
Sharing Data
with Other
Applications

W indows applications are designed to work together.
The applications in Microsoft Office are an excellent

example. These programs have a common look and feel, and
sharing data among these applications is quite easy. This
chapter e,'"{p]ores some ways that you can make use of other
applications while working with Excel, as well as some ways
that you can use Excel while working with other applications.

Sharing Data with Other Windows
Applications

Besides importing and exporting files, the following are the
essential three ways in which you can transfer data to and
from other Windows applications:

• Copy m1d paste, using either the Windows Clipboard or
the Office Clipboard. Copying and pasting information
creates a static copy of the data.

• Create a link so that changes in the source data are
reflected in the destination document.

• Embed an entire object from one application into
another application's document.

The following sections discuss these techniques and present
an example for each one.

emnosUSA0017323

CiM Ex. 1054 Page 1

Using the Windows or Office Clipboards
As you probably know, whenever Windows is running, you have access to the
Windows Clipboard-an area of your computer's memory that acts as a shared
holding area for information that you have cut or copied from an application. The
Windows Clipboard works behind the scenes, and you usually aren't aware of it.
Whenever you select data and then choose either Edit• Copy or Edit• Cut, the
application places the selected data on the Windows Clipboard. Like m<)St other
Windows applications, Excel can then access the Clipboard data if you choose
the Edit• Paste command (or the Edit• Paste Special command).

If you copy or cut information while working in an Office application, the applica
tion places the copied information on both the Windows Clipboard and the Office
Clipboard.

Once you copy information to the Windows Clipboard, it remains on the Windows
Clipboard even after you paste it, so you can use it multiple times. However,
because the Windows Clipboard can hold only one item at a time, when you copy
or cut something else, the information previously stored on the Windows
Clipboard is replaced. The Office Clipboard, unlike the Windows Clipboard, can
hold up to 12 separate selections. The Office Clipboard operates in all Office appli
cations; for example, you can copy two selections from Word and three from Excel
and paste any or all of them in PowerPoint.

Copying information from one Windows application to another is quite easy. The
application that contains the information that you're copying is called the source
application, and the application to which you're copying the info1-rnation is called
the destination application.

The general steps that are required to copy from one application to another are as
follows. These steps apply to copying from Excel to another application and to
copying from another application to Excel.

I. Activate the source document window that contains the information that you
want to copy.

2. Select the information by using the mouse or the keyboard. If E.'i:cel is the
source application, this information can be a cell, range, chart, or drawn object.

3. Select Edit• Copy. Excel places a copy of the information onto the Windows
Clipboard and the Office Clipboard.

4. Activate the destination application. If the program isn't running, you can
start it without affecting the contents of the Clipboard.

5. Move to the appropriate position in the destination application (where you
want to paste the copied material).

6. Select Edit• Paste from the menu in the destination application. Jf the
Clipboard contents are not appropriate for pasting, the Paste command is
grayed (not available).

emnosUSA0017324

CiM Ex. 1054 Page 2

ln Step 3 in the preceding steps, you also can select Edit• Cut from the source
application menu. This step erases your selection from the source application after
placing the selection on the Clipboard.

If you repeat Step 3 in any Office application, the Office Clipboard toolbar appears
automatically. It continues to appear if the destination application that you activate
in Step 4 is another Office application.

In Step 6 in the preceding steps, you can sometimes select the Edit• Paste Special
command, which displays a dialog box that presents different pasting options.

If you're copying a graphics image, you may have to resize or crop it. If you're
copying te:x1:, you may have to reformat it by using tools that are available in the
destination application. The information that you copy from the source applica
tion remains intact, and a copy remains on the Clipboard until you copy or cut
something else. Figure 29-1 shows an embedded Excel chart. You can easily insert
a copy of this chart into a Microsoft Word report. First, select the chart in Excel
by clicking it once. Then, copy it to the Clipboard by choosing Edit• Copy. Next,
activate the Wm·cl document into which you want to paste the copy of the chart,
and move the insertion point to the place where you want the chart to appear.
When you select Edit• Paste from the Word menu bar, the chart is pasted from
the Clipbom·d and appearn in your document (see Figure 29-2).

Figure 29-1: An Excel chart, ready to be copied into a Word document.

emnosUSA0017325

CiM Ex. 1054 Page 3

Figure 29-2: The Excel chart copied to a Word document.

You need to understand that Windows applications vary in the way that they
respond to data that you paste from the Clipboard. If the Edit• Paste command
is not available (is grayed on the menu) in the destination application, the appli
cation can't accept the information from the Clipboard. If you copy a range of
data from Excel to the Clipboard and paste it into Word, Word creates a table
when you paste the data. Other applications may respond differently to Excel
data. If you plan to do a lot of copying and pasting, I suggest that you experiment
until you understand how the two applications handle each other's data.

You should understand that this copy-and-paste technique is static. In other words,
no link exists between the information that you copy from the source application
and the information that you paste into the destination application. If you're copy
ing from Excel to a word processing document, for example, the word p1·ocessing
document will not reflect any subsequent changes that you make in your Excel
worksheet or charts. Consequently, you have to repeat the copy-and-paste proce
dure to update the destination document with the source document changes. The
next topic presents a way to get around this limitation.

emnosUSA0017326

CiM Ex. 1054 Page 4

Linking Data
If you want to share data that may change, the static copy-and-paste procedure
described in the preceding section isn't your best choice. Instead, create a dynamic
link between the data that you copy from one Windows application to another. In
this way, if you change the data in the source dot:ument, you don't also need to
make the changes in the destination document, because the link automatically
updates the destination document.

When would you want to use this technique? If you generate proposals by using a
word processor, for example, you may need to refer to pricing information that you
store in an Excel worksheet. If you set up a link between your word processing
document and the t,'{cel worksheet, you can be sure that your proposals always
quote the latest prices. Not all Windows applications support dynamic linking, so
you must make sure that the application to which you are copying is capable of
handling such a link.

Creating Links
Setting up a link from one Windows application to another isn't difficult, although
the process varies slightly from application to application. The following are the
general steps to take:

I. Activate the window in the source application that contains the information
that you want to copy.

2. Select the information by using the mouse or the keyboard. If Excel is the
source application, you can select a cell, range, or entire chart.

3. Select Edit• Copy from the source application's menu. The source application
copies the information to the Windows Clipboard.

4. Activate the destination application. [fit isn't open, you can start it without
affecting the contents of the Clipboard.

5. Move to the appropriate position in the destination application.

6. Select the appropriate command in the destination application to paste a link.
The command varies, depending on the application. In Microsoft Office
applications, the command is Edit• Paste Special.

7. A dialog box will probably appear, letting you specify the type of link that you
want to create. The following section provides more details.

More About Links
Keep in mind the following information when you're using links between two
applications:

emnosUSA0017327

CiM Ex. 1054 Page 5

• Not all Windows applications support linking. Furthermore, you can link from
but not to some programs. When in doubt, consult the documentation for the
application with which you're dealing.

• When you save an Excel file that has a link, you save the most recent values
with the document. When you reopen this document, E.'i:cel asks whether you
want to update the links.

• Links can be broken rather easily. H you move the source document to another
directory or save it under a different name, for example, the destination docu
ment's application won't be able to update the link. You can usually reestablish
the link manually, if you understand how the application manages the links. In
Excel, you use the Edit• Links command, which displays the Links dialog box,
shown in Figure 29-:l

• You also can use the Edit• Links command to break a link. After breaking a
link, the data remains in the destination document, but is no longer linked to
the source document.

• Jn Excel, external links are stored in array formulas. If you h.'llow what you're
doing. you can modify a link by editing the array formula.

• \,Vhen Excel is running, it responds to link requests from other applications,
unless you have disabled remote requests. If you don't want Excel to respond
to link-update requests from other applications, choose Tools• Options,
select the General tab, and then place a check in the Ignore other applica
tions check box.

Figure 29-3: The Links dialog box lets you work with links to
other applications.

emnosUSA0017328

CiM Ex. 1054 Page 6

Copying Excel Data to Word
One of the most frequently used software combinations is a spreadsheet and a
word processor. This section discusses the types of links that you can create by
using Microsoft Word.

Most information in this section also applies to other word processors, such as
Corel's WordPerfect for Windows and Lotus Word Pro. The exact techniques vary,
however. I use Word in the examples because readers who acquired Excel as part
of the Microsoft Office have Word installed on their systems. If you don't have a
word processor installed on your system, you can use the WordPad application
that comes with Windows. The manner in which WordPad handles links is very
similar to that for Word.

Figure 29-4 shows the Paste Special dialog box from Microsoft Word after a range of
data has been copied from E..xcel to the Clipboard. The result that you get depends
on whether you select the Paste or the Paste link option, and on your choice of the
type of item to paste. If you select the Paste link option, you can choose to have the
information pasted as an icon. If you do so, you can double-click this icon to
activate the source worksheet.

Figure 29-4: The Paste Special dialog box is where you
specify the type of link to create.

Pasting Without a Link
Often, you don't need a link when you copy data. For example, if you're preparing a
report in your word processor and you simply want to in dude a range of data from
an Excel worksheet, you probably don't need to create a link.

Table 29-1 describes the effect of choosing the various paste choices when you
select the Paste option-the option that doesn't create a link to the source data.

emnosUSA0017329

CiM Ex. 1054 Page 7

Paste Type

Formatted Text
(RTF)

Picture

HTML Format

Result

A Word table that is formatted as the original Excel range. No link to
the source exists. This produces the same result as using Edit• Paste.

A picture object that retains the formatting from Excel. No link to the
source exists. This usually produces better results than the Bitmap
option. Double-clicking the object after you paste it enables you to edit
the picture.

A table that is formatted as the original Excel range. No link to the
source exists. Use this format when you expect to publish the docu
ment as a Web page.

emnosUSA0017330

CiM Ex. 1054 Page 8

Figure 29--5 shows how a copied range from Excel appears in Word, using each of the
paste special formats.

Figure 29-5: Data that is copied from Excel and pasted using various formats.

The pasted data loohs the same regardless of whethet· the Paste or Paste link option
is selected.

Some Excel formatting does not transfer when pasted to w·ord as formatted text.
For example, Word doesn't support vertical alignment for table cells (but you can
use Word's paragraph formatting commands to apply vertical alignment).

Pasting with a Link
lf you think the data that you're copying will change, you may want to paste a link If
you paste the data by using the Paste link option in the Paste Special dialog box, you
can make changes to the sow·ce document, and the changes appear in the destina
tion application (a few seconds of delay may occur). You can test these changes by
displaying both applications onscreen. making changes to the source document, and
watching for them to appear in the destination document.

Table 29-2 describes the effect of choosing the various paste choices in \}\ford's
Paste Special dialog box when the Paste link option is selected.

emnosUSA0017331

CiM Ex. 1054 Page 9

Paste Type

Formatted Text
(RTF)

Picture

HTML Format

Result

A Word table that is formatted as the original Excel range. Changes in
the source are reflected automatically.

A picture object that retains the formatting from Excel. Changes in the
source are reflected automatically. This usually produces better results
than the Bitmap option. Double-dick the object after pasting it to edit
the source data in Excel.

A table that is formatted as the original Excel range. Use this format
when you expect to publish the document as a Web page.

Embedding Objects
Using Object Linkirig and Embedding (OLE), you can also embed an object to share
information between Windows applications. This technique enables you to insert
an object from another program and use that program's editing tools to manipulate
it. The OLE objects can be items such as those in the following list:

• Text docu1nents from other products, such as word processors

• Drawings or pictures from other products

• Information from special OLE server applications, such as Microsoft Equation

• Sound files

• Video or animation files

Most of the major Windows applications support OLE. You can embed an object into
your document in either of two ways:

emnosUSA0017332

CiM Ex. 1054 Page 10

• Choose Edit• Paste Special, and select the "object" choice (if it's available).
If you do this, select the Paste option rather than the Paste link option.

• Select Insert• Object.

Some applications-such as those in Microsoft Office-can also embed an object
by dragging it from one application to another.

The following sections discuss these two methods and provide a few examples using
Excel and Word.

Embedding an Excel Range in a Word Document
This example embeds the Excel range shown in Figure 29-6 in a Word document.

Figure 29-6: This range will be embedded in a
Word document.

To start, select Al :D 15 and copy the range to the Clipboard. Then, activate (or
start) Word, open the document in which you want to embed the range, and then
move the insertion point to the location in the document where you want the
table to appear. Choose Word's Edit• Paste Special command. Select the Paste
option (not Paste link), and choose the Microsoft Excel Worksheet Object format
(see Figure 29-7). Click OK, and the range appears in the Word document.

The pasted object is not a standard Word table. For example, you can't select or
format individual cells in the table. Furthermore, it's not linked to the Excel source
range. If you change a value in the Excel worksheet, the change does not appear in
the embedded object in the Word document.

emnosUSA0017333

CiM Ex. 1054 Page 11

Figure 29-7: This operation embeds an Excel object in
a Word document.

If you double-click the object, however, you notice something unusual: Word's
menus and toolbars change to those used by Excel. In addition, the embedded
object appears with Excel's farniliar row and column borders. In other words, you
can edit this object in place by using Excel's commands. Figure 29-8 shows how
this looks. To return to Word, just click anywhere in the Word document.

Figure 29-8: Double-dicking the embedded Excel object enables you to edit it in
place. Note that Word now displays Excel's menus and toolbars.

emnosUSA0017334

CiM Ex. 1054 Page 12

Remember that no link is involved here. If you make changes to the embedded
object in Word, these changes do not appear in the original Excel worksheeL The
embedded object is completely independent from the original source.

Using this technique, you have access to all of Excel's features while you are still in
Word. Microsoft's ultimate goal is to enable users to focus on their documents -
not on the application that produces the document.

You can accomplish the embedding previously described by selecting the range in
Excel and then dragging it to your Word document In fact, you can use the
Windows desktop as an intermediary storage location. For example, you can drag
a range from Excel to the desktop and create a scrap. Then, you can drag this scrap
into your Word document. The result is an embedded Excel object.

Creating a New Excel Object in Word
The preceding example embeds a range from an existing Excel worksheet into a
Word document. This section demonstrates how to create a new (empty) E.xcel
object in Word. This may be useful if you're creating a report and need to insert a
table of values that doesn't exist in a worksheet. You could insert a normal Word
table, but you can take advantage of Excel's formulas and functions to make this
task much easier.

To create a new Excel object in a Word document, choose Insert• Object in Word.
Word responds with the Object dialog box, shown in Figure 29-9. The Create New
tab lists the types of objects that you can create (the contents of the list depends
on the applications that you have installed on your system). Choose the Microsoft
E..xcel Worksheet option and click OK

Figure 29-9: Word's Object dialog box enables you
to create a new object.

emnosUSA0017335

CiM Ex. 1054 Page 13

Word inserts an empty Excel worksheet object into the document and activates it for
you, as shown in Figure 29-10. You have full access to Excel cmnrnands, so you can
enter whatever you want into the worksheet object. After you finish, click anywhere
in the Word document. You can, of course, double-dick this object at any time to
make changes or additions.

Figure 29-10: Word created an empty Excel worksheet object.

You can change the size of the object while it's activated by dragging any of the
sizing handles that appear on the borders of the object. You also can crop the
object, so that when it isn't activated, the object displays only cells that contain
information. To crop an object in Word, select the object so that you can see sizing
handles. Then, display Word's Picture toolbar (right-dick any toolbar button and
choose Picture). Click the Cropping tool (it looks like a pair of plus sittns) and then
drag any sizing handle on the object.

Even if you crop an Excel worksheet object in Word, when you double-click the
object, you have access to all rows and columns in Excel. Cropping changes only
the displayed area of the object

emnosUSA0017336

CiM Ex. 1054 Page 14

Embedding an Existing Workbook in Word
Yet another option is to embed an existing workbook into a Word document. Use
Word's Insert• Object command. In the Object dialog box, dick the tab labeled
Create from File (see Figure 29-ll). Click the Browse button and locate the Excel
workbook that you want to embed.

Figure 29-11: This dialog box enables you to locate
a file to embed in the active document.

When you use this technique, you embed a copy of the selected workbook in the
Word document. You can either use it as is or double-dick it to make changes. Note
that any changes that you make to this copy of the document are not reflected in
the original workbook.

Embedding Objects in an Excel Worksheet
The preceding examples involve embedding Excel objects in a Word document. The
same procedures can be used to embed other objects into an Excel worksheet.

For example. if you have an Excel workbook that requires a great amount of explana
tory text, you have several choices:

• You can enter the text into cells. This is tedious and doesn't allow much
formatting.

• You can use a text box. This is a good alternative, but it doesn't offer many
formatting features.

• You can embed a Word document in your worksheet. This gives you full access
to all of Word's formatting features.

emnosUSA0017337

CiM Ex. 1054 Page 15

To embed an empty Word document into an Excel worksheet, choose Excel's
Insert• Object command. In the Object dialog box, click the Create New tab and
select Microsoft Word Document from the Object type list.

The result is a blank Word document, activated and ready for you to enter text.
Notice that Word's menus and toolbars replace Excel's menus and toolbars. You
can resize the document as you like, and the words wrap accordingly. Figure 29-12
shows an example of a Word document embedded in an Excel worksheet.

Figure 29-12: A Word document that is embedded in an Excel worksheet

You can embed many other types of objects, including audio clips, video clips, MIDI
sequences, and even an entire Microsoft PowerPoint presentation.

When you embed a video clip, Excel doesn't store the actual video clip file in the
E.xcel document. Rather, Excel stores a pointer to the original file. If, for some
reason, you want to embed the complete video clip file, you can use the Object
Packager application. Be aware, however, that video clip files are typically quite
large, and opening and saving the workbook will take a lot of time.

Microsoft Office includes a few additional applications that you may find useful.
These all can be embedded in Excel documents:

• Microsoft Equation: Create equations, such as the one shown in Figure 29-l].

• Mic1·osoft WordArt: Modify text in some interesting ways, as in Figure 29-14.

• MS Organization Chart: Create attractive organizational charts, as shown in
Figure 29-15.

emnosUSA0017338

CiM Ex. 1054 Page 16

Figure 29-13: This object was created with Microsoft Equation.

Figure 29-14: An example of Microsoft WordArt.

Figure 29-15: An example of an embedded organizational chart.

emnosUSA0017339

CiM Ex. 1054 Page 17

Using Office Binders
If you have Microsoft Office installed, you may take advantage of its binder feature.
A binder is a container that can hold documents from different applications: Excel,
Word, and PowerPoint.

You may find that a binder is useful when you are working on a project that involves
documents from different applications. For example, you may be preparing a sales
presentation that uses charts and tables from Excel, reports and memos from Word,
and slides prepared with Power Point. You can store all the information in a single file.
And, when you print the entire binder, pages are numbered sequentially.

To use a binder, start the Binder application, and an empty hinder appears. You then
can add existing documents to the binder or create new documents in the binder.
Figure 29-16 shows a binder that contains Word, Excel, and PowerPoint documents.
Consult the online Help for complete details on using this application.

Figure 29-16: An Office binder can hold documents that are produced by
different applications.

You may need to rerun Office setup if Binder isn't installed on your computer.
You'll find it under a category called Office Tools.

emnosUSA0017340

CiM Ex. 1054 Page 18

Summary
This chapter describes techniques that enable you to use data from other applica
tions. These techniques include standard copy-and-paste options using the Windows
and Office Clipboards, dynamic linking between applications, and embedding objects.
This chapter con dudes \vith a note on Microsoft Office's binder application, which
enables you to work with documents that are produced by different applications.

emnosUSA0017341

CiM Ex. 1054 Page 19

emnosUSA0017342

CiM Ex. 1054 Page 20CiM Ex. 1054 Page 20

Excel and the
Internet

Chances are, you're already involved in the Internet in
some way. This technology seems to have taken the

world by storm. The World Wide Web (Vv\A/W) is prnbably the
most exciting thing happening these days in the world of com
puting. In fact, the Web reaches well beyond the computer
community and is a pervasive force in our lives. It's now quite
common to see Web site addresses listed in TV commercials,
in magazine ads, and even on bi1lboards.

The applications in Microsoft Office 2000-including Excel
have all been revamped to put them on a better footing with
the Internet. This chapter provides an introduction to the
Internet (for those who have yet to discover this resource) and
discusses the Internet features that are available in Excel 2000.

What Is the Internet?
The lntemet, in a nutshell, is a collection of computers that are
located all around the world. These computers are all con
nected to each other, and they can pass information back and
forth. Strange as it may seem, the Internet is essentially a non
commercial system, and no single entity "runs" the Internet.

Most people don't think of the Internet as a collection uf
computers. Rather, the Inten1et is a resource that contains
information - and you use a computer to access that infor
mation. The computers that are connected to the Internet
simply do the grunt work of passing the information from
point A (which could be a computer in Hamburg, Germany)
to point B (which could be the computer in your cubicle).

emnosUSA0017343

CiM Ex. 1054 Page 21

emnosUSA0017344

CiM Ex. 1054 Page 22CiM Ex. 1054 Page 22

What's Available on the Internet?
The amount and variety of information that's available on the Internet is simply
mind-boggling. You can think of virtually any topic in the world, and an excellent
chance exists that at least some information on that topic can be found on the
Internet. Not unexpectedly, computer-related information is especially abundant.

So, where do you get this information? The following are the four primary sources
for information on the Internet:

• Web sites: The Web has rapidly become the most populai· part of the Internet.
Hundreds of thousands of Web sites are available that you can access with
your Web browser software. For example, my own Web site (The Spreadsheet
Page) has the following URL: r1t t p: / l>t1w,fi. J -wa l k. com/ s s /

• FfP sites: These are computers that have files available for download. You
can download these files by using Web browser software or other software
that is designed specifically to download files from FTP sites. The following is
the URL for Microsoft's FTP site: ftp:/ /ftp. rni crosoft. corn

• Newsgroups: These are essentially electronic bulletin boards. People post
messages or questions, and others respond to the messages or answer their
questions. Thousands of newsgroups are available for just about any topic
that you can think of. You need special "news reader" software to read or
post messages to a newsgroup (although most Web browsers also include
this feature). For more information, see the sidebar "Excel Newsgroups."

• Mailing lists: If you have access to Internet e-mail, you can subscribe to any of
several thousand mailing lists that address a broad array of topics. Subscribers
send e-mail to the mailing list, and then every other subscriber to the list
receives that e-mail. There are two popular mailing lists that deal with Excel
(refer to the "Excel Mailing Lists" sidebar for details).

How Do You Get on the Internet?
You can access the Internet in a number of ways. He1·e are some of the most com
mon ways:

• Through your company: Your company may already be connected to the
Internet. If so, just fire up your Web browser and you're there!

• Through an lnte1·net Service Provider (ISP): Most communities have several
companies that can set up an Internet account for you. For a small monthly
fee (1.1stially around $20) you can have unlimited (or almost unlimited) access
to the Internet. All that's required on your part is a computer, a modem, and a
phone Hue.

• 111rougb au online service: If you subscribe to any of the following online
services, you can access the Internet through that service: America Online,
CompuServe, Microsoft Network, or Prodigy.

emnosUSA0017345

CiM Ex. 1054 Page 23

If your ISP doesn't carry the mi crosoft. public. excel . * groups, you can
access them directly from Microsoft's news server. You need to configure your
newsreader software or Web browser to access Microsoft's news server, which is
rnsnews.rnicrosoft.com.

emnosUSA0017346

CiM Ex. 1054 Page 24

Where to Find Out More About the Internet
The best place to find out more about the Internet is -you guessed it-the Internet.
A good starting place is the IDG Books Web site. To access it, open the following URL
in your Web browser: http:/ /vJVt;J. -i dgboo ks. corn.

IDG Books Worldwide publishes numerous Internet books for users of all levels, and
you can find these Hsted and described on the IDG Web site.

Excel's Internet Tools
The remainder of this chapter describes the Internet-related features available in
Excel 2000. These features include:

• Using HTML as a native file format (instead of the XLS file format).

• Saving a worksheet as an interactive Web page.

• Using Excel's Web toolbar.

• Inserting hyperlinks into a worksheet.

emnosUSA0017347

CiM Ex. 1054 Page 25

• Creating and using Web queries.

• Scheduling and conducting online meetings.

• Creating discussion groups.

Using HTML As a Native File Format
l

Excel's standard file format is, of course, an XLS file. Excel 2000, however, has the
ability to use HTML as a native file format. This means that you can create a work
book and save it in HTML format. Then, you can reopen the file without losing any
information. In other words, your Excel-specific information (such as formulas,
charts, pivot tables, and macros) survive the translation to HTML.

If you've used the "save as HTML" feature in Excel 97, you probably know that the
HTML file that's created works fine in Web brnwsers- but if you reopen the file in
Excel, all of your formulas (as well as other Excel-specific features) will be gone.
With Excel 2000, this problem no longer e.xists, because the HTML file contains lots
of proprietary tags that are ignored by browsers but that enable Excel to re-create
the workbook.

To save a workbook in HTML format, select File• Save As. You'll see the familiar
Save As dialog box- but with some new options (see Figure 30-1). In the field
labeled Save as type, make sure Web Page C .htm, * .html) is selected. Provide a
filename, and click Save. To reopen the file, use the normal File• Open command.

Figure 30-1: Use the Save As dialog box to save a workbook in HTML
format.

emnosUSA0017348

CiM Ex. 1054 Page 26

Unless your workbook is very simple, saving it in HTML format generates addi
tional "supporting" files, because the HTML file format can't handle Excel-specific
items, such as macros, charts, and pivot tables. The supporting files are stored in a
separate subdirectory within the directory where you save the file. The directory
name consists of the file's name, followed by a space and the word "files."
Therefore, if you need to transfer the file to another computer, make sure that you
also transfer the supporting files in the subdirectory.

lf you save your work in HTML format, you should be aware of some additional
options. Select Tools• Options, click the General tab, and then click the Web Options
button. You'll see the dialog box shown in Figure 30-2. Most of the time, the default
settings work just fine. However, familiarizing yourself with the options available is
worthwhile (these are described in the online Help). You can also access the Web
Options dialog box from the Tools menu in the Save As dialog box.

Figure 30-2: Use the Web Options dialog box to
set various options for working with HTML files.

When you save a workbook in HTML format. by default, it will not be interactive
when it's opened in a browser. The browser displays a good rendition of the
worksheet, but it's essentially a "dead" workbook, because the user can't change
any cells. The next section describes how to save your Excel workbook in a way
that provides interactivity within a Web browser.

Providing Interactivity in Your Web Documents
When you save an Excel workbook in HTML format, you can select an option that
makes the file interactive within the browser. This means that the user can perform
standard Excel operations directly in the browser. For example, the user can change
cells or manipulate data in a pivot table. Saving an Excel file with interactivity is
limited to a single sheet.

emnosUSA0017349

CiM Ex. 1054 Page 27

To take advantage of this interactivity, the user must have Office 2000 installed, or
have a licensed copy of the Office Client Pak. The Office Client Pak consists of the
ActiveX controls necessary to work with interactive Office documents in a Web
browser. Currently, the only browser that supports this technology is Microsoft
Internet Explorer.

Figure 3()..3 shows an example of an Excel workbook displayed in Internet Explorer.
The user can change the values, and the formulas display the calculated results.

Mortgage Loan Calculator

$245,000.00
20.00%

$196,000.00
7.89%

:360

$1,423

Figure 30-3: An interactive Excel workbook opened in
Internet Explorer.

You need to understand that the interactivity is limited. For example, you can't
execute macros when an interactive Excel file is displayed in a browser.

Using the Web Toolbar
Use the Web toolbar (shmvn in Figure 30-4) to move among files (Excel files and
HTML documents); this is similar to using a Web browser. You can jump forward or
backward among the workbooks and other files that you've visited, and add the
ones that you may use frequently to a "favorites" List.

emnosUSA0017350

CiM Ex. 1054 Page 28

Figure 30-4: The Web toolbar.

Working with Hyperlinks
Hyper links are shm·tcuts that provide a quick way to jump to other workbooks and
files. You can jump to files on your own computer, your network, and the Internet
and Web.

Inserting a hyperlink
You can create hyperlinks from cell text or graphic objects, such as shapes and
pictures. To create a text hyperlink, choose the Insert• Hyper link command (or
press Ctrl+K). Excel responds with the dialog box shown in Figure 30-5.

Select an icon in the Link to column that represents the type of hyperlink you want
to create. Then, specify the location for the file that you want to link to. The dialog
box ,v:ill change, depending on the icon selected. Click OK, and Excel creates the
hyperlink in the active cell.

Figure 30-5: The Insert Hyperlink dialog box.

Adding a hyperlink to a graphic object works the same way. Add an object to your
worksheet by using the Drawing toolbai: Select the object and then choose the
Insert• Hyperlink command. Specify the required information as outlined in the
previous paragraph.

emnosUSA0017351

CiM Ex. 1054 Page 29

Using hyperlinks
When you work with hypedinks, remember that Excel attempts to mimic a Web
browser. For example, when you dick a hyper link, the hypedinked drn.:ument
replaces the current document-it takes on the same window size and position.
The document that contains the hyperlink is hidden. You can use the Back and
Forward buttons on the Web toolbar to activate the documents.

Web Queries
Excel enables you to pull in data contained in an HTML file by performing a Web
query. The data is transferred to a worksheet, where you can manipulate it any
way you like. You need to understand that pel"forming a Web query does not
actually open the HTML file in Excel.

The Web query feature is very similar to performing a normal database query (see
Chapter 24). The only difference is that the data is coming from a Web page rather
than a database file. Figure 30-6 shows a Web page that's a good candidate for a
Web query.

Figure 30-6: The table in this Web page will be brought into
a worksheet as a Web query.

emnosUSA0017352

CiM Ex. 1054 Page 30

The best part about a Web quet·y is that Excel remembers where the data came
from. Therefore, after you create a Web query, you can "refresh'' the query to pull
in the most recent data.

To create a Web query, select Data• Get External Data• New Web Query. Excel
displays the New Web Query dialog box, shown in Figure 30-7. In part l, specify
the HTML file, using the Browse button if you like. The HTML file can be on the
Internet, a corporate intranet, or on a local or network drive. In part 2, select how
much of the file you want to use. Most of the time, you'll just want to bring in a
particular table. In part 3, specify the type of formatting that you'd like to see.
Click the Advanced button for some additional options - these options might be
necessary if the data in the HTML file is not in the form of a table. Click OK and
you get another dialog box asking where you want to place the data.

Figure 30-7: Use the New Web Query dialog box to
specify the source of the data.

emnosUSA0017353

CiM Ex. 1054 Page 31

Fig1Jre 30~0: The data in this workbook resulted from
a Web quel'y.

emnosUSA0017354

CiM Ex. 1054 Page 32

Figure 30-9: The External Data Range Properties
dialog box provides you with some options
regarding your Web query.

Summary
This chapter provides a brief introduction to the Internet and describes several
Internet tools that are available in Excel. It explains how to use HTML as a native
file fonnat, use the Web toolbar, work with hyperlinks, and use Web queries.

emnosUSA0017355

CiM Ex. 1054 Page 33

emnosUSA0017356

CiM Ex. 1054 Page 34CiM Ex. 1054 Page 34

Making Your
Worksheets
Error-Free

The ultimate goal in developing a spreadsheet solution is
to generate accurate results. For simple worksheets. this

isn't difficult, and you can usually tell whether the results are
correct. But when your worksheets are large or complex,
ensuring accuracy becomes more difficult. This chapter pro
vides you with tools and techniques to help you identify and
correct errors.

Types of Worksheet Problems
Making a change in a worksheet -even a relatively minor
change-may produce a ripple effect that introduces errors
in other cells. For example, accidentally entering a value into
a cell that formerly held a formula is all too easy to do. This
can have a major impact on other formulas, and you may not
discover the problem until long after you make the change.
Or, you may never discover the problem.

An Excel worksheet can have many types of problems. Some
problems-such as a formula that returns an error value
are immediately apparent. Other problems are more subtle.
For example, if a formula was constructed using faulty Logic,
it may never retun1 an error value - it simply returns the
wrong values. If you're Lucky, you can discover the problem
and correct it.

Common problems that occur in worksheets are the following:

• Incorrect approach to a problem

• Faulty logic in a formula

• Formulas that return error values

emnosUSA0017357

CiM Ex. 1054 Page 35

• Circular references

• Spelling mistakes

• A worksheet is new to you, and you can't figure out how it works

Excel provides too]s to help you identify and correct some of these problems. In the
remaining sections, I discuss these tools along with others that I've developed.

Formula AutoCorrect
When you enter a formula that has a syntax error, Excel attempts to determine the
problem and offers a suggested correction.

For example, if you enter the following formula (which has a syntax erroi), Excel
displays the dialog box that is shown in Figure 31-1:

=SUM(Al:A12)/38

Figure 31-1: Excel can often offer a suggestion to correct
a formula.

Be careful about accepting corrections for your formulas from Excel, because it
doesn't always guess correctly. For example, I entered the following formula
(which has mismatched parentheses):

=AVERAGECSUM(Al:A12,SUM(Bl:B12))

Excel proposed the following correction to the formula:

=AVERAGE(SUM(Al:A12,SUM(Bl:B12)))

You may be tempted to accept the suggestion without even thinking. In this case,
the proposed formula is syntactically correct-but not what I intended.

Tracing Cell Relationships
Excel has several useful tools that can help you track down errors and logical flaws
in your worksheets. This section discusses the following items:

emnosUSA0017358

CiM Ex. 1054 Page 36

• Go To Special dialog box

• Excel's built-in auditing tools

These tools are useful for debugging formulas. As you probably realize by now, the
formulas in a worksheet can become complicated and refer (directly or indirectly)
to hundreds or thousands of other cells. Trying to isolate a problem in a tangled
web of formulas can be frustrating.

Before discussing these features, you need to be familiar with the following two
concepts:

• Cell precedents: Applicable only to cells that contain a formula. A formula
cell's precedents are all the cells that contribute to the formula's result. A
direct precedent is a cell that you use directly in the formula. An indirect
precedent is a cell that isn't used directly in the formula, but is used by a cell
to which you refer in the formula.

• Cell dependents: Formula cells that depend on a particular cell. Again, the
formula cell can be a direct dependent or an indirect dependent.

Often, identifying cell precedents for a formula cell sheds light on why the formula
isn't working correctly. Ou the other hand, knowing which formula cells depend on
a particular cell is often helpful. For example, if you're about to delete a formula,
you may want to check whether it has any dependents.

The Go To Special Dialog Box
The Go To Special dialog box can be useful, because it enables you to specify the
type of cells that you want Excel to select. To display this dialog box, choose Edit•
Go To (or press F5). The Go To dialog box appears. Click the Special button, which
displays the Go To Special dialog box, as shown in figure 31-2.

Figure 31-2: The Go To Special
dialog box.

emnosUSA0017359

CiM Ex. 1054 Page 37

lf you select a range before choosing Edit• Go To, the command looks only at the
selected cells. If only a single cell is selected, the command operates cm the entire
worksheet.

You can use this dialog box to select cells of a certain type-which can often be help
ful in identifying errors. For example, if you choose the Formulas option, Excel selects
all the cells that contain a formula. If you zoom the worksheet out to a small size, you
can get a good idea of the worksheet's organization (see Figure 31-3). It may also help
you spot a common error: a formula that you overwrote ,vith a value. If you find a cell
that's not selected amid a group of selected formula cells, chances are good that the
cell formerly contained a formula that has been replaced by a value.

Figure 31-3: Zooming out and selecting all formula cells can
give you a good overview of how the worksheet is designed.

You can also use the Go To Special dialog box to identify cell precedents and depen
dents. In this case, Excel selects all cells that qualify. In either case, you can choose
whether to display direct or all levels.

E.,'!cel has shortcut keys that you can use to select precedents and dependents. These
are listed in Table :31-1.

emnosUSA0017360

CiM Ex. 1054 Page 38

Key Combination What It Selects

Ctrl+Shift+[All precedents

Ctrl+Shift+] All dependents

You also can select a formula cell's direct dependents by double-clicking the cell. This
technique, however, works only when you tum off the Edit directly in the cell option
on the Edit tab of the Options dialog box.

Excel's Auditing Tools
E.,'i:cel provides a set of interactive auditing tools that you may find helpfuL Access
these tools either by selecting Tools• Auditing (which results in a submenu with
additional choices) or by using the Auditing toolbar, shown in Figure 31-4.

Figure 31-4: The Auditing toolbar.

The tools on the Auditing toolbar, from left to right, are as follows:

• Trace Precedents: Draws arrows to indicate a formula cell's precedents. Click
this multiple times to see additional levels of precedents.

• Remove Precedent Arrows: Removes the most recently placed set of
precedent arrows.

emnosUSA0017361

CiM Ex. 1054 Page 39

• Trace Dependents: Draws arrows to indicate a cell's dependents. Click this
multiple times to see additional levels of dependents.

• Remove Dependent Arrows: Removes the most recently placed set of depen
dent anows.

• Remove All Arrows: Removes all precedent and dependent arrows from the
worksheet.

• Trace Error: Draws arrows from a cell that contains an error to the cells that
may have caused the error.

• New Comment: Inserts a comment for the active cell. This really doesn't have
much to do with auditing. It lets you attach a comment to a cell.

• Circle Invalid Data: Draws a circle around all the cells that contain invalid data.
This applies only to cells that have validation criteria specified with the Data•
Validation command.

• Clear Validation Circles: Removes the circles that are drawn around cells that
contain invalid data.

These tools can identify precedents and dependents by drawing arrows (known
as cell tracers) on the worksheet, as shown in Fig~ire '.31-5. In this case, cell Gll
was selected and then the Trace Precedents toolbar button was clicked. E.'<:cel
drew lines to identify the cells used by the formula in G 11 (direct precedents).

5.50% Normal Corrmiss1ot1 Rate
:5% lrrprcvemem From Prior Mamh

6 50% Paid if Sales Gcal is Atlaicec

Last This Pct. Met Com·
Month Month Ghane Change Goal? mission

101,233 98,744 (2,489) -2.5% FALSE 5,431
120,933 134,544 13,611 11.3% FALSE 7,400
·112,344 134,887 22,543 20.1% TRUE 8,768
130,933 151.745 20,812 15.9% TRUE 9,863
150,932 140,778 10,'54 -6.7% FALSE 7,743
616,375 660,698 44,323 7.2% 39 205

A~e,age Commission Rate: 5.93%

Figure 31-5: Excel draws lines to indicate a cell's precedents.

emnosUSA0017362

CiM Ex. 1054 Page 40

Figure 31-6 shows what happens when the Trnce Precedents button is clicked again.
This time, Excel adds more lines to show the indirect precedents. The result is a
graphical representation of the cells that are used (directly or indirectly) by the
formu1a in cell Gl l.

Month
101,23:3
120,933
112,344
130,933 • 151)"45···
150,932
616,375 660,698

A•1e,c1ge Commission R~te: 5.93%

44,323

Figure 31-6: Excel draws more lines to indicate the indirect precedents.

This type of interactive tracing is often more revealing when the worksheet is
zoomed out to display a larger area.

The best way to learn about these tools is to use them. Start with a worksheet that
has formulas and e..-xperiment with the various buttons on the Auditing toolbar.

Tracing Error Values
The Truce Error button on the Auditing toolbar helps you to identify the cell that is
causing an error value to appear. Often, an error in one cell is the result of an error
in a precedent cell. Activate a cell that contains an error, and dick the Trace Error
button. Excel draws arrows to indicate the error source.

Table 31-2 lists the types of errot· values that may appear in a cell that has a formula.
The Trace Error button works with all of these errors.

emnosUSA0017363

CiM Ex. 1054 Page 41

Error Value

#NAME?

#NULL!

#REF!

Explanation

The formula uses a name that Excel doesn't recognize. This can happen if
you delete a name that's used in the formula or if you have unmatched
auota1t10,n marks when using text.

''"''

~~pl;¥
The formula uses an intersection of two ranges that do not intersect (this
concept is described later in the chapter).

The formula refers to a cell that is not valid. This can happen if the cell has
been deleted from the worksheet

Circular References
A circular reference occUTs when a formula refers to its own cell- either directly or
indirectly. Usually, this is the result of an error (although some circular references
are intentional). When a worksheet has a circular reference, Excel displays the cell
reference in the status bar.

Refer to the discussion of circular references in Chapter 9.

Other Auditing Tools
The registered version of the Power Utility Pak includes a utility named Auditing
Tools. The dialog box for this utility is shown in Figure 31-7.

Figure 31-7: The Worksheet
Auditing dialog box from
the Power Utility Pak.

emnosUSA0017364

CiM Ex. 1054 Page 42

This utility works with the active worksheet and can generate any or all of the
following items:

• \Vorksheet map: A color-coded graphical map of the worksheet that shows the
type of contents for each cell-value, text, formula, logical value, 01· error. See
Figure 31-8.

• Formula list: A list of all formulas in the worksheet, including their current
values.

• Summary report: An informative report that includes details about the work
sheet, the workbook that it's in, and a list of all defined names.

Figure 31-8: This worksheet map was
produced by the Auditing Tools utility
from the Power Utility Pak.

You can find the shareware version of the Power Utility Pak on this book's CD-ROM.
Owners of this book can purchase the Power Utility Pak at a significant discount. Use
the coupon in the back of the book to order your copy.

Spelling and Word-Related Options
E.'s:cel includes several handy tools to help you with the non-numeric problems -
those related to spelling and words.

emnosUSA0017365

CiM Ex. 1054 Page 43

Spell Checking
Jf you use a word processing program, you probably run its spelling checker before
printing an important document. Spelling mistakes can be just as embarrassing when
they appear in a spreadsheet. Fortunately, Mkrnsoft includes a spelling checke1· with
Excel. You can access the spelling checker by using any of these methods:

• Select Tools• Spelling

• Click the Spelling button on the Standard toolbar

• Press F7

The result of using any one of these methods is the Spelling dialog box that is shown
in Figure :31-9.

Figure 31-9: The Spelling dialog box.

The extent of the spell checking depends on what you selected before you opened
the Spelling dialog box. If you selected a single cell, Excel checks the entire work
sheet, including cell contents, notes, text in graphic objects and charts, and page
headers and footers. Even the contents of hidden rows and columns are checked.
If you select a range of cells, E.."'l:cel checks only that range. If you select a group of
characters in the formula bar, Excel i::hecks only those characters.

The Spelling dialog box works similarly to other spelling checkers with which you
may be familiar. If Excel encounters a word that isn't in the current dictionary or is
misspelled, it offers a list of suggestions. You can respond by clicking one of the
following buttons:

• Ignore: Ignores the word and continues the spell check.

• Ignore All: Ignores the word and all subsequent occurrences of it.

• Change: Changes the word to the selected word in the Change to edit box.

emnosUSA0017366

CiM Ex. 1054 Page 44

• Change All: Changes the word to the selected word in the Change to edit box
and changes all subsequent occurrences of it without asking.

• Add: Adds the word to the dictionary.

• Suggest: Displays a list of replacement words. This button is grayed if the
Always suggest check box is checked.

• AutoCorrect: Adds the misspelled word and its correct spelling to the list:

=SUMCA1:Al2)/3B

Using AutoCorrect
AutoCorrect is a handy feature that automatically corrects common typing mistakes.
You also can add words to the list that Excel corrects automatically. The AutoCorrect
dialog box appears in Figure 31-10. You access this feature by choosing Tools•
Auto Correct.

Figure 31-10: The AutoCorrect dialog box.

This dialog box has several options:

• Con·ect TWo INitial CApitals: Automatically corrects words with two
initial uppercase letters. For example, BUdget is converted to Budget. This is a
common mistake among fast typists. You can dick on the Exceptions button
to specify a list of exceptions to this rule. For example, my company name is
JWalk and Associates, so I created an exception for IWalk.

• Capitalize first lette1· of sentence: Capitalizes the first letter in a sentence.

emnosUSA0017367

CiM Ex. 1054 Page 45

• Capitalize names of days: Capitalizes the days of the week. If you enter monday,
Excel converts it to 1v/onday

• Correct accidental use of cAPS LOCK key: Corrects errors caused if you acci
dentally hit the CapsLock key while typing.

• Re1>lace text as you type: AutoCorrect automatically changes incorrect words
as you type them.

E.,-..:cel includes a long list of AutoCorrect entries for commonly misspelled words. In
addition, it has AutoCorrect entries for some symbols. For example, (c) is replaced
with© and (r) is replaced with® You can also add your own AutoCorrect entries.
For example. if you find that you frequently misspell the word January as Janruary,
you can create an AutoCorrect entry so that it's changed automatically. To create a
new AutoConect entry, enter the misspelled word in the Replace box and the cor
rectly spelled word in the With box. As I noted previously, you also can do this in the
Spelling dialog box.

You also can use the AutoCorrect feature to create shortcuts for commonly used
words or phrases. For example, if you work for a company named Consolidated
Data Processing Corporation, you can create an AutoCorrect entry for an abbrevi
ation. such as cdp. Then, whenever you type cdp, Excel automatically changes it
to Consolidated Data Processing Corporation.

Using AutoComplete
AutoComplete automatically finishes a word as soon as Excel recognizes it. For Excel
to recognize the word, it must appear elsewhere in the same column. This feature is
most useful when you're entering a list that contains repeated te..'st in a column. For
example, assume that you're entering customer data in a list, and one of the fields is
City. Whenever you start typing, Excel searches the other entries in the column. If it
finds a match, it completes the entry for you. Press Enter to accept it. If Excel guesses
incorrectly, keep typing to ignore the suggestion.

If AutoComplete isn't working, select Tools• Options, click on the Edit tab, and
check the box labeled Enable AutoComplete for cell values.

You also can display a list of all items in a column by right-clicking and choosing Pick
from list from the shortcut menu. Excel then displays a list box of all entries that are
in the column (see Figure 31-11). Click on the one that you want, and Excel enters it
into the cell for you.

emnosUSA0017368

CiM Ex. 1054 Page 46

Figure 31-11: Choosing the Pick from list option
from the shortcut menu gives you a list of entries
from which to choose.

Learning About an Unfamiliar Spreadsheet
When you develop a workbook yourself, you have a thorough understanding of how
it's put together. But if you receive an unfamiliar workbook from someone, it may be
difficult to understand how it all fits together-especially if it's large.

First, identify the bottom-line cell or cells. Often, a worksheet is designed to produce
results in a single cell or in a rnnge of cells. After you identify this cell or range, you
should be able to use the cell-tracing techniques described earlier in this chapter to
determine the cell relationships.

Although every worksheet is different. a few techniques can help you become familiar
with an unfamiliar workbook. I discuss these techniques in the following sections.

Zooming Out for the Big Picture
I find that ifs often helpful to use E..xcel's zoom feature to zoom out to get an over
view of the worksheet's layout. You can select View• Full Screen to see even more
of the worksheet. When a workbook is zoomed out, you can use all of the normal

emnosUSA0017369

CiM Ex. 1054 Page 47

commands. For example, you can use the Edit• Go To command to select a name
range. Or, you can use the options that are available in the Go To Special dialog box
(explained previously in this chapter) to select formula cells, constants, or other
special cell types.

Viewing Formulas
You c:an become familiar with an unfamiliar workbook by displaying the formulas
rather than the results of the formulas. Select Tools• Options, and check the box
labeled Formulas on the View tab. You may want to create a new window for the
workbook before issuing this command. That way, you can see the formulas in one
window and the results in the other.

Figure 31-12 shows an example. The window on the top shows the normal view
(formula results). The window on the bottom displays the formulas.

·15% lmprovemeri1 Frnr1 Prior Morch
6.50% Paid if Sales Goal is Al:tainsc

u,,;I T/ii,; em,,, Mel Com·
Momh /11,::mth Chane ge Goof? mission
10· ,233 98,744 {2,489) -2.5% FALSE: 5,4':1
120,933 134,544 '3,611 '1.3% FALS:: 7,4GO
112,344 134,987 22,543 20.1% TRUE 8,758
130,933 151.745 20,8'12 59% TRUE 9,8E3
150,"32 140,178 i'0,154) -6.7% FALSE: ;',743
6H, 3;5 SEO sas 44 323 7.2% 3g 2[5

Figure 31-12: The underlying formulas are shown in the bottom window.

emnosUSA0017370

CiM Ex. 1054 Page 48

Pasting a List of Names
Jf the worksheet uses named ranges, create a list of the names and their references.
Move the cell pointer to an empty area of the worksheet and choose Insert• Name•
Paste. Excel responds with its Paste Name dialog box. Click on the Paste List button
to paste a list of the names and their references into the workbook. Figure 31-13
shows an example.

."we'.age Commission Rate: 5.93%

=Sheet11$8$3
=Sheet11$8$1
=Sheet11$8$6:B'11
=Sheet1 !B2
=Shest1 !C6:$C:$11
=Sheet1 !$8$1 i G11

(10154
44 323

11.3%
20.1%
15.9%
-6.7%
7.2%

Figure 31-13: Pasting a list of names (in A15:B20) can some
times help you understand how a worksheet is constructed.

Summary
In this chapter, I discuss tools that can help you make your worksheets error-free.
I identify the types of errors that you're likely to encounter. I also cover three tools
that Excel provides, which can help you trace the relationships between cells: the
Info \v:indow, the Go To Special dialog box, and Excel"s interactive auditing tools. I go
over text-related features, including spell checking, AutoCorrect, and AutoComplete.
I conclude the chapter with general tips that can help you understand how an unfa
miliar worksheet is put together.

emnosUSA0017371

CiM Ex. 1054 Page 49

emnosUSA0017372

CiM Ex. 1054 Page 50CiM Ex. 1054 Page 50

Fun Stuff

A !though Excel is used primarily for serious applications,
many users discover that this product has a lighter

side. This chapter is devoted to the less-serious applications
of Excel, including games and interesting diversions.

Games
E.'{cel certainly wasn't designed as a platform for games.
Nevertheless, I've developed a few games using Excel and
have downloaded several others from various Internet sites.
I've found that the key ingredient in developing these games is
creativity. In almost every case, l had to invent one or more
workarounds to compensate for Excel's lack of game-making
features. In this section, I show you a few of my own creations.

The examples in this chapter are either available on the com
panion CD-ROM or included with the registered version of my
Power Utility Pak (see the coupon at the back of the book).

Tick-Tack-Toe
Although Tick-Tack-Toe is not the most mentally stimulating
game, everyone knows how to play it. Figure :~2-1 shows the
Tick-Tack-Toe game that 1 developed using Excel. In this
implementation, the user plays against the computer. I wrnte
some formulas and VBA macros to determine the computer's
moves, and it plays a reasonably good game-about on par
with a three-year-old child. I'm embarrassed to admit that
the program has even beaten me a few times (OK, so [was
distracted!).

This workbook is available on the companion CD-ROM.

You can choose who makes the first move (you or the com
puter) and which marker you want to use (X or 0). The winning
games and ties are tallied in cells at the bottom of the window.

emnosUSA0017373

CiM Ex. 1054 Page 51

Figure 32-1: My Tick-Tack-Toe game.

Moving Tile Puzzle
At some time in your life, you've probably played one of those moving tile puzzles.
They come in several variations, but the goal is always the same: rearrange the tiles
so that they are in order.

This workbook is available on the companion CD-ROM.

Figure 32-2 shows a version of this game that I wrote using VBA. This version lets
you choose the number of tiles (from a simple 3x3 matrix up to a challenging 6x6
matrix).

When you click the tile, it appears to move to the empty position. Actually, no
movement is taking place. The program is simply changing the text on the buttons
and making the button in the empty position invisible.

Figure 32-2: My Moving Tile puzzle.

emnosUSA0017374

CiM Ex. 1054 Page 52

Keno
Jf you've ever spent any time in a casino, you may be familiar with Keno (see
Figure 32-3). Jf you're smart, you probably know to avoid this game like the plague,
because it has the lowest return of any casino game. With my Keno for Excel, you
don't have to worry about losing any money: all the action takes place on a
worksheet, and no money changes hands. And, it's a lot faster than the casino
version.

This workbook is available on the companion CD-ROM. In addition, I've included
another workbook that calculates the various odds associated with Keno. Take a look
at this workbook and you may never play casino Keno again!

Figure 32-3: Keno for Excel.

Power Utility Pak Games
The four games listed in this section are included with my Power Utility Pak. Use
the coupon in the back of the book to order your copy at a huge discount.

Video Poker
Developing: my Video Poker game for Excel (see Figure 32-4) was quite a challenge.
I was forced to spend many hours performing research at a local casino to perfect
this game so that it captures the excitement of a real poker machine. The only
problem is that [haven't figured out a way to dispense the winnings. Oh well,
maybe in the next version.

emnosUSA0017375

CiM Ex. 1054 Page 53

Figure 32-4: My Video Poker game.

This version has two games: Joker's Wild (a joker can be used for any card) and
Jacks or Better (a pair of jacks or better is required to win). You select which cards
to discard by clicking the card face. You can change the game (or the bet) at any
time while playing. You can also request a graph that shows your cumulative
winnings (or, more typically, your cumulative losses).

Identifying the various poker hands is done using VBA procedures. The game also
has a Hide button that temporarily hides the game (pressing Esc has the same
effect). You can then resume the game when your boss leaves the room.

This game is included with the registered version of the Power Utility Pak. See the
coupon in the back of the book for details on how to get your copy.

Dice Game
The goal of the Dice Game (shown in Figure 32-5) is to obtain a high score by
assigning dice rolls to vadous categories. You get to mil the dice three times on
each turn, and you can keep or discard the dice before rolling again. Everything is
done using VBA.

This game is included with the registered version of the Power Utility Pak. See the
coupon in the back of the book for details on how to get your copy.

Bomb Hunt
Windows comes with a game called Minesweeper. I developed a version of this
game for Excel and named it Bomb Hunt (see Figure 32-6). The goal is to discover
the hidden bombs in the grid. Double-clicking a cell reveals a bomb (you lose) or a
number that indicates the number of bombs in the surrounding cells. You use logic
to determine where the bombs are located.

This game is included with the registered version of the Power Utility Pak. See the
coupon in the back of the book for details on how to get your copy.

emnosUSA0017376

CiM Ex. 1054 Page 54

Figure 32-5: My Dice Game.

Figure 32-6: My Bomb Hunt game.

Hangman
Hangman is another game that almost everyone has played. Figure 32-7 shows a
version that I developed for Excel. The objective is to identify a word by guessing
letters. Correctly guessed letters appear in their proper position. Every incorrectly
guessed letter adds a new body part to the person being hanged (to reduce gratu
itous violence, I substituted a skeleton for the hanged gentleman). Ten incorrect
guesses and the skeleton is completed-that is, the game is over.

emnosUSA0017377

CiM Ex. 1054 Page 55

Figure 32-7: My Hangman game.

The workbook includes 1,400 words, ranging in length from 6 to 12 letters. You can
eithe1· choose how many letters you want in the word or have the number of letters
determined randomly. The entire game takes place in a dialog box.

Animated Shapes
With a bit of imagination (and lots of help from VBA), you can create some simple
animations in a wot·kbook. I've put together a few examples to demonstrate how it's
done. FiE,1Ure 32-8 shows an example (use your imagination -it really is animated).

Figure 32-8: Animated Shapes.

emnosUSA0017378

CiM Ex. 1054 Page 56

This workbook is available on the companion CD-ROM.

Symmetrical Pattern Drawing
I must admit, this program is rather addictive-especially for doodlers. It lets you
create colorful symmetrical patterns by using the anow keys on the keyboard.
Figure 32-9 shows an example. As you draw, the drawing is reproduced as mirror
images in the other three quadrants. When you move the cursor to the edge of the
drawing area, it wraps around and appears on the other side. This workbook is
great for passing the time on the telephone when you're put on hold.

The drawing is all done with VBA macros. I used the OnKey method to trap the
following key presses: left, right, up. and down. Each of these keystrokes executes a
macro that shades a cell. The cells in the drawing area are very tiny, so the shading
appears as lines.

This workbook is available on the companion CD-ROM

Figure 32~9: My Symmetrical Pattern Drawing worksheet.

emnosUSA0017379

CiM Ex. 1054 Page 57

For Guitar Players
If you play guitar, check out this workbook. As you see in Figure 32-10, this work
book has a graphic depiction of a guitar's fret board. It displays the notes (and fret
positions) of the selected scale or mode in any key. You can even change the tuning
of the guitar, and the formulas automatically recalculate.

This workbook is available on the companion CD-ROM.

Figure 32-10: My guitar fret board application.

Other options include the choice to display half-notes as sharps or flats, to pop
up information about the selected scale or mode, and to change the color of the
guitar neck. This workbook uses formulas to do the calculation, and VBA plays
only a minor role. This file was designated a ''top pick" on America Online, and
I've received positive feedback from fellow pickers all over the world.

An April Fool's Prank
Here's a good April Fool's trick to play on an office mate (with luck, one with a sense
of humor). When he or she is out of the office, load this workbook and click the
button to reverse the menus. For example, the Insert• Name• Define command
becomes the Tresni • Eman • Enifed command. Excel's menus look like they're in a
strange language. Figure 32-11 shows how this looks.

This workbook is available on the companion CD-ROM.

emnosUSA0017380

CiM Ex. 1054 Page 58

Figure 32-11: Excel with backward menus. The hot keys remain the same.

The routine performs its mischief by calling a custom function that reverses the
text in the captions (except for the ellipses), converts the new text to proper case,
and maintains the original hot keys. The net effect is a worksheet menu system
that works exactly like the original (and is even keystroke-compatible) but looks
very odd.

Clicking the Reset menu button returns the menus to normal.

Creating Word Search Puzzles
Most daily newspapers feature a word search puzzle. These puzzles contain words
that are hidden in a grid. The words can be vertical, diagonal, horizontal, forwards,
or backwards. If you've ever had the urge to create your ow•n word search puzzle,
this workbook can make your job a lot easier by doing it for you. You supply the
words; the program places them in the grid and fills in the empty squares with
random letters. Figure 32-12 shows the puzzle creation sheet plus a sample puzzle
that was created with this application.

This is all done with VBA, and randomness plays a major role. Therefore, you can
create multiple puzzles using the same words.

This workbook is available on the companion CD-ROM.

emnosUSA0017381

CiM Ex. 1054 Page 59

C T A D R p

V 0 C C T E

H J C R

z T 0

s R N A R

T 0 El y El

R M F C s N

u El s I.ii u R

M 0 R s s

p N A C

[[y s L L

T p R A fl K

Cl R R A T

Figure 32-12: My Word Search Puzzle Maker.

ASCII Art
ASCH art consists of pictures made up of simple ASCII characters. The Internet is
filled with thousands of examples of ASCII art. I created a workbook with a few
examples that I picked up from the public domain. Figure 32-13 shows an example.

This workbook is available on the companion CD-ROM.

For the image to look correct, you must view ASCII art using a fixed-width font, such
as Courier New.

Sound File Player
t-'!cel doesn't have to be quiet. I created a simple macro that lets you play any WAY
or MIDI file on your system.

This workbook is available on the companion CD-ROM.

emnosUSA0017382

CiM Ex. 1054 Page 60

Figure 32-13: An example of ASCII art

Fun with Charts
Excel's charting feature has the potential to be fun. In this section, I provide
examples of some nonserious charting applications.

Plotting Trigonometric Functions
Although I don't lrnow too much about trigonometry, I've always enjoyed plotting
various trigonometric functions as XY charts. Sometimes you can come up with
attractive images. Figure 32-14 shows an example of a trigonometric plot. Clicking
the button changes a random number that makes a new chart.

This workbook is available on the companion CD-ROM.

emnosUSA0017383

CiM Ex. 1054 Page 61

Figure 32-14: This chart plots trigonometric functions.

XV-Sketch
In this workbook, you use the controls to draw an XY chart (see Figure 32-15).
Clicking a directional button acids a new X and Y value to the chart's data range,
which is then plotted on the chart. You can change the step size, adjust the color,
and choose between smooth and normal lines. I include a multilevel Undo button
that successively removes data points that you added.

This workbook is available on the companion CD-ROM.

emnosUSA0017384

CiM Ex. 1054 Page 62

Figure 32-15: My XY-Sketch workbook.

Summary
In this chapter, I present several examples of nonserious applications for Excel.
Some of these examples can most likely be adapted and used in more serious
applications (well, maybe not).

emnosUSA0017385

CiM Ex. 1054 Page 63

emnosUSA0017386

CiM Ex. 1054 Page 64CiM Ex. 1054 Page 64

Customizing
Excel

emnosUSA0017387

CiM Ex. 1054 Page 65

emnosUSA0017388

CiM Ex. 1054 Page 66

Customizing
Toolbars and
Menus

You're probably familiar with many of Excel's built-in tool
bars, and you have most likely thoroughly explored the

menu system. Excel lets you modify both toolbars and menus.
This chapter explains how to customize the built-in toolbars,
create new toolbars, and change the menus that Excel dis
plays. Although many of these customizations are most useful
when you create macros (discussed in subsequent chapter-s),
even nonmacro users may find these techniques helpful.

Menu Bar= Toolbar
Beginning with Excel 97, virtually no distinction exists between
a menu bar and a toolbar. In fact, the menu bar that you see at
the top of Excel's window is actually a toolbar that is named
Worksheet Menu Bar. As with any toolbar, you can move it to a
new location by dragging it (see Figure 33-1).

Many of the menu items display icons in addition to text - a
good sign that Excel's menus are not "real" menus. To further
demonstrate that Excel's menu bars are different from those
used in other programs, note that if you change the colors or
fonts used for menus (using the Windows Control panel),
these changes do not appear in Excel's menus.

emnosUSA0017389

CiM Ex. 1054 Page 67

Figure 33-1: Excel's menu bar is actually a toolbar, and you can move it to any
location that you want

Customizing Toolbars
The official term for toolbars, menu bars, and shortcut menus is a CvmmandBar.
All told, Excel comes with nearly 100 built-in CommandBars, made up of the
following:

• Two menu bars (one for worksheets and one for chart sheets)

• 40 trnditional style toolbars

• 51 shortcut menus (the menus that appear when you right-click a selection)

Each Comrnan<lBar consists of one or more "commands.'' A command can take the
form of an icon, text, or both. Some additional commands don't appear on any of
the prebuilt toolbars.

Many users like to create custom toolbars that contain the commands that they use
most often.

emnosUSA0017390

CiM Ex. 1054 Page 68

Types of Customizations
The following list is a summary of the types of customizations that you can make
when working with toolbars (which also include menu bars):

• Move toolbars. Any toolbar can be moved to anothe1· location .

• Remove buttons from built-in toolbars. You may want to do this to eliminate
buttons that you never use.

• Add buttons to built-in toolbars. You can add as many buttons as you want to
any toolbar.

• Create new toolbars. You can create as many new toolbars as you like, with
as many buttons as you like.

• Change the functionality of a button. You make such a change by attaching
your own macro to a built-in toolbar button.

• Change the image that appears 011 auy toolbar buttou. A rudimentary but
functional toolbar-button editor is included with Excel.

Shortcut Menus
The casual user cannot modify Excel's shortcut menus (the menus that appear
when you right-dick an object). Doing so requires the use of VBA macros.

Moving Toolbars
A toolbar can be either floating or dockecl. A docked toolbar is fixed in place at the
top, bottom, left, or right edge of Excel's workspace. Floating toolbars appear in an
"always-on-top" window, and you can drag them wherever you like.

emnosUSA0017391

CiM Ex. 1054 Page 69

To move a toolbar, just click its border and drag it to its new position. If you drag it to
one of the edges of Excel's window, it attaches itself to the edge and becomes clocked.
You can create several layers of docked toolbars. For example, the Standard and
Formatting toolbars are (normally) both docked along the upper edge.

If a toolbar is floating, you can change its dimensions by dragging a border. For
example, you can transform a horizontal toolbar to a vertical toolbar by dragging
one of its corners.

Using the Customize Dialog Box
To make any changes to toolbars, you need to be in "customization mode." In cus
tomization mode, the Customize dialog box is displayed, and you can manipulate
the toolbars in a number of ways. To get into customization mode, perform either
of the following actions:

• Select View• Toolbars • Customize

• Select Customize from the shortcut menu that appears when you right-click a
toolbar

Either of these methods displays the Customize dialog box that is shown in Figure
33-2. This dialog box lists all the available toolbars, including custom toolbars that
you have created.

Formatting
r1 3·0 Setting,
f' Asd~ing
rcoart
C: C~art Menu Bar
r: C:rcular Reference
r:' C:lpboard
f1 Control Tco'bcx
rocawing r Exit Design 'lode r External Data
rJForms
['.' Fu! Screen
nPicture

Figure 33-2: The Customize dialog box.

The Customize dialog box has three tabs, each of which is described in the
following sections.

emnosUSA0017392

CiM Ex. 1054 Page 70

The Toolbars Tab
Figure 33-2 shows the Toolbars tab of the Customize dialog box. The following
sections describe how to perform various procedures that involve toolbars.

Operations that you perform by using the Customize dialog box cannot be
undone.

Hiding or displaying a toolbar
The Toolbars tab displays every toolbar (built-in toolbars and custom toolbars).
Add a check mark to display a toolbar; 1·emove the check mark to hide it. The
changes take effect immediately.

Creating a new toolbar
Click the New button and then enter a name in the New Toolbar dialog box. Excel
creates and displays an empty toolbar. You can then add buttons to the new toolbar.
See "Adding or Removing Toolbar Buttons" later in this chapter.

Renaming a custom toolbar
Select a custom toolbar from the list and click the Rename button. Enter a new
name in the Rename Toolbar dialog box. You cannot rename a built-in toolbar.

Deleting a custom toolbar
Select a custom toolbar from the list and click the Delete button. You cannot delete
a built-in toolbar.

Resetting a built-in toolbar
Select a built-in toolbar from the list and click the Reset button. The toolbar is
restored to its default state. If you've added any custom tools to the toolbar, they
are removed. If you've removed any of the default tools, they are restored.

The Reset button is not available when a custom toolbar is selected.

Attaching a toolbar to a workbook
If you create a custom toolbar that you want to share with someone else, you can
"attach" it to a workbook. To attach a custom tool bar to a workbook, click the
Attach button, which presents the Attach Toolbars dialog box. Select the toolbars
that you want to attach to a workbook (see Figure 33-3). You can attach any number
of toolbars to a workbook.

A toolbar that's attached to a workbook appears automatically when the workbook
is opened, unless the workspace already has a toolbar by the same name.

emnosUSA0017393

CiM Ex. 1054 Page 71

Figure 33-3: You can attach custom toolbars to a
workbook in the Attach Toolbars menu.

The toolbar that's stored in the workbook is an exact copy of the toolbar at the
time that you attach it. If you modify the tool bar after attaching it, the changed
version is not stored in the workbook automatically. You must manually remove
the old toolbar and then add the edited toolbar.

The Commands Tab
The Commands tab of the Customize dialog box contains a list of every tool that's
available. Use this tab when you customize a toolbar. This feature is described later
in the chapter (see "Adding or Removing Toolbar Buttons").

The Options Tab
The Options tab of the Customize dialog box, shown in Figure 33-4, gives you
several choices of ways to customize your menus, toolbars, icons, and the like.
The following list explains these options.

• Personalized Menus and Toolbars: On the Options tab, the new options of
Excel 2000 are Personalized Menus and Toolbars and, in the Other area, List
font names in their font.

• These options provide you with some control over how the menus and
toolbars work. Set these options according to your personal preferences.

• Large icons: To change the size of the icons used in toolbars, select or
deselect the Large icons check box. This option only affects the images that
are in buttons. Buttons that contain only ta'"<t (such as buttons in a menu)
don't change.

• List font names in their font: This new featurn displays the font names using
the actual font. The advantage is that you can preview the font before you
select it. The disadvantage is that it's a bit slower.

emnosUSA0017394

CiM Ex. 1054 Page 72

• Show ScreenTips on toolbar: Screen Tips are the pop-up messages that display
the button names when you pause the mouse pointer over a button. If you find
the Screen Tips distracting, remove the check mark from the Show Screen Tips
on toolbars check box. The status bar still displays a description of the button
when you move the mouse pointer over it.

• Menu animations: When you select a menu, Excel animates the display of
the menu as it is dmpping do"\.\rn. You can select the type of animation that
you want:

• Slide: The menu drops down with a sliding motion

• Unfold: The menu unfolds as it drops down

• Random: The menu either slides or unfolds randomly

Figure 33-4: The Options tab of the
Customize dialog box.

emnosUSA0017395

CiM Ex. 1054 Page 73

Adding or Removing Toolbar Buttons
As noted earlier in this chapter, you can put Excel into customization mode by
displaying the Customize dialog box. When Excel is in customization mode, you
have access to all the commands and options in the Customize dialog box. In
addition, you can perform the following actions:

• Reposition a button on a toolbar

• Move a button to a different toolbar

• Copy a button from one toolbar to another

• Add new buttons to a tool bar by using the Commands tab of the Customize
dialog box

Moving and Copying Buttons
When the Customize dialog box is displayed, you can copy and move buttons freely
among any visible toolbars. To move a button, drag it to its new location (the new
location can be within the current toolbar or on a different toolbar).

To copy a button, press Ctr! while you drag the button to another toolbar. You can
also copy a toolbar button within the same toolbar, but no reason really exists to
have multiple copies of a button the same toolbar.

Inserting a New Button
To add a new button to a toolbar, you use the Commands tab of the Customize
dialog box (see Figure 33-5).

Figure 33-5: The Commands tab contains a
list of every available button.

emnosUSA0017396

CiM Ex. 1054 Page 74

The buttons are arranged in 16 categories. When you select a category, the buttons in
that category appear to the right in the Commands list box. To determine a button's
function, select it and click the Description button.

To add a button to a toolbar, locate it in the Commands tab and then click and drag
it to the toolbar.

emnosUSA0017397

CiM Ex. 1054 Page 75

Other Toolbar Button Operations
When Excel is in customization mode (that is, the Customize dialog box is displayed),
you can right-dick a toolbar button to get a shortcut menu of additional actions for
the tool. Figure ~13-6 shows the shortcut menu that appears when you right-dick a
button in customization mode.

Figure 33-6: In customization mode,
right-clicking a button displays this
shortcut menu.

These commands are described in the following list (note that some of these
commands are not available for certain toolbar tools):

• Reset: Resets the tool to its original state.

• Delete: Deletes the tool.

• Name: Lets you change the name of the tool.

• Copy Button Image: Makes a copy of the button's image and places it on the
Clipboard.

• Paste Button Image: Pastes the image from the Clipboard to the button.

• Reset Button Image: Restores the button's original image.

• Edit Button Image: Lets you edit the button's image, using Excel's button
editor.

• Change Button Image: Lets you change the image by selecting from a list of
42 button images.

• Defaull Style: Displays the tool with its default style (either text only or image
and text).

emnosUSA0017398

CiM Ex. 1054 Page 76

• Text Only (Always): Always displays text (no image) for the tool.

• Text Only (In Menus): Displays text (no image) if the tool is in a menu bar.

• Image and Text: Displays the tool's image and text.

• Begin a Group: Inserts a divider in the toolbar. In a drop-down menu, a
separator bar appears as a horizontal line between commands. In a toolbar,
a separator bar appears as a vertical line.

• Assign Hyperlink: Lets you assign a hyperlink that will activate a Web page.

• Assign Macro: Lets you assign a macro that is executed when the button is
clicked.

,.~\:"'(Assign Hyperlink is a new feature of Excel 2000.

Creating a Custom Toolbar: An Example
This section walks you through the steps that are used to create a custom toolbar.
This toolbar is an enhanced Formatting toolbar that contains many additional
formatting tools that aren't found on Excel's built-in Formatting toolbar. You may
want to replace the built-in Formatting toolbar with this new custom toolbar.

If you don't want to create this toolbar yourself, this workbook is available on this
book's CD-ROM.

Adding the First Button
The following steps are required to create this new toolbar and add one button
(which has five subcommands):

I. Right-click any toolbar and seled Customize from the shortcut menu.

Excel displays its Customize dialog box.

2. Click the Toolbars tab and then click New.

Excel displays its New Toolbar dialog box.

3. Enter a name for the tool bar: Custom Formatting. Click OK.

Excel creates a new (empty) toolbar.

4. In the Customize dialog box, click the Conunands tab.

5. In the Categories list, scroll doV\-'Tl and select New Menu.

The New Menu category has only one command (New Menu), which appears
in the Commands list.

6. Drag the New Menu command from the Commands list to the new toolbar.

This creates a menu button in the new toolbar.

emnosUSA0017399

CiM Ex. 1054 Page 77

7. Right-click the New Menu button in the new toolbar and change the name
to Font.

8. In the Customize dialog box, select Format from the Categories list.

9. Scroll down through the Commands list and drag the Bold command to the
Font button in your new toolbar.

This step makes the Font button display a submenu (Bold) when the button
is clicked.

10. Repeat Step 9, adding the follmving buttons from the Format category: Italic,
Underline, Font Size, and Font.

At this point, you may want to click the Close button in the Customize dialog box to
try out your new toolbar. The new toolbar contains only one button, but this button
expands to show five font-related conunancls. Figure 33-7 shows the Custom
Formatting toolbar at this stage.

Figure 33-7: A new Custom Formatting toolbar
after adding a menu button with five commands.
In this example, Underline is selected.

Adding More Buttons
If you followed the steps in the previous section, you should understand how toolbar
customization works, and you can now add additional buttons by following the
procedures that you learned. To finish the toolbar, right-dick a toolbar button and
select Customize. Then, add additional tools.

Figure 33-8 shows the final version of the Custom Formatting toolbar, and Table 33-1
describes the tools on this toolbar. This customized toolbar includes all the tools
that are on the built-in Formatting tool bar-plus quite a few more (38 tools in all).
But, because the Custom Formatting toolbar uses five menus (which expand to
show more commands), the toolbar takes up a. relatively small amount of space.

You can, of course, customize the toolbar any way that you like. The tools that are
listed in the table are my preferences. You may prefer to omit tools that you never
use-or add other tools that you use frequently.

With two exceptions, all the tools are found in the Formatting category. The Clear
Formatting tool is in the Edit category, and the Format Cells tool is in the Built-In
Menus category.

emnosUSA0017400

CiM Ex. 1054 Page 78

Figure 33-8: The final version of the Custom
Formatting toolbar.

Tool

New Menu (renamed Align)

New Menu (renamed Border)

Fill Color

Clear Formatting

New Menu (renamed Number)

Subcommands

Align Left, Center, Align Right, Decrease Indent,
Increase Indent, Merge and Center, Merge Cells,
Un merge Cells, Merge Across

Clear Border, Apply Outline Borders, Apply Inside
Border, Left Border, Right Border, Top Border, Bottom
Border, Inside Vertical Border, Inside Horizontal Border,
Bottom Double Border

(none)

(none)

Currency Style, Percent Style, Comma Style, Decrease
Decimal, Increase Decimal

Saving the Custom Toolbar
Excel doesn't have a command to save a toolbar. Rather, the new toolbar is saved
when you exit Excel. Refer to the sidebar "How E,'{cel Keeps Track of Toolbars,"
earlier in this chapter.

emnosUSA0017401

CiM Ex. 1054 Page 79

You need to remember that if Excel shuts down by non-normal means (that is, it
crashes!), your custom toolbar will be lost. Therefore, if you invest a lot of time cre
ating a new toolbar, you should close Excel to force the new toolbar to be saved.

Changing a Toolbar Button's Image
To change the image that is displayed on a toolbar button, you have several
options:

• Choose 1 of the 42 images that are provided by Excel

• Modify or create the image by using Excel's Button Editor dialog box

• Copy an image from another toolbar button

Each of these methods is discussed in the following sections.

To make any changes to a button image, you must be in toolbar customization
mode (the Customize dialog box must be visible). Right-dick any toolbar button
and select Customize from the shortcut menu.

Using a Built-in Image
To change the image on a toolbar button, right-dick the button and select Change
Button Image from the shortcut menu. As you can see in Figure :B-Y, this menu
expands to show 42 images from which you can choose. Just dick the image that
you want, and the selected button's image changes.

Editing a Button Image
If none of the 42 built-in images suits your tastes, you can edit an existing image or
create a new image by using Excel's Button Editor.

To begin editing, right-dick the button that you want to edit and then choose Edit
Button Image from the shortcut menu. The image appears in the Button Editor
dialog box (see Figure 33-10), in which you can change individual pixels and shift
the entire image up, down, to the left, or to the right. If you've never worked with
icons before, you may be surprised at how difficult it is to create attractive images
in such a small area.

The Edit Button Image dialog box is straightforward. Just click a color and then
click a pixel (or drag across pixels). W'hen it looks good, click OK. Or, if you don't
like what you've done, click Cancel, and the button keeps its original image.

emnosUSA0017402

CiM Ex. 1054 Page 80

Figure 33-9: The Change Button Image option gives you 42 built-in button
images to choose from.

Figure 33-10: The Button Editor dialog box,
in which you can design your own button
image or edit an existing one.

Copying Another Button Image
Another way to get a button image on a custom toolbar is to copy it from another
toolbar button. Right-click a toolbar button, and it displays a shortcut menu that
enables you to copy a button image to the Clipboard or paste the Clipboard
contents to the selected button.

emnosUSA0017403

CiM Ex. 1054 Page 81

Activating a Web Page from a Toolbar Button
You might want to create a button that activates your Web browser and loads a
Web page.

;,'r

EXCEL i!i,,i' This feature is available only in Excel 2000. ,,200!1;!1 ·., ·
' ''l;,,o 4.;,1·.~·

To add a new button and attach a hyperlink, make sure that you're in toolbar
customization mode. Use the procedure previously described to add a new button
and (optionally) specify a button image. Then, right-dkk the button and select
Assign Hypedink • Open. You'll see the Assign Hyperlink: Open dialog box, shown
in Figure 33-11. Type a URL or select nne from the list.

Figure 33-11: The Assign Hyperlink: Open dialog box enables
you to assign a hyperlink to a toolbar button.

Summary
This chapter discusses how to modify two components of Excel's user interface:
toolbars and menus. Users of all levels can benefit from creating custom toolbars.
To create new commands that are executed by toolbar buttons, however, you need
to write macros. This chapter also discusses how to change the image that appears
on a toolbar button, and then introduces Excel's menu editor, which is most useful
for 1nacro writers.

emnosUSA0017404

CiM Ex. 1054 Page 82

Using and
Creating
Templates

This chapter covers one of the most potentially useful
features in Excel-template files. Templates can be used

for a variety of purposes, ranging from custom "fill-in-the
blanks" workbooks to a way to change Excel's defaults for new
workbooks or new worksheets.

An Overview of Templates
A template is essentially a model that serves as the basis for
something else. An Excel template is a workbook that's used to
create other workbooks. If you understand this concept, you
may save yourself a lot of work. For example, you may always
use a particular header on your printouts. Consequently, every
time that you print a wo1·ksheet, you need to select File• Page
Setup to add your page header. The solution is to create a new
workbook by modifying the template that Excel uses. In this
case, you modify the template file by inserting yom· header
into the template. Save the template file, and then every new
workbook that you create has your customized page header.

Excel supports three types of templates:

• The default workbook template: Used as the basis for
new workbooks.

• The default worksheet template: Used as the basis for
new worksheets that are inserted into a workbook.

• Custom workbook templates: Usually, ready-to-run
workbooks that include formulas. Typically, these
templates are set up so that a user can simply plug in
values and get immediate rnsults. The Spreadsheet
Solutions templates (included with Excel) are examples
of this type of template.

emnosUSA0017405

CiM Ex. 1054 Page 83

Each template type is discussed in the following sections.

The Default Workbook Template
Every new workbook that you create starts out with some default settings. For
example, the workbook's worksheets have gridlines, text appears in Arial 10-point
font, values that are entered display in the General number format, and so on. If
you're not happy with any of the default workbook settings, you can change them.

Changing the Workbook Defaults
Making changes to Excel's default workbook is fairly easy to do, and it can save you
lots of time in the long run. Take the following steps to change Excel's workbook
defaults:

I. Start with a new workbook.

2. Add or delete sheets to give the workbook the number of worksheets that you
want.

3. Make any other changes that you want to make, which can include column
widths, named styles, page setup options, and many of the settings that are
available in the Options dialog box.

To change the default formatting for cells, choose Format• Style, and then modify
the settings for the Normal style. For example, you can change the default font
size, or number format. Refer to "Using Named Styles" in Chapter 11 for details.

4. 'When your workbook is set up to your liking, select File• Save As.

5. In the Save As dialog box, select Template CX .xlt) from the Save as type box.

6. Enter book.xlt for the filename.

7. Save the file in your \XLStart folder. This folder is probably located within
your c:\Program Files\Microsnft Office\Office folder.

You can also save your book.xlt template file in the folder that is specified as
an alternate startup folder. You specify an alternate startup folder in the
General tab of the Options dialog box.

8. Close the file.

After you perform the preceding steps, the new default workbook is based on the
book.xlt workbook template. You can create a workbook based on your template by
using any of the following methods:

• Click the New button on the Standard toolbar

• Press Ctrl+N

• Choose File• New and then select the Workbook icon in the General tab of
the New dialog box (see Figure 34-1)

emnosUSA0017406

CiM Ex. 1054 Page 84

Figure 34-1: After you create a book.xlt template, clicking the Workbook
icon creates a new workbook that is based on your template.

Normally, the Xlstart folder does not contain a file named book.xlt If a file with this
name is not presen-t; Excel creates new workbooks using built-in default settings.

Editing the book.xlt Template
After you create your book.xlt template. you may discover that you need to change
it. You can open the book.xlt template file and edit it just like any other workbook.
After you finish with your edits, save the workbook and close it.

Resetting the Default Workbook
ff you create a book.xlt file and then decide that you would rather use the standard
default workbook settings, simply delete the book.xlt template file from the Xlstart
folde1·. Excel then resorts to its built-in default settings for new workbooks.

The Def a ult Worksheet Template
When you insert a new worksheet into a workbook, Excel uses its built-in worksheet
defaults for the wm·ksheet. This includes items such as column width, row height,
and so on.

Versions of Excel prior to Excel 97 also use other sheet templates (dialog.xlt and
macro.xlt). These templates are not used in Excel 97 or later versions.

emnosUSA0017407

CiM Ex. 1054 Page 85

lf you don't Hke the default settings for a new worksheet, you can change them by
using the following procedure:

I. Start with a new workbook, deleting all the sheets except one.

2. Make any changes that you want to make, which can include column widths,
named styles, page setup options, and many of the settings that are available
in the Options dialog box.

3. When your workbook is set up to your liking, select File• Save As.

4. In the Save As dialog box, select Template (* .xlt) from the Save as type box.

5. Enter sheet.xlt for the filename.

6. Save the file in your \XLStart folder. This folder is probably located within
your c:\Program Files\Microsoft Office\Office folder.

You can also save your book.xlt template file in the folder that is specified as
an alternate startup folder. You specify an alternate startup folder· in the
General tab of the Options dialog box.

7. Close the file.

After performing this procedure, all new sheets that you insert with the Insert•
Worksheet command are formatted like your sheet.xlt template.

When you right-click a sheet tab and choose Insert from the shortcut menu, Excel
displays its Insert dialog box (which looks just like the New dialog box). If you've
created a template named sheet.xlt, you can select it by dicking the icon labeled
Worksheet.

Editing the sheet.xlt Template
After you create your sheet.xlt template, you may discover that you need to change
it. You can open the sheet.xlt template file and edit it just like any other workbook.
After you make your changes, save the file and close it.

Resetting the Default New Worksheet
If you create a sheet.xlt template and then decide that you would rather use the
standard default new worksheet settings, simply delete the sheet.:xlt template file
from the Xlstart folder. Excel then resorts to its built-in default settings for new
woi·ksheets.

Custom Workbook Templates
The book.xlt and sheet.xlt templates discussed in the previous section are two
special types of templates that determine default settings for new workbooks and

emnosUSA0017408

CiM Ex. 1054 Page 86

new worksheets. This section discusses other types of templates, referred to as
workbook templates, which are simply workbooks that are set up to be used as the
basis for new workbooks.

Why use a workbook template? The simple answer is that it saves you from
repeating work. Assume that you create a monthly sales report that consists of
your company's sales by region, plus several summary calculations and charts. You
can create a template file that consists of everything except the input values. Then,
when U's time ta create your report, you can open a workbook based on the
template, fill in the blanks, and you're finished.

You could, of course, just use the previous month's workbook and save it with a
different name. This is prone to errors, however, because you easily can forget to
use the Save As command and accidentally overwrite the previous month's file.

How Templates Work
When you create a wurkbouk that is based on a template, Excel creates a copy of
the template in memory so that the original template remains intact. The default
workbook name is the template name with a number appended. For example, if you
create a new workbook based on a template named Sales Report.xlt, the
workbook's default name is Sales Reportl.xls. The first time that you save a
workbook that is created from a template, Excel displays its Save As dialog box, so
that you can give the template a new name if you want to.

Templates That Are Included with Excel
Excel ships with three workbook templates (called Spreadsheet Solutions
templates), which were developed by Village Software. When you select File• New,
you can select one of these templates from the Nev,r dialog box. Click the tab
labeled Spreadsheet Solutions to choose one of the following templates upon which
to base your new workbook (see Figure ;H-2).

These templates are included with Excel 2000.

• Expense Statement: Helps you to create expense report forms and a log to
track them

• Invoice: Helps you to create invoices

• Purchase Order: Helps you to create purchase orders to send to vendors

A fourth template, named Village Software.xlt, describes additional templates that
you can obtain from Village Software.

You can also download some additional templates from Microsoft's Web site:
http://www.micrcsoft.com/excel.

emnosUSA0017409

CiM Ex. 1054 Page 87

Figure 34-2: You can create a new workbook based on one of the
Spreadsheet Solutions templates.

Creating Custom Templates
This section describes how to create workbook templates, which is really quite
simple.

A custom template is essentially a normal workbook, and it can use any of Excel's
featlu-es, such as charts, formulas, and macros. Usually, a template is set up so that
the user can enter values and get immediate results. In other words, most
templates include everything but the data-which is entered by the user.

If the template is going to be used by novices, you may consider locking all the cells
except the input cells (use the Protection panel of the Format Cells dialog box for
this). Then, protect the worksheet by choosing Tools• Protection• Protect Sheet.

To save the workbook as a template, choose File• Save As and select Template
(" .xlt) from the drop-down list labeled Save as type. Save the template in your
Microsoft Office\ Templates folder (or a folder within that Templates folder).

Before you save the template, you may want to specify that the file be saved with a
preview image. Select File• Properties, and check the box that is labeled Save
Preview Picture. That way, the New dialog box displays the preview when the
template's icon is selected.

emnosUSA0017410

CiM Ex. 1054 Page 88

If you later discover that you want to modify the template, choose File• Open to
open and edit the template (don't use the File• New command, which creates a
workbook that is based on the template).

emnosUSA0017411

CiM Ex. 1054 Page 89

Ideas for Creating Templates
This section provides a few ideas that may spark your imagination for creating
templates. A partial list of the settings that you can adjust and use in your custom
templates is as follows:

• Multiple formatted worksheets: You can, for example, create a workbook
template that has two worksheets: one formatted to print in landscape mode
and one formatted to print in portrait mode.

• \Vorkbook properties: You can set one or more workbook properties. For
example, Excel doesn't store a preview picture of your workbook. Select File•
Properties and then change the Save Preview Picturn option in the Summary
panel.

• Several settings in the View pauel of the Options dialog box: For example,
you may not like to see sheet tabs, so you can turn off this setting.

• Color palette: Use the Color panel of the Options dialog box to create a
custom color palette for a workbook.

• Style: The best approach is to choose Format• Style and modify the
attributes of the Normal style. For example, you can change the font or size,
the alignment, and so on.

• Custom number formats: If you create number formats that you use
frequently, these can be stored in a template.

• Column widths and row heights: You may prefer that columns be wider or
narrower, or you 1nay want the rows to be taller.

• Print settings: Change these settings in the Page Setup dialog box. You can
adjust the page orientation, paper size, margins, header and footer, and
several other attributes.

• Sheet settings: These are options in the Options dialog box. They include
gridlines, automatic page break display, and row and column headers.

Summary
This chapter introduces the concept of templates. Excel supports three template
types: a default workbook template, a default worksheet template, and custom
workbook templates. This chapter describes how to create such templates and
where to store them. It also discusses the Template Wizard, a tool that helps you to
create templates that can store data in a central database.

emnosUSA0017412

CiM Ex. 1054 Page 90

Using Visual
Basic for
Applications

This chapter is an introduction to the Visual Basic for
Applications (VEA) macro language-perhaps the

key component for users who want to customize Excel. A
complete discussion of VBA would require an entire book.
This chapter teaches you how to record macros and create
simple macro subroutines. Subsequent chapters expand upon
the topics in this chapter.

Introducing VBA Macros
In its broadest sense, a macro is a sequence of instructions
that automates some aspect of Excel so that you can work
more efficiently and with fewer errors. You may create a
macro, for example, to format and print your month-end sales
report. After the macro is developed and debugged, you can
invoke the macro-with a single command-to perform
many time-consuming procedures automatically.

Macros are usually considered to be one of the advanced
features of Excel, because you must have a pretty thorough
understanding of Excel to put them to good use. The truth is
that the majority of Excel users have never created a macro
and probably never will. If you want to explore one of the
most powerful aspects of Excel, however, you should know
about macros. This chapter is designed to acquaint you with
VBA, which enables you to develop simple macros and
execute macros that are developed by others.

emnosUSA0017413

CiM Ex. 1054 Page 91

VBA: One of Two Macro Languages in Excel
VBA was introduced in Excel 5. Prior to that version, Excel used an entirely
different macro system, known as XLM (that is, the Excel 4 macro language). VBA
is far superior in terms of both power and ease of use. For compatibility reasons.
however, the XLM language is still supported in Excel 2000. This means that you
can load an older Excel file and still execute the macros that are stored in it.
However, Excel 20(JO does not Jet you record XLM macros - and you really have
no reason to do so.

What You Can Do with VBA
VBA is an extremely rich programming language with thousands of uses. The
following list contains just a few things that you can do with VBA macros:

• lnse1·t a text string or formula: If you need to enter your company name into
worksheets frequently, you can create a macro to do the typing for you. The
AutoCorrect feature can also do this.

• Automate a procedure that you perfonn frequently: For example, you may
need to prepare a month-end summary. If the task is straightforward, you can
develop a macro to do it for you.

• Automate repetitive operations: If you need to perform the same action in 12
different workbooks, you can record a macro while you perform the task
once- and then let the macro repeat your action in the other workbooks.

• Create a custom command: For example, you can combine several of Excel's
menu commands so that they are executed from a single keystroke or from a
single mouse click.

• Create a custom toolbar button: You can customize Excel's toolbars with
your own buttons to execute macros that you write.

• Create a simplified "front end" for users who don't know much about
Excel: For example, you can set up a foolproof data entry template.

emnosUSA0017414

CiM Ex. 1054 Page 92

• DeveI01> a new worksheet fw1ction: Although Excel includes a wide
assortment of built-in functions, you can create custom functions that greatly
simplify your formulas.

• Create complete, turnkey, macro-driven applications: Excel macros can
display custom dialog boxes and add new commands to the menu bar.

• Create custom add-ius for Excel: Most of the add-ins that are shipped with
Excel were created with Excel macros. I used VBA exclusively to create my
Power Utility Pak.

Two Types of VBA Macros
Before getting into the details of creating macros, you need to understand a key
distinction. A VBA macro (or procedure) can be one of two types: a subroutine or
a function. The next two sections discuss the difference.

VBA Subroutines
You can think of a subroutine macro as a new command that can be executed by
eithe1· the user or another macro. You can have any number of subroutines in an
Excel workbook.

Figure 35-1 shows a simple VBA subroutine. When this subroutine is executed,
VBA inserts the current date into the active cell, formats it, and then adjusts the
column width.

ActiveCell.Value = Noor(;
ActiveCell.:ii.;.mberI<ormat = r,mmmm d, YYY'Y"
Act iveC:ell. :o lu,,:ms . .1rntoFi t;

Figure 35-1: A simple VBA subroutine.

Subroutines always start with the keyword Sub, the macro's name (every mac.rn
must have a unique name), and then a pair of parentheses. (The parentheses are
required; they ,u-e empty unless the procedure uses one or more arguments.) The
End Sub statement signals the end of a subroutine. The lines in between comprise
the procedure's code.

emnosUSA0017415

CiM Ex. 1054 Page 93

The subroutine shown in Figure 35-1 also includes a comment. Comments are simply
notes to yourself, and they are ignored by VBA. A comment line begins with an
apostrophe. You can also put a comment after a statement. In other words, when
VBA encounters an apostrophe, it ignores the rest of the text in the line.

You execute a subroutine in any of the following ways:

• Choose Tools• Macro and then select the subroutine's name from the list.

• Press the subroutine's shortcut key combination (if it has one).

• If the Visual Basic Editor is active, move the cursor anywhere within the
subroutine and press FS.

• Refer to the subroutine in another VBA procedure.

Subroutines are covered in detail later in this chapter.

VBA Fundions
The second type of VBA procedure is a function. A function always returns a single
value (just as a worksheet function always returns a single value). A VBA function
can be executed by other VBA procedures or used in worksheet formulas, just as
you would use Excel's built-in worksheet functions.

emnosUSA0017416

CiM Ex. 1054 Page 94

emnosUSA0017417

CiM Ex. 1054 Page 95CiM Ex. 1054 Page 95

Figure 35-2 shows the listing of a custom worksheet function and shows the
function in use in a worksheet. This function is named CubeRoot and requires a
single argument. Cube Roe t calculates the cube root of its argument. A function
looks much like a subroutine. Notice, however, that function procedures begin
with the keyword, Function, and end with an End Fune ti on statement.

F'1.1::1\ .. rt:i.::::1 CuloeRo::Jt (nu:rn)
·.:..h=: ,:;;!::

Cul:eRoot = nc:,n • (1 / 3;

Figure 35-2: This VBA function returns the cube root of
its argument.

Creating VBA functions that you use in worksheet formulas can simplify your for
mulas and enable you to perform calculations that otherwise may be impossible.
VBA functions are discussed in greater detail in Chapter 36.

Creating VBA Macros
Excel provides two ways to create macros:

• Turn on the macro recorder and record your actions

• Enter the code directly into a VBA module

The following sections describe both of these methods.

Recording VBA Macros
The basic steps that you take to record a VBA macro are described in this section.
In most cases, you can record your actions as a macro and then simply replay the
macro; you needn't look at the code that's generated. If this is as far as you go with
VBA, you don't need to be concerned with the language itself (although a basic
understanding of how things work doesn't do any harm).

emnosUSA0017418

CiM Ex. 1054 Page 96

Recording Your Actions to Create
VBA Code: The Basics
Excel's macro recorder translates your actions into VBA code. To start the macro
recorder, choose Tools• Macro• Record New Macro. Excel displays the Record
Macro dialog box, shown in Figure :15-3.

Figure 35-3: The Record Macro dialog box.

The Record Macro dialog box presents several options:

• Macro name: The name of the rnacro. By default, Excel proposes names such
as Macro I, Macro2, and so on.

• Shm·tcut key: You can specify a key combination that executes the macro.
You can also press Shift when you enter a letter. For example, pressing Shift
while you enter the letter H makes the shortcut key combination Ctrl+Shift+H.

• Store mac1·0 in: The location for the macro. Your choices are the current
workbook, your Personal Macro Workbook (described later in this chapter),
or a new workbook.

• Description: A description of the macro. By default, Excel inserts the date and
your name. You can add additional information if you like.

To begin recording your actions, click OK. Excel displays the Stop Recording
toolbar, which contains two buttons: Stop Recording and Relative Reference. After
you finish recording the macro, choose Tools• Macro• Stop Recording (or click
the Stop Recording button on the toolbar).

Recording your actions always results in a new subroutine procedure. You can't
create a function procedure by using the macro recorder. Function procedures
must be created manually.

emnosUSA0017419

CiM Ex. 1054 Page 97

Recording a Macro: An Example
This example demonstrates how to record a macro that changes the formatting for
the current range selection. The macro makes the selected range use Arial 16-point
type, boldface, and the color red. To create the macro, follnw these steps:

1. Enter a value or ta'<t into a cell-anything is okay. This gives you something
to start with.

2. Select the cell that contains the value or text that you entered in the
preceding step.

3. Select Tools• Macro• Record New Macro. Excel displays the Record Macro
dialog box.

4. Enter a new name for the macro, to replace the default Macrol name. A good
name is FormattiugMacro.

5. Assign this macro to the shortcut key Ctrl+Shift+F by entering Fin the edit
box labeled Shortcut key.

6. Click OK. This closes the Record Macro dialog box. Excel displays a toolbar
called Stop Recording.

7. Select Format• Cells and then click the Font tab. Choose Arial font, Bold, and
16-point type, and make the color red. Click OK to close the Format Cells
dialog box.

8. The macro is finished, so click the Stop Recording button on the Stop
Recording toolbar (or select Tools• Macro• Stop Recording).

Examining the Macro
The macro was recorded in a new module named Module I. To view the code in this
module, you must activate the Visual Basic Editor (VBE). You can activate the VBE
in either of two ways:

• Press Alt+Fl 1

• Choose Tools• Macro• Visual Basic Editor

Figure 35-4 shows the VBE window. Although the module is stored in the Excel
workbook, you can view the module only in the VBE window.

The Project window displays a list of all open workbooks and add-ins. This list is
displayed as a tree diagram, which can be expanded or collapsed. The code that
you recorded previously is stored in Module I in the current workbook. When you
double-click Modulel, the code in the module is displayed in the Code window.

emnosUSA0017420

CiM Ex. 1054 Page 98

VBIIProjeCI (BO<ll<J)
[-l, ,~ M1croso~t E~,:el ObJec:s
! !. ~ Shffit1 (5hsec1)

: '· '!!] iil&~iiiiii
, ffi, Ct~ Mcd..ile!!.:

[fh!i:lf. VBI\Project (PEPSOl'ii\

Figure 35-4: The VBE window.

Figure 35-5 shows the recorded macro, as displayed in the Code window.

1Jith ~electic:n. rant
. Name = ..)_r 1.al"
, Fcn~5tyle "' "BolC."
.31:;;:e = 115
.Strikethrough = 1'1o1.lse

. s~c:rc1cr:i:t:t "" .ral.:;;;e

.Su.bacript __, :';:'J.l;':i~

,01.,.;Ll.J.n~Fut:l:-: Tti.l~:::

, UrAerlir.e "' xlUn~erlineS,:,~leI'Jone
, Cclarin6ei-1 = :J

'.r.nd \Ti Lh

End ~ub

Figure 35-5: The FormattingMacro subroutine was generated by Excel's macro
recorder.

emnosUSA0017421

CiM Ex. 1054 Page 99

Activate the module and examine the macro. It should consist of the following code:

Sub FormattingMacro Macro() .
' FormatCells Macro
' Macro recorded oy John Walkenbach

' Keyboard Shortcut: Ctrl+Shift+F

With Selection.Font
.Name= "Arial"
.FontStyle = "Bold"
.Size= 16
.Stri~ethrough = False
.Superscript= False
.Subscript= False
.OutlineFont = False
.Shadow= False
.Underline= xlJnderlineStyleNone
. Col o,·Index = 3

End ~Jitr:
l:.nd Sub

The macro recorded is a subrnutine (it begins with a Sub statement) that is named
FonnattingMacro. The statements tell Excel what to do when the macro is executed.

Notice that Excel inserted some comments at the top of the subroutine. This is the
information that appeared in the Record Macro dialog box. These comment lines
(which begin with an apostrophe) aren't really necessary, and deleting them has
no effect on how the macro runs.

You may notice that the macro recorded some actions that you didn't take. For
example, it sets the Stri ketrirough, SLiperscri pt, and Subscript properties
to Fa l s e. This is just a byproduct of the method that Excel uses to translate
actions into code. Excel sets the properties for every option in the Font tab of the
Format Cells dialog box, even though you didn't change all of them.

Testing the Macro
Before you recorded this macro, you set an option that assigned the macro to the
Ctrl+Shift+F shortcut key combination. To test the macro, rntum to Excel by using
eithe1· of the following methods:

• Press Alt+Fl I

• Click the View Microsoft Excel button on the VBE toolbar

When Excel is active, activate a worksheet (it can be in the workbook that contains
the VBA module or in any other workbook). Select a cell 01· range, and press
Ctrl+Shift+F. The macro immediately changes the formatting of the selected cell(s).

emnosUSA0017422

CiM Ex. 1054 Page 100

Continue testing the macro with other selections. You'll find that the macro always
applies exactly the same formatting.

In the preceding example, notice that you selected the cell to be formatted before
you started recording your macro. This is important. If you select a cell while the
macro recorder is turned on, the actual cell that you selected will be recorded into
the macro. In such a case, the macro would always format that particular cell, and
it would not be a "general-purpose" macro.

Editing the Macro
After you record a macro. you can change it (although you must know what you're
doing). Assume that you discover that you really want to make the text 14 point
rather than 16 point. You could rerecord the macro, but this is a simple modification,
so editing the code is more efficient. Just activate Module I, locate the statement that
sets the font size, and change Hi to 14. You can also remove the following lines:

.Strikethrougn = False

.Superscript= False

.Subscript= ~alse

.GutlineFont = False

. Sr1aclovJ = False

. U1derl i ne = xl None

Removing these lines causes the macro to ignore the properties that are referred
to in the statements. For example, if the cell has underlining, the underlining isn't
affected by the macro.

The edited macro appears as follows:

Sub FormattingMacro()
With Selection.Font

.l\ame = "Arial"

.FontStyle = "Bold"

.Size= 14

.Colorindex = 3
Encl vJi th

End Sub

Test this new macro, and you see that it performs as it should. Also, notice that
it doesn't remove a cell's underlining, which occurred in the original version of
the macro.

Another Example
This example shows you how to record a slightly more complicated VBA macro that
converts formulas into values. Converting formulas into values is usually a two-step
process in Excel:

ernnosUSA0017423

CiM Ex. 1054 Page 101

I. Copy the range to the Clipboard.

2. Choose Edit• Paste Special (with the Values option selected) to paste the
values over the formulas.

This macro combines these steps into a single command.

Fmthermore, you want to be able to access this command by pressing a shortcut
key combination (Ctrl+Shift+V). Take the following steps to create this macrn:

I. Enter a formula into a cell. Any formula will do.

2. Select the cell that contains the formula.

3. Choose Tools• Macro• Record New Macro. Excel displays the Record Macro
dialog box.

4. Complete the New Macro dialog box so that it looks like Figure 35-6. This
assigns the macro the name FormulaConvert. It also gives it a Ctrl+Shift+ V
shortcut key.

Figure 35-6: How the Record Macro
dialog box should look when
recording the sample macro.

5. Click OK tu begin recording.

6. With the range still selected, choose Edit• Copy to copy the range to the
Clipboard.

7, Select Edit• Paste Special, click the Values option, and then click OK to close
the dialog box.

8. Press Esc to cancel Paste mode. (Excel removes the moving border around
the selected range.)

9. Click the Stop Recording button (or choose Tools• Macro• Stop Recording).

To test the macro, activate a worksheet, enter some formulas, and then select the
formulas. You can execute the macro in two ways:

• Press Ctrl+Shift+ V

emnosUSA0017424

CiM Ex. 1054 Page 102

• Choose Tools• Macro• Macros command and double-dick the macro name
(Formula Convert)

Excel converts the formulas in the selected range to their values - in a single step
instead of two.

Be careful when you use this macro, because you can't undo the conversion of for
mulas to values. Actually, you can edit the macro so that its results can be undone,
but the procedure is beyond the scope of this discussion.

The shortcut key combination (Ctrl+Shift+V) is valid only when the workbook is
open. When you close the workbook, pressing Ctrl+Shift+V has no effect.

The recot·ded macro appears as follows:

' FormulaConvert Macro
' Macro recorded by John Walkenbach

' Keyboard Shortcut: Ctrl+Shift+V

Sub ConvertFormulas()
Selection.Copy
Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, _

SkipBlanks:=False, Transpose:=~alse
Application.CutCooyMode = False

End Sub

Again, Excel added some comment lines that describe the macro. The actual
macro begins with the Sub statement. The subroutine has three statements. The
first simply copies the selected range. The second statement, which is displayed
on two lines (the underscore character means that the statement continues on
the next line), pastes the Clipboard contents to the current selection. The second
statement has several arguments, representing the options in the Paste Special
dialog box. The third statement cancels the moving border around the selected
range. (I generated the statement by pressing Esc after the paste operation.)

If you prefer, you can delete the underscore character in the second statement and
combine the two lines into one (a VBA statement can be any length). This action
may make the macro easier to read.

More About Recording VBA Macros
If you followed along with the preceding examples, you should have a better feel for
how to record macros. If you find the VBA code confusing, don't worry-you don't
really have to be concerned with it as long as the macro that you record works
correctly. If the macro doesn't work, rerecording the macro rather than editing the
code often is easier.

emnosUSA0017425

CiM Ex. 1054 Page 103

A good way to learn about what gets recorded is to set up your screen so that you
can see the code that is being generated in the Visual Basic Editor windows. Figure
35-7 shows an example of such a setup. While you're recording your actions, make
sure that the VBE window is displaying the module in which the code is being
recorded (you may have to double-click the module name in the Project window).

J!.ct:.veCell.F'ocraul=tR1..-C1 = '~5'3:5"
~ange(".A.2"'J .9elect
1.0t:.veCell.F'orra1.11~::..c1 = ·~sq4"'

Ra.n~re("l!..2:!t9") .:1ele.::t
Colt1ltln: \"IJ:B") .5elect
Aµp_1ce,tic,i: •• Le:ft = :!...15. 75
;..pp_ice.tioL.Top = 166.75
Se lee tiot~., .Ce1ete 5h2...:ft: =:>: lToLe:f-s

Range(1•c-;;:C12"'l .::ielect

Figure 35-7: This window arrangement lets you see the VBA code as you
record your actions.

If you want to view the code as it's being recorded, using a high-resolution video
display really helps, such as 1024 x 768. Otherwise, you may find that fitting the
windows of both Excel and VBE onscreen is very difficult

Absolute Versus Relative Recording
If you're going to work with macros, you need to understand the concept of relative
versus absolute recording. Normally, when you record a macro, E.."cel stores exact
references to the cells that you select (that is, it performs absolute recording). If you

emnosUSA0017426

CiM Ex. 1054 Page 104

select the range Bl:B10 while you're recording a macro, for example, Excel records
this selection as

RangeC"Bl:B10").Select

This means exactly what it says: "Select the cells in the range Bl:B10." When you
invoke this macro, the same cells are always selected, regardless of where the
active cell is located.

You may have noticed that the Stop Recm·ding toolbar has a tool named Relative
Recording. When you click this tool while recording a macro, E:.xcel changes its
recording mode from absolute (the default) to relative. When recording in relative
mode, selecting a range of cells is translated differently, depending on where the
active cell is located. For example, if you're recording in relative mode and cell Al
is active, selecting the range Bl :B 10 generates the following statement:

ActiveCell.Offset(O, l).Range("Al:AlO").Select

This statement can be translated as ''From the active cell, move O rows and 1 column,
and then treat this new cell as if it were cell AL Now select what would be Al:AlO.'' In
other words, a macro that is recorded in relative mode starts out by using the active
cell as its base and then stores relative references to this cell. As a result, you get
different results, depending on the location of the active cell. When you replay this
macro, the cells that are selected depend on the active cell. It selects a range that is
10 rows by 1 colurnn, offset from the active cell by O rows and 1 column.

When Excel is recording in relative mode, the Relative Referent:e toolba1· button
appears depressed. To return to absolute recording, click the Relative Reference
button again (and 1t displays its normal, undepressed state).

The recording mode-either absolute or relative-can make a major difference in
how your macro performs. Therefore, understanding the distinction is important.

In previous version of Excel, recording commands such as Shift+Ctrl+right-arrow
key or Shift+Ctrl+down-arrow key (commands that extend the selection to the
end of a block of cells) were not recorded correctly. The macro recorder always
recorded the exact cells that were selected. The problem is fixed in Excel 2000, so
recording these types of selection commands produces macros that work properly.

Storing Macros in the Personal Macro Workbook
Most macros that are created by users are designed for use in a specific workbook,
but you may want to use some macros in all of your work. You can store these
general-purpose macros in the Personal Macro Workbook, so that they are always
available to you. The Personal Macro Workbook is loaded whenever you start ExceL
The file, personal.xls, is stored in the XlStart folder, which is in your Excel folder.
This file doesn't exfot until you record a macro, using Personal Macro Workbook as
the destination.

emnosUSA0017427

CiM Ex. 1054 Page 105

The Personal Macro Workbook normally is in a hidden window (to keep it out of
the way).

To record the macro in your Personal Macro Workbook, select the Personal
Macro Workbook option in the Record Macro dialog box before you start recording.

Jf you store macros in the Personal Macro Workbook, you don't have to remember
to open the Personal Macro Workbook when you load a workbook that uses macros.
When you want to exit, Excel asks whether you want to save changes to the Personal
Macro Workbook.

Assigning a Macro to a Toolbar Button
When you record a macro, you can assign it to a shortcut key combination. After
you record the macro and test it, you may want to assign the macro to a toolbar
button. You can follow these steps to do so:

1. If the macro is a general-purpose macro that you plan to use in more than one
workbook, make sure that the macro is stored in your Personal Macro
Workbook.

2. Select View• Toolbars • Customize. Excel displays its Customize dialog box.

3. Click the Toolbars tab in the Customize dialog box and make sure that the
toolbar is visible that is to contain the new button.

4. Click the Commands tab in the Customize dialog box.

5. Click the Macros category.

6. In the Commands list, drag the Custom Button icon to the toolbar.

7. Right-dick the toolbar button and select Assign Macro from the shortcut
menu. Excel displays its Assign Macro dialog box.

8. Select the macro name frotn the list and click OK.

9. At this point, you can right-dick the button again to change its name and
button image.

10. Click Close to exit the Customize dialog box.

See Chapter 33 for details about customizing toolbars.

Writing VBA Code
As demonstrated in the preceding sections, the easiest way to create a simple
macro is to record your actions. To develop more complex macros, however, you
have to entet· the VBA code manually- in other words, write a program. To save
time, you can often combine recording with manual code entry.

emnosUSA0017428

CiM Ex. 1054 Page 106

Before you can begin writing VBA code. you must have a good understanding of
topics such as objects, properties, and methods-and it doesn't hurt to be familiar
with common programming constructs, such as looping and If - Th E' n statements.

This section is an introduction to VBA programming, which is essential if you want
to write (rather than record) VBA macros. This is not intended to be a complete
instructional guide. My book titled Excel 2000 Power Programming with VBA (IDG
Books Worldwide, Inc.) covers all aspects of VBA and advanced spreadsheet
application development.

The Basics: Entering and Editing Code
Before you can enter code, you must insert a module into the workbook. If the
workbook already has a module sheet. you can use the existing module sheet for
your new code.

Use the following steps to insert a new module:

1. Press Alt+Fll to activate the Visual Basic Editor window. The Visual Basic Editor
v.-indow is a separate application, although it works very closely with E.'Ccel.

2. The Project window displays a list of all open workbooks and add-ins. Locate
the workbook that you are currently working in, and select it (see Figure :35--8).

3. Choose Insert• Module. VBA inserts a new (empty) module into the
workbook and displays it in the Code window.

A VBA module, which is displayed in a separate window, works like a text editor.
You can move through the sheet, select te:x't, insert, copy, cut, paste, and so on.

Figure 35-8: The Project window displays all open workbooks and add-ins.

emnosUSA0017429

CiM Ex. 1054 Page 107

How VBA Works
VBA is by far the most complex feature in Excel, and you can easily get
overwhelmed. To set the stage for the details of VBA, here is a concise summary
of how VBA works:

• You perform actions in VBA by writing (or recording) code in a VBA module
sheet and then executing the macro in any one of various ways. VBA modules
are stored in an Excel workbook, and a workbook can hold any number of
VBA modules. To view or edit a VBA module, you must activate the Visual
Basic Editor window (press Alt+Fl 1 to toggle between Excel and the VBE
window).

• A VBA module consists of subroutine procedures. A subroutine procedure
is basically computer code that performs some action with objects. The
following is an example of a simple subroutine called ShowSum (it adds l + l
and displays the result):

emnosUSA0017430

CiM Ex. 1054 Page 108

Sub ShowSum()
Sum= 1 + 1
MsaBox "The answer is• & Sum

End Sub

• A VBA module also can store function procedures. A function procedure
performs some calculations and returns a single value. A function can be
called from another VBA procedure or can even be used in a worksheet
formula. Here's an example of a function named Add Two (it adds two values,
which are supplied as arguments):

Function AddTwo(argl, arg2)
AddTwo = an1l I arq2

End Function - -

• VBA manipulates objects. Excel provides well over 100 objects that you can
manipulate. Examples of objects include a workbook, a worksheet, a range on
a worksheet, a chart, and a drawn rectangle.

• Objects are arranged in a hierarchy, and can act as containers for other
objects. For example, Excel itself is an object called Appl i cat i or, and it
contains other objects such as \~orkbook objects. The ~~orkbook object can
contain other objects, such as l~orksheet objects and Cl1art objects. A
Worksheet object can contain objects such as Range objects, Pi votT ab l e
objects, and so on. The arrangement of these objects is referred to as an
object model. E,'l:cel's object model is depicted in the online Help system
(see Figure 35-9).

• Objects that are alike form a collection. For example, the Worksheets
collection consists of all worksheets in a particular workbook. The
Comma ndB2 rs collection consists of all Comma nclBa r objects (that is, menu
bars and toolbars). Col l e c-: ions are objects in themselves.

• You refer to an object in your VBA code by specifying its position in the object
hierarchy, using a period as a separator.

For example, you can refer to a workbook named Bookl .xis as

Appl ication.Workbooks("Bookl")

This refers to the Bookl.xls workbook in the liJorkbooks collection. The
~!orkbooks collection is contained in the Application object (that is. Excel).
Extending this to another level, you can refer to Sheetl in Bookl as follows:

Application.WorkbooksC"Bookl").Worksheets("Sheetl")

You can take it to still another level and refer to a specific cell as follows:

Application.WorkbooksC"Bookl"J.Worksheets("Sheetl").
Range("Al")

emnosUSA0017431

CiM Ex. 1054 Page 109

Legend

D Object and collection
El Object only

~ Click arrow to expand chart

Figure 35-9: A depiction of part of Excel's object model.

• If you omit specific references, Excel uses the active objects. If Bookl is the
active workbook, the preceding reference can be simplified as follows:

Worksheets("Sheetl").Rarge("Al"l

If you know that Sheetl is the active sheet, you can simplify the reference
even 1nore:

Range("Al")

• Objects have properties. A property can be thought of as a setting for an
object. For example, a range object has properties such as Val u e and r,i a me.
A chart object has properties such as Ha sT it le and Type. You can use VBA
both to determine object properties and to change them.

emnosUSA0017432

CiM Ex. 1054 Page 110

• You refer to properties by combining the object with the property, separated
by a period. For example, you can refer to the value in cell Al on Sheet 1 as
follows:

Worksheets("Sheetl").Rarge("Al").Value

• You can assign values to variables. To assign the value in cell Al on Sheetl to
a variable called In t ere st. use the following VBA statement:

InLeresL = WorksheeLs("SheeLl").Range("Al").Value

• Objects have methods. A method is an action that is performed with the
object. For example, one of the methods for a range object is Cl ea rConten ts.
This method dears the contents of the range.

• You specify methods by combining the object with the method, separated by
a period. For example, to clear the contents of cell Al, use the following
statement:

Worksheets("Sheetl").Rarge("Al:Cl2"l.ClearContents

• VBA also includes all the constructs of modern programming languages.
including arrays, looping, and so on.

Believe it or not, this describes VBA in a nutshell. Now you just have to learn the
details, some of which are covered in the rest of this chapter.

Objects and Collections
VBA is an object-oriented language, which means that it manipulates objects, such as
ranges, charts, drawing objects, and so on. These objects are arranged in a hiera1·chy.
The Appl 1 cat 1 on object (which is Excel) contains other objects. For example, the
Appl i cat-ion object contains a number of objects, including the following:

• Addlns (a collection of Addln objects)

• Windows Ca collecticn of Window objects)

• WorksheetFuncticn

• Workbooks (a collection of Workbook objects)

Most of these objects can contain other objects. For example, a l~orkbook object
can contain the following objects:

• Charts (a collection of Cr1art objects)

• ~arnes (a collection of Nar,1e objects)

• S Lyles (a collection of S Ly 1 e objects)

• Wfridows (a collection of Window objects in the workbook)

• ~/arks heets (a collection of Workst1ee t objects)

emnosUSA0017433

CiM Ex. 1054 Page 111

Each of these objects, in turn, can contain other objects. A Worksrieet object, for
example, can contain the follo'A'ing objects:

• Cha rtObj ec ts (a collection of all Ch a rtO bj ec t objects)

• PageSetup

• Pi votTabl es (a collection of all Pi votTabl e objects)

• Range

A collection consists of all like objects. For example, the collection of all Workbook
objects is known as the Workbooks collection. You can refer to an individual object
in a collection by using an index number, or a reference. For example, if a workbook
has three worksheets (named Sheetl. Sheet2, and Sheet3), you can refer to the first
object in the !,'Jorksheets collection in either of these ways:

~/orkst,eets(1)
Wcrksheets("Sneetl"l

Properties
The objects that you work with have properties, which you can think of as
attributes of the objects. For example, a range object has properties such as
Column, Row, \.Ji dth, and Value. A chart object has properties such as Legend,
Chart.Title, and so on. ChartTi tl e is also an object, with properties such as
Font, Ori en tat ion, and Text. Excel has many objects, and each has its own set of
properties. You can write VBA code to do the following:

• Examine an object's current property setting and take some action based on it

• Change an object's property setting

You refer to a property in your VBA code by placing a period and the property
name after the object's name. F'or example, the following VBA statement sets the
Val ue property of a range named frequency to 1.S (that is, it causes the number 1.S
to appear in the range's cells):

Range("frequency").Value = 15

Some properties a1·e read-only, which means that you can examine the property, but
you can't change the property. For a single-cell range object, the Rov1 and Col umn
properties are read-only properties: You can determine where a cell is located (in
which row and column), but you can't change the cell's location by changing these
properties.

A range object also has a Formula property, which is notrnad-only: that is, you can
insert a formula into a cell by changing its F o rmu l a property. The following statement
inserts a formula into a cell named total by changing the cell's For rnu l a property:

Range("total"l.Formula = "=SUM(Al:AlOl"

emnosUSA0017434

CiM Ex. 1054 Page 112

Contrary to what you may think, Excel doesn't have a Ce 11 object. When you want
to manipulate a single cell, you use the Range object (with only one cell in it).

You need to be aware of the App 1 i cation object, which is actually Excel, the
program. The Application object has several useful properties:

• Appl i cation. Act i ve~Jcr kboo k: Returns the active workbook (a Workbook
object) in Excel.

• Application. Act i veSl1eet: Returns the active sheet (a Sheet object) of the
active ,vorkbook.

• Application .Act i veCel 1: Returns the active cell (a Range object) object of
the active window.

• App 1 i cation.Se 1 ect i en: Returns the object that is currently selected in the
active window of the Application object. This can be a range, a chart, a
shape, or some other selectable object.

You also should understand that properties can return objects. In fact, that·s
exactly what the preceding examples do. The result of A.pp 1 i cation. Act i veCel l,
for e.."Xample, is a Range object. Therefore, you can access properties by using a
statement such as the following:

Applicatfon.ActiveCell.Font.Size = 15

In this case, Application. Act i veCel l . Font is an object. and Size is a property
of the object. The preceding statement sets the Size property to 15; that is, it
causes the font in the currently selected cell to have a size of 15 points.

Because Application properties are so commonly used, you can omit the
object qualifier (Appl i cat ion). For example, to get the row of the active cell, you
can use a statement such as the following:

Act i veCel 1 . Rm·1

Many different ways to refer to the same object may exist. Assume that you have a
workbook named Sales.xis and it's the only workbook open. Furthermore, assume
that this workbook has one worksheet, named Summary. Your VBA code can refer
to the Summary sheet in any of the following ways:

Workbooks("Sale .xls").Worksheets("Summary")
Workbooks(ll.Worksheets(l)
~/erk.books (1 l. Sriee ts (1)
Application.ActiveWorkbook.ActiveSheet
ActiveWorkbook.ActiveSheet
Act i veSt1eet

emnosUSA0017435

CiM Ex. 1054 Page 113

The method that you use is determined by how much you know about the
workspace. For example, if more than one workbook is open, the second or third
method is not reliable. If you want to work ·with the active sheet (whatever it may be),
either of the last three methods would work. To be absolutely sure that you're refer
ring to a specific sheet on a specific workbook, the first method is your best choice.

Methods
Objects also have methods. You can think of a method as an action taken with an
object. For example, range objects have a Cl ear method. The following VBA
statement dears the range named total, an action that is equivalent to selecting the
range and then choosing Edit • Clear• All:

Range("total").Clear

In VBA code, methods look like properties, because they are connected to the
object with a "dot." However, methods and properties are different concepts.

Variables
Like all progrnmmiug languages, VBA enables you to work with variables. In VBA
(unlike in some languages), you don't need to declare variables explicitly before
you use them in your code (although it's definitely a good practice).

Jn the following example, the value in cell Al on Sheetl is assigned to a variable
named rate:

rate= \>/orksheets("Sheetl").Range("Al").Value

You then can work with the variable rate in other parts of your VBA code. Note
that the variable ra Le is not a named range, which means that you can't use it as
such in a worksheet formula.

Controlling Execution
VBA uses many constructs that are found in most other programming languages.
These constructs are used to control the flow of execution. This section introduces
a few of the more common progranuning constructs.

The If-Then construct
One of the most important control structures in VBA is the If - Th en constntct. This
common command gives your applications decision-making capability. The basic
syntax of the If-Then structure is as follows:

If condition Then statements [Else elsestatements]

emnosUSA0017436

CiM Ex. 1054 Page 114

The following is an example (which doesn't use the optional Else clause). This
subroutine checks the active cell. If it contains a negative value, the cell's color is
changed to red. Otherwise. nothing happens.

Sub CheckCell ()
If ActiveCell.Value < 0 Then ActiveCen.Font.Colorindex 3

End Sub

For-Next loops
Fm· example, you can use a f-or- t~ext loop to process a series of items. Its syntax is
as follows:

Fer counter= start To end [Step stepval]
[statements]
[Exit For]
[statements]

Next [counter]

The following is an example of a For - Next loop:

Sub SumSquared()
Total = 0
For Num = 1 To 10

Tctal = Total + (Num A 2)
Next Num
MsgBox lotal

End Sub

This example has one statement between the For statement and the Next statement.
This single statement is executed ten times. The variable N um takes on successive
values of l, 2, :J, and so on, up to 10. The vaiiable Total stores the sum of N u.m
squared, added to the previous value of Total. The result is a value that represents
the sum of the first ten integers squared. This result is displayed in a message box.

The With-End With construct
Another construct that you encounter if you record macros is the W~ th- End ~Ji th
construct. This is a shortcut way of dealing with several properties or methods of
the same object. The following is an example:

Sub AlionCells()
~vith Selection

.Horizon Lal Al iqnrnenL = xlCenLer

.VerticalAlign;ent = xlCenter

.WrapText = False

.Orientation= xlHorizontal
End vJith

End Sub

emnosUSA0017437

CiM Ex. 1054 Page 115

The following subroutine performs exactly the same operations, but doesn't use the
With-End vJitt1 construct:

Sub Ali(mCells()
Selecfion.HorizontalAlignment = xlCenter
Selection.VerticalAlignment = xlCenter
Selection.WrapText = False
SelecLion.OrienLaLion = xlHorizonLal

End Sub

The Select Case construct
The Se l e ct Case constt·uct is useful for choosing among two or more options. The
syntax for the Select Case structure is as follows:

Select Case testexpression
[Case expressionlist-n

[sLaLemenLs-nJJ .
[Case Else

[elsestatements]J
End Select

The following example demonstrates the use of a Se l e ct Case construct. In this
example, the active cell is checked. If its value is less than 0, it's colored red. If it's
equal to 0, it's colored blue. H the value is greater than 0, it's colored black.

Sub Ct1eckCel l ()
Select Case ActiveCell .Value

Case Is < 0
Acti veCel l . Font. Col or Index

Case 0
ActiveCell .Font.Colorindex

Case Is > 0
Act i veCel l . Font. Col or Index

End Select
End Sub

3 · R.ed

5 'Blue

1 'B~ack

Any number of statements can go below each Case statement, and they all get
executed if the case is true. If you use only one statement, as in the preceding
example, you may want to put the statement on the same line as the Case
statement.

A Macro That Can't Be Recorded
The following is a VBA macro that can't be recorded, because it uses an l f - I hen
structure. This macro enables you to identify quickly cells that exceed a certain
value. When you run this macro, it prompts the user for a value and then evaluates
every cell in the selection. If the cell's value is greater than the value that is entered
by the user, the macro makes the cell bold and red.

emnosUSA0017438

CiM Ex. 1054 Page 116

Sub SelectiveFormat()
'I his procedure selectively shades cells greater than
'a specified target value
'Get target value ~rom user

Message= "Change attributes of values greater than or
equal~to ... "

Target= InputBox(Message)
larget=Val (I arget)

'Evaluate eacn cell in the selection
~or lach Item ln Selec~ion

If IsNumeric(ltem) Then
If Item.Value>= Target Then

With ltem
.Font.Bold= True
.Font.Colorlndex 3 'Red

End With
End If

Encl If
Next Item

End Sub

Although this macro may look complicated, it's fairly simple when you break
it down.

First, the macro assigns text to a variable named Message. It then uses the
InputBox function to solicit a value from the user. The InputBox function has a
single argument (which is the ~1essage variable), and retm·ns a string-which is
assigned to the Target variable. Next, the Va 1 function is used to convert this
string to a value.

The For-Next loop checks every cel1 in the selected range. The first statement
within the loop uses the Is Numeric function to determine whether the cell can be
evaluated as a number. This is important, because a cell without a vaJue would
generate an error when the Val LI e property is accessed in the next statement. If the
cell is numeric, it is checked against the target value. If it's greater than or equal to
the target value, the Bo 1 d and Co 1 or Index properties are changed. Otherwise,
nothing happens and the loop is incremented.

After entering this macro, named SelectiveF'onnat, into a module sheet, you can
provide a shortcut key to access it. Choose Tools• Macro• Macros to display the
Macros dialog box. Select the macro from the list, and dick Options. Excel displays
a new diaJog box (see Figure 35-10) that enables you to specify a shortcut key
combination to execute the macro.

emnosUSA0017439

CiM Ex. 1054 Page 117

Figure 35-10: You can execute
this macro by pressing Ctrl+S.

Figure 35-11 shows the macro in action. Note that you must select the range before
you execute the macro.

Figure 35-11: The macro uses the InputBox function to prornptthe user for
a value.

As macros go, this example is not very good. It's not very flexible and doesn't
include any error handling. For example, if a nonrange object (such as a graphic
object) is selected, the macro halts and displays an error message. To avoid this
error message and abort the macro if anything except a range is selected, you can
insert the following statement as the first statement in the procedure (directly
below the Sub statement):

If TypeName(Selection) <> "Range• Then Exit Sub

This causes the macro to halt if the selection is not a Range object.

emnosUSA0017440

CiM Ex. 1054 Page 118

Notice also that the macro is executed even if you click Cancel in the input box.
To avoid this problem, enter the following statement directly above the
Target=Val (Target) statement:

If Target=·· then Exit Sub

This aborts the subroutine if Ta r·J et is empty.

A much more versatile version of this utility is part of the Power Utility Pak (see
Figure 35-12). The shareware version is available from this book's Web site.

('.Jot Eletween
Ecual to
Note ,.Jal to

Les..; tf"'an
Greai::er than or 1';;,!QJal to
'"""'"'1"'!-,;>1nf'!f fl:Ollr'llf'n

Sim1kit to attern

Figure 35-12: The Select By Value utility in
the Power Utility Pak is a more versatile
version of this macro.

Learning More
This chapter barely scratches the surface of what you can do with VBA. If this is
your first exposure to VEA, you're probably a bit overwhelmed by objects,
properties, and methods. I don't blame you. If you try to access a property that an
object doesn't have, you get a run-time error, and your VBA code grinds to a
screeching halt until you correct the problem. Fortunately, several good ways are
available to learn about objects, properties, and methods.

Read the Rest of the Book
This book has three more chapters that are devoted to VBA. Chapter :16 covers VBA
functions, Chapter 37 describes custom dialog boxes, and Chapter ~~8 consists of
useful (and informative) VBA examples.

Record Your Actions
The best way-without question-to become familiar with VEA is to turn on the
macro recorder and record actions that you make in Excel. This learning technique
is even better if the VBA module in which the code is being recorded is visible while
you're recording.

emnosUSA0017441

CiM Ex. 1054 Page 119

Use the Online Help System
The main source of detailed information about Excel's objects, methods, and
procedures is the online Help system. Help is very thorough and easy to access.
When you're in a VBA module, just move the cursor to a property or method and
press Fl. You get help that describes the word that is under the cursor.

Buy Another Book
Okay, I promise. This is the last plug for my other book, Excel 2000 Power
Progranzming With VBA. I've received feedback from hundreds of previous-edition
readers who claim that it's the best Excel;VBA book available. You be the judge.

Summary
This chapter introduces VBA, one of two macro languages included with Excel. lf
you want to lear·n macro programming, VBA is the language to use. In this chapter,
you learn that a VBA module can contain subroutine procedures and function
procedures, and that VBA is based on objects, properties, and methods. You also
learn how to use the macro recorder to translate your actions into VBA code and
write simple code directly in a VBA module. Three other chapters in this book
provide additional information about VBA.

emnosUSA0017442

CiM Ex. 1054 Page 120

Creating Custom
Worksheet
Functions

As mentioned in the preceding chapter, you can create
two types of VBA procedures: subroutines and

functions. This chapter focuses on function procedures.

Overview of VBA Functions
Function procedures that you write in VBA are quite versatile.
You c:an use these functions in two situations:

• As part of an expression in a different VBA procedure

• On formulas that you create in a worksheet

In fact, you can use a function procedure anywhere that you
can use an Excel worksheet function or a VBA built-in
function. Custom functions also appear in the Paste Function
dialog box, so they appear to be part of E..xcel.

Excel contains hundreds of predefined worksheet functions.
With so many from which to choose, you may be curious as to
why anyone would need to develop additional functions. The
main reason is that creating a custom function can greatly sim
plify your formulas by making them shorter-and shorter for
mulas are more readable and easier to work with. For exam
ple, you can often replace a complex fo1·mula with a single
function. Another reason is that you can write functions to
pe,rt<)nn operations that would otherwise be impossible.

This chapter assumes that you are familiar with entering
and editing VBA code in the Visual Basic Editor (VBE). Refer
to Chapter 35 for an overview of the VBE.

emnosUSA0017443

CiM Ex. 1054 Page 121

An Introductory Example
The process of creating custom functions is relatively easy, once you understand
VBA. Without further ado, here's an example of a VBA function procedure. This
function is stored in a VBA module, which is accessible from the VBE.

A Custom Function
This e..xample function, named N umS i gn, uses one ari;,JUment. The function returns
a text string of Po s i ti v e if its argument is greater than zero, Neg at i v e if the argu
ment is less than zero, and Lero if the argument is equal to zero. The function is
shown in Figure :16-l.

Select.. :::el3E
Ctt=:tt! ::::~i NurnSign = HI-Jegat::.ven
Case O: NurnSign = nze1:o''
Case :::ti > O: NU1'r1Sign = rrpoeit:..ven

Figure 36-1: A custom function.

You could, of course, accomplish the same effect with the following w01·ksheet
formula, which uses a nested IF function:

=IF'. A 1 =0, "Zero" , IF U\l >0 , "Posit i ve" , "[\I e£f at i v €"))

Many would agree that the custom function solution is easier to understand and to
edit than the worksheet formula.

Using the Function in a Worksheet
When you enter a formula that uses the N utnS i gn function, Excel executes the func
tion to get the result (see Figure 36-2). This custom function works just like any
built-in worksheet function. You can insert it in a formula by using the Insert•
Function command, which displays the Paste Function dialog box (custom func
tions are located in the User Defined category). You also can nest custom functions
and combine them with other elements in your formulas.

emnosUSA0017444

CiM Ex. 1054 Page 122

Figure 36-2: Using a custom function in a worksheet
formula.

Using the Function in a VBA Subroutine
The following VBA subroutine procedure, which is defined in the same module as
the custom t,JumSi gn function, uses the built-in tr:s9Box function to display the
result of the ~J urns i g n function:

Sub St10wSign(l
CellValue = ActiveCell.Value
MsgBox NumSign(CellValue)

End Sub

In this example, the variable Ce 11 Val u e contains the value in the active cell (this
variable could contain any value, not necessarily obtained from a cell). Cell Value
is then passed to the function as its argument. Fii;.,ure ;J6-3 shows the result of
executing the N urns i gn subroutine.

emnosUSA0017445

CiM Ex. 1054 Page 123

Figure 36-3: Using a custom function in a VBA subroutine.

Analyzing the Custom Function
This section describes the N umS i gn function. Here again is the code:

Function NumSion(InVal)
Select Case inVal

Case Is< 0: NumSign = ·~egative"
Case 0: NumSion = "Zero·
Case Is> 0: Nu~Sign = "Positive"

End Select
End Function

Notice that the procedure starts with the keyword Fune ti on rather than Sub,
followed by the name of the function (NumS i gn). This custom function uses one
argument (I n Val) ; the argument's name is enclosed in parentheses. In Val is the
cell or variable that is to be processed. When the function is used in a worksheet,
the argument can be a cell reference (such as Al) or a literal value (such as -123).
When the function is used in another procedure, the argument can be a numeric
variable, a literal number. or a value that is obtained from a cell.

The NumS i gn function uses the Select Case construct (described in Chapter 35)
to take a different action, depending on the value of 1 n Val . If l n Val is less than
zero, N urns i gn is assigned the text ~i eg at i ve. If In Val is equal to zero, r~ urns i 9n is
Zero. If I nVa l is greater than zero, ffo.mS i gn is Pas it i ve. The value returned by a
function is always assigned to the function's name.

The procedure ends with an End F ctn ct ion statement.

emnosUSA0017446

CiM Ex. 1054 Page 124

About Function Procedures
A custom function procedure has a lot in common with a subroutine procedure,
covered in the preceding chapter. Function procedures have some important
differences, however, which are discussed in this section.

Declaring a Function
The syntax for declaring a function is as follows:

[Public I Private][Static] Function name [(arg7ist)J[As type]
[statements]
[name= expression]
[Exit Function]
[statements]
[name= expression]

End Function

These elements are defined as follows:

• Pub l i c: Indicates that the function is accessible to all other procedures in all
other modules in the workbook. (Optional)

• Pr i v ate: Indicates that the function is accessible only to other procedures in
the same module. P r-i v ate functions can't be used in worksheet formulas and
do not appear in the Paste Function dialog box. (Optional)

• Static: Indicates that the values of variables declared in the function are
preserved between calls, rather than being reset. (Optional)

• Function: A keyword that indicates the beginning of a function procedure.
(Required)

• r ame: Any valid variable name. \Vhen the function finishes, the single-value
result is assigned to the function's name. (Required)

• a is t: A list (one or more) of variables that represent argmnents passed to
the function. The arguments are enclosed in parentheses. Use a comma to
separate arguments. (Optional)

• type: The data type that is returned by the function. (Optional)

• s La Lerren Ls: Valid VBA statements. (Optional)

• Ex i t Function: A statement that causes an immediate exit from the function.
(Optional)

• End Function: A keyword that indicates the end of the function. (Required)

Keep in mind that a value is assigned to the function's name when a function is
finished executing.

emnosUSA0017447

CiM Ex. 1054 Page 125

To create a custom function, follow these steps:

L Activate the Visual Basic Editor (or press Alt+Fl l).

2. Select the workbook in the Project window.

3. Choose Insert• Module to insert a VBA module (or you can use an existing
module).

4. Enter the keyword ~ u n ct i on followed by the function's name and a list of the
arguments (if any) in parentheses.

5. Insert the VBA code that performs the work-and make sure that the variable
corresponding to the function's name has the appropriate value (this is the
value that the function returns).

6. End the function with an End Function statement.

Function names must adhere to the same rules as variable names, and you can't
use a name that looks like a worksheet cell (for example, a function named J21 isn't
accepted).

Executing Function Procedures
Although many ways exist to execute a subroutine procedure, you can execute a
function procedure in just two ways:

• Call it from another procedure

• Use it in a worksheet formula

emnosUSA0017448

CiM Ex. 1054 Page 126

Calling custom functions from a procedure
You can call custom functions from a procedure just as you call built-in VBA
functions. For example, after you define a function called Cal c • ax, you can enter a
statement such as the following:

Tax= CalcTax(Amount, Ra:e)

This statement executes the Cal cTa;~ custom function with Amount and Rate as its
arguments. The function's result is assigned to the Tax variable.

Using custom functions in a worksheet formula
Using a custom function in a worksheet formula is like using built-in functions. You
must ensure that Excel can locate the function procedure, however. If the function
procedure is in the same workbook, you don't have to do anything special. If the
function is defined in a different workbook, you may have to tell Excel where to find
the function. The following are the three ways in which you can do this:

• Precede tbe function's name with a file reference. For example, if you want
to use a function called Co un tN arne s that's defined in a workbook named
MyFunctions, you can use a reference such as the following:

=MyFunctions.xls!CountNames(Al:AlOOO)

If you insert the function with the Paste Function dialog box, the workbook
reference is inse1·ted automatically.

• Set up a reference to the workbook. If the custom function is defined in a
reference workbook, you don't need to precede the function name with the
workbook name. You establish a reference to another workbook with the
Tools• References command (in the Visual Basic Editor). You are presented
with a list of references that includes all open workbooks. Place a check mark
in the item that refers to the workbook that contains the custom function (use
the Browse button if the workbook isn't open).

Create an add-in. When you create an add-in from a workbook that has function
procedures, you don't need to use the file reference when you use one of the
functions in a formula; the add-in must be installed, however. Chapter 40
discusses add-ins.

If you plan on developing custom worksheet functions, make sure that you heed
the warning in the sidebar, uwhat a Function Can't Do:'

Your function procedures don't appear in the Macros dialog box when you select
Tools• Macro, because you can't execute a function directly. As a result, you need
to do extra, up-front work to test your functions as you're developing them. One
approach is to set up a simple subroutine that calls the function. If the function is
designed to be used in worksheet formulas, you can enter a simple formula to test
it as you're developing the function.

emnosUSA0017449

CiM Ex. 1054 Page 127

Function Procedure Arguments
Keep in mind the following about function procedure arguments:

• Aq;,JUments can be variables (including arrays), constants, literals, or
expressions.

• Some functions do not have arguments.

• Some functions have a fixed number of required arguments (from 1 to 60).

• Some functions have a combination of required and optional arguments.

The following section presents a series of examples that demonstrate how to use
arguments effectively with fundions. Coverage of optional arguments is beyond the
scope of this book.

Example: A Function with No Argument
Like subroutines, functions don't necessarily have to use arguments. Excel, for
example, has a few built-in worksheet functions that don't use arguments. These
include RAND, TODAY, and NOi~.

The following is a simple example of a function that has no arguments. This func
tion returns the User Name property of the Application object, which is the name
that appears in the Options dialog box (General tab). This example is simple, but it
can be useful. because no other way is available to get the user's name to appear in
a worksheet formula.

Fu1ction User()
' ReLurns Lhe name of Lhe currenL user

User= Application.UserName
En,j Function

When you enter the following formula into a worksheet cell, the cell displays the
name of the current user:

=User()

As with Excel's built-in functions. when you use a function with no arguments, you
must include a set of empty parentheses.

The following example is a simple subroutine that uses the User custom function as
an argument for the MsgBox function. The concatenation operator(&) joins the
literal string with the result of the User function.

Sub St10wUserC l
MsgBox ("The user is • & User())

End Sub

emnosUSA0017450

CiM Ex. 1054 Page 128

Example: A Function with One Argument
This section contains a more complex function that is designed for a sales manager
who needs to calculate the connnissions that are earned by the sales force. The
commission rate is based on the amount sold-those who sell more earn a higher
commission rate. The function returns the commission amount. based on the sales
made (which is the function's only argument-a required argument). The
calculations in this example are based on the following table:

Monthly Sales Commission Rate

$10,000 - $19,999 10.50/o

$40,000+ 14.00/o

Several ways exist to calculate commissions for various sales amounts that are
entered into a worksheet. You could write a formula such as the following:

=IF(AND(Al>=O,A1<=9999.99),Al*0.08,IF(AND(A1>=10000,A1<=19999.9
9), Al*0.105
,IF(ANDCA1>=20000,A1<=39999.99),Al*O.l2,IF(A1>=40000,Al*O.l4,0)
)))

This is not the best approach, for a couple of reasons. First, the formula is overly
complex and difficult to understand. Second, the values are hard coded into the
formula, making the formula diffkult to modify if the commission structure
changes.

A better approach is to use a lookup table function to compute the commissions;
for example:

=VLOOKUP(Al,Table,2l*Al

Using the V LOOKUP function requires that you have a table of connnissicm rates set
up in your worksheet.

emnosUSA0017451

CiM Ex. 1054 Page 129

An even better approach is to create a custom function, such as the following:

Fu~ction CommissionCSales)
' Calculates sales commissions

Tierl 0.08
Tier2 0.105
Tier3 0.12
Tier4 0.14
Select Case Sales

Case O To 9999.99: Commission= Sales* Tierl
Case 1000 To 19999.99: Commission= Sales* Tier2
Case 20000 To 39999.99: Commission= Sales* Tier3
Case ls>= 40000: Commission= Sales* lier4

Encl Select
Encl Function

After you define the Cornrni ss ion function in a VBA module, you can use it in a
worksheet formula or call it from other VBA procedures.

Entering the following formula into a cell produces a result of 3,000 (the amount,
25,000, qualifies for a commission rate of 12 percent):

=Commission(25000l

Even if you don't need custom functions in a worksheet, creating function proce
dures can make your VBA coding much simpler. If your VBA procedure calculates
sales commissions, fo1· example, you can use the Comrni s s" on function and call it
from a VBA subroutine. The following is a tiny subroutine that asks the user for a
sales amount and then uses the Cammi s s ion function to calculate the commission
due and to display it:

Sub Cal cCornm(l
Sales= InputBox("Enter Sales:·)
MsgBox "The oommissi~n is" & Commission(Sales)

End Sub

The subroutine starts by displaying an input box that asks for the sales amount.
Then, the procedure displays a message box with the calculated sales commission
for that amount. The C ornm i s s i o r1 function must be available in the active work
book; otherwise. Excel displays a message saying that the function is not defined.

Example: A Function with Two Arguments
This example builds on the previous one. Imagine that the sales manager imple
ments a new policy: The total commission paid is increased by one percent for
evei·y year that the salesperson has been with the company. For this example, the
custom Commission function (defined in the preceding section) has been modified
so that it takes two arguments - both of which are required arguments. Call this
new function Comrni s s ion 2:

emnosUSA0017452

CiM Ex. 1054 Page 130

Function Commission2(Sales, Years)
' Calculates sales commissions based on years in serv"ce

Tierl 0.08
Tier2 0.105
Tier3 0.12
Tier4 0.14
Select Case Sales

Case O lo 9999.99: Commission2 =Sales* lierl
Case 1000 To 19999.99: Commission2 =Sales* Tier2
Case 20000 To 39999.99: Commission2 =Sales* Tier3
Case ls>= 40000: Commission2 =Sales* lier4

End Select
Commission2 = Commission2 + (Commission2 *Years/ 100)

l:.nd f-unction

The modification was quite simple. The second argument (Ye a rs) was added to the
Fun ct i an statement and an additional computation was included that adjusts the
commission, before exiting the function.

The following is an example of how you write a formula by using this function (it
assumes that the sales amow1t is in cell AL and the number of years that the
salesperson has worked is in cell BI):

=Commission2(A1,B1)

Example: A Function with a Range Argument
The example in this section demonstrates how to use a worksheet range as an
argument. Actually, it's not at all tricky; Excel takes care of the details behind the
scenes.

Assume that you want to calculate the average of the five largest values in a range
named Data. Excel doesn't have a function that can do this, so you can write the
following formula:

=CLARGECData,l)+LARGE(Da~a.2)+LARGE(Data,3)+LARGECData,4)+LARGE
(Oata,5))/5

This formula uses Excel's LARGE function, which returns the nth largest value in a
range. The preceding formula adds the five largest values in the range named Data
and then divides the result by 5. The formula works fine, but it's rather unwieldy.
And, what if you need to compute the average of the top six values? You would
need to rewrite the formula-and make sure that all copies of the formula also get
updated.

Wouldn't it be easier if Excel had a function named TopAvg? For example, you could
use the following (nonexistent) function to compute the average:

=TopAvg(DaLa,5)

emnosUSA0017453

CiM Ex. 1054 Page 131

This is an example of when a custom function can make things much easier for you.
The following is a custom VBA function, named TooAvg, which returns the average
of the top n values in a range:

Function TopAvg(InRange, Num)
' Returns the average of the highest N1m values in InRange

Sum= 0
For i = 1 To Num

Sum = Surn + 1~orksf1eet,Funct ion. l..a '"ge(In Range. i)
Next i
TopAvg =Sum/ Num

End Function

This function takes two arguments: In Range (which is a worksheet range) and
Num (the number of values to average). The code starts by initializing the Sum
variable to 0. It then uses a For - N ex c loop to calculate the sum of the nth largest
values in the range. Note that Excel's LARGE function is used within the loop. You
can use an Excel worksheet function in VBA if you precede the function with
\1orksheet.Funct ion and a period. Finally, TopAvg is assigned the value of Sum
divided by N um.

You can use all of Excel's worksheet functions in your VBA procedures, except those
that have equivalents in VBA. For example, VBA has a Rn d function that returns a
random number. Therefore, you can't use Excel's RAND function in a VBA procedure.

Debugging Custom Functions
Debugging a function procedure can be a bit more challenging than debugging a
subroutine procedure. If you develop a function to use in worksheet formulas, an
error in the function procedure simply results in an error display in the formula cell
(usually #VALUE!). ln other words, you don't receive the normal run-time error
message that helps you to locate the offending statement.

When you are debugging a worksheet formula, using only one instance of the
function in your worksheet is the best technique. The following are three methods
that you may want to use in your debugging:

• Place MsgBox functions at strategic locations to monitor tlte value of
specific variables. Fortunately, message boxes in function procedures pop
up when the procedure is executed. But, make sure that you have only one
formula in the worksheet that uses your function; otherwise. the message
boxes appear for each fonnula that's evaluated.

• Test the procedure by calling it from a subroutine procedure. Run-time
errors display normally, and you can either fix the problem (if you know what
it is) or jump right into the debugger.

• Set a breakpoint in the function and then use Excel's debugger to step
through tlte function. You then can access all the normal debugging tools.

emnosUSA0017454

CiM Ex. 1054 Page 132

Pasting Custom Functions
&'!cel's Paste Function dialog box is a handy tool that enables you to choose a
worksheet function; you even can choose one of your custom worksheet functions.
The Formula Palette prompts you for the function's arguments.

Function procedures that are defined with the P, iv ate keyword do not appear in
the Paste Function dialog box.

You also can display a description of your custom function in the Paste Function
dialog box. To do so, follow these steps:

1. Create the function in a module by using the VBE.

2. Activate Excel.

3. Choose the Tools• Macro• Macros command.

Excel displays its Macro dialog box (see Figure :~6-4).

Figure 36-4: Excel's Macro dialog box doesn't
list functions, so you must enter the function
name yourself.

4. In the Macro dialog box, type the name of the function in the box labeled
Macro Name. Notice that functions do not normally appear in this dialog box,
so you must enter the function name yourself.

5. Click the Options button.

Excel displays its Macro Options dialog box. (See Figure 36-5.)

emnosUSA0017455

CiM Ex. 1054 Page 133

Figure 36-5: Entering a description
for a custom function. This description
appears in the Paste Function
dialog box.

6. Enter a description of the function and then click OK. The Shortcut key field is
irrelevant for functions.

The description that you enter appears in the Paste Function dialog box.

Custom functions are listed under the User Defined category, and no sti·aightfor
ward way exists to create a new function category for your custom functions.

Figure 36--6 shows the Paste Function dialog box, listing the custom functions that
are in the User Defined category. In the second Function Wizard dialog box, the user
is prompted to enter arguments for a custom function-just as in using a built-in
worksheet function.

Figure 36-6: Using the Paste Function dialog
box to insert a custom function.

emnosUSA0017456

CiM Ex. 1054 Page 134

When you access a built-in function from the Paste Function dialog box, the Formula
Palette displays a description of each argument. Unfortunately, you can't provide
such descriptions for custom functions.

Learning More
The information in this chapter only scratches the surface when it comes to
creating custom functions. It should be enough to get you started, however, if
you're interested in this topic. Refer to Chapter 38 for more examples of useful
VBA functions. You may be able to use the examples directly or adapt them for
your needs.

Summary
In this chapter, you read about how to create and use custom VBA functions. These
functions can be used in worksheet formulas and in other VBA procedtu-es. Several
examples are provided, and you can rnfer to Chapter 38 for more examples.

emnosUSA0017457

CiM Ex. 1054 Page 135

emnosUSA0017458

CiM Ex. 1054 Page 136CiM Ex. 1054 Page 136

Creating Custom
Dialog Boxes

You can't use Excel very long without being exposed to
dialog boxes. Excel, like most Windows programs, uses

dialog boxes to obtain information, clarify commands, and
display messages. If you develop VBA macros, you can create
your own dialog boxes that work just like those that are built
into Excel. This chapter introduces you to custom dialog boxes.

Beginning with Excel 97, Microsoft introduced a new
method for creating custom dialog boxes. Therefore, the
information in this chapter does not apply to versions of
Excel prior to Excel 97.

Why Create Custom Dialog Boxes?
Some macros that you create behave exactly the same every
time that you execute them. For example, you may develop a
macro that enters a list uf your employees into a w01·ksheet
range. This macro always produces the same result and
requires no additional user input. You may develop other
macros, however, that you want to behave differently under
different circumstances, or that offer some options for the
user. In such cases, the macro may benefit from a custom
dialog box.

The following is an example of a simple macro that makes each
cell in the selected range uppercase (but it skips cells that
have a formula). The subroutine uses VBA's built-in StrConv
fw1ction.

Sub CrangeCase()
For Each eel 1 In Sel ec:i on

If hot eel 1. Ha sFormLll a Hien
cell .Value= StrConv(cell .Value,

vbUpperCase)
End If

Next cell
End Sub

emnosUSA0017459

CiM Ex. 1054 Page 137

This macro is useful, but it could be even more useful. For example, the macro would
be more helpful if it could also change the cells to lowercase or initial capitals (only
the first letter of each word is uppercase). This modification is not difficult to make,
but if you make this change to the macro, you need some method of asking the user
what type of change to rnake to the cells. The solution is to present a dialog box like
the one shov..Tl in Figure :37-L This dialog box is a UsNForm that was created by using
the Visual Basic Editor, and it is displayed by a VBA macro.

Figure 37-1: A custom
dialog box that asks the
user for an option.

Another solution would be to develop three macros - one for each type of text
case change. Combining these three operations into a single macro and using a
dialog box represents a more efficient approach, however. This example, including
how to create the dialog box, is discussed later in the chapter.

Custom Dialog Box Alternatives
Although developing custom dialog boxes isn't difficult, sometimes using the tools
that are built into VBA is easier. For example, VBA includes two functions (InputBox
and MsgBox) that enable you to display simple dialog boxes, without having to create
a UserForm in the VBK These dialog boxes can be customized in some ways, but
they certainly don't offer the options that are available in a custom dialog box.

The lnputBox Function
The In p u tB ex function is useful for obtaining a single input from the user. A simpli
fied version of the function's syntax follows:

InputBox(promot[.title][,default])

The elements are defined as follows:

• prompt: Text that is displayed in the input box. (Required)

• title: Text that appears in the input box's title bar. (Optional)

• cefaul t: The default value. (Optional)

The following is an example of how you can use the Input3ox function:

Rate= InputBox("Commission rate?","Commission Worksheet")

emnosUSA0017460

CiM Ex. 1054 Page 138

When this VBA statement is executed, Excel displays the dialog box that is shown
in Figure 37-2. Notice that this example uses only the first two arguments and does
not supply a default value. When the user enters a value and clicks OK, the value is
assigned to the variable Rate.

Figure 37-2: This dialog box is displayed by
VBA's Inpu tBox function.

VBA's Inpu tBox function always returns a string, so you may need to convert the
results to a value. You can use the Val function to convert a string to a value, as
follows:

Rate Val(InoutBox("Co~nission rate?","Comnission Worksheet"))

The MsgBox Function
VBA's Ms gB ox function is a handy way to display information and to solicit simple
input from users. I use VBA's MsgBox function in many of this book's examples, to
display a variable's value. A simplified version of the MsgBox syntax is as follows:

MsgBox(prompt[,buttonsJ[,titleJ)

The elements are defined as follows:

• prompt: Text that is displayed in the message box. (Required)

• buttons: The code for the buttons that are to appear in the message box.
(Optional)

• title: Text that appears in the message box·s title bar. (Optional)

You can use the MsgBox function by itself or assign its result to a variable. If you use
it by itself, don't include parentheses around the arguments. The following example
displays a message and does not return a result:

Sub MsgBoxDemo()
MsgBox "Click OK to continue"

l:.nd Sub

emnosUSA0017461

CiM Ex. 1054 Page 139

Figure 37-3 shows how this message box appears.

Figure 37-3: A simple
message box, displayed
with VBA's MsgBox function.

To get a response from a message box, you can assign the result of the MsgBox
function to a variable. The following code uses some built-in constants (described
later) to make it easier to work with the values that are returned by MsgBox:

Sub GetAnswer()
Ans= MsgBox("Continue?", vbYesNol
Selecc Case Ans

Case vbYes
' ... [code if Ans is Yes] ...

Case vbNo
' ... [code if Ans is No] ...

Encl Select
End Sub

When this procedure is executed, the Ans vai·iable contains a value that corresponds
to vb Yes or vbt\o. The Select Case statement determines the action to take based
on the value of Ans.

You can easily customize your message boxes, because of the flexibility of the
buttons argument. Table 37-1 lists the built-in constants that you can use for the
button argument. You can specify which buttons to display, whether an icon
appears, and which button is the default.

Constant Value Description

vbYesNoCancel 3 Display Yes, No, and Cancel buttons

v bRet ryCa !lC el 5 Display Retry and Cancel buttons

emnosUSA0017462

CiM Ex. 1054 Page 140

Constant Value Description

vbl:.xcl amati on 48 Display Warning Message icon

vbDefault3uttonl 0 First button is default

vbDefault3utton3 512 Third button is default

The following example uses a combination of constants to display a message box
with a Yes button, a No button (vbYesNo), and a question mark icon (v.::iQuest ion);
the second button is designated as the default button (v bOef au l LBu L l:on 2)
which is the button that is executed if the user presses Enter. For simplicity, these
constants are assigned to the Confi g variable and Confi g is then used as the
second argument in the MsgBox function.

Sub GetAnswer()
Confiq = vbYesNo + vbQuestion + vbDefaultButton2
Ans =-MsgBox("Process the monthly report?", Config)
If Ans vbYes Then RunReport
If Ans= vbNo Then End

End Sub

Figure 37-4 shows how this message box appears when the Ge tAn swe r subroutine is
executed. If the user dicks the Yes button (or presses Enter), the routine executes
the procedure named RunRepor (which is not shown). If the user dicks the No
button, the routine is ended with no action. Because the title argument was omitted
in the MsgBox function, Excel uses the default title ("Microsoft Excel").

Figure 37-4: The second
argument of the Ms g Box
function determines what
appears in the message box.

emnosUSA0017463

CiM Ex. 1054 Page 141

The routine that follows is another example of using the MsgBox function:

Sub GetAnswer2()
Msg = "Do you want to process the monthly report?"
Msg = Msg & vblf & vblf
Msg = Msg & "Processing the monthly report will take

approximately•
Msg = Msg & "15 minutes. It will generate a 30-page report

fer all •
Msg = Msg & "sales o~fices for the current month."
Title= "XYZ Marketing Company"
Config = vbYesNo + vbQuestion
Ans= MsgBox(Msg. Config, litle)
If Ans vbYes Then RunReport
If Ans= vbNo Then End

End Sub

This example demonstrates an efficient way to specify a longer message in a mes
sage box. A variable (Msg) and the concatenation operator(&) are used to build the
message in a series of statements. In the second statement, vbL f is a constant that
represents a line feed character (using two line feeds inserts a blank line). The title
argument is also used to display a different title in the message box. Figure 37-5
shows how this message box appears when the procedure is executed.

Figure 37-5: A message box with a longer message and a title.

Creating Custom Dialog Boxes: An Overview
The Inpu tBox and Ms gBcx functions do just fine for many cases, but if you need to
obtain more information, then you need to create a custom dialog box. A custom
dialog box is neated on a UserForm in the Visual Basic Editor.

The following is a list of the general steps that you typically take to create a custom
dialog box:

I. Determine exactly how the dialog box is going to be used and where it is to fit
into your VBA macro.

2. Activate the Visual Basic Editor and insert a new UserFonn (select Insert•
UserForm).

emnosUSA0017464

CiM Ex. 1054 Page 142

3. Add the appropriate controls to the dialog box.

4. Create a macro to display the dialog box.

5. Create "event-handler" VBA subroutines that are executed when the user
manipulates the controls (for example. dicks the OK button).

The following sections provide more details on creating a custom dialog box.

Working with UserForms
Excel stores custom dialog boxes on UserForms (one dialog box per form). To
create a dialog box, you must first insert a new UserFonn in the Visual Basic
Editor window.

To activate the Visual Basic Editor, select Tools• Macro• Visual Basic Editor (or
press Alt+Fl l). Make sure that the cunent workbook is selected in the Project
window and then select hlsert • UserFonn. The Visual Bask Editor displays an
empty form. as shown in Figure 37-6. When you activate a form, the Visual Basic
editor displays the Toolbox, which is used to add controls to the dialog box.

Figure 37-6: An empty form.

Adding Controls
The Toolbox, shown in Figure 37-7, contains various ActiveX controls that you can
add to your dialog box.

emnosUSA0017465

CiM Ex. 1054 Page 143

Figure 37-7: The Toolbox
contains the controls that
you add to your dialog box.

When you move the mouse pointer over a control in the Toolbox, the control's
name is displayed. To add a control, dick and drag it in the fom1. After adding a
control, you can move it or change its size.

Table 37-2 lists the Toolbox controls.

Control Description

Label Adds a label

ComboBox Adds a combo box

CheckBox Adds a check box

ToggleButton Adds a toggle button

CommandButton Adds a command button

Spin Button Adds a spin button

RefEdit Adds a reference edit control (lets the user select a range)

You can also place some of these controls directly on your worksheet Refer to
Chapter 38 for details.

emnosUSA0017466

CiM Ex. 1054 Page 144

Changing the Properties of a Control
Every control that you add to a User Form has several properties that determine
how the control looks and behaves. You can change some of these properties (such
as Heigh Land ~Ji d ~h) by clicking and dragging the control's border. To change
other properties, use the Properties window.

To display the Properties window, select View• Properties Window (or press F4).
The Properties window displays a list of properties for the selected control (each
control has a different set of properties). If you dick the form itself, the Properties
window displays properties for the form. Figure 37-8 shows the Pmperties window
for a CommandButton control.

Figure 37-8: The Properties window
for a CommandButton control.

To change a property, select the property in the Property \vinclow and then enter a
new value. Some properties (such as E,ackCo l or) enable you to select a property
from a list. The top of the Properties window contains a drop-down list that enables
you to select a control to work with. You can also dick a control to select it and
display its properties.

emnosUSA0017467

CiM Ex. 1054 Page 145

When you set properties by using the Pro petty window, you're setting properties at
design time. You can also use VBA to change the properties of controls while the
dialog box is displayed (that is, at nm time).

A complete discussion of all the properties is well beyond the scope of this book.
To find out about a particular property, select it in the Property window and press
Fl. The online Help for UserF01·m controls is extremely thorough.

Handling Events
When you insert a UserFonn, that fom1 can also hold VBA subroutines to handle
the events that are generated by the form. An event is something that occurs when
the user manipulates a control. For example, dicking a button is an event. Selecting
an item in a list box control is an event. To make a dialog box useful, you must write
VBA code to do something when an event occurs.

Event-handler subroutines have names that combine the control with the event.
The general form is the contn)l's name, followed by an underscore, and then the
event name. For example, the subroutine that is executed when the user clicks a
button named MyButton is MyButton_Cl i ck.

Displaying Custom Dialog Boxes
You also need to write a subroutine to display a custom dialog box. You use the
Sr1o•t1 method of the UserForm object. The following procedure displays the dialog
box that is located on the UserForml form:

Sub ShowDialoq()
UserForml .Sho1tJ

End Sub

This subroutine should be stored in a regular VBA module (not the code module for
the UserForm).

When this subroutine is executed, the dialog box is displayed. What happens next
depends on the event-handler subroutines that you create.

A Custom Dialog Box Example
The preceding section is, admittedly, rudimentary However, this section demon
strates how to develop a custom dialog box. This example is rather simple. The
UserForm displays a message to the user-something that could be accomplished
more easily by using the MsgBox function. However, the custom dialog box gives
you a lot more flexibility in terms of formatting and layout of the message.

emnosUSA0017468

CiM Ex. 1054 Page 146

Creating the Dialog Box
Jf you're following along on your computer, start with a new workbook. Then, follow
these steps:

I. Choose Tools• Macro• Visual Basic Editor (01· press Alt+Fl I) to activate the
VBE window.

2. In the VBE window, choose Insert• UserForm.

The VBE adds an empty form named UserForml and displays the Toolbox.

3. Press F4 to display the Properties window and then change the following
properties of the UserForm object:

Propert.11

~ame

Change To

AboutBox

Caption About This Workbook

4. Use the toolbar to add a Label object to the dialog box.

5. Select the Label object. In the Properties window, enter any text that you want
for the label's Caption.

6. In the Properties window, dick the r on t property and adjust the font. You can
change the typeface, size, and so on. The changes then appear in the form.
Figure :H-9 shows an example of a formatted Label control.

Figure 37-9: A Label control, after changing its I-on t
properties.

emnosUSA0017469

CiM Ex. 1054 Page 147

7. Add a CornmandButton object to the dialog box, and change the following
properties for the CornrnandButtcm:

Property

~ame

Caption

Default

Change To

OKButton

OK

True

8. Make other adjustments so that the form looks good to you. You can change
the size of the form, or move or resize the controls.

Testing the Dialog Box
At this point, the dialog box has all the necessary controls. What's missing is a way
to display the dialog box. This section explains how to write a VBA subroutine to
display the custom dialog box.

I. Insert a module by selecting Insert• Module.

2. In the empty module, enter the following code:

Sub ShowAboutBox()
Abou l.Bo.x. Show

End Sub

3. Activate E,,::cel.

4. Choose Tools• Macro• Macros (or press Alt+F8).

5. Jn the Macros dialog box, select ShowAboutBox from the list of macros and
click OK.

The custom dialog box then appears.

If you click the OK button, notice that it doesn't dose the dialog box as you may
expect. This button needs to have an event-handler subroutine. You can dismiss the
dialog box by clicking the close button in its title box.

Creating an Event-Handler Subroutine
An event-handler subroutine is executed when an event occurs. In this case, you
need a subroutine to handle the Click event that's generated when the user dicks
the OK button.

I. Activate the Visual Basic Editor (pressing Alt+Fl 1 is the fastest way).

2. Activate the AboutBox form by double-clicking its name in the Project
window.

3. Double-click the OKButton control.

emnosUSA0017470

CiM Ex. 1054 Page 148

4. VBE activates the module for the UserForm and inserts some code, as shown
in Figure 37-10.

Figure 37-10: The module for the UserForm.

5. Insert the following statement before the End Sub statement:

Unload AboutBox

This statement simply dismisses the UserFonn. The complete event-handler sub
routine is listed below:

Private Sub O<Button Click()
Unload AboutBox

End Sub

Attaching the Macro to a Button
This section describes how to attach the Sho\,1AboutB0x subroutine to a Button
object on a worksheet. Follow these steps:

I. Activate Ex:cel.

2. Right-dick any toolbar and select Forms from the shortcut menu.

The Forms toolbar is displayed.

3. Click the Button tool on the Forms toolbar.

4. Drag the Button tool into the worksheet to create a Button object.

'When you release the mouse button, Excel displays its Assign Macro dialog
box (see Figure 37-11).

emnosUSA0017471

CiM Ex. 1054 Page 149

Figure 37-11: The Assign Macro dialog box.

5. Select the ShowAboutBox macro from the list.

6. Click OK to close the Assign Macro dialog box.

7. Change the caption of the button to About ...

After you pedorm these steps, click the button to execute the ShowAt,outBox
subroutine-which displays your custom dialog box.

Another Custom Dialog Box Example
The example in this section is an enhanced version of the ChangeCase example
presented at the beginning of the chapter. Recall that the original version of this
macro changes the text in the selected cells to uppercase characters. This modified
version asks the user what type of case change to make: uppercase, lowercase, or
initial capitals.

This workbook is available on the companion CD-ROM.

Creating the Dialog Box
This dialog box needs one piece of information from the user: the type of change to
make to the text. Because only one option can be selected, OptionButton controls
are appropriate. Follow these steps to create the custom dialog box. Stat·t with an
empty workbook:

I. Choose Tools• Macro• Visual Basic Editor (or press Alt+Fl 1) to activate the
VBE window.

2. In the VBE window, choose Insert• UserForm.

VBE adds an empty form named UserForml and displays the Toolbox.

emnosUSA0017472

CiM Ex. 1054 Page 150

3. Press F4 to display the Properties window and then change the following
properties of the UserForm object:

Property Change To

~ame CaseChangerDialog

Caption Case Changer

4. Add a CommandButton object to the dialog box and then change the following
properties for the CommandButton:

Property

~ame

Caption

Default

Change To

OKButton

OK

True

5. Add another CommandButton object and then change the following properties:

Property

~ame

Caption

Cancel

Change To

Cancel Button

Cancel

True

6. Add an OptionButton control and then change the following properties (this
option is the default, so its Va 1 u e property should be set to Tr~, e):

Property

~ame

Caption

Value

Change To

OptionUpper

Upper Case

True

7. Add a second OptionButton control and then change the following properties:

Property

~ame

Caption

Change To

Optionlower

Lower Case

8. Add a third OptionButton control and then change the following properties:

Property

~ame

Cap Lion

Change To

OptionProper

Proper Case

9. Adjust the size and position of the controls and the form until your screen
resembles Figure 37-12. Make sure that the controls do not overlap.

emnosUSA0017473

CiM Ex. 1054 Page 151

Figure 37-12: The dialog box after adding controls and
adjusting some properties.

The Visual Basic Editor provides several useful commands to help you size and
align the controls. Select the controls that you want to work with, and then choose
a command from the Format menu. These commands are fairly self-explanatory,
and the online Help has complete details.

Testing the Dialog Box
At this point, the dialog box has all the necessary controls. What's missing is a way
to display the dialog box. This section explains how to write a VBA subroutine to
display the custom dialog box. Make sure that the VBE window is activated.

I. Insert a module by selecting Insert• Module.

2. In the empty module, enter the following code:

Sub ChangeCase(l
CaseChangerDialog.Show

End Sub

3. Select Run• Sub/UserForm (or press F5).

The Excel window is then activated, and the new dialog box is displayed, as shovvn
in Figure 37-13. The OptionButtons work, but dicking the OK and Cancel buttons
has no effect. These two buttons need to have event-handler subroutines. Click the
Close button in the title bar to dismiss the dialog box.

emnosUSA0017474

CiM Ex. 1054 Page 152

Figure 37-13: Displaying the custom dialog box.

Creating Event-Handler Subroutines
This section explains how to create two event-handler subroutines: one to handle the
Click event for the CancelButton CommandButton and the other to handle the Click
event for the OKButton CommandButton. Event handlers for the OptionButtons are
not necessary. The VBA code can determine which of the three OptionButtons is
selected.

Event-handler subrnutines are stored in the form module. To create the subroutine
to handle the Click event for the CancelButton, follow these steps:

I. Activate the CaseChangerDialog form by double-clicking its name in the
Project window.

2. Double-click the CancelButton control.

3. VBE activates the module for the form and inserts some code, as shov,rn in
Figure 37-14.

4. Insert the following statement before the End Sub statement:

Unload CaseChangerDialog

emnosUSA0017475

CiM Ex. 1054 Page 153

Figure 37-14: VBE sets up an empty subroutine to handle the
Click event for the Cancel Button control.

That's all there is to it. The following is a listing of the entire subroutine:

Private Sub Cance1Button_Cliok()
Unload CaseChangerOialog

End Sub

This subroutine is executed when the Canc.elButton is clicked. It consists of a single
statement that unloads the CaseChangerDialog form.

The next step is to add the code to handle the Click event for the OKButton control.
Follow these steps:

I. Select OKButton from the drop-down list at the top of the module. VBE begins
a new subroutine called O KB u t, ton Cl i ck.

2. Enter the following c:ode (the first and last statements have already been
entered for you by VBE):

PrivaLe Sub O<BuLLori_Click()
Application.ScreenUpdating = False
Exit if a range is not selected
If TypeName(SelecLion) <> "Range" Then ExiL Sub

Upper case
If OptionUpper Then

For Each cell Irl Selection
If Not eel 1. HasFormul a Tt1en

cell .Value= StrOonvCcell .Value. vbUpperCase)
End If
Next cell

End If
LO\,Jer case
If Option~ower Then

For Eacr1 eel l Irl Selection
If Nol eel 1. HasFormul a H:en

emnosUSA0017476

CiM Ex. 1054 Page 154

c e 11 . Val u e St r Con v Cc e 11 . Val u e . vb Lower Case)
l:.nd l f
Next cell

End If
Proper case
If OptionProper Then

For Eacr1 cell h Selection
lf Not cell.Hasl-ormula lhen

cell .Value= StrConvCcell .Value. bProperCase)
End If
Next cell

End If
Unloaa CaseChangerDialog
l:.nd Sub

The macro starts by turning off screen updating (this makes the macro run faster).
Next, the code checks the type of the selection. If a range is not selected, the
procedure ends. The remainder of the subroutine consists of three separate blocks.
Only one block is executed, determined by which OptionButton is selected. The
selected OptionButton has a value of True. Finally, the UserForm is unloaded
(dismissed).

Testing the Dialog Box
To try out the dialog box, follow these steps:

1. Activate Excel.

2. Enter some text into some cells.

3. Select the range with the text.

4. Choose Tools• Macro• Macros (or press AJt+F8).

5. In the Macros dialog box, select ChangeCase from the list of macros and then
click OK. The custom dialog box appears.

6. Make your choice, and click OK.

Try it with a few more selections. Notice that if you dick Cancel, the dialog box is
dismissed and no changes are made.

Making the Macro Available from a Toolbar Button
At this point, everything should be working properly. However, you have no quick
and easy way to execute the macro. A good way to execute this macro would be
from a toolbar button. You can use the following steps:

1. Right-click any toolbar, and select Customize from the shortcut menu.

Excel displays its Customize dialog box.

emnosUSA0017477

CiM Ex. 1054 Page 155

2. Click the Commands tab and then select Macros from the Categories list.

3. Click the Custom Button in the Commands list and drag it to a toolbar.

4. Right-dick the new tool bar button and then select Assign Macro from the
shortcut menu.

5. Choose ChangeCase from the list of macros, and click OK.

You can also change the button image and add a tool tip by using other com
mands that are on the shortcut menu.

6. Click Close to close the Customize dialog box.

After performing the preceding steps, clicking the toolbar button executes the
macro and displays the dialog box.

If the workbook that contains the macro is not open already, it is opened. You may
want to hide the workbook window (select Window• Hide) so that it isn't dis
played. Another option is to create an add-in. See Chapter 40 for specifics.

More on Creating Custom Dialog Boxes
Creating custom dialog boxes c:an make your macros much more versatile. You can
create c:ustom commands that display dialog boxes that look exactly like those that
E.,xcel uses. This section contains some additional information to help you develop
custom dialog boxes that work like those that are built into Ex<.:el.

Adding Accelerator Keys
Dialog boxes should not discriminate against those who want to use the keyboard
rather than a mouse. All of Excel's dialog boxes work equally well with a mouse and
a keyboard, because each control has an associated accelet·ator key. The user can
press Alt plus the accelerator key to work with a specific dialog box control.

Adding accelerator keys to yom· custom dialog boxes is a good idea. You do this in
the Properties window by entering a character for the Ace el era tor property.

Obviously, the letter that you enter as the accelerator key must be a letter that is
contained in the caption uf the object. It can be any letter in the text (not necessar
ily the first letter). You should make sure that an accelerator key is not duplicated
in a dialog box. If you have duplicate accelerator keys, the accelerator key acts on
the first control in the ''tab order" of the dialog box (explained shortly).

Some controls (such as edit boxes) don't have a caption property. You can assign
an accelerator key to a label that describes the control. Pressing the accelerator
key then ac:tivates the next control in the tab order (which should be the edit box).

emnosUSA0017478

CiM Ex. 1054 Page 156

Controlling Tab Order
The previous section refers to a dialog box's tab order. When you're working with a
dialog box, pressing Tab and Shift+ Tab cycles through the dialog box's controls.
When you create a custom dialog box, you should make sure that the tab m·der is
correct. Usually, this means that tabbing should move to the controls in a logical
sequence.

To view or change the tab order in a custom dialog box, use the Properties window.
If the TabStcp property is True, the selected control is selectable when the user
clicks Tab. Change the value of the Tab Index property. These values range from 0
(first in the tab order) to 1 less than the number of controls that have a I abl ndex
property. When you change the Tab Ind.ex, VBE automatically adjusts the Tabindex
of all subsequent controls in the tab order.

Learning More
Mastering custom dialog boxes takes practice. You should closely examine the
dialog boxes that Excel uses; these are examples of weJl-designed dialog boxes.
You can duplicate nearly every dialog box that Excel uses.

The best way to learn more about creating dialog boxes is by using the online Help
system.

Summary
This chapter describes how to create dialog boxes and use them with your VBA
macros. It also covers two VBA functions-Inpu.tBox and Msg8ox-which can
sometimes take the place of a custom dialog box. The chapter includes several
examples to help you understand how to use this feature.

emnosUSA0017479

CiM Ex. 1054 Page 157

emnosUSA0017480

CiM Ex. 1054 Page 158CiM Ex. 1054 Page 158

Using Dialog
Box Controls in
Your Worksheet

Chapter 37 presented an introduction to custom dialog
boxes. If you like the idea of using dialog box controls -

but don't like the idea of creating a dialog box-this chapter
is for you. Lt explains how to enhance your worksheet with a
variety of interactive controls, such as buttons, ListBoxes.
and OptionButtons.

Why Use Controls on a Worksheet?
The main reason to use dialog box controls on a worksheet is to
make it easier for the user to provide input. For example, if you
create a model that uses one or more input cells, you can create
controls to allow the user to select values for the input cells.

Adding controls to a worksheet requires much less effort than
creating a dialog box. In addition, you may not have to create
any macros, because you can link a control to a worksheet
cell. For example, if you insert a CheckBox control on a work
sheet, you can link it to a particular cell. When the CheckBox
is selected, the linked cell displays TRUE. When the CheckBox
is not selected, the linked cell displays FALSE.

Figure 38-1 shows a simple example that uses OptionButtons
and a ScrollBar control,

emnosUSA0017481

CiM Ex. 1054 Page 159

Figure 38-1: This worksheet uses dialog box controls.

Controls That Are Available to You
Adding controls to a worksheet can be a bit confusing, because these controls have
two sources. The controls that you can insert on a worksheet come from two
toolbars:

• Forms toolbar: These controls are insertable objects (and are compatible with
Excel 5 and Excel 95).

• Control Toolbox toolbar: These are ActiveX controls. These controls are a
subset of those that are available for use on UserForms. These controls work
only with Excel 97 and Excel 2000, and are not compatible with Excel 5 and
Excel 95.

To add to the confusion, most of the controls are available on both toolbars. For
example, the Forms toolbar and the Control Toolbox toolbar both have a control
named ListBox. However, these are two entirely different controls. In general, the
ActiveX controls (those on the Control Toolbox toolbar) provide more flexibility,
and you should use those controls. However, if you need to save your workbook
so that it can be opened by Excel S or Excel 95, you should use the controls that
are on the Forms toolbar.

This chapter focuses exclusively on the controls that are available in the Control
Toolbox toolbar, as shown in Figure 38-2.

emnosUSA0017482

CiM Ex. 1054 Page 160

Figure 38-2: The
Control Toolbox toolbar.

A description of the buttons in the Control Toolbox appears in Table 38-1.

Button What It Does

CheckBox Inserts a CheckBox control

CommandButton Inserts a CommandButton control

ListBox Inserts a ListBox control

ToggleButton Inserts a ToggleButton control

Scroll Bar Inserts a Scroll Bar control

Image Inserts an Image control

Using Controls
Adding ActiveX controls in a worksheet is easy. After you add a control, you can
adjust its properties to modify the way that the control looks and works.

emnosUSA0017483

CiM Ex. 1054 Page 161

Adding a Control
To add a control to a worksheet, make sure that the Control Toolbox toolbar is
displayed- and don't confuse it with the Forms tool bar. Then. click and drag the
control that you want to use into the worksheet to create the control. You don't
need to be too concerned about the exact size or position, because you can modify
these properties at any time.

About Design Mode
When you add a control to a worksheet, Excel goes into design mode. In this mode,
you can adjust the properties of any controls on your worksheet, add or edit macros
for the control, or change the control's size or position.

When Excel is in design mode, you can't try out the contrnls. To test the controls,
you must exit design mode by dicking the Exit Desif,'ll Mode button on the Control
Toolbox toolbar.

Adjusting Properties
Every control that you add has various properties that determine how it looks and
behaves. You can adjust these properties only when Excel is in design mode. When
you add a control to a worksheet, K'i:cel enters design mode automatically. If you
need to change a control after you exit design mode, simply click the Design Mode
button on the Control Toolbox toolbar.

To change the properties for a control, select the control and then dick the Proper
ties button on the Control Toolbox toolbar. Excel displays its Properties window, as
shown in Figure 38-~3. The Properties window has two tabs. The Alphabetic tab dis
plays the properties in alphabetical order. The Categorized tab displays the proper
ties by category. Both tabs show the same properties; only the order is different.

emnosUSA0017484

CiM Ex. 1054 Page 162

Figure 38-3: The Properties window lets you adjust the properties of a control.

To change a property, select it in the Properties window and then make the change.
The manner in which you change a property depends on the property. Sorne proper
ties display a drop-<lo,vn list that lets you select from a list of options. Others (such
as Font) provide a button that, when clicked, displays a dialog box. Other proper
ties require you to type the property value. When you change a property, the change
takes effect immediately.

To learn about a particular property, select the property in the Properties window
and press Fl.

Common Properties
Each control has its own unique set of properties. However, many controls share
properties. This section describes some of the properties that are common to all
or many controls, as set forth in Table 38-2.

emnosUSA0017485

CiM Ex. 1054 Page 163

Property

AutoSize

BackStyle

LinkedCell

Value

Width and Height

Name

Description

If True, the control resizes itself automatically, based on the text in
its caption.

The style of the background (either transparent or opaque).

A worksheet cell that contains the current value of a control.

The control's value.

Values that determine the control's width and height.

The name of the control. By default, a control's name is based on the
control type. You can change the name to any valid name. However,
each control's name must be unique on the worksheet.

Linking Controls to Cells
Often, you can use ActiveX controls in a worksheet, without using any macros. Many
of the controls have a Lin KedCe 11 property, which specifies a wmksheet cell that is
"linked" to the control.

For example, you might add a SpinButton control and specify BI as its Linked Ce 11
property. After doing so, cell Bl contains the value of the SpinButton, and dicking
the SpinButton changes the value in cell B 1 (see Figure 38-4). You can, of course,
use the value contained in the linked cell in your formulas.

emnosUSA0017486

CiM Ex. 1054 Page 164

Figure 38-4: The SpinButton's LinkedCell property is
set to cell B 1, enabling the user to change the cell's
value by using the SpinButton control.

Creating Macros for Controls
To create a macro for a control, you must use the Visual Basic Editor (VBE). The
macros are stored in the code module for the sheet that contains the control. Each
contrnl can have a macro to handle any of its events. For example, a Command Button
control can have a macro for its Click event, its Dbl Click event, and various other
events.

The easiest way to access the code module for a control is to double-dick the
control while in design mode. Excel displays the VBE and creates an empty macro
for the control's Cl i ck event. (See Figure 38-5.)

The control's name appears in the upper-left portion of the code window, and the
event appears in the upper-right area .. If you want to create a macro that executes
when a different event occurs, select the event from the list in the upper-right area.

The following steps demonstrate how to insert a ConunandButton and create a sim
ple macro that displays a message when the button is clicked:

I. Make sure that the Control Toolbox toolbar is displayed.

2. Click the Command Button tool in the Control Toolbox.

3. Click and drag in the worksheet to create the button.

4. Double-dick the button. The VEE window is activated, and an empty subrou
tine is created.

5. Enter the following VBA statement before the End Sub statement:

MsgBox "You clicked on the command button."

6. Press Alt+Fl 1 to return to Excel.

7. Adjust any other properties for the CornmandButton.

8. Click the Exit Design Mode button in the Control Toolbox tool bar.

emnosUSA0017487

CiM Ex. 1054 Page 165

Figure 38-5: Double-clicking a control in design mode activates the Visual Basic Editor.

After performing the preceding steps, click the CommandButton to display the
message box that is shown in Figure 38-6.

Figure 38-6: This message box is displayed by a simple macro.

When you use a CommandButton on a worksheet, setting its TakeFocus
OnCl i ck property to Fa l s € is recommended. Otherwise, you may run into prob
lems if the macro tries to select cells on the worksheet If the Command Button has
the focus, the cells can't be selected!

emnosUSA0017488

CiM Ex. 1054 Page 166

The Controls Toolbox Controls
The sections that follow describe the ActiveX controls that are available on the
Controls Toolbox toolbar.

The companion CD-ROM contains a file that includes examples of all the ActiveX
controls.

CheckBox Control
A CheckBox control is useful fm· getting a binary choice: yes or no, true or false, on
or off, and so on. Figure :~8-7 shows some examples of CheckBox controls. Each of
these controls displays its value in a cell (in Al:A4).

Figure 38-7: CheckBox controls on a worksheet

The following is a description of the most useful properties of a CheckBox control:

• Accelerator: A letter that enables the user to change the value of the control
by using the keyboard. For example, if the accelerator is A pressing Alt+A
changes the value of the CheckBox control.

• LinkedCell: The worksheet cell that's linked to the CheckBox. The cell
displays TRUE if the contrnl is checked or FALSE if the control is not checked.

ComboBox Control
A ComboBox control is similar to a ListBox control. A Combo Box, however, is a drop
down box, and it displays only one item at a time. Another difference is that the user
may be allowed to enter a value that does not appear in the list of items.

Figure 38-8 shows a few ComboBox controls. One of these controls uses two columns
for its ListFill range.

emnosUSA0017489

CiM Ex. 1054 Page 167

Figure 38-8: ComboBox controls.

The following is a description of the most useful properties of a ComboBox control:

• BoundColumn: If the list contains multiple columns, this property determines
which column contains the returned value.

• ColumnCount: The number of columns in the list.

• LinkedCell: The worksheet cell that displays the selected item.

• ListFillRauge: The worksheet range that contains the list items.

• ListRows: The number of items to display when the list drops dmvn.

• ListStyle: Determines the appearance of the list items.

• MultiSelect: Detet·mines whether the user can select multiple items from
the list.

• Style: Determines whether the control acts like a drop-down list or a
Combo Box. A drop-down list doesn't allow the user to enter a new value.

If you use a multiselect ListBox, you cannot specify a LinkedCell; you need to write
a macro to determine which items are selected.

CommandButton Control
A Command Button is useless if you don't provide a macro to execute when the but
ton is dicked. Figure 38-9 shows a worksheet that uses several CommandButtons.
One of these CommandButtons uses a picture.

emnosUSA0017490

CiM Ex. 1054 Page 168

Figure 38-9: CommandButtons on a worksheet

When a button is clicked, it executes a macro with a name that is made up of
the ComrnandButton's name, an underscore, and the word Clic!?. For example, if
a CornrnandButton is named MyButton, clicking it executes the macro named
MyButton_ Click.

Image Control
An Image control is used to display an image that is contained in a file. This control
offers no significant advantages over using standard imported images (as described
in Chapter 14).

Label Control
A Label control simply displays text. This is not a useful control for use on work
sheets, and a standard TextBox AutoShape gives you more versatility.

ListBox Controls
The ListBox control presents a list of items, and the user can select an item (or mul
tiple items). Figure 38-10 shows a worksheet with several ListBox controls. As you
can see, you have a great deal of control over the appearance of ListBox controls.
One of the ListBoxes uses two columns as its ListFill range.

emnosUSA0017491

CiM Ex. 1054 Page 169

Figure 38-10: ListBox controls on a worksheet.

You can specify a range that holds the ListBox items, and this range can consist of
multiple columns.

The following is a description of the most useful properties of a ListBox control:

• Bound Column: If the list contains multiple columns, this property determines
which column contains the returned value.

• ColumnCount: The number of columns in the list.

• IntegralHeight: This is Trc.1e if the height of the ListBox adjusts automatically
to display full lines of texi: when the list is scrolled vertically. If False, the
ListBox may display partial lines of text when it is scrolled vertically.

• LinkedCell: The worksheet cell that displays the selected item.

• ListFillRauge: The worksheet range that contains the list items.

• ListStyle: Determines the appearance of the list items.

• MultiSelect: Determines whether the user can select multiple items from
the list.

If you use a multiselect ListBox, you cannot specify a LinkedCell; you need to write
a macro to determine which items are selected.

OptionButton Controls
OptionButtons are useful when the user needs to select from a small number of
items. OptionButtons are always used in groups of at least two. Figure 38-11
shows two sets of Option Buttons. One set uses graphic images (set with the
Picture property).

emnosUSA0017492

CiM Ex. 1054 Page 170

Figure 38-11: Two sets of Option Buttons.

The following is a description of the most useful properties of an OptionButton
control:

• Accelerator: A letter that lets the user select the option by using the keyboard.
For example, if the accelerator for an OptionButton is C, pressing Alt+C selects
the control.

• GroupName: A name that identifies an OptionButton as being associated with
other OptionButtons with the same Gr' o LJ. p Na me property.

• LinkedCell: The worksheet cell that's linked to the OptionButton. The cell
displays TRUE if the control is selected or FALSE if the control is not selected.

If your worksheet contains more than one set of OptionButtons, you must change
the Groupr~arne property for all OptionButtons in a particular set Otheiwise, all
OptionButtons become part of the same set.

ScrollBar Control
The Scro11Bar control is similar to a SpinButton control (discussed next). The
difference is that the user can drag the Scrol1Bar's button to change the control's
value in larger increments. Figure 38-12 shows a worksheet with three Scrol1Bar
controls. These ScrollBars are used to change the color in the rectangle objects.
The value of the ScrollBars determines the red, green, or blue component of the
rectangle's color. This example uses a few simple macros to change the colors.

emnosUSA0017493

CiM Ex. 1054 Page 171

Figure 38-12: This worksheet has several Scro11Bar controls.

The following is a description of the most useful prnperties of a ScrollBar control:

• Value: The current value of the control.

• Miu: The minimum value for the control.

• Max: The maximum value for the contt-ol.

• LiukedCell: The worksheet cell that displays the value of the control.

• Small Change: The amount that the control's value is changed by a dick.

• LargeCltange: The amount that the control's value is changed by dicking either
side of the button.

The ScrollBar control is most useful for selecting a value that e.xtends across a wide
range of possible values.

SpinButton Control
The SpinButton control lets the user select a value by clicking the control, which has
two arrows (one to increase the value and the other to decrease the value). Figure
38-13 shows a worksheet that uses several SpinButton controls. Each control is linked
to the cell to the right. As you can see. a SpinButton can display either horizontally or
vertically.

The following is a description of the most useful properties of a SpinButton control:

• Value: The current value of the control.

• Min: The minimum value of the control.

• Max: The maximum value of the control.

• LinkedCell: The worksheet cell that displays the value of the control.

• Small Change: The amount that the control's value is changed by a dick. Usu
ally, this property is set to 1, but you can make it any value.

emnosUSA0017494

CiM Ex. 1054 Page 172

Figure 38-13: SpinButton controls in a worksheet.

If you use a linked cell for a SpinButton, you need to understand that the worksheet
is recalculated every time the value of the control is changed. Therefore, if the user
changes the value from Oto 12, the worksheet gets calculated 12 times. If your work
sheet takes a long time to calculate, you may want to reconsider using this control.

TextBox Controls
Ou the surface, a TextBox control may not seem useful. After all, it simply contains
text-you can usually use worksheet cells to get text input. In fact, TextBox controls
are useful not so much for input control but for output control. Because a TextBox
can have ScrollBars, you can use a TextBox to display a great deal of information in
a small area.

Figure 38-14 shows an example of a TextBox that is used to provide help information.
The user can use the ScrollBar to read the text. The advantage is that the text uses
only a small amount of screen space. The example in this figure uses three controls:
the TextBox, a Label control, and a disabled CommandButton control (which pro
vides a backdrop for the other two controls).

The following is a description of the most useful properties of a TextBox control:

• AutoSize: Determines whether the control adjusts its size automatically,
depending on the amount of text.

• IntegraJHeight: If True, the height of the TextBox adjusts automatically to dis
play full lines of text when the list is scrolled vertically. If False, the ListBox
may display partial lines of text when it is scrolled vertically.

• Maxlength: The maximum number of characters allowed in the TextBox.
If 0, no limit exists on the number of characters.

• Mulliliue: If I rue, the TextBox can display more than one line of text.

• TextAlign: Determines how the text is aligned in the TextBox.

emnosUSA0017495

CiM Ex. 1054 Page 173

• WordWrap: Determines whether the control allows word wrap.

• Scrol1Bars: Determines the type of ScrollBars for the control: horizontal, verti
cal, both, or none.

Figure 38-14: This worksheet uses a TextBox to display
help information.

ToggleButton Control
A ToggleButton control has two states: on or off. Clicking the button toggles
between these two states, and the button changes its appearance. Its value is
either Tr u € (pressed) or Fa l s e (not pressed). You can often use a ToggleButton
in place of a CheckBox control.

Summary
This chapter describes how to add ActiveX controls to a worksheet and how to use
these controls to enable users easily to provide data that's used in a worksheet.

emnosUSA0017496

CiM Ex. 1054 Page 174

VBA
Programming
Examples

My philosophy about learning to write Excel macros
places heavy emphasis on examples. I've found that

a well-thought-out example often communicates a concept
much better than a lengthy description of the underlying the
ory. In this book, I chose to avoid a painstaking description
of every nuance of VBA. I take this approach for two reasons.
First, space limitations ptT1hibit such a discussion. But more
to the point, the VBA language is described very well in
Excel's online Help system.

This chapter consists of several examples that demonstrate
common VBA techniques. You may be able to use some of the
examples directly, but in most cases, you must adapt them to
your own needs. These example.s are organized into the follow
ing categories:

• Working with ranges

• Changing Excel's settings

• Working with graphic objects

• Working with charts

• Leaming ways to speed your VBA code

All subroutines and functions in this chapter can be found in a
workbook that's included on the companion CD-ROM.

Working with Ranges
Most of what you do in VBA probably involves worksheet
ranges. When you work with range objects, keep the follow
ing points in mind:

emnosUSA0017497

CiM Ex. 1054 Page 175

• Your VBA code doesn't need to select a range to do something with the range.

• If your code does select a range, its worksheet must be active.

• The macro recorder doesn't always generate the most efficient code. Often,
you can use the recorder to create your macro and then edit the code to make
it more efficient.

• Using named ranges in your VBA code is recommended. For example, a 1·efer
ence such as Range ("Total'') is better than Range ("045"). In the latter case,
you need to modify the macro if you add a row above row 45.

• When you record macros that select ranges, pay close attention to "relative
vs. absolute" recording mode. The recording mode that you choose can
drastically affect the way the macro operates.

• If you create a macro that loops through each cell in the current range selec
tion, be aware that the user can select entire columns or rows. In most cases,
you don't want to loop through every cell in the selection. You need to create
a subset of the selection that consists only of nonblank cells.

• Be aware that Excel allows multiple selections. For example, you can select a
range, press Ctrl, and then select another range. You can test for this in your
macro and take appropriate actions.

The examples in the following sections demonstrate these points.

Copying a Range
Copying a range is a frequent activity in macros. When you turn on the macro
recorder (using absolute recording mode) and copy a range from Al:AS to Bl:BS,
you get a VBA macro like this;

Sub CopyRange()
Range("Al:A5").Select
SelEction.Copy
RangeC"Bl"l.Select
ActiveSheet.Paste
Application.CutCooyMode

En,j Sub
False

This macro works, but it's not the most efficient way to copy a range. You can
accomplish exactly the same result with the following one-line macro:

Sub CopyRange2()
Range("Al:A5").Copy Range(''Bl")

End Sub

This takes advantage of the fact that the Copy method can use an argument that
specifies the destination. Information such as this is available in the online Help
system.

emnosUSA0017498

CiM Ex. 1054 Page 176

The example demonstrates that the macro recorder doesn't always generate the
most efficient code. As you see, you don't have to select an object to work with it.
Note that Macro2 doesn't select a range; therefore, the active cell doesn't change
when this macro is executed.

Copying a Variable-Size Range
Often, you want to copy a range of cells in which the exact row and column chmen
sions are unknown.

Figure 39-1 shows a range on a worksheet. This range consists of a number of rows,
and the number of rows can change daily. Because the exact range address is
unknown at any given time, writing a macro to copy the rnnge can be challenging.

Figure 39-1: This range can consist of any number of rows.

The macro that follows demonstrates how to copy this range from Sheetl to Sheet2
(beginning at cell Al). It uses the Cu rrentRegi on property, which returns a Range
object that corresponds to the active block of cells. This is equivalent to choosing
Edit• Go To, clicking the Special button, and then selecting the Current Region
option.

Sub CopyCurrentRegion(l
RangeC"Al").CurrentRegion.Copy
S11eets("Sl1eet2"l .Selec::.
Range("Al").Select
ActiveSheet.Paste
Sl1eets ("Sr:eetl" l. Select
Application.CutCopyMode False

End Sub

emnosUSA0017499

CiM Ex. 1054 Page 177

Seleding to the End of a Row or Column
You probably are in the habit of using key combinations, such as Ctrl+Shift+right
arrow key and Ctrl+Shift+down-arrow key, to select from the active cell to the end of
a row or column. When you record these actions in Excel (using relative recording
mode), you'l] find that the resulting code works as you would expect it to.

In previous versions of Excel, the macro recorder always recorded absolute cell
addresses when making these types of selections. This problem has been fixed in
Excel 2000.

The following VBA subroutine selects the range that begins at the active cell and
extends down to the last cell in the column (or to the first empty cell, whichever
comes first). When the range is selected, you can do whatever you want with it -
copy it, move it, format it, and so on.

Sub Sel ecLDown()
Range(Act i veCel 1 . Act i veCel 1 . End (xl Dov.m)). Select

End Sub

This example uses the End. method of the Range object, which returns a Range
object. The End method takes one argument, which can be any of the following
constants: x l Up, xl Down, xl ~ o Lef L, or xl ToRi gh L.

Seleding a Row or Column
The macro that follows demonstrates how to select the column of the active cell. It
uses the Entire Co 1 umn property, which returns a range that consists of a column.

Sub Sel ectCol c1mn ()
.Acti veCel l . :.nt i reCol umn. Select

End Sub

As you may suspect, an Entire Row property also is available, which returns a range
that consists of a row.

If you want to perform an operation on all cells in the selected colunm, you don't
need to select the column. For example, the following subroutine makes all cells
bold in the row that contains the active cell:

Sub MakeRowBold()
Acti veCel l. Ent i reR01r1. Font.Bold

End Sub
True

emnosUSA0017500

CiM Ex. 1054 Page 178

Moving a Range
Moving a range consists of cutting it to the Clipboard and then pasting it to
another area. If you record your actions while performing a move operation,
the macro recorder generates code as follows:

Sub MoveRange()
Range("Al :C6"). Select
Selecvion.Cul.
Range("AlO").Select
ActiveSheet.Paste

End Sub

As demonstrated with copying earlier in this chapter, this is not the most efficient
way to move a range of cells. In fact, you can do it with a single VBA statement,
as follows:

Sub MoveRanqe2()
Range("Al:t6").C~t Range("AlO")

End Sub

This statement takes advantage of the fact that the Cu L method can use an argument
that specifies the destination.

Looping Through a Range Efficiently
Many macros perform an operation on each cell in a range, or they may perform
selective actions based on the content of each cell. These operations usually
involve a For - Next loop that prncesses each cell in the range.

The following example demonstrates how to loop through all the cells in a range.
In this case, the range is the current selection. In this example, Ce 11 is a variable
name that refers to the cell being processed. Within the r or-Next loop, the single
statement evaluates the cell and changes its font color if the cell value is negative
(vbRed is a built-in constant that represents the color red).

Sub ProcessCells()
For Each Cell In Sel ec:.i on
If Cell. Value < 0 Trieq Cell. Font.Col or
Next Cell

End Sub

vb Red

The pt·eceding example works, but what if the selection consists of an entire col
umn or an entire range? This is not uncommon, because Excel lets you perform
operations on entire columns or rows. But in this case, the macro seems to take
forever, because it loops through each cell- even those that are blank. What's
needed is a ·way to process only the nonblank cells.

emnosUSA0017501

CiM Ex. 1054 Page 179

This can be accomplished by using the Sel ectSpeci al method. In the following
example, the Se l ectSpec i al method is used to create two new objects: the subset
of the selection that consists of cells with constants, and the subset of the selection
that consists of cel1s with formulas. Each of these subsets is processed, with the net
effect of skipping all blank cells.

Sub SkipBlanks()
• Ignore errors

On Error Resume NexL

• Process the constants
Set CcnstantCells = Selection.SpecialCells(xlConstants, 23)
For Each eel 1 In ConstantCel ls

If cell.Value> 0 Then cell.Font.Color= vbRed
NexL eel l

• Process the formulas
SeL FormulaCells = SelecLion.SpecialCellsCxlFormulas, 23)
For Each eel l In Formul aCel 1 s

If cell. Value > 0 Then eel l. Font.Co~ or = vbRed
Next cell

End Sub

The Ski pBl an ks subroutine works fast, regardless of what is selected. For example,
you can select the range, select all columns in the range, select all 1·ows in the range,
or even select the entire worksheet. In all of these cases, only the cells that contain
constants or values are pt-c1cessed. This is a vast improvement over the
ProcessCel ls subroutine presented earlier.

Notice that the following statement is used in the subroutine:

On Error Resume Next

This statement causes Excel to ignore any en-ors that occur and simply to process
the next statement. This is necessary because the S pe ci a: Ce 11 s method produces
an error if no cells qualify. Normal error checking is resumed when the subroutine
ends. To tell Excel explicitly to return to normal error-checking mode, use the
following statement:

On Error GoTo 0

Prompting for a Cell Value
As discussed in Chapter :H, you can take advantage of VBA.'s Inpu LBcx function to
solicit a value from the user. Figure :39-2 shows ;;m example.

You can assign this value to a variable and use it in your subroutine. Often, however,
you want to place the value into a cell. The following subroutine demonstrates how
to ask the user for a value and place it into cell Al of the active worksheet, using only
one statement:

emnosUSA0017502

CiM Ex. 1054 Page 180

Sub Get.Value()
Range "Al").Value

End Sub
lnputBox("~nter the value for cell Al")

Figure 39-2: Using VBMs lnputBox function to get a value from the user.

Determining the Type of Selection
If your macro is designed to work with a range selection, you need to determine
that a range is actually selected. Otherwise, the macro most likely fails. The follow
ing subroutine identifies the type of object that is currently selected:

Sub SelectionType()
MsgBox TypeName(Selection)

End Sub

If a Range object is selected, the MsgBox displays Range. If your macro is designed
to work only with ranges, you can use an I-= statement to ensure that a range is
actually selected. The following is an example that beeps, displays a message, and
exits the subroutine if the current selection is not a Range object:

Sub CheckSelection()
If TypeName(Selection) <> "Range" Then

Beep
MsgBox "Select a range."
Exit Sub

Encl If
' ... [Other statements go here]
End Sub

emnosUSA0017503

CiM Ex. 1054 Page 181

Another way to approach this is to define a custom function that returns True if
the selection is a ~ange object, and False otherwise. The following function does
just that:

Function IsRange(sel) As Boolean
IsRange = False
If TypeName(sel) = "Range" Then IsRange

End Function
True

Jf you enter the I sRange function in your module, you can rewrite the
CheckSel ect ion subroutine as follows:

Sub CheckSelection()
If IsRange(Selection) Then

[OLher sLaLemenLs go here]
Else
Beep
MsgBox "Select a range."
Exit Sub
End If

End Sub

Identifying a Multiple Selection
As you know, Excel enables you to make a multiple selection by pressing Ctrl
while you select objects or ranges. This can cause problems with some macros;
for example, you can't copy a multiple selection that consists of nonadjacent
ranges. The following macro demonstrates how to determine whether the user
has made a multiple selection:

Sub MultipleSelection(l
lf Selection.Areas.Count> 1 I hen
MsgBox "Multiple selec~ions not allowed."
Exit Sub
End If

· ... [Other statements go here]
End Sub

This example uses the A.re as method, which returns a collection of all objects in
the selection. The Count propei·ty returns the number of objects that are in the
collection.

The following is a VBA function that returns True if the selection is a multiple
selection:

Function IsMultiple(sel) As Boolean
IsMul pl e = False
If Selection.Areas.Count> 1 Then IsMultiple

l:.nd runction
True

emnosUSA0017504

CiM Ex. 1054 Page 182

Changing Excel's Settings
Some of the most useful macros are simple subroutines that change one or more
of Excel's settings. For example, it takes quite a few actions simply to change the
Recalculation mode from automatic to manual.

This section contains two examples that demonstrate how to change settings in
Excel. These examples can be generalized to other operations.

Boolean Settings
A Boolean setting is one that is either on or off. For example, you may want to cre
ate a macro that turns on and off the row and column headings. If you record your
actions while you access the Options dialog box, you find that Excel generates the
following code if you tum off the headings:

ActiveWindow.JisplayHeadings = False

It generates the following code if you turn on the headings:

ActiveWindow.JisplayHeadings = True

This may lead you to suspect that the heading display requires two macros: one to
turn on the headings and one to turn them off. Actually, this isn't true. The follow
ing subroutine uses the Not operator effectively to toggle the heading display from
True to False and from False to True:

Sub ToggleHeadings()
If TypeName(ActiveSheeL) <> "Worksheet" Then Exit Sub
ActiveWindow.DisplayHeadings = Not

ActiveWindow.JisplayHeadings
End Sub

The first statement ensures that the active sheet is a worksheet; otherwise, an
error occurs (chart sheets don't have row and column headers). This technique
can be used with any other settings that take on Boolean (True or F c 1 s e) values.
For example, you can create macros to toggle sheet tab display, gridlines, and so
on. The best way to find out which properties control these items is to turn on the
macro recorder while you change them. Then, e.'i:amine the VBA code.

Non-Boolean Settings
For non-Boolean settings, you can use the following Select Case structure. This
example toggles the Cal cul ati on mode and displays a message indicating the
cunent mode:

emnosUSA0017505

CiM Ex. 1054 Page 183

Sub eCalcMode()
Sel Case Application.Calculation

Case xlManual
Application.Calculation= xlAutomatic
MsgBox "Automatic Calculation Mode"

Case xlAutomatic
Application.Calculation= xlManual
MsgBox "Manual Calculation Mode"

Encl Select
End Sub

Working with Graphic Objects (Shapes)
VBA subroutines can work with any type of Excel object, including graphic objects
that are embedded on a worksheet's draw layer. This section provides a few exam
ples of using VBA to manipulate graphic objects.

Creating a Text Box to Match a Range
The following example creates a text box that is positioned precisely over the
selected range of cells. This is useful if you want to make a text box that covers
up a range of data.

Sub CreateTextBox(l
If TypeName(Selection) <> "Range" Then Exit Sub
SeL RangeSelecLion = SelecLion
Get coordinates of range selection
SelLeft = Selection.Left
SelTop = Selection.Top
SelWidth = Selection.Width
SelHeight = Selection.Height
CreaLe a LexL box

ActiveSheet.Shapes.AddTextbox(msoTextOrientationHorizontal,
SellefL, SelTop, Sell4id.Lh, SelHeighL).Select;

RangeSelection.Select
End Sub

The macro first checks to make sure that a range is selected. If not, the subroutine
is exited with no further action. If a t·ange is selected, the coordinates (Left, Top,
\4 id U1, and He i g h U are assigned to four variables. These variables are then used
as the arguments for the AddTextbox method of the St1apes collection.

The following is a more sophisticated version of this macro that works with a multi
ple selection of cells. The subroutine creates a text box for each area in the multiple
selection. It uses a ccor-Next loop to cycle through each area in the range selection.
If the range has only one area (not a multiple selection), the For-Next loop is acti
vated only one time.

emnosUSA0017506

CiM Ex. 1054 Page 184

Sub CreateTextBox2()
lf lypeName(Selection) <> "Range" lhen ~xit Sub
Set RangeSelection = Selection
For Each Part In Selec:ion.Areas

Get coordinates of range selection
SelLeft = Part.Left
SelTop = Part.Top
SelWidth = Part.Width
SelHeight = Part.Height
Create a text box

ActiveSheet.Shapes.AddTextbox(msoTextOrientationHorizontal,

Selleft, Sellop, Sel\~idth, SelHeight).Selecs
Next Part
RangeSelection.Select

End Sub

Drawing Attention to a Range
The example in this section is a macro that draws an AutoShape arnund the selected
range. Figure 39-3 shows an example.

Figure 39-3: A macro draws the AutoShape around
a selected range of cells.

Sub AddExplosion()
If TypeName(SelecLion) <> "Range" Then ExiL Sub

SelLeft = Selection.Left - (Selection.vJidth * 0.2)
SelTop = Selection.Top - (Selection.Height* 0.5)
SelWidth =Selection.Width+ (Selection.Width* 0.4)
SelHeight =Selection.Height+ Selection.Height
ActiveSheet.Shapes.AddShape (msoShaoeExolosionl,

Selleft, SelTop, SelWidth, SelHelght).Select
Selection.ShapeRange.Fill .\lisible = msoFalse

Encl Sub

emnosUSA0017507

CiM Ex. 1054 Page 185

The macro begins by determining the location and size of the shape, using the
selected range. The shape needs to be larger than the selected range and must be
offset to the left and to the top. Therefore, the macro performs some calculations to
determine the left, top, width, and height of the shape. In this example, the shape's
height is twice as large as the height of the selection and 40 pe1·cent wider than the
width of the selection. These calculations were determined by trial and error. In
most cases, the shape is drawn in such a way that the contents of the underlying
cells are completely visible. In other cases, slight adjustments are required.

After the parameters are calculated, the AutoShape is added to the active
sheet. The AutoShape that's drawn by the macro is identified by a constant
(ms0Sl1apel:.xpl os-i on 1). The final statement makes the shape transparent.

Working with Charts
Manipulating charts with VBA can be confusing, mainly because of the large
number of objects involved. To get a feel for this, turn on the macro recorder,
create a chart, and perform some routine chart editing. You may be surprised by
the amount of code that's generated.

After you understand the objects in a chart, however, you can create some useful
macros. This section presents a few macros that deal with charts. When you write
macros that manipulate charts, you need to understand some terminology. An
embedded chart on a worksheet is a Ct1artObject object. Before you can do any
thing to a Ct1a rtObj ect, you must activate it. The following statement activates
the Cr1artObj ect named Chart 1.

ActiveSheet.CiartObjects("Chart 1·J.Activate

After you activate the Cha rtObj ect, you can refer to it in your VBA code as the
Act -j v e Ch art. If the chart is on a separate chart sheet, it becomes the active chart
as soon as the chart sheet is activated.

Modifying the Chart Type
The following example changes the chart type of every embedded chart on the
active sheet. It makes each chart an area chart by adjusting the I ype property of
the Act i veCha rt object. A built-in constant, xl Are a, represents an area chart.

Sub ChartType()
For Each cht In ActiveSheet.ChartObjects

chL.AcLivaL.e
ActiveChart.Type - xlArea

Next ct1t
End Sub

emnosUSA0017508

CiM Ex. 1054 Page 186

The preceding example uses a For-1\ext loop to cycle through all the Cl1artObj ect
objects on the active sheet. Within the loop, the chart is activated and then the
chart type is assigned a new value.

The following macrn performs the same function but works on all chart sheets in
the active workbook:

Sub Chartlype2()
For Each cht In ThisWorkbook.Charts

ct1t.Activate
ActiveChart. lype = xlArea

Next dit
End Sub

Modifying Properties
The following example changes the legend font for all charts that are on the active
sheet. It uses a For-Next loop to process all Cha rtObj ect objects, and uses the On
Error statement to ignore the error that occurs if a chart does not have a legend.

Sub LegendMod()
On Error Resume Next
For Each chL In AcLiveSheeL.CharLObjecLs

cht.Activate
With ActiveChart.Legend.Font

. Na me = "Ari al "

.FontStyle = "Bold"

.Size= 8
End. With

Next cht
End Sub

Applying Chart Formatting
This example applies several different formatting types to the active chart. A chart
must be activated before executing this macro. You activate an embeclclecl chart by
selecting it. Activate a chart on a chart sheet by activating the chart sheet.

Sub ChartMods()
On Error Resume Next
',Ji Lh AcLiveCharL

.Type= xlArea

.Chart.Area.Font.Name= "Arial•

.CharLArea.FonL.FonLSLyle = ~Regular"

.ChartArea.Font.Size = 9

. Pl otArea. Interior. Col or Index = xl \ione

.Axes(xlValue).Ticklabels.FonL.Bold = Tnue

.Axes(xlCategory).Ticklabels.Font.Bold = True

.Legend.Position= x1Bottom
End vJi Lh

End Sub

emnosUSA0017509

CiM Ex. 1054 Page 187

1 created this macro by recording my actions as I formatted a chart. Then, I deaned
up the recorded code by removing irrelevant lines.

VBA Speed Tips
VBA is fast, but it's often not fast enough. This section presents some prograrmning
examples that you can use to help speed your macros.

Turning Off Screen Updating
You've probably noticed that when you execute a macro, you can watch everything
that occurs in the macro. Sometimes this is instructive, but after you get the macro
working properly, it can be annoying and slow things considerably.

Fortunately, a way exists to disable the normal screen updating that occurs when
you execute a macro. Insert the following statement to tum off screen updating:

Application.ScreenUpdating = False

If, at any point during the macro, you want the user to see the results of the macro,
use the following statement to turn back on screen updating:

Application.ScreenUpdating = True

Preventing Alert Messages
One of the benefits of using a macro is that you can perform a series of actions
automatically. You can start a macro and then get a cup of coffee while Excel does
its thing. Some operations cause Excel to display messages that must be attended
to, however. For example, if your macro deletes a sheet, you see the message that is
shov,rn in the dialog box in Figure '.j9-4. These types of messages mean that you
can't exet:ute your macro unattended.

Figure 39-4: You can instruct Excel not
to display these types of alerts while a
macro is running.

emnosUSA0017510

CiM Ex. 1054 Page 188

To avoid these alert messages, insert the following VBA statement:

Application.DisplayAlerts = False

When the subroutine ends, the D" splay Ale rt s property is automatically reset to
True (its normal state).

Simplifying Object References
As you probably have discovered, references to objects can get very lengthy
especially if your code refers to an object that's not on the active sheet or in the
active workbook. For example, a fully qualified reference to a Range object may
look like this:

Wcrkbooks("MyBook").Worksheets("Sheetl").Range("IrtRate")

Jf your macro uses this range frequently, you may want to create an object variable
by using the Se L command. For example, to assign this Range object to an object
variable named Rate, use the following statement:

Set Rate= Workbooks("MyBook").WorKsheets("Sheetlq).
Range("IntRate")

After this variable is defined, you can use the variable Rate instead of the lengthy
reference.

Besides simplifying your coding, using object variables also speeds your macros
quite a bit. I've seen some macros execute twice as fast after creating object
variables.

Declaring Variable Types
Usually, you don't have to worry about the type of data that's assigned to a
variable. E,'{cel handles alJ these details behind the scenes. For example, if you have
a variable named \1y Var, you can assign a number or any type to it. You can even
assign a text string to it later in the procedure.

But if you want your procedures to execute as fast as possible, you should tell Excel
in advance what type of data is going be assigned to each of your variables. This is
known as declaring a variables type.

Table 39-1 lists all the data types that are supported by VBA. This table also lists the
number of bytes that each type uses and the approximate range of possible values.

emnosUSA0017511

CiM Ex. 1054 Page 189

Data Type Bytes Used

Boolean 2

Double (double-precision 8
floating-point) 1

Decimal 14

String (fixed-length) Length of
string

Variant (with characters) 22 + string
length

Approximate Range of Values

True or False

-1. 7E308 to -4.9E-324 for negative values;
4.9E-324 to .7E308 for positive values

+/-7.9E28 with no decimal point

1 to approximately 65,400

Same range as for variable-length String

If you don't declare a variable, Excel uses the Variant data type. In general, the
best technique is to use the data type that uses the smallest number of bytes yet
can still handle all the data assigned to it. When VBA works with data, execution
speed is a function of the number of bytes that VBA has at its disposal. In other
words, the fewer bytes that are used by data, the faster VBA can access and manip
ulate the data.

To dedare a variable, use the o~ m statement before you use the variable for the first
time. For example, to declare the variable Uni ts as an integer, use the following
statement:

Dim Units as Integer

emnosUSA0017512

CiM Ex. 1054 Page 190

To declare the variable LI s er Na me as a string, use the following statement:

Dim UserName as String

If you know that UserNarne can never e.,xceed 20 characters, you can declare it as a
fixed-length string, as follows:

Dim UserName as String* 20

If you declare a variable within a procedure, the declaration is valid only within that
procedure. If you declare a variable outside of any pmcedures (but before the first
procedure), the variable is valid in all procedures in the module.

If you use an object variable (as described previously), you can declare the variable
as an object data type. The following is an example:

Dim Rate as Ranqe
Set Rate= WorkSooksC"MyBook").Worksheets("Sheetl").
Range("IntRate")

To force yourself to declare all the variables that you use, insert the following state
ment at the top of your module:

Dpt i on Exp l i c i t

If you use this statement, Excel displays an error message if it encounters a variable
that hasn't been declared.

Summary
This chapter presents several examples of VBA code that work with ranges, Excel's
settings, graphic objects, and charts. It also discusses techniques that you can use
to make your VBA macros run faster.

emnosUSA0017513

CiM Ex. 1054 Page 191

emnosUSA0017514

CiM Ex. 1054 Page 192CiM Ex. 1054 Page 192

Creating Custom
Excel Add-Ins

For developers, one of the most useful features in Excel is
the capability to create add-ins. This chapter discusses

this concept and provides a practical e,'{ample of creating an
add-in.

What Is an Add-In?
Generally speaking, a spreadsheet add-in is something that's
added to the spreadsheet to give it additional functionality.
Excel 2000 has several add-ins, including the Analysis
ToolPak, AutoSave, and Solver. Some add-ins (such as the
Analysis ToolPak, discussed in Chapter 28) provide new
worksheet functions that can be used in formulas. Usually,
the new features blend in well with the original interface,
so they appear to be part of the program.

Excel's approach to add-ins is quite powerful, because any
knowledgeable L'<cel user can create add-ins from XL5 work
books. An Excel add-in is basically a different form of an XLS
workbook file. Any XLS file can be converted into an add-in,
but not eve1·y workbook is a good candidate for an add-in.
Add-ins are always hidden, so you can't display worksheets
or chart sheets that are contained in an add-in. But, you can
access its VBA subroutines and functions and display dialog
boxes that are contained on dialog sheets.

The following are some typical uses for Excel add-ins:

• To store one or more custom worksheet functions.
When the add-in is loaded, the functions can be used like
any built-in worksheet function.

• To store Excel utilities. VBA is ideal for creating general
purpose utilities that extend the power of Excel. The
Power Utility Pak that I created is an example of such
a function.

emnosUSA0017515

CiM Ex. 1054 Page 193

• To store p1·opriefary macros. If you don't want end users to see (or modify)
your macros, store the macros in an add-in. The macros can be used, but they
can't be viewed or changed.

As previously noted. Excel ships with several useful add-ins (see the sidebar "Add-Ins
That Are Included with Excel"), and you can acquire other add-ins from third-party
vendors or the Internet. In addition, £.'{eel includes the tools that enable you to create
your own add-ins. This process is explained later in the chapter, but first, some back
ground is required.

Working with Add-Ins
The best way to work with add-ins is to use Excel's add-in manage1·, which you access
by selecting Tools• Add-Ins. This command displays the Add-Ins dialog box, shown
in Figure 40-1. The list box contains all the add-ins that E..xcel knows about. Those that
are checked are cw·rently open. You can open and dose add-ins from this dialog box
by selecting or deselecting the check boxes.

Figure 40-1: The Add-Ins dialog box.

Most add-in files can also be opened by selecting File• Open. You'll find that after
an add-in is opened, however, you can't choose File• Close to dose it. The only
way to remove the add-in is to exit and restart Excel or to write a macro to dose
the add-in.

When an add-in is opened, you may or may not notice anything diffei·ent. In nearly
every case, however, some change is made to the menu-either a new menu or
one or more new menu items on an existing menu. For example, when you open
the Analysis ToolPak add-in, a new menu item appears on the Tools menu; Data
Analysis. When you open my Power Utility Pak add-in, you get a new Utilities
menu, which is located between the Data and Window menus.

emnosUSA0017516

CiM Ex. 1054 Page 194

emnosUSA0017517

CiM Ex. 1054 Page 195CiM Ex. 1054 Page 195

Why Create Add-Ins?
Most E.xcel users have no need to create add-ins. But if you develop spreadsheets for
others-or if you simply want to get the most out of Excel-you may be interested
in pursuing this topic further.

The following are several reasons why you may want to convert your XLS
application to an add-in:

• To prevent access to your VBA code. When you distribute an application as
an add-in, the end users can't view the sheets in the workbook. If you use pro
prietary techniques in your VBA code, this can prevent it from being copied
(or at least make it more difficult to copy).

• To avoid confusion. If an end user loads your application as an add-in, the
file is not visible and, therefore, is less likely to confuse novice users or get
in the way. Unlike a hidden XLS workbook, an add-in can't be unhidden.

• To simplify access to worksheet functions. Custom worksheet functions that
are stored in an add-in don't require the workbook name qualifier. For example,
if you have a custom function named MOVAVG stored in a wm·kbook named
Newfunc.xls, you would have to use a syntax such as the following to use this
function in a different workbook:

=NEWFUNC.XLS!MOVAVGCA1:A50)

But if this function is stored in an add-in file that's open, the syntax is much
simpler, because you don't need to include the file reference:

=MOVAVG(Al:A50)

• To provide easier aecess. After you identify the location of your add-in, it
appears in the Add-Ins dialog box with a friendly name and a description of
what it does.

• To permit better control over loading. Add-ins can be opened automatically
when Excel starts, regardless of the directory in which they are stored.

• To omit prompts when wiloading. When an add-in is closed, the user never
sees the Save change in .. ,? prompt.

Creating Add-Ins
Although any workbook can be converted to an add-in, not all workbooks benefit
by this. In fact, workbooks that consist only of worksheets (that is, not macros or
custom dialog boxes) become unusable, because add-ins are hidden.

To convert a workbook to an add-in, the workbook must have at least one work
sheet. Therefore, if your workbook consists only of Excel 5/95 dialog sheets or
Excel 4 macro sheets, you can't convert it to an add-in.

emnosUSA0017518

CiM Ex. 1054 Page 196

The only types of workbooks that benefit from conversion to an add-in are those with
macros. For example, you may have a workbook that consists of general-purpose
macros (subroutines and functions). This type of workbook makes an ideal add-in.

Creating an add-in is quite simple. These steps describe how to c1·eate an add-in
from a normal workbook file:

I. Develop your application and make sure that everything works properly. Don't
forget to include a method to execute the macro or macros. You may want to
add a new menu item (described later in the chapter).

2. Test the application by executing it when a different workbook is active. This
simulates its behavior when it's an add-in, because an add-in is never the
active workbook You may find that some references no longer work. For
example, the following statement works fine when the code resides in the
active workbook, but fails when a different workbook is active:

x = WorksheeLs("DaLa·).Range("Al")

You could qualify the reference with the name of the workbook object,
like this:

x = Workbooks("MYBOOK.XLS").Worksheets("Data").Range("Al" l

This method is not recormnended, because the name of the workbook changes
when it's converted to an add-in. The solution is to use the I hi s\lJOrkboo qual
ifier, as follows

x = ThisWorkbook.WorksheetsC"Data").RangeC"Al")

3. Select File• Summary Info, enter a brief descriptive title in the Title field,
and then enter a longer description in the Comments field. This step is not
required, but it makes using the add-in easier.

4. Lock the project. This is an optional step that protects the VBA code and
User Forms from being viewed. You do this in the Visual Basic Editor, using
the Tools• Properties command. Click the Protection tab and make the
appropriate choices.

5. Save the workbook as an XLA file by selecting File• Save As. Select Microsoft
Excel Add-In from the Save as type drop-down list.

After you create the add-in, you need to test it. Select Tools• Add-Ins and use the
Browse button in the Add-Ins dialog box to locate the XLA file that you created in
Step 5. This installs the add-in. The Acid-Ins dialog box uses the descriptive title
that you provided in Step 8.

You can continue to modify the macros and UserForms in the XLA version of your
file, and save your changes in the Visual Basic Editor. In versions prior to Excel 97,
the changes have to be made to the XLS version and then the workbook has to be
resaved as an add-in.

emnosUSA0017519

CiM Ex. 1054 Page 197

An Add-In Example
This section discusses the steps that are used to create a useful add-in that dis
plays a dialog box (see Figure 40-2) in which the user can quickly change several
Excel settings. Although these settings can be changed in the Options dialog box,
the add-in makes these changes interactively. For example, if the Grid Lines check
box is deselected, the gridlines are removed immediately.

Figure 40-2: This dialog box
enables the user to change
various Excel settings
interactively.

This file is available on the companion CD-ROM. The file is not locked, so you have
full access to the VBA code and Userform.

Setting Up the Workbook
This workbook consists of one worksheet, which is empty. Although the worksheet is
not used, it must be present, because every workbook must have at least one sheet.

Use the Visual Basic Editor to insert a VBA module (named Module I) and a UserForm
(named UserForml).

Modulel
The following macro is contained in the Modulel module. This subroutine ensures
that a worksheet is active. If the active sheet is not a worksheet, a message box is
displayed and nothing else happens. If a worksheet is active, the subroutine displays
the dialog box that is contained in UserForml.

Sub ShowToggleSettingsOialog()
If TypeName(ActiveShee~) <> "Wor~sheet" Then

MsgBox "A worksheeL musL be acLive.", vbinformaLion
El SE

User Form 1 . S r1 ow
End If

End Sub

emnosUSA0017520

CiM Ex. 1054 Page 198

ThisWorkbook
The Th i s i~ or kb o ck object contains a macro that adds a menu item to the Tools
menu when the workbook (add-in) is opened. Another macro removes the menu
item when the workbook (add-in) is closed. These two subroutines, which appear
in the following syntax, are explained next:

Private Sub Workbook_Open()
Set NewMenuitem = Application.CommandBars

("Worksheet Menu Bar").Controls("Tools").Controls.Add
~vi th I\ ewMen u Item

.Caption= "Toggle Settings ... "

.BeginGroup = True

.CnAction = "Sho~ToggleSettingsDialog"
Encl liJith

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
On Error Resume Next
Application.CommandBars("Worksheet Menu Bar")._

Ccntrols("Tools").Controls("Toggle Settings ... ").Delete
End Sub

The 1,Jorkbook_Open subroutine adds a menu item (Toggle Settings) to the bottom
of the Tools menu on the Worksheet Menu Bar. This subroutine is executed when
the workbook (or add-in) is opened.

The vJorkbcok_BeforeCl ose subroutine is executed when the add-in is closed. This
subroutine removes the Toggle Settings menu item from the Tools menu.

Userforml
Figure 40..3 shows the UserForrnl form, which has ten controls: nine check boxes and
one command button. The controls have descdptive names, and the Ace el era L:or
propet·ty is set so that the controls display an accelerator key (for keyboard users).

emnosUSA0017521

CiM Ex. 1054 Page 199

Figure 40-3: The custom dialog box.

The UserForml object contains the event-handler subroutines for the objects that are
on the form. The following subroutine is executed before the dialog box is displayed:

Private Sub UserForrn_Ini:ialize()
cbGridlines = ActiveWindow.OisplayGridlines
cbHeaders = ActiveWindow.OisplayHeadings
cbVercicalScrollbar = ActiveWindow.DisplayVer ica1Scrol1Bar
cbHcrizontalScrollbar =

ActiveWindow.DisplayHorizonta1Scrol1Bar
cbFcrrnulaView = ActiveWindow.DisplayForrnulas
cbSheetTabs = ActiveWindow.DisplayWorkbookTabs
cbStatusBar = Application.DisplayStatusBar
cbForrnulaBar Apolioa:ion.DisplayFormulaBar
cbPageBreaks = ActiveSheet.OisplayPageBreaks

End Sub

The User Form_I nit i a 1 i ze subroutine adjusts the settings of the CheckBox con
trots in the dialog box to correspond to the current settings. For example, if the
worksheet is displaying gridlines, Act i veWi ndow. Dis p 1 a yG rid l in es returns
True. This value is assigned to the cbGr i cl l i nes CheckBox-which means that
the CbeckBox is displayed with a check mark.

Each CheckBox also bas an event-handler subroutine, listed in the following code,
that is executed when the control is clicked. Each subroutine makes the appropriate
changes. For example, if the Grid lines CheckBox is selected, the Di sp 1 ayGri dl i nes
property is set to correspond to the CbeckBox.

emnosUSA0017522

CiM Ex. 1054 Page 200

Private Sub c::iGridlines_Click on()
ActiveWindow.DisplayGridlines = cbGridlines

End Sub

Private Sub coHeaders_Click on()
ActiveWindow.DisplayHeadings = cbHeaders

End Sub

Private Sub cbVerticalScrollbar_Click on()
ActiveWindow.DisplayVerticalScrollBar = cbVerticalScrollbar

l:.nd Sub

Private Sub cbHorizontalScrollbar_Click on(l
ActiveWindow.DisplayHorizontalScrollBar

cbrlorizonta1Scrollbar
End Sub

Private Sub coFormulaView Click on()
ActiveWindow.DisplayFormulas = cbFormulaView

l:.nd Sub

Private Sub c0SheetTabs_Click on()
ActiveWindow.DisplayWorkbooklabs

End Sub
CClShee: I abs

Private Sub c0StatusBar_Click on()
Application.DisplayStatusBar = cbStatusBar

End Sub

Private Sub coFormulaBar_Click on()
Application.DisplayFormulaBar = cbFormulaBar

l:.nd Sub

Private Sub coPageBreaks_Click or()
ActiveSheet.DisplayPageBreaks = cbPageBreaks

End Sub

The UserForml object has one additional event-handler subroutine for the Exit
button. This subroutine, listed as follows, simply doses the dialog box:

Private Sub ExitBJtton Click on()
Unload User~orml

End Sub

Testing the Workbook
Before you convert this workbook to an add-in, you need to test it. You should test it
when a different workbook is active, to simulate what happens when the workbook
is an add-in. Remember, an add-in is never the active workbook and it never displays
any of its worksheets.

emnosUSA0017523

CiM Ex. 1054 Page 201

To test it, I saved the workbook, closed it, and then t·eopened it. When the workbook
was opened, the Wor·kbook~Open subroutine was executed. This subroutine added
the new menu item to the Tools menu. Figure 40-4 shows how this looks.

Figure 40-4: The Tools menu displays a new menu item, Toggle Settings.

Selecting Tools• Toggle Setting displays the dialog box that is shown in Figure 40-5.

Figure 40-5: The custom dialog box, in action.

emnosUSA0017524

CiM Ex. 1054 Page 202

Adding Descriptive Information
This step is recommended but not necessary. Choose File• Properties to bring up
the Properties dialog box. Then, click the Surrnnary tab, as shown in Figure 40-6.

Figure 40-6: Use the Properties dialog box to
enter descriptive information about your add-in.

Enter a title for the add-in in the Title field. This is the text that appears in the Add
Ins dialog box. In the Comments field, enter a description. This information appears
at the bottom of the Add-Ins dialog box when the add-in is selected.

Protecting the Project
One advantage of an add-in is that it can be protected so that others can't see the
source code. If you want to protect the project, follow these steps:

1. Activate the Visual Basic Editor,

2. In the Project window, click the project.

3. Select Tools• [project name] Properties.

VBE displays its Project Properties dialog box.

4. Click the Protection tab (see Figure 40-7).

emnosUSA0017525

CiM Ex. 1054 Page 203

5. Select the Lock project for viewing check box.

6. Enter a password (twice) for the project.

7. Click OK.

Figure 40-7: The Project Properties dialog box.

Creating the Add-In
To save the workbook as an add-in, activate Excel, make sure the workbook is active,
and then choose File• Save As. Select Microsoft Excel Acid-In (* .xla) from the Save as
Type drop-clown list. Enter a name for the add-in file and then click OK.

Opening the Add-In
To avoid confusion. close the XL5 workbook before you open the add-in that was
created from it. Then, select Tools• Add-Ins. Excel displays its Add-Ins dialog box.
Click the Browse button and locate the add-in that you just created. After you do
so, the Add-Ins dialog box displays the add-in in its list. Notice that the information
that you provided in the Properties dialog box appears here (see Figure 40-8). Click
OK to close the dialog box and open the add-in.

emnosUSA0017526

CiM Ex. 1054 Page 204

Report ManaQer
Solver Add-In
Template Utilities
Template Wl2.ard with Data Tr2cklng

Figure 40-8: The Add-Ins dialog box,
with the new add-in selected.

When the add-in is open, the Tools menu displays a new menu item (Toggle Settings)
that executes the Sl1 ov,To ggl e Settings Di al og subroutine in the add-in.

lf you activate the VBE window, you find that the add-in is listed in the Project
window. However, you can't make any modifications unless you provide the
password.

Summary
This chapter discusses the concept of add-ins-files that add new capabilities to
E..xcel- and explains how to work with add-ins and why you may want to create
custom add-ins. The chapter closes with an example of an add-in that enables
users easily to toggle on and off several Excel settings.

emnosUSA0017527

CiM Ex. 1054 Page 205

emnosUSA0017528

CiM Ex. 1054 Page 206CiM Ex. 1054 Page 206

Using Online
Help: A Primer

Excel's online Help system has always been good. But
the Help available with Excel 2000 is better than ever.

However, the online Help system can be a bit intimidating
for beginners, because you can get help in many ways. This
appendix assists you in getting the most out of this valuable
resource.

Why Online Help?
In the early days of personal computing, software programs
usually came bundled with bulky manuals that described how
to use the product. Some products included rudimentary help
that could be accessed online. Over the years, that situation
gradually changed. Now, online help is usually the primary
source of documentation, which may be augmented by a
written manual.

After you become accustomed to it, you'll find that online help
(if it's done well) offers many advantages over written manuals:

• You don't have to lug around a manual- especially
important for laptop users who do their work on the rnad.

• You don't have to thumb through a separate manual,
which often has a confusing index.

• You can search for specific words and then select a topic
that's appropriate to your question.

• ln some cases (for example, writing VBA code), you can
copy examples from the Help window and paste them
into your application.

• Help sometimes includes embedded buttons that you
can dick to go directly to the command that you need.

emnosUSA0017529

CiM Ex. 1054 Page 207

Types of Help
&'!eel offers several types of online Help:

• Tooltips: Move the mouse pointer over a toolbar button and the button's
name appears.

• Office Assistant: The animated Office Assistant monitors your actions while
you work. If a more efficient way to perform an operation exists, the Assistant
can tell you about it.

• Dialog box help: When a dialog box is displayed, click the Help button in the
title bar (it has a question mark on it) and then click any part of the dialog
box. Excel pops up a description of the selected control. Figure A-1 shows an
example.

Figure A-1: Getting a description of a dialog box control.

emnosUSA0017530

CiM Ex. 1054 Page 208

• "What's Iltis" help: Press Shift+Fl, and the mouse pointer turns into a
question mark. You can then click virtually any part of the screen to get a
description of the object.

• 1-2-3 help: The Help• Lotus 1-2-3 Help command provides help designed for
those who are familiar with 1-2-3's commands.

• Internet-based help: You can access a variety of Internet resources directly
from Excel.

• Detailed hel1,: This is what's usually considered online help. As you'll see, you
have several ways to locate a particular Help topic.

Accessing Help
When you work with Excel 2000, you can access the online Help system by using
the Help menu, shown in Figure A-2. The various options are described in the
sections that follow.

Figure A-2: The Help menu.

The Office Assistant
Selecting Microsoft Excel Help displays the Office Assistant, shown in Figure A<J.
Type a brief description of the subject about which you want help, and the
Assistant displays a list of Help topics. Chances are good that one of these
topics will lead to the help that you need; dick a list item to view a Help topic.

emnosUSA0017531

CiM Ex. 1054 Page 209

Figure A-3: The Office Assistant.

The information that you type doesn't have to be in the form of a question. Rather,
you c:an simply enter one or more keywords that describe the topic:. For example, if
you want to find out how to tum off gridlines, you can type gricllines off.

You have a great deal of control over the Office Assistant Right-dick the Assistant and
select Options from the shortcut menu. Excel displays the dialog box shown in Figure
A-4. The Gallery tab lets you select a new character for the Assistant. The Options tab
lets you determine whether to use the Assistant and, if you do, how the Assistant
behaves. If you find that the Office Assistant is distracting, remove the check from the
Use the Office Assistant check box. You can turn on the Office Assistant again by
choosing the Show the Office Assistant command on the Help menu.

emnosUSA0017532

CiM Ex. 1054 Page 210

Figure A-4: Use this dialog box to control the Office Assistant's behavior.

Whether you use the Office Assistant or turn it off, the Help window appears tiled
to the right of the Excel window (see Figure A-5); all Office 2000 products allow
the Help window to share your monitor space with an Office product

On most Help topics, you'll find links to related Help topics that look like Web links
{they appear underlined). You'll also see links to the Web. Help text for all Office
products is written in HTML As you'll read in a moment, navigating through Help
topics is like using a browser.

If you click the Show button in the Help window, the Help window expands to
include two panes; in the right pane, Help topics continue to appear, but in the left
pane, you'll see three tabs. Each of the following tabs provides a different way to
find the information that you need.

emnosUSA0017533

CiM Ex. 1054 Page 211

Figure A-5: The Help window tiles to the right of the program window so
that you can view Help while working.

Contents Tab
Figure A-6 shows the Contents tab. This tab is arranged alphabetically by subject;
you can compare the Contents tab to the table of contents in a book, because they
both organize information by similar topic. When you double-dick a book icon (or
single-dick the plus sign to the left of the book icon), the book expands to show
Help topics (each with a question-mark icon). To dose a book, double-click it again
or single-click the minus sign to the left of the book. To display a Help topic, single
dick the topic title.

The Help topic remains onscreen until you either close Help or select another Help
topic.

emnosUSA0017534

CiM Ex. 1054 Page 212

Figure A-6: The Contents tab.

Answer Wizard Tab
The Answer \Vizard tab works in much the same way as the Office Assistant works.
Type a question or some words related to the subject about which you want help,
and then dick the Search button (see Figure A-7). Topics appear at the bottom of
the window. Double-click a topic in the bottom of the window and the Help topic
appears in the right pane of the Help window.

emnosUSA0017535

CiM Ex. 1054 Page 213

Figure A-7: The Answer Wizard tab of the Help window.

Index Tab
Figure A-8 shows the Index tab of the Help Topics dialog box. The keywords are
arranged alphabetically, much like an index for a book You can enter in the box at
the top the first few letters of a keyword for which you'd like to search. Click the
Sean:h button to display related topics at the bottom of the box. Double-dick a
topic at the bottom of the box to display it in the right pane of the Help window.

emnosUSA0017536

CiM Ex. 1054 Page 214

Figure A-8: The Index tab of the Help topics dialog box.

Mastering Help
After you select a Help topic, you can navigate through Help in the same way that
you use a browser to navigate on the Web. The Back and Forward buttons let you
view Help topics that you previously viewed, in the order that you viewed them.
Use the Print button to print a Help topic. Click the Options button to display a
drop-down menu that contains commands that perform the same functions as the
Show. Hide, Back, Forward. and Print buttons. You'll also find a Stop command and
a Refresh command; you can use these if you connect to the Web for Help and want
to stop loading a page or refresh the Web page you're viewing.

The information provided in this appendix gets you started using Excel's online
Help. Everyone develops his or her own style for using this help, and I urge you to
explore this resource. Even if you think you understand a topic in Excel fairly well,
you can often discover one or two subtle features that you didn't know about.
A thorough understanding of how to use the online Help system will definitely
make you a more productive Excel user.

emnosUSA0017537

CiM Ex. 1054 Page 215

emnosUSA0017538

CiM Ex. 1054 Page 216CiM Ex. 1054 Page 216

Worksheet
Function
Reference

This appendix contains a complete listing of Excel's work
sheet functions. The functions are arranged alphabetically

by categories used by the Paste Function dialog box. Some of
these functions (indicated in the lists that follow) are available
only when a particular add-in is attached.

For more information about a particular function, including
its arguments, select the function in the Function Wizard and
click the Help button.

Function

DCOUNT

DGET

What It Does

Counts the cells containing numbers
from a specified database and criteria

Extracts from a database a single record
that matches the specified criteria

Continued

emnosUSA0017539

CiM Ex. 1054 Page 217

Function

DPRODUCT

DSTDEVP

DVAR

SQL.CLOSE**

SQL.ERROR**

QUERYGETDATA***

SQL.GET.SCHEMA**

QU ERYREFR ESH***

SQL.RETRIEVE**

What It Does

Multiplies the values in a particular field of records that match
the criteria in a database

Calculates the standard deviation based on the entire popula
tion of selected database entries

Estimates variance based on a sample from selected database
entries

Terminates a SQL.OPEN connection

Returns error information on SQL * functions

Gets external data using Microsoft Query

Returns information on a SQL.OPEN connection

Updates a data range using Microsoft Query

Retrieves SQLEXEC.QUERY results

* Available only when the Analysis ToolPak add-in is attached

** Available only when the ODBC add-in is attached

*** Available only when the MS Query add-in is attached

emnosUSA0017540

CiM Ex. 1054 Page 218

Function What It Does

DATEVALUE Converts a date in the form of text to a serial number

DAYS360 Calculates the number of days bet\'Veen two dates, based on a 360-
day year

EOMONTH* Returns the serial number of the last day of the month before or after
a specified number of months

MINUTE Converts a seri31 number to a minute

N ETWORKDAYS* Returns the nu rnber of whole workdays between two dates

SECOND Converts a seri.,I number to a second

TIMEVALUE Converts a time in the form of text to a serial number

WORKDAY* Returns the serial number of the date before or after a specified number
of workdays

YEARFRAC* Returns the year fraction representing the number of whole days between
start~date and end~date

* Available only when the Analysis ToolPak add-in is attached

emnosUSA0017541

CiM Ex. 1054 Page 219

Function What It Does

BESSEU* Returns the Bessel function Jn(x)

BESSELY* Returns the Bessel function Yn(x)

BIN2HEX* Converts a binary number to hexadecimal

COMPLEX* Converts real and imaginary coefficients into a complex number

DEC2BIN* Converts a decimal number to binary

DEC20CT* Converts a decimal number to octal

ERP' Returns the error function

GESTEP* Tests whether a number is greater than a threshold value

l!~~ili~i~lji;
HEX2DEC* Converts a hexadecimal number to decimal

IMABS* Returns the absolute value (modulus) of a complex number

IMCOS* Returns the cosine of a complex number

IMEXP* Returns the exponential of a complex number

IMLOG2* Returns the base-2 logarithm of a complex number

emnosUSA0017542

CiM Ex. 1054 Page 220

Function What It Does

IMPRODUCT* Returns the product of two complex numbers

IMSIN* Returns the sine of a complex number

IMSUB* Returns the difference of two complex numbers

OCT2BIN* Converts an octal number to binary

OCT2HEX* Converts an octal number to hexadecimal

* Available only when the Analysis ToolPak add-in is attached

Function

COUPDAYS*

COUPNCD*

What It Does

Returns the number of days in the coupon period that contains the settle
ment date

Returns the next coupon date after the settlement date

Continued

emnosUSA0017543

CiM Ex. 1054 Page 221

Function What It Does

DB Returns the depreciation of an asset for a specified period, using the fixed
declining balance method

DISC* Returns the discount rate for a security

DOLLARFR* Converts a dollar price, expressed as a decimal number, into a dollar price,
expressed as a fraction

EFFECT* Returns the effective annual interest rate

FVSCH EDU LE* Returns the future value of an initial principal after applying a series of
compound interest rates

IPMT Returns the interest payment for an investment for a given period

MIRR Returns the internal rate of return where positive and negative cash flows
are financed at different rates

N PER Returns the number of periods for an investment

ODDFPRICE* Returns the price per $100 face value of a security with an odd first period

emnosUSA0017544

CiM Ex. 1054 Page 222

Function

ODDLPRICE*

PMT

PRICE*

PRICEMAT*

RATE

SLN

TBILLEQ*

XIRR*

YIELD*

YIELDMAT*

What It Does

Returns the price per $100 face value of a security with an odd last period

Returns the periodic payment for an annuity

Returns the price per $100 face value of a security that pays periodic interest

Returns the price per $100 face value of a security that pays interest at
maturity

Returns the interest rate per period of an annuity

Returns the straight-line depredation of an asset for one period

Returns the bond-equivalent yield for a Treasury bill

Returns the internal rate of return for a schedule of cash flows that is not
necessarily periodic

Returns the yield on a security that pays periodic interest

Returns the annual yield of a security that pays interest at maturity

* Available only when the Analysis ToolPak add-in is attached

emnosUSA0017545

CiM Ex. 1054 Page 223

Function What It Does

COUNTBLANK Counts the number of blank cells within a range

!SEVEN* Returns TRUE if the number is even

ISNA Returns TRUE if the value is the -#N/A error value

ISNUMBER Returns TRU F if the value is a number

ISREF Returns TRUE if the value is a reference

N Returns a value converted to a number

TYPE Returns a number indicating the data type of a value

* Available only when the Analysis ToolPak add-in is .attached

Function What It Does

FALSE Returns the logical value FALSE

NOT Reverses the logic of its argument

TRJ E Returns the logical value TRUE

emnosUSA0017546

CiM Ex. 1054 Page 224

Function What It Does

AREAS Returns the number of areas in a reference

COLUMN Returns the column number of a reference

GETPIVOTDATA Returns data stored in a PivotTable

HYPERLINK Creates a shortcut that opens a document on your hard drive, a server, or
the Internet

INDIRECT Returns a reference indicated by a text value

ROW Returns the row number of a reference

TRANSPOSE Returns the transpose of an array

Function What It Does

ACOS Returns the arccosine of a number

ASIN Returns the arcsine of a number

Continued

emnosUSA0017547

CiM Ex. 1054 Page 225

Function

ATAN2

CEILING

cos

COUNTIF

EVEN

FACT

FLOOR

INT

LOG10

MINVERSE

MOD

MULTINOMIAL*

What It Does

Returns the arctangent from x and y coordinates

Rounds a number to the nearest integer or to the nearest multiple of
significance

Returns the cosine of a number

Counts the number of nonblank cells within a range that meets the given
criteria

Rounds a number up to the nearest even integer

Returns the factorial of a number

Rounds a number down, toward o

Rounds a number down to the nearest integer

Returns the base-'IO logarithm of a number

Returns the matrix inverse of an array

Returns the remainder from division

Returns the multinomial of a set of numbers

emnosUSA0017548

CiM Ex. 1054 Page 226

Function

QUOTIENT*

RAND

ROMAN

ROUND DOWN

SERIESSUM*

SIN

SQRT

SUBTOTAL

SUMIF

SUMSQ

SUMX2PY2

TRUNC

What It Does

Returns the integer portion of a division

Returns a random number between O and 1

Converts an Arabic numeral to Roman, as text

Rounds a number down, toward o

Returns the sum of a power series based on the formula

Returns the sine of the given angle

Returns a positive square root

Returns a subtotal in a list or database

Adds the cells specified by a given criteria

Returns the sum of the squares of the arguments

Returns the sum of the sum of squares of corresponding values in two
arrays

Truncates a number to an integer

* Available only when the Analysis ToolPak add-in is attached

emnosUSA0017549

CiM Ex. 1054 Page 227

Function

AVERAGE

BINOMDIST

CHIINV

CONFIDENCE

COVAR

DEVSQ

FOIST

FISHER

FORECAST

FTEST

What It Does

Returns the average of its arguments

Returns the individual term binomial distribution probability

Returns the inverse of the one-tailed probability of the chi-squared
distribution

Returns the confidence interval for a population mean

Returns covariance, the average of the products of paired deviations

Returns the sum of squares of deviations

Returns the F probability distribution

Returns the Fisher transformation

Returns a value along a linear trend

Returns the result of an F-test

emnosUSA0017550

CiM Ex. 1054 Page 228

Function What It Does

GAMMAINV Returns the inverse of the gamma cumulative distribution

GEOMEAN Returns the geometric mean

HARMEAN Returns the harmonic mean

LARGE Returns the kth largest value in a data set

LOGEST Returns the parameters of an exponential trend

LOGNORMDIST Returns the cumulative lognormal distribution

MAXA Returns the maximum value in a list of arguments, induding logical values
and text

MIN Returns the minimum value in a list of arguments, ignoring logical values
and text

MODE Returns the most common value in a data set

NORM DIST Returns the normal cumulative distribution

NORM SD I ST Returns the standard normal cumulative distribution

PERCENTRANK Returns the percentage rank of a value in a data set

Continued

emnosUSA0017551

CiM Ex. 1054 Page 229

Function

POISSON

SLOPE

STANDARDIZE

STDEVA

STDEVPA

TDIST

TREND

VARPA

ZTEST

What It Does

Returns the Poisson distribution

Returns the slope of the linear regression line

Returns a normalized value

Estimates standard deviation based on a sample, including text and
logical values

Calculates standard deviation based on the entire population, including
text and logical values

Returns the student's t-distribution

Returns values along a linear trend

Calculates variance based on the entire population, including logical
values and text

Returns the two-tailed P-value of a z-test

emnosUSA0017552

CiM Ex. 1054 Page 230

Function What It Does

CLEAN Removes all nonprintable characters from text

CONCATENATE Joins several text items into one text item

EXACT Checks to see whether two text values are identical

FIXED Formats a number as text with a fixed number of decimals

MID Returns a specific number of characters from a text string, starting at the
position that you specify

REPLACE Replaces characters within text

RIGHT Returns the rightmost characters from a text value

SUBSTITUTE Substitutes new text for old text in a text string

TEXT Formats a number and converts it to text

UPPER Converts text to uppercase

emnosUSA0017553

CiM Ex. 1054 Page 231

emnosUSA0017554

CiM Ex. 1054 Page 232CiM Ex. 1054 Page 232

Excel's Shortcut
Keys

This appendix lists the most useful shortcut keys that are
available in Excel. The shortcuts are arranged by context.

The keys listed assume that you are not using the Transition
Navigation Keys, which are designed to emulate Lotus 1-2-::t
You can select this option in the Transition tab of the Options
dialog box.

Key(s)

Home

End*

PgUp

PgDn

Alt+PgUp

Ctrl+Horne

What It Does

Moves to the beginning of the row

Moves to the lower-left cell displayed in the
window

Moves up one screen

Moves down one screen

Moves one screen to the left

Moves to the first cell in the worksheet (A 1)

Continued

emnosUSA0017555

CiM Ex. 1054 Page 233

Key(s) What It Does

Ctrl+Backspace Scrolls to display the active cell

Shift+F6 Moves to the previous pane of a workbook that has been split

Ctrl+Shift+ Tab Moves to the previous window

* With Scroll Lock on

Key(s) What It Does

Shift+spacebar Selects the entire row

Ctrl+* Selects the blod< of data surrounding the active cell

Shift+Fa Adds other nonadjacent cells or ranges to the selection; pressing Shift+Fa
again ends Add mode

Ctrl+G Prompts for a range or range name to select

Shift+Backspace Selects the active cell in a range selection

emnosUSA0017556

CiM Ex. 1054 Page 234

Key(s) What It Does

Shift+Enter Moves the cell pointer up to the preceding cell in the selection

Shift+Backspace Collapses the cell selection to just the active cell

Key(s) What It Does

F3 Pastes a name into a formula

Home Moves the cursor to the beginning of the line

End Moves the cursor to the end of the line

Ctrl+left arrow Moves the cursor one word to the left

Ctrl+Del Deletes all characters from the cursor to the end of the line

emnosUSA0017557

CiM Ex. 1054 Page 235

Key(s) What It Does

Ctrl+B Sets or removes boldface

Ctrl+U Sets or removes underlining

Ctrl+Shift+- Applies the general number format

Ctrl+Shift+# Applies the date format (day, month, year)

Ctrl+Shift+& Applies border to outline

Alt+' Selects Format• Style

Key(s) What It Does

Alt+Backspace Selects Edit• Undo

Ctrl+; Enters the current date

Ctrl+ 1 Displays the Format dialog box for the selected object

emnosUSA0017558

CiM Ex. 1054 Page 236

Key(s)

Ctrl+8

Ctrl+A

Ctrl+D

Ctrl+F

Ctrl+lnsert

Ctrl+N

Ctrl+P

Ctrl+S

Ctrl+Shift+)

ctrl+Shift+A

Ctrl+X

Delete

What It Does

Toggles the display of outline symbols

After typing a function name in a formula, displays the Formula Palette

Selects Edit• Fill Left

Selects Edit• Find

Selects Edit• Copy

Selects File• New

Selects File• Print

Selects File• Save

Unhides columns

After typing a valid function name in a formula, inserts the argument names
and parentheses for the function

Selects Edit• Cut

Selects Edit• Clear

emnosUSA0017559

CiM Ex. 1054 Page 237

Key(s)

Shift+Fl

Alt+Shift+ Fl

Shift+F2

Alt+Shift+F2

Shift+F3

Ctrl+Shift+F3

Shift+F4

Alt+F4

Shift+FS

F6

Ctrl+F6

F7

FS

Ctrl+F8

What It Does

Displays the What's This cursor

Inserts a new worksheet

Edits a cell comment

Issues Save command

Pastes a function into a formula

Displays the Creates Names dialog box, to create names using row and
column labels

Repeats the last Find (Find Next)

Exits the program

Displays the Find dialog box

Moves to the next pane

Moves to the next workbook window

Issues Spelling command

Extends a selection

Resizes the window

emnosUSA0017560

CiM Ex. 1054 Page 238

Key(s) What It Does

Shift+F9 Calculates the active worksheet

F·1 o Makes the menu bar active

Ctrl+FlO Maximizes or restores the workbook window

Shift+Fl 1 Inserts a new worksheet

Alt+Fl 1 Displays Visual Basic Editor

Shift+F12 Issues Save command

Ctrl+Shift+F12 Issues Print command

emnosUSA0017561

CiM Ex. 1054 Page 239

emnosUSA0017562

CiM Ex. 1054 Page 240CiM Ex. 1054 Page 240

What's on the
CD-ROM

This appendix describes the contents of the companion
CD-ROM.

CD-ROM Overview
The CD-ROM consists of four components:

• Chapter E..'lamples: Excel workbooks that were discussed
in the chapter of this book.

• Bonus Files: Additional Excel workbooks and add-ins
that you may find useful or instructive. These were all
developed by the author

• Power Utility Pak: The shareware version of the author's
popular Excel acid-in. Use the coupon in this book to
order the full version, and save $30.

• Sound-Proof: The demo version of the author's audio
proofreader acid-in.

Chapter Examples
Each chapter of this book that contains example workbooks
has its own subdirectory on the CD-ROM. F'or example, the
example files for Chapter ~'12 will be found in the following
directory:

chapters\chap32\

Foll01.v:ing is a list of the chapter examples that follow a brief
description of each.

emnosUSA0017563

CiM Ex. 1054 Page 241

Chapter 3
This workbook contains the end result of the hands on exercise.

handson.xls

Chapter 6
This workbook contains a variety of custom number formats.

formats.xls

Chapter 10
This workbook demonstrates the use of PMT, PPMT < and IPMP fw1ctions to calculate
a fixed-rate amortization schedule.

amortize.xls

This workbook demonstrates the use of the INDEX and MATCH functions to display
the mileage between various cities.

mil eage.xl s

This workbook demonstrates the use of the INDIRECT function.

indirect.xls

This workbook demonstrates the use of a lengthy "megaformula"' to remove the
middle names and middle initials from a list of names.

rnegaforrn. xl s

Chapter 11
This workbook contains many examples of cell and range formatting.

fmtexamp. xl s

This workbook contains custom style examples.

styles.xls

Chapter 16
This workbook demonstrates how to create a Gantt chart.

gantt.xls

emnosUSA0017564

CiM Ex. 1054 Page 242

This workbook demonstrates how to create a comparative histogram.

ccrnphist.xl s

This workbook contains a chart that updates automatically when you acid new data
to the data range.

autochart.xl s

Chapter 18
This budgeting workbook demonstrates the use of row and column outlining.

outline.xls

This workbook demonstrates the use of an outline to display various levels of text.

textout.xl s

Chapter 20
This workbook demonstrates some uses for array formulas.

arrays.xls

Chapter 24
The dBASE file is used for the examples in this chapter.

budget.dbf

Chapter 25
This workbook is used for several pivot table examples.

ba,1kirg.xls

These four files are used in the pivot table consolidation e..xample.

ccnsol id.xls, filel.xls, file2.xls, file3.xls

This workbook demonstrates pivot charts.

pivdiart.xls

This workbook demonstrates a survey data analysis using pivot tables.

survey.xls

emnosUSA0017565

CiM Ex. 1054 Page 243

This workbook demonstrates a geographic analysis using a pivot table.

9Eog.xls

This workbook demonstrates how to grnup pivot table data by elates.

pivclates.xl s

Chapter 27
This workbook is set up to demonstrate the shipping costs example using Solver.

shippir1g.xl s

This workbook is set up to demonstrate the staff scheduling example using Solver.

schedule.xls

This workbook is set up to demonstrate the resource allocation example using
Solver.

allocate.xls

This workbook is set up to demonstrate the investment portfolio example using
Solver.

invest.xl s

Chapter 32
An £.'{eel version of tick-tack-toe.

tictac.xls

An Excel version of the common moving tile puzzle.

me v e L i l e. x l s

An Excel version of Keno.

keno.xls

This workbook calculates the odds of winning in Keno.

keciooGcls. xl s

This workbook contains some animated Shape objects.

emnosUSA0017566

CiM Ex. 1054 Page 244

anirnsrap.xl s

Create colorful symmetrical patterns in Excel.

pattern.xls

This workbook displays a guitar fretboard and the notes in various scales and keys.

guitar.xls

This workbook contains a macro which reverses the text in Excel's menus.

menusren.xls

This workbook creates word search puzzles.

wcrclsrcr.xls

This workbook contains examples of ASCII art.

a sci i art. xl s

This workbook lets you play sound files (WAV ur MID format).

scunder.xls

This workbook displays interesting charts that use trigonometric functions.

trigfun.xls

This workbook lets you draw simple figures that are actually X-Y charts.

xys ketcr. xl s

Chapter 33
This workbook contains a custom toolbar to assist with formatting.

t.colbar.xls

Chapter 36
This workbook contains several examples of custom worksheet functions written
in VBA.

furies. xl s

emnosUSA0017567

CiM Ex. 1054 Page 245

Chapter 37
This workbook contains a utility (with a custom dialog box) to make it easy to
change the case of text in cells.

chngcase.xls

Chapter 38
This workbook contains examples of Excel's ActiveX controls.

activex.xls

Chapter 39
This is VBA macros that demonstrate how to copy a range of cells.

rngcopy.xls

This is VBA macros that demonstrate various ways to select a range of cells.

select.xls

This is VBA macros that demonstrate how to loop though a range of cells.

lcop.xls

This is VBA macros that demonstrate how to prompt for a value and insert the
value into a cell

Prompt.xls

This is VBA macros that demonstrate how to determine the type ol object that is
selected.

sel type. xl s

This is VBA macros that demonstrate how to create a text box.

textbox.xls

This is VBA macros that demonstrate how to call attention to a particular cell.

explocle.xls

This is VBA macros that work with chart objects.

chartmacs.xls

emnosUSA0017568

CiM Ex. 1054 Page 246

Chapter 40
This add-in contains a utiJity to make it easy to toggle various settings in Excel. This
add-in is not protected, so you can view or modify the code.

tcggles.xla

Bonus Files
The files contained in the Bonus directory aren't discussed in the book, but you
may find them helpful. These files consists of Excel add-ins and standard Excel
workbooks. On the CD-ROM, they appear in the following directories:

bcnus\addins\
bcn us \vJkboo ks\

Add-Ins
This section contains a list of the add-ins on the companion CD-ROM, with a brief
description of each.

To install an add-in, first copy it to a directory on your local hard drive. Then, in
Excel, select Tools • Add-Ins. In the Add-Ins dialog box, click Browse and locate
the * .xla file that you want to install.

The Add-Ins dialog box lists all add-ins that Excel knows about. The add-ins that
are checked will be loaded each time Excel starts. To reduce the startup time for
Excel, remove the checkmark from any add-ins that you don't use.

daterept.xl a

An add-in that generates a useful report that describes all date cells in a worksheet.
This may help you identify potential Year 2000 problems.

faceid.xla

An add-in that makes it very easy for developers to determine the FacelD value for
a CommandBar image. Useful if you develop custom menus in E....:cel.

dataform.xla

An add-in that provides an alternative to Excel's Data • Fm·m command.

Workbooks
Below is a list of workbooks that follow a brief description of each.

emnosUSA0017569

CiM Ex. 1054 Page 247

This workbook demonstrates a technique that makes it very easy to create a
custom menu for an Excel workbook or acid-in. VBA programming not required!

me1 um a k r . x l s

This workbook demonstrates a technique to display help topics in Excel.

helprnakr.xls

This workbook contains an easy-to-use time sheet for tracking daily hours worked.

tirnest,t.xl s

This workbook lets you generate and print daily appointment calendar pages.

apptcal .xl s

This macro generates all possible permutations of a string. Uses a recursive VBA
subroutine.

perrnute.xls

Power Utility Pak
Powei- Utility Pak is a colJection of Excel add-ins developed by the author of this
book. The companion CD-ROM contains a copy of the shareware version of this
product. The shareware version contains a subset of the features.

The CD-ROM contains PUP97. PUP97 works with both Excel 97 and Excel
2000. A significantly enhanced version, PUP2000, was being finalized as this
book went to press. If you would like to try the shareware version of
PUP2000, download a copy from:

http://www.j-walk.com/ss/pup

Registering Power Utility Pak
The normal registration fee for Power Utility Pak is $39.95. However, you can use the
coupon in this book to get the full version for only $9.95.

Installing the shareware version
To install the shareware version of Power Utility Pak:

1. Make sure Excel is not running.

emnosUSA0017570

CiM Ex. 1054 Page 248

2. Locate the pup97r3.exe file on the CD-ROM. This file is located in the pup\
directory.

3. Double-click pup97r3.exe. This will expand the files to a directory you specify
on your hard drive.

4. Start Excel.

5. Select Tools• Add-Ins and click the Bmwse button. Locate the power97.xla
file in the directory you specified in Step :3.

6. Make sure Power Utility Pak 97 is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

The procedure described above will install Power Utility Pak, and it will be available
whenever you start Excel. When the product is installed, you'll have a new menu:
Utilities. Access the Power Utility Pak features from the Utilities menu.

Power utility Pak includes extensive on-line help. Select Utilities • Help to
view the Help file.

To uninstall Power Utility Pak
If you decide that you don't want Power Utility Pak, follow these instructions to
re1nove it:

I. In Excel, select Tools • Add-Ins

2. In the Add-Ins dialog box, remove the checkmark from Power Utility Pak 97.

3. Click OK to close the Add-Ins dialog box

After performing these steps, you can re-install Power Utility Pak at any time by plac
ing a checkmark next to the Power Utility Pak 97 item in the Add-Ins dialog box.

To permanently remove Power Utility Pak from your system, delete the
directory into which you originally installed it.

Sound-Proof
Sound-Proof is an E.xcel add-in, developed by the author of this book. Sound-Proof
uses a synthesized voice to read the contents of selected cells. It's the perfect
proof-1·eading tool for anyone who does data entry in Excel.

Cells are read back using natural language format. For example, 154.78 is read as
"One hundred fifty-four point seven eight." Date values are read as actual elates (for
example, "June fourteen, nineteen ninety-eight'') and time values are read as actual
times (for example, "Six forty-five AM").

emnosUSA0017571

CiM Ex. 1054 Page 249

The companion CD-ROM contains a demo version of Sound-Proof. The full version
is available for $19.95. Ordering instructions are provided in the online Help file.

The only limitation in the demo version is that it reads no more than 12 cells
at a time.

Installing the demo version
To install the demo version of Sound-Proof:

1. Make sure Excel is not running.

2. Locate the sp.exe file on the CD-ROM. This file is located in the sp\ directory.

3. Double-dick sp.exe. This will expand the files to a directory you specify on
your hard drive.

4. Start Excel.

5. Select Tools • Add-Ins, and click the Browse button. Locate the soundprf.xla
file in the directory you specified in Step 3.

6. Make sure Sound-Proof is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

The procedure described above will install Sound-Proof. and it will be available
whenever you start Excel. When the product is installed, you'll have a new menu
command: Tools • Sound-Proof. This command will display the Sound-Proof
toolbar.

To uninstall Sound-Proof
If you decide that you don't want Sound-Proof. follow these instructions to remove it:

1. In Excel, select Tools • Acid-Ins

2. Ju the Add-Ins dialog box, remove the checkmark from Sound-Proof.

3. Click OK to close the Add-Ins dialog box

After performing these steps, you can re-install Sound-Proof at any time by placing
a checkmark next to the Sound-Proof item in the Add-Ins dialog box.

To permanently remove Sound-Proof from your system, delete the directory
into which you originally installed it.

emnosUSA0017572

CiM Ex. 1054 Page 250

A
ABS function, 471
absolute cell reforencing, 178, 179,., 180,

181. 191
abs<Jh,te recording, 168-769
ao::elerator (hot) key, 5ti, G5, 82().

also shortcut keys
acco,ni!ing iom:mt, 1{)7
ACCR!NT iU.'1('a,m, 6t,O
ACCR[NTM function, 660
adlvating worksheets, 122
acthtE area~

identifying, ::154
a<:tlVf' cc!!, #l

custom vi<cws of, 278
active cell indicator, 26
a,:tiv,e objects, 774
acti 1./lt: V'!indo"-N1 45
active workbooks, 43
Act!veX controls, 824, See also Contn,J

to,,lbar
adding to worksheet, 825-826
iink!ng to cells, 828-82:l

add-ii:1s. 13, 84, 625, 837-H6'9, See ,;!/so
Analysis Too\Pak; Solver

860--868
dei;;crip!ive information,

867
example ot 8G2
prnte<::ting project, 867-84:\8
:rea.-;on.s for, 860
setting work.book, 862-865
testing workbook, &G£i-tl6ti

.c\.l5tom, 757
nrntom fonctkms in, 79!
ddined, 857
included wlth Excel 8.59
opening, 868--86!1
us.es of, 857--858

addition operator. 172
f!.ddresst::5 {)f ct:Hs1 48,1 133

alternate. 140
r,cdTextb.1;,: method, 848

advaneed f1l~e,rlng, 522-'528
criteria ,·ange, 52:1-524
criteria types, 525-528

cr'iteria 1 525:
mher operations, ;;21,

alert messages, ,:me1H,nting, 852--853
ai.ignment, .112

celt 242--246
horizontal, 24,2 .. 244
text ,xmtrol Qptions, 244-,245
verriL~al, 244

I
ol drn.wing objects, 3~H

All refor.ences list box (Consolidate
dl.alog box), 453

All+Enter, 118
AJ\10RDEGRC /unction, 660
AMORUNC !unction, 660
a1npe.rsand {&) 1 210
Analysis of Varian,:e, €42-613
Analysis foolf',,k, 10. 474. 63£1-t,62, 859

fum:llons, 232, i,e!l, 657-662
Date & Tlme category, 657-%8
Englneerlng category, 658--659
Financial cat(;gory, 660--fi-61
Information category, 661--662
M,;.th & Trig oi.tcgo.ry, 662

overview of, tl:39--640
tools ln. 640--657

Analysis of Variance, 642-643
correiatlon, 643--644
Covariance, 64·1
n~iscriptive Statistks, 64fi-646
Exponential SmoNhing, 646--647
Fourii:,r Analysis, 648
F-Ticst (Two,.Samplc Test lor

Variarn::e), 647-648
Hhtogrnm, 648-649
Moving Avernge, .1350---651
Random Number Generntkm,

651-652
Rank Percent.Ile, 652,,-653
Regression, 653--655
Sa1npli1~g, fi55
I-Test. ll:m, 657
z-'fost (Two-Sample T,:;st

Mea1os), 656,,657

analytical tools, HJ
AND /unction, 218
A,">lD operator, 524
an!m11ted GU' files, '.3,20
animated menu. 737
animated shapes, 720··721
aru1ot.9.tkrn 1 10. ,..We t:1iso conEni'.~nts

,iI cells, 147--148
of charts, AutoShapeE !or, ;l,41

annrnty hmctinn.~, 224--2::!5
application

destim;,tion, 500, f.66
ua.1!tlusf'.r, 480
,wurce, 500,666

/,pp ·1 i cat• on object, 777
April Fool's prank (game), 72l-723
area diarts, 285,286, 287, 31.)9

method, 846
argument(s), 20 l-2fl'.{

erwrn in, l:112
expresswn,; 202-203
Formula Palett,e to specify, 205-206
lits!ral, 202
names as, 20!~
other functions as, 203
o! VRA forn:tlnns, 792-·7!.16

no argurnent,
one argument, 793-794
range argument 795-79fl
two arguments, 794--795

auay(s). 457--458
fonnaHmg, 464
loo1)ing wl!l'1, 4G t--462
on,:: .. dirnensiona.~1 457
selecting ninent, JA.fi
sel<•,:liug range: o!, 464
two,dimens!onal. 457

array cCJn.stants, 464-467
array ieatui·e, 10
array formulas, 198,

adv,1nt,J.g(;)S of, 459
for calendar caku!at!on, 47li-47'/
lor compu1ing maximum and

rninln-unn. change£ 1

469--470
for counting characters ln range,

468--46'~
de.flned,453
,Hsadn,ntages oi, 459
!n <lyn.ami<: crosstab tnbie, 475-476
editing, 4£\3.--464
entering, 463
external link;; stored 670
ior frequency disl:ti!:mUons,
for identifying value in rang,,

,{1'17-468
one cell, 461

for ranking, 472-473
br returning last value in cohmm,

4'!6
tor rettm,ing last valu,e ln row, 176
standard fcnnul,,s vs,, 45;Ji-;i60
k,r sui:mning digit& h; val111\

4.70-471
for summing .nth vi,.iue a range,

47!.-472
tlps !or, 1?7-478

urrow· keys, during data Pnti·y, l. 1fi
ASCfl art, 724, 725
"af 1 sSgn ({&),

aUribntes, ceE, J 13
AmHtlng hiolhar, 7D3-7fJ4

Trnce Error button of, 705

emnosUSA0017573

CiM Ex. 1054 Page 251

auditing tools, 354, 700-7-07
for tracing cell relatl,)nsbips,

703-705
auditing, worksheet, 10
Australia, maJJ ol, 408, 42.1
AutoCorui:llete, H7, 514, 710-71!
AutoCorrecl, 11, 119--120, 174, 709-710

formula, 7()0
Autol 11!l, U7

to copy adjacent cells, 153
lnstea.d of formulas, 187

AutoF!lterlng, 517-522
ehartlng list data, 522
custom, 520-521
limits c,f, 518
multicolumn, 519-5.20
Top 10,521

Autoformat, 32, 33-34, 25?,-256
contro!Hng, 256
using, 254-255

Automatic Cakulat.lm1 mode, !83,
184

automatic menu custom!zation, :i5
AutoSave,84,859
autoseni,ing, toolbar, n7
AutoShapes, 327-330

for amiotatlng charts, 341
amund range, 849-850
calling attention to cell, 336, 337
to cha1ge look of cell C{)mroents;

338-339
changing delault,i, 3:~3
examples, :i36-<H2
flow diagrams using, 340
fom1attlng objects, '.:!28-330
inserting text in, 335
linked to eel!, 339-;340
organizational charts using, 338
shadow and :m effe<:ts, 333-334,

336-337
shape categorl;,,s, 327

AutoSum button, :11, 58, 212
AVERAGE lmu:..'f:lon, :t06, 229, 461~62
axes on charts, 289. :'lf;5, '.{67, '.372--376

B

modilying, 3n-cl7:'.l
patterns of, 373.-374
scalP.s of, :n4-.'l76
secondary, 389-390

badcgmund, 252-253
backing up Hl<'..s, 90
t;ad::solvmg. See single-cell goal s,,eking
Backsµace key, 101
BAK Illes, 72, fill
bar charts, 285, :104-305

stacked, 399--400

.Beg'ms with Qptensw•r, 5,19
Bernoulli 652
BESSEL! kmction, 658
BESSELJ function, 6:,B
BESSRLK fom:tl,m, 658
BESSELY function, 658
bin range., 648
BiN2Df(lundlcm, 6fl8
B1N2HEX function, 658
8!N20CT !unction, 658
binders, data sharing using, 682
binding coustra,nts, 62G
binomial distribution, 65:!
hitmap files, 499
bitmap :321

pasting, 674
black-and-white printing, 272
bhmk cells, selecting, 146
blanks, sb.ipping when pasting, 160
i3MP illes, 322
Bomb Hunt, 718-719
book.xJt file, 748, 749
Boolean settings, 847
borders, 113-114, 249-252

skipping when pasting, 159
l:Jrad,,"ts formula bar, 463
lm,wse button (Consnlldate dialog box}

45~{
browser, defined, 686
b>Jbble charts, 285, 312-313
budget sprcad;;he£,ts, 3,,7
button controls. 65
Buttun Editor, 744-745
hui:tcm(s), toolbar

add,ng/rernmrlng, 738-739
applying styles wltli. 259
assigning macros to, 770
attaching 1mu::ros to, 8.l:'\-814,

819-82()
AutoSum, 31, 58, 212
Bold. 34
changing lun,:tlonallty of, 710·· 7 41
changing :magt, nl, 740. 744-741:i
Close, 23, 2!:i
on C1.:,ntrnl Tooll:x;,;t,: Toolbat, 825
Co1)Y, 58
cop:,,1ng ranges using, 1'!9
custom, 756
Maxinlizf: 1 2f5
.Minimize .. 23, 24
'\iew Workhook, 74
number··formaU.iug, IO'.i
Open, 76
option (radio), 6~
other op<'!ratium; on, 710-741
Print, 2G3
Restore, 23
tab-scrolling, 122

C
e,,kulated field, 582-53:i
c,ilculated items, 583-585
Cakulation modes, !Kl-184, 847-848
calculator, Formula Bar as, 196-197
-:alendar calculation, army formulas !or,

476-477
Canada, map ol, 408. 423
case sensitive sort order, 5:14

statement, 780
category a...:ls, 289
category wds title, '.369
categr,ry, c,msoli1:l>ltlng worksheets by,

452
category flelds, 562
cat"'J,lory shading map forrnat, 412-413
Cl:)R files, 322

cel!(sJ, 139-l.68
actlvs>, 48
atklresses of, 48, 139

alternate, 140
alignment of, 242--246

horizontal, 242-244
text contm! options, 244-245
vertical, 244

annotating, 147-148
array formulas In one, 461
AutoShapes linked to, 33fl-340
changing, 607, 614-615, 623
color coding -0i, 703
comment, in, HI, 147-148

AutoShapes t.o change look
338-3:J9

pasting, 159
copying ranges to adjacent, 153
defined, 3, 139
<le!<;;tJng cont,t,"l:lts ,::,I, 148
drawing object to ~;all attenth)n to,

336, ~1:n
editing contents ol, 99-102
erasing cnntents of, 99, 100
forcing new line l 18
hiding before printing, 280-281
linklng dialog box controls to,

828-829
movlng, n4 ... 1;35
multiple formatting worksheeL'l in

one, 241-242
names/naming of, 161-168

advantages of. 161-,162
,mtomatk, Hi4-166
changing, 168
{[,:,.ieting, l6 7
manual, 1.62-164
redefining, 168
ta.hie of names, 16&-167
valld, 162

pasting pictures ol, 341--:{42

emnosUSA0017574

CiM Ex. 1054 Page 252

pn:formatting., 108, 353
~.,rowcllo.• of, t 3
repiadug coments of, 99
seie,~r.ing, during darn entry, u;
slyli~tk !ormaWng of, 112 ... 1 "l 4

a!lgnment, 112
,,ttributes, 113
~iorders, I 1;::-1
.:olor, 114

aud te.-:ct s,zr.;, l l.3
µ.;~.sling; t S9

large/:, 623
'lradng relationships ol, 70G --706

am.!iting to<.ils 70'.t,,705
circular relerenc1cs, 706
Go To Special dialog box,

701-703
,rac111g enor valu":8, 705-706

del)€ndents, 7(H, 702-·704
function, 219

(H'lcrdaU..cn:11 245---246
pointer, J 15
p.recedems, 7(H, 'f02 ... ·,104
.rt.~f-f:reHt.:<i::.'s
absolute, 178, .17~),-lHO, 181, lSl
app,ying names to existing, 194-196

argur11ents, 202
drc,1iar., 184-188, 706
entering fonnulas by pointing to,

175
ln fonnulas., l 69
!n-v,1Hrl, J,8;!
m\xed. 18l:l-18l
nomdatlve, 181
rdative,, 178, .. 1'19, 180,
outskle woric.si±eet, i 77---J 78
sek'\:lion, .sewthrnugh, 17
lrauirs, ,04

cf:nter1ng toext, 112
change history, •184
;,hm:giug cdls, fil:)7,

hinctio::1 1 214
chartl;;), 283,,.J15,

activating, 363
a1.rtomatkally updating, 402,--40:1
AutoShapes for annotating, 34 J
,J.Xe5 289. :.{65, 367, '.f7,'.-'.F6

motliiyiug, 372 ... 373
ol, 37J--374

scale:s ol, :J14-376
secondary. 38S<.l9D

ch.,m.g'ing iocatlon, 3,)0
ch,vt are;;., ;)6<:i, 367,,.36B
-eornb.inahon, 388
co:i'npaiatJ.ve histc,grarns1 401~402
creating, 35-37, 292-299

dutrt options, 298
chart placement,

-chart type selection, 296-,2!37
with Ch~1:rt Wiza.d, 29J-:'99
data sel.ec:tloill,
with one keystroke, 288-289
n=u~ge: vedficatlnu

rn:ientatior,, 297·-298
customizing, 353 36,1
data 1,,bels :l65-3fif,, :3l'\.'.'-38:i
data series 377-388

373w379
dianging, :rrn.<182
cnutmlling, by hidiog data,

384-385
deleting, 37fl

data table, 367,390,391
eh,rnents ol, 364-365

hackgrmmd, 367-368
deleting, 301
movlng,301

eri,b1c-(hle~:l, 2.8-4, 2fH, 302,
fiSl

error bars in, 367, 325-·38"3
handling o!, 289, .. 290

Format dialog· bux, 36f,-,l67
forrriatting of. 85 I ~.-.;~52

fun with, 72,i-727
gridlines rn,, 364, 371 372
handling missing data, 383-,384
legends. 367, 370-371
ilnked,587
modl!ylng, 299-.. 301
n1ov~ng,

object, 289
orgamzatimml. :t38, n81

11ktme
Clipboard to create, 397- 39cl
graphic nle crnat,;, 397

from ta.oles, 5!37-S-88
placement of, 283-284
plot area. '.>67, :l68<1fl9
plotting txigonometrk functi01u,

725,-726
printing, '.JD2-303
properties of, 851
r,esizin.g, 299
seleding, 28(i-~87. ,lill
3D, 290, 365,

modiiylng, 392
rotallng, 3S2<i94
from two,J11f.llil rlata taJ-,les,,

W6-607
titles, 365, 369-'.{'.10
tr<211d!!nes in, 367, 386-338
t1·icks Jo, making, 3!l4-<l99

chm1glng worl(sheet v.ah.te hy
dragging, 394--395

3~)..-400

Checlk3ox Kl!
Reie:rence rno!bar. 18:1, J8f;

d.rcular references, 71JG
indirect, urn
Intentional. 18{>-18.8

c.Uenz .. "server Inoc~ei,
1is...,·:1;io

creating pictme

WH!U<)W~, 47
cioslng ,vurkb-ooks, 87.-88

emnosUSA0017575

CiM Ex. 1054 Page 253

code(s)
!or CEIL lun,ctlon, 219
for custom formatting values,

1[)9-111

de!im~<l, 71ii9
formatting, 109--1 l l
for INFO function, 220
:for WEEKDAY function, 222

CODE lundion, 214
coding. See VisuaJ Ba..5ic for

AppUcation.s (VBA); VBA
programming

coefficient, 622
oi corre.lation, 643

collect and paste, 18-19
colledion

defined, 773
VBA, 775- 776

color, H4, 246--249, 2S!
care in using, 353
for value-shading fo,mat 412

color ending of cells, 70:i
color palette, 251
colunm(s), 48, 133-1:37

array formulas for returning lasl
value In, 476

changing widths ol, 135-136
deleting, 135
hiding, 136-137
,nse.rtlng, 133-135
ln lists, 513
preforniatting, 51:t
printing headings, 272
selecting complete, 141-142
selecting, Im querying, 545
sorting on two or more, 5'.JO
widths of

adjusting, In print preview
window, 275

pa1iting, 159
U)!umn ,charts, 285,286,287,281),

308-304,396
column dlffornnccs, selecting cell:;; with,

146
column field, 562
column headings, 28-30, J 19, 1:11

using as names, 195
on workbook window, 26

colurn11-chart maps, 4Hi, 417
c·ombination diart, 388
ComboBox control, 831·..&32
Comma Sty!e button, 103
command(s}. See also short.cut keys

,;ustom, 756
giving, 51-64

reversing, 53
llBing menus, 51---57
using shortcut k,1ys, 64

using shortcut n1enus., 57-58
toolbars, 58-63

help for,
menu

for armolatlng cells, 147-148
!or applying names to cell

n~ferem;e;;, 195
for cell ur range open,ti(H,$,

154-155
for changing column widths, rn6
!or changing row heights, 136
for charts, ;J3(J, :!02
for com;olidatlng worksheets,

45l-154
for copying mnges, 151, 153
lor creating new workl:mok,
for cmating r>kture of cell or

range,341
custom views, 278
for data tables, 390,599
for deleting cell contents, 99
lo:r ioml>ed<ling objects. 680
for ln•ezing/unlree:dng panes,

132
Goal Seek, 620
for hiding/unhiding rows and

columns, 1.36-!37
for hiding/unhld!ng worksheets,

126
hyperlink, .693
f(,r importing from camera or

scanner, 324
!or importing graphics, 320
for inserting cells, 135
!nr inserting rows and columns,

134
for linking, 670
macro, 761
for mailing, 487
for making S<:lecticms, VH, 145
fur names, 165, 166, 168
for opening existing wcrktxmk,

75
for outlines, 439
for !)a.ge breaks, 276
for pasting, l 58, 176
/or queries, 554
io:r sav!ng workbooks. 80
for savl.ng worksp,Ke, 88
for spllttlng panes, 130
fo:r styles. 2.'i9-2fl0
1.or zooming, ,27

What's TIils?, 58
CommamlBar. See toolbar(s)
ComrnandButton control., 832-83..1

lnserUn,g, 829-8::lO
comma-separated text files, 496

comma-s1"parnted val,u, te,i.i file format,
73

r:ommenls
111 cells. JO. 147-148

Atato,~,hal]•es to change look of,

past.Ing, 159
printing, 273
selecting cells with, 146
Jn VBA programs, 758

commissions, ,:akulating, 793-794
comparntlve h!slograms. 401-402
comparison (IP,erators, 526
compatlhllity, me, 7
COMPU:X fo.m:tlon, 658
(:omputed criteria, 525-528
concaten.atlon, l 71
concatenation operator, I 70 SO(l
Condlt!nnal Formatting, ll)9

select.ing cells with, 147
nmditional formatting worksheet.Sc

256-257
Conditional Sum Wizard, S59
cone charts, 285. 314-:il5
confllcts, multiple--user, 484
consistency, cross-platform, 14
consolidating worksheets. 448-45!:',

data ;;nurces fnr, 454-455
linking worksheets and. 442
pivot tables for, 585-587
shared workbook.., for, 481
by Data ¢ Consolidate.

by using formulas, 449-4:'>1
by using Paste Special, 451

constant(s)
arrny,464-467
in "1 s ,;;Box fuuctlnn, 804-.')05
namlng, !9i.i-!91
sele.cting ce!!s v,,1th, 14,6
smoothing (damping factor), 646

constraints, 62,l, 625, li33-635
binding, 626

contains O!J(~rntor, 549
context menus, See shortcut menus

(context menus)
control(s), 12, 1.1

ActlveX. Se11 ActiveX controls;
Control Toolbox toolliar

buttons, BS
cheek l:x)xes, 66

Controls Toolbox, 831--B:l8
CheckBm,:, 831
ComboBox, 831-832
CmnmandButton, 832r-833
image, 8.13
label, 833
UstBox, 8:~3-834

l

j

emnosUSA0017576

CiM Ex. 1054 Page 254

OptionButl.on, 83+-835
ScmUBar, 835,,836
Spi(J!Plutton, 8,~&--,83?
T<cxtBox, s;rr-2:18
ToggleHutton, 838

custom dialog 807,-810
properties 8l!9--8 l il

defirnld, 759
dialog t1ox, 64, 6::,-68, 823,-838

ad(llng, 826
availabl.e, 82,1-8:25
design mode 82B
linkiru;i to ,cells, 828-829
macros for 829-&'.IO
properties, 82c~,8,t8
reasons !,or using, 823....;;24

drop-down boxes, 68
list,boxcs., 67
o~>tlon buttons 1. 6fi,,.-66
range seieet1on boxe:s, 6ti, 67
spiHUf!fS, fjf:1t--67

Contfol Toolbox toolb,tr, 82•1
CON'v'ERT luncti.on, 658
copy tool 1 157
copy-ami-paste ledmique, (,68. See ,-i/so

Clipboard
copying

buttons, 738
formulas, 197
graphics irnagcs 6f>7
qmT!es, f,5:l
ranges., 149-154, 840--841

adjacfmt :t 5:l
to other sheets, l!:i4
using (frag and dmp, 152--153
using menu commandll, 151, 15:1
using shoxtcut 'keys, 152
using shortcut n:ierms,
using toolbar but.tons, 149

m·ws. 528
worksheetE, 125

corners of ,ID charts,
CORREL functlon, 8
Co:rrelation IOGI, 643-frM
corrnpted Hi<"s, !lO

liaks to recovE;r data from, 449
COUNT !unction, 230, 569
COUNTA hmctkm, 230,
COUNTBLANK hmctkm, 2~W
COUNT!F function, 229-,230, 473 .. 474
COUPDAYBS fonctlon, BOO
COUPDAYS function, t>(i!J
COUPDAYSNC fo.netion, 660
COUPNCD Iunciion, .E,6{J

COUPN1JM 660
COUPPCD !unction, 660
COVAR foni:tl<1c1 6¥,
Covarlanc0 too.I,

ll riks to source check box
(Consolidate dialog bo:x), 453

di.arts, :is-:n, 292--299
chart options, 298
chart placement, 298-299
chart type 1;,.,Jection, 29€--297
w!th Chart Wi2b.rd, 2!l:l,-,299
data 5eJectim1, 295-296
with one keystroke, 28&-:?89
pkture charts, 395--399
:range vc:rlflcation and d,,ta

,,rientatlon, 297-298
~-o rn:a.das, 31
ruaps, 40!)...417

category shading, 412-41;-i
,:oluinn,:;art maps, 416, 417
combined formats, 416
d;3ta setup; 409
dot density, 413~B4
fonm1ts, 4HJ--4:l l
graduated symbol, 4M---415, 417
ple-,chart maps, 415-416
value shading, 41 l,412, 417

named styles, WO
new workbooks, 74-75
spnJadsheet.,, 349-,~.58

consldeiing audience, 350---351
designing workbook layout,

351-352
developing a plan. 350
entiering data and fnrrnulaso

3.52-353
formatting. 35:t-:-!54
protection, ;;55-357
testl.ng, :354

Criteria pane, t,54, 55S
critt>,ri.a rnnge, 523-524
critcr1a 1 v.alkLatlon J 159
cropping ot,jects, l:i78
Cropping tool, 67,8
cross-platform consistency, 14
Ctr!deft/right arrow. Hll
cubes, OLAP, 543, 556
CUM!PMT function, 66(1
CUMPRlNC !um::tion. tiGO
currern::y. Euro symbols of,
c111-rency fonn,,t., 107
Cm·rer,cy Style b,,tton, 103
current region, selecting cell~ in, l 4ii
custom t,rwr bar, 386
cu;.:t.om lllter\ng, 520-,521
custom !um:ti•Jns,

fuE,etJcns

custom !l<':ader/footer buttons, 270
custom number formats, 107. Hl8--H2

to hide i:ells, 281
Cllstom Pin tool,420

custom
ten;rpiates, 747

(ustor.o.eJ geogr<;t,-;Jhlc analysis,
pivot tallles

custom_cr lists, 481
custo.a:oi2.able too1bars., >3
custmnizB.tlon mode, 734
,:ustomizing,

fields tn pive1 iab!es. 57f')'-576
headersifooters, 269-270
maps, 417~418
m,cm1s, 17-18

autuma!k, 55
plvoi: table H~ld, 575-576
shoi:tcu·: menus, n1:3
tonlti;,m,,, l8, 73 J 724

adding/rernov~ng buttoz-rn,
ng..739

d1anglng iiuit:m fm,dkumlity,
740,.:r41

ch,m:gktg button 740,
744 .. rn,

er-eating new t(",o1bar&, 735 1

741-744
(>uz..r;tnnltze dialog bi"l12!.

734,~,737

rrwv!ng ,,«J"'''"'''.
type-~ of 1 733

Cut method, 843
cylinder :'.8fi, 314-~llS

D
d;;.mping factor (smoothing c0r:s:taar1.t}.

64(,

data
appn .. lpriat,e for

562-,564

dehnedi 49:~
dunm,y, ,154

serhcB by

en~ering. S:ei! Liata eHH"Y
forn:iatllng, 5.56
he.nd1ing missing chm·t,
importing. See impo,rHng
''noisy," 387
sharlng with other Windows

emnosUSA0017577

CiM Ex. 1054 Page 255

data an,,lysls. A.mliys.is
phrot tables; sin!,;!e-cell goal
sec~kh1g; 'Solver; 1-h'ha.t-.4!
analyses

data area. 562
data en!ry, 30, !14-120

~-11-row keys during, Hu
AutoComplete feature, 1 l 7
Au,oCorre,:t feature, 119-lW
,/\lli:ofi!l foal.11re. 1 I 7
automatic declmal points during,

l16
r>oint\"r movement during, 'I iS

current darn m· time, 117
forcing new Hne In cell, l LS
forms !or, l &-119
fractions, 118
into lists, 514-£i17

,,vJth Data dialog box,
Microsoft Access forms !or,

5!.6-517
reµe.ating in!ormati mL I lfi
selectl!lg cells before, 116
into spreadsheets, 3.52-353
valldating, 114--115

selt!Ctl11g c<cUs 5et up for, 147
data fields, 562
data !i!B&, 72
Data interdm.uge Fonnat (U!F), 7B, 496
,:!ata labels ln charts. 3f,5-J66 382,-388
Dat<t pant\ 55.5
,data r.a.nge

automatically updated, 402
11.mHnking chart !;om. :195. 391:i

l'fata series, 287, 377-3811
adding, 376-379
changing, 379-382

Data Source dialog box lor, 330
dragging rnnge outline, 379-380
editing Si'.R!E~'S formula, :!80--'.{8!
uslug narnes in SERIES furm!lla,

3-81-,332
deleting, 378
poiHtS 367
selecting, 377

data tables, 367, ~l::iO, :,:-JI, 5H9-607
limi!:ations of, 607
one-clnput, 60fl-603
two-lnput. iJOJ-007

dnta typ,es, 93--95
formulas, !J5
text,
valties, 93-94, 95
VBA, B54

data-01,alysls modds, 346-341:l
datah,;se(s). See also exterm•l data files;

llst(s)
We .lonnats support~.id, 49;,J, 495
OLJ\P, 543, 564.i

"~aJcu!ated and 1 S.82
calculated ltems ar;d, 581

rni<1.tion,ll, 542, 556
terminology ol, 542

,rJ.atahase ac-cess, spreadsheets for, 348

datatliJ.Se fum:tions., 231-2::12, 528--52'9.
See also specific name,; of
fun ,;!ion~

with lists. 528-SZ:J
database management, 11
date(s), 97-93

custom formatting cod"s for,
l Hl-l !

entering curreJ1t, 117
gi·ouplng by, :593
in pivot table.s, grouping hy, 593
,:;orting and, 5'.35

date format, 107
0/;TE !um:tkm, 222
d:ate hu1,ctions. 2'21~222_ .,See also specific

names of functions
date sE,rial :cumb~ir system, 98
Date & Time category functions,

f,;'i7....fi58
DAVERAGE fun,:tlon. 529
DAY function, 222
d.lys, AutoF!ll to create series o!, 187
DB function 224
.JBase file format, 73
OBF 495,539
OCOUNT function, 529

function, 529
DDB famction, 224
debi;.cgging

of iormu!as. Siee tmub!eshooli11g
of VBA fum:ti{)!lS, 796

DECWIN hmctlon. 6S9
DEC2HEX !unction, 659
IJEC20CT hmctlon, 659
decirnal p·oints, automattc ins,.,rtlon

d·urlng data f"Jltry, 116
.Decision Support S,:rvict'S (DSS)

analysis, 543
Decrease Decimai button, !03
d-efault(s)

AutoShapcs, changing, 333
lile !ormats, Bii
printing

settings, 26:-i---264
templates to change, 281

workbook locat~on. 82
default templates, 74,8, 749-750

workbook, 747, 748-749
changing, 7 48- 7 49
resetting, 749

worksheet, 717, 749-750
Deletti key, 99, 1 () I
deleting

cell contents, 148

elements of chart~, 301
narned styles 1 261
names, 167

::;53
rolh'S and cob.1n1ns1 135
toolba.rs 1 7~{5
worksheets, 123

delimited text files, 496, 503
DF.ITA hmction, 659
df;pen;,1en~ wotkl:mok, 441
dependents, cell, 701, 7()2 .. 704

sehx:tlng (:elis wlth, 146
depredation lun,:thins, 22:3
Desc-rlptlve Statistics tool, &45-646
design mode, 82G
design tLrr,e, BHJ
destination application, 5UO, 6f),6

DGET iunction,
dialog- box(es;, 1>4-69

Add Constraint, 625
integer option of, 634

Add Scen<trin, 609--610
Add T:rendline, 387

OpUon:;; tab of, 387, 388
Type tab of, 38 7

Add View, 279
Add-Ins. 858, 861, 869
Advanced Filter, 524, 528

Copy to Another Location
flption, 528

Unique ri:_-cords option, 528
Advanced Text Import Settings 507
Armva: .Singh, F.ador, 642
ApplyNames, 195-l96
Arrange Windows. 45
Assign HypoerHnk: Opiin, 746
As$lfr1! Macro, 8M
AutoCo:rrect, 70'J-710
.AutoSmre, 84
Button Editor. 744, 745
Chart Are;:,, 368

fom tab of, '.168
Patterns Lah ,)f. 368
Properties tab of, 368

Chart Options
Dau Lah<>.l,; tab 382,383
Gr!dllnes tah. :n2

Chart Type, 300
Custom TyJ,'e:S tao oi, 390, 391

Chart Wizard, ,J.6, 287-288, 297--299
ClipAl't, 318
Cousolidate, 452-453
<:l)nt1ols, 64, 65-f,8, 823--83[<

addlng, 826
;iwlllable, 824-82S
CheckBo:., 831
Comboi~o.K 831-832
CommamJButton, 832,,,833
de.cdgn mode and, 8216

emnosUSA0017578

CiM Ex. 1054 Page 256

imag(i, 833
Label, 833
linking to ,:eUs, 82&-.S29
LlstBox, 8:13-8:'M-
macrns for, 82!)c .• 8:JO
OptionRuttna, &'>4-8:'.:5
properties. 826-828
re,;sons for using, 823-824
Scrollfiar. Klf,--8:'i6
SpinButtm1. 835--837
Text:Box, 837,"'838
TuggleHutton, 8:18

Cunelatlon, 643
Create Names, 165
Create New Data Source, 544
cust-01n, 12,801--82!

adding accelerator keys t-o, 820
alknw.tive., to, &)2~'!01>
attaching macro to button,

813-814,819-820
controls, 8()7--810
(!isplaying, 8]0
event handling by, 810, 812,.,813,

817-819
exampl.:s of, 810-820
learning more about, 821
reasons for creating, 801.--802
tab order in, 821
testing, 812, 816.-817, 8I9
Use:rForm~ for, 8D7

Custom Autof'Hter. 520-521
Customli.e, 61~2, 731-737

Cormnanas tah of, 73{i, 738
Options tab of. 736- 737
Toolban; tab of, 735-736

Data Anatysis, 64t
Data forn1, 515-5U5

buttons on, 516
Data Source, 380
Data Vaik!ation, 115
Dd!ne ;>lame, 162-163, 167, 189-190,

liH, 464,465
Descriptive Statlstics, (i45
Edit l:lutton, 7,14, 745
External Da.ta Range PrnpeTtie:.s.,

5fi 1--S52, 6il7
file, 16
Pile in Cse, 480
File Not Found, 445
f'He Now Available, 481
Find, 79
l\)rrnat, 365,, .. 367

Alignment tab oi, :no
Font tab of. 37()
1:0 modify chart title prop,ert,es,

:no
Patterns tab of, 370

Format AutoShape, 32S--:130

Alignment tab of, 330
Colom and Lines tab of, 328--··329
Font lab of, :330
Marglns tnb of, :tlO
Pmr~ertJ.-.,, tab ol, 330
Protection tab oi, 3:29--330
Size of. 328
Web tab of, 330

Format Axis
Alignment tab of, 373
Font tab of, 373
Number tab of, 37:.1
Pattems tab of, 372, 373--:n4
Scale ol, 372, 375--376

Format Cells, 68, l04-1G8, 237
Number tab of, !05--!06

Format Data Labels, 383
Format Data Series, 377

Axis tab of, 377, 390
Data Labels tah of, '.HJ
Options tab of .. 377
!'attenis tab ,oi. 377, :307
Series Order tab of, 377
Shape tab, 377
X Error lkixs t,ib o:f, 377
Y Err,yr B-ars :ab of, 377, 38::;

format PrDpertles
Dot Density Options t~'lh of, 414
Lege11d Option,; I.ab of, 42 l
Pie Chart Options tab ol, 416
Value Shading Options I.ab of,

41!-412
f,Test, 647
Function Wizard. 641
Ge ToSpt,clal, 145---14£, 701-703
<~oa15ee.k, 395,619,622
(,radnated Syrnbo:. Opti,:.ms, 414
Gmuping, 580
Histogn,m, 64t,L.fi49
Insert, 1::14
lnsert C,1lculated field, 58::'l
Insert Hyperlink, 693
lns,2,t Picture, :120
invoketl tllrou~h rnem,s, &1
Links, 445, 6'/0
Macro, 797
Map Features, 422
Map Labels, 119
Merge ::kemarios. 612
l','fo;ro,,K•i't Map Control, 410
Moving Average, 650
Mulllple Maps AvaHabl•;, 401)
navigating using keybaard, 65
New, 74, 75
New 1595
Object, 679
Open, 75-7.8, 493
Options, rn:1, 184

Chal:"t tab ol, 384-31",S
Custom Lists tab of, 535

Paglo Setup, 264, 266-273
Chart tab of, 303
l-leader/Footer tab ,,f, .269-27.l
margin adjustments, 258
:'l'largins tab of, 268
page settings, 267
F'Rge tab af, 267
printer-sp,)cifk options 273
shed optlons, 27 !-2n
Sheet tab o!, 271

Pa..ste, 797
Past(' Function. 205, 208, 232, 798
Paste Name, 167, 176, 191
Paste Special, !55, 158, 379, 451,

!:i71--li72, 67~>-674
PivotTable an-d P'ivotChart Wizard,

5tifi-5()9
PivotTable field, 576
Plvoffable Options, 572-57:3

Enable d.rilldown option, 581
Prlnt, 264-265

Options button, 273
Project PrnJw.rties, 867-868
Pruperties, 85,264, :s57

Summary lab ol, J57
Protect Sheet, 355
Query Wizard, 51!",-5<!9
Random Nu.mb,ir Generation,

f,51-652
Record Macro, 7til
Regri:,s;,;lon, 654
Resolve Unknown Geographic Data,

425
SampHng, 655

As, ::n, 38, 81, 82-83, 86 .. 690
Save Options, 83
Scenario Man.ag'"r, 609
SnmariD Summary, 612-613
Scenruio Values, 610
Settings, 438
Srum .. "() Workbook, 482. 48:'l

Advanced tab ol, 483-484
Show Pages, 581-582
Solver Options, 627--628
Solver Parameters, 624

Set Target Cell field of, 625
Solver Results, 626
Sort, 532-53:3
Sort Options, 533-,534
Sm.irce Data, 2178-379
Sp,"!l.'.:i!y Geographic Data, 424
.Spelling, 708
Style, 260, 261
Subtotal. 537
tabbc-<l, 68-6:J

co.ntinued

emnosUSA0017579

CiM Ex. 1054 Page 257

dla!og t"tf=1x(,:;:;sJ1 ((x.1,ntinue11)
'!able, 602
T,;.:xt import Wiza,d, 504~5(/8

Paired Sample for Me,:Ulli,
f)f}tj

l)sc•rFmm .. 2D
We;:; Options, 691
WordA.rt Gallery., 334
Word's 01.;jeel, 6TI
Worksheet Auditfr,g, 71J€
Zoom,

DIE mes, 322, 499
Dice Game, 718, 719

Interchange Format), l3.
dlgJta1 C.i:-trnera, irnp(:rrttng graphtcs frrrJ.tn,

:324-325
dimer::sions, OLAJ', 543, 5G6
direct precedent, 701
Dl5C !im.ction, f){i{,

dis.crete distribution, 6f,2
display seWrigs, custom "iews of, 278
di.3tributions, randorn nun1her 1 65~!
#DIV/0!, 706
tUvklends 1 637
division by zero, 1B2
division operatQr, l 70, 172
DMAX luuc'.iun, 529
Dl\·'l!N !unction, 529
dor.umeutlng work,]56-357
doni.ments, on Wlndov,s Taskbar, 18
does not begin with npffcat.ur, 549
does not ,:ontain opera.tor. 549

end witb operator, 549
docs not equal ,operator, 54D
OOL!.AXDE tunctJon, 660
D()L.LARFR function, 6f,!J
00;'; window, copying conlfmt,; Into

Clipboard,
dot <leu;ity map io,mat, 4 lJ.,4 l4
doughnut charts. 2H5,)il,J

clown-bars,
download, defined, 686
DPROf)UCT function, 52!,
draft quality printing, 272
dr.ag and d:rop, copying 1·c1nges using,

152-153
drag and drop fields, 570
dragging, dumging worksheet v;,lue by,

~F/4-'.'.%
layPr, 93, 323, 325

drawing, ,;ymmetrical pattern, '/21
drawing tips, 33;";..,336
Drawing too!hm, ,125-327
drawing tools, 325 ... 334

Ant,::,ShafM'ln '.l27-330
for annotating charts, 341
cailing attention cell, 335, 337

to change look oi oell cu1mnent:s,
33s..;1:19

char:ging defaults, 333
ex;,mpJes, 3:36-1142
flow di~iams using, 340
formatting objects, 328-33()
lnserting text iri, ,135
linked to cell, 339-34-0
o,gan1zational drnrts using, 338
sh13dow ,mij 3D dfocts, 33~-334,

33fi-,-337
shape ca.tegories, 327

objects
alignlnK 332
changing stack order o!, 330-331
grouping., :tJl
spacing E·venly, 332

pasting pictures of 341-342
Won.IA.rt, 334-336

drawing tips, 335-33(,
exarnp!e- of, .335

drop-down box.es, 68
drop-down lists, 518
droplines, 367
DRW lifos, '.122
DSS an«lys,s, 543
DSTDEV fum:t:on, 52~i
DSTDJWP funct1on, 529
D:SlJM lunctio!!, 231, :i29
dumb terminals, 479
dummy data, 354
DUR4T!ON frni<.:tion,
DV;\J'l. function. 529
DVARP function, &2i!
dynamk crosst,,b table, array !onnulas

in 475-47fi

E
EDATE function,
Edit mem1, 52
editing

array formulas, 463-464
eel.I content,;, 99 1!)2

iormu!as, 182-183
selecting characters dvring, 183

iunc!tons. 200
ma.:rns, 7il5
rexords, 55,(i
SERIES formula, 380-38 l
using Data Form oialog bm:,

rfl,E.CT !unct\()n, 660
c:lHpsis1 i:neuu itt:In~ e:ocU.ng f)4
e-rncil attadnr.ents, wmkb-0ok mailed

as, 48fr--485
e .. mail, defined, f>86
embedrled chart,,, 284, 29l, 293, :l02, '.'$6:1

ol'ganl;;.adonal chart;;, ti8 I

embedding ubject !h::dd11g
a:1d embeddlng

EMF :£22
key, 101

ErnJ method, 842
End keyword,
ends with operntor, ~~9

Engineering category functions., 658,,659
Ent<::r key, WI
EOMONTH function, 658
EOS files, 322

tQ operator,, 1 'lO, 526
1.~uals operator, 549
e.:rasing cell contents, 99, 10(}, See

deleting
Eii\F function, 65::i
.ERFC function, &59
ermr(s). See also tr,mhfoshootir;g

,E:turnec by 181-,182
In spreadsheets, 358~-:.ISS
syn:c1-x, T/2

'llfl'Ol' bars, in <:hart. 367, 385-386
error vaiuEs 1 tra.cir!g, 70S.- 706
f'.urn currency sym!;uJ.s, .19
Eurnpe, map of. 408, 423
event handling, aw, 812·-..'H3, Bl7-8Jll1
Exce'l 4
~'..xcCi ~1,
Excel 4,
£xce!5,1,86
Excei 7 (Excel for Windows 95:;, ,~ .. 5
Excel 8 {K~d 97}, 5
f""'cel Exn,! 2000 (llighlighted

features)
Excel 97,318
Excel 2000 (highligril.(1d features),

l~-20
active windows
actcHng/removlrng in, 739
a,Lima,ed GiF mes in, 320
!\s:;ign Hypel'llnk lu. '741
a.htrn:n~Hc forrrnJe tJd}usttnent
Aut0Shape,1. 327
d1angea:}le range n;!erences in, 2u'\
CH~, Gallery_ ::HS
Clipboard operatlon1i l11, 666, 667
Clipboard toolbar !n, fl()

Clip& Online, :119
defaull !ih, formats in, 86
documents on 'V,/ind(:tws task.bar 1n1

l8
enhanced Clipboard Jg,,.19
Euro ,~unency symbols 19

di.a.log ooxes Hi
finding k,-st workt)ooks in, 79
!oc1ts in, J
hEc11der/1,x1ter Hm.itat).ons io, 271
help system

emnosUSA0017580

CiM Ex. 1054 Page 258

fffML featurns
lmage import options, 19
importing imagt'.s ln, 324
,m,ert C:llp Art and Line Coior ln, 32i'
installation impmvemenls in, 15
lntemet feawres of, rn
macro re<:<Irder bug fu: in, 769. 842
menus in. 55
modeless UserFonns, 20
multilingual features o!.,
native file f.;;,rmat o.l, 492
Office A,.frsisHmt in. 19-:20
Optoa dialog box in, 75, 7H
parts oL 21-27

dose button, i:.!
iorrrmia bar, 23
menu bar, 23
rninimi7e button 1 2:1
aamebox. 23
restore button, 23
status bac 22. 24
title bar, 22
toolbars, 23
window cmitrol menu button,
oi workbook window, 24,-27

pE:rsonalized menus 17, .. 18
Pivot chart report$ lu, S8x
PivotTabk! enhancement, 17
Pivotl'.able toolbar in, 570
refreshing (jueriPs in, 552
see-thnmgh cell :sdection l 7
''See-through Viewr in, 141
Standard and l'(>rmaUing too!bars

ill, 59
statistical functions in, 231
templates in, 89
toolbar r:ustomi:rntion in, 18
V13A ln, 75E,
WetJ pag,~ adlvaUorn from toolba.r

button, 746
Web tab Jeature,

l:ixcel 2()/)(i Power Programming with
l/B4, 771, 784

Excel (all versions), :i-14
compet.!tors of, 5
defined, .3
evolution of,
features oi, 5-14

add-in capaoility. 13
analytical tools, 10
bullt-ln functions, 8
chz.rts, 9
cross-plalJorm consistei:u:y,
custQml:wble to,ilba.rs, 8
database management, 1
dialog boxes, 12
drawing tools, ii
eas.y-to-usit~1

<'(Jmpatibllity,
mtegrn.te<l mapping. 9
J,nt-eracUv?. 7
!ntemet supp,;,rt, 14
list management, 7
multlpk document ,nterface, 5
mul!lsrieet files (wo!"kbooks). fl
OLE SBP.iJOft, 13
pivot lU
printing prlnt preview, !O
protection options, 13
scenarto n:.anag:e111en:t1 1
spell <:h(,-cking and AutoCorrec!., l l
templates, l l, 12
text i'onnatUug;
tell1 handling,
Visual Basic for Apµl1callo.11s

(VBA), l'.l
w<;rksheet au~:iting a.nd

annotation, HJ
worksh(;et controls, 12, 13
worksheet outl!nlng, lO
XLM macro compatibility,

m~, ·~omp.atll:,llity among versions of,
86

quitting, 38
starting, 2 !

Expense State ternpla!e, 89
Exponential Smoothing: !ool, fi46,...(i47
expnnt·mtiat1(>n opendor. 170: ! 72
expressions, as argi.tments, 202-203
extema! data iiles. 539-557

adding and editing rcum:ls in, 556
foif pivot table., 505
<iueries 540--550

chm1gn1g, 553-554
copying or mcrvlng, 55:,
creating_, 554-555
del-eV.ng1 {353
(.. xten1a1 data ranges~ !5S 1 ~~5fr4
to get data, 541
multiple, 553
operntondor, 549
without Query Wizard, 554-557
refre.shing.552-553
selecting data source, 542-545
starting, 542
uslnij :n.1illtiple databa£;e tabies.

using Qmery Wlzan.l, 545-55Cr
masons fo, using, 539-540

ell'.t,~rr;;!l rclenmcl" formulas, 442-,4411
iur ,ccnsoHdating WlH"Mlie,ets 1

449.A5l
creating by 44:'.l
creating bJ; pointing, 443
data H:c<>ve,y using, 44'9
opening workbook ""ith, 444-445

f

potenti.a! problems with, 447-448
syntax for, ,,14z,..,1-4;,J.

i·1\CTDOU8LE function, 659
features in Exc.en 2000, 16

HTML as native file format, 690··"!l9l
hypedinks, 693--611'1
Information a:vailahie on, fi87
lnb'lractivity with Wd, documents,

691-692
m11illng Ust~, 689
uewsgroups, f,SH
tt.'n:ninology of, 686
Web 694-697
Web toolb.ar, 6:n,--693

lleld(s)
adding. 575
ca,culated, 582-58:l
category, 562
colamn .. 562
data. 562
defined, 542
drag and ctrnp, 5 70
page, .561, 562,571
n,moving, 575
row, 563., 574

iidd buttons, 574
iile(s), 71-90, See also external data.

t1"ble;(,;}. workbook(,;)
.add-in, 84
backing up, 9{J
conupted, 90, !vl9
data, 72
defined, 7i, 192
display pre!en;;nc.es,
manip,llation of, 71
nmil:isheet. See workbook(s)
naming rules for, 82
properties 71-72
,ead-0nly, 480
templat.,i. See t<:cmpla1.e(,;)
workspace, 88

file cornpatib'ility 1 7
rik dialog boxes, 1.6

!rnrmats, 492-4!W
d1Xtaoose, 493, 495
HTML, Hi, n 493, 686, 69(µ;91
Lotus J-2-3, 494-495

493
(tuattrn Pn:, 4'93, 4!l,i
le,:;.1:, 493, 49'i-4%

fik: reservation, 479-481
FJle ,;, A,; ci)mmand, 447
file secm·ity, 83
me servers, Hi, 479, 480

b;~,d,,1p copii>s on. 90

emnosUSA0017581

CiM Ex. 1054 Page 259

File (FfP/, 6:86
Fi!d Color tool, 301
m1 lurn<lle, 29, 148
ll!tedng

by Hie type,
lists, 517-528

-'l.dvancetl, $22-528
AutoFiitering, 517-522

for queries. 546
F!rn,nclal categoi-:,1 fllm:11ons, 660·-·661
fimmciai !unctions, 223,,225. See also

s,necific names of functu:m,
d{\preciath:m, 223--224
loan arul ar:mc,Jty, 224"-2:!5

financial mrn:tds., ::;46-348
flm::ling 79
finding workbooks, 79
fin;! key >i<ffl 533
fitst page munber. 267
fixed value error 385
llo<1ting t,.,o.ibars, 59
fl,c>or o! 3D cl11,rts, 367, 392
flow diagrams, 3'H!
lokier(s)

hold:,~ existing w,xkoooks, 77
Pe:rsonal, 82

8(1

font(,;}, l l.3. 237'--242
d1ai1glng, 239 -211 l
defanlt.
displayingi
problems with.
in spr,,adsh~t;,, 353
Tme1yµ,,, 279

footers, 269--271
u,;,:m;;,mo, 271

Fonn Wtzar-d, 516
forn:iattinf

of anays, 464
ActrnShap€ objects. :{23 .• 330

ol cell5, by pasting, t5}J
ol diruts, 85 l.---8S2
Cond;rional, 109

seiecling celi.s with, 147
ol data,
ol ll!ltnben;, automati•c, l03
oi spreadsheet, 353,.354
styli;,tic . .See stylistic formatting
o! rnbles. 3l--34

pivot t;.\bles, 576--ST!
text,\)

of values, l02-l
auto.n1atic: 103
custom, .W7. WS--11~!
types 104-· 1tl8
using ;c,hor!cut keys, 104
w,mg tool!x1.r, H/3--HM

lonnatting code&, 109-.. 111

F'nrmatHng tnnlbm, 58---59, t03--104, 2:17
fonn,

data ,:ntry, 18--119
Microsoft Access, 5 l c-·-5' l 7

Forms toolbar, 824
formula(s), !(i9-19B. Se<? 1:iiso array

fon1ndas; funct!on(s)
Auto(orrect ie.,,ture for. 17',, 700
Auto.Fill instead o!, l8'i
autoauat!<: adjustrnent Jn, 17
calculation ol, i83-l84
;:ell rtcf,i-rendng in

absolute, 178, 179-180, 181,191

relative, 178-J79, 18il, Ell
outsld1, worksh<*"t, 177-178

colur c,:,Giug ol cells with. 70:3
cor:.solitlating worksheets by using,

ii-49--451
converti1lg tovalues 1 197·~.,.198
creating, :n
as data type, 95
debugging. See troubleshooting
editing, 182-18'.j

sdecth,g character dvr!ng, 18:l
ehement:.. of, 169
entering, 17 4·~· 176

manual, 17!i
!76

by pohrting, 17S-l 76, l 78
spreadsh,'.(it, 352--3S3

errnr re,urned !J.y, l 8 l--182
examples oi, no, HJ
exponential smoothing and. fi46
exte:mal reiel'ence. 442-4413

creating by pasting, 44:l
creaHng by po'ntlng, 443
opening wodd..1uuk wlth, 4,14_445
potential pi:obJmns wltb,

447-441:i
synl:.ax for, 442,44:-l

filt,ffcd Hsts aod, 519
"hard coding'' values in, l9li,
1 nserti11g, 756

making
names in, 181:'~·196

applk1d to E'JXlsting ref.,rnncP$,
194-!96

constantw, 190-191
multishc,et, 189-190
sheet--levd. 1.88-189

namlng, 191--192
op;;:rntors in, 169, i 70 ... 174

precedence of, 172-17 4
outlines .and,

pasting as values,
perlorming opera,iom,

without, 159--160
se.le1':Ur11s c:eH:s vvith, 11£
summar_y 1 434
~e\"it'lng, T12

Formula Bar, 23, H7, 100, !Ol
:bn:cket5 in,
as ca.lculatm, 19G--· l 97

formula list, 707
formula Pai<'ctte, 100-lOl, 208

ent\.'ri.ng kirr,wlas using.
Im pasting !unctions, 204, 209
to specify arguments, 20f:t-2Dfi

loop, 743. 779
Fm.irlea· Am,lys;s tool, 648
fr.actwns, 118
freezir.g/unh'eezing panes 131--132
~front erid"' for users, 756
frozen paiws. custom view~ 278
Fiest (Two-San;pJ.e Test ior Va.rianc,,J,

ITP (Fl!e Transfi•r Protocol), 586
ITP sit€S, 686, 687
li.mction(s), !06, 199-234
run ct i 0,1 keywoni, 78-8
function Ji,,t box (Cor,soH,.L,k dialog

bQx), 452
foncrions, 8, 174. See also VBA

functions; srxcifk: names
lunctlons

add-in·& to fiimpUfy acce5~ toJ 860
ToolPak, 511, 657---662

Date & Time category, 657--658
Englu-ee:ring ~:a:tt~gory,
fk1a,1dal category, 660--tifii
lnf-orffiation ,categ0Jy1

Math Trig category, 662
argume,1ts of, 201-203

expr€'..ssions ,:,.:,s1

Htcm,1, 202
narnes .as) 202
other functions as. 203

<l&t<1l:,,1,;1e. 2:11~~32, 528--529. See a/so
sped/fr umnes vl tur1cti<ms

.,,vith lists, 52&--529

marmal. :m:,--2fVi
by pai.;ting, 204~-207
tips 208-209

examples of, 199-·200
nuanua,1. 223-225

<lepre<::iatlon, 223-224
loan w,d ~umuity, 224-225

in formulas, lc9

emnosUSA0017582

CiM Ex. 1054 Page 260

lnformati<:1n, 218-221
logical, 21~218
lookup, 225-229
mathematical and trlgonmnetric,

209--213
uested, 20a, 208
1refere11ce, 225-229
statistical, 229--23 !
text, 214-211,
time, 221,223
trigonometric, 725--726
volatile. 21()

FV hmctlon, 225
FVSCHE.DULE. function. 661

G
gl:!cme;;;, 715-720

Keno, 717
Moving Tile Puzzl<'\ 716
!n Power Utility Pak, 717-720

Bomb Hunt. 71&-7! 9
IJ!ce Game, 718, 719
Hangman, 7l.9-720
Video Poker, 71 7- 7113

T!d-Tack-Toe. 715-716
Gantt chart, 399-401
GCD function, 662
general number format, Hl7
GESTEP !unction, 659
Glf'flles, 322

animated, :320
goal :seeking, s1ngle«eell 10,

example ot, 1.ilS-619
graphical, &20...(522

graduated syrnb,:il map format, 4i4-4l5,
417

1,rra.11.d totals, 562
graphical goal ;;ceking, 620-622
graphics, 317-325. See afao dl'awing

tools
t,ttmap vs. vector irnages, 121
Clip GaUery, 3'!8-320
copying, 667
copying, using C!iphoard, 322-323
file formats supported, 32;!
lmportlng, ;J20...:l22

from digital cam em .o, scamwr,
324-325

p:rogrnmm\ng, 848"'850
graphs, See chart(s)
greater than operator, 170, 172, 52C
greater t:."ian or equal to opeirato.r. ! 70

526
g.rld!ines, 364

borders and, 114
on chart, 364, ,l67, '.Hl,--'.172
r1rl11tlng, 212

!,',fQUpil,g

by dates, 593

in pivot table 562
guitar fret board application .. 722

H
Ha;igman, 719-720
hard coding value-'!,, 5~16
hanj disk, 7 l
hanl <lisk failure. 90
i1eader rnw, 5 I :1

sorting and, 534
he.ading(s). 2Gf>-27t

l.'Oh.KHliL, 131
entering, 28~:10
multi!i,w, 271
printing mw au<l ,:oh.mm, 272
row, 131
using as narn;:,s, i 95
on workbook window, 26

help
for commands. 58
HTML system, 19
intc:racHve, 7
onllne, 784

HEX2BlN im,cUon, 659
HE'.,X2DEC kmdion, 65!1
Hi::.X20CT function, 659
HGL mes, 322
hidd•on mws anrJ ,:olunms, custom

views ol, 278
hiding

o! cells beion~ p,!ntlng., 280.-28 i
contmllh1.g s,c,:<::s by, :~4-385
lterrrn in pivot tables, ,176 •
outline symbols, JJ.::19
:rows and cohmms, 13o .. [:H
toolba,s. 6 l--62, 735
o! worksheets, 125

bigh-lnw linen, :l67
Histogram tool, 174, 648--tittS
hii;togni!JTIS. comparative, 401-402
..... ,,,.,,~,._,, function, 22ti
Home key, 101
horlzontal cell alignment, 242-,244
h,,rlzontal scrollbar, on workhook

window. 26
hot (accderntor) key, 56, 65,820. See

aLm ;;bortcnt keys
HOUR funcU011, 223
HTML Hies. 16, 73,493,496, 69fJ.--u9!

defir.c:d, 686
pastii~g, 672 1 674

"'HTML Help" system, 19
HTTP, defined, 68G
hype.rlinks, 686, 693-694

k011s, laige, ·,36
!DG Books Web site, 689
lF function, 217-218, 46.2

col!strnct, 77&-779
!MABS kmcti.on, 659
!mag;; control, S1t3
image import options. 19
lmage on tooibar button, 744-745

grar,hicB
IMAGINARY function, 659
IMARGUMF.NT function, 65i!
!MCOT'iJOGATE im,C'.tinn, 6:'i9
!MCOS function, fl5:l
!MDIV lundion. 659
IMKXP fum:tim1, 659
IMLN fu;iction, fi59
lMLOGHJ fun,:tion, 659
lMJ .OG2 function, 6'i9
importhigdata, 491,-.f')l)!)

from another Windows appiication,
600-6\Ji

through CHphoar<l, 497-502
rne iorniats supported, 492-49£

database, 49:1, 495
HTML, 493. 4!l6
Lotus 1·2-3, 493, 494-495
ollwr, 49,S
Quattrn Pro, 49:l, 495
text, 493, 49.5-496

gn,phic:S, 3.20-322
from digital camera or scanner,

nH:thods of,
from rwn-Wlndows .appt!cat!on.

501--502
overvi.ew .. 41)]

from text files, 502-509
uslng Text lmpo,i Wizard.

504-50:,i
IMPOWER runcti<m, (if)9
IMPRODUCT function, 659
IMRf:AL function, 659
IMS!N !unction, (,59
IMSQRT function, 659
lMSUB h.mctlon, 659
lMSUM function, 659
Increase Declmai button, 103
lncremf'-qtaJ values, Aut,,1<111 to

l87
INDEX hmctim:, 208, 227, 228
indirect cm:ui,rr reforenc<".s, 1S6
lNDfRECT fom::tion, 228·-22\:l
lndln:.>ct precedent, 701
INFO function, 22ii
lnformati(m cateo-Jrn·y iua,:tions, 561-662
information functions, 218-.221, See also

specific name5 of nmction:;
IripL1-c::o:, fl.lnct.ion, Bi.li-S03, 844-,'345

emnosUSA0017583

CiM Ex. 1054 Page 261

ln:sert k(~y. HJl
ms,,,,,,, m1, See als,o pastlng

buttons, 73B
CommandUutton, 8d~J-!630
fonHadas, 756
page brnaks, 276

and columns, l:!3-135
te:;."t in AutoSllapes, 335
text :,trings, 756
VvordArt image, 3:l4

insertion point, 101
ins~anatlon., 15
[NT function, 20!)
ill!entkmal circular rderen,:es, 186-,188
interactive :1elp, 7
interface, multiple docurnem. 6
intermediary fornmlas, 469
intermediary link, 44 7
!nt,irnet, 685-697

acce$Sing 1 687
defined, 685, 686

lnle,nl:t AS$iStant Wizard, B59
Internet Explorer, €92
Internet Service Provider (ISP), 687
lnt(:rnet support, l 4
hiter;;ection operator, .192-193
inkrscctimi, range, 182, 192-194
lr1tranet, sav:!ng over, '!6
!NTRATE ltmcUon, fi61
investment portfolio, optimizing,

6::l-6-638
hrvok:e template, 89
[PMT iunc:non, ~:25
is betwe:,m oper:ato,, 549
is greate.r than ope•'ator, 5,·19
i,; gre;,,tc:r tJ:iun o.r equal (Q operntor, S49
is lei;s than O[)erator, 34!.l
is !e,rn than or equa, to operator, 549

not between OfHlrator, 549
ls not Nell operat,or, 54'J
i,;, not om, of operator, 549
is Null opernw,, :,49
\;; one of operat<:n, 54'!
!SBLANK function, 219
l5ERR function, 219
lSERHOt, function, 2Ul. 220 ,22!
iSEVEN function, 662
lSLOGlCAL function,
1SNA fonc!lon,
lSNONTEXT, 219
iSJ\i!JM3ER !uncth>D,
!SOD[) function, 662
ISP (Internet Service ProV:,der), 6S7
l5:PMT lunc~ion 225
!SREfl fur,ctwn,
lSTEXT function.

ealculsted, 5ll3--585
in pivot tabks, 562, 576

setti.t4J 1 .referenceg
and., 185, 188

J
JPG liles, 322

K
Keno,
keyboard

menu manipulation with, 55-56
navigauon using

through dia.log tw:,xes, 65
ttm::,,,gh worksheets.

keyboard ,commands
to dtsptay shortcut menus, 58
to ma;,lp11late wln,fovls,

keyboan1 shortcuts, See shortcut keys
keys in chart !egend, :no

L
labd(s)

data, ln chatts, :165-366, 382-38:3
i,n lists. 513
on maps, 419-420
Uck mark. :n 4

control, 833
LARGE hmction, 231
last sek:<.'.ling, Mo

ilexit>l<:, :l:,8
flm'Ction, 6ri:2

Ldt Hll
LEFT !unction, 2(12, 215
l,s,gends

chart, 36 7. 370-,37 l
map, 421 "422
furn:tion. 215,470
than o~l€rator, l 70, l 72, 526
than or eql\al to opc:rntor, 170,526

Uke operator, 549
break

line chart, 285, :106
liHear trends, :3:87
lines, 24:J-252
lin!.(s)

for data recovery, 44H
iut<crme<liary, 447

link formulas. See e.'ften~,I n,!en:£K'"
formulas

linked charts, 587
linking

data., data sharing by, 669--670
text in objoc! cell, 3:l9-<l40
workl:;,::iok,;., 441-448

changing tin,.; souroc, 446
examining link!:, 445
ex!enial refote!\ce l,)rmulas for,

442-446
reasc.,ns for, 441-442
to recnve:r ,dat'\1 frcrn corrupted

Hles, 449
sev<cring links, 446
to m1sa:ved workbook,
c1pdating links, 446

worksheets, ,:;onso!ictating
worksl1<:i!:'ts and, 442

link-·u,pdate requests, 67{)
;) I l -38. Sec, also databast,(s)

custorw.:!1\ ·4.81
data entry into,

with Da.!a Fonn dialog 51r>
Mierosoft Acn,ss fonns for,

51&-517
dat,.ibase functK,ns with, 528-.529
d,H:abase tables, .231
defined, 511~512
des!gnkg, 513
dmp-dowu, 518
example of, 51.2
flHering, 517-528

advanced, 522,-528
AutofHterlrtg, 517-522

formula, '707
malling, 68 7, 689
o:i names, pa.sting, 713
pick, 5l4
pivot tables an{l, 565
size lirnits on:

5~~9-5:1U
complex, 5:',0-534
custom 534-535
me !isl, 78
simple, 5;;10

subtotals from, 536-538
uses ot Sl2-51~}

list management., 7
spreadsheets fur, 348, :i49

LlstBox control, 833-83/l
list,,boxe.s, 67

Font Slzc, J4, 35
iiternJ arguments, 20i!
loan t,ml annuity functions, 224-225
fogical comparison opcra:t,xs, 170
k,glcal functions, .216--218 See al.~o

specific nan,es ,of hmctions
loo.k:J:p iu.nctions, 225r=229. 5/ee ahK;

specific rwmeo' of funclions

emnosUSA0017584

CiM Ex. 1054 Page 262

Lookup Wiza.rd, 859
looping

with arrays, 461,-t62
through nmgeH. 84'1-844

Lotus 1,,2-'.3, 5, 49'.3, 494-495
me formats, 73
sprea<ls.hm"ts,

Lotu,i Word Pm, 671
LO\VER Junction, :'.l 6

M
rnacrcH>ssisted what-H analyses,

597--599
macros, Hil. also VSA functions

assigning to tooibar button, 770
760

597, 755, 759
for dialog oox controls, 829--830
editing, 765
exumlning, 7'62-764
ex;::rrnp!~ of 1 7f.if)--7f}7
uon-recordabie, 780-783
prnprietary, S58
recording, 7-50-762, 767--769

absolute vs. relative, 768--769
storing, 769--770
testing, 764--765
XLM language, 755

mailing lists, 687, 689
mailing workbook a..s e-rnaH nttad1.rnent,

485-486
mainframe systems, 179
mainteJ,ance

ol spreadsh(oet, 358
oi workbook ::!58

maj,u gridllr:es, 372
major tick marl!:l:I, 373
Manual Cakulation mode 183
manual what-U analyses, 597
MAP! (Messaging Applkation

P:rogrammin!,l lnterface} 485
maps/mapping, 405-427

adding and removing features,
422-424

addlug data t,,, 4~16
available !n Mlernsnll Map, 407-409
conve1·Hng to pktlffe, 426
cn'!atlng, 409-41

category sha<lh~. 412-4 \3
column-chart map;;, 4I6, ,1,7
C<'lmhined forroats, 4lfi
data setup, 409
dot derisity. 412-414
formats, 410,-411
graduated symbol, 414-415, 417
ple<ha.rt maps, 413-,.-416
val~ll" s\1;,,ding, 41'1-41.2. 417

cm,tornizing, ,re 7 .. 413
example of, 406-40,'
integrated mapplng, 9
!;,bets on, 4 l:J-420
legends for, 421-4:!2
ov,"rvk,w o!, 405
pins on, 42D-42 l
pivot table data to crnate, 5fl!-'l92
plotting U.S. ,:ip codes, 424-425
repos ltion!ng, 419
templates. 426
wr,rkshe.et, 707
;wom.tng in and out, 418-•i19

ID<l'!'gln adjustmcri.ts,
in print prt;vi,ew w.lndo•w, 275

MATH fur,.clion, 227,228
Math & Tr,!g ,;:ategory functions, 6112
mathematical !unctions, 209-213. Se,~

a!so specili<: n.o.rne,s of
functions

rnathensaticcJ op~~raUvirns, µerfon.nirtg
without formulas, 15S-l6{)

rnatri?:., ieovarta.n(,:t:1 H44
MAX function, 2::10
MAXA function, 231
maximized state 43
MDURATIO'.'/ function, 66J
megaformulas, 232-234
rnemo:ry, ,.rtrtual, 72
rnenu(s}, 51-,.57

animated, 737
:uutomati<: customizatwn -0!, 55
dialog boxes h;voked thrrnigh, 54
guyed out items on, 54
k,~ybo,trd manipulation of, 5!:.'-56
rnoi .. ~e rn:-.anLpulation of. 52-5-5
rnoving, 56-.'.}7
p,ersonall:z•Jd, J 7-18, 736
shortcut (eontext m<cinus), 57.,{\11
shortcut keys asscdated with Hems

(>Kl, 54
:subu.1enus, 53

rnen1J bar, .23:, 51-52
as toolbar, 56

Merge and Center, 112
Me;rge and Center button, 33'>
merging named styles, 26l--:Mi2
messages 1 preventing_? 352-853
M,:,sr-;llging i\pplicaUo:r; Progrn.rnming

!ahlria<:·,i (MA.Pl), 485
methods,

de!lned, 759
oi objt~cts, 775, 778

Me'\11<:o, map ol,, 408, 423
Microsch Access forms, 516~.S t 7
Microsoft Acct~ssUnks A•k!-ln, 859
Mlcros,,f1 Bookshelf IHtegrdl<011, 859
MkrosoH Clip Gallery Live, '.:l 19

Microsoft Equal:iorc, 680, 681
Micm.,mft lntelliMmise, scrn!!ing ,'1th,

51
Microsoft Map. See maps/mapping
Microoofl Map toolb.ar, 418
Micwsoft Query, G41l See also

query(ies)
rnnnlng a.lone, 556

M!croso!t Windows, 21
MiorOJ1o!t Word

copyi,,g Clipboan:l ln!or.matlon to,
6ti7-fi68

data slmrini, fi7l-li74
pasting with link, 67.'l-674
pasting w:tliout link, 671·-673

new Excel object in, 677-678
range emb<>,drled ln Word document,

675---67'7
workbook embedded in, 679

Microsoft W,miArt, 6&J, 6B l
MID fun,:Uon, 215, 470
MIN fl.mction, 230
MINA functlon. 231
Minesweeper, 718
minimb.ed. state, 44
minor gridhnes, 372
minor marks, 373
mixed cell references, 180-181
MOD function, 471
mode.less UserForms, 21)
!nodule~ define-d, 759
monfo(s)

AutoFill !(I create series of, 187
grc,uping by, 593

function, 222

lielet\ng cells u$ing, 148
m,~ml manipnlatlon with, 52,.,55
navigatlng lhrough wi.ndows

wlthout, 47
naviga.tlng through worksheets

using., fi0-51
to select charactern, 102

moving
buttons, 738
cells, lf'>4-15S
<:harts, 299
dem,,nts charts, 301
menus, 56-57
qu,:;des. 55:3
ranges, 154-155
tool bars, 62,-6:1, 7:'l3- 73•1
windows, 44-45
worksheets, 124-I25

Mmrlng Average tool, 650-651
Mov!rlg Tlfo Pun!<,, 716
:'AROUND function, 662
MS Organization Chart. 680

emnosUSA0017585

CiM Ex. 1054 Page 263

lVIS Query Add-in for Excel 5
Compatibllily, 859

M,, <;f\c,x !unction, 803-"806

mul.tkolumn filt,,ring, f,19-520
MUtl'!NOMLll,.L ftmctlon, 662
multiple document lnterlace, 6
multiple sclm.:tions, 142-14:1
mulliplic,,tlon operator, l 7D, 172
nmllishe<~t files. See workbook(s)
multlsheet names, !R!l-,190
multisheet ranges, selecting, 143-145
multiuser applications, 480

N
#N/A, 706
NA hmcuon, 182
#NAME?, 706
Name box, 23, 163-164, 189
name of field button. 575
named ranges, 381-382, 515

in VBA code, &4(l
zoominK 128

named styles, .257-262, 358
applying. 259
c.ontromng witll templates, 262
creating, 260
deleting, .261
rne..rging, 261-262
modifyln~~. 261
overriding, 2f;o

munetl views, 133
names/naming, 18&-!96

applying lo e.xlshng ireforeru::.t·s,
l94-i96

as argumenti'i, 202
,;;<;!ls and rar,g.,..s., li:i!-168, 171

advru1tages of, lfil-162
automatic, lfi,1-166
changing, 168
deletlng, 167
manual, 162,-164
rndelinlng, 1fi8
tableo! n,,mes, 166--167
valid, 162

constants, 190-191
errors in, Hl2
of mes, 82
formulas, Hil-192
nf imKtions, 790
liberal use of, ;:1;53
multis:hs':e.t, !H!:t--190
range Intersections and, !93-194
row and eoh.llnll headings mmd aoS, 195
in SERJES fommla, using, 381-:382
sheet-level, 188--189
worksheet views, 133
work:sheets, 12:J-124

l'fo.vigat:e Cln;ular Reference box, 185
navigatin.;, 43-70

through n1\I content, l {! l
dialog twxe:s, 64-l,9

controls in, 64, 65~'68
by keyboal'fl, fl5
tabbed, 68-1,'.9

giving commamls, 51-64
reversing, 53
using menus, 51-57
using shortcut keys, 64
using shortc:.;t menus, 57--58
usln;g tuoH..ars, 5S--'6:~

windows,. 43,-47
closing, 47
,nouseless manip1.!!lation ol. 47
moving and r·p.s!zing, 44-45
sta.tf~~ 4:H4
switching among, 4f"t--'17

worksheets, 48--51
u.5ing keyboard, 41:J-..50
using mouse. S0--51

nested function, 208
nest•!d parentheses, !73
nest:ln,g

of .custom functions, 786
of hmctlnns, 217
of 5£.t\RCH function, 216

nesting functwms, 203
network sf,rve,. backup coplt•s on, !Kl
networks, Excel over, 479--488

me ,BServations, 479-481
mailing workbook as e-mail

attad,m,mL 485-48~,
muting workbook, 486-488
shared workbooks. 481-484

advanced settings lor, 483-484
appropriate stiar1ng. 481
cnnfhct!ng changes twtween

users, 484
designating 43z,..433
limltatir,ns of, 413:?
pernomil views, 484
tracking changes, 484
upd,;,,Hng <:hangP.s, 484

newsgroups, 687, 688
'"noisy" data, 387
NOMINAL function, 661
noucontigum,s ranges, sefocting,

142-143
nonddimlt<,d te71 !Hes, 503
nonrelathre
normal distiibmion, 652
N{mm1l style, 258
North America, map of, 4fi8
not equal to operator, 170, 526
nnt Hke opernhn, ;";49
notes. Sec comments

NPER lunctlcn, 225
#NULU, 70fi
#MJMI, 706
Nmn Lock key, 49
numl:x,r format, HJ7
numbers, formattlnfi . . See alsn value(s)

automatic, 103
using shortcut keys, li14
using toolb.ar, HJ:J-.104

uumencal llmitatlons, 95

0
object(s)

active, 774
AutoS.hape., formatting of, 328-:-1.'lO
cropping, 67S
defined, 751l
rnethods of, 775, 778
pastiag wo.-1,sheet, 672, €74
properties 774-775, 776-778
selecting cells with, .!46
VBA, 77S-776
\/BA manipulation ol, 713

object linking and umbedding (OLE),
674-,f,81

new Excel objed in Wonl, 677--ii78
objects embeddml ln worksheet,

67:J.-681
range. embedded ln Woro documimt,

675~677
wm·kbook emhedded In V1,()rd, fi79

object model. 77a, 774
Object Packager application, 680
object .. orlented language,
()bJects, drawing

aligning, 3,J2
changing i'<tai:k ord{1,, 3~JO<B1
forrr;atting, :128-330
grouping, 33i
slzlng ,;,:n,j rotating, 329
spacing evenly. 3:32

OCT2BJN tunctlon, 659
OCT20EC function, 659
OCT2HEX hmctio!l, 659
ODBC Add-in, 859
ODBC Manager, 545
ODBC (Open DataBase Connedivity),

542
OHDfl'RlCE function, 661
Ol)DFY!ELD function, 66 l
ODDLPRICE function, 661
ODDLYlt:Ll.1 function, fr61
Office 2000, 685, fi92
Office 2000 Cllpboard, 15:.-158
OfH<:e Assistant,,, 19-20
Oflke Client Pak, 692
Oftke Clipboard, 18-19, 150-151, 497

emnosUSA0017586

CiM Ex. 1054 Page 264

Off.et• !ooll,m, 15E,
offset block layout, :lSl

.lunct!t,n. 2~17,
OLAP Cube Wiwn!, 565

cubes, pivot t~,bles and. 56f!
(online amilyt:ka! prnc,:sslng)

database, s,t:t 5€6
cakuiated fields and, 582
c.Jculate>d jtems and, 584

OLE (object linking a.id embedding),

Word,

embedded !n worksheet,
(,7~-681

range e111betl<ltcd Wurd documelit,

{)LE s:.Jpport, 13
[le, f,ror siatement,851

Lotus i~2.-3
one-dilrnenslon~J array, 1J57
on1e'-'lnput data tables, 601}-603
On'Key m<sthod. 721
onllrn, a11alytica! pro<-:essir\g (OLAF)

databases, 54:·L 566

Data.Base Conmx:tiv\ty (ODBC) ..
S4:Z

opening workhouks. 71'>-80
1mtomatk, f!O
tie display preferences,
iiltering by me type, 77
spediyir,g folder for,
Too}s merw for, 18

operand enorn, l82
opernto~(,:i) 169, 170-·l 74. See

specific types of operators
r:c1nparison 1 S26
coneatern,.tion. 81)6
;n formu.\as, 169
:me:rseetion, I 92-HJ3
i:;n"cedence of, 172-·174
q11ery, 549
range,201
refor<":ice, HI:!

option (rad/,o) 6;,,-66
Opt!onBu,ton u>mroL 8:34--835
OR hm,:::tion, 218
(}R op,e:rat<.n, 525
organ!z;3tional ,charts, 3J8

,embedded, 6.81
orientation,

cell, 24!S--246
of 1leld button, 5 76
sorting by, 534

outlin-esy ,51}e WiJrk:c.;heet outl~nes

p
Page Break Preview mode, 265. 277-278
page breaks., 276-278

ins<:rtlng, 276
pn,viewing, 265, 277--278
removing, 276-277

in pivot
Pc\ge mm1her. first. 2fJ7
page setting~. 267
paired two-sample t-tesl !or mearn,. 656

freezing. 1:H-132
spli!ting, 1:30

paper sizej 267
parer1theses

nested, 1ni
to sffl: operator precedence, 17.2-174

Pareto (sorted histogram) option, 649
passwords, 83

in Protect Sheet dialog bm,:, 355
Past€ All lmHon,
J-)a5tin.g

consolirlating works hcmt;; hy, 4:-i !
ui functions, 204-207

exampli- of, 206-·207
hsl of name1>. 71:3
na,nes in .for,nula,. 176
pictures of cells, 341.-342
of VUA furn::.tlons, 79;'.-799

µastlng inlormation, 155--Hil
with omce Clipboard, 155-l58
special ways of, 158--ln l

pattenie.d distribution, 6S2
PCLl files, 322
PCT mes.
PCXH!e;,,322
pm,r-to--peer networks. 479
Pencen! Style buttnu, HH
per·eentnge er-ror ban\ 385
percentage lormat, l (J7
P,1rson.al din,cto,y, 7 !
Personal !older, 82
Persoaal Macro Workbook, 769-770
pcrsona!i;1.ed menu, 17-·Hl. 736
Pl !Jmction, 211
f'!ck from List menu. 11.
pick llsts.
pktme 39;',-399

Clipboard to create, ::197<:!99
graphic We t.o cmate, 3\r!

Picture toorb~tr, :{24
pictures

illO·difying.
flil.!'i!.lt!g, f,7A,

pictures o: cells, 341-342
pie chart, 28/i, 287, 30?.-.3!)8
pie-char! maps.
pins on maps, 420.-421
Pivot Table Wizard, 55D

10,

fro;:1:i, 587-588
COD}pleting, 567-573

finished pn,dm::t,
layout, .st,8-57!

568,

,o ,:ow1olidate work,-;heet,;,

c11stomer :geo~:rap!:k: analysts
59].,_.,592

dat;i appropriate Im,
dispfaymg on different

581-582
liddsln

adding,
c.alc-,.x!al.ed,

rernovh1g 1 575
formatting, 576-577
grnuptng by dates ln.
grouping Items 577-,581

cubes and, 566
pn:xloced by

refreshing, 57{1,
su.rvey datil. ·3.nalysis usi~1:fs,
terminology of, 562-563

f'ivotChart, 17
PivotChaxt Wizard, 5G4,
pivotiog, 571
PivotTabl·e to,;;,lhar, 436, 569-570
PivotT'able, 17, 56'1, aGG
plot area. 367. 368-3€9
plotting trigonometric lu1i;:t.lo11s,

72S.-72G
plotting US. zip code;;, 1l24--425
PMT hmction,
pr,;(; 32.2
points data 357
Poisson rll:stdhulinn, 652
po1i:folio, lrwestm1:nt, 63G-63S
position, consoiid.atmg worksh,eets by.

452

emnosUSA0017587

CiM Ex. 1054 Page 265

pound signs (#), 135. UH
Power 383

game11, Tl 7-720
Munt,

Hangma.n,
Sele<:t By Vi,.hie ut!iity, 783
Vid,eo Poker, 717-, 18

precedents
ceil, 701, 702·-704
selecting

prelormatting eomrlln.s,

presentations, spreadsheets lor, 348
PRlC:E lmictJon, 66 I
PR1CED!S(
PWCEM.,\T

prjnt prevh~w. l 0
print
pr~nt settings, custom vieivs of,
print tith~:~. :t72
printer, SBlectlng, 21i4-·265
p:rimrng, 10, 263,-282

charts, 3()2-JO'.l
custom view~ and, 278-279
font problem:., 279
h,:!ad~rs and f,-,ote:r~f
hldir,g cells t.lf'ime, 280,-281
margln adjustments, 2i:i8
r.r,,ultipie copies" 266
r.H}nconUguous 5 a11geti

page, 279-,280
ou1c~step, 260--264
page breaks,

inserting, 276
pr(·v~,e-wlrn;! 265, 277-278
removi»g, 27&-277

page settings., 267
print previJz~W feat'.,.tre

au•essing, 274-·275
making

prf!r1h;Yi,ving, 27S-2?6
printcff-·specillt' oµlions. 273
reports, 38
of selected page.;;, 26ti
settings for

adjusting, 254
ir: Page Seni;:, d'lalog twJs, 264,

266--273
in Print dialog box,

sheet optl,ms, 271-27:3
specifying ,,vhat priut, 266
terriptates cbang£ dcf£:tu1ts<i 281

proc,xlui,~s. Sef: also rnacr(,;s
759
dedan:itlc,n in, 855

pnigramm.ing. &:e VBA prognmiming
p.wgr.ams, 71

project tracking, 481
PROPER !unction, 216

control
CheckBox, 8:H
ComboBox. 832
ListBox, 831
OptionHutton, 3;:15

pwtectior. option;;, I 3
p:rote,:Um:, spreadsheet, :,,55-.357
Purd,asc, Ord'1r t'.:mp'late, 89
puzzles, wor<l 7221--724
PV function, 225
pyrumid charts, 235, 3 L4-315

Pm,5,20i, 493,495
file fon11ats, 73

query(les)
!142

on external databa:.e liles,
540-550

diangiug, !153-.554
copying ()r moving, c,53
creatjng, 554-f>55
ddeU11;;, 553
external :ranges, 55 J-5ti4
to get data, 541
multiple, 553
operators ior, S49
without Query Wtzar(l, 554-55 7
refres,hl.11~.552-553
sel.eci:ing datn source, 542-545

542
using multipl€ databc.se rar>les,

556
using ().u.1:fry \Vi2,arC, S45-55(1

r1cfresblng, 540, 542, 552-553, 695
saving, 549
Weh, 694,-697

query openitors. 549
quitting Exee,l, 38
QUOTIENT l,m,:tl()n, G62

R
du,irts, 285,

R,\.DlANS function, 20'.)

rndiD (option) button,;. hG-6f,
RAJ'l!D !unction, 20 l, 2 HJ
RANDBE1WEEC'I' !unction, 6f,2
!R.andQm Numbt~ (,eneration tcol,

651-652
rnnge(s), 139-168, 839--846. Sr,e

pivot .tahles
as argument o.f function, 795-796
army, 464

ru:TPs.y fon11tlia:s for count~ng
cbarncters in, 468---469

Mray forn,ulas !or identifying value
in, 467-468

army lormulas !or sm,iming nth
value in,

AutoShape r,round, 849-·850
bin, 648
copying, 149,-,154, 841J.,.84J

10 adjacPn! ('.dls, 153
to other sheets, 154
using drag and drop, 152-153
using menu conunei.nds, l~i'J
usiJJg shortcut ktys, .152
asing .shof'tcut rne:nus.,
using looUmr buttons.

523·-'.i24
data.

,rntnmatieally
n1.odHylng, 379-<lBO

dleilne<J,

40'.~

embedded ln Word do(urnent,
675-677

looping th'.!'{Jll!:7.h, s43 .. g4,1
rnoving 1 154-1$5, 84~3
multiple consolidation, 566
n,:rrned; 38 t -~·3S2.,

in VHA eerie. 84{1
zooming, 128

na.mr£/na.ming of, Ml·-·1615, 171
adwmtage;; ot. Hil-U,2
automatic, 164,,.Jfi(i

changing, I68
deleting, 1(17
ni.armal, 162-Hi4
,edefining, 168
tabk, of mtm,:s, t66·--167
vallJ. 162

ncncon.tiguous 1 on
279--280

prnrnpling lur l:ell value, 344--845
re:ference operators tor_ lft:;
:selectlr;g, l 40--l 4 7

all ;,;heets, !45
in army, 464
!or <::t1art.mg, 296
complet<" rows and col!.m,.ns,

1,U-142
<letermlnfrig type of, g45 .. .g45
to end oJ row ,)r column, !!42
ni:ultiplc, 846
moltlslneet rnnges, l43-14S
llL>Ht'.On'ti!','UOUS ranges, 142-143
row or colur:m, 842
spedal 14S.--!47

536
text box match,
transposing, l 60--HH

' _J

emnosUSA0017588

CiM Ex. 1054 Page 266

range intersection, 182, 192-194
RJi;ge object, 777
rnnge operator, 201
r~ng,e ·rt!ft~renC'i:JSi

as argum,enbl, 202
changeable, 204

range ,mlecl.ion boxes, 66, 67
Rank and Percer1tl!e too!, GS2---0:i:l
R/\.NK !unction, 472,~173
ranking, array formulas for, 47:2,473
RATE functim1, 225
RC reference style,, MG
read,-Gnly files, 480
riead-·c:niy opHonJ
re,J,ct-0nly properties, 776
rec,dcu!ation, automati,;;, 3
RECEIVED lundUm, 6£1
record(s). 542

adding, 536
editing, 556

recording macros, 760--762, 767,,769
absolute vs, relat.iv<", 768-,7fi:i

r<:ctfr.ngle obj~t to hide cens, 281
#REF", 706
reference functions, 22:',..!!.29, olF1

,:p,!cific r1am>'s of hwctiorM
reference operators, 193
R(iforence text box (C,ms;:,tidate dialog

box), 452
referem:es

,elL S;;u, ccH Tefer<,nc:es
rangtc, 2!)2, ,204

refreshing
pivot tn':11,cs, 562, :'175
queries, 540, {;95

Registry, 72
Regression tool, 653-655
relational datal:nL"ie, 542, 556
rt;:lative cell referencing, 178-179, 180,

191
relative nxordlng, 7G8-'?6,J
:relative re!erern;es. naming formulas

wid, 1.9a
removabltc medium, backt1p copies on

90
rero.oVJng Pfige breaks, 27fi.-277
l''J.:1:UW:tling toolt:JHTS) 735
repeating information d11ring data ent:ry,

l, 16
REPLACE. lum:tion, 215
rnpladng eel! contents, Y9
rnpmt(s)

PivotCharL !IB7-588
priuting, 38
s,:enario, 612-614
S0lve1'-generated, 626, 527
spreadsheets for, :H,8
svmmz,ry, 707

Report Manager, 359
reserva.tlon, 47f)-48!

.charts, 299
windows, 44-15

resom'ce allocation, 63[,,.,636
restored state, V!
result set, 542
revening coinrnands, 53
Right arrow, 101
RIGHT !unction, 215
ripple ~lfect, 182, 699
RLE. iiles, 322
RCMAN hmction,
roU1ting drawing object, 329
ROU'ID !unction, 21 l
routing w,;rkbooks, 486-488
mw(s), i33-1'.H

array formulas for returning la,;;t

value 4713
changing heights oi.
copying, 528
deleting, 135
displaying: i,miqu<:, 528
hiding, 136-137
lnse:rting, 133-135
in lis!'s, 513
selecting complete. 141-14'.e'.

1·-0w dlfforf:'nees. sele('ting c2ils with, 146
row Hekl, 563, 574
ROW function, 47{}

headings, 28-30, L31
printing, 272
sorting .:me, 534
using as oanit;s!
on workbook window, 26

RTF file, pasting, 672. 674
nm tl:;ne, 810

s
Sampliug too.I, 655
savlug

HTML format, 690
queries, 549
to server, 16
templates,
workbooks, 37-38. B0-87

default locatlon for, 82
naming rule.;;, 82

in older iormats, 8ti~7
options for, 83-84
smnrm.uy infonnation, 84-..S5
as te1;.t Hle 1 26S

scaiin_g, 267
scanner, lmp,fftlng graphics from,

324-325
scenario, defined, 397

scenairlu rnanag~1u~lll, 11
Scenario Manager, 598. 600, {,07-615

defining scenarios, (,0€-610
displaying scem),rios, 6 l l
limitatior..s ,,f, 614-61S
merglng scenario,;;, 612
modifying scenarios, 611
report generation, 612-61·1

S<:enados tc.01, 6l l
sci(~1 itifk f.ornrn.t i 07
scrap, 677

Tips, 737
scr€en update&, 852
Scroil Lock key, 49
Scro1iBar, 836

control
SpinBuiton, 836
TextBnx, ll"!'l-838

Control Tooll:wx controls, 826--828
d<o1ined, 759
odJles. 71-72
oi •objects, 774--77:';, 776-778

Scrnl!Bar control, 835-836
s,;roilba1·s, 50-51

on workbook window, 27
SEARCH !unctlon, 2 lf,
security, file, 83
see-thnmgh cell si,lectim1, 17
"See-through View," 141
Select All button on w<>rkbook window,

26
$elect by Vallie utHity, 783
Se,e-::c Case c.:mstruct 780
selet'ted cells an,l ranges, custom

of, 278
sel,ect.ing

cells
duringdataemry, 116
see-thrnngh, 1. 7

colvrnu:,
complete, 141-142
multiple, l3S
for quei-ylng, 545

data s,;;ries, 3 77
during editing formulas, 18:i
w!th rnou,;e, HJ2
parts of charts, 30\, 366
printing selecUm1, 266
range;i, 140-147

all sheets, 14S
in arr .ay. ,l,,34

cu1nµlete rows and c.oh.utn1s7

141-,142
multlshe,;t rangtis. l 43-145
noncoutiguo,,:s ranges, 142-113
spedal selections, 14S-l47

ect5peci method, 844
s-elf-repair feature, 15

emnosUSA0017589

CiM Ex. 1054 Page 267

sequential mutmg, 487
serial number system, date, 98
series, Autof'ill to create, 187
.serif;s axi;;,, 31:~ 7
SERIES formula

editing, 381Ja,38l
using rnum"s in, 3S1<i82

SERIES lunctinn, 381
SERlE.5SlJM function, 662
sc,rvor. 479, 48(l

ba(·kup cnple:;; on, YO
Microsott news, fi88
saving tu, 16

s,etup p:rogran1t 72
to install mapping IJ;'atmes, 410

shading, 246-249
shad(>W, AutoShapes, 333-3:3-4, 33fi...'3:~7
shar;;;d workbooks, 82, 88, 4131,-484

advanced settlngs for. 48:3-484
conflicting changes between

users, 484
persmial vit''i'iS, 484
trnckln11 s:.,hanges, 484
updating changes, 484

appropriate sharing, 4B I
ct,.,signatiug, 482--48"3
limitations of, 482

shar<>A workshe,,its, w:ith Analysis
ToolPak hmctions, 641

sharing, data. See under data
sli-ect(,,:). See also wor.ksht!et(s)

chart. 284, 292, W4-295
displaying pivot tables on dilf.erenl,

581-582
printing sekded, 266

sheet tabs on workbook w.indow, 26
shec•t.-;dt me, 750
shet:t"level names 188--189
Shif!:,End, 102
Shlft:-Home, 102
Shlft-leitll'lght arrow, 102
shortcut keys

to activate sheet, 122
associated with m1:nu Items, 54
for Cllpboa:rd operations, 501
lo <:Qpy ranges, 152
to create new workbook, 74
lor ei...::;cutlng macros, 766-767
formatt!ug values using, 104
giving eomma.nds using. 64
!or grouping, 436
for inserting wor~<;heet, 123
to ope!l existing workbook 75
to recalculate formulas., 11'4
for repeating inlonnatinn, Hi
to select precedents and

dependent%., 702-70:.l
to show 11.mction's argument, 208
for ,mgrouping, 436

short.cut menus (context m<"J:111S),
57-58

to copy ranges, 151
customLdng, 733

simultaneous routing. ·187
SIN fum:tlon, 212
single-cell goal seeking, iO, 618-622

example of, 618-619
graphical, 620-622

single-factor analysis -01 variance. 642
sizing drawing object. 329
SLN hmction, 224
SMALL functi<Jn. 231
smoothing constant (damping factor),

646
snapshots, 279
Solvei·, 622-638, 859

apprnpriat., problems !or, 6.23
examples, 623-627

allocating resources, {;35-636
minimizlng .shipping costs,

629-631
op!lmlz!ng investment J)Ortfolio,

63(,---638
scheduling sta!i, 631-635

Options dialog box, 627-628
1)<Jrt Ascending button, 530, 536
Sort Descending button, 536
sorted hrntogram (Pareto) option, 64fJ
sorting

data, 556
lists, 529-53£1

cmnpl<lx, 530--5:M
custom, 534-5:15
me list, 78
simple, 530

orde.r oi, for qu<:ry, 547-54.9
rules !or, 5'.:12

souml f!le player. 724
source applicatioa, 500, 66G
source data, 55::1
source workbook, 441,447
space--d,,limited text flies, 496
special number format, 107
Sp,-1::i a I ls method, 844-
spell checking, 11, 708- 709
Spinl3utton contrnl, 8::lli--837
spinners, ti&-67
splitting panes, 130
spreadsheet(s), 3~:!-J60

audlem:e for, 343-345
budget. 347
cb.a:racteristks of successfoL

3-'!5-345
creating, 349-358

considering audience. 350-~-151
-deslgn.ing workbook layout,

351-352
developing a plan.. 3.50

entering data and formulas,
352-~l53

formatting, 353-:_i54
protection, 355-357
testing, 354

defined,3
e:rrnrs ln, 358,-359
f<;r-your-eye$--Orliy, 3-44
n1aintenance of 1 358
quick-mid-dirty, 344
\lSf'..S OJ, :-Mf>-349

database acce,;s, .348
tinandaJ or ctata.-analysls

models, :341,-<l48
list manai;,,ement, :H8, 349
,ep,:,rts and presentations, :34:l
tumkey appiicatlorn,, 349

Spreadsheet Svlutions templates, 89
5QL (Strncture<l Query Language), 542
SQRT fum:tlon, 202,212,459
SQfffPI function, 662
stacked column chart., 304
staff scheduling, 631-635
standard deviation error bar, 385
standard error bar, ,38.5
St.,1ndanl tQo!bar, 31, 58--59
:.t.artiu.~ Excel, 21
states, window, 4a-44
statlstical functkms, 2~1-2:11 See also

specifk n.ame.1· of functions
status bar, 22, 24
s-tatus box, G,~al Seek, 619
stock charts, 285, 313-314
string criteria, 526
Structured Query Language (SQL), 542
style(s)

applied to worksJrnet mifllnes,
437-439

bul!Un. 258
naine<l,257-262,35B

applying, 259
controlling with tempi,-,.tes, 262
creating, 260
de!etlng, 261
merglng, 261--262
modifylng, 261
overrldln!!,l, 260

Style tool_ 259
stylistic fornmtting, l l 2-ll 4, 235-262

alignment, .12
attributes, 113
Autoformatting, ~5~-1-256

cmitrnlling, 256
using. 254-255

h>ad;g:rmmd, 252-253
borders am:! !in~.s. 113-l l 4, 249-252

3D ,~fleets, 252
cell alignment, 242-24(,

hor!zorntal, 242-244-

emnosUSA0017590

CiM Ex. 1054 Page 268

texl eontrol oi,tion;;, 244--245
vertical, :~44

cell orlcntatlon, 245--246
colors and <>hading, l 14, 246-2,19,

251
ccmdi.tional, 256-257
font an.: text size, J 13, 237-2,12

('.hanging, 239-241
default, 238-2il9

multiple, ln one ceU, 241-242
named styles, 257-262

applying, 259
controiling with ternplates, 262
creating, 200
deietlng., 261
rnefl{lng, 261-262
modifying, 261
overriding. 260

,wervie'.v o!, 235-237
rcaiwns for, 235-236
tlme for, Zl6

S;Jb keywort:l, 757
S 1b statement, 767
submenus, 5:'l
subroutines, .59R 787-788 See also

macros
defined, 759
event-handier, 810, 812-313, 817-819
procedure, 772
VBA, 757--758

subtotals, 563
cust.omlzlng, 576

subtraction operator, 170, 172
SUM function, 202,212, 47 l, 569
SUMIF function. 213
sua!ll'iary formulas, 434
summary information, workbook, 84-85
summary rcµorL 707
surface charts, 28$., 3 I J 31 2
survey data am:i1ysls using pivot tables,

588-590
t.witching among window.s, 4S-47
SYD function. 224
Symbolic Link files (SYLK), 496

file format, 7:l
symbols, Euro nirrem:y, l9
syrrnnetrical p,,J.tern drawli~.g, 72 l
syntax errors, 772

T
Tab,65
tab order, in cusvm1 d\aiog boxes, 82'!
tab scroll buttons, l 22

on workbook window, 26
tab split bar on workbook wimlm~·. 26
tabbed dialog boxes, 68-69
talrdellmited text file~, 496
table(s)

data, 307, 39<J
llmitatiomi of, 607
one-input, 6004,D:3
twcHr1pm, 60'3-,607

database (lists), 2'.31
clefined, 542
dyrw1nk crosstab., anay fon:nulas in,

47~476
formatting, 31-:3,4
of n<1Jnei1. 166-167
phmt. See pivot tables

TABLE fuuctlon, 603
Tables pane, 5S5
tar.get cell, 62:l
Taskbar, Windows,
TB1LLEQ function, li6l
TB!LLPRICE hmction, fi61
TB!LLY!ELO function, 661
template(s), l, 12, 74, 88-90, 747-754

to changr, default printing, 281
cr1ntroU!.og named styles with, 262
default work>lheet. 747, 749-750
deflneu, 747
mar,, 426
overview of, 747
workbook

,:ustmn, 747, 750-754
def&ult 747, 74S-749
inc1udt:1J ln Exe.el, 751
operation of, 751
storing, 7 53

Template Utilities, 859
Template WJ:i:ard with Data Tracking,

859
termjnology

o! databa;;es, 5'12
of fotrornet, tl86
of pivot tal:;le;;, 562-563
of VBA, 759

testing spreadsheet, :154
te.xt, 94

<:entering, l 12
changlng-0r ,erasing, 99-102
in chart lege,;d, 370
ln drawing object, 330
i:mb<.>dd!ng workshs,et, 679--f)80
,:;nterlng, 96
me fomiats supported, 493, 495--496
ln formulas, 169
lnserting, in .Aut.oShape.,,, 335
in map labels, 420

·obje<::t !.o cell, linking, 3:i:J-<MD
pasting,672,674
using outline for, 435

text box Qbj+v'<.:t to hide cells, 28!
teJ;1: bm,es, 8

to match :range, 848--849
t.ext criteria, :,25, 526
text me format 73

text files, 4:l9-500
chanieter.lstlcs of, 5tK1-504
deltmilP~J, 496, 5fl3
importing !rom, 502-509

using Text Import Wlu,rd,
504-509

nrmde!imited, 503
saving workbook a,;, 265
types ol, 4!16

text format, l 07
text 9

See also specific
names of functions

text handling, 8
Text Jmport Wizard, 504-509
text slze, 113
tei::.t strings, inserting, 756
TextBox control, 837-838
TGA!iles, 322
:m chart<i, 290, 3ti5, 392-394

modifying, 392
mt.a.Ung, ::in-:194
from two-input data tables, !i0&-607

3D effects, 252
AutoShape,~, :i:n-334, 33&-337

ti<:k marks, 37a
Tid~Tack:roe. 7J.5-716
T!F files, 322
tlme(s), 98

custom fonuattlng codes for,
HO-lll

entering current,
lime format, 107
·TIME fonctlon, 22;:1
time hm<:Uons, 221. 223. See a/so

speciflf: names of functions
title(s)

adding, 34-35
chart, 365, 369--370
print, 272

title oar, 22
011 workbook wJndow, 24

TODAY .function, 221-222
Toggleijutton control, 838
tool(s J See also drawing tools

in Analysis ToolPak, 64!.l,....6;}7
Analysls of Variance, 642-(,43
Correlation, 643-644
Covariance. 644
Desc.rlptlve Statistics, 645--646
E.xponential Smoothing, 646-647
Fourier Analysis, !i4S
Fle:st (Tw<"~St\mple Test !or

Variance), 647-648
Histogram, 648-649
MQvlng Average, 650-65!
R.anrlorn Numbt•r Generation

t,51-652

emnosUSA0017591

CiM Ex. 1054 Page 269

t.ool(s), (c,mhrmed}
Analysis ToolPak, (co:1tim1ed)

Rank and Pe~centHe, 652-653
Rcgres:sinn, 65J-6:)5
£HurrpHng1 655

656
z-Test (Twn--Sample Test for

Mean,;), f:iSG-~57
;m:alytka!,
amiiting, ,tS4, 70fi-707

for trad111g nilationshlps,
703~705

Chart Objects, 365
copy, Hi?
Cropping, 678
Histogram. {74
$;;;:enarios. 61l

toollJar(s), 23, 58,,63,
adding/removing buttons, 738-739
attaching to workbook, 735-736
Auditing, 703--704

Trace Error button ol, 705
auto.sensing, '7'.f7
changing button iunctionaUty,

740-~74 l
changlng lmttrm 740. 744-746
Chart, 2q3, 294,
C•1cular Rel-.erence, 185, 186
CHµboarci, l!l, GO
conlig11ration of, 733
Control Toolr;,-ix, 82.,1
creating new, 735, 74] 744
customization ol, 8, 18
de!eti11g, 73.'i
<!isplaying, 735
Drawing, 325-:i27
!n Excel :WO(J,
l1oatlng, 59
F{inrmttiug, 58-59, 10:,-101, 237
formatting values ustng, 10:'$-l 04
Forms, 1524
givlflg commands using., 58.-l;,3

hiding/showing, 735
Hs! iJ0·-61
anenu bar 56
Miuosofl Milp, 418
moving, 62-63, 733-734
Office, 155

Cllphoard,
per~ona!1ze,:i, 736
Picture, 3241
PivotTabic, 436, 56{}-670
rena.mlng, 735
resettingt 73S
Scn,,:,n Tips on, 737
:itandal'd. 58-59
Web, 692-,693
WordArt, 334

toulbar buttons. See buuon(s), toolhar

menu for op .. ,rung workbooks, 78
Top 10 ii!tering, 521
tracer,,, ce!I., 704
trac(ng<:dl ,ela!iouship;;, 700,-706

auditing tools !or, 703,,705
circular rt:;Jk;rern:::es, 706
Go To Special chaiog box, 70l--?03
tn1dng error values, 705-706

trnnsltlon options, 50
t:ran.sposing:r.,uiges, 160-161
trernjlines, 367, 386-388
t:rigonomehic functions, 20,; ... 2·, 3. See

also specific name.~ af
functions

ploi.tlng, 725--726
trnu.t,leshooting. 699-'/1:l

AutoComplete, 71{). 711
AutoCorrncr, '709-7 HJ

formula, 700
learning about unfamiliar

spn,ad~heet, 1-71:1
pasting list ol name,:,, 71,l
viewing formulas, 712
z.oomlilg out, 711-712

other aud:iting tools, 706--7\17
spell checking, 708..-7(fJ
tracing cell rnlat ionships, 700- .. 70,3

;;;uditing 10,ols for, 7()3, .. ?!)fi

circular i:elercnces, 706
Go To Special dV1log b,c;x,

701-70:1
tracing en,,r ,·alues, 705-706

types of workshe€,t prohtems,
t39~:J.--70D

TmeType frmh, 279,353
!-Test tool, fi56, 657
turnkey applications, spn,adsileets

:349

two--dimensionai arr~y.1
1157

tw,;.factor analysis variance
with replication, &-l2
without replkation. €42

two-input data tables, 603-6\17
Two-Sampl,e Test lor !llleill1& (z-Test)

tooij 656-6S7
'i'v,o-Sample Test ior Variance

647-648
two-sample Mest

assuming ,equal v,lftan,c,es, 656

assuming unequal variaw:e, 656
TXT cxtensil>n. 504
TYPE lunctlon, 2tg

u
Um::o command. 5:'.l
Undo ,~ta.ck, 84
i.mhidlng, 5ee hiding
uniform di.stribuu,:,n, 652

Unlform Resource Locator 686
United King,lom, o!. 423
United Kingdcm Standan:.1 Reg!,oiis, ma;µ

of, 408
Uni:_ed States) map!i nf, 408, 42:3
up-l1a,·s, :rn7
Update Ar!rJ-ln 859
updating
UPPER 'iunclkm, 215
URL, defined, 686
Use labf:ls m dieck box<".s {Consolklate

dialog box), 45:!
UserForms, 807

deHne,L 7:,9
modei,,ss, 20

V
validating data 114-.. l l 5
validation criteria, pasting, 159
vaJlid,ltJ,:m, selecting c:e,l!s uµ for

data, 147
\'alue(s} flc:}..-94, 95
#VALUE. 641
#VALUE!. 706
value(s). .Se,;;· also rmrnbern, formatting

changing or e!'asing, 99-,HJ2
on worksh~et, by draggbg,

394-.395
converting iormulas to, 197-198
date, 97-98
erJterlng'j 9fi
errors related to, 182
eK!:reme input, ,154
formatting, !02-112

automatic,
custom, W7, 10&-l 12
typ<'ls of

in fonnula5,
hard-coding, 358, .596

ln: fonnuias 1 196
lncrernent,\.l, AutoFJH to cr,eate, 187
pasting formulas as, 159

range, array fonnula.s for
idenHfying, 467-46:8

lime, 97, 98
value a.xis, 289, 367
value axis J6!:l
value critem,, .S:?.5, 526
value shad,ing :map format, 411,-412, 41
variabfo(s)

dedm·ing, 853--855
in VBA, 776

variance, Twc,...Sampk Tei,t for, 647-Ci4:8
VBA .See Visual Ba'lic 'for Applications

(VBA)
VBA code, preventing acces~ to, 81}0

emnosUSA0017592

CiM Ex. 1054 Page 270

VBA !unctions, 757, 75S-~760, 785-79')
ana.lyzlng, 788
argumeub o-f, 79:>~706

no argument, 792
one argum,!nt, 793·-794
range argument, 795-796
two arg•Jments, 794,,,795

debugging, 79(;
declaring, 789-790
example of, 786-788
ee21:en1ting, 790--791
learning more about, 799
llmlts ot 790
(!VC!"!ileW ,of, 78$
pasting, 797- 799
in VBA subroutine, 7B7-7B8
in workshe(~\:, 786-787

VBA pro~>ramrnlng, 839--855
changing settings, 847-,&,18

Boolean settings. 847
nrni·&olean settings, 847--848

charts, 850-852
applying formatting to, 851-852
modifying prnpertiti,s; (lf, 851
modifying type of, 850--851

graphic objects (shapes), 848-850
At,toSllap,earound range,

text tx1x to match range, 848---84\l
rnng-es, 839-846

copying, 840-841
determining type of se!.,ction,

845-846
ld1,milli3rinM muitiple ;;election,

lnoping thr.ough, 843-844
moving, 843
prornptlng for v,1h1<?,

844,,84:,
select!ng row or coh.1mnJ 842
selecJJng to end of row or

column, 842
speed tip,;, 852-855

alert messages, 852-853
declaring var!Ltble types,

853-855
s('.rf'!en updates, 8!'i2
simpliiying object n'!ierem::es,

853
VDB function, 224
vector l.mages. 321
Vendor Independent Messaging (VIM),

485
vertical c,ell aHgnmeut, 244
vertical scrollbar on workbook vnndow,

video dlpa, em!wddlng, 680
video mod,2s, 351

Video Poker, 71 T-Tt8
vievving forrrm!as, 712
views ol worksheets

mu!tiple, 128 .. 129
mmii.ng, 133

Village template, 89
VIM {Vendor lndependent Mes8aging),

485
virtual memory, -.,2
visible cells, ;;elecli11g, !47
Visual Bask Editor (VBE), 759, 7f,8, 8(17

T,:)(>lbox controls, 808-8 !O
properties of, 809-810

Visual Bash: for J>.p;;Hcations (VBA), 4, 5,
12, 2a4, 7.55-784. See ciso
ruacn>s

co,::llng, 770.-77'2. See also VBA
programming

entering and euiling ce>de.
771-772

!Jp;;on, 772
controlhng executiorJ in. 778-780

For loop, 779
If·Tne;r constrnd, 778-,779
s~:-ec t con;:;truc.t~ 780
With-Enc With construct,

779-78()
functions. See VBA functions
learning morn ub;Jut, 78.3-784
ob.ie,::ts and collections in, 775-716

methods, 778
properties ot, 77G-778

subrnutin,:s, 7S7-'lf,F,
termtnology of, '759
uses 756-757
vari,J,!Ji<:s in, 778
workings of, 772-,77£•

VLOOKUP function, 225"-226, 793
volatile lum:tions, 2 W

w
walis ol chart, 367, 392
W'Bl !'iles,495
WB2 mes,495
Web dis,cusslons, 16
Web Form WJz,mi, 859
Web pag(,;s. 348

activatlDn fr-o:u1 toolhar butt.on, 746
W<:b queries, 694--697
Wd:; site(s)

de!ined.636
IDG Books, 689
infonnaUon from, 687

'A/eh :iubscripti.on and nuttfieation, 16
Wf:b !.oolbar, 692-693
WEEKDAY functic,n, 222
WJ:,,f.KNUM hmction, 658

what-ii analys,.,e,, 11, '.~48. 595--6)5
dat,,. tables. 599,. . .f,07

limitations of, 607
one-input, 600-t,03
l.wc,-iaput, 61J'.S-"607

,.:)f1 59S-596
mano-assisted, 5117-599
manual, 597
in revf~rst:.:. 61
Scenar·\o ?.1anager, 598, 600, 607--015

ddining &cBnarios, GOS.--610
displaying ,-cenario!l, 1311
limitations of, (i\4-615
merging scenarios, 612
modifying scenarios, 611
report generatjon, 612-614

\\/hat's This? command, 58
widths, c:o'!umn

changing, 1:15-1:m
pasting, 159

wlndow(s), 43-47
a<:llv.,, 45
dosing, 47
rnouselm;s manipulation of, 47
mov)ng and resizing, 44-45
sizes and positi-ons, custom viev1s

nf, 278-
st!ite,; of. 43 .. 44
svlitching among, 45,,.4 7
workbook, 24-27

window control menu button. 23, 24
Windows Clipboard, 150-15!, 158,497

stm:ring data using, 666-G58
Windows Paint p1ogram, :l2::$
Windows Taskbar, i8, 44
With withcom,trnct,779-780
Wizard, Chart, 287--288
WKI mes,494
WK:J !iles, 4!:14
WK4 mes, 4114
WKS fi!es,494
WMf files, 322

See Microsoft Word
word search puz~les, 723-724
WcrrdArt, 334-336

drawing tips, 3'.l5<'1:l6
example ol, 335

Woni/v1 to,.;,.l/Jru; 334
WordPad,
Woni.Per!-ect lor Window$, 671
wm·kb,.:,ok(&), 6, 43, 72

acth'e, 43
attaching toolba:rs to, 735--735
r:k,sjnfL €{7--88
creating new, 74-75
dependent, 44!
do•cumenting 357
!lnding lost, 79

contlnued

emnosUSA0017593

CiM Ex. 1054 Page 271

wo.rkbook(s), (c,>11tirw,ea)

lmking. 441-+:IB
changing link sow·<::.e,
examinin!;l 445
<!xternal reforerice formulas for,

442,~,46
ieason,; for, 4,H-'H2
to recover data from ,;orrupted

files,
severing links, 446
to um,aved workbook, 444
updating Huks, 441:i

marting e-malt attachment
185«4?:,6

maint;:ma11u: of, :iss
roerg,ag s!yl"'s from oth>f:r, 26 l-,252
multisheet, 86
ope,d1,g ,s,-.xisUng, 75-&U

automati.::, 8iJ
file display preferences, 77 .. 7g

by fllr:> 77
specifying folder fm;
Tools menu for,, 78

pmtectlng, ~!56
rdening to cells in other, 1"T7·-178
routing, 486~!.88
rs,11vtng, i<0-8'/

de.tau!! loc:afam lor, 82
me naming rulei,, 82
in HT,'\111, lormat, 690
in older formats, 86-87
options 83-84
s1rnuna,ry iEionnatlon. 84-85
a<, text me. 265

shared, 8~. 88,

apprnpriak sha.rlng, 48 l
conflicting changes between

U~f'!:fS, 481!
desigaatir.g. 482-483
limit atlons of,

views, 4S4
tracking diange.s, 484
updating changes, 484

sourct·, 44:1, 447
templates

cuslom, 750-754
<,dault, 743 ... 750
induck,d in Excel, 751
operation of, 751
stodng 1 75:1

workbook window, 2,1--27
WORKD/\Y hmctlon, 658
workgrnup 4 79-488

file reservatJons, 479-481
malllng workbook a.~ e,,maH

attachm,mt, 485-486
routing workbook, 486-4,<s.8

sh1.·u-ed workbooks, .82f BE\
arlvl:!nc;c,d settings lor, 4o:i-184
appmJl,rl,ate sharing. 481
c.onfiicting cbang(;s bet;,,v:een

H5tl:{S, 484
designating, 482~18,l
limitations ol, 432
personal views, 484
tracklng dianges, 454
updating changes, 484

worksheet(s), 4:.l, 121-137. See also
cell(s:); column(s); row(s)

activating, 122
adding new, 122-123
audlting am:I annotation z>(10

,efen:>ru:h:,g l 17,,-178
ch,mg!ng mr.rne of, 123-124
consolidating, 44~'55

data sources !or, 4.54,ASS
linlctng work,;;heets and, 442
pivot tables Io:r, S8.S-5R7
shared workbooks for. 481
by using Data c:;> ConsoJldate~

452~154
by using formulas, 449-451
by using P,1:,te Spedal. 451

copylug, 125
copying ranges to, i54
default tnmpiate, 147. 749-750
del~ing, 123
error-free. See troubleshootlng
formatting . . See stylistic formatting
hiding;'tmhldi11g. 125
moving, 124-125
rH1vi:gatlng through, 46-51

keyt>0ard, 4::!-5G
using mouse. 50,~51

vbjects c:mb,xl<:led in. 6W-6Sl
oullining, Hi
panes

!rPffzkg., I 31-132
splitting, 1:10

pivot I.ables to comm!idat<:, 585-587
pwtectmg, .355--ck'ifi
selecting entire. i4.5
.shared, 641
size of, 49
VEA !ui1,:thm 786-.,787
'lrieivs of

multiple. 128-129
naming, 133

ZO.)m!:1g, 125-l 28
worksru;f.:t controls, I2, 13
workshell'~t 1:raapi 707
worksheel outlines. HJ, 429,,,440

adding data to, 439
applying lo, 437,,_139

char!.s from, 440

creati<m of, 43:}-4;!{,
automatic, 434
data p:reparation,
mam.1;,il, 4:\4-4:'.JG

dJsplaylng levels of, 437
examph·, 4;!'J .. ,4'.:l2
h,<ling symbols ,A. 43[,
removing, 439

workspace !Hes, 88
world cmmtries, reap of, 408, 423
Wor!d Wirle Web (V,/'·.VV./), 68:'i, 686. See

also entries oeginnin,fj with
Web

WPG filtS, 322
WQl f,k,.s, 495
WQ2 f:les, 495
Wrap Text lurmat1ing fealrn:e. 118

X
X Icon, 100, Hll.
XlRR lun<:llon, 66 I
Xl8i;;aky.xl:s. 392
XLA mes, 72. 868
XL!Hil.es, 72
XLCfile;;., 72
XU.files, 72
XL\1 liles. 72
XLM language, 11, 755
XLS frk~si 71 72., 8fYl
Xl .. $tart folder, 80
Xl:fHk,s, 72
XLW!lles, n
XNPV sm
XY (scalier) charts. :!85, :3Cl8-,309
XY-sketch, 726-·727

y
Year 200G issues.,
YEAR function, 222
YEAflFR4C Junction, 658
y<can;, grouping by, 593
YIELD function. 66!
YIELDDISC function,
Y!ELDMA.f fanction, 661

l
zero, division by, 182
zip c"des, p.lotting 424,-42!\
Zoom toot l:Jrox, lU
wm,1lng, 413-419, 11 J-712

worksheet c,:rgan1zali{J!l s,msed
frorn~ 702

wo.rk~heets, !25--128
z-T1,s1 (Two-Sampi<'l T,'Jst for Me,ms)

tool, 656--657

emnosUSA0017594

CiM Ex. 1054 Page 272

emnosUSA0017604

CiM Ex. 1054 Page 273CiM Ex. 1054 Page 273

