("collGetixnModeReq() Error!\n");
return;

}
break;

case CollabCmd_SYNCFLRMODE:
if(collGetFloorModeReq(pHostShaCurrColl) == -1){

collabUtilPopupMessage("collGetFloorModeReq() Error!\n");
return;

}
break;

case CollabCmd_SYNCFLOOR:
if(collAskTokenReq(pHostShaCurrColl) == -1){

collabUtilPopupMessage("collAskTokenReq() Error!\n");
return;

}
break;

case CollabCmd_SYNCPERMS:
if(collGetPermsReq(pHostShaCurrColl,

&pFrontSid->lSIDTag) == -1){
collabUtilPopupMessage("collGetPermsReq() Error!\n");
return;

}
break;

}

I*
* Function
*I

int
frontisinCollSession(sidTag, smSidTag)

shastraidTag sidTag;
shastraidTag smSidTag;

{
shastraidTags *PSidTags;
int iFront;

pSidTags = getSesmFrontSidTags(&smSidTag);
iFront = getSidTagindexinSidTags(&sidTag, pSidTags);
if (ifront < 0) {

7/5/11 11 :51 AM

Page 35 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1511

collabCntl.c

}

return 0;
} else {

return 1;
}

#define MAPSIZE 64
static collCommMapEntry collMap[MAPSIZE];

shaCommCntlData *
getCollabCommData(smSidTag, lSidTag, iMode)

shastraidTag smSidTag;

{

}

shastraidTag lSidTag;
ShastraCommMode iMode;

int i;
if (! smSidTag I I ! lSidTag I I ! iMode) {

return;
}
for(i=0; i < MAPSIZE;i++){

}

if((smSidTag == collMap[i] .smSidTag) &&
(lSidTag == collMap[i] .lSidTag) &&
(iMode == collMap[i] .iMode)){

return collMap[i] .pCommCD;
}

return NULL;

int
setCollabCommData(smSidTag, lSidTag, iMode, pCommCD)

shastraidTag smSidTag;

{

shastraidTag lSidTag;
ShastraCommMode iMode;
shaCommCntlData *PCommCD;

int i;
if (! smSidTag I I ! lSidTag I I ! iMode I I pCommCD

return -1;
}
for(i=0; i < MAPSIZE;i++){

if(collMap[i] .smSidTag == 0){
collMap[i] .smSidTag = smSidTag;
collMap[i] .lSidTag = lSidTag;
collMap[i] .iMode = iMode;
collMap[i] .pCommCD = pCommCD;
return i;

}

NULL) {

7/5/11 11 :51 AM

Page 36 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1512

collabCntl.c

}

}
fprintf(stderr 1 "setCollabCommData(%ld 1 %ld 1 %d)->couldn't set!\n" 1

smSidTag 1 lSidTag 1 iMode);
return -1;

int
freeCollabCommData(smSidTag 1 lSidTag 1 iMode)

shastraidTag smSidTag;

{

}

shastraidTag lSidTag;
ShastraCommMode iMode;

int i;
if (! smSidTag I I ! lSidTag I I ! iMode) {

return;
}
for(i=0; i < MAPSIZE;i++){

}

if((smSidTag == collMap[i] .smSidTag) &&
(lSidTag == collMap[i] .lSidTag) &&
(iMode == collMap[i] .iMode)){

collMap[i] .smSidTag = 0;
collMap[i] .lSidTag = 0;
collMap[i] .iMode = 0;
collMap[i] .pCommCD =NULL;
return i;

}

fprintf(stderr 1 "freeCollabCommData(%ld 1 %ld 1 %d)->couldn't free!\n" 1

smSidTag 1 lSidTag 1 iMode);
return -1;

void
collabAskJoinOprnSilent(int i)
{

shastraidTag smSidTag;
shaCommCntlData *PCommCD;
shastraid *PSesmSid;

if ((i < 0) I I (i >= shastraSesmids.shastraids_len)){
return;

}
smSidTag = shastraSesmids.shastraids_val[i]->lSIDTag;
if(frontisinCollSession(pFrontSid->lSIDTag 1 smSidTag)){

}

collabUtilPopupMessage("System Already In Session!\n");
return;

pSesmSid = getSidByTaginSids(&smSidTag 1 &shastraSesmids);
if(pSesmSid == NULL){

7/5/11 11 :51 AM

Page 37 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1513

collabCntl.c

}

}

collabUtilPopupMessage("Invalid Ask-Join Session!\n");
return;

if(collAskJoinReq(pHostKernel, &smSidTag,
&pFrontSid->lSIDTag) == -1){

collabUtilPopupMessage("collAskJoinReq() Error!\n");
return;

}

if((pCommCD = getCollabCommData(smSidTag, pFrontSid->lSIDTag,

}

ShaComm_ASKJOIN)) ==NULL){
pCommCD = (shaCommCntlData*)malloc(sizeof(shaCommCntlData));
memset(pCommCD, 0, sizeof(shaCommCntlData));
pCommCD->locSidTag = pFrontSid->lSIDTag;
pCommCD->remSidTag = smSidTag;
pCommCD->smSidTag = smSidTag;
pCommCD->iCommMode = ShaComm_ASKJOIN;
setupCollabAskJoinCommDialog(pCommCD);
setCollabCommData(smSidTag, pFrontSid->lSIDTag,

ShaComm_ASKJOIN, pCommCD);

f*defaultDialogPopup(pCommCD->pDialogCD);*/

7/5/11 11 :51 AM

Page 38 of 38

Petitioner Microsoft Corporation, Ex. 1002, p. 1514

collabCntiUI.c 7/5/11 11 :52 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* collabCntlUI.c
*I

#include <stdio.h>

#include <XmiCascadeB.h>
#include <XmiRowColumn.h>
#include <XmiToggleB.h>
#include <XmiForm.h>
#include <XmiFrame.h>
#include <XmiPushB.h>
#include <Xmllabel.h>
#include <XmiText.h>
#include <XmiSelectioB.h>
#include <XmiSeparator.h>
#include <XmiXm.h>
#include <XlliShell.h>

#include <shastraluitoolslchooseMany.h>
#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslmenu.h>
#include <shastraluitoolsltoggles.h>
#include <shastraluitoolslbuttons.h>
#include <shastraluitoolslgenui.h>
#include <shastraluitoolsldialog.h>
#include <shastraluitoolsltext.h>
#include <shastraluitoolslchoose.h>
#include <shastraluitoolslcontrolPanel.h>

Page 1 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1515

collabCntiUI.c 7/5/11 11 :52 AM

#include <shastra/shastra.h>
#include <shastra/front/front.h>
#include <shastra/front/frontP.h>
#include <shastra/front/frontState.h>
#include <shastra/front/collabCntl.h>
#include <shastra/front/collabCntlP.h>
#include <shastra/front/shastraCntlP.h>
#include <shastra/front/shastraCntl.h>

Widget createHelpPD();

static void collabOptionCB();
static void collabOperationCB();
static void collabDismissCB();
static void collabCreateBrowserCB();
static void collabShowTraceCB();
static void collabSyncCB();
static void collabDbgSendCB();
static void collabDbgCheckCB();
static void collabFreeFloorCB();
static void collabSetixnModeCB();
static void collabCmdCB();
static void collabSetSesFormatCB();
static void collabSetFloorModeCB();
static void collabFreeFloorCB();
static void collabRequestFloorCB();
static void collabFloorParamsCB();
static void chooseOneCollabCB();
static void createCollabCntlAreaCB();
static void collabinitiateCMCB();
static void collabinviteCMCB();
static void collabJoinCOCB();
static void collabRemoveCOCB();
static void collabConnectCOCB();
static void collabPermSetCMCB();
static void collabPermCheckCOCB();
static void collabDescribeCOCB();
static void collabFloorSetCOCB();
static void collabSetPermsDialogPopup();
static void collabCommDismissCB();
static void collabCommTerminateCB();
static void collabCommClearCB();
static void collabCommTextCB();
static void collabCommDismissCB();
static void collabCommTerminateCB();
static void collabinviteCommDismissCB();
static void collabinviteCommClearCB();
static void collabinviteCommTerminateCB();
static void collabinvRespCommClearCB();
static void collabinvRespCommAcceptCB(), collabinvRespCommDeclineCB();
static void collabinvRespCommTextCB();
static void collabinvRespCommAcceptCB();
static void collabinvRespCommDeclineCB();

Page 2 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1516

collabCntiUI.c 7/5/11 11 :52 AM

static void collabAskJnRespCommClearCB();
static void collabAskJnRespCommAllowCB();
static void collabAskJnRespCommDenyCB();
static void collabAskJnRespCommTextCB();
static void collabAskJnRespCommAllowCB();
static void collabAskJnRespCommDenyCB();
static void collabAskJoinCommDismissCB();
static void collabAskJoinCommClearCB();
static void collabAskJoinCommTerminateCB();
static void collabSetPermModeCB();
static void collabPermsCB();
static void collabSetPermModeCB();
static void collabSetPermsCB();
static void collabAskJoinCommTextCB();
static void collabAskJoinCommDismissCB();
static void collabAskJoinCommTerminateCB();
static Widget createCollAskJnRespCommMenuBar();
static Widget createCollinvRespCommMenuBar();
static Widget createCollCommMenuBar();
static Widget createCollAskJoinCommMenuBar();

static void
static void
static void
static void

systemGenChooseManySetup(Prot2(Widget, multiChooseCntlData*));
systemGenChooseManyCB(Prot3(Widget, XtPointer, XtPointer));
systemGenChooseOneSetup(Prot2(Widget, optChooseCntlData*));
systemGenChooseOneCB(Prot3(Widget, XtPointer, XtPointer));

static void
static void

static void
static void

collabGenChooseOneSetup(Prot2(Widget, optChooseCntlData*));
collabGenChooseOneCB(Prot3(Widget, XtPointer, XtPointer));

sesMgrGenChooseOneSetup(Prot2(Widget, optChooseCntlData*));
sesMgrGenChooseOneCB(Prot3(Widget, XtPointer, XtPointer));

static void collabFrontGenChooseOneSetup(Prot2(Widget, optChooseCntlData*))

static void
static void

collabFrontGenChooseOneCB(Prot3(Widget, XtPointer, XtPointer));
collabFrontGenChooseManySetup(Prot2(Widget, multiChooseCntlData

*)) ;
static void collabFrontGenChooseManyCB(Prot3(Widget, XtPointer, XtPointer))

chooseOne
chooseOne
chooseMany

*PCOCollab;
*PCOCollabFronts;
*PCmCollabFronts;

static chooseOne
static chooseMany
static chooseOne

*PCOSystems;
*PCmSystems;
*PCOSesMgrs;

static int fDebugTrace = 1;
static mgrCntlData *PCollabDismissData;
static textCntlData collabMsgBufCntl = {"collMsgBuffer", NULL, NULL};

Page 3 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1517

collabCntiUI.c 7/5/11 11 :52 AM

static Widget wgCollabShell;

static Widget
createCollabMenuBar(wgParent, sName, argList)

{

I*

Widget wgParent;
char *SName;
XtVarArgsList argList;

Widget wgMenuBar;
Widget wgControlPD, wgOptionPD, wgDebugPD, wgHelpPD;
Arg args[8];
int n;
static mgrCntlData cntlOperation;
static mgrCntlData collBrowser;
static menuitem controlPD[] = {

};

{"App. Operations", (XtPointer) &cntlOperation, False,
collabOperationCB},

{"Session Browser", (XtPointer)&collBrowser, False,
collabCreateBrowserCB},

{"sep", (XtPointer) NULL, False, NULL, NULL, &xmSeparatorWidgetClass},
{"Dismiss", (XtPointe r) NULL, False, co llabDismis sCB},
{NULL}

static menuitem syncPD[] = {

};

{"Sessions", (XtPointer)CollabCmd_SYNCSESSION, False, collabSyncCB},
{"Session F rants", (Xt Pointer) Colla bCmd_SYNCSESSFR, False, co llabSyncCB

},
{"Session Format", (XtPointer)CollabCmd_SYNCFORMAT, False, collabSyncCB

},
{"Interaction Mode", (XtPointer)CollabCmd_SYNCIXNMODE, False,

collabSyncCB},
{"Floor Mode", (XtPointer)CollabCmd_SYNCFLRMODE, False, collabSyncCB},
{"Floor", (Xt Pointer) Co llabCmd_SYNC FLOOR, False, co llabSyncCB},
{"Permissions", (XtPointer)CollabCmd_SYNCPERMS, False, collabSyncCB},
{NULL}

static menuitem debugPD[] = {

};

{"Sync.", NULL, False, NULL, NULL, NULL, syncPD, MENU_PUSH},
{"Trace", (XtPointer)NULL, True, collabShowTraceCB, NULL, &

xmToggleButtonWidgetClass},
{NULL}

{"Data Send", (XtPointer)NULL, False, collabDbgSendCB } ,
{"Data Check", (Xt Pointer) NULL, False, co llabDbgChec kCB } ,
*I
static menuitem optionPD[] = {

{"Auto-Accept", (XtPointer) CollabOpt_ACCEPT, False, collabOptionCB},
{"Auto-Decline", (XtPointer) CollabOpt_DECLINE, False, collabOptionCB},
{"sep", (XtPointer)NULL, False, NULL, NULL, &xmSeparatorWidgetClass},
{"Auto-Allow", (XtPointer) CollabOpt_ALLOW, False, collabOptionCB},
{"Auto-Deny", (XtPointer) CollabOpt_DENY, False, collabOptionCB},
{"sep", (XtPointer)NULL, False, NULL, NULL, &xmSeparatorWidgetClass},

Page 4 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1518

collabCntiUI.c 7/5/11 11 :52 AM

}

};

{"Auto-Start", (XtPointer) CollabOpt_START, False, collabOptionCB},
{"sep", (XtPointer)NULL, False, NULL, NULL, &xmSeparatorWidgetClass},
{" Force-Join", (Xt Pointer) Co llabOpt_FORCEJ DIN, False, co llabOpt ionCB},
{NULL}

n = 0;
if (argList) {

XtSetArg(args[n], XtVaNestedList, argList);
n++;

}
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;

wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

controlPD, NULL);

wgOptionPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,
optionPD, NULL);

wgDebugPD = pulldownMenuCreate(wgMenuBar, "Debug", MENU_MIXED,
debugPD, NULL);

wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static toggleitem collabPermTgls[] = {

};

{"Access", (XtPointer)CollabPerm_ACCESS, False, NULL},
{"Browse", (XtPointer)CollabPerm_BROWSE, False, NULL},
{"Modify", (XtPointer)CollabPerm_MODIFY, False, NULL},
{"Copy", (XtPointer)CollabPerm_COPY, False, NULL},
{"Grant", (XtPointer)CollabPerm_GRANT, False, NULL},
{NULL}

void
collabSetPermToggles(lPerms)

{
unsigned long lPerms;

if(collabPermTgls[0] .wgTgl
return;

}

NULL) {

togglesSetState(collabPermTgls, (XtPointer)CollabPerm_ACCESS,
(lPerms & SHASTRA_PERM_ACCESS), True);

togglesSetState(collabPermTgls, (XtPointer)CollabPerm_BROWSE,
(lPerms & SHASTRA_PERM_BROWSE), True);

togglesSetState(collabPermTgls, (XtPointer)CollabPerm_MODIFY,
(lPerms & SHASTRA_PERM_MODIFY), True);

togglesSetState(collabPermTgls, (XtPointer)CollabPerm_COPY,
(lPerms & SHASTRA_PERM_COPY), True);

Page 5 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1519

collabCntiUI.c 7/5/11 11 :52 AM

}

togglesSetState(collabPermTgls, (XtPointer)CollabPerm_GRANT,
(lPerms & SHASTRA_PERM_GRANT), True);

static toggleitem collabFloorTgls[] = {

};

{"Have It?", (XtPointer)CollabCmd_HAVEFLOOR, False, NULL},
{" Release 7", (Xt Pointer) Co llabCmd_FREE FLOOR, False, co llabF ree Floo rCB},
{NULL}

static Widget wgCollabFloorLabel;
void
collabSetFloorinfo(sName, fHave, fFree)

char *SName;

{

}

int fHave, fFree;

XmSt ring st r;

if(wgCollabFloorLabel
return;

}
if(sName == NULL){

sName ="<Leader>";
}

NULL) {

str = XmStringCreateSimple(sName);
XtVaSetValues(wgCollabFloorLabel, XmNlabelString, str, NULL);
XmStringFree(str);
togglesSetState(collabFloorTgls, (XtPointer)CollabCmd_HAVEFLOOR,

fHave, True);
togglesSetState(collabFloorTgls, (XtPointer)CollabCmd_FREEFLOOR,

fFree, True);

static void
createCollabCntlAreaCB(wgParent, xpClient, xpCall)

Widget wgParent;
XtPointer xpClient, xpCall;

{
Widget wgDbgText, wgixnForm, wgFlrTitle;
Widget wgListRC, wgPermTglRC, wgOMRC, wgFloorRC, wgFlrTglRC, wgFlrCmdRC;
Widget wgModeOM, wgFloorOM, wgFormatOM, wgFlrFrame;
Arg args[16];
int i, n;
XmSt ring st r;
XtVarArgsList argList;
static buttonitem flrCmdBtns[] = {

};

{"Request Floor", (XtPointer)NULL, collabRequestFloorCB},
{"Parameters",(XtPointer)NULL, collabFloorParamsCB},
{NULL}

static menuitem modeOM[] = {
{"Unregulated", (XtPointer) Collabixn_UNREGULATED, False,

collabSetixnModeCB},
{"Regulated", (XtPointer) Collabixn_REGULATED, False,

Page 6 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1520

collabCntiUI.c

};

collabSetixnModeCB},
{NULL}

static menuitem formatOM[] = {

};

{"Formal ", (XtPointer) CollabFmt_FORMAL, False,
collabSetSesFormatCB},

{"Informal", (XtPointer) CollabFmt_INFORMAL, False,
collabSetSesFormatCB},

{NULL}

static menuitem floorOM[] = {
{"Moderated ", (XtPointer) CollabFlr_MODERATED, False,

collabSetFloorModeCB},

7/5/11 11 :52 AM

{"Handoff", (XtPointer) CollabFlr _HANDOFF, False, collabSetFloorModeCB}
I

{" Cyc lie", (XtPointe r) Co llabFl r _CYCLIC, False, co llabSet Floo rModeCB},
{"Queued", (Xt Pointer) Co llab Fl r _QUEUED, False, colla bSet Floo rMod eCB},
{"Voluntary", (XtPointer) CollabFlr_VOLUNTARY, False,

};

collabSetFloorModeCB},
{"Preemptive", (XtPointer) CollabFlr_PREEMPTIVE, False,

collabSetFloorModeCB},
{NULL}

static buttonitem panelBtns[] = {

};

{" Initiate ",(XtPointer)CollabCmd_INITIATE, collabCmdCB},
{"Invite",(XtPointer)CollabCmd_INVITE, collabCmdCB},
{"Join", (Xt Pointer) Co llabCmd_J DIN, co llabCmdCB},
{ Remove",(XtPointer)CollabCmd_REMOVE, collabCmdCB},
{Set Perms",(XtPointer)CollabCmd_PERMSET, collabCmdCB},
{Check Perms",(XtPointer)CollabCmd_PERMCHK, collabCmdCB},
{Set Floor",(XtPointer)CollabCmd_FLOOR, collabCmdCB},
{ Describe",(XtPointer)CollabCmd_DESCRIBE, collabCmdCB},
{ Converse",(XtPointer)CollabCmd_CONNECT, collabCmdCB},
{NULL}

char *SXlns ="#override \n <BtnlUp>: \n <BtnlDown> :\n";
XtTranslations pXlns;

wgixnForm = XtVaCreateWidget("collabixnForm", xmFormWidgetClass,
wgParent,
XmNtopAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
NULL);

argList = XtVaCreateArgsList(NULL,
XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
NULL);

wgListRC = buttonsCreate(wgixnForm, "panelCmds", XmVERTICAL,
panelBtns, argList);

XtManageChild(wgListRC);

Page 7 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1521

collabCntiUI.c 7/5/11 11 :52 AM

XtFree(argList);

wgOMRC = XtVaCreateWidget("modeOMRC", xmRowColumnWidgetClass,
wgixnForm,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, wgListRC,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
NULL);

wgFormatOM = optionMenuCreate(wgOMRC, "Session Format " MENU_PUSH,
XmHORIZONTAL, formatOM, NULL);

wgModeOM = optionMenuCreate(wgOMRC, "Interaction Mode", MENU_PUSH,
XmHORIZONTAL, modeOM, NULL);

wgFloorOM = optionMenuCreate(wgOMRC, "Floor Control ", MENU_PUSH,
XmHORIZONTAL, floorOM, NULL);

XtManageChild(wgOMRC);

argList = XtVaCreateArgsList(NULL,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, wgListRC,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, wgOMRC,
NULL);

wgPermTglRC = togglesCreate(wgixnForm, "permTgls", TGL_CHECK, XmVERTICAL,
collabPermTgls, argList);

pXlns = XtParseTranslationTable(sXlns);
for(i=0; i<S; i++){

XtOverrideTranslations(collabPermTgls[i] .wgTgl, pXlns);
}

XtManageChild(wgPermTglRC);
XtFree(argList);

wgFlrFrame = XtVaCreateWidget("collabFlrFrame", xmFrameWidgetClass,
wgixnForm,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, wgPermTglRC,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, wgOMRC,
XmNrightAttachment, XmATTACH_FORM,
XmNrightOffset, 5,
NULL);

wgFloorRC = XtVaCreateWidget("collabFloorRC", xmRowColumnWidgetClass,
wg Fl rF rame,
XmNorientation, XmVERTICAL,
XmNisAligned, True,
XmNentryAlignment, XmALIGNMENT_CENTER,
NULL);

str = XmStringCreateSimple("Floor");
wgFlrTitle = XtVaCreateManagedWidget("floorTitle", xmLabelWidgetClass,

wgFloorRC,
XmN label 5 t ring , s t r,
NULL);

Page 8 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1522

collabCntiUI.c

}

XmStringFree(str);
wgFlrTglRC = togglesCreate(wgFloorRC 1 "floorTgls" 1 TGL_CHECK 1

XmHORIZONTAL 1

collabFloorTgls 1 NULL);
XtOverrideTranslations(collabFloorTgls[0] .wgTgl 1 pXlns);
XtManageChild(wgFlrTglRC);

str = XmStringCreateSimple("<Leader>");
wgCollabFloorLabel = XtVaCreateManagedWidget("floorLabel" 1

xmLabelWidgetClass 1

XmStringFree(str);

wgFloorRC 1

XmN label 5 t ring 1 s t r 1

NULL);

wgFlrCmdRC = buttonsCreate(wgFloorRC 1 "floorCmds" 1 XmVERTICAL 1

flrCmdBtns 1 NULL);
XtManageChild(wgFlrCmdRC);
XtManageChild(wgFloorRC);
XtManageChild(wgFlrFrame);

XtManageChild(wgixnForm);

n=0;
XtSetArg(args[n] 1 XmNrows 1 S);n++;
XtSetArg(args[n] 1 XmNcolumns 1 32);n++;
XtSetArg(args[n] 1 XmNeditable 1 False);n++;
XtSetArg(args[n] 1 XmNeditMode 1 XmMULTI_LINE_EDIT);n++;
XtSetArg(args[n] 1 XmNscrollingPolicy 1 XmAUTOMATIC); n++;
XtSetArg(args[n] 1 XmNvisualPolicy 1 XmCONSTANT); n++;
XtSetArg(args[n] 1 XmNscrollBarDisplayPolicy 1 XmAS_NEEDED); n++;
XtSetArg(args[n] 1 XmNtopAttachment 1 XmATTACH_WIDGET);n++;
XtSetArg(args[n] 1 XmNtopWidget 1 wgixnForm);n++;
XtSetArg(args[n] 1 XmNrightAttachment 1 XmATTACH_FORM);n++;
XtSetArg(args[n] 1 XmNleftAttachment 1 XmATTACH_FORM);n++;
XtSetArg(args[n] 1 XmNbottomAttachment 1 XmATTACH_FORM);n++;
XtSetArg(args[n] 1 XmNscrollHorizontal 1 False); n++;
XtSetArg(args[n] 1 XmNscrollVertical 1 True); n++;
XtSetArg(args[n] 1 XmNwordWrap 1 True); n++;

wgDbgText = createMessageBuffer(wgParent 1 "collabTextMsgs" 1

&collabMsgBufCntl 1 args 1 n);
XtManageChild(wgDbgText);

static void
collabSetPermModeCB(wg 1 xpClient 1 cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

collabSetPermOprn((CollabPermission)xpClient 1 cbs->set);

7/5/11 11 :52 AM

Page 9 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1523

collabCntiUI.c

static void
collabSetixnModeCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

collabSetixnModeOprn((CollabixnMode)xpClient);

static void
collabSetSesFormatCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

collabSetSesFormatOprn((CollabFmtMode)xpClient);

static void
collabSetFloorModeCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

collabSetFloorModeOprn((CollabFlrMode)xpClient);

static void
collabFreeFloorCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

collabFreeFloorOprn(cbs->set);

static void
collabRequestFloorCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

collabRequestFloorOprn();

static void
collabFloorParamsCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{
/*control panel*/
}

7/5/11 11 :52 AM

Page 10 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1524

collabCntiUI.c 7/5/11 11 :52 AM

Widget
frontCollabsCB(wgTgl, pMgrCD, xpFoo)

{

Widget wgTgl;
mgrCntlData *PMgrCD;
XtPointer xpFoo;

Widget wgShell;
panelCntlData *PPanelCntl;
int fToggles, iColl;
char **SbNames;

if (pMgrCD->wgCntl) {
return;

}
pMgrCD->wgTgl = wgTgl;

pPanelCntl = (panelCntlData *) malloc(sizeof(panelCntlData));
memset(pPanelCntl, 0, sizeof(panelCntlData));

pPanelCntl->sName = "Collab";
pPanelCntl->fnMenuBar = createCollabMenuBar;
pPanelCntl->fnChooseCB = chooseOneCollabCB;
pPanelCntl->fCntlArea = True;

fToggles = PANEL_SELECT I PANEL_RENAME I PANEL_LEAVE I PANEL_TERMINATE I
PANEL_UNSELECT;

pMgrCD->wgCntl = wgShell =
createPanelControl(pMgrCD->wgParent, "collabControl", wgTgl, pPanelCntl

}

fToggles, PANEL_CHOOSEONE, NULL);

createCollabCntlAreaCB(pPanelCntl->wgCntlArea, NULL, NULL);

pCollabDismissData = pPanelCntl->pDismiss;
pcoCollab = pPanelCntl->pChooseOne;

iColl = getCollabindex(0);
if (iCo ll ! = -1) {

}

sbNames = getCollabNameList(0);
chooseOneChangeList(pcoCollab, sbNames, iColl);
if (s bNames) {

free(sbNames);
}

wgCollabShell = wgShell;
return wgShell;

static void
collabDismissCB(wg, xpClient, cbs)

Widget wg;

Page 11 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1525

collabCntiUI.c

{

}

XtPointer xpelient;
XmPushButtoneallbackStruct *Cbs;

defaultShellDismisseB(wg, (XtPointer)peollabDismissData, cbs);

static void
collabemdeB(wg, xpelient, cbs)

{

Widget wg;
XtPointer xpelient;
XmPushButtoneallbackStruct *Cbs;

static multiehooseentlData inviteeD, initiateeD, permSeteD;
static optehooseentlData joineD, removeeD, connecteD;
static optehooseentlData permehkeD, floorSeteD, describeeD;
eollabemd ieollabemd;

ieollabemd = (eollabemd) xpelient;
switch (ieollabemd) {
case eollabemd_INITIATE:

initiateeD.fneallback = collabinitiateeMeB;
initiateeD.xpelient = (XtPointer) NULL;
systemGenehooseManyeB(wg, (XtPointer) & initiateeD, NULL);
break;

case eollabemd_INVITE:
inviteeD.fneallback = collabinviteeMeB;
inviteeD.xpelient = (XtPointer) NULL;
systemGenehooseManyeB(wg, (XtPointer) & inviteeD, NULL);
break;

case eollabemd_JOIN:
joineD.fneallback = collabJoineoeB;
joineD.xpelient = (XtPointer) NULL;
sesMgrGenehooseOneeB(wg, (XtPointer) & joineD, NULL);
break;

case eollabemd_REMOVE:
removeeD.fneallback = collabRemoveeoeB;
removeeD.xpelient = (XtPointer) NULL;
collabFrontGenehooseOneeB(wg, (XtPointer) & removeeD, NULL);
break;

case eollabemd_eONNEeT:
connecteD.fneallback = collabeonnecteoeB;
connecteD.xpelient = (XtPointer) NULL;
collabFrontGenehooseOneeB(wg, (XtPointer) & connecteD, NULL);
break;

case eollabemd_DESeRIBE:
describeeD.fneallback = collabDescribeeoeB;
describeeD.xpelient = (XtPointer) NULL;
collabFrontGenehooseOneeB(wg, (XtPointer) & describeeD, NULL);
break;

case eollabemd_PERMSET:
permSeteD.fneallback = collabPermSeteMeB;
permSeteD.xpelient = (XtPointer) NULL;
collabFrontGenehooseManyeB(wg, (XtPointer) & permSeteD, NULL);

7/5/11 11 :52 AM

Page 12 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1526

collabCntiUI.c 7/5/11 11 :52 AM

}

break;
case CollabCmd_PERMCHK:

permChkCD.fnCallback = collabPermCheckCOCB;
permChkCD.xpClient = (XtPointer) NULL;
collabFrontGenChooseOneCB(wg, (XtPointer) & permChkCD, NULL);
break;

case CollabCmd_FLOOR:

}

floorSetCD.fnCallback = collabFloorSetCOCB;
floorSetCD.xpClient = (XtPointer) NULL;
collabFrontGenChooseOneCB(wg, (XtPointer) & floorSetCD, NULL);
break;

static void
collabinitiateCMCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int *aiWhich = (int*) xpCall;

collabinitiateOprn(aiWhich);
}

static void
collabinviteCMCB(wg,

Widget
XtPointer

xpClient, xpCall)
wg;
xpClient, xpCall;

{
int *aiWhich = (int*) xpCall;

collabinviteOprn(aiWhich);
}

static void
collabJoinCOCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

collabAskJoinOprn(iWhich);
}

static void
collabRemoveCOCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

collabRemoveOprn(iWhich);
}

Page 13 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1527

collabCntiUI.c 7/5/11 11 :52 AM

static void
collabConnectCOCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

collabCommConnectOprn(iWhich);
}

static void
collabPermSetCMCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int *aiWhich = (int*) xpCall;

collabSetPermsDialogPopup(wg, (XtPointer)aiWhich, NULL);
}

static void
collabSetPermsCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int *aiWhich = (int*) xpClient;

collabPermSetOprn(aiWhich);
}

static void
collabPermCheckCOCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

collabPermCheckOprn(iWhich);
}

static void
collabDescribeCOCB(wg, xpClient, xpCall)

Widget wg;
XtPointer xpClient, xpCall;

{
int iWhich = (int) xpCall;

collabDescribeOprn(iWhich);
}

static void
collabFloorSetCOCB(wg, xpClient, xpCall)

Page 14 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1528

collabCntiUI.c

{

}

int

Widget
XtPointer

wg;
xpClient, xpCall;

iWhich = (int) xpCall;

collabFloorSetOprn(iWhich);

static void
leaveCollabCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

collabLeaveOprn((int)pGenCD->xpCall);

static void
terminateCollabCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

collabTerminateOprn((int)pGenCD->xpCall);

static void
renameCollabCB(wg, xpClient, cbs)

Widget wg;

{

}

XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

panelAxnCntlData *PGenCD = (panelAxnCntlData*)xpClient;

collabRenameOprn((int)pGenCD->xpCall, 0);

static void
chooseOneCollabCB(wg, xpClientData, xpCallData)

{

Widget wg;
XtPointer xpClientData, xpCallData;

int which = (int) xpCallData;
panelCntlData *PPanelCntl = (panelCntlData *) xpClientData;
static panelAxnCntlData genCDConfirm;
static panelAxnCntlData genCDRen;

switch (pPanelCntl->iMode) {
case PANEL_SELECT:

7/5/11 11 :52 AM

Page 15 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1529

collabCntiUI.c

}

collabSelectOprn(which);
break;

case PANEL_UNSELECT:
collabUnselectOprn(which);
break;

case PANEL_RENAME:
genCDRen.fnCallback = renameCollabCB;
genCDRen.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDRen;
panelDefaultRenamePUCB(wg, xpClientData, xpCallData);
break;

case PANEL_LEAVE:
genCDConfirm.fnCallback = leaveCollabCB;
genCDConfirm.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDConfirm;
panelDefaultConfirmPUCB(wg, xpClientData, xpCallData);
break;

case PANEL_TERMINATE:
genCDConfirm.fnCallback = terminateCollabCB;
genCDConfirm.xpCall = xpCallData;
pPanelCntl->xpClient = (XtPointer)&genCDConfirm;
panelDefaultConfirmPUCB(wg, xpClientData, xpCallData);
break;

default:
break;

}

static void
collabCreateBrowserCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

/*popup a browser dialog per session*/

static void
collabOperationCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

mgrCntlData *mgrCntl = (mgrCntlData*)xpClient;
collabOperationsOprn(mgrCntl, cbs->set);

static void
collabOptionCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

{

7/5/11 11 :52 AM

Page 16 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1530

collabCntiUI.c

}

static Widget wgCurrinvite, wgCurrJoin;
CollabOption iCollOpt = (CollabOption)xpClient;

switch(iCollOpt){
case CollabOpt_ACCEPT:
case CollabOpt_DECLINE:

if(cbs->set){
if(wgCurrinvite && (wgCurrinvite != wg)){

XmToggleButtonSetState(wgCurrinvite, False, True);
}

}

wgCurrinvite = wg;
collabSetinviteOption(iCollOpt);

else if(cbs->event){
collabSetinviteOption(CollabOpt_Null);

}
break;

case CollabOpt_ALLOW:
case CollabOpt_DENY:

if(cbs->set){
if(wgCurrJoin && (wgCurrJoin != wg)){

XmToggleButtonSetState(wgCurrJoin, False, True);
}
collabSetAskJoinOption(iCollOpt);
wgCurrJoin = wg;

}
else if(cbs->event){

collabSetAskJoinOption(CollabOpt_Null);
}
break;

case CollabOpt_START:
if(cbs->set){

collabSetStartOption(iCollOpt);
}
else{

collabSetStartOption(CollabOpt_Null);
}
break;

case CollabOpt_FORCEJOIN:

}

if(cbs->set){
collabSetForceJoinOption(iCollOpt);

}
else{

collabSetForceJoinOption(CollabOpt_Null);
}
break;

static void
collabOptJoinCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;

7/5/11 11 :52 AM

Page 17 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1531

collabCntiUI.c

{

}

XmToggleButtonCallbackStruct *Cbs;

static Widget wgCurrSet;

if (cbs->set) {

}

if(wgCurrSet && (wgCurrSet != wg)){
XmToggleButtonSetState(wgCurrSet, False, True);

}
wgCurrSet = wg;

static void
collabShowTraceCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmToggleButtonCallbackStruct *Cbs;

fDebugTrace = cbs->set;

static void
collabSyncCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

collabSyncOprn((CollabCmd)xpClient);

static Widget
createCollCommMenuBar(wgParent, sName, pCommCD, argList)

Widget wgParent;

{

char *SName;
shaCommCntlData *PCommCD;
XtVarArgsList argList;

Widget wgMenuBar, wgControlPD, wgOptionsPD, wgHelpPD;
static menuitem controlPD[] = {

};

{"Clear", (XtPointer) NULL, False, collabCommClearCB},
{"Dismiss", (XtPointe r) NULL, False, co llabCommDismis sCB},
{"Close", (XtPointer) NULL, False, collabCommTerminateCB},
{NULL}

static menuitem optionsPD[] = {

};

{"Comm. Panel", (XtPointer) NULL, False, NULL},
{NULL}

menuitem *PControlPD, *POptionsPD;
Arg args[8];
int n;

7/5/11 11 :52 AM

Page 18 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1532

collabCntiUI.c 7/5/11 11 :52 AM

}

n = 0;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;
wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);

pControlPD = pCommCD->pControlPD = (menuitem*)malloc(sizeof(controlPD));
memcpy(pControlPD, controlPD, sizeof(controlPD));
pControlPD[0] .xpClient = (XtPointer)pCommCD;
pControlPD[l] .xpClient = (XtPointer)pCommCD;
pControlPD[2] .xpClient = (XtPointer)pCommCD;
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

pCommCD->pControlPD, NULL);
pOptionsPD = pCommCD->pOptionsPD = (menuitem*)malloc(sizeof(optionsPD));
memcpy(pOptionsPD, optionsPD, sizeof(optionsPD));
pOptionsPD[0] .xpClient = (XtPointer)pCommCD;
pOptionsPD[l] .xpClient = (XtPointer)pCommCD;
wgOptionsPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,

pCommCD->pOptionsPD, NULL);
wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static void
collabCommTerminateCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCleanUpCB(wg, pCommCD->pDialogCD, cbs);
XtDestroyWidget(pCommCD->pDialogCD->wgDialog);
XtFree((char*)pCommCD->pDialogCD);
if(pCommCD->pOptionsPD){

}

XtFree((char*)pCommCD->pOptionsPD);
pCommCD->pOptionsPD = NULL;

if(pCommCD->pControlPD){
XtFree((char*)pCommCD->pControlPD);

pCommCD->pControlPD = NULL;
}

if(pCommCD->pRemTextCD != NULL){
XtFree((char*)pCommCD->pRemTextCD);

pCommCD->pRemTextCD = NULL;
}
if(pCommCD->pLocTextCD != NULL){

XtFree((char*)pCommCD->pLocTextCD);
pCommCD->pLocTextCD = NULL;

}

Page 19 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1533

collabCntiUI.c 7/5/11 11 :52 AM

collabCommDisconnectOprn(pCommCD->smSidTag, pCommCD->remSidTag);
}

static void
collabCommDismissCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
defaultDialogCancelCB(wg, (XtPointer)pCommCD->pDialogCD, cbs);

static void
collabCommClearCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

clearMessageBuffer(pCommCD->pLocTextCD);
collabCommSendMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, "");

static void
collabCommTextCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

str = XmTextGetString(wg);
collabCommSendMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, str);
XtFree(str);

}

void
setupCollabCommDialog(pCommCD)

shaCommCntlData *PCommCD;
{

static buttonitem dlgBtns[] = {

};

{"Dismiss", (XtPointe r) DIALOG_ OK, co llabCommDismis sCB},
{"Close", (XtPointer) DIALOG_CANCEL, collabCommTerminateCB},
{"Help", (XtPointer) DIALOG_HELP, NULL},
{NULL}

pCommCD->fnMenuBar = createCollCommMenuBar;
pCommCD->fnTextCallback = collabCommTextCB;

Page 20 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1534

collabCntiUI.c

}

pCommCD->pDlgBtns = dlgBtns;
createShastraCommDialog(pCommCD);

static Widget
createCollinviteCommMenuBar(wgParent, sName, pCommCD, argList)

Widget wgParent;

{

char *SName;
shaCommCntlData *PCommCD;
XtVarArgsList argList;

Widget wgMenuBar, wgControlPD, wgOptionsPD, wgHelpPD;
static menuitem controlPD[] = {

};

{"Clear", (XtPointer) NULL, False, collabinviteCommClearCB},
{"Dismiss", (XtPointe r) NULL, False, co llabinv i teCommDismis sCB},
{"Close", (XtPointer) NULL, False, collabinviteCommTerminateCB},
{NULL}

static menuitem optionsPD[] = {

};

{"Comm. Panel", (XtPointer) NULL, False, NULL},
{NULL}

menuitem *PControlPD, *POptionsPD;
Arg args[8];
int n;

n = 0;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;
wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);

7/5/11 11 :52 AM

pControlPD = pCommCD->pControlPD = (menuitem*)malloc(sizeof(controlPD));
memcpy(pControlPD, controlPD, sizeof(controlPD));

}

pControlPD[0] .xpClient = (XtPointer)pCommCD;
pControlPD[l] .xpClient = (XtPointer)pCommCD;
pControlPD[2] .xpClient = (XtPointer)pCommCD;
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

pCommCD->pControlPD, NULL);
pOptionsPD = pCommCD->pOptionsPD = (menuitem*)malloc(sizeof(optionsPD));
memcpy(pOptionsPD, optionsPD, sizeof(optionsPD));
pOptionsPD[0] .xpClient = (XtPointer)pCommCD;
pOptionsPD[l] .xpClient = (XtPointer)pCommCD;
wgOptionsPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,

pCommCD->pOptionsPD, NULL);
wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

Page 21 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1535

collabCntiUI.c

static void
collabinviteCommDismissCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
defaultDialogCancelCB(wg, (XtPointer)pCommCD->pDialogCD, cbs);

static void
collabinviteCommTerminateCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCleanUpCB(wg, pCommCD->pDialogCD, cbs);
XtDestroyWidget(pCommCD->pDialogCD->wgDialog);
XtFree((char*)pCommCD->pDialogCD);
if(pCommCD->pOptionsPD){

}

XtFree((char*)pCommCD->pOptionsPD);
pCommCD->pOptionsPD = NULL;

if(pCommCD->pControlPD){
XtFree((char*)pCommCD->pControlPD);

pCommCD->pControlPD = NULL;
}

if(pCommCD->pRemTextCD != NULL){
XtFree((char*)pCommCD->pRemTextCD);

pCommCD->pRemTextCD = NULL;
}
if(pCommCD->pLocTextCD != NULL){

XtFree((char*)pCommCD->pLocTextCD);
pCommCD->pLocTextCD = NULL;

}
collabDeleteinvitePanelOprn(pCommCD->smSidTag);

static void
collabinviteCommClearCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

st r = II II •
I

7/5/11 11 :52 AM

Page 22 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1536

collabCntiUI.c 7/5/11 11 :52 AM

clearMessageBuffer(pCommCD->pLocTextCD);
if(pCommCD->pSidTags){

collabSendinviteMessageOprn(pCommCD->smSidTag, pCommCD->pSidTags,
st r);

}
else{

collabSendUniinviteMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag,
st r);

}
}

static void
collabinviteCommTextCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

str = XmTextGetString(wg);
if(pCommCD->pSidTags){

collabSendinviteMessageOprn(pCommCD->smSidTag, pCommCD->pSidTags,
st r);

}
else{

collabSendUniinviteMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag,
st r);

}

}
XtFree(str);

void
setupCollabinviteCommDialog(pCommCD)

shaCommCntlData *PCommCD;
{

}

static buttonitem dlgBtns[] = {

};

{"Dismiss", (XtPointe r) DIALOG_ OK, co llabinv i teCommDismis sCB},
{"Close", (XtPointer) DIALOG_CANCEL, collabinviteCommTerminateCB},
{"Help", (XtPointer) DIALOG_HELP, NULL},
{NULL}

pCommCD->fnMenuBar = createCollinviteCommMenuBar;
pCommCD->fnTextCallback = collabinviteCommTextCB;

pCommCD->pDlgBtns = dlgBtns;
createShastraCommDialog(pCommCD);

static Widget
createCollinvRespCommMenuBar(wgParent, sName, pCommCD, argList)

Page 23 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1537

collabCntiUI.c 7/5/11 11 :52 AM

{

}

Widget wgParent;
char *SName;
shaCommCntlData *PCommCD;
XtVarArgsList argList;

Widget wgMenuBar, wgControlPD, wgOptionsPD, wgHelpPD;
static menuitem controlPD[] = {

};

{"Clear", (XtPointer) NULL, False, collabinvRespCommClearCB},
{"Accept", (XtPointer) NULL, False, collabinvRespCommAcceptCB},
{"Dec line", (XtPointe r) NULL, False, co llabinvRespCommDeclineCB},
{NULL}

static menuitem optionsPD[] = {
{"Comm. Panel", (XtPointer) NULL, False, NULL},
{NULL}

};
menuitem *PControlPD, *POptionsPD;
Arg args[8];
int n;

n = 0;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;
wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);

pControlPD = pCommCD->pControlPD = (menuitem*)malloc(sizeof(controlPD));
memcpy(pControlPD, controlPD, sizeof(controlPD));
pControlPD[0] .xpClient = (XtPointer)pCommCD;
pControlPD[l] .xpClient = (XtPointer)pCommCD;
pControlPD[2] .xpClient = (XtPointer)pCommCD;
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

pCommCD->pControlPD, NULL);
pOptionsPD = pCommCD->pOptionsPD = (menuitem*)malloc(sizeof(optionsPD));
memcpy(pOptionsPD, optionsPD, sizeof(optionsPD));
pOptionsPD[0] .xpClient = (XtPointer)pCommCD;
pOptionsPD[l] .xpClient = (XtPointer)pCommCD;
wgOptionsPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,

pCommCD->pOptionsPD, NULL);
wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static void
collabinvRespCommTerminateCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{

Page 24 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1538

collabCntiUI.c

}

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCleanUpCB(wg, pCommCD->pDialogCD, cbs);
XtDestroyWidget(pCommCD->pDialogCD->wgDialog);
XtFree((char*)pCommCD->pDialogCD);
if(pCommCD->pOptionsPD){

}

XtFree((char*)pCommCD->pOptionsPD);
pCommCD->pOptionsPD = NULL;

if(pCommCD->pControlPD){
XtFree((char*)pCommCD->pControlPD);

pCommCD->pControlPD = NULL;
}

if(pCommCD->pRemTextCD != NULL){
XtFree((char*)pCommCD->pRemTextCD);

pCommCD->pRemTextCD = NULL;
}
if(pCommCD->pLocTextCD != NULL){

XtFree((char*)pCommCD->pLocTextCD);
pCommCD->pLocTextCD = NULL;

}

static void
collabinvRespCommAcceptCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{
char *Str;
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

str ="Invitation Accepted\n";
I*

7/5/11 11 :52 AM

collabSendinvRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, str);
*I
collabinvRespCommTerminateCB(wg, xpClient, cbs);
collabinviteAcceptOprn(pCommCD->smSidTag, pCommCD->remSidTag);

}

static void
collabinvRespCommDeclineCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{
char *Str;
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

str ="Invitation Declined\n";
I*

Page 25 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1539

collabCntiUI.c 7/5/11 11 :52 AM

}

collabSendinvRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, str);
*I
collabinvRespCommTerminateCB(wg, xpClient, cbs);
collabinviteDeclineOprn(pCommCD->smSidTag, pCommCD->remSidTag);

static void
collabinvRespCommClearCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

{
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

clearMessageBuffer(pCommCD->pLocTextCD);
collabSendinvRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, "");

}

static void
collabinvRespCommTextCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

str = XmTextGetString(wg);
collabSendinvRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, str);
XtFree(str);

}

void
setupCollabinvRespCommDialog(pCommCD)

shaCommCntlData *PCommCD;
{

I*

static buttonitem dlgBtns[] = {

};

{"Accept", (XtPointer) DIALOG_OK, collabinvRespCommAcceptCB},
{"Decline", (XtPointer) DIALOG_CANCEL, collabinvRespCommDeclineCB},
{"Help", (XtPointer) DIALOG_HELP, NULL},
{NULL}

pCommCD->fnMenuBar = createCollinvRespCommMenuBar;
pCommCD->fnTextCallback = collabinvRespCommTextCB;
pCommCD->fnCancelCallback = collabinvRespCommDeclineCB;

pCommCD->fBehave = DIALOG_AUTOLOWER;
pCommCD->iDelay = 60000;
*I

pCommCD->pDlgBtns = dlgBtns;
createShastraCommDialog(pCommCD);

Page 26 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1540

collabCntiUI.c

}

static Widget
createCollAskJnRespCommMenuBar(wgParent, sName, pCommCD, argList)

Widget wgParent;

{

char *SName;
shaCommCntlData *PCommCD;
XtVarArgsList argList;

Widget wgMenuBar, wgControlPD, wgOptionsPD, wgHelpPD;
static menuitem controlPD[] = {

};

{"Clear", (XtPointer) NULL, False, collabAskJnRespCommClearCB},
{"Allow", (XtPointer) NULL, False, collabAskJnRespCommAllowCB},
{"Deny", (XtPointer) NULL, False, collabAskJnRespCommDenyCB},
{NULL}

static menuitem optionsPD[] = {

};

{"Comm. Panel", (XtPointer) NULL, False, NULL},
{NULL}

menuitem *PControlPD, *POptionsPD;
Arg args[8];
int n;

n = 0;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;
wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);

7/5/11 11 :52 AM

pControlPD = pCommCD->pControlPD = (menuitem*)malloc(sizeof(controlPD));
memcpy(pControlPD, controlPD, sizeof(controlPD));

}

pControlPD[0] .xpClient = (XtPointer)pCommCD;
pControlPD[l] .xpClient = (XtPointer)pCommCD;
pControlPD[2] .xpClient = (XtPointer)pCommCD;
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

pCommCD->pControlPD, NULL);
pOptionsPD = pCommCD->pOptionsPD = (menuitem*)malloc(sizeof(optionsPD));
memcpy(pOptionsPD, optionsPD, sizeof(optionsPD));
pOptionsPD[0] .xpClient = (XtPointer)pCommCD;
pOptionsPD[l] .xpClient = (XtPointer)pCommCD;
wgOptionsPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,

pCommCD->pOptionsPD, NULL);
wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static void

Page 27 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1541

collabCntiUI.c 7/5/11 11 :52 AM

collabAskJnRespCommTerminateCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCleanUpCB(wg, pCommCD->pDialogCD, cbs);
XtDestroyWidget(pCommCD->pDialogCD->wgDialog);
XtFree((char*)pCommCD->pDialogCD);
if(pCommCD->pOptionsPD){

}

XtFree((char*)pCommCD->pOptionsPD);
pCommCD->pOptionsPD = NULL;

if(pCommCD->pControlPD){
XtFree((char*)pCommCD->pControlPD);

pCommCD->pControlPD = NULL;
}

if(pCommCD->pRemTextCD != NULL){
XtFree((char*)pCommCD->pRemTextCD);

pCommCD->pRemTextCD = NULL;
}
if(pCommCD->pLocTextCD != NULL){

XtFree((char*)pCommCD->pLocTextCD);
pCommCD->pLocTextCD = NULL;

}

static void
collabAskJnRespCommAllowCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{
char *Str;
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

str ="Requested Join Allowed\n";
I*

collabSendAskJnRespMessageOprn(pCommCD->smSidTag,
pCommCD->remSidTag, str);
*I
collabAskJnRespCommTerminateCB(wg, xpClient, cbs);
collabAskJoinAllowOprn(pCommCD->smSidTag, pCommCD->remSidTag);

}

static void
collabAskJnRespCommDenyCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{

Page 28 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1542

collabCntiUI.c

char *Str;
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

str ="Requested Join Denied\n";
I*

collabSendAskJnRespMessageOprn(pCommCD->smSidTag,
pCommCD->remSidTag, str);
*I
collabAskJnRespCommTerminateCB(wg, xpClient, cbs);
collabAskJoinDenyOprn(pCommCD->smSidTag, pCommCD->remSidTag);

}

static void
collabAskJnRespCommClearCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

{
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

7/5/11 11 :52 AM

clearMessageBuffer(pCommCD->pLocTextCD);
collabSendAskJnRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, "")

}

static void
collabAskJnRespCommTextCB(wg, xpClient, cbs)

{

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

str = XmTextGetString(wg);
collabSendAskJnRespMessageOprn(pCommCD->smSidTag, pCommCD->remSidTag, str

) ;
XtFree(str);

}

void
setupCollabAskJnRespCommDialog(pCommCD)

shaCommCntlData *PCommCD;
{

static buttonitem dlgBtns[] = {

};

{"Allow", (XtPointer) DIALOG_OK, collabAskJnRespCommAllowCB},
{"Deny", (XtPointer) DIALOG_CANCEL, collabAskJnRespCommDenyCB},
{"Help", (XtPointer) DIALOG_HELP, NULL},
{NULL}

pCommCD->fnMenuBar = createCollAskJnRespCommMenuBar;
pCommCD->fnTextCallback = collabAskJnRespCommTextCB;

Page 29 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1543

collabCntiUI.c 7/5/11 11 :52 AM

I*

}

pCommCD->fnCancelCallback = collabAskJnRespCommDenyCB;

pCommCD->fBehave = DIALOG_AUTOLOWER;
pCommCD->iDelay = 60000;
*I

pCommCD->pDlgBtns = dlgBtns;
createShastraCommDialog(pCommCD);

static Widget
createCollAskJoinCommMenuBar(wgParent, sName, pCommCD, argList)

Widget wgParent;

{

char *SName;
shaCommCntlData *PCommCD;
XtVarArgsList argList;

Widget wgMenuBar, wgControlPD, wgOptionsPD, wgHelpPD;
static menuitem controlPD[] = {

};

{"Clear", (XtPointer) NULL, False, collabAskJoinCommClearCB},
{"Dismiss", (XtPointe r) NULL, False, co llabAs kJ oinCommDismis sCB},
{"Close", (XtPointer) NULL, False, collabAskJoinCommTerminateCB},
{NULL}

static menuitem optionsPD[] = {

};

{"Comm. Panel", (XtPointer) NULL, False, NULL},
{NULL}

menuitem *PControlPD, *POptionsPD;
Arg args[8];
int n;

n = 0;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
n++;
wgMenuBar = XmCreateMenuBar(wgParent, sName, args, n);

pControlPD = pCommCD->pControlPD = (menuitem*)malloc(sizeof(controlPD));
memcpy(pControlPD, controlPD, sizeof(controlPD));
pControlPD[0] .xpClient = (XtPointer)pCommCD;
pControlPD[l] .xpClient = (XtPointer)pCommCD;
pControlPD[2] .xpClient = (XtPointer)pCommCD;
wgControlPD = pulldownMenuCreate(wgMenuBar, "Control", MENU_PUSH,

pCommCD->pControlPD, NULL);
pOptionsPD = pCommCD->pOptionsPD = (menuitem*)malloc(sizeof(optionsPD));
memcpy(pOptionsPD, optionsPD, sizeof(optionsPD));
pOptionsPD[0] .xpClient = (XtPointer)pCommCD;
pOptionsPD[l] .xpClient = (XtPointer)pCommCD;

Page 30 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1544

collabCntiUI.c 7/5/11 11 :52 AM

}

wgOptionsPD = pulldownMenuCreate(wgMenuBar, "Options", MENU_CHECK,
pCommCD->pOptionsPD, NULL);

wgHelpPD = createHelpPD(wgMenuBar);
return wgMenuBar;

static void
collabAskJoinCommDismissCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

{
shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCancelCB(wg, (XtPointer)pCommCD->pDialogCD, cbs);
}

static void
collabAskJoinCommTerminateCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmPushButtonCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

defaultDialogCleanUpCB(wg, pCommCD->pDialogCD, cbs);
XtDestroyWidget(pCommCD->pDialogCD->wgDialog);
XtFree((char*)pCommCD->pDialogCD);
if(pCommCD->pOptionsPD){

}

XtFree((char*)pCommCD->pOptionsPD);
pCommCD->pOptionsPD = NULL;

if(pCommCD->pControlPD){
XtFree((char*)pCommCD->pControlPD);

pCommCD->pControlPD = NULL;
}

if(pCommCD->pRemTextCD != NULL){
XtFree((char*)pCommCD->pRemTextCD);

pCommCD->pRemTextCD = NULL;
}
if(pCommCD->pLocTextCD != NULL){

XtFree((char*)pCommCD->pLocTextCD);
pCommCD->pLocTextCD = NULL;

}
collabDeleteAskJoinPanelOprn(pCommCD->smSidTag);

static void
collabAskJoinCommClearCB(wg, xpClient, cbs)

Widget wg;
XtPointer xpClient;

Page 31 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1545

collabCntiUI.c 7/5/11 11 :52 AM

{

}

XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;

clearMessageBuffer(pCommCD->pLocTextCD);
collabSendAskJoinMessageOprn(pCommCD->smSidTag, "");

static void
collabAskJoinCommTextCB(wg, xpClient, cbs)

{

}

Widget wg;
XtPointer xpClient;
XmAnyCallbackStruct *Cbs;

shaCommCntlData *PCommCD = (shaCommCntlData*)xpClient;
char *Str;

str = XmTextGetString(wg);
collabSendAskJoinMessageOprn(pCommCD->smSidTag, str);
XtFree(str);

void
setupCollabAskJoinCommDialog(pCommCD)

shaCommCntlData *PCommCD;
{

}

static buttonitem dlgBtns[] = {

};

{"Dismiss", (XtPointer) DIALOG_OK, collabAskJoinCommDismissCB},
{"Close", (XtPointer) DIALOG_CANCEL, collabAskJoinCommTerminateCB},
{"Help", (XtPointer) DIALOG_HELP, NULL},
{NULL}

pCommCD->fnMenuBar = createCollAskJoinCommMenuBar;
pCommCD->fnTextCallback = collabAskJoinCommTextCB;

pCommCD->pDlgBtns = dlgBtns;
createShastraCommDialog(pCommCD);

I*
* Function
*I

void
showCollabinfo(s)

{

}

char *S;

if(collabMsgBufCntl.wgText && fDebugTrace){
wprintf (&collabMsgBufCntl, "%s", s);

}

Page 32 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1546

collabCntiUI.c 7/5/11 11 :52 AM

void
collabUtilPopupMessage(msg)

char *msg;
{

}

static dialogCntlData infoDlgCD;

showCollabinfo(msg);
if(infoDlgCD.wgDialog == NULL){

infoDlgCD.fFlags = DIALOG_OK;
infoDlgCD.fBehave = DIALOG_AUTOLOWER;
infoDlgCD.iDelay = 5000;

}

infoDlgCD.sName = "Session Information";
infoDlgCD.sMessage = "Yo, User Dude!\nThis is, like, cool!!";

createinformationDialog(pFrontAppData->wgTop, "infoDialog",
&infoDlgCD, NULL);

defaultDialogPopupMessage(&infoDlgCD, msg);

static void
collabSetPermsDialogPopup(wg, xpClient, xpCall)

Widget wg;

{
XtPointer xpClient, xpCall;

static dialogCntlData permDlgCD;
Widget wgPermTglRC;
static toggleitem permTgls[] = {

{"Access",(XtPointer)CollabPerm_ACCESS, True, collabSetPermModeCB},
{"Browse",(XtPointer)CollabPerm_BROWSE, True, collabSetPermModeCB},
{"Modify",(XtPointer)CollabPerm_MODIFY, True, collabSetPermModeCB},
{"Copy",(XtPointer)CollabPerm_COPY, False, collabSetPermModeCB},
{"Grant",(XtPointer)CollabPerm_GRANT, False, collabSetPermModeCB},
{NULL}

};

if(permDlgCD.wgDialog == NULL){
permDlgCD.fFlags = DIALOG_OK I DIALOG_CANCEL I DIALOG_HELP;
permDlgCD.fMode = XmDIALOG_APPLICATION_MODAL;
permDlgCD.sName = "Session Permissions";
permDlgCD.sMessage = "Set Session Permissions";
permDlgCD.xpClient = xpClient;
permDlgCD.fnCallback = collabSetPermsCB;

createTemplateDialog(wgCollabShell, "permDialog", &permDlgCD, NULL);

}

wgPermTglRC = togglesCreate(permDlgCD.wgDialog, "permTgls",
TGL_CHECK, XmHORIZONTAL, permTgls, NULL);

XtManageChild(wgPermTglRC);
}
defaultDialogPopup(&permDlgCD);

Page 33 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1547

collabCntiUI.c 7/5/11 11 :52 AM

void
collabCheckPermsDialogPopup(wg, xpClient, xpCall)

Widget wg;

{
XtPointer xpClient, xpCall;

static dialogCntlData permDlgCD;
Widget wgPermTglRC;
char *Str, msgBuf[128];
static toggleitem permTgls[] = {

};

{"Access", (XtPointer)CollabPerm_ACCESS, False, NULL},
{"Browse", (XtPointer)CollabPerm_BROWSE, False, NULL},
{"Modify", (XtPointer)CollabPerm_MODIFY, False, NULL},
{"Copy", (XtPointer)CollabPerm_COPY, False, NULL},
{"Grant", (XtPointer)CollabPerm_GRANT, False, NULL},
{NULL}

if(permDlgCD.wgDialog == NULL){
permDlgCD.fFlags = DIALOG_OK I DIALOG_HELP;
permDlgCD.sName = "Session Permissions";
permDlgCD.sMessage = "Session Permissions";
permDlgCD.xpClient = xpClient;
permDlgCD.fnCallback = collabSetPermsCB;
permDlgCD.fBehave = DIALOG_AUTOLOWER;
permDlgCD.iDelay = 10000;

createTemplateDialog(wgCollabShell, "permDialog", &permDlgCD, NULL);

}

}

wgPermTglRC = togglesCreate(permDlgCD.wgDialog, "permTgls",
TGL_CHECK, XmHORIZONTAL, permTgls, NULL);

XtManageChild(wgPermTglRC);

/*set tgl values from flags, name from tag*/
str ="who?";
sprintf(msgBuf, "Session Permissions for - %s", str);
defaultDialogPopupMessage(&permDlgCD, msgBuf);

static void
collabGenChooseOneSetup(wg, pOptCD)

{

Widget wg;
optChooseCntlData *POptCD;

static String asDef[] ={NULL};
static optChooseCntlData *PChooseOneCD;

pChooseOneCD = pOptCD;

if (pcoCollab ==NULL) {
pcoCollab = chooseOneCreate(asDef, coNoinitialHighlight,

Page 34 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1548

collabCntiUI.c 7/5/11 11 :52 AM

}
}

wg 1 genCntlChooseCOCB 1 (XtPointer) & pChooseOneCD 1 wg 1

"Choose Col lab" 1 200 1 NULL);

static void
collabGenChooseOneCB(wg 1 xpClient 1 xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

collabGenChooseOneSetup(wg 1 (optChooseCntlData *) xpClient);
sbNames = getCollabNameList(0);
chooseOneChangeList(pcoCollab 1 sbNames 1 coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}
chooseOneMobExec(pcoCollab 1 wg);

static void
systemGenChooseOneSetup(wg 1 pOptCD)

{

}

Widget wg;
optChooseCntlData *POptCD;

static String asDef[] ={NULL};
static optChooseCntlData *PChooseOneCD;

pChooseOneCD = pOptCD;

if (pcoSystems == NULL) {

}

pcoSystems = chooseOneCreate(asDef 1 coNoinitialHighlight 1

wg 1 genCntlChooseCOCB 1 (XtPointer) & pChooseOneCD 1 wg 1

"Choose System" 1 200 1 NULL);

static void
systemGenChooseOneCB(wg 1 xpClient 1 xpCall)

{

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

systemGenChooseOneSetup(wg 1 (optChooseCntlData *) xpClient);
sbNames = getSystemNameList();
chooseOneChangeList(pcoSystems 1 sbNames 1 coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}

Page 35 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1549

collabCntiUI.c 7/5/11 11 :52 AM

chooseOneMobExec(pcoSystems, wg);
}

static void
systemGenChooseManySetup(wg, pOptCD)

{

Widget wg;
multiChooseCntlData *POptCD;

static String asDef[] ={NULL};
static multiChooseCntlData *PChooseManyCD;

pChooseManyCD = pOptCD;

if (pcmSystems == NULL) {
pcmSystems = chooseManyCreate(asDef, cmNoinitialHighlight,

wg, genCntlChooseCOCB, (XtPointer) & pChooseManyCD, wg,
"Choose Systems", 200);

}
}

static void
systemGenChooseManyCB(wg, xpClient, xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

systemGenChooseManySetup(wg, (multiChooseCntlData *) xpClient);
sbNames = getSystemNameList();
chooseManyChangeList(pcmSystems, sbNames, cmNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}
chooseManyMobExec(pcmSystems, wg);

static void
sesMgrGenChooseOneSetup(wg, pOptCD)

{

}

Widget wg;
optChooseCntlData *POptCD;

static String asDef[] ={NULL};
static optChooseCntlData *PChooseOneCD;

pChooseOneCD = pOptCD;

if (pcoSesMgrs == NULL) {

}

pcoSesMgrs = chooseOneCreate(asDef, coNoinitialHighlight,
wg, genCntlChooseCOCB, (XtPointer) & pChooseOneCD, wg,
"Choose SesMgr", 200, NULL);

Page 36 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1550

collabCntiUI.c

static void
sesMgrGenChooseOneCB(wg 1 xpClient 1 xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

sesMgrGenChooseOneSetup(wg 1 (optChooseCntlData *) xpClient);
sbNames = getSesMgrNameList();
chooseOneChangeList(pcoSesMgrs 1 sbNames 1 coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}
chooseOneMobExec(pcoSesMgrs 1 wg);

static void
collabFrontGenChooseOneSetup(wg 1 pOptCD)

{

Widget wg;
optChooseCntlData *POptCD;

static String asDef[] ={NULL};
static optChooseCntlData *PChooseOneCD;

pChooseOneCD = pOptCD;

if (pcoCollabFronts NULL) {
pcoCollabFronts = chooseOneCreate(asDef 1 coNoinitialHighlight 1

7/5/11 11 :52 AM

wg 1 genCntlChooseCOCB 1 (XtPointer) & pChooseOneCD 1 wg
I

"Choose Col lab Front" 1 200 1 NULL);
}

}

static void
collabFrontGenChooseOneCB(wg 1 xpClient 1 xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

collabFrontGenChooseOneSetup(wg 1 (optChooseCntlData *) xpClient);
sbNames = getCollabFrontNameList(0);
chooseOneChangeList(pcoCollabFronts 1 sbNames 1 coNoinitialHighlight);
if (s bN ames) {

strListDestroy(sbNames);
}
chooseOneMobExec(pcoCollabFronts 1 wg);

Page 37 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1551

collabCntiUI.c 7/5/11 11 :52 AM

static void
collabFrontGenChooseManySetup(wg, pOptCD)

Widget wg;
multiChooseCntlData *POptCD;

{
static String asDef[] ={NULL};
static multiChooseCntlData *PChooseManyCD;

pChooseManyCD = pOptCD;

if (pcmCollabFronts ==NULL) {
pcmCollabFronts = chooseManyCreate(asDef, cmNoinitialHighlight,

wg, genCntlChooseCOCB, (XtPointer) & pChooseManyCD,
wg,

"Choose Systems", 200);
}

}

static void
collabFrontGenChooseManyCB(wg, xpClient, xpCall)

{

}

Widget wg;
XtPointer xpClient;
XtPointer xpCall;

char **SbNames;

collabFrontGenChooseManySetup(wg, (multiChooseCntlData *) xpClient);
sbNames = getCollabFrontNameList(0);
chooseManyChangeList(pcmCollabFronts, sbNames, cmNoinitialHighlight);
if (s bN ames) {

strListDestroy(sbNames);
}
chooseManyMobExec(pcmCollabFronts, wg);

static void
collabUtilPopupConfirm(wg, pGenCD, sMsg)

{

Widget wg;
genCntlData *PGenCD;
char *SMsg;

static dialogCntlData dialogCD;
XtVarArgsList argList;
XmString tmpl, tmp2;

if (dialogCD.wgDialog == NULL) {

dialogCD.fFlags = DIALOG_OK I DIALOG_CANCEL;
dialogCD.fMode = XmDIALOG_APPLICATION_MODAL;
dialogCD.sMessage = sMsg;
dialogCD.sName = "Confirm";
dialogCD.xpClient = pGenCD->xpClient;

Page 38 of 39
Petitioner Microsoft Corporation, Ex. 1002, p. 1552

collabCntiUI.c

}

dialogCD.fnCallback = pGenCD->fnCallback;
tmpl = XmStringCreateSimple("Yes");
tmp2 = XmStringCreateSimple("No");
arglist = XtVaCreateArgsList(NULL,

XmNokLabelString, tmpl,
XmNcancelLabelString, tmp2,
XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
NULL);

createQuestionDialog(wg, "confirmDialog", &dialogCD, arglist);
XtFree(argList);
XmStringFree(tmpl);
XmStringFree(tmp2);

defaultDialogPopupMessage(&dialogCD, sMsg);
}

7/5/11 11 :52 AM

Page 39 of 39

Petitioner Microsoft Corporation, Ex. 1002, p. 1553

front. c 7/5/11 11 :53 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslerrno.h>
#include <netdb.h>
#include <malloc.h>
#include <sysltypes.h>
#include <unistd.h>
#include <pwd.h>

#ifdef SHASTRA4SUNS
#include <syslsysteminfo.h>
#end if

#include <Xlliintrinsic.h>
#include <XlliStringDefs.h>
#include <XmiXm.h>

#include <shastralshastra.h>
#include <shastralshastraStateDefs.h>

#include <shastraldatacommlshastraDataH.h>
#include <shastraldatacommlshastraidH.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>

#include <shastralshautilslshautils.h>

Page 1 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1554

front. c

#include <shastra/shautils/kernelFronts.h>

#include <shastra/kernel/kernel_server.h>

#include <shastra/front/frontP.h>
#include <shastra/front/front.h>
#include <shastra/front/front_clientP.h>
#include <shastra/front/front_client.h>
#include <shastra/front/frontState.h>
#include <shastra/front/frontAppResP.h>

/*static shaFrontAppData frontAppData;*/
shaFrontAppData *PFrontAppData = &frontAppData;
static shastraid frontShastraid;
shastraid *PFrontSid = &frontShastraid;

static void getFrontShastraidinfo(Prot0(void));
static char *GetShastraBaseDir();

static void
shastraSetupDefaultResources(pAppData)

shaFrontAppData *PAppData;
{

}

if(pAppData == NULL){
return;

}

f*pAppData->sDirBase = DEFSHASTRABASEDIR;*/
pAppData->sDirBase = GetShastraBaseDir();

pAppData->sDirDefs = DEFSHASTRADEFSDIR;
pAppData->sDirData = DEFSHASTRADATADIR;
pAppData->sDirBin = DEFSHASTRABINDIR;
pAppData->sDirHelp = DEFSHASTRAHELPDIR;

pAppData->sFileHome = DEFSHASTRAHOMEFILE;
pAppData->sFileLog = DEFSHASTRALOGFILE;
pAppData->sFileHosts = DEFSHASTRAHOSTSFILE;
pAppData->sFileUsers = DEFSHASTRAUSERSFILE;
pAppData->sFileApps = DEFSHASTRAAPPSFILE;
pAppData->sFileHelp = DEFSHASTRAHELPFILE;

pAppData->sLocStart = DEFSHASTRASTARTLOCAL;
pAppData->sRemStart = DEFSHASTRASTARTREMOTE;

pAppData->sPasswd = DEFSHASTRAPASSWD;

if(pAppData->fNoGUI){
pAppData->fConnect = True;

}
else{

pAppData->fConnect = False;
}

7/5/11 11 :53 AM

Page2of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1555

front. c

void
shastraFrontSetupApplResDir(sDir)

char *SDir;
{

}

char sbName[1024] 1 *SName;

if(sDir == NULL){
sName = resolveNameFromBase(pFrontAppData->sDirBase 1

pFrontAppData->sDirDefs);
}
else{

}

sName = resolveNameFrom2Bases(pFrontAppData->sDirBase 1

pFrontAppData->sDirDefs 1

sDir);

fprintf(stderr 1 "getenv()->%s\n" 1 getenv("XAPPLRESDIR"));
sprintf(sbName 1 "XAPPLRESDIR=%s" 1 sName);
fprintf(stderr 1 "putenv()->%s\n" 1 sbName);
putenv (s bName) ;
fprintf(stderr 1 "getenv()->%s\n" 1 getenv("XAPPLRESDIR"));

void
s h a s t r a F ron t 5 e t u p (a r g c 1 a r g v 1 s F rNa me 1 w g P a rent 1 i Po r t)

{

int argc;
char **argv;
c h a r * s F rNa me ;
Widget
int

int iStatus;
int
int
extern int
char *SName;

wgParent;
iPort;

i;
iSocket;
errno;

static XrmOptionDescRec xrmOptions[] = {
DEFSHASTRAXRMOPTIONS

};

pFrontAppData = &frontAppData;
pFrontAppData->pSidSelf = pFrontSid = &frontShastraid;
pFrontAppData->wgTop = wgParent;
pFrontAppData->argc = argc;
pFrontAppData->argv = argv;
pFrontAppData->sName = sFrName;
pFrontAppData->iSvcPort = iPort;
pFrontAppData->sbMsgBuf = malloc(1024);
pFrontAppData->fNoGUI = (wgParent ==NULL);

if(wgParent !=NULL){
setupResourceEditHandler(wgParent);

7/5/11 11 :53 AM

Page3of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1556

front. c

}

XtVaGetApplicationResources(wgParent,
(XtPointer)&frontAppData,
xrmResources, XtNumber(xrmResources),
f*hardcoded non-overridable app resources*/
XshaNhelp, False,
XshaNusePixmap, False,
XshaNservicePort, iPort,
NULL);

/*sanity checking of resources*/
}
else{

}

/*provide some way of setting resources*/
shastraSetupDefaultResources(pFrontAppData);

shastraFrontSetupApplResDir();

getFrontShastraidinfo();

mplexRegisterErrHandler(closedChannelCleanupHandler);

registerinit();
kernFrontsinit();
sesmFrontsinit();
clientHostsinit();

if(pFrontAppData->fConnect){

}

iStatus = frontKernelConnectReq(pFrontSid);
for (i = 0; i < 3; i++) {

if(iStatus == -1){
if(errno == ECONNREFUSED){

sName = resolveNameFrom2Bases(pFrontAppData->sDirBase,
pFrontAppData->sDirBin,
pFrontAppData->sLocStart);

startShastraKernel(pFrontSid, sName);
sleep(S);
iStatus = frontKernelConnectReq(pFrontSid);

}
else{

}

}

fprintf(stderr,"Can't start kernel .. Operating standalone!\n");

}

clSvrSetSelfModeOprn();

void
shastraFrontSetupicon(sFile)

char *SFile;
{

7/5/11 11 :53 AM

Page4of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1557

front. c 7/5/11 11 :53 AM

}

Pixmap xpmiconBM;
char sbName[1024], *SName;
Pixel fg, bg;

sName = resolveNameFrom2Bases(pFrontAppData->sDirBase,
pFrontAppData->sDirDefs, sFile);

xpmiconBM = convertStringToPixmap(pFrontAppData->wgTop, sName);

if (xpmiconBM != XmUNSPECIFIED_PIXMAP) {
XtVaSetValues(pFrontAppData->wgTop, XmNiconPixmap, xpmiconBM, NULL);

}
/*extend to pixmaps, iconWindow etc if/when*/

void
shastraFrontSetupimage(wg, sFile)

Widget wg;

{

}

char *Sfile;

Pixmap xpmBM;
char *SName;

sName = resolveNameFrom2Bases(pFrontAppData->sDirBase,
pFrontAppData->sDirDefs, sFile);

xpmBM = convertStringToPixmap(wg, sName);
if (xpmBM != XmUNSPECIFIED_PIXMAP) {

XtVaSetValues(wg, XmNlabelPixmap, xpmBM, NULL);
}

static void
getFrontShastraidinfo()
{

shastraid *PSid;
char *name, nmBuf[256];
struct hostent *PHostEnt;
Display *PDisplay;
uid_ t auid;
struct passwd *apass;
char *tv;

pSid = pFrontAppData->pSidSelf;

if(pFrontAppData->wgTop != NULL){
pDisplay = XtDisplay(pFrontAppData->wgTop);
name= XDisplayString(pDisplay);
if(name == NULL){

perror("XDisplayString()");
strcpy(nmBuf, "anonymous.cs.purdue.edu:0");

}
}
else{
name= "no-display";

Page5of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1558

front. c

}

pSid->nmDisplay = strdup(name);

#ifdef SHASTRA4SUNS
if (sysinfo(SI_HOSTNAME 1 nmBuf 1 sizeof(nmBuf))

perror(11 sysinfo() II);
strcpy(nmBuf 1

11 anonymous.cs.purdue.edu 11
);

}
#else

if (gethostname(nmBuf 1 sizeof(nmBuf)) != 0) {
perror(11 gethostname() 11

);

strcpy(nmBuf 1
11 anonymous.cs.purdue.edu 11

);

}
#end if

pSid->nmHost = strdup(nmBuf);

-1) {

if ((pHostEnt = gethostbyname(pSid->nmHost))
perror(11 gethostbyname() II);

NULL) {

}
else{

unsigned int temp;
memcpy(&temp 1 &pHostEnt->h_addr_list [0] [0] 1 4);
pSid->liPAddr = ntohl(temp);

7/5/11 11 :53 AM

l*pSid->liPAddr =*(unsigned long*) &pHostEnt->h_addr_list[0] [0] ;*I
}

#ifndef DEBUG
printf(11 %lu (%lx) -- %s\n 11

1 pSid->liPAddr 1

pSid-> liPAdd r 1 ipadd r2 st r (pSid-> li PAdd r)) ;
#endif I* DEBUG *I

pSid->iProcid = getpid();

pSid->iPort = pFrontAppData->iSvcPort;

pSid->lSIDTag = (pSid->liPAddr << 16) + pSid->iProcid;
#ifdef DEBUG

fprintf(stdout 1
11 5IDTag: %lu\n 11

1 pSid->lSIDTag);
#endif I* DEBUG *I

pSid->dLoadAvg = 0.0;
#ifdef DEBUG

fp rintf (stdout 1 II Load : %l f\n 11

1 pSid->dLoadAvg);
#endif I* DEBUG *I

if((pFrontAppData->sName !=NULL) && (pFrontAppData->sName[0] != '\0')){
pSid->nmApplicn = pFrontAppData->sName;

}
else if(pFrontAppData->argv[0]){

if((name = strrchr(pFrontAppData->argv[0] 1 'I'))
name= pFrontAppData->argv[0];

}
else{

NULL) {

Page6of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1559

front. c

}

name++;
}
pSid->nmApplicn = strdup(name);

}
else{

pSid->nmApplicn = strdup("anonymous");
}

auid = getuid();
apass = getpwuid(auid);
strcpy(nmBuf, apass->pw_name);
if (tv =getenv("WEBNAME"))
{

}

pSid->webname = strdup(tv);
pSid->nmUser = strdup(tv);

else
{

}

pSid->webname = strdup(nmBuf);
pSid->nmUser = strdup(nmBuf);

if(pFrontAppData->sPasswd){
pSid->nmPasswd = strdup(pFrontAppData->sPasswd);

}
else{

pSid->nmPasswd = strdup(DEFSHASTRAPASSWD);
}

if (pFrontAppData->iDbgLevel) {
outputid(stdout, pSid);

}
name= pSid2Str(pSid, PSIDSHOWALL);
printf("Shastraid: %s\n", name);
if(name != NULL){

free (name);
}

shastraid *
getMyFrontShastraid()
{

}

if(pFrontAppData){
return pFrontAppData->pSidSelf;

}
else{

return NULL;
}

shaFrontAppData *
getMyFrontAppData()
{

7/5/11 11 :53 AM

Page7of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1560

front. c

return pFrontAppData;
}

void
void
void
void
void

(*clientControlDataFunc) (Prot2(int, shaCmdData**));
(*clientOperatorFunc) (Protl(hostData *));
(*clientConnectFunc) (Protl(hostData *));
(*clientSelectFunc) (Protl(hostData *));
(*clientTerminateFunc) (Protl(hostData *));

void
registerClientControlDataFunc(func)

{

}

void (*func) ();

clientControlDataFunc = func;

void
registerClientTerminateFunc(func)

{

}

void (*func) ();

clientTerminateFunc = func;

void
registerClientSelectFunc(func)

{

}

void (*func) ();

clientSelectFunc = func;

void
registerClientConnectFunc(func)

{

}

void (*func) ();

clientConnectFunc = func;

void
registerClientOperatorFunc(func)

{

}

void (*func) ();

clientOperatorFunc = func;

void (*collabControlDataFunc) (Prot2(int, shaCmdData**));
void (*collabOperatorFunc) (Protl(hostData *));
void (*collabSelectFunc) (Protl(hostData *));
void (*collabinitiateFunc) (Protl(hostData *));
void (*collabTerminateFunc) (Protl(hostData *));
void (*collabJoinFunc) (Protl(hostData *));
void (*collabLeaveFunc) (Protl(hostData *));
void (*collabRemoveFunc) (Protl(hostData *));

7/5/11 11 :53 AM

Page8of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1561

front. c 7/5/11 11 :53 AM

void (*collabSetPermsFunc) (Prot3(hostData *, shastraidTag *, unsigned long
)) ;

void (*collabGetPermsFunc) (Prot3(hostData *, shastraidTag *, unsigned long
)) ;

void (*collabSetixnModeFunc) (Prot2(hostData *, unsigned long));
void (*collabGetixnModeFunc) (Prot2(hostData *, unsigned long));
void (*collabSetFormatFunc) (Prot2(hostData *, unsigned long));
void (*collabGetFormatFunc) (Prot2(hostData *, unsigned long));
void (*collabSetFloorModeFunc) (Prot2(hostData *, unsigned long));
void (*collabGetFloorModeFunc) (Prot2(hostData *, unsigned long));
void (*collabGrabTokenFunc) (Prot2(hostData *, shastraidTag *));
void (*collabFreeTokenFunc) (Prot2(hostData *, shastraidTag *));
void (*CO llabAs kToken Func) (P rot2 (hostData *, shast raidTag *));
void (*collabTellTokenFunc) (Prot2(hostData *, shastraidTag *));

void
registerCollabControlDataFunc(func)

{

}

void (*func) ();

collabControlDataFunc = func;

void
registerCollabinitiateFunc(func)

{

}

void (*func) ();

collabinitiateFunc = func;

void
registerCollabTerminateFunc(func)

{

}

void (*func) ();

collabTerminateFunc = func;

void
registerCollabSelectFunc(func)

{

}

void (*func) ();

collabSelectFunc = func;

void
registerCollabJoinFunc(func)

{

}

void (*func) ();

collabJoinFunc = func;

void
registerCollabLeaveFunc(func)

void (*func) ();

Page9of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1562

front. c

{

}
collabLeaveFunc = func;

void
registerCollabOperatorFunc(func)

{

}

void (*func) ();

collabOperatorFunc = func;

void
registerCollabRemoveFunc(func)

{

}

void (*func) ();

collabRemoveFunc = func;

void
registerCollabSetPermsFunc(func)

{

}

void (*func) ();

collabSetPermsFunc = func;

void
registerCollabGetPermsFunc(func)

{

}

void (*func) ();

collabGetPermsFunc = func;

void
registerCollabSetixnModeFunc(func)

{

}

void (*func) ();

collabSetixnModeFunc = func;

void
registerCollabGetixnModeFunc(func)

{

}

void (*func) ();

collabGetixnModeFunc = func;

void
registerCollabSetFormatFunc(func)

{

}

void (*func) ();

collabSetFormatFunc = func;

7/5/11 11 :53 AM

Page 10 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1563

front. c

void
registerCollabGetFormatFunc(func)

{

}

void (*func) ();

collabGetFormatFunc = func;

void
registerCollabSetFloorModeFunc(func)

{

}

void (*func) ();

collabSetFloorModeFunc = func;

void
registerCollabGetFloorModeFunc(func)

{

}

void (*func) ();

collabGetFloorModeFunc = func;

void
registerCollabGrabTokenFunc(func)

{

}

void (*func) ();

collabGrabTokenFunc = func;

void
registerCollabFreeTokenFunc(func)

{

}

void (*func) ();

collabFreeTokenFunc = func;

void
registerCollabAskTokenFunc(func)

{

}

void (*func) ();

collabAskTokenFunc = func;

void
registerCollabTellTokenFunc(func)

{

}

void (*func) ();

collabTellTokenFunc = func;

void (*audioStartFunc) (Prot2(hostData *, shastraidTag *));
void (*audioEndFunc) (Prot2(hostData *, shastraidTag *));

7/5/11 11 :53 AM

void (*audioRecvMsgFunc) (Prot3(hostData *, shastraidTag *, audioBite *));
void (*audioRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));

Page 11 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1564

front. c

void (*audioSendFileFunc) (Protl(hostData *));
void (*audioSendMsgFunc) (Protl(hostData *));

void
registerAudioStartFunc(func)

{

}

void (*func) ();

audioStartFunc = func;

void
registerAudioEndFunc(func)

{

}

void (*func) ();

audioEndFunc = func;

void
registerAudioRecvMsgFunc(func)

{

}

void (*func) ();

audioRecvMsgFunc = func;

void
registerAudioRecvFileFunc(func)

{

}

void (*func) ();

audioRecvFileFunc = func;

void
registerAudioSendFileFunc(func)

{

}

void (*func) ();

audioSendFileFunc = func;

void
registerAudioSendMsgFunc(func)

{

}

void (*func) ();

audioSendMsgFunc = func;

void (*videoStartFunc) (Prot2(hostData *, shastraidTag *));
void (*videoEndFunc) (Prot2(hostData *, shastraidTag *));

7/5/11 11 :53 AM

void (*videoRecvMsgFunc) (Prot3(hostData *, shastraidTag *, videoimg *));
void (*videoRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*videoSendFileFunc) (Protl(hostData *));
void (*videoSendMsgFunc) (Protl(hostData *));

void

Page 12 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1565

front. c

registerVideoStartFunc(func)

{

}

void (*func) ();

videoStartFunc = func;

void
registerVideoEndFunc(func)

{

}

void (*func) ();

videoEndFunc = func;

void
registerVideoRecvMsgFunc(func)

{

}

void (*func) ();

videoRecvMsgFunc = func;

void
registerVideoRecvFileFunc(func)

{

}

void (*func) ();

videoRecvFileFunc = func;

void
registerVideoSendFileFunc(func)

{

}

void (*func) ();

videoSendFileFunc = func;

void
registerVideoSendMsgFunc(func)

{

}

void (*func) ();

videoSendMsgFunc = func;

void (*textStartFunc) (Prot2(hostData *, shastraidTag *));
void (*textEndFunc) (Prot2(hostData *, shastraidTag *));
void (*textRecvMsgFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*textRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*textSendFileFunc) (Protl(hostData *));
void (*textSendMsgFunc) (Protl(hostData *));

void
registerTextStartFunc(func)

void (*func) ();
{

textStartFunc = func;

7/5/11 11 :53 AM

Page 13 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1566

front. c

}

void
registerTextEndFunc(func)

{

}

void (*func) ();

textEndFunc = func;

void
registerTextRecvMsgFunc(func)

{

}

void (*func) ();

textRecvMsgFunc = func;

void
registerTextRecvFileFunc(func)

{

}

void (*func) ();

textRecvFileFunc = func;

void
registerTextSendFileFunc(func)

{

}

void (*func) ();

textSendFileFunc = func;

void
registerTextSendMsgFunc(func)

{

}

void (*func) ();

textSendMsgFunc = func;

void (*pictStartFunc) (Prot2(hostData *, shastraidTag *));
void (*pictEndFunc) (Prot2(hostData *, shastraidTag *));

7/5/11 11 :53 AM

void (*pictRecvMsgFunc) (Prot3(hostData *, shastraidTag *, pictPieces *));
void (*pictRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*pictSendFileFunc) (Protl(hostData *));
void (*pictSendMsgFunc) (Protl(hostData *));

void
registerPictStartFunc(func)

{

}

void (*func) ();

pictStartFunc = func;

void
registerPictEndFunc(func)

Page 14 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1567

front. c 7/5/11 11 :53 AM

{

}

void

pictEndFunc = func;

void
registerPictRecvMsgFunc(func)

{

}

void (*func) ();

pictRecvMsgFunc = func;

void
registerPictRecvFileFunc(func)

{

}

void (*func) ();

pictRecvFileFunc = func;

void
registerPictSendFileFunc(func)

{

}

void (*func) ();

pictSendFileFunc = func;

void
registerPictSendMsgFunc(func)

{

}

void (*func) ();

pictSendMsgFunc = func;

void (*xsCntlStartFunc) (Prot2(hostData *, shastraidTag *));
void (*xsCntlEndFunc) (Prot2(hostData *, shastraidTag *));
void (*xsCntlRecvMsgFunc) (Prot3(hostData *, shastraidTag *, xsCntlDatas *)

) ;
void (*xsCntlRecvFileFunc) (Prot3(hostData *, shastraidTag *, char *));
void (*xsCntlSendFileFunc) (Protl(hostData *));
void (*xsCntlSendMsgFunc) (Protl(hostData *));

void
registerXSCntlStartFunc(func)

{

}

void (*func) ();

xsCntlStartFunc = func;

void
registerXSCntlEndFunc(func)

void (*func) ();
{

xsCntlEndFunc = func;

Page 15 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1568

front. c

}

void
registerXSCntlRecvMsgFunc(func)

{

}

void (*func) ();

xsCntlRecvMsgFunc = func;

void
registerXSCntlRecvFileFunc(func)

{

}

void (*func) ();

xsCntlRecvFileFunc = func;

void
registerXSCntlSendFileFunc(func)

{

}

void (*func) ();

xsCntlSendFileFunc = func;

void
registerXSCntlSendMsgFunc(func)

{

}

void (*func) ();

xsCntlSendMsgFunc = func;

void (*polyStartFunc) (Prot2(hostData *, shastraidTag *));
void (*polyEndFunc) (Prot2(hostData *, shastraidTag *));

7/5/11 11 :53 AM

void (*polyRecvMsgFunc) (Prot3(hostData *, shastraidTag *, ipimageData *));
void (*polyRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*polySendFileFunc) (Protl(hostData *));
void (*polySendMsgFunc) (Protl(hostData *));

void
registerPolyStartFunc(func)

{

}

void (*func) ();

polyStartFunc = func;

void
registerPolyEndFunc(func)

{

}

void (*func) ();

polyEndFunc = func;

void
registerPolyRecvMsgFunc(func)

Page 16 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1569

front. c

{

}

void

polyRecvMsgFunc = func;

void
registerPolyRecvFileFunc(func)

{

}

void (*func) ();

polyRecvFileFunc = func;

void
registerPolySendFileFunc(func)

{

}

void (*func) ();

polySendFileFunc = func;

void
registerPolySendMsgFunc(func)

{

}

void (*func) ();

polySendMsgFunc = func;

void (*pntrStartFunc) (Prot2(hostData *, shastraidTag *));
void (*pntrEndFunc) (Prot2(hostData *, shastraidTag *));

7/5/11 11 :53 AM

void (*pntrRecvMsgFunc) (Prot3(hostData *, shastraidTag *, shaDoubles *));
void (*pntrRecvFileFunc) (Prot3(hostData *, shastraidTag *, char*));
void (*pntrSendFileFunc) (Protl(hostData *));
void (*pntrSendMsgFunc) (Protl(hostData *));

void
registerPntrStartFunc(func)

{

}

void (*func) ();

pntrStartFunc = func;

void
registerPntrEndFunc(func)

{

}

void (*func) ();

pntrEndFunc = func;

void
registerPntrRecvMsgFunc(func)

{

}

void (*func) ();

pntrRecvMsgFunc = func;

Page 17 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1570

front. c 7/5/11 11 :53 AM

void
registerPntrRecvFileFunc(func)

{

}

void (*func) ();

pntrRecvFileFunc = func;

void
registerPntrSendFileFunc(func)

{

}

void (*func) ();

pntrSendFileFunc = func;

void
registerPntrSendMsgFunc(func)

{

}

void (*func) ();

pntrSendMsgFunc = func;

void (*cursorStartFunc) (Prot2(hostData *, shastraidTag *));
void (*cursorEndFunc) (Prot2(hostData *, shastraidTag *));
void (*cursorRecvMsgFunc) (Prot3(hostData *, shastraidTag *, shaDoubles *))

void (*cursorRecvFileFunc) (Prot3(hostData *, shastraidTag *, char *));
void (*cursorSendFileFunc) (Protl(hostData *));
void (*cursorSendMsgFunc) (Protl(hostData *));

void
registerCursorStartFunc(func)

{

}

void (*func) ();

cursorStartFunc = func;

void
registerCursorEndFunc(func)

{

}

void (*func) ();

cursorEndFunc = func;

void
registerCursorRecvMsgFunc(func)

{

}

void (*func) ();

cursorRecvMsgFunc = func;

void
registerCursorRecvFileFunc(func)

Page 18 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1571

front. c

{

}

void

cursorRecvFileFunc = func;

void
registerCursorSendFileFunc(func)

{

}

void (*func) ();

cursorSendFileFunc = func;

void
registerCursorSendMsgFunc(func)

{

}

void (*func) ();

cursorSendMsgFunc = func;

static char *GetShastraBaseDir()
{

}

char *dname;

if (dname = getenv("SHASTRADIR"))
{

}
else
{

return (dname);

dname = strdup(DEFSHASTRABASEDIR);
}
return(dname);

7/5/11 11 :53 AM

Page 19 of 19

Petitioner Microsoft Corporation, Ex. 1002, p. 1572

front_client.c 7/5/11 11 :53 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>
#include <netdb.h>

#include <shastralshastra.h>

#include <shastralutilsllist.h>

#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastraldatacommlshastraDataH.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFrontsP.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFronts.h>
#include <shastralshautilslclientHosts.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>

#include <shastralfrontlshastraCntl.h>
#include <shastralfrontlclSvrCntl.h>
#include <shastralfrontlfrontP.h>
#include <shastralfrontlfront.h>
#include <shastralfrontlfrontState.h>
#include <shastralfrontlfront_client.h>
#include <shastralfrontlfront_clientP.h>

Page 1 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1573

front_client.c

#include <shastra/front/frontCollClient.h>

shaCmdData frontCmdData;

cmCommand frontCmdTab[] =FRONT CLIENTCMDS;
#define FRONT_NCMDS (sizeof(frontCmdTab)/sizeof(cmCommand))
int frontNCmds = FRONT_NCMDS;

cmCommand frontinCmdTab[] = FRONT CLIENTINCMDS;
#define FRONT_INNCMDS (sizeof(frontinCmdTab)/sizeof(cmCommand))
int frontinNCmds = FRONT_INNCMDS;

host Data *PHostKernel;

#define checkConn() \
if ((pHostKernel ==NULL) II\
(pHostKernel->fStatus == shaError)) \

{ \
fprintf(stderr,"Connection to Shastra is bad!\n"); \
return -1; \

}

#define sendReqString(s, arg) \
if(hostSendQueuedRequest(pHostKernel, s, arg) == -1) \

{ \

}

pHostKernel->fStatus = shaError; \
closedChannelCleanupHandler(pHostKernel->fdSocket); \
fprintf(stderr,"Error in Sending Shastra Operation Request\n"); \
return -1; \

#define sendDataString(s) \
if(cmSendString(pHostKernel->fdSocket, s) -1) \

{ \

}

pHostKernel->fStatus = shaError; \
closedChannelCleanupHandler(pHostKernel->fdSocket); \
fprintf(stderr,"Error in Sending Shastra Operation Data\n"); \
return -1; \

#define Shastraidin(filedesc, pShaid) \
if(shastraidin(pHostKernel->fdSocket, pShaid) == -1) \

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Receiving SID from Kernel\n");\
return -1;\

#define ShastraidOut(filedesc, pShaid)\
if(shastraidOut(pHostKernel->fdSocket, pShaid) -1)\

{\

7/5/11 11 :53 AM

Page 2 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1574

front_client.c

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Sending SID to Kernel\n");\
return -1;\

#define Shastraidsin(filedesc, pShaids)\
if(shastraidsin(pHostKernel->fdSocket, pShaids) == -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Receiving SIDs from Kernel\n");\
return -1;\

#define ShastraidsOut(filedesc, pShaids)\
if(shastraidsOut(pHostKernel->fdSocket, pShaids) -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Sending SIDs to Kernel\n");\
return -1;\

#define ShastraidTagin(filedesc, pShaidTag)\
if(shastraidTagin(pHostKernel->fdSocket, pShaidTag) -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Receiving SIDTag from Kernel\n");\
return -1;\

#define ShastraidTagOut(filedesc, pShaidTag)\
if(shastraidTagOut(pHostKernel->fdSocket, pShaidTag) -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Sending SIDTag to Kernel\n");\
return -1;\

#define ShastraidTagsin(filedesc, pShaidTags)\
if(shastraidTagsin(pHostKernel->fdSocket, pShaidTags) -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Receiving SIDTags from Kernel\n");\
return -1;\

#define ShastraidTagsOut(filedesc, pShaidTags)\
if(shastraidTagsOut(pHostKernel->fdSocket, pShaidTags) -1)\

7/5/11 11 :53 AM

Page 3 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1575

front_client.c

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Sending SIDTags to Kernel\n");\
return -1;\

#define ShastraULongin(filedesc, pULong)\
if(shaULongin(pHostKernel->fdSocket, pULong) == -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Receiving pULong from Kernel\n");\
return -1;\

#define ShastraULongOut(filedesc, pULong)\
if(shaULongOut(pHostKernel->fdSocket, pULong) == -1)\

{\

}

pHostKernel->fStatus = shaError;\
closedChannelCleanupHandler(pHostKernel->fdSocket);\
fprintf(stderr, "Error Sending pULong to Kernel\n");\
return -1;\

I*
* Function
*I

int
startSystemReq(pHostKr, pCreateSid)

{

hostData *PHostKr;
shastraid *PCreateSid;

char *SName;
shastraid *PSid;
shastraidTag *PSidTag;
struct hostent *PHostEnt;
int krindex;
int fMine = 0;
unsigned int temp;

if(pCreateSid == NULL){
fprintf(stderr,"startSystemReq()-> bad args!\n");
return -1;

}
if ((pHostEnt = gethostbyname(pCreateSid->nmHost)) ==NULL) {

perror("gethostbyname()");

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Bad Host %s\n", pCreateSid->nmHost);
showShastrainfo(pFrontAppData->sbMsgBuf);
return -1;

}
memcpy(&temp, &pHostEnt->h_addr _list [0] [0], 4);

Page 4 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1576

front_client.c

pCreateSid->liPAddr = ntohl(temp);
printf("%lu -- %s\n", pCreateSid->liPAddr,

ipaddr2str(pCreateSid->liPAddr));

pCreateSid->lSIDTag = 0;
pCreateSid->dLoadAvg = 0;
pCreateSid->nmUser = pFrontSid->nmUser;
pCreateSid->iPort = 0;
pCreateSid->iProcid = 0;

if (pFrontAppData->iDbgLevel) {
outputid(stdout, pCreateSid);

}
if ((krindex = locateByNameKernFronts(pCreateSid)) != -1) {

pSidTag = KernFrontSidTag(krindex);

}

pSid = getSidByTaginSids(pSidTag, &shastraKernids);
if(!strcmp(pSid->nmUser, pFrontSid->nmUser)){

fMine = 1;
}

/*CHECK -- force rsh*/
if(fMine I I !fMine){

}

}

sName = resolveNameFrom2Bases(pFrontAppData->sDirBase,
pFrontAppData->sDirBin,
pFrontAppData->sRemStart);

startShastraSystem(pCreateSid, sName);

else{

}

checkConn();
sendReqString(REQ_START_SYSTEM, NULL);
ShastraidOut(pHostKernel->fdSocket, pCreateSid);
cmFlush(pHostKernel->fdSocket);

return 0;

I*
* Function
*I

int
startSystemRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_SYSTEM);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
endSystemReq (pHostKr, pSid)

7/5/11 11 :53 AM

Page 5 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1577

front_client.c 7/5/11 11 :53 AM

{

}

host Data
shastraid

*PHostKr;
*PSid;

if(pSid == NULL){
fprintf(stderr,"endSystemReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostKernel->fdSocket, pSid);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
endSystemRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_SYSTEM);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
connectSystemReq(pHostKr, pSid)

{

}

hostData *PHostKr;
shastraid *PSid;

if(pSid == NULL){
fprintf(stderr,"connectSystemReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_CONNECT_SYSTEM, NULL);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
connectSystemRespHandler(fd)

{
int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_CONNECT_SYSTEM);
showShastrainfo(pFrontAppData->sbMsgBuf);

Page 6 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1578

front_client.c

return 0;
}

I*
* Function
*I

int
setShastraidReq(pHostKr, pSid)

{

}

hostData *PHostKr;
shastraid *PSid;

if(pSid == NULL){
fprintf(stderr,"setShastraidReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_SET_SHASTRAID, NULL);
ShastraidOut(pHostKernel->fdSocket, pSid);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
setShastraidRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SET_SHASTRAID);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
getShaKernidReq(pHostKr)

{

}

hostData *PHostKr;

checkConn();
sendReqString(REQ_GET_SHAKERNID, NULL);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
getShaKernidRespHandler(fd)

int fd;

7/5/11 11 :53 AM

Page 7 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1579

front_client.c

{

}

Shastraidsin(fd, &shastraKernids);
if (pFrontAppData->iDbgLevel) {

outputids(stderr, &shastraKernids);
}
adjustKrFrMapSize(shastraKernids.shastraids_len);
updateKrFrMap(&shastraKernids);

setKernelNamesOprn();
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNID);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
get ShaKe rnF ridReq (pHostKr, pSid)

{

}

hostData *PHostKr;
shastraid *PSid;

if(pSid == NULL){
fprintf(stderr,"getShaKernFridReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_GET_SHAKERNFRID, NULL);
ShastraidOut(pHostKernel->fdSocket, pSid);

cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
getShaKernFridRespHandler(fd)

{
int fd;

int iObjindex;
static shastraid inShaid;
static shastraids inShaids;
shastraids *PSids;
int krindex;

fprintf(stderr, "Should be getting front Id's!\n");
Shastraidin(fd, &inShaid);
krindex = locateKernFronts(&inShaid);
if (krindex == -1) {

7/5/11 11 :53 AM

Page 8 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1580

front_client.c 7/5/11 11 :53 AM

}

krindex = occupyKrFrFreeSlot(&inShaid);
}
pSids = getKernFrontSids(&inShaid);
Shastraidsin(fd, pSids);
if (pFrontAppData->iDbgLevel) {

outputids(stderr, pSids);
}
setKernelFrontNamesOprn(inShaid.lSIDTag);
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNFRID);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
getShaSesmidReq(pHostKr)

{

}

hostData *PHostKr;

checkConn();
sendReqString(REQ_GET_SHASESMID, NULL);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
getShaSesmidRespHandler(fd)

{

}

int fd;

Shastraidsin(fd, &shastraSesmids);
if (pFrontAppData->iDbgLevel) {

outputids(stderr, &shastraSesmids);
}
adjustSmFrMapSize(shastraSesmids.shastraids_len);
updateSmFrMap(&shastraSesmids);

setSesMgrNamesOprn();
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_SHASESMID);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int

Page 9 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1581

front_client.c

getShaSesmFridReq(pHostKr, pSidTag)
hostData *PHostKr;
shastraidTag *PSidTag;

{

}

if(pSidTag ==NULL){
fprintf(stderr,"getShaSesmFridReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_GET_SHASESMFRID, (char*) NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
getShaSesmFridRespHandler(fd)

{
int fd;

int smindex;
shastraidTag inShaidTag;
static shastraidTags inShaidTags;
static shastraidTags inShaPermTags;
shastraidTags *PSidTags;
shastraidTags *PPermTags;

ShastraidTagin(fd, &inShaidTag);
smindex = locateSesmFronts(&inShaidTag);
if (smindex == -1) {

7/5/11 11 :53 AM

fprintf(stderr, "getShaSesmFridRespHandler()->can't locate sesMgr!\n");
ShastraidTagsin(fd, &inShaidTags);

}

ShastraidTagsin(fd, &inShaPermTags);
return -1;

}
pSidTags = getSesmFrontSidTags(&inShaidTag);
ShastraidTagsin(fd, pSidTags);
pPermTags = getSesmFrontPermTags(&inShaidTag);
ShastraidTagsin(fd, pPermTags);
if (pFrontAppData->iDbgLevel) {

}

outputidTags(stderr, pSidTags);
outputidTags(stderr, pPermTags);

updateSmFrMap(&shastraSesmids);
setSesMgrFrontNamesOprn(inShaidTag);
setCollabFrontPermsOprn(inShaidTag);
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_GET_SHASESMFRID);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

Page 10 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1582

front_client.c

I*
* Function
*I

int
helpReq(pHostKr)

host Data *PHostKr;
{

}

checkConn();
sendReqString(REQ_HELP, NULL);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int
helpRespHandler(fd)

{

}

int fd;

standardHelpRespHandler(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_HELP);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
shaFrontQuitReq(pHostKr)

{

}

hostData *PHostKr;

if ((pHostKernel !=NULL) && (pHostKernel->fStatus != shaError)) {
sendReqString(REQ_QUIT, NULL);

}

cmFlush(pHostKernel->fdSocket);
quitRespHandler(pHostKernel->fdSocket);

else{
quitRespHandler(0);

}

return 0;

I*
* Function
*I

int
quitRespHandler(fd)

int fd;

7/5/11 11 :53 AM

Page 11 of 34

Petitioner Microsoft Corporation, Ex. 1002, p. 1583

front_client.c 7/5/11 11 :53 AM

{

}

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_QUIT);
showShastrainfo(pFrontAppData->sbMsgBuf);

if (pHostKernel) {
fd = pHostKernel->fdSocket;

}
mplexUnRegisterChannel(fd);
XtDestroyApplicationContext(

exit(0);
return 0;

XtWidgetToApplicationContext(pFrontAppData->wgTop));

I*
* Function
*I

int
clntConnectReq(pHostKr, pSid, pCmdData)

{

hostData *PHostKr;
shastraid *PSid;
shaCmdData *PCmdData;

int status;
clntSocket;

*PHost;
int
hostData

if((pSid NULL) I I (pCmdData ==NULL)){

}

fprintf(stderr,"clntConnectReq()-> bad args!\n");
return -1;

if(pCmdData == NULL){
fprintf(stderr,"clntConnectReq()-> Warning .. No Control Data!\n");

}
if (pFrontAppData->iDbgLevel) {

outputid(stdout, pSid);
}
status = cmClientConnect2Server(pSid->nmHost, pSid->nmApplicn,

pSid->iPort, &clntSocket);
if (status == -1) {

sprintf(pFrontAppData->sbMsgBuf, "clientConnectReq()-- Couldn't connect
\n");

showShastrainfo(pFrontAppData->sbMsgBuf);
return -1;

} else {
sprintf(pFrontAppData->sbMsgBuf, "clientConnectReq()-- connected\n");
showShastrainfo(pFrontAppData->sbMsgBuf);

}

shaKernFlags[clntSocket] = SHAFRONT;
pHost = (hostData *) malloc(sizeof(hostData));
memset(pHost, 0, sizeof(hostData));

Page 12 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1584

front_client.c

pHost->fdSocket = clntSocket;
pHost->lSIDTag = pSid->lSIDTag;
pHost->pSid = copyid(pSid, NULL);
pHost->sendList = listMakeNew();
pHost->recvList = listMakeNew();
pHost->fStatus = shaWait2Send;

if (locateClientHosts(pSid) == -1) {
occupyClHostFreeSlot(pSid);

}
updateAddClHost(pSid, pHost);

if (clientConnectFunc != NULL) {
(*clientConnectFunc) (pHost);

} else {
showShast rainfo (II clntConnectReq () -- Error! No handle r 11

);

}
setClSvrServerNamesOprn(pSid);
clSvrSetCurrHostOprn(pHost, False);
if (mplexRegisterChannel(pHost->fdSocket, shaClientHandler,

pCmdData, (char *) pHost) == -1) {

7/5/11 11 :53 AM

fprintf(stderr, 11 ClntConnectReq()->Couldn't Register Client Handler!!\
n II) ;

}

}

pHost->fStatus = shaError;
return -1;

mplexSetHostData(pHost->fdSocket, pHost);
if((pHostKr = mplexGetHostData(pHost->fdSocket)) != pHost){

fprintf(stderr, 11 clntConnectReq()->mplexSetHostData problem!\n 11
);

}

I*
cmJoinCmdData(&frontCollCmdData, pCmdData); join to standard client

handling

return 0;

I*
* Function
*I

int
clntTerminateReq(pHostKr, pHost)

{

hostData *PHostKr;
hostData *PHost;

if(pHost == NULL){
fprintf(stderr, 11 ClntTerminateReq()->Bad Args!\n 11

);

return -1;
}
clntDisconnectHandler(pHost->fdSocket);
mplexUnRegisterChannel(pHost->fdSocket);

Page 13 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1585

front_client.c 7/5/11 11 :53 AM

/*CHECK technically, should send quit req, and response should do all this*
I

}

int
clntDisconnectHandler(fd)

int fd;
{

hostData
shast raid
shastraidTag

*PHost;
*PSidSvr;

*PSidTag;

pHost = mplexGetHostData(fd);
pSidTag = &pHost->lSIDTag;
pSidSvr = pHost->pSid;
if (pSidSvr == NULL) {

}

fprintf(stderr, "clntDisconnectHandler()->Missing Host System!\n");
return -1;

updateRmvClHostByidTag(pSidSvr, pSidTag);
setClSvrServerNamesOprn(pSidSvr);
clSvrResetCurrHostOprn(pSidSvr, True);
if (clientTerminateFunc != NULL) {

(*ClientTe rminateFunc) (pHost);
} else {

showShastrainfo("clntDisconnectRespHandler() --Error! No handler\n");
}

I*
free(pHost->pSid, free(pHost);
*I

}

I*
* Function
*I

int
clntTerminateServerReq(pHostKr, pHost)

{

hostData *PHostKr;
hostData *PHost;

if(pHost == NULL){

}

fprintf(stderr, "clntTerminateServerReq()->Bad Args!\n");
return -1;

checkConn();
sendReqString(REQ_TERMINATE, NULL);
cmFlush(pHost->fdSocket);
return 0;
clntDisconnectHandler(pHost->fdSocket);
mplexUnRegisterChannel(pHost->fdSocket);

/*CHECK technically, should send quit req, and response should do all this*

Page 14 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1586

front_client.c

I
}

I*
* Function
*I

int
collinitiateReq(pHostKr, pSidTags, perms, lidTag)

{

}

hostData *PHostKr;
shastraidTags *PSidTags;
unsigned long perms, lidTag;

if(pSidTags == NULL){
fprintf(stderr,"collinitiateReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_INITIATE, NULL);
ShastraidTagsOut(pHostKernel->fdSocket, pSidTags);
ShastraULongOut(pHostKernel->fdSocket, &perms);
ShastraULongOut(pHostKernel->fdSocket, &lidTag);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

collinitiateRespHandler(fd)

{

}

int fd;

if (collabinitiateFunc !=NULL) {
(*collabinitiateFunc) (NULL);

}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_INITIATE);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collAutoinitiateReq(pHostKr, pSidTags, perms, lidTag)

{

hostData *PHostKr;
shastraidTags *PSidTags;
unsigned long perms, lidTag;

if(pSidTags == NULL){
fprintf(stderr,"collAutoinitiateReq()-> bad args!\n");
return -1;

}
checkConn();

7/5/11 11 :53 AM

Page 15 of 34

Petitioner Microsoft Corporation, Ex. 1002, p. 1587

front_client.c

}

I*

sendReqString(REQ_COLL_AUTOINITIATE, NULL);
ShastraidTagsOut(pHostKernel->fdSocket, pSidTags);
ShastraULongOut(pHostKernel->fdSocket, &perms);
ShastraULongOut(pHostKernel->fdSocket, &lidTag);
cmFlush(pHostKernel->fdSocket);
return 0;

* Function
*I

collAutoinitiateRespHandler(fd)

{
int fd;

if (collabinitiateFunc != NULL) {
(*collabinitiateFunc) (NULL);

}

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COLL_AUTOINITIATE);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collAskJoinReq(pHostKr, pSmSidTag, pSidTag)

{

}

I*

hostData *PHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL)){
fprintf(stderr,"collAskJoinReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_ASKJOIN, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
cmFlush(pHostKernel->fdSocket);
return 0;

* Function
*I

collAskJoinRespHandler(fd)

{
int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOIN);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

Page 16 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1588

front_client.c

}

I*
* Function
*I

int
collinviteJoinReq(pHostKr, pSmSidTag, pSidTag, pLdrSidTag, pPermTag)

{

}

I*

hostData *PHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
shastraidTag *PLdrSidTag;
shastraidTag *PPermTag;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL) I I (pLdrSidTag
I I (pPermTag ==NULL)){

fprintf(stderr,"collinviteJoinReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_INVITEJOIN, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pLdrSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pPermTag);
cmFlush(pHostKernel->fdSocket);
return 0;

* Function
*I

collinviteJoinRespHandler(fd)
int fd;

{

NULL)

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_INVITEJOIN);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collTellJoinReq(pHostKr, pSmSidTag, pSidTag, pPermTag)

{

hostData *PHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
shastraidTag *PPermTag;

if((pSmSidTag ==NULL) I I (pSidTag NULL) I I (pPermTag

}

fprintf(stderr,"collTellJoinReq()-> bad args!\n");
return -1;

NULL)){

Page 17 of 34

Petitioner Microsoft Corporation, Ex. 1002, p. 1589

front_client.c 7/5/11 11 :53 AM

}

I*

checkConn();
sendReqString(REQ_COLL_TELLJOIN, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pPermTag);
cmFlush(pHostKernel->fdSocket);
return 0;

* Function
*I

int
collTellJoinRespHandler(fd)

{

}

I*

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_TELLJOIN);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

* Function
*I

collinviteRespHandler(fd)

{

I*

int fd;

shastraidTag
shastraidTag
shastraidTag
shastraidTag

sesmSidTag;
frontSidTag;
leaderSidTag;
frontPermTag;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);
ShastraidTagin(fd, &leaderSidTag);
ShastraidTagin(fd, &frontPermTag);

collJoinPromptOprn(sesmSidTag, leaderSidTag, frontPermTag);
*I
collabinvitePromptOprn(sesmSidTag, leaderSidTag, frontPermTag);

sprintf(pFrontAppData->sbMsgBuf, "Done (end)-- %s\n", REQ_COLL_INVITEJOIN
) ;

showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int

Page 18 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1590

front_client.c

collTellJnRespHandler(fd)

{
int fd;

shastraidTag smSidTag;
shastraidTag sidTag;
shastraidTag permTag;
shastraid *PSid;
shaCmdData *PCmdData = NULL;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
ShastraidTagin(fd, &permTag);
pSid = mapSidTag25Id(&smSidTag);
if(collabControlDataFunc){

(*collabControlDataFunc)(shastraNameToService(pSid->nmApplicn), &
pCmdData);

7/5/11 11 :53 AM

if(pCmdData == NULL){
fprintf(stderr,"collTellJnRespHandler()->Invalid Control Data!\n");

}
}
else{

fprintf(stderr,"collTellJnRespHandler()->Can't Obtain Control Data!\n")

}

collJoinReq((hostData*)NULL, pSid, &permTag, pCmdData);
sprintf(pFrontAppData->sbMsgBuf, "Done (end) -- %s\n", REQ_COLL_TELLJOIN)

}

showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
terminateHandler(i)

{

}

int i;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_TERMINATE);
showShastrainfo(pFrontAppData->sbMsgBuf);
shaFrontQuitReq(pHostKernel);
return 0;

* Function
*I

int
closedChannelCleanupHandler(fd)

int fd;
{

hostData *PHost;

Page 19 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1591

front_client.c 7/5/11 11 :53 AM

}

pHost = mplexGetHostData(fd);
if (pHost == NULL) {

fprintf(stderr, "closedChannelCleanupHandler(%d)->NULL Host data!\n",
fd);

}
else{

if (shaKernFlags[fd] == SHAKERNEL) {
fp r int f (s tde r r, "c los edChan ne lC leanupHa nd le r (%d) ->Kernel Disconnected

!\n",
fd) ;

kernelDisconnectHandler(fd);
} else if (shaKernFlags[fd] == SHASESMGR) {

collLeaveRespHandler(fd);
} else if (shaKernFlags[fd] == SHAFRONT) {

clntDisconnectHandler(fd);
}

}
mplexUnRegisterChannel(fd);
return 0;

I*
* Function
*I

int collinviteMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL) I I (pToSidTag
fprintf(stderr,"collinviteMsgReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_INVITEMSG, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int collinviteMsgRespHandler(fd)
int fd;

{

NULL)) {

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_INVITEMSG);

Page 20 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1592

front_client.c

}

showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int collinviteMsgHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
char *SMsg;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);

7/5/11 11 :53 AM

sMsg = cmReceiveString(fd);
collabRecvdinviteMessageOprn(smSidTag, sidTag, sMsg);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) %s\n", REQ COLL INVITEMSG) - -

}

showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int collinvRespMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL) I I (pToSidTag
fprintf(stderr,"collinviteJoinReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_INVRESPMSG, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

* Function

NULL)) {

Page 21 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1593

front_client.c 7/5/11 11 :53 AM

*I
int collinvRespMsgRespHandler(fd)

int fd;
{

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_INVRESPMSG);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int collinvRespMsgHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
char *SMsg;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
collabRecvdinvRespMessageOprn(smSidTag, sidTag, sMsg);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COLL_INVRESPMSG

}

) ;
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int collinviteStatusReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL) I I (pToSidTag
fprintf(stderr,"collinviteStatusReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_INVITESTATUS, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
ShastraULongOut(pHostKernel->fdSocket, &lStatus);
cmFlush(pHostKernel->fdSocket);

NULL)) {

Page 22 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1594

front_client.c 7/5/11 11 :53 AM

return 0;
}

I*
* Function
*I

int collinviteStatusRespHandler(fd)
int fd;

{
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COLL_INVITESTATUS);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int collinviteStatusHandler(fd)

{

}

int fd;

shastraidTag
shastraidTag
shastraidTag
shaULong

smSidTag;
toSidTag;
sidTag;

lStatus;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
ShastraULongin(fd, &lStatus);
collabShowinviteStatusOprn(smSidTag, toSidTag, sidTag, lStatus);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) %s\n",

REQ_COLL_INVITESTATUS);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int collAskJoinMsgReq(pHostKr, pSmSidTag, pSidTag, sbMsg)

{

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
char *SbMsg;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL)){
fprintf(stderr,"collAskJoinMsgReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_ASKJOINMSG, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);

Page 23 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1595

front_client.c

}

sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int collAskJoinMsgRespHandler(fd)
int fd;

{

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOINMSG);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int collAskJoinMsgHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

smSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
collabRecvdAskJoinMessageOprn(smSidTag, sidTag, sMsg);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJOINMSG

}

) ;
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int collAskJnRespMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

if((pSmSidTag ==NULL) I I (pSidTag ==NULL) I I (pToSidTag
fprintf(stderr,"collAskJnRespMsgReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COLL_ASKJNRESPMSG, NULL);

NULL)) {

Page 24 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1596

front_client.c 7/5/11 11 :53 AM

}

ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int collAskJnRespMsgRespHandler(fd)
int fd;

{
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COLL_ASKJNRESPMSG);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int collAskJnRespMsgHandler(fd)

{

}

int fd;

shastraidTag
shastraidTag
shastraidTag
char *SMsg;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
collabRecvdAskJnRespMessageOprn(smSidTag, sidTag, sMsg);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COLL_ASKJNRESPMSG);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int collAskJnStatusReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, lStatus)
hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

{
if((pSmSidTag ==NULL) I I (pSidTag NULL) II (pToSidTag NULL)) {

Page 25 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1597

front_client.c

}

}

fprintf(stderr,"collAskJnStatusReq()-> bad args!\n");
return -1;

checkConn();
sendReqString(REQ_COLL_ASKJNSTATUS, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
ShastraULongOut(pHostKernel->fdSocket, &lStatus);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int collAskJnStatusRespHandler(fd)
int fd;

{

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_ASKJNSTATUS);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int collAskJnStatusHandler(fd)
int fd;

{

}

shastraidTag
shastraidTag
shastraidTag
shaULong

smSidTag;
toSidTag;
sidTag;

lStatus;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
ShastraULongin(fd, &lStatus);
collabShowAskJoinStatusOprn(smSidTag, toSidTag, sidTag, lStatus);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COLL_ASKJNSTATUS);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int commMsgTextReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;

Page 26 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1598

front_client.c

{

}

char *SbMsg;

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"collinviteJoinReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGTEXT, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgTextRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXT);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int commMsgTextHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
shastraRecvdMessageOprn(sidTag, sMsg);

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGTEXT);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

}

I*
* Function
*I

int commMsgTextFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;

Page 27 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1599

front_client.c

{

}

char *SbMsg;

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"commMsgTextFileReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGTEXTFILE, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgTxtFileRespHandler(fd)
int fd;

{

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXTFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int commMsgTxtFileHandler(fd)

{

}

int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGTEXTFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int commMsgAudioReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;

Page 28 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1600

front_client.c

{

}

char *SbMsg;

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"commMsgAudioReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGAUDIO, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgAudioRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIO);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int commMsgAudioHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGAUDIO);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

}

I*
* Function
*I

int commMsgAudioFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

Page 29 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1601

front_client.c

{

}

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"commMsgAudioFileReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGAUDIOFILE, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgAudioFileRespHandler(fd)
int fd;

{

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COMM_MSGAUDIOFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int commMsgAudioFileHandler(fd)

{

}

int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGAUDIOFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int commMsgVideoReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

Page 30 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1602

front_client.c

{

}

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"commMsgVideoReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGVIDEO, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgVideoRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEO);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int commMsgVideoHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGVIDEO);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

}

I*
* Function
*I

int commMsgVideoFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

{

Page 31 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1603

front_client.c

}

if((pSidTag ==NULL) 11 (pToSidTag ==NULL)){
fprintf(stderr,"commMsgVideoFileReq()-> bad args!\n");
return -1;

}
checkConn();
sendReqString(REQ_COMM_MSGVIDEOFILE, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pToSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKernel->fdSocket);
return 0;

I*
* Function
*I

int commMsgVideoFileRespHandler(fd)
int fd;

{

7/5/11 11 :53 AM

sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COMM_MSGVIDEOFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int commMsgVideoFileHandler(fd)
int fd;

{

}

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGVIDEOFILE);
showShastrainfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

int
frontKernelConnectReq(pSid)

shastraid *PSid;
{

int iStatus, iSocket;
hostData *PHost;

if (pHostKernel) {

Page 32 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1604

front_client.c

return 0;
}
if(pSid == NULL){

pSid = pFrontSid;
}

7/5/11 11 :53 AM

iStatus = cmClientConnect2Server(pSid->nmHost, SHASTRA_SERVICE_NAME, 0,
&iSocket);

if (iStatus == -1){
return -1;

}

frontCmdData.pCmdTab = frontCmdTab;
frontCmdData.nCmds = frontNCmds;
frontCmdData.pCmdTabin = frontinCmdTab;
frontCmdData.nCmdsin = frontinNCmds;

if (mplexRegisterChannel(iSocket, shaClientHandler,

}

&frontCmdData, (char *) pHostKernel) == -1) {
fp rintf (stde r r, "mp lexReg iste rChanne l () ->Error! \n");
close(iSocket);
return -1;

pHostKernel = (hostData*)malloc(sizeof(hostData));
memset(pHostKernel, 0, sizeof(hostData));

shaKernFlags[iSocket] = SHAKERNEL;
pHostKernel->fdSocket = iSocket;
pHostKernel->sendList = listMakeNew();
pHostKernel->recvList = listMakeNew();
pHostKernel->fStatus = shaWait2Send;

mplexSetHostData(pHostKernel->fdSocket, pHostKernel);
if((pHost = mplexGetHostData(pHostKernel->fdSocket)) != pHostKernel){

fprintf(stderr,"frontKernelConnectReq()->mplexSetHostData problem!\n");

}

}

setShastraidReq(pHostKernel, pSid);
return 0;

int
frontKernelDisconnectReq(pSid)

shastraid *PSid;
{

}

checkConn();
sendReqString(REQ_QUIT, NULL);
cmFlush(pHostKernel->fdSocket);

kernelDisconnectHandler(pHostKernel->fdSocket);

int

Page 33 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1605

front_client.c

kernelDisconnectHandler(fd)
int fd;

{

}

if(pHostKernel != NULL){
fd = pHostKernel->fdSocket;

listDestroy(pHostKernel->sendList, 1);
listDestroy(pHostKernel->recvList, 1);
free(pHostKernel);
pHostKernel = NULL;

}
mplexUnRegisterChannel(fd);

7/5/11 11 :53 AM

Page 34 of 34
Petitioner Microsoft Corporation, Ex. 1002, p. 1606

frontCoiiCiient. c 7/5/11 11 :54 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>

#include <shastralshastra.h>

#include <shastralutilsllist.h>

#include <shastraldatacommlshastraDataH.h>
#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastraldatacommlaudioBiteH.h>
#include <shastraldatacommlvideoimgH.h>
#include <shastraldatacommlipimage.h>
#include <shastraldatacommlxsCntlDataH.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>
#include <shastralnetworklsharedMem.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFronts.h>
#include <shastralshautilslsesMgrFrontsP.h>
#include <shastralshautilslclientHosts.h>

#include <shastralfrontlfrontP.h>
#include <shastralfrontlfront.h>
#include <shastralfrontlfrontState.h>

Page 1 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1607

frontCoiiCiient. c

#include <shastra/front/frontCollClient.h>
#include <shastra/front/frontCollClientP.h>
#include <shastra/front/collabCntl.h>

#define USESHAREDMEM

#define checkConn() \
if (pHostColl->fStatus == shaError) { \

fprintf(stderr,"Connection to SesMgr is bad!\n"); \
return -1; \

}

#define sendReqString(s, arg) \

7/5/11 11 :54 AM

if(hostSendQueuedRequest(pHostColl, s, arg) == -1){ \
pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr,"Error in Sending Shastra Operation Request\n"); \
return -1; \

}

#define sendDataString(s) \
if(cmSendString(pHostColl->fdSocket, s) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr,"Error in Sending Shastra Operation Data\n"); \
return -1; \

}

#define Shastraidin(filedesc, pShaid) \
if(shastraidin(pHostColl->fdSocket, pShaid) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving SID from SesMgr\n"); \
return -1; \

}

#define ShastraidOut(filedesc, pShaid) \
if(shastraidOut(pHostColl->fdSocket, pShaid) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending SID to SesMgr\n"); \
return -1; \

}

#define Shastraidsin(filedesc, pShaids) \
if(shastraidsin(pHostColl->fdSocket, pShaids) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving SIDs from SesMgr\n"); \
return -1; \

}

#define ShastraidsOut(filedesc, pShaids) \

Page 2 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1608

frontCoiiCiient. c

if(shastraidsOut(pHostColl->fdSocket, pShaids) == -1){ \
pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending SIDs to SesMgr\n"); \
return -1; \

}

#define ShastraidTagin(filedesc, pShaidTag) \
if(shastraidTagin(pHostColl->fdSocket, pShaidTag) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving SIDTag from SesMgr\n"); \
return -1; \

}

#define ShastraidTagOut(filedesc, pShaidTag) \
if(shastraidTagOut(pHostColl->fdSocket, pShaidTag) -1){ \

}

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending SIDTag to SesMgr\n"); \
return -1; \

#define ShastraidTagsin(filedesc, pShaidTags) \
if(shastraidTagsin(pHostColl->fdSocket, pShaidTags) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving SIDTags from SesMgr\n"); \
return -1; \

}

#define ShastraidTagsOut(filedesc, pShaidTags) \
if(shastraidTagsOut(pHostColl->fdSocket, pShaidTags) -1){ \

}

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending SIDTags to SesMgr\n"); \
return -1; \

#define ShastraULongOut(filedesc, pULong) \
if(shaULongOut(pHostColl->fdSocket, pULong) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending pULong to SesMgr\n"); \
return -1; \

}

#define ShastraULongin(filedesc, pULong) \
if(shaULongin(pHostColl->fdSocket, pULong) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving pULong from SesMgr\n"); \
return -1; \

7/5/11 11 :54 AM

Page 3 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1609

frontCoiiCiient. c

}

#define ShastraintOut(filedesc, pint) \
if(shaintOut(pHostColl->fdSocket, pint) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending pint to SesMgr\n"); \
return -1; \

}

#define Shastraintin(filedesc, pint) \
if(shaintin(pHostColl->fdSocket, pint) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving pint from SesMgr\n"); \
return -1; \

}

#define AudioBitein(filedesc, pABite) \
if(audioBitein(pHostColl->fdSocket, pABite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving ABite from SesMgr\n"); \
return -1; \

}

#define AudioBiteOut(filedesc, pABite) \
if(audioBiteOut(pHostColl->fdSocket, pABite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending ABite to SesMgr\n"); \
return -1; \

}

#define Videoimgin(filedesc, pVImg) \
if(videoimgin(pHostColl->fdSocket, pVImg) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving VImg from SesMgr\n"); \
return -1; \

}

#define VideoimgOut(filedesc, pVImg) \
if(videoimgOut(pHostColl->fdSocket, pVImg) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending VImg to SesMgr\n"); \
return -1; \

}

7/5/11 11 :54 AM

Page 4 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1610

frontCoiiCiient. c

#define TextBitein(filedesc, pTBite) \
if(shaStringin(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving TBite from SesMgr\n"); \
return -1; \

}

#define TextBiteOut(filedesc, pTBite) \
if(shaStringOut(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending TBite to SesMgr\n"); \
return -1; \

}

#define PntrBitein(filedesc, pTBite) \
if(shaDoublesin(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving PntrB from SesMgr\n"); \
return -1; \

}

#define PntrBiteOut(filedesc, pTBite) \
if(shaDoublesOut(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending PntrB to SesMgr\n"); \
return -1; \

}

#define CursorBitein(filedesc, pTBite) \
if(shaDoublesin(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving CursorB from SesMgr\n"); \
return -1; \

}

#define CursorBiteOut(filedesc, pTBite) \
if(shaDoublesOut(pHostColl->fdSocket, pTBite) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending CursorB to SesMgr\n"); \
return -1; \

}

#define ImageDatain(filedesc, pimage) \
if(ipimageDatain(pHostColl->fdSocket, pimage) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving image from SesMgr\n"); \

7/5/11 11 :54 AM

Page 5 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1611

frontCoiiCiient. c

return -1; \
}

#define ImageDataOut(filedesc, pimage) \
if(ipimageDataOut(pHostColl->fdSocket, pimage) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending image to SesMgr\n"); \
return -1; \

}

#define PictDataBitesin(filedesc, pPCData) \
if(pictPiecesin(pHostColl->fdSocket, pPCData) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving PCData from SesMgr\n"); \
return -1; \

}

#define PictDataBitesOut(filedesc, pPCData) \
if(pictPiecesOut(pHostColl->fdSocket, pPCData) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending PCData to SesMgr\n"); \
return -1; \

}

#define XSCntlBitesin(filedesc, pXSCData) \

}

if(xsCntlDatasin(pHostColl->fdSocket, pXSCData) == -1){ \
pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Receiving PCData from SesMgr\n"); \
return -1; \

#define XSCntlBitesOut(filedesc, pXSCData) \
if(xsCntlDatasOut(pHostColl->fdSocket, pXSCData) == -1){ \

pHostColl->fStatus = shaError; \
closedChannelCleanupHandler(pHostColl->fdSocket); \
fprintf(stderr, "Error Sending PCData to SesMgr\n"); \
return -1; \

}

cmCommand frontCollCmdTab[] = FRONTCOLL CLIENTCMDS;

7/5/11 11 :54 AM

#define NFRONTCOLL_CLIENTCMDS (sizeof(frontCollCmdTab)lsizeof(cmCommand))
I* number of commands *I
int frontCollNCmds = NFRONTCOLL_CLIENTCMDS;

cmCommand frontCollinCmdTab[] = FRONTCOLL CLIENTINCMDS;
#define NFRONTCOLL_CLIENTINCMDS (sizeof(frontCollinCmdTab)lsizeof(cmCommand

))

Page 6 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1612

frontCoiiCiient.c 7/5/11 11 :54 AM

I* number of commands *I
int frontCollNinCmds = NFRONTCOLL_CLIENTINCMDS;

shaCmdData frontCollCmdData;

I*
* Function
*I

int
collTellLeaderRespHandler(fd)

{
int fd;

shastraidTag sidTag, sesmSidTag;
unsigned long lidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collTellLeaderRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &sidTag);
ShastraULongin(fd, &lidTag);

collabSetLeaderOprn(sidTag, sesmSidTag, lidTag);

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_TELLLEADER);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collTerminateReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_COLL_TERMINATE, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collTerminateRespHandler(fd)

Page 7 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1613

frontCoiiCiient. c 7/5/11 11 :54 AM

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (collabTerminateFunc !=NULL) {

(*CO llabTe rminateFunc) (pHostCo ll);
}
else{

fprintf(stderr,"collabTerminateFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_TERMINATE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collHelpReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_HELP, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collHelpRespHandler(fd)

{

}

int fd;

standardHelpRespHandler(fd);

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_HELP);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collJoinReq(pHost, pSid, pPermTag, pCmdData)

{

hostData *PHost;
shastraid *PSid;
shastraidTag *PPermTag;
shaCmdData *PCmdData;

Page 8 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1614

frontCoiiCiient. c

int
int
hostData

collSocket;
status;

*PHostColl;

if((pSid NULL) I I (pPermTag ==NULL)){

}

fprintf(stderr, "collJoinReq()->bad args!\n");
return -1;

if(pCmdData == NULL){
fprintf(stderr, "collJoinReq()->Warning: No Control Data!\n");

}
status = cmClientConnect2Server(pSid->nmHost, pSid->nmApplicn,

pSid->iPort, &collSocket);
if (status == -1) {

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "collJoinReq()-- Couldn't connect\n");
showCollabinfo(pFrontAppData->sbMsgBuf);
return -1;

} else {

}

sprintf(pFrontAppData->sbMsgBuf, "collJoinReq()-- connected\n");
showCollabinfo(pFrontAppData->sbMsgBuf);

pHostColl = (hostData *) malloc(sizeof(hostData));
memset(pHostColl, 0, sizeof(hostData));
pHostColl->fdSocket = collSocket;
pHostColl->lSIDTag = pSid->lSIDTag;
pHostColl->pSid = copyid(pSid, NULL);
pHostColl->sendList = listMakeNew();
pHostColl->recvList = listMakeNew();
pHostColl->fStatus = shaWait2Send;

if (frontCollCmdData.pCmdTab ==NULL) {
memset(&frontCollCmdData, 0, sizeof(shaCmdData));
frontCollCmdData.pCmdTab = frontCollCmdTab;
frontCollCmdData.nCmds = frontCollNCmds;
frontCollCmdData.pCmdTabin = frontCollinCmdTab;
frontCollCmdData.nCmdsin = frontCollNinCmds;

/*CHECK, will allow only one kind of collab*/
/*add cmd data once per session type*/

cmJoinCmdData(&frontCollCmdData, pCmdData);
}

shaKernFlags[collSocket] = SHASESMGR;

if (mplexRegisterChannel(pHostColl->fdSocket, shaClientHandler,
&frontCollCmdData, (char *) pHostColl) == -1) {

fprintf(stderr, "collJoinReq()->Couldn't Register Client Handler! !\n");
pHostColl->fStatus = shaError;
return -1;

}
mplexSetHostData(pHostColl->fdSocket, pHostColl);
if((pHost = mplexGetHostData(pHostColl->fdSocket)) != pHostColl){

fprintf(stderr,"collJoinReq()->mplexSetHostData problem!\n");

Page 9 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1615

frontCoiiCiient. c

}

}

pFrontSid->lPerms = *PPermTag;

checkConn();
sendReqString(REQ_COLL_JOIN, NULL);
ShastraidOut(pHostColl->fdSocket, pFrontSid);
cmFlush(pHostColl->fdSocket);

collabSetCurrHostOprn(pHostColl, False);
I* if no current, created becomes current *I
return 0;

I*
* Function
*I

int
collJoinRespHandler(fd)

{
int fd;

hostData
shast raid
int

*PHostColl;
*PSid;

iLocCollabSelect;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

f p r in t f (s t d e r r , " col lJ o in Res pH and l e r () - >N U L L H o s t d at a ! \ n") ;
return -1;

pSid = getSidByTaginSids(&pHostColl->lSIDTag, &shastraSesmids);
if (pSid == NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collJoinRespHandler()->Missing SesMgr! Aborting\n");
return -1;

}
if ((iLocCollabSelect = locateClientHosts(pSid)) == -1) {

iLocCollabSelect = occupyClHostFreeSlot(pSid);
}
updateAddClHost(pSid, pHostColl);
collabSetCurrHostOprn(pHostColl, False);
I* if no current, created becomes current *I

setCollabNamesOprn(pSid->lSIDTag);

if (collabJoinFunc !=NULL) {
(*collabJoinFunc) (pHostColl);

}
else{

fprintf(stderr,"collabJoinFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COLL_JOIN);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

Page 10 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1616

frontCoiiCiient. c

}

I*
* Function
*I

collAskJnRespHandler(fd)

{

I*

int fd;

shastraidTag sesmSidTag;
shastraidTag frontSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collAskJnRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);

I* now prompt for participation, and tell join if reqd *I

collAskJoinPromptOprn(sesmSidTag, frontSidTag);
*I
collabAskJoinPromptOprn(sesmSidTag, frontSidTag);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",
showCollabinfo(pFrontAppData->sbMsgBuf);

REQ COLL ASKJOIN); - -

return 0;
}

I*
* Function
*I

int collAskJnMsgRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

smSidTag;
sidTag;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collAskJnMsgRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
collabRecvdAskJoinMessageOprn(smSidTag, sidTag, sMsg);

Page 11 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1617

frontCoiiCiient.c 7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJOINMSG

}

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int
collLeaveReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_COLL_LEAVE, NULL);
cmFlush(pHostColl->fdSocket);
collLeaveRespHandler(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collLeaveRespHandler(fd)

{
int fd;

hostData
shast raid

*PHostColl;
*PSidHost;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collLeaveRespHandler()->NULL Host data!\n");
return -1;

pSidHost = getSidByTaginSids(&pHostColl->lSIDTag, &shastraSesmids);
if (pSidHost == NULL) {

fprintf(stderr, "collLeaveRespHandler()->Missing SesMgr! Aborting\n");
return -1;

}
updateRmvClHostByidTag(pSidHost, &pHostColl->lSIDTag);

setCollabNamesOprn(pHostColl->lSIDTag);

I* close connection *I
mplexUnRegisterChannel(fd);
if (collabLeaveFunc !=NULL) {

(*collabLeaveFunc) (pHostColl);
}
else{

fprintf(stderr,"collabLeaveFunc()->no handler!\n");

Page 12 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1618

frontCoiiCiient. c

}
collabResetCurrHostOprn(pHostColl, False);

#ifdef CLEANLYREMOVE
listDestroy(pHostColl->sendList, 1);
listDestroy(pHostColl->recvList, 1);
memset(pHostColl, 0, sizeof(hostData));
l*is freed in shaClientHandler ! ugh! !*I

#endif I* CLEANLYREMOVE *I
if(pHostColl->pSid !=NULL){

shastraidXDRFree(pHostColl->pSid);

}

}
free(pHostColl);

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_LEAVE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collRemoveReq(pHostColl, pSidTag)

{

}

hostData *PHostColl;
shastraidTag *PSidTag;

checkConn();
sendReqString(REQ_COLL_REMOVE, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRemoveRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (collabRemoveFunc !=NULL) {

(*collabRemoveFunc) (pHostColl);
}
else{

fprintf(stderr,"collabRemoveFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COLL_REMOVE);
showCollabinfo(pFrontAppData->sbMsgBuf);

7/5/11 11 :54 AM

Page 13 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1619

frontCoiiCiient. c

return 0;
}

I*
* Function
*I

int
collSetPermsReq(pHostColl, pSidTag, perms)

{

}

hostData *PHostColl;
shastraidTag *PSidTag;
unsigned long perms;

checkConn();
sendReqString(REQ_SET_COLLPERMS, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
ShastraULongOut(pHostColl->fdSocket, &perms);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSetPermsRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shastraidTags
hostData
char

smSidTag;
sidTag;
permTag;

*PPermTags, *PFridTags;
*PHostColl;
*tmp;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSetPermsRespHandler()->NULL Host data!\n");
return -1;

smSidTag = pHostColl->lSIDTag;
ShastraidTagin(fd, &sidTag);
ShastraidTagin(fd, &permTag);
pFridTags = getSesmFrontSidTags(&smSidTag);
pPermTags = getSesmFrontPermTags(&smSidTag);

if (setSesmFrontPerms(&smSidTag, &sidTag, permTag) < 0) {

7/5/11 11 :54 AM

fprintf(stderr, "collSetPermsRespHandler()->can't set perms for %lx!\n"
I

sidTag);
}
if(sidTag == pFrontSid->lSIDTag){

setCollabFrontPermsOprn(smSidTag);

Page 14 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1620

frontCoiiCiient. c

}

}
if (collabSetPermsFunc !=NULL) {

(*collabSetPermsFunc) (pHostColl, &sidTag, permTag);
}
else{

fprintf(stderr,"collabSetPermsFunc()->no handler!\n");
}
tmp = perms2Str(permTag);
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s(%s)\n", tmp,

REQ_SET_COLLPERMS);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(tmp);
return 0;

I*
* Function
*I

int
collGetPermsReq(pHostColl, pSidTag)

{

}

hostData *PHostColl;
shastraidTag *PSidTag;

checkConn();
sendReqString(REQ_GET_COLLPERMS, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collGetPermsRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shastraidTags
hostData
char

smSidTag;
sidTag;
permTag;

*PPermTags, *PFridTags;
*PHostColl;
*tmp;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collGetPermsRespHandler()->NULL Host data!\n");
return -1;

smSidTag = pHostColl->lSIDTag;
ShastraidTagin(fd, &sidTag);
ShastraidTagin(fd, &permTag);

7/5/11 11 :54 AM

Page 15 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1621

frontCoiiCiient. c

pFridTags = getSesmFrontSidTags(&smSidTag);
pPermTags = getSesmFrontPermTags(&smSidTag);
if (setSesmFrontPerms(&smSidTag, &sidTag, permTag) < 0) {

7/5/11 11 :54 AM

fprintf(stderr, "collGetPermsRespHandler()->can't set perms for %lx!\n"

}

I

sidTag);
}
if(sidTag == pFrontSid->lSIDTag){

setCollabFrontPermsOprn(smSidTag);
}
if (collabGetPermsFunc !=NULL) {

(*collabGetPermsFunc) (pHostColl, &sidTag, permTag);
}
else{

fprintf(stderr,"collabGetPermsFunc()->no handler!\n");
}
tmp = perms2Str(permTag);
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s(%s)\n", tmp,

REQ_GET_COLLPERMS);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(tmp);
return 0;

I*
* Function
*I

int
collGetSesmPermsReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_GET_COLLPERMS, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collGetSesmPermsRespHandler(fd)

{
int fd;

shastraidTag smSidTag;
static shastraidTags permTags;
shastraidTags *PPermTags;
int smindex;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collGetSesmPermsRespHandler()->NULL Host data!\n");

Page 16 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1622

frontCoiiCiient. c

return -1;
}

ShastraidTagin(fd, &smSidTag);
ShastraidTagsin(fd, &permTags);
smindex = locateSesmFronts(&smSidTag);
if (smindex == -1) {

7/5/11 11 :54 AM

fprintf(stderr, "collGetSesmPermsRespHandler()->can't locate sesMgr!\n"
) ;

} else {

}

pPermTags = getSesmFrontPermTags(&smSidTag);
if (pPermTags->shastraidTags_len == permTags.shastraidTags_len) {

shastraidTag *PSidTag;

}

I* just switch, should be ok *I
pSidTag = pPermTags->shastraidTags_val;
pPermTags->shastraidTags_val = permTags.shastraidTags_val;
permTags.shastraidTags_val = pSidTag;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_SESMCOLLPERMS);
showCollabinfo(pFrontAppData->sbMsgBuf);

return 0;
}

I*
* Function
*I

int
collSetSesmPermsReq(pHostColl, pPermTags)

hostData *PHostColl;
shastraidTags *PPermTags;

{

}

checkConn();
sendReqString(REQ_SET_SESMCOLLPERMS, NULL);
ShastraidTagsOut(pHostColl->fdSocket, pPermTags);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSetSesmPermsRespHandler(fd)

int fd;
{

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SET_SESMCOLLPERMS);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

Page 17 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1623

frontCoiiCiient. c

I*
* Function
*I

int
collGetixnModeReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_GET_IXNMODE, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collGetixnModeRespHandler(fd)

{

}

int fd;

unsigned long ixnMode;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collGetixnModeRespHandler()->NULL Host data!\n");
return -1;

ShastraULongin(fd, &ixnMode);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lixnMode = ixnMode;
if (collabGetixnModeFunc !=NULL) {

(*CO llabGet IxnModeFunc) (pHos teo ll, ixnMode);
}
else{

fprintf(stderr,"collabGetixnModeFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_IXNMODE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSetixnModeReq(pHostColl, ixnMode)

hostData *PHostColl;
unsigned long ixnMode;

{

7/5/11 11 :54 AM

Page 18 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1624

frontCoiiCiient.c 7/5/11 11 :54 AM

}

checkConn();
sendReqString(REQ_SET_IXNMODE, NULL);
ShastraULongOut(pHostColl->fdSocket, &ixnMode);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSetixnModeRespHandler(fd)

{

}

int fd;

unsigned long ixnMode;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSetixnModeRespHandler()->NULL Host data!\n");
return -1;

ShastraULongin(fd, &ixnMode);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lixnMode = ixnMode;

if (collabSetixnModeFunc !=NULL) {
(*CO llabSet IxnModeFunc) (pHos teo ll, ixnMode);

}
else{

fprintf(stderr,"collabSetixnModeFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SET_IXNMODE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collGetFloorModeReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_GET_FLOORMODE, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

Page 19 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1625

frontCoiiCiient. c

I*
* Function
*I

int
collGetFloorModeRespHandler(fd)

{
int fd;

unsigned long floorMode;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collGetFloorModeRespHandler()->NULL Host data!\n");
return -1;

}

}

ShastraULongin(fd, &floorMode);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lFloorMode = floorMode;

if (collabGetFloorModeFunc !=NULL) {
(*collabGetFloorModeFunc) (pHostColl, floorMode);

}
else{

fprintf(stderr,"collabGetFloorModeFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_FLOORMODE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSetFloorModeReq(pHostColl, ixnMode)

{

}

hostData *PHostColl;
unsigned long ixnMode;

checkConn();
sendReqString(REQ_SET_FLOORMODE, NULL);
ShastraULongOut(pHostColl->fdSocket, &ixnMode);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSetFloorModeRespHandler(fd)

int fd;

Page 20 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1626

frontCoiiCiient. c

{
unsigned long floorMode;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSetFloorModeRespHandler()->NULL Host data!\n");
return -1;

}

}

ShastraULongin(fd, &floorMode);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lFloorMode = floorMode;

if (collabSetFloorModeFunc !=NULL) {
(*collabSetFloorModeFunc) (pHostColl, floorMode);

}
else{

fprintf(stderr,"collabSetFloorModeFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SET_FLOORMODE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collGetSesFormatReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_GET_SESFORMAT, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collGetSesFormatRespHandler(fd)

{
int fd;

unsigned long sesFormat;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

Page 21 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1627

frontCoiiCiient.c 7/5/11 11 :54 AM

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collGetSesFormatRespHandler()->NULL Host data!\n");
return -1;

}

}

ShastraULongin(fd, &sesFormat);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lFormat = sesFormat;

if (collabGetFormatFunc !=NULL) {
(*collabGetFormatFunc) (pHostColl, sesFormat);

}
else{

fprintf(stderr,"collabGetFormatFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GET_SESFORMAT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSetSesFormatReq(pHostColl, sesFormat)

hostData *PHostColl;

{

}

unsigned long sesFormat;

checkConn();
sendReqString(REQ_SET_SESFORMAT, NULL);
ShastraULongOut(pHostColl->fdSocket, &sesFormat);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSetSesFormatRespHandler(fd)

{
int fd;

unsigned long sesFormat;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSetSesFormatRespHandler()->NULL Host data!\n");
return -1;

}

Page 22 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1628

frontCoiiCiient. c

}

ShastraULongin(fd, &sesFormat);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->lFormat = sesFormat;

if (collabSetFormatFunc !=NULL) {
(*collabSetFormatFunc) (pHostColl, sesFormat);

}
else{

fprintf(stderr,"collabSetFormatFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SET_SESFORMAT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collGrabTokenReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_GRAB_TOKEN, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collGrabTokenRespHandler(fd)

{
int fd;

hostData *PHostColl;
shastraidTag sidTagToken;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collGrabTokenRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &sidTagToken);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->sidTagToken = sidTagToken;

setCollabFrontFloorOprn(pHostColl->lSIDTag, sidTagToken);
if (collabGrabTokenFunc !=NULL) {

(*collabGrabTokenFunc) (pHostColl, &sidTagToken);

7/5/11 11 :54 AM

Page 23 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1629

frontCoiiCiient. c

}

}
else{

fprintf(stderr,"collabGrabTokenFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_GRAB_TOKEN);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collFreeTokenReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_FREE_TOKEN, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collFreeTokenRespHandler(fd)

{

}

int fd;

shastraidTag
hostData

sidTagToken = 0;
*PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collFreeTokenRespHandler()->NULL Host data!\n");
return -1;

if (collabFreeTokenFunc !=NULL) {
(*collabFreeTokenFunc) (pHostColl, &sidTagToken);

}
else{

fprintf(stderr,"collabFreeTokenFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_FREE_TOKEN);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

7/5/11 11 :54 AM

Page 24 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1630

frontCoiiCiient. c

int
collTellTokenReq(pHostColl, pSidTag)

{

}

hostData *PHostColl;
shastraidTag *PSidTag;

checkConn();
sendReqString(REQ_TELL_TOKEN, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collTellTokenRespHandler(fd)

{

}

int fd;

shastraidTag sidTagToken = 0;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collTellTokenRespHandler()->NULL Host data!\n");
return -1;

if (collabTellTokenFunc !=NULL) {
(*collabTellTokenFunc) (pHostColl, &sidTagToken);

}
else{

fprintf(stderr,"collabTellTokenFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_TELL_TOKEN);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collAskTokenReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_ASK_TOKEN, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

7/5/11 11 :54 AM

Page 25 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1631

frontCoiiCiient. c

I*
* Function
*I

int
collAskTokenRespHandler(fd)

{

}

int fd;

shastraidTag sidTagToken;
hostData *PHostColl;
sesmFronts *PSesmFrCD;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collAskTokenRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &sidTagToken);
pSesmFrCD = getSesMgrCntlData(&pHostColl->lSIDTag);
pSesmFrCD->sidTagToken = sidTagToken;

setCollabFrontFloorOprn(pHostColl->lSIDTag, sidTagToken);
if (collabAskTokenFunc !=NULL) {

(*collabAskTokenFunc) (pHostColl, &sidTagToken);
}
else{

fprintf(stderr,"collabAskTokenFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_ASK_TOKEN);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collStartTextReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_TEXT, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartTextRespHandler(fd)

7/5/11 11 :54 AM

Page 26 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1632

frontCoiiCiient. c

{

}

int fd;

I* start a text comm infrastructure .. one text wid per member *I
I* create and popup text comm controller *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (textSta rt Func ! = NULL) {

(*textStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"textStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_TEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndTextReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_TEXT, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndTextRespHandler(fd)

{
int fd;

shastraidTag senderSidTag;
hostData *PHostColl;
I* terminate a text comm channel destroy wids etc *I
I* destroy popdown text comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (textEndFunc != NULL) {

(*textEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"textEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_TEXT);

7/5/11 11 :54 AM

Page 27 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1633

frontCoiiCiient. c

}

showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendTextReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_TEXT, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendTextRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendTextRespHandler()->NULL Host data!\n");
return -1;

if (textSendFileFunc != NULL) {
(*textSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"textSendFileFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_TEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendTextinHandler(fd)

int fd;
{

I* recv msg from outside .. update local view *I

7/5/11 11 :54 AM

Page 28 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1634

frontCoiiCiient. c 7/5/11 11 :54 AM

}

hostData
char
shastraidTag

*PHostColl;
*buf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendTextinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_TEXT);
if (textRecvFileFunc != NULL) {

(*textRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"textRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);
return 0;

I*
* Function
*I

int
collSendMsgTextReq(pHostColl, str)

{

hostData *PHostColl;
char *Str;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORTEXT
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = strlen(str) + 1;
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fprintf(stderr, "collSendMsgTextReq()->couldn't shMemReuseSegment!\n"
) ;

}

}
memcpy(pShminfo->shmAddr, str, n);
collSendMsgShmTextReq(pHostColl, pShminfo);
return -1;

#end if I* USESHAREDMEMFORTEXT *I

checkConn();
sendReqString(REQ_SEND_MSGTEXT, NULL);
sendDataString(str);

Page 29 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1635

frontCoiiCiient. c 7/5/11 11 :54 AM

}

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgTextRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgTextRespHandler()->NULL Host data!\n");
return -1;

if (textSendMsgFunc != NULL) {
(*textSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"textSendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgTextinHandler(fd)

{
int fd;

hostData
I* recv msg
char
shastraidTag

*PHostColl;
from outside .. update local view *I

*buf;
senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgTextinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
if (textRecvMsgFunc != NULL) {

(*textRecvMsgFunc) (pHostColl, &senderSidTag, buf);

Page 30 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1636

frontCoiiCiient. c

}
else{

fprintf(stderr,"textRecvMsgFunc()->no handler!\n");
}
free(buf);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_MSGTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgTextReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGTEXT, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgTextRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgTextinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collRecvdMsgTextinHandler()->NULL Host data!\n");
return -1;

Page 31 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1637

frontCoiiCiient. c

}

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmTextReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmTextReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMTEXT, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmTextRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmTextRespHandler()->NULL Host data!\n");
return -1;

}

if (textSendMsgFunc != NULL) {
(*textSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"textSendMsgFunc()->no handler!\n");
}

Page 32 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1638

frontCoiiCiient. c 7/5/11 11 :54 AM

}

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgShmTextinHandler(fd)

{

}

int fd;

hostData
I* recv msg
char
shastraidTag
int
shminfo

*PHostColl;
from outside .. update local view *I

*buf;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmTextinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmTextinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmTextinHandler()->SHM recon problem\n");
return -1;

}
buf = pShminfo->shmAddr;
if (textRecvMsgFunc != NULL) {

(*textRecvMsgFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"textRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

REQ SEND MSGSHMTEXT - -

I*
* Function
*I

Page 33 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1639

frontCoiiCiient.c 7/5/11 11 :54 AM

int
collRecvdMsgShmTextReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmTextReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMTEXT, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmTextRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGSHMTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgShmTextinHandler(fd)

{
int fd;

hostData
shastraidTag
int
shminfo

*PHostColl;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collRecvdMsgShmTextinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmTextinHandler()->couldn't shMemDelete!\
n") ;

Page 34 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1640

frontCoiiCiient. c 7/5/11 11 :54 AM

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGSHMTEXT

}

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collStartAudioReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_AUDIO, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartAudioRespHandler(fd)

{

}

int fd;

I* start a audio comm infrastructure .. *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collStartAudioRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
if (audioStartFunc != NULL) {

(*audioStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"audioStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_AUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

Page 35 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1641

frontCoiiCiient. c

int
collEndAudioReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_AUDIO, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndAudioRespHandler(fd)

{

}

int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
I* terminate a audio comm channel *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (aud ioEnd Func ! = NULL) {

(*audioEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"audioEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_AUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendAudioReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_AUDIO, NULL);
sendDataString(nameBuf);

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int

7/5/11 11 :54 AM

Page 36 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1642

frontCoiiCiient. c

collSendAudioRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendAudioRespHandler()->NULL Host data!\n");
return -1;

if (audioSendFileFunc != NULL) {
(*aud ioSend F i leFunc) (pHostCo ll);

}
else{

fprintf(stderr,"audioSendFileFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_AUDIO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collSendAudioinHandler(fd)

{
int fd;

hostData
I* recv msg
char
shastraidTag

*PHostColl;
from outside .. update local view *I

*buf;
senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendAudioinHandler()->NULL Host data!\n");
return -1;

I*ShastraidTagin(fd, &senderSidTag);*l

buf = cmReceiveString(fd);
if (audioRecvFileFunc != NULL) {

(*audioRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"audioRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);

7/5/11 11 :54 AM

Page 37 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1643

frontCoiiCiient. c 7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_AUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);

}
return 0;

* Function
*I

int
collSendMsgAudioReq(pHostColl, pABite)

{

hostData *PHostColl;
audioBite *PABite;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORAUDIO
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = pABite->data.data_len + sizeof(audioBite);
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n

}

fp r intf (s tde r r, "co llSendMsgAud ioReq ()->couldn't
n");

I* xdr dump *I

10240)) == 0) {
shMemReuseSegment!\

audioBiteMemOut(pShminfo->shmAddr, pShminfo->shmSize, pABite);
collSendMsgShmAudioReq(pHostColl, pShminfo);
return -1;

}
#endif I* USESHAREDMEMFORAUDIO *I

}

checkConn();
sendReqString(REQ_SEND_MSGAUDIO, NULL);
AudioBiteOut(pHostColl->fdSocket, pABite);
I*
* nameBuf = (char*)pABite; sendDataString(nameBuf);
*I

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgAudioRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgAudioRespHandler()->NULL Host data!\n");
return -1;

Page 38 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1644

frontCoiiCiient. c

}

if (aud ioSendMsg Func ! = NULL) {
(*audioSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"audioSendMsgFunc()->no handler!\n");
}
return 0;
I*

7/5/11 11 :54 AM

* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGAUDIO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collSendMsgAudioinHandler(fd)

{

}

int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
char *buf;
shastraidTag senderSidTag;
static audioBite aBite;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgAudioinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

memset(&aBite, 0, sizeof(audioBite));
AudioBitein(fd, &aBite);
if (audioRecvMsgFunc != NULL) {

(*audioRecvMsgFunc) (pHostColl, &senderSidTag, &aBite);
}
else{

fprintf(stderr,"audioRecvMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGAUDIO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

Page 39 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1645

frontCoiiCiient.c 7/5/11 11 :54 AM

* Function
*I

int
collRecvdMsgAudioReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGAUDIO, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgAudioRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGAUDIO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

* Function
*I

int
collRecvdMsgAudioinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgAudioinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGAUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);

Page 40 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1646

frontCoiiCiient. c

return 0;
}

I*
* Function
*I

int
collSendMsgShmAudioReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmAudioReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMAUDIO, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmAudioRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmAudioRespHandler()->NULL Host data!\n");
return -1;

}

I*

}

if (aud ioSendMsg Func ! = NULL) {
(*audioSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"audioSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMAUDIO)

* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

* Function

Page 41 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1647

frontCoiiCiient. c

*I
int
collSendMsgShmAudioinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
shastraidTag senderSidTag;
int shmid;
shminfo *PShminfo;
static audioBite aBite;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmAudioinHandler()->NULL Host data!\n");
return -1;

}

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {

}

fprintf(stderr, "collSendMsgShmAudioinHandler()->no non-local SHM\n");
return -1;

pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

}

fprintf(stderr, "collSendMsgShmAudioinHandler()->SHM recon problem\n");
return -1;

audioBiteMemin(pShminfo->shmAddr, pShminfo->shmSize, &aBite);
if (audioRecvMsgFunc != NULL) {

(*audioRecvMsgFunc) (pHostColl, &senderSidTag, &aBite);
}
else{

fprintf(stderr,"audioRecvMsgFunc()->no handler!\n");
}

I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGSHMAUDIO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

return 0;

I*
* Function
*I

int
collRecvdMsgShmAudioReq(pHostColl, pShminfo)

hostData *PHostColl;
shminfo *PShminfo;

{

Page 42 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1648

frontCoiiCiient. c

}

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmAudioReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMAUDIO, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmAudioRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*

7/5/11 11 :54 AM

* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMAUDIO
) ;

}

* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collRecvdMsgShmAudioinHandler(fd)

{
int fd;

hostData
shastraidTag
shminfo
int

*PHostColl;
senderSidTag;

*PShminfo;
shmid;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collRecvdMsgShmAudioinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmAudioinHandler()->couldn't shMemDelete!
\n");

}
I* recvd ack that all collabs have heard, delete shared seg *I

Page 43 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1649

frontCoiiCiient.c 7/5/11 11 :54 AM

}

sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n",
REQ_RECVD_MSGSHMAUDIO);

showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collStartVideoReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_VIDEO, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartVideoRespHandler(fd)

{

}

int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
I* start a video comm infrastructure .. start video controller etc *I
I* create and popup video comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (videoStartFunc != NULL) {

(*videoStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"videoStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_VIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndVideoReq(pHostColl)

{
hostData *PHostColl;

checkConn();
sendReqString(REQ_END_VIDEO, NULL);
cmFlush(pHostColl->fdSocket);

Page 44 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1650

frontCoiiCiient. c

return 0;
}

I*
* Function
*I

int
collEndVideoRespHandler(fd)

{

}

int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
I* terminate a video comm channel destroy controller *I
I* destroy popdown video comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (videoEndFunc != NULL) {

(*videoEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"videoEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_VIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendVideoReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_VIDEO, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendVideoRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

Page 45 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1651

frontCoiiCiient. c

}

}

fprintf(stderr, "collSendVideoRespHandler()->NULL Host data!\n");
return -1;

if (videoSendFileFunc != NULL) {
(*videoSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"videoSendFileFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_VIDEO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collSendVideoinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recv msg from outside .. update local view *I
nameBuf = cmReceiveString(fd);
if (videoRecvFileFunc != NULL) {

(*videoRecvFileFunc) (pHostColl, &senderSidTag, nameBuf);
}
else{

fprintf(stderr,"videoRecvFileFunc()->no handler!\n");
}

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_VIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);

}

free(nameBuf);
return 0;

I*
* Function
*I

Page 46 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1652

frontCoiiCiient. c

int
collSendMsgVideoReq(pHostColl, pVImg)

{

hostData *PHostColl;
videoimg *PVImg;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEM
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = pVImg->data.data_len + sizeof(videoimg);

7/5/11 11 :54 AM

if (shMemReuseSegment(pShminfo, ((n > 65536) 7 n : 65536)) == 0) {
fprintf(stderr, "collSendMsgVideoReq()->couldn't shMemReuseSegment!\

n");

}

}

I* xdr dump *I
videoimgMemOut(pShminfo->shmAddr, pShminfo->shmSize, pVImg);
collSendMsgShmVideoReq(pHostColl, pShminfo);
return 0;

#endif I* USESHAREDMEM *I

}

checkConn();
sendReqString(REQ_SEND_MSGVIDEO, NULL);
VideoimgOut(pHostColl->fdSocket, pVImg);
I*
* nameBuf = (char*)pVImg; sendDataString(nameBuf);
*I

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgVideoRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgVideoRespHandler()->NULL Host data!\n");
return -1;

}

if (videoSendMsgFunc != NULL) {
(*videoSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"videoSendMsgFunc()->no handler!\n");
}

Page 47 of 103

Petitioner Microsoft Corporation, Ex. 1002, p. 1653

frontCoiiCiient.c 7/5/11 11 :54 AM

return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGVIDEO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collSendMsgVideoinHandler(fd)

{

}

int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
char *nameBuf;
static videoimg vimg;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recv msg from outside .. update local view *I
Videoimgin(fd, &vimg);
if (videoRecvMsgFunc != NULL) {

(*videoRecvMsgFunc) (pHostColl, &senderSidTag, &vimg);
}
else{

fprintf(stderr,"videoRecvMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGVIDEO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collRecvdMsgVideoReq(pHostColl, nameBuf)

{

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGVIDEO, NULL);
sendDataString(nameBuf);

Page 48 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1654

frontCoiiCiient. c 7/5/11 11 :54 AM

}

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgVideoRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGVIDEO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collRecvdMsgVideoinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGVIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmVideoReq(pHostColl, pShminfo)

hostData *PHostColl;

Page 49 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1655

frontCoiiCiient. c

{

}

shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmVideoReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMVIDEO, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmVideoRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmVideoRespHandler()->NULL Host data!\n");
return -1;

}

if (videoSendMsgFunc != NULL) {
(*videoSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"videoSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMVIDEO)

* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collSendMsgShmVideoinHandler(fd)

int fd;
{

hostData *PHostColl;
I* recv msg from outside .. update local view *I
shastraidTag senderSidTag;
int shmid;

Page 50 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1656

frontCoiiCiient. c 7/5/11 11 :54 AM

}

static videoimg vimg;
shminfo *PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgShmVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {

}

fprintf(stderr, "collSendMsgShmVideoinHandler()->no non-local SHM\n");
return -1;

pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

}

fprintf(stderr, "collSendMsgShmVideoinHandler()->SHM recon problem\n");
return -1;

videoimgMemin(pShminfo->shmAddr, pShminfo->shmSize, &vimg);
if (videoRecvMsgFunc != NULL) {

(*videoRecvMsgFunc) (pHostColl, &senderSidTag, &vimg);
}
else{

fprintf(stderr,"videoRecvMsgFunc()->no handler!\n");
}

I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGSHMVIDEO);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

return 0;

I*
* Function
*I

int
collRecvdMsgShmVideoReq(pHostColl, pShminfo)

{

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmVideoReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMVIDEO, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

Page 51 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1657

frontCoiiCiient. c

}

I*
* Function
*I

int
collRecvdMsgShmVideoRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*

7/5/11 11 :54 AM

* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMVIDEO
) ;

}

* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collRecvdMsgShmVideoinHandler(fd)

{

}

int fd;

hostData
shastraidTag
int
shminfo

*PHostColl;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgShmVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

}

fprintf(stderr, "collRecvdMsgShmVideoinHandler()->couldn't shMemDelete!
\n");

I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n",

REQ_RECVD_MSGSHMVIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

Page 52 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1658

frontCoiiCiient. c

int
collStartPolyReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_POLY, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartPolyRespHandler(fd)

{

}

int fd;

I* start a image comm infrastructure .. one image wid per member *I
I* create and popup image comm controller *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (polyStartFunc != NULL) {

(*polyStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"polyStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_POLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndPolyReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_POLY, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndPolyRespHandler(fd)

7/5/11 11 :54 AM

Page 53 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1659

frontCoiiCiient. c

{

}

int fd;

shastraidTag senderSidTag;
hostData *PHostColl;
I* terminate a image comm channel destroy wids etc *I
I* destroy popdown image comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (polyEndFunc != NULL) {

(*polyEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"polyEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_POLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendPolyReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_POLY, NULL);
sendDataString(nameBuf);

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendPolyRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendPolyRespHandler()->NULL Host data!\n");
return -1;

if (polySendFileFunc != NULL) {
(*polySendFileFunc) (pHostColl);

}

7/5/11 11 :54 AM

Page 54 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1660

frontCoiiCiient. c 7/5/11 11 :54 AM

}

else{
fprintf(stderr,"polySendFileFunc()->no handler!\n");

}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_POLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendPolyinHandler(fd)

{

}

int fd;

I* recv msg from outside .. update local view *I
hostData *PHostColl;
char *buf;
shastraidTag senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendPolyinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_POLY);
if (polyRecvFileFunc != NULL) {

(*polyRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"polyRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);
return 0;

I*
* Function
*I

int
collSendMsgPolyReq(pHostColl, pimage)

{

hostData *PHostColl;
ipimageData *Pimage;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORMPOLY

Page 55 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1661

frontCoiiCiient. c 7/5/11 11 :54 AM

if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {
pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = pimage->mPoly->nPolygons * 100 * sizeof(double);
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fprintf(stderr, "collSendMsgPolyReq()->couldn't shMemReuseSegment!\n"
) ;

}

}

I* xdr dump *I
ipimageDataMemOut(pShminfo->shmAddr, pShminfo->shmSize, pimage);
collSendMsgShmPolyReq(pHostColl, pShminfo);
return 0;

#endif I* USESHAREDMEMFORMPOLY *I

}

checkConn();
sendReqString(REQ_SEND_MSGPOLY, NULL);
ImageDataOut(pHostColl->fdSocket, pimage);
I*
* nameBuf = (char*)pimage; sendDataString(nameBuf);
*I

cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgPolyRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgPolyRespHandler()->NULL Host data!\n");
return -1;

if (polySendMsgFunc != NULL) {
(*polySendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"polySendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGPOLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int

Page 56 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1662

frontCoiiCiient. c

collSendMsgPolyinHandler(fd)

{
int fd;

hostData
I* recv msg
ipimageData
shastraidTag

*PHostColl;
from outside .. update local view *I

*Pimage;
senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgPolyinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

pimage = (ipimageData *) malloc(sizeof(ipimageData));
memset(pimage, 0, sizeof(ipimageData));
ImageDatain(fd, pimage);
if (polyRecvMsgFunc != NULL) {

(*polyRecvMsgFunc) (pHostColl, &senderSidTag, pimage);
}
else{

fprintf(stderr,"polyRecvMsgFunc()->no handler!\n");
}

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",
showCollabinfo(pFrontAppData->sbMsgBuf);

REQ SEND MSGPOLY); - -

return 0;
}

I*
* Function
*I

int
collRecvdMsgPolyReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGPOLY, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgPolyRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I

Page 57 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1663

frontCoiiCiient. c

}

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGPOLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collRecvdMsgPolyinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgPolyinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGPOLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmPolyReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPolyReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMPOLY, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

Page 58 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1664

frontCoiiCiient. c 7/5/11 11 :54 AM

* Function
*I

int
collSendMsgShmPolyRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgShmPolyRespHandler()->NULL Host data!\n");
return -1;

if (polySendMsgFunc != NULL) {
(*polySendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"polySendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPOLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgShmPolyinHandler(fd)

{
int fd;

hostData
I* recv msg
ipimageData
shastraidTag
int
shminfo

*PHostColl;
from outside .. update local view *I

*Pimage;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmPolyinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPolyinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);

Page 59 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1665

frontCoiiCiient. c 7/5/11 11 :54 AM

if (!shMemReconnect(pShminfo, shmid)) {
fprintf(stderr, "collSendMsgShmPolyinHandler()->SHM recon problem\n");
return -1;

}
pimage = (ipimageData *) malloc(sizeof(ipimageData));
memset(pimage, 0, sizeof(ipimageData));
ipimageDataMemin(pShminfo->shmAddr, pShminfo->shmSize, pimage);
if (polyRecvMsgFunc != NULL) {

(*polyRecvMsgFunc) (pHostColl, &senderSidTag, pimage);
}
else{

fprintf(stderr,"polyRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

) ;
REQ SEND MSGSHMPOLY - -

}

showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

* Function
*I

int
collRecvdMsgShmPolyReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmPolyReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMPOLY, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmPolyRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGSHMPOLY);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

Page 60 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1666

frontCoiiCiient. c

int
collRecvdMsgShmPolyinHandler(fd)

{
int fd;

hostData
shastraidTag
int
shminfo

*PHostColl;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collRecvdMsgShmPolyinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmPolyinHandler()->couldn't shMemDelete!\
n") ;

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGSHMPOLY

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collStartPntrReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_PNTR, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartPntrRespHandler(fd)

{
int fd;

I* start a pntr comm infrastructure .. one pntr wid per member *I
I* create and popup pntr comm controller *I
shastraidTag senderSidTag;
hostData *PHostColl;

Page 61 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1667

frontCoiiCiient. c

}

pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (pntrStartFunc !=NULL) {

(*Pnt rSta rt Func) (pHostCo ll, &sende rSidTag);
}
else{

fprintf(stderr,"pntrStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_PNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndPntrReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_PNTR, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndPntrRespHandler(fd)

{

}

I*

int fd;

shastraidTag senderSidTag;
hostData *PHostColl;
I* terminate a pntr comm channel destroy wids etc *I
I* destroy popdown pntr comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (pnt rEndFunc ! = NULL) {

(*pntrEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"pntrEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_PNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

* Function

7/5/11 11 :54 AM

Page 62 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1668

frontCoiiCiient. c

*I
int
collSendPntrReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_PNTR, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendPntrRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendPntrRespHandler()->NULL Host data!\n");
return -1;

if (pntrSendFileFunc != NULL) {
(*pntrSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"pntrSendFileFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_PNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendPntrinHandler(fd)

{
int fd;

I* recv msg from outside .. update local view *I
hostData *PHostColl;
char *buf;
shastraidTag senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

Page 63 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1669

frontCoiiCiient. c 7/5/11 11 :54 AM

}

}

fprintf(stderr, "collSendPntrinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_PNTR);
if (pntrRecvFileFunc != NULL) {

(*pntrRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"pntrRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);
return 0;

I*
* Function
*I

int
collSendMsgPntrReq(pHostColl, pPntrD)

{

hostData *PHostColl;
shaDoubles *PPntrD;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORPNTR
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = strlen(str) + 1;
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fp r int f (s tde r r, "co llSendMs g Pnt rReq () ->could n 't s hMemReu s eSegment ! \n"
) ;

}

}
memcpy(pShminfo->shmAddr, str, n);
collSendMsgShmPntrReq(pHostColl, pShminfo);
return 0;

#end if I* USESHAREDMEMFORPNTR *I

}

I*

checkConn();
sendReqString(REQ_SEND_MSGPNTR, NULL);
PntrBiteOut(pHostColl->fdSocket, pPntrD);
cmFlush(pHostColl->fdSocket);
return 0;

* Function

Page 64 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1670

frontCoiiCiient. c 7/5/11 11 :54 AM

*I
int
collSendMsgPntrRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgPntrRespHandler()->NULL Host data!\n");
return -1;

if (pnt rSendMsgFunc ! = NULL) {
(*pntrSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"pntrSendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGPNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgPntrinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
static shaDoubles pntrData;
shastraidTag senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgPntrinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

PntrBitein(fd, &pntrData);
if (pnt rRecvMsgFunc ! = NULL) {

(*pntrRecvMsgFunc) (pHostColl, &senderSidTag, &pntrData);
}
else{

fprintf(stderr,"pntrRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",
showCollabinfo(pFrontAppData->sbMsgBuf);

REQ SEND MSGPNTR); - -

Page 65 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1671

frontCoiiCiient. c

return 0;
}

I*
* Function
*I

int
collRecvdMsgPntrReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGPNTR, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgPntrRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGPNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgPntrinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgPntrinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGPNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);

Page 66 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1672

frontCoiiCiient. c

}

printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

I*
* Function
*I

int
collSendMsgShmPntrReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPntrReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMPNTR, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmPntrRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmPntrRespHandler()->NULL Host data!\n");
return -1;

}

I*

}

if (pnt rSendMsgFunc ! = NULL) {
(*pntrSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"pntrSendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

* Function

Page 67 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1673

frontCoiiCiient. c 7/5/11 11 :54 AM

*I
int
collSendMsgShmPntrinHandler(fd)

{

}

int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
char *buf;
static shaDoubles pntrData;
shastraidTag senderSidTag;
int shmid;
shminfo *PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmPntrinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPntrinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmPntrinHandler()->SHM recon problem\n");
return -1;

}
buf = pShminfo->shmAddr;
if (pnt rRecvMsgFunc ! = NULL) {

(*pntrRecvMsgFunc) (pHostColl, &senderSidTag, &pntrData);
}
else{

fprintf(stderr,"pntrRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

REQ SEND MSGSHMPNTR - -

I*
* Function
*I

int
collRecvdMsgShmPntrReq(pHostColl, pShminfo)

hostData *PHostColl;
shminfo *PShminfo;

{
if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {

Page 68 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1674

frontCoiiCiient. c 7/5/11 11 :54 AM

}

}

fprintf(stderr, "collRecvdMsgShmPntrReq()->no non-local SHM\n");
return -1;

checkConn();
sendReqString(REQ_RECVD_MSGSHMPNTR, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmPntrRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGSHMPNTR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgShmPntrinHandler(fd)

{
int fd;

hostData
shastraidTag
int
shminfo

*PHostColl;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collRecvdMsgShmPntrinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmPntrinHandler()->couldn't shMemDelete!\
n") ;

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGSHMPNTR

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

Page 69 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1675

frontCoiiCiient. c

}

I*
* Function
*I

int
collStartCursorReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_CURSOR, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartCursorRespHandler(fd)

{

}

int fd;

I* start a cursor comm infrastructure .. one cursor wid per member *I
I* create and popup cursor comm controller *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (cursorStartFunc !=NULL) {

(*cursorStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"cursorStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_CURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndCursorReq(pHostColl)

{
hostData *PHostColl;

checkConn();
sendReqString(REQ_END_CURSOR, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

7/5/11 11 :54 AM

Page 70 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1676

frontCoiiCiient. c

}

I*
* Function
*I

int
collEndCursorRespHandler(fd)

{

}

int fd;

shastraidTag senderSidTag;
hostData *PHostColl;
I* terminate a cursor comm channel destroy wids etc *I
I* destroy popdown cursor comm controller *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (cursorEndFunc !=NULL) {

(*cursorEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"cursorEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_CURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendCursorReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_CURSOR, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendCursorRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendCursorRespHandler()->NULL Host data!\n");

7/5/11 11 :54 AM

Page 71 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1677

frontCoiiCiient. c

}

return -1;
}

if (cu rso rSend F i leFunc ! = NULL) {
(*cursorSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"cursorSendFileFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_CURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendCursorinHandler(fd)

{
int fd;

I* recv msg from outside .. update local view *I
hostData *PHostColl;
char *buf;
shastraidTag senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendCursorinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_CURSOR);
if (cursorRecvFileFunc != NULL) {

}

(*cursorRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"cursorRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);
return 0;

I*
* Function
*I

int
collSendMsgCursorReq(pHostColl, pCursorD)

hostData *PHostColl;

Page 72 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1678

frontCoiiCiient. c 7/5/11 11 :54 AM

{
shaDoubles

shminfo
int

*PCursorD;

*PShminfo;
n;

#ifdef USESHAREDMEMFORCURSOR
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = strlen(str) + 1;
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fp r intf (s tde r r, "co llSendMsgCu rso rReq ()->couldn't s hMemReuseSegment! \
n");

}

}
memcpy(pShminfo->shmAddr, str, n);
collSendMsgShmCursorReq(pHostColl, pShminfo);
return 0;

#end if I* USESHAREDMEMFORCURSOR *I

}

checkConn();
sendReqString(REQ_SEND_MSGCURSOR, NULL);
CursorBiteOut(pHostColl->fdSocket, pCursorD);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgCursorRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgCursorRespHandler()->NULL Host data!\n");
return -1;

}

}

if (cu rso rSendMsg Func ! = NULL) {
(*CU rso rSendMsg Func) (pHostCo ll);

}
else{

fprintf(stderr,"cursorSendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

Page 73 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1679

frontCoiiCiient. c 7/5/11 11 :54 AM

* Function
*I

int
collSendMsgCursorinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
static shaDoubles cursorData;
shastraidTag senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgCursorinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

CursorBitein(fd, &cursorData);
if (cu rso rRecvMsg Func ! = NULL) {

(*cursorRecvMsgFunc) (pHostColl, &senderSidTag, &cursorData);
}
else{

fprintf(stderr,"cursorRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_MSGCURSOR)

showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgCursorReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGCURSOR, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgCursorRespHandler(fd)

int fd;

Page 74 of 103

Petitioner Microsoft Corporation, Ex. 1002, p. 1680

frontCoiiCiient. c 7/5/11 11 :54 AM

{
I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collRecvdMsgCursorinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collRecvdMsgCursorinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGCURSOR)

showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmCursorReq(pHostColl, pShminfo)

{

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmCursorReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMCURSOR, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

Page 75 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1681

frontCoiiCiient. c

}

I*
* Function
*I

int
collSendMsgShmCursorRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmCursorRespHandler()->NULL Host data!\n")

}

return -1;
}

if (cu rso rSendMsg Func ! = NULL) {
(*CU rso rSendMsg Func) (pHostCo ll);

}
else{

fprintf(stderr,"cursorSendMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgShmCursorinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
char *buf;
static shaDoubles cursorData;
shastraidTag senderSidTag;
int shmid;
shminfo *PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmCursorinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

Page 76 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1682

frontCoiiCiient. c 7/5/11 11 :54 AM

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmCursorinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmCursorinHandler()->SHM recon problem\n")

}

return -1;
}
buf = pShminfo->shmAddr;
if (cu rso rRecvMsg Func ! = NULL) {

(*cursorRecvMsgFunc) (pHostColl, &senderSidTag, &cursorData);
}
else{

fprintf(stderr,"cursorRecvMsgFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGSHMCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collRecvdMsgShmCursorReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmCursorReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMCURSOR, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmCursorRespHandler(fd)

int fd;
{

I* NULL -- recvd msg got to sesmgr *I
sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_RECVD_MSGSHMCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

Page 77 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1683

frontCoiiCiient. c

}

I*
* Function
*I

int
collRecvdMsgShmCursorinHandler(fd)

{
int fd;

hostData
shastraidTag
int
shminfo

*PHostColl;
senderSidTag;
shmid;

*PShminfo;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collRecvdMsgShmCursorinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmCursorinHandler()->couldn't shMemDelete
!\n");

}

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n",

REQ_RECVD_MSGSHMCURSOR);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collStartXSCntlReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_XSCNTL, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartXSCntlRespHandler(fd)

Page 78 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1684

frontCoiiCiient. c 7/5/11 11 :54 AM

{

}

int fd;

I* start a xsCntl comm infrastructure .. *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collStartXSCntlRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
if (xsCnt lSta rt Func ! = NULL) {

(*xsCntlStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"xsCntlStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_XSCNTL);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndXSCntlReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_XSCNTL, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndXSCntlRespHandler(fd)

{
int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
I* terminate a xsCntl comm channel *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (xsCntlEndFunc !=NULL) {

(*xsCntlEndFunc) (pHostColl, &senderSidTag);
}
else{

Page 79 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1685

frontCoiiCiient. c 7/5/11 11 :54 AM

}

fprintf(stderr,"xsCntlEndFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_XSCNTL);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendXSCntlReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_XSCNTL, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendXSCntlRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendXSCntlRespHandler()->NULL Host data!\n");
return -1;

if (xsCntlSendFileFunc != NULL) {
(*xsCntlSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"xsCntlSendFileFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_XSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

Page 80 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1686

frontCoiiCiient. c 7/5/11 11 :54 AM

int
collSendXSCntlinHandler(fd)

{
int fd;

hostData
I* recv msg
char
shastraidTag

*PHostColl;
from outside .. update local view *I

*buf;
senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendXSCntlinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
if (xsCntlRecvFileFunc != NULL) {

(*xsCntlRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"xsCntlRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_XSCNTL);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgXSCntlReq(pHostColl, pXSCBites)

{

hostData *PHostColl;
xsCntlDatas *PXSCBites;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORXSCD
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = 0; I* HMMM *I
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fprintf(stderr, "collSendMsgXSCntlReq()->couldn't shMemReuseSegment!\
n");

}
xsCntlDatasMemOut(pShminfo->shmAddr, pShminfo->shmSize, pXSCBites);
collSendMsgShmXSCntlReq(pHostColl, pShminfo);

Page 81 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1687

frontCoiiCiient. c

return 0;
}

#end if I* USESHAREDMEMFORXSCD *I

}

checkConn();
sendReqString(REQ_SEND_MSGXSCNTL, NULL);
XSCntlBitesOut(pHostColl->fdSocket, pXSCBites);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgXSCntlRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgXSCntlRespHandler()->NULL Host data!\n");
return -1;

}

if (xsCnt lSendMsg Func ! = NULL) {
(*xsCntlSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"xsCntlSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGXSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collSendMsgXSCntlinHandler(fd)

int fd;
{

hostData *PHostColl;
I* recv msg from outside .. update local view *I
char *buf;
shastraidTag senderSidTag;
static xsCntlDatas xsCntlBites;

pHostColl = mplexGetHostData(fd);

Page 82 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1688

frontCoiiCiient. c 7/5/11 11 :54 AM

}

if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgXSCntlinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

XSCntlBitesin(fd, &xsCntlBites);
if (xsCntlRecvMsgFunc != NULL) {

(*xsCntlRecvMsgFunc) (pHostColl, &senderSidTag, &xsCntlBites);
}
else{

fprintf(stderr,"xsCntlRecvMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGXSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collRecvdMsgXSCntlReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGXSCNTL, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgXSCntlRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGXSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

Page 83 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1689

frontCoiiCiient. c

* Function
*I

int
collRecvdMsgXSCntlinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collRecvdMsgXSCntlinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGXSCNTL)

showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmXSCntlReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmXSCntlReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMXSCNTL, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmXSCntlRespHandler(fd)

int fd;

Page 84 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1690

frontCoiiCiient. c 7/5/11 11 :54 AM

{

}

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmXSCntlRespHandler()->NULL Host data!\n")

return -1;
}

if (xsCnt lSendMsg Func ! = NULL) {
(*xsCntlSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"xsCntlSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMXSCNTL

) ;
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collSendMsgShmXSCntlinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
shastraidTag senderSidTag;
int shmid;
shminfo *PShminfo;
static xsCntlDatas xsCntlBites;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmXSCntlinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmXSCntlinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

Page 85 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1691

frontCoiiCiient. c 7/5/11 11 :54 AM

fprintf(stderr, "collSendMsgShmXSCntlinHandler()->SHM recon problem\n")

}

return -1;
}
xsCntlDatasMemin(pShminfo->shmAddr, pShminfo->shmSize, &xsCntlBites);
if (xsCntlRecvMsgFunc != NULL) {

(*xsCntlRecvMsgFunc) (pHostColl, &senderSidTag, &xsCntlBites);
}
else{

fprintf(stderr,"xsCntlRecvMsgFunc()->no handler!\n");
}

I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGSHMXSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

return 0;

I*
* Function
*I

int
collRecvdMsgShmXSCntlReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmXSCntlReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMXSCNTL, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmXSCntlRespHandler(fd)

{

}

int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n",

REQ_RECVD_MSGSHMXSCNTL);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

Page 86 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1692

frontCoiiCiient. c

I*
* Function
*I

int
collRecvdMsgShmXSCntlinHandler(fd)

{
int fd;

hostData
shastraidTag
shminfo
int

*PHostColl;
senderSidTag;

*PShminfo;
shmid;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collRecvdMsgShmXSCntlinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmXSCntlinHandler()->couldn't shMemDelete
!\n");

}

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n",

REQ_RECVD_MSGSHMXSCNTL);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collStartPictReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_START_PICT, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collStartPictRespHandler(fd)

int fd;
{

Page 87 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1693

frontCoiiCiient. c

}

I* start a pict comm infrastructure .. *I
shastraidTag senderSidTag;
hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collStartPictRespHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
if (pictSta rt Func ! = NULL) {

(*pictStartFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"pictStartFunc()->no handler!\n");
}
sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_START_PICT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collEndPictReq(pHostColl)

{

}

hostData *PHostColl;

checkConn();
sendReqString(REQ_END_PICT, NULL);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collEndPictRespHandler(fd)

{
int fd;

hostData *PHostColl;
shastraidTag senderSidTag;
I* terminate a pict comm channel *I
pHostColl = mplexGetHostData(fd);
ShastraidTagin(fd, &senderSidTag);
if (pictEndFunc ! = NULL) {

(*pictEndFunc) (pHostColl, &senderSidTag);
}
else{

fprintf(stderr,"pictEndFunc()->no handler!\n");
}

7/5/11 11 :54 AM

Page 88 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1694

frontCoiiCiient. c

}

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_END_PICT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendPictReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_SEND_PICT, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendPictRespHandler(fd)

{

}

int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendPictRespHandler()->NULL Host data!\n");
return -1;

if (pictSend F i leFunc ! = NULL) {
(*pictSendFileFunc) (pHostColl);

}
else{

fprintf(stderr,"pictSendFileFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_PICT);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collSendPictinHandler(fd)

7/5/11 11 :54 AM

Page 89 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1695

frontCoiiCiient. c 7/5/11 11 :54 AM

{

}

int

hostData
I* recv msg
char
shastraidTag

fd;

*PHostColl;
from outside .. update local view *I

*buf;
senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendPictinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);

buf = cmReceiveString(fd);
if (pictRecvFileFunc != NULL) {

(*pictRecvFileFunc) (pHostColl, &senderSidTag, buf);
}
else{

fprintf(stderr,"pictRecvFileFunc()->no handler!\n");
}
showCollabinfo(pFrontAppData->sbMsgBuf);
free(buf);

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_PICT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collSendMsgPictReq(pHostColl, pPCBites)

{

hostData *PHostColl;
pictPieces *PPCBites;

shminfo
int

*PShminfo;
n;

#ifdef USESHAREDMEMFORPICT
if (pFrontSid->liPAddr == pHostColl->pSid->liPAddr) {

pShminfo = mplexOutShminfo(pHostColl->fdSocket);
n = 0; I* HMMM *I
if (shMemReuseSegment(pShminfo, ((n > 10240) 7 n : 10240)) == 0) {

fprintf(stderr, "collSendMsgPictReq()->couldn't shMemReuseSegment!\n"

}

) ;
}
pictPiecesMemOut(pShminfo->shmAddr, pShminfo->shmSize, pPCBites);
collSendMsgShmPictReq(pHostColl, pShminfo);
return 0;

Page 90 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1696

frontCoiiCiient. c 7/5/11 11 :54 AM

#end if I* USESHAREDMEMFORPICT *I

}

checkConn();
sendReqString(REQ_SEND_MSGPICT, NULL);
PictDataBitesOut(pHostColl->fdSocket, pPCBites);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgPictRespHandler(fd)

{
int fd;

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgPictRespHandler()->NULL Host data!\n");
return -1;

if (pictSendMsgFunc ! = NULL) {
(*pictSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"pictSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGPICT);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collSendMsgPictinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
char *buf;
shastraidTag senderSidTag;
static pictPieces pictBites;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgPictinHandler()->NULL Host data!\n");

Page 91 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1697

frontCoiiCiient. c

return -1;
}

ShastraidTagin(fd, &senderSidTag);

PictDataBitesin(fd, &pictBites);
if (pictRecvMsgFunc != NULL) {

(*pictRecvMsgFunc) (pHostColl, &senderSidTag, &pictBites);
}
else{

fprintf(stderr,"pictRecvMsgFunc()->no handler!\n");
}
return 0;
I*

7/5/11 11 :54 AM

* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_SEND_MSGPICT

}

) ;
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collRecvdMsgPictReq(pHostColl, nameBuf)

{

}

hostData *PHostColl;
char *nameBuf;

checkConn();
sendReqString(REQ_RECVD_MSGPICT, NULL);
sendDataString(nameBuf);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgPictRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGPICT);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

Page 92 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1698

frontCoiiCiient. c

int
collRecvdMsgPictinHandler(fd)

{
int fd;

hostData
char
shastraidTag

*PHostColl;
*nameBuf;

senderSidTag;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collRecvdMsgPictinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &senderSidTag);
I* recvd ack that all collabs have heard, delete local buf *I
nameBuf = cmReceiveString(fd);

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGPICT);
showCollabinfo(pFrontAppData->sbMsgBuf);
printf("deleting %s\n", nameBuf);
I* is a tmp file *I
free(nameBuf);
return 0;

}

I*
* Function
*I

int
collSendMsgShmPictReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPictReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_SEND_MSGSHMPICT, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collSendMsgShmPictRespHandler(fd)

int fd;
{

hostData *PHostColl;

Page 93 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1699

frontCoiiCiient.c 7/5/11 11 :54 AM

}

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collSendMsgShmPictRespHandler()->NULL Host data!\n");
return -1;

if (pictSendMsgFunc ! = NULL) {
(*pictSendMsgFunc) (pHostColl);

}
else{

fprintf(stderr,"pictSendMsgFunc()->no handler!\n");
}
return 0;
I*
* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPICT);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

I*
* Function
*I

int
collSendMsgShmPictinHandler(fd)

{
int fd;

hostData *PHostColl;
I* recv msg from outside .. update local view *I
shastraidTag senderSidTag;
int shmid;
shminfo *PShminfo;
static pictPieces pictBites;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collSendMsgShmPictinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collSendMsgShmPictinHandler()->no non-local SHM\n");
return -1;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmPictinHandler()->SHM recon problem\n");
return -1;

}
pictPiecesMemin(pShminfo->shmAddr, pShminfo->shmSize, &pictBites);
if (pictRecvMsgFunc != NULL) {

Page 94 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1700

frontCoiiCiient. c

}

(*pictRecvMsgFunc) (pHostColl, &senderSidTag, &pictBites);
}
else{

fprintf(stderr,"pictRecvMsgFunc()->no handler!\n");
}

I*
* sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_SEND_MSGSHMPICT);
* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

return 0;

I*
* Function
*I

int
collRecvdMsgShmPictReq(pHostColl, pShminfo)

{

}

hostData *PHostColl;
shminfo *PShminfo;

if (pFrontSid->liPAddr != pHostColl->pSid->liPAddr) {
fprintf(stderr, "collRecvdMsgShmPictReq()->no non-local SHM\n");
return -1;

}
checkConn();
sendReqString(REQ_RECVD_MSGSHMPICT, NULL);
ShastraintOut(pHostColl->fdSocket, &pShminfo->shmid);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collRecvdMsgShmPictRespHandler(fd)

{
int fd;

I* NULL -- recvd msg got to sesmgr *I
return 0;
I*

7/5/11 11 :54 AM

* sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMPICT)

* showCollabinfo(pFrontAppData->sbMsgBuf);
*I

}

I*
* Function
*I

int
collRecvdMsgShmPictinHandler(fd)

Page 95 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1701

frontCoiiCiient. c

{
int

hostData
shastraidTag
shminfo
int

fd;

*PHostColl;
senderSidTag;

*PShminfo;
shmid;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collRecvdMsgShmPictinHandler()->NULL Host data!\n");
return -1;

}

ShastraidTagin(fd, &senderSidTag);
Shastraintin(fd, &shmid);
pShminfo = mplexOutShminfo(fd);
if (shMemDelete(pShminfo, shmid) == 0) {

fprintf(stderr, "collRecvdMsgShmPictinHandler()->couldn't shMemDelete!\
n") ;

}
I* recvd ack that all collabs have heard, delete shared seg *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in)-- %s\n", REQ_RECVD_MSGSHMPICT

) ;
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collCommMsgTextReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

}

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGTEXT, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collCommMsgTextRespHandler(fd)

Page 96 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1702

frontCoiiCiient. c 7/5/11 11 :54 AM

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXT);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collCommMsgTextinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char
hostData

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;
*PHostColl;

recvd message *I

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collCommMsgTextinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
collabCommRecvdMessageOprn(smSidTag, sidTag, sMsg);
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",
showCollabinfo(pFrontAppData->sbMsgBuf);

REQ COMM MSGTEXT); - -

free(sMsg);
return 0;

}

I*
* Function
*I

int
collCommMsgTextFileReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGTEXTFILE, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);

Page 97 of 1 03

Petitioner Microsoft Corporation, Ex. 1002, p. 1703

frontCoiiCiient.c 7/5/11 11 :54 AM

}

ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collCommMsgTxtFileRespHandler(fd)

int fd;
{

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXTFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collCommMsgTxtFileinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char
hostData

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;
*PHostColl;

recvd message *I

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collCommMsgTxtFileinHandler()->NULL Host data!\n");
return -1;

}

}

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
I* show in dialog *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGTEXTFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

Page 98 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1704

frontCoiiCiient.c 7/5/11 11 :54 AM

int
collCommMsgAudioReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

}

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGAUDIO, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collCommMsgAudioRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

I*
* Function
*I

int
collCommMsgAudioinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char
hostData

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;
*PHostColl;

recvd message *I

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collCommMsgAudioinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);

Page 99 of 1 03
Petitioner Microsoft Corporation, Ex. 1002, p. 1705

frontCoiiCiient.c 7/5/11 11 :54 AM

sMsg = cmReceiveString(fd);
I* send to service tool for handling *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGAUDIO);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

}

I*
* Function
*I

int
collCommMsgAudioFileReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

}

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGAUDIOFILE, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collCommMsgAudioFileRespHandler(fd)

int fd;
{

sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COMM_MSGAUDIOFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collCommMsgAudioFileinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;

recvd message *I

Page 100 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1706

frontCoiiCiient. c

hostData *PHostColl;

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

7/5/11 11 :54 AM

fprintf(stderr, "collCommMsgAudioFileinHandler()->NULL Host data!\n");
return -1;

}

}

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
I* send to service tool for handling *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGAUDIOFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

I*
* Function
*I

int
collCommMsgVideoReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

}

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGVIDEO, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

I*
* Function
*I

int
collCommMsgVideoRespHandler(fd)

{

}

int fd;

sprintf(pFrontAppData->sbMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

Page 101 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1707

frontCoiiCiient. c

I*
* Function
*I

int
collCommMsgVideoinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char
hostData

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;
*PHostColl;

recvd message *I

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

}

fprintf(stderr, "collCommMsgVideoinHandler()->NULL Host data!\n");
return -1;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
I* send to service tool for handling *I

7/5/11 11 :54 AM

sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGVIDEO);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

}

I*
* Function
*I

int
collCommMsgVideoFileReq(pHostColl, pSmSidTag, pToSidTag, pSidTag, sbMsg)

hostData *PHostColl;

{

}

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGVIDEOFILE, NULL);
ShastraidTagOut(pHostColl->fdSocket, pSmSidTag);
ShastraidTagOut(pHostColl->fdSocket, pToSidTag);
ShastraidTagOut(pHostColl->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostColl->fdSocket);
return 0;

Page 102 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1708

frontCoiiCiient. c 7/5/11 11 :54 AM

* Function
*I

int
collCommMsgVideoFileRespHandler(fd)

int fd;
{

sprintf(pFrontAppData->sbMsgBuf, "Done %s\n", REQ_COMM_MSGVIDEOFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
return 0;

}

I*
* Function
*I

int
collCommMsgVideoFileinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char
hostData

idtag, display
smSidTag;
toSidTag;
sidTag;

*SMsg;
*PHostColl;

recvd message *I

pHostColl = mplexGetHostData(fd);
if (pHostColl ==NULL) {

fprintf(stderr, "collCommMsgVideoFileinHandler()->NULL Host data!\n");
return -1;

}

}

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
I* send to service tool for handling *I
sprintf(pFrontAppData->sbMsgBuf, "Done (in) -- %s\n",

REQ_COMM_MSGVIDEOFILE);
showCollabinfo(pFrontAppData->sbMsgBuf);
free(sMsg);
return 0;

Page 103 of 103
Petitioner Microsoft Corporation, Ex. 1002, p. 1709

ciSvrCntl.c 7/5/11 11:19 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* clSvrCntl. c
*I

#include <stdio.h>
#include <string.h>

#include <shastralshastra.h>

#include <shastralutilsllist.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslgenui.h>

#include <shastralshautilslclientHosts.h>
#include <shastralshautilslkernelFronts.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>

#include <shastralfrontlfront.h>
#include <shastralfrontlfrontP.h>
#include <shastralfrontlfront_client.h>
#include <shastralfrontlclSvrCntl.h>
#include <shastralfrontlclSvrCntlP.h>
#include <shastralfrontlshastraCntl.h>

static ShastraToolMode iClSvrModeMine;
static ShastraToolMode iClSvrMode;

Page 1 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1710

ciSvrCntl.c 7/5/11 11:19 AM

static shastraid defServerSid = { NULL, NULL, TEST_SERVICE_NAME};
extern chooseOne *PCOClSvr;
hostData *PHostShaCurrClnt;
static shastraidTag currClntSidTag;

void
clSvrSetSelfModeOprn()
{

iClSvrModeMine = shastraNameToMode(pFrontSid->nmApplicn);
}

char **
getServerNameList(pSid)

shastraid* pSid;
{

}

char **SbNames;

if(pSid NULL){
if(iClSvrMode == 0){

defServerSid.nmApplicn = pFrontSid->nmApplicn;
}
else{

defServerSid.nmApplicn = shastraModeToName(iClSvrMode);
}
sbNames = clHosts2StrTab(&defServerSid, PSIDNMHOST I PSIDNMAPPL);

}
else{

sbNames = clHosts2StrTab(pSid, PSIDNMHOST I PSIDNMAPPL);
}
return sbNames;

char **
getServerNameListByService(iService)

int iSe rv ice;
{

}

char **SbNames;

defServerSid.nmApplicn = shastraServiceToName(iService);
sbNames = clHosts2StrTab(&defServerSid, PSIDNMHOST I PSIDNMAPPL);
return sbNames;

void
setClSvrServerNamesOprn(pSid)

shastraid *PSid;
{

char **SbNames, *SService;

if(pcoClSvr == NULL){
return;

Page 2 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1711

ciSvrCntl.c

}

}
sService = shastraModeToName(iClSvrMode);
if(strcmp(pSid->nmApplicn,sService)){

return; /*not current service type*/
}
sbNames = getServerNameList(pSid);
chooseOneChangeList(pcoClSvr, sbNames, coNoinitialHighlight);
if (sbNames) {

strListDestroy(sbNames);
}

I*
* Function
*I

void
clSvrSetCurrHostOprn(pHost, fForce)

hostData *PHost;

{
int fForce;

if(!fForce && (pHostShaCurrClnt !=NULL)){
return; /*only set if not already set*/

}
pHostShaCurrClnt = pHost;
if(pHostShaCurrClnt != NULL){

currClntSidTag = pHostShaCurrClnt->lSIDTag;
#ifdef DEBUG

fprintf(stderr,"currClntSidTag = %ld, pHost = %ld\n",
currClntSidTag, pHost);

#endif I* DEBUG *I

}

}
else{

clSvrUnselectOprn();
}

set and update user interface element flags .. mode etc
*I

I*
* Function
*I

void
clSvrResetCurrHostOprn(pHost, fForce)

hostData *PHost;

{
int fForce;

if(!fForce && (pHostShaCurrClnt != pHost)){
return; /*only set if not already set*/

}
else{

clSvrUnselectOprn();
}

7/5/11 11:19 AM

Page 3 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1712

ciSvrCntl.c 7/5/11 11:19 AM

}

hostData *
clSvrHostFromService(iService, iClSvr)

int iSe rv ice;
int iClSvr;

{
hostData *PHost;

defServerSid.nmApplicn = shastraServiceToName(iService);
pHost = getClntHostByindex(&defServerSid, iClSvr);

return pHost;
}

hostData *
getClSvrHostFromindex(iClSvr)

{
int iClSvr;

hostData
shast raid

*PHost;
*PSid = NULL;

if(currClntSidTag){
pSid = mapSidTag25Id(&currClntSidTag);

}
if(pSid == NULL){

pSid = &defServerSid;
defServerSid.nmApplicn = shastraModeToName(iClSvrMode);

}
pHost = getClntHostByindex(pSid, iClSvr);

#ifdef DEBUG
fprintf(stderr,"getClSVrHostFromindex()->smidTag = %ld, pHost = %ld\n",

pHost->lSIDTag, pHost);
#endif I* DEBUG *I

return pHost;
}

void
clSvrSetModeOprn(iMode)

ShastraToolMode
{

iClSvrMode = iMode;
/*update the shown set*/

iMode;

defServerSid.nmApplicn = shastraModeToName(iClSvrMode);

setClSvrServerNamesOprn(&defServerSid);
}

I*
* Function
*I

void
clSvrUnselectOprn()

Page 4 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1713

ciSvrCntl.c

{

}

pHostShaCurrClnt = NULL;
currClntSidTag = 0;

I*
* Function
*I

void
clSvrSelectOprn(i)

{

}

int i;

hostData *PHost;
pHost = getClSvrHostFromindex(i);
clSvrSetCurrHostOprn(pHost, True);
if (clientSelectFunc ! = NULL) {

(*clientSelectFunc) (pHostShaCurrClnt);
}

I*
* Function
*I

void
clSvrRenameOprn(i, name)

{

}

int i;
char *name;

I*
* Function
*I

void
clSvrDisconnectOprn(i)

{

}

int i;

hostData *PHost;
pHost = getClSvrHostFromindex(i);
if(clntTerminateReq(NULL, pHost) == -1){

}

clSvrUtilPopupMessage("clntTerminateReq() Error!\n");
return;

I*
* Function
*I

void
clSvrTerminateOprn(i)

int i;

7/5/11 11:19 AM

Page 5 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1714

ciSvrCntl.c

{

}

hostData *PHost;
pHost = getClSvrHostFromindex(i);
if(clntTerminateReq(NULL 1 pHost) == -1){

}

clSvrUtilPopupMessage("clntTerminateReq() Error!\n");
return;

clSvrUtilPopupMessage("This operation is presently disabled!\n");

I*
* Function
*I

void
clSvrCreateOprn(sbName)

char *SbName;
{

}

printf("create %s on %s\n" 1 shastraModeToName(iClSvrMode) 1 sbName);
/*execute a starter script*/

I*
* Function
*I

void
c lSv rSe rve rOp rn (s bName 1 iPo rt)

char *SbName;

{
int iPort;

shastraid sid;
shaCmdData *PCmdData = NULL;

if(!strcmp(pFrontSid->nmApplicn 1 sbName) &&
(pFrontSid->iPort == iPort)){

clSvrUtilPopupMessage("Warning: Connecting to self!\n");
}
memset(&sid 1 0 1 sizeof(shastraid));
sid.nmApplicn = shastraModeToName(iClSvrMode);
sid.nmHost = sbName;
sid.iPort = iPort;

/*CHECK*/
sid.lSIDTag = mplexGetUniqueid();
sid.liPAddr = hostName2IPAddress(sbName);
/*check if already connected*/
if(getClntHostByidTag(&sid 1 &sid.lSIDTag) !=NULL){

clSvrUtilPopupMessage("Warning: Already connected to host!\n");
}
printf("server connect to %son %s\n" 1 sid.nmApplicn 1 sbName);
I* connect using non-shastra info *I
if(clientControlDataFunc){

7/5/11 11:19 AM

(*clientControlDataFunc)(shastraModeToService(iClSvrMode) 1 &pCmdData);
if(pCmdData == NULL){

clSvrUtilPopupMessage("Invalid Control Data!\n");

Page 6 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1715

ciSvrCntl.c

}

I*

return;
}

}
else{

}

clSvrUtilPopupMessage("Can't Obtain Control Data!\n");
return;

if(clntConnectReq(NULL, &sid, pCmdData) == -1){
clSvrUtilPopupMessage("clntConnectReq() Error!\n");
return;

}

* Function
*I

void
clSvrConnectOprn(iWhich)

int iWhich;
{

shastraidTag *PSidTag;
shastraid *PSid;
shaCmdData *PCmdData = NULL;

pSidTag = krFrNdx2SidTag(iWhich);
pSid = mapSidTag2Sid(pSidTag);
if(pSid == NULL){

}

clSvrUtilPopupMessage("Invalid System!\n");
return;

if(*pSidTag == pFrontSid->lSIDTag){
clSvrUtilPopupMessage("Warning: Connecting to self!\n");

}
/*check if already connected*/
if(getClntHostByidTag(pSid, pSidTag) != NULL){

clSvrUtilPopupMessage("Warning: Already connected!\n");
}
if(clientControlDataFunc){

(*clientControlDataFunc)(shastraNameToService(pSid->nmApplicn), &
pCmdData);

if(pCmdData == NULL){
clSvrUtilPopupMessage("Invalid Control Data!\n");
return;

}
}
else{

}

clSvrUtilPopupMessage("Can't Obtain Control Data!\n");
return;

if(clntConnectReq(NULL, pSid, pCmdData) == -1){
clSvrUtilPopupMessage("clntConnectReq() Error!\n");
return;

7/5/11 11:19 AM

Page 7 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1716

ciSvrCntl.c

}
}

void
clSvrOperationsOprn(pMgrCD, fUp)

mgrCntlData *PMgrCD;

{

}

int fUp;

if(pHostShaCurrClnt == NULL){
clSvrUtilPopupMessage("Invalid Current Server!\n");
return;

}
if (client Ope rata rFunc ! = NULL) {

(*clientOperatorFunc) (pHostShaCurrClnt);
}

7/5/11 11:19 AM

Page 8 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1717

kernel.c 7/5/11 11:17 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#ifdef SHASTRA4SUNS
#include <stdlib.h>
#include <string.h>
#include <sysltypes.h>
#include <syslsysteminfo.h>
#include <unistd.h>
int putenv(char *);
#end if
#include <sysltypes.h>
#include <syslsocket.h>

#include <pwd.h>
#include <sysltypes.h>
#include <unistd.h>
#include <stdio.h>
#include <malloc.h>
#include <syslerrno.h>
#include <netdb.h>

#include <Xlliintrinsic.h>
#include <XlliXutil.h>
#include <XlliStringDefs.h>

#include <XmiText.h>

#include <shastralshastra.h>
#include <shastralshastraStateDefs.h>

#include <shastralutilsllist.h>

Page 1 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1718

kernel.c 7/5/11 11:17 AM

#include <shastra/uitools/buttonBox.h>
#include <shastra/uitools/toggleBox.h>
#include <shastra/uitools/stateBox.h>
#include <shastra/uitools/chooseOne.h>
#include <shastra/uitools/chooseMany.h>
#include <shastra/uitools/callbackArg.h>
#include <shastra/uitools/dialog.h>
#include <shastra/uitools/confirmCB.h>
#include <shastra/uitools/miscUtils.h>
#include <shastra/uitools/strlistUtilities.h>

#include <shastra/datacomm/shastraidH.h>
#include <shastra/datacomm/shastraidTagH.h>

#include <shastra/shautils/shautils.h>
#include <shastra/shautils/kernelFronts.h>
#include <shastra/shautils/sesMgrFronts.h>

#include <shastra/network/server.h>
#include <shastra/network/mplex.h>
#include <shastra/network/hostMgr.h>

#include <shastra/kernel/kernel.h>
#include <shastra/kernel/kernelMainCB.h>
#include <shastra/kernel/kernel_server.h>
#include <shastra/kernel/kernelFallback.h>
#include <shastra/kernel/kernel_client.h>
#include <shastra/kernel/kernelState.h>

#define SHASTRA_MALLOCDBGnn

static char *GetShastraBaseDir();
#ifdef SHASTRA4SUNS
extern char *Strdup(Protl(char *));
#end if

static shaKernelAppData kernelAppData;
shaKernelAppData *PKernelAppData = &kernelAppData;
static shastraid kernShastraid;
shastraid *PKernelSid = &kernShastraid;

char
#define DEBUG 0
int
extern int

int
int

void
void
void

sbOutMsgBuf[1024];

debug = DEBUG;
e rrno;

fMainKernel;
fForcedXMainKernel;

getCmdlineArgs(Prot2(int , char**));
cmdlineUsage(Protl(char **));
getRegisterinfo(Protl(shastraid *));

Page2of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1719

kernel.c

void
int
int

uiCreate(Prot2(Widget, XtAppContext));
shastraHandleXEvent();
kernelPortNum;
mainKernClntSocket; int

unsigned
int
#ifndef
#define
#end if
char
char
char

long kerneliPAddr;
iKernelFrontindex;

SHASTRA4SUNS
MAXNAMELEN 128

shastraid
shastraids

XtAppContext

Widget

int
int

char

char
char
char
int

kernelHostName[MAXNAMELEN];
kernelUserName[MAXNAMELEN];
kernelHeadHostName[MAXNAMELEN];

kernelShastraid;
*PShastraFrontids;

shastraAppContext;

wgShastraTopLevel;

iXAppFileDes;
shastraServerStatus;

I* fronts connected on kernel *I

*ShastraPasswd = SHASTRAPASSWORD;

*kernelAppName;
*kernelDispName;
*kernelPasswd;

kernelFNoGUI;

shaCmdData serverCmdData;
cmCommand serverCommandTab[] = SERVERCMDS;
#define NSERVERCMDS (sizeof(serverCommandTab)lsizeof(cmCommand))
I* number of commands *I
int serverNCmds = NSERVERCMDS;

#ifdef SHASTRA_MALLOCDBG
#ifdef SHASTRA4IRIS
#include<sysltypes.h>
#include<malloc.h>
#elif defined SHASTRA4SUN4
int malloc_debug(Protl(int));
int malloc_verify(Prot0(void));
#end if
#endif I* SHASTRA_MALLOCDBG *I

int
int
int

shaCmdData

cmCommand

shastraFlush(Prot0(void));
shastraServiceSocket;
shast raPort;

kernelCmdData;

kernelCmdTab[] = KERNEL_CLIENTCMDS;

7/5/11 11:17 AM

Page3of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1720

kernel.c

#define KERNEL_NCMDS (sizeof(kernelCmdTab)/sizeof(cmCommand))
int kernelNCmds = KERNEL_NCMDS;

cmCommand kernelinCmdTab[] =KERNEL CLIENTINCMDS;
#define KERNEL INNCMDS (sizeof(kernelinCmdTab)/sizeof(cmCommand))
int kernelinNCmds = KERNEL_INNCMDS;

host Data
host Data

hostMainKern;
*PHostMainKern = &hostMainKern;

void
shastraKernelSetupApplResDir()
{

}

char sbName[1024], *SName;

sName = resolveNameFromBase(pKernelAppData->sDirBase,
pKernelAppData->sDirDefs);

sprintf(sbName,"XAPPLRESDIR=%s", sName);
putenv (sbName);

int
main(argc, argv)

int a rgc;
**argv;

{
char

char *nname;
FILE *fpHome;
char *SName;
struct hostent *PHostEnt;
extern int closedChannelCleanUpHandler();

uid_ t auid;
struct passwd *apass;
struct linger soLinger;
unsigned int temp;

static XrmOptionDescRec xrmOptions[] = {
DEFSHASTRAXRMOPTIONS

};
static XtResource xrmResources[] = {

7/5/11 11:17 AM

{ XshaNbaseDirectory, XshaCbaseDirectory, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sDirBase), XtRimmediate,
(XtPointer)DEFSHASTRABASEDIR },

{ XshaNminimal, XshaCminimal, XtRBoolean, sizeof(Boolean),
XtOffsetOf(shaKernelAppData, fMinimal), XtRimmediate,

(XtPointer)False },
{ XshaNconnect, XshaCconnect, XtRBoolean, sizeof(Boolean),
XtOffsetOf(shaKernelAppData, fConnect), XtRimmediate,

(XtPointer)True },
{ XshaNnoGUI, XshaCnoGUI, XtRBoolean, sizeof(Boolean),
XtOffsetOf(shaKernelAppData, fNoGUI), XtRimmediate, (XtPointer)False}

Page4of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1721

kernel.c 7/5/11 11:17 AM

{ XshaNusePixmap, XshaCusePixmap, XtRBoolean, sizeof(Boolean),
XtOffsetOf(shaKernelAppData, fPixmap), XtRimmediate, (XtPointer)

False},
{ XshaNhelp, XshaChelp, XtRBoolean, sizeof(Boolean),
XtOffsetOf(shaKernelAppData, fHelp), XtRimmediate, (XtPointer)False}

I

{ XshaNservicePort, XshaCservicePort, XtRint, sizeof(int),
XtOffsetOf(shaKernelAppData, iSvcPort), XtRimmediate, (XtPointer)0 },

{ XshaNshastraPort, XshaCshastraPort, XtRint, sizeof(int),
XtOffsetOf(shaKernelAppData, iShaPort), XtRimmediate, (XtPointer)0 },

{ XshaNdebugLevel, XshaCdebugLevel, XtRint, sizeof(int),
XtOffsetOf(shaKernelAppData, iDbgLevel), XtRimmediate, (XtPointer)0}

I

{ XshaNdefsDirectory, XshaCdefsDirectory, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sDirDefs), XtRimmediate,
(XtPointer)DEFSHASTRADEFSDIR },

{ XshaNdataDirectory, XshaCdataDirectory, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sDirData), XtRimmediate,
(XtPointer)DEFSHASTRADATADIR },

{ XshaNbinDirectory, XshaCbinDirectory, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sDirBin), XtRimmediate,
(XtPointer)DEFSHASTRABINDIR },

{ XshaNlogFile, XshaClogFile, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sFileLog), XtRimmediate,
(XtPointer)DEFSHASTRALOGFILE },

{ XshaNhomeFile, XshaChomeFile, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sFileHome), XtRimmediate,
(XtPointer)DEFSHASTRAHOMEFILE },

{ XshaNappsFile, XshaCappsFile, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sFileApps), XtRimmediate,
(XtPointer)DEFSHASTRAAPPSFILE },

{ XshaNusersFile, XshaCusersFile, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sFileUsers), XtRimmediate,
(XtPointer)DEFSHASTRAUSERSFILE },

{ XshaNhostsFile, XshaChostsFile, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sFileHosts), XtRimmediate,
(XtPointer)DEFSHASTRAHOSTSFILE },

{ XshaNlocalStarter, XshaClocalStarter, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sLocStart), XtRimmediate,
(XtPointer)DEFSHASTRASTARTLOCAL },

{ XshaNremoteStarter, XshaCremoteStarter, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sRemStart), XtRimmediate,
(XtPointer)DEFSHASTRASTARTREMOTE },

{ XshaNpassword, XshaCpassword, XtRString, sizeof(String),
XtOffsetOf(shaKernelAppData, sPasswd), XtRimmediate,
(XtPointer)DEFSHASTRAPASSWD },

};

xrmResources[0] .default addr = GetShastraBaseDir();

wgShastraTopLevel = XtAppinitialize(&shastraAppContext, "ShastraKernel"

xrmOptions, XtNumber(xrmOptions),

Page5of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1722

kernel.c

&argc, argv, fallback_resources, NULL, 0);
shastraAddConverters();

XtVaGetApplicationResources(wgShastraTopLevel,
(XtPointer)&kernelAppData,
xrmResources, XtNumber(xrmResources),
f*hardcoded non-overridable app resources vararg list*/
XshaNhe lp, False,
XshaNusePixmap, False,
NULL);

/*sanity checking of resources*/

shastraKernelSetupApplResDir();

getCmdLineArgs(argc, argv);
kernelAppName = KERNEL_SERVICE_NAME;/* store application name *I
if (kernelDispName == NULL) {

kernelDispName = XDisplayName(NULL);
}
if (kernelPasswd == NULL) {

kernelPasswd = SHASTRAPASSWORD;
}
mplexinit(wgShastraTopLevel,shastraAppContext);
registerinit();
kernFrontsinit();
sesmFrontsinit();
mplexRegisterErrHandler(closedChannelCleanUpHandler);

#ifdef SHASTRA4SUNS
if (sysinfo(SI_HOSTNAME, kernelHostName, MAXNAMELEN)

perror("sysinfo()");
#else

if (gethostname(kernelHostName, MAXNAMELEN) != 0) {
perror("gethostname()");

#end if
strcpy(kernelHostName, "anonymous.cs.purdue.edu");

}

-1) {

if ((pHostEnt = gethostbyname(kernelHostName)) ==NULL) {
perror("gethostbyname()");
return(0);

}
memcpy(&temp, &pHostEnt->h_addr_list [0] [0], 4);

kerneliPAddr = ntohl(temp);
I*
* printf("name : %s\n",kernelHostName);
*I

I* this used to read the host name from a file *I
#ifdef ANCIENTUGLYCODE

sName = resolveNameFrom2Bases(pKernelAppData->sDirBase,
pKernelAppData->sDirDefs, pKernelAppData->sFileHome);

if ((fpHome = fopen(sName, "r")) ==NULL) {

7/5/11 11:17 AM

Page6of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1723

kernel.c 7/5/11 11:17 AM

}

perror("fopen ()");
fprintf(stderr, "main()->couldn't open %s! Aborting .. \n",

sName) ;
exit(-1);

fgets(kernelHeadHostName, MAXNAMELEN, fpHome);
fclose(fpHome);

#end if
nname = (char *)MasterKernelName(kernelHostName);
if (nname)
{

}
else
{

}

strcpy(kernelHeadHostName,nname);

strcpy(kernelHeadHostName,kernelHostName);

l*kernelHeadHostName[strlen(kernelHeadHostName) - 1] = '\0' ;*I
printf("name: %s\n", kernelHeadHostName);
fForcedXMainKernel = 0;
if (!strcmp(kernelHostName, kernelHeadHostName))

{

}

}

I* head?? *I
fMainKernel = 1;

else
{
fMainKernel = 0;

auid = getuid();
apass = getpwuid(auid);

strcpy(kernelUserName,apass->pw_name); I* store user name *I

serverCmdData.pCmdTab = serverCommandTab;
serverCmdData.nCmds = serverNCmds;
serverCmdData.pCmdTabin =NULL;
serverCmdData.nCmdsin = 0;

if ((shastraServerStatus =
cmOpenServerSocket(SHASTRA_SERVICE_NAME, 0, &serverCmdData,

}

&shastraServiceSocket, NULL)) == -1) {
I* OpenServerSocket registers the handler *I
fprintf(stderr, "main()->Server Start-up error!\n Quitting!\n");
exit(-1);

soLinger.l_onoff = 0;
soLinger.l_linger = 5; I* seconds *I
setsockopt(shastraServiceSocket, SOL_SOCKET, SO_LINGER,

&soLinger,sizeof(struct linger));

uiCreate(wgShastraTopLevel, shastraAppContext);

pMyKernelSid = getMyKernelShastraid();

Page7of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1724

kernel.c

pMyKernelAD = getMyKernelAppData();

XFlush(XtDisplay(wgShastraTopLevel));

iXAppFileDes = ConnectionNumber(XtDisplay(wgShastraTopLevel));

if (mplexRegisterChannel(iXAppFileDes, shastraHandleXEvent,
NULL, NULL) == -1) {

fprintf(stderr, "main()->Couldn't register X Handler!\n");
}

shastraPort = shastraServerStatus;

I* connect to main kernel *I
if (!fMainKernel)

{ I* only non-heads *I
kernelPortNum = cmClientConnect2Server(kernelHeadHostName,

SHASTRA_SERVICE_NAME, 0, &mainKernClntSocket);
if (kernelPortNum == -1) {
perror("cmClientConnect2Server()");
}
if ((kernelPortNum

{
-1) && (e r rn o

I* problem .. maybe no kernel *I

ECONNREFUSED))

7/5/11 11:17 AM

fprintf(stderr, "main()->couldn't register with master kernel!\n");
fprintf(stderr, "main()->becoming a master kernel!\n");
fMainKernel = 1;
fForcedXMainKernel = 1;
I* save name in file *I
sName = resolveNameFrom2Bases(pKernelAppData->sDirBase,

pKernelAppData->sDirDefs, pKernelAppData->sFileHome);
if ((fpHome = fopen (sName, "w")) == NULL)

}

{
perror("fopen ()");
fprintf(stderr, "main()->couldn't open %s! Aborting .. \n",

sName);
exit(-1);

fprintf(fpHome, "%s\n", kernelHostName);
fclose(fpHome);
strcpy(kernelHeadHostName, kernelHostName);
I*

}

* should we try a loop-start main kernel here as
*well?
*I

else
{

kernelCmdData.pCmdTab = kernelCmdTab;
kernelCmdData.nCmds = kernelNCmds;
kernelCmdData.pCmdTabin = kernelinCmdTab;
kernelCmdData.nCmdsin = kernelinNCmds;

Page8of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1725

kernel.c 7/5/11 11:17 AM

pHostMainKern->fdSocket = mainKernClntSocket;
pHostMainKern->sendList = listMakeNew();
pHostMainKern->recvList = listMakeNew();
pHostMainKern->fStatus = shaWait2Send;

I* register handler *I
if (mplexRegisterChannel(pHostMainKern->fdSocket,

shaClientHandler,
&kernelCmdData, NULL) == -1)

{
fprintf(stderr,

"main()->Couldn't Register Client Handler! !\n"
) ;

}

pHostMainKern->fStatus = shaError;
return(0);

}
mplexSetHostData(pHostMainKern->fdSocket, pHostMainKern);
getRegisterinfo(&kernelShastraid);
I* after connecting,setting up handler *I
setShaKernidOprn(mainKernClntSocket); I* register ID with

* MainKernel *I
}

* this needs to follow the !fMainKernel part, as a kernel may need
*to become a main kernel if the main one isn't up already
*I

if (fMainKernel)
{

}

I* put shastraid in my own table *I
SetupKernelNameServer(shastraAppContext,kernelHostName);

kernelPortNum = shastraServerStatus; I* from
* cmopenServerSocket() *I

getRegisterinfo(&kernelShastraid);
copyid(&kernelShastraid, &localShaidin[shastraServiceSocket]);
shaKernFlags[shastraServiceSocket] = SHAKERNEL;
updateShaKernids();
if (rgsbShastraKern !=NULL) {

strListDestroy(rgsbShastraKern);
}
rgsbShastraKern = pSids2StrTab(&shastraKernids, PSIDNMHOST);
chooseOneChangeList(pcoShastraKern, rgsbShastraKern,

coNoinitialHighlight);

I* identify front index *I
iKernelFrontindex = locateKernFronts(&kernelShastraid);
if (iKernelFrontindex != -1) {

fprintf(stderr, "main()->locateKernFronts() already has index %d!\
n",
iKernelFrontindex);

} else {
iKernelFrontindex = occupyKrFrFreeSlot(&kernelShastraid);

Page9of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1726

kernel.c

}

void

}
pShastraFrontids = getKernFrontSids(&kernelShastraid);
I* initially empty fronts *I
pShastraFrontids->shastraids_len = 0;
pShastraFrontids->shastraids_val =

7/5/11 11:17 AM

(shastraid_P *) malloc(mplexGetMaxChannels() * sizeof(shastraid_P))

if (rgsbShastraFront !=NULL) {
strListDestroy(rgsbShastraFront);

}
rgsbShastraFront = pSids2StrTab(pShastraFrontids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

if (rgsbShastraSesMgr !=NULL) {
strListDestroy(rgsbShastraSesMgr);

}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);

shastraFlush();
mplexSetTimeout(7200000L); I* 2hrs *I

mplexMain(shastraFlush);
return(0);

uiCreate(wgParent, xac)

{

}

Widget wgParent;
XtAppContext xac;

Widget wgMainCmdShell;

pcbArgPopup->operation = NULL;
strcpy(pcbArgPopup->msg, "Callback Arg Uninitialized\n");

I* Do the one time initialization of the choose one object *I
chooseOneinit(xac);

I* Create the three shell widgets and all of their child widgets *I
wgMainCmdShell = createMainCmdShell(wgParent);
wgConfirmsShell = createConfirmsShell(wgParent);

I* Pop up the three shell widgets *I
XtPopup(wgMainCmdShell, XtGrabNone);

Page 10 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1727

kernel.c

* Function
*I

int
shastraHandleXEvent(xDescr, dummyArg)

{

}

I*

int xDescr;
char *dummyArg;

XEvent xev, xevNext;

fprintf(stderr, "Handle X Event!\n");
while (XtAppPending(shastraAppContext)) {

XtAppNextEvent(shastraAppContext, &xev);
if (xev.type == MotionNotify) {

while (XtAppPending(shastraAppContext)) {
XtAppPeekEvent(shastraAppContext, &xevNext);
if (xevNext.type != MotionNotify) {

}

break;
}
if (xevNext.xmotion.window != xev.xmotion.window) {

break;
}
XtAppNextEvent(shastraAppContext, &xev);

I* compress motion notify events to last one *I
}
XtDispatchEvent(&xev);

}
return(0);

* Function
*I

int
shast raFlush ()
{

}

XFlush(XtDisplay(wgShastraTopLevel));
return (0) ;

void
getRegisterinfo(pSid)

{
shastraid *PSid;

double
extern void

load;
getLoadAvg(Protl(double *));

memset(pSid, 0, sizeof(shastraid *));

pSid->liPAddr = kerneliPAddr;
printf("%lu (%lx) -- %s\n", pSid->liPAddr, pSid->liPAddr,

ipaddr2str(pSid->liPAddr));

7/5/11 11:17 AM

Page 11 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1728

kernel.c 7/5/11 11:17 AM

pSid->lSIDTag = kerneliPAddr; I* for kernels IPAddr is their tag *I

}

I*

getLoadAvg(&load);
printf("load is %f\n", load);
pSid->dLoadAvg = load;

pSid->nmHost = strdup(kernelHostName);
pSid->nmDisplay = strdup(kernelDispName);
pSid->nmApplicn = strdup(kernelAppName);
pSid->nmUser = strdup(kernelUserName);
pSid->webname = strdup(kernelUserName);
pSid->nmPasswd = strdup(kernelPasswd);

pSid->iPort = kernelPortNum;

pSid->iProcid = getpid();

if (debug) {
outputid(stdout, pSid);

}

* Function
*I

void
showinfo(s)

{

}

char *S;

static XmTextPosition currentPosn;
outputTextToWidget(s, wgStatusText, ¤tPosn);
I*
* fprintf(stdout, "%s", s);
*I

void
cmdlineUsage(argv)

{

}

void

char **argv;

fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, " where options are:\n");
fprintf(stderr, " -display <display name>\n");
fprintf(stderr," -help\n");
fprintf(stderr," -nogui\n");
fprintf(stderr, " -passwd <password>\n");

getCmdlineArgs(argc, argv)
int argc;
char **argv;

Page 12 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1729

kernel.c

{
int i;
for (i = 1; i < a rgc; i++) {

if (!strcmp("-display", argv[i]))
if (++i >= argc)

cmdlineUsage(argv);
kernelDispName = argv [i];
continue;

}
if (!strcmp("-help", argv[i])) {

cmdlineUsage(argv);
}
if (!strcmp("-nogui", argv[i]))

kernelFNoGUI = 1;
continue;

}
if (!strcmp("-passwd", argv[i]))

if (++i >= argc)
cmdlineUsage(argv);

kernelPasswd =
continue;

}
cmdlineUsage(argv);

}
}

/*For static linking*/
#ifdef SHASTATIC
int dlopen() { return(0);}
int dlclose() {return(0); }
int dlsym() {return(0); }
#end if

argv[i];

static char *GetShastraBaseDir()
{

char *dname;

if (dname = getenv("SHASTRADIR"))
{

}
else
{

return (dname);

{

{

dname = strdup(DEFSHASTRABASEDIR);

}

}
return(dname);

7/5/11 11:17 AM

{

Page 13 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1730

kernel_client.c 7/5/11 11:16 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslstrlistUtilities.h>
#include <shastraluitoolslcallbackArg.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>

#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastraldatacommlshastraDataH.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFronts.h>

#include <shastralkernellkernel_server.h>
#include <shastralkernellkernel.h>
#include <shastralkernellkernelMainCB.h>
#include <shastralkernellkernel_client.h>

extern int debug;

#define checkConn() \
if (pHostMainKern->fStatus == shaError) { \

fprintf(stderr,"Connection to shastra is bad!\n"); \

Page 1 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1731

kernel_client.c

}

#define sendReqString(s,arg) \
if(hostSendQueuedRequest(pHostMainKern, s, arg) == -1){ \

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr,"Error in Sending Operation Request\n"); \

}

#define sendDataString(s) \
if(cmSendString(pHostMainKern->fdSocket, s) == -1){ \

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr,"Error in Sending Operation Data\n");

}

#define Shastraidin(filedesc, pShaid) \
if(shastraidin(pHostMainKern->fdSocket, pShaid) == -1){ \

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Receiving SID from Main\n"); \

}

#define ShastraidOut(filedesc, pShaid) \
if(shastraidOut(pHostMainKern->fdSocket, pShaid) == -1){

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Sending SID to Main\n"); \

}

#define Shastraidsin(filedesc, pShaids) \
if(shastraidsin(pHostMainKern->fdSocket, pShaids) == -1){

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Receiving SIDs from Main\n");

}

#define ShastraidsOut(filedesc, pShaids) \

\

\

\

\

if(shastraidsOut(pHostMainKern->fdSocket, pShaids) == -1){ \
pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Sending SIDs to Main\n"); \

}

#define ShastraidTagin(filedesc, pShaidTag) \
if(shastraidTagin(pHostMainKern->fdSocket, pShaidTag) == -1){

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Receiving SIDTag from Main\n"); \

}

#define ShastraidTagOut(filedesc, pShaidTag) \

\

\

\

\

\

\

\

\

7/5/11 11:16 AM

\

\

\

\

\

\

\

Page 2 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1732

kernel_client.c 7/5/11 11:16 AM

if(shastraidTagOut(pHostMainKern->fdSocket, pShaidTag) == -1){ \
pHostMainKern->fStatus = shaError; \
closedChannelCleanUpHandler(pHostMainKern->fdSocket); \
fprintf(stderr, "Error Sending SIDTag to Main\n"); \

}

#define ShastraidTagsin(filedesc, pShaidTags) \
if(shastraidTagsin(pHostMainKern->fdSocket, pShaidTags) -1){ \

pHostMainKern->fStatus = shaError; \
closedChannelCleanUpHandler(pHostMainKern->fdSocket); \
fprintf(stderr, "Error Receiving SIDTags from Main\n"); \
return(0); \

}

#define ShastraidTagsOut(filedesc, pShaidTags) \
if(shastraidTagsOut(pHostMainKern->fdSocket, pShaidTags)

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
fprintf(stderr, "Error Sending SIDTags to Main\n"); \

}

#define ShastraULongin(filedesc, pULong) \
if(shaULongin(pHostMainKern->fdSocket, pULong) -1){ \

}

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);

\
fprintf(stderr, "Error Receiving pULong from Main\n");

#define ShastraULongOut(filedesc, pULong) \

I*

if(shaULongOut(pHostMainKern->fdSocket, pULong) -1){ \

}

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);

\
fprintf(stderr, "Error Sending pULong to Main\n"); \

* Function
*I

int
startSystemExportOprn(pSid)

{
shastraid *PSid;

checkConn();
sendReqString(REQ_START_SYSTEM, NULL);
if (debug) {

outputid(stderr, pSid);
}

-1){

\

\

\
\

\

\

Page 3 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1733

kernel_client.c 7/5/11 11:16 AM

}

I*

ShastraidOut(pHostMainKern->fdSocket, pSid);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
startSystemOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_START_SYSTEM, NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

void
endSystemOprn(iObjindex)

{
int iObjindex;

shast raids
shast raid

*PSids;
*PSid;

pSids = (shastraids *) pcbArgPopup->oprnAltArg;
pSid = pSids->shastraids_val[iObjindex];
if (debug) {

outputid(stdout, pSid);
}
if (strcmp(pcbArgPopup->argBuffer, pSid->nmPasswd)) {

I* passwd mismatch *I

}

sprintf(sbOutMsgBuf, "Kill()->Password Incorrect-- Aborted\n");
showinfo(sbOutMsgBuf);
return;

if (pSid->liPAddr != kernelShastraid.liPAddr) {I* not local front *I
if (fMainKernel) {

int outFd; I* non local sesm, send kill
* message *I

outFd = shaKernid2Fd(pSid); I* get fd of kern for
* this front *I

if (outFd == -1) {
sprintf(sbOutMsgBuf, "Kill()->Unknown Kernel-- Aborted\n")

}

showinfo(sbOutMsgBuf);
return;

Page 4 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1734

kernel_client.c 7/5/11 11:16 AM

}

I*

putShaEndSysHandler(outFd, pSid);
} else {

}
} else {

checkConn();
sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);

int outFd; I* local sesm, kill *I
outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "Kill()->Unknown System-- Aborted\n");
showinfo(sbOutMsgBuf);
return;

}
putShaTerminateHandler(outFd);

}
cmFlush(pHostMainKern->fdSocket);

return;

* Function
*I

void
endKernelOprn(iObjindex)

{
int iObjindex;

shast raid *PSid;

if (iObjindex < 0) {
return;

}
pSid = shastraKernids.shastraids_val[iObjindex];
if (debug) {

outputid(stdout, pSid);
}
if (strcmp(pcbArgPopup->argBuffer, pSid->nmPasswd)) {

I* passwd mismatch *I
sprintf(sbOutMsgBuf, "KillKern()->Password Incorrect-- Aborted\n")

showinfo(sbOutMsgBuf);
}
if (pSid->liPAddr != kernelShastraid.liPAddr) {I* not me *I

if (fMainKernel) {
int outFd; I* non local sesm, send kill

* message *I

outFd = shaKernid2Fd(pSid); I* get fd of kern for
* this sesMgr *I

if (outFd == -1) {
sprintf(sbOutMsgBuf, "KillKern()->Unknown Kernel-- Aborted

\n");
showinfo(sbOutMsgBuf);

Page 5 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1735

kernel_client.c 7/5/11 11:16 AM

}

I*

return;
}
putShaTerminateHandler(outFd);

} else {

}

checkConn();
sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);

} else {
quit0prn(0);

}
cmFlush(pHostMainKern->fdSocket);

return;

* Function
*I

void
endSesMgrOprn(iObjindex)

{
int iObjindex;

shast raid *PSid;

if (iObjindex < 0) {
return;

}
pSid = shastraSesmids.shastraids_val[iObjindex];
if (debug) {

outputid(stdout, pSid);
}
if (strcmp(pcbArgPopup->argBuffer, pSid->nmPasswd)) {

I* passwd mismatch *I
sprintf(sbOutMsgBuf, "KillSesm()->Password Incorrect-- Aborted\n")

}

showinfo(sbOutMsgBuf);
return;

if (pSid->liPAddr != kernelShastraid.liPAddr) {I* not local sesm *I
if (fMainKernel) {

int outFd; I* non local sesm, send kill
* message *I

outFd = shaKernid2Fd(pSid); I* get fd of kern for
* this sesMgr *I

if (outFd == -1) {
sprintf(sbOutMsgBuf, "KillSesm()->Unknown Kernel-- Aborted

\n");
showinfo(sbOutMsgBuf);
return;

}
putShaEndSysHandler(outFd, pSid);

} else {
checkConn();

Page 6 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1736

kernel_client.c

}
} else {

sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);

int outFd; I* local sesm, kill *I
outFd = shaSesmid2Fd(pSid);
if (outFd == -1) {

7/5/11 11:16 AM

sprintf(sbOutMsgBuf, "KillSesm()->Unknown SesMgr -- Aborted\n")

}

I*

showinfo(sbOutMsgBuf);
return;

}
putShaTerminateHandler(outFd);

}
cmFlush(pHostMainKern->fdSocket);

return;

* Function
*I

int
endSystemExportOprn(pSid)

{

}

shastraid *PSid;

if (debug) {
outputid(stderr, pSid);

}
checkConn();
sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
connectSystemOprn(iObjindex)

{

}

int iObjindex;

checkConn();
sendReqString(REQ_CONNECT_SYSTEM, NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
getShastraidOprn(iObjindex)

int iObjindex;
{

Page 7 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1737

kernel_client.c

}

I*

checkConn();
sendReqString(REQ_GET_SHASTRAID 1 NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
setShastraidOprn(i)

{

}

I*

int i;

checkConn();
sendReqString(REQ_SET_SHASTRAID 1 NULL);
getRegisterinfo(&kernelShastraid);
ShastraidOut(pHostMainKern->fdSocket 1 &kernelShastraid);
print f ("%s\n" 1 p5Id2St r (&ke rne lShas t raid 1 PSIDSHOWALL));
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
getShaKernidOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_GET_SHAKERNID 1 NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
setShaKernidOprn(i)

{

}

int i;

checkConn();
sendReqString(REQ_SET_SHAKERNID 1 NULL);
ShastraidOut(pHostMainKern->fdSocket 1 &kernelShastraid);
print f ("%s\n" 1 p5Id2St r (&ke rne lShas t raid 1 PSIDSHOWALL));
cmFlush(pHostMainKern->fdSocket);

return (0) ;

7/5/11 11:16 AM

Page 8 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1738

kernel_client.c

I*
* Function
*I

void
getShaKernFridOprn(iObjindex)

{

}

I*

int iObjindex;

shast raid *PSid;

if (fMainKernel) {
return;

}
pSid = shastraKernids.shastraids_val[iObjindex];
if (pSid->liPAddr == kerneliPAddr) {

I* no need to send request for my own data *I
return;

}
checkConn();
sendReqString(REQ_GET_SHAKERNFRID, (char*) NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);
printf("%s\n", pSid2Str(pSid, PSIDSHOWALL));
cmFlush(pHostMainKern->fdSocket);

return;

* Function
*I

int
setShaKernFridOprn(i)

{

}

I*

int i;

checkConn();
sendReqString(REQ_SET_SHAKERNFRID, NULL);
ShastraidOut(pHostMainKern->fdSocket, &kernelShastraid);
ShastraidsOut(pHostMainKern->fdSocket, pShastraFrontids);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
getShaSesmidOprn(iObjindex)

{
int iObjindex;

checkConn();
sendReqString(REQ_GET_SHASESMID, NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

7/5/11 11:16 AM

Page 9 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1739

kernel_client.c

}

I*
* Function
*I

int
setShaSesmidExportOprn(pSid)

{

}

I*

shastraid *PSid;

checkConn();
sendReqString(REQ_SET_SHASESMID, NULL);
if (debug) {

outputid(stderr, pSid);
}
ShastraidOut(pHostMainKern->fdSocket, pSid);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

void
getShaSesmFridOprn(iObjindex)

{

}

I*

int iObjindex;

shastraidTag *PSidTag;

if (fMainKernel) {
return;

}
pSidTag = & shastraSesmids.shastraids_val[iObjindex]->lSIDTag;
checkConn();
sendReqString(REQ_GET_SHASESMFRID, (char*) NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSidTag);
printf("%s\n", pSidTag2Str(pSidTag, 0));
cmFlush(pHostMainKern->fdSocket);

return;

* Function
*I

int
setShaSesmFridExportOprn(pSidTag, pSidTags, pPermTags)

shastraidTag *PSidTag;

{

shastraidTags *PSidTags;
shastraidTags *PPermTags;

checkConn();
sendReqString(REQ_SET_SHASESMFRID, NULL);

7/5/11 11:16 AM

Page 10 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1740

kernel_client.c

}

I*

if (debug) {

}

outputidTag (s tde r r, pSidTag);
outputidTags(stderr, pSidTags);
outputidTags(stderr, pPermTags);

ShastraidTagOut(pHostMainKern->fdSocket, pSidTag);
ShastraidTagsOut(pHostMainKern->fdSocket, pSidTags);
ShastraidTagsOut(pHostMainKern->fdSocket, pPermTags);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
deleteSesMgrExportOprn(pSidTag)

shastraidTag *PSidTag;
{

}

I*

checkConn();
sendReqString(REQ_DELETE_SESMGR, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSidTag);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int

7/5/11 11:16 AM

collinviteJoinOprn(pSesmSidTag, pFrontSidTag, pLeaderSidTag, pFrontPermTag)
shastraidTag *PSesmSidTag;

{

}

shastraidTag *PFrontSidTag;
shastraidTag *PLeaderSidTag;
shastraidTag *PFrontPermTag;

checkConn();
sendReqString(REQ_COLL_INVITEJOIN, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSesmSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pFrontSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pLeaderSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pFrontPermTag);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
collAskJoinOprn(pSesmSidTag, pFrontSidTag)

shastraidTag *PSesmSidTag;
shastraidTag *PFrontSidTag;

{

Page 11 of 36

Petitioner Microsoft Corporation, Ex. 1002, p. 1741

kernel_client.c 7/5/11 11:16 AM

}

I*

checkConn();
sendReqString(REQ_COLL_ASKJOIN, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSesmSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pFrontSidTag);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
collTellJoinOprn(pSesmSidTag, pFrontSidTag, pFrontPermTag)

shastraidTag *PSesmSidTag;

{

}

I*

shastraidTag *PFrontSidTag;
shastraidTag *PFrontPermTag;

checkConn();
sendReqString(REQ_COLL_TELLJOIN, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSesmSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pFrontSidTag);
ShastraidTagOut(pHostMainKern->fdSocket, pFrontPermTag);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

int
helpOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_HELP, NULL);
cmFlush(pHostMainKern->fdSocket);

return (0) ;

* Function
*I

void
quitOprn(iObjindex)

{
int iObjindex;

if (!fMainKernel && (pHostMainKern->fStatus != shaError)) {
sendReqString(REQ_QUIT, NULL);
cmFlush(pHostMainKern->fdSocket);

}
mplexUnRegisterChannel(pHostMainKern->fdSocket);
XtDestroyApplicationContext(shastraAppContext);

Page 12 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1742

kernel_client.c

exit(0);
}

I*
* Function
*I

int
selectKernOprn(iObjindex)

{

}

I*

int iObjindex;

fprintf(stderr, "selectKernOprn() --selected %d\n", iObjindex);
return(0);

* Function
*I

int
startSystemRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_SYSTEM);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
endSystemRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_SYSTEM);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
connectSystemRespHandler(fd)

{

}

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_CONNECT_SYSTEM);
showinfo(sbOutMsgBuf);

return(0);

7/5/11 11:16 AM

Page 13 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1743

kernel_client.c

* Function
*I

int
getShastraidRespHandler(fd)

{

}

I*

int fd;

Shastraidsin(fd, &shastraSysids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASTRAID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraSysids);
}
if (rgsbShastraSys !=NULL) {

strListDestroy(rgsbShastraSys);
}
rgsbShastraSys = pSids2StrTab(&shastraSysids, PSIDSHOWALL);
chooseOneChangeList(pcoShastraSys, rgsbShastraSys,

coNoinitialHighlight);
return (0) ;

* Function
*I

int
setShastraidRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASTRAID);
showinfo(sbOutMsgBuf);
return 0;

* Function
*I

int
getShaKernidRespHandler(fd)

{
int fd;

Shastraidsin(fd, &shastraKernids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraKernids);
}
if (rgsbShastraKern !=NULL) {

strListDestroy(rgsbShastraKern);
}
rgsbShastraKern = pSids2StrTab(&shastraKernids, PSIDNMHOST);
chooseOneChangeList(pcoShastraKern, rgsbShastraKern,

7/5/11 11:16 AM

Page 14 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1744

kernel_client.c

}

I*

coNoinitialHighlight);

adjustKrFrMapSize(shastraKernids.shastraids_len);
I* update map *I
updateKrFrMap(&shastraKernids);
I* now MCast it to all fronts *I
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernidHandler, NULL);

return (0) ;

* Function
*I

int
setShaKernidRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHAKERNID);
showinfo(sbOutMsgBuf);
return 0;

* Function
*I

int
getShaKernFridRespHandler(fd)

{
int fd;

int krindex;
int myindex;
static shastraid inShaid;
static shastraids inShaids;
shastraids *PSids;

myindex = locateKernFronts(&kernelShastraid);
Shastraidin(fd, &inShaid);
krindex = locateKernFronts(&inShaid);
I* vaildity check *I
if (krindex == -1) {

krindex = occupyKrFrFreeSlot(&inShaid); I* put him up *I
}
if (krindex == myindex) {

Shastraidsin(fd, &inShaids);
pSids = getKernFrontSids(&inShaid);

} else {

7/5/11 11:16 AM

Page 15 of 36

Petitioner Microsoft Corporation, Ex. 1002, p. 1745

kernel_client.c

}

pSids = getKernFrontSids(&inShaid);
Shastraidsin(fd, pSids);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNFRID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, pSids);
}
I* now MCast it to all fronts *I
{

int
int

*Pfd;
nfd;

7/5/11 11:16 AM

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernFridHandler, (char*) &inShaid);

}
return (0) ;

}

I*
* Function
*I

int
setShaKernFridRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHAKERNFRID);
showinfo(sbOutMsgBuf);
return 0;

* Function
*I

int
getShaSesmidRespHandler(fd)

{
int fd;

Shastraidsin(fd, &shastraSesmids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASESMID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraSesmids);
}
if (rgsbShastraSesMgr !=NULL) {

strListDestroy(rgsbShastraSesMgr);
}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids, PSIDNMHOST);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);

adjustSmFrMapSize(shastraSesmids.shastraids_len);

Page 16 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1746

kernel_client.c

}

I*

I* update map *I
updateSmFrMap(&shastraSesmids);
I* now MCast it to all fronts *I
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmidHandler, NULL);

return (0) ;

* Function
*I

int
setShaSesmidRespHandler(fd)

{

}

I*

int fd;

I* proxy .. done for my sesMgrs *I
I* no action need be taken *I

return (0) ;

* Function
*I

int
getShaSesmFridRespHandler(fd)

{
int fd;

int smindex;
static shastraidTag inShaidTag;
static shastraidTags inShaidTags;
shastraidTags *PPermTags;
shastraidTags *PSidTags;

ShastraidTagin(fd, &inShaidTag);
smindex = locateSesmFronts(&inShaidTag);
I* vaildity check *I
if (smindex == -1) {

7/5/11 11:16 AM

fprintf(stderr, "getShaSesmFridRespHandler()->can't locate sesMgr!\

}

n");
ShastraidTagsin(fd, &inShaidTags);
ShastraidTagsin(fd, &inShaidTags); I* perms *I
return -1;

pSidTags = getSesmFrontSidTags(&inShaidTag);
ShastraidTagsin(fd, pSidTags);
pPermTags = getSesmFrontPermTags(&inShaidTag);
ShastraidTagsin(fd, pPermTags);

Page 17 of 36

Petitioner Microsoft Corporation, Ex. 1002, p. 1747

kernel_client.c

sprintf(sbOutMsgBuf, "Done-- %s\n",
showinfo(sbOutMsgBuf);
if (debug) {

}

I*
{

outputidTags(stderr, pSidTags);
outputidTags(stderr, pPermTags);

now MCast it to all fronts *I

int *Pfd;
int nfd;

7/5/11 11:16 AM

REQ GET SHASESMFRID); - -

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmFridHandler, (char*) &inShaidTag);

}
return (0) ;

}

I*
* Function
*I

int
setShaSesmFridRespHandler(fd)

{

}

I*

int fd;

I* proxy .. done for my sesMgrs *I
I* no action need be taken *I

return (0) ;

* Function
*I

int
helpRespHandler(fd)

int fd;
{

standardHelpRespHandler(fd);
sprintf(sbOutMsgBuf, "Done %s\n", REQ_HELP);
showinfo(sbOutMsgBuf);

return (0) ;
}

I*
* Function
*I

int
quitRespHandler(fd)

{

}

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_QUIT);
showinfo(sbOutMsgBuf);

return (0) ;

Page 18 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1748

kernel_client.c

I*
* Function
*I

int
deleteSesMgrRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_DELETE_SESMGR);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
collTellJoinRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_TELLJOIN);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
collAskJoinRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOIN);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
collinviteJoinRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEJOIN);
showinfo(sbOutMsgBuf);

return (0) ;

* Function

7/5/11 11:16 AM

Page 19 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1749

kernel_client.c 7/5/11 11:16 AM

*I
int
collinviteRespHandler(fd)

{

}

I*

int fd;

shastraidTag
shastraidTag
shastraidTag
shastraidTag
shast raid
int

sesmSidTag;
frontSidTag;
leaderSidTag;
frontPermTag;

*PSid;
outFd;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);
ShastraidTagin(fd, &leaderSidTag);
ShastraidTagin(fd, &frontPermTag);

pSid = krFrSidTag25Id(frontSidTag);

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

}

sprintf(sbOutMsgBuf, "collinviteRespHandler()->Unknown Front -
Aborted\n");

showinfo(sbOutMsgBuf);
return(0);

putCollinviteJoinHandler(outFd, &sesmSidTag, &frontSidTag,
&leaderSidTag, &frontPermTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEJOIN);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
collAskJnRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraid
int

sesmSidTag;
frontSidTag;

*PSid;
outFd;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);

l*pSid = krFrSidTag25Id(frontSidTag);
outFd = shaFrontid2Fd(pSid);

*I
pSid = mapSidTag25Id(&sesmSidTag);
outFd = shaSesmid2Fd(pSid);

Page 20 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1750

kernel_client.c 7/5/11 11:16 AM

}

I*

if (outFd == -1) {

}

sprintf(sbOutMsgBuf, "collAskJnRespHandler()->Unknown Front-
Aborted\n");

showinfo(sbOutMsgBuf);
return(0);

putCollAskJoinHandler(outFd, &sesmSidTag, &frontSidTag);
sprintf(sbOutMsgBuf, "Done (in)-- %s\n", REQ_COLL_ASKJOIN);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
collTellJnRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shastraid
int

sesmSidTag;
frontSidTag;
frontPermTag;

*PSid;
outFd;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);
ShastraidTagin(fd, &frontPermTag);

pSid = krFrSidTag25Id(frontSidTag);

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

}

sprintf(sbOutMsgBuf, "collTellJnRespHandler()->Unknown Front -
Aborted\n");

showinfo(sbOutMsgBuf);
return(0);

putCollTellJoinHandler(outFd, &sesmSidTag, &frontSidTag, &frontPermTag)

}

I*

sprintf(sbOutMsgBuf, "Done
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

%s\n", REQ_COLL_ TELLJOIN);

int collinviteMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)
hostData* pHostKr;

Page 21 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1751

kernel_client.c 7/5/11 11:16 AM

{

}

I*

shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COLL_INVITEMSG, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collinviteMsgRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collinviteMsginHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display
smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);

recvd message *I

/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collinviteMsginHandler()")){
case route_DEFAULT:

collinviteMsgReq(pHostMainKern, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCollinviteMsgHandler(outFd, &smSidTag, &toSidTag,

Page 22 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1752

kernel_client.c

}

I*

}

&sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_INVITEMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collinvRespMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COLL_INVRESPMSG, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collinvRespMsgRespHandler(fd)
int fd;

{
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;
}

I*
* Function
*I

int collinvRespMsginHandler(fd)
int fd;

{

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char *SMsg;

idtag, display
smSidTag;
toSidTag;
sidTag;

recvd message *I

7/5/11 11:16 AM

Page 23 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1753

kernel_client.c

}

I*

int outFd;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}

"collinvRespMsginHandler()")){
case route_DEFAULT:

collinvRespMsgReq(pHostMainKern, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCollinvRespMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_INVRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

7/5/11 11:16 AM

int collinviteStatusReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

}

I*

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

checkConn();
sendReqString(REQ_COLL_INVITESTATUS, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
ShastraULongOut(pHostKr->fdSocket, &lStatus);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collinviteStatusRespHandler(fd)
int fd;

{

Page 24 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1754

kernel_client.c

}

I*

sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_COLL_INVITESTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collinviteStatusinHandler(fd)

{

}

I*

int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
shaULong
int outFd;

idtag 1 display
smSidTag;
toSidTag;
sidTag;
lStatus;

ShastraidTagin(fd 1 &smSidTag);
ShastraidTagin(fd 1 &toSidTag);
ShastraidTagin(fd 1 &sidTag);
ShastraULongin(fd 1 &lStatus);

recvd status *I

/*handle*/
switch(routeFrontSidTagToFd(&toSidTag 1 &outFd 1

}

"collinviteStatusinHandler()")){
case route_DEFAULT:

collinviteStatusReq(pHostMainKern 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_KERNEL:
case route_FRONT:

putCollinviteStatusHandler(outFd 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf 1 "Done (in) -- %s\n" 1 REQ_COLL_INVITESTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collAskJoinMsgReq(pHostKr 1 pSmSidTag 1 pSidTag 1 sbMsg)
hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
char *SbMsg;

{
checkConn();

7/5/11 11:16 AM

Page 25 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1755

kernel_client.c 7/5/11 11:16 AM

}

I*

sendReqString(REQ_COLL_ASKJOINMSG, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collAskJoinMsgRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOINMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collAskJoinMsginHandler(fd)

{

}

int fd;

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;

idtag, display recvd message *I
smSidTag;
sidTag;

int outFd;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeSesMgrSidTagToFd(&smSidTag, &outFd,

}

"collAskJoinMsginHandler()")) {
case route_DEFAULT:

collAskJoinMsgReq(pHostMainKern, &smSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCollAskJoinMsgHandler(outFd, &smSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJOINMSG);
showinfo(sbOutMsgBuf);

return (0) ;

Page 26 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1756

kernel_client.c

I*
* Function
*I

int collAskJnRespMsgReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COLL_ASKJNRESPMSG, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collAskJnRespMsgRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJNRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collAskJnRespMsginHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display
smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);

recvd message *I

/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collAskJnRespMsginHandler()")){
case route_DEFAULT:

collAskJnRespMsgReq(pHostMainKern, &smSidTag, &toSidTag,

7/5/11 11:16 AM

Page 27 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1757

kernel_client.c

}

I*

}

&sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCollAskJnRespMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJNRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

7/5/11 11:16 AM

int collAskJnStatusReq(pHostKr, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

}

I*

hostData* pHostKr;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

checkConn();
sendReqString(REQ_COLL_ASKJNSTATUS, NULL);
ShastraidTagOut(pHostKr->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
ShastraULongOut(pHostKr->fdSocket, &lStatus);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int collAskJnStatusRespHandler(fd)
int fd;

{

}

I*

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJNSTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int collAskJnStatusinHandler(fd)
int fd;

{

Page 28 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1758

kernel_client.c

}

I*

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
shaULong
int outFd;

idtag 1 display
smSidTag;
toSidTag;
sidTag;
lStatus;

ShastraidTagin(fd 1 &smSidTag);
ShastraidTagin(fd 1 &toSidTag);
ShastraidTagin(fd 1 &sidTag);
ShastraULongin(fd 1 &lStatus);

recvd status *I

/*handle*/
switch(routeFrontSidTagToFd(&toSidTag 1 &outFd 1

}

"collAskJnStatusinHandler()")){
case route_DEFAULT:

collAskJnStatusReq(pHostMainKern 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_KERNEL:
case route_FRONT:

putCollAskJnStatusHandler(outFd 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf 1 "Done (in) -- %s\n" 1 REQ_COLL_ASKJNSTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgTextReq(pHostKr 1 pToSidTag 1 pSidTag 1 sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGTEXT 1 NULL);
ShastraidTagOut(pHostKr->fdSocket 1 pToSidTag);
ShastraidTagOut(pHostKr->fdSocket 1 pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

7/5/11 11:16 AM

Page 29 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1759

kernel_client.c

int commMsgTextRespHandler(fd)
int fd;

{

}

I*

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXT);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgTextinHandler(fd)

{

}

I*

int fd;

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;

idtag, display recvd message *I
toSidTag;
sidTag;

int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}

"collMsgTextinHandler()")){
case route_DEFAULT:

commMsgTextReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCommMsgTextHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGTEXT);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgTextFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)

{

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGTEXTFILE, NULL);

7/5/11 11:16 AM

Page 30 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1760

kernel_client.c 7/5/11 11:16 AM

}

I*

ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int commMsgTextFileRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXTFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgTextFileinHandler(fd)
int fd;

{

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display recvd message *I
toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collMsgTextFileinHandler()")){
case route_DEFAULT:

commMsgTextFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;

}

}

case route_KERNEL:
case route_FRONT:

putCommMsgTextFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGTEXTFILE);
showinfo(sbOutMsgBuf);

return (0) ;

Page 31 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1761

kernel_client.c 7/5/11 11:16 AM

* Function
*I

int commMsgAudioReq(pHostKr, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGAUDIO, NULL);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int commMsgAudioRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgAudioinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display recvd message *I
toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collMsgAudioinHandler()")){
case route_DEFAULT:

commMsgAudioReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCommMsgAudioHandler(outFd, &toSidTag, &sidTag, sMsg);
break;

Page 32 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1762

kernel_client.c

}

I*

}

case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGAUDIO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgAudioFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGAUDIOFILE, NULL);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int commMsgAudioFileRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgAudioFileinHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display recvd message *I
toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);

7/5/11 11:16 AM

Page 33 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1763

kernel_client.c

/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collMsgAudioFileinHandler()")){
case route_DEFAULT:

7/5/11 11:16 AM

commMsgAudioFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCommMsgAudioFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;

}

I*

}

case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGAUDIOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgVideoReq(pHostKr, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGVIDEO, NULL);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int commMsgVideoRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgVideoinHandler(fd)
int fd;

Page 34 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1764

kernel_client.c

{

}

I*

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;

idtag, display recvd message *I
toSidTag;
sidTag;

int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}

"collMsgVideoinHandler()")){
case route_DEFAULT:

commMsgVideoReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCommMsgVideoHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGVIDEO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgVideoFileReq(pHostKr, pToSidTag, pSidTag, sbMsg)

{

}

I*

hostData* pHostKr;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

checkConn();
sendReqString(REQ_COMM_MSGVIDEOFILE, NULL);
ShastraidTagOut(pHostKr->fdSocket, pToSidTag);
ShastraidTagOut(pHostKr->fdSocket, pSidTag);
sendDataString(sbMsg);
cmFlush(pHostKr->fdSocket);

return (0) ;

* Function
*I

int commMsgVideoFileRespHandler(fd)
int fd;

{

7/5/11 11:16 AM

Page 35 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1765

kernel_client.c 7/5/11 11:16 AM

}

I*

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int commMsgVideoFileinHandler(fd)

{

}

int fd;

I* receive sesm
shastraidTag
shastraidTag
char *SMsg;
int outFd;

idtag, display recvd message *I
toSidTag;
sidTag;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/
switch(routeFrontSidTagToFd(&toSidTag, &outFd,

"collMsgVideoFileinHandler()")){
case route_DEFAULT:

commMsgVideoFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCommMsgVideoFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;

}

case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COMM_MSGVIDEOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

Page 36 of 36
Petitioner Microsoft Corporation, Ex. 1002, p. 1766

kernel_server. c 7/5/11 11:16 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>
#include <syslwait.h>
#include <netdb.h>
#include <stdlib.h>
#ifdef SHASTRA4SUNS
#include <unistd.h>
char *Strdup(char *);
#end if

#include <shastralshastra.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslchooseMany.h>
#include <shastraluitoolslcallbackArg.h>
#include <shastraluitoolslstrlistUtilities.h>
#include <shastraluilgeneral.h>

#include <shastralkernellkernel.h>
#include <shastralkernellkernelMainCB.h>
#include <shastralkernellkernel_server.h>
#include <shastralkernellkernel_client.h>
#include <shastralkernellkernelState.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>

#include <shastraldatacommlshastraDataH.h>

Page 1 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1767

kernel_server. c

#include <shastra/datacomm/shastraidH.h>
#include <shastra/datacomm/shastraidTagH.h>

#include <shastra/shautils/shautils.h>
#include <shastra/shautils/kernelFrontsP.h>
#include <shastra/shautils/kernelFronts.h>
#include <shastra/shautils/sesMgrFronts.h>

int closedChannelCleanUpHandler(Prot1(int));
int putCollTellJoinHandler(Prot4(int 1 shastraidTag * 1 shastraidTag * 1

shastraidTag *));

7/5/11 11:16 AM

int putCollAskJoinHandler(Prot3(int 1 shastraidTag * 1 shastraidTag *));
int quitFrontCleanUpHandler(Prot1(int));
int quitSesMgrCleanUpHandler(Prot1(int));
int commMsgTextFileReq(Prot4(hostData* 1 shastraidTag * 1 shastraidTag * 1

char *SbMsg));
void deleteSesMgrExportOprn(Prot1(shastraidTag *));
int quitKernelCleanUpHandler(Prot1(int));
extern int shaSesmid2Fd();
extern int cmAckError();

#define DEBUGnn
extern int debug;
char *ShaAppSesmMap[] [2] = SHA_APPSESM_MAP ;
#define SHA_APPSESM_MAP_SIZE (sizeof(shaAppSesmMap)/(2*sizeof(char*)))

#define putSt ringOnChannel (filed esc 1 reqst r 1 funcst r) \
if (cmSendString(filedesc 1 reqstr) == -1) { \

fprintf(stderr 1 "%s :Error Sending to %d\n" 1 funcstr 1 filedesc);
\

closedChannelCleanUpHandler(filedesc); \
return(0); \

}

#define sendDataString(fd 1 s) \
if(cmSendString(fd 1 s) == -1){ \

}

fprintf(stderr 1 "Error in Sending Operation Data\n");
closedChannelCleanUpHandler(pHostMainKern->fdSocket);
return(0);

\

#define Shastraidin(filedesc 1 pShaid) \
if(shastraidin(filedesc 1 pShaid) == -1){ \

\
\

fprintf(stderr 1 "Error Receiving SID from %d\n" 1

closedChannelCleanUpHandler(filedesc);
return(0);

filedesc); \
\

\
}

Page 2 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1768

kernel_server. c

#define ShastraidOut(filedesc, pShaid) \
if(shastraidOut(filedesc, pShaid) == -1){ \

fprintf(stderr, "Error Sending SID to %d\n",
closedChannelCleanUpHandler(filedesc);
return(0);

}

#define Shastraidsin(filedesc, pShaids) \

filedesc); \
\

\

if(shastraidsin(filedesc, pShaids) == -1){ \
fprintf(stderr, "Error Receiving SIDs from %d\n",
closedChannelCleanUpHandler(filedesc);

filedesc);
\

return(0);
}

#define ShastraidsOut(filedesc, pShaids) \
if(shastraidsOut(filedesc, pShaids) == -1){ \

fprintf(stderr, "Error Sending SIDs to %d\n",
closedChannelCleanUpHandler(filedesc);
return(0);

}

#define ShastraidTagin(filedesc, pShaidTag) \

\

filedesc);
\

\

\

if(shastraidTagin(filedesc, pShaidTag) == -1){ \
fprintf(stderr, "Error Receiving SID from %d\n",
closedChannelCleanUpHandler(filedesc);
return(0);

filedesc); \
\

\
}

#define ShastraidTagOut(filedesc, pShaidTag) \
if(shastraidTagOut(filedesc, pShaidTag) == -1){ \

fprintf(stderr, "Error Sending SID to %d\n", filedesc); \
closedChannelCleanUpHandler(filedesc); \
return(0);

}

#define ShastraidTagsin(filedesc, pShaidTags) \
if(shastraidTagsin(filedesc, pShaidTags) == -1){ \

}

fprintf(stderr, "Error Receiving SIDs from %d\n",
closedChannelCleanUpHandler(filedesc);
return(0);

#define ShastraidTagsOut(filedesc, pShaidTags) \

\

filedesc);
\

\

if(shastraidTagsOut(filedesc, pShaidTags) == -1){
fprintf(stderr, "Error Sending SIDs to %d\n",
closedChannelCleanUpHandler(filedesc);
return(0);

\
filedesc);

\
\

}

#define ShastraULongin(filedesc, pShaidTag) \
if(shaULongin(filedesc, pShaidTag) == -1){ \

\

7/5/11 11:16 AM

\

\

fprintf(stderr, "Error Receiving Ulong from %d\n", filedesc); \

Page 3 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1769

kernel_server. c 7/5/11 11:16 AM

}

closedChannelCleanUpHandler(filedesc);
return (0) ;

#define ShastraULongOut(filedesc, pShaidTag)
if(shaULongOut(filedesc, pShaidTag) == -1){

fprintf(stderr, "Error Sending ULong to
closedChannelCleanUpHandler(filedesc);
return (0) ;

}

shaRouteMode
routeFrontSidTagToFd(pSidTag, pFd, nmFunc)

shastraidTag *PSidTag;

{

int *Pfd;
char *nmFunc;

shastraid *PSid;
int outFd = -1;
shaRouteMode retVal = route_ERROR;

pSid = krFrSidTag2Sid(*pSidTag);
if (pSid == NULL) {

\
\

\
\
%d\n", filedesc); \

\
\

sprintf(sbOutMsgBuf, "%s->Unknown IDTag -- Aborted\n", nmFunc);
showinfo(sbOutMsgBuf);
return (retVa l) ;

}
if (pSid->liPAddr != kernelShastraid.liPAddr) {

if (fMainKernel) {
outFd = shaKernid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown Kernel-- Aborted\n",
nmFunc);

showinfo(sbOutMsgBuf);
return retVal;

}
else{

retVal = route_KERNEL;
}

} else {
retVal = route_DEFAULT;

}
} else {

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown Front -- Aborted\n", nmFunc);
showinfo(sbOutMsgBuf);
return retVal;

}
else{

retVal = route_FRONT;
}

Page 4 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1770

kernel_server. c 7/5/11 11:16 AM

}

}

*Pfd = outFd;
return retVal;

shaRouteMode
routeSesMgrSidTagToFd(pSidTag, pFd, nmFunc)

shastraidTag *PSidTag;

{

int *Pfd;
char *nmFunc;

shastraid *PSid;
int outFd = -1;
shaRouteMode retVal = route_ERROR;

pSid = getSidByTaginSids(pSidTag, &shastraSesmids);
if (pSid == NULL) {

sprintf(sbOutMsgBuf, "%s->Unknown Sesm IDTag -- Aborted\n", nmFunc)

}

}

showinfo(sbOutMsgBuf);
return retVal;

if (pSid->liPAddr != kernelShastraid.liPAddr) {
if (fMainKernel) {

outFd = shaKernid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown Kernel-- Aborted\n",
nmFunc);

showinfo(sbOutMsgBuf);
return retVal;

}
else{

retVal = route_KERNEL;
}

} else {
retVal = route_DEFAULT;

}
} else {

outFd = shaSesmid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown SesMgr -- Aborted\n", nmFunc)

}

showinfo(sbOutMsgBuf);
return (0) ;

}
else{

retVal = route_SESMGR;
}

*Pfd = outFd;
return retVal;

Page 5 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1771

kernel_server.c 7/5/11 11:16 AM

shaRouteMode
routeKernelSidTagToFd(pSidTag, pFd, nmFunc)

shastraidTag *PSidTag;

{

}

I*

int *Pfd;
char *nmFunc;

shastraid *PSid;
int outFd = -1;
shaRouteMode retVal = route_ERROR;

pSid = getSidByTaginSids(pSidTag, &shastraKernids);
if (pSid == NULL) {

}

sprintf(sbOutMsgBuf, "%s->Unknown Kernel IDTag -- Aborted\n",
nmFunc);

showinfo(sbOutMsgBuf);
return retVal;

if (pSid->liPAddr != kernelShastraid.liPAddr) {
if (fMainKernel) {

outFd = shaKernid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown Kernel-- Aborted\n",
nmFunc);

showinfo(sbOutMsgBuf);
return retVal;

}
else{

retVal = route_KERNEL;
}

} else {
retVal = route_DEFAULT;

}
} else {

retVal = route_SELF;
}

*Pfd = outFd;
return retVal;

* Function
*I

int
startSystemHandler(fd)

{
int fd;

static
static
char
int
int

shastraid createSid;
char rshCmdBuf[256];

int
shastraidTag

*Shast raArgv [6];
retVal;
outFd;
krindex;

*PSidTag;

Page 6 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1772

kernel_server. c

shast raid *PSidTmp;

Shastraidin(fd, &createSid);
if (debug) {

outputid(stderr, &createSid);
}
if (!strcmp(createSid.nmHost, kernelHostName)) {

if (!strcmp(createSid.nmUser, kernelShastraid.nmUser)) {
sprintf(rshCmdBuf, "%s", createSid.nmApplicn);
shastraArgv[0] = rshCmdBuf;
shastraArgv[1] = "-display";
shastraArgv[2] = createSid.nmDisplay;
shastraArgv[3] = "-passwd";
shastraArgv[4] = createSid.nmPasswd;
shastraArgv[S] =NULL;

#ifdef SHASTRA4SUN4
if (vfork() == 0)

#else I* SHASTRA4SUN4 *I
if (fork () == 0)

#endif I* SHASTRA4SUN4 *I
{

execv(shastraArgv[0], shastraArgv);
return (0) ;

} else {
wait3(NULL, WNOHANG, NULL);

}
} else {

7/5/11 11:16 AM

fprintf(stderr, "startSystemHandler()->can't start system for
other users!\n");

}
}
else if ((krindex = locateByNameKernFronts(&createSid)) != -1) {

if (fMainKernel) {

pSidTag = KernFrontSidTag(krindex);
pSidTmp = getSidByTaginSids(pSidTag, &shastraKernids);
outFd = shaKernid2Fd(pSidTmp);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "Create()->Unknown Kernel-- Aborted\

}

n") ;
showinfo(sbOutMsgBuf);
cmAckError(fd);
cmFlush(fd);

return (0) ;

putShaStartSysHandler(outFd, &createSid);
} else {

startSystemExportOprn(&createSid);
}

} else {
if (!strcmp(createSid.nmUser, kernelShastraid.nmUser)) {

sprintf(rshCmdBuf, "echo \"cd shastra;\nexec %s -display %s-

Page 7 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1773

kernel_server. c 7/5/11 11:16 AM

}

I*

}

passwd %s <ldevlnull >ldevlnull 2>&1 &\" 1 rsh %s lbinlsh\
n",
createSid.nmApplicn, createSid.nmDisplay,
createSid.nmPasswd, createSid.nmHost);

retVal = system(rshCmdBuf);
fprintf(stdout, "%s\nretVal = %d\n", rshCmdBuf, retVal);

} else {

}

fprintf(stderr, "startSystemHandler()->can't start system for
other users!\n");

if (fd != mainKernClntSocket) {
cmAckOk(fd);
cmFlush(fd);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_SYSTEM);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
endSystemHandler(fd)

{
int fd;

static shastraid killSid;
int outFd;
int krindex;

Shastraidin(fd, &killSid);
if (debug) {

outputid(stderr, &killSid);
}
if (!strcmp(killSid.nmHost, kernelHostName)) {

outFd = shaFrontid2Fd(&killSid);
if (outFd == -1) {

if (killSid.lSIDTag == kernelShastraid. lSIDTag) {
terminateHandler(0);

} else {
outFd = shaSesmid2Fd(&killSid);
if (outFd == -1) {

cmAckError(fd);
cmFlush(fd);

sprintf(sbOutMsgBuf, "endSystemHandler() --unknown system\n");
showinfo(sbOutMsgBuf);

return (0) ;
} else {

putShaTerminateHandler(outFd);
}

}

Page 8 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1774

kernel_server. c 7/5/11 11:16 AM

}

I*

}

} else {
putShaTerminateHandler(outFd);

}

else if ((krindex = locateByNameKernFronts(&killSid)) != -1) {
if (fMainKernel) {

outFd = shaKernid2Fd(&killSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "KillHandler()->Unknown Kernel-- Aborted\n");
showinfo(sbOutMsgBuf);

cmAckError(fd);
cmFlush(fd);

return (0) ;
}
putShaEndSysHandler(outFd, &killSid);

} else {
endSystemExportOprn(&killSid);

}
} else {

cmAckError(fd);
cmFlush(fd);

}

sprintf(sbOutMsgBuf, "endSystemHandler() --unknown host\n");
showinfo(sbOutMsgBuf);
return(0);

if (fd != mainKernClntSocket) {
if (fd != outfd) {

cmAckOk(fd);
cmFlush(fd);

}
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_SYSTEM);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
connectSystemHandler(fd)

{

}

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_CONNECT_SYSTEM);
showinfo(sbOutMsgBuf);
cmAckOk(fd);
cmFlush(fd);

return(0);

Page 9 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1775

kernel_server. c

* Function
*I

int
getShastraidHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraidsOut(fd, pShastraFrontids);
cmFlush(fd);

if (debug) {
outputids(stderr, pShastraFrontids);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASTRAID);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
setShastraidHandler(fd)

{
int fd;

shast raid *PSid;

pSid = &localShaidin[fd];
shaKernFlags[fd] = SHAFRONT;
Shastraidin(fd, pSid);
if (debug) {

outputid(stderr, pSid);
}
updateShaFrontids(pShastraFrontids);

if (rgsbShastraFront !=NULL) {
strlistDestroy(rgsbShastraFront);

}
rgsbShastraFront = pSids2StrTab(pShastraFrontids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

cmAckOk(fd);
putShaStateHandler(fd);
if (!fMainKernel)

}

{
setShaKernFridOprn(0);

{
int
int

*Pfd;
nfd;

7/5/11 11:16 AM

Page 10 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1776

kernel_server. c

}

I*

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernFridHandler,

(char*) &kernelShastraid);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASTRAID);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
getShaKernidHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraidsOut(fd, &shastraKernids);
cmFlush(fd);

if (debug) {
outputids(stderr, &shastraKernids);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNID);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
setShaKernidHandler(fd)

{
int fd;

shast raid
int

*PSid;
krindex;

pSid = &localShaidin[fd];
shaKernFlags[fd] = SHAKERNEL;
Shastraidin(fd, pSid);
if (debug) {

outputid(stderr, pSid);
}
if (!fMainKernel) {

cmAckError(fd);
cmFlush(fd);

7/5/11 11:16 AM

sprintf(sbOutMsgBuf, "setShaKernidHandler() --Not Authorized\n");
showinfo(sbOutMsgBuf);
return (0) ;

}

Page 11 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1777

kernel_server. c

updateShaKernids();
krindex = locateKernFronts(pSid);
if (krindex == -1) {

krindex = occupyKrFrFreeSlot(pSid);
} else {

7/5/11 11:16 AM

fprintf(stderr, "setShaKernidHandler()-- already in %d\n", krindex)

}

I*

}

if (rgsbShastraKern !=NULL) {
strListDestroy(rgsbShastraKern);

}
rgsbShastraKern = pSids2StrTab(&shastraKernids, PSIDNMHOST);
chooseOneChangeList(pcoShastraKern, rgsbShastraKern,

coNoinitialHighlight);

cmAckOk(fd);
putShaStateHandler(fd);
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernidHandler, NULL);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHAKERNID);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
getShaKernFridHandler(fd)

{
int fd;

static shastraid inShaid;
shastraids *PSids;
int kernFd = -1;

Shastraidin(fd, &inShaid);
kernFd = locateKernFronts(&inShaid);
if (kernFd == -1) {

cmAckError(fd);
cmFlush(fd);

sprintf(sbOutMsgBuf, "getShaKernFridHandler() -- unknown kernel\n")

}

showinfo(sbOutMsgBuf);
return(0);

Page 12 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1778

kernel_server. c

}

I*

pSids = getKernFrontSids(&inShaid);
cmAckOk(fd);
ShastraidOut(fd, &inShaid);
ShastraidsOut(fd, pSids);
cmFlush(fd);

if (debug) {

}

outputid(stderr, &inShaid);
outputids(stderr, pSids);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNFRID);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int
setShaKernFridHandler(fd)

{
int fd;

shastraids *PSids;
static shastraid inShaid;
static shastraids inShaids;
int krindex;
int myindex;

myindex = locateKernFronts(&kernelShastraid);
Shastraidin(fd, &inShaid);
krindex = locateKernFronts(&inShaid);
if (krindex == -1) {

7/5/11 11:16 AM

fprintf(stderr, "setShaKernFridHandler()-> unlocated kernel!\n");
Shastraidsin(fd, &inShaids);
cmAckError(fd);
cmFlush(fd);

return -1;
}
if (krindex == myindex) {

Shastraidsin(fd, &inShaids);
cmAckError(fd);
cmFlush(fd);

return 0;
}
pSids = getKernFrontSids(&inShaid);
Shastraidsin(fd, pSids);
if (debug) {

}

outputid(stderr, &inShaid);
outputids(stderr, pSids);

if (!fMainKernel) {

Page 13 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1779

kernel_server. c

cmAckError(fd);
cmFlush(fd);

7/5/11 11:16 AM

sprintf(sbOutMsgBuf, "setShaKernFridHandler() --Not Authorized\n")

showinfo(sbOutMsgBuf);
return -1;

}
cmAckOk(fd);
cmFlush(fd);

{
int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernFridHandler, (char*) &inShaid);

}

}

I*

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHAKERNFRID);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
getShaSesmidHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraidsOut(fd, &shastraSesmids);
cmFlush(fd);

if (debug) {
outputids(stderr, &shastraSesmids);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASESMID);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

int
setShaSesmidHandler(fd)

int fd;
{

static shastraid inShaid;
shastraid *PSid;

Page 14 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1780

kernel_server. c 7/5/11 11:16 AM

}

I*

int iLoc;

if (shaKernFlags[fd] == SHAKERNEL) {
pSid = &inShaid;

} else {

}

pSid = &localShaidin[fd];
shaKernFlags[fd] = SHASESMGR;

Shastraidin(fd, pSid);
if (debug) {

outputid(stderr, pSid);
}

iLoc = getSidindexinSids(pSid, &shastraSesmids);
if (iLoc == -1) {

addSid25Ids(pSid, &shastraSesmids);
if (occupySmFrFreeSlot(& pSid->lSIDTag) == -1) {

}

fp r intf (s tde r r, "setShaSesmidHand le r ()->couldn't occupy slot!\
n");

} else {
fprintf(stderr, "setShaSesmidHandler()->already occupied slot!\n");

}

if (rgsbShastraSesMgr !=NULL) {
strListDestroy(rgsbShastraSesMgr);

}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids,

PSIDNMHOST I PSIDNMAPPL);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);

if (shaKernFlags[fd] == SHASESMGR) {
cmAckOk(fd);
putShaStateHandler(fd);

}
if (!fMainKernel) {

setShaSesmidExportOprn(pSid);
} {

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmidHandler, (char*) pSid);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASESMID);
showinfo(sbOutMsgBuf);

return(0);

* Function
*I

Page 15 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1781

kernel_server. c

int
getShaSesmFridHandler(fd)

{
int fd;

static shastraidTag inShaidTag;
shastraidTags *PSidTags;
shastraidTags *PPermTags;
int smindex = -1;

ShastraidTagin(fd, &inShaidTag);
smindex = locateSesmFronts(&inShaidTag);
if (smindex == -1) {

cmAckError(fd);
cmFlush(fd);

7/5/11 11:16 AM

sprintf(sbOutMsgBuf, "getShaSesmFridHandler() --unknown sesMgr\n")

}

I*

}

showinfo(sbOutMsgBuf);
return(0);

ShastraidTagOut(fd, &inShaidTag);
pSidTags = getSesmFrontSidTags(&inShaidTag);
pPermTags = getSesmFrontPermTags(&inShaidTag);

cmAckOk(fd);
ShastraidTagsOut(fd, pSidTags);
ShastraidTagsOut(fd, pPermTags);
cmFlush(fd);

if (debug) {

}

outputidTag(stderr, &inShaidTag);
outputidTag s (s tde r r, pSidTag s);
outputidTags(stderr, pPermTags);

sprintf(sbOutMsgBuf, "Done-- %s\n",
showinfo(sbOutMsgBuf);

return(0);

REQ GET SHASESMFRID); - -

* Function
*I

int
setShaSesmFridHandler(fd)

{
int fd;

shastraidTags *PSidTags;
shastraidTags *PPermTags;
static shastraidTag inShaidTag;
static shastraidTags inShaidTags;
static shastraidTags inShaPermTags;
int smindex;

Page 16 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1782

kernel_server.c 7/5/11 11:16 AM

}

ShastraidTagin(fd, &inShaidTag);
smindex = locateSesmFronts(&inShaidTag);
if (smindex == -1) {

}

fprintf(stderr, "setShaSesmFridHandler()-> unlocated sesMgr!\n");
ShastraidTagsin(fd, &inShaidTags);
ShastraidTagsin(fd, &inShaPermTags);
cmAckError(fd);
cmFlush(fd);

return (0) ;

pSidTags = getSesmFrontSidTags(&inShaidTag);
ShastraidTagsin(fd, pSidTags);
pPermTags = getSesmFrontPermTags(&inShaidTag);
ShastraidTagsin(fd, pPermTags);
if (debug) {

outputidTag(stderr, &inShaidTag);
outputidTags(stderr, pSidTags);
outputidTags(stderr, pPermTags);

}

cmAckOk(fd);
cmFlush(fd);

if (!fMainKernel) {
setShaSesmFridExportOprn(&inShaidTag, pSidTags, pPermTags);

} {
int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmFridHandler, (char*) &inShaidTag);

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASESMFRID);
showinfo(sbOutMsgBuf);

return (0) ;

int
helpHandler(fd)

{
int fd;

int
char

i;
buf[512];

cmAckOk(fd);
sprintf(buf, "%d\n", serverNCmds);
putSt ringOnChanne l (fd, buf, "he lpHand le r ()");
for (i = 0; i < serverNCmds; i++) {

}

sprintf(buf, "%s -- %s\n", serverCommandTab[i] .command,
serverCommandTab[i] .helpmsg);

putSt ringOnChanne l (fd, buf, "he lpHand le r ()");

Page 17 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1783

kernel_server. c

}

cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_HELP);
showinfo(sbOutMsgBuf);

return (0) ;

int
quitHandler(fd)

{

}

int fd;

int fKern;

fKern = shaKernFlags[fd];

switch (fKern) {
case SHAKERNEL:

quitKernelCleanUpHandler(fd);
break;

case SHASESMGR:
quitSesMgrCleanUpHandler(fd);
break;

case SHAFRONT:
quitFrontCleanUpHandler(fd);
break;

default:

}

fprintf(stderr, "quitHandler()-> shouldn't happen!\n");
break;

return (0) ;

int
quitKernelCleanUpHandler(fd)

{
int fd;

mplexUnRegisterChannel(fd);
deleteShaidFromTab(fd, pShastraFrontids);
if (rgsbShastraKern !=NULL) {

strlistDestroy(rgsbShastraKern);
}
rgsbShastraKern = pSids2StrTab(&shastraKernids, PSIDNMHOST);
chooseOneChangeList(pcoShastraKern, rgsbShastraKern,

coNoinitialHighlight);

if (!fMainKernel) {
fprintf(stderr, "quitKernelHandler()-> shouldn't happen!\n");

}
localShaidin[fd] .lSIDTag = 0;
{

int
int

*Pfd;
nfd;

7/5/11 11:16 AM

Page 18 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1784

kernel_server. c

}

}

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernidHandler, NULL);

sprintf(sbOutMsgBuf, "Done (Kernel)-- %s\n", REQ_QUIT);
showinfo(sbOutMsgBuf);

return (0) ;

int
quitSesMgrCleanUpHandler(fd)

{

}

int fd;

mplexUnRegisterChannel(fd);
shaKernFlags[fd] = 0;
deleteSidFromSids(&localShaidin[fd], &shastraSesmids);
freeSmFrSlot(& localShaidin[fd] .lSIDTag);

if (rgsbShastraSesMgr !=NULL) {
strListDestroy(rgsbShastraSesMgr);

}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids,

PSIDNMHOST I PSIDNMAPPL);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);

if (!fMainKernel) {
deleteSesMgrExportOprn(& localShaidin[fd] .lSIDTag);

}
localShaidin[fd] .lSIDTag = 0;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmidHandler, NULL);

sprintf(sbOutMsgBuf, "Done (SesMgr)-- %s\n", REQ_QUIT);
showinfo(sbOutMsgBuf);

return(0);

int
quitFrontCleanUpHandler(fd)

{
int fd;

mplexUnRegisterChannel(fd);
deleteShaidFromTab(fd, pShastraFrontids);
if (rgsbShastraFront !=NULL) {

strListDestroy(rgsbShastraFront);
}
rgsbShastraFront = pSids2StrTab(pShastraFrontids,

PSIDNMHOST I PSIDNMAPPL);

7/5/11 11:16 AM

Page 19 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1785

kernel_server. c

}

chooseOneChangeList(pcoShastraFront, rgsbShastraFront,
coNoinitialHighlight);

if (!fMainKernel) {
setShaKernFridOprn(0);

}
localShaidin[fd] .lSIDTag = 0;
{

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaKernFridHandler,

(char*) &kernelShastraid);
}
sprintf(sbOutMsgBuf, "Done (Front)-- %s\n", REQ_QUIT);
showinfo(sbOutMsgBuf);

return(0);

int
collinitiateHandler(fd)

{
int fd;

char
static
char
int

**ShastraArgv;
shastraidTags sidTags;

sbBuf [32];

shastraid
unsigned long
char *SName;

i,n;
*PSid;

perms, lidTag;

ShastraidTagsin(fd, &sidTags);
ShastraULongin(fd, &perms);
ShastraULongin(fd, &lidTag);
if (debug) {

outputidTags(stderr, &sidTags);
}

pSid = krFrSidTag25Id(sidTags.shastraidTags_val[0]);
if (pSid == NULL) {

7/5/11 11:16 AM

fprintf(stderr, "collinitiateHandler()->type unknown .. aborting\n")

}

cmAckError(fd);
cmFlush(fd);

return(0);

shastraArgv = (char**) malloc(sizeof(char *) *
(sidTags.shastraidTags_len + 16));

sName = resolveNameFrom2Bases(pKernelAppData->sDirBase,
pKernelAppData->sDirBin, pKernelAppData->sLocStart);

Page 20 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1786

kernel_server. c

n = 0;
shastraArgv[n++] = strdup(sName);
for (i = 0; i < SHA APPSESM MAP SIZE; i++) { - - -

}

if (!strcmp(pSid->nmApplicn 1 shaAppSesmMap[i] [0])) {

}

shastraArgv[n++] = strdup(shaAppSesmMap[i] [1]);
break;

if (i == SHA_APPSESM_MAP_SIZE) {

7/5/11 11:16 AM

fprintf(stderr 1 "collinitiateHandler()->No SesMgr .. aborting\n");
cmAckError(fd);
cmFlush(fd);

return(0);
}
shastraArgv[n++] = strdup("-display");
shastraArgv[n++] = strdup(kernelDispName);
shastraArgv[n++] = strdup("-passwd");
shastraArgv[n++] = strdup(kernelPasswd);
shastraArgv[n++] = strdup("-perms");
sprintf(sbBuf 1 "%lu" 1 perms);
shastraArgv[n++] = strdup(sbBuf);
shast raArgv [n++] = st rdup ("-idtag");
sprintf(sbBuf 1 "%lu" 1 lidTag);
shastraArgv[n++] = strdup(sbBuf);
shastraArgv[n++] = strdup("-tags");
for (i = 0; i < sidTags.shastraidTags_len; i++) {

}

sp rintf (sbBuf 1 "% lu" 1 sidTag s. shast raidTag s_ val [i]) ;
shastraArgv[n++] = strdup(sbBuf);

shastraArgv[n++] =NULL;
#ifdef SHASTRA4SUN4

if (vfork() == 0)
#else I* SHASTRA4SUN4 *I

if (fork() == 0)
#endif I* SHASTRA4SUN4 *I

}

int

{
execv(shastraArgv [0] 1 shastraArgv);
return(0);

} else {
strListDestroy(shastraArgv);
wait3(NULL 1 WNOHANG 1 NULL);
cmAckOk(fd);

}

cmFlush(fd);

sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_COLL_INITIATE);
showinfo(sbOutMsgBuf);

return(0);

Page 21 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1787

kernel_server. c 7/5/11 11:16 AM

collAutoinitiateHandler(fd)

{
int fd;

char
static
char
int

**ShastraArgv;
shastraidTags sidTags;

sbBuf [32];

shast raid
unsigned long
char *SName;

n = 0;

i 1 n;
*PSid;

perms 1 lidTag;

ShastraidTagsin(fd 1 &sidTags);
ShastraULongin(fd 1 &perms);
ShastraULongin(fd 1 &lidTag);
if (debug) {

outputidTags(stderr 1 &sidTags);
}

pSid = krFrSidTag25Id(sidTags.shastraidTags_val[0]);
if (pSid == NULL) {

fprintf(stderr 1

11 COllinitiateHandler()->type unknown .. aborting\n 11
)

}

cmAckError(fd);
cmFlush(fd);

return(0);

shastraArgv = (char**) malloc(sizeof(char *) *
(sidTags.shastraidTags_len + 13));

sName = resolveNameFrom2Bases(pKernelAppData->sDirBase 1

pKernelAppData->sDirBin 1 pKernelAppData->sLocStart);
shastraArgv[n++] = strdup(sName);

for (i
if

}
}

= 0; i < SHA APPSESM MAP SIZE; i++) { - - -
(! strcmp(pSid->nmApplicn 1 shaAppSesmMap [i] [0])) {
shastraArgv[n++] = strdup(shaAppSesmMap[i] [1]);
break;

if (i == SHA_APPSESM_MAP_SIZE) {
f p r in t f (s t de r r 1 II col l I n it i ate Hand l e r () ->No 5 e s M g r . . abo r t in g \ n II) ;

cmAckError(fd);
cmFlush(fd);

return(0);
}
shastraArgv[n++] = strdup(11 -display 11

);

shastraArgv[n++] = strdup(kernelDispName);
shastraArgv[n++] = strdup(11 -passwd 11

);

shastraArgv[n++] = strdup(kernelPasswd);
shastraArgv[n++] = strdup(11 -auto 11

);

Page 22 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1788

kernel_server. c

shastraArgv[n++] = strdup("-perms");
sprintf(sbBuf 1 "%lu" 1 perms);
shastraArgv[n++] = strdup(sbBuf);
shastraArgv[n++] = strdup("-idtag");
sprintf(sbBuf 1 "%lu" 1 lidTag);
shastraArgv[n++] = strdup(sbBuf);
shastraArgv[n++] = strdup("-tags");
for (i = 0; i < sidTags.shastraidTags_len; i++) {

sprintf (sbBuf 1 "%lu" 1 sidTags. shast raidTags_val [i]);
shastraArgv[n++] = strdup(sbBuf);

}
shastraArgv[n++] =NULL;

#ifdef SHASTRA4SUN4
if (vfork() == 0)

#else I* SHASTRA4SUN4 *I
if (fork () == 0)

#endif I* SHASTRA4SUN4 *I

}

{
execv(shastraArgv [0] 1 shastraArgv);
return (0) ;

} else {
strListDestroy(shastraArgv);
wait3(NULL 1 WNOHANG 1 NULL);
cmAckOk(fd);

}

cmFlush(fd);

sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_COLL_INITIATE);
showinfo(sbOutMsgBuf);

return (0) ;

int
deleteSesMgrHandler(fd)

{
int fd;

static shastraidTag sidTag;
int iSm;

if (!fMainKernel) {
cmAckError(fd);
cmFlush(fd);

}

fprintf(stderr 1 "deleteSesMgrHandler()-> shouldn't happen\n");
return (0) ;

ShastraidTagin(fd 1 &sidTag);
iSm= getSidTagindexinSids(&sidTag 1 &shastraSesmids);
if (iSm == -1) {

cmAckError(fd);
cmFlush(fd);

7/5/11 11:16 AM

sprintf(sbOutMsgBuf 1 "%s .. no such sesMgr\n" 1 REQ_DELETE_SESMGR);

Page 23 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1789

kernel_server. c

showinfo(sbOutMsgBuf);
return (0) ;

}
cmAckOk(fd);
cmFlush(fd);

7/5/11 11:16 AM

deleteSidFromSids(shastraSesmids.shastraids_val[iSm], &shastraSesmids);
freeSmFrSlot(&sidTag);

}

if (rgsbShastraSesMgr !=NULL) {
strListDestroy(rgsbShastraSesMgr);

}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids,

PSIDNMHOST I PSIDNMAPPL);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);

{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmidHandler,

(char*) &kernelShastraid);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_DELETE_SESMGR);
showinfo(sbOutMsgBuf);

return(0);

int
terminateHandler(fd)

{

}

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_TERMINATE);
showinfo(sbOutMsgBuf);
quit0prn(0);

return(0);

int
collinviteJoinHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shastraidTag
int outFd;

sesmSidTag;
frontSidTag;
leaderSidTag;
frontPermTag;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);

Page 24 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1790

kernel_server.c 7/5/11 11:16 AM

}

ShastraidTagin(fd, &leaderSidTag);
ShastraidTagin(fd, &frontPermTag);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&frontSidTag, &outFd,
"collinviteJoinHandler()")){

}

case route_DEFAULT:
collinviteJoinOprn(&sesmSidTag, &frontSidTag, &leaderSidTag,

&frontPermTag);
break;
case route_KERNEL:
case route_FRONT:

putCollinviteJoinHandler(outFd, &sesmSidTag, &frontSidTag,
&leaderSidTag, &frontPermTag);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEJOIN);
showinfo(sbOutMsgBuf);

return (0) ;

int
collAskJoinHandler(fd)

{
int fd;

shastraidTag
shastraidTag
int outFd;

sesmSidTag;
frontSidTag;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);
cmAckOk(fd);
cmFlush(fd);

switch(routeSesMgrSidTagToFd(&sesmSidTag, &outFd,
"collAskJoinHandler()")){

}

case route_DEFAULT:
collAskJoinOprn(&sesmSidTag, &frontSidTag);

break;
case route_KERNEL:
case route_SESMGR:

putCollAskJoinHandler(outFd, &sesmSidTag, &frontSidTag);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOIN);
showinfo(sbOutMsgBuf);

return (0) ;

Page 25 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1791

kernel_server. c 7/5/11 11:16 AM

}
int
collTellJoinHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shast raid
int

sesmSidTag;
frontSidTag;
frontPermTag;

*PSid;
outFd;

ShastraidTagin(fd, &sesmSidTag);
ShastraidTagin(fd, &frontSidTag);
ShastraidTagin(fd, &frontPermTag);
cmAckOk(fd);
cmFlush(fd);

pSid = krFrSidTag25Id(frontSidTag);
if (pSid == NULL) {

}

sprintf(sbOutMsgBuf, "collTellJoinHandler()->Unknown IDTag -
Aborted\n");

showinfo(sbOutMsgBuf);
return(0);

if (pSid->liPAddr != kernelShastraid.liPAddr) {
if (fMainKernel) {

outFd = shaKernid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "collTellJoinHandler()->Unknown Kernel-- Aborted\
n") ;

showinfo(sbOutMsgBuf);
return (0) ;

}
putCollTellJoinHandler(outFd, &sesmSidTag,

&frontSidTag, &frontPermTag);
} else {

}
} else {

collTellJoinOprn(&sesmSidTag, &frontSidTag,
&frontPermTag);

int outFd;
outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "collTellJoinHandler()->Unknown Front-
Abo rted\n");

showinfo(sbOutMsgBuf);
return (0) ;

}
putCollTellJoinHandler(outFd, &sesmSidTag, &frontSidTag,

&frontPermTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_TELLJOIN);
showinfo(sbOutMsgBuf);

Page 26 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1792

kernel_server. c 7/5/11 11:16 AM

return (0) ;
}

I*
* Function
*I

int
putShaKernidHandler(fd)

{

}

I*

int fd;

putStringOnChannel(fd, REQ_SET_SHAKERNID, "putShaKernidHandler()");
ShastraidsOut(fd, &shastraKernids);
cmFlush(fd);

return (0) ;

* Function
*I

int
putShaKernFridHandler(fd, pSidKern)

{

int fd;
shastraid *PSidKern;

shast raids
int

*PSids;
krindex;

putStringOnChannel(fd, REQ_SET_SHAKERNFRID, "putShaKernFridHandler()");
cmFlush(fd);

}

I*

Shast raidOut (fd, pSidKe rn);
cmFlush(fd);
krindex = locateKernFronts(pSidKern);
if (krindex == -1) {

}

fprintf(stderr, "putShaKernFridHandler()-> unlocated kernel!\n");
krindex = 0;

pSids = getKernFrontSids(pSidKern);
ShastraidsOut(fd, pSids);
cmFlush(fd);
if (debug) {

}

outputid(stderr, pSidKern);
outputids(stderr, pSids);

cmFlush(fd);
return (0) ;

* Function
*I

Page 27 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1793

kernel_server. c 7/5/11 11:16 AM

int
putShaSesmidHandler(fd)

{

}

I*

int fd;

putStringOnChannel(fd, REQ_SET_SHASESMID, "putShaSesmidHandler()");
ShastraidsOut(fd, &shastraSesmids);
cmFlush(fd);

return (0) ;

* Function
*I

int
putShaSesmFridHandler(fd, pSidTagSesm)

{

int fd;
shastraidTag *PSidTagSesm;

shastraidTags
shastraidTags
int

*PSidTags;
*PPermTags;

smindex;

putStringOnChannel(fd, REQ_SET_SHASESMFRID, "putShaSesmFridHandler()");
ShastraidTagOut(fd, pSidTagSesm);

}

I*

smindex = locateSesmFronts(pSidTagSesm);
if (smindex == -1) {

}

fprintf(stderr, "putShaSesmFridHandler()-> unlocated sesMgr!\n");
smindex = 0;

pSidTags = getSesmFrontSidTags(pSidTagSesm);
ShastraidTagsOut(fd, pSidTags);
pPermTags = getSesmFrontPermTags(pSidTagSesm);
ShastraidTagsOut(fd, pPermTags);
if (debug) {

}

outputidTag(stderr, pSidTagSesm);
outputidTags(stderr, pSidTags);
outputidTags(stderr, pPermTags);

cmFlush(fd);
return (0) ;

* Function
*I

int
putShaStateHandler(fd)

int fd;
{

Page 28 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1794

kernel_server. c 7/5/11 11:16 AM

}

I*

int i;

putShaKernidHandler(fd);
for (i = 0; i < shastraKernids.shastraids len; i++)

{
putShaKernFridHandler(fd, shastraKernids.shastraids_val[i]);

}
putShaSesmidHandler(fd);
for (i = 0; i < shastraSesmids.shastraids len; i++) {

putShaSesmFridHandler(fd, & shastraSesmids.shastraids val[i]->
lSIDTag);

}
return(0);

* Function
*I

int
putShaStartSysHandler(fd, pSidCreate)

int fd;
shastraid *PSidCreate;

{
putStringOnChannel(fd, REQ_START_SYSTEM, "putShaStartSysHandler()");
ShastraidOut(fd, pSidCreate);

}

I*

if (debug) {
outputid(stderr, pSidCreate);

}
cmFlush(fd);

return(0);

* Function
*I

int
putShaEndSysHandler(fd, pSidKill)

{

}

I*

int fd;
shastraid *PSidKill;

putStringOnChannel(fd, REQ_END_SYSTEM, "putShaEndSysHandler()");
ShastraidOut(fd, pSidKill);
if (debug) {

outputid(stderr, pSidKill);
}
cmFlush(fd);

return(0);

* Function
*I

int

Page 29 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1795

kernel_server. c

putShaTerminateHandler(fd)

{

}

int fd;

putStringOnChannel(fd 1 REQ_TERMINATE 1

11 putShaTerminateHandler() 11
);

cmFlush(fd);
return (0) ;

* Function
*I

int
putCollinviteJoinHandler(fd 1 pSesmidTag 1 pFrontidTag 1 pLeaderidTag 1

{

pFrontPermTag)
int
shastraidTag
shastraidTag
shastraidTag
shastraidTag

fd;
*PSesmidTag;
*PFrontidTag;
*PLeaderidTag;
*PFrontPermTag;

7/5/11 11:16 AM

putStringOnChannel(fd 1 REQ_COLL_INVITEJOIN 1
11 putCollinviteJoinHandler(

}

I*

) II) ;

ShastraidTagOut(fd 1 pSesmidTag);
ShastraidTagOut(fd 1 pFrontidTag);
ShastraidTagOut(fd 1 pLeaderidTag);
ShastraidTagOut(fd 1 pFrontPermTag);
cmFlush(fd);

return(0);

* Function
*I

int
putCollAskJoinHandler(fd 1 pSesmidTag 1 pFrontidTag)

{

int fd;
shastraidTag *PSesmidTag;
shastraidTag *PFrontidTag;

putSt r ingOnChanne l(fd 1 REQ_COL L_ASKJ DIN 1 II put Co llAs kJ o in Handler () II) ;

ShastraidTagOut(fd 1 pSesmidTag);
ShastraidTagOut(fd 1 pFrontidTag);
cmFlush(fd);

return(0);
}

I*
*function()
*I

int
putCollTellJoinHandler(fd 1 pSesmidTag 1 pFrontidTag 1 pFrontPermTag)

int fd;
shastraidTag *PSesmidTag;

Page 30 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1796

kernel_server. c

{

shastraidTag
shastraidTag

*PFrontidTag;
*PFrontPermTag;

7/5/11 11:16 AM

putSt ringOnChanne l (fd 1 REQ_COLL_ TELLJ DIN 1 II put Co ll Te llJ oinHand le r ()II);
ShastraidTagOut(fd 1 pSesmidTag);
ShastraidTagOut(fd 1 pFrontidTag);
ShastraidTagOut(fd 1 pFrontPermTag);
cmFlush(fd);

return (0) ;
}

I*
*function()
*I

int
closedChannelCleanUpHandler(fd)

{
int fd;

switch (shaKernFlags[fd]) {
case SHAKERNEL:

#ifdef DEBUG
fprintf(stderr 1

11 ClosedChannelCleanUpHandler(%d)--kernel
disconnected! \n 11

1 fd);
#endif I* DEBUG *I

quitKernelCleanUpHandler(fd);
break;

case SHASESMGR:
#ifdef DEBUG

fprintf(stderr 1
11 ClosedChannelCleanUpHandler(%d)--sesmgr

disconnected! \n 11

1 fd);
#endif I* DEBUG *I

quitSesMgrCleanUpHandler(fd);
break;

case SHAFRONT:
#ifdef DEBUG

fprintf(stderr 1
11 ClosedChannelCleanUpHandler(%d)--front

disconnected! \n 11

1 fd);
#endif I* DEBUG *I

quitFrontCleanUpHandler(fd);
break;

default:
#ifdef DEBUG

fprintf(stderr 1
11 ClosedChannelCleanUpHandler(%d)--unknown client

disconnected! \n 11

1 fd);
#endif I* DEBUG *I

mplexUnRegisterChannel(fd);
break;

}
return(0);

}

I*
* Function

Page 31 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1797

kernel_server. c

*I
int putCollinviteMsgHandler(fd, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

7/5/11 11:16 AM

putStringOnChannel(fd, REQ_COLL_INVITEMSG, "putCollinviteMsgHandler()")

}

I*

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return(0);

* Function
*I

int collinviteMsgHandler(fd)
int fd;

{
shastraidTag
shastraidTag
shastraidTag
char *SMsg;
int outFd;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"collinviteMsgHandler()")){

}

case route_DEFAULT:
collinviteMsgReq(pHostMainKern, &smSidTag, &toSidTag,

&sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCollinviteMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEMSG);

Page 32 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1798

kernel_server. c

}

I*

showinfo(sbOutMsgBuf);
return (0) ;

* Function
*I

int putCollinvRespMsgHandler(fd, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

7/5/11 11:16 AM

putStringOnChannel(fd, REQ_COLL_INVRESPMSG, "putCollinvRespMsgHandler(

}

I*

) II) ;

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return(0);

* Function
*I

int collinvRespMsgHandler(fd)
int fd;

{
shastraidTag
shastraidTag
shastraidTag
char *SMsg;
int outFd;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"collinvRespMsgHandler()")){

case route_DEFAULT:
collinvRespMsgReq(pHostMainKern, &smSidTag, &toSidTag,

&sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCollinvRespMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

Page 33 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1799

kernel_server. c

}

I*

}

break;
case route ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

7/5/11 11:16 AM

int putCollinviteStatusHandler(fd, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

}

I*

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

putStringOnChannel(fd, REQ_COLL_INVITESTATUS,
"putCollinviteStatusHandler()");

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
ShastraULongOut(fd, &lStatus);
cmFlush(fd);

return (0) ;

* Function
*I

int collinviteStatusHandler(fd)
int fd;

{
shastraidTag
shastraidTag
shastraidTag
shaULong
int outFd;

smSidTag;
toSidTag;
sidTag;
lStatus;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
ShastraULongin(fd, &lStatus);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"collinviteStatusHandler()")){

case route_DEFAULT:
collinviteStatusReq(pHostMainKern, &smSidTag, &toSidTag,

Page 34 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1800

kernel_server. c

}

I*

}

&sidTag 1 lStatus);
break;
case route_KERNEL:
case route_FRONT:

putCollinviteStatusHandler(outFd 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_COLL_INVITESTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCollAskJoinMsgHandler(fd 1 pSmSidTag 1 pSidTag 1 sbMsg)

{

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
char *SbMsg;

7/5/11 11:16 AM

putStringOnChannel(fd 1 REQ_COLL_ASKJOINMSG 1 "putCollAskJoinMsgHandler(

}

I*

) II) ;

ShastraidTagOut(fd 1 pSmSidTag);
ShastraidTagOut(fd 1 pSidTag);
sendDataString(fd 1 sbMsg);
cmFlush(fd);

return(0);

* Function
*I

int collAskJoinMsgHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;
int outFd;

smSidTag;
sidTag;

ShastraidTagin(fd 1 &smSidTag);
ShastraidTagin(fd 1 &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeSesMgrSidTagToFd(&smSidTag 1 &outFd 1

"collAskJoinMsgHandler()")){

Page 35 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1801

kernel_server.c 7/5/11 11:16 AM

}

I*

}

case route_DEFAULT:
collAskJoinMsgReq(pHostMainKern, &smSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_SESMGR:

putCollAskJoinMsgHandler(outFd, &smSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOINMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCollAskJnRespMsgHandler(fd, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

I*

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COLL_ASKJNRESPMSG,
"putCollAskJnRespMsgHandler()");

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return (0) ;

* Function
*I

int collAskJnRespMsgHandler(fd)
int fd;

{
shastraidTag
shastraidTag
shastraidTag
char *SMsg;
int outFd;

smSidTag;
toSidTag;
sidTag;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);

Page 36 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1802

kernel_server. c

}

I*

cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"collAskJnRespMsgHandler()")){

}

case route_DEFAULT:
collAskJnRespMsgReq(pHostMainKern, &smSidTag, &toSidTag,

&sidTag, sMsg);
break;
case route_KERNEL:
case route_FRONT:

putCollAskJnRespMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJNRESPMSG);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

7/5/11 11:16 AM

int putCollAskJnStatusHandler(fd, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

putStringOnChannel(fd, REQ_COLL_ASKJNSTATUS, "putCollAskJnStatusHandler

}

I*

()");
ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
ShastraULongOut(fd, &lStatus);
cmFlush(fd);

return(0);

* Function
*I

int collAskJnStatusHandler(fd)
int fd;

{
shastraidTag
shastraidTag
shastraidTag
shaULong
int outFd;

smSidTag;
toSidTag;
sidTag;
lStatus;

Page 37 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1803

kernel_server.c 7/5/11 11:16 AM

}

I*

ShastraidTagin(fd 1 &smSidTag);
ShastraidTagin(fd 1 &toSidTag);
ShastraidTagin(fd 1 &sidTag);
ShastraULongin(fd 1 &lStatus);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag 1 &outFd 1

"collAskJnStatusHandler()")){

}

case route_DEFAULT:
collAskJnStatusReq(pHostMainKern 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_KERNEL:
case route_FRONT:

putCollAskJnStatusHandler(outFd 1 &smSidTag 1 &toSidTag 1

&sidTag 1 lStatus);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_COLL_ASKJNSTATUS);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgTextHandler(fd 1 pToSidTag 1 pSidTag 1 sbMsg)

{

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd 1 REQ_COMM_MSGTEXT 1 "putCommMsgTextHandler()");
ShastraidTagOut(fd 1 pToSidTag);
ShastraidTagOut(fd 1 pSidTag);
sendDataString(fd 1 sbMsg);
cmFlush(fd);

return (0) ;
}

I*
* Function
*I

int commMsgTextHandler(fd)

{
int fd;

shastraidTag
shastraidTag

toSidTag;
sidTag;

Page 38 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1804

kernel_server. c

}

I*

char *SMsg;
int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgTextHandler()")){

}

case route_DEFAULT:
commMsgTextReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgTextHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXT);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgTextFileHandler(fd, pToSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

7/5/11 11:16 AM

putStringOnChannel(fd, REQ_COMM_MSGTEXTFILE, "putCommMsgTextFileHandler

}

I*

()");
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return(0);

* Function
*I

int commMsgTextFileHandler(fd)

{
int fd;

shastraidTag
shastraidTag

toSidTag;
sidTag;

Page 39 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1805

kernel_server. c 7/5/11 11:16 AM

}

I*

char *SMsg;
int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgTextFileHandler()")){

}

case route_DEFAULT:
commMsgTextFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgTextFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGTEXTFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgAudioHandler(fd, pToSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COMM_MSGAUDIO, "putCommMsgAudioHandler()");
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return (0) ;
}

I*
* Function
*I

int commMsgAudioHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

Page 40 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1806

kernel_server. c

}

I*

int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgAudioHandler()")){

}

case route_DEFAULT:
commMsgAudioReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgAudioHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgAudioFileHandler(fd, pToSidTag, pSidTag, sbMsg)

{

}

I*

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COMM_MSGAUDIOFILE,
"putCommMsgAudioFileHandler()");

ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return (0) ;

* Function
*I

int commMsgAudioFileHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;

toSidTag;
sidTag;

7/5/11 11:16 AM

Page 41 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1807

kernel_server. c 7/5/11 11:16 AM

}

I*

int outFd;

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgAudioFileHandler()")){

}

case route_DEFAULT:
commMsgAudioFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgAudioFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGAUDIOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgVideoHandler(fd, pToSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COMM_MSGVIDEO, "putCommMsgVideoHandler()");
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return (0) ;
}

I*
* Function
*I

int commMsgVideoHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;
int outFd;

toSidTag;
sidTag;

Page 42 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1808

kernel_server. c

}

I*

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgVideoHandler()")){

}

case route_DEFAULT:
commMsgVideoReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgVideoHandler(outFd, &toSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEO);
showinfo(sbOutMsgBuf);

return (0) ;

* Function
*I

int putCommMsgVideoFileHandler(fd, pToSidTag, pSidTag, sbMsg)

{

}

I*

int fd;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COMM_MSGVIDEOFILE,
"putCommMsgVideoFileHandler()");

ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

return (0) ;

* Function
*I

int commMsgVideoFileHandler(fd)

{
int fd;

shastraidTag
shastraidTag
char *SMsg;
int outFd;

toSidTag;
sidTag;

7/5/11 11:16 AM

Page 43 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1809

kernel_server. c 7/5/11 11:16 AM

}

ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

switch(routeFrontSidTagToFd(&toSidTag, &outFd,
"commMsgVideoFileHandler()")){

case route_DEFAULT:
commMsgVideoFileReq(pHostMainKern, &toSidTag, &sidTag, sMsg);

break;
case route_KERNEL:
case route_FRONT:

putCommMsgVideoFileHandler(outFd, &toSidTag, &sidTag, sMsg);
break;

}

case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COMM_MSGVIDEOFILE);
showinfo(sbOutMsgBuf);

return (0) ;

Page 44 of 44
Petitioner Microsoft Corporation, Ex. 1002, p. 1810

kernelfind.c 7/5/11 11:18 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* kernelfind.c - find the master kernel
*
*I

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <syslsocket.h>
#include <netinetlin.h>
#include <netdb.h>
#include <time.h>
#include <sysltime.h>
#include <Xlliintrinsic.h>

#define RESPORT 9999
#define MAINPORT 9998
#define NAMELEN 128
char *myhostname = NULL;
static int kernnameserver(char *, int *, unsigned long*);

char *MasterKernelName(char *myhostname)
{

int ssock;
struct timeval timeout;
int i,result;

Page 1 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1811

kernelfind.c 7/5/11 11:18 AM

fd_set iReadMask,iWriteMask, iExcepnMask;
char buf[NAMELEN];
int res;
char *told;

if ((told = getenv ("MASTERKERNEL")) ! = NULL)
{

return(told);
}

memset(buf,0,NAMELEN);
ssock = ntBroadcastServer(RESPORT);
res= ntBroadcast(MAINPORT,myhostname,strlen(myhostname));

FD ZERO(&iReadMask);
FD ZERO(&iWriteMask);
FD_ZERO(&iExcepnMask);
FD_SET(ssock, &iReadMask);
timeout.tv_sec = 3;
timeout.tv_usec = 0;

if ((result= select(ssock+l, (fd_set *)&iReadMask,
(fd_set *)&iWriteMask, (fd_set *)&iExcepnMask,&timeout))

<= 0)

}

{
return (NULL);

}

if (FD_ISSET(ssock, &iReadMask))
{

read(ssock, buf, NAMELEN);
close(ssock);
return(strdup(buf));

}
return(NULL);

int SetupKernelNameServer(XtAppContext xac, char *myname)
{

}

int ssock;

ssock = ntBroadcastServer(MAINPORT);
myhostname = strdup(myname);
XtAppAddinput(xac, ssock, (XtPointer)XtinputReadMask,

(XtinputCallbackProc)kernnameserver ,NULL);
XtAppAddinput(xac, ssock, (XtPointer)XtinputExceptMask,

(XtinputCallbackProc)kernnameserver ,NULL);

int kernnameserver(char *arg, int *Pfd, unsigned long *Plid)
{

char buf[NAMELEN];
int l;

Page 2 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1812

kernelfind.c

}

int res;
int fd;

fd = *Pfd;
memset(buf, 0, NAMELEN);
l = read(fd, buf, NAMELEN);
res= ntBroadcast(RESPORT,myhostname,strlen(myhostname));
return(res);

int ntBroadcastServer(int port)
{

}

int isocket;
struct sockaddr_in sa;
int iOpt ion;
int res;

if ((isocket = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{

}

perror("socket()");
return(-1);

sa.sin_family = AF_INET;
sa.sin_addr.s_addr = INADDR_ANY;
sa.sin_port = htons(port);

if (bind(isocket, (struct sockaddr *)&sa, sizeof(sa)) != 0)
{

}

perror("bind ():");
close(isocket);
return(-1);

iOption = 1;
if (setsockopt(isocket, SOL_SOCKET, SO_REUSEADDR,

{

}

(canst char *)&iOption, sizeof(iOption)) -1)

perror("setsockopt() SOL_SOCKET, SO_REUSEADDR");
close(isocket);
return(-1);;

iOption = 1;
if (setsockopt(isocket, SOL_SOCKET, SO_BROADCAST,

{

}

(canst char *)&iOption, sizeof(iOption)) -1)

perror("setsockopt() SOL_SOCKET, SO_BROADCAST");
close(isocket);
return(-1);;

return(isocket);

7/5/11 11:18 AM

Page 3 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1813

kernelfind.c 7/5/11 11:18 AM

int ntBroadcast(int port, char *buf, int numbytes)
{

}

int res;
int sock;
struct sockaddr_in sa;
struct hostent *mhost;
char hostname[255];
int value;
int status;

sock= socket(AF_INET, SOCK_DGRAM, 0);

value = 1;
status = setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (canst char *)&

value, sizeof(int));
if (status == -1)
{

}

perror("setsockopt");
exit(1);

gethostname(hostname, 255);
if ((mhost = gethostbyname(hostname))
{

NULL)

fprintf(stderr, "unknown host %s\n", "localhost");
close(sock);
return(-1);

}
memcpy((char *)&sa.sin_addr, mhost->h_addr, mhost->h_length);
sa.sin_family = AF_INET;
l*sa.sin_addr.s_addr = sa.sin_addr.s_addr I 0x000000ff ;*I
I* well we have a broadcast net here at Purdue But NTT has a

multicast net. Its weird! *I
l*sa.sin_addr.s_addr = 0xe0000001;*1
I* for a 8 bit subnet *I
sa.sin_addr.s_addr = sa.sin_addr.s_addr 1 0x000000ff ;
fprintf(stderr, "Addr %x\n", sa.sin_addr.s_addr);
sa.sin_port = htons(port);
res= sendto(sock, buf, numbytes, 0, (struct sockaddr *)&sa, sizeof(sa)

) ;
if (res< 0)
{

perror("ntBroadcast");
}
close(sock);
return(0);

Page 4 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1814

kernelload.c 7/5/11 11:18 AM

!**
***I

!**
***I

**I
f** This SHASTRA software is not in the Public Domain. It is distributed on

**I
f** a person to person basis, solely for educational use and permission is

**I
f** NOT granted for its transfer to anyone or for its use in any commercial

**I
f** product. There is NO warranty on the available software and neither

**I
f** Purdue University nor the Applied Algebra and Geometry group directed

**I
f** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
!**

***I
!**

***I
#include <stdio.h>
#include <fcntl.h>
#include <nlist.h>
#include <unistd.h>
#ifdef SHASTRA4SUNS
#include <stdlib.h>
#end if

I*
*code to get load avergae .. sadly, /dev/kmem is not readable anymore
*I

static void getLoadError();

#ifdef WANTTHIS

#ifdef SHASTRA4IRIS

#define KERNEL_FILE "/unix"
#define KERNEL_MEMFILE "/dev/kmem"
#define LOADAVGNDX 0
#define KERNEL_LOAD_VARIABLE "avenrun"
extern void exit();
static struct nlist loadAvgNmList[] = {

{KERNEL_LOAD_VARIABLE},
{NULL}

};
static
static long

kernelMemFD;
loadAvgSeekOffset;

Page 1 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1815

kernelload.c

void
getLoadAvg(pLoadAvg)

{

}

double *PLoadAvg;

long temp;

if (loadAvgSeekOffset == 0) {
nlist(KERNEL_FILE, loadAvgNmList);

}

if (loadAvgNmList[LOADAVGNDX] .n_type == 0 I I
loadAvgNmList[LOADAVGNDX] .n_value == 0) {
getLoadError("cannot get name list from", KERNEL FILE);
*PLOadAvg = 0.0;
return;

}
loadAvgSeekOffset = loadAvgNmList[LOADAVGNDX] .n_value;

kernelMemFD = open(KERNEL_MEMFILE, O_RDONLY);
if (kernelMemFD < 0) {

}

getLoadError("cannot open", KERNEL_MEMFILE);
*PLOadAvg = 0.0;
return;

lseek(kernelMemFD, loadAvgSeekOffset, 0);
(void) read(kernelMemFD, (char*) &temp, sizeof(long));
close(kernelMemFD);
*PLoadAvg = (double) temp I 1024.0;
return;

#end if I* SHASTRA4IRIS *I

#ifdef SHASTRA4SUN4

#define KERNEL_FILE "lvmunix"
#define KERNEL_MEMFILE "ldevlkmem"
#define LOADAVGNDX 0
#define KERNEL_LOAD_VARIABLE "_avenrun"
extern void exit();
static struct nlist loadAvgNmList[] = {

{KERNEL_LOAD_VARIABLE},
{NULL}

};
static
static long

kernelMemFD;
loadAvgSeekOffset;

void
getLoadAvg(pLoadAvg)

double *PLoadAvg;
{

long temp;

7/5/11 11:18 AM

Page 2 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1816

kernelload.c 7/5/11 11:18 AM

}

if (loadAvgSeekOffset == 0) {
nlist(KERNEL_FILE, loadAvgNmList);

}

if (loadAvgNmList[LOADAVGNDX] .n_type == 0 I I
loadAvgNmList[LOADAVGNDX] .n_value == 0) {
getLoadError("cannot get name list from", KERNEL FILE);
*PLOadAvg = 0.0;
return;

}
loadAvgSeekOffset = loadAvgNmList[LOADAVGNDX] .n_value;

kernelMemFD = open(KERNEL_MEMFILE, O_RDONLY);
if (kernelMemFD < 0) {

}

getLoadError("cannot open", KERNEL_MEMFILE);
*PLOadAvg = 0.0;
return;

lseek(kernelMemFD, loadAvgSeekOffset, 0);
(void) read(kernelMemFD, (char*) &temp, sizeof(long));
close(kernelMemFD);
*PLoadAvg = (double) temp I (1 << 8);
return;

#end if I* SHASTRA4SUN4 *I

#end if I* WANTTHIS *I

void
getLoadAvg(pLoadAvg)

{
double *PLoadAvg;

char
char
FILE

tmpFilBuf[32];
tmpCmdBuf[64];

*loadFile;

sprintf(tmpFilBuf, "ltmpl#load%d", (int)getpid());
sprintf(tmpCmdBuf, "uptime 1 lusrlbinlawk '{print $10}' > %s",

tmpFilBuf);
if (system(tmpCmdBuf) != 0) {

perror("getLoadAvg()-- system()");
*PLOadAvg = 0.0;
return;

}
if (access(tmpFilBuf, R_OK) == -1) {

perror("getLoadAvg() --access()");
*PLOadAvg = 0.0;
return;

}
if ((loadFile = fopen(tmpFilBuf, "r"))

perror("getLoadAvg() -- fopen()");
*PLOadAvg = 0.0;
return;

NULL) {

Page 3 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1817

kernelload.c 7/5/11 11:18 AM

}

}
fscanf(loadFile, "%lf", pLoadAvg);
fclose(loadFile);
unlink(tmpFilBuf);
return;

static void
getLoadError(strl, str2)

{

}

char *Strl, *Str2;

fprintf(stderr, "getload(): %s %s\n", strl, str2);
perror("getload()");

Page 4 of 4
Petitioner Microsoft Corporation, Ex. 1002, p. 1818

asynciO.c 7/5/11 2:50 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <syslsignal.h>
#include <sysltime.h>

#include <shastralutilsllist.h>
#include <shastralnetworklasynciO.h>

#define STANDALONEnn

struct list
struct list
struct list

static void
static char
static void
static char
static void

*aiOinList;
*aiOOutList;
*aiOReplayOutList;

(*aiOReadHandler) (Prot2(aiOControl*,char*));
*aiOReadArg;
(*aiOWriteHandler) (Prot2(aiOControl*,char*));
*aiOWriteArg;
handleAIO(Protl(aio_result_t *));

void
clearPendingAIO()
{

struct list_node *node;
aiOControl *PAIOCntl;

while (aiOinList->head != NULL) {
node = aiOinList->head;

Page 1 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1819

asynciO.c 7/5/11 2:50 PM

}

void

}

pAIOCntl = (aiOControl *) node->data;
if (aiocancel(&pAIOCntl->resultAIO) == -1) {

}

fprintf(stderr, "clearPendingAIO()->couldn't cancel %lx\n",
&pAIOCntl->resultAIO);

listDeleteThis(aiOinList, node);
free(pAIOCntl->buf);
free(pAIOCntl);
free(node);

while (aiOOutList->head != NULL) {
node = aiOOutList->head;

}

pAIOCntl = (aiOControl *) node->data;
if (aiocancel(&pAIOCntl->resultAIO) == -1) {

}

fprintf(stderr, "clearPendingAIO()->couldn't cancel %lx\n",
&pAIOCntl->resultAIO);

listDeleteThis(aiOOutList, node);
free(pAIOCntl->buf);
free(pAIOCntl);
free(node);

while (aiOReplayOutList->head != NULL) {/*no async in this*/
node = aiOReplayOutList->head;

}

pAIOCntl = (aiOControl *) node->data;
listDeleteThis(aiOReplayOutList, node);
free(pAIOCntl->buf);
free(pAIOCntl);
free(node);

registerAIOReadHandler(func, arg)

{

}

void

void (*func) ();
char *arg;

aiOReadHandler = func;
aiOReadArg = arg;

registerAIOWriteHandler(func, arg)

{

}

void (*func) ();
char *arg;

aiOWriteHandler = func;
aiOWriteArg = arg;

void
sigiOHandler()
{

Page 2 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1820

asynciO.c

aio_result_t
aio_result_t
struct timeval
static int
static int

*resultAIO;
*a iowa it () ;

timeout;
fFirst = 1;
ct r;

#ifdef DEBUG
fprintf(stderr, "In sigiOHandler call %d\n", ctr);

#endif I* DEBUG *I

memset(&timeout, 0, sizeof(struct timeval));
while ((resultAIO = aiowait(&timeout)) != 0) {

if (resultAIO == (aio_result_t *) - 1) {
if (fFirst) {

per ro r ("a iowa it () ") ;
}
break;

} else {
#ifdef DEBUG

fprintf(stderr, "resultAIO = %lx\n", resultAIO);
#endif I* DEBUG *I

handleAIO(resultAIO);
}
fFirst = 0;

}
I* poll returned

#ifdef DEBUG
fprintf(stderr,

#end if

null *I

"Out sigiOHandler call %d\n", ctr++);
I* DEBUG *I

}

static void
handleAIO(resultAIO)

aio_result_t *resultAIO;
{

aio_result_t
aiOControl

*aiowai t ();
*PAIOinCntl, *PAIOOutCntl;

#ifdef DEBUG
fprintf(stderr, "In handleAIO\n");

#endif I* DEBUG *I
if (aiOinList->head != NULL) {

pAIOinCntl = (aiOControl *) aiOinList->head->data;
} else {

pAIOinCntl = NULL;
}
if (aiOOutList->head != NULL) {

pAIOOutCntl = (aiOControl *) aiOOutList->head->data;
} else {

pAIOOutCntl = NULL;
}
if (pAIOinCntl && (resultAIO == &pAIOinCntl->resultAIO)) {

if (resultAIO->aio_return == -1) {

7/5/11 2:50 PM

Page 3 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1821

asynciO.c 7/5/11 2:50 PM

extern int errno;
errno = resultAIO->aio_errno;
per ro r ("a iowa it () ->read () ") ;

} else {
#ifdef DEBUG

fprintf(stderr, "handleAIO()-> Read()-> %d of %d of %lx\n",
resultAIO->aio_return, pAIOinCntl->bufSize, resultAIO);

#endif /*DEBUG*/

}

pAIOinCntl->bufSize = resultAIO->aio_return;
if (aiOReadHandler != NULL) {

(*aiOReadHandler) (pAIOinCntl,aiOReadArg);
}

} else if (pAIOOutCntl && (resultAIO &pAIOOutCntl->resultAIO)) {
if (resultAIO->aio_return == -1) {

extern int errno;
errno = resultAIO->aio_errno;
per ro r ("a iowa it () ->write () ") ;

} else {
#ifdef DEBUG

fprintf(stderr, "handleAIO()-> Write()-> %d of %d of %lx\n",
resultAIO->aio_return, pAIOOutCntl->bufSize, resultAIO);

#endif /*DEBUG*/
if (aiOWriteHandler != NULL) {

(*aiOWriteHandler) (pAIOOutCntl,aiOWriteArg);
}

}
} else {

fprintf(stderr, "handleAIO()-> non-requested return\t");
if (pAIOinCntl) {

fprintf(stderr, "In head is %lx\t", &pAIOinCntl->resultAIO);
}
if (pAIOOutCntl) {

fprintf(stderr, "Out head is %lx\t", &pAIOOutCntl->resultAIO);
}
fprintf(stderr, "\n");

}
#ifdef DEBUG

fprintf(stderr,
#end if
}

"Out handleAIO\n");
I* DEBUG *I

void
setupSigiOHandler(func)

void (*func) ();
{
#if defined SHASTRA4IRIS I I defined SHASTRA4SUNS

sigset(SIGIO, func);
#else
#ifdef SHASTRA4HP

signal(SIGIO, func);
#else/* SHASTRA4SUN4 *I

struct sigvec vee;

Page 4 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1822

asynciO.c

I* Set up SIGIO handler to flush output *I
vec.sv_handler = func;
vec.sv_mask = 0;
vec.sv_flags = 0;
(void) sigvec(SIGIO, &vee, (struct sigvec *) NULL);

#endif I* SHASTRA4IRIS *I
#end if
}

#if defined SHASTRA4IRIS I I defined SHASTRA4HP

aio_result t *
aiowai t ()
{
}

int
aio read ()
{
}

int
aiowri te ()
{
}

int
aiocancel()
{
}

#end if I* SHASTRA4IRIS *I

#ifdef STANDALONE
#define BUFSIZE 2000000

int
int

inFd = 0;
outFd = 1;

main()
{

int
void
void

tmp;
testAIOReadHandler();
testAIOWriteHandler();

if ((outFd = open("ltmpltry", O_WRONLY
per ro r ("open () ->ltmplt ry") ;
exit(-1);

}

O_TRUNC

if ((inFd = open("ltmpltry2", 0 RDONLY)) < 0) {

7/5/11 2:50 PM

0 CREAT)) < 0) {

Page 5 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1823

asynciO.c

}

perror("open()->ltmpltry2");
exit(-1);

}
setupSigiOHandler(sigiOHandler);
registerAIOReadHandler(testAIOReadHandler, NULL);
registerAIOWriteHandler(testAIOWriteHandler, NULL);

aiOinList = listMakeNew();
aiOOutList = listMakeNew();

testAIOReadHandler(NULL, NULL);
fprintf(stderr, "Waiting for aio to end\n");
scanf("%d", &tmp);

void
testAIOReadHandler(pAIOCntl,arg)

aiOControl *PAIOCntl;
char *arg;

{
static int fNotFirst = 0;
struct list_node *node;
aiOControl *PAIOCntlNew;
aiOControl *PAIOCntlOld;

#ifdef DEBUG
fprintf(stderr, "testAIOReadHandler, fNot = %d\n", fNotFirst);

I* DEBUG *I #end if
if (fNotFirst) {

I* advance read ptr in input *I
lseek(infd, pAIOCntl->bufSize, SEEK_CUR);
pAIOCntlOld = (aiOControl *) aiOinList->head->data;
if (pAIOCntl != pAIOCntlOld) {

7/5/11 2:50 PM

fprintf(stderr, "testAIOReadHandler()->bad pAIOCntl %lx, %lx\n"
I

pAIOCntl, pAIOCntlOld);
}
I* this read is done, remove *I
node = aiOinList->head;
listDeleteThis(aiOinList, node);
free(node);
node = NULL;
if (pAIOCntl->resultAIO.aio_return

I* last read returns 0 , all read
return;

}
if (aiOOutList->head == NULL) {

0) {
jobs done *I

I* out queue is empty, initiate a write *I
node= listMakeNewNode();
pAIOCntlNew = (aiOControl *) malloc(sizeof(aiOControl));
memset(pAIOCntlNew, 0, sizeof(aiOControl));
pAIOCntlNew->buf = pAIOCntl->buf;

Page 6 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1824

asynciO.c 7/5/11 2:50 PM

pAIOCntlNew->bufSize = pAIOCntl->bufSize;
node->data = (char *) pAIOCntlNew;
free (pAIOCnt l);
pAIOCntl = NULL;

listinsertAtTail(aiOOutList, node);
#ifdef DEBUG

fprintf(stderr, "Init 'g Write\t");
#endif I* DEBUG *I

if (aiowrite(outFd, pAIOCntlNew->buf, pAIOCntlNew->bufSize,
0, SEEK_CUR, &pAIOCntlNew->resultAIO) < 0) {
perror("aiowrite()");

}
#ifdef DEBUG

fprintf(stderr, "Init'd resultAIO = %lx\n",
&pAIOCntlNew->resultAIO);

#endif I* DEBUG *I

}

} else {

}

I* write in progress .. add to queue *I
node= listMakeNewNode();
pAIOCntlNew = (aiOControl *) malloc(sizeof(aiOControl));
memset(pAIOCntlNew, 0, sizeof(aiOControl));
pAIOCntlNew->buf = pAIOCntl->buf;
pAIOCntlNew->bufSize = pAIOCntl->bufSize;
node->data = (char *) pAIOCntlNew;

free (pAIOCnt l);
pAIOCntl = NULL;

listinsertAtTail(aiOOutList, node);

node= listMakeNewNode();
pAIOCntl = (aiOControl *) malloc(sizeof(aiOControl));
memset(pAIOCntl, 0, sizeof(aiOControl));
pAIOCntl->buf = (char*) malloc(BUFSIZE);
pAIOCntl->bufSize = BUFSIZE;

node->data = (char *) pAIOCntl;
listinsertAtTail(aiOinList, node);

fNotFirst = 1;
#ifdef DEBUG

fprintf(stderr, "Init'g Read\t");
#endif I* DEBUG *I

if (aioread(infd, pAIOCntl->buf, pAIOCntl->bufSize, 0, SEEK_CUR,
&pAIOCntl->resultAIO) < 0) {

perror("aioread()");
}

#ifdef DEBUG
fprintf(stderr, "Init'd resultAIO = %lx\n",

&pAIOCntl->resultAIO);
fprintf(stderr, "Out testAIOReadHandler\n");

Page 7 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1825

asynciO.c 7/5/11 2:50 PM

#end if
}

I* DEBUG *I

void
testAIOWriteHandler(pAIOCntl,arg)

aiOControl *PAIOCntl;
char *arg;

{
struct list_node *node;
aiOControl *PAIOCntlOld;

#ifdef DEBUG
fprintf(stderr, "In testAIOWriteHandler\n");

#endif I* DEBUG *I
pAIOCntlOld = (aiOControl *) aiOOutList->head->data;
if (pAIOCntl != pAIOCntlOld) {

}

fprintf(stderr, "testAIOWriteHandler()->bad pAIOCntl %lx, %lx\n",
pAIOCntl, pAIOCntlOld);

node = aiOOutList->head;
I* advance write ptr in output *I
lseek(outFd, pAIOCntl->resultAIO.aio_return, SEEK CUR);
I* this write is done, remove from list *I
listDeleteThis(aiOOutList, node);

free(pAIOCntl->buf);
free (pAIOCnt l);
free(node);
node = NULL;
pAIOCntl = NULL;

if (aiOOutList->head != NULL) {
node = aiOOutList->head;
pAIOCntl = (aiOControl *) node->data;

#ifdef DEBUG
fprintf(stderr, "Init'g Write\t");

#endif I* DEBUG *I
if (aiowrite(outfd, pAIOCntl->buf, pAIOCntl->bufSize, 0, SEEK_CUR,

&pAIOCntl->resultAIO) < 0) {

#ifdef

#end if
}

}
DEBUG

per ro r ("a iow rite () ") ;

fprintf(stderr, "Init'd resultAIO =
&pAIOCntl->resultAIO);

I* DEBUG *I

%lx\n",

#ifdef DEBUG
fprintf(stderr,

#end if
"Out testAIOWriteHandler\n");
I* DEBUG *I

}

#end if I* STANDALONE *I

Page 8 of 8
Petitioner Microsoft Corporation, Ex. 1002, p. 1826

hostMgr.c 7/5/11 11:12 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <errno.h>

#include <shastralutilsllist.h>
#include <shastralutilslhash.h>

#include <shastraldatacommlshastraidH.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklmplexP.h>

extern char *readString(Protl(int));

#define DEBUGxx

I*
* hostSendRawRequest()
*I

int
hostSendRawRequest(pHost, req)

{

hostData *PHost;
char *req;

int retVal;

if((pHost ==NULL) I I (pHost->fStatus
return -1;

shaError)){

Page 1 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1827

hostMgr.c

}

I*

}
retVal = cmSendString(pHost->fdSocket, req);
if(retVal == -1){

pHost->fStatus = shaError;
}
return retVal;

* hostSendQueuedRequest()
*I

int
hostSendQueuedRequest(pHost, req, arg)

{

}

I*

hostData *PHost;
char *req;
char *arg;

int retVal;

if((pHost ==NULL) I I (pHost->fStatus == shaError)){
return -1;

}
hostQueueHostRequest(pHost, req, arg);
retVal = cmSendString(pHost->fdSocket, req);
if(retVal == -1){

pHost->fStatus = shaError;
}
return retVal;

* hostSendMatchedRequest() --NOT COMPLETE
*I

int
hostSendMatchedRequest(pHost, req, arg)

{

}

hostData *PHost;
char *req;
char *arg;

int retVal;

if((pHost ==NULL) I I (pHost->fStatus == shaError)){
return -1;

}
hostQueueHostRequest(pHost, req, arg);
retVal = cmSendString(pHost->fdSocket, req);
if(retVal == -1){

pHost->fStatus = shaError;
}
return retVal;

7/5/11 11:12 AM

Page 2 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1828

hostMgr.c 7/5/11 11:12 AM

* hostQueueHostRequest()
*I

void
hostQueueHostRequest(pHost, req, arg)

{

hostData *PHost;
char *req;
char *arg; I* use this to store info needed on return *I

struct list node *tmp_node;
hostRequest *hReq;

hReq = (hostRequest *) malloc(sizeof(hostRequest));
tmp_node = listMakeNewNode();
hReq->request = req;
hReq->arg = arg;
tmp_node->data = (char *) hReq;
listinsertAtTail(pHost->sendList, tmp_node);

#ifdef DEBUG
fprintf(stderr, "hostQueueHostRequest()->inserted %s on %ld!\n",

req, pHost);
#endif I* DEBUG *I
}

* hostMapFD2Host(pHostList,fd)
*I

hostData *
hostMapFD2Host(pHostList, fd)

struct list *PHostList;
int fd;

{
struct list_node *tmp_node;
hostData *PHost;

for (tmp_node = pHostList->head; tmp_node != NULL; tmp_node = tmp_node->
next) {

}

}

pHost = (hostData *) tmp_node->data;
if (pHost->fdSocket == fd) {

return (pHost);
}

return (NULL);

int
shaClientHandler(fd, arg, dummy)

{

int fd;
char *arg;
unsigned long *dummy;

int
char
hostRequest
char

fFound, i;
*buf;
*hReq;
*req;

Page 3 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1829

hostMgr.c

I*

hostData *PHost;
shaCmdData *PCmdData;
cmCommand *PCmds;
cmCommand *PCmdsin;/*
struct cmCommand *PCmd;
struct he *Phe;
struct list_node *node;

I* the outbound cmd table *I
the inbound cmd table *I

7/5/11 11:12 AM

I* inbounds can occur in 2 places .. when req pending/ not req pending *I
pCmdData = mplexTab[fd] .pCmdData;
pCmds = pCmdData->pCmdTab;
pCmdsin = pCmdData->pCmdTabin;
pHost = mplexTab[fd] .pHost;

pHost = hostMapFD2Host(pCmdData->hostList 1 fd);
*I
if (pHost == NULL) {

}

fprintf(stderr 1 "shaClientHandler()->No Host Data for Connection!\n");
return -1;

buf = cmReceiveString(fd);
if (buf == NULL) {

fprintf(stderr 1 "shaClientHandler(%d)->Peer %ld (%s) closed connection\
n"l
fd 1 pHost-> lSIDTag 1 (pHost->pSid?pHost->pSid->nmHost: "host"));

if(mplexErrHandler){
(*mplexErrHandler) (fd);

}
else{

mplexUnRegisterChannel(fd);
}
pHost->fStatus = shaError;
return -1;

} else {
int n = strlen(buf);
int fBlank = 1;

for (i = 0; i < n; i++) {
if (!isspace(buf[i])) {

fBlank = 0;
break;

}
}
if (fBlank) {

free(buf);
return;

}

I* blank string .. avoid!! *I

#ifdef DEBUG
fprintf(stderr 1 "shaClientHandler()->Read %d (%s)\n" 1

strlen(buf) 1 buf);
#endif I* DEBUG *I

if (pHost->sendList->head == NULL) {

Page 4 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1830

hostMgr.c

I* maybe
int
retVal =
I*

this is an inbound command! *I
retVa l;

cmNewSearchNExecute(fd, buf, pCmdData->htCmdsin, arg);

* retVal = cmSearchNExecute(fd,buf, pCmdsin,
* pCmdData->nCmdsin,arg);
*I

if (retVal == -1) {

7/5/11 11:12 AM

fprintf(stderr, "shaClientHandler()->Unintelligible I Unsolicited Input

}

: %s!\n"
, buf);

}
free(buf);
return retVal;

I* read ACK or ERROR .. *I
if (strcmp(buf, ERROR_STRING) == 0) {

I* ERROR -- message *I
hReq = (hostRequest *) pHost->sendlist->head->data;
req = hReq->request;
fprintf(stderr, "shaClientHandler()->Error On %s!\n", req);
node = pHost->sendlist->head;
listDeleteThis(pHost->sendlist, node);
free(buf);
free (hReq) ;
free(node);
return -1;

} else if (strcmp(buf, ACK_STRING) == 0) {
I*
* ACK -- look in queue for that fd(??) and know what
* response is for
*I

hReq = (hostRequest *) pHost->sendlist->head->data;
req = hReq->request;

#ifdef WANT
fFound = 0;
for (i = 0; i < pCmdData->nCmds; i++) {

if (strcmp(pCmds[i] .command, req) == 0) {
fFound = 1;

#ifdef DEBUG
fprintf(stderr, "%s\n", pCmds [i] .helpmsg);

#endif I* DEBUG *I

}

(*pCmds [i] .function) (fd, (char*) hReq->arg);
break;

}
if (! fFound) {

fprintf(stderr, "shaClientHandler()->Unknown Request - %s!\n",
req);

return (-1);
}

#end if I* WANT *I
phe = ht Lookup (pCmdData->htCmd s, req);

Page 5 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1831

hostMgr.c 7/5/11 11:12 AM

if (phe == NULL) {
fprintf(stderr 1 "shaClientHandler()->Unknown Saved Request - %s!\n" 1

req);
return (-1);

}
pCmd = (struct cmCommand *) phe->data;
(*pCmd->function) (fd 1 (char *) hReq->arg);
node = pHost->sendList->head;
listDeleteThis(pHost->sendList 1 node);

#ifdef DEBUG
fprintf(stderr 1 "shaClientHandler()->acked and deleted %s !\n" 1 req);

#endif I* DEBUG *I
free(buf);
free (hReq) ;
free(node);
I* delete req from the queue *I

} else { I* maybe this is an inbound command! *I
int retVal;
retVal = cmNewSearchNExecute(fd 1 buf 1 pCmdData->htCmdsin 1 arg);
I*
* retVal = cmSearchNExecute(fd 1 bUf 1 pCmdsin 1

* pCmdData->nCmdsin 1 arg);
*I

#ifdef DEBUG
fprintf(stderr 1 "shaClientHandler()->inbound %s !\n" 1 req);

#endif I* DEBUG *I

}

}

free(buf);
if (retVal == -1) {

fprintf(stderr 1 "shaClientHandler()->Unintelligible Response %s!\n"
I buf);

}
return -1;

}

return 0;

Page 6 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1832

mplex.c 7/5/11 11:13 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <errno.h>
#include <poll.h>
#include <sysltime.h>
#ifdef SHASTRA4SUN5
#include <syslresource.h>
#end if
#include <sysltypes.h>
#include <syslsocket.h>
#include <syslun.h>
#include <netinetlin.h>
#include <netdb.h>
#include <malloc.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>
#include <shastralnetworklserverP.h>
#include <shastralnetworklmplexP.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklsharedMem.h>
#include <shastralnetworklrpc.h>

#include <shastralutilsldllist.h>

#define MYBUFSIZE 1*32768 32768, 65536 , 102400*1 131072
#define USE_STREAMS I* CHECK same flag in mplex, server *I
#define DEFAULTMPLEXTIMEOUT 3600000 I* 1hr *I
int fDebug = 0;
mplex *mplexTab;

Page 1 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1833

mplex.c 7/5/11 11:13 AM

static struct pollfd *mplexPollFds;
static struct dllist *mplexTimerList;
static int iMplexTimeBase;
static int iNChannels = 0;
static int iMplexTimeout = DEFAULTMPLEXTIMEOUT;
static int iMplexPollTimeout;
static int iMplexTotalidle = 0;
static int mplexMaxChannels = 0;

static Widget wgMplexTop;
static XtAppContext xacMplex;

int (*mplexErrHandler) (Protl(int));
int (*mplexidleHandler) (Protl(char*));
static int mplexDefaultErrHandler(Protl(int));
static int mplexDefaultidleHandler(Protl(char*));
static void mplexDefaultReadHandler(Prot3(char*, int *, unsigned long*));
static void mplexDefaultWriteHandler(Prot3(char*, int *, unsigned long*));
static void mplexWorkTheTimer();

#ifdef SHASTRA4HP
#include <syslparam.h>
int

I* for HP's which don't have getdtablesize *I

getdtablesize()
{

return NOFILE;
}
#end if

#ifdef SHASTRA4SUNS
int
getdtablesize()
{

int res;
rlim_t rlim_cur;
rlim_t rlim_max;
struct rlimit rlp;

I* getdtablesize *I

res= getrlimit(RLIMIT_NOFILE, &rlp);
res= (int)rlp.rlim_cur;
return(res);

}
#end if I* getdtablesize *I

int
mplexinit(wg, xac)

Widget wg;
XtAppContext xac;

{
struct timeval tp;
struct timezone tzp;

wgMplexTop = wg;

Page 2 of 24
Petitioner Microsoft Corporation, Ex. 1002, p. 1834

mplex.c

xacMplex = xac;

if(mplexTab != NULL){
return;

}

gettimeofday(&tp, &tzp);
mplexMaxChannels = getdtablesize();

#ifdef DEBUG

7/5/11 11:13 AM

fprintf(stderr, "mplexinit()-> max channels = %d\n", mplexMaxChannels);
#end if

}

mplexTab = (mplex *) calloc(mplexMaxChannels, sizeof(mplex));
mplexPollFds = (struct pollfd *) calloc(mplexMaxChannels,

sizeof(struct pollfd));
mplexErrHandler = mplexDefaultErrHandler;
mplexTimerList = dllistMakeNew();
iMplexTimeout = DEFAULTMPLEXTIMEOUT;
iMplexTimeBase = tp.tv_sec;
iMplexTotalidle = 0;

if (xacMplex)
{

mplexWorkTheTimer();
}
return 0;

shaCmdData *
mplexGetCmdData(fd)

{

}

int fd;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
return mplexTab[fd] .pCmdData;

} else {

}

fprintf(stderr, "mplexGetCmdData()->Bad Channel Number %d\n", fd);
return NULL;

int
mplexSetCmdData(fd,

int
pCmdData)
fd;

*PCmdData;
{

}

shaCmdData

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .pCmdData = pCmdData;
return 1;

} else {

}

fprintf(stderr, "mplexSetCmdData()->Bad Channel Number %d\n", fd);
return 0;

Page 3 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1835

mplex.c 7/5/11 11:13 AM

hostData *
mplexGetHostData(fd)

{

}

int fd;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
return mplexTab[fd] .pHost;

} else {

}

fprintf(stderr, "mplexGetHostData()->Bad Channel Number %d\n", fd);
return NULL;

int
mplexSetHostData(fd, pHost)

{

}

int fd;
hostData *PHost;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .pHost = pHost;
return 1;

} else {

}

fprintf(stderr, "mplexSetHostData()->Bad Channel Number %d\n", fd);
return 0;

char *
mplexGetChannelReadArg(fd)

{
int fd;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
return mplexTab[fd] .readArg;

} else {
fprintf(stderr, "mplexGetChannelReadArg()->Bad Channel Number %d\n", fd

) ;
return NULL;

}
}

int
mplexSetChannelReadArg(fd, arg)

{

}

int fd;
char *arg;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .readArg = arg;
return 1;

} else {
fprintf(stderr, "mplexSetChannelReadArg()->Bad Channel Number %d\n", fd

) ;
return 0;

}

Page 4 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1836

mplex.c

char *
mplexGetChannelWriteArg(fd)

{
int fd;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
return mplexTab[fd] .writeArg;

} else {

7/5/11 11:13 AM

fp rintf (stde r r 1 "mp lexGetChanne lArg ()->Bad Channel Number %d\n" 1 fd);
return NULL;

}
}

int
mplexSetChannelWriteArg(fd 1 arg)

{

int fd;
char *arg;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .writeArg = arg;
return 1;

} else {
fprintf(stderr 1 "mplexSetChannelWriteArg()->Bad Channel Number %d\n" 1

fd) ;
return 0;

}
}

static void
mplexDefaultReadHandler(arg 1 pfd 1 plid)

char* arg;

{

int *Pfd;
unsigned long* plid;

int i;

i = *Pfd;

if ((mplexTab[i] .fRead) && (mplexTab[i] .readHandler !=NULL))
{

(*mplexTab[i] .readHandler) (mplexTab[i] .iSocket 1 mplexTab[i] .readArg);
#ifdef USE_STREAMS

while (mplexTab[i] .inStream && (mplexTab[i] .inStream->_cnt > 0))
{

(*mplexTab[i] .readHandler) (mplexTab[i] .iSocket 1 mplexTab[i] .readArg);
}

#end if
}

}

I* USE_STREAMS *I

static void
mplexDefaultWriteHandler(arg 1 pfd 1 plid)

Page 5 of 24
Petitioner Microsoft Corporation, Ex. 1002, p. 1837

mplex.c

{

char* arg;
int *Pfd;
unsigned long* plid;

int i;

i = *Pfd;

#ifdef SHASTRA4IRIS
if(mplexTab[i] .writeHandler !=NULL)

#else
if((mplexTab[i] .fWrite) && (mplexTab[i] .writeHandler !=NULL))

#end if
{

7/5/11 11:13 AM

(*mplexTab[i] .writeHandler) (mplexTab[i] .iSocket, mplexTab[i] .writeArg,
mplexTab[i] .mChanid);

#ifdef USE_STREAMS
while (mplexTab[i] .inStream && (mplexTab[i] .inStream->_cnt > 0)) {

(*mplexTab[i] .writeHandler) (mplexTab[i] .iSocket,mplexTab[i] .writeArg

mplexTab[i] .mChanid);
}

#end if
}

I* USE_STREAMS *I

}

int
mplexRegisterChannel(fd, handler, pCmdData, arg)

{

int fd;
int (*handler) ();
shaCmdData *PCmdData;
char *arg;

if ((fd >= 0) && (mplexTab[fd] .finUse == MPLEX_FREE)){
memset(&mplexTab[fd], 0, sizeof(mplex));

mplexTab[fd] .pCmdData = pCmdData;
if (pCmdData != NULL){ l*shaChannel*l

if(pCmdData->htCmds == NULL) {
cminitializeCmdData(pCmdData);

}

if (mplexSetFilePtrs(fd) < 0) {
return -1;

}
mplexTab[fd] .inBuf = malloc(MYBUFSIZE + 16);
if (mplexTab[fd] .inBuf ==NULL) {

fprintf(stderr, "mplexRegisterChannel()->can't malloc inBuf!\n");
}
mplexTab[fd] .outBuf = malloc(MYBUFSIZE + 16);
if (mplexTab[fd] .outBuf ==NULL) {

fprintf(stderr, "mplexRegisterChannel()->can't malloc outBuf!\n");

Page 6 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1838

mplex.c 7/5/11 11:13 AM

}

I*
fprintf(stderr, "mplexRegisterChannel(%d)->inBuf = %lx([0]=%c, [%d]=%c, \
OutBuf=%lx ([0]=%c, [%d]=%c\n",
fd,
mplexTab[fd] .inBuf, mplexTab[fd] .inBuf[0],
MYBUFSIZE-1, mplexTab[fd] .inBuf[MYBUFSIZE-1],
mplexTab[fd] .outBuf, mplexTab[fd] .outBuf[0],
MYBUFSIZE -1, mplexTab[fd] .outBuf[MYBUFSIZE-1]);
*I

if (setvbuf(mplexinStream(fd), mplexTab[fd] .inBuf, _IOFBF, MYBUFSIZE)
) {

fprintf(stderr,
"mplexRegisterChannel()->couldn't setvbuf inBuf!\n");

}
if (setvbuf(mplexOutStream(fd), mplexTab[fd] .outBuf, _IOFBF,

MYBUFSIZE)) {
fprintf(stderr,

}

"mplexRegisterChannel()->couldn't setvbuf outBuf!\n");
}
mplexTab[fd] .pShminfoin = shminfoCreate();
mplexTab[fd] .pShminfoOut = shminfoCreate();

mplexTab[fd] .iSocket = fd;
mplexTab[fd] .readHandler =handler;
mplexTab[fd] .fRead = 1;
mplexTab[fd] .readArg = arg;

mplexTab[fd] .finUse = MPLEX_USE;
iNChannels++;

if(xacMplex != NULL)
{

#ifdef NVERMINDMENOW
mplexTab[fd] .lChanid =

XtAppAddinput(xacMplex, fd,
(XtPointer) XtinputReadMask ,
mplexDefaultReadHandler, (XtPointer)arg);

mplexTab[fd] .mChanid =
XtAppAddinput(xacMplex, fd,

(XtPointer) XtinputWriteMask,
mplexDefaultWriteHandler, (XtPointer)arg);

#ifdef NO_SHASTRA4HP
mplexTab[fd] .rChanid =

XtAppAddinput(xacMplex, fd,

#end if
#end if

}
else

(XtPointer) XtinputExceptMask,
mplexDefaultReadHandler, (XtPointer)arg);

Page 7 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1839

mplex.c

}

{
mplexTab[fd] .lChanid = mplexGetUniqueid();

}
} else {

}

fprintf(stderr, "mplexRegisterChannel()-> Bad fd = %d\n", fd);
return -1;

return 0;

int
mplexUnRegisterChannel(fd)

int fd;
{

I*
fprintf(stderr, "mplexUnRegisterChannel(%d)\n", fd);
*I
if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)) {

iNChannels--;
if (mplexResetFilePtrs(fd) < 0) {

I* mplexTab[fd] .finUse = MPLEX_ERR; *I
}
if (mplexTab[fd] .inBuf) {

free(mplexTab[fd] .inBuf);
}
if (mplexTab[fd] .outBuf) {

free(mplexTab[fd] .outBuf);
}
if (mplexTab[fd] .pShminfoin) {

shMemDisconnect(mplexTab[fd] .pShminfoin);
free(mplexTab[fd] .pShminfoin);

}
if (mplexTab[fd] .pShminfoOut) {

shMemDisconnect(mplexTab[fd] .pShminfoOut);
free(mplexTab[fd] .pShminfoOut);

}
if(xacMplex != NULL){
if (mplexTab[fd] .lChanid)
{
XtRemoveinput(mplexTab[fd]. lChanid);

}
if (mplexTab[fd] .mChanid)
{

XtRemoveinput(mplexTab[fd] .mChanid);
}

#ifdef NO_SHASTRA4HP
XtRemoveinput(mplexTab[fd] .rChanid);

#end if
}
memset(&mplexTab[fd], 0, sizeof(mplex));
mplexTab[fd] .iSocket = -1;
shutdown(fd, 2);
close(fd);

7/5/11 11:13 AM

Page 8 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1840

mplex.c 7/5/11 11:13 AM

}

mplexTab[fd] .finUse = MPLEX_FREE;
} else {

return -1;
}
return 0;

int
mplexMain(flushFunc)

{

}

int (*flushFunc) ();

int retval;

if(xacMplex != NULL){
XtAppMainLoop(xacMplex);
return;

}
iMplexPollTimeout = iMplexTimeout;
while (1) {

}

retval = mplexPoll(iMplexPollTimeout);
if (retval == 0) {

mplexTimeoutHandler();
} else {

}

iMplexTotalidle = 0;
mplexTimerTick();

if (flushFunc ! = NULL) {
flushFunc();

}

I* NOTREACHED *I

int
mplexSelect(timeVal)

{
int timeVal;

int retval;
int i;
int n;
int nDone;

fd_set iReadMask, iWriteMask, iExcepnMask;
struct timeval timeout;

FD ZERO(&iReadMask);
FD ZERO(&iWriteMask);
FD_ZERO(&iExcepnMask);
for (i = 0, n = 0; (i < mplexMaxChannels) && (n < iNChannels); i++) {

if (mplexTab[i] .finUse == MPLEX_USE) {
n++;
if (mplexTab[i] .fWrite) { I* WriteFlag *I

FD_SET(mplexTab[i] .iSocket, &iWriteMask);
}

Page 9 of 24
Petitioner Microsoft Corporation, Ex. 1002, p. 1841

mplex.c

}

if (mplexTab[i] .fRead) {
FD_SET(mplexTab[i] .iSocket, &iReadMask);

}
}

if (fDebug) {

}

fprintf(stderr, "before rmask
iReadMask.fds_bits[0],
iWriteMask.fds_bits[0],
iExcepnMask.fds_bits[0]);

if (timeVal > 0) {

%ld, wmask %ld, xmask

memset((char *) &timeout, 0, sizeof(timeout));
timeout.tv_sec = timeVal I 1000;
timeout.tv usee = (timeVal % 1000) * 1000;

}

%ld\n",

if ((retval = select(mplexMaxChannels + 1, &iReadMask, &iWriteMask,
&iExcepnMask,

}

((timeVal > 0) 7 (&timeout) : NULL))) < 0) {
extern int errno;
if (errno != EINTR) {

perror("select()");
}
return retval;

if (retval == 0) { I* timed out *I
return retval;

} else {
if (fDebug) {

fprintf(stderr, "Sel'd %d descriptors\n", retval);
}

}
if (fDebug) {

7/5/11 11:13 AM

fprintf(stderr, "selected rmask : %ld, wmask : %ld, xmask
iReadMask.fds_bits[0], iWriteMask.fds_bits[0],
iExcepnMask.fds_bits[0]);

%ld\n",

}
nDone = 0;
for (i = 0, n = 0; (i < mplexMaxChannels) &&

(n < iNChannels) && (nDone < retval); i++) {
if (mplexTab[i] .finUse == MPLEX_USE) {

n++;
if (mplexTab[i] .fWrite && FD_ISSET(mplexTab[i] .iSocket, &iWriteMask)

&&
(mplexTab[i] .writeHandler !=NULL)) {

(*mplexTab[i] .writeHandler)(mplexTab[i] .iSocket, mplexTab[i] .writeArg,
mplexTab[i] .lChanid);

nDone++;
}
else if (mplexTab[i] .fRead && FD_ISSET(mplexTab[i] .iSocket, &

iReadMask)
&& (mplexTab[i] .readHandler !=NULL)) {

Page 10 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1842

mplex.c 7/5/11 11:13 AM

(*mplexTab[i] .readHandler) (mplexTab[i] .iSocket, mplexTab[i] .readArg,
mplexTab[i] .lChanid);

#ifdef USE_STREAMS

I*
while (mplexTab[i] .inStream && (mplexTab[i] .inStream->_cnt > 0)) {

fprintf(stderr, 11 mplex channel %d->%d\n 11 ,i,mplexTab[i] .inStream->_cnt);
*I

}

(*mplexTab[i] .readHandler)(mplexTab[i] .iSocket, mplexTab[i] .readArg,
mplexTab[i] .lChanid);

#end if I* USE_STREAMS *I
nDone++;

}
}

}

return retval;
}

int
mplexPoll(timeout)

{
int timeout;

int
int
unsigned long
int

retval;
i;
n;
nDone;

for (i = 0, n = 0; (i < mplexMaxChannels) && (n < iNChannels); i++) {

}

if (mplexTab[i] .finUse == MPLEX_USE) {
mplexPollFds[n] .fd = i;
mplexPollFds[n] .events= 0;
mplexPollFds[n] .revents = 0;
if (mplexTab[i] .fWrite) { I* WriteFlag *I

mplexPollFds[n] .events= POLLOUT;
}
if (mplexTab[i] .fRead) {

mplexPollFds[n] .events= POLLIN;
}
n++;

}

if ((retval = poll(mplexPollFds, n, timeout)) < 0) {
extern int errno;
if (e r rno ! = EINTR) {

per ro r (II poll () II) ;
}
return retval;

}
if (retval == 0) {

return retval;
} else {

I* timed out *I

Page 11 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1843

mplex.c 7/5/11 11:13 AM

if (fDebug) {
fprintf(stderr, "Sel'd %d descriptors\n", retval);

}
}
nDone = 0;
for (n = 0; (n < iNChannels) && (nDone < retval); n++) {

if (mplexPollFds[n] .revents > 0) {
nDone++;
i = mplexPollFds[n] .fd;
if ((mplexTab[i] .fWrite) && (mplexPollFds[n] .revents & POLLOUT) &&
(mplexTab[i] .writeHandler !=NULL)) {

(*mplexTab[i] .writeHandler) (mplexTab[i] .iSocket, mplexTab[i] .writeArg,
mplexTab[i]. lChanid);

}
if ((mplexTab[i] .fRead) && (mplexPollFds[n] .revents & POLLIN) &&
(mplexTab[i] .readHandler !=NULL)) {

(*mplexTab[i] .readHandler) (mplexTab[i] .iSocket,mplexTab[i] .readArg,
mplexTab[i] .lChanid);

#ifdef USE_STREAMS
while (mplexTab[i] .inStream && (mplexTab[i] .inStream->_cnt > 0)) {

I*
fprintf(stderr,"mplex channel %d->%d\n",i,mplexTab[i] .inStream->_cnt);
*I

(*mplexTab[i] .readHandler) (mplexTab[i] .iSocket,mplexTab[i] .readArg,
mplexTab[i]. lChanid);

}
#end if

}
}

}

return retval;
}

I* USE_STREAMS *I

1*---

* mplexGetFilePtrs(fd,pinStream,pOutStream) -- get file ptrs for the
channel

*
*---

int
mplexGetFilePtrs(fd, pinStream, pOutStream)

{

int fd;
FILE **PinStream;
FILE **POutStream;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
if(pinStream){

*PinStream = mplexinStream(fd);

Page 12 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1844

mplex.c

}

}
if(pOutStream){

*POutStream = mplexOutStream(fd);
}

} else {

7/5/11 11:13 AM

fprintf(stderr, "mplexGetFilePtrs()->Bad Channel Number %d\n", fd);
return -1;

}
return 0;

1*---

* mplexSetFilePtrs(fd) -- set file ptrs for the channel
*
*---

int
mplexSetFilePtrs(fd)

{

}

int fd;

if((fd >= 0) && (mplexTab[fd] .finUse MPLEX_FREE)){
mplexinStream(fd) = fdopen(fd, "r");
if (mplexinStream(fd) == NULL) {

}

perror("fdopen() In");
mplexUnRegisterChannel(fd);
return -1;

mplexOutStream(fd) = fdopen(fd, "w");
if (mplexOutStream(fd) == NULL){

}

perror("fdopen() Out");
mplexUnRegisterChannel(fd);
return -1;

xdrstdio_create(mplexXDRSEnc(fd), mplexOutStream(fd), XDR_ENCODE);
xdrstdio_create(mplexXDRSDec(fd), mplexinStream(fd), XDR_DECODE);

mplexTab[fd] .finUse = MPLEX_USE;
} else {

}

fprintf(stderr, "mplexSetFilePtrs()->Bad Channel Number %d\n", fd);
return -1;

return 0;

1*---

* mplexResetFilePtrs(fd) -- Reset file ptrs for the channel
*
*---

Page 13 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1845

mplex.c 7/5/11 11:13 AM

*I
int
mplexResetFilePtrs(fd)

{

}

int fd;

if ((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
if(mplexOutStream(fd)){

xdr_destroy(mplexXDRSEnc(fd));
fflush(mplexOutStream(fd));
fclose(mplexOutStream(fd));
mplexOutStream(fd) = NULL;

}
if(mplexinStream(fd)){

xdr_destroy(mplexXDRSDec(fd));
fflush(mplexinStream(fd));
fclose(mplexinStream(fd));
mplexinStream(fd) = NULL;

}
mplexTab[fd] .finUse = MPLEX_FREE;

} else {

}

fprintf(stderr, "mplexResetFilePtrs()->Bad Channel Number %d\n", fd);
return -1;

return 0;

1*---

* mplexSetXDRFlag(fd) -- set xdr flag for channel
*
*---

*I
int
mplexSetXDRFlag(fd)

{

}

int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fXDR = 1;

} else {

}

fprintf(stderr, "mplexSetXDRFlag()->Bad Channel Number %d\n", fd);
return -1;

return 0;

1*---

* mplexResetXDRFlag(fd) -- Reset file ptrs for the channel
*
*---

Page 14 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1846

mplex.c

*I
int
mplexResetXDRFlag(fd)

{
int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fXDR = 0;

} else {

7/5/11 11:13 AM

fprintf(stderr, "mplexResetXDRFlag()->Bad Channel Number %d\n", fd);
return -1;

}
return 0;

}

int
mplexGetMaxChannels()
{

}

if (!mplexMaxChannels) {
mplexMaxChannels = getdtablesize();

}
return mplexMaxChannels;

int
mplexRegisterErrHandler(handler)

{

}

int (*handler) ();

if (handler != NULL) {
mplexErrHandler = handler;

}

static int
mplexDefaultErrHandler(fd)

{

}

int fd;

mplexUnRegisterChannel(fd);

1*---

* mplexSetReadHandler(fd,handler,arg) -- set read handler
*
*---

*I
int
mplexSetReadHandler(fd, handler, arg)

int fd;
int (*handler) ();

Page 15 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1847

mplex.c

{

}

char

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .readHandler =handler;
mplexTab[fd] .readArg = arg;

} else {

7/5/11 11:13 AM

fprintf(stderr 1 "mplexSetReadHandler()->Bad Channel Number %d\n" 1 fd);
return -1;

}
return 0;

1*---

* mplexSetReadFlag(fd) -- set write flag for channel
*
*---

int
mplexSetReadFlag(fd)

{

}

int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fRead = 1;

} else {

}

fprintf(stderr 1 "mplexSetReadFlag()->Bad Channel Number %d\n" 1 fd);
return -1;

return 0;

1*---

* mplexResetReadFlag(fd) -- Reset writeFlag for the channel
*
*---

int
mplexResetReadFlag(fd)

{
int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fRead = 0;

} else {
fp rintf (stde r r 1 "mp lexResetRead Flag ()->Bad Channel Number %d\n" 1 fd);
return -1;

Page 16 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1848

mplex.c 7/5/11 11:13 AM

}
return 0;

}

1*---

* mplexSetWriteHandler(fd,handler,arg) -- set write handler
*
*---

int
mplexSetWriteHandler(fd, handler, arg)

{

}

int fd;
int (*handler) ();
char *arg;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .writeHandler = handler;
mplexTab[fd] .writeArg = arg;

} else {

}

fprintf(stderr, "mplexSetWriteHandler()->Bad Channel Number %d\n",
fd);

return -1;

return 0;

1*---

* mplexSetWriteFlag(fd) -- set write flag for channel
*
*---

int
mplexSetWriteFlag(fd)

{

}

int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fWrite = 1;

} else {

}

fprintf(stderr, "mplexSetWriteFlag()->Bad Channel Number %d\n", fd);
return -1;

return 0;

1*---

Page 17 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1849

mplex.c 7/5/11 11:13 AM

* mplexResetWriteFlag(fd) -- Reset writeFlag for the channel
*
*---

int
mplexResetWriteFlag(fd)

{
int fd;

if((fd >= 0) && (mplexTab[fd] .finUse != MPLEX_FREE)){
mplexTab[fd] .fWrite = 0;

} else {
fprintf(stderr, "mplexResetWriteFlag()->Bad Channel Number %d\n", fd);
return -1;

}
return 0;

}

unsigned long
mplexRegisteridler(handler, arg)

int (*handler)();

{
char *arg;

if (handler != NULL) {
if(xacMplex != NULL){

return XtAppAddWorkProc(xacMplex, (char (*) ())handler, (XtPointer)arg
) ;

}
}

}
else{

mplexidleHandler = handler;
}

int
mplexUnRegisteridler(lWPid)

unsigned long lWPid;

{

}

if(xacMplex != NULL){
XtRemoveWorkProc(lWPid);

}
else{

mplexidleHandler = NULL;
}

static int
mplexDefaultidleHandler(arg)

char *arg;
{

Page 18 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1850

mplex.c 7/5/11 11:13 AM

fprintf(stderr, "mplexDefaultidleHandler()-> called\n");
}

1*---

* mplexSetTimeout(iTime) -- set timeout value for mplex ..
* process will exit after this
*
*---

int
mplexSetTimeout(iTime)

{

}

int iTime;

iMplexTimeout = iTime;

1*---

* mplexGetTimeout(iTime) -- get timeout value for mplex
* process will exit after this
*
*---

int
mplexGetTimeout(iTime)

{

}

int iTime;

return iMplexTimeout;

int
mplexRegisterTimer(iDelay, timerHandler, timerArg)

unsigned long iDelay;

{

void (*timerHandler) (Prot2(char*, unsigned long*));
char *timerArg;

struct dllist_node *tmpNode, *node;
mplexTimerData *timerData, *tData;
struct timeval tp;
struct timezone tzp;
int msecTime, sepTime;

if(xacMplex != NULL){

}

return XtAppAddTimeOut(xacMplex, iDelay, timerHandler,
(XtPointer)timerArg);

gettimeofday(&tp, &tzp);
timerData = (mplexTimerData *) malloc(sizeof(mplexTimerData));
msecTime = tp.tv_usec I 1000 + (tp.tv_sec - iMplexTimeBase) * 1000;

Page 19 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1851

mplex.c

timerData->iTimerid = tp.tv_usec + tp.tv_sec;
timerData->timerHandler = timerHandler;
timerData->timerArg = timerArg;
timerData->iTimeout = iDelay + msecTime;
timerData->iDeltaTime = iDelay;

tmpNode = dllistMakeNewNode();
tmpNode->data = (char *) timerData;

if (mplexTimerList->head == NULL) {
dllistinsertAtTail(mplexTimerList, tmpNode);

} else {

7/5/11 11:13 AM

for (node = mplexTimerList->head; node != NULL; node = node->next) {
tData = (mplexTimerData *) node->data;

}

}

if (tData->iTimeout > timerData->iTimeout) {
break;

}
}
if (node == NULL) {

dllistinsertAtTail(mplexTimerList, tmpNode);
timerData->iDeltaTime = timerData->iTimeout - tData->iTimeout;
if (timerData->iDeltaTime > iDelay) {

timerData->iDeltaTime = iDelay;
}
timerData->iTimeout = tData->iTimeout + timerData->iDeltaTime;

} else {

}

dllistinsertBefore(mplexTimerList, node, tmpNode);
sepTime = tData->iTimeout - timerData->iTimeout;
timerData->iDeltaTime = tData->iDeltaTime - sepTime;
tData->iDeltaTime = sepTime;

if(tmpNode == mplexTimerList->head){
iMplexPollTimeout = timerData->iDeltaTime;

}
return timerData->iTimerid;

int
mplexHandleTimer()
{

struct dllist_node *tmpNode, *node;
mplexTimerData *tData;

for (node= mplexTimerList->head; node !=NULL;) {
tData = (mplexTimerData *) node->data;
if (tData->iDeltaTime > 0) {

break;
}
tmpNode = node->next;
I* handled, remove .. else handler may try to unregister .. *I
dllistDeleteThis(mplexTimerList, node);
I* expired, execute .. this might add more nodes *I

Page 20 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1852

mplex.c 7/5/11 11:13 AM

(*tData->timerHandler) (tData->timerArg, tData->iTimerid);
free(node->data);
free(node);
node = tmpNode;

#ifdef WANTTHISADJUST
mplexTimerData *t2Data;
I* this adjusts for negative time .. danger of backlog *I
if ((tData->iDeltaTime < 0) && (tmpNode !=NULL)) {

}

t2Data = (mplexTimerData *) tmpNode->data;
t2Data->iDeltaTime += tData->iDeltaTime;

#endif I* WANT *I

}

}
if (mplexTimerList->head != NULL) {

tData = (mplexTimerData *) mplexTimerList->head->data;
iMplexPollTimeout = tData->iDeltaTime;

} else {
iMplexPollTimeout = iMplexTimeout;

}

int
mplexTimerTick()
{

mplexTimerData *tData;
struct timeval tp;
struct timezone tzp;
int msecTime;

if (mplexTimerList->head != NULL) {
#ifdef DEBUG

showTimer();
#endif I* DEBUG *I

gettimeofday(&tp, &tzp);
tData = (mplexTimerData *) mplexTimerList->head->data;
msecTime = tp.tv_usec I 1000 + (tp.tv_sec - iMplexTimeBase) * 1000;
tData->iDeltaTime = tData->iTimeout - msecTime;
if (tData->iDeltaTime <= 0) {

mplexHandleTimer();
} else {

iMplexPollTimeout = tData->iDeltaTime;
}

#ifdef DEBUG
showTimer();

#end if I* DEBUG *I
}

}

int
mplexTimeoutHandler()
{

if (iMplexPollTimeout iMplexTimeout) {

Page 21 of 24
Petitioner Microsoft Corporation, Ex. 1002, p. 1853

mplex.c 7/5/11 11:13 AM

}

}

iMplexTotalidle += iMplexTimeout;
if (iMplexTotalidle >= (DEFAULTMPLEXTIMEOUT * 10)) {

fprintf(stderr, "mplexTimeoutHandler()->timed out and died!\n");
exit(-1);

}

if (mplexTimerList->head == NULL) {
if (mplexidleHandler) {

(*mplexidleHandler) (0);
}
iMplexPollTimeout = iMplexTimeout;

} else {
mplexTimerTick();

}

int
showTimer()
{

}

mplexTimerData *tData;
struct dllist_node *node;
int i;

for (node = mplexTimerList->head, i = 0; node != NULL;
node = node->next, i++) {

}

tData = (mplexTimerData *) node->data;
fprintf(stderr, "[%d]--%d (%d)\n", i, tData->iDeltaTime, tData->

iTimeout);

int
mplexUnRegisterTimer(iTimerid)

unsigned long iTimerid;
{

struct dllist_node *node;
mplexTimerData *t2Data, *tData;

if(xacMplex != NULL){
XtRemoveTimeOut(iTimerid);
return;

}
for (node = mplexTimerList->head; node != NULL; node = node->next) {

tData = (mplexTimerData *) node->data;
if (tData->iTimerid == iTimerid) {

if (node->next != NULL) {
t2Data = (mplexTimerData *) node->next->data;
t2Data->iDeltaTime += tData->iDeltaTime;

}
dllistDeleteThis(mplexTimerList, node);
free(node->data);
free(node);

Page 22 of 24
Petitioner Microsoft Corporation, Ex. 1002, p. 1854

mplex.c 7/5/11 11:13 AM

break;
}

}
}

unsigned long
mplexGetUniqueid()
{

}

struct timeval tp;
struct timezone tzp;
int id;

gettimeofday(&tp, &tzp);
id = tp.tv_usec + tp.tv_sec; I* unique enough *I

return id;

static void mplexRegisterAllinputFuncs()
{

int i;
for (i = 0; i < mplexMaxChannels; i++)
{

if (mplexTab[i] .finUse == MPLEX_USE)
{
if (mplexTab[i] .fRead)
{

mplexTab[i] .lChanid =
XtAppAddinput(xacMplex, i,

(XtPointer) XtinputReadMask ,
mplexDefaultReadHandler, (XtPointer)mplexTab[i] .readArg);

}

if (mplexTab[i] .fWrite)
{

fprintf(stderr, "Somone to write to!\n");
mplexTab[i] .mChanid =

XtAppAddinput(xacMplex, i,
(XtPointer) XtinputWriteMask,
mplexDefaultWriteHandler, (XtPointer)mplexTab[i] .readArg);

}
#ifdef NO_SHASTRA4HP

fprintf(stderr, "Somone to except to!\n");
mplexTab[i] .rChanid =

XtAppAddinput(xacMplex, i,
(XtPointer) XtinputExceptMask,
mplexDefaultReadHandler, (XtPointer)mplexTab[i] .readArg);

#end if
}

}
}

Page 23 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1855

mplex.c

static void mplexUnRegisterAllinputFuncs()
{

int i;
for (i = 0; i < mplexMaxChannels; i++)
{

if (mplexTab[i] .finUse == MPLEX_USE)
{
if ((mplexTab[i] .fRead) && (mplexTab[i]. lChanid))
{

}

XtRemoveinput(mplexTab[i] .lChanid);
mplexTab[i] .lChanid = 0;

if ((mplexTab[i] .fWrite) && (mplexTab[i] .mChanid))
{

}

fprintf(stderr, "no one to write to!\n");
XtRemoveinput(mplexTab[i] .mChanid);
mplexTab[i] .mChanid = 0;

#ifdef NO_SHASTRA4HP
fprintf(stderr, "no one to except to!\n");

XtRemoveinput(mplexTab[i] .rChanid);
#end if

}
}

}

static void mplexWorkTheTimer()
{

}

static int flag = 1;
if (flag)
{

}

mplexRegisterAllinputFuncs();
flag = 0;

else
{

}

mplexUnRegisterAllinputFuncs();
flag = 1;

XtAppAddTimeOut(xacMplex, 50, mplexWorkTheTimer,
(XtPointer)NULL);

7/5/11 11:13 AM

Page 24 of 24

Petitioner Microsoft Corporation, Ex. 1002, p. 1856

pipeSiave.c 7/5/11 11:13 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <errno.h>
#include <string.h>

#include <sysltypes.h>
#include <syslsocket.h>
#include <syslwait.h>

#define STANDALONEnn
#define TEST_OnFD

1*---

* pipeSlaveOnFD -- create a pipe slave on a given a file descriptor
*
* Arguments are
* one file descriptor used for reading and writing to the Slave process.
* argv initialized for the slave (null terminated)
*
* The routine forks and executes a Slave process and sets up
* the descriptors so it is talking via stdio to the Slave process.
*
* returns -1 on error
*---

*I
int
pipeSlaveOnFD(fdiO,

int
a rgv)
fdiO;

Page 1 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1857

pipeSiave.c

char **argv;
{

int e;

#ifdef
if

#else
if

#end if

SHASTRA4SUN4
((e = v fork ()) == 0) {

I* SHASTRA4SUN4 SGI *I
((e = fork ()) == 0) {

I* SHASTRA4SUN4 *I

}

if (dup2(fdiO, 0) == -1 I I dup2(fdiO, 1)
per ro r (II d u p2 () II) ;
return -1;

}
I* now exec the Slave program *I
if (execv(argv[0], argv) == -1) {

perror(11 execv() II);
return -1;

}
} else if (e == -1) {

perror(11 fork() 11);
return -1;

}
wait3(NULL, WNOHANG, NULL);
return e; I* good return *I

7/5/11 11:13 AM

-1) {

1*---

* pipeSlave -- create a pipe slave
*
* Arguments are
* one file descriptor pointer which returns a descriptor to be
* used for reading and writing to the Slave process.
* argv initialized for the slave(null terminated)
*
* The routine forks and executes a Slave process and sets up
* the descriptors so it is talking via stdio to the Slave process.
*
* returns -1 on error
*---

int
pipeSlave(pFdiO,

int

{
char

int
int

a rgv)
*PFdiO;

**argv;

sockPair [2];
e;

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockPair) -1) {

Page 2 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1858

pipeSiave.c 7/5/11 11:13 AM

}

I*
#ifdef

perror("socketpair() :");
return -1;

set up a two-way pipe *I
SHASTRA4SUN4
((e = v fork ()) == 0) { if

#else
if

#end if

I* SHASTRA4SUN4 SGI *I

}

((e = fork ()) == 0) {
I* SHASTRA4SUN4 *I

I* in child *I
if (close(sockPair[0]) == -1) {

perror("close() :");
return -1;

}
if (dup2(sockPair[1], 0)

perror("dup2 (): 0");
return -1;

}
if (dup2(sockPair[1], 1)

per ro r ("d u p2 () : 1") ;
return -1;

}
if (execv(argv[0], argv)

perror("execv():");
return -1;

}
exit(0);

} else if (e == -1) {
perror("fork()");
return -1;

}

I* in parent *I
if (close(sockPair[1])

perror("close ():");
return -1;

}
*PFdiO = sockPair[0];

-1) {

-1) {

-1) {

-1) {

return e; I* good return to main process *I

1*---

* remotePipeSlaveOnFD
*

create a pipe slave on a given a file descriptor
on a remote host

*
* Arguments are
* one file descriptor used for reading and writing to the Slave process.
* host name of remote host
* argv initialized for the slave (null terminated)
*
* The routine forks and executes a Slave process and sets up
* the descriptors so it is talking via stdio to the Slave process.

Page 3 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1859

pipeSiave.c 7/5/11 11:13 AM

*
* returns -1 on error
*---

*I
int
remotePipeSlaveOnFD(fdiO, hostname, argv)

int fdiO;
char *hostname;
char **argv;

{
int

#ifdef
if

#else
if

#end if

e;

SHASTRA4SUN4
((e = v fork ()) == 0) {

I* SHASTRA4SUN4 SGI *I
((e = fork ()) == 0) {

I* SHASTRA4SUN4 *I
if (dup2(fdiO, 0) == -1 II dup2(fdiO, 1)

per ro r (II d u p2 () II) ;
return -1;

}
I* now exec the Slave program *I

-1) {

/*ACTUALLY -- create new argv, with /usr/ucb/rsh hostname etc *I
if (execv(argv[0], argv) == -1) {

}

per ro r (II execv () II) ;
return -1;

}
} else if (e == -1) {

perror(11 fork() 11
);

return -1;
}
return e; I* good return *I

1*---

* remotePipeSlave -- create a pipe slave
*
* Arguments are
* one file descriptor pointer which returns a descriptor to be
* used for reading and writing to the Slave process.
* hostname of remote host
* argv initialized for the slave(null terminated)
*
* The routine forks and executes a Slave process and sets up
* the descriptors so it is talking via stdio to the Slave process.
*
* returns -1 on error
*---

Page 4 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1860

pipeSiave.c 7/5/11 11:13 AM

int
remotePipeSlave(pFdiO, hostname, argv)

{

int *PFdiO;
char *hostname;
char **argv;

int
int
char

sockPair [2];
e;

**newArgv;

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockPair)
perror(11 socketpair() : 11

);

return -1;
}

I*
#ifdef

set up a two-way pipe *I
SHASTRA4SUN4

if
#else

if
#end if

((e = v fork ()) == 0) {
I* SHASTRA4SUN4 SGI *I

((e =fork())== 0) {
I* SHASTRA4SUN4 *I

I* in child *I
if (close(sockPair[0]) == -1) {

perror(11 close(): II);

return -1;
}
if (dup2(sockPair[1], 0)

per ro r (II d u p2 () : 011
) ;

return -1;
}
if (dup2(sockPair[1], 1)

per ro r (II d u p2 () : 111
) ;

return -1;
}

-1) {

-1) {

-1) {

/*ACTUALLY -- create new argv, with /usr/ucb/rsh hostname etc *I
/*now exec an rsh host cmd*/
newArgv = (char**)malloc(sizeof(char*)*4);
newArgv[0] = strdup(11 /usr/ucb/rsh 11

);

newArgv[1] = strdup(hostname);
newArgv[2] = strdup(argv[0]);
newArgv[3] =NULL;

if (execv(newArgv[0], newArgv) -1) {
per ro r (II execv () :II) ;
return -1;

}
exit(0);

} else if (e == -1) {
per ro r (II fork () II) ;
return -1;

}

I* in parent *I
if (close(sockPair[1])

perror(11 close() : 11
);

-1) {

Page 5 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1861

pipeSiave.c

return -1;
}
*PFdiO = sockPair[0];
return e; I* good return to main process *I

}

#ifdef STANDALONE
main(argc 1 argv)

int argc;
char **argv;

{
int fd;
static char *argvSlave[] = {

11 lusrlbinltrll I
II [a-z] II I

II [A-Z] II I

NULL
};

#ifdef TEST_OnFD
fd = 1; I* stdout descriptor *I
if (pipeSlaveOnFD(fd 1 argv) == -1) {

fprintf(stderr 1

11 pipeSlaveOnFD()->failed!\n 11
);

return;
}

#else I* TEST_OnFD-- no FD *I
if (pipeSlave(&fd 1 argv) == -1) {

}
#end if

{

}
}
#end if

fprintf(stderr 1

11 pipeSlave()->failed!\n 11
);

return;

I* TEST_OnFD *I

FILE *fp;
int i;
char *St r;
char sb[1024];

fp = fdopen(fd 1

11
W

11
);

for (i = 0; i < 10; i++) {
fprintf(fp 1

11 abcdefghijklmnopqrstuvwxyz\n 11
);

}
fclose(fp);
fp = fdopen(fd 1

11 r 11
);

for (i = 0; i < 10; i++) {
str = fgets(sb 1 1024 1 fp);
fprintf(stdout 1

11 %S\n 11

1 str);
}
fclose(fp);

I* STANDALONE *I

7/5/11 11:13 AM

Page 6 of 6
Petitioner Microsoft Corporation, Ex. 1002, p. 1862

server.c 7/5/11 11:14 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <errno.h>

#include <sysltypes.h>
#include <syslsocket.h>
#include <syslun.h>
#include <netinetlin.h>
#include <netdb.h>

#include <shastralshastra.h>

#include <shastralutilslhash.h>

#include <shastralnetworklhostMgr.h>
#include <shastralnetworklserver.h>
#include <shastralnetworklserverP.h>
#include <shastralnetworklserverPorts.h>
#include <shastralnetworklmplexP.h>
#include <shastralnetworklmplex.h>

#include <shastraldatacommlshastraDataH.h>

#define DEBUGxx
#define USEXDRnn
#define USE_STREAMS I* CHECK same flag in mplex, server *I

char *readString(Protl(int));
char **readStrings(Protl(int));
int cmNewHandleCmdConnection(Prot3(int, hashTable *, char*));

Page 1 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1863

server.c

int cmNewSearchNExecute(Prot4(int, char*, hashTable *, char*));

static struct sockaddr_in sainServer;

I*
* Function
*I

unsigned long
hostName2IPAddress(sName)

{

}

char *SName;

struct hostent *PHostEnt;
if (sName ==NULL I I (pHostEnt = gethostbyname(sName))

return 0;
} else
{

}

unsigned int temp;
memcpy(&temp, &pHostEnt->h_addr_list [0] [0], 4);
return ntohl(temp);

int
cmCloseSocket(iSocket)

{

}

int iSocket;

if (shutdown(iSocket, 2) != 0) {
perror(11 shutdown() 11

);

return -1;
}
if (close(iSocket) != 0) {

per ro r (II close () II) ;
return -1;

}
return 0;

int
cmPrintErr(sMessage)

char *SMessage;
{
#ifdef DEBUG

perror(sMessage);
#end if

sMessage = NULL;
#ifdef ERR_EXIT

exit(-1);
#else

return -1;
#end if
}

NULL) {

7/5/11 11:14 AM

Page2of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1864

server.c

I*
* Function
*I

int
cmOpenServerSocket(sService, iPort, pCmdData, pSocket, argRead)

{

char *SService;
int iPort;
shaCmdData *PCmdData;
int *PSocket;
char *argRead;

int length;

st ruct
st ruct
st ruct
int
int
int

servent *PServEnt;
protoent *PProtoEnt;
linger solinger;

iOption;
fNonStdPort = 0;
iSocket;

pProtoEnt = getprotobyname("tcp");
if(iPort > 0){

fNonStdPort = 1;
}
else if (((pServEnt = getservbyname(sService, "tcp"))

(pServEnt->s_port == 0)) {
fNonStdPort = 1;
iPort = getServerPort(sService);

}
if((iSocket = socket(AF_INET, SOCK_STREAM, 0)) < 0){

per ro r ("socket ()");
return -1;

}
#ifdef DEBUG

fprintf(stderr, "got socket descriptor %d\n", iSocket);
#endif I* DEBUG *I

solinger.l_onoff = 0;
solinger.l_linger = 5; I* seconds *I
if (setsockopt(iSocket, SOL_SOCKET, SO_LINGER, &solinger,

}

sizeof(struct linger)) == -1) {
perror("setsockopt() SOL_SOCKET, SO_LINGER");
close(iSocket);
return -1;

sainServer.sin_family = AF_INET;
sainServer.sin_addr.s_addr = INADDR_ANY;
if (fNonStdPort) {

sainServer.sin_port = htons(iPort);
} else {

}

sainServer.sin_port = pServEnt->s_port;
iPort = ntohs(pServEnt->s_port);

if(bind(iSocket, &sainServer, sizeof(sainServer)) != 0){

NULL) II

7/5/11 11:14 AM

Page3of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1865

server.c

}

perror("bind()");
close(iSocket);
return -1;

length= sizeof(sainServer);
if (getsockname(iSocket, &sainServer, &length)) {

perror("getsockname()");
close(iSocket);
return -1;

}
iPort = ntohs(sainServer.sin_port);

#ifdef DEBUG
fprintf(stderr, "Tcp Socket has port #%d\n", iPort);

#endif I* DEBUG *I

}

if (listen(iSocket, 5) != 0) {
perror("listen()");
close(iSocket);
return -1;

}
iOption = 1;
if (setsockopt(iSocket, SOL_SOCKET, SO_REUSEADDR,

}

&iOption, sizeof(iOption)) == -1) {
perror("setsockopt() SOL_SOCKET, SO_REUSEADDR");
close(iSocket);
return -1;

if (mplexRegisterChannel(iSocket, cmServerAcceptHandler,
pCmdData, argRead) == -1) {

close(iSocket);
return -1;

};
*PSocket = iSocket;
return iPort;

int
cmClientConnect2Server(sHost, sService, iPortSvc, pSocket)

{

char *SHost;
char *SService;
int iPortSvc;
int *PSocket;

struct protoent *PProtoEnt;
struct sockaddr_in sainServer;
struct hostent *PHostEnt;
struct servent *PServEnt;
struct linger solinger;
int fNonStdPort = 0;
int iPort = 0;

pProtoEnt = getprotobyname("tcp");
if((*pSocket = socket(AF_INET, SOCK_STREAM, 0)) < 0){

7/5/11 11:14 AM

Page4of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1866

server.c

}

per ro r ("socket ()");
return -1;

solinger.l_onoff = 0;
solinger.l_linger = 5; I* number of seconds *I
if (setsockopt(*pSocket, SOL_SOCKET, SO_LINGER, &solinger,

sizeof(struct linger)) == -1) {
perror("setsockopt() SOL_SOCKET, SO_LINGER");
return -1;

}
#ifdef DEBUG

fprintf(stderr, "Got socket descr %d for s1\n", *PSocket);
#endif I* DEBUG *I

if((pHostEnt = gethostbyname(sHost)) ==NULL){
fprintf(stderr, "Unknown host %s\n", sHost);
close(*pSocket);
return (-1);

}
if (iPortSvc != 0) {

fNonStdPort = 1;
iPort = iPortSvc;

} else if ((pServEnt = getservbyname(sService, "tcp"))
fNonStdPort = 1;

}

if ((iPort = getServerPort(sService))) {
} else {

iPort = iPortSvc;
}

7/5/11 11:14 AM

NULL) {

memcpy((char*)&sainServer.sin_addr, pHostEnt->h_addr, pHostEnt->h_length)

sainServer.sin_family = AF_INET;
if (fNonStdPort) {

sainServer.sin_port = htons(iPort);
} else {

}

sainServer.sin_port = pServEnt->s_port;
iPort = ntohs(pServEnt->s_port);

if (connect(*pSocket, &sainServer, sizeof(sainServer)) < 0) {
per ro r ("connect () ") ;
close(*pSocket);
return -1;

}
#ifdef WANTTHIS

struct sockaddr_in sainClient;
int length = 0;
length= sizeof(sainClient);
if (getpeername(*pSocket, &sainClient, &length) < 0) {

perror("getpeername()");
} else {

}

fprintf(stderr, "ServerPort = %d (len %d)\n",
ntohs(sainClient.sin_port), length);

if (getsockname(*pSocket, &sainClient, &length) < 0) {

Page5of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1867

server.c 7/5/11 11:14 AM

perror("getpeername()");
} else {

}

fprintf(stderr,"ClientPort = %d (len %d)\n",
ntohs(sainClient.sin_port), length);

#end if I* WANTTHIS *I
return iPort;

}

int
cmServerAcceptHandler(iSock, argDummy)

{

int iSock;
char *argDummy;

int
int
int
int

length;
iSockNew;
ret Val;
(*fnConnect) ();

length= sizeof(sainServer);
if ((iSockNew = accept(iSock, &sainServer, &length)) < 0) {

perror("accept()");
return -1;

}
#ifdef DEBUG

fprintf(stderr, "socket descriptor %d for client connection\n", iSockNew)

#endif I* DEBUG *I
argDummy = NULL;
retVal = mplexRegisterChannel(iSockNew, cmHandleServerConnection,

mplexTab[iSock] .pCmdData, NULL);
if(retVal == -1){

close(iSockNew);
return(-1);

}
I* if there is a connect-func, call it *I

/*CHECK*/

}

if (mplexTab[iSock] .readArg !=NULL) {

}

fnConnect = (int (*) ()) mplexTab[iSock] .readArg;
(*fnConnect) (iSockNew);

return retVal;

int
cmHandleServerConnection(iSock, argDummy)

int iSock;
char *argDummy;

{
return cmNewHandleCmdConnection(iSock, mplexTab[iSock] .pCmdData->htCmds,

a rgDummy) ;

* return cmHandleCmdConnection(iSock,

Page6of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1868

server.c

* mplexTab[iSock] .pCmdData->pCmdTab,
* mplexTab[iSock] .pCmdData->nCmds,argDummy);
*I

}

int
cminitializeCmdData(pCmdData)

{
shaCmdData *PCmdData;

int i;
I* put entries into the hash table *I
if (pCmdData->htCmds == NULL) {

pCmdData->htCmds = htMakeNew(CMHASHTABLESIZE, 0 I* arbitsize *I);
}
for (i = 0; i < pCmdData->nCmds; i++) {

}

if (pCmdData->pCmdTab[i] .command ==NULL) {
fp r intf (s tde r r, "cmin it ia lizeCmdData ()->null command! \n") ;

}
htinstallSymbol(pCmdData->htCmds,

pCmdData->pCmdTab[i] .command,
(char*) &pCmdData->pCmdTab[i]);

* htDump(pCmdData->htCmds,0); htDump(pCmdData->htCmds,l);
*I

if (pCmdData->htCmdsin == NULL) {

7/5/11 11:14 AM

pCmdData->htCmdsin = htMakeNew(CMHASHTABLESIZE, 0 I* arbitsize *I);

}

}
for (i = 0; i < pCmdData->nCmdsin; i++) {

htinstallSymbol(pCmdData->htCmdsin,
pCmdData->pCmdTabin[i] .command,
(char*) &pCmdData->pCmdTabin[i]);

}

* htDump(pCmdData->htCmdsin,0); htDump(pCmdData->htCmdsin,l);
*I

I*
* func() --destructively add cmds to old shaCmdData
*I

int
cmJoinCmdData(pCmdDataOld, pCmdDataAdd)

{

shaCmdData *PCmdDataOld;
shaCmdData *PCmdDataAdd;

cmCommand
cmCommand
int
int

*PCmdTab;
*PCmdTabin;
i;
iNext = 0;

Page7of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1869

server.c

}

pCmdTab = (cmCommand *) malloc(sizeof(cmCommand) *
(pCmdDataOld->nCmds + pCmdDataAdd->nCmds));

if (pCmdDataOld->nCmds > 0) {
memcpy(&pCmdTab[0],pCmdDataOld->pCmdTab,

sizeof(cmCommand) * pCmdDataOld->nCmds);
iNext = pCmdDataOld->nCmds;

}
if (pCmdDataAdd->nCmds > 0) {

memcpy(&pCmdTab[iNext],pCmdDataAdd->pCmdTab,
sizeof(cmCommand) * pCmdDataAdd->nCmds);

}
pCmdDataOld->pCmdTab = pCmdTab;
pCmdDataOld->nCmds = pCmdDataOld->nCmds + pCmdDataAdd->nCmds;
if (pCmdDataOld->htCmds == NULL) {

7/5/11 11:14 AM

pCmdDataOld->htCmds = htMakeNew(CMHASHTABLESIZE, 0 I* arbitsize *I);
iN ext = 0;

}
for (i = iNext; i < pCmdDataOld->nCmds; i++) {

htinstallSymbol(pCmdDataOld->htCmds,
pCmdDataOld->pCmdTab[i] .command,
(char*) &pCmdDataOld->pCmdTab[i]);

}

pCmdTabin = (cmCommand *) malloc(sizeof(cmCommand) *
(pCmdDataOld->nCmdsin + pCmdDataAdd->nCmdsin));

if (pCmdDataOld->nCmdsin > 0) {
memcpy(&pCmdTabin[0],pCmdDataOld->pCmdTabin,

sizeof(cmCommand) * pCmdDataOld->nCmdsin);
iNext = pCmdDataOld->nCmdsin;

}
if (pCmdDataAdd->nCmdsin > 0) {

memcpy(&pCmdTabin[iNext],pCmdDataAdd->pCmdTabin,
sizeof(cmCommand) * pCmdDataAdd->nCmdsin);

}
pCmdDataOld->pCmdTabin = pCmdTabin;
pCmdDataOld->nCmdsin = pCmdDataOld->nCmdsin + pCmdDataAdd->nCmdsin;
if (pCmdDataOld->htCmdsin == NULL) {

}

pCmdDataOld->htCmdsin = htMakeNew(CMHASHTABLESIZE, 0 I* arbitsize *I);
iN ext = 0;

I* put entries into the hash table *I
for (i = iNext; i < pCmdDataOld->nCmdsin; i++) {

htinstallSymbol(pCmdDataOld->htCmdsin,
pCmdDataOld->pCmdTabin[i] .command,
(char*) &pCmdDataOld->pCmdTabin[i]);

}
return 0;

int
cmHandleCmdConnection(iSocket, pCmdTab, nCmds, argDummy)

int iSocket;

Page8of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1870

server.c

{

}

cmCommand
int
char

char
int

*PCmdTab;
nCmds;

*argDummy;

*SBuf;
ret Val;

sBuf = cmReceiveString(iSocket);
if (sBuf == NULL) {

return (*mplexErrHandler) (iSocket);
}
retVal = cmSearchNExecute(iSocket, sBuf, pCmdTab, nCmds, argDummy);
free(sBuf);
return retVal;

int
cmSearchNExecute(iSocket, sBuf, pCmdTab, nCmds, argDummy)

{

int iSocket;
char *SBuf;
cmCommand *PCmdTab;
int nCmds;
char *argDummy;

int
int

i;
fFound = 0;

if (sBuf NULL) {
return 0;

}
for (i = 0; (i < nCmds) && !fFound; i++) {

if (strncmp(pCmdTab[i] .command, sBuf,
strlen(pCmdTab[i] .command)) == 0) {

fFound = 1;
#ifdef DEBUG

fprintf(stderr, "%s\n", pCmdTab[i] .helpmsg);
#endif I* DEBUG *I

}

}
}

(*pCmdTab[i] .function) (iSocket, argDummy);
break;

if (!fFound) {

}

fprintf(stderr, "cmSearchNExecute()- Command not found-> %s\n",
sBuf);

return (-1);

return 0;

int
cmNewHandleCmdConnection(iSocket, phtCmds, argDummy)

int iSocket;
hashTable *PhtCmds;

7/5/11 11:14 AM

Page9of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1871

server.c 7/5/11 11:14 AM

{

}

char

char
int

*argDummy;

*SBuf;
ret Val;

sBuf = cmReceiveString(iSocket);
if (sBuf == NULL) {

return (*mplexErrHandler) (iSocket);
}
retVal = cmNewSearchNExecute(iSocket, sBuf, phtCmds, argDummy);
free(sBuf);
return retVal;

int
cmNewSearchNExecute(iSocket, sBuf, phtCmds, argDummy)

{

int iSocket;
char *SBuf;
hashTable *PhtCmds;
char *argDummy;

struct he *Phe;
struct cmCommand *PCmd;

if (sBuf == NULL) {

}

fprintf(stderr, "cmNewSearchNExecute()->null input!\n");
return 0;

phe = htLookup(phtCmds, sBuf);
if (phe == NULL) {

}

fprintf(stderr, "cmNewSearchNExecute()- Command not found-> %s\n",
sBuf);

return (-1);

pCmd = (struct cmCommand *) phe->data;
#ifdef DEBUG

fprintf(stderr, "%s\n", pCmd->helpmsg);
#endif I* DEBUG *I

}

(*PCmd->funct ion) (iSocket, a rgDummy);
return 0;

1*---

* cmReceiveString(fd) --
*---

*I
char *
cmReceiveString(fd)

int fd;
{

Page 10 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1872

server.c

char *buf;
int len, maxlen, c;
shaSt ring inSt r;

if (mplexTab[fd] .finUse MPLEX_FREE) {

}

fprintf(stderr, 11 CmReceiveString()-- Bad Channel.\n 11
);

return NULL;

#ifdef USEXDR
inStr = NULL;
if (shaStringin(fd, &inStr) -1) {

perror(11 shaStringin() 11
);

inStr = NULL;
fprintf(stderr, 11 CMRS: got (null) on %d\n 11

, fd);
#ifdef DEBUG
#endif I* DEBUG *I

} else {
#ifdef DEBUG

len= strlen(inStr);
fprintf(stderr, 11 CMRS: (%s) %don %d\n 11

, inStr, len, fd);
#endif I* DEBUG *I

}
return inStr;

#end if I* USEXDR *I

maxlen = 64;
len = 0;
buf = malloc(maxlen);
do {

I*
* Quite inefficient to read byte by byte, but if length is
* unknown ..
*I

#ifdef USE_STREAMS
c = getc(mplexTab[fd] .inStream);
buf [len] = c;
if (feof(mplexTab[fd] .inStream) && (len== 0))

#else I* USE_STREAMS *I
if (((c = read(fd, &buf [len], 1)) <= 0) && (len 0))

#endif I* USE_STREAMS *I
{

free(buf);
return (NULL);

}
if (ferror(mplexTab [fd]. inStream)) {

7/5/11 11:14 AM

fprintf(stderr, 11 CmReceiveString()->error on stream of %d\n 11
, fd);

per ro r (II cmRece i veSt ring () ->get c () II) ;
#ifdef WANT

fprintf(stderr, 11 mplexTab[%d].inStream = %lx, Base= %lx, Ptr= %lx\n 11
,

fd,
mplexTab[fd] .inStream,
mplexTab[fd] .inStream->_base,
mplexTab[fd] .inStream->_ptr);

Page 11 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1873

server.c 7/5/11 11:14 AM

fprintf(stderr, "mplexTab[%d] .inStream Cnt= %d, file= %d, flag= %d\n"
I

fd,
mplexTab[fd] .inStream->_cnt,
mplexTab[fd] .inStream->_file,
mplexTab[fd] .inStream->_flag);

fprintf(stderr, "mplexTab[%d].inBuf = %lx, (%s), Buf=(%s) len=%d\n",
fd,
mplexTab[fd] .inBuf,
mplexTab[fd] .inBuf, buf, len);

#endif /*WANT*/
free(buf);
return NULL;
break;

} else if ((b u f [len] == I \0 I) I I (c < 0)) {
break;

}
if (len == maxlen - 1) {

maxlen *= 2;
if ((buf = realloc(buf, maxlen)) ==NULL) {

fprintf(stderr, "realloc(): ran out of memory.\n");
exit(1);

}
}
len++;

} while (1);
len++;

I* TRUE *I

if (len < maxlen) {

}

if ((buf = realloc(buf, len)) ==NULL)
fprintf(stderr, "warning: realloc failed.\n");

#ifdef DEBUG
fprintf(stderr, "CMRS: (%s) %don %d\n", buf, len, fd);
fprintf(stderr, "mplexTab[%d].inStream = %lx, Base= %lx, Ptr= %lx\n",

fd, mplexTab[fd] .inStream, mplexTab[fd] .inStream->_base,
mplexTab[fd] .inStream->_ptr);

#endif I* DEBUG *I
return (buf);

}

1*---

* cmSendNull(fd) -- send a null character down tube
*
*---

int
cmSendNull(fd)

int fd;
{

Page 12 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1874

server.c

if (mplexTab[fd] .finUse == MPLEX_FREE) {
fprintf(stderr, "cmSendNULL()-- Bad Channel.\n");
return -1;

}
#ifdef USE_STREAMS

if (fputc(0, mplexTab[fd] .outStream)
return -1;

}
#else I* USE_STREAMS *I

if (write(fd, &c, 1) < 1) {
return -1;

}
#end if I* USE_STREAMS *I

return 0;
}

EOF) {

7/5/11 11:14 AM

1*---

* cmSendData(fd, s) -- send a string to a file descriptor, no null at end
*
*---

int
cmSendData(fd, s)

int fd;
char *S;

{
int n;

if (mplexTab[fd] .finUse == MPLEX_FREE) {
fprintf(stderr, "cmSendData()-- Bad Channel.\n");
return -1;

}
n = strlen(s);

#ifdef DEBUG
fprintf(stderr, "CMSD: (%s) %don %d\n", s, n, fd);

#endif I* DEBUG *I
#ifdef USEXDR

if (shaStringOut(fd, &s) == -1) {
return -1;

}
return 0;

#endif I* USEXDR *I
#ifdef USE_STREAMS

if (fprintf(mplexTab[fd].outStream, "%s", s)
return -1;

}
#else I* USE_STREAMS *I

if (write(fd, s, n) < n) {
return -1;

}

EOF) {

Page 13 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1875

server.c 7/5/11 11:14 AM

#end if I* USE_STREAMS *I
return 0;

}

1*---

* cmSendString(fd, s) -- send a null-terminated string to a file
descriptor

*
*---

int
cmSendString(fd, s)

int fd;
char *S;

{
int n;
if (mplexTab[fd] .finUse == MPLEX_FREE) {

fprintf(stderr, "cmSendString()-- Bad Channel.\n");
return -1;

}
if(s ==NULL){

fprintf(stderr, "cmSendString()-- Sending NULL! !\n");
s = "";

}
n = strlen(s);

#ifdef DEBUG
fp rintf (stde r r,

#end if
"CMSS: (%s) %don %d\n", s, n, fd);

I* DEBUG *I

#ifdef USEXDR
if (shaStringOut(fd, &s)

return -1;
}
return 0;

-1) {

#endif I* USEXDR *I
#ifdef USE_STREAMS

if (fprintf(mplexTab[fd].outStream, "%s", s)
return -1;

}
if (fputc(0, mplexTab[fd] .outStream)

return -1;
}

#else
if (write(fd, s,

return -1;
}

#end if
return 0;

}

I* USE_STREAMS *I
n + 1) < n + 1) {

I* USE_STREAMS *I

EOF) {

EOF) {

Page 14 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1876

server.c 7/5/11 11:14 AM

1*---

* cmMultiCast(pfd, nfd, func, argl, arg2) -- call func on fd list
*
*---

int
cmMultiCast(pfd,

int
nfd, func, arg)

*Pfd;

{

}

int
int
char

int
int

nfd;
(*func) ();

*a rg;

i;
ret Val;

for (i = 0; i < nfd; i++) {
retVal = (*func) (pfd [i], arg);

}
return retVal;

cmAckOk(fd)
int fd;

{

}
return cmSendString(fd, ACK STRING);

cmAckError(fd)

{

}

int fd;

return cmSendString(fd, ERROR STRING);

int
getServerPort(sService)

{
char *SService;

int iPo rt;

if (strcmp(sService, GANITH_NAME) == 0) {
iPort = GANITH_PORT;

} else if (strcmp(sService, SHILP_NAME) 0) {
iPort = SHILP_PORT;

} else if (strcmp(sService, VAIDAK_NAME) == 0) {
iPort = VAIDAK_PORT;

} else if (strcmp(sService, SHASTRA_NAME) == 0) {
iPort = SHASTRA_PORT;

} else if (strcmp(sService, SCULPT_NAME) == 0) {
iPort = SCULPT_PORT;

} else if (strcmp(sService, BHAUTIK_NAME) == 0) {

Page 15 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1877

server.c 7/5/11 11:14 AM

iPort = BHAUTIK_PORT;
} else if (strcmp(sService, SPLINEX_NAME) 0) {

iPort = SPLINEX_PORT;
} else if (strcmp(sService, GATI_NAME) == 0) {

iPort = GATI_PORT;
} else if (strcmp(sService, VOLREND_NAME) == 0) {

iPort = VOLREND_PORT;
} else if (strcmp(sService, SHLISP_NAME) == 0) {

iPort = SHLISP_PORT;
} else {

iPort = 0;
#ifdef DEBUG

fprintf(stderr, "getServerPort()->Unknown Service %s\n", sService);
#endif I* DEBUG *I

}
#ifdef DEBUG

fprintf(stderr, "getServerPort()->Using iPort %d for %s\n",
iPort, sService);

#endif I* DEBUG *I
return iPort;

}

static void ModelHandler(fd)
int fd;
{

}

char *arg;
int status = 0;

arg = cmReceiveString(fd);
I* ... handler code ... *I
status = 1;
if (status){

cmAckOk(fd);
}else{

cmAckError(fd);
free (a rg);

}

I*
* readString(iSocket) - read string from interface
*I

char *
readString(iSocket)

{
int iSocket;

fBlank;
i;
n;

int
int
int
char *SbiO;

fBlank = 1;
while (fBlank) {

Page 16 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1878

server.c

}

sbiO = cmReceiveString(iSocket);
n = strlen(sbiO);
for (i = 0; i < n; i++) {

if (!isspace(sbiO[i])) {
fBlank = 0;
break;

}
}
if (fBlank) {

free(sbiO);
}

#if RS_DEBUG
fprintf(stderr, "readString: %s", sbiO);

#end if
return (sbiO);

}

I*

7/5/11 11:14 AM

* readStrings(iSocket) - read n strings and return ptr to char ** array
* expects #, string
*I

char **
readStrings(iSocket)

{

}

int iSocket;

char
int
char
int

**names;
number, i;

*Sbin;
len;

sscanf((sbin = readString(iSocket)), "%d", &number);
free(sbin);

if (number <= 0) {
return NULL;

}
names= (char**) malloc((1 +number) * sizeof(char *));

for (i = 0; i < number; i++) {
names[i] = readString(iSocket);
len= strlen(names[i]);

}

if (names[i] [len- 1] == '\n') {
names [i] [len - 1] = '\0';

}

names[number] =NULL;

return (names);

Page 17 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1879

server.c

int
cmFlush(fd)

int fd;
{

if (mplexTab[fd] .finUse
return -1;

}

MPLEX_FREE) {

#define WANTnn
#ifdef WANT

int base, ptr, cnt, diff;
unsigned int posn;
posn = xdr_getpos(mplexXDRSEnc(fd));
cnt = mplexTab[fd] .outStream->_cnt;
base= (int) mplexTab[fd] .outStream->_base;
ptr = (int) mplexTab[fd] .outStream->_ptr;
diff = ptr - base;
if (d iff == 0) {

fprintf(stderr, llyounds! diff is 0\n 11
);

}

7/5/11 11:14 AM

fprintf(stderr, 11 (Bef)outPos= %u, Cnt= %d, Base= %lx, Ptr= %lx, Diff= %d\
nil,
posn, cnt, base, ptr, diff);

posn = xdr_getpos(mplexXDRSDec(fd));
cnt = mplexTab[fd] .inStream->_cnt;
base= (int) mplexTab[fd] .inStream->_base;
ptr = (int) mplexTab[fd] .inStream->_ptr;
diff = ptr - base;
fprintf(stderr, II InPos= %u, Cnt= %d, Base= %lx, Ptr= %lx, Diff= %d\

nil,
posn, cnt, base, ptr, diff);

#endif I* WANT *I

#ifdef USE_STREAMS
I*

fprintf(stderr, 11 mplexTab[%d] .outStream->_cnt = %d, diff = %d\n 11 ,fd,
mplexTab[fd] .inStream->_cnt,
mplexTab[fd] .inStream->_ptr-mplexTab[fd] .inStream->_base);
*I

if (fflush(mplexTab[fd] .outStream) == EOF) {
per ro r (II f flush () II) ;

return -1;
}

#end if I* USE STREAMS *I

#ifdef WANT
posn = xdr_getpos(mplexXDRSEnc(fd));
cnt = mplexTab[fd] .outStream->_cnt;
base= (int) mplexTab[fd] .outStream->_base;
ptr = (int) mplexTab[fd] .outStream->_ptr;
diff = ptr - base;
fprintf(stderr, 11 (Aft)outPos= %u, Cnt= %d, Base= %lx, Ptr= %lx, Diff= %d\

Page 18 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1880

server.c

n",
posn, cnt, base, ptr, diff);

#end if I* WANT *I

}

cmMain(argc, argv)

{

int argc;
char **argv;

int
int
st ruct
int

iSocket;
iSockNew;

sockaddr_in sainNew;
iLength, iOption;

cmOpenServerSocket("shilp", 0, NULL, &iSocket, NULL);

#ifdef DEBUG

7/5/11 11:14 AM

fprintf(stderr, "Tcp Socket has port #%d\n", ntohs(sainServer. sin_port));
fprintf(stderr, "Got socket descr %d for connect\n", iSocket);

#endif I* DEBUG *I
if (listen(iSocket, 5) != 0) {

perror("listen()");
return -1;

}
iOption = 1;
if(setsockopt(iSocket, SOL_SOCKET, SO_REUSEADDR, &iOption,

sizeof(iOption)) != 0){

}

perror("setsockopt() SOL_SOCKET, SO REUSEADDR");
return -1;

I* allow socket to be reused locally, foreign diff *I

if ((iSockNew = accept(iSocket, &sainNew, &iLength)) < 0) {
perror("accept()");
return -1;

}
#ifdef DEBUG

fprintf(stderr, "Got socket descriptor %d for client connection\n",
iSockNew);

#endif I* DEBUG *I

}

close(iSocket);
fprintf(stderr, "%d, %s, %d\n", argc, argv[0], iSockNew);
return 0;

Page 19 of 19
Petitioner Microsoft Corporation, Ex. 1002, p. 1881

sharedMem.c 7/5/11 11:14 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <shastralnetworklsharedMem.h>

#ifdef WANT
shmid_ds contains

struct
int
ushort
ushort
short
time_t
time_t
time_t

ipc_perm contains
ushort
ushort
ushort
ushort
ushort

ipc_perm shm_perm;
shm_segsz;
shm_cpid;
shm_lpid;
shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

cuid;
cgid;
uid;
gid;
mode;

#define ALIGN2FOUR(n) (((n)l4+1)*4)

shminfo *
shminfoCreate()
{

I* operation permission struct *I
I* size of segment *I
I* creator pid *I
I* pid of last operation *I
I* number of current attaches *I
I* last attach time *I
I* last detach time *I
I* last change time *I
I* Times measured in sees since *I
I* 00:00:00 GMT, Jan. 1, 1970 *I

I* creator user id *I
I* creator group id *I
I* user id *I
I* group id *I
I* rlw permission *I

Page 1 of 5
Petitioner Microsoft Corporation, Ex. 1002, p. 1882

sharedMem.c

}

int

shminfo *PShminfo;

pShminfo = (shminfo*)malloc(sizeof(shminfo));
memset(pShminfo, 0, sizeof(shminfo));
pShminfo->shmid = -1;
pShminfo->shmAddr = (char*)-1;

return pShminfo;

shMemAlloc(pShminfo, nSize)
shminfo *PShminfo;
int nSize;
{

}

I*
pShminfo = shminfoCreate();
*I
if(!pShminfo){

return 0;
}

nSize = ALIGN2FOUR(n5ize);

pShminfo->shmid = shmget(IPC_PRIVATE, nSize, IPC_CREATI0755);
if(pShminfo->shmid < 0) {

perror("shmget");
return (0) ;

}

pShminfo->shmSize = nSize;

pShminfo->shmAddr = (char *)shmat(pShminfo->shmid, 0, 0);
if(pShminfo->shmAddr == ((char *)-1)) {

perror("shmat");
return (0) ;

}

I* Clear the memory out *I
memset(pShminfo->shmAddr, 0, nSize);

return 1;

int
shMemConnect(pShminfo)
shminfo *PShminfo;
{

if(!pShminfo I I (pShminfo->shmid < 0)){
return 0;

}

7/5/11 11:14 AM

Page 2 of 5
Petitioner Microsoft Corporation, Ex. 1002, p. 1883

sharedMem.c

}

pShminfo->shmAddr = (char *)shmat(pShminfo->shmid, 0, 0);

if(pShminfo->shmAddr == ((char *)-1)) {
perror("shmat");
return (0) ;

}
if(shMemGetinfo(pShminfo) != 0){

pShminfo->shmSize = pShminfo->shmidDS.shm_segsz;
}
return 1;

int
shMemDisconnect(pShminfo)
shminfo *PShminfo;
{

if(!pShminfo I I (pShminfo->shmid < 0) I I (pShminfo->shmAddr
1)) {
return 0;

}
if(shMemGetinfo(pShminfo) != 0){

if(getpid() == pShminfo->shmidDS.shm_cpid){
shMemFree(pShminfo);
if(pShminfo->shmidDS.shm_nattch > 1){

fprintf(stderr,

7/5/11 11:14 AM

"shMemDisconnect()->warning .. %d procs still attached!\

}

int

n",
pShminfo->shmidDS.shm_nattch);

}
}

}
if(pShminfo->shmAddr != (char*)-1){

}

if(shmdt(pShminfo->shmAddr) == -1){
perror("shmdt");
pShminfo->shmAddr = (char*)-1;
return (0) ;

}
pShminfo->shmAddr = (char*)-1;

return 1;

shMemReconnect(pShminfo, shmid)
shminfo *PShminfo;
int shmid;
{

if(!pShminfo II (shmid < 0)){
return 0;

}
if(pShminfo->shmid != shmid){

shMemDisconnect(pShminfo);

Page 3 of 5
Petitioner Microsoft Corporation, Ex. 1002, p. 1884

sharedMem.c

}

int

}

pShminfo->shmid = shmid;
return shMemConnect(pShminfo);

return 1;

shMemDelete(pShminfo, shmid)
shminfo *PShminfo;
int shmid;
{

}

if (! pShminfo II (shmid < 0)) {
return 0;

}
if(pShminfo->shmid == shmid){

return shMemFree(pShminfo);
}
return 0;

int
shMemFree(pShminfo)
shminfo *PShminfo;
{

}

if(!pShminfo I I (pShminfo->shmid < 0)){
return 0;

}
if(pShminfo->shmAddr != (char*)-1){

}

if(shmdt(pShminfo->shmAddr) == -1){
perror("shmdt");
pShminfo->shmAddr = (char*)-1;
return (0) ;

}

if(shmctl(pShminfo->shmid, IPC_RMID, NULL) -1){
perror("shmctl(IPC_RMID)");
return (0) ;

}
pShminfo->shmid = -1;
pShminfo->shmAddr = (char*)-1;

return 1;

int
shMemGetinfo(pShminfo)
shminfo *PShminfo;
{

if(!pShminfo I I (pShminfo->shmid < 0)){
return 0;

}

7/5/11 11:14 AM

Page 4 of 5
Petitioner Microsoft Corporation, Ex. 1002, p. 1885

sharedMem.c

}

int

if(shmctl(pShminfo->shmid, IPC_STAT, &pShminfo->shmidDS)
perror("shmctl(IPC_STAT)");
return (0) ;

}
return 1;

shMemReuseSegment(pShminfo, nSize)
shminfo *PShminfo;
int nSize;
{

}

if (! pShminfo) {
return 0;

}
if(pShminfo->shmid >= 0){

if(nSize > pShminfo->shmSize){
shMemDisconnect(pShminfo);
return shMemAlloc(pShminfo, nSize);

}
}
else{

return shMemAlloc(pShminfo, nSize);
}
return 1;

7/5/11 11:14 AM

-1){

Page 5 of 5
Petitioner Microsoft Corporation, Ex. 1002, p. 1886

udp.c 7/5/11 11:15 AM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
* test.c -- multicast testing
*I

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <netdb.h>
#include <sysltime.h>
#include <syslfile.h>
#include <sysltypes.h>
#ifdef SHASTRA4SUNS
#include <syslsysteminfo.h>
#include <syslsockio.h>
#end if
#include <syslsocket.h>
#include <syslioctl.h>
#include <netinetlin.h>
#include <netlif.h>

#include <shastralnetworklmplex.h>
#include <shastralnetworkludp.h>

I*UDP utils
use connect to isolate comm endpoint, and bad connect to disconnect
or good connect to reconnect elsewhere
*I

Page 1 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1887

udp.c 7/5/11 11:15 AM

I*
valid Sun4.1 net interfaces (akhil etc:

le0, lo0 (ell ee zero, ell oh zero)
valid SGI net interfaces (arjun, agasti etc:

ec0, lo0 (ee cee zero, ell oh zero)
(escher)
et0, fxp0, lo0 (ee tee zero, eff ex pee zero, ell oh zero)

*I

static int cmGetMulticastinterface(Prot4(char*, char*, int, struct in addr*
)) ;

static int cmGetBroadcastinterface(ProtS(char*, char*, int, struct in_addr*

struct sockaddr in*));
static int cmConvertString2IPAddress(Prot2(char*, struct in addr *));

static struct sockaddr_in sainMine;

static int
cmConvertString2IPAddress(siFAddr, pinAddriF)

char *SIFAddr;

{
struct in_addr *PinAddriF;

struct hostent *PheHost;

if (siFAddr
return 0;

}

NULL){

pinAddriF->s_addr = inet_addr(siFAddr);
if (pinAddriF->s_addr == (unsigned long)-1){

pheHost = gethostbyname(siFAddr);
if (pheHost != NULL){

memcpy(pinAddriF, pheHost->h_addr, pheHost->h_length);
}
else{

fprintf(stderr, "cmConvertString2IPAddress() No IP address for '%s'\

}

}
}

n",
siFAddr);

return(-1);

return 0;

I*
* dump info about network interfaces
*I

static void
cmShowinterfaces(iFd)

int iFd;
{

int i;

Page2of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1888

udp.c

st ruct i fconf
struct ifreq
char

ifConf;
*PIFReq
sbBuffer[BUFSIZ]

st ruct sockaddr_in *PSockAddr;

ifConf.ifc_len = sizeof(sbBuffer)
ifConf.ifc_buf = sbBuffer ;
if(ioctl(ifd, SIOCGIFCONF, (char*) &ifConf) < 0) {

perror("ioctl() SIOCGIFCONF") ;
return;

}

piFReq = ifConf.ifc_req;
for(i = ifConf.ifc_len/sizeof(*piFReq) ; --i >= 0 ; piFReq++) {

pSockAddr = (struct sockaddr_in*)&piFReq->ifr_addr;
fprintf(stderr, "Interface[%d]- %s, Flags(%d, 0x%x), \

Family:%d, Address:%ld (0x%lx)\n",

}
}

i, piFReq->ifr_name, piFReq->ifr_flags, piFReq->ifr_flags,
pSockAddr->sin_family,
pSockAddr->sin_addr.s_addr, pSockAddr->sin_addr.s_addr);

I*
* get/check if interface exists and is capable of doing multicasting.
*I

static int
cmGetMulticastinterface(siFAddr, sinterface, iFd, pinAddriF)

char *SIFAddr;
char *Sinterface;
int iFd;
struct in_addr *PinAddriF;

{
#ifdef HAVEMULTICAST

int
struct ifconf
struct ifreq
st ruct in_add r
char
char *SLocal;

i, fFound;
ifConf;
*PIFReq ;

inAddriF;
sbBuffer[BUFSIZ]

if(siFAddr != NULL) {
if(cmConvertString2IPAddress(siFAddr, &inAddriF) < 0){

inAddriF.s_addr = INADDR_ANY;
}

}
else{

inAddriF.s_addr = INADDR_ANY;
}

ifConf.ifc_len = sizeof(sbBuffer
ifConf.ifc buf = sbBuffer ;

7/5/11 11:15 AM

Page3of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1889

udp.c 7/5/11 11:15 AM

if(ioctl(ifd 1 SIOCGIFCONF 1 (char*) &ifConf) < 0) {
perror(11 ioctl() SIOCGIFCONF 11

) ;

return(-1) ;
}

fFound = 0;
piFReq = ifConf.ifc_req;
for(i = ifConf.ifc_len/sizeof(*piFReq) ; --i >= 0 ; piFReq++) {

fprintf(stderr 1

11 Interface[%d] - %S 1 INET=%d 1 MCAST=%d 1 flags=%d\n 11

1

i 1 piFReq->ifr_name 1 piFReq->ifr_addr.sa_family == AF_INET 1

piFReq->ifr_flags & IFF_MULTICAST 1 piFReq->ifr_flags);
if(piFReq->ifr_addr.sa_family != AF INET){

continue ;
}
if(! (piFReq->ifr_flags & IFF_MULTICAST)) {

continue ;
}

if(sinterface == NULL){
sLocal = piFReq->ifr_name;

}
else{

sLocal = sinterface;
}
if(strncmp(piFReq->ifr_name 1 sLocal 1 strlen(piFReq->ifr_name))

== 0) {
fFound = 1;
*PinAddriF = ((struct sockaddr_in *) &piFReq->ifr_addr)->sin_addr

if(ioctl(ifd 1 SIOCGIFFLAGS 1 (char *) piFReq) < 0) {
perror(11 ioctl() SIOCGIFFLAGS 11

) ;

return(-1);
}

if(pinAddriF->s_addr == INADDR_ANY) {
fprintf(stderr 1

11 CmGetMulticastinterface()->%s: invalid interface
address\n 11

1 sLocal);

}

return(-1);
}
if((inAddriF.s_addr != INADDR_ANY) &&

(pinAddriF->s_addr != inAddriF.s addr)){
continue;

}
break;

}

if(!fFound) {
if(sinterface != NULL){

fp r int f (s tde r r 1 II cmGetMu l t ica s t I nte rf ace () ->%s: unknown interface \n 11

1

sinte rface);
}
else{

fp r intf (s tde r r 1 II cmGetMul t icastinte rface ()->no inte rface\n 11
);

Page4of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1890

udp.c 7/5/11 11:15 AM

}
return(-1)

}
return(0

#else I* HAVEMULTICAST*/
return -1;

#end if I* HAVEMULTICAST*/
}

I*
* get/check if interface exists and is capable of doing broadcasting.
*I

static int
c m Get B road c a s t I n t e r fa c e (s I FAd d r 1 s I n t e r face 1 iF d 1 pI n Add r I F 1 p 5o c kA d d r)

char *SIFAddr;

{

char *Sinterface;
int iFd;
struct in_addr *PinAddriF;
struct sockaddr_in *PSockAddr;

int i 1 fFound
st ruct in_add r
st ruct i fconf
struct ifreq
char

inAdd riF;
ifConf;
*PIFReq ;
sbBuffer[BUFSIZ]

char *SLocal;

if(siFAddr != NULL) {
if(cmConvertString2IPAddress(siFAddr 1 &inAddriF) < 0){

inAddriF.s_addr = INADDR_ANY;
}

}
else{

inAddriF.s_addr = INADDR_ANY;
}
ifConf.ifc_len = sizeof(sbBuffer) ;
ifConf.ifc_buf = sbBuffer ;
if(ioctl(ifd 1 SIOCGIFCONF 1 (char*) &ifConf) < 0) {

perror("ioctl() SIOCGIFCONF") ;
return(-1) ;

}

fFound = 0;
piFReq = ifConf.ifc_req;
for(i = ifConf.ifc_len/sizeof(*piFReq) ; --i >= 0 ; piFReq++) {

fprintf(stderr 1 "Interface[%d] - %S 1 INET=%d 1 BCAST=%d 1 flags=%d\n" 1

i 1 piFReq->ifr_name 1 piFReq->ifr_addr.sa_family == AF_INET 1

piFReq->ifr_flags & IFF_BROADCAST 1 piFReq->ifr_flags);
if(piFReq->ifr_addr.sa_family != AF_INET){

continue ;
}
if(!(piFReq->ifr_flags & IFF_BROADCAST)){

continue ;

Page5of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1891

udp.c 7/5/11 11:15 AM

}
if(sinterface == NULL){

sLocal = piFReq->ifr_name;
}
else{

sLocal = sinterface;
}
if(strncmp(piFReq->ifr_name 1 sLocal 1 strlen(piFReq->ifr_name))
== 0) {

fFound = 1;
*PinAddriF = ((struct sockaddr_in *) &piFReq->ifr_addr)->sin_addr
if(pinAddriF->s_addr == INADDR_ANY) {

fprintf(stderr 1

11 CmGetBroadcastinterface() ->%s: invalid interface

}

address\n 11

1 sLocal);
return(-1);

}
if((inAddriF.s_addr != INADDR_ANY) &&

(pinAddriF->s_addr != inAddriF.s_addr)){
continue;

}

}
if(ioctl(ifd 1 SIOCGIFFLAGS 1 (char *) piFReq) < 0) {

perror(11 ioctl() SIOCGIFFLAGS 11
) ;

return(-1);
}
if(ioctl(ifd 1 SIOCGIFBRDADDR 1 (char *) piFReq) < 0) {

perror(11 ioctl() SIOCGIFBRDADDR 11
) ;

return(-1);
}
memcpy(pSockAddr 1 &piFReq->ifr_broadaddr 1 sizeof(piFReq->

ifr broadaddr));
break;

if(!fFound) {
if(sinterface){

fp r int f (s tde r r 1 II cmGet Broadcast I nte rf ace () ->%s: unknown interface \n 11

1

}

}
else{

sinte rface);

fp r intf (s tde r r 1 II cmGetB road castinte rface ()->no inte rface\n 11
);

}
return(-1)

}
return(0) ;

I*
* Get a unicast socket for the given service.
*I

int
cmSetupUCastSocket(sService 1 iPort 1 eSockMode 1 pSockAddr)

char *SService;

Page6of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1892

udp.c

{

int iPo rt;
enum udpSockMode eSockMode;
struct sockaddr_in *PSockAddr;

struct hostent *PheHost;
struct servent *PSeService;
int iFd, iRetVal;
unsigned char cUtil;
unsigned short hUtil;
unsigned int iUtil;

switch(eSockMode){
case udpRead:
case udpWrite:
case udpReadWrite:

break;
default:

}

fprintf(stderr, "Invalid udp mode %d\n", eSockMode)
return(-1) ;

memset(pSockAddr, 0, sizeof(*pSockAddr));
pSockAddr->sin_addr.s_addr = INADDR_ANY;
pSockAddr->sin_family = AF_INET;

if(sService != NULL){
pseService = getservbyname(sService, "udp");
if (pseService ==NULL){

}

fprintf(stderr, "Can't find udp service \"%s\"\n", sService);
return(-1);

pSockAddr->sin_port = pseService->s_port;
}
else{

hUtil = iPort;
pSockAddr->sin_port = htons(hUtil);

}

ifd = socket(AF_INET, SOCK_DGRAM, 0);
if (ifd < 0){

}

per ro r ("socket ()");
return(-1);

switch(eSockMode){
case udpRead:
case udpReadWrite:

iUtil = 1;

7/5/11 11:15 AM

if(setsockopt(ifd, SOL_SOCKET, SO_REUSEADDR, &iUtil, sizeof(iUtil))
< 0) {

perror("setsockopt() SOL_SOCKET SO_REUSEADDR") ;
close (iFd)
return (-1) ;

Page7of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1893

udp.c 7/5/11 11:15 AM

}
#ifdef SO_REUSEPORT

if(setsockopt(ifd, SOL_SOCKET, SO_REUSEPORT, &iUtil, sizeof(iUtil))

}

< 0) {
perror("setsockopt() SOL_SOCKET SO_REUSEPORT") ;
close (iFd)
return (-1) ;

#endif I* SO_REUSEPORT *I
if (bind(ifd, pSockAddr, sizeof(*pSockAddr)) < 0){

perror("bind ()");
close(iFd);
return(-1);

}
if(eSockMode == udpRead){

break;
}
l*fall-thru for udpReadWrite *I

case udpWrite:
break;

}

#ifdef WANT_FIONBIO
cUtil = 1;
if (ioctl(ifd, FIONBIO, &cUtil) < 0){

perror("ioctl() FIONBIO");
close(iFd);
return(-1);

}
#else I*WANT_FIONBIO*I

if(fcntl(ifd, F_SETFL, FNDELAY) < 0) {
perror("fcntl() F_SETFL FNDELAY") ;
close(iFd);
return(-1)

}
#end if

return(ifd);
}

I*
* Get a broadcast socket for the given service.
*I

int
cmSetupBCastSocket(sService, iPort, siFAddr, sinterface, eSockMode,

{

pSockAddr)
char *SService;
int iPo rt;
char *SIFAddr;
char *Sinterface;
enum udpSockMode eSockMode;
struct sockaddr_in *PSockAddr;

Page8of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1894

udp.c 7/5/11 11:15 AM

struct hostent *PheHost;
struct servent *PSeService;
struct in_addr inAddriF;
int iFd, iRetVal;
unsigned char cUtil;
unsigned short hUtil;
unsigned int iUtil;

switch(eSockMode){
case udpRead:
case udpWrite:
case udpReadWrite:

break;
default:

}

fprintf(stderr, "Invalid udp mode %d\n", eSockMode)
return(-1) ;

memset(pSockAddr, 0, sizeof(*pSockAddr));
pSockAddr->sin_addr.s_addr = INADDR_ANY;
pSockAddr->sin_family = AF_INET;

if(sService != NULL){
pseService = getservbyname(sService, "udp");
if (pseService ==NULL){

}

fprintf(stderr, "Can't find udp service \"%s\"\n", sService);
return(-1);

pSockAddr->sin_port = pseService->s_port;
}
else{

hUtil = iPort;
pSockAddr->sin_port = htons(hUtil);

}

ifd = socket(AF_INET, SOCK_DGRAM, 0);
if (ifd < 0){

}

per ro r ("socket ()");
return(-1);

switch(eSockMode){
case udpRead:
case udpReadWrite:

iUtil = 1;
if(setsockopt(ifd, SOL_SOCKET, SO_REUSEADDR, &iUtil, sizeof(iUtil))

}

< 0) {
close (iFd) ;
perror("setsockopt() SOL_SOCKET SO_REUSEADDR") ;
return (-1) ;

#ifdef SO_REUSEPORT
if(setsockopt(ifd, SOL_SOCKET, SO_REUSEPORT, &iUtil, sizeof(iUtil))

Page9of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1895

udp.c 7/5/11 11:15 AM

}

< 0) {
close (iFd) ;
perror("setsockopt() SOL SOCKET SO REUSEPORT"
return (-1) ;

#endif I* SO_REUSEPORT *I
if (bind(ifd, pSockAddr, sizeof(*pSockAddr)) < 0){

perror("bind ()");
close(iFd);
return(-1);

}
if(eSockMode == udpRead){

break;
}
f*fall-thru for udpReadWrite *I

case udpWrite:
I* TESTING -- pSockAddr->sin_addr.s_addr = INADDR_LOOPBACK; return;*/

/*new broadcast method, not yet on our sun4.1*/
if(

#if defined SHASTRA4SGI I I defined SHASTRA4SUNS I I defined SHASTRA4HP
sinterface II siFAddr

#else f*SHASTRA4SUN4*/
TRUE

#end if

}

) {
iRetVal = cmGetBroadcastinterface(siFAddr, sinterface, iFd, &

inAddriF,
pSoc kAdd r) ;

if(iRetVal < 0){
close(iFd);
return(iRetVal) ;

}
if(sService !=NULL){

pSockAddr->sin_port = pseService->s_port;
}
else{

hUtil = iPort;
pSockAddr->sin_port = htons(hUtil);

}
}
else{

pSockAddr->sin_addr.s_addr = INADDR_BROADCAST;
}
iUtil = 1;
if (setsockopt(ifd, SOL_SOCKET, SO_BROADCAST, &iUtil,

}

sizeof (iUtil)) < 0){
perror("setsockopt() SOL_SOCKET SO BROADCAST");
close(iFd);
return(-1);

break;

Page 10 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1896

udp.c 7/5/11 11:15 AM

#ifdef WANT_FIONBIO
cUtil = 1;
if (ioctl(ifd 1 FIONBI0 1 &cUtil) < 0){

perror("ioctl() FIONBIO");
close(iFd);
return(-1);

}
#else I*WANT_FIONBIO*I

if(fcntl(ifd 1 F_SETFL 1 FNDELAY) < 0) {
perror("fcntl() F_SETFL FNDELAY") ;
close(iFd);
return(-1) ;

}
#end if

return(ifd);
}

I*
* Get a multicast socket for the given service.
*I

int
cmSetupMCastSocket(sService 1 iPort 1 siFAddr 1 sinterface 1 sGrpAddr 1

{

iTTL 1 fLoopBack 1 eSockMode 1 pSockAddr)
char *SService;
int iPo rt;
char *SIFAddr;
char *Sinterface;
char *SG rpAdd r;
int i TTL;
int fLoopBack;
enum udpSockMode eSockMode;
struct sockaddr_in *PSockAddr;

#ifdef HAVEMULTICAST
struct ip_mreq ipMRequest;
struct in_addr inAddrGrp;
struct in_addr inAddriF;
struct hostent *PheHost;
struct servent *PSeService;
int iFd 1 iRe tVa l 1 ilen;
unsigned char cUtil;
unsigned short hUtil;
unsigned int iUtil;

memset(&inAddrGrp 1 0 1 sizeof(inAddrGrp));
inAddrGrp.s_addr = inet_addr(sGrpAddr) ;
if(!IN_MULTICAST(inAddrGrp.s_addr)) {

}

fprintf(stderr 1 "Invalid multicast address: %s\n" 1 sGrpAddr)
return(-1) ;

switch(eSockMode){

Page 11 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1897

udp.c 7/5/11 11:15 AM

case udpRead:
case udpWrite:
case udpReadWrite:

break;
default:

}

fprintf(stderr, "Invalid udp mode %d\n", eSockMode)
return(-1) ;

memset(pSockAddr, 0, sizeof(*pSockAddr));
pSockAddr->sin_addr.s_addr = INADDR_ANY;
pSockAddr->sin_family = AF_INET;

if(sService != NULL){
pseService = getservbyname(sService, "udp");
if (pseService ==NULL){

}

fprintf(stderr, "Can't find udp service \"%s\"\n", sService);
return(-1);

pSockAddr->sin_port = pseService->s_port;
}
else{

hUtil = iPort;
pSockAddr->sin_port = htons(hUtil);

}

ifd = socket(AF_INET, SOCK_DGRAM, 0);
if (ifd < 0){

}

per ro r ("socket ()");
return(-1);

memset(&inAddriF, 0, sizeof(inAddriF));
inAddriF.s_addr = INADDR_ANY;

/*new mcast not yet on suns*/
if(siFAddr II sinterface) {

iRetVal = cmGetMulticastinterface(siFAddr, sinterface, iFd, &inAddriF)

}

if(iRetVal < 0){
close (iFd) ;
return(iRetVal) ;

}
if(eSockMode == udpWrite){

}

if(setsockopt(ifd, IPPROTO_IP, IP_MULTICAST_IF,

}

&inAddriF, sizeof(inAddriF)) < 0) {
perror("setsockopt() IPPROTO_IP, IP_MULTICAST_IF"
close(iFd)
return(-1);

switch(eSockMode){

Page 12 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1898

udp.c 7/5/11 11:15 AM

case udpRead:
case udpReadWrite:

iUtil = 1;
if(setsockopt(ifd, SOL_SOCKET, SO_REUSEADDR, &iUtil, sizeof(iUtil))

}

< 0) {
close (iFd) ;
perror("setsockopt() SOL_SOCKET SO_REUSEADDR") ;
return (-1) ;

#ifdef SO_REUSEPORT
if(setsockopt(ifd, SOL_SOCKET, SO_REUSEPORT, &iUtil, sizeof(iUtil))

}

< 0) {
close (iFd) ;
perror("setsockopt() SOL_SOCKET SO_REUSEPORT") ;
return (-1) ;

#endif I* SO_REUSEPORT *I
if (bind(ifd, pSockAddr, sizeof(*pSockAddr)) < 0){

perror("bind ()");
close(iFd);
return(-1);

}
if(sService == NULL){

}

iLen = sizeof(*pSockAddr);
if (getsockname(ifd, pSockAddr, &iLen) < 0){

perror("getsockname ()");
close(iFd);
return(-1);

}

#ifdef WANT_STRUCT_ASSIGN
ipMRequest.imr_multiaddr = inAddrGrp; f*struct assign*/
ipMRequest.imr_interface = inAddriF; f*struct assign*/

#endif I* WANT_STRUCT_ASSIGN *I
memcpy(&ipMRequest.imr_multiaddr, &inAddrGrp, sizeof(inAddrGrp));
memcpy(&ipMRequest.imr_interface, &inAddriF, sizeof(inAddriF));
if (setsockopt(ifd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &ipMRequest,

}

sizeof(ipMRequest)) < 0){
perror("setsockopt() IPPROTO_IP IP_ADD_MEMBERSHIP");
close(iFd);
return(-1);

if(eSockMode == udpRead){
break;

}
f*fall-thru for udpReadWrite *I

case udpWrite:
pSockAddr->sin_addr.s_addr = inAddrGrp.s_addr; /*send to group*/
cUtil = fLoopBack;
if (setsockopt(ifd, IPPROTO_IP, IP_MULTICAST_LOOP, &cUtil,

sizeof(cUtil)) < 0){
perror("setsockopt IPPROTO_IP IP_MULTICAST_LOOP");
close(iFd);

Page 13 of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1899

udp.c

return(-1);
}

if ((iTTL <= 0) I I (iTTL > SHASTRA_MAX_TTL)){
cUtil = SHASTRA_DEF_TTL;

}

}
else{

cUtil = iTTL;
}
if (setsockopt(ifd, IPPROTO_IP,

}

sizeof(cUtil)) < 0){
perror("setsockopt IPPROTO_IP
close(iFd);
return(-1);

break;

#ifdef WANT_FIONBIO
cUtil = 1;

IP_MULTICAST_TTL, &cUtil,

IP MULTICAST TTL"); - -

if (ioctl(ifd, FIONBIO, &cUtil) < 0){
perror("ioctl() FIONBIO");
close(iFd);
return(-1);

}
#else I*WANT_FIONBIO*I

if(fcntl(ifd, F_SETFL, FNDELAY) < 0) {
perror("fcntl() F_SETFL FNDELAY") ;
close(iFd);
return(-1) ;

}
#end if

return(ifd);
#else

return -1;
#end if
}

I*
* getMyHostinAddr()-- Get my own host internet address
*I

int
cmGetMyHostinAddr(psainHost)

struct sockaddr_in *PSainHost;
{

char sbHost[256];
struct hostent *PheHost;

#ifdef SHASTRA4SUNS
if (sysinfo(SI_HOSTNAME,sbHost, sizeof(sbHost)) < 0){

fprintf(stderr,"sysinfo()-> Unknown Host Name!\n");

7/5/11 11:15 AM

Page 14 of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1900

udp.c

return(-1);
}

#else
if (gethostname(sbHost 1 sizeof(sbHost)) < 0){

fprintf(stderr 1 "gethostname()-> Unknown Host Name!\n");
return(-1);

}
#end if

pheHost = gethostbyname(sbHost);
if (!pheHost){

}

fprintf(stderr 1 "gethostbyname()-> Unknown Host %s\n" 1 sbHost);
return(-1);

psainHost->sin_family = AF_INET;
psainHost->sin_port = 0;

7/5/11 11:15 AM

memcpy(&psainHost->sin_addr 1 pheHost->h_addr 1 sizeof(psainHost->sin_addr)
) ;

}

fprintf(stderr 1 "Host %S 1 Address:%ld (0x%lx)\n" 1

sbHost 1 psainHost->sin_addr.s_addr 1 psainHost->sin_addr.s_addr);
return(0);

I*
* sendUDPPacket()--
*1

int
cmSendUDPPacket (iFd 1 sMes sage 1 lMes sage 1 pSockAdd r)

int iFd;
char * sMessage;
int lMessage;
struct sockaddr_in *PSockAddr;

{
int retVal;

retVa l = send to (iFd 1 sMes sage 1 lMes sage 1 0 1 pSockAdd r 1 s izeof (*PSoc kAdd r)
) ;

if(retVal < 0){
perror("sendto()");
return -1;

}
return retVal;

}

I*
* recvUDPPacket()--
*1

int
cmRecvUDPPacket (iFd 1 sMes sage 1 lMaxLen 1 fig no reOwn)

int iFd;
char *SMessage;

Page 15 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1901

udp.c 7/5/11 11:15 AM

{

}

int lMaxLen;
enum udpPacketMode fignoreOwn;

struct sockaddr_in pFromAddr;
int lAddr = sizeof(pFromAddr);
int lMessage;

do{
lMessage = recvfrom(ifd, sMessage, lMaxLen, 0, &pFromAddr, &lAddr);
fprintf(stderr, 11 cmRecvUDPPacket()-> 11

);

if (lMessage < 0){

}

if (errno == EWOULDBLOCK)
return (0) ;

else{

}

per ro r (II cmRecvUDPPa c ket () -> recvf rom () II) ;
exit(-1);

if (lMessage == 0){
break;

}
} while ((fignoreOwn == udpignoreOwn) &&

(pFromAddr.sin_addr.s_addr == sainMine.sin_addr.s_addr));

return(lMessage);

#ifdef STANDALONE
int
cmUdpRecvHandler(iFd)

{

}

int iFd;

char sbBuffer[256];
int lMessage;

lMessage = cmRecvUDPPacket(iFd, sbBuffer, 256, udpAcceptOwn);
fprintf(stdout, 11 CmUdpRecvHandler()->recv'd %d (%s)\n 11

, lMessage,
sbBuffer);

int
cmUdpSendHandler(iFd)

int iFd;
{

extern struct sockaddr_in sockAddr;
extern int myFD;
struct sockaddr_in *PSockAddr = &sockAddr;
char sbBuffer[256], *Sinput;
int lMessage, lSent;

sinput = fgets(sbBuffer, 256, stdin);
if(sinput == NULL){

Page 16 of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1902

udp.c

}

exit(0);
}
lMessage = strlen(sinput);
sbBuffer[lMessage- 1] = '\0';
lSent = cmSendUDPPacket(myFD, sbBuffer, lMessage, pSockAddr);
fprintf(stderr, "cmUdpSendHandler()->sent %d of %d (%s)\n",

lSent, lMessage, sbBuffer);

enum udpCommMode eUDPMode = udpMulticast; I* default multicast *I
int myFD;
struct sockaddr_in sockAddr;

int
main(argc, argv)

int argc;
char **argv;

{
int cmUdpRecvHandler(), cmUdpSendHandler();

(void) cmGetMyHostinAddr(&sainMine);

switch(eUDPMode){
case udpMulticast:

7/5/11 11:15 AM

myFD = cmSetupMCastSocket(SHASTRA_MCAST_SERVICE, SHASTRA_GUESS_PORT,
NULL, NULL, SHASTRA_MCAST_ADDR,
SHASTRA_DEF_TTL, TRUE, udpReadWrite, &sockAddr);

break;
case udpBroadcast:

myFD = cmSetupBCastSocket(SHASTRA_BCAST_SERVICE, SHASTRA_GUESS_PORT,
NULL, NULL, udpReadWrite, &sockAddr);

break;
default:
case udpUnicast:

myFD = cmSetupUCastSocket(SHASTRA_UCAST_SERVICE, SHASTRA_GUESS_PORT,
udpReadWrite, &sockAddr);

break;
}
if(myFD < 0){

}

fprintf(stderr,"main()->couldn't set up socket for %s!\n",
(eUDPMode udpMulticast)?"MULTICAST":
(eUDPMode == udpBroadcast)?"BROADCAST":"UNICAST");

exit(-1);

mplexinit(NULL, NULL);
if (mplexRegisterChannel(myFD, cmUdpRecvHandler, NULL, NULL) < 0) {

fprintf(stderr, "main()->Couldn't register Recv Handler!\n");
}
if (mplexRegisterChannel(0, cmUdpSendHandler, NULL, NULL) < 0) {

fprintf(stderr, "main()->Couldn't register Send Handler!\n");
}

Page 17 of 18
Petitioner Microsoft Corporation, Ex. 1002, p. 1903

udp.c

}

cmShowinterfaces(myFD);

mp lexMa in (NULL);

#endif /*STANDALONE*/

7/5/11 11:15 AM

Page 18 of 18

Petitioner Microsoft Corporation, Ex. 1002, p. 1904

sesMgr.c 7/5/11 2:57 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <stdlib.h>
#include <sysltypes.h>
#include <unistd.h>
#include <pwd.h>
#ifdef SHASTRA4SUNS
#include <syslsysteminfo.h>
char *Strdup(char *);
int putenv(char *);
#end if

#include <syslerrno.h>
#include <netdb.h>

#include <Xlliintrinsic.h>
#include <XlliStringDefs.h>
#include <XlliXutil.h>

#include <XmiText.h>

#include <shastralshastra.h>
#include <shastralshastraStateDefs.h>

#include <shastralutilsllist.h>

#include <shastraluitoolslstrlistUtilities.h>
#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslchooseMany.h>

Page 1 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1905

sesMgr.c

#include <shastraluitoolslconfirmCB.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>
#include <shastralnetworklsharedMem.h>

#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFrontsP.h>
#include <shastralshautilslsesMgrFronts.h>

#include <shastralkernellkernel_server.h>

#include <shastralsessionlsesMgr.h>
#include <shastralsessionlsesMgrMainCB.h>
#include <shastralsessionlsesMgr_server.h>
#include <shastralsessionlsesMgr_client.h>
#include <shastralsessionlsesMgrState.h>

static char *GetShastraBaseDir();
int getCmdlineArgs(Prot2(int, char**));
static shaSesMgrAppData sesMgrAppData;
shaSesMgrAppData *PSesMgrAppData = &sesMgrAppData;
static shastraid sesMgrShastraid;
shastraid *PSesMgrSid = &sesMgrShastraid;

shastraidTags
shastraidTags
collabData
char

sesMgrStartidTags;
sesMgrStartPermTags;

*PSesMgrCollData;
sbOutMsgBuf[1024];

#define DEBUG 0
int
extern int

debug = DEBUG;
e rrno;

int
int
unsigned
int
int
#ifndef
#define
#end if
char
char
char

kernelPortNum;
mainKernClntSocket;

long kerneliPAddr;
iKernelFrontindex;
iSesMgrFrontindex;

SHASTRA4SUNS
MAXNAMELEN 128

kernelHostName[MAXNAMELEN];
kernelUserName[MAXNAMELEN];
kernelHeadHostName[MAXNAMELEN];

kernelShastraid;
PShastraFrontids; I fronts connected on kernel *I

7/5/11 2:57 PM

shastraid
shastraids
shastraidTags *PShastraFrontidTags; I* fronts connected on kernel *I

Page2of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1906

sesMgr.c 7/5/11 2:57 PM

shastraidTags *PShastraFrontPermTags; I* fronts connected on kernel *I
sesmFronts *PSesmFrontCD;

int

char

char
char
char
char
unsigned long
unsigned long
int
int

shastraServerStatus;

*ShastraPasswd = SHASTRAPASSWORD;

*kernelAppName;
*kernelDispName;
*kernelPasswd;
*kernelCollType;

kernelPerms;
kernelidTag;
kernelFNoGUI;
kernelFAutoJoin;

shaCmdData serverCmdData;
cmCommand serverCommandTab[] = SESMGRCMDS;
#define NSESMGRCMDS (sizeof(serverCommandTab)lsizeof(cmCommand))
I* number of commands *I
int serverNCmds = NSESMGRCMDS;

void
void
void
void

int

shaCmdData

(*collabTerminateFunc) ();
(*collabJoinFunc) ();
(*CO llabLeaveFunc) ();
(*collabRemoveFunc) ();

shastraServiceSocket;

kernelCmdData;

cmCommand kernelCmdTab[] = SESMGR CLIENTCMDS;
#define SESMGR_NCMDS (sizeof(kernelCmdTab)lsizeof(cmCommand))
int kernelNCmds = SESMGR_NCMDS;

cmCommand kernelinCmdTab[] = SESMGR CLIENTINCMDS;
#define SESMGR_INNCMDS (sizeof(kernelinCmdTab)lsizeof(cmCommand))
int kernelinNCmds = SESMGR_INNCMDS;

host Data
host Data

hostMainKern;
*PHostMainKern = &hostMainKern;

void
shastraSesMgrSetupApplResDir()
{

}

char sbName[1024], *SName;

sName = resolveNameFromBase(pSesMgrAppData->sDirBase,
pSesMgrAppData->sDirDefs);

sprintf(sbName,"XAPPLRESDIR=%s", sName);
putenv (sbName);

Page3of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1907

sesMgr.c 7/5/11 2:57 PM

Widget
shastraSmMain(argc 1 argv 1 sSMName 1 wgParent 1 pCollCmdData)

{

int argc;
char **argv;
char *SSMName;
Widget
shaCmdData

char *SName;

wgParent;
*PCollCmdData;

struct hostent *PHostEnt;
int
Widget
extern int

uid_ t auid;

i;
wgMainCmdShell;
closedChannelCleanUpHandler();

struct passwd *apass;
unsigned int itemp;

static XtResource xrmResources[] = {
{ XshaNbaseDirectory 1 XshaCbaseDirectory 1 XtRString 1 sizeof(String) 1

XtOffset0f(shaSesMgrAppData 1 sDirBase) 1 XtRimmediate 1

(XtPointer)DEFSHASTRABASEDIR }1

{ XshaNminimal 1 XshaCminimal 1 XtRBoolean 1 sizeof(Boolean) 1

XtOffset0f(shaSesMgrAppData 1 fMinimal) 1 XtRimmediate 1 (XtPointer)
False }1

{ XshaNconnect 1 XshaCconnect 1 XtRBoolean 1 sizeof(Boolean) 1

XtOffset0f(shaSesMgrAppData 1 fConnect) 1 XtRimmediate 1 (XtPointer)True
}I

{ XshaNnoGUI 1 XshaCnoGUI 1 XtRBoolean 1 sizeof(Boolean) 1

XtOffset0f(shaSesMgrAppData 1 fNoGUI) 1 XtRimmediate 1 (XtPointer)False
}I

{ XshaNusePixmap 1 XshaCusePixmap 1 XtRBoolean 1 sizeof(Boolean) 1

XtOffset0f(shaSesMgrAppData 1 fPixmap) 1 XtRimmediate 1 (XtPointer)False
}I

{ XshaNhelp 1 XshaChelp 1 XtRBoolean 1 sizeof(Boolean) 1

XtOffset0f(shaSesMgrAppData 1 fHelp) 1 XtRimmediate 1 (XtPointer)False}
I

{ XshaNservicePort 1 XshaCservicePort 1 XtRint 1 sizeof(int) 1

XtOffset0f(shaSesMgrAppData 1 iSvcPort) 1 XtRimmediate 1 (XtPointer)0 }1

{ XshaNshastraPort 1 XshaCshastraPort 1 XtRint 1 sizeof(int) 1

XtOffset0f(shaSesMgrAppData 1 iShaPort) 1 XtRimmediate 1 (XtPointer)0 }1

{ XshaNdebugLevel 1 XshaCdebugLevel 1 XtRint 1 sizeof(int) 1

XtOffset0f(shaSesMgrAppData 1 iDbgLevel) 1 XtRimmediate 1 (XtPointer)0}
I

{ XshaNdefsDirectory 1 XshaCdefsDirectory 1 XtRString 1 sizeof(String) 1

XtOffset0f(shaSesMgrAppData 1 sDirDefs) 1 XtRimmediate 1

(XtPointer)DEFSHASTRADEFSDIR }1

{ XshaNdataDirectory 1 XshaCdataDirectory 1 XtRString 1 sizeof(String) 1

XtOffset0f(shaSesMgrAppData 1 sDirData) 1 XtRimmediate 1

(XtPointer)DEFSHASTRADATADIR }1

{ XshaNbinDirectory 1 XshaCbinDirectory 1 XtRString 1 sizeof(String) 1

XtOffset0f(shaSesMgrAppData 1 sDirBin) 1 XtRimmediate 1

(XtPointer)DEFSHASTRABINDIR }1

Page4of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1908

sesMgr.c 7/5/11 2:57 PM

{ XshaNlogFile, XshaClogFile, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sFileLog), XtRimmediate,
(XtPointer)DEFSHASTRALOGFILE },

{ XshaNhomeFile, XshaChomeFile, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sFileHome), XtRimmediate,
(XtPointer)DEFSHASTRAHOMEFILE },

{ XshaNappsFile, XshaCappsFile, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sFileApps), XtRimmediate,
(XtPointer)DEFSHASTRAAPPSFILE },

{ XshaNusersFile, XshaCusersFile, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sFileUsers), XtRimmediate,
(XtPointer)DEFSHASTRAUSERSFILE },

{ XshaNhostsFile, XshaChostsFile, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sFileHosts), XtRimmediate,
(XtPointer)DEFSHASTRAHOSTSFILE },

{ XshaNlocalStarter, XshaClocalStarter, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sLocStart), XtRimmediate,
(XtPointer)DEFSHASTRASTARTLOCAL },

{ XshaNremoteStarter, XshaCremoteStarter, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sRemStart), XtRimmediate,
(XtPointer)DEFSHASTRASTARTREMOTE },

{ XshaNpassword, XshaCpassword, XtRString, sizeof(String),
XtOffsetOf(shaSesMgrAppData, sPasswd), XtRimmediate,
(XtPointer)DEFSHASTRAPASSWD },

};

xrmResources[0] .default addr = GetShastraBaseDir();
XtVaGetApplicationResources(wgParent,

(XtPointer)&sesMgrAppData,
xrmResources, XtNumber(xrmResources),
f*hardcoded non-overridable app resources vararg list*/
XshaNhe lp, False,
XshaNusePixmap, False,
NULL);

/*sanity checking of resources*/

shastraSesMgrSetupApplResDir();

pSesMgrAppData->sName = sSMName;
getCmdLineArgs(argc, argv);
kernelAppName = pSesMgrAppData->sName;/* store application name *I
if (kernelDispName == NULL) {

kernelDispName = XDisplayName(NULL);
}
if (kernelPasswd == NULL) {

kernelPasswd = SHASTRAPASSWORD;
}
registerinit();
kernFrontsinit();
sesmFrontsinit();
mplexRegisterErrHandler(closedChannelCleanUpHandler);

Page5of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1909

sesMgr.c 7/5/11 2:57 PM

#ifdef SHASTRA4SUNS
if (sysinfo(SI_HOSTNAME,kernelHostName, MAXNAMELEN) < 0) {

perror("sysinfo()");
strcpy(kernelHostName, "anonymous.cs.purdue.edu");

}
#else

if (gethostname(kernelHostName, MAXNAMELEN) != 0) {
perror("gethostname()");
strcpy(kernelHostName, "anonymous.cs.purdue.edu");

}

#end if
if ((pHostEnt = gethostbyname(kernelHostName))

perror("gethostbyname()");
return 0;

}

NULL) {

memcpy(&itemp, pHostEnt->h_addr_list[0], sizeof(unsigned int));
kerneliPAddr = ntohl(itemp);

l*kerneliPAddr = *(unsigned long *) &pHostEnt->h_addr _list [0] [0] ;*I
auid = getuid();
apass = getpwuid(auid);
strcpy(kernelUserName,apass->pw_name);

* printf("name : %s\n",kernelHostName);
*I

serverCmdData.pCmdTab = serverCommandTab;
serverCmdData.nCmds = serverNCmds;
serverCmdData.pCmdTabin =NULL;
serverCmdData.nCmdsin = 0;

if ((kernelPortNum = cmOpenServerSocket(TESTSESM_SERVICE_NAME, 0,

}

&serverCmdData, &shastraServiceSocket, NULL)) == -1) {
I* OpenServerSocket registers the handler *I
fprintf(stderr, "main()->Server Start-up error!\n Quitting!\n");
exit(-1);

cmJoinCmdData(&serverCmdData, pCollCmdData);
I* add sesm-specific commands to table *I

getRegisterinfo(&kernelShastraid);

wgMainCmdShell = createMainCmdShell(wgParent);

I* connect to kernel *I

for (i = 0; i < 3; i++) { I* max 3 tries *I
shastraServerStatus = cmClientConnect2Server(kernelHostName,

SHASTRA_SERVICE_NAME, 0, &mainKernClntSocket);
if ((shastraServerStatus == -1) && (errno == ECONNREFUSED)) {

I* problem .. maybe no kernel *I
sName = resolveNameFrom2Bases(pSesMgrAppData->sDirBase,

pSesMgrAppData->sDirBin, pSesMgrAppData->sLocStart);
startShastraKernel(&kernelShastraid, sName);

Page6of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1910

sesMgr.c

}

} else {
break;

}

7/5/11 2:57 PM

if (shastraServerStatus == -1) {

}

fprintf(stderr, "main()--No Server .. Quitting! !\n");
exit(-1);

kernelCmdData.pCmdTab = kernelCmdTab;
kernelCmdData.nCmds = kernelNCmds;
kernelCmdData.pCmdTabin = kernelinCmdTab;
kernelCmdData.nCmdsin = kernelinNCmds;

pHostMainKern->fdSocket = mainKernClntSocket;
pHostMainKern->sendList = listMakeNew();
pHostMainKern->recvList = listMakeNew();
pHostMainKern->fStatus = shaWait2Send;

I* register handler *I
if (mplexRegisterChannel(pHostMainKern->fdSocket, shaClientHandler,

}

&kernelCmdData, NULL) == -1) {
fprintf(stderr, "main()->Couldn't Register Client Handler! !\n");
pHostMainKern->fStatus = shaError;
return (0) ;

mplexSetHostData(pHostMainKern->fdSocket, pHostMainKern);
I* after connecting,setting up handler *I
setShaSesmidOprn(0); I* register ID with MainKernel *I
I* NOW invite collab participants *I

fprintf(stderr, "in session manager!\n");
if (sesMgrStartidTags.shastraidTags_len > 0) {

collStartTellJoinOprn(0);

}

for (i = 1; i < sesMgrStartidTags.shastraidTags_len; i++) {
I* not from 0; 0 is chief of collab *I
if(kernelFAutoJoin){

}

collStartTellJoinOprn(i);
}
else{

collStartinviteJoinOprn(i);
}

I* identify front index *I
iSesMgrFrontindex =

locateSesmFronts((shastraidTag *) & kernelShastraid.lSIDTag);
if (iSesMgrFrontindex != -1) {

fprintf(stderr, "main()->locateSesmFronts() already has index %d!\
n",
iSesMgrFrontindex);

} else {
iSesMgrFrontindex = occupySmFrFreeSlot(

(shastraidTag *) & kernelShastraid.lSIDTag);

Page7of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1911

sesMgr.c

}

7/5/11 2:57 PM

}
pSesmFrontCD = getSesMgrCntlData((shastraidTag *)& kernelShastraid.

lSIDTag);
pShastraFrontidTags = getSesmFrontSidTags((shastraidTag *)

& kernelShastraid.lSIDTag);
pShastraFrontPermTags = getSesmFrontPermTags((shastraidTag *)

& kernelShastraid.lSIDTag);
pSesMgrCollData = (collabData *) malloc(sizeof(collabData));
memset(pSesMgrCollData, 0, sizeof(collabData));
pSesMgrCollData->pShminfoOut = shminfoCreate();
if (setSesMgrData((shastraidTag *) & kernelShastraid. lSIDTag,

(char*) pSesMgrCollData) < 0) {
fprintf(stderr, "main()->couldn't setSesMgrData!\n");

}
iKernelFrontindex = locateKernFronts(&kernelShastraid);
if (iKernelFrontindex != -1) {

fprintf(stderr, "main()->locateKernFronts() already has index %d!\
n",
iKernelFrontindex);

} else {
iKernelFrontindex = occupyKrFrFreeSlot(&kernelShastraid);

}
pShastraFrontids = getKernFrontSids(&kernelShastraid);
I* initially empty fronts *I
pShastraFrontids->shastraids_len = 0;
pShastraFrontids->shastraids_val =

(shastraid_P *) malloc(mplexGetMaxChannels() * sizeof(shastraid_P))

pShastraFrontids = (shastraids *)malloc(sizeof(shastraids));
pShastraFrontids->shastraids_len = 0;
pShastraFrontids->shastraids_val =

(shastraid_P *) malloc(mplexGetMaxChannels() * sizeof(shastraid P))

if (rgsbShastraFront !=NULL) {
strlistDestroy(rgsbShastraFront);

}
rgsbShastraFront = pSids2StrTab(pShastraFrontids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

return(wgMainCmdShell);

int
getRegisterinfo(pSid)

shastraid *PSid;
{

pSid->liPAddr = kerneliPAddr;

Page8of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1912

sesMgr.c

}

I*

printf("%lu (%lx) -- %s\n", pSid->liPAddr, pSid->liPAddr,
ipaddr2str(pSid->liPAddr));

pSid->lSIDTag = (kerneliPAddr << 16) + getpid();
I* for sesMgrs pid+IPAddr is thier tag *I

pSid->dLoadAvg = 0;

pSid->nmHost = strdup(kernelHostName);
pSid->nmDisplay = strdup(kernelDispName);
pSid->nmApplicn = strdup(kernelAppName);
pSid->nmUser = strdup(kernelUserName);
pSid->webname = strdup(kernelUserName);
pSid->nmPasswd = strdup(kernelPasswd);

pSid->iPort = kernelPortNum;

pSid->iProcid = getpid();

if (debug) {
outputid(stdout, pSid);

}
return (0) ;

* Function
*I

void
showinfo(s)

{

}

char *S;

static XmTextPosition currentPosn;
outputTextToWidget(s, wgStatusText, ¤tPosn);
I*
* fprintf(stdout, "%s", s);
*I

int
cmdlineUsage(argv)

{

}

int

char **argv;

fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, " where options are:\n");
fprintf(stderr, " -display <display name>\n");
fprintf(stderr," -help\n");
fprintf(stderr," -nogui\n");
fprintf(stderr, " -passwd <password>\n");
exit(l);

7/5/11 2:57 PM

Page9of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1913

sesMgr.c

getCmdlineArgs(argc 1 argv)

{

int argc;
char **argv;

int
int

i;
j ;

I* allocate space for cmdline arg tags *I
kernelPerms = 0 I

SHASTRA_PERM_ACCESS I
SHASTRA_PERM_BROWSE I
SHASTRA_PERM_MODIFY;

sesMgrStartidTags.shastraidTags_len = 0;
sesMgrStartidTags.shastraidTags_val = (shastraidTag *) malloc(

sizeof(shastraidTag) * mplexGetMaxChannels());
memset(sesMgrStartidTags.shastraidTags_val 1 01

sizeof(shastraidTag) * mplexGetMaxChannels());
sesMgrStartPermTags.shastraidTags_len = 0;
sesMgrStartPermTags.shastraidTags_val = (shastraidTag *) malloc(

sizeof(shastraidTag) * mplexGetMaxChannels());
memset(sesMgrStartPermTags.shastraidTags_val 1 01

sizeof(shastraidTag) * mplexGetMaxChannels());

for (i = 1; i < argc; i++) {
if (! strcmp("-display" I argv[i]))

if (++i >= a rgc)
cmdlineUsage(argv);

kernelDispName = argv[i];
continue;

}
if (! strcmp("-help" 1 argv[i])) {

cmdlineUsage(argv);
}
if (! st rcmp ("-nogui" 1 argv[i])) {

kernelFNoGUI = 1;
continue;

}
if (! st rcmp ("-auto" 1 argv[i])) {

kernelFAutoJoin = 1;
continue;

}
if (!strcmp("-idtag" 1 argv[i])) {

if (++i >= argc)
cmdlineUsage(argv);

kernelidTag = atoi(argv[i]);
continue;

}
if (!strcmp("-perms" 1 argv[i])) {

if (++i >= argc)
cmdlineUsage(argv);

kernelPerms = atoi(argv[i]);
continue;

}

{

7/5/11 2:57 PM

Page 10 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1914

sesMgr.c

}

if (!strcmp("-passwd", argv[i])) {
if (++i >= argc)

cmdlineUsage(argv);
kernelPasswd = argv[i];
continue;

}
if (!strcmp("-tags", argv[i])) {

for (j = 0; a rg c > (i + j + 1) ; j ++) {

}

I*
*will fail for negative tags!!. tags
* shouldn't be negative
*I

if (*a rgv [i + j + 1] ! = '- •) {
sscanf(argv[i + j + 1], "%lu",

&sesMgrStartidTags.shastraidTags_val[j]);
} else {

break;
}

7/5/11 2:57 PM

sesMgrStartidTags.shastraidTags_len = j;
sesMgrStartidTags.shastraidTags_val = (shastraidTag *) realloc(

sesMgrStartidTags.shastraidTags_val,
sizeof(shastraidTag) * j);

}

}

if (debug) {
outputidTags(stderr, &sesMgrStartidTags);

}
i = i + j;
continue;

if (!strcmp("-type", argv[i])) {
if (++i >= argc)

cmdlineUsage(argv);
kernelCollType = argv[i];
continue;

}
cmdlineUsage(argv);

sesMgrStartPermTags.shastraidTags_len =
sesMgrStartidTags.shastraidTags_len;

sesMgrStartPermTags.shastraidTags_val[0] = kernelPerms 1

(SHASTRA_PERM_GRANT I SHASTRA_PERM_COPY);
for (i = 1; i < sesMgrStartidTags.shastraidTags_len; i++) {

sesMgrStartPermTags.shastraidTags_val[i] = kernelPerms;
}
sesMgrStartPermTags.shastraidTags_val = (shastraidTag *) realloc(

sesMgrStartPermTags.shastraidTags_val,
sizeof(shastraidTag) * sesMgrStartPermTags.shastraidTags_len);

return(0);

void
registerCollabTerminateFunc(func)

Page 11 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1915

sesMgr.c

{

}

void

collabTerminateFunc = func;

void
registerCollabJoinFunc(func)

{

}

void (*func) ();

collabJoinFunc = func;

void
registerCollabLeaveFunc(func)

{

}

void (*func) ();

collabLeaveFunc = func;

void
registerCollabRemoveFunc(func)

{

}

void (*func) ();

collabRemoveFunc = func;

shastraid *
getMySesMgrShastraid()
{

}

if(pSesMgrAppData){
return pSesMgrAppData->pSidSelf;

}
else{

return NULL;
}

shaSesMgrAppData *
getMySesMgrAppData()
{

return pSesMgrAppData;
}

static char *GetShastraBaseDir()
{

char *dname;

if (dname = getenv("SHASTRADIR"))
{

}
else

return (dname);

7/5/11 2:57 PM

Page 12 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1916

sesMgr.c

}

{
dname = strdup(DEFSHASTRABASEDIR);

}
return(dname);

7/5/11 2:57 PM

Page 13 of 13
Petitioner Microsoft Corporation, Ex. 1002, p. 1917

sesMgr_client.c 7/5/11 2:56 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>

#include <shastralutilsllist.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslstrlistUtilities.h>
#include <shastraluitoolslcallbackArg.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>

#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastraldatacommlshastraDataH.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFronts.h>

#include <shastralkernellkernel_server.h>

#include <shastralsessionlsesMgr.h>
#include <shastralsessionlsesMgr_client.h>

#define checkConn() \
if (pHostMainKern->fStatus == shaError) { \

fprintf(stderr,"Connection to Shastra is bad!\n"); \

Page 1 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1918

sesMgr_client.c 7/5/11 2:56 PM

return; \
}

#define sendReqString(s, arg) \
if(hostSendQueuedRequest(pHostMainKern, s, arg) == -1){ \

pHostMainKern->fStatus = shaError; \
fprintf(stderr,"Error in Sending Shastra Operation Request\n"); \
return; \

}

#define Shastraidin(filedesc, pShaid) \
if(shastraidin(pHostMainKern->fdSocket, pShaid) == -1){ \

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Receiving SID from Kernel\n"); \
return;\

}

#define ShastraidOut(filedesc, pShaid) \
if(shastraidOut(pHostMainKern->fdSocket, pShaid) == -1){ \

}

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Sending SID to Kernel\n"); \
return; \

#define Shastraidsin(filedesc, pShaids) \
if(shastraidsin(pHostMainKern->fdSocket, pShaids) == -1){ \

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Receiving SIDs from Kernel\n"); \
return; \

}

#define ShastraidsOut(filedesc, pShaids) \
if(shastraidsOut(pHostMainKern->fdSocket, pShaids) == -1){ \

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Sending SIDs to Kernel\n"); \
return; \

}

#define ShastraidTagin(filedesc, pShaidTag) \
if(shastraidTagin(pHostMainKern->fdSocket, pShaidTag) == -1){ \

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Receiving SIDTag from Kernel\n");\
return; \

}

#define ShastraidTagOut(filedesc, pShaidTag) \
if(shastraidTagOut(pHostMainKern->fdSocket, pShaidTag) -1){ \

Page2of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1919

sesMgr_client.c 7/5/11 2:56 PM

}

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Sending SIDTag to Kernel\n"); \
return;\

#define ShastraidTagsin(filedesc, pShaidTags) \
if(shastraidTagsin(pHostMainKern->fdSocket, pShaidTags) -1){ \

}

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Receiving SIDTags from Kernel\n");\
return;\

#define ShastraidTagsOut(filedesc, pShaidTags) \
if(shastraidTagsOut(pHostMainKern->fdSocket, pShaidTags) -1){\

}

pHostMainKern->fStatus = shaError;\
closedChannelCleanUpHandler(pHostMainKern->fdSocket);\
fprintf(stderr, "Error Sending SIDTags to Kernel\n"); \
return; \

#define ShastraULongin(filedesc, pULong) \
if(shaULongin(pHostMainKern->fdSocket, pULong) -1){ \

}

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);

\
fprintf(stderr, "Error Receiving pULong from kernel\n");
return; \

#define ShastraULongOut(filedesc, pULong) \
if(shaULongOut(pHostMainKern->fdSocket, pULong) -1){ \

}

pHostMainKern->fStatus = shaError;
closedChannelCleanUpHandler(pHostMainKern->fdSocket);

\
fprintf(stderr, "Error Sending pULong to Kernel\n"); \
return; \

extern int debug;

I*
* Function
*I

void
endSystemOprn(iObjindex)

{
int iObjindex;

shastraids
shastraid

*PSids;
*PSid;

\

\

\

Page3of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1920

sesMgr_client.c 7/5/11 2:56 PM

}

I*

pSids = getKernFrontSids(&kernelShastraid);
pSid = pSids->shastraids_val[iObjindex];
if (debug) {

outputid(stdout, pSid);
}
if (strcmp(pcbArgPopup->argBuffer, pSid->nmPasswd)) {

I* passwd mismatch *I

}

sprintf(sbOutMsgBuf, "Kill()->Password Incorrect-- Aborted\n");
showinfo(sbOutMsgBuf);
return;

checkConn();
sendReqString(REQ_END_SYSTEM, NULL);
ShastraidOut(pHostMainKern->fdSocket, pSid);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
setShaSesmidOprn(i)

{

}

I*

int i;

checkConn();
sendReqString(REQ_SET_SHASESMID, NULL);
ShastraidOut(pHostMainKern->fdSocket, &kernelShastraid);
printf("%s\n", pSid2Str(&kernelShastraid, PSIDSHOWALL));
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
setShaSesmFridOprn(i)

int i;
{

checkConn();
sendReqString(REQ_SET_SHASESMFRID, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, & kernelShastraid. lSIDTag);
ShastraidTagsOut(pHostMainKern->fdSocket, pShastraFrontidTags);
ShastraidTagsOut(pHostMainKern->fdSocket, pShastraFrontPermTags); I*

}

I*

perms *I
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void

Page4of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1921

sesMgr_client.c

getShaKernidOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_GET_SHAKERNID, NULL);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
getShaKernFridOprn(iObjindex)

{

}

I*

int iObjindex;

shast raid *PSid;

checkConn();
sendReqString(REQ_GET_SHAKERNFRID, NULL);
pSid = shastraKernids.shastraids_val[iObjindex];
ShastraidOut(pHostMainKern->fdSocket, pSid);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
getShaSesmidOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_GET_SHASESMID, NULL);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
getShaSesmFridOprn(iObjindex)

{
int iObjindex;

shastraidTag *PSidTag;

pSidTag = & shastraSesmids.shastraids_val[iObjindex]->lSIDTag;
if (*pSidTag == kernelShastraid.lSIDTag) {

I* don't want to send request for myself *I
return;

}
checkConn();

7/5/11 2:56 PM

Page5of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1922

sesMgr_client.c 7/5/11 2:56 PM

}

I*

sendReqString(REQ_GET_SHASESMFRID, (char*) NULL);
ShastraidTagOut(pHostMainKern->fdSocket, pSidTag);
printf("%s\n", pSidTag2Str(pSidTag, 0));
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
collStartinviteJoinOprn(iObjindex)

{
int iObjindex;

I* works off the start list *I
checkConn();

fprintf(stderr, "Invite Join!\n");
sendReqString(REQ_COLL_INVITEJOIN, NULL);

ShastraidTagOut(pHostMainKern->fdSocket, & kernelShastraid.lSIDTag)

}

I*

ShastraidTagOut(pHostMainKern->fdSocket,
&sesMgrStartidTags.shastraidTags_val[iObjindex]);

ShastraidTagOut(pHostMainKern->fdSocket,
&sesMgrStartidTags.shastraidTags_val[0]); /*leader*/

ShastraidTagOut(pHostMainKern->fdSocket,
&sesMgrStartPermTags.shastraidTags_val[iObjindex]);

cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
collStartTellJoinOprn(iObjindex)

{
int iObjindex;

I* works off the start list *I
checkConn();

fprintf(stderr, "IN session manager Sending: REQ_COLL_TELL_JOIN\n");
sendReqString(REQ_COLL_TELLJOIN, NULL);
ShastraidTagOut(pHostMainKern->fdSocket, & kernelShastraid. lSIDTag);
ShastraidTagOut(pHostMainKern->fdSocket,

}

I*

&sesMgrStartidTags.shastraidTags_val[iObjindex]);
ShastraidTagOut(pHostMainKern->fdSocket,

&sesMgrStartPermTags.shastraidTags_val[iObjindex]);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void

Page6of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1923

sesMgr_client.c 7/5/11 2:56 PM

collTellJoinOprn(pSmSidTag, pSidTag, pPermTag)
shastraidTag *PSmSidTag;

{

}

I*

shastraidTag *PSidTag;
shastraidTag *PPermTag;

checkConn();
sendReqString(REQ_COLL_TELLJOIN, NULL);
ShastraidTagOut(pHostKernel->fdSocket, pSmSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pSidTag);
ShastraidTagOut(pHostKernel->fdSocket, pPermTag);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
helpOprn(iObjindex)

{

}

I*

int iObjindex;

checkConn();
sendReqString(REQ_HELP, NULL);
cmFlush(pHostMainKern->fdSocket);

* Function
*I

void
quitOprn(iObjindex)

{

}

I*

int iObjindex;

extern collabData *PSesMgrCollData;

if (pHostMainKern->fStatus != shaError) {
sendReqString(REQ_QUIT, NULL);
cmFlush(pHostMainKern->fdSocket);

}
shMemFree(pSesMgrCollData->pShminfoOut);
mplexUnRegisterChannel(pHostMainKern->fdSocket);
exit(0);

* Function
*I

int
endSystemRespHandler(fd)

{
int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_SYSTEM);
showinfo(sbOutMsgBuf);

Page7of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1924

sesMgr_client.c

}

I*
* Function
*I

int
getShastraidRespHandler(fd)

{

}

int fd;

Shastraidsin(fd, &shastraSysids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASTRAID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraSysids);
}
if (rgsbShastraSys !=NULL) {

strListDestroy(rgsbShastraSys);
}
rgsbShastraSys = pSids2StrTab(&shastraSysids, PSIDSHOWALL);
chooseOneChangeList(pcoShastraSys, rgsbShastraSys,

coNoinitialHighlight);

* Function
*I

int
getShaKernidRespHandler(fd)

{

}

I*

int fd;

Shastraidsin(fd, &shastraKernids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHAKERNID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraKernids);
}
if (rgsbShastraKern !=NULL) {

strListDestroy(rgsbShastraKern);
}
rgsbShastraKern = pSids2StrTab(&shastraKernids, PSIDNMHOST);
chooseOneChangeList(pcoShastraKern, rgsbShastraKern,

coNoinitialHighlight);

adjustKrFrMapSize(shastraKernids.shastraids_len);
I* update map *I
updateKrFrMap(&shastraKernids);

* Function
*I

int

7/5/11 2:56 PM

Page8of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1925

sesMgr_client.c

getShaKernFridRespHandler(fd)

{
int fd;

int iObjindex;
static shastraid inShaid;
static shastraids inShaids;
shastraids *PSids;
int krindex;

Shastraidin(fd, &inShaid);
krindex = locateKernFronts(&inShaid);
if (krindex == -1) {

7/5/11 2:56 PM

fprintf(stderr, "getShaKernFridRespHandler()->can't locate kernel\
n");

}

I*

}

Shastraidsin(fd, &inShaids);
return -1;

pSids = getKernFrontSids(&inShaid);
Shastraidsin(fd, pSids);
sprintf(sbOutMsgBuf, "Done-- %s\n",
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, pSids);
}

REQ GET SHAKERNFRID); - -

* Function
*I

int
getShaSesmidRespHandler(fd)

{

}

int fd;

Shastraidsin(fd, &shastraSesmids);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASESMID);
showinfo(sbOutMsgBuf);
if (debug) {

outputids(stderr, &shastraSesmids);
}
if (rgsbShastraSesMgr !=NULL) {

strListDestroy(rgsbShastraSesMgr);
}
rgsbShastraSesMgr = pSids2StrTab(&shastraSesmids, PSIDNMHOST);
chooseOneChangeList(pcoShastraSesMgr, rgsbShastraSesMgr,

coNoinitialHighlight);
adjustSmFrMapSize(shastraSesmids.shastraids_len);
I* update map *I
updateSmFrMap(&shastraSesmids);

Page9of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1926

sesMgr_client.c

* Function
*I

int
setShaSesmidRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASESMID);
showinfo(sbOutMsgBuf);

* Function
*I

int
getShaSesmFridRespHandler(fd)

{
int fd;

int smindex;
static shastraidTag inShaidTag;
static shastraidTags inShaidTags;
shastraidTags *PSidTags;
shastraidTags *PPermTags;

ShastraidTagin(fd, &inShaidTag);
if (inShaidTag == kernelShastraid.lSIDTag) {

}

I* don't want to accept info of myself *I
ShastraidTagsin(fd, &inShaidTags); I* tags *I
ShastraidTagsin(fd, &inShaidTags); I* perms *I
return 0;

smindex = locateSesmFronts(&inShaidTag);
I* vaildity check *I
if (smindex == -1) {

7/5/11 2:56 PM

fprintf(stderr, "getShaSesmFridRespHandler()->can't locate sesMgr!\

}

I*

}

n");
ShastraidTagsin(fd, &inShaidTags); I* tags *I
ShastraidTagsin(fd, &inShaidTags); I* perms *I
return -1;

pSidTags = getSesmFrontSidTags(&inShaidTag);
ShastraidTagsin(fd, pSidTags);
pPermTags = getSesmFrontPermTags(&inShaidTag);
ShastraidTagsin(fd, pPermTags);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SHASESMFRID);
showinfo(sbOutMsgBuf);
if (debug) {

}

outputidTag s (s tde r r, pSidTag s);
outputidTags(stderr, pPermTags);

* Function

Page 10 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1927

sesMgr_client.c

*I
int
setShaSesmFridRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SHASESMFRID);
showinfo(sbOutMsgBuf);

* Function
*I

int
helpRespHandler(fd)

int fd;
{

standardHelpRespHandler(fd);
I* actually receive help info *I
sprintf(sbOutMsgBuf, "Done %s\n", REQ HELP);
showinfo(sbOutMsgBuf);

}

I*
* Function
*I

int
quitRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_QUIT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collinviteJoinRespHandler(fd)

{

}

I*

int fd;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_INVITEJOIN);
showinfo(sbOutMsgBuf);

* Function
*I

int
collTellJoinRespHandler(fd)

int fd;
{

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_TELLJOIN);

7/5/11 2:56 PM

Page 11 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1928

sesMgr_client.c

showinfo(sbOutMsgBuf);
}

I*
* Function
*I

int
collTellJnRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shast raid
int

sidTag;
smSidTag;

*PSid;
outFd;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);

pSid = getSidByTaginSids(&sidTag, pShastraFrontids);
if (pSid == NULL) {

}

fprintf(stderr, "collTellJoinHandler()-> no such client!!\n");
return;

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

7/5/11 2:56 PM

fprintf(stderr, "collTellJoinHandler()-> no channel for client! !\n"
) ;

return;
}
putCollTellJoinHandler(outFd, &smSidTag, &sidTag);

}

I*

sprintf(sbOutMsgBuf, "Done
showinfo(sbOutMsgBuf);

* Function
*I

int
collAskJnRespHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shastraid
int

sidTag;
smSidTag;
permsTag;

*PSid;
outFd;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
permsTag = 0xff;
I*

%s\n", REQ_COLL_ TELLJ DIN);

* pSidTagHead = &sesMgrStartidTags.shastraidTags_val[0]; pSidTagHead

Page 12 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1929

sesMgr_client.c

* = &pShastraFrontids->shastraids_val[0]->lSIDTag;
*I

I* CHECK actually explicitly store the head honcho *I
if (pShastraFrontids->shastraids_len == 0) {

collTellJoinOprn(&smSidTag, &sidTag, &permsTag);
} else { I* have someone *I

pSid = pShastraFrontids->shastraids_val[0];
outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

7/5/11 2:56 PM

fprintf(stderr, "collAskJnHandler()-> no channel for client!!\
n");

}

I*

return;
}
putCollAskJoinHandler(outFd, &smSidTag, &sidTag);

}

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_ASKJOIN);
showinfo(sbOutMsgBuf);

* Function
*I

int collAskJoinMsgRespHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
shast raid
char *SMsg;
int outFd;

idtag, display
smSidTag;
sidTag;
toSidTag;

*PSid;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/

recvd message *I

if (pShastraFrontids->shastraids_len != 0) {
pSid = pShastraFrontids->shastraids_val[0];
toSidTag = pSid->lSIDTag;

switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}
}

"collAskJoinMsgRespHandler()")) {
case route_FRONT:

putCollAskJoinMsgHandler(outFd, &smSidTag, &sidTag, sMsg);
break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJOINMSG);
showinfo(sbOutMsgBuf);

Page 13 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1930

sesMgr_client.c

}

* Function
*I

int collAskJnRespMsgRespHandler(fd)

{

}

int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
shast raid
char *SMsg;
int outFd;

idtag, display
smSidTag;
sidTag;
toSidTag;

*PSid;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);
ShastraidTagin(fd, &sidTag);
sMsg = cmReceiveString(fd);
/*handle*/

recvd message *I

if (pShastraFrontids->shastraids_len != 0) {
pSid = pShastraFrontids->shastraids_val[0];
toSidTag = pSid->lSIDTag;

switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}
}

"collAskJnRespMsgRespHandler()")){
case route_FRONT:

putCollAskJnRespMsgHandler(outFd, &smSidTag, &toSidTag,
&sidTag, sMsg);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJNRESPMSG);
showinfo(sbOutMsgBuf);

* Function
*I

int collAskJnStatusRespHandler(fd)

{
int fd;

I* receive sesm
shastraidTag
shastraidTag
shastraidTag
shast raid
shaULong
int outFd;

idtag, display
smSidTag;
sidTag;
toSidTag;

*PSid;
lStatus;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &toSidTag);

recvd status *I

7/5/11 2:56 PM

Page 14 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1931

sesMgr_client.c

}

ShastraidTagin(fd, &sidTag);
ShastraULongin(fd, &lStatus);
/*handle*/
if (pShastraFrontids->shastraids_len != 0) {

pSid = pShastraFrontids->shastraids_val[0];
toSidTag = pSid->lSIDTag;

switch(routeFrontSidTagToFd(&toSidTag, &outFd,

}
}

"collAskJnStatusRespHandler()")){
case route_FRONT:

putCollAskJnStatusHandler(outFd, &smSidTag, &toSidTag,
&sidTag, lStatus);

break;
case route_ERROR:
default:
break;

sprintf(sbOutMsgBuf, "Done (in) -- %s\n", REQ_COLL_ASKJNSTATUS);
showinfo(sbOutMsgBuf);

7/5/11 2:56 PM

Page 15 of 15
Petitioner Microsoft Corporation, Ex. 1002, p. 1932

sesMgr _server. c 7/5/11 2:57 PM

I**
***I

I**
***I

**I
I** This SHASTRA software is not in the Public Domain. It is distributed on

**I
I** a person to person basis, solely for educational use and permission is

**I
I** NOT granted for its transfer to anyone or for its use in any commercial

**I
I** product. There is NO warranty on the available software and neither

**I
I** Purdue University nor the Applied Algebra and Geometry group directed

**I
I** by C. Bajaj accept responsibility for the consequences of its use.

**I

**I
I**

***I
I**

***I
#include <stdio.h>
#include <syslerrno.h>

#include <shastralshastra.h>

#include <shastralutilslhash.h>

#include <shastraluitoolslchooseOne.h>
#include <shastraluitoolslchooseMany.h>
#include <shastraluitoolslcallbackArg.h>

#include <shastralnetworklserver.h>
#include <shastralnetworklmplex.h>
#include <shastralnetworklhostMgr.h>
#include <shastralnetworklsharedMem.h>

#include <shastraldatacommlshastraDataH.h>
#include <shastraldatacommlshastraidH.h>
#include <shastraldatacommlshastraidTagH.h>
#include <shastraldatacommlvideoimgH.h>
#include <shastraldatacommlaudioBiteH.h>
#include <shastraldatacommlpictDataH.h>
#include <shastraldatacommlxsCntlDataH.h>
#include <shastraldatacommlipimage.h>

#include <shastralshautilslshautils.h>
#include <shastralshautilslkernelFronts.h>
#include <shastralshautilslsesMgrFrontsP.h>
#include <shastralshautilslsesMgrFronts.h>

Page 1 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1933

sesMgr_server.c 7/5/11 2:57 PM

#include <shastra/session/sesMgr.h>
#include <shastra/session/sesMgrMainCB.h>
#include <shastra/session/sesMgr_server.h>
#include <shastra/session/sesMgr_client.h>

#define USESHAREDMEM
extern int debug;
extern collabData *PSesMgrCollData;
extern sesmFronts *PSesmFrontCD;
collabCommData *PTextCommData;

#define putSt ringOnChannel (filed esc 1 reqst r 1 funcst r) \
if (cmSendString(filedesc 1 reqstr) == -1) { \

fprintf(stderr 1 "%s :Error Sending to %d\n" 1 funcstr 1 filedesc);
\

closedChannelCleanUpHandler(filedesc); \
return; \

}

#define sendDataString(fd 1 s) \
if(cmSendString(fd 1 s) -1){ \

}

fprintf(stderr 1 "Error in Sending
closedChannelCleanUpHandler(fd);
return;

Operation Data\n");
\

#define Shastraidin(filedesc 1 pShaid) \
if(shastraidin(filedesc 1 pShaid) == -1){ \

\

fprintf(stderr 1 "Error Receiving SID from
closedChannelCleanUpHandler(filedesc);
return;

%d\n" 1 filedesc); \
\

}

#define ShastraidOut(filedesc 1 pShaid) \
if(shastraidOut(filedesc 1 pShaid) == -1){ \

fprintf(stderr 1 "Error Sending SID to %d\n" 1

closedChannelCleanUpHandler(filedesc);
return;

}

#define Shastraidsin(filedesc 1 pShaids) \

\

filedesc); \
\

\

if(shastraidsin(filedesc 1 pShaids) == -1){ \
fprintf(stderr 1 "Error Receiving SIDs from %d\n" 1

closedChannelCleanUpHandler(filedesc);
filedesc);

\
return; \

}

#define ShastraidsOut(filedesc 1 pShaids) \
if(shastraidsOut(filedesc 1 pShaids) == -1){ \

fprintf(stderr 1 "Error Sending SIDs to %d\n" 1

closedChannelCleanUpHandler(filedesc);
filedesc);

\
\

\

\

Page 2 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1934

sesMgr _server. c

return; \
}

#define ShastraidTagin(filedesc, pShaidTag) \
if(shastraidTagin(filedesc, pShaidTag) == -1){ \

fprintf(stderr, "Error Receiving SID from %d\n",
closedChannelCleanUpHandler(filedesc);

filedesc); \
\

return; \
}

#define ShastraidTagOut(filedesc, pShaidTag) \
if(shastraidTagOut(filedesc, pShaidTag) == -1){ \

fprintf(stderr, "Error Sending SID to %d\n", filedesc); \
closedChannelCleanUpHandler(filedesc); \
return; \

}

#define ShastraidTagsin(filedesc, pShaidTags) \
if(shastraidTagsin(filedesc, pShaidTags) == -1){ \

}

fprintf(stderr, "Error Receiving SIDs from %d\n",
closedChannelCleanUpHandler(filedesc);
return; \

#define ShastraidTagsOut(filedesc, pShaidTags) \

filedesc);
\

if(shastraidTagsOut(filedesc, pShaidTags) == -1){
fprintf(stderr, "Error Sending SIDs to %d\n",
closedChannelCleanUpHandler(filedesc);
return;

\
filedesc);

\
\

}

#define Videoimgin(filedesc, pVImg) \
if(videoimgin(filedesc, pVImg) == -1){ \

fprintf(stderr, "Error Receiving VImg from %d\n",
closedChannelCleanUpHandler(filedesc);
return; \

}

#define VideoimgOut(filedesc, pVImg) \

filedesc);
\

if(videoimgOut(filedesc, pVImg) == -1){ \
fprintf(stderr, "Error Sending VImg to %d\n",
closedChannelCleanUpHandler(filedesc);
return;

filedesc);
\

\
}

#define AudioBitein(filedesc, pABite) \
if(audioBitein(filedesc, pABite) == -1){ \

\

\

fprintf(stderr, "Error Receiving ABite from %d\n",
closedChannelCleanUpHandler(filedesc);

filedesc);
\

return; \
}

7/5/11 2:57 PM

\

\

\

Page 3 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1935

sesMgr _server. c 7/5/11 2:57 PM

#define AudioBiteOut(filedesc, pABite) \
if(audioBiteOut(filedesc, pABite) == -1){ \

fprintf(stderr, "Error Sending ABite to %d\n",
closedChannelCleanUpHandler(filedesc);
return;

}

#define ImageDatain(filedesc, pimage) \
\

filedesc);
\

\

\

if(ipimageDatain(filedesc, pimage) == -1){
fprintf(stderr, "Error Receiving image
closedChannelCleanUpHandler(filedesc);
return;

from %d\n",
\

filedesc); \

}

#define ImageDataOut(filedesc, pimage) \
if(ipimageDataOut(filedesc, pimage) == -1){ \

fprintf(stderr, "Error Sending image to %d\n",
closedChannelCleanUpHandler(filedesc);
return;

}

#define ShastraULongOut(filedesc, pULong)
if(shaULongOut(filedesc, pULong) == -1){ \

fprintf(stderr, "Error Sending pULong to
closedChannelCleanUpHandler(filedesc);
return;

}

#define ShastraULongin(filedesc, pULong)

\

%d\n",
\

\

\

filedesc); \
\

\

filedesc);

\

if(shaULongin(filedesc, pULong) == -1){ \
fprintf(stderr, "Error Receiving pULong
closedChannelCleanUpHandler(filedesc);
return;

from %d\n",
\

filedesc);

}

#define ShastraintOut(filedesc, pint)
if(shaintOut(filedesc, pint) == -1){ \

fprintf(stderr, "Error Sending pint to
closedChannelCleanUpHandler(filedesc);
return;

}

\

%d\n",
\

#define Shastraintin(filedesc, pint) \
if(shaintin(filedesc, pint) == -1){ \

\

filedesc); \

\

\

fprintf(stderr, "Error Receiving pint from %d\n", filedesc); \
closedChannelCleanUpHandler(filedesc); \
return; \

}

#define PictDataBitesin(filedesc, pPCDatas) \
if(pictPiecesin(filedesc, pPCDatas) == -1){ \

fprintf(stderr, "Error Receiving PCDatas from %d\n", filedesc); \

\

Page 4 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1936

sesMgr _server. c 7/5/11 2:57 PM

}

closedChannelCleanUpHandler(filedesc);
return;

#define PictDataBitesOut(filedesc, pPCDatas)

\
\

\
\ if(pictPiecesOut(filedesc, pPCDatas) == -1){

fprintf(stderr, "Error Sending PCDatas to
closedChannelCleanUpHandler(filedesc);
return;

%d\n", filedesc); \
\

\
}

#define XSCntlBitesin(filedesc, pXSCDatas) \
if(xsCntlDatasin(filedesc, pXSCDatas) == -1){ \

fprintf(stderr, "Error Receiving XSCDatas from %d\n", filedesc);
\

closedChannelCleanUpHandler(filedesc); \
return; \

}

#define XSCntlBitesOut(filedesc, pXSCDatas) \
if(xsCntlDatasOut(filedesc, pXSCDatas) == -1){ \

fprintf(stderr, "Error Sending XSCDatas to %d\n",
closedChannelCleanUpHandler(filedesc);
return; \

}

#define PntrBitein(filedesc, pABite) \

filedesc);
\

if(shaDoublesin(filedesc, pABite) == -1){ \
fprintf(stderr, "Error Receiving PntrB from %d\n",
closedChannelCleanUpHandler(filedesc);

filedesc);
\

return; \
}

#define PntrBiteOut(filedesc, pABite) \
if(shaDoublesOut(filedesc, pABite) == -1){ \

fprintf(stderr, "Error Sending PntrB to %d\n",
closedChannelCleanUpHandler(filedesc);
return;

}

#define CursorBitein(filedesc, pABite) \

filedesc);
\

\

\

\

\

if(shaDoublesin(filedesc, pABite) == -1){ \
fprintf(stderr, "Error Receiving CursorB from %d\n",
closedChannelCleanUpHandler(filedesc);

filedesc); \
\

return; \
}

#define CursorBiteOut(filedesc, pABite)
if(shaDoublesOut(filedesc, pABite) == -1){

fprintf(stderr, "Error Sending CursorB
closedChannelCleanUpHandler(filedesc);
return;

}

\
\

to %d\n", filedesc); \
\

\

Page 5 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1937

sesMgr_server.c 7/5/11 2:57 PM

shaRouteMode
routeFrontSidTagToFd(pSidTag, pFd, nmFunc)

shastraidTag *PSidTag;

{

}

int *Pfd;
char *nmFunc;

shastraid *PSid;
int outFd = -1;
shaRouteMode retVal = route_ERROR;

pSid = getSidByTaginSids(pSidTag, pShastraFrontids);
if (pSid == NULL) {

}

sprintf(sbOutMsgBuf, "%s->Unknown IDTag -- Aborted\n", nmFunc);
showinfo(sbOutMsgBuf);
return retVal;

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

sprintf(sbOutMsgBuf, "%s->Unknown Front-- Aborted\n", nmFunc);
showinfo(sbOutMsgBuf);
return retVal;

}
else{

retVal = route_FRONT;
}

*Pfd = outFd;
return retVal;

helpHandler(fd)

{

}

int fd;

int
char

cmAckOk(fd);

i;
buf[512];

sprintf(buf, "%d\n", serverNCmds);
putSt ringOnChanne l (fd, buf, "he lpHand le r ()");
for (i = 0; i < serverNCmds; i++) {

sprintf(buf, "%s -- %s\n", serverCommandTab[i] .command,
serverCommandTab[i] .helpmsg);

putSt ringOnChanne l (fd, buf, "he lpHand le r ()") ;
}
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_HELP);
showinfo(sbOutMsgBuf);

Page 6 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1938

sesMgr _server. c

terminateHandler(fd)

{

}

int fd;

char

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_TERMINATE);
showinfo(sbOutMsgBuf);
quit0prn(0);

collTerminateHandler(fd)

{
int fd;

int i;

cmAckOk(fd);
cmFlush(fd);

{
int
int

*Pfd;
nfd;

getKrFDsBCast(&pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollLeaveHandler, NULL);
for(i=0;i<nfd;i++){

localShaidin[pfd[i]]. lSIDTag = 0;
}

}
sleep(2);
quit0prn(0);
return 0;

updateShaFrontids(pShastraFrontids);
krFrSids25IdTags(pShastraFrontids, pShastraFrontidTags);
krFrSids2PermTags(pShastraFrontids, pShastraFrontPermTags);

if (rgsbShastraFront !=NULL) {
strListDestroy(rgsbShastraFront);

}
rgsbShastraFront = pSids2StrTab(pShastraFrontids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

if (collabTerminateFunc !=NULL) {
(*collabTerminateFunc) ();

}
setShaSesmFridOprn(0);
sleep(2);
quit0prn(0);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_TERMINATE);
showinfo(sbOutMsgBuf);

7/5/11 2:57 PM

Page 7 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1939

sesMgr _server. c

}

collRemoveHandler(fd)

{
int fd;

int
shast raid
shastraidTag

outFd;
*PSid;

sidTag;

ShastraidTagin(fd, &sidTag);
cmAckOk(fd);
cmFlush(fd);

pSid = getSidByTaginSids(&sidTag, pShastraFrontids);
if (pSid == NULL) {

}

fprintf(stderr, "collRemoveHandler()-> no such client!!\n");
return;

outFd = shaFrontid2Fd(pSid);
if (outFd == -1) {

7/5/11 2:57 PM

fprintf(stderr, "collRemoveHandler()-> no channel for client!!\n");
return;

}

}
putCollLeaveHandler(outFd);

collLeaveCleanUpHandler(outFd);
shaKernFlags[outFd] = 0;
localShaidin[outFd] .lSIDTag = 0;
updateShaFrontids(pShastraFrontids);

if (collabRemoveFunc !=NULL) {
(*collabRemoveFunc) ();

}
sprintf(sbOutMsgBuf, "Done
showinfo(sbOutMsgBuf);

%s\n",

collTellJoinHandler(fd)

{
int fd;

shastraidTag
shastraidTag
shastraidTag
shast raid
int

sidTag;
smSidTag;
permsTag;

*PSid;
outFd;

ShastraidTagin(fd, &smSidTag);
ShastraidTagin(fd, &sidTag);
ShastraidTagin(fd, &permsTag);

cmAckOk(fd);
cmFlush(fd);

REQ COLL REMOVE); - -

Page 8 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1940

sesMgr _server. c 7/5/11 2:57 PM

}

collTellJoinOprn(&smSidTag, &sidTag, &permsTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_TELLJOIN);
showinfo(sbOutMsgBuf);

collJoinHandler(fd)

{
int fd;

shastraid *PSid;
extern shastraidTags *PShastraFrontidTags;
extern unsigned long kernelidTag;
collabFrontData *PCollFrData;

pSid = &localShaidin[fd];
shaKernFlags[fd] = SHAFRONT;
Shastraidin(fd, pSid);
if (debug) {

outputid(stderr, pSid);
}

updateShaFrontids(pShastraFrontids);
krFrSids25IdTags(pShastraFrontids, pShastraFrontidTags);
krFrSids2PermTags(pShastraFrontids, pShastraFrontPermTags);

if (occupySmFrFrontFreeSlot(& kernelShastraid. lSIDTag,
& pSid->lSIDTag) < 0) {

}

fprintf(stderr, "collJoinHandler()->couldn't
occupySmFrFrontFreeSlot!\n");

pCollFrData = (collabFrontData *) malloc(sizeof(collabFrontData));
memset(pCollFrData, 0, sizeof(collabFrontData));
if (getSesMgrFrontData(

& kernelShastraid.lSIDTag,
& pSid-> lSIDTag) ! = NULL) {

fprintf(stderr, "collJoinHandler()->warning .. has SesMgrFrontData!\
n");

}
if (setSesMgrFrontData(& kernelShastraid. lSIDTag,

& pSid-> lSIDTag, (char *) pCo llF rData) < 0) {
fprintf(stderr, "collJoinHandler()->couldn't setSesMgrFrontData!\n"

) ;
}
if (rgsbShastraFront !=NULL) {

strListDestroy(rgsbShastraFront);
}
rgsbShastraFront = pSids2StrTab(pShastraFrontids, PSIDNMHOST

PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

setShaSesmFridOprn(0);
sleep(l);

Page 9 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1941

sesMgr _server. c

if(pSid->lSIDTag

if(pSid->lSIDTag
{

sesMgrStartidTags.shastraidTags_val[0])

pShastraFrontidTags->shastraidTags_val[0])

putCollTellLeaderHandler(fd, &kernelShastraid.lSIDTag,
&pSid->lSIDTag, &kernelidTag);

}
cmAckOk(fd);
cmFlush(fd);

#ifdef WANTTHIS
putShaSesmFridHandler(fd, & kernelShastraid.lSIDTag);
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmFridHandler,

(char*) &kernelShastraid.lSIDTag);

#endif I* WANTTHIS *I

}

if (collabJoinFunc !=NULL) {
(*collabJoinFunc) ();

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_JOIN);
showinfo(sbOutMsgBuf);

collLeaveHandler(fd)

{

}

int fd;

collLeaveCleanUpHandler(fd);

collLeaveCleanUpHandler(fd)

{
int fd;

int fKern;
extern shastraidTags *PShastraFrontidTags;
shastraid *PSid;
collabFrontData *PCollFrData;

pSid = &localShaidin[fd];
shMemDisconnect(mplexinShminfo(fd));
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag,
& pSid->lSIDTag);

if (pCollFrData !=NULL) {
int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
if (pCollFrData->fTextState == COMM_STARTED) {

7/5/11 2:57 PM

Page 10 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1942

sesMgr _server. c

}

}

cmMultiCast(pfd, nfd, putCollEndTextHandler,
(char*) &localShaidin[fd] .lSIDTag);

if (pCollFrData->fAudioState == COMM_STARTED) {
cmMultiCast(pfd, nfd, putCollEndAudioHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
if (pCollFrData->fVideoState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndVideoHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
if (pCollFrData->fPolyState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndPolyHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
if (pCollFrData->fXSCntlState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndXSCntlHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
if (pCollFrData->fPntrState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndPntrHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
if (pCollFrData->fCursorState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndCursorHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
if (pCollFrData->fPictState == COMM_STARTED) {

cmMultiCast(pfd, nfd, putCollEndPictHandler,
(char*) &localShaidin[fd] .lSIDTag);

}
memset(pCollFrData, 0, sizeof(collabFrontData));
free(pCollFrData);

if (setSesMgrFrontData(& kernelShastraid.lSIDTag,
& pSid-> lSIDTag, (char *) NULL) < 0) {

7/5/11 2:57 PM

fprintf(stderr, "collJoinHandler()->couldn't setSesMgrFrontData!\n"
) ;

}
if (freeSmFrFrontSlot(& kernelShastraid. lSIDTag,

& pSid->lSIDTag) < 0) {
fprintf(stderr, "collJoinHandler()->couldn't freeSmFrFrontSlot!\n")

}
fKern = shaKernFlags[fd];
deleteShaidFromTab(fd, pShastraFrontids);
mplexUnRegisterChannel(fd);

krFrSids25IdTags(pShastraFrontids, pShastraFrontidTags);
krFrSids2PermTags(pShastraFrontids, pShastraFrontPermTags);

if (fKern != SHAFRONT) {
fprintf(stderr, "collLeaveCleanUpHandler()-> shouldn't happen!\n");

Page 11 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1943

sesMgr _server. c

return;
} else {

if (rgsbShastraFront !=NULL) {
strListDestroy(rgsbShastraFront);

}
rgsbShastraFront = pSids2StrTab(pShastraFrontids,

PSIDNMHOST I PSIDNMAPPL);
chooseOneChangeList(pcoShastraFront, rgsbShastraFront,

coNoinitialHighlight);

setShaSesmFridOprn(0);
#ifdef WANTTHIS

{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putShaSesmFridHandler,

(char*) &kernelShastraid.lSIDTag);

#end if I* WANTTHIS *I

}
I* CHECK --alas, go into comm record and cause buffer release *I

if (pTextCommData != NULL) {

}

I*

}

if (pTextCommData->nMembers > 0) {
pTextCommData->nMembers--;

}

if (collabLeaveFunc !=NULL) {
(*collabLeaveFunc) ();

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_COLL_LEAVE);
showinfo(sbOutMsgBuf);

* Function
*I

int
oldcollStartTextHandler(fd)

{
int fd;

cmAckOk(fd);
cmFlush(fd);

if (pTextCommData != NULL) {
return;

}
pTextCommData = (collabCommData *) malloc(sizeof(collabCommData));
memset(pTextCommData, 0, sizeof(collabCommData));

7/5/11 2:57 PM

Page 12 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1944

sesMgr _server. c

}

pTextCommData->nMembers = pShastraFrontidTags->shastraidTags_len;
pTextCommData->htCommBufs = htMakeNew(COMMHASHTABLESIZE, 0);

{

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartTextHandler,

(char *) NULL);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
oldcollEndTextHandler(fd)

{

}

int fd;

cmAckOk(fd);
cmFlush(fd);

if (pTextCommData
return;

}

NULL) {

htDestroy(pTextCommData->htCommBufs, 1);
free(pTextCommData);
pTextCommData = NULL;

{
int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndTextHandler,

(char *) NULL);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
oldcollSendTextHandler(fd)

{
int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

Page 13 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1945

sesMgr _server. c

}

if (pTextCommData
return;

} {
int
int

NULL) {

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendTextHandler,

bufNam);
}
free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
oldcollSendMsgTextHandler(fd)

{
int fd;

char *bufNam;
collabCommRecordData *PCommRec;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

if (pTextCommData == NULL) {
} else {

}
{

}

pCommRec = (collabCommRecordData *) malloc(sizeof
(collabCommRecordData));

memset(pCommRec, 0, sizeof(collabCommRecordData));
pCommRec->refCount = pTextCommData->nMembers - 1;
pCommRec->inChannel = fd;
htinstallSymbol(pTextCommData->htCommBufs, bufNam, (char*)

int
int

pCommRec);

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgTextHandler,

bufNam);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

free (bufNam) ;
return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGTEXT);
showinfo(sbOutMsgBuf);

7/5/11 2:57 PM

Page 14 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1946

sesMgr _server. c

}

* Function
*I

int
oldcollRecvdMsgTextHandler(fd)

{
int fd;

char *bufNam;
struct he *Phe;
collabCommRecordData *PCommRec;

bufNam = cmReceiveString(fd);
if (pTextCommData == NULL) {

cmAckOk(fd);
cmFlush(fd);
return;

}
phe = htLookup(pTextCommData->htCommBufs, bufNam);
if (phe == NULL) {

7/5/11 2:57 PM

fprintf(stderr, "collRecvdTextHandler()->no such buffer known!\n");
cmAckError(fd);

}

cmFlush(fd);
return;

}
cmAckOk(fd);
cmFlush(fd);

pCommRec = (collabCommRecordData *) phe->data;
pCommRec->refCount--;
if (pCommRec->refCount <= 0) {

}

I* free, free at last *I
putCollRecvdMsgTextHandler(pCommRec->inChannel, bufNam);
heDelete(pTextCommData->htCommBufs, bufNam);
free(pCommRec);
free(bufNam);

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGTEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartTextHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);

Page 15 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1947

sesMgr _server. c

}

pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fTextState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fTextState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartTextHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartTextHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndTextHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fTextState = COMM_ENDED;

} else {

}
{

}

fprintf(stderr, "collStartTextHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndTextHandler,

(char*) &localShaidin[fd] .lSIDTag);

7/5/11 2:57 PM

Page 16 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1948

sesMgr _server. c

}

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendTextHandler(fd)

{

}

int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendTextHandler,

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_TEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgTextHandler(fd)

{
int fd;

bunchOfThings bunch;
char *buf;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

buf = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) 11 (pCollFrData->fTextState
} else {

7/5/11 2:57 PM

COMMENDED)) {

Page 17 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1949

sesMgr_server.c 7/5/11 2:57 PM

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things [1] = buf;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgTextHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

}
free(buf);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGTEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgTextHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGTEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmTextHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
char *buf;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

Page 18 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1950

sesMgr _server. c 7/5/11 2:57 PM

}

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmTextHandler()->no non-local SHM\n");
return;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmTextHandler()->SHM recon problem\n")

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) I I (pCollFrData->fTextState COMMENDED)) {
} else {

}

buf = pShminfo->shmAddr;
bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = buf;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgTextHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMTEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmTextHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd]. liPAddr) {
fprintf(stderr, "collRecvdMsgShmTextHandler()->no non-local SHM\n")

return;
}

Page 19 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1951

sesMgr _server. c

}

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMTEXT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartAudioHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fAudioState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fAudioState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartAudioHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartAudioHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_AUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndAudioHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

7/5/11 2:57 PM

Page 20 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1952

sesMgr _server. c

}

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fAudioState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartAudioHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndAudioHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_AUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendAudioHandler(fd)

{

}

int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendAudioHandler,

(char*) &bunch);

free (bufNam) ;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_AUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgAudioHandler(fd)

int fd;

7/5/11 2:57 PM

Page 21 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1953

sesMgr _server. c

{
bunchOfThings bunch;
char *buf;
static audioBite aBite;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

AudioBitein(fd, &aBite);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fAudioState
{

COMM ENDED))

}

} else {

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) &aBite ;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgAudioHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGAUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgAudioHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam) ;
return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGAUDIO);
showinfo(sbOutMsgBuf);

Page 22 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1954

sesMgr _server. c 7/5/11 2:57 PM

I*
* Function
*I

int
collSendMsgShmAudioHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
static audioBite aBite;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmAudioHandler()->no non-local SHM\n")

return;
}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmAudioHandler()->SHM recon problem\n"
) ;

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) I I (pCollFrData->fAudioState COMMENDED))

{
} else {

}

audioBiteMemin(pShminfo->shmAddr, pShminfo->shmSize,
&aBite);

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) &aBite;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgAudioHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

Page 23 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1955

sesMgr _server. c

}

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMAUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmAudioHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collRecvdMsgShmAudioHandler()->no non-local SHM\n"

) ;

}

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMAUDIO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartVideoHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fVideoState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fVideoState = COMM_STARTED;
} else {

}
{

fprintf(stderr, "collStartVideoHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

Page 24 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1956

sesMgr _server. c

}

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartVideoHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_VIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndVideoHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fVideoState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartVideoHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndVideoHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_VIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendVideoHandler(fd)

{
int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

Page 25 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1957

sesMgr_server.c 7/5/11 2:57 PM

}

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendVideoHandler,

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_VIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgVideoHandler(fd)

{
int fd;

bunchOfThings bunch;
char *bufNam;
static videoimg vimg;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

Videoimgin(fd, &vimg);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) I I (pCollFrData->fVideoState COMMENDED))

{
} else {

}

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) &vimg;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgVideoHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

Page 26 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1958

sesMgr _server. c

}

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGVIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgVideoHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam);
return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGVIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmVideoHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
static videoimg vimg;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmVideoHandler()->no non-local SHM\n")

return;
}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmVideoHandler()->SHM recon problem\n"
) ;

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;

Page 27 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1959

sesMgr _server. c

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fVideoState
{

COMM ENDED))

}

} else {

}

videoimgMemin(pShminfo->shmAddr, pShminfo->shmSize,
&vimg) ;

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) &vimg;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgVideoHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMVIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmVideoHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd]. liPAddr) {
fprintf(stderr, "collRecvdMsgShmVideoHandler()->no non-local SHM\n"

) ;

}

I*

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMVIDEO);
showinfo(sbOutMsgBuf);

* Function
*I

int
collGetPermsHandler(fd)

Page 28 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1960

sesMgr _server. c

{
int fd;

shastraidTag
int

sidTag;
iF r;

ShastraidTagin(fd, &sidTag);

iFr = getSidTagindexinSidTags(&sidTag, pShastraFrontidTags);
if (iFr == -1) {

fprintf(stderr, "collGetPermsHandler()->no such front %lx\n",
sidTag);

cmAckError(fd);
cmFlush(fd);

} else {
cmAckOk(fd);
ShastraidTagOut(fd, &sidTag);

7/5/11 2:57 PM

ShastraidTagOut(fd, &pShastraFrontPermTags->shastraidTags_val[iFr])

}

I*

cmFlush(fd);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_COLLPERMS);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSetPermsHandler(fd)

{
int fd;

shastraidTag
shastraidTag
int

sidTag;
permTag;
iF r;

ShastraidTagin(fd, &sidTag);
ShastraidTagin(fd, &permTag);
iFr = getSidTagindexinSidTags(&sidTag, pShastraFrontidTags);
if(iFr == 0){

permTag I= SHASTRA_PERM_GRANT;
}
if (iFr == -1) {

fprintf(stderr, "collSetPermsHandler()->no such front %lx\n",
sidTag);

cmAckError(fd);
cmFlush(fd);

} else {
cmAckOk(fd);
ShastraidTagOut(fd, &sidTag);
ShastraidTagOut(fd, &permTag);
cmFlush(fd);

pShastraFrontids->shastraids_val[iFr]->lPerms = permTag;

Page 29 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1961

sesMgr_server.c 7/5/11 2:57 PM

}

}

pShastraFrontPermTags->shastraidTags_val[iFr] = permTag;
{

}

int
int
bunchOfThings

*Pfd;
nfd;
bunch;

bunch.nThings = 2;
bunch.things[0] = (char*) &sidTag;
bunch.things[l] = (char*) &permTag;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putSetCollPermsHandler,

(char*) &bunch);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_COLLPERMS);
showinfo(sbOutMsgBuf);

* Function
*I

int
collGetSesmPermsHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraidTagOut(fd, & kernelShastraid.lSIDTag);
ShastraidTagsOut(fd, pShastraFrontPermTags);
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SESMCOLLPERMS);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSetSesmPermsHandler(fd)

{
int fd;

static shastraidTags permTags;
shastraidTag *PSidTag;
int i;

ShastraidTagsin(fd, &permTags);
cmAckOk(fd);
cmFlush(fd);

if ((pShastraFrontPermTags->shastraidTags_len
permTags.shastraidTags_len) &&

permTags.shastraidTags_len == pShastraFrontids->shastraids_len) {
for (i = 0; i < pShastraFrontids->shastraids_len; i++) {

pShastraFrontids->shastraids_val[i]->lPerms =

Page 30 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1962

sesMgr _server. c

}

I*

} {

permTags.shastraidTags_val[i];
}
pSidTag = pShastraFrontPermTags->shastraidTags_val;
pShastraFrontPermTags->shastraidTags_val = permTags.

shastraidTags_val;
permTags.shastraidTags_val = pSidTag;

int
int
bunchOfThings

*Pfd;
nfd;
bunch;

bunch.nThings = 2;
bunch.things[0] =(char*) &kernelShastraid.lSIDTag;
bunch.things[l] = (char*) pShastraFrontPermTags;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putSetSesmCollPermsHandler,

(char*) &bunch);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SESMCOLLPERMS);
showinfo(sbOutMsgBuf);

* Function
*I

int
collGetixnModeHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lixnMode);
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_IXNMODE);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSetixnModeHandler(fd)

{
int fd;

ShastraULongin(fd, &pSesmFrontCD->lixnMode);
cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lixnMode);
cmFlush(fd);
{

int
int

*Pfd;
nfd;

7/5/11 2:57 PM

Page 31 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1963

sesMgr _server. c

}

I*

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSetixnModeHandler,

(char*) &pSesmFrontCD->lixnMode);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_IXNMODE);
showinfo(sbOutMsgBuf);

* Function
*I

int
collGetFloorModeHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lFloorMode);
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_FLOORMODE);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSetFloorModeHandler(fd)

{

}

I*

int fd;

ShastraULongin(fd, &pSesmFrontCD->lFloorMode);
cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lFloorMode);
cmFlush(fd);

{
int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSetFloorModeHandler,

(char*) &pSesmFrontCD->lFloorMode);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_FLOORMODE);
showinfo(sbOutMsgBuf);

* Function
*I

int

7/5/11 2:57 PM

Page 32 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1964

sesMgr _server. c

collGetSesFormatHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lFormat);
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GET_SESFORMAT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSetSesFormatHandler(fd)

{

}

I*

int fd;

ShastraULongin(fd, &pSesmFrontCD->lFormat);
cmAckOk(fd);
ShastraULongOut(fd, &pSesmFrontCD->lFormat);
cmFlush(fd);

{
int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSetSesFormatHandler,

(char*) &pSesmFrontCD->lFormat);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SET_SESFORMAT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collGrabTokenHandler(fd)

{
int fd;

actual floor control processing, beast if something changes

pSesmFrontCD->sidTagToken = localShaidin[fd] .lSIDTag;

cmAckOk(fd);
ShastraidTagOut(fd, &pSesmFrontCD->sidTagToken);
cmFlush(fd);

{
int *Pfd;

7/5/11 2:57 PM

Page 33 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1965

sesMgr _server. c

}

I*

int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollAskTokenHandler,

(char*) &pSesmFrontCD->sidTagToken);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_GRAB_TOKEN);
showinfo(sbOutMsgBuf);

* Function
*I

int
collFreeTokenHandler(fd)

int fd;
{

7/5/11 2:57 PM

pSesmFrontCD->sidTagToken = pShastraFrontidTags->shastraidTags_val[0];
cmAckOk(fd);

}

I*

cmFlush(fd);

{
int
int

*Pfd;
nfd;

getKrFDsBCast(&pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollAskTokenHandler,

(char*) &pSesmFrontCD->sidTagToken);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_FREE_TOKEN);
showinfo(sbOutMsgBuf);

* Function
*I

int
collTellTokenHandler(fd)

{
int fd;

shastraidTag
int outFd;

sidTagToken;

ShastraidTagin(fd, &sidTagToken);
cmAckOk(fd);
cmFlush(fd);

/*CHECK floor processing*/
pSesmFrontCD->sidTagToken = sidTagToken;
switch(routeFrontSidTagToFd(&sidTagToken, &outFd,

"collTellTokenHandler()")){
case route_FRONT:

putCollGrabTokenHandler(outFd, &sidTagToken);
break;

Page 34 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1966

sesMgr _server. c

}

I*

}

{

case route_ERROR:
default:
break;

int
int

*Pfd;
nfd;

getKrFDsMCast(outFd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollAskTokenHandler,

(char*) &pSesmFrontCD->sidTagToken);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_TELL_TOKEN);
showinfo(sbOutMsgBuf);

* Function
*I

int
collAskTokenHandler(fd)

{

}

I*

int fd;

cmAckOk(fd);
ShastraidTagOut(fd, &pSesmFrontCD->sidTagToken);
cmFlush(fd);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_ASK_TOKEN);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartPictHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fPictState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

7/5/11 2:57 PM

Page 35 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1967

sesMgr _server. c

}

pCollFrData->fPictState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartPictHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartPictHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_PICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndPictHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fPictState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartPictHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndPictHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_PICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendPictHandler(fd)

7/5/11 2:57 PM

Page 36 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1968

sesMgr _server. c

{

}

int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendPictHandler,

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_PICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgPictHandler(fd)

{
int fd;

bunchOfThings bunch;
char *buf;
static pictPieces pictBites;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

PictDataBitesin(fd, &pictBites);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) 11 (pCollFrData->fPictState
} else {

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) &pictBites;
{

int
int

*Pfd;
nfd;

7/5/11 2:57 PM

COMMENDED)) {

Page 37 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1969

sesMgr _server. c

}

}
}
return;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPictHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGPICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgPictHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam);
return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGPICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmPictHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
static pictPieces pictBites;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmPictHandler()->no non-local SHM\n");
return;

}
pShminfo = mplexinShminfo(fd);

Page 38 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1970

sesMgr _server. c 7/5/11 2:57 PM

}

if (!shMemReconnect(pShminfo, shmid)) {
fprintf(stderr, "collSendMsgShmPictHandler()->SHM recon problem\n")

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) 11 (pCollFrData->fPictState == COMM_ENDED)) {
} else {

}

pictPiecesMemin(pShminfo->shmAddr, pShminfo->shmSize,
&pictBi tes);

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) &pictBites;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPictHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPICT);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmPictHandler(fd)

{

}

int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd]. liPAddr) {
fprintf(stderr, "collRecvdMsgShmPictHandler()->no non-local SHM\n")

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMPICT);
showinfo(sbOutMsgBuf);

Page 39 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1971

sesMgr _server. c

I*
* Function
*I

int
collStartXSCntlHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fXSCntlState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fXSCntlState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartXSCntlHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartXSCntlHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_XSCNTL);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndXSCntlHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(

7/5/11 2:57 PM

Page 40 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1972

sesMgr_server.c 7/5/11 2:57 PM

}

& kernelShastraid. lSIDTag 1 pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fXSCntlState = COMM_ENDED;
} else {

}
{

fprintf(stderr 1 "collStartXSCntlHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd 1 &pfd 1 &nfd 1 shastraServiceSocket);
cmMultiCast(pfd 1 nfd 1 putCollEndXSCntlHandler 1

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf 1 "Done -- %s\n" 1 REQ_END_XSCNTL);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendXSCntlHandler(fd)

{

}

int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd 1 &pfd 1 &nfd 1 shastraServiceSocket);
cmMultiCast(pfd 1 nfd 1 putCollSendXSCntlHandler 1

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf 1 "Done -- %s\n" 1 REQ_SEND_XSCNTL);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgXSCntlHandler(fd)

int fd;
{

Page 41 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1973

sesMgr _server. c

bunchOfThings bunch;
char *buf;
static xsCntlDatas xsCntlBites;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

XSCntlBitesin(fd 1 &xsCntlBites);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag 1 pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fXSCntlState
{

COMMENDED))

}

} else {

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) &xsCntlBites;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd 1 &pfd 1 &nfd 1 shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd 1 nfd 1 putCollSendMsgXSCntlHandler 1

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

return;
sprintf(sbOutMsgBuf 1 "Done -- %s\n" 1 REQ_SEND_MSGXSCNTL);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgXSCntlHandler(fd)

{
int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam) ;
return;
sprintf(sbOutMsgBuf 1 "Done -- %s\n" 1 REQ_RECVD_MSGXSCNTL);
showinfo(sbOutMsgBuf);

Page 42 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1974

sesMgr _server. c 7/5/11 2:57 PM

* Function
*I

int
collSendMsgShmXSCntlHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
static xsCntlDatas xsCntlBites;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmXSCntlHandler()->no non-local SHM\n"

) ;
return;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmXSCntlHandler()->SHM recon problem\
n");

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) I I (pCollFrData->fXSCntlState COMMENDED))

{
} else {

}

xsCntlDatasMemin(pShminfo->shmAddr, pShminfo->shmSize,
&x s C n t l Bite s) ;

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) &xsCntlBites;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgXSCntlHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

return;

Page 43 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1975

sesMgr _server. c

}

sp rintf (sbOutMsgBuf 1 "Done -- %s\n" 1 REQ_SEND_MSGSHMXSCNTL) ;
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmXSCntlHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd 1 &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr 1 "collRecvdMsgShmXSCntlHandler()->no non-local SHM\

n");

}

I*

return;
}
sprintf(sbOutMsgBuf 1 "Done-- %s\n" 1 REQ_RECVD_MSGSHMXSCNTL);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartPolyHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

pSesMgrCollData->fPolyState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag 1 pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fPolyState = COMM_STARTED;
} else {

}
{

fprintf(stderr 1 "collStartPolyHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

Page 44 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1976

sesMgr _server. c

}

}

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartPolyHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_POLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndPolyHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fPolyState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartPolyHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndPolyHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_POLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendPolyHandler(fd)

{
int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);

7/5/11 2:57 PM

Page 45 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1977

sesMgr _server. c

}

cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendPolyHandler,

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_POLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgPolyHandler(fd)

{
int fd;

bunchOfThings bunch;
char *buf;
static ipimageData image;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

ImageDatain(fd, &image);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fPolyState
} else {

COMMENDED)) {

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) ℑ
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPolyHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

Page 46 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1978

sesMgr _server. c

}

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGPOLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgPolyHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam);
return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGPOLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmPolyHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
static ipimageData image;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmPolyHandler()->no non-local SHM\n");
return;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmPolyHandler()->SHM recon problem\n")

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

Page 47 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1979

sesMgr _server. c 7/5/11 2:57 PM

& kernelShastraid. lSIDTag, pSidTag);
if ((pCollFrData ==NULL) 11 (pCollFrData->fPolyState == COMM_ENDED)) {
} else {

}

}

ipimageDataMemin(pShminfo->shmAddr, pShminfo->shmSize,
&image);

bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = (char*) ℑ
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPolyHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

return;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPOLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmPolyHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collRecvdMsgShmPolyHandler()->no non-local SHM\n")

}

I*

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMPOLY);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartPntrHandler(fd)

Page 48 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1980

sesMgr _server. c

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fPntrState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fPntrState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartPntrHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartPntrHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_PNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndPntrHandler(fd)

{
int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fPntrState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartPntrHandler()->no SmFrData!");

int *Pfd;

7/5/11 2:57 PM

Page 49 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1981

sesMgr _server. c

}

int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndPntrHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_PNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendPntrHandler(fd)

{

}

int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendPntrHandler,

(char*) &bunch);

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_PNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgPntrHandler(fd)

{
int fd;

bunchOfThings bunch;
static shaDoubles pntrData;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

PntrBitein(fd, &pntrData);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

Page 50 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1982

sesMgr _server. c

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fPntrState
} else {

COMMENDED)) {

}

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) &pntrData;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPntrHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGPNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgPntrHandler(fd)

{

}

int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

free (bufNam) ;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGPNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmPntrHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
char *buf;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;

Page 51 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1983

sesMgr _server. c 7/5/11 2:57 PM

}

int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmPntrHandler()->no non-local SHM\n");
return;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmPntrHandler()->SHM recon problem\n")

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) I I (pCollFrData->fPntrState COMMENDED)) {
} else {

}

buf = pShminfo->shmAddr;
bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = buf;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgPntrHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMPNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmPntrHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

Page 52 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1984

sesMgr _server. c 7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collRecvdMsgShmPntrHandler()->no non-local SHM\n")

}

I*

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMPNTR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collStartCursorHandler(fd)

{

}

int fd;

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd] .lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pSesMgrCollData->fCursorState = COMM_STARTED;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if (pCollFrData !=NULL) {

pCollFrData->fCursorState = COMM_STARTED;
} else {

}
{

}

fprintf(stderr, "collStartCursorHandler()->no SmFrData!");

int *Pfd;
int nfd;
getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollStartCursorHandler,

(char*) &localShaidin[fd] .lSIDTag);

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_START_CURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collEndCursorHandler(fd)

int fd;
{

Page 53 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1985

sesMgr _server. c

}

shastraidTag *PSidTag;
collabFrontData *PCollFrData;

cmAckOk(fd);
pSidTag = & localShaidin[fd]. lSIDTag;
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

pCollFrData = (collabFrontData *) getSesMgrFrontData(
& kernelShastraid.lSIDTag, pSidTag);

if (pCollFrData !=NULL) {
pCollFrData->fCursorState = COMM_ENDED;

} else {

}
{

fprintf(stderr, "collStartCursorHandler()->no SmFrData!");

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollEndCursorHandler,

(char*) &localShaidin[fd] .lSIDTag);
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_END_CURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendCursorHandler(fd)

{
int fd;

char
bunchOfThings

*bufNam;
bunch;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

bunch.nThings = 2;
bunch.things[0] = (char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = bufNam;
{

}

int *Pfd;
int nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
cmMultiCast(pfd, nfd, putCollSendCursorHandler,

(char*) &bunch);

free (bufNam) ;
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_CURSOR);

7/5/11 2:57 PM

Page 54 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1986

sesMgr _server. c

showinfo(sbOutMsgBuf);
}

* Function
*I

int
collSendMsgCursorHandler(fd)

{
int fd;

bunchOfThings bunch;
static shaDoubles pntrData;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;

CursorBitein(fd, &pntrData);
cmAckOk(fd);
cmFlush(fd);

pSidTag = & localShaidin[fd]. lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);

7/5/11 2:57 PM

if ((pCollFrData ==NULL) 11 (pCollFrData->fCursorState
{

COMMENDED))

}

} else {

}

bunch.nThings = 2;
bunch.things[0] = (char*) pSidTag;
bunch.things[l] = (char*) &pntrData;
{

}

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgCursorHandler,

(char*) &bunch);
pSesMgrCollData->pShminfoOut->shmDirty = 0;

sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGCURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgCursorHandler(fd)

{
int fd;

char *bufNam;

bufNam = cmReceiveString(fd);
cmAckOk(fd);
cmFlush(fd);

Page 55 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1987

sesMgr _server. c 7/5/11 2:57 PM

}

free (bufNam);
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGCURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collSendMsgShmCursorHandler(fd)

{
int fd;

int shmid;
bunchOfThings bunch;
char *buf;
shastraidTag *PSidTag;
collabFrontData *PCollFrData;
shminfo *PShminfo;
int n;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collSendMsgShmCursorHandler()->no non-local SHM\n"

) ;
return;

}
pShminfo = mplexinShminfo(fd);
if (!shMemReconnect(pShminfo, shmid)) {

fprintf(stderr, "collSendMsgShmCursorHandler()->SHM recon problem\
n");

return;
}
pSidTag = & localShaidin[fd] .lSIDTag;
pCollFrData = (collabFrontData *) getSesMgrFrontData(

& kernelShastraid.lSIDTag, pSidTag);
if ((pCollFrData ==NULL) 11 (pCollFrData->fCursorState COMMENDED))

{
} else {

buf = pShminfo->shmAddr;
bunch.nThings = 2;
bunch.things[0] =(char*) &localShaidin[fd] .lSIDTag;
bunch.things[l] = buf;
{

int
int

*Pfd;
nfd;

getKrFDsMCast(fd, &pfd, &nfd, shastraServiceSocket);
pSesMgrCollData->pShminfoOut->shmDirty = 0;
cmMultiCast(pfd, nfd, putCollSendMsgCursorHandler,

(char*) &bunch);

Page 56 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1988

sesMgr _server. c

}

pSesMgrCollData->pShminfoOut->shmDirty = 0;
}

}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_SEND_MSGSHMCURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
collRecvdMsgShmCursorHandler(fd)

{
int fd;

int shmid;

Shastraintin(fd, &shmid);
cmAckOk(fd);
cmFlush(fd);

7/5/11 2:57 PM

if (kernelShastraid.liPAddr != localShaidin[fd] .liPAddr) {
fprintf(stderr, "collRecvdMsgShmCursorHandler()->no non-local SHM\

n");

}

I*

return;
}
sprintf(sbOutMsgBuf, "Done-- %s\n", REQ_RECVD_MSGSHMCURSOR);
showinfo(sbOutMsgBuf);

* Function
*I

int
putCollTellLeaderHandler(fd, pSidTagSesm, pSidTagLdr, pidTag)

{

int fd;
shastraidTag *PSidTagSesm;
shastraidTag *PSidTagLdr;
unsigned long *PidTag;

putStringOnChannel(fd, REQ_COLL_TELLLEADER, "putCollTellleaderHandler(
) II) ;

ShastraidTagOut(fd, pSidTagSesm);
ShastraidTagOut(fd, pSidTagLdr);
ShastraULongOut(fd, pidTag);
cmFlush(fd);

if (debug) {

}

outputidTag(stderr, pSidTagSesm);
outputidTag(stderr, pSidTagLdr);

Page 57 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1989

sesMgr _server. c 7/5/11 2:57 PM

}

I*
* Function
*I

int
putShaSesmFridHandler(fd, pSidTagSesm)

int fd;
shastraidTag *PSidTagSesm;

{
shastraidTags *PSidTags;

putStringOnChannel(fd, REQ_SET_SHASESMFRID, "putShaSesmFridHandler()");
pSidTags = getSesmFrontSidTags(pSidTagSesm);

}

I*

ShastraidTagOut(fd, pSidTagSesm);
ShastraidTagsOut(fd, pSidTags);
cmFlush(fd);

if (debug) {

}

outputidTag(stderr, pSidTagSesm);
outputidTags(stderr, pSidTags);

* Function
*I

int
putCollLeaveHandler(fd)

{

}

I*

int fd;

putStringOnChannel(fd, REQ_COLL_LEAVE, "putCollLeaveHandler()");
cmFlush(fd);

* Function
*I

int
putCollAskJoinHandler(fd, pSmSidTag, pSidTag)

{

int fd;
shastraidTag *PSidTag;
shastraidTag *PSmSidTag;

putStringOnChannel(fd, REQ_COLL_ASKJOIN, "putCollAskJoinHandler()");
ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pSidTag);
cmFlush(fd);

}

I*
* Function

Page 58 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1990

sesMgr _server. c

*I
int putCollAskJoinMsgHandler(fd, pSmSidTag, pSidTag, sbMsg)

{

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PSidTag;
char *SbMsg;

7/5/11 2:57 PM

putStringOnChannel(fd, REQ_COLL_ASKJOINMSG, "putCollAskJoinMsgHandler(

}

I*

) II) ;

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

* Function
*I

int putCollAskJnRespMsgHandler(fd, pSmSidTag, pToSidTag, pSidTag, sbMsg)

{

}

I*

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
char *SbMsg;

putStringOnChannel(fd, REQ_COLL_ASKJNRESPMSG,
"putCollAskJnRespMsgHandler()");

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
sendDataString(fd, sbMsg);
cmFlush(fd);

* Function
*I

int putCollAskJnStatusHandler(fd, pSmSidTag, pToSidTag, pSidTag, lStatus)

{

}

int fd;
shastraidTag *PSmSidTag;
shastraidTag *PToSidTag;
shastraidTag *PSidTag;
shaULong lStatus;

putStringOnChannel(fd, REQ_COLL_ASKJNSTATUS, "putCollAskJnStatusHandler
()");

ShastraidTagOut(fd, pSmSidTag);
ShastraidTagOut(fd, pToSidTag);
ShastraidTagOut(fd, pSidTag);
ShastraULongOut(fd, &lStatus);
cmFlush(fd);

Page 59 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1991

sesMgr _server. c

I*
* Function
*I

int
putCollTellJoinHandler(fd 1 pSmSidTag 1 pSidTag)

{

int fd;
shastraidTag *PSidTag;
shastraidTag *PSmSidTag;

7/5/11 2:57 PM

putSt ringOnChanne l (fd 1 REQ_COLL_ TELLJ DIN 1 II put Co ll Te llJ oinHand le r ()II);
ShastraidTagOut(fd 1 pSmSidTag);
ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

}

I*
* Function
*I

int
putCollStartTextHandler(fd 1 pSidTag)

int fd;
shastraidTag *PSidTag;

{
putStringOnChannel(fd 1 REQ_START_TEXT 1

11 putCollStartTextHandler() 11
);

}

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollEndTextHandler(fd 1 pSidTag)

{

}

int fd;
shastraidTag *PSidTag;

putStringOnChannel(fd 1 REQ_END_TEXT 1
11 putCollEndTextHandler() 11

);

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollSendTextHandler(fd 1 buf)

int fd;
char *buf;

{
bunchOfThings *bunch;
bunch = (bunchOfThings *) buf;
putStringOnChannel(fd 1 REQ_SEND_TEXT 1

11 putCollSendTextHandler() 11
);

ShastraidTagOut(fd 1 (shastraidTag *) bunch->things[0]);
putSt ringOnChanne l (fd 1 bunch->thing s [1] 1 II put Co llSendTextHand le r ()II);

Page 60 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1992

sesMgr _server. c

}
cmFlush(fd);

* Function
*I

int
putCollSendMsgTextHandler(fd, buf)

{

int fd;
char *buf;

bunchOfThings *bunch;
char *msg;
int n;
shminfo *PShminfo;

bunch = (bunchOfThings *) buf;
msg = bunch->things[1];

#ifdef USESHAREDMEMFORTEXT
if (kernelShastraid.liPAddr == localShaidin[fd] .liPAddr) {

pShminfo = pSesMgrCollData->pShminfoOut;
if (!pShminfo->shmDirty) {

pShminfo->shmDirty = 1;
n = strlen(msg) + 1;

7/5/11 2:57 PM

if (shMemReuseSegment (pShminfo, ((n > 10240) 7 n : 10240)) 0

}
#end if

}

) {
fprintf(stderr, "putCollSendMsgTextHandler()->couldn't

shMemReuseSegment!\n");

memcpy(pShminfo->shmAddr, msg, n);
}
putStringOnChannel(fd, REQ_SEND_MSGSHMTEXT,

"putCollSendMsgTextHandler()");
ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
ShastraintOut(fd, &pShminfo->shmid);
cmFlush(fd);
return;

I* USESHAREDMEMFORTEXT *I

putStringOnChannel(fd, REQ_SEND_MSGTEXT, "putCollSendMsgTextHandler()")

ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
putStringOnChannel(fd, bunch->things[1], "putCollSendMsgTextHandler()")

}
cmFlush(fd);

* Function
*I

int
putCollRecvdMsgTextHandler(fd, buf)

int fd;
char *buf;

Page 61 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1993

sesMgr _server. c 7/5/11 2:57 PM

{
putStringOnChannel(fd 1 REQ_RECVD_MSGTEXT 1

11 putCollRecvdMsgTextHandler(

}

I*

) II) ;

putStringOnChannel(fd 1 buf 1
11 putCollRecvdMsgTextHandler() 11

);

cmFlush(fd);

* Function
*I

int
putCollStartAudioHandler(fd 1 pSidTag)

int fd;
shastraidTag *PSidTag;

{
putStringOnChannel(fd 1 REQ_START_AUDI0 1

11 putCollStartAudioHandler() 11
);

ShastraidTagOut(fd 1 pSidTag);

}
cmFlush(fd);

* Function
*I

int
putCollEndAudioHandler(fd 1 pSidTag)

{

}

int fd;
shastraidTag *PSidTag;

putStringOnChannel(fd 1 REQ_END_AUDI0 1
11 putCollEndAudioHandler() 11

);

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollSendAudioHandler(fd 1 buf)

int fd;
char *buf;

{
bunchOfThings *bunch;
bunch = (bunchOfThings *) buf;
putStringOnChannel(fd 1 REQ_SEND_AUDI0 1

11 putCollSendAudioHandler() 11
);

ShastraidTagOut(fd 1 (shastraidTag *) bunch->things[0]);
putSt r ingOnChanne l(fd 1 bunch->thing s [1] 1 II put Co llSendAud ioHand le r ()II);
cmFlush(fd);

}

* Function
*I

int
putCollSendMsgAudioHandler(fd 1 buf)

int fd;

Page 62 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1994

sesMgr _server. c 7/5/11 2:57 PM

{
char

bunchOfThings
audioBite
int
shminfo

*bunch;
*PABite;

n;
*PShminfo;

bunch = (bunchOfThings *) buf;
pABite = (audioBite *) bunch->things[1];

#ifdef USESHAREDMEMFORAUDIO
if (kernelShastraid.liPAddr == localShaidin[fd] .liPAddr) {

pShminfo = pSesMgrCollData->pShminfoOut;
if (!pShminfo->shmDirty) {

pShminfo->shmDirty = 1;
n = pABite->data.data_len + sizeof(audioBite);
if (shMemReuseSegment (pShminfo, ((n > 10240) 7 n : 10240)) == 0

) {

}

}

fprintf(stderr, "putCollSendMsgAudioHandler()->couldn't
shMemReuseSegment!\n");

audioBiteMemOut(pShminfo->shmAddr, pShminfo->shmSize, pABite);
}
putStringOnChannel(fd, REQ_SEND_MSGSHMAUDIO,

"putCollSendMsgAudioHandler()");
ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
ShastraintOut(fd, &pShminfo->shmid);
cmFlush(fd);
return;

#endif I* USESHAREDMEMFORAUDIO *I

}

putStringOnChannel(fd, REQ_SEND_MSGAUDIO, "putCollSendMsgAudioHandler(
) II) ;

ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
AudioBiteOut(fd, pABite);
cmFlush(fd);

* Function
*I

int
putCollRecvdMsgAudioHandler(fd, buf)

{

}

I*

int fd;
char *buf;

putStringOnChannel(fd, REQ_RECVD_MSGAUDIO, "putCollRecvdMsgAudioHandler
()");

putStringOnChannel(fd, buf, "putCollRecvdMsgAudioHandler()");
cmFlush(fd);

* Function
*I

Page 63 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1995

sesMgr_server.c 7/5/11 2:57 PM

int
putCollStartVideoHandler(fd 1 pSidTag)

int fd;
shastraidTag *PSidTag;

{
putStringOnChannel(fd 1 REQ_START_VIDE0 1

11 putCollStartVideoHandler() 11
);

}

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollEndVideoHandler(fd 1 pSidTag)

{

}

int fd;
shastraidTag *PSidTag;

putStringOnChannel(fd 1 REQ_END_VIDE0 1
11 putCollEndVideoHandler() 11

);

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollSendVideoHandler(fd 1 buf)

int fd;
char *buf;

{
bunchOfThings *bunch;
bunch = (bunchOfThings *) buf;
putStringOnChannel(fd 1 REQ_SEND_VIDE0 1

11 putCollSendVideoHandler() 11
);

ShastraidTagOut(fd 1 (shastraidTag *) bunch->things[0]);
putSt r ingOnChanne l (fd 1 bunch->t h ing s [1] 1 II put Co llSendVideoHand le r () II) ;
cmFlush(fd);

}

* Function
*I

int
putCollSendMsgVideoHandler(fd 1 buf)

{

int fd;
char *buf;

bunchOfThings
videoimg
int
shminfo

*bunch;
*PVImg;

n;
*PShminfo;

bunch = (bunchOfThings *) buf;
pVImg = (videoimg *) bunch->things[l];

#ifdef USESHAREDMEM

Page 64 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1996

sesMgr _server. c 7/5/11 2:57 PM

if (kernelShastraid.liPAddr == localShaidin[fd] .liPAddr) {
pShminfo = pSesMgrCollData->pShminfoOut;
if (!pShminfo->shmDirty) {

}

pShminfo->shmDirty = 1;
n = pVImg->data.data_len + sizeof(videoimg);
if (shMemReuseSegment (pShminfo, ((n > 102400) 7 n : 102400))

0) {

}

fprintf(stderr, "putCollSendMsgVideoHandler()->couldn't
shMemReuseSegment!\n");

videoimgMemOut(pShminfo->shmAddr, pShminfo->shmSize, pVImg);

putStringOnChannel(fd, REQ_SEND_MSGSHMVIDEO,
"putCollSendMsgVideoHandler()");

ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
ShastraintOut(fd, &pShminfo->shmid);
cmFlush(fd);
return;

}
#end if I* USESHAREDMEM *I

bunch = (bunchOfThings *) buf;
putStringOnChannel(fd, REQ_SEND_MSGVIDEO, "putCollSendMsgVideoHandler(

}

) II) ;

ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
pVImg = (videoimg *) bunch->things[1];
VideoimgOut(fd, pVImg);
cmFlush(fd);

* Function
*I

int
putCollRecvdMsgVideoHandler(fd, buf)

int fd;
char *buf;

{
putStringOnChannel(fd, REQ_RECVD_MSGVIDEO, "putCollRecvdMsgVideoHandler

()");

}

I*

putStringOnChannel(fd, buf, "putCollRecvdMsgVideoHandler()");
cmFlush(fd);

* Function
*I

int
putCollStartPolyHandler(fd, pSidTag)

int fd;
shastraidTag *PSidTag;

{
putStringOnChannel(fd, REQ_START_POLY, "putCollStartPolyHandler()");

Page 65 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1997

sesMgr _server. c

}

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollEndPolyHandler(fd 1 pSidTag)

{

}

int fd;
shastraidTag *PSidTag;

putStringOnChannel(fd 1 REQ_END_POLY 1
11 putCollEndPolyHandler() 11

);

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollSendPolyHandler(fd 1 buf)

{

int fd;
char *buf;

bunchOfThings *bunch;
bunch = (bunchOfThings *) buf;
putStringOnChannel(fd 1 REQ_SEND_POLY 1

11 putCollSendPolyHandler() 11
);

ShastraidTagOut(fd 1 (shastraidTag *) bunch->things[0]);

7/5/11 2:57 PM

putSt ringOnChanne l (fd 1 bunch->thing s [1] 1 II put Co llSend Po lyHand le r ()II);
cmFlush(fd);

}

* Function
*I

int
putCollSendMsgPolyHandler(fd 1 buf)

{

int fd;
char *buf;

bunchOfThings
ipimageData
int
shminfo

*bunch;
*Pimage;

n;
*PShminfo;

bunch = (bunchOfThings *) buf;
pimage = (ipimageData *) bunch->things[1];

#ifdef USESHAREDMEMFORMPOLY
if (kernelShastraid.liPAddr == localShaidin[fd] .liPAddr) {

pShminfo = pSesMgrCollData->pShminfoOut;
if (!pShminfo->shmDirty) {

pShminfo->shmDirty = 1;
n = pimage->mPoly->nPolygons * 100 * sizeof(double);
if (shMemReuseSegment (pShminfo 1 ((n > 10240) 7 n : 10240)) 0

) {

Page 66 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1998

sesMgr _server. c

}

fprintf(stderr, "putCollSendMsgPolyHandler()->couldn't
shMemReuseSegment!\n");

7/5/11 2:57 PM

ipimageDataMemOut(pShminfo->shmAddr, pShminfo->shmSize, pimage)

}

}
putStringOnChannel(fd, REQ_SEND_MSGSHMPOLY,

"putCollSendMsgPolyHandler()");
ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
ShastraintOut(fd, &pShminfo->shmid);
cmFlush(fd);
return;

#endif I* USESHAREDMEMFORMPOLY *I
putStringOnChannel(fd, REQ_SEND_MSGPOLY, "putCollSendMsgPolyHandler()")

}

ShastraidTagOut(fd, (shastraidTag *) bunch->things[0]);
ImageDataOut(fd, pimage);
cmFlush(fd);

* Function
*I

int
putCollRecvdMsgPolyHandler(fd, buf)

int fd;
char *buf;

{
putStringOnChannel(fd, REQ_RECVD_MSGPOLY, "putCollRecvdMsgPolyHandler(

) II) ;

}

I*

putStringOnChannel(fd, buf, "putCollRecvdMsgPolyHandler()");
cmFlush(fd);

* Function
*I

int
putCollStartPictHandler(fd, pSidTag)

int fd;
shastraidTag *PSidTag;

{
putStringOnChannel(fd, REQ_START_PICT, "putCollStartPictHandler()");
ShastraidTagOut(fd, pSidTag);

}
cmFlush(fd);

* Function
*I

int
putCollEndPictHandler(fd, pSidTag)

int fd;

Page 67 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 1999

sesMgr _server. c

{

}

shastraidTag *PSidTag;

putStringOnChannel(fd 1 REQ_END_PICT 1
11 putCollEndPictHandler() 11

);

ShastraidTagOut(fd 1 pSidTag);
cmFlush(fd);

* Function
*I

int
putCollSendPictHandler(fd 1 buf)

{

int fd;
char *buf;

bunchOfThings *bunch;
bunch = (bunchOfThings *) buf;
putStringOnChannel(fd 1 REQ_SEND_PICT 1

11 putCollSendPictHandler() 11
);

ShastraidTagOut(fd 1 (shastraidTag *) bunch->things[0]);

7/5/11 2:57 PM

putSt ringOnChanne l (fd 1 bunch->thing s [1] 1 II put Co llSend PictHand le r ()II);
cmFlush(fd);

}

* Function
*I

int
putCollSendMsgPictHandler(fd 1 buf)

{

int fd;
char *buf;

bunchOfThings *bunch;
pictPieces *PPCBites;
int n;
shminfo *PShminfo;

bunch = (bunchOfThings *) buf;
pPCBites = (pictPieces *) bunch->things[1];

#ifdef USESHAREDMEMFORPICT
if (kernelShastraid.liPAddr == localShaidin[fd] .liPAddr) {

pShminfo = pSesMgrCollData->pShminfoOut;
if (!pShminfo->shmDirty) {

pShminfo->shmDirty = 1;

n = 0;
if (shMemReuseSegment (pShminfo 1 ((n > 10240) 7 n : 10240)) 0

}

) {
fprintf(stderr 1

11 putCollSendMsgPictHandler()->couldn't
shMemReuseSegment!\n 11

);

pictPiecesMemOut(pShminfo->shmAddr 1 pShminfo->shmSize 1 pPCBites
) ;

}
putStringOnChannel(fd 1 REQ_SEND_MSGSHMPICT 1

11 putCollSendMsgPictHandler() 11
);

Page 68 of 83
Petitioner Microsoft Corporation, Ex. 1002, p. 2000

