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Abstract

This paper outlines the historical development of data management systems in order to identify the key issues for successful systems. It
identifies the need for data independence and the embedding of structural and behavioural semantics in the database as key issues in the
development of modern systems. Hierarchical, Network, Relational, Object-oriented and Object-relational data management systems are
reviewed. A short summary of related research is given. The paper concludes with some speculation on the future directions that database
technology might take.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We all know that there is a discipline which we callsoft-
ware engineering, it has to be the case for there are a suffi-
cient number of textbooks available with the phrase
appearing prominently in the title. Many worthy academic
institutions have chairs of software engineering and there
are numerous international conferences, workshops, sympo-
siums and the like dedicated to the exploration of sub-areas
of software engineering. It is not as clear that there exists a
similar discipline calleddata engineering. It is true that
there are a small number of conferences dedicated to this
topic as well as an IEEE Technical Committee on Data
Engineering, however, the term continues to be misunder-
stood by anyone not involved in data engineering and by
software engineers in particular. I often have to explain the
meaning of the title of my own chair (Professor of Data
Engineering) to individuals with considerable experience
in the computer industry.

The disciplines of software engineering and data engi-
neering are similar but have different emphases and histor-
ical roots. The starting point for a software engineer is a task
that must be carried out on a computer. A data engineer
most often begins with a task that exists already either as
a paper-based system or in some computerised form and
seeks to engineer a better solution. A software engineer
says that a program is made up of data and algorithms and
generally means transient (main memory) data. A data
engineer says that applications are constructed to run on
top of data and means permanent (secondary storage)

data. A software engineer designs systems, a data engineer
constructs a basis upon which systems may be built.

This said, the similarity between data engineering and
software engineering is probably greater than the difference.
Both disciplines attempt to encourage principles and prac-
tices that enable developers to speedily construct systems
which match their specifications and can be demonstrated to
function correctly. The two disciplines are aboutengineer-
ing solutions to similar problems. Both disciplines attempt
to extract essential semantics from a real world situation and
preserve them in an application. Software engineering tends
to seek for ways of encoding these semantics in code whilst
data engineering embeds them in metadata.

The flagship product and the most obvious achievement
of data engineering is the database management system.
Such systems now form part of a billion dollar industry
and knowledge of the most commonly used database
language SQL is a skill quoted in almost as many job
adverts as the leading programming languages. This paper
surveys the history of the development of database manage-
ment systems (DBMS) with regard to the engineering prin-
ciples that succeeding generations of such systems have
embodied.

2. The origins of data storage systems

The invention of magnetic storage media such as
magnetic tape and magnetic disks enabled the permanent
storage of large quantities of data in a manner that made
them amenable to computer processing. The term ‘large’ is
not used in absolute sense it is simply an indication that
storing punched card or paper tape representations of data

Information and Software Technology 41 (1999) 969–978

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00087-7

E-mail address:m.s.jackson@wlv.ac.uk (M. Jackson)

www.elsevier.nl/locate/infsof

CiM Ex. 1025 Page 1
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


was never a realistic option for many potential data proces-
sing applications. A number of business-related uses of
computers came into being as a direct result of this devel-
opment. Typically these relied on ‘batch’ operations. Stored
records were kept on master files. Over a period of time a set
of transactions or operations were collected and at an appro-
priate time run against a master file. The master file and the
transaction file were sorted in the same order on some key.
At regular intervals the transactions were applied to the
master file and a new updated master file was produced.
At the same time a report indicating the success or the fail-
ure of each transaction was generated.

This scenario contained a number of inadequacies. Firstly
this type of system made no attempt to describe the data it
held. The only assistance a programmer could hope to
receive from underlying software was that the operating
system could find the file. Once the file had been located
on the disk it was the programmer’s task to handle the file as
a contiguous piece of permanent storage. There was no
indication given as to whether the bytes read were represent-
ing single characters, character strings or numbers. It was
the programmer’s task to add the semantics of the applica-
tion to the stream of data retrieved from the disk. Eventually
programming language support was provided to make this
task easier, however, such support was limited to aiding an
individual programmer and not everyone (including non-
programmers) who needed to access the data. It was possi-
ble for two programmers to describe the same data in two
different ways and hence apply different semantics to it.
What semantics were made available in a programming
language were limited to a simple description of the way
in which the data might be displayed and did not describe
the operations and constraints that were appropriate to it.

Secondly, it was quickly recognised that this pattern of
processing was repeated time and time again. The central
logic of each program was identical, all that altered was the
details of the input and output operations. Despite this, each
program was handcrafted each time. This did not improve
productivity nor did it ensure that a solution known to be
correct was applied consistently.

Thirdly, the idea of a file of data in isolation did not
correspond with the way data was known to behave in appli-
cation areas. A computer file corresponded to what one
might expect from a manual filing cabinet. It was a bringing
together of a number of fixed format pieces of information
called records. Records consisted of a number of fields that
held individual pieces of information. The records in a file
were normally sorted in some order to allow speedy proces-
sing and retrieval. It was known, however, that many appli-
cations relied on an ability to retrieve records based on their
relationships to records in other files. More than this, the
validity of entries in some records depended on entries
found in other files. Implementing systems that embodied
these semantics was possible but involved the construction
of quite complex programs that were difficult to maintain.

Fourthly, these file-based systems did not support the type

of processing that businesses were beginning to expect. The
promise of information technology has always been the
speedy delivery of flexible solutions to business problems.
The rate of change in the business environment has grown
remorselessly as the twentieth century has progressed.
Companies now expect to introduce new products and
new working practices on a regular basis. They expect
their information systems to cope with these changes.
First generation information systems were not able to do
this. Changes required long term planning and often risked
introducing faults into systems that were known to work
correctly. In addition, these systems separated the users of
the data from the data itself requiring them to use technical
staff as intermediaries as there was no way of submitting ad
hoc queries.

3. Hierarchical systems

The first problem that was addressed by database technol-
ogy was that of mirroring the relationships that exist in the
real world in the structure of the data. This was impractical
where data was stored on paper tape or punched cards. With
the introduction of addressable magnetic disks, however, it
is possible to embed pointers into records. These pointers
represented relationships between data. Manipulation of
such pointers is a standard programming task but one that
requires an approach that leads to consistency in the data.
Software to aid the programmer in producing consistent
record references formed the basis of the first database
management software. In the late 1960s, however, magnetic
tape was still a major medium for data storage. Tape does
not have the addressing flexibility of the magnetic disk and
therefore a data model that supported sequential access was
necessary for this type of storage. This requirement led to
the development of the hierarchical model of data imple-
mented in IBM’s database product: IMS [1]. Any hierarchy
of records can be represented as a sequence and such a
sequence can be stored on magnetic tape. The first major
data model came into being purely out of consideration for
the underlying physical storage it had to work on.

The original use intended for IMS was “bill of materials
processing” and the data model chosen was ideal for this
purpose. This type of application deals with facts such as
“Part A is constructed from Parts B and C, Part B is
constructed from Parts D, E and F”. This is a natural hier-
archy (tree) and is easily mapped to the IMS data model.
More complex scenarios required extensions to the original
model so that data whose relationships could not be repre-
sented by a single tree could efficiently stored as a collection
of trees.

IMS did not capture the semantics of the data it stored
beyond being able to represent relationships between
records. Individual fields were not identified by the database
management system; a record was defined simply as a
number of bytes into which data could be placed. As a
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consequence it was unable to support ad hoc queries. The
processing semantics were entirely embedded within the
programs written for applications and it was necessary to
write programs in order to access the database.

4. The network model

The concept of a network model of data and the relational
model of data (see later) were developed at roughly the
same time. The network model was, however, more quickly
embodied in commercial database management systems
than the relational model. Moreover, many of the features
that appeared in systems based on the network model influ-
enced the research and development of commercial rela-
tional systems. This paper will therefore deal with the
network model first and then consider the relational model
later.

The network model removes a limitation in the relation-
ships that can be represented in the hierarchical model. In a
pure hierarchical model of data it is only possible to repre-
sent one-to-many relationships (one record of type A is
related to many records of type B). This comes about
because in a hierarchy a node may only have a single parent.
In a network nodes may be related to more than one other
node.

Fig. 1 shows logical diagrams of relationships in both the
hierarchical and the network models. In the hierarchy, a
record of type A may be related to many records of type
B and many records of type C. This is all that is permitted. In
the network diagram a record of type D may be related to
many records of type F and also to many records of type G.
This could be represented in the hierarchical model.
However, the diagram also indicates that a record of type
E may be related to many records of type G. These addi-
tional relationships would not be permitted in a pure hier-
archical model. Given these two one-to-many relationships
it is possible to construct many-to-many relationships
between records of type D and records of type E (i.e. a
record of type D may be related to many records of type
E and vice versa).

There were a number of commercial systems that adopted

this model of data (e.g. TOTAL [2]), however; systems
based on the recommendations of the CODASYL commit-
tee are discussed most widely in the literature [3]. Not only
did the CODASYL report popularise the network model it
also introduced a number of other important innovations to
database management systems. These are in themselves
worthy of discussion.

Ostensibly the CODASYL effort was an attempt to
preserve the supremacy of the COBOL language. In the
1960s COBOL had become the predominant language for
data processing and CODASYL was the body that had
responsibility for developing COBOL standards. By the
end of the decade it was clear that database management
systems were destined to become a major player in the data
processing arena and it was considered appropriate to exam-
ine ways in which database technology could be integrated
with the COBOL language. CODASYL set up a working
party known as the data base task group (DBTG). The
outcome of this exercise was a report that specified a
number of languages to define and manipulate a database
based on the network model.

The main innovation of the DBTG report was the
separation of the various concerns of data management.
Three languages were defined. Schema data definition
language (DDL) allowed a database designer to comple-
tely define a database without reference to the applica-
tions that might run against it. The syntax of this was
similar to that used in the COBOL data definition
section. There was also a subschema DDL which
allowed a subset of the total database to be made visi-
ble to a user (in the context of CODASYL a user was a
programmer). Subschema DDL allowed minor redefinitions
of the structures defined in the schema. Importantly, in both
the schema and the subschema both the length and the type
of individual fields of a record could be defined. In addition,
it was possible to define constraints on relationships. For
example, it was possible to stipulate that if a record of a
given type was added to the database that it must be related
to a record of another type. The same mechanism defined
what happened to a record when a related record was
deleted. A data manipulation language (DML) allowed a
programmer to navigate the relationships in the database
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without having to be aware that the records were connected
via address pointers.

CODASYL also introduced a limited form of physical
data independence. There was no requirement that records
should be stored as they were described in the schema. The
only guarantee was that the system would deliver the data to
the applications program as though it was stored in the way
the schema indicated. Instances of relationships in CODA-
SYL were often drawn as though they were implemented
via rings of records connected by pointers. While this was a
possible means of physically implementing relationships, a
pointer array was an alternative physical storage mechan-
ism. The programmer could navigate the database using the
same DML commands, regardless of the underlying storage
mechanism chosen by the database designer. This was not
the case in IMS where the type of storage structure chosen
limited the operations a programmer could perform. Despite
this limited form of data independence, CODASYL sche-
mas mixed together physical and logical concerns. The
schema not only described what was to be stored but also
contained definitions that governed the way the data could
be accessed. This meant that the database designers had to
guess what applications might use the data and devise
appropriate access paths to support them. Such an approach
is not suited to an environment in which new application
areas are constantly emerging.

Data storage and retrieval in a CODASYL database was
limited to predetermined operations invoked through
programming languages which would support an embedded
DML. Access to the database was typically performed on a
record at a time basis with the programmer testing each
record retrieved to see whether or not it belonged in the
result set. As a consequence much of the semantics of the
data remained embedded in application programs and differ-
ent sets of semantics could be applied by different applica-
tions.

The writers of the CODASYL report also defined syntax
for two key aspects of database management systems:
concurrency (the ability of the database to safely support
simultaneous users of the system) and security. The concur-
rency mechanism provided a facility whereby portions of
the database (known initially as areas) could be locked to
prevent simultaneous access where this was necessary. The
syntax for security allowed a password to be associated with
virtually every object (even as far as individual fields)
described in the schema.

The multiple schema approach adopted by CODASYL
undoubtedly influenced the conclusions of the ANSI/
SPARC study group who met to discuss which areas of
database technology were amenable to standardisation.
The outcome was a three-schema approach [4], which
continues to influence database system architects. The
three schemas were the internal, the external and the
conceptual. The internal schema describes the physical
storage of data. The external schema describes a user
view of data (there may be many of these in a given system).

The conceptual schema provides a community view of the
database. The mappings between the schemas are responsi-
ble for making applications independent from the storage of
the data.

5. The relational model

Although the relational model was propounded at roughly
the same time the CODASYL report was published, the two
types of system did not develop at the same rate. At the time
it appeared that the relational model was a revolutionary
step whereas the CODASYL report was an evolutionary
step. Many modern writers in hindsight view the develop-
ment of the relational model as an obvious step forward
from systems constructed out of files with fixed length
records, but at the time it emerged it was not regarded in
this light.

The relational model devised by Codd [5] at IBM arose
from the consideration of a number of concerns. These
were:

• the need to increase data independence in database
management systems;

• the need for a mathematical approach to data storage and
retrieval;

• the need to support ad hoc query processing.

Data independence has already featured in this paper;
however, it is probably worthwhile at this point briefly
defining the term. It is the purpose of any database manage-
ment system to provide data independence, that is, to hide
certain necessary storage and retrieval operations from the
applications programmer. For example, in IMS and CODA-
SYL although the data structures implemented by both of
these systems relied on the use of pointers between records,
the programmers using them did not manipulate the pointers
directly. The purpose of a database management system is to
make life easier for the user and this is achieved by hiding
the complexities of the actual storage of the data from the
application software. In a database system where true data
independence exists it is possible to restructure the physical
storage of data without invalidating any of the existing
applications. Network and hierarchical systems suffer
from a type of data dependence known as access path depen-
dence. Access to IMS data, for example, requires a program-
mer to enter the database via a record at the top of the
hierarchy. If a programmer does not know which of the
top level records to select then the whole database must
be searched. CODASYL designers identify entry points to
the database via key hashing mechanisms or special rela-
tionships. Both the IMS and the CODASYL operated on a
record at a time basis and allowed a programmer to build
applications that relied on the fact that records would be
retrieved in a given order. There are many potential ways
in which records can be ordered but only one can be in use
for a given record set. This effectively means that the
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database favours some access paths (or queries) and makes
others either impossible or hopelessly inefficient. The data-
base is biased in favour of certain applications. The database
designer must attempt to anticipate all the possible applica-
tions that may be run against the database and build appro-
priate access paths at design time. If, subsequently,
applications emerge which are not supported by the pre-
planned access paths then the database must be redesigned
and rebuilt. This is almost always a lengthy process. The
relational model attempted to improve on this situation by
having no predefined access paths. The user of a relational
system is able to extract any results that follow from the
content of the raw data and not just those permitted by the
database system. In order to facilitate this no aspect of a
relational system depends on the order in which the data is
stored.

The need for a mathematical basis for database manage-
ment can be viewed, in retrospect, in the light of the recog-
nition of the need for formal methods in software
engineering. The mechanisms for retrieving data from a
database prior to the emergence of relational systems were
similar to those familiar in every programming environ-
ment. A specification was drawn up, this was transformed
into a design and the design was used to construct a
program. This sequence, as everyone knows, is full of
opportunities for introducing errors. It takes considerable
skill to write a program that performs correctly against a
database and considerably more skill to demonstrate that the
program fulfils the requirements of the original specifica-
tion. With the relational model, however, it is possible to
submit a query expressed in predicate calculus and have the
system automatically retrieve the appropriate data. This is
equivalent to having an executable specification language.
The problem of ensuring that the query matches the real
world requirement remains but the problem of transforming
the query into executable code disappears. The importance
to the relational model of a mathematical basis goes beyond
a mechanism for expressing queries. It has often been under-
emphasised. When the model was first propounded it was
tempting to regard relational theory as being something
which gave academic respectability to a database system
which stored fixed length records in files which supported
multiple indexes. Subsequently, the mathematical underpin-
ning has often been neglected for marketing purposes.
Potential purchasers of systems based on the relational
model are often wary of mathematical thinking or unwilling
to trust their businesses to something which relies on
seemingly abstract theory. In practice, users of relational
database management systems do not normally need to be
aware of the underlying mathematics but DBMS developers
certainly do. The commercial success of relational systems
(the majority of database management software currently in
use is based on the relational model) has been built on
advances that depend on relational theory. For example,
early critics of relational systems were quick to point out
that a naive implementation of the model would almost

certainly perform poorly when compared to IMS or a
CODASYL implementation. It was necessary, therefore,
to devise mechanisms for extracting the best possible
performance from relational databases. One obvious strat-
egy was to make sure that the version of a query that
executes is the most efficient version of that query. Some
form of query optimisation is required for this. Query opti-
misation is not possible in IMS and CODASYL systems. A
query in these systems is as good as the programmer who
wrote it. There isn’t a way of taking a computer program
and reliably transforming it to an equivalent but more effi-
cient version. In a relational database, however, a query is a
mathematical expression and may be transformed to another
expression that is completely equivalent to the first. If this
property is combined with a set of heuristics for determining
which queries are likely to run in shorter time then a query
optimisation mechanism can be implemented.

Codd anticipated in his early papers on the relational
model that the expectations of database users would change.
The era that witnessed the emergence of the relational
model also saw the introduction of timesharing facilities
and interactive dialogues with computers. Codd believed
that users would no longer be satisfied with obtaining output
from a database on a daily basis following the off-line
execution of a query program, instead they would expect
to interactively submit a query and immediately receive an
answer. Provision of such a facility relies, to a certain
extent, on data independence and relational theory. Ad
hoc queries are not ad hoc if they are limited to the access
paths built by the database designer. Similarly, this feature
cannot be supplied unless there is a mechanism to take any
high level query, check whether it is valid against the data-
base and transform into something which may be executed.
The facility to support ad hoc querying in relational systems
depends upon the fact that the relational model defines a
small number of relational algebra operations and that it
has been demonstrated that any predicate calculus expres-
sion can be mapped to a sequence of these operations. A
further feature is, however, required to support ad hoc
queries. If a user submits a query requesting the output of
some given columns in a named table, the database software
must have a mechanism to check whether the table and the
columns exist. The database schema must also support ad
hoc queries. Such a feature was not available in IMS or
CODASYL systems, here programs were compiled against
the schema and references to data were turned into absolute
addresses in the object code of programs. A natural way of
implementing this requirement is to make the database self
describing. A relational database therefore contains rela-
tions that contain descriptions of all the relations stored in
the database. This is effectively a collection of database
semantics available to any database application. One type
of application which can make good use of this is the appli-
cation generator (sometimes know as a fourth generation
language). Application generators offer a quick and conve-
nient way of building systems based on an already defined
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