
Fast Routing Table Lookup Using CAMs

Anthony J. McAuley & Paul Francis1

Bellcore, 445 South Street, Morristown, NJ 07962-1910, USA

(mcauley@bellcore.com tsuchiya@bellcore.com)

1. Recently published under the name of Paul Tsuchiya.

Abstract

This paper investigates fast routing table lookup
techniques, where the table is composed of hierarchical
addresses such as those found in a national telephone
network. The hierachical addresses provide important
benefits in large networks; but existing fast routing table
lookup technique, based on hardware such as Content
Addressable Memory (CAM), work only with flat
addresses. We present several fast routing table lookup
solutions for hierarchical address based on binary- and
ternary-CAMs and analyze the pros and cons of each.

1

1 Introduction

The central function of any communications switch is to
route a call or packet to the appropriate destination. Simply
put, this involves searching a routing table—a table
composed of <address, associated information> entries—
for the information needed to route the packet to the
appropriate output port (or ports, in the case of multi-cast
addresses). An entry in the routing table corresponding to a
certain address tells the switch some associated
information for deciding how to route the packet.

Ideally, routing table lookup should complete in the time
it takes to read the packet off the link, or if cut-through
switching is being performed (where the head of the packet
is routed out before the tail arrives), the time it takes to read
the address off the incoming link. As bandwidth and
switching speeds increase, the time allotted to do the
lookup decreases to the point where a software/RAM-
based approach is not fast enough. A hardware structure
called tries has been suggested [1]; but, for many lookup
applications, it can be inefficient in memory or too slow.
Exploiting the inherent parallelism of Content Addressable
Memory (CAM) is attractive; but existing solutions [2] [3]
[4] are limited to non-hierarchical addresses. This paper
describes CAM-based architectures that provide low

1. Recently published under the name of Paul Tsuchiya.

latency over a wide variety of address structures.

Sections 2 and 3 review the lookup function and address
types. Section 4 categorizes existing lookup algorithms
based on various memory hardware. Sections 5 and 6
describe six methods of using binary- and ternary-CAMs
for routing table lookup. We conclude with a table for
deciding between the solutions based on the address size
and format.

2 The Lookup Function

This section describes the routing table lookup function
that is executed every time a packet arrives at a switch.

2.1: Simplified Lookup Function
If the switch is connection-less (e.g. an IP network),

then each packet header contains the complete addressing
information needed to do the lookup function.

If the switch is connection-oriented (e.g. an ATM
network), then most data packets need contain only a
connection identifier. The complete addressing information
(e.g. E.164 or IP address) is contained only in the first
packet (e.g. SMDS) or in a special packet carried on the
signalling channel (e.g. basic ATM). The connection
identifier can be assigned by the sender or the switch; but,
in either case, the connection identifier is a mnemonic
representing all the address information.

The purpose of the connection identifier is increased
efficiency. The connection identifier comes from a small
number space compared to the address information. As a
result, most of the packets of a connection do not need to
carry all the addressing information, thus shrinking packet
size. Further, the lookup function is simplified, because the
size of the search field is reduced.

The connection identifier lookup function is a simplified
case of the more general routing table lookup function. As
such, any solution to the more general routing table lookup
function, with its sparse address space, can be applied to
the connection identifier lookup function (although it may
not be the most cost-effective solution). We therefore
focuses on the general routing table lookup function.

Petitioners' EX1027 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.2: The General Routing Table Lookup Function
Up to this point, we have oversimplified by describing

the input to the lookup function as being a simple address.
However, the input can be both source and destination
address, and other information that can collectively be
called Quality-of-Service (QOS) information. QOS
includes such implicit path information as low cost, low
delay, high throughput, low error rate, and so on. This
information is combined with the address for the lookup
function. QOS information may also be explicit, such as an
long-distance Inter-exchange Carrier (IEC) indication. In
this case, the QOS information may take priority over the
addressing information altogether, for instance because a
switch is only concerned about getting the packet to the
appropriate IEC. This priority effect also exists with
hierarchically structured addresses. Here, one part of an
address takes priority over another part in the routing
decision.

For the remainder of this paper, we consider an address
to potentially include both source and destination address
and the QOS information described above. The way the
addresses are assigned in a network affect the routing table
lookup function; therefore we next look at three general
address structures. This covers the full range of address
types that one is likely to see in practice. In particular, it
covers a wider range than previous work on hardware-
assisted routing table lookup [1].

3 Three Types of Address

This section considers two addressing structures (flat
and hierarchical) and two hierarchical address assignment
algorithms (fixed-position and variable-position).

3.1: Flat Addresses
The simplest addressing structure is a flat address space,

where we simply assign each destination a unique address
chosen anywhere from the address space. This is seen, for
example, in ethernet addresses and for local connection
identifiers. This method has the advantage of simplicity;
but is limited to small networks, where routing table size is
manageable.

3.2: Fixed-position Hierarchical Addresses
Hierarchical addresses, such as those in the telephone

system, greatly reduce routing table size. Figure 1 shows a
small example, representing a subset of seven nodes (ovals)
visible to a switch (not shown) with three levels of
hierarchy. The telephone numbers are the standard US 10-
digit code: where the “X” digit is a wild card, meaning that
any digit matches that position. Table 1 shows the
corresponding routing table. This routing table has
addresses with four different fields: one 10-digit, two 6-

digit, three 3-digit, and one 0-digit. For example, the switch
has direct connections to two 6-digit switches that handle
the 201-829 (via Port B) and 201-876 (via Port C)
exchanges. The final entry is a 0-digit default switch that
routes to everything else (via Port G).

Consider a packet with address 201-829-4484. It
matches three of the entries (201-829-XXXX, 201-XXX-
XXXX, and XXX-XXX-XXXX). In this case, the best
match is the one that matches on the most non-wildcard
digits; thus the 201-829-XXXX represents the best route
(port B), and perhaps the only correct route. A packet with
address 908-829-4698 would be forwarded over Port F.
Here, even though the 829-4698 part of the address
matches 7 digits in the first entry, any mis-matched digits
(908 instead of 201) results in a mis-match.

We can model the general lookup function as follows.
The routing table consists of a list of address/mask pairs,
and the associated information that gets returned as a result
of the lookup. For example, Table 2 shows how the entries
in Table 1 would be stored. The input to the lookup function
is the packetAddress. If the size of a mask is the number of
1 bits in the mask, the result of the lookup function is the
associated information of the entry with the largest mask
such that: mask&packetAddress = address, where & is the

Figure 1 Fixed-position address hierarchy
(with decimal addresses)

XXX-XXX-XXXX

201-829-4698

908-XXX-XXXX 201-XXX-XXXX 212-XXX-XXXX

201-867-XXXX201-829-XXXX

Table 1
Hierarchical address example

Address (decimal) Next Hop

201-829-4698 Port A

201-829-XXXX Port B

201-876-XXXX Port C

201-XXX-XXXX Port D

212-XXX-XXXX Port E

908-XXX-XXXX Port F

Petitioners' EX1027 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

bitwise logical AND function. The flat routing table
lookup, then, is a special case of the hierachical lookup
function where the masks are all 1’s.

Unlike the above example, just because two addresses
are at some level i of the addressing hierarchy does not
mean that they have the same mask (as it does with for
instance telephone addresses in the USA). For instance,
subnet numbers in IP addresses can fall on arbitrary bit
boundaries [5]. Notice also that the 1’s in the mask need not
be contiguous. Indeed, there are known address assignment
algorithms that can efficiently utilize the address space by
taking advantage of variable-position (and in some cases
non-contiguous) masks. Examples of this are kampai
addressing [6], and variable-position subnet number
assignment [7].

3.3: Variable-position Hierarchical Addresses
Figure 2 shows a view of a network similar to that used

in the example of Figure 1, with seven areas (ovals) and
three levels of hierarchy, but employing variable-position
addresses (numbers inside the ovals). An area has the same
locality for routing as the example of Figure 1.

Table 2
Address and mask for Table 1

Address (decimal) Mask (hex.)

201-829-4698 FFF-FFF-FFFF

201-829-0000 FFF-FFF-0000

201-876-0000 FFF-FFF-0000

201-000-0000 FFF-000-0000

212-000-0000 FFF-000-0000

908-000-0000 FFF-000-0000

000-000-0000 000-000-0000

Figure 2 Variable-position address
hierarchy (with binary addresses)

XXXXXXXX

11110X00

1XXXXXX1 1XXXXX00 0XXXXXXX

1X111X0011X10X00

The numbers inside the ovals represent the addresses
that switch has control over: that is, the numbers which are
below it in the hierarchy. For example, the bottom oval in
Figure 2 (11110X00) has two addresses associated with it:
11110000 and 11110100. The oval above this one
(11X10X00) has four addresses associated with it:
11010000, 11010100, 11110000, and 1111100. From this
small example, we can see that the addresses are much less
rigidly structured than in the telephone example. Each area
has a number of addresses equal to some power of 2.

If a switch has access to the seven areas shown in Figure
2, it will have a variable-position addressing table like that
shown in Table 3. Table 4 shows the address and mask
derived from Table 3. The lookup operation is the same as
that already described for fixed-position hierarchical
addresses (matching entry with largest mask).

 For the routing table lookup function, there are
important differences between fixed-position hierarchical
addressing and variable-position hierachical addressing.
The main difference with respect to this paper is that there
are potentially many more mask combinations that must be
considered in the lookup function for variable-position
addressing. The consequences of this will be brought out

Table 3
Variable-position addressing example

Address (binary) Next Hop

11110X00 Port A

11X10X00 Port B

1X111X00 Port C

1XXXXX00 Port D

0XXXXXXX Port E

1XXXXXX1 Port F

XXXXXXXX Port G

Table 4
Address and mask for Table 3

Address (binary) Mask (binary)

11110000 11111011

11010000 11011011

10111000 10111011

10000000 10000011

00000000 10000000

10000001 10000001

00000000 00000000

Petitioners' EX1027 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

later in the paper. (The other major difference is that
variable-position masks are not necessarily contiguous.
However, this difference only affects software-driven
routing table lookup, and so is not a factor in this paper.)

4 Routing Table Lookup

This section briefly reviews the general approaches to
the lookup, using RAM, binary-CAM and ternary-CAM.

4.1: RAM-based Lookup
The RAM has two major operations:

• Write an entry into a specific address

• Read an entry by its address.

There are a number of (software) algorithms used to
perform the lookup function using standard Random
Access Memory (RAM).

A RAM can be perform the lookup in a single cycle if
the data being searched (i.e. the packet address) is used as
a direct index (RAM address) into memory. In this case, the
size of a RAM is determined by the size of the search field.
For example, with a 16-bit search field the RAM size is
64K (216) words. The number of words stored in a RAM
has no effect on this size and cost. Thus, if there were only
256 words, each with a 16-bit search field, the RAM must
still have 64K words. The size and cost of the RAM when
used as a direct index grows exponentially with the search
field. With current RAM technology trends, a 24 bit search
pattern is the practical limit of an economic RAM-based
search engine.

A linear search is the most efficient algorithm for table
lookup, requiring only one entry per active address. If the
entries in the routing table are searched in order of largest
mask first, then the first match will be the best match. Of
course, the linear search runs in time O(N), where N is the
number of entries, and so can take considerable time.

A faster approach is to form a tree search: using a binary
tree, a patricia tree, a trie tree, and so on [8]. In general,
these trees can push the search time towards logN. In the
case of the binary and patricia trees, the log base is 2. The
log base can be increased, thus reducing search time, but
for sparsely populated address spaces, this can result in
unacceptable memory requirements [1]. Furthermore, even
this search time may be excessive. For a high speed switch,
the allotted search time can be measured in a few tens of
instructions or less.

Under good conditions, a hash function can execute the
lookup function in constant time [8], only slightly slower
than direct access. The worst case search time, however,
can be considerably worse than that of the tree searches.
The performance is a function of the size of the hash
memory and the number of addresses that must be searched
in a given time window (after which a hashed entry will be

timed out). While the routing table, because of hierarchical
addresses, might be relatively small (10’s or 100’s of
entries), the number of addresses that might potentially be
searched can be large. This number depends on user traffic
patterns, that can be hard to predict, especially for
emerging data networks. Therefore, the amount of memory
or the search time needed for hashing might be
unacceptably large.

4.2: Binary-CAM-based Lookup
A CAM has three major operations:

• Write into the next free location

• Search for a word match.

• Read matching entries.

Data may be transferred to or from an CAM without
knowing the memory address2 of the word [4]. Binary data
is automatically written to the next free word. To read a
word the user must first do a search operation. Then, if
there are multiple matches, the CAM decides (based on
some internal state) which matched word to read next.
Reading is useful because a CAM word has two parts. The
most important part is the search-field, which is the part of
the word that is matched with the search pattern. This
typically contains the addresses of the known destinations.
The CAM word also contains a return-field, which is the
information returned during a read. This contains either the
related information or an index.

All the CAM lookup algorithms are similar to the
parallel search used in a RAM; however, the size of a CAM
needed for direct access is determined primarily by the
number of words that require storage. The size of the search
field only affects the number of bits a word requires. For
example, with a 10-bit search field, 10 bits per word are
required. Thus, if there were only 256 possible inputs, each
with a 16-bit search field, the CAM must have 256 words -
with each word being at least 16 bits. The size and cost of
a CAM grows linearly with the size of the search field and
the number of entries.

The simplest CAM application is filtering, because it
does not require any returned information other than the
existence of the address. For example, to implement the
network address screening function in SMDS, a CAM can
be loaded with a list of valid/invalid network addresses.
When a packet arrives, its address is used to search the
CAM. Only if the CAM flag indicates a match/no-match is
the packet processed.

If the amount of associated information is small (e.g. an
output port index number), the CAM word is can store the

2. Some CAMs require addresses [3]; but addressless-CAMs
are preferred for networking applications, because they directly
store related information and reduce overall complexity [4].

Petitioners' EX1027 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

related information in full. This direct access is fast
(requires a single CAM read) and has low complexity.
However, because the size of the CAM word is limited (by
cost), the associated information must be relatively small,
currently the maximum economic size is around 100 bits.

If the amount of associated information is large (e.g.
because a large lower layer encapsulation address is
required, or because multiple outputs are listed in the case
of multicast forwarding), the CAM word is unable to store
the related information. It therefore stores a unique index.
The index is read, just as with direct access; but now the
index is used as an address to read a RAM. This indirect
access requires both a CAM read and a RAM read. Indirect
access is therefore slightly slower and more complex than
direct access; but allows more associated information.

4.3: Ternary-CAM-based Lookup
A ternary-CAM [9] has the same three major operations

as a binary-CAM; but, while a binary-CAM stores one of
two states (0 and 1) in each memory location (i.e. in each
bit of a word), a ternary-CAM stores one of three states in
each memory location (and also allows the search pattern
to be one of the three states). We represent the three states
by: 0, 1, and X. A ternary-CAM stores a don’t care
condition in the extra state (X), effectively allowing each
word its own personal mask register. For hierarchical
addresses, the ternary-CAM allows the address and mask
information to be combined in a single ternary word.

We will introduce algorithms to perform lookup using a
ternary-CAM in Section 6.

4.4: Cost Comparison
As a first order approximation, we assume the cost per

bit of a:

• Binary-CAM is ten times the cost of a RAM.

• Ternary-CAM is twice the cost of a binary-CAM.

Since the entries in general routing tables tend to be
sparsely populated over the (network) address space, direct
indexing of the packetAddress into RAM is prohibitive.
Therefore, it is necessary to either use a slower, software-
driven search of RAM, or go to a hardware-based approach
such as CAM (or a hybrid). Often, the time of the software-
driven RAM search is unacceptable. With higher speeds, at
some point it is necessary to go with the faster and well-
bounded search time of a CAM.

Thus, although approximately an order of magnitude
more expensive in terms of hardware, CAM-lookup
solutions can offer superior performance compared to even
the most sophisticated RAM-based search algorithms
(careful management of the scarce CAM resources can
help reduce costs - see Appendix A).

5 Binary-CAM Lookup Algorithms

This section describes three binary-CAM lookup
algorithms/architectures: B1, B2, and B3 (B1 and B2 are
well known and are included only for completeness).

5.1: B1 (Single-Cycle Single-Logical CAM)
A binary-CAM is directly useful for flat address lookup

(or lookup for a switch at a fixed position in the hierarchy).

The system loads the CAM words with the routing table:
i.e. the address and the associated information or index.
The system also loads the mask register so that only the
address is matched during a search (the associated
information is masked). After loading the address,
associated information, and mask, the CAM is ready to
perform routing table lookup.

When a packet arrives at the switch, the system extracts
its packetAddress. This packetAddress is used to search the
CAM. If there is a match, the system reads the associated
information in the subsequent cycle. After initialization,
the CAM returns the associated information or index in two
cycles: search-read (CAM search and CAM read).

If a new entry needs to be loaded into the routing table,
the system adds the entry into the next free location. If an
old entry needs to be removed from the table, the system
selectively deletes that entry.

Method B1 is fast and has low complexity; but is only
suited to flat addressing applications, because it only has a
single fixed mask and assumes there is only one match.

5.2: B2 (Multiple-Cycle Single-Logical CAM)
If it is necessary to use more than one mask register,

such as in hierarchical addressing, we cannot use method
B1. We must be able to use different masks and have
multiple search operations. A binary-CAM using multiple
cycles works well for fixed-position hierarchical address
lookup.

The system loads the CAM words with the address and
the associated information (or index); but does not fix the
mask register.

When a packet arrives, the system extracts its
packetAddress and begins multiple mask loading and
search operations. In the first cycle, the system loads the
mask register of the address furthest down in the hierarchy
(see Figure 1): that is, with the largest (most 1’s) mask in
the routing table (see Table 2). Then it searches (using the
packetAddress) the CAM for a match. If a match occurs, it
reads the associated information or index. If no match
occurs, the second cycle begins and the system loads the
mask register with the mask containing the second most
1’s. The system again searches for a match. If a match
occurs, it reads the associated information or index. If no
match occurs, a third cycle begins. The system continues

Petitioners' EX1027 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

