
DEBUG:N

Finally, to execute the program CLEAN. COM, type

-G <Enter>

The result is the sa.me as if the CLEAN.COM program had been run from the MS-DOS
command level with the entry

C>CLEAN MYFILE.DAT <Enter>

except that the program is executing under the control of DEBUG and within DEBUG's
memory buffer.

Section IV· Programming Utilities 1041

HUAWEI EX. 1110 - 1051/1582

DEBUG:O

DEBUG:O
Output to Port

Purpose

Writes 1 byte to an input/output (I/O) port.

Syntax

0 port byte

where:

port
byte

Description

is an I/0 port address from 0 through FFFFH.
is a value from 0 through OFFH to be written to the I/0 port.

The Output to Port (O) command writes 1 byte of data to the specified I/O port address.
The data value must be in the range OOH through OFFH.

Warning: The 0 command should be used with caution because it directly accesses the
computer hardware and no error checking is performed. Attempts to write to some port
addresses, such as those for ports connected to peripheral device controllers, ~imers, or the
system's interrupt controller, may cause the system to crash or damage data stored on disk.

Example

To write the value C8H to I/0 port lOAH, type

-o 10A cs <Enter>

1042 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1052/1582

DEBUG:P
Proceed Through Loop or Subroutine

Purpose

Executes a loop, repeated string instruction, software interrupt, or subroutine call
to completion.

Syntax

P [=address] [number]

where:

address is the location of the first instruction to be executed.
number is the number of instructions to execute.

Description

DEBUG:P

The Proceed Through Loop or Subroutine (P) command transfers control from DEBUG
to the target program. The program executes without interruption until the loop, repeated
string instruction, software interrupt, or subroutine call at address is completed or until
the specified number of machine instructions have been executed. Control then returns
to DEBUG, and the contents of the target program's registers and the status of the flags are
displayed.

If the address parameter does not include an explicit segment, DEBUG uses the target pro­
gram's CS register; if address is omitted entirely, execution begins at the address specified
by the target's CS:IP registers. The address parameter must be preceded by an equal sign
(=) to distinguish it from number.

If the instruction at address is not a loop, repeated string instruction, software interrupt,
or subroutine call, the P command functions just like the Trace Program Execution (T)
command. The optional number parameter specifies the number of instructions to be
executed before control returns to DEBUG. If number is omitted, DEBUG executes only
one instruction. After each instruction is executed, DEBUG displays the contents of the
target program's registers, the status of the flags, and the next instruction to be executed.

Warning: The P command cannot be used to trace through ROM.

Example

Assume that the target program's location CS:l43FH contains a CALL instruction. To
execute the subroutine that is the destination of CALL and then return control to
DEBUG, type

-p =143F <Enter>

Section IV: Programming Utilities 1043

HUAWEI EX. 1110 - 1053/1582

DEBUG:Q

DEBUG:Q
Quit

Purpose

Ends a DEBUG session.

Syntax

Q

Description

The Quit (Q) command terminates the DEBUG program and returns control to MS-DOS or
the command shell that invoked DEBUG. Any changes to a program or other file that were
not saved on disk with the Write File or Sectors (W) command are lost.

Example

To exit DEBUG, type

-Q <Enter>

1044 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1054/1582

DEBUG:R

DEBUG:R.
Display or Modify Registers

Purpose

Displays the contents of one or all registers and the status of the CPU flags and allows
them to be modified.

Syntax

R [register]

where:

register is the two-character name of an Intel 8086/8088 register from the following
list:

Description

AX BX CX DX SP BP SI DI

DS ES SS CS IP PC

or the character F, which specifies the CPU flags.

The Display or Modify Registers (R) command displays the target program's register con­
tents and the status of the CPU flags and allows them to be modified.

If R is entered without a register parameter, the contents of all registers and the status of
the CPU flags are displayed, followed by a disassembly of the machine instruction cur­
rently pointed to by the target program's CS:IP registers.

If register is included in the R command line, the contents of the specified register are dis­
played; then DEBUG prompts with a colon character(:) for a new value. The value is en­
tered by typing one to four hexadecimal digits and then pressing the Enter key. Pressing
the Enter key without entering any values leaves the register contents unchanged.

Note: The register name PC is not fully supported in some versions of DEBUG, so the
register name IP should be used instead.

Specifying the character F instead of a register name causes DEBUG to display the status of
the program's CPU flags as two-character codes from the following list:

Flag Name

Overflow
Direction
Interrupt

Value HSet (1)

OV (Overflow)
DN(Down)
EI (Enabled)

Value H Clear (0)

NV (No Overflow)
UP(Up)
DI (Disabled)

(more)

Section IV: Programming Utilities 1045

HUAWEI EX. 1110 - 1055/1582

DEBUG:R

Flag Name Value If Set (1) ValuelfClear(O)

Sign NG (Minus) PL(Plus)
Zero ZR(Zero) NZ (Not Zero)
AuxCarry AC (Aux Carry) NA (No Aux Carry)
Parity PE(Even) PO(Odd)
Carry CY(Carry) NC (No Carry)

After displaying the flag values, DEBUG displays a hyphen(-) prompt on the same line.
Any or all flags can then be altered by typing one or more codes (in any order and op­
tionally separated by spaces) from the list above and pressing the Enter key. Pressing the
Enter key without entering any codes leaves the status of the flags unchanged.

Examples

To display the contents of the target program's CPU registers and the status of the CPU
flags, followed by the disassembled mnemonic for the next instruction to be executed
(pointed to by CS:IP), type

-R <Enter>

This produces a display in the following format:

AX=OOOO BX=OOOO CX=OOA1 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=19A5 ES=19A5 SS=19A5 CS=19A5 IP=0100 NV UP EI PL NZ NA PO NC
19A5:0100 BF8000 MOV DI,0080

To display the value of the target program's BX register, type

-R BX <Enter>

If BX contains 0200H, for example, DEBUG displays that value and then issues a prompt in
the form of a colon:

BX 0200

The contents of BX can then be altered by typing a new value and pressing the Enter key
or left unchanged by pressing the Enter key alone.

To set the direction and carry flags, first type

-R F <Enter>

DEBUG displays the flag values, followed by a hyphen(-) prompt:

NV UP EI PL NZ NA PO NC -

The direction and carry flags can then be set by entering

-DN CY <Enter>

1046 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1056/1582

Messages

bfError
Bad flag: An invalid code for a CPU flag was entered.

brError
Bad register: An invalid register name was entered.

dfError

DEBUG:R

Double flag: Two values for the same CPU flag were entered in the same command.

Section IV: Programming Utilities 1047

HUAWEI EX. 1110 - 1057/1582

DEBUG:S

DEBUG:S
Search Memory

Purpose

Searches memory for a pattern of 1 or more bytes.

Syntax

S range list

where:

range

list

Description

specifies the starting and ending addresses or the starting address and length
of the area to be searched.
is 1 or more consecutive byte values and/ or a string to be searched for.

The Search Memory (S) command searches a designated range of memory for a specified
list of consecutive byte values and/or a text string. The starting address of each set of
matching bytes is displayed. The contents of the searched area are not altered.

The range parameter specifies the starting and ending addresses or the starting address
and length in bytes of the area to be searched. If a segment is not included in range,
DEBUG uses DS. If a segment is specified for the starting address, DEBUG uses the same
segment for the ending address. If a starting address and length in bytes is specified, the
starting address plus the length minus 1 cannot exceed FFFFH.

The list parameter specifies one or more consecutive hexadecimal byte values and/or a
string to be searched for, separated by spaces, commas, or tab characters. Strings must be

I

enclosed within single or double quotation marks, and case is significant within a string.

Examples

To search for the string Copyright in the area of memory from DS:OOOOH through
DS:1FFFH, type

-P 0 1FFF 'Copyright' <Enter>

or

-P 0 L2000 "Copyright" <Enter>

If matches are found, DEBUG displays the starting address of each:

20A8:0910
20A8:094F
20A8:097C

1048 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1058/1582

I
l

I

DEBUG:S

To search for the byte sequence 3BH 06H in the area of memory from CS:OlOOH through
CS:12AOH, type

-S CS:100 12AO 3B 06 <Enter>

or

-S CS:100 111A1 3B 06 <Enter>

Section IV.· Programming Utilities 1049

HUAWEI EX. 1110 - 1059/1582

DEBUG:T

DEBUG:T
Trace Program Execution

Purpose

Executes one or more instructions, displaying the CPU status after each instruction.

Syntax

T [=address] [number]

where:

address is the location of the first instruction to be executed.
number is the number of machine instructions to be executed.

Description

The Trace Program Execution (T) command executes one or more instructions, starting at
the specified address, and after each instruction displays the contents of the CPU registers,
the status of the flags, and the instruction pointed to by CS:IP.

Warning: The T command should not be used to execute any instructions that change
the contents of the Intel8259 interrupt mask (ports 20H and 21H on the IBM PC and com­
patibles) or to trace calls made to MS-DOS through Interrupt 21H. The Go (G) command
should be used instead.

The address parameter points to the first instruction to be executed. If address does not
include a segment, DEBUG uses the target program's CS register; if address is omitted en­
tirely, execution begins at the address specified by the target program's CS:IP registers. If
address is included, it must be preceded by an equal sign (=) to distinguish it from
number.

The number parameter specifies the hexadecimal number of instructions to be executed
before the DEBUG prompt is redisplayed (default= 1). Pressing Ctrl-C or Ctrl-Break inter­
rupts execution of a sequence ofT instructions. Consecutive instructions can then be exe­
cuted individually by entering T commands with no parameters. Pressing Ctrl-S suspends
execution and pressing any key then resumes the trace.

Note: The T command can be used to trace through ROM.

Example

To execute one instruction at location CS:lAOOH and then return control to DEBUG, dis­
playing the contents of the CPU registers and the status of the flags, type

-T =1 AO 0 <Enter>

1050 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1060/1582

DEBUG:U
Disassemble (Unassemble) Program

Purpose

Disassembles machine instructions into assembly-language mnemonics.

·Syntax

U[range]

where:

DEBUG:U

range specifies the starting and ending addresses or the starting address and length
of the machine code to be disassembled.

Description

The Disassemble (Unassemble) Program (U) command translates machine instructions
into assembly-language mnemonics.

The range parameter specifies the starting and ending addresses or starting address and
length in bytes of the machine instructions to be disassembled. If range does not specify a
segment, DEBUG uses CS. Note that if the starting address does not fall on an 8086 instruc­
tion boundary, the disassembly will be incorrect.

If range does not include a length or ending address, 32 (20H) bytes of memory are dis­
assembled beginning at the specified starting address. If range is omitted, 32 bytes of
memory are disassembled, starting at the address following the last instruction dis­
assembled by the previous U command. If a U command has not been used before
and range is omitted, disassembly begins at the address specified by the target
program's CS:IP registers.

Note: The actual number of bytes displayed may vary slightly from the amount specified
in range or from the default of 32 bytes because the length of instructions may vary. Also,
the U command does not understand instructions specific to the 80186, 80286, and 80386
microprocessors. It displays such instructions as DBs.

Successive 32-byte fragments of code can be disassembled by entering additional U com­
mands without parameters.

Example

To disassemble 8 bytes of machine instructions starting at CS:OlOOH, type

-U 100 107 <Enter>

or

-U 100 18 <Enter>

Section IV.· Programming Utilities 1051

HUAWEI EX. 1110 - 1061/1582

DEBUG:W

DEBUG:W
Write File or Sectors

Purpose

Writes a file or individual sectors to disk.

·.syntax

W[address]

or

W address drive start number

where:

address is the first memory location of the data to be written.
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive

C, and so on).
start is the number of the first logical sector to write (0-FFFFH).
number is the number of consecutive sectors to be written (0-FFFFH).

Description

The Write File or Sectors (W) command transfers a file or individual sectors from memory
to the disk.

When the W command is entered without parameters or with only an address, the number
of bytes specified by the contents of registers BX:CX is written from memory into the file
named in the most recently used Name File or Command-Tail Parameters (N) command or
the first file specified in the DEBUG command line if the N command has not been used.
Files with a .EXE or .HEX extension cannot be written with the DEBUG W command.

Note: If a Trace Program Execution (T), Go (G), or Proceed Through Loop or Subroutine
(P) command has been used or the contents of the BX or CX registers have been changed,
the contents of BX:CX must be restored before theW command is used.

When address is not included in the command line, the target program's CS:0100H is
assumed.

TheW command can also be used to bypass the MS-DOS file system and directly access
logical sectors on the disk. The memory address (address), disk drive number (drive),
starting logical sector number (start), and number of sectors to be written (number) must
all be provided in the command line in hexadecimal format. The W command should not
be used to write sectors on network drives.

Warning: Extreme caution must be used with theW command. The disk's file structure
can easily be damaged if the wrong parameters are entered.

1052 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1062/1582

DEBUG:W

Example

Assume that the interactive Assemble Machine Instructions (A) command was used to
create a program in DEBUG's memory buffer that is 32 (20H) bytes long, beginning at
offset OlOOH. This program can be written to the file QUICK. COM by using the DEBUG
Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write
File or Sectors (W) commands sequentially. First, use the N command to specify the name
of the file to be written:

-N QUICK.COM <Enter>

Next, use the R command to set registers BX and CX to the length to be written. Register
BX contains the upper, or most significant half, of the length, whereas register CX contains
the lower, or least significant half. Type

-R ex <Enter>

DEBUG displays the contents of register CX and prompts with a colon (:). Enter the
length after the prompt:

:20 <Enter>

To use the R command again to set register BX to zero, type

-R BX <Enter>

followed by

:0 <Enter>

Finally, to create the disk file QUICK. COM and write the program into it, type

-W <Enter>

DEBUG responds:

Writing 0020 bytes

Messages

EXE and HEX files cannot be written
Files with a .EXE or .HEX extension cannot be written to disk with the W command.

Writing nnnn bytes 4
After a successful write operation, DEBUG displays in hexadecimal format the number of
bytes written to disk.

Section IV: Programming Utilities 1053

HUAWEI EX. 1110 - 1063/1582

SYMDEB

SYMDEB
Symbolic Debugger

Purpose

The Symbolic Debugger (SYMDEB) allow1; a file to be loaded, examined, altered, and writ­
ten back to disk. If the file contains a program, the program can be disassembled, modi­
fied, traced one instruction at a time, or executed at full speed with breakpoints. SYMDEB
can also be used to read, modify, and write absolute disk sectors.

The SYMDEB utility is supplied with the Microsoft Macro Assembler (MASM) versions 4.0
and earlier. This documentation describes SYMDEB version 4.0.

Syntax

SYMDEB

or

SYMDEB [options] [symfile [symfile . ..]] [filename [parameter . ..]]

where:

symfile

filename
parameter
options

Description ·

is the name of a symbol file created wi~h the MAPSYM utility
(extension= .SYM).
is the name of the binary or executable program file to be debugged.
is a command-line parameter required by the program being debugged.
is one or more of the following switches. Switches can be either upper­
case or lowercase and can be preceded by a dash (-) instead of a forward
slash(/).

/I
!K
IN

IS

/"commands''

(IBM) specifies that the computer is IBM compatible.
enables the interactive breakpoint key (Scroll Lock).
enables the use of nonmaskable interrupt break sys­
tems on IBM-compatible computers (requires special
hardware).
enables the Screen Swap (\) command on IBM-com­
patible computers (the /I switch is also required).
specifies one or more SYMDEB commands, separated
by semicolons and enclosed in quotation marks.

The SYMDEB commands and capabilities are a superset of those in DEBUG. SYMDEB is
also able to load and interpret special symbol files that correlate line numbers, symbols,
and memory addresses. With the aid of such files, SYMDEB enables the user to specify

1054 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1064/1582

SYMDEB

addresses with labels, variable names, and expressions, rather than only with absolute
hexadecimal addresses. SYMDEB's command repertoire also includes I/0 redirection
commands, floating-point number entry and display commands, and source-code display
capabilities that are not present in DEBUG.

The SYMDEB command line typically includes the filename parameter, which is the
name of an executable program (with the extension .COM or .EXE) to be loaded into
SYMDEB's memory buffer. Files with the extension .EXE are loaded in a manner compat­
ible with the MS-DOS loader. Files with the extension .HEX are converted to binary images
and loaded at the internally specified address. All other files are assumed to be direct
memory images and are read directly into memory starting at offset lOOH. If SYMDEB is
entered by itself, no file information is read into memory. An appropriate program seg­
ment prefix (PSP) is synthesized at the head of SYMDEB's buffer for use by the target pro­
gram; the PSP includes a command tail at offset SOH and default file control blocks (FCBs)
at offsets 5CH and 6CH, constructed from the optional parameters following filename. If
necessary, contents of the file are relocated so that the file is ready to execute.

The command line can also contain the names of one or more symfiles, symbol files that
contain symbol and line-number information for the object modules that constitute the
program being debugged. A symbol file is created with the MAPSYM utility from a map
file produced by the Microsoft Object Linker (LINK). A symbol file always has the exten­
sion .SYM. See PROGRAMMING UTILITIES: MAPSYM; LINK.

The four command-line switches /I, /K, IN, and /S provide SYMDEB with information
about the computer on which the utility is running. The /I switch is used when the com­
puter is IBM compatible; this causes SYMDEB to take full advantage of special hardware
features such as the 8259 Programmable Interrupt Controller or the memory-mapped
video display. The /K switch enables the interactive breakpoint key (Scroll Lock), which
can then be pressed at any time to interrupt a program that is being traced under the con­
trol of SYMDEB.

Note: The /K switch is not necessary on an IBM PC/AT, because the Sys Req key is always
active as an interactive break key.

The IN switch enables the use of the nonmaskable interrupt as a breakpoint signal on
IBM-compatible computers; this interrupt is triggered by hardware-assisted debugging
packages such as Periscope and Atron Corporation's Software Probe. The /S switch en­
ables the Screen Swap (\) command, which allows the output from the program being
traced to be maintained and displayed on demand on a virtual screen separate from the
SYMDEB commands and messages.

Note: The /I, IN, and /S switches are unnecessary on personal computers built by IBM
Corporation; SYMDEB automatically enables the capabilities provided by those switches
when SYMDEB finds the IBM copyright notice in the machine's ROM.

After SYMDEB and any files named in the command line are loaded, SYMDEB displays its
special prompt character, a hyphen(-), and awaits a command. SYMDEB commands con­
sist of one or two letters, usually followed by one or more parameters. SYMDEB treats

Section IV: Programming Utilities 1055

HUAWEI EX. 1110 - 1065/1582

:~J:II ·i
b·li
fli:
1':!
tlii
~~~~.: 

SYMDEB 

uppercase and lowercase characters equivalently except when they are contained in 
strings enclosed within single or double quotation marks. SYMDEB does not execute 
commands until the Enter key is pressed. 

The SYMDEB commands discussed in this section are 

Command Action 

A Assemble machine instructions. 
BC Clear breakpoints. 
BD Disable breakpoints. 
BE Enable breakpoints. 
BL List breakpoints. 
BP Set breakpoints. 
c Compare memory areas. 
D Display memory. 
DA Display ASCII. 
DB Display bytes. 
DD Display doublewords. 
DL Display long reals. 
DS Display short reals. 
DT Display 10-byte reals. 
DW Display words. 
E Enter data. 
EA Enter ASCII string. 
EB Enter bytes. 
ED Enter doublewords. 
EL Enter long reals. 
ES Enter short reals. 
ET Enter 10-byte reals. 
EW Enter words. 
F Fill memory. 
G Go execute program. 
H Perform hexadecimal arithmetic. 
I Input from port. 
K Perform stack trace. 
L Load file or sectors. 
M Move (copy) data. 
N Name file or command-tail parameters. 
0 Output to port. 
p Proceed through loop or subroutine. 
Q Quit debugger. 
R Display or modify registers. 
s Search memory. 

1056 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1066/1582



.Command Action 

S+ Enable source display mode. 
S- Disable source display mode. 
S& Enable source and machine code display mode. 
T Trace program execution. 
U Disassemble (unassemble) program. 
V View source code. 
W Write file or sectors. 
X Examine symbol map. 
XO Open symbol map. 
Z Set symbol value. 
< Redirect SYMDEB input. 
> Redirect SYMDEB output. 

Redirect SYMDEB input and output. 
Redirect target program input. 
Redirect target program output. 
Redirect target program input and output. 

\ Swap screen. 
Display source line. 
Help or evaluate expression. 
Escape to shell. 
Enter comment. 

SYMDEB 

One or more SYMDEB commands, separated by semicolons and enclosed in double 
quotation marks, can be included in the original SYMDEB command line in the form 
/"commands" (for example, /"r;d;q"). These commands, which must precede the filename 
of the program being debugged, are carried out immediately when SYMDEB is loaded. 
(This is a convenient way to invoke SYMDEB and execute a series of batch commands.) 

The parameters for a SYMDEB command include symbols; line numbers; addresses; 
ranges; and 8-bit, 16-bit, 32-bit, or floating-point values, expressions, and lists. Multiple 
parameters can be separated by spaces, tabs, or commas. 

A symbol is a name that represents a register, an absolute value, a segment address, or a 
segment offset. A symbol consists of one or more characters but always begins with a let­
ter, an underscore(_), a question mark(?), an at sign(@), or a dollar sign($). The names 
of the various 8086/8088/80286 registers and CPU flags are built into SYMDEB and can be 
used at any time. Other symbols can be used only when one or more symbol files have 
been loaded in conjunction with the program to be debugged. 

Note: SYMDEB regards symbols whose spellings differ only in case as the same symbol. 
A unique symbol name that does not conflict with programming instructions, register 
names, or hexadecimal numbers should always be used. 

In MASM programs, symbols must be declared PUBLIC in the source code in order to be 
accessible during debugging (except for segment and group names, which are PUBLIC by 
default). In programs compiled with the current versions of Microsoft C, FORTRAN, 

Section IV: Programming Utilities 1057 

HUAWEI EX. 1110 - 1067/1582



SYMDEB 

and Pascal, all symbols are passed through for debugging if the proper compilation switch 
is used; however, familiarity with the compiler's particular naming conventions is neces­
sary (for example, the Microsoft C Compiler adds an underscore character to the beginning 
of every symbol). 

A line number is a combination of decimal numbers, filenames, and symbols that specifies 
a unique line of text in a program source file. Line numbers always start with a dot charac­
ter (.) and take one of the following forms: 

. (jilename:]linenumber 
. +displacement 
.-displacement 
.symbol[ +displacement] 
.symbol[ -displacement] 

,, 

The second and third variations specify a line relative to the current line number; the 
fourth and fifth specify a line number relative to a designated symbol. Line numbers can 
be used only with programs developed with compilers that generate line-number informa­
tion. Programs developed with MASM or an incompatible compiler cannot generate line 
numbers. 

An address identifies a unique location in memory. An address can be a simple offset or a 
complete address consisting of two 16-bit values in the form segment:offset. Each compo­
nent can be a valid symbol (including CS, DS, ES, or SS, in the case of segments), a 16-bit 
hexadecimal number in the range 0 through FFFFH, or a symbol plus or minus a displace­
ment. When the segment portion of an address is absent, the segment specified in the 
previous instance of the same command is used; if no segment was previously specified, 
SYMDEB uses DS unless an A, G, L, P, T, U, or W command is used, in which case SYMDEB 
uses CS. 

A range specifies an area of memory or a number of data items and can be expressed as 
either two addresses or a starting address and a length. A length is represented by the letter 
L followed by a hexadecimal value in the range 0 through FFFFH. The meaning of the 
length varies with the SYMDEB command used: The length can signify a number of bytes, 
words, doublewords, real numbers, machine instructions, or source-code lines. If a com­
mand requires a range and the ending address is not supplied, SYMDEB usually assumes 
128 bytes. 

A value represents an integral number and is a combination of one or more digits. The 
default base for values is hexadecimal, except in the case of floating-point numbers, but 
other bases can be used by appending a radix character (Y for binary, 0 or Q for octal, T 
for decimal, H for hexadecimal) in either uppercase or lowercase. For example, the follow­
ing values are equivalent: 

0040 
0040H 
0064t 

OlOOQ 
01000 
1000000Y 

1058 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1068/1582



SYMDEB 

Doubleword (32-bit) values are entered as two hexadecimal integers separated by a colon 
character (:). Real numbers are always entered in decimal radix, with or without a decimal 
point or exponent. Leading zeros can be omitted. 

An expression is a ·combination of symbols, numeric constants, and operators that evalu­
ates to an 8-, 16-, or 32-bit value. An expression can be used in place of a simple value in 
any command. Unary address operators use DS as the default segment for addresses. Ex­
pressions are evaluated in order of operator precedence; operators with equal precedence 
are evaluated from left to right. Parentheses can be used to override the normal operator 
precedence. 

The available unary operators, listed in order of precedence from highest to lowest, are 

Operator Meaning 

+ 

NOT 
SEG 
OFF 
BY 
wo 
DW 
POI 
PORT 
WPORT 

Unary plus 
Unary minus 
One's (bitwise) complement 
~Segment address of operand 
Offset of operand 
Low-order byte from specified address 
Low-order word from specified address 
Doubleword from specified address 
Pointer from specified address (same as DW) 
Byte input from specified port 
Word input from specified port 

The available binary operators, listed in order of precedence from highest to lowest, are 

Operator Meaning 

• Multiplication 
I Integer division 
MOD Modulus 

Segment override 
+ Addition 

Subtraction 
AND Bitwise Boolean AND 
XOR Bitwise Boolean Exclusive OR 
OR Bitwise Boolean Inclusive OR 

A list is composed of one or more values, expressions, or strings, separated by spaces or 
commas. A string is one or more ASCII characters, enclosed within single or double quota­
tion marks. Case is significant within a string. If the same type of quote character that is 
used to delimit the string occurs inside the string, the character must be doubled inside the 
string in order to be interpreted correctly (for example,"A ""quoted"" word"). 

Section IV: Programming Utilities 1059 

4 

HUAWEI EX. 1110 - 1069/1582



SYMDEB 

In a few cases, SYMDEB displays a specific and informative error message in response to 
an invalid command. In general, though, SYMDEB responds in a generic fashion, pointing 
to the approximate location of the error with a caret character ("), followed by the word 
Error. For example: 

-D CS:100,CS:80 <Enter> 

"' Error 

SYMDEB maintains a set of virtual CPU registers and flags for a program being debugged. 
These registers can be examined and modified with SYMDEB commands. When a pro­
gram is first loaded for debugging, the virtual registers are initialized with the following 
values: 

Register .COM Program .EXE Program 

AX Valid drive code Valid drive code 
BX Upper half of program size Upper half of program size 
ex Lower half of program size Lower half of program size 
DX Zero Zero 
SI Zero Zero 
DI Zero Zero 
BP Zero Zero 
SP FFFEH or top of available Size of stack segment 

memory minus 2 
IP lOOH Offset of entry point within target 

program's code segment 
cs PSP Base of target program's code segment 
DS PSP PSP 
ES PSP PSP 
ss PSP Base of target program's stack segment 

Note: SYMDEB checks the first three parameters in the command line. If the second and 
third parameters are filenames, SYMDEB checks any drive specifications with those file­
names to verify that they designate valid drives. Register AX contains one of the following 
codes: 

Code 

OOOOH 

OOFFH 
FFOOH 
FFFFH 

Meaning 

The drives specified with the second and third filenames are both valid, or 
only one filename was specified in the command line. 

The drive specified with the second filename is invalid. 
The drive specified with the third filename is invalid. 
The drives specified with the second and third filenames are both invalid. 

1060 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1070/1582



SYMDEB 

Before SYMDEB transfers control to the target program, it saves the actual CPU registers 
and then loads them with the current values of the virtual registers; conversely, when con­
trol reverts to SYMDEB from the target program, the returned register contents are stored 
back into the virtual register set for inspection and alteration by the SYMDEB user. 

Examples 

To prepare the program CLEAN.ASM for debugging with SYMDEB, declare all vital labels, 
procedures, and variable names in the source program PUBLIC. To assemble the program, 
type 

C>MASM CLEAN; <Enter> 

This produces the relocatable object module CLEAN.OBJ. Then, to link the object module, 
type 

C>tiNK /MAP CLEAN; <Enter> 

This results in the executable program file CLEAN.EXE and the map file CLEAN.MAP. 

Note: The /MAP switch must be used even if a map file is specified in the command line. 
Finally, to create the symbol information file required by SYMDEB, type 

C>MAPSYM CLEAN <Enter> 

At this point, begin symbolic debugging by typing 

C>SYMDEB CLEAN.SYM CLEAN.EXE <Enter> 

Any run-time command-line parameters required by the CLEAN program may be placed 
in the SYMDEB command line after the filename CLEAN.EXE. 

To prepare the program SHELL.C for debugging with SYMDEB, first compile the program 
with the switches that disable optimization and cause line-number information to be writ­
ten to the relocatable object module: 

C>MSC /Zd /Od SHELL; <Enter> 

Next, to convert the object module to an executable program and create a map file with 
line-number information, type 

C>LINK /MAP /LI SHELL; <Enter> 

To create the symbol information file required by SYMDEB for symbolic debugging, type 

C>MAPSYM SHELL <Enter> 

To begin debugging, type 

C>sYMDEB SHELL.SYM SHELL.EXE <Enter> 

Section IV: Programming Utilities 1061 

HUAWEI EX. 1110 - 1071/1582



SYMDEB 

To use the SYMDEB utility to inspect or modify memory or to read, modify, and write 

absolute disk sectors, type 

C>SYMDEB <Enter> 

Message 

File not found 
The filename supplied as the first parameter in the SYMDEB command line cannot be 
found. ,. 

1062 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1072/1582



SYMDEB:A 

SYMDEB:A 
Assemble Machine Instructions 

Purpose 

Al~ows entry of assembler mnemonics and translates them into executable machine code. 

·syntax 

A[address] 

where: 

address is the starting location for the assembled machine code. 

Description 

The Assemble Machine Instructions (A) command accepts assembly-language statements, 
rather than hexadecimal values, for the Intel 8086/8088, 80186, and 80286 (running in real 
mode) microprocessors and the Intel 8087 and 80287 math coprocessors and assembles 
each statement into executable machine language. 

The address parameter specifies the location where entry of assembly-language mne­
monics,will begin. If address is omitted, SYMDEB uses the last address generated by the 
previous A command; if there was no previous A command, SYMDEB uses the current 
value of the target program's CS:IP registers. 

After the user enters an A command, SYMDEB prompts for each assembly-language state­
ment by displaying the address (a segment and an offset) in which the assembled code will 
be stored. When the user presses the Enter key, SYMDEB translates the assembly-language 
statement and stores each byte of the resulting machine instruction sequentially in mem­
ory (overwriting any existing information), beginning at the displayed address. SYMDEB 
then displays the address following the last byte of the machine instruction to prompt the 
user to enter the next assembled instruction. The user can terminate assembly mode by 
pressing the Enter key in response to the address prompt. 

The assembly-language statements accepted by the SYMDEB A command have some 
slight syntactic differences and restrictions compared with the Microsoft Macro Assembler 
programming statements. These differences can be summarized as follows: 

• All numbers are assumed to be hexadecimal integers unless otherwise specified with 
a radix character suffix. 

• Segment overrides must be specified by preceding the entire instruction with CS:, 
DS:, ES:, or SS:. 

• File control directives (NAME, PAGE, TITLE, and so forth), macro definitions, record 
structures, and conditional assembly directives are not supported by SYMDEB. 

Section IV.· Programming Utilities 1063 

HUAWEI EX. 1110 - 1073/1582



SYMDEB:A 

• When the data type (word or byte) is not implicit in the instruction, the type must be 
specified by preceding the operand with BYTE PTR (or BY), WORD PTR (or WO), 
DWORD PTR (or DW), QWORD PTR (or QW), or TBYTE PTR (or TB). 

• In a string operation, the size of the string must be specified with a B (byte) or W 
(word) added to the string instruction mnemonic (for example, LODSB or LODSW). 

• The DB and DW instructions accept a parameter of the type list and assemble byte 
and word values directly into memory. 

• The WAIT or FWAIT opcodes for 8087/80287 assembler statements are not generated 
by the system and must be coded explicitly. (Note: 8087/80287 instructions can be as­
sembled if the system is not equipped with a math coprocessor, but the system will 
crash if an attempt is made to execute them.) 

• Addresses must be enclosed in square brackets to be differentiated from immediate 
operands. 

• Repeat prefixes such as REP, REPZ, and REPNZ can be entered either alone on a line 
preceding the statement they affect or on the same line immediately preceding the 
statement. 

• The assembler will generate the optimal form (SHORT, NEAR, or FAR) for jumps or 
calls, depending on the destination address, but these can be overridden if the 
operand is preceded with a NEAR (orNE) or FAR prefix. 

• The mnemonic for a FAR RETURN is RETF. 

Examples 

To begin assembling code at address CS:OlOOH, type 

-A 100 <Enter> 

To assemble the instruction sequence 

LODS WORD PTR [SI) 
XCHG BX,AX 
JMP [BX) 

beginning at address CS:OlOOH, the following dialogue would take place: 

-A 100 <Enter> 
1983:0100 LODSW <Enter> 
1983:0101 XCHG BX,AX <Enter> 
1983:0103 JMP [BX) <Enter> 
1983:0105 <Enter> 

To continue assembling at the last address generated by a previous A command 
(1983:0105H in the preceding example), type 

-A <Enter> 

1064 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1074/1582



SYMDEB:BC 
Clear Breakpoints 

Purpose 

Per~anently removes sticky breakpoints. 

·syntax 

or 

BC list 

where: 

• represents all sticky breakpoints. 

SYMDEB:BC 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Clear Breakpoints (BC) command permanently clears the sticky breakpoints pre­
viously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in mem­
ory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command, 
which remains in effect only while the G command executes. 

If an asterisk character ( •) follows the BC command, SYMDEB deletes all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BC command, SYMDEB selectively deletes sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP 
command. The List Breakpoints (BL) command can be used to display all current sticky 
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces. 

Sticky breakpoints can be temporarily disabled with the Disable Breakpoints (BD) com­
mand and subsequently re-enabled with the Enable Breakpoints (BE) command. 

Examples 

To clear sticky breakpoints 0, 4, and 8, type 

-Be 0 4 8 <Enter> 

To clear all sticky breakpoints, type 

-Be * <Enter> 

Section IV: Programming Utilities 1065 

HUAWEI EX. 1110 - 1075/1582



SYMDEB:BC 

Messages 
Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 

through 9. 

Breakpoint list or'*' expected! 
The BC command was entered without parameters. 

1066 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1076/1582



SYMDEB:BD 
Disable Breakpoints 

Purpose 

Temporarily disables sticky breakpoints. 

Syntax 

BD• 

or 

BD list 

where: 

* represents all sticky breakpoints. 

SYMDEB:BD 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Disable Breakpoints (BD) command temporarily disables the sticky breakpoints 
previously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in 
memory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) com­
mand, which remains in effect only while the G command executes. 

If an asterisk character ( *) follows the BD command, SYMDEB disables all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BD command, SYMDEB selectively disables sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP 
command. The List Breakpoints (BL) command can be used to display all current sticky 
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces. 

Sticky breakpoints disabled with the BD command can be re-enabled with the Enable 
Breakpoints (BE) command. The Clear Breakpoints (BC) command can be used to per­
manently delete a sticky breakpoint. 

Examples 

To disable sticky breakpoints 0, 4, and 8, type 

-BD 0 4 8 <Enter> 

To disable all sticky breakpoints, type 

-BD * <Enter> 

Section IV: Programming Utilities 1067 

HUAWEI EX. 1110 - 1077/1582



SYMDEB:BD 

Messages 
Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 

through9. 

Breakpoint list or'*' expected! 
The BD command was entered without parameters. 

1068 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1078/1582



SYMDEB:BE 
Enable Breakpoints 

Purpose 

Enables disabled sticky breakpoints. 

Syntax 

or 

BE list 

where: 

* represents all sticky breakpoints. 

SYMDEB:BE 

list is one or more integers (sticky breakpoint numbers) in the range 0 through 9. 

Description 

The Enable Breakpoints (BE) command enables the sticky breakpoints disabled with the 
Disable Breakpoints (BD) command. A sticky breakpoint remains in memory throughout 
a SYMDEB session, unlike a breakpoint set with the Go (G) command, which remains in 
effect only while the G command executes. 

If an asterisk (•) character follows the BE command, SYMDEB enables all sticky break­
points. If a list parameter containing one or more sticky breakpoint numbers in the range 
0 through 9 follows the BE command, SYMDEB selectively enables sticky breakpoints. 
Each sticky breakpoint is assigned a number when the breakpoint is created with the Set 
Breakpoints (BP) command. The List Breakpoints (BL) command can be used to display 
all current sticky breakpoint locations and numbers. Breakpoint numbers should be sepa­
rated by spaces. 

Examples 

To enable sticky breakpoints 0, 4, and 8, type 

-BE 0 4 8 <Enter> 

To enable all sticky breakpoints, type 

-BE * <Enter> 

Section IV: Programming Utilities 1069 

HUAWEI EX. 1110 - 1079/1582



SYMDEB:BE 

Messages 
Bad breakpoint number! (0~9) 
A sticky breakpoint number i~ the command line was not an integer in the range 0 

through 9. 

Breakpoint list or '•' expected! 
The BE command was entered without parameters. 

1070 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1080/1582



SYMDEB:BL 
List Breakpoints 

Purpose 

Displays information about all sticky breakpoints. 

·syntax 

BL 

Description 

SYMDEB:BL 

The List Breakpoints (BL) command lists the current status of each sticky breakpoint 
created with the Set Breakpoints (BP) command. A sticky breakpoint remains in memory 
throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command, which 
remains in effect only while the G command executes. 

The BL command lists each sticky breakpoint number, its status code, its address in the 
target program, the number of passes remaining, and the initial number of passes speci­
fied with the BP command (in parentheses). If source display mode was selected with the 
Enable Source Display Mode (S+) command, SYMDEB also displays the source-file name 
and the line number that corresponds to each breakpoint location. Breakpoint status 
codes are 

e Enabled 
d Disabled 
v Virtual 

(A virtual breakpoint is a sticky breakpoint set at a symbol contained in a .EXE file that has 
not yet been loaded into SYMDEB.) 

Example 

To view the current status of all breakpoints, type 

-BL <Enter> 

If the BP commands 

-BPO _TEXT:_main <Enter> 
-BP1 _TEXT:_printf <Enter> 

were previously entered, the BL command displays 

0 e 456E:0010 [_TEXT:_main) dump.C:32 
1 e 456E:0612 [_TEXT:_printf) 

Section IV: Programming Utilities 1071 

HUAWEI EX. 1110 - 1081/1582



SYMDEB:BP 

SYMDEB:BP 
Set Breakpoints 

Purpose 

Sets sticky breakpoint locations within the.program being debugged. 

Syntax 

BP[ n] address [ passcount] ["commands"] 

where: 

n 
address 
passcount 

"commands" 

Description 

is the sticky breakpoint number (0-9). 
is the location of the breakpoint in the target program. 
is the number of times the instruction at address should be executed 
before the breakpoint is taken. 
is one or more SYMDEB commands, separated by semicolons. The entire 
list must be enclosed in double quotation marks. (Limit = 30 characters.) 

The Set Breakpoints (BP) command sets a sticky breakpoint in the program being 
debugged. A sticky breakpoint remains in memory throughout a SYMDEB session, unlike 
·a breakpoint set with the Go (G) command, which remains in effect only while the G 
command executes. When the target program reaches the breakpoint, execution of the 
program is suspended and control returns to SYMDEB. SYMDEB displays the contents of 
the registers and flags, followed by a prompt so that the user can enter more commands. 

The optional n parameter associates an integer in the range 0 through 9, called the break­
point number, with the sticky breakpoint location. If n is omitted, the next available 
breakpoint number is used. No space is allowed between BP and n. 

The address parameter must point to the first byte of a machine instruction in the pro­
gram. This parameter may be a symbol, a literal address, or a source-code line number. If 
a segment is not included, SYMDEB uses the target program's CS register. 

The optional passcount parameter is the number of times execution should pass through 
the specified location before the break is taken and control is returned to SYMDEB. The 
value of passcount must be a hexadecimal number in the range 0 through FFFFH 
(default= 0). 

The optional"commands" parameter is one or more SYMDEB commands with their 
associated parameters. Each command must be separated from the others by a semicolon 
character(;) and the entire list enclosed in double quotation marks("). A maximum of 30 
characters can be specified within the quotation marks. The commands are executed 
whenever the break is taken. 

1072 The MS-DOS Encyclopedta 

HUAWEI EX. 1110 - 1082/1582



SYMDEB:BP 

Examples 

To set a sticky breakpoint at location next_file in the target program and dump the con­
tents of memory locations DS:OOOOH through DS:OOFFH when the breakpoint is reached, 
type 

-BP NEXT_FILE "DB DS:O L100" <Enter> 

To associate the breakpoint number 4 with the location CS:4230H in the program being 
debugged and pass the breakpoint 16 (lOH) times before suspending execution of the pro­
gram, type 

-BP4 CS:4230 10 <Enter> 

Messages 

Bad breakpoint number! (0-9) 
A sticky breakpoint number in the command line was not an integer in the range 0 
through9. 

Breakpoint command too long! 
The "commands" parameter exceeded 30 characters. 

Breakpoint error! 
The BP command was entered without an address parameter. 

Breakpoint redefined! 
A new address was assigned to an existing breakpoint number, or an attempt was made to 
create a breakpoint with the same address as an existing breakpoint. 

Duplicate breakpoint ignored! 
An attempt was made to change an existing breakpoint to a breakpoint already specified 
in the breakpoint list. 

Too many breakpoints! 
No more sticky breakpoints are available. 

Section IV: Programming Utilities 1073 

HUAWEI EX. 1110 - 1083/1582



SYMDEB:C 

SYMDEB:C 
Compare Memory Areas 

Purpose 

Compares two areas of memory and reports any differences. 

Syntax 

C range address 

where: 

range specifies the starting and ending addresses or the starting address and length 
of the first area of memory to be compared. 

address poirits to the beginning of the second area of memory to be compared. 

Description 

The Compare Memory Areas (C) command compares the contents of two areas of mem­
ory. The location and contents of any differing bytes are listed in the following form: 

addressl bytel byte2 address2 

If no differences are found, the SYMDEB prompt returns. 

The range parameter specifies the first through last addresses or the starting address and 
length in bytes of the first area of memory to be compared. 

The address parameter points to the beginning of the second area of memory to be com­
pared, which is the same size as range. If a segment is not included in either range or 
address, SYMDEB uses DS. 

Example 

To compare the 64 bytes beginning at CS:CEOOH with the 64 bytes beginning at 
CS:CFOAH, type 

-C CS:CEOO,CE3F CS:CFOA <Enter> 

or 

-C CS:CEOO L40 CS:CFOA <Enter> 

If any differences are found, SYMDEB displays them in the following format: 

2124:CE06 00 FF 2124:CF10 

107 4 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1084/1582



SYMDEB:D 
Display Memory 

Purpose 

Displays the contents of an area of memory. 

Syntax 

D [range] 

where: 

SYMDEB:D 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Memory (D) command displays the contents of a specified range of memory 
addresses in the same format used in the most recent Display command (DA, DB, DD, DL, 
DS, DT, or DW). If no Display command has previously been entered, the memory is dis­
played in hexadecimal bytes and their ASCII equivalents (the DB format). 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and the hexadecimal number of data items to be displayed. When range does not include 
a segment, SYMDEB uses DS. 

The size in bytes of each item and the default value for the length depend on the type of 
Display command used: the Display Byte (DB), Display Doubleword (DD), and Display 
Word (DW) commands default to a length of 128 (SOH) bytes; Display ASCII (DA) displays 
128 bytes or up to a null byte, whichever is smaller; Display Short Reals (DS), Display Long 
Reals (DL), and Display 10-Byte Reals (DT) default to the display of one floating-point 
number. 

If a Display command has not previously been used and range is omitted from a D com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a D command, the 
display starts at the memory address following the last address displayed by the most re­
cent Display command. 

Examples 

Assume that the only Display commands used during this SYMDEB session are D and-DB. 
To display the contents of the 128 bytes of memory beginning at offset 100H in the pro­
gram's DGROUP, type 

-D DGROUP:0100 <Enter> 

Section IV: Programming Utilities ·1075 

HUAWEI EX. 1110 - 1085/1582



SYMDEB:D 

SYMDEB displays the contents of the range of memory addresses in the following format: 

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device . .. '9 ... : 

7F00:0110 39 08 20 08 00 81 39 04-1B SB 32 4A 42 BD 11 44 9. ... 9 .. [2JB=.D 

7F00:0120 2E 26 45 AF 11 47 B3 11-48 AS 11 4C BS 11 4E D3 .&E/.G3.H%.L8.NS 

7F00:0130 11 50 DF 11 51 AB 11 54-DF 1E 56 37 11 SF 9F 16 .P:....Q+.T_.V7._ .. 

7F00:0140 24 co 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $@ ... NOTA .. ERROR 

7F00:0150 4C 45 56 45 4C 85 08 05-45 58 49 53 54 18 08 00 LEVEL ... EXIST ... 

7F00:0160 03 44 49 52 03 91 oc 06-52 45 4E 41 4D 45 01 co .DIR .... RENAME.@ 

7FOO: 0170 OF 03 52 45 4E 01 co OF-05 45' 52 41 53 45 01 68 .. REN.@ .. ERASE.h 

To view the next 128 bytes of memory, type 

-D <Enter> 

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH. 

1076 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1086/1582



SYMDEB:DA 
Display ASCII 

Purpose 

Displays the contents of memory in ASCII format. 

Syntax 

DA[range] 

where: 

SYMDEB:DA 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display ASCII (DA) command displays the contents of a specified range of memory 
addresses in ASCII format. 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed in ASCII format or the starting address followed by the length of the area, ex­
pressed by an L and a hexadecimal number of bytes. When range does not include a 
segment, SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DA com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DA command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. 

When a range is not explicit in a DA command, the display terminates after 128 bytes or 
when a null (zero) byte is encountered. If a range is specified, the entire range is dis­
played, including any null bytes, with nonprinting characters displayed as period (.) 
characters. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory (or less if a null byte was encountered) represented as an ASCII string. 

See also PROGRAMMING UTILITIES: SYMDEB:EA. 

Examples 

If memory beginning at location 7F00:0100H contains the characters This is a test string 
followed by a null (zer'o) byte, the command 

-oA 7F00:0100 <Enter> 

Section IV: Programming Utilities 1077 

HUAWEI EX. 1110 - 1087/1582



SYMDEB:DA 

produces the following display: 

7F00:0100 This is a test string 

To view additional memory in the same format, type 

-o <Enter> 

1078 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1088/1582



SYMDEB:DB 
Display Bytes 

Purpose 

SYMDEB:DB 

Displays the contents of memory as hexadecimal bytes and their equivalent ASCII 
characters. 

Syntax 

DB[range] 

where: 

range 

Description 

specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

The Display Bytes (DB) command displays the contents of a specified range of memory 
addresses as hexadecimal bytes and their ASCII character equivalents. This is the default 
format for the Display Memory (D) command. 

The range parameter specifies the starting and ending addresses of the memory area to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of bytes. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DB com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DB command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DB command, the display ter­
minates after 128 bytes. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory represented as hexadecimal values separated by spaces (except the 
eighth and ninth values, which are separated by a dash), followed by their ASCII character 
equivalents (if any). In the ASCII section, nonprinting characters are displayed as periods. 

See also PROGRAMMING UTILITIES: SYMDEB:EB. 

Examples 

To display the contents of the 128 bytes of memory beginning at 7F00:0100H, type 

-DB 7F00:0100 <Enter> 

Section TV.· Programming Utilities 1079 

HUAWEI EX. 1110 - 1089/1582



:.1\.li ,. 

'.·'1 I! 
,;1 
1 ~ 

1
11 

,.; 

SYMDEB:DB 

The contents of the range of memory addresses are displayed in the following format: 

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device . .. '9 . .. : 

7F00:0110 39 08 20 08 oo 81 39 04-1B SB 32 4A 42 BD 11 44 9. ... 9 .. [2JB=.D 

7F00:0120 2E 26 45 AF 11 47 B3 11-48 AS 11 4C BB 11 4E 03 .&E/.G3.H%.L8.NS 

7F00:0130 11 50 DF 11 51 AB 11 54-DF 1E 56 37 11 SF 9F 1 6 .P_.Q+.T_.V7 ._ .. 

7F00:0140 24 co 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $@ ••• NOTA .. ERROR 

7F00:0150 4C 45 56 45 4C 85 08 05-45 58 49 53 54 18 08 00 LEVEL ... EXIST ... 

7F00:0160 03 44 49 52 03 91 oc 06-52 45 4E 41 4D 45 01 co .DIR .... RENAME.@ 

7F00:0170 OF 03 52 45 4E 01 co OF-05 4'5 52 41 53 45 01 68 .. REN.@ .. ERASE.h 

To view the next 128 bytes of memory, type 

-o <Enter> 

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH. 

1080 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1090/1582



SYMDEB:DD 
Display Doublewords 

Purpose 

Displays the contents of memory in hexadecimal doubleword format. 

Syntax 

DD[range] 

where: 

SYMDEB:DD 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Doublewords (DD) command displays the contents of a specified range of 
memory addresses 4 bytes at a time, as if they were FAR memory pointers (offset followed 
by segment in reverse byte order). 

The range parameter specifies the starting and ending addresses of the memory to be dis­
played or the starting address followed by the length of the area, expressed by an L and a 
hexadecimal number of doublewords. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DD com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DD command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DD command, 32 doublewords 
(128 bytes) are displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
16 bytes of memory represented as 4 paired 16-bit segments and offsets. The 4 bytes that 
make up the segment and offset of each doubleword pointer are displayed in reverse order 
from their actual storage in memory. 

See also PROGRAMMING UTILITIES: SYMDEB:ED. 

Examples 

To see how DD represents the 4 bytes that make up a doubleword, first type 

-DB 100 <Enter> 

Section IV: Programming Utilities 1081 

HUAWEI EX. 1110 - 1091/1582



SYMDEB:DD 

This produces the following output: 

3929:0100 CF OB 90 00 33 OE C3 OE-F2 OE 06 OF 39 OF 49 OF 0 ... 3.C.r ... 9.I. 

Then type 

-oo 100 <Enter> 

This produces the following output: 

3929:0100 0090:0BCF 0EC3:0E33 OF06:0EF2 OF49:0F39 

Notice that DD switches the order of the first 2 bytes in a 4-byte set and designates them as 
the offset; then it switches the order of the second 2 bytes in the 4-byte set and designates 
them as the segment address. 

To display the contents of the first 128 (80H) bytes of the system interrupt vector table, 
which is based at address OOOO:OOOOH, type 

-oo 0:0 <Enter> 

This produces the following output: 

0000:0000 2075:0302 0070:01FO 16F3:2C1B 0070:01FO 
0000:0010 0070:01FO FOOO:FF54 F000:9805 F000:9805 
0000:0020 OAE3:0395 16F3:2BAO F000:9805 F000:9805 
0000:0030 0972:0840 F000:9805 FOOO:EF57 0070:01FO 
0000:0040 OAE3:0306 FOOO:F840 FOOO:F841 0070:0043 
0000:0050 FOOO:E739 FOOO:F859 FOOO:E82E FOOO:EF02 
0000:0060 FOOO:E76C 0070:0ADD FOOO:FE6E 1078:3BEC 
0000:0070 FOOO:FF53 FOOO:FOE4 0000:0522 FOOO:OOOO 

To view the next 128 bytes of memory in the same format, type 

-o <Enter> 

SYMDEB displays the contents of memory addresses 0000:0080H through OOOO:OOFFH. 

1082 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1092/1582



SYMDEB:DL 
Display Long Reals 

Purpose 

Displays the contents of memory as long (64-bit) floating-point numbers. 

·syntax 

DL[range] 

where: 

SYMDEB:DL 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Long Reals (DL) command displays the contents of a specified range of mem­
ory addresses 8 bytes at a time, as hexadecimal values and their decimal equivalents. The 
hexadecimal values are formatted as 64-bit floating-point numbers. The decimal values 
have the form 

+:-o.decimaldigitsE+ :-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum of 
16 decimaldigits, this, in turn, is followed by the designator of the mantissa (E) and the 
mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the memory to be dis­
played or the starting address followed by the length of the area, expressed by an L and a 
hexadecimal number of 8-byte values. When range does not include a segment, SYMDEB 
usesDS. 

If a Display command has not previously been used and range is omitted from a DL 
command, the display starts at the address specified in the target program's CS:IP regis­
ters. If a Display command has previously been used and range is omitted from a DL com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DL command, 
one 64-bit floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
8 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:EL. 

Section IV: Programming Utilities 1083 

HUAWEI EX. 1110 - 1093/1582



SYMDEB:DL 

Examples 

Assume that the memory beginning at location DS:OlOOH contains the value 6.624 * lQ-27 

(Planck's constant, in erg-seconds) as a 64-bit floating-point number. The command 

-oL 100 <Enter> 

produces the following output: 

43E8:0100 SF A2 20 73 75 66 80 3A +0,6624E-26 

To view the next 8 bytes of memory in the same format, type 

-o <Enter> 

1084 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1094/1582



SYMDEB:DS 
Display Short Reals 

Purpose 

Displays the contents of memory as short (32-bit) floating-point numbers. 

·syntax 

DS [range] 

where: 

SYMDEB:DS 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Short Reals CDS) command displays the contents of a specified range of mem­
ory addresses 4 bytes at a time, as hexadecimal values and their decimal equivalents. The 
hexadecimal values are formatted as 32-bit floating-point numbers. The decimal values 
have the form 

+:-o.decimaldigitsE+:-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum 
of 16 decimaldigits (only the first 7 digits are significant); this, in turn, is followed by the 
designator of the mantissa (E) and the mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of 4-byte values. When range does not include a segment, 
SYMDEB uses DS. . 

If a Display command has not previously been used and range is omitted from a DS 
command, the display starts at the address specified in the target program's CS:IP regis-

. ters. If a Display command has previously been used and range is omitted from a DS com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DS command, one 
32-bit floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
4 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:Es. 

Section IV: Programming Utilities 1085 

HUAWEI EX. 1110 - 1095/1582



SYMDEB:DS 

Examples 
Assume that the memory beginning at location 43E8:0100H contains the value 6.02 •10+

2
3 

(Avogadro's number) as a 32-bit floating-point number. The command 

-os 43~8:100 <Enter> 

produces the following output: 

43E8:0100 F9 F4 FE 66 +0.6020000172718952E+24 

To view the next 4 bytes of memory in the same format, type 

-o <Enter> 

1086 The MS-DOS Encycloper,fia 

HUAWEI EX. 1110 - 1096/1582



SYMDEB:DT 
Display 10-Byte Reals 

Purpose 

Displays the contents of memory as 10-byte (80-bit) floating-point numbers. 

·syntax 

DT[range] 

where: 

SYMDEB:DT 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display 10-Byte Reals (DT) command displays the contents of a specified range of 
memory addresses 10 bytes at a time, as hexadecimal values and their decimal equivalents. 
The hexadecimal values are formatted as 80-bit floating-point numbers. (This format is 
ordinarily used by the Intel 8087 math coprocessor only for intermediate results during 
chained floating-point calculations.) The decimal value has the form 

+l-O.decimaldigitsE+l-mantissa 

The sign of the number ( + or-) is followed by a zero, a decimal point, and a maximum of 
16 decimaldigits, this, in turn, is followed by the designator of the mantissa (E) and the 
mantissa's sign ( + or-) and digits. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of 10-byte values. When range does not include a segment, 
SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DT 
command, the display starts at the address specified in the target program's CS:IP regis­
ters. If a Display command has previously been used and range is omitted from a DT com­
mand, the display starts at the memory address following the last address displayed 
by the most recent Display command. When a range is not explicit in a DT command, one 
10-byte floating-point number is displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 
10 bytes of memory represented as a hexadecimal value, followed by its decimal floating­
point equivalent. 

See also PROGRAMMING UTILITIES: SYMDEB:ET. 

Section IV.· Programming Utilities 1087 

HUAWEI EX. 1110 - 1097/1582



SYMDEB:DT 

Examples 

Assume that the memory beginning at location DS:OlOOH contains the value 2.99 •10+10 

(the speed of light in centimeters per second) as an 80-bit floating-point number. The 
command 

-oT 1 00 <Enter> 

produces the following output: 

43E8:0100 00 00 00 00 60 B9 CS DE 21 40 +0.299E+11 

To view the next 10 bytes of memory in the same format, type 

-o <Enter> 

1088 The MS-DOS encyclopedia 

HUAWEI EX. 1110 - 1098/1582



I 
SYMDEB:DW 
Display Words 

Purpose 

SYMDEB:DW 

Displays the contents of memory as 2-byte (16-bit) words. 

Syntax 

DW[range] 

where: 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be displayed. 

Description 

The Display Word (DW) command displays the contents of a specified range of memory 
addresses 2 bytes at a time, as 16-bit hexadecimal integers. 

The range parameter specifies the starting and ending addresses of the area of memory to 
be displayed or the starting address followed by the length of the area, expressed by an L 
and a hexadecimal number of words of memory to be displayed. When range does not in­
clude a segment, SYMDEB uses DS. 

If a Display command has not previously been used and range is omitted from a DW com­
mand, the display starts at the address specified in the target program's CS:IP registers. If a 
Display command has previously been used and range is omitted from a DW command, 
the display starts at the memory address following the last address displayed by the most 
recent Display command. When a range is not explicit in a DW command, 64 words 
are displayed. 

Each line of the display is formatted as a segment and offset, followed by the contents of 16 
bytes of memory represented as eight 4-digit hexadecimal numbers. The 2 bytes that make 
up each word are displayed in reverse order from their actual storage in memory. That is, 
the first byte in a 2-byte word is displayed after the second byte. 

See also PROGRAMMING UTILITIES: SYMDEB:Ew. 

Examples 

To display the contents of the 64 words of memory beginning at DS:0080H in word format, 
type 

-ow 80 <Enter> 

Section IV: Programming Utilities 1089 

HUAWEI EX. 1110 - 1099/1582



SYMDEB:DW 

This produces the following output: 

1FEE:0080 6977 646E 776F 5C73 696C 0062 494C 3D42 

1FEE:0090 3A63 6D5C 6373 6C5C 6269 633B 5C3A 6977 

1FEE:OOAO 646E 776F 5C73 696C 0062 4D54 3D 50 3A63 

1FEE:OOBO 745C 6D65 0070 4554 504D 633D 5C3A 6574 

1FEE:OOCO 706D 4400 4149 3D4C 3A63 645C 6169 006C 

1FEE:OODO 4350 3346 3D32 3A63 665C 726F 6874 705C 

1FEE:OOEO 3363 0032 4350 3350 3D32 3A63 665C 726F 

1FEE:OOFO 6874 705C 756C 3373 0032 5255 3146 3D30 

To view the next 64 words of memory in the same format, type 

-D <Enter> 

SYMDEB displays the contents of memory addresses lFEE:OlOOH through 1FEE:017FH. 

1090 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1100/1582



SYMDEB:E 
Enter Data 

Purpose 

Enters data into memory. 

·syntax 

E address [list] 

where: 

is the first memory location for storage. 

SYMDEB:E 

address 
list is the data to be placed into successive bytes of memory, starting at address. 

Description 

The Enter Data (E) command enters into memory one or more data items, using the same 
format as the most recent Enter command (EA, EB, ED, EL, ES, ET, or EW). If no Enter 
command has previously been used, the data can be entered as either hexadecimal values 
or ASCII strings (the EA or EB format). Any data previously stored at the specified loca­
tions is lost. If SYMDEB displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter must meet the requirements of the last Enter command used. All 
SYMDEB Enter commands are described in alphabetic order on the following pages. If list 
is included in the command line, the changes are made unless an error is detected in the 
command line. If list is omitted from the command line, the current contents of address 
are displayed, followed by a period(.), and the user is prompted for new data. If no value 
is entered and the Enter key is pressed, the original value remains unchanged and the En­
ter command is terminated. 

Examples 

The following two examples assume that no previous Enter commands have been used or 
that the most recent Enter command was EA or EB. 

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:1FB3H, type 

-E 1FB3 00 OD OA <Enter> 

Section IV: Programming Utilities 1091 

HUAWEI EX. 1110 - 1101/1582



SYMDEB:E 

If the command 

-E 2C3 ABC <Enter> 

is entered and the last Enter command used was EA or EB, the value BCH is stored at · 
DS:2C3H, and the leading 'A' character on the hexadecimal number 'ABC' is ignored. 

1092 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1102/1582



SYMDEB:EA 
Enter ASCII String 

Purpose 

Enters an ASCII string or hexadecimal byte values into memory. 

Syntax 

EA address [list] 

where: 

address 
list 

Description 

is the first memory location for storage. 
is one or more ASCII strings or hexadecimal byte values. 

SYMDEB:EA 

The Enter ASCII String (EA) command enters data into successive memory bytes. The data 
can be entered as either hexadecimal byte values or ASCII strings. Any data previously 
stored at the specified locations is lost. If SYMDEB displays an error message, no changes 
are made. The EA command functions exactly like the Enter Bytes (EB) command. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter is one or more ASCII strings and/or hexadecimal byte values, separated 
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must 
be enclosed within single or double quotation marks, and case is significant within a 
string. 

If list is included in the command line, the changes are made unless an error is detected in 
the command line. If list is omitted from the command line, the user is prompted byte by 
byte for new data, starting at address. The current contents of a byte are displayed, fol­
lowed by a period. A new value for that byte can be entered as one or two hexadecimal 
digits (extra characters are ignored), or the contents can be left unchanged. To display the 
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac-
ter(-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi- 4 
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte 
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing 
the spacebar or entering any data. 

Text strings can be used only as part of the list parameter in an EA command line; they 
cannot be entered in response to an address prompt. 

Section IV.· Programming Utilities 1093 

HUAWEI EX. 1110 - 1103/1582



SYMDEB:EA 

Example 
To store the string MAIN MENU into memory beginning at address ES:OC14H, type 

-EA ES:C14 "MAIN MENU" <Enter> 

1094 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1104/1582



SYMDEB:EB 
Enter Bytes 

Purpose 

Enters hexadecimal byte values or ASCII strings into memory. 

Syntax 

EB address [list] 

where: 

address 
list 

Description 

is the first memory location for storage. 
is one or more hexadecimal byte values or ASCII strings. 

SYMDEB: EB 

The Enter Bytes (EB) command enters data into successive memory bytes. The data can 
be entered as either hexadecimal byte values or ASCII strings. Any data previously stored· 
at the specified locations is lost. If SYMDEB displays an error message, no changes are 
made. The EB command functions exactly like the Enter ASCII String (EA) command. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data 
stored. 

The list parameter is one or more hexadecimal byte values and/or ASCII strings, separated 
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must 
be enclosed within single or double quotation marks, and case is significant within a 
string. 

If list is included in the command line, the changes are made unless an error is detected in 
the command line. If list is omitted from the command line, the user is prompted byte by 
byte for new data, starting at address. The current contents of a byte are displayed, fol­
lowed by a period. A new value for the byte can be entered as one or two hexadecimal 
digits (extra characters are ignored), or the contents can be left unchanged. To display the 
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac­
ter(-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi­
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte 
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing 
the spacebar or entering any data. 

Text strings can be used only as part of the list parameter in an EB command line; they 
cannot be entered in response to an address prompt. 

Section IV: Programming Utilities 1095 

HUAWEI EX. 1110 - 1105/1582



SYMDEB:EB 

Examples 

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:lFB3H, type 

-EB 1FB3 00 OD OA <Enter> 

To store the string MAIN MENU into memory beginning at address ES:OC14H, type 

-EB ES:C14 "MAIN MENU" <Enter> 

1096 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1106/1582



SYMDEB:ED 

SYMDEB:ED 
Enter Doublewords 

Purpose 
Enters hexadecimal doubleword values into memory. 

Syntax 

ED address[value] 

where: 

address is the first memory location for storage. 
value is a doubleword (32-bit) hexadecimal value. 

Description 

The Enter Doublewords (ED) command enters into memory 32-bit hexadecimal double­
word values in the form of FAR memory pointers (offset followed by segments in reverse 
byte order). Any data previously stored at the specified locations is lost. If SYMDEB dis­
plays an error message, no changes are made. 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses DS. 

The value parameter is one doubleword value, entered as two 16-bit hexadecimal words 
separated by a colon character(:). Each value is entered in the form segment: offset. The 
offset portion is stored at address, and the segment portion is stored at address+ 2, both in 
reverse byte order. For example, a value of AABB:CCDDH would be stored in memory as 
DDH, CCH, BBH, and AAH, starting at address. Multiple values cannot be used in an ED 
command line; SYMDEB ignores any values after the first value. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed, followed by a period. 
The user can then enter a new doubleword value and press the Enter key or leave the con­
tents unchanged by pressing the Enter key alone, which also terminates the ED command. 
If a new vaiue is entered, SYMDEB increments address and displays the next doubleword 
value. 

Example 

To store the doubleword value F000:1392H at the address DS:0200H, type 

-ED 200 F000:1392 <Enter> 

Section IV: Programming Utilities 1097 

HUAWEI EX. 1110 - 1107/1582



SYMDEB:EL 

SYMDEB:EL 
Enter Lortg Reals 

Purpose 

Enters 64-bit floating-point numbers into 1,11emory. 

Syntax 

EL address[value] 

where: 

address is the first memory location for storage. 
value is a 64-bit floating-point decimal number. 

Description 

The Enter Long Reals (EL) command enters into memory 64-bit floating-point numbers 
in decimal format. Any data previously stored at the specified memory locations is lost. If 
SYMDEB displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an EL command line; 
SYMDEB ignores any values after the first value. 

The 64-bit floating-point decimal value must be entered in the form 

[+ :-Jdecimaldigits[E[+: -]mantissa] 

where: 

+ : - is the sign of the long floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. · 
mantissa is the decimal mantissa value. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed. The user can enter a 
new value and press the Enter key or leave the contents unchanged by pressing the Enter 
key alone, which also terminates the EL command. If a new value is entered and the Enter 
key is pressed, SYMDEB increments address and displays the next long real number. 

1098 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1108/1582



SYMDEB:EL 

Example 

To store an approximation of the value pi (1t) in the form of a 64-bit floating-point number 
at address DS:0020H, type 

-EL 20 +0.3141592653589793E+1 <Enter> 

or 

-EL 20 3.141592653589793 <Enter> 

Section IV: Programming Utilities 1099 

HUAWEI EX. 1110 - 1109/1582



SYMDEB:ES 

SYMDEB:ES 
Enter Short Reals 

Purpose 

Enters 32-bit floating-point numbers into memory. 

Syntax 

ES address [value] 

where: 

address is the first memory location for storage. 
value is a 32-bit floating-point decimal number. 

Description 

The Enter Short Reals (ES) command enters into memory 32-bit floating-point numbers 
in decimal format. Any data previously stored at the specified locations is lost. If SYMDEB 
displays an error message, no changes are made. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, SYMDEB uses DS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an ES command line; 
SYMDEB ignores any values after the first value. 

The 32-bit floating-point decimal value must be entered in the form 

· [+ :-Jdecimaldigits[E[+ :-]mantissa] 

where: 

+ : - is the sign of the short floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. 
mantissa is the decimal mantissa value. 

Note: For short floating-point values, the last nine decimaldigits are not significant. This 
can be demonstrated by using the Display Short Reals (DS) command to check the new 
value in memory. 

If value is omitted from the command line, SYMDEB prompts the user for new data, start­
ing at address. The current contents of the location are displayed. The user can then enter 
a new value and press the Enter key or leave the contents unchanged by pressing the 

1100 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1110/1582



SYMDEB:ES 

Enter key alone, which also terminates the ES command. If a new value is entered and the 
Enter key is pressed, SYMDEB increments address and displays the next short floating­
point number. 

Example 

To store an approximation of the value pi (1t) in the form of a 32-bit floating-point number 
at address DS:0020H, type 

-ES 20 +0.31415927E+1 <Enter> 

or 

-ES 20 3.1415927 <Enter> 

Section IV: Programming Utilities 1101 

HUAWEI EX. 1110 - 1111/1582



SYMDEB:ET 

SYMDEB:ET 
Enter 10-Byte Reals 

Purpose 

Enters 10-byte (80-bit) floating-point numbers into memory. 

Syntax 

ET address[value] 

where: 

address 
value 

Description 

is the first memory location for storage. 
is an 80-bit floating-point decimal number. 

The Enter 10-Byte Reals (ET) command enters into memory 10-byte (80-bit) floating-point 
numbers in decimal format. Any data previously stored at the specified locations is lost. If 
SYMDEB displays an error message, no changes are made. (This 10-byte format is ordinar­
ily used by the Intel 8087 math coprocessor only for intermediate results during chained 
floating-point calculations.) 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses OS. 

The value parameter is a floating-point number entered in decimal radix, with or without 
a decimal point and/or exponent. Multiple values cannot be used in an ET command line; 
SYMDEB ignores any values after the first value. 

The 10-byte floating-point decimal value must be entered in the form 

[+ l-ldecimaldigits[E[+ l-lmantissa] 

where: 

+ l - is the sign of the 1 0-byte floating-point value or the mantissa. 
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits 

before and after a decimal point. 
E denotes the beginning of the mantissa. 
mantissa is the decimal mantissa value. 

·If value is omitted from the command, SYMDEB prompts the user for new data, starting at 
address. The current contents are displayed. The user can enter a new value and press the 
Enter key or leave the contents unchanged by pressing the Enter key alone, which also ter­
minates the ET command. If a new value is entered and the Enter key is pressed, SYMDEB 
increments address and displays the next 10-byte floating-point number. 

1102 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1112/1582



SYMDEB:ET 

Example 

To store an approximation of the value pi (1t) in the form of an 80-bit floating-point num­
ber at address DS:0020H, type 

-ET 20 +0.31415926535897932384E+1 <Enter> 

or 

-ET 20 3.1415926535897932384 <Enter> 

Section IV.· Programming Utilities 1103 

HUAWEI EX. 1110 - 1113/1582



SYMDEB:EW 

SYMDEB:EW 
Enter Words 

Purpose 

Enters word values into memory. 

Syntax 

EW address[value] 

where: 

address is the first memory location for storage. 
value is a word (16-bit) hexadecimal value. 

Description 

The Enter Words (EW) command enters into memory 16-bit hexadecimal word values. 
Any data previously stored at the specified locations is lost. If SYMDEB displays an error 
message, no changes are made. 

The address parameter specifies the first memory location to be modified. If address does 
not include a segment, SYMDEB uses DS. 

The value parameter is one word value in the range 0 through FFFFH. The value is stored 
in reverse byte order. For example, a value of AABBH would be stored in memory as BBH 
and AAH, starting at address. Multiple values cannot be used in anEW command line; 
SYMDEB ignores any values after the first value. 

If value is omitted from the command line, SYMDEB prompts the user word by word for 
new data, starting at address. The current contents are displayed, followed by a period. 
The user ca~ enter a new word value as one to four hexadecimal digits and press the Enter 
key or leave the contents unchanged by pressing the Enter key alone, which also termi­
nates the EW command. If a new value is entered, SYMDEB increments address and dis­
plays the next word value. 

Example 

To store the word value 1355H at the address DS:1COOH, type 

-EW 1C00 1355 <Enter> 

1104 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1114/1582



SYMDEB:F 
Fill Memory 

Purpose 

Stores a repetitive data pattern into an area of memory. 

·syntax 

F range list 

where: 

SYMDEB:F 

range specifies the starting and ending addresses or the starting address and length 
of memory to be filled. 

list is the data to be used to fill memory. 

Description 

The Fill Memory (F) command fills an area of memory with the data from a list. The data 
can be entered in either hexadecimal or ASCII format. Any data previously stored at the 
specified locations is lost. If SYMDEB displays an error message, no changes are made. 

The range parameter specifies the starting and ending addresses or the starting address 
and hexadecimal length in bytes of the area of memory to be filled. If range does not in­
clude an explicit segment, SYMDEB uses OS. 

The list parameter is one or more hexadecimal byte values and/or strings, separated by 
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation 
marks, and case is significant within a string. 

If the area to be filled is larger than the data list, the list is repeated as often as necessary to 
fill the area. If the data list is longer than the area of memory to be filled, the list is trun­
cated to fit. 

Examples 

To fill the area of memory from DS:OB10H through DS:OB4FH with the value OESH, type 

-F B10 B4F E8 <Enter> 

or 

-F B10 L40 E8 <Enter> 

To fill the 16 bytes of memory beginning at address CS:1FAOH by replicating the 2-byte 
sequence ODH OAH, type 

-F CS:1FAO 1FAF OD OA <Enter> 

or 

-F CS:1FAO L10 OD OA <Enter> 

Section IV: Programming Utilities 1105 

HUAWEI EX. 1110 - 1115/1582



SYMDEB:F 

To fill the area of memory from ES:OBOOH through ES:OBFFH by replicating the text string 
BUFFER, type 

-F ES:BOO BFF "BUFFER" <Enter> 

or 

-F ES:BOO 1100 "BUFFER" <Enter> 

1106 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1116/1582



l , 
I 
l 

SYMDEB:G 

SYMDEB:G 
Go 

Purpose 

Transfers execution control from SYMDEB to the target program being debugged. 

Syntax 

G[=address] [breakO[ ... break9]] 

where: 

address 
breakO ... break9 

Description 

is the location at which to begin execution. 
specify from 1 to 10 breakpoints. 

The Go (G) command transfers control from SYMDEB to the target program. If no break­
points are set, the program will execute until it crashes or until it reaches a normal ter­
mination, in which case the message Program terminated normally is displayed and 
control returns to SYMDEB. (After this message has been displayed, it may be necessary 
to reload the program before it can be executed again.) 

The address parameter can be any location in memory. If no segment is specified, 
SYMDEB uses the target program's CS register. If address is omitted, SYMDEB transfers to 
the current address in the target program's CS:IP registers. An equal sign (=) must precede 
address to distinguish it from the breakpoints breakO ... break9. 

The parameters breakO ... break9 specify from 1 to 10 breakpoints that can be set as part 
of the G command. Breakpoints can be placed in any order, because execution stops at the 
first breakpoint address encountered, regardless of the position of that breakpoint in the 
list. Each of the breakpoint addresses must contain the first byte of an 8086 opcode. 
SYMDEB installs breakpoints by replacing the first byte of the machine instruction at each 
breakpoint address with an Interrupt 03H instruction (opcode OCCH). If the program en­
counters a breakpoint, program execution is suspended and control returns to SYMDEB. 
SYMDEB then restores the original machine code in the breakpoint locations, displays the 
contents of the current registers and flags and the instruction pointed to by CS:IP, and 4 
issues the standard SYMDEB prompt. If the target program executes to completion and ter­
minates without encountering any of the breakpoints or is halted by some means other 
than a breakpoint, the Interrupt 03H instructions are not replaced with the original 
machine code and the Load File or Sectors (L) command must be used to reload the origi-
nal program. 

The G command requires that the target program's SS:SP registers point to a valid stack 
that has at least 6 bytes of stack space available. When the G command is executed, it 

Section IV: Programming Utilities 1107 

HUAWEI EX. 1110 - 1117/1582



SYMDEB:G 

pushes the target program's flags and CS and IP registers onto the stack and then transfers 
control to the program with an IRET instruction. Thus, if the target program's stack is not 
valid or is too small, the system may crash. 

The G command also recognizes any sticky breakpoints set with the Set Breakpoint (BP) 
command. These sticky breakpoints are not counted as part of the transient breakpoints 
specified in the G command line and are not removed after a breakpoint has been 
encountered. 

Examples 

To begin execution of the program in SYMDEB's buffer at location CS:llOAH, setting 
breakpoints at CS:12FCH and CS:1303H, type 

-G =110A 12FC 1303 <Enter> 

To resume execution of the program following a breakpoint, type 

-G <Enter> 

To begin execution at the label main, setting breakpoints at the procedures fopen() and 
printf(), type 

-G =_main _fopen _printf <Enter> 

Messages 

Program terminated normally 
The program being debugged executed successfully without encountering any break­
points and performed a normal termination with Interrupt 20H, Interrupt 21H Function 
OOH, or Interrupt 21H Function 4CH. If any breakpoints were set, the original program 
should be reloaded with the Load File or Sectors (L) command. 

Too many breakpoints! 
More than 10 breakpoints were specified in a Go (G) command. Enter the command again 
with 10 or fewer breakpoints. 

1108 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1118/1582



SYMDEB:H 

SYMDEB:H 
Perform Hexadecimal Arithmetic 

Purpose 

Displays the sum and difference of two hexadecimal numbers. 

Syntax 

H valuel value2 

where: 

valuel and value2 are any two hexadecimal numbers in the range 0 through FFFFH. 

Description 

The Perform Hexadecimal Arithmetic (H) command displays the sum and difference of 
two 16-bit hexadecimal numbers- that is, the result of the operations valuel+value2 and 
valuel-value2. If value2 is greater than valuel, SYMDEB displays their difference as a 
two's complement hexadecimal number. This command is convenient for performing 
quick calculations of addresses and other values during an interactive debugging session. 

Examples 

To display the sum and difference of the values 4B03H and 104H, type 

~H 4B03 104 <Enter> 

This produces the following display: 

4C07 49FF 

If the addition produces an overflow, the four least significant digits are displayed: For 
example, the command line 

-H FFFF 2 <Enter> 

produces the following display: 

0001 FFFD 

If value2 is greater than valuel, the difference is displayed in two's complement form. For 
example, the command line 

-H 1 2 <Enter> 

produces the following display: 

0003 FFFF 

Section IV: Programming Utilities 1109 

HUAWEI EX. 1110 - 1119/1582



:·,.,11 :j 
.!/ 

ill 'i! 

SYMDEB: I 

SYMDEB:I 
Input from Port 

Purpose 

Reads and displays 1 byte from an input/output (1/0) port. 

Syntax 

I port 

where: 

port is a 16-bit I/0 port address in the range 0 through FFFFH. 

Description 

The Input from Port (I) command performs a read operation on the specified I/0 port 
address and displays the data as a two-digit hexadecimal number. 

Warning: This command must be used with caution because it involves direct access to 
the computer hardware and no error checking is performed. Input operations directed to 
the ports assigned to some peripheral device controllers may interfere with the proper 
operation of the system If no device has been assigned to the specified I/O port or if the 
port is write-only, the value that will be displayed by an I command is unpredictable. 

Example 

To read and display the contents of I/0 port lOAH, type 

-I 10A <Enter> 

An example of the result of this command is 

FF 

1110 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1120/1582



l 
I 

SYMDEB:K 
Perform Stack Trace 

Purpose 

Displays the current stack frame. 

·syntax 

K[number] 

where: 

number is the number of parameters supplied to the current procedure. 

Description 

SYMDEB:K 

The Perform Stack Trace (K) command displays the contents of the current stack frame. 
The first line of the display shows the name of the current procedure, parameters to the 
procedure, and the filename and line number of the call to the procedure. The subsequent 
lines tr.ace the flow of execution that led to the current procedure. 

In cases where SYMDEB cannot determine the number of parameters for a procedure by 
inspection of the stack frame (for example, if the number of parameters sent to a proce­
dure varies), the number option can be used in the command to force the display of one 
or more parameters. 

The K command can be used only on procedures that follow the calling conventions used 
by Microsoft high-level-language compilers. 

Examples 

Assume that a breakpoint has been set within the C library printj() routine, that the 
breakpoint has been reached, and that the SYMDEB prompt has reappeared. The 
command 

-K <Enter> 

produces the following output: 

_TEXT:_printf(OOD4,0000,0000) from .dump.C:108 
_TEXT:_dump_para(OOOO,ODOO,OFB8) from .dump.C:92 
_TEXT:_dump_rec(OFB8,0001,0000,0000) from .dump.C:61 
_TEXT:.Jnain(?) 

In this example, the breakpointed procedure printf() was called by the routine 
dump_para() with three parameters. Dump_para() was called by dump_rec(), which in 
turn was called by main(). Because SYMDEB cannot determine the depth of the stack 

Section IV: Programming Utilities 1111 

HUAWEI EX. 1110 - 1121/1582



SYMDEB:K 

frame for the routine main(), it displays no parameters for it. The display of at least two 
parameters for every procedure can be forced by the command 

-K 2 <Enter> 

which produces the following example display: 

_TEXT:_printf(OOD4,0000,0000) from .dump.C:108 

_TEXT:_dump_para(OOOO,OOOO,OFB8) from .dump.C:92 
_TEXT:_dump_rec(0FB8,0001,0000,0000) from .dump.C:61 

_TEXT:_main(0002,1044) 

From a knowledge of C conventions, it follows that the first parameter for main() is argc, 
or the number of tokens in the command line that invoked the program being debugged; 
the second parameter is the offset within DGROUP of argv, or an array of pointers to 
each token. 

1112 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1122/1582



SYMDEB:L 
Load File or Sectors 

Purpose 

Loads a file or individual sectors from a disk. 

Syntax 

L[address] 

or 

L address drive start number 

where: 

SYMDEB:L 

address is the starting address in memory that data read from a disk is placed into. 
drive is the decimal number (0-3) of the disk to read (0 = drive A, 1 = drive B, 

2 =drive C, 3= drive D). 
start is the hexadecimal number of the first sector to load (0-FFFFH). 
number is the hexadecimal number of consecutive sectors to load (0-FFFFH). 

Description 

The Load File or Sectors (L) command loads a file or individual sectors from a disk. 

When the L command is entered without parameters or with an address alone, the file 
specified in the SYMDEB command line or with the most recent Name File or Command­
Tail Parameters (N) command is loaded from the disk into memory. If no segment is speci­
fied in address, SYMDEB uses CS. If the file's extension is .EXE, the file is placed in 
SYMDEB's target program buffer at the load address specified in the .EXE file's header; if 
the file's extension is .COM, the file is loaded at offset 100H. (If for some reason an address 
is entered for a .EXE or .COM file and the address is anything but lOOH, an error message is 
displayed; if the address is 100H, it will be ignored.) If the file has a .HEX extension, the 
.HEX file's starting address is added to address before loading the file. If address is not 
specified, the .HEX file is placed at its own starting address. The length of the file or, in 
the case of a .EXE file, the actual length of the prog~am (the length of the file minus the 
header) is placed in the target program's BX and CX registers, with the most significant 16 
bits in register BX. 

The L command can also be used to bypass the MS-DOS file system and obtain direct 
access to logical sectors on the disk. The memory address (address), disk drive number 
(drive), starting logical sector number (start), and number of sectors to read (number) 
must all be specified in the command line. 

Note: The L command should not be used to access logical sectors on network drives. 

Section IV· Programming Utilities 1113 

HUAWEI EX. 1110 - 1123/1582



SYMDEB:L 

Examples 

To load the file specified in the SYMDEB command line or in the most recent N command 
into SYMDEB's target program buffer, type 

-L <Enter> 

To load eight sectors from drive B, starting at logical sector 0, to memory location CS:OlOOH 
in SYMDEB's memory buffer, type 

-L 190 1 0 8 <Enter> 

Messages 

Disk error reading disk X 
A hardware-related disk error, such as a checksum error or seek incomplete, was encoun­
tered during the execution of an L command. 

File not found 
The file specified in the most recent N command cannot be found. 

1114 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1124/1582



\ 
i 

I 
! 

SYMDEB:M 
Move (Copy) Data 

Purpose 

Copies the contents of one area of memory to another. 

·Syntax 

M range address 

where: 

SYMDEB:M 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be copied. 

address is the first byte of the destination of the copy operation. 

Description 

The Move (Copy) Data (M) command copies data from one location in memory to another 
without altering the data in the original location. If the source and destination areas over­
lap, the data is copied in the correct order so that the resulting copy is correct; the data in 
the original location is changed only when the two areas overlap. 

The range parameter specifies the starting and ending addresses or the starting address 
and length of the memory to be copied. The address parameter is the first byte in which 
the copy will be placed. If range does not contain an explicit segment, SYMDEB uses DS; 
if address does not contain a segment, SYMDEB uses the same segment used for range. 

Example 

To copy the data in locations DS:0800H through DS:08FFH to locations DS:0900H through 
DS:09FFH, type 

-M 800 8FF 900 <Enter> 

or 

-M 800 L100 900 <Enter> 

Section IV: Programming Utilities 1115 

HUAWEI EX. 1110 - 1125/1582



SYMDEB:N 

SYMDEB:N 
Name File or Command-Tail Parameters 

Purpose 

Inserts parameters into the simulated program segment prefix (PSP). 

Syntax 

N parameter [parameter . .. ] 

where: 

parameter is a filename or switch to be placed into the simulated PSP. 

Description 

The Name File or Command-Tail Parameters (N) command is used to enter one or more 
parameters into the simulated PSP that is built at the base of the buffer holding the pro­
gram to be debugged. The N command can also be used before the Load File or Sectors (L) 
and Write File or Sectors (W) commands to name a file to be read from a disk or written 
to a disk. 

The count of the characters following the N command is placed at DS:0080H in the simu­
lated PSP and the characters themselves are copied into the PSP starting at DS:0081H. The 
string is terminated by a carriage return (ODH), which is not included in the count. If the 
second and third parameters follow the naming conventions for MS-DOS files, they are 
parsed into the default file control blocks (FCBs) in the simulated PSP, at offset 5CH and 
offset 6CH, respectively. Note that this is different from theN command in DEBUG, which 
loads the first and second parameters into the default FCBs. (Switches and other filenames 
specified as parameters are stored in the PSP starting at offset 81H along with the rest of 
the command line but are not parsed into the default FCBs.) 

If the N command line contains only one filename, any parameters placed in the default 
FCBs by a previous N command are destroyed. If the drive included with the second file­
name parameter is invalid, the AL register is set to OFFH. If the drive included with the 
third filename parameter is invalid, the AH register is set to OFFH. The existence of a file 
specified with the N command is not verified until it is loaded with the L command. 

The filename at DS:0081H specifies the file that is read or written by a subsequent L or W 
command. 

Example 

Assume that SYMDEB was started without specifying the name of a target program in the 
command line. To load the program CLEAN.COM for execution under the control of 

1116 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1126/1582



SYMDEB:N 

SYMDEB and include the parameter MYFILE.DAT in the simulated PSP's command tail 
. and FCB, use the N and L commands together as follows: 

-N CLEAN.COM MYFILE.DAT <Enter> 
-L <Enter> 

To execute the program CLEAN. COM, type 

-G <Enter> 

The net effect is the same as if the CLEAN.COM program had been run from the MS-DOS 
command level with the command line 

C>CLEAN MYFILE.DAT <Enter> 

except that the program is executing under the control of SYMDEB and within SYMDEB's 
memory buffer. 

Section IV.· Programming Utilities 1117 

HUAWEI EX. 1110 - 1127/1582



SYMDEB:O 

SYMDEB:O 
Output to Port 

Purpose 

Writes 1 byte to an input/output (I/0) port. 

Syntax 
0 port byte 

where: 

port 
byte 

is a 16-bit I/0 port address in the range 0 through FFFFH. 
is a value to be written to the I/0 port (0-0FFH). 

Description 

The Output to Port ( 0) command writes 1 byte of data to the specified I/0 port address. 
The data value must be in the range OOH through OFFH. 

Warning: This command must be used with caution because it involves direct access to 
the computer hardware and no error checking is performed. Attempts to write to some 
port addresses, such as those for ports connected to peripheral device controllers, timers, 
or the system's interrupt controller, may cause the system to crash or may even result in 
damage to data stored on disk. 

Example 

To write the value C8H to I/0 port lOAH, type 

-0 10A C8 <Enter> 

I 

1118 TheMS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1128/1582



I 
I 

l 
I 

SYMDEB:P 

SYMDEB:P 
Proceed Through Loop or Subroutine 

Purpose 

Executes a loop, string instruction, software interrupt, or subroutine to completion. 

Syntax 

P[=address] [number] 

where: 

address is the location of the first instruction to be executed. 
number is the number of instructions to execute. 

Description 

The Proceed Through Loop or Subroutine (P) command transfers control to the target pro­
gram. The program executes without interruption until the loop, repeated string instruc­
tion, software interrupt, or subroutine call at address is completed or until the specified 
number of machine instructions have been executed. Control then returns to SYMDEB 
and the current contents of the target program's registers and flags are displayed. 

Warning: The P command should not be used to execute any instruction that changes the 
contents of the Intel8259 interrupt mask (ports 20H and 21H on the IBM PC and compat­
ibles) and cannot be used to trace through ROM. Use the Go (G) command instead. 

If the address parameter does not contain a segment, SYMDEB uses the target program's 
CS register; if address is omitted, execution begins at the current address specified by the 
target's CS:IP registers. The address parameter must be preceded by an equal sign ( =) to 
distinguish it from number. 

The number parameter specifies the number of instructions to be executed before control 
returns to SYMDEB. If number is omitted, one instruction is executed. 

When the Enable Source Display Mode (S+) command is selected, the P command oper­
ates directly on source-code lines, passing over function or procedure calls. (The S+ com­
mand can be used only with programs created by high-level-language compilers that 
insert line-number information into object modules.) 

When source display mode is disabled with the S- command or when the program being 
debugged does not have a .SYM file or has been created with the Microsoft Macro Assem­
bler (MASM) or with a compiler that does not support line numbers in relocatable object 
modules, the P command behaves like the Trace Program Execution (T) command except 
that when P encounters a loop, repeated string instruction, software interrupt, or sub­
routine call, it executes it to completion and then returns to the instruction following the 

Section IV: Programming Utilities 1119 

HUAWEI EX. 1110 - 1129/1582



SYMDEB:P 

call. For example, if the user wants to trace the first three instructions in a program and if 
the second instruction is a subroutine call, a P3 command executes the first instruction, 
goes to the second instruction, identifies it as a CALL instruction, jumps to the subroutine 
and executes the entire subroutine, comes back and executes the third instruction, and 
then stops. A T3 command, on the other hand, executes the first instruction, executes the 
second, executes the first instruction of the subroutine as its third instruction, and then 

. stops. If the instruction at address is not a loop, repeated string instruction, software inter­
rupt, or subroutine call, the P command functions just like the T command. After each 
instruction is executed, SYMDEB displays the current contents of the target program's 
registers and flags and the next instruction to be executed. 

Examples 

Assume that the program being debugged was compiled with Microsoft C, a .SYM file was 
loaded with the executable program to provide line-number information, and source-code 
display has been enabled with the S+ command. To execute the machine instructions cor­
responding to the next four lines of source code, type 

-P 4 <Enter> 

Assume that the target program was created with MASM and location CS:143FH contains a 
CALL instruction. To execute the subroutine that is the destination of CALL at full speed 
and then return control to SYMDEB, type 

-P =143F <Enter> 

1120 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1130/1582



l 
i 
l 
l 
l 

SYMDEB:Q 
Quit 

Purpose 

Ends a SYMDEB session. 

Syntax 

Q 

Description 

SYMDEB:Q 

The Quit (Q) command terminates the SYMDEB program and returns control to MS-DOS 
or the command shell that invoked SYMDEB. Any changes made to a program or other file 
that were not previously saved to disk with the Write File or Sectors (W) command are lost 
when the Q command is used. 

Example 

To exit SYMDEB, type 

-Q <Enter> 

Section IV:· Programming Utilities 1121 

HUAWEI EX. 1110 - 1131/1582



SYMDEB:R 

SYMDEB:R 
Display or Modify Registers 

Purpose 

Displays one or all registers and allows a register to be modified. 

Syntax 

R 

or 

R register[[=] value] 

where: 

register 

value 

Description 

is the two-character name of an Intel 8086/8088 register from the following 
list: 

AX BX CX DX SP BP SI DI 
DS ES SS CS IP PC 

or the character F, to indicate the CPU flags. 

is an optional equal sign preceding value. 
is a 16-bit integer (0-FFFFH) that will be assigned to the specified register. 

The Display or Modify Registers (R) command allows the target program's register con­
tents and CPU flags to be displayed and modified. 

If R is entered without a register parameter, the current contents of all registers and CPU 
flags are displayed, followed by a disassembly of the machine instruction currently 
pointed to by the target program's CS:IP registers. 

A register can be assigned a new value in a single command by entering both register and 
value parameters,. optionally separated by an equal sign ( = ). If a register is named but no 
value is supplied, SYMDEB displays the current contents of the specified register and then 
prompts with a colon character (:) for a new value to be placed in the register. The user 
can enter the value in any valid radix or as an expression and then press the Enter key. If 
no radix is appended to the new value, hexadecimal is assumed. If the user presses the En­
ter key alone in response to the prompt, no changes are made to the register contents. 

Note: The PC register name is not supported properly in some versions of SYMDEB, so the 
IP register name should always be used instead . 

."·,. 

1122 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1132/1582



SYMDEB:R 

Flag Name Value If Set (1) Value If Clear (0) 

Overflow OV (Overflow) NV (No Overflow) 
Direction DN(Down) UP(Up) 
Interrupt EI (Enabled) DI (Disabled) 
Sign NG (Minus) PL(Plus) 
Zero ZR(Zero) NZ (Not Zero) 
AuxCarry AC (Aux Carry) NA (No Aux Carry) 
Parity PE(Even) PO(Odd) 
Carry CY(Carry) NC (No Carry) 

After displaying the current flag values, SYMDEB again displays its prompt(-). Any or all 
of the individual flags can then be altered by typing one or more two-character flag codes 
(in any order and optionally separated by spaces) from the list above and then pressing 
the Enter key. If the user responds to the prompt by pressing the Enter key without enter­
ing any codes, no changes are made to the status of the flags. 

Examples 

To display the current contents of the target program's CPU registers and flags, followed 
by the disassembled mnemonic for the next instruction to be executed (pointed to by 
CS:IP), type 

-R <Enter> 

This produces the following display: 

AX=OOOO BX=OOOO CX=OOA1 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO 
DS=19A5 ES=19A5 SS=19A5 CS=19A5 IP=0100 NV UP EI PL NZ NA PO NC 
19A5:0100 BF8000 MOV DI,0080 

If the source display mode is enabled, the R command displays the following: 

AX=OOOO BX=1044 CX=OOOO DX=0102 SP=103C BP=OOOO SI=OOEA DI=115E 
DS=2143 ES=2143 SS=2143 CS=1F6E IP=0010 NV UP EI PL ZR NAPE NC 
32: int argc; 
_TEXT:Jllain: 
1F6E:0010 55 PUSH BP ;BRO 

This format includes the source code that corresponds to the next instruction to be 
executed. 

To set the contents of register AX to FFFFH without displaying its current value, type 

-R AX=FFFF <Enter> 

or 

-R AX -1 <Enter> 

Section IV: Programming Utilities 1123 

HUAWEI EX. 1110 - 1133/1582



SYMDEB:R 

To display the current value of the target program's BX register, type 

-R BX <Enter> 

IfBX contains 200H, for example, SYMDEB displays that value and then issues a prompt in 
the form of a colon: 

BX 0200 

The contents of BX can then be altered by typing a new value and pressing the Enter key, 
or the contents can be left unchanged by pressing the Enter key alone. 

To set the direction and carry flags, first type 

-R F <Enter> 

SYMDEB displays the current flag values, followed by a prompt in the form of a hyphen 
character(-). For example: 

NV UP EI PL NZ NA PO NC -

The direction and carry flags can then be set by entering 

-DN CY <Enter> 

on the same line as the prompt. 

Messages 

Bad Flag! 
An invalid code for a CPU flag was entered. 

Bad Register! 
An invalid register name was entered. 

Double Flag! 
Two values for the same CPU flag were entered in the same command. 

1124 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1134/1582



I 

l 
I 

SYMDEB:S 
Search Memory 

Purpose 

Searches memory for a pattern of one or more bytes. 

·syntax 

S range list 

where: 

SYMDEB:S 

range is the starting and ending address or the starting address and length in bytes of 
the area to be searched. 

list is one or more byte values or a string to be searched for. 

Description 

The Search Memory (S) command searches a designated range of memory for a sequence 
of byte values or text strings and displays the starting address of each set of matching 
bytes. The contents of the searched area are not altered. 

The range parameter specifies the starting and ending address or the starting address and 
length in bytes of the area to be searched. If a segment is not included in range, SYMDEB 
uses DS. If a segment is specified only for the starting address, SYMDEB uses the same seg­
ment for the ending address. If a starting address and length in bytes are specified, the 
starting address plus the length less 1 cannot exceed FFFFH. 

The list parameter is one or more hexadecimal byte values and/or strings separated by 
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation 
marks, and case is significant within a string. 

Examples 

To search for the string Copyright in the area of memory from DS:OOOOH through 
DS:1FFFH, type 

-s 0 1FFF 'Copyright' <Enter> 

or 

-s 0 12000 "Copyright" <Enter> 

If a match is found, SYMDEB displays the address of each occurrence: 

20A8:0910 
20A8: 094F 
20A8:097C 

Section IV: Programming Utilities 1125 

HUAWEI EX. 1110 - 1135/1582



SYMDEB:S 

To search for the byte sequence 3BH 06H in the area of memory from CS:OlOOH through 

CS:12AOH, type 

-S CS:100 12A0 3B 06 <Enter> 

or 

-S CS:100 L11A1 3B 06 <Enter> 

1126 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1136/1582



SYMDEB:S+ 
Enable Source Display Mode 

Purpose 

Displays source-code lines, rather than machine instructions. 

Syntax 

S+ 

Description 

SYMDEB:S+ 

The Enable Source Display Mode (S+) command affects the display format of certain 
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution 
(T), and Display or Modify Registers (R). The S+ command causes source code, rather than 
disassembled machine instructions, to be displayed by those commands. 

The S+ command is useful only if the program being debugged was created with a high­
level-language compiler capable of placing line-number information into the relocatable 
object modules processed by the Microsoft Object Linker (LINK). When debugging 
Microsoft Macro Assembler (MASM) programs or programs generated by language com­
pilers that do not pass line-number information to LINK, the S+ command has no effect. 

Example 

To enable the display of source-code statements during debugging, type 

-S+ <Enter> 

Section IV.· Programming Utilities 1127 

HUAWEI EX. 1110 - 1137/1582



SYMDEB:S-

SYMDEB:S-
Disable Source Display Mode 

Purpose 

Displays disassembled machine instructions, rather than source-code lines. 

Syntax 

s-
Description 

The Disable Source Display Mode (S-) command affects the display format of certain 
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution 
(T), and Display or Modify Registers (R). The S- command causes disassembled machine 
instructions, rather than source code, to be displayed by those commands. By default, 
SYMDEB displays disassembled machine instructions when debugging Microsoft Macro 
Assembler (MASM) programs or programs generated by language compilers that do not 
pass line-number information to the Microsoft Object Linker (LINK). 

Example 

To disable the display of source-code statements during debugging, type 

-s- <Enter> 

1128 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1138/1582



I 

\ 

I 
I 

SYMDEB:S& 

SYMDEB:S& 
Enable Source and Machine Code Display Mode 

Purpose 

Displays both source-code lines and disassembled machine instructions. 

Syntax 

S& 

Description 

The Enable Source and Machine Code Display Mode (S&) command affects the display 
format of certain SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace 
Program Execution (T), and Display or Modify Registers (R). The S& command causes 
both the disassembled machine instructions and the corresponding source-code lines to 
be displayed by those commands. 

The S& command is useful only if the program being debugged was created with a high­
level-language compiler capable of placing line-number information into the relocatable 
object modules processed by the Microsoft Object Linker (LINK). When debugging 
Microsoft Macro Assembler (MASM) programs or programs generated by language com­
pilers that do not pass line-number information to LINK, the S& command has no effect. 

Example 

To enable the display of both source-code statements and disassembled machine-code 
statements during debugging, type 

-S& <Enter> 

Section IV: Programming Utilities 1129 

HUAWEI EX. 1110 - 1139/1582



SYMDEB:T 

SYMDEB:T 
Trace Program Execution 

Purpose 

Executes one or more machine instructions in single-step mode. 

Syntax 

T[ =address] [number] 

where: 

address is the location of the first instruction to be executed. 
number is the number of machine instructions to be executed. 

Description 

The Trace Program Execution (T) command executes one or more machine instructions, 
starting at the specified address. If source display mode has been enabled with the S+ 
command, each trace operation executes the machine code corresponding to one source 
statement and displays the lines from the source code. If source display mode has been 
disabled with the S- command, each trace operation executes an individual machine in­
struction and displays the contents of the CPU registers and flags after execution. 

Warning: The T command should not be used to execute any instruction that changes the 
contents of the Intel 8259 interrupt mask (ports 20H and 21H on the IBM PC and compat­
ibles). Use the Go (G) command instead. 

The address parameter points to the first instruction to be executed. If address does not 
include a segment, SYMDEB uses the target program's CS register; if address is omitted 
entirely, execution is begun at the current address specified by the target program's CS:IP 
registers. The address parameter must be preceded by an equal sign (=) to distinguish it 
from number. 

The number parameter specifies the hexadecimal number of source-code statements 
or machine instructions to be executed before the SYMDEB prompt is displayed again 
(default= 1). If source display mode is enabled, the number parameter is required. Execu­
tion of a sequence of instructions using the T command can be interrupted at any time by 
pressing Ctrl-C or Ctrl-Break and can be paused by pressing Ctrl-S (pressing any key 
resumes the trace). 

Examples 

To execute one instruction at location CS:lAOOH and then return control to SYMDEB, 
displaying the contents of the CPU registers and flags, type 

-T =1A00 <Enter> 

1130 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1140/1582



SYMDEB:T 

Consecutive instructions can then be executed by entering repeated T commands with no 
parameters. 

If source display mode has been enabled with a previous S+ command, to begin execution 
at the label main and continue through the machine code corresponding to four source­
code statements, type 

-T =_main 4 <Enter> 

Section IV.· Programming Utilities 1131 

HUAWEI EX. 1110 - 1141/1582



SYMDEB:U 

SYMDEB:U 
Disassemble (Unassemble) Program 

Purpose 

Disassembles machine instructions into assembly-language mnemonics. 

Syntax 

U[range] 

where: 

range 

Description 

specifies the starting and ending addresses or the starting address and the 
number of instructions of the machine code to be disassembled. 

The Disassemble (Unassemble) Program (U) command translates machine instructions 
into their assembly-language mnemonics. 

The range parameter specifies the starting and ending addresses or the starting address 
and number of machine instructions to be disassembled. If range does not include an 
explicit segment, SYMDEB uses CS. Note that the resulting disassembly will be incorrect if 
the starting address does not fall on an 8086 instruction boundary. 

If range does not include the number of machine instructions to be executed or an ending 
address, eight instructions are disassembled. If range is omitted completely, eight instruc­
tions are disassembled starting at the address following the last instruction disassembled 
by the previous U command, if a U command has been used; if no U command has been 
used, eight instructions are disassembled starting at the address specified by the current 
value of the target program's CS:IP registers. 

The display format for the U command depends on the current source display mode set­
ting and on whether the program was developed with a compatible high-level-language 
compiler. If the source display mode setting is S- or the program was developed with the 
Microsoft Macro Assembler (MASM) or a noncompatible high-level-language compiler, the 
display contains only the address and the disassembled equivalent of each instruction 
within range. (For 8-bit immediate operands, SYMDEB also displays the ASCII equivalent 
as a comment following a semicolon.) If the setting is S+ or S& and a compatible symbol 
file containing line-number information was loaded with the program being debugged, 
the display contains both the source-code lines and their corresponding disass~mbled 
machine instructions. 

Note: The 80286 instructions that are considered privileged when the microprocessor is 
running in protected mode are not supported by SYMDEB's disassembler. 

1132 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1142/1582



Examples 

To disassemble four machine instructions starting at CS:0100H, type 
··---, 

-u 100 L4 <Enter> 

This produces the following display: 

44DC:0100 EC 
44DC:0101 880200 
44DC:0104 E86102 
44DC:0107 57 

IN AL,DX 
MOV AX,0002 
CALL 0368 
PUSH DI 

SYMDEB:U 

Successive eight-instruction fragments of machine code can be disassembled by entering 
additional U commands without parameters. 

When a program is being debugged with a symbol file that contains line-number informa­
tion and source display mode has been enabled, disassembled machine code is accom­
panied by the corresponding source code: 

43: if (argc != 2) 
28A5:0031 837E0402 CMP Word Ptr [8P+04],+02 
28A5:0035 7503 JNZ _main+2A (003A) 

28A5:0037 E91400 JMP _main+3E (004E) 
44: { fprintf(stderr,"\ndump: wrong number of parameters\n"); 
28A5:003A 883600 MOV AX,0036 
28A5:003D 50 PUSH AX 
28A5:003E 88F600 MOV AX,OOF6 
28A5:0041 50 PUSH AX 
28A5:0042 E8AC04 CALL _fprintf 
28A5:0045 83C404 ADD SP,+04 
45: return (1); 
28A5:0048 880100 MOV AX, 0001 
28A5:0048 E9AA00 JMP _main+E8 (00F8) 

Section IV: Programming Utilities 1133 

HUAWEI EX. 1110 - 1143/1582



SYMDEB:V 

SYMDEB:V 
View Source Code 

Purpose 

Displays lines from the source-code file for the program being debugged. 

Syntax 

V address [length] 

or 

V [ .soun;efile: linenumber] 

where: 

address 
length 
.sourcefile 

linen umber 

Description 

is the location of an executable instruction in the target program. 
is an ending address or the number of source-code lines. 
is the base name of the source file of the program being debugged, pre­
ceded by a period (.). 
is the first literal line number of .sourcefile to be displayed. 

The View Source Code (V) command displays lines of source code for the program being 
debugged, beginning at the location specified by address. If address does not include a 
segment, SYMDEB uses the target program's CS register. 

The optional length parameter can be an ending address or an L followed by a hexadeci­
mal number of source-code lines. If length is not specified, eight lines of source code are 
displayed. 

If the .sourcefile parameter is specified, followed by a colon character (:) and a line num­
ber, eight lines of source code are displayed, starting at linenumber. If the V command is 
entered without parameters after the .sourcefile:linenumber parameter has been speci­
fied, eight lines are displayed from the current source file, beginning with the line after the 
last line displayed with the V command. The .sourcefile parameter must be the name of a 
high-level-language source file in the current directory. Pathnames and extensions are not 
supported. The length option cannot be used with the .sourcefile parameter. 

Warning: Specifying a file that does not exist in the current directory may cause the sys­
tem to crash. 

The V command can be used only with programs created by a high-level-language com­
piler that is capable of placing line-number information into the relocatable object modules 
processed by the Microsoft Object Linker (LINK). The current source display mode setting 
(S-, S+, or S&) has no effect on the V command. 

1134 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1144/1582



SYMDEB:V 

_! 

Examples 

Assume that the program DUMP.EXE is being debugged with the aid of the symbol file 
DUMP.SYM and that the source file DUMP.C is available in the current directory. To display 
eight lines of source code beginning at the label_ main, type 

-v _main <Enter> 

This produces the following output: 

32: int argc; 
33: char *argv[]; 
34: 

35: FILE *dfile; 
36: int status = 0; 
37: int file_rec = 0; 
38: long file_ptr = OL; 
39: char file_buf[REC_SIZE]; 

I* control block for input file *I 
I* status returned from file read *I 
I* file record number being dumped *I 
I* file byte offset for current rec- *I 
I* data block from file *I 

To view eight lines of source code from the file DUMP.C, beginning with line 20, type 

-V .DUMP:20 <Enter> 

Message 

Source file for filename (cr for none)? 
The current directory does not contain the source file specified with the .sourcefile 
parameter. Enter the correct filename or press Enter to indicate no source file. 

Section IV: Programming Utilities 1135 

HUAWEI EX. 1110 - 1145/1582



SYMDEB:W 

SYMDEB:W 
Write File or Sectors 

Purpose 

Writes a file or individual sectors to disk. 

Syntax 

W[address] 

or 

W address drive start number 

where: 

address is the first location in memory of the data to be written. 
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive 

C, 3 =drive D). 
start is the number of the first logical sector to be written (0- FFFFH). 
number is the number of consecutive sectors to be written (0- FFFFH). 

Description 

The Write File or Sectors (W) command transfers a file or individual sectors from memory 
to disk. 

When the W command is entered without parameters or with an address alone, the num­
ber of bytes specified by the contents of registers BX:CX are written from memory to the 
file named by the most recent Name File or Command-Tail Parameters (N) command or to 
the first file specified in the SYMDEB command line if the N command has not been used. 

Note: If a Go (G), Proceed Through Loop or Subroutine (P), or Trace Program Execution 
(T) command was previously used or the contents of the BX or CX registers were changed, 
BX:CX must be restored before theW command is used. 

When address is not included in the command line, SYMDEB uses the target program's 
CS:OlOOH. Files with a .EXE or .HEX extension cannot be written with the W command. 

The W command can also be used to bypass the MS-DOS file system and obtain direct 
access to logical sectors on the disk. To use the W command in this way, the memory 
address (address), disk unit number (drive), starting logical sector number (start), and 
number of sectors to be written (number) must all be provided in the command line in 
hexadecimal format. 

Warning: Extreme caution should be used with the W command. The disk's file structure 
can easily be damaged if the command is entered incorrectly. The W command should not 
be used to write logical sectors to network drives. ' 

1136 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1146/1582



SYMDEB:W 

Example 

Assume that the interactive Assemble Machine Instructions (A) command was used to 
create a program in SYMDEB's memory buffer that is 32 (20H) bytes long, beginning at 
offset 100H. This program can be written into the file QUICK. COM by sequential use of 
the Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write 
File or Sectors (W) commands. First, use the N command to specify the name of the file to 
be written: 

-N QUICK.COM <Enter> 

Next, use the R command to set registers BX and ex to the length to be written. Register 
BX contains the upper-half or most significant part of the length; register ex contains the 
lower half or least significant part. Type 

-R CX <Enter> 

SYMDEB displays the current contents of register CX and issues a colon character(:) 
prompt . Enter the length after the prompt: 

:20 <Enter> 

To use the R command again to set the BX register to zero, type 

-R BX <Enter> 

Then type 

:0 <Enter> 

To create the disk file QUICK. COM and write the program into it, type 

-W <Enter> 

SYMDEB responds: 

Writing 0020 bytes 

Messages 

EXE and HEX files cannot be written 
Files with a .EXE or .HEX extension cannot be written to disk with the W command. 

Writingnnnn bytes 
After a successful write operation, SYMDEB displays in hexadecimal format the number of ~ 
bytes written to <li>k. ~ 

Section IV: Programming Utilities 1137 

HUAWEI EX. 1110 - 1147/1582



SYMDEB:X 

SYMDEB:X 
Examine Symbol Map 

Purpose 

Displays names and addresses in the symbpl maps. 

Syntax 

X(•] 

or 

X? [map!] [segment:] [symbol] 

where: 

map! 

segment: 

symbol 

Description 

is the name of a symbol file, without the .SYM extension, followed by an 
exclamation point (!). 
is the name of a segment within the currently open or specified map, followed 
by a colon character(:). 
is a symbol name within the specified segment. 

The Examine Symbol Map (X) command displays the addresses and names of symbols in 
the currently open symbol maps. (SYMDEB maintains a symbol map for each symbol file 
specified in the SYMDEB command line.) 

If the X command is followed by the asterisk wildcard character (• ), the map names, 
segment names, and segment addresses for all currently loaded symbol maps are dis­
played. If X is entered alone, the information is displayed only for the active symbol map. 

Information from the symbol maps can be displayed selectively by following the X? com­
mand with.the map!, segment:, and symbol parameters. The three parameters may be 
used individually or in combination, but at least one parameter must be specified. 

The map! parameter must be terminated by an exclamation point and consists of the 
name, without the extension, of a previously loaded symbol file. If map! is omitted, 
SYMDEB uses the currently open symbol map. If more than one .SYM file is specified 
in the command line, the one with the same name as the program being debugged is 
opened first. 

The segment: parameter must be terminated with a colon; it is the name of a segment 
declared within the specified or currently open symbol map. 

The symbol parameter is the name of a label, variable, or other object within the specified 
segment. 

Any or all parameters can consist of or include the asterisk wildcard character. For exam­
ple, X?• displays everything in the current map. 

1138 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1148/1582



I 
i. 

I 
I 
l 

I 

SYMDEB:X 

,r 

Examples 

Assume that the program DUMP.EXE is being debugged with the symbol file DUMP.SYM. 
If the following is typed 

-X <Enter> 

SYMDEB displays: 

[456E DUMP) 
[456E _TEXT) 

4743 DGROUP 

This indicates that the program contains one executable code segment (named _TEXT), 
which is loaded at segment 456EH, and one NEAR DATA group and segment (named 
DGROUP), which is loaded at segment 4743H. 

To display the addresses of all procedures in the same example program whose names 
begin with the character J, type 

-X? _TEXT:_F* <Enter> 

This produces the following listing: 

_TEXT: (456E) 

0428 _fclose 

0528 _fread 
19AD _flushall 

04CB _fopen 

OACB _fflush 

04F1 _fprintf 
OBC2 _free 

Note: Unlike the Microsoft C Compiler, SYMDEB is not case sensitive. 

Section IV: Programming Utilities 1139 

HUAWEI EX. 1110 - 1149/1582



SYMDEB:XO 

SYMDEB:XO 
Open Symbol Map 

Purpose 

Selects the active symbol map and/or segment. 

Syntax 

XO [map!] [segment] 

where: 

map! is the name of a symbol file, without the .SYM extension, followed by an 
exclamation point(!). 

segment is the name of the segment that will become the active segment in the current 
symbol map. 

Description 

The Open Symbol Map (XO) command selects the active symbol map and/or the active 
segment within the current symbol map to be used during debugging. 

The optional map! parameter must be terminated by an exclamation point and must be 
the name, without the extension, of a symbol file specified in the original SYMDEB com­
mand line. If map! is omitted, no changes are made to the active symbol map. 

The optional segment parameter must be the name of a segment within the current or 
specified symbol map. All segments in the active symbol map are accessible; the active 
segment is searched first for symbols specified in other SYMDEB commands. If segment is 
omitted and a new active symbol map is specified, the segment with the smallest address 
in the new active symbol map will become the active segment. 

Examples 

Assume that the program SHELL.EXE has been loaded with the two symbol files 
SHELL.SYM and VIDEO.SYM. To use the information loaded from VIDEO.SYM as the 
active symbol map for debugging, type 

-XO VIDEO! <Enter> 

Subsequent entry of the command 

-XO _TEXT <Enter> 

causes the segment_ TEXT within the symbol map VIDEO to be searched first for symbol 
names. 

Message 

Symbol not found 
The Specified symbol map or segment does not exist. 

1140 The MS-DOS Encyclopedia . 

HUAWEI EX. 1110 - 1150/1582



SYMDEB:Z 
Set Symbol Value 

Purpose 

Assigns a value to a symbol. 

Syntax 

Z [map!] symbol value 

where: 

SYMDEB:Z 

map! is the name of a symbol file, without the .SYM extension, followed by an ex­
clamation point(!). 

symbol 

value 

Description 

is an existing symbol name in the active symbol map or in the symbol map 
specified by map!. 
is the new address of symbol (0-FFFFH). 

The Set Symbol Value (Z) command allows the address associated with a name in one of 
the loaded symbol maps to be overridden by a new value. 

Note that altering the address of a symbol at debugging time will not affect other addresses 
or values that were derived from the value of the same symbol at compilation or assembly 
time. 

The optional map! parameter must be terminated by an exclamation point and must be 
the name, without the extension, of a symbol file specified in the original SYMDEB com­
mand line. If map! is omitted, SYMDEB uses the active symbol map. 

The symbol parameter specifies the name of a label, variable, or other object in map! or 
the active symbol map. 

The value parameter specifies a new address to be associated with symbol. 

To debug programs created with older versions of FORTRAN and Pascal (Microsoft ver­
sions earlier than 3.3 or IBM versions earlier than 2.0), the user must start SYMDEB, locate 
the first procedure of the program being debugged, and then use the Z command to set 4 
the address of DGROUP to the current value of the DS register. (Later versions of 
FORTRAN and Pascal do this by default.) 

Section IV: Programming Utilities 1141 

HUAWEI EX. 1110 - 1151/1582



SYMDEB:Z 

( 

Examples 

To change the segment address for the symbol DGROUP to 5000H, type 

-z DGROUP 5000 <Enter> 

The actual data associated with the label DGROUP must be moved to the new address 
before debugging can continue. 

To change the segment address for the symbol CODE in the inactive symbol map COUNT 
to OFOOH, type 

-z COUNT! CODE FOO <Enter> 

1142 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1152/1582



SYMDEB:< 
Redirect SYMDEB Input 

Purpose 

Redirects input to SYMDEB. 

Syntax 

<device 

where: 

device is the name of any MS-DOS device or file. 

Description 

SYMDEB: < 

The Redirect SYMDEB Input (<)command causes SYMDEB to read its commands from 
the specified text file or character device, rather than from the keyboard (CON). 

The device parameter specifies the name of any MS-DOS device or file from which com­
mands will be read. If the device parameter is a filename, the file must be an ASCII text 
file and each command in the file must be on a separate line. 

If input will be taken from a terminal attached to one of the serial communications ports 
(AUX, COMl, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

When SYMDEB commands are redirected from a file, the last entry in the file must be 
either the < CON command, which restores the keyboard as the input device, or the Quit 
(Q) command. Otherwise, SYMDEB will lock and the system will have to be restarted. 

Examples 

Assume that the text file FILL. TXT contains the following SYMDEB commands: 

F CS:0100 L100 00 

D CS:0100 L100 

R 

Q 

To process FILL.TXT during a SYMDEB session (which in turn exits SYMDEB with the 
Quit [QJ command), type 

-< FILL.TXT ·<Enter> 

Section IV Programming Utilities 1143 

HUAWEI EX. 1110 - 1153/1582



SYMDEB:< 

Assume that the text file SEARCH. TXT contains the following SYMDEB commands: 

S BUFFER L2000 "error" 
< CON 

r 
l 

To process SEARCH. TXT during a SYMDEB session and return control to the console, type 

-< SEARCH.TXT <Enter> 

1144 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1154/1582



SYMDEB:> 

SYMDEB:> 
Redirect SYMDEB Output 

Purpose 

Redirects SYMDEB's output to a device or file. 

Syntax 

>device 

where: 

device is the name of any MS-DOS device or file. 

Description 

The Redirect SYMDEB Output (>) command causes SYMDEB to send all its messages to 
the specified device or file, rather than to the video display (CON). This is useful for creat­
ing a record of a debugging session that can be viewed later with an editor or listed on a 
printer. 

After SYMDEB output is redirected, commands typed on the keyboard are not echoed to 
the video display. Therefore, the user must know in advance which commands to use and 
which parameters to supply. 

The device parameter specifies the name of an MS-DOS device or file to receive 
SYMDEB's output. If output will be redirected to one of the serial communications ports 
(AUX, COM1, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Output can be restored to the video display by entering the > CON command or by ter­
minating SYMDEB with the Quit (Q) command. 

Examples 

To cause SYMDEB to send all prompts and messages to the file SESSION.TXT, type 

-> SESSION.TXT <Enter> 

After this command, new commands are still accepted by SYMDEB, but the keypresses 
are not echoed to the screen until the command 

-> CON <Enter> 

is entered or SYMDEB is terminated with the Quit ( Q) command. 

To cause SYMDEB to send all its prompts and messages to the standard printing device, 
PRN,type 

-> PRN <Enter> 

Section IV.· Programming Utilities 1145 

HUAWEI EX. 1110 - 1155/1582



SYMDEB: = 

SYMDEB: = 

Redirect SYMDEB Input and Output 

Purpose 

Redirects both input and output for SYMDEB. ,. 

Syntax 

=device 

where: 

device is the name of any MS-DOS device. 

Description 

The Redirect SYMDEB Input and Output ( =) command causes SYMDEB to read its 
commands from and send its output to the specified device, rather than reading from the 
keyboard and sending output to the video display (CON). This command is especially use­
ful for debugging programs that run in graphics mode; the SYMDEB commands can be en­
tered on a terminal attached to the computer's serial port while the graphics program has · 
the full use of the system's video display. 

The device parameter specifies the name of any MS-DOS device. If input and output will 
be redirected to one of the serial communications ports (AUX, COM1, or COM2), the port 
must be properly configured with the MODE command before the SYMDEB session is 
started. 

Input and output can be restored to the standard settings with the = CON command. 

Example 

To redirect SYMDEB's input and output to the first serial communications port (COM1), 
type 

-= COM1 <Enter> 

1146 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1156/1582



SYMDEB:{ 
Redirect Target Program Input 

Purpose 

Redirects input to the program being debugged. 

Syntax 

{device 

where: 

device 

Description 

is the name of any MS-DOS device or file. 

SYMDEB:{ 

The Redirect Target Program Input({) command causes read operations by the program 
being debugged to be taken from the specified file or device when the program is exe­
cuted, rather than from the keyboard (CON). 

The device parameter specifies the name of an MS-DOS device or file from which the 
target program will read. If the device parameter is a filename, the file must be an ASCII 
text file and each command in the file must be on a separate line. 

If input will be taken from a terminal attached to one of the serial communications ports 
(AUX, COMl, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Example 

To cause input for the program being debugged to be taken from the file TEST. TXT, type 

-{ TEST.TXT <Enter> 

Section IV Programming Utilities 1147 

HUAWEI EX. 1110 - 1157/1582



SYMDEB:] 

SYMDEB:} 
Redirect Target Program Output 

Purpose 

Redirects the output of the program being debugged. 

Syntax 

} device 

where: 

device is the name of any MS-DOS device or file. 

Description 

The Redirect Target Program Output(}) command causes write operations by the pro­
gram being debugged to be redirected to the specified device or file when the program is 
executed, rather than to the video display (CON). This is useful for capturing the output of 
a program in a file for later listing on a printer. 

The device parameter specifies the name of an MS-DOS device or file to receive the target 
program's output. If output will be redirected to one of the serial communications ports 
(AUX, COM1, or COM2), the port must be properly configured with the MODE command 
before the SYMDEB session is started. 

Example 

To send the output from the program being debugged to the file SESSION.TXT, type 

-) SESSION.TXT <Enter> 

1148 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1158/1582



I 

I 

I 

SYMDEB:-

SYMDEB:-
Redirect Target Program Input and Output 

Purpose 

Redirects both input and output for the program being debugged. 

Syntax 

-device 

where: 

device 

Description 

is the name of any MS-DOS device. 

The Redirect Target Program Input and Output (-) command causes all read and write 
operations by the program being debugged to be redirected to the specified character 
device. 

The device parameter specifies the name of an MS-DOS device that the target program 
will read from and write to. If input and output are redirected to one of the serial commu­
nications ports (AUX:, COM1, or COM2), the port must be properly configured with the 
MODE command before the SYMDEB session is started. 

Example 

To redirect input and output for the program being debugged to the first serial communi­
cations port (COM1), type 

-- COM1 <Enter> 

Section IV: Programming Utilities 1149 

HUAWEI EX. 1110 - 1159/1582



SYMDEB: \ 

SYMDEB: \ 
Swap Screen 

Purpose 

Exchanges the SYMDEB display for the taq:~~t program's display. 

Syntax 

\ 

Description 

The Swap Screen(\) command causes the SYMDEB status display to be exchanged for the 
virtual screen used by the program being debugged. After the program's output has been 
inspected on the virtual screen, the SYMDEB display can be restored by pressing any key. 
This command is useful for debugging programs that perform direct screen access or run 
in graphics mode. 

Note: Any information on the display when SYMDEB was invoked will also appear on the 
virtual screen. When SYMDEB is terminated, the current display is set to match the virtual 
screen. 

The Swap Screen command is available only if the IS switch (or the /1 switch, if the com­
puter is IBM compatible) preceded the names of the symbol and program files in the origi­
nal SYMDEB command line. 

Example 

To exchange the SYMDEB status display for the virtual screen of the program being 
debugged, type 

-\ <Enter> 

To restore the SYMDEB display, press any key. 

1150 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1160/1582



SYMDEB: 

SYMDEB:. 
Display Source Line 

Purpose 

Displays the current source-code line. 

Syntax 

Description 

The Display Source Line (.) command displays the line from the source-code file that 
corresponds to the machine instruction currently pointed to by the target program's CS:IP 
registers. 

The • command is independent of the current Source Display Mode status (S+, S-, or S&). 
However, if the program being debugged was not created with a high-level-language com­
piler that inserts line numbers into the object modules, the • command has no effect. 

Example 

To display the source-code line corresponding to the next instruction to be executed, type 

<Enter> 

This produces output in the following form: 

56: printf( '\nDump of file: %s ', argv[1] ); 

Section IV: Programming Utilities 1151 

HUAWEI EX. 1110 - 1161/1582



SYMDEB:? 

SYMDEB:? 
Help or Evaluate Expression 

Purpose 

Displays the help screen or the value of an expression. 

Syntax 

? [expression] 

where: 

expression 

Description 

is any valid combination of symbols, addresses, numbers, and operators. 

When ? is entered alone, a help screen summarizing all valid SYMDEB commands, opera­
tors, and types is displayed. 

When? is followed by the expression parameter, expression is evaluated and the value is 
displayed. The expression parameter can include any valid combination of symbols, ad­
dresses, numbers, and operators. 

The form and content of the resulting display depends on the type of expression entered. 
If expression is a symbol or an address (optionally including operators), the value is 
shown first as a FAR address pointer in the form segment:offset, then as a 32-bit hexadeci­
mal number representing the value's physical location in memory (followed by its decimal 
equivalent in parentheses), and finally as the physical location's ASCII character equiva­
lents displayed as a string enclosed in quotation marks (which have no practical value if 
expression is an address or symbol). 

If expression includes numbers (interpreted as signed hexadecimal values unless a radix is 
specified) and operators, the resulting value is shown first as a 16-bit hexadecimal value, 
then as a 32-bit hexadecimal value (followed by its decimal equivalent in parentheses), 
and finally as the value's ASCII character equivalents displayed as a string enclosed in 
quotation marks. 

(The ASCII characters within the string are displayed as dots if their value is less than 20H 
[32] or greater than 7EH [126].) 

Examples 

Assume that the pointer array argv in the program DUMP.C is located at address 
4743:029CH. The command 

-? _argv+4 <Enter> 

produces the following display: 

4743:02AOh 00047600 (292560) 

1152 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1162/1582



SYMDEB:? 

To display the result of an exclusive OR operation between the values OFCH and 14H, type 

-? FC XOR 14 <Enter> 

SYMDEB displays 

OOEBh OOOOOOEB (232) 

Section IV: Programming Utilities 1153 

HUAWEI EX. 1110 - 1163/1582



SYMDEB:! 

SYMDEB:! 
Escape to Shell 

Purpose 

Invokes the MS-DOS command processor. 

Syntax 

![command] 

where: 

command 

Description 

-:-

is the name of any MS-DOS command, program, or batch file and its re­
quired parameters. 

The Escape to Shell (!) command loads a copy of the system's command processor 
(COMMAND. COM), optionally passing it i:he name of a program or batch file to be exe­
cuted. This allows MS-DOS functions such as listing or copying files to be carried out 
without losing the context of the debugging session. 

If the! command is entered alone, an additional·copy of COMMAND. COM gains control 
and displays the system prompt. Control can be returned to SYMDEB by leaving the new 
shell with the EXIT command. 

If the ! character is followed by a command parameter that specifies any valid MS-DOS 
command, program name, or batch-file name, the specified command is executed imme­
diately and control returns directly to SYMDEB. 

The SYMDEB statement connector (;) cannot be used on the same line as the ! command; 
all text encountered after this command is passed to COMMAND. COM and is interpreted 
as an MS-DOS command line. 

Example 

To list the files in the current directory, type 

1154 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1164/1582



SYMDEB:! 

Messages 

COMMAND.COM not found! 
SYMDEB could not find COMMAND. COM because it was not present in the directory 
location specified in the environment block's COMSPEC variable. 

Not enough memory! 
Free memory in the transient program area (TPA) is insufficient to execute the requested 
command or program. This is a common occurrence when debugging a large program 
with symbol files. 

Section TV.· Programming Utilities 1155 

HUAWEI EX. 1110 - 1165/1582



SYMDEB:• 

SYMDEB:* 
Enter Comment 

Purpose 

Allows insertion of a comment that will be ignored by SYMDEB's command interpreter. 

Syntax 

•text 

where: 

text is any ASCII text up to and including a carriage return. 

Description 

The Enter Comment (•) command causes the remainder of the text on that line to be 
ignored, thereby providing a means of commenting a SYMDEB debugging session. 
SYMDEB echoes any text following the asterisk to the screen or redirected output device, 
providing the user with a convenient way to comment program output redirected to a file 
or a printer. A maximum of 78 characters can be included on each comment line. Com­
ment lines are also useful for documenting lines within a text file that SYMDEB will use as 
redirected input for the program being debugged. 

Example 

To echo the reminder Errors in program output start here: to the screen or redirected out­
put device, type 

-•Errors in program output start here: <Enter> 

A line in a text file that will be used by SYMDEB for redirected input to the program being 
debugged may be "commented out" by inserting an asterisk at the beginning of the line. 
For example: 

*EB CS: 1200 90 

1156 The MS-DOS Encyclopedia 

' \ 

HUAWEI EX. 1110 - 1166/1582



Code View 

Code View 
Window-Oriented Debugger 

Purpose 

Allows the controlled execution of an assembly-language program or high-level-language 
program for debugging purposes. Both source code and the corresponding unassembled 
machine code can be displayed as program execution is traced. In addition, watch vari­
ables, CPU registers and flags, and program output can be examined in separate debug­
ging windows. Code View is supplied with the Microsoft Macro Assembler (MASM), c 
Compiler, Pascal Compiler, and FORTRAN Compiler. This documentation describes 
Code View version 2.0. 

Syntax 

CV [options] exe_file [pqrameters] 

where: 

.exe_file 

parameters 

options 

is the name of the executable file containing the program to be debugged 
(default extension = .EXE). 
is one or more filenames or switches required by the program being 
debugged. 
is one or more switches from the following list. Switches can be either 
uppercase or lowercase and can be preceded by a dash (-) instead of a 
forward slash (/). 

/2 
/43 

/B 

/Ccommands 

!D 

Allows the use of two video displays for debugging. 
Enables 43-line display mode. (An IBM-compatible 
computer with an enhanced graphics adapter [EGA] 
and an enhanced color display is required for this 
option.) 
Forces the attached monitor to use two shades of color 
when displaying information. 
Executes the specified list of startup commands when 
CodeView is invoked. If the list of startup commands 
contains any spaces, the entire list must be enclosed in ~ 
double quotation marks ("). Commands in the list must 
be separated by a semicolon character(;). 
Turns off nonmaskable interrupt trapping and Intel 
8259 interrupt trapping. (This switch prevents system 
crashes on some IBM-compatible machines that do 
not support certain IBM-specific interrupt trapping 
functions.) 

(more) 

Section IV.· Programming Utilities 1157 

HUAWEI EX. 1110 - 1167/1582



Code View 

Description 

IE 

IF 

/I 

IM 
/P 

IR 
/S 

IT 

/W 

Stores the symbolic information of the program in 
expanded memory. 
Enables the screen-flipping method of switching 
between the debugging display and the virtual output 
display. Screen flipping is the default method for 
IBM-compatible computers with color/graphics 
adapters. 
Enables nonmaskable interrupt trapping and Intel 
8259 interrupt trapping on computers that are not 
IBM-compatible. 
Disables mouse support within Code View. 
Enables palette register restore mode, which allows 
non-IBM EGAs to restore the proper colors upon return 
from the virtual output screen. 
Enables Intel 80386 debugging registers. 
Enables the screen-swapping method of switching 
between the debugging display and the virtual output 
display. Screen swapping is the default method for 
IBM-compatible computers with monochrome 
adapters. 
Disables window mode. This switch is necessary for 
some non-IBM computers or when a sequential debug­
ging session is desired. 
Enables window mode. This switch allows Code View 
to operate in multiple windows on the same screen; 
(This option is not the default for some computers.) 

Code View is a window-oriented menu-driven debugger that allows tracing and debugging 
of high-level-language programs and assembly-language programs. In general, any valid C, 
FORTRAN, BASIC, Pascal, or MASM source code can be debugged with Code View. 

To prepare a program for debugging under Code View, the program must be compiled and 
linked so that the resulting executable file has the extension .EXE and contains line­
number information, a symbol table, and executable code. (To a limited extent, text files 
and .COM files can also be examined under Code View.) During the debugging session, 
the program source file must remain in the current directory if source-code display is 
desired. 

The Code View screen contains four windows that display information about the pro­
gram being debugged: the display window, whieh contains program source code and (if 
requested) the unassembled machine code corresponding to the source code; the dialog 
window, where line-oriented commands similar (and in some cases identical) to SYMDEB 
can be entered and viewed (see PROGRAMMING UTILITIES: SYMDEB); the register win­
dow (optional), which contains the current status of the microprocessor's registers and 
flags; and the watch window (optional), which contains program variables or memory 

/. 

1158 The MS-DOS Encyclopedia 

' ' 

HUAWEI EX. 1110 - 1168/1582



Code View 

locations to be examined during program execution. Code View also provides a virtual 
output screen (stored internally) that contains all display output generated during the 
Code View session. 

A typical Code View debugging screen looks like this: 

window 

Next 

Pull-down menu 

; Get file nue 
IIIOU ; Set SI to start 
•ou bJ,B¥fE PfR lsi+ll ; Put the nu•ber 
IIIOV BYTE PTR [si+bx+2l,B: Put 8 at end to 

; (8 overrides 
•ou di,BAh ; Load llnefeed 

Register 
window 

lcrosoft (H) CodeVIew (R) Version 2.BB 
) Copyright nicrosoft Corp. 198&, 1987, All rights reserved. 

Dialog window Scroll bars 

The Code View display. 

Display window commands 

Commands that control the display window are available in nine pull-down menus whose 
names appear in a menu bar near the top of the screen. Commands can be selected with 
the keyboard or the mouse. Commands are selected with the keyboard by pressing the Alt 
key, pressing the first letter in the menu name, and then pressing the first letter of the com­
mand. Commands are selected with the mouse by pulling down the menu with the mouse 
pointer, highlighting the command, and then releasing the mouse button. Commands with 
.small double arrows to the left of the command name are currently active. The Code View 
menus and commands are described below. 

File menu 
The File menu includes commands that manipulate the current source or program file. To 
select the File menu with the keyboard, press Alt-F. 

Command 

Open ... 

DOS Shell 
Exit 

Action 

Opens the specified source file, include file, or text file in the display 
window. 

Exits to the shell temporarily. Type exit to return to Code View. 
Ends the current Code View session. 

Section IV: Programming Utilities 1159 

HUAWEI EX. 1110 - 1169/1582



Code View 

View menu 
The View menu includes commands that select source or assembly modes and commands 
that select the debugging screen or the virtual output screen. To select the View menu with 
the keyboard, press Alt-V. 

Command 

Source 

Mixed 

Assembly 

Registers 
Output 

Search menu 

Action 

Displays only the high-level-language or assembly-language source code 
corresponding to the program being debugged. 

Displays both the unassembled machine code and the source code 
corresponding to the program being debugged. 

Displays only the unassembled machine code corresponding to the 
program being debugged. 

Displays or removes the optional register window. 
Replaces the debugging screen with the virtual output screen. Press any 

key to return to the debugging screen. 

The Search menu includes commands that search through text files for text strings and 
through executable code for labels. To select the Search menu with the keyboard, press 
Alt-S. 

Command 

Find ... 

Next 

Previous 

Label. .. 

Run menu 

Action 

Searches the current source file or other text file for the specified 
expression. 

Searches forward through the file for the next match of the last 
expression specified with the Find ... command. 

Searches backward through the file for the next match of the last 
expression specified with the Find ... command. 

Searches the executable code for the specified procedure name or 
program label. 

The Run menu includes commands that run the program being debugged. To select the 
Run menu with the keyboard, press Alt-R. 

Command 

Start 
Restart 
Execute 
Clear Breakpoints 

1160 The MS-DOS Encyclopedia 

Action 

Runs the program at full speed from the first instruction. 
Reloads the program and moves to the first instruction. 
Runs the program at reduced speed from the current instruction. 
Clears all breakpoints. 

HUAWEI EX. 1110 - 1170/1582



Code View 

Watch menu 
The Watch menu includes commands that add watch statements to and delete watch state­
ments from the watch window. Watch statements describe expressions or areas of memory 
to be examined during program execution. To select the Watch menu with the keyboard, 
press Alt-W. 

Command 

Add Watch ... 

Watchpoint ... 

Tracepoint ... 

Delete Watch ... 
Delete All Watch 

Options menu 

Action 

Adds the specified watch-expression statement to the watch 
window. 

Adds the specified watchpoint statement to the watch window. A 
watchpoint is a conditional breakpoint that is taken when the 
expression becomes nonzero (true). 

Adds the specified tracepoint statement to the watch window. A 
tracepoint is a conditional breakpoint that is taken when a given 
expression or range of memory changes. 

Deletes the specified statement from the watch window. 
Deletes all statements from the watch window. 

The Options menu contains commands that affect the general behavior of Code View. To 
select the Options menu with the keyboard, press Alt-O. 

Command Action 

Flip/Swap When on (the default), enables screen swapping or screen flipping 
(whichever option Code View was started with); when off, disables 
swapping or flipping. Either method can be used to display the 
Code View virtual output screen. 

Bytes Coded When on (the default), displays the instructions, instruction addresses, 
and the bytes for each instruction; when off, displays only the 
instructions. 

Case Sense When on, causes Code View to assume that symbol names are case sensi-
tive; when off, causes Code View to assume that symbol names are not 
case sensitive. This option is on by default for C programs and off by 
default for FORTRAN, BASIC, and assembly programs. 

386 When on, allows instructions that reference 32-bit instructions to be as-
sembled and executed and the register window to display 32-bit values. 
When off, does not allow lntel80386 instructions and registers to be 
supported. 

Language menu 
The Language menu contains commands that select the language-dependent expression 
evaluator or instruct Code View to select it for you. To select the Language menu with the 
keyboard, press Alt-L. 

Section IV: Programming Utilities 1161 

HUAWEI EX. 1110 - 1171/1582



Code View 

Command 

Auto 

Basic 

c 

Fortran 

Calls menu 

Action 

Forces Code View to select the expression evaluator of the source file 
being loaded, based on the extension of the source file. 

Uses a BASIC expression evaluator to determine the value of source-level 
expressions. 

Uses a C expression evaluator to determine the value of source-level 
expressions. 

Uses a FORTRAN expression evaluator to determine the value of source­
level expressions. 

The Calls menu is different from other menus in that its contents vary depending on the 
status of the program. The Calls menu lists the names of specific routines that will be dis­
played on the screen when that routine name is selected. Routine names in the Calls menu 
can be selected by typing the number displayed immediately to the left of a routine name. 
The cursor will move to the line at which the selected routine was last executing. 

The current value of each parameter, if any, is shown in parentheses following the name 
of the routine in the Calls menu. The menu expands to accommodate the parameters of 
the widest line. Parameters are shown in the current radix (default= decimal). If the 
program contains more active routines than will fit on the screen or if the routine parame­
ters are too wide, the menu expands to the left and right. 

To select the Calls menu with the keyboard, press Alt-C. 

Help menu 
The Help menu lists the major topics in the Code View "linked-list" help system. For help, 
pull down the Help menu and then select the topic of interest. To select the Help menu 
with the keyboard, press Alt-H. 

Command 

Intra to Help 
Keyboard/Mouse 
Run commands 
Display cmds. 
Watch/Break 

MemoryOps 
System cmds. 
About Code View 

1162 The MS-DOS Encyclopedia 

Action 

Displays information about the "linked-list" help system. 
Displays information about keyboard and mouse commands. 
Displays information about Run commands. 
Displays information about Display commands. 
Displays information about setting, listing, and deleting watch-

points and breakpoints. 
Displays information about viewing and modifying memory. 
Displays information about system and environment commands. 
Displays information about the current Code View version, time, 

and date. 

HUAWEI EX. 1110 - 1172/1582



) 

Code View 

Key commands 

Code View supports a variety of function keys and key combinations that modify the active 
window. 

Key 

Fl 
F2 
F3 

F4 
F5 

F6 
F7 

F8 
F9 
FlO 

Ctrl+G 

. Ctrl+T 

Action 

Displays the introductory help screen. 
Displays or removes the register window. 
Changes the display in the display window to source, mixed, or assembly 

mode. 
Displays the virtual output screen (press any key to return). 
Executes to the next breakpoint or to the end of the program if no break­

point is encountered. 
Toggles between the display window and the dialog window. 
Sets a temporary breakpoint on the line. containing the cursor and exe~ 

cutes to that line (or the next breakpoint). 
Executes a trace command, stepping through program calls if present. 
Sets or clears a breakpoint on the line containing the cursor. 
Executes the next source line (in source mode) or the next instruction 

(in assembly mode), stepping over program calls if present. 
Increases the size of the display window or the dialog window, whichever 

is active. 
Decreases the size of the display window or the dialog window, whichever 

is active. 

Dialog window commands 

After Code View and the specified executable file are loaded, Code View displays its special 
prompt character (>) at the bottom of the dialog window and awaits a dialog command. 
Code View dialog commands consist of one, two, or three characters, usually followed by 
one or more parameters. Code View treats uppercase and lowercase characters the same 
except when they are contained in strings enclosed within single or double quotation 
marks. The default radix for dialog command parameters is 10 (decimal). Dialog com­
mands are ·executed when the Enter key is pressed. 

A detailed explanation of Code View dialog commands and parameters is not presented 4 
in this entry. Code View dialog commands and parameters are similar to SYMDEB com-
mands and parameters. See PROGRAMMING UTILITIES: SYMDEB. Additional information 
about using Code View dialog commands and parameters can be found in the Code View 
documentation supplied with the Microsoft Macro Assembler (MASM), C Compiler, Pascal 
Compiler, and FORTRAN Compiler. A sample debugging session using Code View dialog 
commands and window commands is documented in this book. See PROGRAMMING IN 
THE MS-DOS ENVIRONMENT: PROGRAMMING TooLS: Debugging in the MS-DOS 
Environment. 

Section IV: Programming Utilities 1163 

HUAWEI EX. 1110 - 1173/1582



Code View 

The dialog commands available with Code View are as follows: 

Command Syntax Action 

! [command) Escape to shell. 
Pause redirected file execution. 

# #number Set display window tabs. 

* •comment Echo comment to output device. 
Display current source line. 

I /[searchtext) Search for regular expression. 
7 7 Display 8087 registers. 

:[:) ... [:) Delay redirected file execution. 
< <device Redirect dialog window input. 

=device Redirect dialog window input and output. 
> [T) > [>) device Redirect dialog window output. 
? ? expression[,jormat) Evaluate expression. 
@ @ Redraw screen. 
A A[address] Assemble machine instructions. 
BC BC [•][list] Clear breakpoints. 
BD BD [*] [list] Disable breakpoints. 
BE BE[*] [list] Enable breakpoints. 
BL BL List breakpoints. 
BP BP [address [passcount] Set breakpoints. 

["cmds"]] 
c C range address Compare memory areas. 
D D [range] Display (dump) memory. 
DA DA[range] Display ASCII. 
DB DB [range] Display bytes. 
DD DD[range] Display doublewords. 
DI Dl[range] Display integers. 
DL DL[range] Display long reals. 
DS DS [range] Display short reals. 
DT DT[range] Display 10-byte reals. 
DU DU[range] Display unsigned integers. 
DW DW[range] Display words. 
E E address [list] Enter data. 
EA EA address [list] Enter ASCII string. 
EB EB address [list] Enter bytes. 
ED ED address [value] Enter doublewords. 
EI EI address [list] Enter integers. 
EL EL address [value] Enter long reals. 
ES ES address [value] Enter short reals. 
ET ET address [value] Enter 1 Ocbyte reals. 

(more) 

1164 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1174/1582



/ 
Code View 

Command Syntax Action 

EU EU address [value] Enter unsigned integers. 
EW EW address [value] Enter words. 
F F range list Fill memory. 
G G [breakpoint] Go execute program. 
H H Display help screen. 
I I port Input from port. 
K K[number] Perform stack trace. 
L L [parameters] Reload program. 
M M range address Move (copy) data. 
N N[radix] Change current radix. 
0 0 port byte Output to port. 
0 0 Display all options. 
03 03[+:-J Toggle Intel 80386 option. 
OB OB[+:-J Toggle bytes coded option. 
oc OC[+:-J Toggle case-sense option. 
OF OF[+:-J Toggle flip/swap option. 
p P [count] Step through program (over calls). 
Q Q Quit debugger. 
R R [register [value]] Display or modify registers. 
RF RF[jlags] Display or modify flags. 
s S range list Search memory. 
s s Display current display mode. 
S+ S+ Display source code. 
s- s- Display assembly language. 
S& S& Display source code and assembly 

language. 
T T [count] Trace program execution (through calls). 
TP TP [type] range Set memory-tracepoint statement. 
TP? TP? expression[,jormat] Set tracepoint-expression statement. 
u U[range] Disassemble (unassemble) program. 
USE USE [language] Switch expression evaluators. 
v V [.[jilename:]linenumber] View source code. 
w w List watchpoints and tracepoints. 
w W[type] range Set memory-watch statement. 
W? W? expression[,jormat] Set watch-expression statement. 
WP? WP? expression[,jormat] Set watchpoint. 
X X[?[module!] Examine program symbols. 

[ routine.Jsymbol: • J 
y Y [*][list] Delete watch statements. 
\ \ Display virtual output screen. 

Section IV: Programming Utilities 1165 

HUAWEI EX. 1110 - 1175/1582



Code View 

Examples 

To prepare the source file SHELL.C for debugging with Code View, first compile the source 
file with the switches that disable optimization and cause symbol-table and line-number 
information to be written to the relocatable object module: 

C>MSC /Zi /Od SHELL; <Enter> 

Next, to convert the object module to an executable program and prepare it for Code View, 
type 

C>LINK /CO SHELL; <Enter> 

To begin debugging, type 

C>CV SHELL <Enter> 

To start Code View in 43-line mode with TEST.EXE as the executable file and INFO.DAT as 
the command-tail parameter, type 

C>CV /43 TEST INFO.DAT <Enter> 

In both examples the source file corresponding to the specified executable file must be in 
the current directory if source-code display is desired. 

Messages 

Argument to IMAG/DIMAG must be simple type 
An invalid parameter to an IMAG or DIMAG function, such as an array with no subscripts, 
was specified. 

Array must have subscript 
An array without any subscripts was specified in an expression, such as !ARRAY+ 2. A 
correct example is !ARRAY[ 1] + 2. 

Bad address 
An invalid address was specified. For example, an address containing hexadecimal char­
acters might have been specified when the radix is decimal. 

Bad breakpoint command 
An invalid breakpoint number was specified with the BC, BD, or BE dialog command. The 
breakpoint number must be in the range 0 through 19. 

Bad flag 
An invalid flag mnemonic was specified with the RF dialog command. 

Bad format string 
An invalid format specifier was used following an expression. Expressions used with the 
? , W?, WP?, and TP? dialog commands can have format specifiers set off from the expres­
sion by a comma. The valid format specifiers are c, d, e, E, f, g, G, i, o, s, u, x, and X. Some 
format specifiers can be preceded by the prefix h (to specify a 2-byte integer) or l (to spec­
ify a 4-byte integer). 

1166 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1176/1582



Code View 

Bad integer or real constant 
An invalid numeric constant was specified in an expression. 

Bad intrinsic function 
An invalid intrinsic function name was specified in an expression. 

Badly formed type 
The type information in the symbol table of the file being debugged is incorrect. This is a 
serious problem. Note the circumstances of the failure and notify Microsoft Corporation. 

Bad radix (use 8, 10, or 16) 
An invalid radix was specified with the N dialog command. Use an octal, decimal, or 
hexadecimal radix. 

Bad register 
An invalid register name was specified with the R dialog command. Use AX, BX, ex, DX, 
SP, BP, SI, Dl, DS, ES, SS, CS, or IP. If your machine is equipped with an Intel80386 micro­
processor, use EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, DS, ES, FS, GS, SS, CS, or IP. 

Bad subscript 
An invalid subscript expression was specified for an array, such as /ARRAY (3.3) or 
/ARRAY ((3,3)). The correct expression for this example (in BASIC or FORTRAN) is 
/ARRAY (3,3). 

Bad type cast 
Incompatible types of operands were specified in an expression. 

Bad type (use one of 'ABDILSTUW') 
An invalid type was used in a Display (D, DA, DB, DF, DU, DW, DD, DS, DL, or DT) dialog 
command. The valid types are ASCII (A), byte (B), integer (I), unsigned (U), word (W), 
doubleword (D), short real (S), long real (L), and 10-byte real (T). 

Breakpoint# or '•' expected 
The BC, BD, or BE dialog command was entered without a parameter. 

Cannot cast complex constant component into REAL 
An incompatible real or imaginary component was specified in a COMPLEX constant. 
Both real and imaginary components must be compatible with type REAL. 

Cannot cast IMAG/DIMAG argument to COMPLEX 
An irivalid parameter was specified with an IMAG or DIMAG function. IMAG and DIMAG 
parameters must be simple numeric types. 

Cannot use struct or union as scalar 
A struct or union variable was used as a scalar value in a C expression. Such variables must 
be followed by a file specifier or preceded by the address-of(&) operator. 

Can't find .filename 
Code View could not find the executable file specified in the command line. 

Section IV: Programming Utilities 1167 

HUAWEI EX. 1110 - 1177/1582



Code View 

Character constant too long 
A character constant that is too long for the FORTRAN expression evaluator was specified. 
The limit is 126 bytes. 

Character too big for current radix 
A radix that is larger than the current Code View radix was specified in a constant. Use the 
N dialog command to change the radix. 

Constant too big 
An unsigned constant number larger than 4,294,967,295 (FFFFFFFFH) was specified. 

CPU not an 80386 
The 386 option was selected but a machine without an Intel80386 microprocessor is 
being used. 

Divide by zero 
An expression in a parameter of a dialog command attempted to divide by zero. 

EMMerror 
Code View failed to use the Expanded Memory Manager (EMM) correctly. This is a serious 
problem. Note the circumstances of the failure and notify Microsoft Corporation. 

EMM hardware error 
The Expanded Memory Manager (EMM) routines reported a hardware error. Check your 
expanded memory board for defects. 

EMM memory not found 
The /E option was used but expanded memory has not been installed. Install software 
that accesses the memory according to the Lotus/InteVMicrosoft Expanded Memory 
Specification (LIM EMS). 

EMM software error 
The Expanded Memory Manager (EMM) routines reported a software error. Reinstall the 
EMM software. 

Expression too complex 
An expression given as a dialog-command parameter is too complex. 

Extra input ignored 
Too many parameters were specified with a command. Code View evaluates the valid 
parameters and ignores the rest. In this situation, Code View often does not evaluate the 
parameters as intended. 

Flip/Swap option off- application output lost 
The program being debugged is writing to the screen, but the output cannot be displayed 
because the flip/swap option has been disabled. 

Floating point error 
This is a serious problem. Note the circumstances of the failure and notify Microsoft 
Corporation. 

1168 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1178/1582



Code View 

Illegal instruction 
This message usually indicates that a machine instruction attempted to divide by zero. 

Index out of bound 
A subscript value was specified that is outside the bounds declared for the array. 

Insufficient EMM memory 
Expanded memory is insufficient to hold the program's symbol table. 

Internal debugger error 
This is a serious problem. Note the circumstances of the failure and notify Microsoft 
Corporation. 

Invalid argument 
An invalid Code View expression was specified as a parameter. 

Invalid executable f"tle format- please relink~T 
The executable file was not linked with the version dUNK 'released with this version of 
the Code View debugger. Relink with the appropriate v~rston of LINK. 

Invalid option 
An invalid switch was specified with the 0 command. 

Missing'"' 
A string specified as a parameter to a dialog command did not have a closing double 
quotation mark. 

Missing'(' 
A parameter to a dialog command was specified as an expression containing a right 
parenthesis but no left parenthesis. 

Missing')' 
A parameter to a dialog command was specified as an expression containing a left 
parenthesis but no right parenthesis. 

Missing']' 
A parameter to a dialog command was specified as an expression containing a left bracket 
but no right bracket, or a regular expression was specified with a right bracket but no left 
bracket. 

Missing '(' in complex constant 
An opening parenthesis of a complex constant in an expression was expected but was not 
found. 

Missing ')' in complex constant 
A closing parenthesis of a complex constant in an expression was expected but was not 
found. 

Missing ')' in substring 
A closing parenthesis of a substring expression was expected but was not found. 

Section IV: Programming Utilities 1169 

HUAWEI EX. 1110 - 1179/1582



Code View 

Missing '(' to intrinsic 
An opening parenthesis for an intrinsic function was expected but was not found. 

Missing ')' to intrinsic 
A closing parenthesis for an intrinsic function was expected but was not found. 

No closing single quote 
A character was specified in an expression used as a dialog-command parameter, but the 
closing single quotation mark is missing. 

No code at this line number 
A breakpoint was set on a source line that does not correspond to machine code. (In other 
words, the source line does not contain an executable statement.) For example, the line 
might be a data declaration or a comment. 

No free EMM memory.ha · Ues 
Code View could not firid an ?tvailable EMM handle. Expanded Memory Manager (EMM) 
software allocates a fixed.mlmber of memory handles (usually 256) to be used for specific 
tasks. · 

No match of regular expression 
No match was found for the regular expression specified with the Search (S) dialog com­
mand or with the Find ... command from the Searcl'\ menu. 

No previous regular expression 
The Previous command was selected from the Search menu, but Code View found no 
previous match for the last regular expression specified. 

No source lines at this address 
The address specified as a parameter for the V dialog command does not have any source 
lines. For example, it could be an address in a library routine or an assembly-language 
module. 

No such file/directory 
The specified file or directory does not exist. 

No symbolic information 
The executable file specified is not in the Code View format. The program cannot be 
debugged in source mode unless the file is created in the Code View format. The program 
can be debugged in assembly mode. 

Not an executable file 
The file specified to be debugged when Code View started is not an executable file with a 
.EXE or .COM extension. 

Not a text file 
An attempt was made to load a file with the Open ... command from the File menu or 
with the V dialog command, but the file is not a text file. Code View determines if a file is a 
text file by checking the first.l28 bytes for characters that are not in the ASCII ranges 9 
through 13 and 20 through 126. 

1170 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1180/1582



Code View 

Not enough space 
The ! dialog command or the DOS Shell command from the File menu was chosen, but 
free memory is insufficient to execute COMMAND. COM. Because memory is released by 
code in the FORTRAN startup routines, this error always occurs if the ! command is used 
before executing any code. Use any of the code-execution dialog commands (T, P, or G) to 
execute the FORTRAN startup code; then try the ! command again. This message also 
occurs with assembly-language programs that do not specifically release memory. 

Object too big 
A TP? dialog command was entered with a data object (such as an array) that is larger than 
128 bytes. 

Operand types incorrect for this operation 
An operand in a FORTRAN expression had a type incompatible with the operation 
applied to it. For example, if Pis declared as CHARACTER P (10), then ? P+5 would pro­
duce this error, because a character array cannot be an operand of an arithmetic operator. 

Operator must have a struct/union type 
One of the C member-selection operators ( -, >, or .) was used in an expression that does 
not reference an element of a structure or union. 

Operator needs lvalue 
An expression was specified that does not evaluate to a memory location in an operation 
that requires one. (An lvalue is an expression that refers to a memory location.) For exam­
ple, buffer (count) is correct; it represents a symbol in memory. However, I .EQV: 10 
is invalid because it evaluates to TRUE or FALSE instead of to a single memory location. 

Overlay not resident 
An attempt was made to unassemble machine code from a function that is currently not in 
memory. 

Program terminated normally (exitcode) 
The program terminated execution normally. The number displayed in parentheses is the 
exit code returned to MS-DOS by the program. 

Radix must be between 2 and 36 inclusive 
A radix that is outside the allowable range was specified. 

Register variable out of scope 
An attempt was made to specify a register variable by using the period (.) operator and a 
routine name. 

Regular expression too complex 
The regular expression specified is too complex for Code View to evaluate. 

Regular expression too long 
The regular expression specified is too long for Code View to evaluate. 

Restart program to debug 
The program being debugged has executed to the end. 

Section IV: Programming Utilities 1171 

HUAWEI EX. 1110 - 1181/1582



Code View 

Simple variable cannot have argument 
A parameter to a simple variable was specified in an expression. For example, given the 
declaration INTEGER NUM, the expression NUM(l) is not allowed. 

Substring range out of bound 
A character expression exceeded the length specified in the CHARACTER statement. 

Syntax error 
An invalid command line was specified for a.dialog command, or an invalid assembly­
language instruction was entered with the A dialog command. 

Too few array bounds given 
The bounds specified in an array subscript do not match the array declaration. For exam­
ple, given the array declaration INTEGER IARRAY(3, 4), the expression !ARRAY(/) would 
produce this error message. 

Too many array bounds given 
The bounds specified in an array subscript do not match the array declaration. For exam­
ple, given the array declaration INTEGER IARRAY(3, 4), the expression !ARRAY (1,3,]) 
would produce this error message. 

Too many breakpoints 
An attempt was made to specify more than 20 breakpoints; Code View permits only 20. 

Too many files 
Too few file handles were specified for Code View to operate correctly. Specify more files 
in your CONFIG.SYS file. 

Type clash in function argument 
The type of an actual parameter does not match the corresponding formal parameter, or a 
subroutine that uses alternate returns was called and the values of the return labels in the 
actual parameter list are not 0. 

Type conversion too complex 
An attempt was made to typecast an element of an expression in a type other than the sim­
ple types or with more than one level of indirection. An example of a complex type would 
be typecasting to a struct or union type. An example of two levels of indirection is char**. 

Unable to open file 
A file specified in a command parameter or in response to a prompt cannot be opened. 

Unknown symbol 
An identifier that is not in Code View's symbol table was specified, or a local variable was 
used in a parameter when not in the routine where the variable is defined, or a subroutine 
that uses alternate returns was called and the values of the return labels in the parameter 
list are not 0. 

Unrecognized option option 
Valid options: /B /C<command> /D /E /F /1 /M /P /R /SIT /W /43 /2 
An invalid switch was entered when starting Code View. 

1172 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1182/1582



Code View 

Usage: cv [options] file [arguments] 
An executable file was not specified when starting Code View. 

Video mode changed without /S option 
The program changed video modes (either to or from graphics modes) when screen 
swapping was not specified. Use the IS option to specify screen swapping when debug­
ging graphics programs. Debugging can be continued after receiving this message, but the 
output screen of the debugged program may be damaged. 

Warning: packed file 
Code View was started with a packed file as the executable file. The program cannot be 
debugged in source mode because all symbolic information is stripped from a file when it 
is packed with LINK's /EXEPACK option or the EXEPACK utility. Try to debug the pro­
gram in assembly mode. (The packing routines at the start of the program might make 
this difficult.) 

Wrong number of function arguments 
An incorrect number of parameters was specified when evaluating a function in a 
Code View expression. 

Section IV: Programming Utilities 1173 

HUAWEI EX. 1110 - 1183/1582



HUAWEI EX. 1110 - 1184/1582



HUAWEI EX. 1110 - 1185/1582



HUAWEI EX. 1110 - 1186/1582HUAWEI EX. 1110 - 1186/1582



System Calls Introduction 

Introduction 

All versions of MS-DOS include operating-system services that provide the programmer 
with hardware-independent tools for handling such tasks as file management, device input 
and output, memory allocation, and getting and setting system-management information 
such as the date and time~ The majority of these services, collectively called the MS-DOS 
system calls, are invoked through Interrupt 21H. A few others are called using Interrupts 
20H through 27H and 2FH. This section includes descriptions of these system-management 
services, with details relevant to all releases of MS-DOS through version 3.2. 

Use of the Interrupt 21H system calls, rather than hardware-specific routines, helps ensure 
that a program will run on any computer running an appropriate version of MS-DOS. 
Likewise, because new releases of MS-DOS attempt to maintain compatibility with earlier 
versions, use of the calls increases the likelihood that a program will remain usable for 
more than a single major or minor release of the operating system. 

The MS-DOS Interrupt 21H system calls are invoked as follows: 

AH 
AL 
Other registers 
Execute Interrupt 21H 

Version Differences 

= function number 
= subfunction code (if required) 
= additional function-specific information 

With MS-DOS versions 2.0 and later, considerable overlap occurs in the way in which 
many system services, such as file and character device I/0, can be carried out. This over­
lap is a result of the manner in which MS-DOS has developed since it was first released. 

The earliest version of MS-DOS, 1.0, included a relatively small set of Interrupt 21H system 
calls designed primarily for CP/M compatibility. These calls, numbered OOH through 2DH, 
relied on the use of file control blocks (FCBs) in an application's memory space for infor­
mation on open files. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAM­
MING FOR Ms-oos: File and Record Management; Appendix G: File Control Block (FCB) 
Structure. The FCB-based system calls in MS-DOS do not support hierarchical file struc­
tures, nor do they support redirection of input and output. As a result, many of these sys­
tem calls have been superseded in later releases of MS-DOS. The CP/M-style calls are no 
longer recommended and should not be used unless program compatibility with versions 

l.x is required. · 4 
Beginning with version 2.0, MS-DOS introduced the concept of handles -16-bit numbers 
returned by the operating system after a successful open or create.call. The handles can 

Section V: System Calls 1177 

HUAWEI EX. 1110 - 1187/1582



System Calls Introduction 

subsequently be used by an application program to reference an open file or device, 
eliminating redundancy and unnecessary overhead. These handles are also used inter­
nally by MS-DOS to keep track of open files and devices. The operating system keeps all 
such handle-related information in its own memory space. Handles offer full support for 
the hierarchical file system introduced in version 2.0 of MS-DOS and thus allow the pro­
grammer to access any file stored in any directory or subdirectory on a block device. 
Because of the increased flexibility offered by the handle-related system function calls, 
these services are recommended over the earlier FCB-based calls, which perform similar 
tasks but for the current directory only. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FORMs-nos: File and Record Management. 

Another advantage of using the system calls introduced in versions 2.0 and later is that 
these calls set the carry flag when an operational error occurs and return an error code in 
AX that indicates the nature of the error; the error can then be investigated further by call­
ing Function 59H (Get Extended Error Information). The earlier system calls (OOH through 
2DH) generally simply return OFFH (255) in ALto indicate an error or OOH to indicate that 
the call was completed successfully. 

Format of Entries 

Entries in this section are arranged in hexadecimal order, with decimal equivalents in 
parentheses. Each entry is organized as follows: 

• Hexadecimal interrupt and/or function number (decimal equivalent in parentheses) 
• Interrupt or function name (similar to, but not always the same as, the name used in 

MS-DOS documentation) 
• Version dependencies 
• Interrupt or function purpose 
• Register contents needed to call 
• Register contents on return 
• Notes for programmers 
• Related functions 
• Program example 

The format of these entries is designed to give programmers ready reference to specific 
information, such as register contents, as well as more detailed notes on the use and appli­
cation of each system call. For further information on the use of the system calls, see 
PROGRAMMING IN THE MS-DOS ENVIRONMENT. 

The assembly-language examples in this section use the Cmacros capability introduced 
with the Windows Software Development Kit. Cmacros, a set of assembly-language macros 
defined in the file CMACROS.INC, are useful because they provide a simplified interface to 
the function and segment conventions of high-levellanguages such as Microsoft C and 
Microsoft Pascal. 

1178 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1188/1582



System Calls Introduction 

Advantages to using Cmacros for assembly-language programming include transparent 
support for memory models and symbolic names for function arguments and local vari­
ables. Cmacros exist for code and data segment declarations (sBegin and sEnd), storage 
allocation (staticX,_ globalX, externX, and labelX), function declarations (cProc, parmX, 
localX, cBegin and cEnd), function calls (cCall, Save, and Arg), special definitions 
(DejX, RegPtr, and FarPtr), and error control (errnz and errn$). Of these, only sBegin, 
sEnd, cProc, parmX, localX, cBegin, and cEnd are used in the examples in this section. 

Two additional macros that support functions not found in CMACROS.INC are loadCP and 
loadDP. These macros, included in the file CMACROSX.INC listed below, allow pointers 
previously declared with staticX, globalX, parmX, DejX and localX to be loaded into 
registers without regard to the memory model in use -loadCP and loadDP generate 
code to load either the offset portion or the full segment: offset of the address, depending 
on the memory model. 

CMACROSX. INC 

This file includes supplemental macros for two macros included 

in CMACROS.INC: parmCP and parmDP. When these macros are used, 
CMACROS.INC allocates either 1 or 2 words to the variables 

associated with these macros, depending on the memory model in 

use. However, parmCP and parmDP provide no support for automatically 

adjusting for different memory models-additional program code 

needs to be written to compensate for this. The loadCP and loadDP 

macros included in this file can be used to provide additional 
flexibility for overcoming this limit. 

For example, "parmDP pointer" will make space (1 word in small 

and middle models and 2 words in compact, large, and huge models) 
for the data pointer named "pointer". The statement 

"loadDP ds,bx,pointer" can then be used to dynamically place the 

value of "pointer" into DS:BX, depending on the memory model. 

In small-model programs, this macro would generate the instruction 
"mov dx,pointer" (it is assumed that DS already has the right 

segment value); in large-model programs, this macro would generate 

the statements "mov ds,SEG_pointer" and "mov dx,OFF_pointer". 

checkDS macro segmt 
diffcount = 0 

irp d,<ds,DS,Ds,dS> 

ifdif <segmt>,<d> 

diffcount = diffcount+1 

endif 

endm 

if diffcount EQ 4 
it_is_DS 

else 
it_is_DS 

endif 

endm 

0 

Allow for all spellings 

of "ds". 

(more) 

Section V.· System Calls 1179 

HUAWEI EX. 1110 - 1189/1582



System Calls Introduction 

1180 

checkES macro segmt 

diffcount = 0 
irp d,<es,ES,Es,eS> 

ifdif <segmt>,<d> 
diffcount = diffcount+1 

endif 

endm 
if diffcount EQ 4 

it_is-ES 0 

else 
it_is-ES 

endif 

endm 

loadDP macro segmt,offst,dptr 
checkDS segmt 
if sizeD 

if it_is_DS 
lds offst,dptr 

else 
checkES segmt 
if it_is-ES 

les offst,dptr 

else 
mov offst,OFF_&dptr 
mov segmt,SEG_&dptr 

endif 

endif 
else 

mov offst,dptr 
if it_is_DS EQ 0 

push ds 
pop segmt 

endif 
end if 

endm 

loadCP macro segmt,offst,cptr 

if sizeC 
checkDS segmt 
if it_is_DS 

lds offst,cptr 

else 
checkES 
if it_is-ES 

les offst,cptr 

else 
mov segmt,SEG_&cptr 
mov offst,OFF_&cptr 

endif 

endif 

else 

The MS-DOS Encyclopedia 

Allow for all spellings 

of "es". 

<-- Large data model 

<-- Small data model 

If "segmt" is not DS, 

move ds to segmt. 

<-- Large code model 

(more) 

HUAWEI EX. 1110 - 1190/1582



System Calls Introduction 

push cs 
pop segmt 

<-- Small code model 

mov offst,cptr 
endif 

endm 

The following example program demonstrates the use of Cmacros in an assembly­
language program: 

memS 
?PLM 
?WIN 

include 
include 

sBegin 
assumes 

0 

0 

0 

cmacros.inc 
cmacrosx.inc 

CODE 
CS,CODE 

;Small memory model 
;C calling conventions 
;Disable Windows support 

;Start of code segment 
;Required by MASM 

;Microsoft C function syntax: 

int addnums(firstnum, secondnum) 
int firstnum, secondnum; 

;Returns firstnum + secondnum 

cProc addnums,PUBLIC 
parmW firstnum 

;Start of addnums functions 
;Declare parameters 

parmW 
cBegin 

cEnd 

secondnum 

mov ax,firstnum 
add ax,secondnum 

sEnd CODE 
end 

A simple C program to call this function would be 

main() 

printf("The sum is %d",addnums(12,33)); 

Contents by Functional Group 

Although distinguishing between FCB-based and handle-based system calls provides a 
broad and very generalized means of categorizing these services, the more common and 
useful approach is to group the calls by the type of task they perform. The following list 
groups the Interrupt 21H system calls and Interrupts 20H, 22H through 27H, and 2FH by 
type of service. 

Section V: System Calls 1181 

HUAWEI EX. 1110 - 1191/1582



System Calls Introduction \ 

Function Purpose 

Character Input 
01H Character Input with Echo 
03H Auxiliary Input 
06H Direct Console 1/0 
07H Unfiltered Character Input Without Echo 
08H Character Input Without Echo 
OAH Buffered Keyboard Input 
OBH Check Keyboard Status 
OCH Flush Buffer, Read Keyboard 

Character Output 
02H Character Output 
04H Auxiliary Output 
05H Print Character 
06H Direct Console 1/0 
09H Display String 

Disk Management 
ODH Disk Reset 
OEH Select Disk 
19H Get Current Disk 
1BH Get Default Drive Data 
1CH Get Drive Data 
2EH Set/Reset Verify Flag 
36H Get Disk Free Space 
54H Get Verify Flag 

File Management 
OFH Open File with FCB 
10H Close File with FCB 
llH Find First File 
12H Find Next File 
13H Delete File 
16H Create File with FCB 
17H Rename File 
1AH Set DTA Address 
23H Get File Size 
2FH Get DTA Address 
3CH Create File with Handle 
3DH Open File with Handle 
3EH Close File 

(more) 

1182t The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1192/1582



.Function Purpose 

File Management (continued) 

41H Delete File 
43H Get/Set File Attributes 
45H Duplicate File Handle 
46H Force Duplicate File Handle 
4EH Find First File 
4FH Find Next File 
56H Rename File _ 
57H Get/Set Date/Time of File 
5AH Create Temporary File 
5BH Create New File 
5CH Lock/Unlock File Region 

Information Management 
14H Sequential Read 
15H Sequential Write 
21H Random Read 
22H 
24H 
27H 
28H 
3FH 
40H 
42H 
Interrupt 25H 
Interrupt 26H 

Random Write 
Set Relative Record 
Random Block Read 
Random Block Write 
Read File or Device 
Write File or Device 
Move File Pointer 
Absolute Disk Read 
Absolute Disk Write 

Directory Management 
39H Create Directory 
3AH Remove Directory 
3BH Change Current Directory 
47H Get Current Directory 

Process Management 
OOH Terminate Process 
31H Terminate and Stay Resident 
4BH Load and Execute Program (EXEC) 
4CH Terminate Process with Return Code 
4DH Get Return Code of Child Process 
59H Get Extended Error Information 
Interrupt 20H 
Interrupt 27H 

Terminate Program 
Terminate and Stay Resident 

System Calls Introduction 

(more) 

Section V.· System Calls 1183 

HUAWEI EX. 1110 - 1193/1582



System Calls Introduction 

Function Purpose 

Memory Management 
48H Allocate Memory Block 
49H Free Memory Block 
4AH Resize Memory Block 
58H Get/Set Allocation Strategy 

Miscellaneous System Management 
25H Set Interrupt Vector 
26H Create New Program Segment Prefix 
29H Parse Filename 
2AH GetDate 
2BH 
2CH 
2DH 
30H 
33H 
34H 
35H 
38H 
44H 
5EH 
5FH 
62H 
63H 
Interrupt 22H 
Interrupt 23H 
Interrupt 24H 
Interrupt 2FH 

1184 The MS-DOS Encyclopedia 

Set Date 
Get Time 
Set Time 
Get MS-DOS Version Number 
Get/Set Control-C Check Flag 
Return Address of InDOS Flag 
Get Interrupt Vector 
Get/Set Current Country 
IOCTL 
Network Machine Name/Printer Setup 
Get/Make Assign List Entry 
Get Program Segment Prefix Address 
Get Lead Byte Table (version 2.25 only) 
Terminate Routine Address 
Control-C Handler Address 
Critical Error Handler Address 
Multiplex Interrupt 

HUAWEI EX. 1110 - 1194/1582



Interrupt 20H 

Interrupt 20H (32) 1.0 and later 

Terminate Program 

Interrupt 20H is one of several methods that a program can use to perform a final exit. It 
informs the operating system that the program is completely finished and that the memory 
the program occupied can be released. 

To Call 

CS = segment address of program segment prefix (PSP) 

Returns 

Nothing 

Programmer's Notes 

• In response to an Interrupt 20H call, MS-DOS takes the following actions: 
- Restores the termination handler vector (Interrupt 22H) from PSP:OOOAH. 

Restores the Control-C vector (Interrupt 23H) from PSP:OOOEH. 
With MS-DOS versions 2.0 and later, restores the critical error handler vector (Inter­
rupt 24H) from PSP:0012H. 

- Flushes the file buffers. 
- Transfers to the termination handler address. 

The termination handler releases all memory blocks allocated to the program, includ­
ing its environment block and any dynamically allocated blocks that were not pre­
viously explicitly released; closes any files opened with handles that were not 
previously closed; and returns control to the parent process (usually 
COMMAND. COM). 

• If the program is returning to COMMAND.COM, control transfers first to 
COMMAND. COM's resident portion, which reloads COMMAND. COM's transient 
portion (if necessary) and passes control to it. If a batch file is in progress, the next 
line of the batch file is then fetched and interpreted; otherwise, a prompt is issued for 
the next user command. 

• Any files that have been written by the program using FCBs should be closed before 
using Interrupt 20H; otherwise, data may be lost. 

• For those programmers who have been with MS-DOS since its earliest incarnations, 
Interrupt 20H is the traditional way to exit from an application program. However, 
under versions 2. 0 and later, the preferred methods of termination are Interrupt 21H 
Function 31H (Terminate and Stay Resident) and Interrupt 21H Function 4CH (Termi­
nate Process with Return Code). 

Section V.· System Calls 1185 

HUAWEI EX. 1110 - 1195/1582



Interrupt 20H 

Example 

;************************************************************; 

Perform a final exit. 

;************************************************************; 
int 20H ; Transfer to MS-DOS. 

1186 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1196/1582



Interrupt 21H (33) 
Function OOH (0) 
Terminate Process 

Interrupt 21H Function OOH 

1.0 and later 

Function OOH flushes all file buffers to disk, terminates the current process, and releases 
the memory used by the process. 

To Call 

AH =OOH 
CS = segment of program's program segment prefix (PSP) 

Returns 

Nothing 

Programmer's Notes 

• The following interrupt vectors are restored from the PSP of the terminated program: 

PSPOffset Vector for Interrupt 

Interrupt 22H (terminate routine) 
Interrupt 23H (Control-Chandler) 

OAH 
OEH 
12H Interrupt 24H (critical error handler) (versions 2.0 and later.) 

• All file buffers are written to disk and all handles are closed. Control is then trans­
ferred to Interrupt 22H (Terminate Routine Address). 

• Any file that has changed in length and was opened with an FCB should be closed 
before Function OOH is called. If such a file is not dosed, its length, date, and time are 
not recorded correctly in the directory. 

• With versions 3.x of MS-DOS, restoring the default memory-allocation strategy used 
by MS-DOS is advisable if that strategy has been changed with Function 58H (Get/Set 
Allocation Strategy). Any global flags, such as the break and verify flags, that affect 
system behavior and that have been changed by the process should also be restored 
to their original values. 

• Function OOH performs exactly the same processing as Interrupt 20H (Terminate 
Program). ' 

• Function OOH is obsolete with MS-DOS versions 2.0 and later. Function 31H (Termi­
nate and Stay Resident) and Function 4CH (Terminate Process with Return Code) are 
preferred; both enable the terminating process to pass a return code to the calling 
process and do not require that CS contain the PSP address. 

Section V: System Calls 1187 

HUAWEI EX. 1110 - 1197/1582



Interrupt 21H Function OOH 

Related Functions 
31H (Terminate and Stay Resident) 
4CH (Terminate Process with Return Code) 

Example 
None 

1188 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1198/1582



Interrupt 21H (33) 
Function OlH (1) 
Character Input with Echo 

Interrupt 21H Function OlH 

1.0 and later 

Function OlH waits for a character from standard input, echoes it to standard output, and 
returns the character in the AL register. 

To Call 

AH =OlH 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function OlH reads input from the keyboard. With 
versions 2.0 and later, Function OlH reads a character from standard input, which 
defaults to the keyboard but can be redirected to another device or to a file. Whether 
or not input has been redirected, the character is echoed to standard output. 

• Function OlH waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available from standard input, and then calling Function OlH if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
OlH must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• The carriage-return character (ODH) echoes a carriage return but not a linefeed. 
Likewise, the linefeed character (OAH) does not echo a carriage return. 

• With MS-DOS versions 2.0 and later, Function OlH cannot detect an end-of-file condi­
tion if input has been redirected. 

• Interrupt 23H (Control-CHandler Address) is called if Control-C (03H) is the input 
character and (with versions 2.0 and later) input is not redirected. 

• With MS-DOS version 2.0 and later, if standard input has been redirected to come 
from a file, Break must be enabled for Interrupt 23H to be called when Control-C 
(03H) is the input character. 

• Alternative character input functions are 06H (Direct Console I/0), 07H (Unfiltered 
Character Input Without Echo), and 08H (Character Input Without Echo). The four 
functions are related as follows: 

Section V.· System Calls 1189 

HUAWEI EX. 1110 - 1199/1582



Interrupt 21H Function OlH 

Waits Echoes to Acts on 
Function for Input StdOutput Control-C 

01H yes yes yes 
06H no no no 
07H yes no no 
08H yes no yes 

Depending on whether Control-C needs to be filtered, Function 06H, 07H, or 08H can 
be used to handle character display separately from character input. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function OlH. 

Related Functions 

06H (Direct Console I/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function 01H: Character Input with Echo 

int read_kbd_echo() 

Returns a character from standard input 

after sending it to standard output. 

;************************************************************; 

cProc read_kbd_echo,PUBLIC 

cBegin 

cEnd 

mov 

int 
mov 

ah,01h 

21h 

ah,O 

· 1190 The MS-DOS Encyclopedia 

Set function code. 
Wait for character. 

Character is in AL, so clear high 

byte. 

HUAWEI EX. 1110 - 1200/1582



Interrupt 21H (33) 
Function 02H (2) 
Characte.r Output 

Function 02H sends a character to standard output. 

To Call 

AH =02H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

Interrupt 21H Function 02H 

1.0 and later 

• With versions l.x of MS~DOS, Function 02H sends a character to the active display. 
With MS-DOS versions 2.0 and later, Function 02H sends the character to standard 
output. By default, the output is sent to the active display, but it can be redirected to 
another device or to a file. 

• With all versions of MS-DOS, displaying a backspace (08H) moves the cursor back 
one position but does not erase the. character at the new position. 

• If a Control-Cis detected after the character is sent, Interrupt 23H (Control-CHandler 
Address) is called. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 02H. 

Related Functions 

06H (Direct Console 1/0) 
09H (Display String) 
40H (Write File or Device) 

Example 

;************************************************************; 

Function 02H: Character Output 

int disp_ch(c) 

char c; 

Returns 0. 

;************************************************************; 

(more) 

Section V: System Calls 1191 

HUAWEI EX. 1110 - 1201/1582



Interrupt 21H Function 02H 

cProc disp_ch,PUBLIC 

parmB c 
cBegin 

mov dl,c Get character into DL. 

mov ah,02h Set function code. 

int 21h Send character. 

xor ax, ax Return 0. 

cEnd 

1192 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1202/1582



Interrupt 21H (33) 
Function 03H (3) 
Auxiliary Input 

Interrupt 21H Function 03H 

1.0 and later 

Function 03H waits for a character from the standard auxiliary device and returns the 
character in the AL register. 

To Call 

AH =03H 

Returns 

AL = 8-bit character code 

· Programmer's Notes 

• With versions 1.x of MS-DOS, Function 03H reads a character from the first serial port. 
With versions 2.0 and later, Function 03H reads from the standard auxiliary device 
(AUX), which defaults to COMl. 

• Function 03H waits for input until a character is available from the standard auxiliary 
device. 

• Function 03H is not interrupt driven and does not buffer characters received from the 
standard auxiliary device. As a result, it may not be fast enough for some telecom­
munications applications and data may be lost. 

• A program cannot perform error detection using Function 03H. On IBM PCs and com­
patibles, error detection is available through the ROM BIOS Interrupt 14H. Another 
option is to drive the communications controller directly. 

• Function 03H does not ensure that auxiliary input is connected and working, nor does 
it perform any error checking or set up the auxiliary input device. On IBM PCs and 
compatibles, the standard auxiliary device, normally COM1, is set to 2400 baud, no 
parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with the 
MS-DOS MODE command. 

• Some auxiliary input devices do not support 8-bit data transmission. This transmission 
parameter is a characteristic of the device and the communication parameters to 
which it is set; it is independent of Function 03H. 

• If a Control-Cis detected at the console, Interrupt 23H (Control-CHandler Address) 
is called. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device), which han­
dles strings as well as single characters, should be used in preference to Function 03H. 

Related Functions 

04H (Auxiliary Output) 
3FH (Read File or Device) 

Section V: System Calls 1193 

HUAWEI EX. 1110 - 1203/1582



Interrupt 21H Function 03H 

Example 

1194 

;************************************************************; 

Function 03H: Auxiliary Input 

int aux_in () 

Returns next character from AUX device. 

;************************************************************; 

cProc aux_in,PUBLIC 

cBegin 

cEnd 

mov 
int 
mov 

ah,03h 
21h 

ah,O 

The MS-DOS Encyclopedia 

Set function code. 
Wait for character from AUX. 
Character is in AL 
so clear high byte. 

HUAWEI EX. 1110 - 1204/1582



Interrupt 21H (33) 
Function 04H ( 4) 
Auxiliary Output 

Interrupt 21H Function 04H 

1.0 and later 

Function 04H sends a character to the standard auxiliary device. 

To Call 

AH =04H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 04H sends a character to the first serial port. 
With versions 2.0 and later, Function 04H sends the character to the standard auxiliary 
device (AUX), which defaults to COMl. 

• Function 04H does not ensure that auxiliary output is connected and working, nor 
does it perform any error checking or set up the auxiliary output device. On IBM PCs 
and compatibles, the standard auxiliary device, normally COMl, is set to 2400 baud, 
no parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with 
the MS-DOS MODE command. 

• Function 04H does not return the status of auxiliary output, nor does it return an error 
code if the auxiliary output device is not ready for data. If the device is busy, Function 
04H waits until it is available. 

• Interrupt 23H (Control-CHandler Address) is called if a Control-Cis detected at 
the console. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device), which man­
ages strings as well as single characters, should be used in preference to Function 
04H. 

Related Functions 

03H (Auxiliary Input) 
40H (Write File or Device) 

Section V: System Calls 1195 

HUAWEI EX. 1110 - 1205/1582



Interrupt 21H Function 04H 

Example 

;***********************************************************~; 

1196 

Function 04H: Auxiliary Output 

int aux_out(c) 

char c; 

Returns 0. 

;************************************************************; 

cProc aux_out,PUBLIC 

parmB c 
cBegin 

mov dl,c Get character into DL. 

mov ah,04h Set function code. 

int 21h Write character to AUX. 

xor ax, ax Return 0. 

cEnd 

The MScDOS Encyclopedia 

HUAWEI EX. 1110 - 1206/1582



Interrupt 21H (33) 
Function 05H (5) 
Print Character 

Function 05H sends a character to the standard printer. 

To Call 

AH =05H 
DL = 8-bit code for character to be output 

Returns 

Nothing 

Programmer's Notes 

Interrupt 21H Function 05H 

1.0 and later 

• With versions l.x of MS-DOS, Function 05H sends a character to the first parallel port 
(LPTl). With versions 2.0 and later, Function 05H sends the character to the standard 
printer (PRN), which defaults to LPTl unless LPTl has been reassigned with the MS­
DOS MODE command. If redirection is in effect, calls to this function send output to 
the device currently assigned to LPTl. 

• Function 05H does not return the status of the standard printer, nor does it return an 
error code if the standard printer is not ready for characters. If the printer is busy or off 
line, Function 05H waits until it is available. MS-DOS does, however, perform error 
checking during the print operation and send any error messages to the standard error 
device (normally the display). 

• If a Control-Cis detected at the console, Interrupt 23H (Control-CHandler Address) 
is called. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 05H. 

Related Function 

40H (Write File or Device) 

Example 

;************************************************************; 

Function OSH: Print Character 

int print_ch(c) 

char c; 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1197 

HUAWEI EX. 1110 - 1207/1582



Interrupt 21H Function 05H 

cProc print_ch,PUBLIC 

parmB c 

cBegin 

mov dl,c 

mov ah,05h 

int 21h 

xor ax, ax 

cEnd 

1198 The MS-DOS Encyclopedia 

Get character into DL. 

Set function code. 
Write character to standard printer. 

Return 0. 

HUAWEI EX. 1110 - 1208/1582



Interrupt 21H (33) 
Function 06H ( 6) 
Direct Console I/0 

Interrupt 21H Function 06H 

1.0 and later 

Function 06H reads a character from standard input or writes a character to standard 
output. 

To Call 

AH =06H 

For character input: 

DL =FFH 

For character output: 

DL = 00-FEH (8-bit character code) 

Returns 

If DL was OFFH on call and a character was ready: 

Zero flag is clear. 

AL = 8-bit character code 

If DL was OFFH on call and no character was ready: 

Zero flag is set. 

Programmer's Notes 

• With MS-DOS versions l.x, Function 06H reads a character from the keyboard or 
sends a character to the display. With versions 2.0 and later, input and output can be 
redirected; Function 06H reads from the device currently assigned to standard input 
or sends to the device currently assigned to standard output. 

• Function 06H allows all possible characters and control codes with values between 
OOH and OFEH to be read or written with standard input and output and with no filter­
ing by the operating system. The rubout character (OFFH, 255 decimal), however, 
cannot be output with Function 06H; Function 02H (Character Output) should be used 
instead. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 

06H must be called twice. 

Alt -0 and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 4 
character; the second byte completes the key code. To read these characters, Function 

Section V: System Calls 1199 

HUAWEI EX. 1110 - 1209/1582



Interrupt 21H Function 06H 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• If Function 06H is an input request and a Control-C is read, the character is returned 
as any other character would be. Interrupt 23H (Control-CHandler Address) is not 
called. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) and Function 
40H (Write File or Device) should be used in preference to Function 06H. 

Related Functions 

OlH (Character Input with Echo) 
02H (Character Output) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
09H (Display String) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 
40H (Write File or Device) 

Example 

;************************************************************; 

cProc 
parmB 

cBegin 

cEnd 

Function 06H: Direct Console I/0 

int con_io(c) 

char c; 

Returns meaningless data if c is not OFFH, 

otherwise returns next character from 

standard input. 

;************************************************************; 

con_io,PUBLIC 

c 

mov dl,c Get character into DL. 
mov ah,06h Set function code. 
int 21h This function does NOT wait in 

input case (c = OFFH)! 
mov ah,O Return the contents of AL. 

1200 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1210/1582



Interrupt 21H (33) 
Function 07H (7) 
Unfiltered Character Input Without Echo 

Interrupt 21H Function 07H 

1.0 and later 

Function 07H waits for a character from standard input. It does not echo the character to 
standard output, and it ignores Control-C characters. 

To Call 

AH =07H 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 07H reads input from the keyboard. With 
versions 2.0 and later, Function 07H reads a character from standard input. Standard 
input defaults to the keyboard but can be redirected to another device or to a file. 

• Function 07H waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available from standard input, and then calling Function 07H if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
07H must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A program can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• Interrupt 23H (Control-CHandler Address) is not called if a Control-Cis read. Func­
tion 07H simply passes the character back through the AL register. If Control-C check­
ing is required, Function 08H (Character Input Without Echo) should be used instead. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 07H. 

Related Functions 

OlH (Character Input with Echo) 
06H (Direct Console 1/0) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Section V: System Calls 1201 

HUAWEI EX. 1110 - 1211/1582



Interrupt 21H Function 07H 

Example 

1202 

;************************************************************; 

Function 07H: Unfiltered Character Input 

Without Echo 

int con_in () 

Returns next character. from standard input. 

;************************************************************: 

cProc con_in,PUBLIC 

cBegin 

cEnd 

mov 
int 

mov 

ah,07h 

21h 

ah,O 

The MS-DOS Encyclopedia 

Set function code. 

Wait for character, no echo. 
Clear high byte. 

HUAWEI EX. 1110 - 1212/1582



I 
l 
I 
l 

Interrupt 21H (33) 
Function OSH (8) 
Character Input Without Echo 

Interrupt 21H Function OSH 

1.0 and later 

Function 08H waits for a character from standard input. The character is not echoed to 
standard output. · 

To Call 

AH =08H 

Returns 

AL = 8-bit character code 

Programmer's Notes 

• With versions l.x of MS-DOS, Function 08H reads input from the keyboard. With 
versions 2.0 and later, Function 08H reads a character from standard input. Standard 
input defaults to the keyboard but can be redirected to another device or to a file. 

• Function 08H waits for input if a character is not available. A wait can be avoided by 
calling Function OBH (Check Keyboard Status), which checks whether a character is 
available, and then calling Function 08H if a character is ready. 

• On IBM PCs and compatibles, extended characters, such as those produced by the 
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended 
character; the second byte completes the key code. To read these characters, Function 
08H must be called twice. 

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value 
OOH can also represent a null character from a file and, in that case, might not repre­
sent valid data. A process can use Function 44H (IOCTL) Subfunction OOH (Get 
Device Data) to determine whether standard input has been redirected. 

• If a Control-Cis read and (with versions 2.0 and later) input has not been redirected, 
Interrupt 23H (Control-CHandler Address) is called. To read the Control-C character 
as data, Function 07H (Unfiltered Character Input Without Echo) should be used. 

• Interrupt 23H ( Control-C Handler Address) is called if Control-C is the input character, 
Break is enabled, and (with versions 2.0 and later) standard input has been redirected 
to come from a file. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 08H. 

Related Functions 

01H (Character Input with Echo) 
06H (Direct Console 1/0) 
07H (Unfiltered Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Section V: System Calls 1203 

HUAWEI EX. 1110 - 1213/1582



Interrupt 21H Function OSH 

Example 

cProc 

cBegin 

cEnd 

;************************************************************; 

Function 08H: Unfiltered Character Input Without Echo 

int reacLkbd () 

Returns next character fro~, standard input. 

;************************************************************; 

reacLkbd,PUBLIC 

mov 
int 
mov 

ah,08h 

21h 

ah,O 

Set function code. 

Wait for character, no echo. 
Clear high byte. 

1204 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1214/1582



Interrupt 21H (33) 
Function 09H (9) 
Display String 

Interrupt 21H Function 09H 

1.0 and later 

Function 09H sends a string of characters to standard output. The string must end with the 
dollar-sign character ($). All characters up to, but not including, the $ are displayed. 

To Call 

AH 
DS:DX 

=09H 
= segment: offset of string to display 

Returns 

Nothing 

Programmer's Notes 

• With MS-DOS versions l.x, Function 09H sends the string to the display. With versions 
2.0 and later, the string is written to standard output. By default, standard output is 
sent to the display, but it can be redirected to another device or to a file. 

• The string can include any valid ASCII characters, including control codes. Sending a 
dollar sign with this function, however, is not possible. 

• Depending on the device currently serving as standard output, characters other than 
the normally displayable ASCII characters (20H to 7FH) may or may not be displayed. 
On IBM PCs and most compatibles, extensions to the displayable ASCII character set 
(character codes 80H to FFH) appear as foreign or graphics characters. 

• Display begins at the current cursor position on standard output. After the string is 
completely displayed, the cursor position is updated to the location immediately 
following the string. 

On IBM PCs and compatibles, if the end of a line is reached before the string is com­
pletely displayed, a carriage return and linefeed are issued and the next character is 
displayed in the first position of the following line. If the cursor reaches the bottom 
right corner of the display before the complete string has been sent, the display is 
scrolled up one line. 

• Control characters are often included in the string to be sent. The following sample 
fragment of code contains carriage returns and linefeeds: 

rnsg db 'Resident part of TSR.COM installed' 
db Odh, Oah 
db 'Copyright (c) 19xx Foo Software, Inc. . 
db Odh, Oah, Oah, Oah 
db • $. 

• If a Control-Cis detected, Interrupt 23H (Control-CHandler Address) is called. 

Section V:· System Calls 1205 

HUAWEI EX. 1110 - 1215/1582



Interrupt 21H Function 09H 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 09H. 

Related Functions 

02H (Character Output) 
06H (Direct Console 1/0) 
40H (Write File or Device) 

Example 

1206 

cProc 
parmDP 
cBegin 

cEnd 

;**************~*********************************************; 

Function 09H: Display String 

int disp_str(pstr) 

char *pstr; 

Returns 0. 

;*********************************************************~**; 

disp_str,PUBLIC,<ds,di> 

pstr 

loadDP ds,dx,pstr 
mov ax,0900h 

push ds 
pop es 

mov 
mov 
repne 
dec 

di,dx 
cx,Offffh 
scasb 
di 

DS:DX = pointer to string. 
Prepare to· write dollar-terminated 
string to standard output, but 
first replace the 0 at the end of 
the string with '$'. 
Set ES equal to DS. 
(MS-C does not require ES to be 
saved.) 

ES:DI points at string. 
Allow string to be 64KB long. 

Look for 0 at end of string. 
Scasb search always goes 1 byte too 
far. 

mov byte ptr [di], '$' ; Replace 0 with dollar sign. 
int 21 h Have MS-DOS print string. 
mov 
xor 

[di],al 
ax, ax 

Restore 0 terminator. 
Return 0. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1216/1582



Interrupt 21H (33) 
Function OAH (10) 
Buffered Keyboard Input 

Interrupt 21H Function OAH 

1.0 and later 

Function OAH collects characters from standard input and places them in a user-specified 
memory buffer. Input is accepted until either a carriage return (ODH) is encountered or the 
buffer is filled to one character less than its capacity. The characters are echoed to stan­
dard output. 

To Call 

AH 
DS:DX 

=OAH 
=segment: offset of input buffer 

Returns 

Nothing 

Programmer's Notes 

• With MS-DOS versions l.x, Function OAH reads a string from the keyboard. With 
versions .2.0 and later, calls to this function read a string from standard input, which 
defaults to the keyboard but can be redirected to another device or to a file. The 
MS-DOS editing keys are active during input with this function. 

• The buffer pointed to by DS:DX must have the following format: 

Byte Contents 

0 Maximum number of characters to read (1-255); this value must be set 
by the process before Function OAH is called. 

1 Count of characters read (does not include the carriage return); 
this value is set by Function OAH before returning to the process. 

2-(n+2) Actual string of characters read, including the carriage return; n = 
number of bytes read. 

• The first byte of the buffer must contain the maximum number of characters the 
program will accept, including the carriage return at the end. Because the last byte 
must be a carriage return, the maximum number of bytes this function will actually 
read is 254. The carriage return is not included in the character count returned by 
MS-DOS in the second byte of the buffer. 

• If the buffer fills to 1 byte less than its capacity, succeeding characters are ignored and 
a beep is sounded for each keypress until a carriage return is received. 

• If a Control-Cis detected and (with versions 2.0 and later) input has not been redi­
rected, Interrupt 23H (Control-CHandler Address) is called. 

• With versions 2.0 and later, if standard input has been redirected to come from a file, 
Break must be enabled for Interrupt 23H (Control-CHandler Address) to be called 
when Control-C is the input character. 

Section V: System Calls 1207 

HUAWEI EX. 1110 - 1217/1582



Interrupt 21H Function OAH 

• With MS-DOS versions 2.0 and later, if input is redirected, an end-of-file condition 
goes undetected by Function OAH. 

Related Functions 

OlH (Character Input with Echo) 
06H (Direct Console 1/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OCH (Flush Buffer, Read Keyboard) 
3FH (Read File or Device) 

Example 

1208 

cProc 
parmDP 

parmB 
cBegin 

cEnd 

;************************************************************; 

Function OAH: Buffered Keyboard Input 

int read-str(pbuf,len) 

char *pbuf; 
int len; 

Returns number of bytes read into buffer. 

Note: pbuf must be at least len+3 bytes long. 

;************************************************************; 

read-str,PUBLIC,<ds,di> 

pbuf 

len 

loadDP ds,dx,pbuf 
mov al,len 

inc al 
mov di,dx 

mov [di],al 

mov ah,Oah 
int 21h 

mov al, [di+1] 

mov ah,O 

mov bx,ax 

mov [bx+di+2], ah 

DS:DX = pointer to buffer. 
AL = len. 

Add 1 to allow for CR in buf. 

Store max length into buffer. 
Set function code. 

Ask MS-DOS to read string. 

Return number of characters read. 

Store 0 at end of buffer. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1218/1582



Interrupt 21H (33) 
Function OBH (11) 
Check Keyboard Status 

Interrupt 21H Function OBH 

1.0 and later 

Function OBH returns a value in AL that indicates whether a character is available from 
standard input. 

To Call 

AH =OBH 

Returns 

AL =OOH 
FFH 

no character available 
one or more characters available 

Programmer's Notes 

• With MS-DOS versions l.x, Function OBH checks the type-ahead buffer for a char­
acter. With versions 2.0 and later, if input has been redirected, Function OBH checks 
standard input for a character. If input has not been redirected, the function checks 
the type-ahead buffer. 

• Function OBH does not indicate how many characters are available; it merely indicates 
whether at least one character is available. 

• If the available character is Control-C, Interrupt 23H (Control-CHandler Address) is 
called. 

• Function OBH does not remove characters from standard input. Thus, if a character is 
present, repeated calls return OFFH in AL until all characters in the buffer are read, 
either with one of the character-input functions (OlH, 06H, 07H, 08H, or OAH) or with 
Function 3FH (Read File or Device) using the handle for standard input (0). 

Related Functions 

06H (Direct Console I/0) 
44H Subfunction 06H (IOCTL: Check Input Status) 

Example 

;************************************************************; 

Function OBH: Check Keyboard Status 

int key_ready () 

Returns 1 if key is ready, 0 if not. 

;************************************************************; 

(more) 

Section V.· System Calls 1209 

HUAWEI EX. 1110 - 1219/1582



Interrupt 21H Function OBH 

1210 

cProc 

cBegin 

cEnd 

key_ready,PUBLIC 

mov 

int 

and 

ah,Obh 

21h 
ax,0001h 

The MS-DOS Encyclopedia 

Set function code. 
Ask MS-DOS if key is available. 

Keep least significant bit only. 

HUAWEI EX. 1110 - 1220/1582



Interrupt 21H (33) 
Function OCH (12) 
Flush Buffer, Read Keyboard 

Interrupt 21H Function OCH 

1.0 and later 

Function OCH clears the standard-input buffer and then performs one of the other 
keyboard input functions (OlH, 06H, 07H, 08H, OAH). 

To Call 

AH =OCH 
AL = input function number to execute 

If ALis 06H: 

DL =FFH 

If ALis OAH: 

DS:DX 

Returns 

= segment:offset of buffer to receive input 

If AL was OlH, 06H, 07H, or 08H on call: 

AL = 8-bit ASCII character from standard input 

If AL was OAH on call: 

Nothing 

Programmer's Notes 

• With versions 1.x of MS-DOS, Function OCH empties the type-ahead buffer before 
executing the input function specified in AL. With versions 2.0 and later, if input has 
been redirected to a file, Function OCH does nothing before carrying out the input 
function specified in AL; if input was not redirected, the type-ahead buffer is flushed. 

• A function number other than 01H, 06H, 07H, 08H, or OAH in AL simply flushes the 
standard-input buffer and returns control to the calling program. 

• If AL contains OAH; DS:DX must point to the buffer in which MS-DOS is to place the 
string read from the keyboard. 

• Because the buffer is flushed before the input function is carried out, any Control-C 
characters pending in the buffer are discarded. If subsequent input is a Control-C, 
however, Interrupt 23H (Control-CHandler Address) is called if (in versions 2.0 and 
later) standard input has not been redirected to come from a file. 

• With versions 2.0 and later, if standard input has been redirected to come from a file 4 
and, after the buffer is flushed, subsequent input is a Control-C character, Interrupt 
23H ( Control-C handler address) is called only if Break is enabled. 

• This function exists to defeat the type-ahead feature if necessary- for example, to 
obtain input at a critical prompt the user may not have anticipated. 

Section V: System Calls 1211 

HUAWEI EX. 1110 - 1221/1582



Interrupt 21H Function OCH 

Related Functions 

01H (Character Input with Echo) 
06H (Direct Console I/0) 
07H (Unfiltered Character Input Without Echo) 
08H (Character Input Without Echo) 
OAH (Buffered Keyboard Input) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function OCH: Flush Buffer, Read Keyboard 

int flush_kbd() 

Returns 0 .. 

;************************************************************; 

cProc flush_kbd,PUBLIC 
cBegin 

cEnd 

mqv 
int 
xor 

ax,OcOOh 
21h 

ax, ax 

1212 The MS-DOS Encyclopedia 

Just flush type-ahead buffer. 
Call MS-DOS. 
Return 0. 

HUAWEI EX. 1110 - 1222/1582



Interrupt 21H (33) 
Function ODH (13) 
Disk Reset 

Interrupt 21H Function ODH 

1.0 and later 

Function ODH writes to disk all internal MS-DOS file buffers in memory that have been 
modified since the last write. All buffers are then marked as "free." 

To Call 

AH =ODH 

Returns 

Nothing 

Programmer's Notes 

• Function ODH ensures that the information stored on disk matches changes made by 
write requests to file buffers in memory. 

• Function ODH does not update the disk directory. The application must issue Func­
tion 10H (Close File with FCB) or Function 3EH (Close File) to update directory infor­
mation correctly. 

• Function ODH should be part of Control-C interrupt-handling routines so that the 
system is left in a known state when an application is terminated. 

• Disk Reset calls can be issued after particularly important disk write calls, such as 
transactions in an accounting application. Repeated use of this function, however, 
degrades system performance by defeating the MS-DOS buffering scheme. 

Related Functions 

lOH (Close File with FCB) 
3EH (Close File) 

Example 
;************************************************************; 

Function ODH: Disk Reset 

int reset_disk() 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1213 

HUAWEI EX. 1110 - 1223/1582



Interrupt 21H Function ODH 

1214 

cProc 

cBegin 

cEnd 

reset_disk,PUBLIC 

mov 

int 

xor 

ah,Odh 

21h 

ax, ax 

The MS-DOS Encyclopedia 

Set function code. 

Ask MS-DOS to write all dirty file 

buffers to the disk. 
Return 0. 

HUAWEI EX. 1110 - 1224/1582



Interrupt 21H (33) 
Function OEH (14) 
Select Disk 

Interrupt 21H Function OEH 

1.0 and later 

Function OEH sets the default disk drive to the drive specified in the DL register. The 
default is the disk drive MS-DOS chooses for file access when a filename is specified 
without a drive designator. A successful call to this function returns the number of logical 
(not physical) drives in the system. 

To Call 

AH =OEH 
DL = drive number (0 = drive A, 1 = drive B, 2 = drive C, and so on) 

Returns 

AL = number of logical drives in the system 

Programmer's Notes 

• The value used as a drive number is the ASCII value of the uppercase drive letter 
minus the ASCII value of the uppercase letter A ( 41H); thus, 0 = drive A, 1 = drive B, 
and soon. 

• A logical drive is defined as any block-oriented device; this category includes floppy­
disk drives, RAMdisks, tape devices, fixed disks (which can be partitioned into more 
than one logical drive), and network drives. 

• The maximum numbers of drive designators available for each MS-DOS version are as 
follows: 

MS-DOS Version 

l.x 
2.x 
3.x 

Number of Designators 

16 
63 
26 

Values 

0 through OFH 
0 through 3FH 
0 through 19H 

Drive letters should be limited to A through P (0 through OFH) to ensure that an 
application runs on all versions of MS-DOS. 

• With versions ofMS-DOS earlier than 3.0 running on IBMPCs and compatibles with 
one floppy-disk drive, Function OEH returns 02H as the drive count, because the 
single physical drive is equivalent to the two logical drives A and B. MS-DOS versions 
3.0 and later return a minimum value of 05H in AL. 

• On IBM PCs and compatibles, the number of physical floppy-disk drives in a system 
can be obtained from the ROM BIOS with Interrupt llH (Equipment Determination). 

Section V: System Calls 1215 

HUAWEI EX. 1110 - 1225/1582



Interrupt 21H Function OEH 

Related Function 

19H (Get Current Disk) 

Example 

1216 

cProc 
parrnB 

cBegin 

cEnd 

;************************************************************; 

Function OEH: Select Disk 

int select_drive(drive_ltr) 

char drive_ltr; 

Returns number of logical drives present in system. 

;************************************************************; 

select_drive,PUBLIC 

drive_ltr 

rnov dl,drive_ltr 

and dl,not 20h 

sub dl, 'A' 

rnov ah,Oeh 

int 21h 

cbw 

; Get new drive letter. 

Make sure letter is uppercase. 
Convert drive letter to number, 

'A' = 0, 'B' = 1, etc. 
Set function code. 

Ask MS-DOS to set default drive. 
Clear high byte of return value. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1226/1582



Interrupt 21H (33) 
Function OFH (15) 
Open File with FCB 

Interrupt 21H Function OFH 

1.0 and later 

Function OFH opens the file named in the file control block (FCB) pointed to by DS:DX. 

To Call 

AH 
DS:DX 

Returns 

=OFH 
= segment: offset of an unopened FCB 

If function is successful: 

AL =OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• MS-DOS provides several types of file services: FCB file services, which are relatively 
compatible with the CP/M methods of file handling; extended FCB file services, which 
take advantage of both CP/M compatibility and MS-DOS extensions; and handle, or 
"stream-oriented," file services, which are more compatible with UNIX/XENIX and 
support pathnames (MS-DOS versions 2.0 and later). 

• Function OFH does not support pathnames and so is capable of opening files only in 
the current directory of the specified drive. 

• Function OFH does not create a new file if the specified file does not already exist. 
Function 16H (Create File with FCB) is used to create new files with FCBs. 

• Function OFH must use an unopened FCB-that is, one in which all but the drive­
designator, filename, and extension fields are zero. If the call is successful, the func­
tion fills in the file size and date fields from the file's directory entry. In MS-DOS 
versions 2.0 and later, the function also fills in the time field. 

• If the file is opened on the default drive (the drive number in the FCB is set to 0), 
MS-DOS fills in the actual drive code. Thus, at some later point in processing, the 
default drive can be changed and MS-DOS will still have the drive number in the FCB 
for use in accessing the file. It will therefore continue to use the correct drive. 

• If Function OFH is successful, MS-DOS sets the current-block field to 0; that is, the file 
pointer is at the beginning of the file. It also sets the record size to 128 bytes (the 4 
system default). 

• If a record size other than 128 is needed, the record size field of the FCB should be 
changed after the file is successfully opened and before attempting any I/0. 

Section V.· System Calls 1217 

HUAWEI EX. 1110 - 1227/1582



Interrupt 21H Function OFH 

• In a network running under MS-DOS version 3.1 or later, files are opened by Function 
OFH with the share code set to compatibility mode and the access code set to read/ 
write. 

• If Function OFH returns an error code (OFFH) in the AL register, the attempt to open 
the file was not successful. Possible causes for the failure are 

File was not found. 
File has the hidden or system attribute and a properly formatted extended FCB was 
not used. 
Filename was improperly specified in the FCB. 
SHARE is loaded and the file is already open by another process in a mode other 
than compatibility mode. 

• With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to determine why the attempt to open the file failed. 

• MS-DOS passes the first two command-tail parameters into default FCBs located at 
offsets 5CH and 6CH in the program segment prefix (PSP). Many applications 
designed to run as .COM files take advantage of one or both of these default FCBs. 

• With MS-DOS versions 2.0 and later, Function 3DH (Open File with Handle) should be 
used in preference to Function OFH. 

Related Functions 

10H (Close File with FCB) 
16H (Create File with FCB) 
3CH (Create File with Handle) 
3DH (Open File with Handle) 
3EH (Close File) 
59H (Get Extended Error Information) 
5AH (Create Temporary File) 
5BH (Create New File) 

Example 

;************************************************************; 

Function OFH: Open File, FCB-based 

int FCB_open(uXFCB,recsize) 

char *UXFCB; 
int recsize; 

Returns 0 if file opened OK, otherwise returns -1 , 

Note: uXFCB must have the drive and filename 

fields (bytes 07H through 12H) and the extension 
flag (byte OOH) set before the call to FCB_open 
(see Function 29H) . 

;************************************************************: 

1218 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1228/1582



cProc FCB_open 1 PUBLIC 1 ds 
parmDP puXFCB 
parmW recsize 
cBegin 

loadDP ds.1 dx 1 puXFCB 
mov ah 1 0fh 
int 21h 
add dx 1 7 

mov bx 1 dx 
mov dx 1 recsize 
mov [bx+Oeh) 1 dx 
xor dx 1 dx 
mov [bx+20h) 1 dl 
mov [bx+21h) 1 dx 
mov [bx+23h) 1 dx 
cbw 

cEnd 

Interrupt 21H Function OFH 

Pointer to unopened extended FCB. 

Ask MS-DOS to open an existing file. 

Advance pointer to start of regular 
FCB. 

BX = FCB pointer. 

Get record size parameter. 
Store record size in FCB. 

Set current-record 

and relative-record 

fields to 0. 

Set return value to 0 or -1. 

Section V· System Calls 1219 

HUAWEI EX. 1110 - 1229/1582



Interrupt 21H Function lOH 

Interrupt 2ill (33) 
Function lOH (16) 
Close File with FCB 

1.0 and later 

Function lOH flushes filecrelated information to disk, closes the file named in the file con­
trol block (FCB) pointed to by DS:DX, and updates the file's directory entry. 

To Call 
AH . = lOH 
DS:DX = segment:offset of previously opened FCB 

Returns 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• A successful call to Function lOH flushes to disk all MS-DOS internal buffers associ­
ated with the file and updates the directory entry and file allocation table (FAT). The 
function thus ensures that correct information is contained in the copy of the file on 
disk. 

• Because MS-DOS versions l.x and 2.x do not always detect a disk change, an error 
can occur if the user changes disks between the time the file is opened and the time 
it is closed. In the worst case, the FAT and the directory of the newly inserted disk 
may be damaged. 

• With MS-DOS versions 2.0 and later, Function 3EH (Close File) should be used in 
preference to Function lOH. 

Related Functions 

OFH (Open File with FCB) 
3EH (Close File) 

1220 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1230/1582



Example 

cProc 
parrnDP 

cBegin 

cEnd 

Interrupt 21H Function lOH 

;************************************************************; 

Function 10H: Close file, FCB-based 

int FCB_close(oXFCB) 

char *oXFCB; 

Returns 0 if file closed OK, otherwise 
returns -1 . 

;************************************************************; 

FCB_close,PUBLIC,ds 
poXFCB 

loadDP ds,dx,poXFCB 

rnov ah, 1 Oh 
int 21h 
cbw 

Pointer to opened extended FCB. 
Ask MS-DOS to close file. 

Set return value to 0 or -1. 

Section V: System Calls 1221 

HUAWEI EX. 1110 - 1231/1582



Interrupt 21H Function llH 

Interrupt 21H (33) 
Function llH (17) 
Find First File 

1.0 and later. 

Function llH searches the current directory for the first file that matches a specified name 
and extension. 

To Call 

AH 
DS:DX 

= llH 
= segment:offset of unopened file control block (FCB) 

Returns 

If function is successful: 

AL = OOH 

Disk transfer area(DTA) contains unopened FCB of same type (normal or extended) as 
searchFCB. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• If necessary, Function lAH (Set DTA Address) should be used before Function llH is 
called, to set the location of the DTA in which the results of the search will be placed. 

• With MS-DOS versions 1.0 and later, the wildcard character? is allowed in the 
filename. With MS-DOS versions 3.0 and later, both wildcard characters(? and•) are 
allowed in filenames. Pathnames are not supported. 

• With MS-DOS versions 2.0 and later, the attribute field of an extended FCB can be 
used to search for files with the hidden, system, subdirectory, or volume-label attri­
butes. In such a search, specifying either the normal (OOH) or volume-label (08H) 
attribute restricts MS-DOS to files with the given attribute. Specifying any combina­
tion of the hidden (02H), system (04H), and subdirectory (lOH) attributes, however, 
causes MS-DOS to search both for normal files and for those that match the specified 
attributes. 

• For a normal FCB, Function llH places the drive number in the first byte of the DTA 
and fills the succeeding 32 bytes with the directory entry. 

For an extended FCB, Function llH fills in the first 7 bytes of the DTA as follows: the 
first byte contains OFFH, indicating an extended FCB; the second through sixth bytes 
contain OOH, as required by MS-DOS; the seventh byte contains the value of the at­
tribute byte in the search FCB. The next 33 bytes contain the drive number and direc­
tory information, as for a normal FCB. 

1222 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1232/1582



Interrupt 21H Function llH 

• As with other FCB functions, the number 0 can be used to indicate the default drive. 
MS-DOS fills in the actual drive number and continues to use that drive for calls to 
Function 12H (Find Next File) that use the same FCB, regardless of any subsequent 
selection of a 9ifferent default drive. 

• The FCB with the initial file specifications must remain unmodified if Function 12H is 
used to continue the search. 

• Error reporting in Function llH is incomplete. An error return (OFFH in the AL regis­
ter) does not always mean that the file does not exist. Other possibilities include 
- Filename in the FCB was improperly specified. 
- If an extended FCB was used, no files match the attributes given. 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about the error. 

• With MS-DOS versions 2.0 and later, Functions 4EH (Find First File) and 4FH (Find 
Next File) should be used in preference to Functions llH and 12H. 

Related Functions 

12H (Find Next File) 
lAH (Set DTA Address) 
4EH (Find First File) 
4FH (Find Next File) 

Example 

;************************************************************; 

Function 11H: Find First File, FCB-based 

int FCB_first(puXFCB,attrib) 

char *puXFCB; 

char attrib; 

Returns 0 if match found, otherwise returns -1 . 

Note: The FCB must have the drive and 
filename fields (bytes 07H through 12H) and 

the extension flag (byte OOH) set before 
the call to FCB_first (see Function 29H) . 

;************************************************************; 

(more) 

Section V: System Calls 1223 

HUAWEI EX. 1110 - 1233/1582



Interrupt 21H Function llH 

cProc FCB_first,PUBLIC,ds 
parmDP puXFCB 
parmB attrib 
cBegin 

loadDP ds,dx,puXFCB 
mov bx,dx 
mov al,attrib 
mov [bx+6),al 

Pointer to unopened extended FCB. 
BX points at FCB, too. 
Get search attribute. 
Put attribute into extended FCB 
area. 

mov byte ptr [bx],Offh; Set flag for extended FCB. 

mov ah, 11h 

int 21h 

cbw 

cEnd 

1224 The MS-DOS Encyclopedia 

Ask MS-DOS to find 1st matching 
file in current directory. 
If match found, directory entry can 
be found at DTA address. 
Set return value to 0 or -1 . 

HUAWEI EX. 1110 - 1234/1582



Interrupt 21H (33) 
Function 12H (18) 
Find Next File 

Interrupt 21H Function 12H 

1.0 and later 

Function 12H searches the current directory for the next file that matches a specified 
filename and extension. The function assumes a previous successful call to Function llH 
(Find First File) with the same file control block (FCB). 

To Call 

AH 
DS:DX 

Returns 

= 12H 
= segment: offset of search FCB 

If function is successful: 

AL = OOH 

Disk transfer area (DTA) contains unopened FCB of same type (normal or extended) as 
searchFCB. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Function 12H assumes that a successful call to Function llH (Find First File) has been 
completed with the same FCB. The FCB specifies the search pattern. This function 
also assumes that the wildcard character ? appears at least once in the filename or 
extension specified. 

• An error (indicated by OFFH returned in register AL) does not necessarily mean that 
a file matching the file specification does not exist in the current directory. MS-DOS 
relies on certain information that appears in the search FCB initialized by Function 
llH, so it is important not to alter that FCB either between calls to Functions llH and 
12H or between subsequent calls to Function 12H. 

• If drive code 0 (the default drive) was used in the call to Function llH, MS-DOS has 
already filled in the actual drive number for the current directory. MS-DOS continues 
to use that drive for all calls to Function 12H that use the same FCB, regardless of the 
default drive in effect at the time of the call. 

• With MS-DOS versions 2.0 and later, Functions 4EH (Find First File) and 4FH (Find 
Next File) should be used in preference to Functions llH and 12H. 

Section v··system Calls 1225 

HUAWEI EX. 1110 - 1235/1582



Interrupt 21H Function 12H 

Related Functions 

llH (Find First File) 
lAH (Set DTA Address) 
4EH (Find First File) 
4FH (Find Next File) 

Example 

1226 

cProc 

parmDP 
cBegin 

cEnd 

;************************************************************; 

Function 12H: Find Next File, FCB-based 

int FCB~next(puXFCB) 

char *puXFCB; 

Returns 0 if match found, otherwise returns -1 . 

Note: The FCB must have the drive and 

filename fields (bytes 07H through 12H) and 

the extension flag (byte OOH) set before 
the call to FCB_next (see Function 29H) . 

;************************************************************; 

FCB_next,PUBLIC,ds 

puXFCB 

loadDP ds,dx,puXFCB 
mov ah, 12h 

int 21h 

cbw 

Pointer to unopened extended FCB. 
Ask MS-DOS to find next matching 

file in current directory. 

If match found, directory entry can 

be found at DTA address. 
Set return value to 0 or -1 . 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1236/1582



Interrupt 21H (33) 
Function 13H (19) 
Delete File 

Interrupt 21H Function 13H 

1.0 and later 

Function 13H deletes all files matching a specified name and extension from the current 
directory. 

To Call 

= 13H AH 
DS:DX = segment: offset of an unopened file control block (FCB) 

Returns 

If function is successful: 

AL =OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• The wildcard character? can be used to match any character or sequence of charac-
ters in specifying the filename and extension. 

• Open files must not be deleted. 
• Function 13H does not support pathnames. 
• An error (indicated by OFFH returned in register AL) does not necessarily mean that 

the filename specified does n:ot exist in the current directory. Other possible causes 
for an error include 
- Filename in the FCB is improperly specified. 
- File is a read-only, hidden, or system file and an extended FCB with the appropri-

ate attribute byte was not used. 
Program attempted to delete a volume label and the label does not exist or a prop­
erly formatted extended FCB was not used. 

- In networking environments, file is locked or access rights are insufficient for 
deletion. 

• MS-DOS removes file allocation table (FAT) mapping for the file or files deleted by 
this function and flushes the FAT to disk to ensure that the disk contains a correct 
table. The first character of the filename in the directory entry is replaced by the value 

• Because the function does not physically erase data, use of Function 13H alone is not 
sufficient in security-critical applications that strictly prohibit viewing the data. 

OE5H, indicating a deleted file. 4 
Section V.· System Calls 1227 

HUAWEI EX. 1110 - 1237/1582



Interrupt 21H Function 13H 

• On networks running under MS-DOS versions 3.1 and later, the user must have Create 
access rights to the directory containing the file to be deleted. 

• Because Function 13H deletes all files matching a given file specification, a conser­
vative approach is to use a combination of Functions UH (Find First File) and 12H 
(Find Next File) to build a list of files matching the file specification and then obtain 
confirmation from the user before deleting the files in the list. 

• With MS-DOS versions 2.0 and later, Function 41H (Delete File) should be used in 
preference to Function 13H. 

Related Function 

41H (Delete File) 

Example 

;************************************************************; 

Function 13H: Delete File(s), FCB-based 

int FCB_delete(uXFCB) 

char *uXFCB; 

Returns 0 if file(s) were deleted OK, otherwise 
returns -1. 

Note: uXFCB must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte DOH) set before 
the call to FCB_delete (see Function 29H) . 

;************************************************************; 

cProc FCB_delete,PUBLIC,ds 
parmDP puXFCB 
cBegin 

loadDP ds,dx,puXFCB 
mov ah, 13h 
int 21 h 
cbw 

cEnd 

1228 The MS-DOS Encyclopedia 

Pointer to unopened extended FCB. 
Ask MS-DOS to delete file(s). 

Return value of 0 or -1 . 

HUAWEI EX. 1110 - 1238/1582



Interrupt 21H (33) 
Function 14H (20) 
Sequential Read 

Interrupt 21H Function 14H 

1.0 and later 

Function 14H reads the next sequential block of data from a file and places the data in the 
current disk transfer area (DTA). 

To Call 

= 14H AH 
DS:DX = segment:offset of a previously opened file control block (PCB) 

Returns 

AL =OOH read successful 
01H end of file encountered; no data in record 
02H DTA too small (segment wrap error); read canceled 
03H end of file; partial record read 

If AL = OOH or 03H: 

DTA contains data read from file. 

Programmer's Notes 

• If necessary, Function lAH (Set DTA Address) should be used to set the base address 
of the DTA before Function 14H is called. The default DTA is 128 bytes and is located 
at offset 80H of the program segment prefix (PSP). If record sizes larger than 128 bytes 
will be used, the program must change the DTA address to point to a buffer of ade­
quate size. 

• The read process begins at the current position in the file. When the read is complete, 
Function 14H increments the current-block and current-record fields of the FCB. 

• The size of the record loaded into the DTA is specified in the record size field of the 
FCB. The default is 128 bytes, set by Function OFH (Open File with FCB) or Function 
16H (Create File with FCB). If the record size is not 128 bytes, the application must set 
the record size correctly before issuing any reads. 

• Function OFH does not fill in the current-record field of the FCB when opening a file, 
so this field must be explicitly set (usually to zero) before the first call to Function 
14H. The record pointer, which includes the current-block and current-record fields of 
the FCB, is incremented when Function 14H is successfully completed. 

• Function 14H deals with fixed-length records only. Buffering logic must be added to 
an application if variable-length records are to be manipulated. 

• The block of data to be read can be chosen by changing the current-block and 
current-record fields of the FCB. 

Section V.· System Calls 1229 

HUAWEI EX. 1110 - 1239/1582



Interrupt 21H Function 14H 

• Partial records read at the end of a file are padded with zeros to the requested record 
length. 

• On networks running under MS-DOS version 3.1 or later, the user must have Read 
access rights to the directory containing the file to be read. 

• With MS~DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 14H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
21H (Random Read) 
27H (Random Block Read) 
3FH (Read File or Device) 

Example 

;************************************************************; 

Function 14H: Sequential Read, FCB-based 

int FCB_sread(oXFCB) 

char *OXFCB; 

Returns 0 if record read OK, otherwise 
returns error code 1, 2, or 3. 

;************************************************************; 

cProc FCB_sread,PUBLIC,ds 
parmDP poXFCB 
cBegin 

cEnd 

loadDP ds,dx,poXFCB 
mov ah, 14h 

int 21h 

Pointer to opened extended FCB. 
Ask MS-DOS to read next record, 
placing it at DTA. 

cbw Clear high byte for return value. 

1230 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1240/1582



Interrupt 21H Function 15H 

Interrupt 21H (33) 
Function 15H (21) 
Sequential Write 

1.0 and later 

Function 15H writes the next sequential block of data from the disk transfer area (DTA) to 
a specified file. 

To Call 

AH 
DS:DX 

= 15H 
= segment: offset of a previously opened file control block (FCB) 

DTA contains data to write. 

Returns 

AL =OOH 
01H 
02H 

block written successfully 
disk full; write canceled 
DTA too small (segment wrap error); write canceled 

Programmer's Notes 

• If necessary, the calling process should set the DTA address with Function lAH (Set 
DTA Address) to point to the data to be written before issuing a call to Function 15H. 
The default address of the DTA is offset SOH in the program segment prefix (PSP). 

• The FCB must already have been filled in by a call to Function OFH (Open File with 
FCB) before Function 15H is called. 

• The location of the block to be written is given by the current-block and current­
record fields of the FCB. If the write is successful, Function 15H increments the 
current-block and current-record fields. 

• 

• 
• 

• 
• 

The size of the record written by Function 15H is determined by the value in the 
record size field of the FCB. The default value is 128, set by Function OFH (Open File 
with FCB) or Function 16H (Create File with FCB). A process must set the record size 
in the FCB correctly before issuing any writes. 
Function 15H deals with fixed-length records only. Buffering logic must be added to 
an application if variable-length records are to be manipulated. 
Function 15H performs a logical, but not necessarily physical, write operation. If less 
than one sector is being written, MS-DOS moves the record from the DTA to an appro­
priate MS-DOS internal buffer. When a full sector of data has been buffered, MS-DOS 
flushes the buffer to disk. Function ODH (Disk Reset) or Function lOH (Close File with 
FCB) can be used to flush data to disk before a full sector is buffered. 4 
On networks running under MS-DOS versions 3.1 and later, the user must have Write 
access to the directory containing the file to be written to. 
With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 15H. 

Section V: System Calls 1231 

HUAWEI EX. 1110 - 1241/1582



Interrupt 21H Function 15H 

Related Functions 

14H (Sequential Read) 
lAH (Set DTA Address) 
22H (Random Write) 
28H (Random Block Write) 
40H (Write File or Device) 

Example 

1232 

;************************************************************; 

Function 15H: Sequential Write, FCB-based 

int FCB_swrite(oXFCB) 
char *oXFCB; 

Returns 0 if record read OK, otherwise 

returns error code 1 or 2. 

;************************************************************; 

cProc FCB_swrite,PUBLIC,ds 

parmDP poXFCB 

cBegin 

cEnd 

loadDP ds,dx,poXFCB 
mov ah, 15h 

int 21h 

Pointer to opened extended FCB. 
Ask MS-DOS to write next record 
from DTA to disk file. 

cbw Clear high byte for return value. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1242/1582



Interrupt 21H (33) 
Function 16H (22) 
Create File with PCB · 

Interrupt 21H Function 16H 

1.0 and later 

Function 16H creates a directory entry in the current directory for a specified file and 
opens the file for use. If the file already exists, it is opened and truncated to zero length. 

To Call 

= 16H AH 
DS:DX = segment: offset of an unopened file control block (FCB) 

Returns 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Before creating a new directory entry for the specified file, Function 16H searches 
the current directory for a matching filename. If a match is found, the existing file is 
opened, but its length is set to 0. In effect, this action erases an existing file and 
replaces it with a new, empty file of the same name. 

If a matching filename is not found and the directory has room for a new entry, the 
file is created and opened, and its length is set to 0. 

• An extended file control block (FCB) can be used to create a file with a special 
attribute, such as hidden. Before the Create File call is issued, the attribute byte must 
be set appropriately. 

• A value of OFFH returned in the AL register can indicate one of several errors: 
- Filename was improperly specified in the FCB. 
- File with the same name exists but is a read-only, hidden, system, or (in MS-DOS 

versions 3.x and networks) locked file. 
- Disk is full. 
- Current working directory is the root directory, and it is full. 
- User does not have the appropriate access rights to create a file in this directory 

(in MS-DOS versions 3.x and networks). 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about an error. 

• Upon successful completion of Function 16H, MS-DOS has 
- Created and opened the file specified in the FCB. 

Section V.· System Calls 1233 

HUAWEI EX. 1110 - 1243/1582



Interrupt 21H Function 16H 

- Filled in the date and time fields of the FCB with the current date and time. 
- Set file size to zero. 
All other changes made to the FCB are similar to those made by Function OFH (Open 
File with FCB). 

• Pathnames and wildcard characters (? and •) are not supported by Function 16H. 
• With MS-DOS versions 2.0 and later, Function 16H has been superseded by Functions 

3CH (Create File with Handle), 5AH (Create Temporary File), and 5BH (Create New 
File). 

Related Functions 

OFH (Open File with FCB) 
3CH (Create File with Handle) 
3DH (Open File with Handle) 
5AH (Create Temporary File) 
5BH (Create New File) 

Example 

1234 

cProc 
parmDP 

parmW 
cBegin 

cEnd 

;************************************************************; 

Function 16H: Create File, FCB-based 

int FCB_create(uXFCB,recsize) 

char *uXFCB; 
int recsize; 

Returns 0 if file created OK, otherwise 
returns -1 . 

Note: uXFCB must have the drive and filename 

fields (bytes 07H through 12H) and the 

extension flag (byte OOH) set before the 
call to FCB_create (see Function 29H) . 

;************************************************************; 

FCB_create,PUBLIC,ds 

puXFCB 

recsize 

loadDP ds,dx,puXFCB Pointer to unopened extended FCB. 
mov ah,16h Ask MS-DOS to create file. 
int 21h 

add dx,7 Advance pointer to start of regular 

FCB. 
mov bx,dx BX = FCB pointer. 
mov dx, rec:1i~e Get record size parameter. 
mov [bx+Oeh,, dx Store record size in FCB. 
xor dx,dx 

mov [bx+2 Oh) , dl Set current-record 
mov [bx+21h) ,dx and relative-record 
mov [bx+23h), dx fields to 0. 
cbw Set return value to 0 or -1. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1244/1582



Interrupt 21H (33) 
Function 17H (23) 
Rename File 

Interrupt 21H Function 17H 

1.0 and later 

Function 17H renames one or more files in the current directory. 

To Call 

= 17H AH 
DS:DX = segment:offset of modified file control block (FCB) in the following nonstan­

dard format: 

Returns 

Byte(s) 

OOH 
01-0SH 
09-0BH 
OCH-10H 
11H-18H 
19H-1BH 
11CH-24H 

If function is successful: 

AL = OOH 

If function is not successful: 

AL =FFH 

Programmer's Notes 

Contents 

Drive number 
Old filename (padded with blanks, if necessary) 
Old file extension (padded with blanks, if necessary) 
Zeroed out 
New filename (padded with blanks, if necessary) 
New file extension (padded with blanks, if necessary) 
Zeroed out 

• The wildcard character ? can be used in specifying both the old and the new file­
names, but its meaning differs in each case. A wildcard character in the old filename 
matches any single character or sequence of characters in the directory entry. A 
wildcard character in the new filename, however, indicates that the corresponding 
character or characters in the original filename are not to change. 

• With MS-DOS versions 2.0 and later, Function 17H views subdirectory entries as files. 
These subdirectory entries can be renamed using this function and an extended FCB 

4 with the appropriate attribute byte. 
• A value of OFFH returned in the AL register can indicate one of several errors: 

- Old filename is improperly specified in the FCB. 
- File with the new filename already exists in the current directory. 

Section v.- System Calls 1235 

HUAWEI EX. 1110 - 1245/1582



Interrupt 21H Function 17H 

Old file is a read-only file. 
With M$-DOS versions 3.1 and later in a networking environment, the user has in­
sufficient access rights to the directory. 

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information) 
can be used to obtain additional information about the cause of an error. 

• With MS-DOS versions 2.0 and later, Function 56H (Rename File) should be used in 
preference to Function 17H. 

Related Function 

56H (Rename File) 

Example 

1236 

;************************************************************; 

Function 17H: Rename File(s), FCB-based 

int FCB_rename(uXFCBold,uXFCBnew) 
char *uXFCBold,*uXFCBnew; 

Returns 0 if file(s) renamed OK, otherwise 
returns -1. 

Note: Both uXFCB's must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte DOH) set before 
the call to FCB_rename (see Function 29H). 

;************************************************************; 

cProc FCB_rename,PUBLIC,<ds,si,di> 
parmDP puXFCBold 
parmDP puXFCBnew 
cBegin 

cEnd 

loadDP es,di,puXFCBold ES:DI = Pointer to uXFCBold. 
mov dx, di Save offset in DX. 
add di,7 Advance pointer to start of regular 

FCBold. 
loadDP ds,si,puXFCBnew 
add si,B 

add di,11h 
mov ex, Obh 
rep movsb 
push es 
pop ds 
mov ah,17h 
int 21h 
cbw 

DS:SI = Pointer to uXFCBnew. 
Advance pointer to'filename field 
FCBnew. 
Copy name from FCBnew into FCBold 
at offset 11H: 
DI points 11H bytes into old FCB. 
Copy OBH bytes, moving new 
name into old FCB. 
Set DS to segment of FCBold. 

Ask MS-DOS to rename old 
file(s) to new name(s). 

Set return flag to 0 or -1 . 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1246/1582



Interrupt 21H (33) 
Function 19H (25) 
Get Current Disk 

Function 19H returns the code for the current disk drive. 

To Call 

AH = 19H 

Returns 

AL = drive code (0 = drive A, 1 = drive B, 2 = drive C, and so on) 

Programmer's Note 

Interrupt 21H Function 19H 

1.0 and later 

• The drive code returned by Function 19H is zero-based, meaning that drive A = 0, 
drive B = 1, and so on. This value is unlike the drive code used in file control blocks 
(FCBs) and in some other MS-DOS functions, such as 1CH (Get Drive Data) and 36H 
(Get Disk Free Space), in which 0 indicates the default rather than the current drive. 

Related Function 

OEH (Select Disk) 

Example 

;************************************************************; 

Function 19H: Get Current Disk 

int cur_drive () 

Returns letter of current "logged" disk. 

;************************************************************; 

cProc cur_drive,PUBLIC 

cBegin 

cEnd 

mov 

int 
add 
cbw 

ah,19h 

21h 
al, 'A' 

Set function code. 
Get number of logged disk. 
Convert number to letter. 
Clear the high byte of return value. 

Section V: System Calls 1237 

HUAWEI EX. 1110 - 1247/1582



Interrupt 21H Function lAH 

Interrupt 21H (33) 
Function lAH (26) 
Set DTA Address 

1.0 and later 

Function lAH specifies the location of the disk transfer area (DTA) to be used for file con­
trol block (FCB) disk I/0 operations. 

To Call 

AH 
DS:DX 

=1AH 
= segment: offset of DTA 

Returns 

Nothing 

Programmer's Notes 

• If an application does not specify a disk transfer area, MS-DOS uses a default buffer at 
offset 80H in the program segment prefix (PSP). 

• The DTA specified must be large enough to accommodate the amount of data to be 
transferred in a single block. The default record size for FCB file operations is 128 
bytes; this value can be changed after a file is successfully opened or created by alter­
ing the record size field in the FCB. If the DTA is too small for the record size used by 
the program, other code or data may be damaged. 

• The location of the DTA must be far enough from the top of the segment that contains 
it to avoid errors caused by segment wrap (data wrapping from the end of the segment 
to the beginning), which will cause the disk transfer to be terminated. Thus, for exam­
ple, if records of 128 bytes are to be read, the highest location acceptable for the DTA 
is DS:FF80H. 

• The DTA is used by all FCB-based read and write functions. In addition, any applica­
tion using the following functions must also set up a DTA for use as a scratch area in 
directory searches: 
- llH (Find First File) 
- 12H (Find Next File) 
- 4EH (Find First File) 
- 4FH (Find Next File) 

Related Function 

2FH (Get DTA Address) 

1238 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1248/1582



Example 

cProc 
parrnD 

cBegin 

cEnd 

Interrupt 21H Function lAH 

;************************************************************; 

Function 1AH: Set DTA Address 

int set_DTA(pDTAbuffer) 

char far *pDTAbuffer; 

Returns 0. 

;************************************************************; 

set_DTA,PUBLIC,ds 
pDTAbuffer 

lds 
rnov 

int 
xor 

dx,pDTAbuffer 
ah,1ah 

21h 

ax, ax 

DS:DX = pointer to buffer. 
Set function code. 

Ask MS-DOS to change DTA address. 
Return 0. 

Section V: System Calls 1239 

HUAWEI EX. 1110 - 1249/1582



Interrupt 21H Function lBH 

Interrupt 21H (33) 
Function lBH (27) 
Get Default Drive Data 

Function lBH returns information about the disk in the default drive. 

To Call 

AH =lBH 

Returns 

If function is successful: 

AL = number of sectors per cluster (allocation unit) 
= number of bytes per sector 
= number of clusters 

1.0 and later 

ex 
DX 
DS:BX = segment: offset of the file allocation table (FAT) identification byte 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• If Function lBH returns OFFH in the AL register, the current drive was invalid or a disk 
error occurred. The most likely causes of the latter are 
- Drive door was open. 
- Disk was not ready. 
- Medium was bad. 
- Disk was unformatted. 

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter­
rupt 24H has not been revectored to a critical error handler controlled by the program 
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error 
code OFFH is returned to the program. An application should check the AL register 
for a value of OFFH before assuming it has information on the default drive. 

• Possible values of the FAT ID byte (for IBM-compatible media) are the following: 

Value 

OFFH 
OFEH 
OFDH 
OFCH 

Medium 

Double-sided, 8 sectors/track, 40 tracks/side 
Single-sided, 8 sectors/track, 40 tracks/side 
Double-sided, 9 sectors/track, 40 tracks/side 
Single-sided, 9 sectors/track, 40 tracks/side 

1240 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1250/1582



Interrupt 21H Function lBH 

Value Medium 

OF9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/ 
track, 80 tracks/side 

OFSH 
OFOH 

Fixed disk 
Others 

• With MS-DOS versions l.x, Function lBH returns a pointer in DS:BX for the actual 
memory image of the FAT. In MS-DOS versions 2.0 and later, the function returns a 
pointer in DS:BX for a copy of the FAT identification byte; the contents of memory 
beyond the identification byte are not necessarily the FAT memory image. If access 
to the FAT is necessary, Interrupt 25H (Absolute Disk Read) can be used to read it 
into memory. 

• The FAT ID byte is not enough to identify a drive completely in MS-DOS versions 2.0 
and later. In these versions of MS-DOS, Function 36H (Get Disk Free Space) should be 
used in preference to Function lBH to avoid the ambiguity caused by the FAT iden­
tification byte. 

• With MS-DOS versions 3.2 and later, additional drive information can be obtained by 
inspecting the BIOS parameter block (BPB) obtained with Function 44H (IOCTL) 
Subfunction ODI-i: (Generic 1/0 Control for Block Devices) minor code 60H (Get 
Device Parameters). 

• With MS-DOS versions 2.0 and later, Function 1CH (Get Drive Data) provides the same 
types of information as Function lBH, but for a disk in a drive other than the default 
drive. 

Related Functions 

1CH (Get Drive Data) 
36H (Get Disk Free Space) 
44H(IOCTL) 

Example 

See SYSTEM CALLS: INTERRUPT 21H: Function ICH. 

Section V: System Calls 1241 

HUAWEI EX. 1110 - 1251/1582



Interrupt 21H Function lCH 

Interrupt 21H (33) 
Function lCH (28) 
Get Drive Data 

Function 1CH returns information about the disk in a specified drive. 

To Call 

AH = 1CH 
DL = drive code (0 = default drive, 1 = drive A, 2 = drive B, 

3 = drive C, and so on) 

Returns 

If function is successful: 

= number of sectors per cluster (allocation unit) 
= number of bytes per sector 
= number of clusters 

2.0 and later 

AL 
ex 
DX 
DS:BX = segment:offset of the file allocation table (FAT) identification byte 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• Function 1CH is not available with MS-DOS versions 1.x. 
• If the function returns OFFH in the AL register, the drive code was invalid or a disk 

error occurred. The most likely causes of the latter are 
- Drive door was open. 
- Disk was not ready. 
- Medium was bad. 
- Disk was unformatted. 

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter­
rupt 24H has not been revectored to a critical error handler controlled by the program 
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error 
code OFFH is returned to the program. An application should check the AL register 
for a value of OFFH before assuming it has information on the specified drive. 

• Possible values of the FAT ID byte (for IBM-compatible media) are the following: 

Value 

OFFH 
OFEH 

Medium 

Double-sided, 8 sectors/track, 40 tracks/ side 
Single-sided, 8 sectors/track, 40 tracks/side 

1242 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1252/1582



1 
I 
I 
I 

l 
I 

Interrupt 21H Function lCH 

Value 

OFDH 
OFCH 

Medium 

Double-sided, 9 sectors/track, 40 tracks/side 
Single-sided, 9 sectors/track, 40 tracks/side 

OF9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/ 
track, 80 tracks/side 

OF8H Fixed disk 
OFOH Others 

• The contents of memory beyond the identification byte pointed to by DS:BX are not 
necessarily the FAT memory image. If access to the FAT is necessary, Interrupt 25H 
(Absolute Disk Read) can be used to read it into memory. 

• The FAT ID byte is not enough to identify a drive completely. To avoid the ambiguity 
caused by the FAT identification byte, Function 36H (Get Disk Free Space) should be 
used in preference to Function 1CH. 

• With MS-DOS versions 3.2 and later, additional drive information can be obtained by 
inspecting the BIOS parameter block (BPB) obtained with Function 44H (IOCTL) 
Subfunction ODH (Generic I/0 Control for Block Devices) minor code 60H (Get 
Device Parameters). 

Related Functions 

lBH (Get Default Drive Data) 
36H (Get Disk Free Space) 
44H(IOCTL) 

Example 

;**************·****************~*****************************; 

Function 1CH: Get Drive Data 

Get information about the disk in the specified 
drive. Set drive_ltr to binary 0 for default drive info. 

int get_drive_data(drive_ltr, 

pbytes_per_sector, 

psectors_per_cluster, 

pclusters_per_drive) 

int drive_ltr; 

int *pbytes_per_sector; 

int *psectors_per_cluster; 

int *pclusters_per_drive; 

Returns -1 for invalid drive, otherwise returns 

the disk's type (from the 1st byte of the FAT). 

;************************************************************; 

(more) 

Section V: System Calls 1243 

HUAWEI EX. 1110 - 1253/1582



Interrupt 21H Function lCH 

1244 

cProc 

parmB 
parmDP 

parmDP 

parmDP 

cBegin 

gdd: 

gddx: 

cEnd 

get_drive_data,PUBLIC,<ds,si> 

drive_ltr 
pbytes_per_sector 

psectors_per_cluster 
pclusters_per_drive 

mov 

mov 
or 

jz 
and 
sub 

mov 

int 
cbw 

cmp 

je 
mov 

mov 

loadDP 
mov 

loadDP 
mov 

mov 

loadDP 
mov 

mov 

si,ds 
dl,drive_ltr 

dl,dl 

gdd 

dl,not 20h 
dl, 'A'-1 

ah, 1ch 
21h 

al,Offh 
gddx 

bl, [bx] 

Save DS in SI to use later. 

Get drive letter. 
Leave 0 alone. 

Convert letter to uppercase. 
Convert to drive number: 'A' 

'B' = 2, etc. 

Set function code. 
Ask MS-DOS for data. 

Extend AL into AH. 

Bad drive letter? 
If so, exit with error code -1 . 

Get FAT ID byte from DS:BX. 

ds,si Get back original DS. 
ds,si,pbytes_per_sector 

[si], ex ; Return bytes per sector. 
ds,si,psectors_per_cluster 

ah,O 

[si],ax ; Return sectors per cluster. 
ds,si,pclusters_per_drive 

[si],dx Return clusters per drive. 
al,bl ; Return FAT ID byte. 

The MS-DOS Encyclopedia 

1, 

HUAWEI EX. 1110 - 1254/1582



l 

Interrupt 21H (33) 
Function 21H (33) 
Random Read 

Function 21H reads a selected record from disk into memory. 

To Call 

=21H 

Interrupt 21H Function 21H 

1.0 and later 

AH 
DS:DX = segment:offset of previously opened file control block (FCB) 

Returns 

AL =OOH 
OlH 
02H 
03H 

If AL = OOH or 03H: 

record read successfully 
end of file; no record read 
DTA too small (segment wrap error); read canceled 
end of file; partial record transferred 

DTA contains data read from file. 

Programmer's Notes 

• Function 21H reads the record into the current disk transfer area (DTA). Unless the 
128-byte default DTA (at offset SOH in the program segment prefix) is adequate, Func­
tion lAH (Set DTA Address) should be used to set the DTA address before Function 
21H is called. The program must ensure that the buffer pointed to by the DTA address 
is large enough to hold the records to be transferred. 

• The relative-record field in the FCB must be set to the record number to be read. Num­
bering begins with record OOH; thus, the value 06H in the relative-record field would 
indicate the seventh record, not the sixth. 

• Function 21H sets the current-block and current-record fields to match the relative­
record field before transferring the data to the DTA. 

• Unlike Function 27H (Random Block Read), Function 21H does not increment the 
current-block, current-record, or relative-record fields. 

• The record length read is determined by the record size field of the FCB. 
• If a partial record is read and the end of file is encountered, the remainder of the 

record is filled out to the requested length with zero bytes. 
• On networks running under MS-DOS version 3.1 or later, the user must have Read 

access rights to the directory containing the file to be read. 
• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 

used in preference to Function 21H. 

Section V.· System Calls 1245 

HUAWEI EX. 1110 - 1255/1582



Interrupt 21H Function 21H 

Related Functions 

14H (Sequential Read) 
lAH (Set DTA Address) 
22H (Random Write) 
24H (Set Relative Record) 
27H (Random Block Read) 
3FH (Read File or Device) 

Example 

1246 

cProc 
parrnDP 
parrnD 
cBegin 

cEnd 

;************************************************************; 

Function 21H: Random File Read, FCB-based 

int FCB_rread(oXFCB,recnurn) 
char *oXFCB; 
long recnurn; 

Returns 0 if record read OK, otherwise 
returns error code 1, 2, or 3. 

;************************************************************; 

FCB_rread,PUBLIC,ds 
poXFCB 
recnurn 

loadDP ds,dx,poXFCB 
rnov bx,dx 
rnov ax,word ptr 
rnov [bx+28h], ax 
rnov ax,word ptr 
rnov [bx+2ah], ax 
rnov ah,21h 

int 21h 
cbw 

; Pointer to opened extended FCB. 
; BX points at FCB, too. 

(recnurn) Get low 16 bits of record 
number and store in FCB. 

(recnurn+2) Get high 16 bits of record 
number and store in FCB. 

Ask MS-DOS to read recnurn'th 
record, placing it at DTA. 

Clear high byte of return value. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1256/1582



Interrupt 21H (33) 
Function 22H (34) 
Random Write 

Interrupt 21H Function 22H 

1.0 and later 

Function 22H writes data from the current disk transfer area (DTA) to a specified record 
location in a file. 

To Call 

=22H AH 
DS:DX = segment: offset of previously opened file control block (FCB) 

DTA contains data to write. 

Returns 

AL =OOH 
01H 

record written successfully 
disk full 

02H DTA too small (segment wrap error); write canceled 

Programmer's Notes 

• Before calling Function 22H, the program must set the disk transfer area (DTA) ad­
dress appropriately with a call to Function lAH (Set DTA Address), if necessary, and 
place the data to be written in the DTA. 

• The relative-record field in the FCB must be set to the record number that is to be writ­
ten. Numbering begins with record OOH; thus, the value 06H in the relative-record 
field would indicate the seventh record, not the sixth. 

• Function 22H sets the current-block and current-record fields to match the relative­
record field before writing the data from the DTA. . 

• Unlike Function 28H (Random Block Write), Function 22H does not increment the 
current-block, current-record, or relative-record fields. 

• The record size field determines the record length written by the function. 
• If a record is written beyond the current end of file, the data between the old end of 

file and the beginning of the new record is uninitialized. 
• The file that is written to cannot have the read-only attribute. 
• Information is written logically, but not always physically, to disk at the time Function 

22H is called. The contents of the DTA are written immediately to disk only if they 
constitute a sector's worth of information. If less than a sector is written, it is trans­
ferred from the DTA to an MS-DOS buffer and is not physically written' to disk until 
one of the following occurs: 
- A full sector of information is ready. 
- The file is closed. 
- Function ODH (Disk Reset) is issued. 

Section V: System Calls 1247 

HUAWEI EX. 1110 - 1257/1582



Interrupt 21H Function 22H 

• On networks running under MS-DOS version 3.1 or later, the user must have Write 
access rights to the directory containing the file to be written to. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 22H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
21H (Random Read) 
24H (Set Relative Record) 
28H (Random Block Write) 
40H (Write File or Device) 

Example 

1248 

cProc 

parmDP 

parmD 

cBegin 

cEnd 

;************************************************************; 

Function 22H: Random File Write, FCB-based 

int FCB_rwrite(oXFCB,recnum) 

char *oXFCB; 

long recnum; 

Returns 0 if record read OK, otherwise 

returns error code 1 or 2. 

;***************************************************~********; 

FCB_rwrite,PUBLIC,ds 

poXFCB 

recnum 

loadDP ds,dx,poXFCB 
mov bx,dx 
mov ax,word ptr 

mov [bx+28h],ax 
mov ax,word ptr 
mov {bx+2ah],ax 

mov ah,22h 

int 21h 

cbw 

; Pointer to opened extended FCB. 

; BX points at FCB, too. 

(recnum) Get low 16 bits of record 

number and store in FCB. 
(recnum+2) Get high 16 bits of record 

number and store in FCB. 
Ask MS-DOS to write DTA to 

recnum'th record of file. 

Clear high byte for return value. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1258/1582



Interrupt 21H (33) 
Function 23H (35) 
Get File Size 

Interrupt 21H Function 23H 

1.0 and later 

Function 23H searches the current directory for a specified file and returns the size of the 
file in records. 

To Call 

=23H AH 
DS:DX = segment:offset of unopened file control block (FCB) with record size field set 

appropriately 

Returns 

If function is successful: 

AL =OOH 

FCB relative-record field contains number of records, rounded upward if necessary. 

If function is not successful: 

AL =FFH 

Programmer's Notes 

• The record size field in the FCB can be set to 1 to find the number of bytes in the file. 
• The number of records is the file size divided by the record size. If there is a remain­

der, the record count is rounded upward. The result stored in the relative-record field 
may, therefore, contain a value that is llarger than the number of complete records in 
the file. 

• Because record numbers are zero based and this function returns the number of 
records in a file in the relative-record field of the FCB, Function 23H can be used to 
position the file pointer to the end of file. 

• With MS-DOS versions 2.0 and later, Function 42H (Move File Pointer) should be used 
in preference to Function 23H. 

Related Function 

42H (Move File Pointer) 

Section V.· System Calls 1249 

HUAWEI EX. 1110 - 1259/1582



Interrupt 21H Function 23H 

Example 

cProc 
parmDP 
parmW 
cBegin 

nr_exit: 

cEnd 

;************************************************************: 

Function 23H: Get File Size, FCB-based 

long FCB_nrecs(uXFCB,recsize) 
char *ilXFCB; 
int recsize; 

Returns a long -1 if file not found, otherwise 
returns the number of records of size recsize. 

Note: uXFCB must have the drive and 
filename fields (bytes 07H through 12H) and 
the extension flag (byte OOH) set before 
the call to FCB_nrecs (see Function 29H) . 

:************************************************************: 

FCB_nrecs,PUBLIC,ds 

puXFCB 
recsize 

loadDP ds,dx,puXFCB 
mov bx, dx 
mov ax,recsize 
mov [bx+15h],ax 
mov ah,23h 

int 21 h 

Pointer to unopened extended FCB. 
Copy FCB pointer into BX. 
Get record size 
and store it in FCB. 
Ask MS-DOS for file size (in 
records) . 

cbw If AL = OFFH, set AX to -1. 
cwd Extend to long. 
or 
js 
mov 

mov 

dx,dx 
nr_exit 

[bx+2bh], al 

ax, [bx+28h] 
mov dx, [bx+2ah] 

Is DX negative? 
If so, exit with error flag. 
Only low 24 bits of the relative­
record field are used, so clear the 
top 8 bits. 
Return file length in DX:AX. 

1250 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1260/1582



Interrupt 21H (33) 
Function 24H (36) 
Set Relative Record 

Interrupt 21H Function 24H 

1.0 and later 

Function 24H sets the relative-record field of a file control block (PCB) to match the file 
position indicated by the current-block and current-record fields of the same PCB. 

To Call 

AH 
DS:DX 

Returns 

=24H 
= segment:offset of previously opened PCB 

AL =OOH 

Relative-record field is modified in PCB. 

Programmer's Notes 

• The AL register is a] ways set to OOH by Function 24H. Thus, any preexisting informa­
tion in the AL register is lost. 

• Before Function 24H is called, the program must open the PCB with Function OFH 
(Open File with PCB) or with Function 16H (Create File with PCB). 

• The entire relative-record field ( 4 bytes) of the PCB must be initialized to zeros before 
calling Function 24H. If this is not done, any value in the high-order byte of the high­
order word remaining from previous reads or writes might not be overwritten and the 
resulting relative-record number will be invalid. · 

• Function 24H is normally used in changing from sequential to random 1/0. Sequential 
1/0, performed by Functions 14H (Sequential Read} and 15H (Sequential Write), sets 
the current-block and current-record fields of the PCB. Random 1/0 uses the relative­
record field, which is set by Function 24H to match the current file position as 
recorded in the current-block and current-record fields. 

After the file pointer is set, any of the following functions can be used to access data at 
the record pointed to by the relative-record field: 
- 21H (Random Read) 
- 22H (Random Write) 
- 27H (Random Block Read) 
- 28H (Random Block Write) 

• With MS-DOS versions 2.0 and later, Function 42H (Move File Pointer) should be used 
in preference to Function 24H. 

Related Function 

42H (Move File Pointer) 

Section V: System Calls 1251 

HUAWEI EX. 1110 - 1261/1582



Interrupt 21H Function 24H 

Example 

1252 

;************************************************************; 

Function 24H: Set Relative Record 

int FCB_set_rrec(oXFCB) 

char *oXFCB; 

Returns 0. 

;************************************************************; 

cProc FCB_set_rrec,PUBLIC,ds 
parmDP poXFCB 
cBegin 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 
mov bx,dx ; BX points at FCB, too. 
mov byte ptr [bx+2bh],O ; Zero high byte of high word of 

; relative-record field. 
mov ah,24h Ask MS-DOS to set relative record 

to current record. 
int 21h 

xor ax, ax Return 0. 
cEnd 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1262/1582



Interrupt 21H (33) 
Function 25H (37) 
Set Interrupt Vector 

Interrupt 21H Function 25H 

1.0 and later 

Function 25H sets an address in the interrupt vector table to point to a specified interrupt 
handler. 

To Call 

AH 
AL 
DS:DX 

Returns 

=25H 
= interrupt number 
= segment: offset of interrupt handler 

Nothing 

Programmer's Notes 

• When Function 25H is· called, the 4-byte address in DS:DX is placed in the correct 
position in the interrupt vector table. 

• Function 25H is the recommended method for initializing or changing an interrupt 
vector. A vector in the interrupt vector table should never be changed directly. 

• Before Function 25H is used to change an interrupt vector, the address of the current 
interrupt handler should be read with Function 35H (Get Interrupt Vector) and then 
saved for restoration before the program terminates. 

Related Function 

35H (Get Interrupt Vector) 

Example 

;************************************************************; 

Function 25H: Set Interrupt Vector 

typedef void (far *FCP) () ; 

int set_vector(intnum,vector) 

int intnum; 

FCP vector; 

Returns 0. 

;************************************************************; 

Section V.· System Calls 1253 

HUAWEI EX. 1110 - 1263/1582



Interrupt 21H Function 25H 

cProc set_vector,PUBLIC,ds 

parmB intnum 

parmD vector 
cBegin 

lds dx,vector 

mov al,intnum 

mov ah,25h 

int 21h 

xor ax, ax 

cEnd 

1254 The MS-DOS Encyclopedia 

Get vector segment:offset into 

DS:DX. 
Get interrupt number into AL. 
Select "set vector" function. 

Ask MS-DOS to change vector. 

Return 0. 

HUAWEI EX. 1110 - 1264/1582



Interrupt 21H Function 26H 

Interrupt 21H (33) 
Function 26H (38) 
Create New Program Segment Prefix 

1.0 and later 

Function 26H creates a new program segment prefix (PSP) at a specified segment address. 

To Call 

AH =26H 
DX = segment address of the PSP to create 

Returns 

Nothing 

Programmer's Notes 

• Function 26H copies the current PSP to the address indicated by DX. Note that DX 
contains a segment address, not an absolute address. 

• After the copy is made, the memory size information located at offset 06H in the new 
PSP is adjusted to match the amount of memory available to the riew PSP. In addition, 
the current contents of the interrupt vectors for Interrupt 22H (Terminate Routine Ad­
dress), Interrupt 23H (Control-CHandler Address), and Interrupt 24H (Critical Error 
Handler Address) are saved starting at offset OAH of the new PSP. 

• A .COM file can be loaded into memory immediately after the new PSP and execu­
tion can begin at that location. A .EXE file cannot be loaded and executed in this 
manner. 

• With MS-DOS versions 2.0 and later, Function 4BH (Load and Execute Program) 
should be used in preference to Function 26H. Function 4BH can be used to load 
.COM files, .EXE files, or overlays. 

Related Function 

4BH (Load and Execute Program) 

Example 

;************************************************************; 

Function 26H: Create New Program Segment Prefix 

int create_psp(pspseg) 
int pspseg; 

Returns 0. 

;************************************************************; 

(more) 

Section V.· System Calls 1255 

HUAWEI EX. 1110 - 1265/1582



Interrupt 21H Function 26H 

1256 

cProc 
parrnW 
cBegin 

cEnd 

create_psp,PUBLIC 

pspseg 

rnov 
rnov 
int 
xor 

dx,pspseg 
ah,26h 

21h 
ax, ax 

The MS-DOS Encyclopedia 

Get segment address of new PSP. 
Set function.code. 
Ask MS-DOS to create new PSP. 

Return 0. 

HUAWEI EX. 1110 - 1266/1582



Interrupt 21H (33) 
Function 27H (39) 
Random Block Read · 

., Interrupt 21H Function 27H 

1.0 and later 

Function 27H reads one or more records into memory, placing the records in the current 
disk transfer area (DTA). 

To Call 

=27H 
= number of records to read 

AH 
ex 
DS:DX = segment: offset of previously opened file control block (FeB) 

Returns 

AL =OOH read successful 
OlH end of file; no record read 
02H DTA too small (segment wrap error); no record read 
03H end of file; partial record read 

If AL is OOH or 03H: 

ex = number of records read 

DTA contains data read from file. 

Programmer's Notes 

• The DTA address should be set with Function lAH (Set DTA Address) before Function 
27H is called. If the DTA address has not been set, MS-DOS uses a default 128-byte 
DTA at offset SOH in the program segment prefix (PSP). 

• Function 27H reads the number of records specified in ex sequentially, starting at 
the file location indicated by the relative-record and record size fields in the FeB. If 
ex = 0, no records are read. 

• The record length used by Function 27H is the value in the record size field of the 
FeB. Unless a new value is placed in this field after a file is opened or created, 
MS-DOS uses a default record length of 128 bytes. 

• Function 27H is similar to Function 21H (Random Read); however, Function 27H can 
read more than one record at a time and updates the relative-record field of the FeB 
after each call. Successive calls to this function thus read sequential groups of records 
from a file, whereas successive calls to Function 21H repeatedly read the same record. 

• Possible alternative causes for end-of-file (OlH) errors include 
- Disk removed from drive since file was opened. 
- Previous open failed. 

With MS-DOS versions 3.0 and later, more detailed information on the error can be 
obtained by calling Function 59H (Get Extended Error Information). 

Section V: System Calis 1257 

HUAWEI EX. 1110 - 1267/1582



Interrupt 21H Function 27H 

• On networks running under MS-DOS version 3.1 or later, the user must have Read 
access rights to the directory containing the file to be read. 

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be 
used in preference to Function 27H. 

Related Functions 

14H (Sequential Read) 
lA.H (Set DTA Address) 
21H (Random Read) 
24H (Set Relative Record) 
28H (Random Block Write) 
3FH (Read File or Device) 

Example 

1258 

;************************************************************; 

Function 27H: Random File Block Read, FCB-based 

int FCB_rblock(oXFCB,nrequest,nactual,start) 

char *OXFCB; 
int nrequest; 

int *nactual; 
long start; 

Returns read status 0, 1, 2, or 3 and sets 

nactual to number of records actually read. 

If start is -1, the relative-record field is 

not changed, causing the block to be read starting 

at the current record. 

;************************************************************; 

cProc FCB_rblock,PUBLIC,<ds,di> 

parmDP poXFCB 
parmW nrequest 

parmDP pnactual 

parmD start 

cBegin 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 

mov di,dx ; DI points at FCB, too. 
mov ax,word ptr {start) ; Get long value of start. 

mov bx,word ptr (start+2) 

mov ex, ax 
and cx,bx 

inc ex 
jcxz rb_skip 

mov [di+28h], ax 

The MS-DOS Encyclopedia 

; Is start= -1? 

If so, don't change relative-record 

field. 

Otherwise, seek to start record. 

(more) 

HUAWEI EX. 1110 - 1268/1582



mov 
ib_skip: 

mov 

mov 

int 
loadDP 
mov 

cbw 
cEnd 

[di+2ah] ,bx 

cx,nrequest 
ah,27h 

21h 
ds,bx,pnactual 
[bx] ,ex 

Interrupt 21H Function 27H 

ex = number of records to read. 
Get MS-DOS to read ex records, 
placing them at DTA. 

DS:BX = address of nactual. 

Return number of records read. 
Clear high byte. 

Section V: System Calls 1259 

HUAWEI EX. 1110 - 1269/1582



Interrupt 21H Function 28H 

Interrupt 21H (33) 
Function 28H (40) 
Random Block Write 

1.0 and later 

Function 28H writes one or more records from the current disk transfer area (DTA) 
to a file. 

To Call 

=28H AH 
ex 
DS:DX 

= number of records to write 
= segment:offset of previously opened file control block (FeB) 

DTA contains data to write. 

Returns 

AL =OOH 
OlH 

write successful 
disk full 

02H DTA too small (segment wrap error); write canceled 

If AL is OOH or; OlH: 

ex = number of records written 

Programmer's Notes 

• Data to be written must be placed in the DTA before Function 28H is called. Unless 
the DTA address has been set with Function lAH (Set DTA Address), MS-DOS uses a 
default 128-byte DTA at offset SOH in the program segment prefix (PSP). 

• Function 28H writes the number of records indicated in ex, beginning at the location 
specified in the relative-record field of the file control block (FeB). If Function 28H is 
called with ex= 0, the file is truncated or extended to the size indicated by the record­
size and relative-record fields of the FeB. 

• The record length used by Function 28H is the value in the record size field of the 
FeB. Unless a .new value is assigned after a file is opened or created, MS-DOS uses a 
default record length of 128 bytes. 

• Function 28H is similar to Function 22H (Random Write); however, Function 28H can 
write more than one record at a time and updates the relative-record field of the FeB 
after each call. Successive calls to this function thus write sequential groups of records 
to a file, whereas successive calls to Function 22H repeatedly write the same record. 

1260 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1270/1582



Interrupt 21H Function 28H 

• Possible alternative causes for disk full (01H) errors include 
- Disk removed from drive since file was opened. 
- Previous open failed. 

In MS-DOS versions 3.0 and later, more detailed information on the error can be 
obtained by calling Function 59H (Get Extended Error Information). 

• Information is written logically, but not always physically, to disk at the time Function 
28H is called. The contents of the DTA are written immediately to disk only if they 
constitute a full sector of information. If less than a sector is written, it is transferred 
from the DTA to an MS-DOS buffer and is not physically written to disk until one of 
the following occurs: 

A full sector of information is ready. 
- The file is closed. 
- Function ODH (Disk Reset) is issued. 

• On networks running under MS-DOS version 3.1 or later, the user must have Write 
access rights to the directory containing the file to be written to. 

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be 
used in preference to Function 28H. 

Related Functions 

15H (Sequential Write) 
lAH (Set DTA Address) 
22H (Random Write) 
24H (Set Relative Record) 
27H (Random Block Read) 
40H (Write File or Device) 

Example 

;************************************************************; 

Function 28H: Random File Block Write, FCB-based 

int FCB_wblock(oXFCB,nrequest,nactual,start) 

char *oXFCB; 

int nrequest; 

int *nactual; 

long start; 

Returns write status of 0, 1, or 2 and sets 

nactual to number of records actually written. 

If start is -1, the relative-record field is 

not changed, causing the block to be written 

starting at the current record. 

;************************************************************; 

(more) 

Section V· System Calls 1261 

HUAWEI EX. 1110 - 1271/1582



Interrupt 21H Function 28H 

1262 

cProc 
parmDP 
parmW 
parmDP 
parmD 
cBegin 

FCB_wblock,PUBLIC,<ds,di> 

poXFCB 
nrequest 
pnactual 

start 

loadDP ds,dx,poXFCB ; Pointer to opened extended FCB. 
mov di,dx ; DI points at FCB, too. 
mov ax,word ptr (start) ; Get long value of start. 

mov bx,word ptr (start+2) 
mov ex, ax ; Is start = -1? 

and cx,bx 

inc ex 

jcxz 

mov 
mov 

wb_skip 

[di+28h],ax 
[di+2ah],bx 

If so, don't change relative-record 

field. 
Otherwise, seek to start record. 

wb_skip: 
ex = number of records to write. 
Get MS-DOS to write ex records 

from DTA to file. 

mov 
mov 
int 
loadDP 

mov 
cbw 

cEnd 

cx,nrequest 

ah,28h 
21h 
ds,bx,pnactual 
ds:[bx],cx 

The MS-DOS Encyclopedia 

DS:BX = address of nactual. 
Return number of records written. 

Clear high byte. 

HUAWEI EX. 1110 - 1272/1582



Interrupt 21H Function 29H 

Interrupt 2m (33) 
Function 29H ( 41) 

1.0 and later 

Parse Filename 

Function 29H examines a string for a valid filename irt the form drivejilename.ext. If 
the string represents a valid filename, the function creates an unopened file control block 
(FCB) for it. 

To Call 

AH =29H 
AL =code to control parsing, as follows (bits 0-3 only): 

DS:SI 
ES:DI 

Returns 

AL 

DS:SI 
ES:DI 

Bit 

0 

1 

2 

3 

Value 

0 
1 
0 

1 

0 

1 

0 

1 

Meaning 

Stop parsing if file separator is found. 
Ignore leading separators (parse off white space). 
Set drive number field in FCB to 0 (current drive) if 

string does not include a drive identifier. 
Set drive as specified in the string; leave unaltered if 

string does not include a drive identifier. 
Set filename field in the FCB to blanks (20H) if string 

does not include a filename. 
Leave filename field unaltered if string does not 

include a filename. 
Set extension field in FCB to blanks (20H) if string 

does not include a filename extension. 
Leave extension field unaltered if string does not 

include a filename extension. 

= segment:offset of string to parse 
= segment:offset of buffer for unopened FCB 

= OOH string does not contain wildcard characters 
OlH string contains wildcard characters 
FFH drive specifier invalid 

= segment:offset of first byte following the parsed string 
= segment: offset of unopened FCB 

Section V.· System Calls 1263 

HUAWEI EX. 1110 - 1273/1582



Interrupt 21H Function 29H 

Programmer's Notes 

• Bits 0 through 3 of the byte in the AL register control the way the text string is parsed; 
bits 4 through 7 are not used and must be 0. 

• After MS-DOS parses the string, DS:SI points to the first byte following the parsed 
string. If DS:SI points to an earlier byte, MS-DOS did not parse the entire string. 

• If Function 29H encounters the MS-DOS wildcard character • (match all remaining 
characters) in a filename or extension, the remaining bytes in the corresponding FCB 
field are set to the wildcard character ? (match one character). For example, the string 
DOS•.D• would be converted to DOS????? in the filename field and D?? in the exten­
sion field of the FCB. 

• With MS-DOS versions l.x, the following characters are filename separators: 

:. ; , =+space tab/"[] 

With MS-DOS versions 2.0 and later, the following characters are filename separators: 

: . ; , = + space tab 

• The following characters are filename terminators: 

/"[]<>: 
All filename separators 
Any control character 

• If the string does not contain a valid filename, ES:DI + 1 points to an ASCII blank 
character (20H). 

• Function 29H cannot parse pathnames. 

Related Functions 

None 

Example 

;************************************************************; 

Function 29H: Parse Filename into FCB 

int FCB-parse(uXFCB,name,ctrl) 
char *uXFCB; 

char *name; 

int ctrl; 

Returns -1 if error, 

0 if no wildcards found, 

1 if wildcards found. 

;************************************************************; 

1264 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1274/1582



cProc 
parmDP 
parmDP 
parmB 
cBegin 

cEnd 

Interrupt 21H Function 29H 

FCB_parse,PUBLIC,<ds,si,di> 
puXFCB 
pname 
ctrl 

loadDP 
push 
xor 

es,di,puXFCB 
di 
ax, ax 

Pointer to unopened extended FCB. 
Save DI. 

Fill all 22 (decimal) words of the 
extended FCB with zeros. 

cld Make sure direction flag says UP. 
mov cx,22d 
rep stosw 

pop di ; Recover DI. 
mov byte ptr [di],Offh; Set flag byte to mark this as an 

; extended FCB. 
add di,7 Advance pointer to start of regular 

FCB. 
loadDP 
mov 
mov 
int 
cbw 

ds,si,pname 
al,ctrl 
ah,29h 
21h 

Get pointer to filename into DS:SI. 
Get parse control byte. 
Parse filename, please. 

Set return parameter. 

Section V: System Calls 1265 

HUAWEI EX. 1110 - 1275/1582



Interrupt 21H Function 2AH 

Interrupt 21H (33) 
Function 2AH ( 42) 
Get Date 

1.0 and later 

Function 2AH returns the current system date-year, month, day, and day of the week­
in binary form. 

To Call 

AH =2AH 

Returns 

AL = day of the week (0 = Sunday, 1 = Monday, 2 = Tuesday, and so on; 
MS-DOS versions 1.10 and later) 

ex = year (1980 through 2099) 
DH = month (1 through 12) 
DL = day (1 through 31) 

Programmer's Note 

• Years outside the range 1980-2099 cannot be returned by Function 2AH. 

Related Functions 

2BH (Set Date) 
2CH (Get Time) 
2DH (Set Time) 

Example 

;**********************************************~*************; 

Function 2AH: Get Date 

long get_date(pdow,pmonth,pday,pyear) 

char *pdow,*pmonth,*pday; 

int *pyear; 

Returns the date packed into a long: 

low byte = day of month 
next byte = month 

next word = year. 

;************************************************************; 

1266 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1276/1582



Interrupt 21H Function 2AH 

c::Proc get_date,PUBLIC,ds 

parmDP pdow 

parmDP pmonth 

parmDP pday 
parmDP pyear 
cBegin 

mov ah,2ah Set function code. 
int 21h Get date info from MS-DOS. 
loadDP ds,bx,pdow DS:BX = pointer to dow. 

mov [bx] ,al Return·dow. 
loadDP ds,bx,pmonth DS:BX = pointer to month. 

mov [bx] ,dh Return month. 

loadDP ds,bx,pday DS:BX =pointer to day. 
mov [bx] ,dl Return day. 

loadDP ds,bx,pyear DS:BX =.pointer to year. 

mov [bx] ,ex Return year. 

mov ax,dx Pack day, month, 

mov dx,cx ... and year into return value. 

cEnd 

Section V.· System Calls 1267 

HUAWEI EX. 1110 - 1277/1582



Interrupt 21H Function 2BH 

Interrupt 2m (33) 
Function 2BH (43) 
Set Date 

1.0 and later 

Function 2BH accepts binary values for the year, month, and day of the month and stores 
them in the system's date counter as the number of days since January 1, 1980. 

To Call 

AH = 2BH 
ex = year (1980 through 2099) 
DH =month (1 through 12) 
DL = day (1 through 31) 

Returns 

AL =OOH 
FFH 

system date updated 
invalid date specified 

Programmer's Note 

• The year must be a 16-bit value in the range 1980 through 2099. Values outside this 
range are not accepted. In addition, supplying only the last two digits of the year 
causes an error. 

Related Functions 

2AH (Get Date) 
2CH (Get Time) 
2DH (Set Time) 

Example 

;***********************.*************************************; 

Function 2BH: Set Date 

int set_date(rnonth,day,year) 
char rnonth,day; 
int year; 

Returns 0 if date was OK, -1 if not. 

;************************************************************; 

1268 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1278/1582



Interrupt 21H Function 2BH 

cProc set_date,PUBLIC 

parmB month 
parmB day 
parmW year 
cBegin 

mov dh,month Get new month. 
mov dl,day Get new day. 
mov cx,year Get new year. 
mov ah,2bh Set function code. 
int 21h Ask MS-DOS to change date. 
cbw Return 0 or -1. 

cEnd 

Section V: System Calls 1269 

HUAWEI EX. 1110 - 1279/1582



Interrupt 21H Function 2CH 

Interrupt 21H (33) 
Function 2CH (44) 
Get Time 

1.0 and later 

Function 2CH reports the current system time- hours (based on a 24-hour clock), 
minutes, seconds, and hundredths of a second- in binary form. 

To Call 

AH =2CH 

Returns 

CH = hours (0 through 23) 
CL = minutes (0 through 59) 
DH = seconds (0 through 59) 
DL = hundredths of second (0 through 99) 

Programmer's Note 

• The accuracy of the time returned by Function 2CH depends on the accuracy of the 
system's timekeeping hardware. On systems unable to resolve time to the hundredth 
of a second, the DL register may contain either OOH or an approximate value calcu­
lated by an MS-DOS algorithm. 

Related Functions 

2AH (Get Date) 
2BH (Set Date) 
2DH (Set Time) 

Example 

:************************************************************; 

Function 2CH: Get Time 

long get_time(phour,pmin,psec,phund) 

char *phour,*pmin,*psec,*phund; 

Returns the time packed into a long: 

low byte = hundredths 

next byte = seconds 

next byte = minutes 

next byte = hours. 

;************************************************************; 

1270 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1280/1582



Interrupt 21H Function 2CH 

cProc get_time,PUBLIC,ds 
parmDP phour 
parmDP pmin 
parmDP psec 

parmDP phund 

cBegin 

mov ah,2ch Set function code. 
int 21h Get time from MS-DOS. 
loadDP ds,bx,phour DS:BX = pointer to hour. 
mov [bx] ,ch Return hour. 
loadDP ds,bx,pmin DS:BX = pointer to min. 
mov [bx] ,cl Return min. 
loadDP ds,bx,psec DS:BX = pointer to sec. 
mov [bx] ,dh Return sec. 
loadDP ds,bx,phund DS:BX = pointer to hund. 
mov [bx] ,dl Return hund. 
mov ax,dx Pack seconds, hundredths, ... 
mov dx,cx ... minutes, and hour into 

return value. 
cEnd 

Section V: System Calls 1271 

HUAWEI EX. 1110 - 1281/1582



Interrupt 21H Function 2DH 

Interrupt 21H (33) 
Function 2DH ( 45) 
Set Time 

1.0 and later 

Function 2DH accepts binary values for the hour (based on a 24-hour clock), minute, 
second, and hundredths of a second and stores them in the operating system's time 
counter. 

To Call 

AH =2DH 
CH = hours (0 through 23) 
CL = minutes (0 through 59) 
DH = seconds (0 through 59) 
DL = hundredths of second (0 through 99) 

Returns 

AL = OOH 
FFH 

time successfully updated 
invalid tiine specified 

Programmer's Note 

• On systems that are unable to resolve the time to the hundredth of a second, the DL 
register should be set to OOH before Function 2DH is called. 

Related Functions 

2AH (Get Date) 
2BH (Set Date) 
2CH (Get Time) 

Example 

:************************************************************; 

Function 2DH: Set Time 

int set_time(hour,min,sec,hund) 

char hour,min,sec,hund; 

Returns 0 if time was OK, -1 if not. 

;************************************************************; 

1272 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1282/1582



Interrupt 21H Function 2DH 
.; 

cProc set_time,PUBLIC 
·parmB hour 
parmB min 
parmB sec 
parmB hund 
cBegin 

mov ch,hour Get new hour. 
mov cl,min Get new minutes. 
mov dh,sec Get new seconds. 
mov dl,hund Get new hundredths. 
mov ah,2dh Set function code. 
int 21h Ask MS-DOS to change time. 
cbw Return 0 or -1. 

cEnd 

Section V: System Calls 1273 

HUAWEI EX. 1110 - 1283/1582



Interrupt 21H Function 2EH 

Interrupt 21H (33) 
Function 2EH ( 46) 
Set/Reset Verify Flag 

1.0 and later 

Function 2EH turns the internal MS-DOS verify flag on or off, thus determining whether 
MS-DOS verifies disk write operations. 

To Call 

AH = 2EH 
AL = OOH turn verify off 

01H turn verify on 
DL = OOH (MS-DOS versions l.x and 2.x only) 

Returns 

Nothing 

Programmer's Notes 

• If the verify flag is on, MS-DOS requests any block-device driver to verify each sector 
written. If the driver does not support read-after-write verification, the verify flag has 
no effect. 

• Function 54H (Get Verify Flag) can be used to check the current setting of the verify 
flag. 

• Verifying data slows disk access during write operations. Because disk errors are rare, 
the default setting of the verify flag is off. 

• Verification can be controlled at the user level with the MS-DOS VERIFY command. 

Related Function 

54H (Get Verify Flag) 

Example 

;************************************************************; 

Function 2EH: Set/Reset Verify Flag 

int set_verify(newvflag) 

char newvflag; 

Returns 0. 

;************************************************************; 

127 4 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1110 - 1284/1582



cProc set_verify,PUBLIC 
parrnB newvflag 
cBegin 

rnov al,newvflag 
rnov al),2eh 
int 21h 
xor ax, ax 

cEnd 

Get new value of verify flag. 
Set function code. 
Ask MS-DOS to store flag. 
Return 0. 

Interrupt 21H Function 2EH 

Section V.· System Calls 1275 

HUAWEI EX. 1110 - 1285/1582



Interrupt 21H Function 2FH 

Interrupt 21H (33) 
Function 2FH ( 47) 
Get DTA Address 

Function 2FH returns the current disk transfer area (DTA) address. 

To Call 

AH =2FH 

Returns 

ES:BX = segment:offset of current DTA address 

Programmer's Notes 

2.0 and later 

• Function 2FH returns the base address of the current DTA. MS-DOS has no way of 
knowing the size of the buffer at that address; the program must ensure that the buffer 
pointed to by the DTA address is large enough to hold any records transferred to it. 

• The current DTA address can be set with Function lAH (Set DTA Address). If the DTA 
address is not set, MS-DOS uses a default buffer of 128 bytes located at offset SOH in 
the program segment prefix (PSP). 

Related Function 

lAH (Set DTA Address) 

Example 

cProc 

cBegin 

cEnd 

;*********.***************************************************; 

Function 2FH: Get DTA Address 

char far *get-DTA() 

\ 
Returns a far pointer to the DTA buffer. 

;************************************************************; 

get_DTA,PUBLIC 

mov ah,2fh 

int 21h 

mov ax,bx 

mov dx,es 

Set function code. 

Ask MS-DOS for current DTA address. 

Return offset, in AX. 

Return segment in DX. 

1276 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1286/1582



Interrupt 21H Function 30H 

Interrupt 21H (33) 
Function 30H ( 48) 
Get MS-DOS Version Number 

2.0 and later 

Function 30H returns the major and minor version numbers for MS-DOS versions 2.0 and 
later. 

To Call 

AH =30H 
AL =OOH 

Returns 

AL 
AH 
BH 

= major version number (for example, 3 for MS-DOS version 3.x) 
=minor version number (for example, OAH for MS-DOS version x.lO) 
=original equipment manufacturer's (OEM's) serial number (OEM 

BL:CX 
dependent- usually OOH for PC-DOS, OFFH or other values for MS-DOS) 

= 24-bit user serial number (optional; OEM dependent) 

Programmer's Notes 

• With MS-DOS versions l.x, Function 30H returns OOH in the AL register; the value 
returned in AH is variable and not representative of the actuall.x minor version 
number. 

• Function 30H supplies the MS-DOS version number to an application program that 
might require features of the operating system that are not available in all versions. If 
an application attempts to use such features with the wrong version of MS-DOS, the 
results are unpredictable. 

Applications requiring MS-DOS version 2.0 or later should use Function 30H to check 
for versions l.x. Because versions l.x do not contain predefined handles for displaying 
error messages, Function 02H (Character Output) or Function 09H (Display String) 
must be used with those versions. Similarly, applications running under versions l.x 
cannot terminate through a call to Function 4CH (Terminate Process with Return 
Code). 

Related Functions 

None 

Section V.· System Calls 1277 

HUAWEI EX. 1110 - 1287/1582



Interrupt 21H Function 30H 

Example 

1278 

;************************************************************; 

Function 30H: Get MS-DOS Version Number 

int DOS_version() 

Returns number of MS-DOS version, with 
major version in high byte, 

minor version in low byte. 

;************************************************************; 

cProc DQS_version,PUBLIC 

cBegin 

cEnd 

mov 

int 
xchg 

ax,3000H 

21h 

al,ah 

The MS-DOS Encyclopedia 

Set function code and clear AL. 

Ask MS-DOS for version number. 

Swap major and minor numbers. 

HUAWEI EX. 1110 - 1288/1582



Interrupt 21H (33) 
Function 31H ( 49) 
Terminate and Stay Resident 

Interrupt 21H Function 31H 

2.0 and later 

Function 31H terminates a program and returns control to the parent process (usually 
COMMAND. COM) but keeps the terminated program resident in memory. 

To Call 

AH =31H 
AL = return code 
DX = number of paragraphs of memory to be reserved for cu~rent process 

Returns 

Nothing 

Programmer's Notes 

• The following interrupt vectors are restored from the program segment prefix (PSP) 
of the terminated program: 

PSPOffset 

OAH 
OEH 
12H 

Vector for Interrupt 

Interrupt 22H (terminate routine) 
Interrupt 23H (Control-Chandler) 
Interrupt 24H (critical error handler) (versions 2.0 and later.) 

• The minimum amount of memory a process can reserve is 6 paragraphs (60H bytes), 
which constitutes the initial portion of the process's PSP (including the reserved 
areas). 

• The amount of memory required by the program is not necessarily the same as the 
size of the file that holds the program on disk. The program must allow for its PSP and 
stack in the amount of memory reserved; on the other hand, the memory occupied by 
code and data used only during program initialization frequently can be discarded as 
a side effect of the Function 31H call. 

Before Function 31H is called, memory allocated to the terminating process's environ­
ment block should be released by loading ES with the segment value at offset 2CH in 
the PSP (the segment address of the environment) and calling Function 49H (Free 
Memory Block). 

4 • The terminating process should return a completion code in the AL register. If the 
program terminates normally, the return code should be OOH. A return code of OlH or 
greater usually indicates that termination was caused by an error encountered by 
the process. 

Section V.· System Calls 1279 

HUAWEI EX. 1110 - 1289/1582



Interrupt 21H Function 31H 

The parent process can retrieve the return code with Function 4DH (Get Return Code 
of Child Process). If control returns to COMMAND. COM, the return code can be 
tested with an ERRORLEVEL statement in a batch file. 

• After terminating the current process, MS-DOS attempts to set the program's memory 
allocation to the amount specified in DX. 

• Function 31H is most often used for memory-resident utilities and subroutine libraries 
that can be accessed using interrupts. 

• This function is preferable to Interrupt 27H (Terminate and Stay Resident) because it 
allows programs that are larger than 64 KB to remain resident, allows the terminating 
program to pass a return code to the parent process, and does not require that the CS 
register contain the PSP address. 

Related Functions 

48H (Allocate Memory Block) 
49H (Free Memory Block) 
4AH (Resize Memory Block) 
4BH (Load and Execute Program) 
4CH (Terminate Process with Return Code) 
4DH (Get Return Code of Child Process) 

Example 

cProc 
parmB 

parmw 
cBegin 

cEnd 

;************************************************************; 

Function 31H: Terminate and Stay Resident 

void keep_process(exit_code,nparas) 

int exit_code,nparas; 

Does NOT return! 

;************************************************************: 

keep_process,PUBLIC 
exit_code 

nparas 

mov al,exit_code 

mov dx,nparas 

mov ah,31h 

int 21h 

Get return code. 

Set DX to number of paragraphs the 
program wants to keep. 

Set function code. 

Ask MS-DOS to keep process. 

1280 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1290/1582



Interrupt 21H (33) 
Function 33H (51) 
Get/Set Control-C Check Flag 

Function 33H gets or sets the status of the Control-C check flag. 

To Call 

AH =33H 
AL =OOH 

01H 

If ALis 01H: 

DL =OOH 
01H 

Returns 

AL = OOH 
FFH 

get current Control-C check flag 
set Control-C check flag to value in DL 

set Control-C check flag to off 
set Control-C check flag to on 

flag set successfully 
code in AL on call not OOH or 01H 

If AL was OOH on call: 

DL =OOH 
01H 

Control-C check flag off 
Control-C check flag on 

Programmer's Notes 

Interrupt 21H Function 33H 

2.0 and later 

• If the Control-C check flag is off, MS-DOS checks for a Control-C entered at the key­
board only during servicing of the character I/0 functions, 01H through OCH. If the 
Control-C check flag is on, MS-DOS also checks for user entry of a Control-C during 
servicing of other functions, such as file and record operations. 

• The state of the Control-C check flag affects all programs. If a program needs to 
change the state of Control-C checking, it should save the original flag and restore it 
before terminating. 

Related Functions 

None 

Section V.· System Calls 1281 

HUAWEI EX. 1110 - 1291/1582



Interrupt 21H Function 33H 

Example 

cProc 

parmB 

parmB 

cBegin 

cEnd 

;************************************************************; 

Function 33H:. Get/Set Control-C Check Flag 

int controlC(func,state) 
int func,state; 

Returns current state of Control-C flag. 

;************************************************************; 

controlC,PUBLIC 

func 

state 

mbv al,func 

mov dl,state 

mov ah,33h 

int 21h 

mov al,dl 

cbw 

Get set/reset function. 

Get new value if present. 
MS-DOS Ac check function. 

Call MS-DOS. 

Return current state. 
Clear high byte of return value. 

1282 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1292/1582



Interrupt 21H (33) 
Function 34H (52) 
Return Address of InDOS Flag 

Interrupt 21H Function 34H 

2.0 and later 

Function 34H returns the address of the InDOS flag, which reflects the current state of 
Interrupt 21H function processing. 

Note: Microsoft cannot guarantee that the information in this entry will be valid for future 
versions of MS-DOS. 

To Call 

AH =34H 

Returns 

ES:BX = segment: offset of InDOS flag 

Programmer's Notes 

• The InDOS flag is a byte within the MS-DOS kernel. The value in InDOS is incre­
mented when MS-DOS begins execution of an Interrupt 21H function and decre­
mented when MS-DOS's processing of that function is completed. Thus, the value 
of InDOS is zero only when no Interrupt 21H processing is occurring. 

• The InDOS flag is one of the elements used in terminate-and-stay-resident (TSR) pro­
grams to determine when the TSR can be executed safely. 

Related Functions 

None 

Example 

;************************************************************; 

Function 34H: Get Return Address of InDOS Flag 

char far *inDOS_ptr() 

Returns a far pointer to the MS-DOS inDOS flag. 

;************************************************************; 

cProc inDOS_ptr,PUBLIC 

cBegin 

cEnd 

rnov 
int 

rnov 
rnov 

ah,34h 

21h 

ax,bx 

dx,es 

InDOS flag function. 

Call MS-DOS. 
Return offset in AX. 

Return segment in DX. 

Section V: System Calls 1283 

HUAWEI EX. 1110 - 1293/1582



Interrupt 21H Function 35H 

Interrupt 21H (33) 
Function 35H (53) 
Get Interrupt Vector 

2.0 and later 

Function 35H returns the address stored in the interrupt vector table for the handler 
associated with the specified interrupt. 

To Call 

AH =35H 
AL = interrupt number 

Returns 

ES:BX = segment: offset of handler for interrupt specified in AL 

Programmer's Note 

• Interrupt vectors should always be read with Function 35H and set with Function 25H 
(Set Interrupt Vector). Programs should never attempt to read or change interrupt 
vectors directly in memory. 

Related Function 

25H (Set Interrupt Vector) 

Example 

cProc 
parmB 

cBegin 

cEnd 

;************************************************************; 

Function 35H: Get Interrupt Vector 

typedef void (far *FCP) (); 
FCP get_vector(intnum) 

int intnum; 

Returns a far code pointer that is the 

segment:offset of the interrupt vector. 

;************************************************************; 

get_vector,PUBLIC 

intnum 

mov al,intnum 

mov ah,35h 

int 21h 

mov ax,bx 
mov dx,es 

Get interrupt number into AL. 

Select "get vector" function. 

Call MS-DOS. 

Return vector offset. 

Return vector segment. 

1284 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1294/1582



Interrupt 21H (33) 
Function 36H (54) 
Get Disk Free Space 

Interrupt 21H Function 36H 

2.0 and later 

Function 36H returns disk-storage information for the specified drive. 

To Call 

AH =36H 
DL = drive specification (0 = default drive, 1 = drive A, 2 = drive B, and so on) 

Returns 

If function is successful: 

AX = number of sectors per cluster 
BX = number of clusters available 
ex = number of bytes per sector 
DX = number of clusters on drive 

If function is not successful: 

AX =FFFFH 

Programmer's Notes 

invalid drive number in DL 

• The AX register should be checked for a value of FFFFH (error) before information 
returned by this function is used. 

• The number of bytes of free storage remaining on the disk can be calculated by 
multiplying available clusters times sectors per cluster times bytes per sector (BX • 
AX•CX). 

• Function 36H regards "lost" clusters (clusters that are allocated in the file allocation 
table [FA11 but do not belong to a file) as being in use and subtracts them from the 
amount of available storage, exactly as if they were allocated to a file. 

• With MS-DOS versions 2.0 and later, Function 36H should be used in preference to the 
FCB Functions 1BH (Get Default Drive Data) and 1CH (Get Drive Data). 

Related Functions 

1BH (Get Default Drive Data) 
1CH (Get Drive Data) 

Section V: System Calls 1285 

HUAWEI EX. 1110 - 1295/1582



Interrupt 21H Function 36H 

Example 

cProc 

parmB 

cBegin 

fsp: 

cEnd 

;***********************************~************************; 

Function 36H: Get Disk Free Space 

long free_space{drive_ltr) 

char drive_ltr; 

Returns the number of bytes free as 
a long integer. 

;************************************************************; 

free_space,PUBLIC 

drive_ltr 

mov dl,drive_ltr 

or dl,dl 

jz fsp 

and dl,not 20h 

sub dl, 'A'-1 

mov ah,36h 

int 21h 

mul ex 
mul bx 

Get drive letter. 

Leave 0 alone. 

Convert letter to uppercase. 

Convert to drive number: 'A' 1, 
'B' = 2, etc. 

Set function code. 

Ask MS-DOS to get disk information. 

Bytes/sector • sectors/cluster 

* free clusters. 

1286 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1296/1582



Interrupt 21H (33) 
Function 38H (56) 
Get/Set Current Country: Get Current Country 

Interrupt 21H Function 38H 

2.0 and later 

Function 38H includes two subfunctions that either get or set country data, depending on 
the value in the DX register when the function is called. 

With MS-DOS versions 2.0 and later, if DX contains any value other than FFFFH, the Get 
Current Country subfunction is invoked. Information on date, currency, and other country­
specific formats is then returned in a buffer specified by the calling program. The country 
code is usually the same as the country's international telephone prefix. 

To Call 

AH =38H 

With MS-DOS versions 2.x: 

AL 
DS:DX 

= OOH current country 
= segment:offset of 32-byte buffer 

With MS-DOS versions 3.x: 

AL = OOH current country 
01-FEH country code between 1 and 254 
FFH country code of 255 or greater, specified in BX 

BX 
DS:DX 

Returns 

=·country code if AL = FFH 
= segment: offset of 34-byte buffer 

If function is successful: 

Carry flag is clear. 

=country code (MS-DOS version 3.x only) BX 
DS:DX = segment:offset of buffer containing country information 

If function is not successful: 

Carry flag is set. 

AX = error code: 
02H invalid country code 

Section V· System Calls 1287 

HUAWEI EX. 1110 - 1297/1582



Interrupt 21H Function 38H 

Programmer's Notes 

• With MS-DOS versions 2.x, the Get Current Country subfunction returns the following 
information for the current country in the 32-byte country-data buffer (ASCIIZ format 
is an ASCII character string ending in a zero byte): 

Offset 

OOH 

02H 
04H 
06H 
08H 

Type 

Word 

ASCIIZ 
ASCIIZ 
ASCIIZ 
24 bytes 

Description 

Date format: 
0 = United States (m/d/y) 
1 =Europe (d/m/y) 
2 =Japan (y/m/d) 

Currency symbol 
Character used as thousands separator 
Character used as decimal separator 
Reserved 

• With MS-DOS versions 3.x, the Get Current Country subfunction returns the following 
information for the specified country in the 34-byte country-data buffer: 

Offset Type 

OOH Word 

02H ASCIIZ 

07H ASCIIZ 
09H ASCIIZ 
OBH ASCIIZ 
ODH ASCIIZ 
OFH Byte 

10H Byte 

1288 TheMS-DOS Encyclopedia 

Description 

Date format: 
0 = United States (m/d/y) 
1 =Europe (d/m/y) 
2 =Japan (y/m/d) 

Currency symbol (5 bytes, as opposed to 2 in versions 2.x 
ofMS-DOS) 

Character used as thousands separator 
Character used as decimal separator 
Character used as date separator 
Character used as time separator 
Position of currency symbol; possible values are 

OOH Currency symbol precedes value with 
no space 

01H Currency symbol follows value with 
no space 

02H Currency symbol precedes value with 
one space 

03H Currency symbol follows value with 
one space 

Number of decimal places in currency 

(more) 

HUAWEI EX. 1110 - 1298/1582



Interrupt 21H Function 38H 

Offset Type Description 

llH Byte Time format (OOH = 12-hour clock; 01H = 24-hour clock) 
12H Dword Case-mapping call address (See Programmer's Notes 

below.) 
16H ASCIIZ Character used as separator in data lists 
18H 10bytes Reserved 

• The case-mapping call address (MS-DOS versions 3.x only) is the segment:offset 
of a FAR procedure that performs country-specific mapping on ASCII characters in 
the range SOH through OFFH. The character to be mapped must be placed in the AL 
register before the call is made. If the character has an uppercase value, that value is 
returned in AL. If the character has no such value, AL is unchanged. 

• Function 59H (Get Extended Error Information) provides further information on any 
error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Function 

38H (Set Current Country subfunction) 

Example 

cProc 
parmB 

parmDP 
cBegin 

cc_ok: 

cEnd 

;************************************************************; 

Function 38H: Get/Set Current Country Data 

int country_info(country,pbuffer) 

char country,*pbuffer; 

Returns -1 if the "country" code is invalid. 

;************************************************************; 

country_info,PUBLIC,ds 

country 

pbuffer 

mov al,country 

loadDP ds,dx,pbuffer 

mov ah,38h 

int 21h 

jnb cc_ok 

mov ax,-1 

Get country code. 

Get buffer pointer (or -1). 

Set function code. 

Ask MS-DOS to get country 

information. 

Branch if country code OK. 

Else return -1 . 

Section V.· System Calls 1289 

HUAWEI EX. 1110 - 1299/1582



Interrupt 21H Function 38H 

Interrupt 21H (33) 
Function 38H (56) 
Get/Set Current Country: Set Current Country 

3.0 and later 

Function 38H includes two subfunctions that either get or set country data, depending 
on the value in the DX register when the function is called. 

With MS-DOS versions 3.0 and later, the Set Current Country subfunction is invoked if 
Function 38H is called with DX = FFFFH (-1). This subfunction selects the country for 
which subsequent calls to Get Current Country will return information. The country code 
used with this function is usually the same as the country's international telephone prefix. 

To Call 

AH =38H 
AL = country code for a code less than 255 

FFH for country code of 255 or greater, specified in BX 
BX = country code if AL = FFH 
DX = FFFFH (-1) 

Returns 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
02H 

Programmer's Notes 

invalid country code 

• MS-DOS normally uses the country code associated with the current KEYBxx 
keyboard driver file, if any. Otherwise, the default country code is OEM dependent. 

• Function 59H (Get Extended Error Information) provides further information on any 
error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Function 

38H (Get Current Country subfunction) 

Example 

See Function 38H Subfunction Get Current Country for example. 

1290 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1300/1582



I 

I 
\. 

I 
I 

I 
I 
I 

Interrupt 21H (33) 
Function 39H (57) 
Create Directory 

Function 39H creates a subdirectory using the specified path. 

To Call 

AH 
DS:DX 

Returns 

=39H 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
05H access denied 

Programmer's Notes 

• The path must be a null-terminated ASCII string (ASCIIZ). 

Interrupt 21H Function 39H 

2.0 and later 

• MS-DOS places the current directory (.) and parent directory( •• ) entries in all new 
directories. 

• Function 39H returns error code 05H (access denied) in the following cases: 
- File or directory with the same name already exists in the specified path. 
- Parent directory is the root directory and the root directory is full. 
- Path specifies a device. 
- Program is running on a network under MS-DOS version 3.1 or later and the user 

does not have Create access to the parent directory. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

3AH (Remove Directory) 
3BH (Change Current Directory) 
47H (Get Current Directory) 

Section V.· System Calls 1291 

HUAWEI EX. 1110 - 1301/1582



Interrupt 21H Function 39H 

Example 

1292 

;****************************************************-********; 

Function 39H: Create Directory 

int make_dir(pdirpath) 
char *pdirpath; 

Returns 0 if directory created OK, 
otherwise returns error code. 

;************************************************************; 

cProc make_dir,PUBLIC,ds 

parmDP pdirpath 
cBegin 

mct__err: 

cEnd 

loadDP ds,dx,pdirpath 
mov ah, 39h 
int 21h 
jb md__err 

xor ax,ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 
Set function code. 
Ask MS-DOS to make new subdirectory. 
Branch on error. 
Else return 0. 

HUAWEI EX. 1110 - 1302/1582



Interrupt 21H (33) 
Function 3AH (58) 
Remove Directory 

Function 3AH removes (deletes) the specified subdirectory. 

To Call 

AH 
DS:DX 

Returns 

=3AH 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
05H access denied 
lOH current directory was specified 

Programmer's Notes 

• The path musi: be a null-terminated ASCII string (ASCIIZ). 

Interrupt 21H Function 3AH 

2.0 and later 

• Function 3AH returns error code 05H (access denied) in the following cases: 
- Directory is not empty. 
- Root directory was specified. 
- Current directory was specified. 
- Path does not specify a valid directory. 
- Directory is malformed (. and .. not first two entries). 
- User has insufficient access rights on a network running under MS-DOS version 3.1 

or later. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

39H (Create Directory) 
3BH (Change Current Directory) 
47H (Get Current Directory) 

Section V: System Calls 1293 

HUAWEI EX. 1110 - 1303/1582



Interrupt 21H Function 3AH 

Example 

1294 

;************************************************************; 

Function 3AH: Remove Directory 

int remove_dir(pdirpath) 

char *pdirpath; 

Returns 0 if directory was removed, 

otherwise returns error code. 

;************************************************************; 

cProc remove_dir,PUBLIC,ds 

parmDP pdirpath 

cBegin 

rcLerr: 

cEnd 

loadDP 

mov 

int 

jb 

xor 

ds,dx,pdirpath 

ah,3ah 

21h 
rcLerr 

ax, ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 

Set function code. 
Ask MS-DOS to delete subdirectory. 

Branch on error. 

Else return 0. 

HUAWEI EX. 1110 - 1304/1582



Interrupt 21H (33) 
Function 3BH (59) 
Change Current Directory 

Interrupt 21H Function 3BH 

2.0 and later 

Function 3BH changes the current directory to the specified path. 

To Call 

AH 
DS:DX 

Returns 

=3BH 
= segment:offset of ASCIIZ path 

If function is successful: 

Carry flag is clear. 

If function is not successful: 

Carry flag is set. 

AX = error code: 
· 03H path not found 

Programmer's Notes 

• The path must be a null-terminated ASCII string (ASCIIZ). 
• Before a call to Function 3BH, Function 47H (Get Current Directory) can be used 

to determine the current directory so that the original directory can be restored later 
(for example, on termination of the program). 

• Function 3BH can be used with programs that rely on either FCB-based or handle­
based calls. It is the only method of changing the current directory that is supported 
byMS-DOS. 

• The path string is limited to a total of 64 characters, including separators. 
• Function 59H (Get Extended Error Information) provides further information on any 

error- in particular, the code, class, recommended corrective action, and locus of 
the error. 

Related Functions 

39H (Create Directory) 
3AH (Remove Directory) 
47H (Get Current Directory) 

Section V: System Calls 1295 

HUAWEI EX. 1110 - 1305/1582



Interrupt 21H Function 3BH 

Example 

1296 

;************************************************************: 

Function 3BH: Change Current Directory 

int change_dir(pdirpath) 
char *pdirpath; 

Returns 0 if directory was changed, 
otherwise returns error code. 

;************************************************************; 

cProc change_dir,PUBLIC,ds 
parmDP pdirpath 
cBegin 

cd....err: 
cEnd 

loadDP 
mov 
int 
jb 
xor 

ds,dx,pdirpath 
ah, 3bh 
21h 
cd....err 
ax, ax 

The MS-DOS Encyclopedia 

Get pointer to pathname. 
Ask MS-DOS to move to 
different directory. 
Branch on error. 
Else return 0. 

HUAWEI EX. 1110 - 1306/1582



Interrupt 21H (33) 
Function 3CH (60) 
Create File with Handle 

Interrupt 21H Function 3CH 

2.0 and later 

Function 3CH creates a file, assigns it the attributes specified, and returns a 16-bit handle 
for the file. If the named file already exists, Function 3CH opens it and truncates it to zero 
length. 

To Call 

AH 
ex 
DS:DX 

Returns 

=3CH 
=attribute 
= segment:offset of ASCIIZ pathname 

If function is successful: 

Carry flag is clear. 

AX = handle number 

If function is not successful: 

Carry flag is set. 

AX = error code: 
03H path not found 
04H too many open files 
05H access denied 

Programmer's Notes 

• Function 3CH is preferable to Function 16H (Create File with FCB) for creating a file 
because it supports full pathnames. Function 16H should be used only if compatibility 
with versions 1.x of MS-DOS is required. 

• The pathname must be a null-terminated ASCII string (ASCIIZ). 
• Bits 0 through 2 of the 2-byte file attribute in CX determine whether the file is normal, 

read-only, hidden, or system. The attribute codes are 
- OOH normal file 
- OlH read-only file 
- 02H hidden file 

~~~~ 4 Bits 3 through 5 are associated with volume labels, subdirectories, and archive files. 
The volume and subdirectory bits are invalid for Function 3CH and must be set to 0.
Bits 6 through 15 should be set to 0 to ensure future compatibility.

Section V: System Calls 1297

HUAWEI EX. 1110 - 1307/1582

Interrupt 21H Function 3CH

Values can be combined to set several file attributes. For example, if Function 3CH is
called with CX = 0003H, the file created is a read-only hidden file.

• Because Function 3CH truncates an existing file to zero length, any information pre­
viously in the file is lost. Alternative functions that protect against such loss include
the following:

Function 3DH (Open File with Handle) or Function 4EH (Find First File), which
can be used to check for the previous existence of the file before Function 3CH is
called

·Function 5AH (Create Temporary File), which creates a file in the specified sub­
directory and gives it a unique name assigned by MS-DOS
Function 5BH (Create New File), which is similar to Function 3CH but fails if it
finds a file that matches the specified pathname

• After creating a file, Function 3CH sets the position of the file pointer to 0. Thus, the
next read or write operation takes place at the beginning of the file.

• Function 3CH returns error code 04H (too many open files) if no handle is currently
available. With MS-DOS versions 3.2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Error code 05H (access denied) is returned if the file is to be created in the root direc­
tory and the root is full or if a read-only file with the same name already exists in the
specified subdirectory.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file specified.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FCB)
43H (Get/Set File Attributes)
5AH (Create Temporary File)
5BH (Create New File)

Example

;**;

Function 3CH: Create File with Handle

int create(pfilepath,attr)

char *pfilepath;
int attr;

Returns -1 if file was not created,

otherwise returns file handle.

;**;

1298 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1308/1582

cProc create,PUBLIC,ds
parmDP pfilepath
parmW attr
cBegin

loadDP ds; dx, pfilepath
mov cx,attr
mov ah,3ch
int 21h
jnb cr_ok

mov ax, -1
cr_ok:

cEnd

Interrupt 21H Function 3CH

Get pointer to pathname.
Get new file's attribute.

Ask MS-DOS to make a new file.

Branch if MS-DOS returned handle.
Else return -1.

Section V.· System Calls 1299

HUAWEI EX. 1110 - 1309/1582

Interrupt 21H Function 3DH

Interrupt 21H (33)
Function 3DH (61)
Open File with Handle

2.0 and later

Function 3DH opens the specified file and returns a 16-bit handle number for subsequent
access to the file.

To Call

AH =3DH

With versions 2.x of MS-DOS:

AL = file-access code:

Bits

3-7
0-2

Value

00000
000
001
010

DS:DX = segment: offset of ASCIIZ pathname

With versions 3.x of MS-DOS:

AL = file-access, file-sharing, and inheritance codes:

Bits Value

7 (inherit bit) 0
1

4-6 (sharing mode; 000
file access granted 001
to other processes) 010

011
100

3 0
0-2 (access code; 000

file usage) .001
010

DS:DX = segment: offset of ASCIIZ pathname

1300 The MS-DOS Encyclopedia

Meaning

Reserved
Read-only access
Write-only access
Read/write access

Meaning

Child process inherits file
Child process does not inherit

file
Compatibility mode
Deny read/write access
Oeny write access
Deny read access
Deny none
Reserved
Read-only access
Write-only access
Read/write access

HUAWEI EX. 1110 - 1310/1582

Interrupt 21H Function 3DH

Returns

If function is successful:

Carry flag is clear.

AX = handle number

If function is not successful:

Carry flag is set.

AX = error code:
02H file not found
03H path not found
04H too many open files
05H access denied
OCH invalid access code

Programmer's Notes

• Function 3DH is preferable to Fu?ction OFH (Open File with FCB) because it allows
the use of pathnames. Function OFH should be used only if compatibility with ver­
sions l.x of MS-DOS is required.

• Function 3DH opens any file matching the pathname in DS:DX, including hidden and
system files.

• The pathname must be a null-terminated ASCII string(ASCIIZ).
• Function 3DH returns error code 04H (too many open files) if no handle is currently

available. With MS-DOS versions 3.2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Function 3DH returns error code 05H (access denied) if the pathname specifies a
directory or volume label or if read/write access was requested for a read-only file.

Function 3DH returns error code OCH (invalid access code) if bits 0-2 in AL contain
any value other than 000, 001, or 010.

• With MS-DOS versions 2.x, only bits 0-2 of the byte in AL are meaningful; they should
contain the type of access allowed for the file. Bits 3-7 should always be zero.

With MS-DOS versions 3.0 and later, networking capabilities require bits 4-7, as well
as 0-2, to be set. (Bit 3 is reserved and should be 0.)

Bit 7, the inherit bit, should be set to indicate whether child processes created by the
current process with Function 4BH (Load and Execute Program) either can (0) or can­
not (1) inherit the file. When a process inherits a file, it also inherits the access and
sharing modes.

Section V.· System Calls 1301

HUAWEI EX. 1110 - 1311/1582

Interrupt 21H Function 3DH

Bits 4-6 are called the "sharing code"; they indicate the type of access other users on
the network can have to the file. The five sharing modes and the conditions under
which they pertain are as follows:
- mode 000 (compatibility). Allows other programs running on the same machine

unlimited access to the file. Programs running on other machines cannot access
the file across the network unless it has the read-only attribute. An attempt to open
the file in compatibility mode fails if the file has already been opened with any
other sharing mode.

- 001 (deny read and write access). Provides exclusive access to the file. Any subse­
quent attempts by others (including the current process) to open the file fail. This
mode fails if the file has already been opened in compatibility mode or for read or
write access, even by the current process.

- 010 (deny write access). Allows other processes to open the file for read-only ac­
cess. This mode fails if the file has already been opened in compatibility mode or
for write access by any other process.

- 011 (deny read access). Allows other processes to open the file for write-only ac­
cess. This mode fails if the file has already been opened in compatibility mode or
for read access by any other process.

- 100 (deny none). Similar to compatibility mode, but does not allow other processes
to open the file in compatibility mode. This mode fails if the file has already been
opened in compatibility mode by any other process.

• When the file is opened, the position of the file pointer is set to 0. Function 42H
(Move File Pointer) can be used to change its position.

• With MS-DOS versions 3.0 and later, if this function fails because of a file-sharing
error, the operating system issues an Interrupt 24H (Critical Error Handler Address)
with error code 02H (drive not ready). Function 59H (Get Extended Error Informa­
tion) must be used to find the extended error code specifying the type of sharing
violation that occurred.

Related Functions

OFH (Open File with FCB)
3EH (Close File)
3FH (Read File or Device)
40H (Write File or Device)
42H (Move File Pointer)
43H (Get/Set File Attributes)
57H (Get/Set Date/Time of File)

1302 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1312/1582

Example

cProc
parmDP

parmB

cBegin

op_ok:

cEnd

Interrupt 21H Function 3DH

;**;

Function 3DH: Open File 1-1i th Handle

int open(pfilepath,mode)

char *pfilepath; int mode;

Modes:

0: Read

1 : Write

2: Read/Write

Returns -1 if file was not opened,
otherwise returns file handle.

;**;

open,PUBLIC,ds
pfilepath

mode

loadDP ds,dx,pfilepath
mov al,mode
mov ah,3dh
int 21h

jnb op_ok

mov ax,-1

Get pointer to pathname.
Get read/write mode.

Request MS-DOS to open the
existing file.

Branch if MS-DOS returned handle.
Else return -1.

Section V.· System Calls 1303

HUAWEI EX. 1110 - 1313/1582

Interrupt 21H Function 3EH

Interrupt 21H (33)
Function 3EH (62)
Close File

Function 3EH closes the file referenced by the specified handle.

To Call

AH = 3EH
BX = handle number

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
06H invalid handle number

Programmer's Notes

2.0 and later

• The handle in BX must be one that was returned by a successful call to one of the
following functions:
- 3CH (Create File with Handle)
- 3DH (Open File with Handle)
- 5AH (Create Temporary File)
- SBH (Create New File)

• If the file has been modified, truncated, or extended, Function 3EH updates the cur­
rent date, time, and file size in the directory entry.

• All internal MS-DOS buffers for the file, including directory and file allocation table
(FAT) buffers, are flushed to disk.

• With MS-DOS versions 3.0 and later, a program must remove all file locks in effect
before it closes a file. The result of closing a file with active locks is unpredictable.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

1304 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1314/1582

Related Functions

lOH (Close File with FCB)
3CH (Create File with Handle)
3DH (Open File with Handle)
5AH (Create Temporary File)
5BH (Create New File)

Example

Interrupt 21H Function 3EH

!**;

cProc
parmW
cBegin

cl_ok:

cEnd

Function 3EH: Close File

int close(handle)
int handle;

Returns -1 if file was not closed,
otherwise returns 0.

;**;

close, PUBLIC
handle

mov bx,handle Get handle.
mov ah,3eh Set function codes.
int 21h Ask MS-DOS to close handle.
mov al,O
jnb cl_ok Branch if no error.
mov al,-1 Else return -1.

cbw Extend result.

Section V.· System Calls 1305

HUAWEI EX. 1110 - 1315/1582

Interrupt 21H Function 3FH

Interrupt 21H (33)
Function 3FH (63)
Read File or Device

Function 3FH reads from the file or device referenced by a handle.

To Call

AH
BX
ex
DS:DX

Returns

=3FH
= handle number
= number of bytes to read
= segment:offset of data buffer

If function is successful:

Carry flag is clear.

AX
DS:DX

= number of bytes read from file
= segment:offset of data read from file

If function is not successful:

Carry flag is set.

AX = error code:
05H access denied
06H invalid handle

Programmer's Notes

2.0 and later

• Data is read from the file beginning at the current location of the file pointer. After a
successful read, the file pointer is updated to point to the byte following the last byte
read.

• If Function 3FH returns OOH in the AX register, the function attempted to read when
the file pointer was at the end of the file. If AX is less than CX, a partial record at the
end of the file was read.

• Function 3FH can be used with all handles, including standard input (normally the
keyboard). When reading from standard input, this function normally reads charac­
ters only to the first carriage-return character. Thus, the number of bytes read in AX
will not necessarily match the length requested in CX.

• On networks running under MS-DOS version 3.1 or later, the user must have Read
access to the directory and file containing the information to be read.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

1306 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1316/1582

Interrupt 21H Function 3FH

Related Functions

40H (Write File or Device)
42H (Move File Pointer)
59H (Get'Extended.Error Information)

Example

cProc
parmW
parmDP
parmW
cBegin

rcLok:
cEnd

;**;

Function 3FH: Read File or Device

int read(handle,pbuffer,nbytes)
int handle,nbytes;
char *pbuffer;

Returns -1 if there was a read error,
otherwise returns number of bytes read.

;**;

read,PUBLIC,ds
handle
pbuffer
nbytes

mov bx 1 handle
loadDP ds,dx,pbuffer
mov cx,nbytes
mov ah,3fh
int 21h
jnb rcLok
mov ax,-1

Get handle.
Get pointer to buffer.
Get number of bytes to read.
Set function code.
Ask MS-DOS to read ex bytes.
Branch if read worked.
Else return -1.

Section V: System Calls 1307

HUAWEI EX. 1110 - 1317/1582

Interrupt 21H Function 40H

Interrupt 21H (33)
Function 40H (64)
Write File or Device

2.0 and later

Function 40H writes the specified number of bytes to a file or device referenced by a
handle.

To Call

AH
BX
ex
DS:DX

Returns

=40H
=handle
=number of bytes to write
= segment: offset of data buffer

If function is successful:

Carry flag is clear.

AX = number of bytes written to file or device

If function is not successful:

Carry flag is set.

AX = error code:
05H access denied
06H invalid handle

Programmer's Notes

• Data is written to the file or device beginning at the· current location of the file
pointer. After writing the specified data, Function 40H updates the position of the
file pointer and returns the actual number of bytes written in AX.

• Function 40H returns error code 05H (access denied) if the file was opened as read­
only with Function 3CH (Create File with Handle), 3DH (Open File with Handle),
5AH (Create Temporary File), or 5BH (Create New File). On networks running under
MS-DOS version 3.1 or later, access is also denied if the file or record has been locked
by another process.

• The handle number in BX must be one of the predefined device handles (0 through 4)
or a handle obtained through a previous call to open or create a file (such as Function
3CH, 3DH, 5AH, or 5BH).

• If CX = 0, the file is truncated or extended to the current file pointer location. Clusters
are allocated or released in the file allocation table (FAT) as required to fulfill the
request.

1308 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1318/1582

Interrupt 21H Function 40H

• If the handle parameter for Function 40H refers to a disk file and the number of bytes
written (returned in AX) is less than the number requested in CX, the destination disk
is full. The carry flag is not set in this situation.

• Function 59H (Get Extended Error Information) provides further information on any
·error- in partkular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3FH (Read File or Device)
42H (Move File Pointer)

Example

cProc
parmW

parmDP

parmW

cBegin

wr_ok:

cEnd

;**;

Function 40H: Write File or Device

int write(handle,pbuffer,nbytes)

int handle,nbytes;

char *pbuffer;

Returns -1 if there was a write error,

otherwise returns number of bytes written.

;**;

write,PUBLIC,ds

handle

pbuffer

nbytes

mov bx,handle

loadDP ds,dx,pbuffer

mov cx,nbytes

mov ah,40h

int 21h

jnb wr_ok

mov ax,-1

Get handle.

Get pointer to buffer.

Get number of byt.es to write.

Set function code.
Ask MS-DOS to write CX bytes.

Branch if write successful.

Else return -1 .

Section V.· System Calls 1309

HUAWEI EX. 1110 - 1319/1582

Interrupt 21H Function 41H

Interrupt 21H (33)
Function 41H (65)
Delete File

Function 41H deletes the directory entry of the specified file.

To Call

AH
DS:DX

Returns

=41H
= segment: offset of ASCIIZ pathname

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
02H file not found
03H path not found
05H access denied

Programmer's Notes

2.0 and later

• The pathname must be a null-terminated ASCII string (ASCIIZ). Unlike Function 13H
(Delete File), Function 41H does not allow wildcard characters in the pathname.

• Because Function 41H supports the use of full pathnames, it is preferable to Function
13H.

• Function 41H returns error code 05H (access denied) and fails if the file has either a
directory or volume attribute or if it is a read-only file.

A directory can be deleted (if it is empty) with Function 3AH (Remove Directory). A
read-only file can be deleted if its attribute is changed to normal with Function 43H
.(Get/Set File Attributes) before Function 41H is called.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file to be deleted.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3AH (Remove Directory)
43H (Get/Set File Attributes)

1310 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1320/1582

Interrupt 21H Function 41H

Example

;**;

Function 41H: Delete File

int delete(pfilepath)
char *pfilepath;

Returns 0 if file deleted,
otherwise returns error code.

;~***;

cProc delete,PUBLIC,ds
parrnDP pfilepath
cBegin

dl_err:
cEnd

loadDP ds,dx,pfilepath
mov ah, 41h
iht 21h
jb dl_err

xor a:x:,a:x:

Get pointer to pathnarne.
Set function code.
Ask MS-DOS to delete file.
Branch if MS-DOS could not delete
file.
Else return 0.

Section V: System Calls 1311

HUAWEI EX. 1110 - 1321/1582

Interrupt 21H Function 42H

Interrupt 21H (33)
Function 42H (66)
Move File Pointer

2.0 and later

Function 42H sets the position of the file pointer (for the next read/write operation) for .
the file associated with the specified handle.

To Call

AH
AL

=42H
= method code:

OOH byte offset from beginning of file
01H byte offset from current location of file pointer
02H byte offset from end of file

BX
CX:DX

= handle number
= offset value to move pointer:

ex most significant half of a doubleword value
DX least significant half of a doubleword value

Returns

!(function is successful:

Carry flag is clear.

DX:AX = new file pointer position (absolute byte offset from beginning of file)

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function (AL not OOH, 01H, or 02H)
06H invalid handle

Programmer's Notes

• The value in CX:DX is an offset specifying how far the file pointer is to be moved.
With method code OOH, the value in CX:DX is always interpreted as a positive 32-bit
integer, meaning the file pointer is always set relative to the beginning of the file.

With method codes 01H and 02H, the value in CX:DX can be either a positive or nega­
tive 32-bit integer. Thus, method 1 can move the file pointer either forward or back­
ward from its current position; method 2 can move the file pointer either forward or
backward from the end of the file.

1312 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1322/1582

Interrupt 21H Function 42H

• Specifying method code OOH with an offset of 0 positions the file pointer at the begin­
ning of the file. Similarly, specifying method code 02H with an offset of 0 conve­
niently positions the file pointer at the end of the file. With method code 02H offset 0,
the size of the file can also be determined by examining the pointer position returned
by the function.

• Depending on the offset specified in CX:DX, methods 1 and 2 may move the file
pointer to a position before the start of the file. Function 42H does not return an error
code if this happens, but later attempts to read from or write to the file will produce
unexpected errors.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3FH (Read File or Device)
40H (Write File or Device)

Example

cProc
parmw
parmD
parmB
cBegin

:**;

Function 42H: Move File Pointer

long seek(handle,distance,mode)
int handle,mode;
long distance;

Modes:
0: from beginning of file
1: from the current position
2: from the end of the file

Returns -1 if there wa$ a seek error,
otherwise returns long pointer position.

:**:

$eek,PUBtlC
handle
distance
mode

mov bx,handle
les dx,distance
mov cx,es
mov al,mode
mov ah,42h

Get handle.
Get distance into ES:DX.
Put high word of di$tance into ex.
Get move method code.
set function code.

(more)

Section V.· System Calls 1313

HUAWEI EX. 1110 - 1323/1582

Interrupt 21H Function 42H

sLok:

cEnd

int

jnb
mov

cwd

21h
sk_ok

ax,-1

1314 The MS-DOS Encyclopedia

Ask MS-DOS to move file pointer.

Branch if seek successful.
Else return -1 .

HUAWEI EX. 1110 - 1324/1582

Interrupt 21H (33)
Function 43H (67)
Get/Set File Attributes

Function 43H gets or sets the attributes of the specified file.

To Call

AH =43H

To get file attributes:

=OOH AL
DS:DX = segment: offset of ASCIIZ pathname

To set file attributes:

AL
ex

DS:DX

Returns

=01H
= attributes to set:

Bit Attribute

0 Read-only file
1 Hidden file
2 System file
5 Archive

= segment:offset of ASCIIZ pathname

If function is successful:

Carry flag is clear.

ex = attribute .

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function (AL not OOH or 01H)
02H file not found
03H path not found
05H access denied

Interrupt 21H Function 43H

2.0 and later

Section V: System Calls 1315

HUAWEI EX. 1110 - 1325/1582

Interrupt 21H Function 43H

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• Function 43H cannot be used to set or change either a volume-label or directory at­

tribute (bits 3 and 4 of the attribute byte). With MS-DOS versions 3.x, Function 43H
can be used to make a directory hidden or read-only.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file in order to change the read-only, hidden, or
system attribute. The archive bit, however, can be changed regardless of access rights.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

cProc
parmDP

parmB

parmW
cBegin

fa_ok:

cEnd

:**;

Function 43H: Get/Set File Attributes

int file_attr(pfilepath,func,attr)

char *pfilepath;
int func, attr;

Returns -1 for all errors,

otherwise returns file attribute.

:**:

file_attr,PUBLIC,ds
pfilepath

func

attr

loadDP ds,dx,pfilepath
mov al,func

mov cx,attr

mov ah,43h

int 21h

jnb fa_ok

mov cx,-1

mov ax, ex

Get pointer to pathname.

Get/set flag into AL.
Get new attr (if pres"ent).

Set code function.
Call MS-DOS.,

Branch if no error.

Else return -1 .

Return this value.

13}6 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1326/1582

Interrupt 21H Function 44H

Interrupt 2m (33)
Function 44H (68)
IOCTL

2.0 and later

Function 44H is a collection of subfunctions that provide a process a direct path of com­
munication with a device driver. As such, this function is the most flexible means of gain­
ing access to the full capabilities of an installed device.

An IOCTL subfunction is called with 44H in AH and the value for the subfunction in AL. If
a subfunction has minor functions, those values are specified in CL. Otherwise, the BX,
CX, and DX registers are used for such information as handles, drive identifiers, buffer ad­
dresses, and so on.

The subfunctions and the versions of MS-DOS with which they are available are

Subfunction

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH

ODH

Name

Get Device Data
Set Device Data
Receive Control Data from Character Device
Send Control Data to Character Device
Receive Control Data from Block Device
Send Control Data to Block Device
Check Input Status
Check Output Status
Check If Block Device Is Removable
Check If Block Device Is Remote
Check If Handle Is Remote
Change Sharing Retry Count
Generic I/0 Control for Handles

Minor Code 45H: Set Iteration Count
Minor Code 65H: Get Iteration Count

Generic I/0 Control for Block Devices
Minor Code 40H: Set Device Parameters
Minor Code 60H: Get Device Parameters .
Minor Code 41H: Write Track on Logical Drive
Minor Code 61H: Read Track on Logical Drive
Minor Code 42H: Format and Verify Track

on Logical Drive
Minor Code 62H: Verify Track on Logical Drive

MS-DOS
Versions

2.0 and later
2.0 and later
2.0 and later
2.0 and later
2.0 and later
2.0 and later
2.0 and later
2.0 and later
3.0 and later
3.1 and later
3.1 and later
3.1 and later
3.2

3.2

(more)

Section V System Calls 1317

HUAWEI EX. 1110 - 1327/1582

Interrupt 21H Function 44H

Sub function

OEH
OFH

Name

Get Logical Drive Map
Set Logical Drive Map

MS-DOS
Versions

3.2
3.2

These subfunctions are documented, either individually or in related pairs, in the entries
that follow.

1318 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1328/1582

Interrupt 21H Function 44H Subfunction OOH

Interrupt 21H (33) 2.0 and later

Function 44H (68) Subfunction OOH
IOCTL: Get Device Data

Function 44H Subfunction OOH gets information about a character device or file referenced
by a handle.

To Call

AH =44H
AL =OOH
BX = handle number

Returns

If function is successful:

Carry flag is clear.

DX contains information on file or device:

Bit Value

For a file (bit 7 = 0):

8-15 0
7 0
6 0
0-5

For a device (bit 7 = 1):

15
14

8-13
7
6
5

0
1

0
1
0
0
1

Meaning

Reserved.
Handle refers to a file.
File has been written.
Drive number (0 = A, 1 = B, 2 = C, and so on).

Reserved.
Processes control strings transferred by IOCTL Subfunctions 02H

(Receive Control Data from Character Device) and 03H (Send
Control Data to Character Device), set by MS-DOS.

Reserved.
Handle refers to a device.
End of file on input.
Checks for control characters (cooked mode).
Does not check for control characters (raw mode).

(more)

Section V: System Calls 1319

HUAWEI EX. 1110 - 1329/1582

Interrupt 21H Function 44H Subfunction OOH

Bit Value Meaning

4 0 Reserved.
3 1 Clock device.
2 1 Null device.
1 1 Standard output device.
0 1 Standard input device.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid IOCTL subfunction
05H access denied
06H invalid handle

Programmer's Notes

• Bits 8-15 of DX correspond to the upper 8 bits of the device-driver attribute word.
• The handle in BX must reference an open device or file.
• Bit 5 of the device data word for character-device handles defines whether that han­

dle is in raw mode or cooked mode. In cooked mode, MS-DOS checks for Control-C,
Control-P, Control-S, and Control-Z characters and transfers control to the Control-C
exception handler (whose address is saved in the vector for Interrupt 23H) when a
Control-C is detected. In raw mode, MS-DOS does not check for such characters when
1/0 is performed to the handle; however, it will still check for a Control-C entered at
the keyboard on other function calls unless such checking has been turned off with
Function 33H, the BREAK= OFF directive in CONFIG.SYS, or a BREAK OFF com­
mand at the MS-DOS prompt.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

33H (Get/Set Control-C Check Flag)
3CH (Create File with Handle)
3DH (Open File with Handle)

1320 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1330/1582

Example

cProc
parmB
parmW
parmW
cBegin

iocfx:
cEnd

Interrupt 21H Function 44H Subfunction OOH ·

;**;

Function 44H, Subfunctions OOH,01H:
Get/Set IOCTL Device Data

int ioctl_char_flags(setflag,handle,newflags)
int setflag;
int handle;
int newflags;

Set setflag = 0 to get flags, 1 to set flags.

Returns -1 for error, else returns flags.

;**;

ioctl_char_flags,PUBLIC
set flag
handle
newflags

mov al,setflag
and al, 1
mov bx,handle
mov dx,newflags

mov ah,44h
int 21h
mov ax,dx

jnc iocfx
mov ax,-1

Ge.t set flag.
Save only lsb.
Get handle to character device.
Get new flags (they are used only
by "set" option).
Set function code.
Call MS-DOS.
Assume success - prepare to return
flags.
Branch if no error.
Else return error flag.

Section V.· System Calls 1321

HUAWEI EX. 1110 - 1331/1582

·Interrupt 21H Function 44H Subfunction OlH

Interrupt 21H (33)
Function 44H (68) Subfunction OlH
IOCTL: Set Device Data

2.0 and later

Function 44H Subfunction 01H, the complement of IOCTL Subfunction OOH, sets informa­
tion about a character device- but not a file- referenced by a handle.

To Call

AH =44H
AL =01H
BX = handle number
OX = device data word:

Returns

Bit

8-15
7
6
5

4
3
2
1
0

Value

0
1
0
0

1

0
1
1
1
1

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

Meaning

Reserved.
Handle refers to a device.
End of file on input.
Check for control characters

(cooked mode).
Do not check for control characters

(raw mode).
Reserved.
Clock device.
Null device.
Standard output device.
Standard input device.

01H invalid IOCTL subfunction
05H access denied
06H invalid handle

1322 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1332/1582

Interrupt 21H Function 44H Subfunction OlH

Programmer's Notes

• The handle in BX must reference an open device.
• DH must be OOH. If it is not, the carry flag is set and error code OlH (invalid function)

is returned.
• Bit 5 of the device data word for character-device handles selects raw mode or cooked

mode for the handle. In cooked mode, MS-DOS checks for Control-C, Control-P,
Control-S, and Control-Z characters and transfers control to the Control-C exception
handler (whose address is saved in the vector for Interrupt 23H) when a Control-Cis
detected. In raw mode, MS-DOS does not check for such characters when I/0 is per­
formed to the handle; however, it will still check for a Control-C entered at the key­
board on other function calls unless such checking has been turned off with Function
33H, the BREAK=OFF directive in CONFIG.SYS, or a BREAK OFF command at the
MS-DOS prompt.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

33H (Get/Set Control-C Check Flag)
3CH (Create File with Handle)
3DH (Open File with Handle)

Example

See SYSTEM CALLS: INTERRUPT 21H: Function 44H Subfunction OOH.

Section V: System Calls 1323

HUAWEI EX. 1110 - 1333/1582

Interrupt 21H Function 44H Subfunctions 02H and 03H

Interrupt 21H (33) 2.0 and later

Function 44H (68) Subfunctions 02H and 03H
IOCTL: Receive Control Data from Character Device; Send Control Data to
Character Device

Function 44H Subfunctions 02H and 03H respectively receive and send control strings
from and to a character-oriented device driver.

To Call

AH
AL

BX
ex
DS:DX

Returns

=44H
= 02H receive control strings

03H send control strings
= handle number
= number of bytes to transfer
= segment: offset of data buffer

If function is successful:

Carry flag is clear.

AX = number of bytes transferred

If AL was 02H on call:

Buffer at DS:DX contains data read from device driver.

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function
05H access denied
06H invalid handle
ODH invalid data (bad control string)

Programmer's Notes

• Subfunctions 02H and 03H provide a means of transferring control information of any
type or length between an application program and a character-device driver. They
do not necessarily result in any input to or output from the physical device itself.

• Subfunction 02H can be used to read control information about such features as
device status, availability, and current output location. Subfunction 03H is often used
to configure the driver or device for subsequent I/0; for example. it may be used to set
the baud rate, word length, and parity for a serial communication'S adapter or to initial­
ize a printer for a specific font, page length, and so on. The format of the control data
passed by these subfunctions is driver specific and does not follow any standard.

1324 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1334/1582

Interrupt 21H Function 44H Subfunctions 02H and 03H

• Character-device drivers are not required to support IOCTL Subfunctions 02H and
03H. Therefore, Subfunction OOH (Get Device Data) should be called before either
Subfunction 02H or 03H to determine whether a device can process control strings.
If bit 14 of the device data word returned bySubfunction OOH is set, the device driver
supports IOCTL Subfunctions 02H and 03H.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

44H Subfunction OOH (Get Device Data)
44H Subfunction 04H (Receive Control Data from Block Device)
44H Subfunction 05H (Send Control Data to Block Device)

Example

cProc
parmB

parmW

parmDP

parmW

cBegin

iccx:

cEnd

;**;

Function 44H, Subfunctions 02H,03H:

IOCTL Character Device control

int ioctl_char_ctrl(recvflag,handle,pbuffer,nbytes)

int recvflag;

int handle;

char *pbuffer;
int nbytes;

Set recvflag = 0 to receive info, 1 to send.

Returns -1 for error, otherwise returns number of

byte~ sent or received.

;**;

ioctl_char_ctrl,PUBLIC,<ds>

recvflag

handle

pbuffer

nbytes

mov

and

add

mov
mov
loadDP

mov

int

jnc
mov

al,recvflag

al, 1

al,2

bx,handle

cx,nbytes

ds,dx,pbuffer
ah,44h

21h

iccx

ax,-1

Get recvflag.

Keep only lsb.

AL = 02H for receive, 03H for send.
Get character-device handle.

Get number of bytes to receive/send.

Get pointer to buffer.

Set function code.

Call MS-DOS.

Branch if no error.

Return -1 for all errors.

Section V: System Calls 1325

HUAWEI EX. 1110 - 1335/1582

Interrupt 21H Function 44H Subfunctions 04H and OSH

Interrupt 21H (33) 2.0andlater

Function 44H (68) Subfunctions 04H and.05H
IOCTL: Receive Control Data from Block Device; Send Control Data to Block
Device

Function 44H Subfunctions 04H and 05H respectively receive and send control strings
from and to a block-oriented device driver.

To Call

AH
AL

BL
ex
DS:DX

Returns

=44H
=04H

05H
receive block-device data
send block-device data

= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= number of bytes to transfer
= segment:offset of data buffer

If function is successful:

Carry flag is clear.

AX = number of bytes transferred

If AL was 04H on call:

Buffer at DS:DX contains control data read from device driver.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
05H access denied
06H invalid handle
ODH invalid data (bad control string)

Programmer's Notes

• Subfunctions 04H and 05H provide a means of transferring control information of any
type or length between an application program and a block-device driver. They do
not necessarily result in any input to or output from the physical device itself.

• Control strings can be used to request driver operations that are not file oriented, such
as tape rewind or disk eject (if hardware supported). The contents of such control
strings are specific to individual device drivers and do not follow any standard format.

1326 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1336/1582

Interrupt 21H Function 44H Subfunctions 04H and 05H

• Subfunction 04H can be used to obtain a code from the driver indicating device avail­
ability or status. Block devices that might use this subfunction include magnetic tape
or tape cassette, CD ROM, and Small Computer Standard Interface (SCSI) devices.

• Block-device drivers are not required to support IOCTL Subfunctions 04H and 05H. If
the driver does not support these subfunctions, error code OlH (Invalid Function) is
returned.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

44H Subfunction OOH (Get Device Data)
44H Subfunction 02H (Receive Control Data from Character Device)
44H Subfunction 03H (Send Control Data to Character Device)

Example

cProc
parmB
parmB
parmDP
parmW
cBegin

;**;

Function 44H, Subfunctions 04H,05H:
IOCTL Block Device Control

int ioctl-block_ctrl(recvflag,drive_ltr,pbuffer,nbytes)
int recvflag;
int drive_ltr;
char *pbuffer;
int nbytes;

Set recvflag = 0 to receive info, 1 to send.

Returns -1 for error, otherwise returns number of
bytes sent or received.

;********************************~***************************;

ioctl-block_ctrl,PUBLIC,<ds>
recvflag
drive_ltr
pbuffer
nbytes

mov al,recvflag
and al, 1
add al,4
mov bl,drive_ltr
or bl,bl
jz ibc
and bl,not 20h
sub bl, 'A'-1

Get recvflag.
Keep only lsb.
AL = 04H for receive, OSH for send.
Get drive letter.
Leave 0 alone.

Convert letter to uppercase.
Convert to drive number: 'A'
'B' = 2, etc.

1,

(more)

Section V: System Calls 1327

HUAWEI EX. 1110 - 1337/1582

Interrupt 21H Function 44H Subfunctions 04H and OSH

1328

ibc:

ibex:
cEnd

mov cx,nbytes
loadDP ds,dx,pbuffer
mov ah,44h
int 21h
jnc ibex
mov ax,-1

The MS-DOS Encyclopedia

Get number of bytes to receive/send.
Get pointer to buffer.
Set function code.
Call MS-DOS.
Branch if no error.
Return -1 for all errors.

HUAWEI EX. 1110 - 1338/1582

Interrupt 21H Function 44H Subfunctions 06H and 07H

Interrupt 21H (33) 2.0andlater

Function 44H (68) Subfunctions 06H and 07H
IOCTL: Check Input Status; Check Output Status

Function 44H Subfunctions 06H and 07H respectively determine whether a device or file
associated with a handle is ready for input or output.

To Call

AH =44H
AL = 06H get input status

07H get output status
BX = handle number

Returns

If function is successful:

Carry flag is clear.

AL = input or output status:
OOH not ready
FFH ready

If function is not successful:

Carry flag is set.

AX = error .code:
OlH invalid function
05H access denied
06H invalid handle
ODH invalid data (bad control string)

Programmer's Notes

• The status returned in AL has the following meanings:

Status

OOH
OFFH

Device

Not ready
Ready

Input File

Pointer at EOF
Ready

Output File

Ready
Ready

Section V: System Calls 1329

HUAWEI EX. 1110 - 1339/1582

Interrupt 21H Function 44H Subfunctions 06H and 07H

• Output files always return a ready condition, even if the disk is full or no disk is in the
drive.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

cProc

parmB

parmW
cBegin

isnoerr:

isx:

cEnd

;**;

Function 44H, Subfunctions 06H,07H:
IOCTL Input/Output Status

int ioctl_char_status(outputflag,handle)

int output flag;

int handle;

Set outputflag = 0 for input status, 1 for output status.

Returns -1 for all errors, 0 for not ready,

and 1 for ready.

;**;

ioctl_char_status,PUBLIC

output flag

handle

mov al,outputflag
and al, 1

add al,6

mov bx,handle
mov ah,44h

int 21h

jnc isnoerr
mov ax,-1
jmp short isx

and ax, 1

Get outputflag.

Keep only lsb.

AL = 06H for input status, 07H for output
status.

Get handle.

Set function code.

Call MS-DOS.

Branch if no error.

Return error code.

Keep only lsb for return value.

1330 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1340/1582

Interrupt 21H Function 44H Subfunction 08H

Interrupt 21H (33)
Function 44H (68) Subfunction.OSH
IOCTL: Check If Block Device Is Removable

3.0 and later

Function 44H Subfunction 08H checks whether the specified block device contains a
removable storage medium, such as a floppy disk.

To Call

AH =44H
AL = 08H
BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

AX =OOH
OlH

storage medium removable
storage medium not removable

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
OFH invalid drive

Programmer's Notes

• This subfunction exists to allow an application to check for a removable disk so that
the user can be prompted to change disks if a required file is not found.

• When the carry flag is set, error code 01H normally means that MS-DOS did not recog­
nize the function call. However, this error can also mean that the device driver does
not support Subfunction 08H. In this case, MS-DOS assumes that the storage medium
is not removable.

• Function 59H (Get Extended Error Information) provides further information on any
erro£- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V.· System Calls 1331

HUAWEI EX. 1110 - 1341/1582

Interrupt 21H Function 44H Subfunction OSH

Example

cProc

parmB

cBegin

ibch:

ibchx:

cEnd

;**;

Function 44H, Subfunction 08H:
IOCTL Removable Block Device Query

int ioctl_block_fixed(drive_ltr)

int drive_ltr;

Returns -1 for all errors, 1 if disk is fixed (not

removable), 0 if disk is not fixed.

;**;

ioctl_block_fixed,PUBLIC

drive_ltr

mov bl,drive_ltr

or bl,bl

jz ibch

and bl,not 20h

sub bl, 'A'-1

mov ax,4408h

int 21h

jnc ibchx

crop ax, 1

je ibchx
mov ax,-1

Get drive letter.

Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' 1,

'B' = 2, etc.

Set function code, Subfunction 08H.
Call MS-DOS.

Branch if no error, AX = 0 or 1.

Treat error code of 1 as "disk is
fixed."

Return -1 for other errors.

1332 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1342/1582

Interrupt 21H Function 44H Subfunction 09H

Interrupt 21H (33)
Function 44H (68) Subfunction 09H
IOCTL: Check If Block Device Is Remote

3.1 and later

Function 44H Subfunction 09H checks whether the specified block device is local
(attached to the computer running the program) or remote (redirected to a network
server).

To Call

AH =44H
AL =09H
BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

DX = device attribute word:
bit 12 = 1 drive is remote
bit 12 = 0 drive is local

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
OFH invalid drive

Programmer's Notes

• This subfunction should be avoided. Application programs should not distinguish be­
tween files on local and remote devices.

• When the carry flag is set, error code OlH can mean either that the function number is
invalid or that the network has not been started.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V: System Calls 1333

HUAWEI EX. 1110 - 1343/1582

Interrupt 21H Function 44H Subfunction 09H

Example

cProc
parmB

cBegin

ibr:

ibrx:

cEnd

;**;

Function 44H, Subfunction 09H:

IOCTL Remote Block Device Que~y

int ioctl_block_redir(drive_ltr)

int drive_ltr;

Returns -1 for all errors, 1 if disk is remote

(redirected), 0 if disk is local.

;**;

ioctl-hlock_redir,PUBLIC
drive_ltr

mov bl,drive_ltr

or bl,bl

jz ibr

and bl,not 20h

sub bl, 'A'-1

mov ax,4409h

int 21h
mov ax,-1

jc ibrx

inc ax

test dh,10h
jz ibrx
inc ax

Get drive letter.

Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' 1,
'B' = 2, etc.

Set function code, Subfunction 09H.

Call MS-DOS.
Assume error.

Branch if error, returning -1.
Set AX = 0.

Is bit 12 set?

If not, disk is local: Return 0.

Return 1 for remote disk.

1334 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1344/1582

I

I

Interrupt 21H Function 44H Subfunction OAH

Interrupt 21H (33)
Function 44H (68) Subfunction OAH
IOCTL: Check If Handle Is Remote

3.1 and later

Function 44H Subfunction OAH checks whether the handle in BX refers to a file or device
that is local (on the computer running the program) or remote (redirected to a network
server).

To Call

AH =44H
AL =OAH
BX =handle

Returns

If function is successful:

Carry flag is clear.

OX = attribute word for file or device:
bit 15 = 1 remote
bit 15 = 0 local

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
06H invalid handle

Programmer's Notes

• Application programs should not distinguish between files on local and remote
devices.

• When the carry flag is set, error code 01H can mean either that the function number is
invalid or that the network has not been started.

Related Functions

None

Section V.· System Calls 1335

HUAWEI EX. 1110 - 1345/1582

Interrupt 21H Function 44H Subfunction OAH

Example

cProc
parmW
cBegin

icrx:
cEnd

;**:

Function 44H, Subfunction OAH:
IOCTL Remote Handle Query

int ioctl_char_redir(handle)
int handle;

Returns -1 for all errors, 1 if device/file is remote
(redirected), 0 if it is local.

;**;

ioctl_char_redir,PUBLIC
handle

mov bx,handle
mov ax,440ah
int 21h
mov ax,-1
jc icrx
inc ax
test dh,SOh
jz icrx

inc ax

Get handle.
Set function code, Subfunction OAH.
Call MS-DOS.
Assume error.
Branch on error, returning -1.
Set AX= 0.
Is bit 15 set?
If not, device/file is local:
Return 0.
Return 1 for remote.

1336 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1346/1582

Interrupt 21H Function 44H Subfunction OBH

Interrupt 21H (33)
Function 44H (68) Subfunction OBH
IOCTL: Change Sharing Retry Count

3.1 and later

Function 44H Subfunction OBH sets the number of times MS-DOS retries a disk operation
after a failure caused by a file-sharing violation before it returns an error to the requesting
process.

To Call

AH =44H
AL =OBH
ex = pause between retries
DX = number of retries

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

. Carry flag is set.

AX = error code:
OlH invalid function

Programmer's Notes

• The pause between retries is a machine-dependent value determined by the CPU
and CPU clock speed. MS-DOS performs a delay ioop that consists of 65,536 machine
instructions for each iteration specified by the value in CX. The actual code is as
follows:

xor cx:,cx:
loop $

The default number of retries is 3, with a pause of one· loop between retries­
equivalent to calling this subfunction with DX = 3 and CX = 1.

• When the carry flag is set, error code OlH indicates either that the function code is in­
valid or that file sharing (SHARE.EXE) is not loaded.

• Subfunction OBH can be used to tune the system if file-contention problems are likely
to arise with shared files but are expected to last only a short while. ~

• If file contention is expected and if some applications will lock regions of the file for
an appreciable period of time, the user may need to be informed. The best procedure
is to set an initial small number of retries with a short pause period. After notifying
the user, the application can wait a reasonable amount of time for file access by adjust­
ing the retry or pause-period values.

Section V.· System Calls 1337

HUAWEI EX. 1110 - 1347/1582

Interrupt 21H Function 44H Subfunction OBH

• If a process uses this subfunction, it should restore the original default values for the
pause and number of retries before terminating, to avoid unwanted effects on the
behavior of subsequent processes.

• Function 59H (Get Extended Error Information) provides further information on any
error-in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

cProc
parmW
parmW
cBegin

isrx:
cEnd

;**;

Function 44H, Subfunction OBH:
IOCTL Change Sharing Retry Count

int ioctl_set_retry (nul!Lretries·, wait_time)
int nul!Lretries;
int wait-time;

Returns 0 for success, otherwise returns error code.

;**;

ioctl_set_retry,PUBLIC,<ds,si>
nul!Lretries
wait_time

mov
mov
mov
int
jc

dx,nul!Lretries
cx,wait-time
ax,440bh
21h
isrx

xor ax, ax

Get parameters.

Set function code, Subfunction OBH.
Call MS-DOS.
Branch on error.

1338 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1348/1582

Interrupt 21H Function 44H Subfunction OCH

Interrupt 21H (33)
Function 44H (68) Subfunction OCH
IOCTL: Generic I/0 Control for Handles

3.2

Function 44H Subfunction OCH sets or gets the output iteration count for character­
oriented devices. See also APPENDIX A: MS-DOS Version 3.3.

To Call

AH
AL
BX
CH

CL

=44H
=OCH
=handle
= category code:

OSH printer
= function (minor) code:

45H set iteration count
6SH get iteration count

DS:DX

Returns

= segment: offset of 2-byte buffer receiving or containing iteration-count word

If function is successful:

Carry flag is clear.

If CL was 6SH on call:

DS:DX = segment: offset of iteration-count word

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function
06H invalid handle

Programmer's Notes

• The iteration count controls the number of times the device driver tries to send output
to the printer before assuming that the device is busy.

• With MS-DOS version 3.2, only category code OSH (printer) is supported by this
subfunction.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V.· System Calls 1339

HUAWEI EX. 1110 - 1349/1582

Interrupt 21H Function 44H Subfunction OCH

Example

1340

;**;

Function 44H, Subfunction DCH:
Generic IOCTL for Handles

int ioctl_char_generic(handle,category,function,pbuffer)
int handle;
int category;
int function;
int *pbuffer;

Returns 0 for success, otherwise returns error code.

;**;

cProc ioctl_char_generic,PUBLIC,<ds>

parmW handle
parmB category
parmB function
parmDP pbuffer
cBegin

mov bx,handle
mov ch,category
mov cl,function

loadDP ds,dx,pbuffer
mov ax,440ch
int 21h
jc icgx
xor ax, ax

icgx:

cEnd

The MS-DOS Encyclopedia

Get device handle.
Get category
and function.
Get pointer to data buffer.
Set function code, Subfunction OCH.
Call MS-DOS.
Branch on error.

HUAWEI EX. 1110 - 1350/1582

Interrupt 21H Function 44H Subfunction ODH

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
IOCTL: Generic I/0 Control for Block Devices

3.2

Function 44H Subfunction ODH includes six input/output tasks, or minor functions, related
to block-oriented devices. The tasks perform the following operations: set or get device
parameters; write, read, format and verify, or verify tracks on a logical drive.

This entry covers general information on Subfunction ODH. Details on each minor code
are presented in subsequent entries.

=44H
=ODH

To Call

AH
AL
BL
CH

= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= category code:

CL

DS:DX

Returns

08H disk drive
= function (minor) code:

40H set parameters for block device
41H write track on logical drive
42H format and verify track on logical drive
60H get parameters for block device
61H read track on logical drive
62H verify track on logical drive

= segment: offset of parameter block

If function is successful:

Carry flag is clear.

If CL was 60H or 61H on call:

DS:DX = segment:offset of parameter block

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
02H invalid drive

Programmer's Notes

• Set Device Parameters (minor code 40H) must be used before an attempt to write,
read, format, or verify a track on a logical drive. In general, the following sequence
applies to any of these operations:

Section V: System Calls 1341

HUAWEI EX. 1110 - 1351/1582

Interrupt 21H Function 44H Subfunction ODH

1. Get the current parameters (minor code 60H). Examine and save them.
2. Set the new parameters (minor code 40H).
3. Perform the task.
4. Retrieve the original parameters and restore them (minor code 40H).

• With version 3.2 of MS-DOS, only category code 08H is supported by this subfunction.
• Parameter blocks in the data buffer vary with the task being performed.

Related Functions

None

Example

1342

;**;

Function 44H, Subfunction ODH:

Generic IOCTL for Block Devices

int ioctl_block_generic(drv_ltr,category,func,pbuffer)
int drv_ltr;

int category;

int func;

char *pbuffer;

Returns 0 for success, otherwise returns error code.

;*****************~**;

cProc ioctl_block_generic,PUBLIC,<ds>
parmB drv_ltr

parmB category

parmB func

parmDP pbuffer
cBegin

mov bl,drv_ltr Get drive letter.
or bl,bl Leave 0 alone.
jz ibg

and bl,not 20h Convert letter to uppercase.
sub bl, 'A'-1 Convert to drive number: 'A'

'B' = 2, etc.
ibg:

mov ch,category Get category
mov cl,func and function.
loadDP ds,dx,pbuffer Get pointer to data buffer.
mov ax,440dh Set function code, Sub function
int 21h Call MS-DOS.
jc ibgx Branch on error.
xor ax, ax

ibgx:

cEnd

The MS-DOS Encyclopedia

1,

ODH.

HUAWEI EX. 1110 - 1352/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Code 40H
IOCTL: Generic 1/0 Control for Block Devices: Set Device Parameters

Function 44H Subfunction ODH minor code 40H sets device parameters in the parameter
block pointed to by DS:DX.

To Call

AH
AL
BL
CH

CL
DS:DX

Returns

=44H
=ODH
= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= category code:

08H disk drive
=40H
= segment:offset of parameter block

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Special-functions field: offset OOH, length 1 byte

Bit Value Meaning

0 0 Device BIOS parameter block (BPB) field contains a new

1
1
0
1

default BPB.
Use current BPB.
Use all fields in parameter block.
Use track layout field only.

(more)

Section V: System Calls 1343

HUAWEI EX. 1110 - 1353/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Special-functions field: offset OOH, length 1 byte (continued)

Bit Value

2 0

1

3-7 0

Meaning

Sectors in track may be different sizes. (This setting should not
be used.)

Sectors in track are all same size; sector numbers range from 1
to the total number of sectors in the track. (This setting
should always be used.)

Reserved.

Device type field: offset 01H, length 1 byte

Value

OOH
01H
02H
03H
04H
05H
06H
07H

Meaning

320/360 KB 5.25-inch disk
1.2MB 5.25-inch disk
720 KB 3.5-inch disk
Single-density 8-inch disk
Double-density 8-inch disk
Fixed disk
Tape drive
Other type of block device

Device attributes field: offset 02H, length 1 word

Bit Value Meaning

0 0 Removable storage medium
1 Nonremovable storage medium

1 0 Door lock not supported
1 Door lock supported

2-15 0 Reserved

Number of cylinders field: offset 04H, length 1 word

Meaning: Maximum number of cylinders supported; set by device driver

Media type field: offset 06H, length 1 byte

Value

OOH (default)
01H

Meaning

1.2MB 5.25-inch disk
320/360 KB 5.25-inch disk

1344 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1354/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Device BPB field: offset 07H, length 31 bytes.

Meaning: See Programmer's Note below.

If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.

If bit 0 = 1 in special-functions field, BPB in this field is returned by the device driver
in response to subsequent Build BPB requests.

Track layout field: offset 26H, variable-length table

Length

Word
Word
Word

Word
Word

Meaning

Number of sectors in track
Number of first sector in track*
Size of first sector in track*

Number of last sector in track
Size of last sector in track

• Sector number and sector size fields are repeated for each sector on the track. If bit 2 of the
special-functions field is set, all sector sizes in the track layout field must be the same.

• The device BPB field is a 31-byte data structure. Information contained in the device
BPB field describes the current disk and disk control areas. The device BPB field is
formatted as follows:

Byte

00-01H
02H
03-04H
05H
06-07H
08-09H
OAH
OB-OCH
OD-OEH
OF-10H
11-14H
15-1FH

Meaning

Number of bytes per sector
Number of sectors per allocation unit
Number of sectors reserved, beginning at sector 0
Number of file allocation tables (FATs)
Maximum number of root-directory entries
Total number of sectors
Media descriptor
Number of sectors per FAT
Number of sectors per track
Number of heads
Number of hidden sectors
Reserved

Section V.· System Calls 1345

HUAWEI EX. 1110 - 1355/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

• When Set Device Parameters (minor code 40H) is used, the number of cylinders
should not be reset- some or all of the volume may become inaccessible.

• Subfunction ODH minor code 60H performs the complementary action, Get Device
Parameters.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

1346 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1356/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Code 60H
IOCTL: Generic 1/0 Control for Block Devices: Get Device Parameters

Function 44H Subfunction ODH minor code 60H gets device parameters in the parameter
block pointed to by DS:DX.

To Call

=44H
=ODH

AH
AL
BL
CH

= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= category code:

08H disk drive
=60H CL

DS:DX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Special-functions field: offset OOH, length 1 byte

Bit Value Meaning

0 0
1

Returns default BIOS parameter block (BPB) for the device. ,
Returns BPB that the Build BPB device driver call would
return.

1-7 0 Reserved (must be zero).

Section V: System Calls 1347

HUAWEI EX. 1110 - 1357/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Device type field: offset 01H, length 1 byte

Value

OOH
01H
02H
03H
04H
05H
06H
07H

Meaning

320/360 KB 5.25-inch disk
1.2MB 5.25-inch disk
720 KB 3.5-inch disk
Single-density 8-inch disk
Double-density 8-inch disk
Fixed disk
Tape drive
Other type of block device

Device attributes field: offset 02H, length 1 word

Bit Value Meaning

0 0 Removable storage medium
1 Nonremovable storage medium

1 0 Door lock not supported
1 Door lock supported

2-15 0 Reserved

Number of cylinders field: offset 04H, length 1 word

Meaning: Maximum number of cylinders supported; set by device driver

Media type field: offset 06H, length 1 byte

Value

OOH (default)
01H

Meaning

1.2MB 5.25-inch disk
320/360 KB 5.25-inch disk

Device BPB field: offset 07H, length 31 bytes

Meaning: See Programmer's Note below.

If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.

If bit 0 = 1 in special-functions field, BPB in this field is returned by the device driver
in response to subsequent Build BPB requests.

1348 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1358/1582

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Track layout field: offset 26H

Unused

• The device BPB field is a 31-byte data structure. Information contained in the device
BPB field describes the current disk and disk control areas. The device BPB field is
formatted as follows:

Byte

00-01H
02H
03-04H
05H
06-07H
08-09H
OAH
OB-OCH
OD-OEH
OF-10H
11-14H
15-1FH

Meaning

Number of bytes per sector
Number of sectors per allocation unit
Number of sectors reserved, beginning at sector 0
Number of file allocation tables (FATs)
Maximum number of root-directory entries
Total number of sectors
Media descriptor
Number of sectors per FAT
Number of sectors per track
Number of heads
Number of hidden sectors
Reserved

• Subfunction ODH minor code 40H performs the complementary action, Set Device
Parameters.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V: System Calls 1349

HUAWEI EX. 1110 - 1359/1582

Interrupt 21H Function 44H Subfunction ODH Minor Codes 41H and 61H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Codes 4tH and 6tH
IOCTL: Generic I/0 Control for Block Devices: Write Track on Logical Drive;
Read Track on Logical Drive

Function 44H Subfunction ODH minor code 41H writes a track on the logical drive speci­
fied in BL and minor code 61H reads a track on the logical drive specified in BL, using in­
formation in the parameter block pointed to by DS:DX.

To Call

AH
AL
BL
CH

CL

DS:DX

Returns

=44H
=ODH
= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= category code:

08H disk drive
= function (minor) code:

41H write a track
61H read a track

= segment:offset of parameter block

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
02H invalid drive

1350 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1360/1582

Interrupt 21H Function 44H Subfunction ODH Minor Codes 41H and 61H

Programmer's Notes

• The parameter block is formatted as follows:

Offset Size

OOH Byte
OlH Word
03H Word

05H Word

07H Word

09H Dword

Meaning

Special-functions field; must be 0.
Head field; contains number of disk head used for read/write.
Cylinder field; contains number of disk cylinder used for read/

write.
First-sector field; contains number of first sector to read or

write (first sector on track = sector 0).
Number-of-sectors field; contains number of sectors to

transfer.
Transfer address field; contains address of buffer to use for

data transfer.

• Function 59H (Get Extended Error Information) provides further information on any
error-in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V System Calls 1351

HUAWEI EX. 1110 - 1361/1582

Interrupt 21H Function 44H Subfunction ODH Minor Codes 42H and 62H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Codes 42H and 62H
IOCTL: Generic I/0 Control for Block Devices: Format and Verify Track on
Logical Drive; Verify Track on Logical Drive

Function 44H Subfunction ODH minor code 42H formats and verifies a track on the speci­
fied logical drive and minor code 62H verifies a track on the specified logical drive, using
information in the parameter block pointed to by DS:DX.

To Call

AH
AL
BL
CH

CL

DS:DX

Returns

=44H
=ODH
= drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
= category code:

08H disk drive
= function (minor) code:

42H format and verify
62H verify

= segment: offset of parameter block

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function
02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Offset

OOH
01H

03H

Size

Byte
Word

Word

1352 The MS-DOS Encyclopedia

Meaning

Special-functions field; must be 0.
Head field; contains number of disk head used for format/
verify.
Cylinder field; contains number of cylinder used for format/
verify. ·

HUAWEI EX. 1110 - 1362/1582

Interrupt 21H Function 44H Subfunction ODH Minor Codes 42H and 62H

• This driver subfunction allows the writing of generic formatting programs that are
minimally hardware dependent.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V: System Calls 1353

HUAWEI EX. 1110 - 1363/1582

Interrupt 21H Function 44H Subfunctions OEH and OFH

Interrupt 21H (33) 3.2

Function 44H (68) Subfunctions OEH and OFH
IOCTL: Get Logical Drive Map; Set Logical Drive Map

Function 44H Subfunction OEH allows a process to determine whether more than one logi­
cal drive is assigned to a block device. Subfunction OFH sets the next logical drive number
that will be used to reference a block device.

To Call

AH =44H
AL = OEH get logical drive map

OFH set logical drive map
BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

AL = mapping code:
OOH
01-1AH

only one letter assigned to the block device
logical drive letter (A through Z) mapped to block device

If function is not successful:

Carry flag is set.

AX = error code:
01H
OFH

Programmer's.Notes

invalid function
invalid drive

• If a drive has not been assigned a logical mapping with Function 44H Subfunction
OFH, the logical and physical drive references are the same. (The default is that logical
drive A and physical drive A both refer to physical drive A.)

• If this function is used to map logical drives to physical drives, the result is similar to
MS-DOS's treatment of a single physical drive as both A and B on a system with one
floppy-disk drive. With MS-DOS version 3.2, however, the installable device driver
DRIVER.SYS extends this type of physical/logical referencing to other drives. There­
fore, processes can prompt for disks themselves, instead of using the prompt provided
byMS-DOS.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

1354 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1364/1582

Interrupt 21H Function 44H Subfunctions OEH and OFH

Related Functions

None

Example

cProc
parmB
parmB
cBegin

ido:

idox:

cEnd

;**;

Function 44H, Subfunctions OEH, OFH:
IOCTL Get/Set Logical Drive Map

int ioctl_drive_owner(setflag, drv_ltr)
int set flag;
int drv_ltr;

Set setflag ~ 1 to change drive's map, 0 to get
current map.

Returns -1 for all errors, otherwise returns
the block device's current logical drive letter.

;**;

ioctl_drive_owner,PUBLIC
set flag
drv_ltr

mov al, set flag
and al, 1
add al,Oeh
mov bl,drv_ltr
or bl,bl
jz ido
and bl,not 20h
sub bl, 'A'-1

mov bh,O
mov ah,44h
int 21h
mov ah,O
jnc idox
mov ax,-1-'A'

add ax, 'A'

Load set flag.
Keep only lsb.
AL ~ OEH for get, OFH for set.
Get drive letter.
Leave 0 alone.

Convert letter to uppercase.
Convert to drive number: 'A' 1,
'B' ~ 2, etc.

Set function code.
Call MS-DOS.
Clear high byte.
Branch if no error.
Return -1 for errors.

Return drive letter.

Section V: System Calls 1355

HUAWEI EX. 1110 - 1365/1582

Interrupt 21H Function 45H

Interrupt 21H (33)
Function 45H (69)
Duplicate File Handle

2.0 and later

Function 45H obtains an additional handle for a currently open file or device.

To Call

AH =45H
BX = handle for open file or device

Returns

If function is successful:

Carry flag is clear.

AX = new handle number

If function is not successful:

Carry flag is set.

AX = error code:
04H too many open files
06H invalid handle

Programmer's Notes

• The file pointer for the new handle is set to the same position as the pointer for the
original handle. Any subsequent changes to the file are reflected in both handles.
Thus, using either handle for a read or write operation moves the file pointer associ­
ated with both.

• Functipn 45H is often used to duplicate the handle assigned to standard input (0) or
standard output (1) before a call to Function 46H (Force Duplicate File Handle). The
handle forced by Function 46H can then be used for redirected input or output from
or to a file or device.

• Another use for Function 45H is to keep a file open while its directory entry is being
updated to reflect a change in length. If a new handle is obtained with Function 45H
and then closed with Function 3EH (Close File), the directory and FAT entries for the
file are updated. At the same time, because the original handle remains open, the file
need not be reopened for additional read or write operations.

• Function 59H (Get Extended Error Information) provides further information on any
error-in particular, the code, class, recommended corrective action, and locus of
the error.

1356 · The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1366/1582

Interrupt 21H Function 45H

Related Function

46H (Force Duplicate File Handle)

Example

cProc

parmW

cBegin

dup_ok:

cEnd

:**:

Function 45H: Duplicate File Handle

int dup_handle(handle)

int handle;

Returns -1 for errors,

otherwise returns new handle.

;**:

dup_handle,PUBLIC

handle

mov bx,handle
mov ah,45h
int 21h
jnb dup_ok

mov ax,-1

Get handle to copy.

Set function code.
Ask MS-DOS to duplicate handle.

Branch if copy was successful.

Else return -1.

Section V.· System Calls 1357

HUAWEI EX. 1110 - 1367/1582

Interrupt 21H Function 46H

Interrupt 21H (33)
Function 46H (70)
Force Duplicate File Handle

2.0 and later

Function 46H forces the open handle specified in CX to track the same file or device speci­
fied by the handle in BX.

To Call

AH=46H
BX = open handle to be duplicated
ex = open handle to be forced

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
04H too many open files
06H invalid handle

Programmer's Notes

• The handle in BX must refer either to an open file or to any of the five standard han­
dles reserved by MS-DOS: standard input, standard output, standard error, standard
auxiliary, or standard printer.

• If the handle in ex refers to an open file, the file is closed.
• The file pointer for the duplicate handle is set to the same position as the pointer for

the original handle. Changing the position of either file pointer moves the pointer
associated with the other handle as well.

• When used with Function 45H (Duplicate File Handle), Function 46H can be used to
redirect input and output as follows:

1. Duplicate the handle from which input or output will be redirected with Func­
tion 45H (Duplicate File Handle). Save the duplicated handle for later reference
(Step 3).

2. Call Function 46H, with the handle to be redirected from in the CX register and
the handle to be redirected to in the BX register.

3. To restore 1/0 redirection to its original state, call Function 46H again, with the
redirected file handle from Step 2 in the ex register and the duplicated file han­
dle from Step 1 in the BX register.

1358 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1368/1582

Interrupt 21H Function 46H

This procedure is normally used to redirect a standard device, but it can redirect any
device referenced by handles.

• Function 59H (Get Extended Error Information) provides further information on any
error- in par:ticular, the code, class, recommended corrective action, and locus of
the error.

Related Function

45H (Duplicate File Handle)

·Example

cProc
parmw
parmW
cBegin

dup2_ok:
cEnd

;**;

Function 46H: Force Duplicate File Handle

int dup_handle2(existhandle,newhandle)
int existhandle,newhandle;

Returns -1 for errors,
otherwise returns newhandle unchanged.

;**;

dup_handle2,PUBLIC
exist handle
new handle

mov
mov
mov
int
mov
jnb
mov

bx,existhandle
cx,newhandle
ah,46h
21h
ax,newhandle
dup2_ok
ax,-1

Get handle of existing file.
Get handle to copy into.
Close handle ex and then
duplicate BX's handle into CX.
Prepare return value.
Branch if close/copy was successful.
Else return -1 .

Section V System Calls 1359

HUAWEI EX. 1110 - 1369/1582

Interrupt 21H Function 47H

Interrupt 21H (33)
Function 47H (71)
Get Current Directory

2.0 and later

Function 47H returns the path, excluding the drive and leading back slash, of the current
directory for the specified drive.

To Call

AH =47H
DL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
DS:SI "" segment:offset of 64-byte buffer

Returns

If function is successful:

Carry flag is clear.

Buffer is filled in with ASCIIZ pathname.

If function is not successful:

Carry flag is set.

AX = error code:
OFH invalid drive

Programmer's Notes

• The string representing the pathname is returned as a null-terminated ASCII string
(ASCIIZ).

• This function does not return an error if the buffer is too small or is incorrectly iden­
tified. MS-DOS pathnames can be as long as 64 characters; if the buffer is less than 64
bytes, MS-DOS can overwrite sections of memory outside the buffer.

• The path returned by Function 47H starts at the root directory and fully specifies the
path to the current directory but does not include a drive code or a leading backslash
(\) character.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

3BH (Change Current Directory)

1360 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1370/1582

Example

cProc

parrnB

parrnDP
cBegin

gdir:

gcLok:

cEnd

Interrupt 21H Function 47H

;**;

Function 47H: Get Current Directory

int get_dir(drive_ltr,pbuffer)

int drive_ltr;

char *pbuffer;

Returns -1 for bad drive,

otherwise returns pointer to pbuffer.

;**;

get_dir,PUBLIC,<ds,si>
drive_ltr

pbuffer

loadDP ds,si,pbuffer
rnov dl,drive_ltr

or dl,dl

jz gdir
and dl,not 20h
sub dl, 'A'-1

rnov ah,47h
int 21h
rnov ax,si
jnb gcLok

rnov ax, -1

Get pointer to buffer.
Get drive number.

Leave 0 alone.

Convert letter to uppercase

Convert to drive number: '·A' 1,
'B' = 2, etc.

Set function code.
Call MS-DOS.

Return pointer to buffer ...

. . . unless an error occurred.

Section V: System Calls 1361

HUAWEI EX. 1110 - 1371/1582

Interrupt 21H Function 48H

Interrupt 2m (33)
Function 48H (72)
Allocate Memory Block

2.0 and later

Function 48H allocates a block of memory, in paragraphs (1 paragraph = 16 bytes), to the
requesting process.

To Call

AH =48H
BX = number of paragraphs to allocate

Returns

If function is successful:

Carry flag is clear.

AX =segment address of base of allocated block

If function is not successful:

Carry flag is set.

AX = error code:
07H memory control blocks damaged
08H insufficient memory to allocate as requested

BX = size of largest available block (paragraphs)

Programmer's Notes

• If the allocation succeeds, the address returned in AX is the segment of the base of the
block This address would be copied to ;:1 segment register (usually DS orES) to access
the memory within the block

• If the amount of memory requested is greater than the amount in any available con­
tiguous block of memory, the number of paragraphs in the largest available memory
block is returned in the BX register.

• The default memory-management strategy in MS-DOS is to choose the first con­
tiguous block of memory that fits the request, no matter how good the fit. With MS­
DOS versions 3.0 and later, however, the memory-management strategy can be altered
with Function 58H (Get/Set Allocation Strategy).

• If a process actively allocates and frees blocks of memory, the transient program area
(TPA) can become fragmented- that is, small blocks of memory can be orphaned
because the memory-management strategy seeks contiguous blocks of memory.

• If a process writes to memory outside the limits of the allocated block, it can destroy
control structures for other memory blocks. This could result in failure of subsequent
memory-management functions, and it will cause MS-DOS to print an error message
and halt when the process terminates.

1362 The MS-DOS Encyc!opedta

HUAWEI EX. 1110 - 1372/1582

Interrupt 21H Function 48H

• Initially, the MS-DOS loader allocates all available memory to .COM programs. Func­
tion 4AH (Resize Memory Block) can free memory for dynamic reallocation by a
process or by its children.

• Function 59H .(Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

49H (Free Memory Block)
4AH (Resize Memory Block)
58H (Get/Set Allocation Strategy)

Example

cProc
parmW

parmDP

parmDP

cBegin

gb~err:

cEnd

;********************************~***************************;

Function 4BH: Allocate Memory Block

int get_block(nparas,pblocksegp,pmaxparas)

int nparas,*pblockseg,*pmaxparas;

Returns 0 if nparas are allocated OK and
pblockseg has segment address of block,

otherwise returns error code with pmaxparas

set to maximum block size available.

;**;

get_block,PUBLIC,ds

nparas

pblockseg

pmaxparas

mov bx,nparas

mov ah,4Bh

int 21h

mov cx,bx

loadDP ds,bx,pmaxparas

mov [bx],cx

jb gb_err

loadDP ds,bx,pblockseg

mov [bx] ,ax

xor ax, ax

Get size request.

Set function code.

Ask MS-DOS for memory.

Save BX.

Return result, assuming failure.

Exit if error, leaving error code

in AX.

No error, so store address of block.

Return 0.

Section V· System Calls 1363

HUAWEI EX. 1110 - 1373/1582

Interrupt 21H Function 49H

Interrupt 21H (33)
Function 49H (73)
Free Memory Block

2.0 and later

Function 49H releases a block of memory previously allocated with Function 48H (Allo­
cate Memory Block). ·

To Call

AH =49H
ES = segment address of memory block to release

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
07H memory control blocks damaged
09H incorrect memory segment specified

Programmer's Notes

• The memory segment pointed to by ES:OOOOH must have been allocated by Function
48H (Allocate Memory Block).

• If a program has inadvertently damaged any of the system's memory control blocks
by writing outside an allocated block, an attempt to free allocated memory results in
error code 07H (memory control blocks damaged).

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

48H (Allocate Memory Block)
4AH (Resize Memory Block)
58H (Get/Set Allocation Strategy)

1364 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1374/1582

Example

cProc
parmW

cBegin

fb_err:

cEnd

Interrupt 21H Function 49H

;**;

Function 49H: Free Memory Block

int free_block(blockseg)

int blockseg;

Returns 0 if block freed OK,
otherwise returns error code.

;**;

free_block,PUBLIC

blockseg

mov es,blockseg

mov ah,49h

int 21h

jb fb_err

xor ax, ax

Get block address.

Set function code.
Ask MS-DOS to free memory.

Branch on,error.
Return 0 if successful.

Section V.· System Calls 1365

HUAWEI EX. 1110 - 1375/1582

Interrupt 21H Function 4AH

Interrupt 21H (33)
Function 4AH (74)
Resize Memory Block

2. 0 and later

Function 4AH adjusts the size of a previously allocated block of memory.

To Call

AH =4AH
BX = new size of memory block, in paragraphs
ES = segment address of previously allocated memory block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
07H memory control blocks damaged
08H insufficient memory to allocate as requested
09H incorrect memory segment specified

BX = maximum number of paragraphs available (if an increase was requested)

Programmer's Notes

• Function 4AH can be used to change the size of a memory block previously allocated
with Function 48H (Allocate Memory Block) or to modify the amount of memory
originally allocated to a process by MS-DOS.

• If a process is denied an increase in the amount of memory it has been allocated, MS­
DOS places the size of the largest contiguous block available in the BX register. The
process can then notify the user of the problem and exit, or it can continue to operate
in a reduced memory environment.

• Because the MS-DOS loader allocates all available memory to .COM programs, such a
program should use Function 4AH immediately (with the segment address of its pro­
gram segment prefix, or PSP) to release any memory that is not needed. This is man­
datory if the . COM program will either allocate memory dynamically or use Function
4BH (Load and Execute Program) to load a child process or overlay.

In addition, if Function 4AH is used to adjust the amount of memory allocated to a
. COM program, the stack pointer must be adjusted so that it is within the limits of the
program's revised memory allocation.

1366 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1376/1582

Interrupt 21H Function 4AH

• If this function is used to shrink an allocated block, any memory above the new limit
is not owned by the process and should never be used. If this function is used to ex­
pand an allocated block, the contents of memory above the old boundary are unpre­
dictable and the memory should be initialized before use.

• Although it is not possible to predict how much memory-resident software and how
many installable device drivers will be used on a computer system, Function 4AH can
reliably determine the amount of memory available to an application.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

48H (Allocate Memory Block)
49H (Free Memory Block)
58H (Get/Set Allocation Strategy)

Example

cProc
parmW
parmW
parmDP

cBegin

mb_exit:

cEnd

;**;

Function 4AH: Resize Memory Block

int modify_block(nparas,blockseg,pmaxparas)
int nparas,blockseg,*pmaxparas;

Returns 0 if modification was a success,
otherwise returns error code with pmaxparas
set to max number of paragraphs available.

;**;

modify_block,PUBLIC,ds

nparas
blockseg
pmaxparas

mov es,blockseg
mov bx,nparas
mov ah, 4ah
int 21 h
mov cx,bx
loadDP ds,bx,pmaxparas
mov [bx],cx
jb mb_exit

x:or ax, ax

Get block address.
Get nparas.
Set function code.
Ask MS-DOS to change block size.
Save BX.

Set pmaxparas, assuming failure.
Branch if size change error.
Return 0 if successful.

Section V: System Calls 1367

HUAWEI EX. 1110 - 1377/1582

Interrupt 21H Function 4BH

Interrupt 21H (33)
Function 4BH (75)
Load and Execute Program (EXEC)

2.0 and later

Function 4BH, often called EXEC, loads a program file into memory and, optionally, ex­
ecutes the program. This function can also be used to load a program overlay.

To Call

AH
AL

=4BH
= OOH load and execute program

03H load overlay
DS:DX
ES:BX

= segment:offset of ASCIIZ pathname for an executable program file
= segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

With MS-DOS versions 2.x, all registers except CS and IP can be destroyed; with MS-DOS
versions 3.x, registers are preserved.

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function (AL did not contain OOH or 03H)
02H file not found
03H path not found
05H access denied
08H insufficient memory
OAH bad environment
OBH bad format (AL = OOH only)

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• The handles for any files opened by the parent process before the call to Function

4BH are inherited by the child process, unless the parent specified otherwise in call­
ing Function 3DH (Open File with Handle).

All standard devices also remain open and available to the child process. Thus, the
parent process can control the files used by the child process and control redirection
for the child process.

1368 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1378/1582

i
I

Interrupt 21H Function 4BH

• If AL = OOH, the parameter block is 14 bytes long and formatted in four parts, as
follows:

Offset Length

OOH Word

02H Dword

06H Dword

OAH Dword

Meaning

Segment address of environment to be passed; OOH indi­
cates child program inherits environment of the current
process.

Segment:offset address of command tail for the new pro­
gram segment prefix (PSP). Command tail must be 128
bytes or fewer and formatted as a count byte followed by
an ASCII string and terminated by a carriage return, as
follows:

db 7, 'a:mydoc',ODh

The carriage return is not included in the count; the
command tail is placed at offset 80H in the new
process's PSP.

Segment: offset address of an FCB to be copied to the
default FCB position at offset 5CH in the new process's
PSP.

Segment:offset address of an FCB to be copied to the
default FCB position at offset 6CH in the new process's
PSP.

If AL = 03H, the parameter block is 4 bytes long and formatted in two parts, as
follows:

Offset

OOH
02H

Length

Word
Word

Meaning

Segment address where the overlay is to be loaded.
Relocation factor to be applied to the code image (.EXE

files only); not needed if the file is a .COM program or is
data.

• The first 2 bytes of the parameter block for Function 4BH Sub function OOH contain
either the segment address for an environment block to be passed to the new process
or zero. If the value is zero, the child process inherits an exact copy of the parent
process's environment.

The environment block must be aligned on a paragraph boundary (a multiple of 16
bytes). It can be as large as 32 KB, and it consists of a block of ASCIIZ strings, each in ~
the following form, ~

Section V: System Calls 1369

HUAWEI EX. 1110 - 1379/1582

Interrupt 21H Function 4BH

parameter=value

For example:

db 'VERIFY=ON',O

The final string in the environment block is followed by a second zero byte. With
MS-DOS versions 3.0 and later, the second zero is followed by a word containing a
count and an ASCIIZ string containing the drive and pathname of the program file.

The environment passed to the child process allows the parent process to send it mes­
sages regarding the system state or control parameters. The pathname included with
MS-DOS versions 3.0 and later enables the child process to determine where it was
loaded from.

• If AL = OOH, MS-DOS creates a PSP for the new process and sets the terminate and
Control-C addresses to the instruction in the parent process that follows the call to
Function 4BH. If AL = 03H, no PSP is created.

• Before AL = OOH is used to load and execute a process, the system must contain
enough free memory to accommodate the new process. Function 4AH (Resize Mem­
ory Block) should be used, if necessary, to reduce the amount of memory allocated to
the parent process. If the parent is a .COM program, allocated memory must be
reduced, because a .COM program is given ownership of all available memory when
it is executed.

If Function 4BH is called withAL = 03H, free memory is not a factor, because MS-DOS
assumes the new process is being loaded into the calling process's own address space.

• If Function 4BH is called with AL = OOH, the child process remains in control until it
executes an exit request, such as Function 4CH (Terminate Process with Return
Code), or until Control-Cor Control-Break is received or a critical error occurs and the
user responds Abort to the Abort, Retry, Ignore? message.

• With MS-DOS versions 2.x, SS and SP must be saved in the current code segment
before Function 4BH is invoked withAL = OOH. When the parent process regains con­
trol, all registers other than CS:IP and the stack will most likely have been changed by
loading and executing the child process.

• Function 4BH with AL = 03H is useful for loading program overlays or for loading data
to be used by the parent process (if that data requires relocation).

• If the child process that is executed attempts to remain resident through either Inter­
rupt 27H or Interrupt 21H Function 31H (Terminate and Stay Resident), system mem­
ory becomes permanently fragmented and subsequent processes can fail because of
lack of memory.

• The EXEC function (withAL = OOH) is commonly used to load a new copy of
COMMAND. COM and then execute an MS-DOS command from within another
program.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

1370 TheMS-DOSEncyclopedia

HUAWEI EX. 1110 - 1380/1582

Interrupt 21H Function 4BH

Related Functions

31H (Terminate and Stay Resident)
4CH (Terminate Process with Return Code)
4DH (Get Return Code of Child Process)

Examples

;**;

Function 4BH: Load and Execute Program

int execute(pprogname,pcmdtail)
char *pprogname,*pcmdtail;

Returns 0 if program loaded, ran, and
terminated successfully, otherwise returns
error code.

;**;

sBegin data
$cmdlen 126
$cmd db $cmdlen+2 dup (?) ; Make space for command line, plus

2 extra bytes for length and
carriage return.

$feb db
db

0
'dummy
0,0,0,0

feb'
db

$epb dw
dw
dw
dw
dw
dw
dw

sEnd data
sBegin code

$sp dw
$ss dw

0
dataOFFSET
seg dgroup
dataOFFSET
seg dgroup
dataOFFSET
seg dgroup

?

?

Assumes ES,dgroup

$cmd

$feb

$feb

cProc execute,PUBLIC,<ds,si,di>
parmDP pprogname
parmDP pcmdtail
cBegin

mov cx,$cmdlen
loadDP ds,si,pcmdtail

Make dummy FCB.

Here's the EXEC parameter block:
0 means inherit environment.
Pointer to cmd line.

Pointer to FCB #1.

Pointer to FCB #2.

Allocate space in code seg
for saving SS and SP.

Allow command line this long.
DS:SI = pointer to cmdtail string.

Section V: System Calls

(more)

1371

HUAWEI EX. 1110 - 1381/1582

Interrupt 21H Function 4BH

1372

copycmd:

endcopy:

ex_err:

cEnd

sEnd

mov ax,seg dgroup:$cmd Set ES = data segment.

mov es, ax
mov di,dataOFFSET $cmd+1 ES:DI = pointer to 2nd byte of

our command-line buffer.

lodsb Get next character.

or
jz

al,al

endcopy

Found end of command tail?

Exit loop if so.

stosb Copy to command buffer.

loop copycmd

mov al,13

stosb Store carriage return at

end of command.

neg cl

add cl,$cmdlen CL = length of command tail.

mov es:$cmd,cl Store length in command-tail buffer.

loadDP ds,dx,pprogname DS:DX = pointer to program name.
mov bx,dataOFFSET $epb ES:BX = pointer to parameter

;_ block.

mov cs:$ss,ss Save current stack SS:SP (because

mov cs:$sp,sp EXEC function destroys stack) .

mov ax,4b00h Set function code.

int 21h Ask MS-DOS to load and execute
program.

eli Disable interrupts.
mov ss,cs:$ss Restore stack.

mov sp,cs:$sp

sti Enable interrupts.

jb ex_err Branch on error.

xor ax, ax Return 0 if no error.

code

;**;

Function 4BH: Load an Overlay Program

int loact_overlay(pfilename,loadseg)

char *pfilename;
int loadseg;

Returns 0 if program has been loaded OK,

otherwise returns error code.

To call an overlay function after it has been
loaded by loact_overlay(), you can use
a far indirect call:

The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1382/1582

l
l
I

Interrupt 21H Function 4BH

sBegin

Slob

sEnd

1. FTYPE (far *ovlptr) ();
2. *((unsigned *)&ovlptr + 1) = loadseg;

3. *((unsigned *)&ovlptr) =offset;

4. (*ovlptr) (arg1, arg2, arg3, ...);

Line 1 declares a far pointer to a

function with return type FTYPE.

Line 2 stores loadseg into the segment
portion (high word) of the far pointer.

Line·3 stores offset into the offset
portion (low word) of the far pointer.

Line 4 does a far call to offset

bytes into the segment loadseg
passing the arguments listed.

To return correctly, the overlay must end with a far
return instruction. If the overlay is

written in Microsoft C, this can be done by

declaring the overlay function with the

keyword "far".

;**;

data
The overlay parameter block:

dw ? space for load segment;

dw ? space for fixup segment.

data

sBegin code

cProc loact_overlay,PUBLIC,<ds,si,di>

parmDP pfilename

parmW loadseg

cBegin
loadDP ds,dx,pfilename ; DS:DX =pointer to program name.

mov ax,seg dgroup:Slob Set ES =data segment.

mov

mov

mov

mov

mov

mov

mov

mov

int

eli

es,ax
bx,dataOFFSET Slob

ax,loadseg
es: [bx] ,ax

es: [bx+2], ax

cs:Sss,ss

cs:Ssp,sp

ax,4b03h

21h

ES:BX = pointer to parameter

block.

Get load segment parameter.

Set both the load and fixup

segments to that segment.

Save current stack SS:SP (because

EXEC function destroys stack) .

Set function code.
Ask MS-DOS to load the overlay.

Disable interrupts.

Section V: System Calls

(more)

1373

HUAWEI EX. 1110 - 1383/1582

Interrupt 21H Function 4BH

mov ss,cs:$ss Restore stack.

mov sp,cs:$sp

sti Enable interrupts.

jb lo_err Branch on error.

xor ax, ax Return 0 if no error.
lo_err:

cEnd

sEnd code

1374 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1384/1582

Interrupt 21H (33)
Function 4CH (76)
Terminate Process with Return Code

Interrupt 21H Function 4CH

2.0 and later

Function 4CH terminates the current process with a return code and returns control to the
calling (parent) process.

To Call

AH =4CH
AL = return code

Returns

Nothing

Programmer's Notes

• When a process is terminated with Function 4CH, MS-DOS restores the termination­
handler (Interrupt 22H), Control-Chandler (Interrupt 23H), and critical error handler
(Interrupt 24H) addresses from the program segment prefix, or PSP (offsets OAH,
OEH, and 12H). MS-DOS also flushes the file buffers to disk, updates the disk direc­
tory, closes all files with open handles belonging to the terminated process, and then
transfers control to the termination-handler address.

• On termination with Function 4CH, all memory owned by the process is freed.
• Function 4CH is the recommended method for terminating all processes- par­

ticularly sizable .EXE files- that do not stay resident. This function should be used in
preference to the other termination methods (Interrupt 20H, Interrupt 21H Function
OOH, near RET for .COM files, or a jump to PSP:OOOOH). Memory-resident programs
should be terminated with Function 31H (Terminate and Stay Resident).

• A return code of OOH is customarily used to indicate that the process executed suc­
cessfully; a nonzero return code is used to indicate that the process terminated
because of an error or lack of resources- for example, the file could not be opened,
the process could not be allocated sufficient memory, and so ~n.

• If the terminated process was invoked by a command line or batch file, control
returns to COMMAND.COM and the transient portion of the command interpreter is
reloaded, if necessary. If a batch file was in progress, execution continues with the
next line of the file and the return code can be tested with an IF ERRORLEVEL state­
ment. Otherwise, the command prompt is issued.

If the terminated process was loaded by a process other than COMMAND. COM, the
parent process can retrieve the child's return code with Function 4DH (Get Return ~
Code of Child Process).

• In a networking environment running under MS-DOS version 3.1 or later, all file locks
should be removed by the process before it calls Function 4CH to terminate.

Section V: System Calls 1375

HUAWEI EX. 1110 - 1385/1582

Interrupt 21H Function 4CH

Related Functions
OOH (Terminate Process)
31H (Terminate and Stay Resident)
4DH (Get Return Code of Child Process)

Example

1376

;**;

Function 4CH: Terminate Process with Return Code

int terminate(returncode)
int returncode;

Does NOT return at all!

;**;

cProc terminate,PUBLIC
parmB returncode

cBegin

cEnd

mov
mov

int

al,returncode

ah,4ch
21h

The MS-DOS Encyclopedia

Set return code.
Set function code.
Call MS-DOS to terminate process.

HUAWEI EX. 1110 - 1386/1582

Interrupt 21H (33)
Function 4DH (77)
Get Return Code of Child Process

Interrupt 21H Function 4DH

2.0 and later

Function 4DH retrieves the return code of a child process that was invoked with Function
4BH (Load and Execute Program) and terminated with either Function 31H (Terminate
and Stay Resident) or Function 4CH (Terminate Process with Return Code).

To Call

AH =4DH

Returns

AH = termination method:
OOH normal termination (Interrupt 20H, or Interrupt 21H Function OOH or

Function 4CH)
OlH terminated by entry of Control-C
02H terminated by critical error handler (for example, user responded Abort to

Abort, Retry, Ignore? prompt)
03H terminated and stayed resident (Interrupt 27H or Interrupt 21H Function

31H)
AL = return code passed by child process

If terminated with Interrupt 20H, Interrupt 21H Function OOH, or Interrupt 27H:

AL =OOH

Programmer's Notes

• Function 4DH can be used only once to retrieve the return code of a terminated
process. Subsequent calls do not yield meaningful results.

• Function 4DH does not set the carry flag to indicate an error. If no previous child
process exists, the information returned in AH and AL is undefined.

Related Functions

31H (Terminate and Stay Resident)
4CH (Terminate Process with Return Code)

Section V: System Calls 1377

HUAWEI EX. 1110 - 1387/1582

Interrupt 21H Function 4DH

Example

1378

;**;

Function 4DH: Get Return Code of Child Process

int child_ret_code()

Returns the return code of the last

child process.

;**;

cProc child_ret_code,PUBLIC

cBegin

cEnd

mov
int

cbw

ah,4dh

21h

The MS-DOS Encyclopedia

Set function code.

Ask MS-DOS to return code.
Convert AL to a word.

HUAWEI EX. 1110 - 1388/1582

Interrupt 21H (33)
Function 4EH (78)
Find First File

Interrupt 21H Function 4EH

2.0 and later

Function 4EH searches the specified directory for the first matching entry.

·To Call

=4EH
= attribute word

AH
ex
DS:DX = segment: offset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

Current disk transfer area (DTA) contains the following information about the file:

Offset Length (bytes)

OOH 21

15H 1
16H 2
18H 2
1AH 2
1CH 2
1EH 13

If function is not successful:

Carry flag is set.

AX = error code:

Value

Reserved for use by MS-DOS in subsequent call to
Function 4FH (Find Next File)

File attribute
Time of last write
Date of last write
Low word of file size
High word of file size
Filename and extension in ASCIIZ form with blanks

removed and period inserted between filename and
extension

02H file not found
03H path not found
12H no more files; no match found

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).

Section V: System Calls 1379

HUAWEI EX. 1110 - 1389/1582

Interrupt 21H Function 4EH

• The filename and extension portions of the pathname can contain the MS-DOS wild­
cards? (match any character) and* (match all remaining characters).

• The DTA should be set with Function lAH (Set DTA Address) before Function 4EH is
called. If no DTA address is set, MS-DOS uses a default 128-byte buffer at offset SOH in
the program segment prefix (PSP).

• The attribute word in CX controls the search as follows:
- If the attribute word is OOH, only normal files are included in the search.
- If the attribute word has any combination of bits 1, 2, and 4 (hidden, system, and

subdirectory bits) set, the search includes normal files as well as files with any of
the attributes specified.

- If the attribute word has bit 3 set (volume-label bit), only a matching volume label
is returned.

- Bits 0 and 5 (read-only and archive bits) are ignored by Function 4EH.
• If Function 4FH (Find Next File) is used in conjunction with Function 4EH, the DTA

must be preserved, because the first 21 bytes contain information needed by Function
4FH.

• The time at which the file was last written is returned as a binary value in a word for­
matted as follows:

Bits

0-4
5-10
11-15

Meaning

Number of seconds divided by 2
Minutes (0 through 59)
Hours, based on a 24-hour clock (0 through 23).

• The date on which the file was last written is returned as a binary value in a word for­
matted as follows:

Bits · Meaning

0-4 Day ofthe month
5-8 Month (1 =January, 2 = February, 3 =March, and so on)
9-15 Numberoftheyearminus 1980

• Function 4EH is preferred to Function llH (Find First File) because it fully supports
pathnames.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

llH (Find First File)
12H (Find Next File)
lAH (Set DTA Address)
4FH (Find Next File)

1380 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1390/1582

Example

cProc
parmDP

parmW

cBegin

ff_err:

cEnd

Interrupt 21H Function 4EH

;**;

Function 4EH: Find First File

int find_first(ppathname,attr)

char *ppathname;

int attr;

Returns 0 if a match was found,
otherwise returns error code.

;**;

finct_first,PUBLIC,ds

ppathname

attr

loadDP ds,dx,ppathname

mov cx,attr
mov ah,4eh
int 21h
jb ff_err

xor ax, ax

Get pointer to pathname.

Get search attributes.
Set function code.

Ask MS-DOS to look for a match.
Branch on error.

Return 0 if no error.

Section V.· System Calls 1381

HUAWEI EX. 1110 - 1391/1582

Interrupt 21H Function 4FH

Interrupt 21H (33)
Function 4FH (79)
Find Next File

2.0 and later

Function 4FH continues a search initiated by a previously successful call to Function 4EH
(Find First File). The search is based on the pathname and attributes specified in the call to
Function 4EH and uses information left in the current disk transfer area (DTA) by the call
to Function 4EH or by a preceding call to Function 4FH.

To Call

AH =4FH

DTA contains information from prior search with Function 4EH or Function 4FH.

Returns

If function is successful:

Carry flag is clear.

DTA is filled in as for a call to Function 4EH:

Offset Length (bytes)

OOH 21

15H 1
16H 2
18H 2
1AH 2
1CH 2
lEH 13

If function is not successful:

Carry flag is set.

AX = error code:

Value

Reserved for use by MS-DOS in subsequent call to
Function 4FH

File attribute
Time of last write
Date of last write
Low word of file size
High word of file size
Filename and extension in ASCIIZ form with blanks

removed and period inserted between filename and
extension

12H no more files, no match found, or no previous call to Function 4EH

1382 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1392/1582

Interrupt 21H Function 4FH

Programmer's Notes

• If multiple calls to Function 4FH are used to find more than one matching file, the
DTA setting (Function lAH) and contents must be preserved because they provide in­
formation needed for continuing the search.

• The time at which the file was last written is returned as a binary value in a word for­
matted as follows:

Bits

0-4
5-10
11-15

Meaning

Number of seconds divided by 2
Minutes (0 through 59)
Hours, based on a 24-hour clock (0 through 23).

• The date on which the file was last written is returned as a binary value in a word for­
matted as follows:

Bits

0-4
5-8
9-15

Meaning

Day of the month
Month (1 =January, 2 = February, 3 = March, and so on)
Number of the year minus 1980

• Function 4FH is preferred to Function 12H (Find Next File) because it fully supports
pathnames.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

llH (Find First File)
12H (Find Next File)
lAH (Set DTA Address)
4EH (Find First File)

Example

;**;

Function 4FH: Find Next File

int fincLnext ()

Returns 0 if a match was found,
otherwise returns error code.

;**;

(more)

Section V: System Calls 1383

HUAWEI EX. 1110 - 1393/1582

Interrupt 21H Function 4FH

1384

cProc

cBegin

fn_err:

cEnd

find_next,PUBLIC

mov

int

jb

xor

ah,4fh
21h

fn_err

ax, ax

The MS-DOS Encyclopedia

Set function code.
Ask MS-DOS to look for the next

matching file.
Branch on error.

Return 0 if no error.

HUAWEI EX. 1110 - 1394/1582

Interrupt 21H (33)
Function 54H (84)
Get Verify Flag

Interrupt 2IH Function 54H

2.0 and later

Function 54H returns the current value of the MS-DOS verify flag.

To Call

AH = 54H

Returns

AL = verify flag:
OOH verify off; no read after write operation
OlH verify on; read after write operation

Programmer's Notes

• The default state of the verify flag is OOH (off).
• The state of the verify flag can be changed either through a call to Function 2EH

(Set/Reset Verify Flag) or by the user with the VERIFY ON and VERIFY OFF
commands.

Related Function

Function 2EH (Set/Reset Verify Flag)

Example

;**;

Function 54H: Get Verify Flag

int get_verify ()

Returns current value of verify flag.

;**;

cProc get_verify,PUBLIC
cBegin

cEnd

mov
int
cbw

ah,54h
21h

Set function code.
Read flag from MS-DOS.
Clear high byte of return value.

Section V.· System Calls 1385

HUAWEI EX. 1110 - 1395/1582

Interrupt 21H Function 56H

Interrupt 21H (33)
Function 56H (86)
Rename File

2.0 and later

Function 56H renames a file and/or moves it to a new location in the hierarchical directory
structure.

To Call

AH
DS:DX
ES:DI

=56H
= segment:offset of existing ASCIIZ pathname for file
= segment:offset of new ASCIIZ pathname for file

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
02H file not found
03H path not found
05H access denied
llH not the same device

Programmer's Notes

• The pathnames must be null-terminated ASCII strings (ASCIIZ).
• The directory paths specified in DS:DX and ES:DI need not be identical. Thus, speci­

fying different directory paths effectively moves a file from one directory to another.
• Function 56H cannot be used to move a file to a different drive. Both the existing

pathname and the new one must either contain the same drive identifier or default to
the same drive.

• If Function 56H returns error code 05H, the cause can be any of the following:
- The new pathname would move the file to the root directory, but the root directory

is full.
- A file with the new pathname already exists.
- The user is on a network and has insufficient access to either the existing file or the

new subdirectory.
• Unlike Function 17H (Rename File), Function 56H does not support the use of MS­

DOS wildcard characters (? and ~).

1386 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1396/1582

Interrupt 21H Function 56H

• Function 56H should not be used to rename open files. An open file should be closed
with Function lOH (Close File with FCB) or 3EH (Close File) before Function 56H is
called to rename it.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

17H (Rename File)

Example

cProc
parmDP

parmDP

cBegin

rn_err:

cEnd

;**;

Function 56H: Rename File

int rename(poldpath,pnewpath)

char *poldpath,*pnewpath;

Returns 0 if file moved OK,

otherwise returns error code.

:**;

rename,PUBLIC,<ds,di>

poldpath

pnewpath

loadDP es,di,pnewpath
loadDP ds,dx,poldpath

mov ah,56h

int 21h

jb rn_err

xor ax, ax

ES:DI =pointer to newpath.

DS:DX = pointer to oldpath.

Set function code.
Ask MS-DOS to rename file.

Branch on error.

Return 0 if no error.

Section V: System Calls 1387

HUAWEI EX. 1110 - 1397/1582

Interrupt 21H Function 57H

Interrupt 21H (33)
Function 57H (87)
Get/Set Date/Time of File

2.0 and later

Function 57H retrieves or sets the date and time of a file's directory entry.

To Call

AH =57H
AL = OOH get date and time

01H set date and time
BX = handle number

IfAL= 01H:

ex = time; binary value formatted as follows:

Bits

0-4
5-10
11-15

Meaning

Number of seconds divided by 2
Minutes (0 through 59)
Hours, based on a 24-hour clock (0 through 23)

DX = date; binary value formatted as follows:

Bits Meaning

0-4 Day of the month (1 through 31)
5-8 Month (1 =January, 2 =February, 3 =March, and so on)
9-15 Year minus 1980

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

ex = time file was last modified; format as described above
DX = date file was last modified; format as described above

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function (AL not OOH or 01H)
06H invalid handle

1388 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1398/1582

Interrupt 21H Function 57H

Programmer's Notes

• Before the date and time in a file's directory entry can be retrieved or changed with
Function 57H, a handle must be obtained by opening or creating the file using one of
the following functions:

3CH (Create File with Handle)
3DH (Open File with Handle)
SAH (Create Temporary File)
SBH (Create New File)

• Use of Function 57H to retrieve the date and time of a file is preferable to examining
the fields of an open FCB directly.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

2AH (Get Date)
2BH (Set Date)
2CH (Get Time)
2DH (Set Time)

Example

cl?roc
parmW
parmB
pa:r:mW
parmw
cBegin

!**!

function 57H: Get/Set Date/Time of File

long file~date_time(handle,func,packdate,~acktime)
int hand~e,func,packdate,packtime;

Retu~ns a long -1 for all error$, otherwise packs
date and time into a long integer,
date in high word, time in low word.

!**!

file-date_time,PUBLXC
handle
funo
packdate
pack tim"

mov bx,handle
mov al.,funo
mov dx,paokdata
mov cx,flacktime
mov ah,57h
int 21h

Get handle.
Get function; 0 ~ read,
Get date (if present).
Get time (if present) .
Set function code.
CaU MS-DOS.

write.

(more)

Section V: System Calls 1389

HUAWEI EX. 1110 - 1399/1582

Interrupt 21H Function 57H

dt_ok:
cEnd

mov

jnb
mov
cwd

ax, ex

dt-Ok
ax, -1

1390 The MS-DOS Encyclopedia

Set DX:AX m date/time, assuming no
error.
Branch if no error.
Return -1 for errors.
Extend the -1 into DX.

HUAWEI EX. 1110 - 1400/1582

Interrupt 21H (33)
Function 58H (88)
Get/Set Allocation Strategy

Interrupt 21H Function 58H

3.0 and later

Function 58H retrieves or sets the method MS-DOS uses to allocate memory blocks for a
process that issues a memory-allocation request.

To Call

AH = 58H
AL = OOH get allocation strategy

set allocation strategy OlH

If AL= OlH:

BX = allocation strategy:
OOH use first (lowest available) block that fits
OlH use block that fits best
02H use last (highest available) block that fits

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

AX = allocation-strategy code:
OOH first fit
OlH bestfit
02H lastfit

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function (AL not OOH or OlH)

Programmer's Notes

• Allocation strategies determine how MS-DOS finds and allocates a block of memory
to an application that issues a memory-allocation request with either Function 48H
(Allocate Memory Block) or Function 4AH (Resize Memory Block).

The three strategies are carried out as follows:
- First fit (the default): MS-DOS works upward from the lowest available block and

allocates the first block it encounters that is large enough to satisfy the request for
memory. This strategy is followed consistently, even if the block allocated is much
larger than required.

Section V: System Calls 1391

HUAWEI EX. 1110 - 1401/1582

Interrupt 21H Function 58H

Best fit: MS-DOS searches all available memory blocks and then allocates the
smallest block that satisfies the request, regardless of its location in the empty­
block chain. This strategy maximizes the use of dynamically allocated memory at
a slight cost in speed of allocation.
Last fit (the reverse of first fit): MS-DOS works downward from the highest avail­
able block and allocates the first block it encounters that is large enough to satisfy
the request for memory. This strategy is followed consistently, even if the block
allocated is much larger than required.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions
48H (Allocate Memory Block)
4AH (Resize Memory Block)

Example

;**;

cProc

parmB

parmw

cBegin

no_err:

cEnd

;·

Function 58H: Get/Set Allocation Strategy

int alloc_strategy(func,strategy)

int func,strategy;

Strategies:

0: . First fit

1 : Best fit

2: Last fit

Returns -1 for all errors, otherwise
returns the current strategy.

;**;

alloc_strategy,PUBLIC

func
strategy

mov al,func

mov bx,strategy

mov ah,58h

int 21h

jnb no_err

mov ax,-1

AL = get/set selector.

BX = new strategy (for AL

Set function code.

Call MS-DOS.
Branch if no error.

Return -1 for all errors.

01H).

1392 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1402/1582

Interrutlt 21H (33)
Function 59H (89)
Get Extended Error Information

Interrupt 21H Function 59H

3.0 and later

Function 59H returns extended error information, including a suggested response, for the
function call immediately preceding it.

To Call

AH = 59H
BX =OOH

Returns

AX = extended error code:
OOH no error encountered
OlH invalid function number
02H file not found
03H path not found
04H too many files open; no handles available
05H access denied
06H invalid handle
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH
llH
12H
13H
14H
15H
16H
17H
18H
19H
lAH
lBH

memory control blocks destroyed
insufficient memory
invalid memory-block address
invalid environment
invalid format
invalid access code
invalid data
reserved
invalid disk drive
attempt to remove current directory
device not the same
no more files
write-protected disk
unknown unit
drive not ready
invalid command
data error based on cyclic redundancy check (CRC)
length of request structure invalid
seek error
non-MS-DOS disk
sector not found

Section V: System Calls 1393

HUAWEI EX. 1110 - 1403/1582

Interrupt 21H Function 59H

lCH
lDH
lEH
lFH
20H
21H
22H
23H
24H
25-31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49-4FH
SOH
51H
52H
53H
54H
55H
56H
57H
58H

1394 The MS-DOS Encyclopedia

printer out of paper
write fault
read fault
general failure
sharing violation
lock violation
invalid disk change
FCB unavailable
sharing buffer exceeded
reserved
unsupported network request
remote machine not listening
duplicate name on network
network name not found
network busy
device no longer exists on network
net BIOS command limit exceeded
error in network adapter hardware
incorrect response from network
unexpected network error
remote adapt incompatible
print queue full
queue not full
not enough room for print file
network name deleted
access denied
incorrect network device type
network name not found
network name limit exceeded
net BIOS session limit exceeded
temporary pause
network request not accepted
print or disk redirection paused
reserved
file already exists
reserved
cannot make directory
failure on Interrupt 24H (critical error)
out of structures
already assigned
invalid password
invalid parameter
net write fault

HUAWEI EX. 1110 - 1404/1582

Interrupt 21H Function 59H

· BH = error class:
OlH
02H
03H
04H
05H
06H

07H
08H
09H
OAH
OBH

OCH
ODH

out of resource (such as storage)
temporary situation, expected to end; not an error
authorization problem
internal error in system software
hardware failure
system-software failure, such as missing or incorrect

configuration files; not the fault of the active process
application-program error
file or item not found
file or item of invalid format or type or otherwise unsuitable
file or item interlocked
drive contains wrong disk, disk has bad spot, or other problem

with storage medium
already exists
unknown

BL = suggested action:
OlH perform a reasonable number of retries before prompting user to

choose Abort or Ignore in response to error message
02H perform a reasonable number of retries, with pauses between,

03H

04H
05H
06H
07H

before prompting user to choose Abort or Ignore in response to
error message

prompt user to enter corrected information, such as drive letter or
filename

clean up and exit application
exit immediately without cleanup
ignore; informational error
prompt user to remove cause of error (for example, change disks)

and then retry
CH = location of error:

OlH
02H
03H
04H
05H

unknown
block device
network
serial device
memory related

Programmer's Notes

• The extended error codes returned by Function 59H correspond to the error values
returned in AX by functions in MS-DOS versions 2.0 and later that set the carry flag on
error. Versions 2.x of MS-DOS, however, provide a smaller set of error codes (OlH
through 12H) than do later versions.

Thus, although Function 59H itself is not available in versions of MS-DOS earlier than
3.0, the matching of error codes to earlier versions helps ensure downward com­
patibility. Function 59H was also designed to be open-ended so that additional error
codes could be incorporated as needed. As a result, processes should remain flexible

Section V.· System Calls 1395

HUAWEI EX. 1110 - 1405/1582

Interrupt 21H Function 59H

in their use of this function and should not rely on a fixed set of code numbers for
error detection.

• Function 59H is useful in the following situations:
When MS-DOS encounters a hardware-related error condition and shifts control to
an Interrupt 24H handler that has been created by the programmer
When a handle-related function sets the carry flag to indicate an error or when an
FCB-related function indicates an error by returning OFFH in the AL register

• If a function call results in an error, Function 59H returns meaningful information
only if it is the next call to MS-DOS. An intervening call to another MS-DOS function,
whether explicit or indirect, causes the error value for the unsuccessful function to
be lost.

• Unlike most MS-DOS functions, Function 59H alters some registers that are not used
to return results: CL, DX, SI, DI, ES, and DS. These registers must be preserved before
a call to Function 59H if their contents are needed later.

Related Functions

None

Example

cProc
parmDP
parmDP
parmDP
parmDP

cBegin

cEnd

;**:

Function 59H: Get Extended Error Information

int extendect_error(err,class,action,locus)
int *err;

char *class,*action,*locus;

Return value is same as err.

;**;

e~tendect_error,PUBLIC,<ds,si,di>

perr
pclass
paction
plocus

push ds
xor bx,bx

mov ah, 59h
int 21h
pop ds
loadDP ds,si,perr
mov [si] ,ax

loadDP ds,si,pclass
mov [si],bh
loadDP ds,si,paction
mov [si] ,bl
loadDP ds,si,plocus
mov [si], ch

Save DS.

Set function code.
Request error info from MS-DOS.
Restore DS.
Get pointer to err.
Store err.
Get pointer to class.
Store class.
Get pointer to action.
Store action.
Get pointer to locus.
Store locus.

1396 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1406/1582

Interrupt 21H (33)
Function 5AH (90)
Create Temporary File ·

Interrupt 21H Function 5AH

3.0 and later

Function 5AH uses the system clock to create a unique filename, appends the filename to
the specified path, opens the temporary file, and returns a file handle that can be used for
subsequent file operations.

To Call

AH
ex

=5AH
= file attribute:

OOH normal file
01H read-only file
02H hidden file
04H system file

DS:DX = segment:offset of ASCIIZ path, ending with a backslash character(\) and
followed by 13 bytes of memory (to receive the generated filename)

Returns

If function is successful:

Carry flag is clear.

AX
DS:DX

=handle
= segment: offset of full pathname for temporary file

If function is not successful:

Carry flag is set.

AX = error code:
03H path not found
04H too many open files; no handle available
05H access denied

Programmer's Notes

• Only the drive and path to use for the new file should be specified in the buffer
pointed to by DS:DX. The function appends an eight-character filename that is gener­
ated from the system time.

• Function 5AH is valuable in such situations as print spooling on a network, where
temporary files are created by many users.

• The input string representing the path for the temporary file must be a null-termi­
nated ASCII string (ASCIIZ).

• In networking environments running under MS-DOS version 3.1 or later, MS-DOS
opens the temporary file in compatibility mode.

Section V.· System Calls 1397

HUAWEI EX. 1110 - 1407/1582

Interrupt 21H Function 5AH

• MS-DOS does not delete temporary files; applications must do this for themselves.
• Function 59H (Get Extended Error Information) provides further information on any

error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FCB)
3CH (Create File with Handle)
5BH (Create New File)

Example

1398

';**;

Function 5AH: Create Temporary File

int create_temp(ppathname,attr)
char *ppathname;
int attr;

Returns -1 if file was not created,
otherwise returns file handle.

;**;

cProc create_temp,PUBLIC,ds
parmDP ppathname
parmW attr
cBegin

loadDP ,ds,dx,ppathname

ct_ok:
cEnd

mov
mov

int
jnb
mov

cx,attr
ah,Sah

21h
ct_ok
ax,-1

The MS-DOS Encyclopedia

Get pointer to pathname.
Set function code.
Ask MS-DOS to make a new file with
a unique name.
Ask MS-DOS to make a tmp file.
Branch if MS-DOS returned handle.
Else return -1 .

HUAWEI EX. 1110 - 1408/1582

Interrupt 21H (33)
Function 5BH (91)
Create New File

Interrupt 21H Function SBH

3.0 and later

Function 5BH creates a new file with the specified pathname. This function operates like
Function 3CH (Create File with Handle) but fails if the pathname references a file that
already exists.

To Call

AH
ex

DS:DX

Returns

=5BH
= file attribute:

OOH normal file
OlH read-only file
02H hidden file
04H system file

= segment: offset of ASCIIZ pathname

If function is successful:

Carry flag is clear.

AX =handle

If function is not successful:

Carry flag is set.

AX = error code:
03H path not found
04H too many open files; no handle available
05H access denied
SOH file already exists

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• In networking environments running under MS-DOS version 3.1 or later, the file is

opened in compatibility mode. Function 5BH fails, however, if the user does not have
Create access to the directory that is to contain the file.

• Function SBH can be used to implement semaphores in the form of files across a local 4
area network or in a multitasking environment. If the function succeeds, the
semaphore has been acquired. To release the semaphore, the application simply
deletes the file.

Section V.· System Calls 1399

HUAWEI EX. 1110 - 1409/1582

Interrupt 21H Function 5BH

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions
16H (Create File with FCB)
3CH (Create File with Handle)
5AH (Create Temporary File)

Example

cl?roc
parmDP
parmw
cBegin

ae~err:

cn_ok:
cE:nd

!**!

Function 5BH: Create New File

int create~new(ppathname,attr)
char *ppathname;
int attr;

Returns -2 if file already exists,
-1 for all other errors,
otherwise returns file handle.

!**'

create~new,PUBLlC,ds

ppathname
attr

loadDP ds,dx,ppathname
rnov cx,attr
rnov ah 1 5bh
int 21h
jnb cn_ok
mov bx,-2
cmp al,80
jz ae_err
inc bx

rnov ax,bx

Get pointer to pathname.
Get new file's attribute.
Set function code.
Ask MS-DOS to make a new file.
Branch if MS-DOS returned handle',

Did file already exist?
Branch if so.
Change -2 to -1 .

Return error code.

1400 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1410/1582

Interrupt 21H (33)
Function 5CH (92)
Lock/Unlock File Region

Interrupt 21H Function 5CH

3.0 and later

Function 5CH enables a process running in a networking or multitasking environment to
lock or unlock a range of bytes in an open file.

To Call

AH
AL

=5CH
=OOH

OlH
=handle

lock region
unlock region

BX
CX:DX = 4-byte integer specifying beginning of region to be locked or unlocked

(offset in bytes from beginning of file)
SI:DI

Returns

= 4-byte integer specifying length of region (measured in bytes)

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function CAL not OOH or OlH or file sharing not loaded)
06H invalid handle
21H lock violation
24H sharing buffer exceeded

Programmer's Notes

• A process that either closes a file containing a locked region or terminates with the
file open leaves the file in an undefined state. Under either condition, MS-DOS might
handle the file erratically. If the process can be terminated by Interrupt 23H (Control­
C) or 24H (critical error), these interrupts should be trapped so that any locked
regions in files can be unlocked before the process terminates.

• Locking a portion of a file with Function 5CH denies all other processes both read
and write access to the specified region of the file. This restriction also applies when
open file handles are passed to a child process with Function 4BH (Load and Execute
Program). Duplicate file handles created with Function 45H (Duplicate File Handle)
and 46H (Force Duplicate File Handle), however, are allowed access to locked regions
of a file within the current process.

• Locking a region that goes beyond the end of a file does not cause an error.

Section V: System Calls 1401

HUAWEI EX. 1110 - 1411/1582

Interrupt 21H Function SCH

• Function 5CH is useful primarily in ensuring that competing programs or processes
do not interfere while a record is being updated. Locking at the file level is provided
by the sharing parameter in Function 3DH (Open File with Handle).

• Function 5CH can also be used to check the lock status of a file. If an attempt to lock a
needed portion of a file fails and error code 21H is returned in the AX register, the
region is already locked by another process.

• Any region locked with a call to Function 5CH must also be unlocked, and the same
4-byte integer values must be used for each operation. Two adjacent regions of a file
cannot be locked separately and then be unlocked with a single unlock call. If the
region to unlock does not correspond exactly to a locked region, Function 5CH
returns error code 21H.

• The length of time needed to hold locks can be minimized with the transaction­
oriented programming model. This concept requires defining and performing an up­
date in a uniform manner: Assert lock, read data, change data, remove lock.

• if file sharing is not loaded, an application receives a OlH (function number invalid)
error status when it attempts to lock a file. An immediate call to Function 59H returns
the error locus as an unknown or a serial device.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

45H (Duplicate File Handle)
46H (Force Duplicate File Handle)
4BH (Load and Execute Program) [EXEC]

Example

;**;

Function 5CH: Lock/Unlock File Region

int locks(hanctle,onotf,start,length)
int hanctle,onoff;
long start,length;

Returns 0 if operation was successtul,
otherwise returns error code.

;***************************'********************************;

cProc locks,PUBLIC,<si,di>
parmW handle
parmB onoff
parmD start
parmD length

1402 The MS-DOS Encyclopedia"

(more)

HUAWEI EX. 1110 - 1412/1582

Interrupt 21H Function 5CH

cBeqin
mov al,onoff Get lock/unlock flaq.
mov bx,handle Get file handle.
l(\!S dx,start Get low word of start.
mov o.K,es Get hiqh word of start.
les di,lenqth Get low word of length.
mov si,es Gt>t high word of length.
mov ah,5ch Set function code.
int 21h Make look/unlock request.
jb lk~err Branch on error.
xor ax, ax Return 0 :l.f no error.

lk~err:

oEnd

Section V: System Calls 1403

HUAWEI EX. 1110 - 1413/1582

Interrupt 21H Function 5EH Subfunction OOH

Interrupt 21H (33)
Function 5EH (94) Subfunction OOH
Network Machine Name/Printer Setup: Get Machine Name

3.1 and later

If Microsoft Networks is running, Function 5EH Subfunction OOH retrieves the network
name of the local computer.

To Call

AH
AL
DS:DX

Returns

=-5EH
=-OOH
"'segment: offset of 16-byte buffer

If function is successful:

Carry flag is clear.

CH

CL
DS:DX

"' validity of machine name:
OOH invalid
nonzero valid

"' NETBIOS number assigned to machine name
"' segment:offset of ASCIIZ machine name

If function is not successful:

Carry flag is set.

AX "' error code:
01H invalid function; Microsoft Networks not running

Programmer's Notes

• The NETBIOS number in CL and the name at DS:DX are valid only if the value
returned in CH is nonzero.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function
5FH (Get/Make Assign List Entry)

Example
None

1404 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1414/1582

Interrupt 21H Function 5EH Subfunctions 02H and 03H

Interrupt 21H (33) 3.1 and later

Function 5EH (94) Subfunctions 02H and 03H
Network Machine Name/Printer Setup: Set Printer Setup;
Get Printer Setup

Function 5EH Subfunctions 02H and 03H respectively set and get the setup string that MS­
DOS adds to the beginning of a file sent to a network printer.

To Call

AH =5EH
AL = 02H set printer setup string

03H get printer setup string
BX = assign-list index number (obtained with Function 5FH Subfunction 02H)

IfAL= 02H:

CX = length of setup string in bytes (64 bytes maximum)
DS:SI = seginent:offset of ASCII setup string

IfAL = 03H:

ES:DI

Returns

= segment: offset of 64-byte buffer to receive string

If function is successful:

Carry flag is clear.

If AL was 03H on call:

ex = length of printer setup string in bytes
ES:DI = segment:offset of ASCII printer setup string

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid subfunction

Programmer's Notes

• Function 5EH Subfunctions 02H and 03H enable multiple users on a network to con-
figure a shared printer as required. The assign-list number is an index to a table that ~
identifies the printer as a device on the network. A process can determine the assign-
list number for the printer by using Function 5FH Subfunction 02H (Get Assign-List
Entry).

• Error code OlH in the AX register may indicate either that Microsoft Networks is not
running or that an invalid subfunction was selected.

Section V.· System Calls 1405

HUAWEI EX. 1110 - 1415/1582

Interrupt 21H Function 5EH Subfunctions 02H and 03H

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5FH (Get/Make Assign-List Entry)

Example

ol?roo
parmw
parmDP
parmW
c:Begin

ps~ok:

cEnd

Function 5EH Subfunotion 02H:
Set Printer Setup

int printer_setup(index,pstring,len)
int index;
char ~~<pstring;

int len;

Returns 0, otherwise returns -1 for all errors.

printer-setup,PUBLIC,<ds,si>
index
pstring
len

mov bx,index
loadDi? ds, si,pst.dng
mov ex, len
mov ax,5a02h
int 21h
mov al,O
jnb PS-Ok
mov al, -1

cbw

BX s index of a net printer.
DS:SI ~ pointer to string.
ex ~ length of string.
Set function code.
Set printer prefix string.
Assume no error.
Branch if no error,
Ellse return -1 •

1406 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1416/1582

Interrupt 21H Function SFH Subfunction 02H

Interrupt 21H (33)
Function 5FH (95) Subfunction 02H
Get/Make Assign-List Entry: Get Assign-List Entry

3.1 and later

Function 5FH Subfunction 02H obtains the local and remote (network) names of a device.
To find the names, MS-DOS uses the device's user-assigned index number (set with Func­
tion 5FH Subfunction 03H) to search a table of redirected devices on the network.
Microsoft Networks must be running with file sharing loaded for this subfunction to oper­
ate successfully.

To Call

=5FH
=02H
= assign-list index number

AH
AL
BX
DS:SI
ES:DI

= segment:offset of 16-byte buffer for local (device) name
= segment: offset of 128-byte buffer to receive remote (network) name

Returns

If function is successful:

Carry flag is clear.

BH = device status:
OOH valid device
01H invalid device

BL = device type:
03H printer
04H drive

ex = user data
DS:SI = segment: offset of ASCIIZ string representing local device name
ES:DI = segment: offset of ASCIIZ string representing network name

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function or Microsoft Networks not running
12H no more files

Programmer's Notes

• All strings returned by this subfunction are null-terminated ASCII strings (ASCIIZ).
• A successful call to this subfunction destroys the contents of the DX and BP registers.

Section V: System Calls 1407

HUAWEI EX. 1110 - 1417/1582

Interrupt 21H Function 5FH Subfunction 02H

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

1408

cProc
parmW
parmDP
parmDP
parmDP
parmDP
cBegin

ga_err:
cEnd

;***"*********;

Function 5FH Subfunction 02H:
Get Assign-List Entry

int get_alist_entry(index,
plocalname,premotename,
puservalue,ptype)

int index;
char *plocalname;
char *premotename;
int *puservalue;
int *ptype;

Returns 0 if the requested assign-list entry is found,
otherwise returns error code.

;**;

get_alist_entry,PUBLIC,<ds,si,di>
index
plocalname
premotename
puservalue
ptype

mov bx, index Get list index.
loadDP ds,si,plocalname DS:SI =pointer to local name

buffer.
loadDP es,di,premotename ES:DI =pointer to remote name

buffer.
mov
int

ax,5f02h
21h

Set function code.
Get assign-list entry.

jb ga_err Exit on error.
xor ax,ax Else return 0.
loadDP ds,si,puservalue ; Get address of uservalue.
mov [si],cx Store user value.
loadDP ds,si,ptype Get address of type.
mov bh, 0
mov [si],bx Store device type to type.

The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1418/1582

' I
\.

Interrupt 21H Function 5FH Subfunction 03H

Interrupt 21H (33)
Function 5FH (95) Subfunction 03H
Get/Make Assign-List Entry: Make Assign-List Entry

3.1 and later

Function 5FH Subfunction 03H redirects a local printer or disk drive to a network device
and establishes an assign-list index number for the redirected device. Microsoft Networks
must be running with file sharing loaded for this subfunction to operate successfully.

To Call

AH
AL
BL

=5FH
=03H
= device type:

03H printer
04H drive

=user data ex
DS:SI
ES:DI

= segment:offset of 16-byte ASCIIZ local device name
= segment: offset of 128-byte ASCIIZ remote (network) device name

and password in the form

machine name\pathname, null,password, null

For example:

string db '\\mymaoh\wp•,o, 'b1ibbet•,o

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function or Microsoft Networks not running
03H path not found
05H access denied
08H insufficient memory
OFH redirection paused on server
12H no more files

Programmer's Notes

• The strings used by this subfunction must be null-terminated ASCII strings (ASCIIZ).
The ASCIIZ string pointed to by ES:DI (the destination, or remote, device) cannot be
more than 128 bytes including the password, which can be a maximum of 8 charac­
ters. If the password is omitted, the pathname must be followed by 2 null bytes.

Section V: System Calls 1409

HUAWEI EX. 1110 - 1419/1582

Interrupt 21H Function 5FH Subfunction 03H

• If BL = 03H, the string pointed to by DS:SI must be one of the following printer names:
PRN, LPT1, LPT2, or LPT3. Ifthe call is successful, output is redirected to a network
print spooler, which must be named in the destination string. For printer redirection,
MS-NET intercepts Interrupt 17H (BIOS Printer 1/0). When redirection for a printer is
canceled, all printing is sent to the first local printer (LPTl).

If BL = 04H, the string pointed to by DS:SI can be a drive letter followed by a colon,
such as E:, or it can be a null string. If the string represents a valid drive, a successful
call redirects drive requests to the network directory named in the destination string.
If DS:SI points to a null string, MS-DOS attempts to provide access to the network
directory named in the destination string without redirecting any device.

• Only printer and disk devices are supported in MS-DOS versions 3.1 and later. COM1
and COM2 are not supported for network redirection, nor are the standard output or
standard error devices supported.

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

;**;

Function SFH Subfunction 03H:
Mak~ Assign-List Entry

int add-alist_entry(psrcname 1 pdestname,uservalu~,type)
char *psrcname,*pdestname;
int uservalue,typ~;

Returns 0 if new assign-list entry is made, otherwise
returns error code.

;**;

cProc add_alist_entry,PUBLlC,<ds,si,di>
parmOP psrcnarne
parmOP pdestnarne
parmW uservalue
parmW type
cBegin

mov bx,type Get device type.
rnov cx,uservalue Get uservalue.
loadOP ds,si,psrcnarne OS:SI = pointer
loadDP es,di,pdestnarne 8S:Dl = pointer

to
to

mov ax,5f03h Set function code.

source name.
destination

int 21h Make assign-list entry.

aa._err:
cEnd

jb
xor

aa_err
ax, ax

1410 The MS-DOS Encyclopedia

; .,Exit
; Else

if there was some error.
return o.

name.

HUAWEI EX. 1110 - 1420/1582

I
Interrupt 21H Function 5FH (95) Subfunction 04H ·

Int21H(33)
Function 5FH (95) Subfunction 04H
Get/Make Assign-List Entry: Cancel Assign-List Entry

3.1 and later

Function 5FH Subfunction 04H cancels the redirection of a local device to a network
device previously established with Function 5FH Subfunction 03H (Make Assign-List
Entry). Microsoft Networks must be running with file sharing loaded for this subfunc­
tion to operate successfully.

To Call

AH =5FH
AL =04H
DS:SI = segment: offset of ASCIIZ device name or path

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function or Microsoft Networks not running
03H path not found
05H access denied
08H insufficient memory
OFH redirection paused on server
12H no more files

Programmer's Notes

• The string pointed to by DS:SI must be a null-terminated ASCII string (ASCIIZ). This
string can be any one of the following:
- The letter, followed by a colon, of a redirected local drive. This function restores

the drive letter to its original, physical meaning.
The name of a redirected printer: PRN, LPTl, LPT2, LPT3, or its machine-specific
equivalent. This function restores the printer name to its original, physical meaning
at the local workstation.
A string, beginning with two backslashes(\\) followed by the name of a network
directory. This function terminates the connection between the local workstation
and the directory specified in the string.

Section V: System Calls 1411

HUAWEI EX. 1110 - 1421/1582

Interrupt 21H Function 5FH Subfunction 04H

• Function 59H (Get Extended Error Information) provides further information on any
error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

1412

;**;

Function 5FH Subfunction 04H:
Cancel Assign-List Entry

int cancel-alist-entry(psrcname)
char *psrcname;

Returns 0 if assignment is canceled, otherwise returns
error code.

;**;

cProc cancel_alist_entry,PUBLIC,<ds,si>
parmDP psrcname
cBegin

ca_err:
cEnd

loadDP ds,si,psrcn~me

mov ax,5f04h
int 21h
jb ca_err

xor ax, ax

The MS-DOS Encyclopedia

DS:SI = pointer to source name.
Set function code.
Cancel assign-list entry.
Exit on error.
Else return 0.

HUAWEI EX. 1110 - 1422/1582

Interrupt 21H Function 62H

Interrupt 21H (33)
Function 62H (98)
Get Program Segment ·Prefix Address

3.0 and later

Function 62H gets the segment address of the program segment prefix (PSP) for the cur­
rent process.

To Call

AH =62H

Returns

BX = segment address of PSP for current process

Programmer's Notes

• The PSP is constructed by MS-DOS at the base of the memory allocated for a .COM
or .EXE program being loaded into memory by the EXEC function, 4BH (Load and
Execute Program). The PSP is lOOH bytes and contains information useful to an ex­
ecuting program, including

The command tail
Default file control blocks (FCBs)
A pointer to the program's environment block

- Previous addresses for MS-DOS Control-C, critical error, and terminate handlers
• Function 59H (Get Extended Error Information) provides further information on any

error- in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

;**;

Function 62H: Get Program Segment Prefix Address

int get_psp ()

Returns PSP segment.

;**;

(more)

Section V: System Calls 1413

HUAWEI EX. 1110 - 1423/1582

Interrupt 21H Function 62H

1414

cProc get_psp,PUBLIC

cBegin

cEnd

mov
int

mov

ah,62h

21h
ax,bx

The MS-DOS Encyclopedia

Set function code.
Get PSP address.

Return it in AX.

HUAWEI EX. 1110 - 1424/1582

Interrupt 21H (33)
Function 63H (99)
Get Lead Byte Table

Interrupt 21H Function 63H

2.25

Function 63H, available only in MS-DOS version 2.25, includes three subfunctions that
support 2-byte-per-character alphabets such as Kanji and Hangeul (Japanese and Korean
characters sets). Subfunction OOH obtains the address of the legal lead byte ranges for the
character sets; Subfunctions 01H and 02H set or obtain the value of the interim console
flag, which determines whether interim characters are returned by certain console system
calls.

To Call

AH =63H
AL

IfAL= OlH:

=OOH
01H
02H

get lead byte table address
set or clear interim console flag
get interim console flag

DL = interim console flag:
OOH clear
01H set

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

DS:SI = segment: offset of lead byte table

If AL was 02H on call:

DL = value of interim console flag

If function is not successful:

Carry flag is set.

AX = error code:
01H invalid function

Programmer's Notes

• Function 63H does not necessarily preserve any registers other than SS:SP, so register
values should be saved before a call to this function. To avoid saving registers repeat­
edly, a process can either copy the table or save the pointer to the table for later use.

Section V: System Calls 1415

HUAWEI EX. 1110 - 1425/1582

Interrupt 21H Function 63H

• The lead byte table contains pairs of bytes that represent the inclusive boundary
values for the lead bytes of the specified alphabet. Because of the way bytes are or­
dered by the 8086 microprocessor family, the values must be read as byte values, not
as word values.

• If the interim console flag is set (DL = OlH) by a program through a call to Function
63H, the following functions return interim character information on request:

07H (Character Input Without Echo)
08H (Unfiltered Character Input Without Echo)
OBH (Check Keyboard Status)
OCH (Flush Buffer, Read Keyboard), if Function 07H or 08H is requested in AL

Related Functions

None

Example

!**;

Function 63H: Get Lead Byte Table

Returns far pointer to table of lead bytes for multibyte
characters. Will work only in MS-DOS 2.25!

!**;

oProc get_lead-byte_table,PUBLIC,<ds,si>
cBegin

cEnd

mov
int
mov

ax,6300h
21h
dx,ds

mov ax, si

1416 The MS-DOS Encyclopedia

Set function code.
Get lead byte table.
Return far pointer in DX:AX.

HUAWEI EX. 1110 - 1426/1582

Interrupt 22H

Interrupt 22H (34) 1.0 and later

Terminate Routine Address

The machine interrupt vector for Interrupt 22H (memory locations 0000:0088H through
0000:008BH) contains the address of the routine that receives control when the currently
executing program terminates by means of Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function OOH, 31H, or 4CH.

To Call

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Note

• The address in this vector is copied into offsets OAH through ODH of the program
segment prefix (PSP) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part of
MS-DOS's termination handling.

Example

None

Section V: :System Calls 1417

HUAWEI EX. 1110 - 1427/1582

Interrupt 23H

Interrupt 23H (35) 1. 0 and later

Control-C Handler Address

The machine interrupt vector for Interrupt 23H (memory locations 0000:008CH through
0000:008FH) contains the address of the routine that receives control when a Control-C
(also Control-Break on IBM PC compatibles) is detected during any character 1/0 function
and, if the Break flag is on, during most other MS-DOS function calls.

To Call

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Notes

• The address in this vector is copied into offsets OEH through llH of the program
segment prefix (PSP) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part of
MS-DOS's termination handling.

• The initialization code for an application can use Interrupt 21H Function 25H (Set
Interrupt Vector) to reset the Interrupt 23H vector to point to its own routine for
Control-C handling. By installing its own Control-C handler, the program can avoid
being terminated as a result of keyboard entry of a Control-Cor Control-Break.

• When a Control-C is detected and the program's Interrupt 23H handler receives con­
trol, MS-DOS sets all registers to the original values they had when the function call
that is being interrupted was made. The program's interrupt handler can then do any
of the following:
- Set a local flag for later inspection by the application (or take any other appropriate

action) and then perform a return from interrupt (IRET) to return control toMS­
DOS. (All registers must be preserved.) The MS-DOS function in progress is then
restarted and proceeds to completion, and control finally returns to the application
in the normal manner.

- Take appropriate action and then perform a far return (RET FAR) to give control
back to MS-DOS. MS-DOS uses the state of the carry flag to determine what action
to take: If the carry flag is set, the application is terminated; if the carry flag is clear,
the application continues in the normal manner.

- Retain control by transferring to an error-handling routine within the application
and then resume execution or take other appropriate action, never performing a
RET FAR or IRET to end the interrupt-handling sequence. This option causes no
harm to the system.

• Any MS-DOS function call can be used within the body of an Interrupt 23H handler.

Example

None

1418 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1428/1582

Interrupt 24H

Interrupt 24H (36) 1.0 and later

Critical Error Handler Address

The machine interrupt vector for Interrupt 24H (memory locations 0000:0090H through
0000:0093H) contains the address of the routine that receives control when a critical error
(usually a hardware error) is detected.

To Call

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Notes

• The address of this vector is copied into offsets 12H through 15H of the program
segment prefix (PSP) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part
of MS-DOS's termination handling.

• On entry to the critical error interrupt handler, bit 7 of register AH is clear. (0) if the
error was a disk I/0 error; otherwise, it is set (1). BP:SI contains the address of a
device-header control block from which additional information can be obtained.
Interrupts are disabled. MS-DOS sets up the registers for a retry operation and one
of the following error codes is in the lower byte of the DI register (the upper byte
is undefined):

Code Meaning

OOH Write-protect error
01H Unknown unit
02H Drive not ready
03H Unknown command
04H Data error (bad CRC)
05H Bad request structure length
06H Seek error
07H Unknown media type
08H Sector not found
09H Printer out of paper
OAH Write fault
OBH Read fault
OCH General failure
OFH Invalid disk change

These are the same error codes returned by the device drivers in the request header.

Section V: System Calls 1419

HUAWEI EX. 1110 - 1429/1582

Interrupt 24H

• On a disk error, MS-DOS retries the operation three times before transferring to the
Interrupt 24H handler.

• On entry to the Interrupt 24H handler, the stack is set up as follows:

Flags

cs

IP

ES

DS

BP

DI

SI

DX

ex

BX

AX

Flags

cs

IP

1....,

>- Flags and CS:IP pushed on stack
by original Interrupt 21 H call

+-- SP on entry to Interrupt 21H handler 1\

1-<

Registers at point of
original Interrupt 21 H call

Return address from
Interrupt 24H handler

I _.I +-- SP on entry to Interrupt 24H handler

• Interrupt 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and DX registers.
Only Interrupt 21H Functions OlH through OCH, 30H, and 59H can be used by an
Interrupt 24H handler; other calls will destroy the MS-DOS stack and its ability to re­
try or ignore an error.

1420 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1430/1582

Interrupt 24H

e Before issuing a RETURN FROM INTERRUPT (IRET), the Interrupt 24H handler
should place an action code in AL that will be interpreted by MS-DOS as follows:

Code

OOH
OlH
02H
03H

Meaning

Ignore error.
Retry operation.
Terminate program through Interrupt 23H.
Fail system call in progress (versions 3.1 and later).

e If an Interrupt 24H routine returns to the user program rather than to MS-DOS, it
must restore the user program's registers, removing all but the last three words from
the stack, and issue an IRET. Control returns to the instruction immediately following
the Interrupt 21H function call that resulted in an error. This leaves MS-DOS in an
unstable state until a call is made to an Interrupt 21H function higher than OCH.

Example
None

Section V.· System Calls 1421

HUAWEI EX. 1110 - 1431/1582

Interrupt 25H

Interrupt 25H (37)
Absolute Disk Read

1. 0 and later

Interrupt 25H provides direct linkage to the MS-DOS BIOS module to read data from a logi­
cal disk sector into a specified memory location.

To Call

AL
ex
DX
DS:BX

Returns

= drive number (0 = drive A, 1 = drive B, and so on)
= number of sectors to read
= starting relative (logical) sector number
= segment:offset of disk transfer area (DTA)

If operation is successful:

Carry flag is clear.

If operation is not successful:

Carry flag is set.

AX = error code

Programmer's Notes

• Interrupt 25H might destroy all registers except the segment registers.
• When Interrupt 25H returns, the CPU flags originally pushed onto the stack by the

INT 25H instruction are still on the stack. The stack must be cleared by a POPF or
ADD SP,2 instruction to prevent uncontrolled stack growth and to make accessible
any other values that were pushed onto the stack before the call to Interrupt 25H.

• Logical sector numbers are zero based and are obtained by numbering each disk
sector sequentially from track 0, head 0, sector 1 and continuing until the last sector
on the disk is counted. The head number is incremented before the track number.
Because of interleaving, logically adjacent sectors might not be physically adjacent for
some types of disks.

• The lower byte of the error code (AL) is the same error code that is returned in the
lower byte of DI when an Interrupt 24H is issued. The upper byte (AH) contains one
of the following codes:

Code

SOH
40H
20H

Meaning

Device failed to respond
Seek operation failure
Controller failure

1422 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1432/1582

Code

lOH
08H
04H
03H
02H
OlH

Meaning

Data error (bad CRC)
Dil;ect memory access (DMA) failure
Requested sector not found
Write-protect fault
Bad address mark
Bad command

Interrupt 25H

• Warning: Interrupt 25H bypasses the MS-DOS file system. This function must be
used with caution to avoid damaging the disk structure.

Example

;***;

Interrupt 25H: Absolute Disk Read

Read logical sector 1 of drive A into the memory area

named buff. (On most MS-DOS floppy disks, this sector

contains the beginning of the file allocation table.)

;***;

mov
mov

mov

mov

mov

mov
int

jc

add

error:

buff db

al,O

cx,1
dx,1

bx,seg buff

ds,bx

bx,offset buff

25h
error
sp, 2

512 dup (?)

Drive A.

Number of sectors.
Beginning sector number.

Address of buffer.

Request disk read.
Jump if read failed.

Clear stack.

Error routine goes here.

Section V:· System Calls 1423

HUAWEI EX. 1110 - 1433/1582

Interrupt 26H

Interrupt 26H (38) 1.0 and later

Absolute Disk Write

Interrupt 26H provides direct linkage to the MS-DOS BIOS module to write data from a
specified memory buffer to a logical disk sector.

To Call

AL
ex
DX
DS:BX

Returns

= drive number (0 = drive A, 1 = drive B, and so on)
= number of sectors to write
= starting relative (logical) sector number
= segment: offset of disk transfer area (DTA)

If operation is successful:

Carry flag is clear.

If operation is not successful:

Carry flag is set.

AX = error code

Programmer's Notes

• When Interrupt 26H returns, the CPU flags originally pushed onto the stack by the
INT 26H instruction are still on the stack. The stack must be cleared by a POPF or
ADD SP,2 instruction to prevent uncontrolled stack growth and to make accessible
any other values that were pushed on the stack before the call to Interrupt 26H.

• Logical sector numbers are zero based and are obtained by numbering each disk sec­
tor sequentially from track 0, head 0, sector 1 and continuing until the last sector on
the disk is counted. The head number is incremented before the track number.
Because of interleaving, logically adjacent sectors might not be physically adjacent for
some types of disks.

• The lower byte of the error code (AL) is the same error code that is returned in the
lower byte of DI when an Interrupt 24H is issued. The upper byte (AH) contains one
of the following codes:

Code

SOH
40H
20H
10H

Meaning

Device failed to respond
Seek operation failure
Controller failure
Data error (bad CRC)

1424 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1434/1582

Interrupt 26H

Code

08H
04H
03H
02H
OlH

Meaning

Direct memory access (DMA) failure
Requested sector not found
Write-protect fault
Bad address mark
Bad command

• Warning: Interrupt 26H bypasses the MS-DOS file system. This function must be
used with caution to avoid damaging the disk structure.

Example

;***;

Interrupt 26H: Absolute Disk Write

Write the contents of the memory area named buff
into logical sector 3 of drive C.

WARNING: Verbatim use of this code could damage

the file strupture of the fixed disk. It is meant

only as a general guide. There is, unfortunately,
no way to give a really safe example of this interrupt.

;***;

mov

mov

mov

mov

mov

mov

int
jc

add

error:

buff db

al,2
ex, 1

dx,3
bx,seg buff

ds,bx

bx,offset buff
26h

error
sp,2

512 dup (?)

Drive C.
Number of sectors.

Beginning sector number.

Address of buffer.

Request disk write.

Jump if write failed.

Clear stack.

Error routine goes here.

Data to be written to disk.

Section V.· System Calls 1425

HUAWEI EX. 1110 - 1435/1582

Interrupt 27H

Interrupt 27H (39) 1.0 and later

Terminate and Stay Resident

Interrupt 27H terminates execution of the currently executing program but reserves part
or all of its memory so that it will not be overlaid by the next transient program to be
loaded.

To Call

DX = offset of last byte plus 1 (relative to the program segment prefix, or PSP) of program
to be protected

CS = segment address of PSP

Returns

Nothing

Programmer's Notes

• In response to an Interrupt 27H call, MS-DOS takes the following actions:
- Restores the termination vector (Interrupt 22H) from PSP:OOOAH.
- Restores the Control-C vector (Interrupt 23H) from PSP:OOOEH.
- With MS-DOS versions 2.0 and later, restores the critical error handler vector (Inter-

rupt 24H) from PSP:0012H.
- Transfers to the termination handler address.

• If the program is returning to COMMAND. COM rather than to another program,
control transfers first to COMMAND. COM's resident portion, which reloads ·
COMMAND. COM's transient portion (if necessary) and passes it control. If a batch
file is in progress, the next line of the file is then fetched and interpreted; otherwise,
a prompt is issued for the next user command.

• This interrupt is typically used to allow user-written drivers or interrupt handlers to
be loaded as ordinary .COM or .EXE programs and then remain resident. Subsequent
entrance to the code is by means of a hardware or software interrupt.

• The maximum amount of memory that can be reserved with this interrupt is 64 KB.
Therefore, Interrupt 27H should be used only for applications that must run under
MS-DOS versions 1.x.

With versions 2.0 and later, the preferred method to terminate and stay resident is
to use Interrupt 21H Function 31H, which allows the program to reserve more than
64 KB of memory and does not require CS to contain the PSP address.

• Interrupt 27H should not be called by .EXE programs that are loaded into the high
end of memory (that is, linked with the /HIGH switch), because this would reserve
the memory that is ordinarily used by the transient portion of COMMAND. COM. If
COMMAND. COM cannot be reloaded, the system will fail.

1426 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1436/1582

Interrupt 27H

• Because execution of Interrupt 27H results in the restoration of the terminate routine
(Interrupt 22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors,
it cannot be used to permanently install a user-written critical error handler.

• Interrupt 27H cioes not work correctly when DX contains values in the range FFFlH
through FFFFH. In this case, MS-DOS discards the high bit of the contents of DX,
resulting in 32 KB less resident memory than was actually requested by the program.

Example

;***;

Interrupt 27H: Terminate and Stay Resident

Exit and stay resident, reserving enough memory
to protect the program's code and data.

;***;

Start:

mov
int

dx,offset pgm_end

27h

pgm_end equ $
end start

DX = bytes to reserve.
Terminate, stay resident.

Section V: System Calls 1427

HUAWEI EX. 1110 - 1437/1582

Interrupt 2FH

Interrupt 2FH (47) 2.0 and later

Multiplex Interrupt

Interrupt 2FH with AH = OlH submits a file to the print spooler, removes a file from the
print spooler's queue of pending files, or obtains the status of the printer. Other values for
AH are used by various MS-DOS extensions, such as APPEND.

To Call

AH
AL

If ALis OlH:

=OlH
=OOH

OlH
02H
03H
04H
05H

print spooler call
get installed status
submit file to be printed
remove file from print queue
cancel all files in queue
hold print jobs for status read
end hold for status read

DS:DX = segment: offset of packet address

If ALis 02H:

DS:DX

Returns

= segment:offset of ASCIIZ file specification

If operation is successful:

Carry flag is clear.

If AL was OOH on call:

AL =status:
OOH
OlH
FFH

If AL was 04H on call:

not installed, OK to install
not installed, not OK to install
installed

DX = error count
DS:SI = segment:offset of print queue

If operation is not successful:

Carry flag is set.

AX = error code:
OlH function invalid
02H file not found
03H path not found

1428 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1438/1582

Interrupt 2FH

04H too many open files
OSH access denied
08H queue full
09H spooler busy
OCH name too long
OFH drive invalid

Programmer's Notes

• For Subfunction OlH, the packet consists of 5 bytes. The first byte contains the level
(must be zero), the next 4 bytes contain the doubleword address (segment and offset)
of an ASCIIZ file specification. (The filename cannot contain wildcard characters.)
If the file exists, it is added to the end of the print queue.

• For Subfunction 02H, wildcard characters (•and ?) are allowed in the file specification,
making it possible to delete multiple files from the print queue with one call.

• For Subfunction 04H, the address returned for the print queue points to a series of
filename entries. Each entry in the queue is 64 bytes and contains an ASCIIZ file
specification. The first file specification in the queue is the one currently being
printed. The last slot in the queue has a null (zero) in the first byte.

Example

None

Section V.· System Calls 1429

HUAWEI EX. 1110 - 1439/1582

HUAWEI EX. 1110 - 1440/1582

HUAWEI EX. 1110 - 1441/1582

HUAWEI EX. 1110 - 1442/1582

Appendix A
MS-DOS Version 3.3

Appendix A: MS-DOS Version 3.3

For the MS-DOS user, version 3.3 incorporates some long-awaited capabilities, runs faster
in places, and requires about 9 KB more memory than version 3.2. Its most apparent
changes, however, relate to a new, more flexible method of supporting different national
languages. For the MS-DOS programmer, version 3.3 offers several enhancements in the
areas of file management and internationalization support. This appendix offers an over­
view of these new features.

Version 3.3 User Consideration~

MS-DOS version 3.3 has introduced several changes at the user level. A new external com­
mand, FASTOPEN, speeds up the filing system by keeping file locations in memory. A new
batch command, CALL, lets a batch file call another batch file and, when that file termi­
nates, continue execution with the next command in the original batch file rather than
return to MS-DOS as in previous versions. Two commands previously present only in
PC-DOS, COMP and SELECT, have been added to MS-DOS. Five commands have addi­
tional capabilities: APPEND, ATTRIB, BACKUP, FDISK, and MODE. In addition, the TIME
and DATE commands automatically set the CMOS clock-calendar on the IBM PC/AT and
PS/2 machines, making use of the separate SETUP program unnecessary for these func­
tions. Changes to the national language support involve four new commands, three new
options to the MODE command, two new or modified system information files, and two
new device drivers. Each of these new or modified commands is discussed individually
below.

The FASTOPEN command

When MS-DOS searches for a program file, it searches each directory specified in the
PATH search path. A lengthy path that has to search many levels of a directory structure
can make this a slow process. The FASTOPEN command loads a terminate-and-stay­
resident (TSR) program that caches the locations of the most recently accessed directories
and files on one or more fixed disks in the system. The number of files and directories to
be cached is under the user's control; the default is 10. When it needs a file, MS-DOS looks
first in the FASTOPEN list; if the file is found in the list, MS-DOS can bypass inspection of
the search path specified by PATH. When the FASTOPEN list is filled and a new file is
opened, the new file replaces the least recently used file on the FASTOPEN list.

The improvement in file-system performance depends on the number of open files and
the frequency of file access. The FASTOPEN command can be entered only once during a
session and, if desired, can be placed in the AUTO EXEC. BAT file.

Appendixes 1433

HUAWEI EX. 1110 - 1443/1582

Appendix A: MS-DOS Version 3.3

The FASTOPEN command has two parameters:

FASTOPEN drive:[=entries][...]

The drive parameter is the drive letter, followed by a colon, of a fixed disk for which
FASTOPEN is to keep track of the most recently accessed directories and files. More than
one drive can be specified by separating the drive identifiers with spaces; the maximum is
four drives. A drive associated with a JOIN, SUBST, or ASSIGN command cannot be speci­
fied, nor can a drive assigned to a network.

The optional entries parameter is the number of directory entries FASTOPEN is to keep in
memory. The value of entries can be from 10 through 999; the default is 34. If more than
one entries value is specified, their sum cannot exceed 999. Each entry subtracts 40 bytes
from the RAM normally available to run application programs.

Examples: The following command tells MS-DOS to keep track of the last 50 directories
and files on drive C:

C>FASTOPEN C:=SO <Enter>

The next command tells MS-DOS to keep track of the last 34 files on drives C and D:

C>FASTOPEN C: D: <Enter>

Changes to batch-file processing

@

CALL

Batch-file processing also gains power in MS-DOS version 3.3. The user can now suppress
the echo of all batch commands and call one batch file from another without terminating
the first batch file.

With MS-DOS version 3.3, any line in a batch file preceded by @ is not echoed to the
screen when the batch file is executed.

A batch file no longer needs to load an additional copy of COMMAND. COM in order to
execute another batch file and return control to the calling batch file. The CALL command
executes a batch file and returns to the next command in the calling batch file.

CALL commands can be nested. If an exit condition is provided, a batch file can even call
itself; however, the input or output of a called batch file cannot be redirected or piped.

The CALL command has two parameters:

CALL batch-file [parameters]

The batch-file parameter is the name of the batch file to be executed. The file must be in
the current drive and directory or in a drive and/or directory specified in the command
path.

1434 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1444/1582

Appendix A: MS-DOS Version 3.3

The optional parameters parameter represents any parameters that may be required by
batch-file.

Example: Suppose the batch file SORTFILE.BAT accepts one parameter. The following
command calls SORTFILE.BAT, specifying NAMES. TXT as the parameter:

CALL SORTFILE NAMES.TXT

If NAMES. TXT was specified as a command-line parameter to the calling batch file, the
CALL command could be

CALL SORTFILE %1

Commands from PC-DOS

COMP

Two commands have been added to MS-DOS from earlier versions of PC-DOS: COMP,
present in PC-DOS version 1.0, and SELECT, present in PC-DOS version 2.0.

The COMP command compares two files or sets of files and reports any differences
encountered. FC, a similar file-comparison command present in MS-DOS versions 2.0 and
later, is still included with MS-DOS 3.3. See USER COMMANDS: coMP; Fe.

Syntax for the COMP command is

COMP [drive:J[filenamel] [drive:J[filename2]

The optional drive parameter is the drive letter, followed by a colon, of the drive contain­
ing the file to be compared. The filenamel parameter is the name and location of the file
to compare to filename2; filename2 is the name and location of the file to be compared
against. Both filenames can be preceded by a path; wildcard characters are permitted in
either filename.

Example: The following command tells MS-DOS to compare the file NEWFILE.TXT in the
current drive and directory to the file OLDFILE.TXT in the \ARCHIVE directory on drive
D and report any differences encountered:

C>COMP NEWFILE.TXT D:\ARCHIVE\OLDFILE.TXT <Enter>

SELECT

The SELECT command creates a system disk with the time format, date format, and key­
board layout configured for a selected country. The syntax for SELECT is

SELECT [[drivel:] [drive2:][path)] [country][keyboard]

The optional drivel parameter is the drive containing a disk with the MS-DOS operating­
system files, the FORMAT program, and the country configuration files. The drive2
parameter is the drive containing the disk to be formatted with the country-specific infor­
mation; this drive specifier can be followed by a path. The country parameter is a code

Appendixes 1435

HUAWEI EX. 1110 - 1445/1582

Appendix A: MS-DOS Version 3.3

that selects the date and time format; the information is taken from the COUNTRY.SYS
system file. The keyboard parameter is a code that selects the desired keyboard layout.
See KEYB below.

The SELECT command

• Formats the target disk.
• Creates CONFIG.SYS and AUTO EXEC. BAT files on the target disk.
• Copies the contents of the source disk to the destination disk.

Example: The following command, which assumes drive A contains a valid system disk
and drive B contains the disk to be formatted, creates a boatable system disk that includes
country-specific information and keyboard layout for Germany:

C>SELECT A: B: 049 GR "<Enter>

Enhancedcoounands
Several existing MS-DOS user commands have been given expanded capabilities in
version 3.3. These are presented alphabetically in the next few pages. See USER COM­
MANDS: APPEND; ATTRIB; BACKUP; FDISK; MODE.

APPEND

The APPEND command specifies a search path for data files- files whose extensions are
neither .COM, .EXE, nor .BAT-similar to the command path specified by the PATH com­
mand, which searches only for executable files with those extensions. APPEND has three
forms, depending on whether it is being entered for the first time. When it is entered the
first time, the APPEND command now has two optional switches:

APPEND [/E] [/X]

The IE switch makes the data path part of the environment, like the command path. The
data path can then be displayed or changed with both the SET and APPEND commands
and is inherited by child processes. (However, any changes made to the data path by the
child process are lost when the child returns to its parent process.)

The IX switch causes calls to the Find First File functions (Interrupt 21H Functions llH and
4EH) and the EXEC function (Interrupt 21H Function 4BH) to search the data path. If /X is
not specified, only Interrupt 21H Function OFH (Open File with FCB), Interrupt 21H Func­
tion 23H (Get File Size), and Interrupt 21H Function 3DH (Open File with Handle) system
calls search the data path. '

If either /X or IE is specified the first time APPEND is entered, a pathname cannot be
included.

Subsequent uses of the command must take the form

APPEND [[drive:]path] [;[drive:]path ...]

or

APPEND;

1436 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1446/1582

Appendix A: MS-DOS Version 3.3

The path parameter is the name of a directory that is to be made part of the data path. The
user can specify as many directory names as will fit in the 128 characters of the command
line. Entries must be separated by semicolons. If APPEND is followed only by a semicolon,
any previous APPEND paths are deleted.

Example: The following two APPEND commands make the data path part of the environ­
ment and put the directories C: \WORD\ PROPOSAL, C: \WORD\ REPORTS, and
C:\123\BUDGET in the data path:

C>APPEND /E <Enter>
C>APPEND C:\WORD\PROPOSAL;C:\WORD\REPORTS;C:\123\BUDGET <Enter>

Because the data path usually involves frequently used directories, the APPEND command
ordinarily is placed in the AUTO EXEC. BAT file.

Note: APPEND is a new command in PC-DOS version 3.3.

ATTRIB

The IS switch has been added to the ATTRIB command so that any attribute changes can
be applied to all files in subdirectories contained in the specified directory.

Example: The following command sets the read-only attribute of all files in the directory
C:\DOS and in all its subdirectories:

C>ATTRIB +R C:/DOS /S <Enter>

BACKUP

FDISK

A formatting parameter has been added to the BACKUP command in MS-DOS version 3.3.
The IF switch tells MS-DOS to format the backup diskette if it hasn't been formatted. The
IF switch formats the backup diskette to the maximum capacity of the backup drive, so a
disk of lower capacity, such as a 360 KB diskette in a 1.2M drive, should not be used. If this
switch is used, FORMAT. COM must be available in the current drive and directory or in
one of the directories named in the environment's PATH string.

Performance of the BACKUP command has also been improved. Instead of storing each
file separately on the backup disk, BACKUP stores only two files: BACKUP. nnn, which
contains all the backed-up files, and CONTROL. nnn, which contains the pathnames of the
backed-up files.

FDISK can now create a new type of MS-DOS partition called an extended partition on a
fixed disk. An extended partition can contain multiple logical drives and allows the use of
very large fixed disks. Each logical drive is still limited to 32 MB.

An extended partition is not boatable. In order for the fixed disk to be boatable, it must
also contain a primary MS-DOS partition that has been formatted using the FORMAT com­
mand with the IS switch so that it contains a system boot record and the operating-system
files.

Appendixes 1437

HUAWEI EX. 1110 - 1447/1582

Appendix A: MS-DOS Version 3.3

MODE

The MODE command now supports two additional serial ports (COM3 and COM4) and
increases the maximum serial transmission rate to 19,200 baud.

Some additional options have been added to MODE to support code-page switching. See
MODE Command Changes below.

New national language support

The new national language support in MS-DOS version 3.3 replaces the methods used in
previous versions to change the keyboard layout and the display and printer character sets
so that more than one language could be used. These changes are extensive: four new or
modified system files, three new commands, four new options for the MODE command, a
new parameter for the GRAFTABL command, and a new parameter for the COUNTRY and
DEVICE configuration commands.

Code pages and code-page switching

The key element of the new national language support is the code page, a table of 256
character correspondence codes. MS-DOS recognizes both a hardware code page, which is
the character correspondence table built into a device, and a prepared code page, which is
an alternate character correspondence table available through MS-DOS. The current code
page is the code page most recently selected.

The hardware code page for a device is determined by the country for which the device
was manufactured. The user selects a prepared code page, from a list of five included with
MS-DOS version 3.3, by using the new CP PREPARE option of the MODE command. See
MODE Command Changes below.

The new national language support is often referred to as code-page switching because,
after the devices and code pages required by the system have been defined, the only com­
mands the user must deal with simply switch from one code page to another. In order to
use the new national language support, device drivers must support code-page switching
and the devices must be able to display the full character sets.

Code pages are numbered. The identifying numbers have no relationship to the country
code introduced with previous versions of MS-DOS and used by the COUNTRY configura­
tion command. Five code pages are included with version 3.3:

Page Number

437
850
860
863
865

1438 The MS-DOS Encyclopedia

Configuration

United States
Multilingual
Portugal
Canadian French
Norway/Denmark

HUAWEI EX. 1110 - 1448/1582

Appendix A: MS-DOS Version 3.3

Code page 437 is the character correspondence table used in previous versions of
MS-DOS. Its character set supports United States English and includes many accented
characters used in other languages. It is the hardware code page for most countries.

Code page 850 replaces two of the four box-drawing sets and some of the mathematical
symbols in code page 437 with additional accented characters. It supports English and
most Latin-based European languages.

Code page 860 is for Portuguese, code page 863 is for Canadian French, and code page 865
is for Norwegian/Danish. These pages are the hardware code pages for the specified
countries.

Setting up the system for code-page switching

Although several commands are required to manage national language support, the
process is fairly straightforward. Setting up the system requires the following:

• A DEVICE configuration command in CONFIG.SYS to load a driver for each device
that supports code-page switching.

• An NLSFUNC command in AUTO EXEC. BAT to load the memory-resident national
language support functions.

• A MODE CP PREPARE command in AUTO EXEC. BAT to prepare code pages for each
device that supports code-page switching.

• A CHCP command in AUTO EXEC. BAT to select the initial code page.
• Optionally, a KEYB command in AUTO EXEC. BAT to select the initial keyboard

layout.

After starting the system with these commands in CONFIG.SYS and AUTO EXEC. BAT, only
a MODE CP SELECT command is required to change to a different language during an
MS-DOS session.

The COUNTRY configuration command is still used to control country-specific charac­
teristics such as the time and date format and currency-symbol. An added parameter in the
COUNTRY command lets the user also specify a code page. See Modified National Lan­
guage Support Commands below.

The system files

MS-DOS version 3.3 includes four system files that support the national language functions:
two device drivers and two system information files.

The device drivers are PRINTER.SYS and DISPLAY.SYS. These drivers implement code­
page switching for the IBM Proprinter Model 4201 and Quietwriter III Model 5202 printers
and for the EGA, PC Convertible LCD, and PS/2 display adapters. They also support all
display adapters compatible with the EGA.

The information files are COUNTRY.SYS, which contains information such as time and
date formats and currency symbols, and KEYBOARD.SYS, which contains the scan-code­
to-ASCII translation tables for the various keyboard layouts.

Appendixes 1439

HUAWEI EX. 1110 - 1449/1582

Appendix A: M5-DOS Version 3.3

The new support commands

The new national language support in MS-DOS version 3.3 adds three MS-DOS com­
mands: Change Code Page (CHCP), Keyboard (KEYB), and National Language Support
Functions (NLSFUNC).

CHCP
The Change Code Page (CHCP) command tells MS-DOS which code page to use for all
devices that support code-page switching.

The NLSFUNC command must be executed before the CHCP command can be used.

CHCP is a system-wide command: It specifies the code page used by MS-DOS and each
device attached to the system that supports code-page switching. The CP SELECT option
of the MODE command, on the other hand, specifies the code page for a single device.

If the code page specified with CHCP is not compatible with a device, CHCP responds

Code page nnn not prepared for all devices·

If the code page specified with CHCP was not first identified with the CP PREPARE option
of the MODE command, CHCP responds

Code page nnn not prepared for system

The CHCP command has one optional parameter:

CHCP [code-page]

The code-page parameter is the three-digit number that specifies the code page MS-DOS
is to use. If code-page is omitted, CHCP displays the current MS-DOS code page.

Examples: The following command changes the system code page to 850:

C>CHCP 850 <Enter>

If the current code page is 850 and CHCP is entered without parameters, MS-DOS
responds:

Active code page: 850

KEYB
The Keyboard (KEYB) command selects a keyboard layout by changing the scan-code-to­
ASCII translation table used by the keyboard driver. It replaces the KEYBxx commands
used in earlier versions of MS-DOS to select keyboard layouts.

The first time KEYB is executed, it loads the memory-resident keyboard driver and the
translation table, thereby increasing the size of MS-DOS by slightly more than 7 KB. Subse­
quent executions simply load a different translation table, which replaces the previously
loaded translation table and accommodates a different country-specific keyboard layout.

The KEYB command has three optional parameters:

KEYB [country[,[code-page],kbdfile]]

1440 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1450/1582

Appendix A: MS-DOS Version 3.3

The country parameter is one of the following two-character country codes:

Country Code Country Code

Australia us Netherlands NL
Belgium BE Norway NO
Canada Portugal PO

English us Spain SP
French CF Sweden sv

Denmark DK Switzerland
Finland su French SF
France FR German SG
Germany GR United Kingdom UK
Italy IT United States us
Latin America LA

The code-page parameter is the three-digit number that specifies the code page defining
the character set that MS-DOS is to use.

If the specified country code and code page aren't compatible, KEYB responds:

Code page requested nnn is not valid for given keyboard cocte

If KEYB is entered with no parameters, MS-DOS displays the currently active keyboard
country code, keyboard code page, and console device code page.

Examples: The following command selects the French keyboard layout, code page 850,
and the keyboard definition file named C: \ DOS\KEYBOARD.SYS:

C>KEYB FR,850,C:\DOS\KEYBOARD.SYS <Enter>

If the code page is omitted but the keyboard definition file is specified, the comma must
be included to show the missing parameter:

C>KEYB FR,,C:\008\KEYBOARD.SYS <Enter>

NLSFUNC
The National Language Support Function (NLSFUNC) command loads a memory-resident
program that implements code-page switching. It also allows the user to name the file that
contains country-specific information- such as date format, time format, and currency
symbol- if there is no COUNTRY configuration command in CONFIG.SYS. NLSFUNC
must be used before the Change Code Page (CHCP) command.

If nationallangt.Iage support is needed for every session, NLSFUNC should be placed in the
AUTO EXEC. BAT file.

The NLSFUNC command has one optional parameter:

NLSFUNC [country-file]

Appendixes 1441

HUAWEI EX. 1110 - 1451/1582

Appendix A: MS-DOS Version 3.3

The country-file parameter is the name of the country information file (in most imple­
mentations of MS-DOS, COUNTRY.SYS). If country-file is omitted, MS-DOS defaults to the
name of the country information file specified in the COUNTRY configuration command
in CONFIG.SYS; if there is no COUNTRY configuration command in CONFIG.SYS,
M5-DOS looks for a file named COUNTRY.SYS in the root directory of the current drive.

Example: The followfng command loads the NLSFUNC program and specifies
C:\DOS\COUNTRY.SYS as the country information file:

C>NLSFUNC C:\DOS\COUNTRY.SYS <Enter>

The modified support commands

The new national language support changes two configuration commands- COUNTRY
and DEVICE- and two general MS-DOS commands- GRAFTABL and MODE.

COUNTRY
The COUNTRY configuration command now has three parameters:

COUNTRY =country-code,[code-page],[country-file]

The country-code parameter is one of the following three-digit country codes (identical to
the specified country's international telephone prefix):

Country Code Country Code

Arabia 785 Latin America 003
Australia 061 Netherlands 031
Belgium 032 Norway 047
Canada Portugal 351

English 001 Spain 034
French 002 Sweden 046

Denmark 045 Switzerland
Finland 358 French 041
France 033 German 041
Germany 049 United Kingdom 044
Israel 972 United States 001
Italy 039

The code-page parameter is the three-digit number that specifies the code page defining
the character set that MS-DOS is to use.

The country-file parameter is the name of the file that contains the country-specific
information; the name of the file can be preceded by a drive and/or path. If country-file is
omitted, MS-DOS defaults to the file COUNTRY.SYS, which it looks for in the root direc-
tory of the current drive. :-ro=

. ;,42 TheMS-DOSEncyclopedia

HUAWEI EX. 1110 - 1452/1582

Appendix A: MS-DOS Version 3.3

The COUNTRY command is not required; if it is not included in CONFIG.SYS, MS-DOS
·defaults to country 001 (US), code page 437, and country information file COUNTRY.SYS in
the root directory of the current drive.

Example: The following CONFIG.SYS command specifies the French country code, code
page 850, and C: \DOS\ COUNTRY.SYS as the country information file:

COUNTRY=033,850,C:\DOS\COUNTRY.SYS

DEVICE
Two options have been added to the DEVICE configuration command that allow the user
to specify the display and printer drivers that support code-page switching.

The display driver that supports code-page switching is DISPLAY.SYS. It supports the IBM
Enhanced Graphics Adapter (EGA), the IBM Personal System/2 display adapter, and all dis­
play adapters compatible with either of these. The Monochrome Display Adapter (MDA)
and the Color/Graphics Adapter (CGA) do not support code-page switching.

If the ANSI.SYS display driver is also used, the DEVICE command that defines it must pre­
cede the DEVICE command that defines DISPLAY.SYS.

When used to specify the display driver, the DEVICE command has five parameters:

DEVICE=driver CON=(type[,[hwcp][,prepcp[,sub:fonts]]])

The driver parameter is the name of the file that contains the display driver; the filename
can be preceded by a drive and/or path. If driver is omitted, MS-DOS defaults to the file
DISPLAY.SYS, which it looks for in the root directory of the current drive.

The type parameter defines the type of display adapter attached to the system. It must be
one of the following:

Code

MONO
CGA
EGA
LCD

Adapter

Monochrome display/printer adapter
Color/graphics adapter
Enhanced graphics adapter or IBM Personal System/2 display adapter
IBM PC Convertible liquid crystal display

The hwcp parameter is the three-digit number that specifies the hardware code page
supported by the display adapter:

Code

437
850
860
863
865

Configuration

United States (default)
Multilingual
Portugal
Canadian French
Norway/Denmark

Appendixes 1443

HUAWEI EX. 1110 - 1453/1582

Appendix A: MS-DOS Version 3.3

The prepcp parameter is the number of additional code pages the display can support.
These are referred to as prepared code pages and must be defined by the CP PREPARE
option of the MODE command. If type is either MONO or CGA, prepcp must be 0; the
default is 0. If type is either EGA or LCD, prepcp can be any value from 1 through 12; the
default is 1. If hwcp is 437, prepcp should be allowed to default to 1; if hwcp is not 437,
prepcp should be set to 2.

The sub-fonts parameter is the number of subfonts supported for each code page. If type
is either MONO or CGA, sub-fonts must be 0; the default is 0. If type is EGA, sub-fonts can
be 1 or 2; the default is 2. If type is LCD, sub-fonts can be 1 or 2; the default is 1.

Example: The following CONFIG.SYS command specifies C:\DOS\DISPLAY.SYS as the
display driver for an EGA whose hardware code page is 437. The parameter for prepared
code pages is allowed to default to 1 and the parameter for subfonts is allowed to default
to 2.

DEVICE=C:\DOS\DISPLAY.SYS CON=(EGA,437)

The printer driver that supports code-page switching is PRINTER.SYS. It supports the IBM
Proprinter Model4201, the IBM Quietwriter III Printer Model 5202, and all printers com­
patible with either of these.

When used to specify the printer driver, the DEVICE configuration command has five
parameters:

DEVICE=driver port=(type[,[hwcp][,prepcp]])

The driver parameter is the name of the file that contains the printer driver; the filename
can be preceded by a drive and/or path. If driver is omitted, MS-DOS defaults to the file
PRINTER.SYS, which it looks for in the root directory of the current drive.

The port parameter is the MS-DOS device name of the printer port being defined: LPT1
(or PRN), LPT2, or LPT3. A different set of type, hwcp, and prepcp parameters can be spec­
ified for each of the three printer ports.

The type parameter defines the type of printer attached to the printer port. It must be one
of the following:

Code

4201
5202

Printer

IBM Proprinter Model4201
IBM Quietwriter III Printer Model 5202

The hwcp parameter is a three-digit number that specifies the hardware code page sup­
ported by the hardware:

1444 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1454/1582

Code

437
850
860
863
865

Configuration

United States (default)
Multilingual
Portugal
Canadian French
Norway/Denmark

Appendix A: MS-DOS Version 3.3

If type is 5202, two hardware code-page numbers can be specified, enclosed in paren­
theses and separated by a comma. If two hardware code pages are specified, prepcp must
beO.

The prepcp parameter is the number of additional code pages (referred to as prepared
code pages) for which MS-DOS must reserve buffer space; its value can be from 0 through
12. These additional code pages must be defined by the CP PREPARE option of the MODE
command. If hwcp is 437, prepcp should be set to 1; if hwcp is not 437 and only one hwcp
value is specified, prepcp should be set to 2.

Examples: The following CONFIG.SYS command defines C:\DOS\PRINTER.SYS as the
printer driver for the PRN device. The printer is an IBM Proprinter Model 4201 whose hard­
ware code page is 437, and MS-DOS is instructed to allow for one prepared code page:

DEVICE=C:\DOS\PRINTER.SYS PRN=(4201,437,1)

The next CONFIG.SYS command defines C: \DOS\PRINTER.SYS as the printer driver for
ports LPTl and LPT2. The printer attached to LPTl is the same as in the previous com­
mand; the printer attached to LPT2 is an IBM Quietwriter III Printer Model 5202 with two
hardware code pages (437 and 850). For the second printer, MS-DOS is instructed to allow
for no prepared code pages.

DEVICE=C:\DOS\PRINTER.SYS LPT1=(4201,437,1) LPT2=(5202, (437,850) ,0)

GRAFTABL
The GRAFTABL command now has two forms:

GRAFTABL [code-page]

or

GRAFTABL /STATUS

The first form of the command loads a code page for the color/graphics adapter (CGA) so
that its character set matches that used by MS-DOS and other devices when displaying the
upper 128 characters. The code-page parameter is the three-digit number that specifies the
code page defining the character set that GRAFTABL is to use.

The /STATUS switch causes GRAFTABL to display the name of the graphics character set
table currently in use.

Appendixes 1445

HUAWEI EX. 1110 - 1455/1582

Appendix A: MS-DOS Version 3.3

MODE
National language support adds four options to the MODE command:

Option

CODEPAGE
CODEPAGE PREPARE
CODEPAGE REFRESH

CODEPAGE SELECT

Action

Displays the code pages available and active.
Defines the code pages selected for use.
Restores code-page contents damaged by hardware error or

other causes.
Selects a code page for a particular device.

(CODEPAGE can be abbreviated to CP in the command line.)

When used to display the status of the code pages, the MODE command has one
parameter:

MODE device CP

The device parameter is the name of the device whose code-page status is to be dis­
played. It can be CON, PRN, LPTl, LPT2, or LPT3.

Example: The following command displays the status of the console device:

C>MODE CON CP <Enter>

When used to define the code page or pages to be used with a device, the MODE com­
mand has three parameters:

MODE device CP PREPARE=(code-pagefont-file)

The device parameter is the name of the device for which the code page or pages are to be
prepared. It can be CON, PRN, LPTl, LPT2, or LPT3.

The code-page parameter is one or more of the three-digit numbers, enclosed in parenthe­
ses, that specify the code page to be used with device. If more than one code-page number
is specified, the numbers must be separated with spaces.

The font-file parameter is the name of the code-page file that contains the font informa­
tion for device. The files provided for IBM devices include

File

EGA.CPI

4201.CPI
5202.CPI
LCD.CPI

Device

IBM Enhanced Graphics Adapter (EGA) and EGA-compatible display
adapters

IBM Proprinter Model4201
IBM Quietwriter III Printer Model 5202
IBM Convertible liquid crystal display

1446 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1456/1582

Appendix A: MS-DOS Version 3.3

Example: Assume the display is attached to an EGA. The following command prepares
code pages 437 and 850 for the console, specifying C:\DOS\EGA.CPI as the code-page
information file:

C>MODE CON CP PREPARE=((437 850) C:\DOS\EGA.CPI) <Enter>

When used to select a code page for a device, the MODE command has two parameters:

MODE device CP SELECT= code-page

The device parameter is the name of the device for which the code page is to be selected.
Permissible values are CON, PRN, LPTl, LPT2, and LPT3.

The code-page parameter is the three-digit number that specifies the code page to be used
with device.

Example: The following command selects code page 850 for the console:

C>MODE CON CP SELECT=850 <Enter>

Setting up code-page switching for an EGA-only system

Figure A-1 shows the commands required to implement the new national language support
for a system that includes only a display attached to an EGA or EGA-compatible adapter.
The hardware code page of the EGA is 437 (United States English) and the system is set up
to handle code pages 437 and 850. All MS-DOS files are assumed to be in the directory

. \DOS on the disk in drive C. If the ANSI.SYS driver is not used, the configuration com­
mand DEVICE=C:\DOS\ANSI.SYS should be omitted from CONFIG.SYS; if ANSI.SYS is
used, however, the DEVICE configuration command that defines it must precede the
DEVICE configuration command that defines DISPLAY.SYS.

Commands in CONFIG.SYS:
COUNTRY=001,437,C:\DOS\COUNTRY.SYS
DEVICE=C:\DOS\ANSI.SYS
DEVICE=C:\DISPLAY.SYS CON=(EGA,437,1)

Commands in AUTOEXEC.BAT:
NLSFUNC C:\DOS\COUNTRY.SYS
MODE CON CP PREPARE=((437 850) C:\DOS\EGA.CPI)
MODE CON CP SELECT=437
KEYB US,437,C:\DOS\KEYBOARD.SYS

Figure A-1. Setup commands for a system with an EGA only.

When the system is started, code page 437 is selected for MS-DOS, the display, and the
keyboard. To change to code page 850 during the session, simply type

C>CHCP 850 <Enter>

Appendixes 1447

HUAWEI EX. 1110 - 1457/1582

Appendix A: MS-DOS Version 3.3

Setting up code-page switching for a PS/2 and printer

Figure A-2 shows the commands required to implement the new national language sup­
port for an IBM Personal System/2 or compatible system that includes both a PS/2, EGA, or
EGA-compatible display adapter and an IBM Proprinter Model4201. The hardware code
page of both devices is 437 (United States English) and the system is set up to handle code
pages 437 and 850.

Commands in CONFIG.SYS:
COUNTRY=001,437,C:\DOS\COUNTRY.SYS

DEVICE=C:\DOS\ANSI.SYS
DEVICE=C:\DISPLAY.SYS CON=(EGA,437,1)

DEVICE=C:\DOS\PRINTER.SYS PRN=(4201,437,1)

Commands inAUTOEXEC.BAT:
NLSFUNC C:\DOS\COUNTRY.SYS

MODE CON CP PREPARE=((437 850) C:\DOS\EGA.CPI)

MODE PRN CP PREPARE=((437 850) C:\DOS\4202.CPI)

MODE CON CP SELECT=850
MODE PRN CP SELECT=850

KEYB US,850,C:\DOS\KEYBOARD.SYS

Figure A-2. Setup commands for a PS/2 with display and printer.

Again, all MS-DOS files are assumed to be in the directory \DOS on the disk in drive C. If
the ANSI.SYS driver is not used, the configuration command DEVICE=C:\DOS\ANSI.SYS
should be omitted from CONFIG.SYS; if ANSI.SYS is used, however, the DEVICE configur­
ation command that defines it must precede the DEVICE configuration command that
defines DISPLAY.SYS.

Version 3.3 Programming Considerations

The changes introduced in MS-DOS version 3.3 that are of primary interest to the pro­
grammer include

• New Interrupt 21H function calls for file management and internationalization support
• An extension to the definition of the MS-DOS IOCTL function for code-page switch­

ing, plus the addition of the underlying device-driver support
• Support for extended MS-DOS partitions on fixed disks

Each of these areas is discussed in detail below.

New file-management functions

MS-DOS version 3.3 includes two new Interrupt 21H file-management functions: Set Han­
dle .Count (Function 67H) and Commit File (Function 68H).

1448 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1458/1582

Appendix A: MS-DOS Version 3.3

Set Handle Count,

The Set Handle Count function (Interrupt 21H Function 67H) allows a single process
to have more than 20 handles for files or devices open simultaneously. Function 67H is
invoked by issuing a software Interrupt 21H with

AH =67H
BX = number of desired handles

On return,

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code

For each process, the operating system maintains a table that relates handle numbers for
the process to MS-DOS's internal global table for all open files in the system. In MS-DOS
versions 3.0 and later, the per-process table is ordinarily stored within the reserved area of
the program segment prefix (PSP) and has only enough room for 20 handle entries. If 20 or
fewer handles are requested in register BX, Function 67H takes no action and returns a
success signal. If more than 20 handles are requested, however, Function 67H allocates on
behalf of the calling program a new block of memory that is large enough to hold the
expanded table of handle numbers and then copies the process's old handle table to the
new table. Because the function will fail if the ~ystem does not have sufficient free memory
to allocate the new block, most programs need to make a call to Interrupt 21H Function
4AH (Resize Memory Block) to "shrink" their initial memory block allocations before call­
ing Function 67H.

Function 67H does not fail if the number requested is larger than the available entries in
the system's global table for file and device handles. However, a subsequent 1attempt to
open a file or device or to create a new file will fail if all the entries in the system's global
file table are in use, even if the requesting process has not used up all its own handles.
(The size of the global table is controlled by the FILES entry in the CONFIG.SYS file. See
USER COMMANDS: CONFIG.SYS: FILES; PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FOR Ms-oos: File and Record Management.)

Example: Set the maximum handle count for the current process to 30, so that the process
can have as many as 25 files or devices open simultaneously (5 of the handles are already
expended by the MS-DOS standard devices when the process starts up). Note that a
FILES=30 (or greater value) entry in the CONFIG .SYS file also is required for the process
to successfully open 30 files or devices.

Appendixes 1449

HUAWEI EX. 1110 - 1459/1582

Appendix A: MS-DOS Version 3.3

Commit File

mov

mov

int

jc

ah, 67h

bx,30

21h

error

Function 67H = set handle count.

Maximum number of handles.

Transfer to MS-DOS.

Jump if function failed.

The Commit File function (Interrupt 21H Function 68H) forces all data in MS-DOS's inter­
nal buffers that is associated with a given handle to be written to disk and forces the corre­
sponding disk directory and file allocation table (FAT) information to be updated. By
calling this function at appropriate points within its execution, a program can ensure that
newly entered data will not be lost if there is a power failure, if the program crashes, or if
the user fails to terminate the program properly before turning off the machine. Function
68H is called by issuing a software Interrupt 21H with

AH =68H
BX = handle for previously opened file.

On return,

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code

The effect of Function 68H is equivalent to closing and reopening the file or to duplicating
a file handle with Interrupt 21H Function 45H (Duplicate File Handle) and then closing the
duplicate. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR
Ms-oos: File and Record Management. However, Function 68H has the advantages that the
application will not lose control of the file (as could happen with the close-open sequence
in a networking environment) and that it will not fail because of a lack of handles (as the
duplicate handle method might).

Note: Function 68H operations requested on a handle associated with a character device
return a success flag but have no effect.

Example: Assume that the file MYFILE.DAT has been opened previously and that the han­
dle for the file is stored in the variable jhandie. Call Function 68H to ensure that any data
in MS-DOS's internal buffers associated with the handle is written out to disk and that the
directory and FAT are up-to-date.

1450 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1460/1582

Appendix A: MS-DOS Version 3.3

fname db

fhandle dw

mov

mov

int

jc

'MYFILE.DAT',O

?

ah, 68h

bx,fhandle

21h

error

ASCIIZ filename.

Handle from Open operation.

Function 68H = commit file.

Handle from previous open.

Transfer to MS-DOS.

Jump if function failed.

New internationalization support functions

MS-DOS version 3.3 includes two new Interrupt 21H internationalization support func­
tions: Get Extended Country Information (Function 65H) and Select Code Page (Function
66H).

Get Extended Country Information

The Get Extended Country Information function (Interrupt 21H Function 65H) returns a
superset of the internationalization information obtained with Interrupt 21H Function 38H
(Get/Set Current Country). Function 65H is called by issuing a software Interrupt 21H with

AH
AL

=65H
= information ID code:

01H get general internationalization information
02H get pointer to uppercase table
04H get pointer to filename uppercase table
06H get pointer to collating sequence table

= code page of interest (active CON device = -1) BX
ex
DX
ES:DI

= length of buffer to receive information (error returned if less than 5)
= country ID (default= -1)
= address of buffer to receive information

On return,

If function is successful:

Carry flag is clear.

Requested data is in calling program's buffer.

If function is not successful:

Carry flag is set.

AX = error code

Function 65H may fail if either the country code or the code-page number is invalid or if
the code page does not match the country code. If the buffer to receive the information is
at least 5 bytes but is too short for the requested information, the data is truncated and no
error is returned.

Appendixes 1451

HUAWEI EX. 1110 - 1461/1582

Appendix A: MS-DOS Version 3.3

The format of the data returned by Subfunction 01H in the calling program's buffer is

Field

Information ID code (01H)
Length of following buffer (38 or less)
CountryiD
Code-page number
Date format
Currency symbol
Thousands separator
Decimal separator
Date separator
Time separator
Currency format flags
Digits in currency
Time format
Monocase routine entry point
Data list separator
Reserved

Size

Byte
Word
Word
Word
Word
5 bytes
Word
Word
Word
Word
Byte
Byte
Byte
Doubleword
Word
10bytes

See SYSTEM CALLS: INTERRUPT 21H: Function 38H.

The format of the data returned by Sub functions 02H, 04H, and 06H is

Field

Information ID code (02H, 04H, or 06H)
Pointer to table

Size

·Byte
Doubleword

The uppercase and filename uppercase tables are 130 bytes. The first 2 bytes contain the
size of the table; the subsequent 128 bytes contain the uppercase equivalents, if any, for
character codes 80H through OFFH. The main use of these tables is to map accented or
otherwise modified vowels to their plain vowel equivalents. Text translated using these
tables can be sent to devices that do not support the IBM graphics character set or can be
used to create filenames that do not require a special keyboard configuration for entry.

The collating table is 258 bytes. The first 2 bytes contain the table length and the next 256
bytes contain the values to be used for tl;le corresponding character codes (0-0FFH) dur­
ing a sort operation. Among other things, this table maps uppercase and lowercase ASCII
characters to the same collating codes (so that sorts will be case insensitive) and maps
accented vowels to their plain vowel equivalents.

1452 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1462/1582

Appendix A: MS-DOS Version 3.3

Note: In some cases, a truncated translation table might be presented to the program by
MS-DOS. Applications should always check the length specified at the beginning of the
table to be sure the table contains a translation code for the character of interest.

Example: Obtain the extended country iriformation associated with the default country
and code page 437.

buffer db

mov
mov

mov
mov

mov
mov

mov

int

jc

41 dup (0)

ax,6501h

bx,437
cx,41

dx,-1

di,seg buffer

es,di

di,offset buffer

21h
error

Receives country information.'

Function = get extended info.

Code page.
Length of buffer.

Default country.

ES:DI =buffer address.

Transfer to MS-DOS.

Jump if function failed.

In this case, MS-DOS fills the following extended country information into the buffer:

buffer db

dw
dw

dw

dw

db

db
db

db

db

db

db

db
dd

db

db

1

38

437

0
'$',0,0,0,0
I I I I 0
I I I 0
I_ I I 0

I: I I 0

0

2

0

026ah:176ch
I I I I 0

10 dup (0)

Information ID code
Length of following buffer

Country ID (USA)

Code-page number

Date format
Currency symbol

Thousands separator

Decimal separator

Date separator

Time separator
Currency format flags

Digits in currency
Time format

Monocase routine entry point

Data list separator

Reserved

Example: Obtain the pointer to the uppercase table associated with the default country
and code page 437.

buffer db 5 dup (0)

mov ax,6502h

Receives pointer information.

Function = get pointer to

uppercase table.

(more)

Appendixes 1453

HUAWEI EX. 1110 - 1463/1582

Appendix A: MS-DOS Version 3.3

mov bx,437
mov cx,S
mov dx,-1
mov di,seg buffer

mov es,di

mov di,offset buffer

int 21h

jc error

Code page.

Length of buffer.

Default country.
ES:DI =buffer address.

Transfer to MS-DOS.

Jump if function failed.

In this case, MS-DOS fills the following values into the buffer:

buffer db 2 Information ID code

dw 0204h Offset of uppercase table

dw 1140h Segment of uppercase table

The table at 1140:0204H contains the following data:

0 2 3 4 5 6 7 8 9 A B c D E F
1140:0200 80 00 80 9A 45 41 BE 41 SF 80 45 45
1140:0210 45 49 49 49 BE SF 90 92 92 4F 99 4F 55 55 59 99
1140:0220 9A 9B 9C 9D 9E 9F 41 49 4F 55 AS AS A6 A7 A8 A9
1140:0230 AA AB AC AD AE AF BO B1 B2 B3 B4 BS B6 B7 B8 B9
1140:0240 BA BB BC BD BE BF CO C1 C2 C3 C4 cs C6 C7 C8 C9
1140:0250 CA CB CC CD CE CF DO D1 D2 D3 D4 DS D6 D7 DB D9
1140:0260 DA DB DC DD DE DF EO E1 E2 E3 E4 ES E6 E7 E8 E9
1140:0270 EA EB EC ED EE EF FO F1 F2 F3 F4 FS F6 F7 F8 F9
1140:0280 FA FB FC FD FE FF

Select Code Page

0123456789ABCDEF
.... EA.A .. EE

EIII O.OUUY.

...... AIOU

................

.............. 0.
•• 0 •• 0 ••• 0 ••••••

••• 0 ••• 0 •• 0 •• 0 ••

• 0 0 •• 0 ••••• 0 0 0 ••

The Select Code Page function (Interrupt 21H Function 66H) queries or selects the current
code page. Function 66H is called by issuing a software Interrupt 21H with

AH =66H
AL = subfunction:

OlH get code page
02H select code page

BX = code page to select if AL = 02H

On return,

If function is successful:

Carry flag is clear.

If AL was OlH on call:

BX = active code page
DX = default code page

1454 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1464/1582

If function is not successful:

Carry flag is set.

AX = error code

Appendix A: MS-DOS Version 3.3

When Subfunction 02H is used, MS-DOS gets the new code page from the COUNTRY.SYS
file. The device must be previously prepared for 1code-page switching by including the
appropriate DEVICE command in the CONFIG.SYS file and by issuing the NLSFUNC and
MODE CP PREPARE commands (usually by placing them in the AUTO EXEC. BAT file).

Example: Force the active code page to be the same as the system's default code page­
that is, return to the code page that was active when the system was first booted.

mov ax,6601h Function = get code page.
int 21h Transfer to MS-DOS.
jc error Jump if function failed.

mov bx,dx Force active page = default.

mov ax,6602h Function = set code page.
int 21h Transfer to MS-DOS.

jc error Jump if function failed.

Extension ofiOCTL

The MS-DOS IOCTL service (Interrupt 21H Function 44H) and its device-driver under­
pinnings have been extended to support code-page switching by the interactive CHCP and
MODE commands or by application programs. The relevant IOCTL subfunction is OCH
(Generic IOCTL for Handles). An MS-DOS utility or application program gains access to
this subfunction by executing a software Interrupt 21H with

AH =44H
AL =OCH
BX = handle for character device
CH = category code:

OOH unknown
OlH COMl, COM2, COM3, or COM4
03H CON (keyboard and video display)
05H LPTl, LPT2, or LPT3

(more)

Appendixes 1455

HUAWEI EX. 1110 - 1465/1582

Appendix A: MS-DOS Version 3.3

CL = function (minor) code:
4AH select code page
4CH start code-page preparation
4DH end code-page preparation
6AH query selected code page
6BH query prepare list

DS:DX = pointer to Generic IOCTL parameter block

On return,

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:
OlH invalid function number
19H bad data read from font file
22H unknown command
26H code page not prepared or selected
27H code page conflict or device or code page not found in file
29H device error
31H file contents not a valid font or no previous "start code-page

preparation" call

Additional information about the cause of the error can be obtained with a call to Interrupt
21H Function 59H (Get Extended Error Information).

The parameter blocks for minor codes 4AH, 4DH, and 6AH have the following format:

Field

Length of following data
CodepageiD

Size

Word
Word

The parameter block for minor code 4CH has the following format:

Field Size

Flags Word
Length of remainder of parameter Word

block (2[n+l])
Number of code pages in the Word

following list (n)

1456 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1466/1582

Field

Code page 1
Codepage 2

Codepage n

Size

Word
Word

Word

Appendix A: MS-DOS Version 3.3

The parameter block for minor code 6BH has the following format, assuming n hardware
code pages and m prepared code pages (n <= 12, m <= 12):

Field Size

Length offollowing data (2[n+m+2]) Word
Number of hardware code pages (n) Word
Hardware code page 1 Word
Hardware code page 2 Word

Hardware code page n Word
Number of prepared code pages (m) Word
Prepared code page 1 Word
Prepared code page 2 Word

Prepared code page m Word

After a Start Code-Page Preparation (minor code 4CH) call, the program must write the
data defining the code-page font to the driver using one or more IOCTL Send Control Data
to Character Device (Interrupt 21H Function 44H Subfunction 03H) calls. The format of the
data is both device-specific and driver-specific. After the font data has been written to the
driver, the program must issue an End Code-Page Prep;=tration (minor code 4DH) call. If no
data is written to the driver between the start and end calls, the driver interprets the newly
prepared code pages as hardware code pages.

A special variation of Start Code-Page Preparation, called "refresh," is required to actually
load the peripheral device with the prepared code pages. The refresh operation is ob­
tained by calling minor code 4CH with each code-page position in the parameter block set
to -1 and then immediately calling minor code 4DH.

Appendixes 1457

HUAWEI EX. 1110 - 1467/1582

Appendix A: MS-DOS Version 3.3

The device-driver support that corresponds to IOCTL Subfunction OCH is invoked by the
MS-DOS kernel via the Generic IOCTL function (driver command code 19). The category
(major) and function (minor) codes described above, along with a pointer to the parame­
ter block, are passed to the driver in the request header. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Installable Device Drivers.

Extended MS-DOS partitions

An extended MS-DOS partition is indicated by a system indicator byte value of 05 in
the partition table of the fixed disk's master boot record. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-nos: MS-DOS Storage Devices. An extended
partition is not boatable and can be created on a boatable fixed-disk drive only if that
drive already contains a primary MS-DOS partition (system indicator type 01 or 04). Fixed
disks that are not boatable can contain an extended partition without a primary partition.

An extended partition is subdivided into extended logical disk volumes, each consisting
of an extended boot record and a logical block device. The extended boot record is analo­
gous in structure to the partition table for the fixed disk as a whole; it contains a logical
drive table describing the volume and a pointer to the next extended logical volume. The
logical block device is an image of a normal MS-DOS disk, including a master block (logi­
cal sector 0 containing the BPB describing the device), root directory, FAT, and files area.
Each extended volume must start and end on a cylinder boundary.

1458 The MS-DOS Encyclopedia

Van Wolverton
Ray Duncan

HUAWEI EX. 1110 - 1468/1582

Appendix B: Critical Error Codes

AppendixB
Critical Error Codes

Critical errors are returned via Interrupt 24H. If register AL bit 7 is 0, then the error was a 4
disk error; if register AL bit 7 is 1, then the error was a nondisk error. The upper half of DI
is undefined; the lower half of DI contains one of the following error-condition codes:

Code

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
OFH

Description

Attempt to write on write-protected disk
Unknown drive or unit
Drive not ready
Invalid command
Data error (CRC failed)
Bad request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure
Invalid disk change

Appendixes 1459

HUAWEI EX. 1110 - 1469/1582

HUAWEI EX. 1110 - 1470/1582

Appendix C: Extended Error Codes

AppendixC
Extended Error Codes

The extended error codes used by Interrupt 21H functions consist of four separate codes
in the AX, BH, BL, and CH registers. These codes give as much detail as possible about the
error and suggest how the issuing program should respond.

AX- Extended Error Code

If an error condition occurs in response to an Interrupt 21H function call, the carry flag is
set and one of the following error codes is returned in AX:

Error Description Error Description

OlH Invalid function code 16H Invalid disk command
02H File not found 17H CRCerror
03H Path not found 18H Invalid length (disk operation)
04H Too many open files (no 19H Seek error

handles left) lAH Not an MS-DOS disk
05H Access denied lBH Sector not found
06H Invalid handle lCH Out of paper
07H Memory control blocks lDH Write fault

destroyed lEH Read fault
08H Insufficient memory lFH General failure
09H Invalid memory block address 20H Sharing violation
OAH Invalid environment 21H Lock violation
OBH Invalid format 22H Wrong disk
OCH Invalid access code 23H FCB unavailable
ODH Invalid data 24H Sharing buffer overflow
OEH Reserved 25-31H Reserved
OFH Invalid drive 32H Network request not supported
lOH Attempt to remove the current 33H Remote computer not listening

directory 34H Duplicate name on network
llH Not same device 35H Network path not found
12H No more files 36H Network busy
13H Disk is write-protected 37H Network device no longer exists
14H Bad disk unit 38H Net BIOS command limit
15H Drive not ready exceeded

(more)

Appendixes 1461

HUAWEI EX. 1110 - 1471/1582

Appendix C: Extended Error Codes

Error Description Error Description

39H Network adapter hardware 45H Net BIOS session limit
error exceeded

3AH Incorrect response from 46H Sharing temporarily paused
network 47H Network request not accepted

3BH Unexpected network error 48H Print or disk redirection paused
3CH Incompatible remote adapter 49-4FH Reserved
3DH Print queue full 50H File exists
3EH Print queue not full 51H Reserved
3FH Print file was canceled (not 52H Cannot make directory entry

enough space) 53H Fail on Interrupt 24H
40H Network name was deleted 54H Out of network structures
41H Access denied 55H Device already assigned
42H Network device type incorrect 56H Invalid password
43H Network name not found 57H Invalid parameter
44H Network name limit exceeded 58H Network data fault

BH- Error Class

BH returns a code that describes the class of error that occurred:

Class

OlH
02H

03H
04H
05H
06H

07H
08H
09H
OAH
OBH
OCH

Description

Out of a resource, such as storage or channels
Not an error, but a temporary situation (such as a locked region in a file) that

can be expected to end
Authorization problem
An internal error in system software
Hardware failure
A system software failure not the fault of the active process (could be caused

by missing or incorrect configuration files, for example)
Application program error
File or item not found
File or item of invalid format or type or otherwise invalid or unsuitable
File or item interlocked
Wrong disk in drive, bad spot on disk, or other problem with storage medium
Other error

1462 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1472/1582

Appendix C: Extended Error Codes

BL-Suggested Action

BL returns a code that suggests how the program should respond to the error:

Action

OlH
02H
03H
04H
05H

06H
07H

Description

Retry, then prompt user.
Retry after a pause.
If the user entered data such as a drive letter or filename, prompt for it again.
Terminate with cleanup.
Terminate immediately. The system is so unhealthy that the program should

exit as soon as possible without taking the time to close files and update
indexes.

Error is informationaL
Prompt the user to perform some action, such as changing disks, then retry the

operation.

CH-Locus

CH returns a code that provides additional information to help locate the area involved in
the failure. This code is particularly useful for hardware failures (BH = 05H).

Locus

OlH
02H
03H
04H
05H

Procedure

Description

Unknown
Related to random-access block devices, such as a disk drive
Related to network
Related to serial-access character devices, such as a printer
Related to random-access memory

Programs should handle errors by noting the error returned in AX from the original system
call and then invoking Interrupt 21H Function 59H to get the extended error information.
If no extended error information is provided, the program should respond to the original
error code.

The Function 59H system call is available during Interrupt 24H.

Appendixes -1463

HUAWEI EX. 1110 - 1473/1582

HUAWEI EX. 1110 - 1474/1582

Appendix D: ASCII Character Set and IBM Extended Character Set

AppendixD
ASCII Character Set and
IBM Extended Character Set

Number Number
Char Dec Hex Control Char Dec Hex

0 00 NUL (Null) # 35 23

Q 1 01 SOH (Start of heading) $ 36 24

• 2 02 STX (Start of text) % 37 25

• 3 03 ETX (End of text) & 38 26

• 4 04 EOT (End of 39 27
transmission) 40 28

"' 5 05 ENQ (Enquiry) 41 29

• 6 o6 ACK (Acknowledge) 42 2A
7 07 BEL (Bell) + 43 2B

a 8 08 BS (Backspace) 44 2C

0 9 09 HT (Horizontal tab) 45 2D

:tl 10 OA LF (Linefeed) 46 2E
cf 11 OB vr (Vertical tab) I 47 2F
Q 12 oc FF (Forrnfeed) 0 48 30
) 13 OD CR (Carriage return) 49 31

~ 14 OE so (Shift out) 2 50 32
~ 15 OF SI (Shift in) 3 51 33 .. 16 10 DLE (Data link escape) 4 52 34
... 17 11 DCl (Device controll) 5 53 35
t 18 12 DC2 (Device control 2) 6 54 36
!! 19 13 DC3 (Device control 3) 7 55 37

~ 20 14 DC4 (Device control4) 8 56 38
§ 21 15 NAK (Negative 9 57 39

acknowledge) 58 3A
22 16 SYN (Synchronous idle) 59 3B

t 23 17 ETB (End transmission < 6o 3C
block) 61 3D

t 24 18 CAN (Cancel) > 62 3E
.j. 25 19 EM (End of medium) 63 3F
-+ 26 lA SUB (Substitute) @ 64 40
+- 27 lB ESC (Escape) A 65 41

28 lC FS (File separator) B 66 42
++ 29 1D GS (Group separator) c 67 43
... 30 lE RS (Record separator) D 68 44

" 31 lF us (Unit separator) E 69 45
<spare> 32 20 F 70 46

33 21 G 71 47

34 22 H 72 48

Control

(more)

Appendixes 1465

HUAWEI EX. 1110 - 1475/1582

Appendix D: ASCII Character Set and IBM Extended Character Set

Number Number Number
Char Dec Hex Char Dec Hex Control Char Dec Hex

I 73 49 z 122 7A 171 AB
J 74 4A 123 7B 172 AC
K 75 4B 124 7C 173 AD
L 76 4C 125 7D 174 AE

M 77 4D 126 7E >> 175 AF
N 78 4E 6 127 7F DEL I 176 BO
0 79 4F <;: 128 80 177 Bl
p 80 50 ii 129 81 I 178 B2
Q 81 51 e 130 82 I 179 B3
R 82 52 a 131 83 -l 180 B4
s 83 53 a 132 84 9 181 BS
T 84 54 a 133 85 ~I 182 B6
u 85 55 a. 134 86 11 183 B7
v 86 56 c; 135 87 l 184 B8
w 87 57 e 136 88 ~I 185 B9
X 88 58 e 137 89 II 186 BA
y 89 59 e. 138 SA 11 187 BB
z 90 SA i 139 SB dl 188 BC
[91 SB i 140 sc .II 189 BD
\ 92 sc i 141 SD d 190 BE
1 93 SD A 142 BE l 191 BF
A 94 SE A 143 SF L 192 co

95 SF :E 144 90 .L 193 Cl
96 60 a! 145 91 T 194 C2

a 97 61 JF. 146 92 f- 195 C3
b 98 62 6 147 93 196 C4
c 99 63 6 148 94 + 197 cs
d 100 64 0 149 95 r 198 C6
e 101 65 u 150 96 lr 199 C7

102 66 u 151 97 lb 200 C8
g 103 67 y 151 98 li' 201 C9
h 104 68 6 152 99 db 202 CA

105 69 0 154 9A ;r 203 CB
j 106 6A ¢ 155 9B IF 204 cc
k 107 6B £ 156 9C 205 CD
I 108 6C ¥ 157 9D JL 206 CE 1r
m 109 6D r. 158 9E d: 207 CF
n 110 6E f 159 9F lL 208 DO
0 111 6F a 160 AO T 209 Dl
p 112 70 i 161 Al 1T 210 D2
q 113 71 6 162 AZ IL 211 D3

114 72 u 163 A3 b 212 D4
s 115 73 ft 164 A4 F 213 DS
t 116 74 N 165 AS rr 214 D6
u 117 75 166 A6 * 215 D7
v 118 76 167 A7 + 216 DB
w 119 77 (_ 168 AS j 217 D9
X 120 78 169 A9 r 218 DA
y 121 79 170 AA I 219 DB

(more)

1466 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1476/1582

Appendix D: ASCII Character Set and IBM Extended Character Set

Number Number Number
Char Dec Hex Char Dec Hex Char Dec Hex

• 220 DC t 232 E8 r 244 F4
I 221 DD e 233 E9 J 245 F5
I 222 DE n 234 EA 246 F6

• 223 DF 0 235 EB ~ 247 F7
a 224 EO 00 236 EC 248 F8
j3 225 E1 <P 237 ED 249 F9
r 226 E2 € 238 EE 250 FA
1T 227 E3 n 239 EF J 251 FB

~ 228 E4 - 240 FO , 252 FC
CJ 229 E5 ± 241 F1 253 FD
~ 230 E6 ?: 242 F2 254 FE ,. 231 E7 :5 243 F3 255 FF

Appendixes 1467

HUAWEI EX. 1110 - 1477/1582

HUAWEI EX. 1110 - 1478/1582

Appendix E: EBCDIC Character Set

AppendixE
EBCDIC Character Set

Number Number Number
Char Dec Hex Char Dec Hex Char Dec Hex

NUL 0 00 41 29 82 52
SOH 01 SM 42 2A 83 53
STX 2 02 cuz 43 2B 84 54
ETX 3 03 44 2C 85 55
PF 4 04 ENQ 45 2D 86 56
HT 5 OS ACK 46 2E 87 57
LC 6 o6 BEL 47 2F 88 58
DEL 7 07 48 30 89 59
GE 8 08 49 31 90 SA
RLF 9 09 SYN so 32 $ 91 SB
SMM 10 OA 51 33 92 sc
VT 11 OB PN 52 34 93 SD
FF 12 oc RS 53 35 94 SE
CR 13 OD uc 54 36 95 SF
so 14 OE EOT 55 37 96 60
SI 15 OF 56 38 I 97 61
DLE 16 10 57 39 98 62
DCl 17 11 58 3A 99 63
DC2 18 12 CU3 59 3B 100 64
TM 19 13 DC4 60 3C 101 65
RES 20 14 NAK 61 3D 102 66
NL 21 15 62 3E 103 67
BS 22 16 SUB 63 3F 104 68
IL 23 17 Sp 64 40 105 69
CAN 24 18 65 41 106 6A
EM 25 19 66 42 107 6B
cc 26 lA 67 43 % 108 6C
CUI 27 lB 68 44 109 6D
IFS 28 lC 69 45 > 110 6E
IGS 29 1D 70 46 111 6F
IRS 30 IE 71 47 112 70
IUS 31 IF 72 48 113 71
DS 32 20 73 49 114 72
sos 33 21 ¢ 74 4A 115 73
FS 34 22 75 4B 116 74

35 23 < 76 4C 117 75
BYP 36 24 77 4D 118 76
LF 37 25 + 78 4E 119 77
ETB 38 26 I 79 4F 120 78 ... ESC 39 27 & 80 so 121 79

40 28 81 51 122 7A

Appendixes 1469

HUAWEI EX. 1110 - 1479/1582

Appendix E: EBCDIC Character Set

Number Number Number
Char Dec Hex Char Dec Hex Char Dec Hex

123 7B y 168 AS N 213 D5
@ 124 7C z 169 A9 0 214 D6

125 7D 170 AA p 215 D7
126 7E 171 AB Q 216 DB
127 7F 172 AC R 217 D9
128 80 173 AD 218 DA

a 129 81 174 AE 219 DB
b 130 82 175 AF 220 DC
c 131 83 176 BO 221 DD
d 132 84 177 B1 222 DE
e 133 85 178 B2 223 DF
f 134 86 179 B3 224 EO
g 135 87 180 B4 225 E1
h 136 88 181 B5 s 226 E2

137 89 182 B6 T 227 E3
138 SA 183 B7 u 228 E4
139 BB 184 B8 v 229 E5
140 BC 185 B9 w 230 E6
141 BD 186 BA X 231 E7
142 BE 187 BB y 232 E8
143 SF 188 BC z 233 E9
144 90 189 BD 234 EA

j 145 91 190 BE 235 EB
k 146 92 191 BF rl 236 EC
I 147 93 192 co 237 ED
m 148 94 A 193 C1 238 EE
n 149 95 B 194 C2 239 EF
0 150 96 c 195 C3 0 240 FO
p 151 97 D 196 C4 1 241 F1
q 152 98 E 197 C5 2 242 F2

153 99 F 198 C6 3 243 F3
154 9A G 199 C7 4 244 F4
155 9B H 200 C8 5 245 F5
156 9C 201 C9 6 246 F6
157 9D 202 CA 7 247 F7
158 9E 203 CB 8 248 FB
159 9F J' 204 cc 9 249 F9
160 AO 205 CD I 250 FA
161 A1 1' 2o6 CE 251 FB

5 162 A2 207 CF 252 FC
163 A3 l 208 DO 253 FD

u 164 A4 J 209 D1 254 FE
v 165 A5 K 210 D2 EO 255 FF
w 166 A6 L 211 D3
X 167 A7 M 212 D4

1470 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1480/1582

Appendix F: ANSI.SYS Key and Extended Key Codes

AppendixF
ANSI.SYS Key and Extended Key Codes

The following escape sequence allows redefinition of keyboard keys to a specified string:

ESC[code;string; ... p

where:

string

code

Key

Fl
F2
F3
F4
F5
F6
F7
F8
F9
FlO
Home
UpArrow
PgUp
Left Arrow

is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A.
is one or more of the following values that represent keyboard keys. Semi­
colons shown in this table must be entered in addition to the required semi­
colons in the command line.

Code

Alone Shift- Ctrl- Alt-

0;59 0;84 0;94 0;104
0;60 0;85 0;95 0;105
0;61 0;86 0;96 0;106
0;62 0;87 0;97 0;107
0;63 0;88 0;98 0;108
0;64 0;89 0;99 0;109
0;65 0;90 0;100 0;110
0;66 0;91 0;101 0;111
0;67 0;92 0;102 0;112
0;68 0;93 0;103 0;113
0;71 55 0;119
0;72 56
0;73 57 0;132
0;75 52 0;115

Down Arrow 0;77 54 0;116
End 0;79 49 0;117
Down Arrow 0;80 50
PgDn 0;81 51 0;118
Ins 0;82 48
Del 0;83 46
PrtSc 0;114
A 97 65 1 0;30

(more)

Appendixes 1471

HUAWEI EX. 1110 - 1481/1582

Appendix F: ANSI.SYS Key and Extended Key Codes

Key Code

Alone Shift- Ctrl- Alt-

B 98 66 2 0;48
c 99 67 3 0;46
D 100 68 4 0;32
E 101 69 5 0;18
F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23
J 106 74 10 0;36
K 107 75 11 0;37
L 108 76 12 0;38
M 109 77 13 0;50
N 110 78 14 0;49
0 111 79 15 0;24
p 112 80 16 0;25
Q 113 81 17 0;16
R 114 82 18 0;19
s 115 83 19 0;31
T 116 84 20 0;20
u 117 85 21 0;22
v 118 86 22 0;47
w 119 87 23 0;17
X 120 88 24 0;45
y 121 89 25 0;21
z 122 90 26 0;44
1 49 33 0;120
2 50 64 0;121
3 51 35 0;122
4 52 36 0;123
5 53 37 0;124
6 54 94 0;125
7 55 38 0;126
8 56 42 0;127
9 57 40 0;128
0 48 41 0;129

45 95 0;130
61 43 0;131

Tab 9 0;15
Null 0;3

1472 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1482/1582

Appendix G: File Control Block (PCB) Structure

AppendixG
File Control Block (FCB) Structure

Figures G-1 and G-2 (memory block diagrams) and Tables G-1 and G-2 describe the struc­
ture of normal and extended file control blocks (FCBs).

Offset

OOH

OlH

09H

OCH

OEH

lOH

14H

16H

18H

20H

21H

Drive identifier

Filename

File extension

Current block number

Record size (bytes)

File size (bytes)

Date stamp

Time stamp

Reserved

Current record number

Random record number

Figure G-1. Structure of a normal file
control block.

Appendixes 1473

HUAWEI EX. 1110 - 1483/1582

Appendix G: File Control Block (PCB) Structure

Table G-1. Elements of a Normal File Control Block.

Element

Drive identifier

Filename

File extension

Current block
number

Record size

File size

Date stamp

Timestamp

1474 The MS-DOS Encyclopedia

Maintained
by Comments

Program Designates the drive on which the file to be
opened or created resides (0 = default drive, 1 =

drive A, 2 = drive B, and so on). If the application
supplies a zero in this byte, MS-DOS alters the
byte during the open or create operation to
reflect the actual drive used.

Program Standard eight -character filename; must be left
justified and must be padded with blanks if fewer
than eight characters. A device name (for exam­
ple, PRN) can be used; there is no colon after a
device name.

Program Three-character file extension; must be left justi-
fied and must be padded with blanks if fewer
than three characters.

Program Zero when the file is opened; the current block
number and the current record number com­
bined make up the record pointer during sequen­
tial file access.

Program Set to 128 when the file is opened or created; the
program can modify the field afterward to any
desired record size.*

MS-DOS The size of the file in bytes; the first 2 bytes of this.
4-byte field are the least significant bytes of the
file size.

MS-DOS The date of the last write operation on the file; fol-

MS-DOS

lows the same format used by Interrupt 21H file
handle Function 57H (Get/Set Time and Date):

Bits
9-15
5-8
0-4

Contents
Year (relative to 1980)
Month(1-12)
Day of month (1-31)

The time of the last write operation on the file; fol­
lows the same format used by Interrupt 21H file
handle Function 57H (Get/Set Time and Date):

Bits
11-15
5-10
0-4

Contents
Hours (0-23)
Minutes (0-59)
Number of 2-second

increments (0-29)

(more)

HUAWEI EX. 1110 - 1484/1582

Table G-1. Continued.

Element

Current record
number

Random record
pointer

Appendix G: File Control Block (PCB) Structure

Maintained
by Comments

Program Limited to the range 0 through 127; there are
128 records per block. The beginning of a file is
record 0 ofblock 0. Together with the current
block number, this field constitutes the record
pointer used during sequential read and write
operations. MS-DOS does not automatically
initialize this field when a file is opened.

Program Identifies the record to be transferred by the Inter-
rupt 21H random record functions 21H, 22H,
27H, and 28H; if the record size is 64 bytes or
larger, only the first 3 bytes of this field are used.
MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but
not after random record reads and writes
(Functions 21H and 22H).

• If the record size is made larger than 128 bytes, the default data transfer area (DTA) in the program segment
prefix (PSP) cannot be used because it will collide with the program's own code or data.

Table G-2. Additional Elements of an Extended File Control Block.

Element

Extended FCB flag

File attribute byte

Maintained
by Comments

Program OFFH tells MS-DOS this is an extended (44-byte)
FCB.

Program Must be initialized by the application when an
extended FCB is used to open or create a file.
The bits of this field have the following
significance:

Bit Meaning
0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
5 Archive
6 Reserved
7 Reserved

Appendixes 1475

HUAWEI EX. 1110 - 1485/1582

Appendix G: File Control Block (FCB) Structure

Offset

OOH
OlH

06H

07H

08H

lOH

13H

15H

17H

lBH

lDH

lFH

27H

28H

Extended FCB flag (OFFH)

Reserved

File attribute byte

Drive identifier

Filename

File extension

Current block number

Record size (bytes)

File size (bytes)

Date stamp

Time stamp

Reserved

Current record number

Random record number

1476 The MS-DOS Encyclopedia

Figure G-2. Structure of an extended file
control block.

HUAWEI EX. 1110 - 1486/1582

Appendix H: Program Segment Prefix (PSP) Structure

AppendixH
Program Segment Prefix (PSP) Structure

Offset

OOH (0)

02H (2)

04H (4)

OSH (5)

Size
(in

bytes)

2

2

I

5

Contents

!NT 20H instruction

Address of last segment
allocated to proiiram

Reserved; normally 0

Long call to MS-DOS function dispatcher

OAH (10)

OEH (14)

12H (18)

16H (22)

2CH (44)

2EH (46)

4

4

4

22

2

4

SOH (80) 3

53H (83) 9

5CH (92) 16

6CH (108) 2 0

SOH (128) 12 7

Terminate program interrupt vector
(Interrupt 22H)

Ctrl-C handler interrupt vector
(Interrupt 23H)

Critical error handler interrupt vector
(Interrupt 24H)

Reserved

Segment address of environment

Reserved

!NT 21 H, RETF instructions

Reserved

Default file control block I

Default file control block 2
(overlaid ifFCB I opened)

:::-- -............"-...

Command tail and default DTA

FFH (255)

-

Figure H-1 (memory block diagram)
illustrates the structure of the pro­
gram segment prefix (PSP).

Figure H-1. Structure of the program segment prefix.

Appendixes 1477

HUAWEI EX. 1110 - 1487/1582

HUAWEI EX. 1110 - 1488/1582

Appendix I: 8086/8088/80286/80386 Instruction Sets

Appendix I
8086/8088/80286/80386 Instruction Sets

The 8086/8088 Instruction Set

Mnemonic Description Mnemonic Description

AAA ASCII adjust after addition JB Jump on below

AAD ASCII adjust before division]BE Jump on below or equal

AAM ASCII adjust after multiplication JC Jump on carry

AAS ASCII adjust after subtraction]CXZ Jump on ex zero

ADC Add with carry JE Jump on equal

ADD Add JG Jump on greater

AND Logical AND JGE Jump on greater or equal

CALL Call procedure JL Jump on less than

CBW . Convert byte to word JLE Jump on less than or equal

CLC Clear carry flag JMP Jump unconditionally

CLD Clear direction flag JNA Jump on not above

CLI Clear interrupt flag JNAE Jump on not above or equal

CMC Complement carry flag]NB Jump on not below

CMP Compare JNBE Jump on not below or equal

CMPS Compare string JNC Jump on no carry

CMPSB Compare byte string JNE Jump on not equal

CMPSW Compare word string JNG Jump on not greater

CWO Convert word to doubleword JNGE Jump on not greater or equal

DAA Decimal adjust for addition JNL Jump on not less than

DAS Decimal adjust for subtraction JNLE Jump on not less than or equal

DEC Decrement by 1]NO Jump on not overflow

DIY Unsigned divide]NP Jump on not parity

ESC Escape. JNS Jump on not sign

HLT Halt JNZ Jump on not zero

IDlY Integer divide]0 Jump on overflow

IMUL Integer multiply JP Jump on parity

IN Input from port JPE Jump on parity even

INC Increment by 1]PO Jump on parity odd

INT Call to interrupt procedure]S Jump on sign

INTO Interrupt on overflow JZ Jump on zero

4 IRET Interrupt on return LAHF Load AH with flags

]A Jump on above LOS Load pointer into OS

JAE Jump on above or equal LEA Load effective address

(more)

Appendixes 1479

HUAWEI EX. 1110 - 1489/1582

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description

LES Load pointer into ES

LOCK Lock the bus

LODS Load string

LODSB Load byte (string)

LODSW Load word (string)

LOOP Loop

LOOPE Loop while equal

LOOPNE Loop while not equal

LOOPNZ Loop while not zero

LOOPZ Loop while zero

MOV Move data

MOVS Move data from string to string

MOVSB Move byte (string)

MOVSW Move word (string)

MUL Multiply

NEG Negate

NOP No operation

NOT Logical NOT

OR Logical OR

OUT Output to port

POP Pop top of stack

POPF Pop stack into flags

PUSH Push onto stack

PUSHF Push flags onto stack

RCL Rotate through carry left

RCR Rotate through carry right

REP Repeat

REPE Repeat while equal

The 80286 Instruction Set

Mnemonic Description

AAA ASCII adjust after addition

AAD ASCII adjust before division

AAM ASCII adjust after multiplication

AAS ASCII adjust after subtraction

ADC Add with carry

ADD Add

1480 The MS-DOS Encyclopedia

Mnemonic

REPNE

REPNZ

REPZ

RET

ROL

ROR

SAHF

SAL

SAR

SBB

SCAS

SCASB

SCASW

SHL

SHR

STC

STD

STI

STOS

STOSB

STOSW

SUB

TEST

WAIT

XCHG ·

XLAT

XOR

Mnemonic

AND

ARPL

BOUND

CALL

CBW

CLC

Description

Repeat while not equal

Repeat while not zero

Repeat while zero

Return

Rotate left

Rotate right

Store AH into flags

Shift arithmetic left

Shift arithmetic right

Subtract with borrow

Scan string

Scan byte (string)

Scan word (string)

Shift logical left

Shift logical right

Set carry flag

Set direction flag

Set interrupt flag

Store string

Store byte (string)

Store word (string)

Subtract

Logical compare

Enter wait state

Exchange

Translate

Exclusive OR

Description

Logical AND

Adjust RPL field of selector

Check array index against bounds

Call procedure

Convert byte to word

Clear carry flag

(more)

HUAWEI EX. 1110 - 1490/1582

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

CLD Clear direction flag JNE Jump on not equal

CLI Clear interrupt flag JNG Jump on not greater

CLTS Clear task switched flag JNGE Jump on not greater or equal

CMC Complement carry flag JNL Jump on not less than

CMP Compare]NLE Jump on not less than or equal

CMPS Compare string]NO Jump on not overflow

CMPSB Compare byte string JNP Jump on not parity

CMPSW Compare word string JNS Jump on not sign

CWD Convert word to doubleword]NZ Jump on not zero

DAA Decimal adjust for addition]0 Jump on overflow

DAS Decimal adjust for subtraction JP Jump on parity

DEC Decrement by 1 JPE Jump on parity even

DIV Unsigned divide]PO Jump on parity odd

ENTER Make stack frame]S Jump on sign

(for procedure parameters)]Z Jump on zero

ESC Escape LAHF Load AH with flags

HLT Halt LAR Load access-rights byte

IDIV Integer divide LDS Load pointer into DS

IMUL Integer multiply LEA Load effective address

IN Input from port LEAVE High-level procedure exit

INC Increment by 1 LES Load pointer into ES

INS Input string from port LGDT Load global descriptor table

INT Call to interrupt procedure LIDT Load interrupt descriptor table

INTO Interrupt on overflow LLDT Load local descriptor table

!RET Interrupt on return LMSW Load machine status word

]A Jump on above LOCK Lock the bus

JAE Jump on above or equal LODS Load string

]B Jump on below LODSB Load byte (string)

]BE Jump on below or equal LODSW Load word (string)

]C Jump on carry LOOP Loop

]CXZ Jump on CX zero LOOPE Loop while equal

JE Jump on equal LOOPNE Loop while not equal

JG Jump on greater LOOPNZ Loop while not zero

JGE Jump on greater or equal LOOPZ Loop while zero

JL Jump on less than LSL Load segment limit

JLE Jump on less than or equal LTR Load task register

JMP Jump unconditionally MOV Move data

JNA Jump on not above MOVS Move data from string to string

JNAE Jump on not above or equal MOVSB Move byte (string)

4 JNB Jump on not below MOVSW Move word (string)

]NBE Jump on not below or equal MUL Multiply

JNC Jump on no carry NEG Negate

(more)

Appendixes 1481

HUAWEI EX. 1110 - 1491/1582

Appendix l: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

NOP No operation SCAS Scan string

NOT Logical NOT SCASB Scan byte (string)

OR Logical OR SCASW Scan word (string)

OUT Output to port SGDT Store global descriptor table

OUTS Output string to port SHL Shift logical left

POP Pop top of stack SHR Shift logical right

POPA Pop eight 16-bit registers SII~>T Store interrupt descriptor table

POPF Pop stack into flags SLDT Store local descriptor table

PUSH Push onto stack SMSW Store machine status word

PUSH A Push eight 16-bit registers STC Set carry flag

PUSHF Push flags onto stack STD Set direction flag

RCL Rotate through carry left STI Set interrupt flag

RCR Rotate through carry right STOS Store string

REP Repeat STOSB Store byte (string)

REPE Repeat while equal STOSW Store word (string)

REPNE Repeat while not equal STR Store task register

REPNZ Repeat while not zero SUB Subtract

REPZ Repeat while zero TEST Logical compare

RET Return VERR Verify a segment for reading

ROL Rotate left VERW Verify a segment for writing

ROR Rotate right WAIT Enter wait state

SAHF Store AH into flags XCHG Exchange

SAL Shift arithmetic left XLAT Translate

SAR Shift arithmetic right XOR Exclusive OR

SBB Subtract with borrow

The 80386 Instruction Set

Mnemonic Description Mnemonic Description

MA. ASCII adjust after addition BSF Bit scan forward

MD ASCII adjust before division BSR Bit scan reverse

MM ASCII adjust after multiplication BT Bit test

MS ASCII adjust after subtraction BTC Bit test and complement
. ADC Add with carry BTR Bit test and reset

ADD Add BTS Bit test and set

AND Logical AND CALL Call procedure

ARPL Adjust RPL field of selector CBW Convert byte to word·

BOUND Check array index against bounds CDQ Convert doubleword to quad word

(more)

1482 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1492/1582

Appendix 1: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

CLC Clear carry flag JMP Jump unconditionally

CLD Clear direction flag JNA Jump on not above

CLI Clear interrupt flag JNAE Jump on not above or equal

CLTS Clear task switched flag JNB Jump on not below

CMC Complement carry flag JNBE Jump on not below or equal

CMP Compare JNC Jump on no carry

CMPS Compare string JNE Jump on not equal

CMPSB Compare byte string JNG Jump on not greater

CMPSD Compare doubleword string JNGE Jump on not greater or equal

CMPSW Compare word string JNL Jump on not less than

CWD Convert word to doubleword JNLE Jump on not less than or equal

DAA Decimal adjust for addition]NO Jump on not overflow

DAS Decimal adjust for subtraction JNP Jump on not parity

DEC Decrement by 1 JNS Jump on not sign

DIY Unsigned divide JNZ Jump on not zero

ENTER Make stack frame JO Jump on overflow

(for procedure parameters) JP Jump on parity

ESC Escape JPE Jump on parity even

HLT Halt]PO Jump on parity odd

IDIV Integer divide JS Jump on sign

IMUL Integer multiply JZ Jump on zero

IN Input from port LAHF Load AH with flags

INC Increment by 1 LAR Load access-rights byte

INS Input string from port LDS Load pointer into DS

INSD Input doubleword from port LEA Load effective address

INT Call to interrupt procedure LEAVE High-level procedure exit

INTO Interrupt on overflow LES Load pointer into ES

IRET Interrupt on return LFS Load pointer into FS

IRETD Interrupt return to LGDT Load global descriptor table

virtual8086 mode LGS Load pointer into GS

JA Jump on above LIDT Load interrupt descriptor table

JAE Jump on above or equal LLDT Load local descriptor table

JB Jump on below LMSW Load machine status word

JBE Jump on below or equal LOCK Lock the bus

JC Jump on carry LODS Load string

JCXZ Jump on ex zero LODSB Load byte (string)

JE Jump on equal LODSD Load doubleword (string)

JECXZ Jump on ECX zero LODSW Load word (string)

JG Jump on greater LOOP Loop

JGE Jump on greater or equal LOOPE Loop while equal

JL Jump on less than LOOPNE Loop while not equal

JLE Jump on less than or equal LOOPNZ Loop while not zero

(more)

Appendixes 1483

HUAWEI EX. 1110 - 1493/1582

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

LOOPZ Loop while zero ROL Rotate left

LSL Load segment limit ROR Rotate right

LSS Load pointer into SS SAHF Store AH into flags

LTR Load task register SAL Shift arithmetic left

MOV Move data SAR Shift arithmetic right

MOVS Move data from string to string SBB Subtract with borrow

MOVSB Move byte (string) SCAS Scan string

MOVSD Move doubleword (string) SCASB Scan byte (string)

MOVSW Move word (string) SCASD Scan doubleword (string)

MOVSX Move with sign extend SCASW Scan word (string)

MOVZX Move with zero extend SET Byte set on condition

MUL Multiply SGDT Store global descriptor table

NEG Negate SHL Shift logical left

NOP No operation SHLD Double precision shift left

NOT Logical NOT SHR Shift logical right

OR Logical OR SHRD Double precision shift right

OUT Output to port SIDT Store interrupt descriptor table

OUTS Output string to port SLOT Store local descriptor table

POP Pop top of stack SMSW Store machine status word

POPA Pop eight 16-bit registers STC Set carry flag

POP AD Pop eight 32-bit registers STD Set direction flag

POPF Pop stack into flags STI Set interrupt flag

POPFD Loads doubleword into EFLAGS STOS Store string

PUSH Push onto stack STOSB Store byte (string)

PUSH A Push eight 16-bit registers STOSD Store doubleword (string)

PUSH AD Push eight 32-bit registers STOSW Store word (string)

PUSHED PushEFLAGS STR Store task register

PUSHF Push flags onto stack SUB Subtract

RCL Rotate through carry left TEST Logical compare

RCR Rotate through carry right VERR Verify a segment for reading

REP Repeat VERW Verify a segment for writing

REPE .Repeat while equal WAIT Enter wait state

REPNE Repeat while not equal XCHG Exchange

REPNZ Repeat while not zero XLAT Translate

REPZ Repeat while zero XOR Exclusive OR

RET Return

1484 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1494/1582

Appendix]: Common MS-DOS Filename Extensions

Appendix}
Common MS-DOS Filename Extensions

The Microsoft systems programs and language products commonly use the following file­
name extensions:

Extension Progrann/Systenm Description

.@@@ MS-DOS Backup ID file

.$$$ EDLIN Backup filename if out of disk space; error
condition

.ASC Generic ASCII text file

.ASM MASM Assembly-language source code

.BAK Generic Backup file
I

.BAS BASIC BASIC language source code

.BAT MS-DOS Batch file (contains MS-DOS command lines)

.BIN Generic Binary file

.c c C language source code

.CAL Windows Calendar file

.COB COBOL COBOL language source code

.COD Generic Object listing file

.COM MS-DOS Executable program file

.CRD Windows Cardfile file

.CRF MASM Cross-reference file

.DAT Generic Data file

.DBG COBOL Debug file

.DEF Windows Module definition file

.DOC Generic Documentation or document file

.DRV Generic Driver file

.ERR Generic Error file

.EXE . MS-DOS Executable program file

.FNT Generic Font file

.FON Generic Font file

.FOR FORTRAN FORTRAN language source code

.GRB Windows Grab file (snapshot)

.H c Include file

.HEX MS-DOS INTEL hexadecimal format file

.HLP Generic Help file

.INC Generic Include file

.IN I Windows Initialization file

(more)

Appendixes 1485

HUAWEI EX. 1110 - 1495/1582

Appendix]: Common MS-DOS Filename Extensions

Extension Program/System Description

.I NT COBOL Object file

.LIB Generic Library file

.LST Generic List file

.MAP Generic Address map file

.MOD Generic Module file

.MSG COBOL Message file

.MSP Windows Windows Paint file

.OBJ Generic Relocatable object module

.OVL Generic Overlay file

.OVR COBOL Compiler overlay file

.PAS PASCAL PASCAL language source code

.PIF Windows Program information file

.QLB Generic Library file for Microsoft's Quick products

.RC Windows Resource script file

.REF CREF Cross-reference listing file

.RES Windows Compiled resource file

.SCR Generic Script file

.SYM Generic Symbol file

.SYS Generic System file or device driver

.TMP Generic Temporary file

.TRM Windows Terminal file

.TXT Generic Text file or Windows Notepad file

.WRI Windows Write file

1486 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1496/1582

Appendix K: Segmented (New) .EXE File Header Format

AppendixK
Segmented (New) .EXE File Header Format

Microsoft Windows requires much more information about a program than is available in 4
. the format of the .EXE executable file supported by MS-DOS. For example, Windows needs
to identify the various segments of a program as code segments or data segments, to iden­
tify exported and imported functions, and to store the program's resources (such as icons,
cursors, menus, and dialog-box templates). Windows must also support dynamically link­
able library modules containing routines that programs and other library modules can call.
For this reason, Windows programs use an expanded .EXE header format called the New
Executable file header format. This format is used for Windows programs, Windows li­
brary modules, and resource-only files such as the Windows font resource files.

The Old Executable Header

The New Executable file header format incorporates the existing MS-DOS executable file
header format. In fact, the beginning of a New Executable file is simply a normal MS-DOS
.EXE header. The 4 bytes at offset 3CH are a pointer to the beginning of the New Execut­
able header. (Offsets are from the beginning of the Old Executable header.)

Offset

OOH
01H
3CH

Length
(bytes)

1
1
4

Contents

Signature byte M
Signature byte z
Offset of New Executable header from beginning of file

This normal MS-DOS .EXE header can contain size and relocation information for a non­
Windows MS-DOS program that is contained within the .EXE file along with the Windows
program. This program is run when the .EXE file is executed from the MS-DOS command
line. Most Windows programmers use a standard program that simply prints the message
This program requires Microsoft Windows.

Appendixes 1487

HUAWEI EX. 1110 - 1497/1582

Appendix K: Segmented (New) .EXE File Header Format

The New Executable Header

The beginning of the New Executable file header contains information about the location
and size of various tables within the header. (Offsets are from the beginning of the New
Executable header.)

Length
Offset (bytes)

OOH 1
01H 1
02H 1
03H 1
04H 2

06H 2
08H 4

OCH 2
OEH 2

10H 2.

12H 2

14H 2

16H 2

18H 2

1488 The MS-DOS Encyclopedia

Contents

Signature byte N
Signature byte E
LINK version number
LINK revision number
Offset of beginning of entry table relative to beginning

of New Executable header
Length of entry table
32-bit checksum of entire contents of file, using zero

for these 4 bytes
Module flag word (see· below)
Segment number of automatic data segment (0 if

neither SINGLEDATA nor MULTIPLEDATA flag is set
in flag word)

Initial size of local heap to be added to automatic data
segment (0 if there is no local heap)

Initial size of stack to be added to automatic data seg­
ment (0 for library modules)

Initial value of instruction pointer (IP) register on entry
to program

Initial segment number for setting code segment (CS)
register on entry to program

Initial value of stack pointer (SP) register on entry to
program (0 if stack segment is automatic data seg­
ment; stack should be set above static data area and
below local heap in automatic data segment)

(more)

HUAWEI EX. 1110 - 1498/1582

Appendix K: Segmented (New) .EXE File Header Format

Length
Offset (bytes) Contents

1AH 2 Segment number for setting stack segment CSS) register
on entry to program CO for library modules)

1CH 2 Number of entries in segment table
1EH 2 Number of entries in module reference table
20H 2 Number of bytes in nonresident names table
22H 2 Offset of beginning of segment table relative to begin-

ning of New Executable header
24H 2 Offset of beginning of resource table relative to begin-

ning of New Executable header
26H 2 Offset of beginning of resident names table relative to

beginning of New Executable header
28H 2 Offset of beginning of module reference table relative

to beginning of New Executable header
2AH 2 Offset of beginning of imported names table relative to

beginning of New Executable header
2CH 4 Offset of nonresident names table relative to beginning

of file
30H 2 Number of movable entry points listed in entry table
32H 2 Alignment shift count CO is equivalent to 9)
34H 12 Reserved for expansion

The module flag word at offset OCH in the New Executable header is defined as shown in
Figure K-1.

1 if SINGLEDAT A (library module)
0 ifNOAUTODATA (library module)

1 ifMULTIPLEDATA (program module)

'---- 1 if module runs in real mode

'----- I if module runs in protected mode

'----------------- I if module is nonconforming
(valid stack is not maintained)

'------------------ 1 if library module
0 if program module

Figure K-1. The module flag word.

Appendixes 1489

4

HUAWEI EX. 1110 - 1499/1582

Appendix K: Segmented (New) .EXE File Header Format

The segment table

This table contains one 8-byte record for every code and data segment in the program or
library module. Each segment has an ordinal number associated with it. For example, the
first segment has an ordinal number ofl. These segment numbers are used to reference
the segments in other sections of the New Executable file. (Offsets are from the beginning
of the record.)

Length
Offset (bytes)

OOH 2

02H 2
04H 2
06H 2

Contents

Offset of segment relative to beginning of file after
shifting value left by alignment shift count

Length of segment (OOOOH for segment of 65536 bytes)
Segment flag word (see below)
Minimum allocation size for segment; that is, amount of

space Windows reserves in memory for segment
(OOOOH for minimum allocation size of 65536 bytes)

The segment flag word is defined as shown in Figure K-2.

!FIE DjcjB Al9 js 1716 Is 14131211 lo
L

Figure K-2. The segment flag word.

1490 The MS-DOS Encyclopedia

1 ifDATA
OifCODE

1 if segment data is ITERATED

1 if segment is MOVABLE
0 if segment is FIXED

1 if segment is PURE or SHAREABLE
0 if segment is IMPURE or NONSHAREABLE

1 if segment is PRELOAD
0 if segment is LOADONCALL

1 if code segment and EXECUTEONL Y
0 if data segment and READONL Y

1 if segment has relocation information

I if segment has debugging information

Reserved for protected mode
descriptor privilege level

Priority level for discarding

HUAWEI EX. 1110 - 1500/1582

Appendix K: Segmented (New) .EXE File Header Format

The resource table

Resources are segments that contain data but are not included in a program's normal data
segments. Resources are commonly used in Windows programs to store menus, dialog-box
templates, icons, cursors, and text strings, but they can also be used for any type of read­
only data. Each resource has a type and a name, both of which can be represented by
either a number or an ASCII name.

The resource table begins with a resource shift count used for adjusting other values in the
table. (Offsets are from the beginning of the table.)

Offset

OOH

Length
(bytes)

2

Contents

Resource shift count

This is followed by one or more resource groups, each defining one or more resources.
(Offsets are from the beginning of the group.)

Offset

OOH

02H
04H
08H

Length
(bytes)

2

2
4

12 each

Contents

Resource type (0 if end of table)
If high bit set, type represented by predetermined

number (high bit not shown):
1 Cursor
2 Bitmap
3 Icon
4 Menu template
5 Dialog-box template
6 String table
7 Font directory
8 Font
9 Keyboard-accelerator table

If high bit not set, type is ASCII text string and this
value is offset from beginning of resource table,
pointing to 1-byte value with number of bytes in
string followed by string itself.

Number of resources of this type
Reserved for run-time use
Resource description

Each resource description requires 12 bytes. (Offsets are from the beginning of the
description.)

Appendixes 1491

HUAWEI EX. 1110 - 1501/1582

Appendix K: Segmented (New) .EXE File Header Format

Offset

OOH

02H

04H
06H

08H

Length
(bytes)

2

2

2
2

4

Contents

Offset of resource relative to beginning of file after
shifting left by resource shift count

Length of resource after shifting left by resource shift
count

Resource flag word (see below)
Resource name
If high bit set, represented by a number; otherwise,

type is ASCII text string and this value is offset from
beginning of resource table, pointing to 1-byte value
with number of bytes in string followed by string
itself.

Reserved for run-time use

The resource flag word is defined as shown in Figure K-3.

'------ 1 if resource is MOVABLE
0 if resource is FIXED

L------- 1 if resource is PURE or SHAREABLE
0 if resource is IMPURE or NONSHAREABLE

'-------- 1 if resource is PRELOAD
0 if resource is LOADONCALL

'---------------- Priority level for discarding

Figure K-3. The resource flag word.

The resident names table

This table contains a list of ASCII strings. The first string is the module name given in the
module definition file. The other strings are the names of all exported functions listed in
the module definition file that were not given explicit ordinal numbers or that were ex­
plicitly specified in the file as resident names. (Exported functions with explicit ordinal
numbers in the module definition file are listed in the nonresident names table.)

Each string is prefaced by a single byte indicating the number of characters in the string
and is followed by a word (2 bytes) referencing an element in the entry table, beginning at
L The word that follows the module name is 0. (Offsets are from the beginning of the
record.)

1492 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1502/1582

!)F

I'

·-
'

Offset

OOH
01H
n+1

Length
(bytes)

1
n
2

The module reference table

Appendix K: Segmented (New) .EXE File Header Format

Contents

Number of bytes in string (0 if end of table)
ASCII string, not null-terminated
Index into entry table

The module reference table contains 2 bytes for every external module the program uses.
These 2 bytes are an offset into the imported names table.

The imported names table

The imported names table contains a list of ASCII strings. These strings are the names of
all other modules that are referenced through imported functions. The strings are prefaced
with a single byte indicating the length of the string.

For most Windows programs, the imported names table includes KERNEL, USER, and GDI,
but it can also include names of other modules, such as KEYBOARD and SOUND. (Offsets
are from the beginning of the record.)

Offset

OOH
01H

Length
(bytes)

1
n

Contents

Number of bytes in name string
ASCII name string, not null-terminated

These strings do not necessarily start at the beginning of the imported names table; the
names are referenced by offsets specified in the module reference table.

The entry table

This table contains one member for every entry point in the program or library module.
(Every public FAR function or procedure in a module is an entry point.) The members in
the entry table have ordinal numbers beginning at 1. These ordinal numbers are refer­
enced by the resident names table and the nonresident names table.

LINK versions 4.0 and later bundle the members of the entry table. Each bundle begins
with the following information. (Offsets are from the beginning of the bundle.)

Offset

OOH
01H

Length
(bytes)

1
1

Contents

Number of entry points in bundle (0 if end of table)
Segment number of entry points if entry points in bun­

dle are in single fixed segment; OFFH if entry points
in bundle are in movable segments

Appendixes 1493

HUAWEI EX. 1110 - 1503/1582

Appendix K: Segmented (New) .EXE File Header Format

For a bundle containing entry points in fixed segments, each entry point requires 3 bytes.
(Offsets are from the beginning of the entry description.)

Offset

OOH
01H

Length
(bytes)

1
2

Contents

Entry-point flag byte (see below)
Offset of entry point in segment

For bundles containing entry points in movable segments, each entry point requires 6
bytes. (Offsets are from the beginning of the entry description.)

Length
Offset (bytes) Contents

OOH 1 Entry-point flag byte (see below)
01H 2 Interrupt 3FH instruction: CDH 3FH
03H 1 Segment number of entry point
04H 2 Offset of entry-point segment

The entry-point flag byte is defined as shown in Figure K-4.

1 if entry is exported

1 if entry uses single data
(library module)

'------- Number of parameter words

Figure K-4. The entry-point flag.

The nonresident names table

This table contains a list of ASCII strings. The first string is the module description from
the module definition file. The other strings are the names of all exported functions listed
in the module definition file that have ordinal numbers associated with them. (Exported
functions without ordinal numbers in the module definition file are listed in the resident
names table.)

Each string is prefaced by a single byte indicating the number of characters in the string
and is followed by a word (2 bytes) referencing a member of the entry table, beginning at
1. The word that follows the module description string is 0. (Offsets are from the beginning
of the table.)

1494 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1504/1582

Offset

OOH
01H
n+1

Length
(bytes)

1
n
2

The code and data segment

Appendix K: Segmented (New) .EXE File Header Format

Contents

Number of bytes in string (0 if end of table)
ASCII string, not null-terminated
Index into entry table

Following the various tables in the New Executable file header are the code. and data seg­
ments of the program or library module.

If the code or data segment is flagged in the segment flag word as ITERATED, the segment
is organized as follows. (Offsets are from the beginning of the segment.)

Length
Offset (bytes) Contents

OOH 2 Number of iterations of data
02H 2 Number of bytes of data
04H n Data

Otherwise, the size of the segment data is given by the length of the segment field in the
segment table.

If the segment is flagged in the segment flag word as containing relocation information,
then the relocation table begins immediately after the segment data. Windows uses the
relocation table to resolve references within the segments to functions in other segments
in the same module and to imported functions in other modules. (Offsets are from the
beginning of the table.)

Offset

OOH

Length
(bytes)

2

Contents

Number of relocation items

Each relocation item requires 8 bytes. (Offsets are from the beginning of the relocation
item.)

Offset

OOH

Length
(bytes)

1

Contents

Type of address to insert in segment:
01H Offset only
02H Segment only
03H Segment and offset

(more)

Appendixes 1495

HUAWEI EX. 1110 - 1505/1582

Appendix K: Segmented (New) .EXE File Header Format

Offset

01H

02H

Length
(bytes)

1

2

Contents

Relocation type:
OOH Internal reference
01H Imported ordinal
02H Imported name
If bit 2 set, relocation type is additive (see below)
Offset of relocation item within segment

The next 4 bytes depend on the relocation type. If the relocation type is an internal refer­
ence to a segment in the same module, these bytes are defined as follows. (Offsets are
from the beginning of the relocation item.)

Offset

04H

05H
06H

Length
(bytes)

1

1
2

Contents

Segment number for fixed segment; OFFH for movable
segment

0
If MOVABLE segment, ordinal number referenced in

entry table; if FIXED segment, offset into segment

If the relocation type is an imported ordinal to another module, then these bytes are
defined as follows. (Offsets are from the beginning of the relocation item.)

Offset

04H
06H

Length
(bytes)

2
2

Contents

Index into module reference table
Function ordinal number

Finally, if the relocation type is an imported name of a function in another module, these
bytes are defined as follows. (Offsets are from the beginning ofthe relocation item.)

Offset

04H
06H

Length
(bytes)

2
2

1496 The MS-DOS Encyclopedia

Contents

Index into module reference table
Offset within imported names table to name of im­

ported function

HUAWEI EX. 1110 - 1506/1582

Appendix K: Segmented (New) .EXE File Header Format

If the ADDITIVE flag of the relocation type is set, the address of the external function is
added to the contents of the address in the target segment. If the ADDITIVE flag is not set,
then the target contains an offset to another target within the same segment that requires
the same relocation. address. This defines a chain of target addresses that get the same ad­
dress. The chain is terminated with a -1 entry.

Charks Petzold 4

Appendixes 1497

HUAWEI EX. 1110 - 1507/1582

HUAWEI EX. 1110 - 1508/1582

Appendix L: Intel Hexadecimal Object File Format

AppendixL
Intel Hexadecimal Object File Format

The MCS-86 hexadecimal object file format provides a means of recording a program's
binary (compiled or assembled) image in a text-only (printable) file format. .This format
makes it easy to transfer the program between computers over telephone lines without
using special communications software. More important, it provides a ready means of
transferring programs between computers and the various types of laboratory equipment
typically used during the development of specialized programs.

The MCS-86 hexadecimal file format is a superset oflntel's olderintellec-8 hexadecimal
object file format. Intel originally designed the Intellec-8 format for use with its 8-bit
microprocessor line. The format rapidly gained acceptance among other microprocessor
manufacturers. When Intel subsequently developed the MCS-86 microprocessor family, it
also expanded the Intellec-8 hexadecimal file format into the MCS-86 hexadecimal file
format to support the new microprocessors' extended addressing capabilities.

The MCS-86 hexadecimal object file format should not be confused with the object (.OBJ)
files produced by the Microsoft Macro Assembler (MASM) and language compilers. The
MCS-86 hexadecimal object file format is referred to as an absolute object file format
because the code contained within the file has been completely linked and all address ref­
erences have already been resolved. The object modules produced by the assembler and
compilers (.OBJ files) are referred to as relocatable object modules because they contain
the information necessary to relocate the enclosed code to any memory address for
execution.

The MCS-86 hexadecimal object file format consists of four types of ASCII text records:

• Data record
• End-of-file record
• Extended-address record
• Start-address record

All records begin with a record mark consisting of a single ASCII colon character (:).
The remainder of the record consists of a variable number of ASCII hexadecimal digit
pairs (00-0FH), each representing an unsigned byte value (0-255 decimal). The first digit
represents the value of the high nibble (bits 7 -4) of the byte; the second digit represents
the value of the low nibble (bits 3-0). These digit pairs begin immediately after the record
mark and continue through the end of the record without any separation between them.

All records have the following fields, in the order listed:

• A fixed-length record length field
• A fixed-length address field (optional)
• A fixed-length record type field

Appendixes 1499

HUAWEI EX. 1110 - 1509/1582

Appendix L: Intel Hexadecimal Object File Format

• A fixed-length or variable-length data field
• A fixed-length checksum field

The fixed-length record length field consists of the first digit pair following the record
mark and gives the length of the record-type-dependent variable-length data field.

The optional fixed-length address field consists of the second and third digit pairs follow­
ing the record mark The first digit pair of this field (second digit pair of the record) gives
the high byte of a word address value (bits 15-8); the second digit pair (third digit pair of
the record) gives the low byte of a word address value (bits 7 -0). If the record type does
not use the address field, then the field contains a fill-in value consisting of the four­
character ASCII string 0000.

The fixed-length record type field consists of the fourth digit pair of the record and indi­
cates the type of data the record contains. The valid record-type values are

Value

OOH
01H
02H
03H

'fype

Data record
End-of-file record
Extended-address record
Start-address record

All records end with a fixed-length checksum field. This field contains the negative of
the sum of all byte values represented by the digit pairs in the record, from the record
length field through the last digit pair before the checksum field. The checksum field is
used to determine whether an error occurred during the transmission of a record between
computers or other pieces of equipment.

(The receiving equipment can easily perform this error checking as each record is .
received. It only has to add all digit pairs of the record, including the checksum, and
ignore any overflow beyond 8 bits. The total should be OOH, because the checksum is the
negative of the summation of all preceding digit pairs.)

The variable-length data field of the data record contains the actual data bytes of the pro­
gram's image. In data records, the record length field indicates the number of bytes, each
represented as a digit pair, contained within the data field; the address field gives the off­
set within the current memory segment at which to load the record's data into memory.

The fixed-length data field of the extended-address record establishes the memory seg­
ment into which subsequent data records are to be loaded. In extended-address records,
the data field consists of a single field identical to the address field. The address field of an
extended-address record always contains the ASCII 0000 filler, and the record length field
always contains ASCII 02, which reflects the fixed length of the data field. The memory
segment (also known as the memory frame) established by an extended-address record
remains in effect until the next extended-address record is encountered; thus, all data

1500 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1510/1582

Appendix L: Intel Hexadecimal Object File Format

records following the most recent extended-address record are loaded in the established
memory segment. See PROGRAMMING IN MS-DOS: PRoGRAMMING Toms: The Microsoft
Object Linker.

Figures L-1 and L-2 show how the extended-address record and the data record combine to
load the byte values OFDH, OB9H, 75H, 31H, OECH, OA8H, 64H, and 20H into memory start­
ing at address 9A6EH:429FH.

j: jo zjo o o ojo zj9 A 6

I

Figure L-1. The extended-address record.

data

ElF 41
L checksum

data = segment address

record type = extended-address record

address (filler)

record length

record mark

record type = data record

address

record length
t._ ___________ record mark

Figure L-2. The data record.

The start-address record provides the CS and IP register values at which program execu­
tion begins. This record contains the register values within the fixed-length data field. The
address field of a start-address record always contains the ASCII 0000 filler, and the record
length field always contains ASCII 04, which reflects the fixed length of the data field. The
example in Figure L-3 shows a CS:IP setting (program entry point) of F924H:E69AH.

The end-of-file record marks the end of an MCS-86 hexadecimal file. Under the MCS-86
hexadecimal file definition, the end-of-file record does not contain any variable-value
fields; the record always appears as shown in Figure L-4.

Appendixes 1501

HUAWEI EX. 1110 - 1511/1582

Appendix L: Intel Hexadecimal Object File Format

j: jo 4jo o o o jo 41F 9 2 4 1E 6 9

Figure L-3. The start-address record.

l=lo olo o o ojo 1jF FJ

'-- checksum

Al5 Bl
L checksum

data:

IP

cs
record type= start-address record

address (filler)

record length

record mark

record type= end-of-file record

address (filler)

record length

record mark

Figure L-4. The end-of-file record.

Traditionaliy, development equipment and programs that accept the MCS-86 hexadecimal
file format as input also recognize an alternate end-of-file record. The alternate record con­
sists of a data record that contains no data; therefore, its record length field contains 00.
Figure L-5 shows this alternate end-of-file record.

DEBUG is the only program supplied with MS-DOS that accepts the MCS-86 hexadecimal
file format. Even then, DEBUG only loads hexadecimal files into memory; it does not save
a program back to disk as a hexadecimal file. (The same applies for SYMDEB and for
Code View.)

l=lo olo o o ojo ojo o

- checksum

record type = data record

address (filler)

record length

record mark

Ftgwe L-5. The alternate end-of-file record.

1502 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1512/1582

Appendix L: Intel Hexadecimal Object File Format

While loading a hexadecimal file, DEBUG actually processes only data r d
ecor s and end-of

file records; it ignores both start-address records and any extended-address records. Thus -
DEBUG actually supports only the older Intellec-8 hexadecimal file format but will not '
reject the file if it also contains the newer MCS-86 hexadecimal file records.

DEBUG does not support MCS-86 records because it must operate within the MS-DOS
environment and MS-DOS does not support the loading of programs into absolute memory
locations- a restriction imposed by most general-purpose operating systems. Because
DEBUG cannot load the data records into the absolute segments indicated by the
extended-address records, it simply loads the program image contained within the data
records in a manner similar to that in which a .COM program is loaded. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Structure of an Appli­
cation Program. DEBUG uses the address field for the data records as the offset into the
.COM program segment at which to load the contents of the records.

The sample QuickBASIC (versions 3.0 and later) program shown in Figure L-6 converts
binary files, including .COM files, into limited MCS-86 hexadecimal files that DEBUG can
load. Examining this program can provide additional understanding of the structure of
Intel hexadecimal files.

'Binary-to~Hex file conversion utility.

'Requires Microsoft QuickBASIC version 3.0 or later.

DEFINT A-Z

CONST FALSE = 0

CONST TRUE = NOT FALSE

DEF FNHXB$(X) = RIGHT$(HEX$(&H100 +X), 2)

DEF FNHXW$(X!) = RIGHT$("000" + HEX$(X!), 4)

DEF FNMOD(X, Y) =X! - INT(X!/Y) * Y

CONST SRCCNL

CONST TGTCNL 2

' All variables are integers

' unless otherwise declared.

' Value of logical FALSE.

' Value of logical TRUE.

' Return 2-digit hex value for X.

' Return 4-digit hex value for X!.
' X! MOD Y (the MOD operation is

' only for integers) .
' Source (.BIN) file channel.

' Target (.HEX) file channel.

LINE INPUT "Enter full name of source . BIN file "; SRCFIL$

OPEN SCRCFIL$ FOR INPUT AS SRCCNL ' Test for source (.BIN) file.

SRCSIZ! = LOF(SRCCNL)

CLOSE SRCCNL

' Save file's size.

IF (SRCSIZ! > 65536) THEN ' Reject if file exceeds 64 KB.

PRINT "Cannot convert file larger than 64 KB."

END

END IF

LINE INPUT "Enter full name of target . HEX file ".; TGTFIL$
OPEN TGTFIL$ FOR OUTPUT AS TGTCNL ' Test target (.HEX) filename.

CLOSE TGTCNL

Figure L-6. QuickBASIC binary-to-hexadecimal file conversion utility. (more)

Appendixes 1503

HUAWEI EX. 1110 - 1513/1582

Appendix L: Intel Hexadecimal Object File Format

1504

DO
LINE INPUT "Enter starting address of .BIN file in HEX : ";L$
ADRBGN! = VAL (" &H" + L$) 1 Convert ASCII HEX address value

' to binary value.

IF (ADRBGN! < 0) THEN
ADRBGN! = 65536 + ADRBGN!

END IF

' HEX values 8000-FFFFH convert
1 to negative values.

ADREND! ADRBGN! + SRCSIZ! - 1

IF (ADREND! > 65535) THEN

1 Calculate resulting end address.

' Reject if address exceeds FFFFH.

PRINT "Entered start address causes end address to exceed FFFFH."

END IF
LOOP UNTIL (ADRFLD! >= 0) AND (ADRFLD! <= 65535) AND (ADREND! <= 65535)

DO
LINE INPUT "Enter byte count for each record in HEX ";L$

SRCRLN = VAL("&H" + L$) ' Convert ASCII HEX max record

IF (SRCRLN < 0) THEN
SRCRLN = 65536 + SRCRLN

END IF
LOOP UNTIL (SRCRLN > 0) AND (SRCRLN < 256)

OPEN SRCFIL$ AS SRCCNL LEN = SRCRLN
FIELD#SRCCNL,SRCRLN AS SRCBLK$

1 length value to binary value.
1 HEX values 8000-FFFFH convert

' to negative values.

' Ask again if not 1-255.

1 Reopen source for block I/0.

' Reopen target for text output. OPEN TGTFIL$ FOR OUTPUT AS TGTCNL

SRCREC = 0 ' Starting source block # minus 1 .

FOR ADRFLD! = ADRBGN! TO ADREND! STEP SRCRLN
SRCREC = SRCREC + 1

GET SRCCNL,SRCREC

IF (ADRFLD! + SRCRLN > ADREND!) THEN
BLK$=LEFT$(SRCBLK$,ADREND!-ADRFLD!+1)

ELSE

BLK$ SRCBLK$

END IF

PRINT#TGTCNL, "·"· . '

PRINT#TGTCNL, FNHXB$(LEN(BLK$));

CHKSUM = LEN(BLK$)

PRINT#TGTCNL,FNHXW$(ADRFLD!);

' Convert one block per loop.
1 Next source block.

' Read the source block.

' If last block less than full
size: trim it.

1 Else:
1 Use full block.

1 Write record mark.

' Write data field size.
1 Initialize checksum accumulate

' with first value.
1 Write record's load address.

' The following "AND &HFF" operations limit CHKSUM to a byte value.

~HKSUM CHKSUM + INT(ADRFLD!/256) AND &HFF ' Add hi byte of adrs to csum.

CHKSUM = CHKSUM + FNMOD(ADRFLD!,256) AND &HFF ' Add lo byte of adrs to csum.

PRINT#TGTCNL,FNHXB$(0); 1 Write record type.

Figure L-6. Continued. (more)

The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1514/1582

Appendix L: Intel Hexadecimal Object File Format

' Don't bother to add record type byte to checksum since it's 0.
FOR IDX = 1 TO LEN(BLK$) ' Write all bytes.

PRINT#TGTCNL,FNHXB$(ASC(MID$(BLK$,IDX,1))); 'Write next byte.
CHKSUM = CHKSUM + ASC(MID$(BLK$,IDX,1)) AND &HFF ' Incl byte in csum.

NEXT IDX

CHKSUM = 0 - CHKSUM AND &HFF

PRINT #TGTCNL,FNHXB$(CHKSUM)

NEXT ADRFLD!

PRINT#TGTCNL, ":00000001FF"

CLOSE TGTCNL
CLOSE SRCCNL

END

Figure L-6. Continued.

' Negate checksum then limit
' to byte value.
' End record with checksum.

' Write end-of-file record.

' Close target file.
' Close source file.

Keith Burgoyne

Appendixes 1505

HUAWEI EX. 1110 - 1515/1582

HUAWEI EX. 1110 - 1516/1582

Appendix M: 8086/8088 Software Compatibility Issues

AppendixM
8086/8088 Software Compatibility Issues

In general, the Intel80286 microprocessor running in real mode executes 8086/8088 soft­
ware correctly. The following is a list of the actions to take to compensate for the minor
differences between the 8086/8088 and real mode of the 80286.

• Do not rely on 8086/8088 instruction clock counts. The 80286 takes fewer clocks
for most instructions than the 8086/8088. The areas to look into are delays between
1/0 operations and assumed delays when the 8086/8088 is operating in parallel
with an 8087 coprocessor.

• Note that divide exceptions point to the DIV instruction. Any interrupt on the 80286
always leaves the saved CS:IP value pointing to the instruction that failed. On the
8086/8088, the CS:IP value saved for a divide exception points to the next instruction. 4

• Set up numeric exception handlers to allow prefixes. The saved CS:IP value in the
NPX environment save area points to any ESC instruction prefixes. On 8086/8088 .
systems, this value points only to the ESC instruction.

• Do not attempt undefined 8086/8088 operations. 8086/8088 instructions like POP CS
or MOV CS,op either invoke exception 06H (Invalid Opcode) or perform a protection
setup operation like LIDT on the 80286. Undefined bit encodings for bits 5-3 of the
second byte of POP MEM or PUSH MEM invoke exception 13H on the 80286.

• Do not rely on the value written by PUSH SP. The 80286 pushes a different value on
the stack for PUSH SP than does the 8086/8088. If the value pushed is important,
replace PUSH SP instructions with the following instructions:

PUSH BP

MOV BP,SP

XCHG BP, [BP]

This code functions like the 8086/8088 PUSH SP instruction on the 80286.
• Do not shift or rotate by more than 31 bits. The 80286 masks all SHIFT /ROTATE

counts to the low 5 bits. This MOD 32 operation limits the count to a maximum of 31
bits. With this change, the longest SHIFT/ROTATE instruction is 39 clocks. Without
this change, the longest SHIFT/ROTATE instruction is 264 clocks, which delays
interrupt response until the instruction completes execution.

• Do not duplicate prefixes. The 80286 sets an instruction-length limit of 10 bytes. The
only way to exceed this limit is to include the same prefix two or more times before
an instruction. Exception 06H occurs if the instruction-length limit is violated. The
8086/8088 has no instruction-length limit.

• Do not rely on odd 8086/8088 LOCK characteristics. The LOCK prefix and its corre­
sponding output signal should be used only to prevent other bus masters from inter­
rupting a data movement operation. The 80286 always asserts LOCK during an XCHG
instruction with memory (even if the LOCK prefix was not used). LOCK should be

Appendixes 1507

HUAWEI EX. 1110 - 1517/1582

Appendix M: 8086/8088 Software Compatibility Issues

used only with the XCHG, MOV, MOVS, INS, and OUTS instructions. The 80286
LOCK signal will not go active during an instruction prefetch.

• Do not rely on IDIV exceptions for quotients of SOH or BOOOH. The 80286 can gener­
ate the largest negative number as a quotient for IDIV instructions. The 8086/8088
generates exception OOH (Divide by Zero) instead.

• Do not rely on address space wraparound.
• Do not use I/0 ports OFB-OFFH. These are reserved for controlling the 80287 and

future microprocessor extensions.

1 <;(l~ The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1518/1582

Appendix N: An Object Module Dump Utility

AppendixN
An Object Module Dump Utility

The program OBJDUMP.C displays the contents of an object file as individual object
records. It can be used to study the structure of object modules as well as to verify the
output of a language translator. The program recognizes all of the object record types
discussed in PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING TooLs:
Object Modules.

OBJDUMP.C should be executed with the following syntax:

OBJDUMP filename

where filename is a complete filename specification. For example, to dump the contents
of the object file MYPROG.OBJ, the user would type ·

C>QBJDUMP MYPROG.OBJ <Enter>

The following is a typical object record as displayed by OBJDUMP:

Record 9: 96h LNAMES
96 002Eh 00 06 44 47 52 4F 55 50 05 SF 54 45 58 54 04 43 .. DGROUP._TEXT.C

4F 44 45 05 SF 44 41 54 41 04 44 41 54 41 05 43 ODE._DATA.DATA.C
4F 4E 53 54 04 SF 42 53 53 03 42 53 53 3F ONST._BSS.BSS?

This sample LNAMES record defines a null name and eight names used in subsequent
SEGDEF and GRPDEF records. The first 3 bytes of the record (the identifying byte and the
2-byte record length) are displayed to the left of the hexadecimal and ASCII listings of
the contents of the record.

/***************************************~*************************************

*
* OBJDUMP.C --display contents of an object file

*
*
*
*
*
*

Compile: msc objdump; (Microsoft C version 4.0 or later)
Link: link objdump;
Execute: objdump <filename>

*
*
*
*
*
*
*
*

***!

#include

#define
#define

<fcntl.h>

TRUE
FALSE 0

(more)

Appendixes 1509

HUAWEI EX. 1110 - 1519/1582

Appendix N: An Object Module Dump Utility

1510

main(argc, argv}

int

char
argc;

**argv;

unsigned char CurrentByte;
int ObjFileHandle;

int CurrentLineLength; I* length of output line *I
int ObjRec'ordNumber = 0;

int ObjRecordLength;

int ObjRecordOffset = 0; I* offset into current object record *I
char ASCIIEqui v [1 7] ;

char FormatString[24];

char *ObjRecordName(};

char *memset(};

I* open the object file *I

ObjFileHandle =open(argv[1],0-BINARY };

if(ObjFileHandle == -1
{

printf("\nCan't open object file\n" };

exit (1 } ;

I* process the object file character by character *I

while(read(ObjFileHandle, &CurrentByte, 1)
{

switch(ObjRecordOffset
{

I* action depends on offset into record *I

case (0} : I* start of object record *I
printf ("\n\nRecord %d: %02Xh %s",

++ObjRecordNumber, CurrentByte, ObjRecordName(CurrentByte} };

printf ("\n%02X ", Current Byte } ;
++ObjRecordOffset;

break;

case (1}:

ObjRecordLength = CurrentByte;
++ObjRecordOffset;

break;

I* first byte of length field *I

case(2}: I* second byte of length field *I
ObjRecordLength += CurrentByte << 8; I* compute record length *I
printf ("%04Xh ", ObjRecordLength } ; I* show length *I
CurrentLineLength = 0;

memset'(ASCIIEquiv, '\0', 17 };

++ObjRecordOffset;

break;

The MS-DOS Encyclopedia

I* zero this string *I

(more)

HUAWEI EX. 1110 - 1520/1582

Appendix N: An Object Module Dump Utility

default: I* remaining bytes in object record *I
print£("%02X ", CurrentByte); I* hex *I

if(CurrentByte < Ox20 :: CurrentByte > Ox7F)

CurrentByte = '. ';
ASCIIEquiv[CurrentLineLength++] = CurrentByte;

I* ASCII *I

if(CurrentLineLength == 16 :: I* if end of output line ... *I
ObjRecordOffset == ObjRecordLength+2

sprintf(ForrnatString, "%%%ds%%s\n

3*(16-CurrentLineLength)+2);

print£(FormatString, " ", ASCIIEquiv) ;

memset.(ASCIIEquiv, '\0', 17) ;
CurrentLineLength = 0;

I* ... display it *I
" ,

if (++ObjRecordOffset == ObjRecordLength+3) I* if done . . . *I
ObjRecordOffset = 0; I* ... process another record *I

break;

if(CurrentLineLength) I* display remainder of last output line *I
print£(" %s", ASCIIEquiv);

close(ObjFileHandle);

print£("\n%d object records\n", ObjRecordNumber);

return(0);

char *ObjRecordName(n) I* return object record name *I
I* n = record type *I int n;

int

static

int
char

i;

struct

RecordNumber;
*RecordName;

RecordStruct[J
(

Ox80, "THEADR",

Ox88,"COMENT",

Ox SA, "MODEND",

Ox8C,"EXTDEF",

OxBE,"TYPDEF",

Ox90, "PUBDEF",

Appendixes

(more)

1511

HUAWEI EX. 1110 - 1521/1582

Appendix N: An Object Module Dump Utility

Ox94, "LINNUM",

Ox96,"LNAMES",

Ox98,"SEGDEF",

Ox9A, "GRPDEF",

Ox9C, "FIXUPP",

OxAO,"LEDATA",

OxA2, "LIDATA",

OxBO,"COMDEF",

OxOO,"******"
);

int RecordTableSize sizeof(RecordStruct)/sizeof(RecordStruct[O]);

1512

for(i=O; i<RecordTableSize-1; i++)

if (RecordStruct[i] .RecordNumber

break;

return(RecordStruct[i] .RecordName) ;

The MS-DOS Encyclopedia

I* scan table for name */
n)

Richard Wilton

HUAWEI EX. 1110 - 1522/1582

Appendix 0: IBM PC ROM BIOS Calls

AppendixO
IBM PC ROM BIOS Calls

To invoke an IBM PC BIOS routine, set register AH to the desired function and execute the
software interrupt (INT) for the desired routine.

Graphics pixel coordinates and cursor row and column coordinates are always zero based.

Interrupt lOH: Video Services

Function OOH: Set Video Mode

To call:

AH =OOH
AL =mode:

OOH 16-shade gray text 40by25 B000:8000H
EGA: 64-color

01H 16/8-color text 40by25 B000:8000H
EGA: 64-color

02H 16-shade gray text 80by25 B000:8000H
EGA: 64-color

03H 16/8-color text 80by25 B000:8000H
EGA: 64-color

04H 4-color graphics 320by200 B000:8000H
05H 4-shade gray graphics 320by200 B000:8000H
06H 2-shade gray graphics 640by200 B000:8000H
07H monochrome text 80by25 BOOO:OOOOH
08H 16-color graphics 160 by 200 BOOO:OOOOH
09H 16-color graphics 320by200 BOOO:OOOOH
OAH 4-color graphics 640by200 BOOO:OOOOH
OBH Reserved
OCH Reserved
ODH 16-color graphics 320by200 AOOO:OOOOH
OEH 16-color graphics 640by200 AOOO:OOOOH
OFH monochrome graphics 640by350 AOOO:OOOOH
10H 16/64-color graphics 640by350 AOOO:OOOOH

Returns:

Nothing

Appendixes 1513

HUAWEI EX. 1110 - 1523/1582

Appendix 0: IBM PC ROM BIOS Calls

Function 01H: Set Cursor Size and Shape

To call:

AH =01H
CH = starting scan line
CL = ending scan line

Note: CH < CL gives normal one-part cursor; CH > CL gives two-part cursor; CH = 20H
gives no cursor.

Returns:

Nothing

Function 02H: Set Cursor Position

To call:

AH =02H
BH = display page (0 in graphics)
DH = row number
DL = line number

Returns:

Nothing

Function 03H: Read Cursor Position, Size, and Shape

To call:

AH =03H
BH = display page

Returns:

CH = starting scan line
CL = ending scan line
DH = row number
DL = column number

Function 04H: Read light-Pen Position

To call:

AH =04H

1514 The MS-DOSEncyclopedia

HUAWEI EX. 1110 - 1524/1582

Appendix 0: IBM PC ROM BIOS Calls

Returns:

AH =status:
01H pen triggered
OOH not triggered

BX = pixel column number
CH = pixel line number
CX = pixel line number for some EGA modes
DH = character row number
DL = character column number

Function 05H: Select Active Page

To call:

AH =05H
AL = page number:

00-07H 40-column text modes
00-03H SO-column text modes
varies EGA graphics modes

Note: Each page = 2 KB in 40-column text mode, 4 KB in SO-column text mode.

Returns:

Nothing

Function 06H: Scroll Window Up
Function 07H:.Scroll Window Down

To call:

AH =06H
=07H

scroll up
scroll down

AL = number of lines to scroll (OOH blanks screen)
BH = display attributes for blank lines
CH = row number of upper left corner
CL = column number of upper left corner
DH = row number of lower right corner
DL = column number of lower right corner

Returns:

Nothing

Function OSH: Read Character and Attribute at Cursor

To call:

AH =OSH
BH = display page (for text mode only)

Appendixes 1515

HUAWEI EX. 1110 - 1525/1582

Appendix 0: IBM PC ROM BIOS Calls

Returns:

If text mode:

AH = color attributes of character
AL = ASCII character from current location

If graphics mode:

AL = ASCII character (OOH if unmatched)

Function 09H: Write Character and Attribute

To call:

AH =09H
AL = ASCII character to write
BH = display page
BL = text attribute or graphics foreground color
ex = number of times to write character (must be > 0)

Returns:

Nothing

Note: Cursor position unchanged.

Function OAH: Write Character Only

To call:

AH =OAH
AL = ASCII character to write
BH = display page
BL = graphics foreground color (unused in text modes)
ex = number of times to write character (must be > 0)

Returns:

Nothing

Note: Cursor position unchanged.

Function OBH: Select Color Palette

To call:

AH =OBH
BH = palette color ID
BL = color or palette value

Returns:·

Nothing

1516 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1526/1582

Appendix 0: IBM PC ROM BIOS Calls

Function OCR: Write Pixel Dot

To call:

AH =OCH
AL = color attribute of pixel
ex = pixel column number
DX = pixel raster line number

Returns:

Nothing

Function ODH: Read Pixel Dot

To call:

AH
ex

~DX

Returns:

=ODH
= pixel column number CO-based)
= pixel raster line number CO-based)

AL = pixel color attribute

Function OEH: Write Character as TTY

To call:

AH =OEH
AL = ASCII character
BH = display page
BL =foreground color of character (unused in text mode)

Returns:

Nothing

Note: Cursor position advanced; beep, backspace, linefeed, and carriage return active; all
other characters displayed.

Function OFH: Get Current Video Mode

To call:

AH =OFH

Returns:

AH =characters per line (20, 40, or 80)
AL = current video mode (see Interrupt 10H Function OOH)
BH = active display page

Appendixes 1517

HUAWEI EX. 1110 - 1527/1582

Appendix 0: IBM PC ROM BIOS Calls

Function 13H: Write Character String

To call:

AH
AL

BH
BL
ex
DH
DL
ES:BP

=13H
= subfunction number:

OOH string shares attribute in BL, cursor unchanged
01H string shares attribute in BL, cursor advanced
02H each character has attribute, cursor unchanged
03H each character has attribute, cursor advanced

= active display page
=string attribute (for AL = OOH or 01H only)
= length of character string
= starting row number
= starting column number
= address of string to be displayed

Note: For AL = OOH or OlH, string = (char, char, char, ...). For AL = 02H or 03H, string =
(char, attr, char, attr, ...).

Returns:

Nothing

Note: For AL = OlH or 03H, cursor position set to location following last character output.

Interrupt llH: Get Peripheral Equipment List

Returns:

AX = equipment list code word (bit settings PPMURRRUFFVVUUCI):
· PP number of printers installed
M 1 if internal modem installed
RRR number ofRS-232 ports installed
U unused
FF number of floppy-disk drives minus 1 (0 = one drive)
VV initial video mode:

00 = reserved
01 = 40-by-25 color
10 = 80-by-25 color
11 = 80-by-25 monochrome

U unused
C 1 if math coprocessor installed
I 1 if IPL (Initial Program Load) diskette installed

1518 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1528/1582

Appendix 0: IBM PC ROM BIOS Calls

Interrupt 12H: Get Usable Memory Size (KB)

Returns:

AX = available memory size in KB

Interrupt 13H: Disk Services

Function OOH: Reset Disk System

To call:

AH
AL

Returns:

CF

=OOH
= drive number:

00-7FH floppy disk
80-FFH fixed disk

=0 no error
1 error

AH = error code (see Interrupt 13H Function 01H)

Function OlH: Get Disk Status

To call:

AH =01H

Returns:

AH =OOH
AL = disk status of previous disk operation:

OOH noerror
01H invalid command
02H address mark not found
03H write attempt on write-protected disk (F)
04H sector not found
05H reset failed (H)
06H floppy disk removed (F)
07H bad parameter table (H)
08H DMA overflow (F)
09H DMA crossed 64 KB boundary
OAH bad sector flag (H)
10H · uncorrectable CRC or ECC data error
11H ECC corrected data error (H)
20H controller failed

(more)

Appendixes 1519

HUAWEI EX. 1110 - 1529/1582

Appendix 0: IBM PC ROM BIOS Calls

40H seek failed
80H time out
AAH drive not ready (H)
BBH undefined error (H)
CCH write fault (H)
EOH status error (H)

Note: H = fixed disk only, F = floppy disk only.

Function 02H: Read Disk Sectors
Function 03H: Write Disk Sectors
Function 04H: Verify Disk Sectors
Function 05H: Format Disk Tracks

To call:

AH

AL
CH
CL
DH
DL
ES:BX

Returns:

CF

=02H
03H
04H
05H

read disk sectors
write disk sectors
verify disk sectors
format disk track

= number of sectors
= cylinder number
= sector number (unused if AH = 05H)
= head number
= drive number
= buffer address (unused if AH = 04H)

=0 no error
1 error

AH = error code (see Interrupt 13H Function 01H)

If AH was 05H on call:

ES:BX = 4-byte address field entries, 1 per sector:
byte 0 cylinder number
byte 1 head number
byte 2 sector number
byte 3 sector-size code:

OOH 128 bytes per sector
01H 256 bytes per sector
02H 512 bytes per sector (standard)
03H 1024 bytes per sector

Function OSH: Get Current Drive Parameters

To call:

AH =08H
DL = drive number

1520 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1530/1582

Appendix 0: IBM PC ROM BIOS Calls

Returns:

=OOH
=OOH
=drive type
= low-order 8 bits of 10-bit maximum number of cylinders

AX
BH
BL
CH
CL = bits 7 and 6 high-order 2 bits of 10-bit maximum number of cylinders

DH
DL
ES:DI

bits 5-0 maximum number of sectors/track
=maximum head number
= number of drives installed
= address of floppy-disk-drive parameter table

Function 09H: Initialize Hard-Disk Parameter Table

To call:

AH =09H

Returns:

Nothing

Function OAH: Read Long

Reads 512-byte sector plus 4-byte ECC code.

To call:

See Interrupt 13H Function 02H.

Returns:

See Interrupt 13H Function 02H.

Function OBH: Write Long

Writes 512-byte sector plus 4-byte ECC code.

To call:

See Interrupt 13H Function 03H.

Returns:

See Interrupt 13H Function 03H.

Function OCH: Seek to Head

Positions head but does not transfer data.

To call:

See Interrupt 13H Functions 02H and 03H.

Returns:

See Interrupt 13H Functions 02H and 03H.

Appendixes 1521

HUAWEI EX. 1110 - 1531/1582

Appendix 0: IBM PC ROM BIOS Calls

Function ODH: Alternate Disk Reset

To call:

AH =ODH
DL = drive number

Returns:

Nothing

Function lOH: Test for Drive Ready

To call:

AH = lOH
DL = drive number

Returns:

AH =status

Function llli: Recalibrate Drive

To call:

AH = llH
DL = drive number

Returns:

AH =status

Function 14H: Controller Diagnostic

To call:

AH = 14H

Returns:

AH =status

Function 15H: Get Disk Type

To call:

AH = 15H
DL = drive number

Returns:

AH = drive type code:
OOH no drive present
OlH cannot sense when floppy disk is changed

1522 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 1532/1582

Appendix 0: IBM PC ROM BIOS Calls

02H can sense when floppy disk is changed
03H fixed disk

IfAH= 03H:

CX:DX = number of sectors

Function 16H: Check for Change of Floppy Disk Status

To call:

AH = 16H
DL = drive number to check

Returns:

AH =OOH
06H

no change
floppy-disk change

Function 17H: Set Disk Type

To call:

AH = 17H
DL = drive number
AL = floppy-disk type code

Returns:

Nothing

Interrupt 14H: Serial Port Services

Function OOH: Initialize.Port Parameters

To call:

AH =OOH
AL = serial port parameters (bit settings BBBPPSCC):

BBB baud rate:
000 110baud
001 150 baud
010 300 baud
011 600baud
100 1200 baud
101 2400 baud
110 4800 baud
111 9600 baud

(more)

Appendixes 1523

HUAWEI EX. 1110 - 1533/1582

Appendix 0: IBM PC ROM BIOS Calls

pp parity code:
00
01

none
odd

10 -none
11 even

S number of stop bits code:
0 one stop bit
1 two stop bits

CC character size:
00 unused
01 unused
10 7-bit character size
11 8-bit character size

DX =serial port number (0 =first port)

Returns:

Nothing

Function OlH: Send One Character

To call:

AH
AL
DX

Returns:

=01H
= character to send
= serial port number (0 = first port)

AH = error status (see Interrupt 14H Function 03H):
OOH noerror

Function 02H: Receive One Character

To call:

AH =02H
DX = serial port number (0 = first port)

Returns:

AL = character received
AH = error status (see Interrupt 14H Function 03H):

OOH noerror

Function 03H: Get Port Status

To call:

AH =03H
DX =serial port number (0 =first port)

1524 The MS-DOS Encyclopedia

; !

HUAWEI EX. 1110 - 1534/1582

Returns:

AX = serial port status:
8000H time out
4000H transfer shift register empty
2000H transfer holding register empty
lOOOH break detect
0800H framing error
0400H parity error
0200H
OlOOH
0080H
0040H
0020H
OOlOH
0008H
0004H
0002H
OOOlH

overrun error
data ready
received line signal detect
ring indicator
data set ready
clear to send
delta receive line signal detect
trailing edge ring detector
delta data set ready
delta clear to send

Note: Multiple conditions can be active simultaneously.

Appendix 0: IBM PC ROM BIOS Calls

Interrupt 15H: Miscellaneous System Services

Function OOH: Turn On Cassette Motor
Function OlH: Turn Off Cassette Motor

To call:

AH

Returns:

Nothing

=OOH
OlH

turn on cassette motor
turn off cassette motor

Function 02H: Read Data from Cassette

To call:

AH
ex
ES:BX

I

=02H
= number of bytes to read
= buffer address

Appendixes 1525

HUAWEI EX. 1110 - 1535/1582

Appendix 0: IBM PC ROM BIOS Calls

Returns:

CF =0 no error
1 error

AH = error status (if needed):
01H CRC error
02H bit signals scrambled
03H no data found

DX = number of bytes read
ES:BX = location following last byte read

Function 03H: Write Data to Cassette

To call:

AH
ex
ES:BX

=03H
= number of bytes to write
= buffer address

Note: Blocking factor = 256 bytes/block.

Returns:

ex
ES:BX

=OOH
= location following last byte written

Interrupt 16H: Keyboard Services

Function OOH: Read Next Character

To call:

AH =OOH

Returns:

If ASCII characters:

AH = standard PC keyboard scan code
AL = ASCII character

If extended ASCII codes:

AH = extended ASCII code
AL = OOH

Note: Does not return until character is read; removes character from keyboard buffer.

1526 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1536/1582

Function OlH: Report H Character Ready

To call:

AH =01H.

Returns:

ZF = 0 character ready
1 character not ready

AH = see Interrupt 16H Function OOH
AL = see Interrupt 16H Function OOH

Appendix 0: IBM PC ROM BIOS Calls

Note: Returns immediately; does not remove character from keyboard buffer.

Function 02H: Get Shift Status

To call:

AH =02H

Returns:

AL = shift status:
01H right shift active
02H left shift active
04H Ctrl active
08H Alt active
10H Scroll Lock active
20H Num Lock active
40H Caps Lock active
SOH insert state active

Note: Multiple states can be active simultaneously.

Interrupt 17H: Printer Services

Function OOH: Send Byte to Printer

To call:

AH =OOH
AL = character to be printed
DX = printer number

Returns:

AH = status (see Interrupt 17H Function 02H)

Appendixes 1527

HUAWEI EX. 1110 - 1537/1582

Appendix 0: IBM PC ROM BIOS Calls

Function OlH: Initialize Printer

To call:

AH =OlH
DX = printer number

Returns:

AH = status (see Interrupt 17H Function 02H)

Function 02H: Get Printer Status

To call:

AH =02H
DX = printer number

Returns:

AH =status:
OlH timeout
02H unused
04H unused
08H 1/0 error
lOH printer selected
20H outofpaper
40H printer acknowledgment
SOH printer not busy (bit off, 0, =busy)

Note: Multiple states can be active simultaneously.

Interrupt 18H: Transfer Control to ROM-BASIC

Interrupt 19H: Reboot Computer (Warm Start)

Interrupt lAH: Get/Set Time/Date

Function OOH: Read Current Clock Count

To call:

AH =OOH

1528 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1538/1582

Returns:

AL = midnight signal
ex = high-order word of tick count
DX = low-order word of tick count

Function OlH: Set Current Clock Count

To call:

AH =01H
ex = high-order word of tick count
DX = low-order word of tick count

Returns:

Nothing

Function 02H: Read Real-Time Clock

To call:

AH =02H

Returns:

CF = 0 clock running
1 clock stopped

CH = hours in BCD
CL = minutes in BCD
DH = seconds in BCD

Function 03H: Set Real-Time Clock

To call:

AH =03H
CH = hours in BCD
CL = minutes in BCD
DH = seconds in BCD
DL = OOH standard time

01H daylight saving time

Returns:

Nothing

Function 04H: Read Date from Real-Time Clock

To call:

AH =04H

Appendix 0: IBM PC ROM BIOS Calls

Appendixes 1529

HUAWEI EX. 1110 - 1539/1582

Appendix 0: IBM PC ROM BIOS Calls

Returns:

CF = 0 clock running
1 clock stopped

CH = century in BCD (19 or 20)
CL = year in BCD
DH = month in BCD
DL = day in BCD

Function 05H: Set Date in Real-Time Clock .

To call:

AH =05H
CH = century in BCD (19 or 20)
CL = year in BCD
DH = month in BCD
DL = day in BCD

Returns:

Nothing

Function 06H: Set Alarm

To call:

AH =06H
CH = hours in BCD
CL = minutes in BCD
DH = seconds in BCD

Returns:

CF =status:
0 operation successful
1 alarm already set ox;, clock stopped

Function 07H: Reset Alarm (Turn Alarm Off)

To call:

AH =07H

Returns:

Nothing

1530 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 1540/1582

Indexes

HUAWEI EX. 1110 - 1541/1582

HUAWEI EX. 1110 - 1542/1582

Subject

Symbols and Numerals
! (exclamation point)

SYMDEB 1154-55
(number sign). See also EDLIN commands

CREF967
•(asterisk)

EDLIN 829, 832
SYMDEB1156
wildcard 813

-(hyphen)
DEBUG prompt 1020-21, 1046
SYMDEB prompt 1055

. (period). See also EDLIN commands
SYMDEB1151

. and .. (directory aliases) 103, 282, 283
I (slash)

directories 280, 284
SYMDEB1150

:(colon)
EDLIN832
hexadecimal object file format 1499
SYMDEB1059

; (semicolon), APPEND 739
<, >, and>> (redirection symbols) 67, 753

ECH0759
filters and 430
PAUSE766
REM768
SYMDEB 1143-45

=(equal sign), SYMDEB 1146
? (question mark)

PROMPT 904, 905
SYMDEB 1152-53

@ (at sign) 1434
\ (backslash)

directories 284
(}(braces), SYMDEB 1147-48
:(piping character) 67, 753

ECH0759
REM768

-(tilde), SYMDEB 1149
86-DOS operating system 12-13, 27

as basis for MS-DOS 15-19
4004. See Intel 4004 chip
8008. See Intel8008 chip
8080. See Intel 8080 chip
8086. See Intel 8086 chip
8250. See INS8250 Universal Asynchronous

Receiver Transmitter (DART)

Subject

8259. See Intel 8259A Programmable Interrupt
Controller (PIC)

80186. See Intel 80186 chip
80188. See Intel 80188 chip
80286. See Intel80286 chip
80386. See Intel 80386 chip

A

Absolute Disk Read. See Interrupt 25H
Absolute Disk Write. See Interrupt 26H
Address, defined 1058
Advanced run length limited (ARLL) encoding 87
align type parameters 125-27
Allen, Paul8(fig.), 16(fig.)

in the development of early BASIC 3-8
in the development ofMS-DOS 14-15,30,34

Allocate Memory Block. See Interrupt 21H
Function 48H

Alphabetic Sort Filter (SORT) 935-37
Altair computer, and BASIC language 3-8
Alternate Disk Reset. See Interrupt 13H Function ODH
ANSI Console Driver. See ANSI.SYS
ANSI.SYS 152,731-38

AUTOEXEC.BAT and 755
controlling the screen with 158-59
key and extended key codes 1471-72

APPEND command 739-40
MS-DOS version 3.31436-37

Append Lines from Disk (EDLIN A) 834
Application programs

structure of 107-48
.COM programs 142-48
.EXE programs 107-42

as transient 447
writing for upward compatibility 489-97

hardware issues 489-92
operating-system issues 492-97

Applications Program Interface. See Family API
Arithmetic, hexadecimal1035
ASCII format 872

character set 1465-67
cross-reference listing 967
display content of memory in 1077-78
display lookup table 629-40
entering strings 1093 -96
escape sequences 731

Indexes 1533

HUAWEI EX. 1110 - 1543/1582

Subject

ASCII format (continued)
make files, and MAKE utility 999-1003
strings with environmental variables 930
text files 752, 788, 829, 935, 947

ASCIIZ strings 65
ASCTBL.C program 545

correct code 639(fig.)
correction of 631-39
expected output 630(fig.)
incorrect code 630-31

Assemble Machine Instructions
DEBUG A 1024-25
SYMDEB A 1063-64

Assembly-language programs
acceptance/translation of 1024, 1063
active TSR (video buffer dump) 360-80
block-device driver 478-85
character-device driver 471-77
character-oriented filter 431-33
communications device driver 182-200
communications port monitor 558-63
disassembling machine instructions into

1051, 1132
filter as child process 442-46
handler forUART interrupts 216-21
line-oriented filter 434-35
lowercase filter 437-39
message program 651
modem engine 207-8
MS-DOS shell substitute 81-83
parent and child examples 329-34
passive TSR (pop-up) 357-59
replacement Interrupt OOH handler 420-24
replacement Interrupt 24H handler 395-98
root and overlay examples 337-42
support files for terminal emulator 223-30
symbol cross-referencing in, with CREF 967
test program for communications port monitor

580-81
translation into relocatable object module (see

Microsoft Macro Assembler)
volume label updating program 292~96

ASSIGN command 741-42
APPEND and 739
BACKUP and 747
CHKDSK and 775
DISKCOMP and 818
DISKCOPY and 822
JOINand877
LABEL and 882
MKDIR/MD 885

Assign Drive Alias (ASSIGN) 741-42
Assign Standard Input/Output Device (CTTY) 810
Asynchronous, defined 171-72

1534 TheMS-DOSEncyclopedia

AT address parameter 128
AT Probe hardware debugging aid 641
ATTRIB command 743-44

MS-DOS version 3.31437
AUTOEXEC.BAT file (BATCH) 755-57

environments and 65
MODEand887
VERand952

AUX (auxiliary input/ output) 22, 59, 62, 151. See also
COM1; Serial communications ports

filters and 429
implementing modem engine with MS-DOS

functions 168-70
1/0161-62
opening76

Auxiliary Input. See Interrupt 21H Function 03H
Auxiliary Output. See Interrupt 21H Function 04H

B

Background program 900
BACKUP command 745-51

ASSIGN and 741
ATTRIB and 743
JOINand877
MS-DOS version 3.31437
RESTORE and 918

Back Up Files (BACKUP) 745-51
BACKUPID.@@@ control file 746-47
BADSCOP.ASM program 544

correction of 593-600
incorrect version of 587-93

BASIC (language), role of, in development of
MS-DOS 3-8, 12, 14

Batch file(s) 26
AUTO EXEC. BAT 755-57
COMMAND. COM and 64, 66-67, 78, 753, 755
directives 730, 752-69; 1434

@ command 1434
CALL command 1434-35
ECHO command 758-59
FOR command 760-61
GOTO command 762-63
IF command 764-65
PAUSE command 766-77
REM command 768
SHIFT command 769

executing commands stored in 752
MS-DOS version 3.31434-35
suspend execution of 766

.BAT file. See Batch file(s)
Baud rate 170, 222, 892

HUAWEI EX. 1110 - 1544/1582

BOOS (Basic Disk Operating System~, CP/M 10
Bebic, Mark 39
Binary operators, SYMDEB 1059
Binary-to-hexadecimal file conversion utility

program 1503-5
BIOS (Basic Input/Output System)

CP/M10
MS-DOS 52-53, 61-62 ·
ROM 62 (see also Interrupts 10H through lAH)

BIOS parameter block (BPB) 70, 71(fig.), 93
build function, in device drivers 459-60
format 460(table)

Bit bucket. See NUL device
Bit parity 222
Bit rate divisor table for 8250 IBM UART chip

175(table)
Bits per second (bps) 170
Block device(s) 57, 62. See also Fixed disk; Floppy

disk; RAMdisk
critical error handling 392-93
drivers 450-52
file system and 54-55
layout of a physical86-90.
partition layout 90-92
setting highest logical 803
setting parameters 797-98

Bootable devices, loading 70, 71(fig.)
Boot sector 94-96

hexadecimal dump of 96(fig.)
map of 95(fig.)

Bootstrapping, operating system 52, 68-72
BOUND Range Exceeded exception. See

·· Interrupt 05H
BRE.¢\K command 770-71
BREAK command (CONFIG.SYS) 788, 790
BREAK condition 172
Breakpoints 1033

clearing 1065-66
DEBUG use of 578-79, 584-85
disabling 1067-68
enabling 1069-70
hardware 640, 641
listing 1071
setting 1072-73
SYMDEB use of 608-9
trapping 400

Breakpoint Trap exception. See Interrupt 03H
Brock, Rod 12, 15
Buffered Keyboard Input. See Interrupt 21H

Function OAH
BUFFERS command (CONFIG.SYS) 788, 791
Byte(s)

displaying 1079-80

Byte(s) (continued)
entering 1095-96

BYTE alignment 125-26

c
CALL command (BATCH) 1434-35
Calls menu (Code View) 1162
Cancel Assign-List Entry 1411-12
Cassette/Network Service. See Interrupt 15H
CAV (constant angular velocity) disks 87
C Compiler, Microsoft

environmental variables in 931, 980
general structure of C program 139(fig.)
memory model use with 137-40
utilities supplied with 974, 977, 987, 999

CCP (Console Command Processor), CP/M 10
CD command. See CHOIR/CD command
CD ROM storage 103
CDVUTL.C communications driver-status

utility 209-15
code 209-14
program functions 214(table)

Central processing unit (CPU), speed of, and
compatibility issues 491

CH1.ASM program 215-22
exception handler module 223-24
module functions 221(table)
seLmdm() parameter coding 222(table)

CH2.ASM program 225-30
Change Code Page (CHCP) 1440
Change Current Directory: See Interrupt 21H

Function 3BH

Subject

Change Current Directory (CHOIR or CD) 772-73
Change File Attributes (ATTRIB) 743-44
Change Filename (RENAME or REN) 912-13
Change Sharing Retry Count 1337-38
Character-device input/output 149-66. See also

Display output; Graphics; Input/ output
(I/O); Parallel port; Printer; Screen;
Serial communications ports

accessing character devices 150-51
background information on 149-50
basic MS~DOS devices 151

display 157-61
keyboard 154-57
parallel port and printer 163-64
raw versus cooked mqde 153-54
serial communications ports 161-62
standard devices 152-53

Indexes 1535

HUAWEI EX. 1110 - 1545/1582

Subject

Character-device input/output (continued)
basic MS-DOS devices (continued)

standard devices as support for filters
429-30

copying files 806-9
critical error handling 393
defined keyboard 879
device drivers 448-50
IOCTL subfunctions 164-66
screen dump in graphics mode to printer

874-76
specify for standard input/output 810
system calls for 1182

Character-device management commands 728
CLS 781
CTTY810
GRAFTABL 872-73
KEYBxx 879-81
MODE887-95
PRINT 899-903

Character Input with Echo. See Interrupt 21H
Function 01H

Character Input Without Echo. See Interrupt 21H
Function 08H

Character Output. See Interrupt 21H Function 02H
Character string, finding 863-64
CHCP command 1440
CHDIR/CD command 281, 772-73
Check Disk Status (CHKDSK) 774-80
Check for Change of Floppy Disk Status. See

Interrupt 13H Function 16H
Check If Block Device Is Remote. See Interrupt 21H

Function 44H Subfunction 09H
Check If Block Device Is Removable. See Interrupt

21H Function 44H Subfunction 08H
Check If Handle Is Remote. See Interrupt 21H

Function 44H Subfunction OAH
Check Input Status. See Interrupt 21H Function 44H

Subfunction 06H
Check Keyboard Status. See Interrupt 21H

Function OBH
Check Output Status. See Interrupt 21H Function 44H

Subfunction 07H
CHILD.ASM program 334-35
Child program(s)

filters used as 441-46
using EXEC to load/run 321

examining return codes 328
parent and child program example 329-35
preparing parameters for 323-26
running child programs 327

CHKDSK command 101, 774-80, 941
C language programs

ASCII lookup program 639

1536 The MS-DOS Encyclopedia

C language programs (continued)
attribute listing program 291-92
character-oriented filter 433
control program for communications port

monitor 565-66
debugging with SYMDEB 600-618
demonstration Windows program 513-15
driver-status utility 209-14
line-oriented filter 436
lowercase filter 438-39
new FIND filter program 439-41
object module dump utility 1509-12
terminal emulator 230-41

class type parameters 128-30
Clear Breakpoints (SYMDEB BC) 1065-66
Clear Screen (CLS) 781
Clipboard (Windows) 537-38
Clock

setting date 811
setting system time 942

CLOCK$ 57, 59, 62, 151
Closed-loop servomechanism 89
Close File. See Interrupt 21H Function 3EH
Close File with FCB. See Interrupt 21H Function 10H
CLPBRD utility (Windows) 506
CLS command 781
Clusters, file data 94
CLV (constant linear velocity) disks 87
Cmacros 1178-81
CMACROSX.INC 1179-81
COBOL (language) 14
Code-page switching 1438-48, 1451-58
Code View utility 573, 619-40, 1157-73

description 1158-59
dialog window commands 1163-65
display window commands 1159-62

Calls menu 1162
File menu 1159
Help menu 1162
Language menu 1161
Options menu 1161
Run menu 1160
Search menu 1160
View menu 116o
Watch menu 1161

instrumentation debugging with 619-29
key commands 1163
messages 1166-73
screen 1159(fig.)
screen output debugging with 629-40

Cold boot68
Color capabilities, of display 733
Color/Graphics Adapter (CGA) 157

HUAWEI EX. 1110 - 1546/1582

COMl (first serial communications port) 151, 161-62
COM2 (second serial communications port) 151,

161-62
combine type parameters 127-28
COMDEF Communal Names object record 651,

698-700
COMDVR.ASM communications device driver

182-206
buffering 203
code 182-200
debugging techniques 205-6
definitions 200-201
headers and structure tables 201
Initialization Request routine 204-5
interrupt service routine 203-4
Start_output routine 204
strategy and request routines 180
using205

COMENT Comment object record 651, 658-60
Command(s) 725-30. See individual command

names
defining command search path 897
execution of, with COMMAND. COM 64-65
by functional group 728-30
internal, external, and batch 76-79
interpreting text file of, with MAKE 999
PC-DOS, added to MS-DOS version 3.3

1435-36
COMMAND. COM 20, 63-68, 782-84

batch files and 64, 66-67, 78, 753, 755-56
command execution with 64-65
define prompt 904
escape to 1154-55
EXEC use with 329-30
1/0 redirection in 67-68
loading 76-79
MS-DOS environments and 65-66
parts of76
specifying/replacing, with SHELL 79-83, 804
split personality of 64
SYSand940
terminating 853
transient/resident portions of 24

COMMAND command 782-84. See also
COMMAND.COM

Command processor. See COMMAND. COM; SHELL
command

Command Processor (COMMAND) 782-84
Command tail

in child program execution 327
DEBUG initializing of 582-83
FCB functions and 267-68
name parameters 1040, 1116

COMMDUMP.BAS program 543-44, 569-72
Comment line

including with REM 768
in make files 1001
SYMDEB1156

Commit File 1450-51
COMMON parameter 128
COMMSCMD.BAS program 543, 567-69
COMMSCMD.C program 543

Subject

as a .COD file for SYMDEB debugging 601-6
correction of 606-18
stopping a trace in 565-66

COMMSCOP.ASM program 542-43, 558-63
Communications, interrupt-driven 167-246,412

device driver 180
hardware for 170-80

8250 UART architecture 172-80
modem 170-71 ·
serial port 171-72

memory-resident device driver 182-215
COMDRV.ASM 182-206
driver-status utility CDVUTL.C 209-15
modem engine 206-9
vs traditional method 18i

program, purpose of 167-68
traditional device driver 215-46

exception handler module 223-25
hardware ISR module 215-22
smart terminal emulator CTERM.C 230-46
video display module 225-30

using simple MS-DOS functions 168-70
Compact memory model138
COMPAQ-DOS operating system 27
Compare Files (COMP) 785-87
Compare Files (FC) 854-57
Compare Floppy Disks (DISKCOMP) 818-21
Compare Memory Areas

DEBUGCI026
SYMDEB C 1074

Compatibility issues
8086/8088 and 80286 1507-8
MS-DOS and MS OS/2 489-97

hardware 489-92
operating system 492-97

COMP command 785-87
MS-DOS version 3.31435

Compress .EXE File (EXEPACK) 977-79
.COM program files 23, 64, 142-47, 974

converting .EXE programs to executable
971-72

creating 144-46
vs .EXE programs 147-48
giving control to 143

Indexes 1537

HUAWEI EX. 1110 - 1547/1582

Subject

.COM program files (continued)
memory allocated for 142, 300-302
memory map with register pointers 143(fig.)
patching using DEBUG 146
terminating 144

COMSPEC variable 930
CON (console input/output) 22, 59, 62, 151, 157. See

also Display output; Screen
batch commands for 66-67
filter and 429
opening76

Conditional execution, using IF to perform 764-65
CONFIG.SYS system configuration 63, 448, 788-89

configuring Control-C checking 790
configuring internal disk buffers 791-92
configuring internal stacks 805
environments and 65
installing device drivers 149,795-96
setting block-device parameters 797-98
setting country code 793-94
setting highest logical drive 803
setting maximum open files with FCBs 799-800
setting maximum open files with handles 801-2
specifying command processor 804

Configurable External-Disk-Drive Driver
(DRIVER.SYS) 826-28"

Configure Control-C Checking (BREAK) 790
Configure Device (MODE) 887
Configure Fixed Disk (FDISK) 858-62
Configure Internal Disk Buffers (BUFFERS) 791
Configure Internal Stacks (STACKS) 805
Configure Printer (MODE) 888-89
Configure Serial Port (MODE) 892-93
Configure System Disk for a Specific Country

(SELECT) 925-29
Console. See Keyboard; Screen
Control-Break, exception handling 385, 386, 387, 389
Control-Break (user defined). See Interrupt lBH
Control-C

configuring check 790
setting check 770

Control-C exception handler 385, 386-89
customizing 387-89
processing Control-C 389

Control-C Handler Address. See Interrupt 23H
Controller Diagnostics. See Interrupt 13H

Function 14H
CONTROL Panel (Windows) 507
Control-Z in EDLIN commands 846
Conventional memory 297-305, 907

block move from extended memory to 318-19
functions to support 299(table)
using functions in 300-305

1538 The MS-DOS Encyclopedia

Convert .EXE File to Binary-Image File (EXE2BIN)
971-73

Cooked versus raw mode 153-54
Coprocessor Error exception. See Interrupt 10H
Coprocessor Not Available exception. See

Interrupt 07H
Coprocessor Segment Overrun exception. See

Interrupt 09H
COPY command 806-9

ASSIGN and 741
batch files and 752
DISKCOPY and 822
escape sequences using 732

Copy File or Device (COPY) 806-9
Copy Files (XCOPY) 955-59
Copy Floppy Disk (DISK COPY) 822
Copy Lines (EDLIN C) 835-36
Country, configure disk for a specific 925-29
COUNTRY command (CONFIG.SYS) 788, 793-94

BACKUP and 747
development of 36
MS-DOS version 3.3 1442-43
setting date 812
setting time 942

CP/M operating system 8, 9-10, 56, 142
compatibility with 63
competition with MS-DOS 27-29
file management 30-31

Create Directory. See Interrupt 21H Function 39H
Create .EXE File (LINK) 987-98
.Create File with PCB. See Interrupt 21H Function 16H
Create File with Handle. See Interrupt 21H

Function 3CH
Create New File. See Interrupt 21H

Function 5BH
Create New Program Segment Prefix. See Interrupt

21H Function 26H
Create Symbol File for SYMDEB (MAPSYM) 1004-6
Create Temporary File. See Interrupt 21H

Function 5AH
CREF utility 967-70
Critical error handler 390-98

customized 394-98
mechanics of 392-93
processing 393-94
in TSR programs 353-55

Critical Error Handler Address. See Interrupt 24H
CTERM.C terminal emulator program 230-46

functions 242-43(table)
prototype file CTERM.H 243-44(fig.)

Ctrl-Break. See Control-Break
Ctrl-C. See Control-C
Ctrl-Z. See Control-Z in EDLIN commands

HUAWEI EX. 1110 - 1548/1582

CTTYcommand 810
·cursor movement, escape sequences to

control732-33
Cylinder, disk 88

D

Data
entering into memory 1029, 1091
moving (copying) 1039, 1115
sharing/exchange in Windows 537-38

Data area, DEBUG initializing 582
Data files, setting a search path for. See APPEND

command
DATE command 811-12
Debugging in MS-DOS 541-642

art of546
communications device driver 205-6
hardware debugging aids 640-42
inspection and observation 546-49
instrumentation

external555-72
internal549-55

software debugging monitors 573-640
Code View 573, 619-40 (see also Code View

utility)
DEBUG 573, 574-86 (see also DEBUG

utility)
SYMDEB 573, 586-618 (see also SYMDEB

utility)
summary of example programs to illustrate

541-45
DEBUG utility 113, 573, 574-86, 1020-53

A command 141, 577,1021,1024-25
basic techniques 574-81
breakpoints 578-79, 584-85
C command 1021, 1026
D command 1021,1027-28
E command 141,1021,1029-30
establishing initial conditions 581-83
F command 1021,1031-32
G command 577, 584-85, 1021, 1033-34
H command 1021, 1035
I command 1021, 1036
L command 1021,1037-38
M command 577, 1021, 1039
N command 1021, 1040-41, 1052
0 command 1021, 1042
patching .COM programs with 146
patching .EXE programs with 585-86,141-42
P command 580, 1021, 1043

DEBUG utility (continued)
Q command 142, 1021, 1044
R command 142, 576, 1021, 1045-47
S command 1021, 1048-49
T command 576, 1021, 1050
U command 577, 1021, 1051
using Write commands 585-86

Subject

W command 141, 577, 585-86, 1021, 1052-53
Define Command Search Path (PATH) 897-98
Define Keyboard (KEYBxx) 879-81
Define System Prompt (PROMPT) 904-6
DEL/ERASE command 813-14
Delete File. See Interrupt 21H Function 13H; Interrupt

21H Function 41H
Delete File (DEL or ERASE) 813-14
Delete Lines (EDLIN D) 837-38
Desk-checking 547
Development of MS-DOS 3-45

before MS-DOS 3-15
creating MS-DOS 15-19
future of MS-DOS 45
hardware and 27-28
international market and 35-37
software and 38
versions l.x 20.,-29
versions 2.x 30-38
versions 3.x 39-44

DEVICE command (CONFIG.SYS) 149-50, 788,
795-96

MS-DOS version 3.31443-45
Device driver(s) 52-53, 57
Device driver(s), installable 180, 447-86. See also

ANSI.SYS; Block device(s); Character­
device input/output; RAMDRIVE.SYS;
VDISK.SYS

development of, in MS-DOSversion 2.0
32-33

loading/initializing 74, 75(fig.)
processing of a typical I/0 request 468-69
relationship to resident 448-50
structure of 450-68

device header 450-52
interrupt routine 453-68
strategy routine 452-53

writing 469-86
, TEMPLATE example 471-78
TINYDISK example 478-86

Device driver, installable communications package
180, 182-215

memory-resident generic
CDVUTL.C utility 209-15
COMDVR.ASM device driver 182-206
modem engine 206-9

Indexes 1539

HUAWEI EX. 1110 - 1549/1582

Subject

Device driver, installable communications package
(continued)

memory-resident generic (continued)
vs traditional method 181

traditional215-46
exception-handler module 223-25
hardware ISR module 215-22
terminal emulator CTERM.C 230-46
video display module 225-30

Device driver(s), resident 62
relationship to installable device drivers 448-50

Device header 450-52
device attribute word in 452(table)

DGROUP 718-21
Dialog boxes (Windows) 504-5
Dialog window commands (Code View) 1163-65
Digital Equipment Corporation (DEC) 28
Digital Research, development of CP/M 9-10, 12, 28
DIR.ASM program 288-90
DIR command 815-17
DIRDUMP.C program 291-92
Direct Console I/0. See Interrupt 21H Function 06H
Direct memory access. See DMA (direct memory

access) controller
Directory 101-3, 279-96. See also Subdirectory;

Volume label(s)
alias 103, 282, 283
analyzing for errors 774
attribute field 282(fig.)
changing current 772
copying955
current 281, 288
date/time fields 283(fig.)
displaying 815
displaying structure 944
format 281-83
functional support for 284-96

creating/deleting 287
examining/modifying 287
MS-DOS functions for accessing

284-86(table)
programming examples 288-92
searching 286
specifying current 288
wildcard characters 286-87

hexadecimal dump of102(fig.)
initializing 865
joining to disk 877
making885
removing 923
root (see Root directory)
structure 32, 54, 279(fig.), 280-81

1540 The MS-DOS Encyclopedia

Directory (continued)
system calls for 1183

Directory management commands 729
APPEND 739-40
CHDIR/CD 772-73
MKDIR/MD 885-86
PATH897-98
RMDIR/RD 923-24
TREE944-46

Disable Breakpoints (SYMDEB BD) 1067-68
Disable Source Display Mode (SYMDEB S -) 1128
Disassemble (Unassemble) Program

Disk

DEBUGU1051
SYMDEB U 1132-33

checking status of774
configuring for a specific country 925
configuring internal buffer 791
directories (see Directory)
displaying volume label 944-45
fixed (see Fixed disk)
floppy (see Floppy disk)
initialize 865
joining to directory 877
name (see Volume label[s])
recovering files from damaged 910
structure of85-103
virtual 907, 948
writing file/sectors to 1052

Disk cache, configure 791
Disk Parameter Pointer. See Interrupt lEH
DISKCOMP command 818-21

ASSIGN and 741
JOINand877

DISKCOPY command822-25
ASSIGN and 741
JOINand877

Disk management commands 729
ASSIGN 741-42
DISKCOMP 818-21
DISKCOPY 822-25
FORMAT 865-71
LABEL 882-84
SUBST 938-39
SYS940-41
VERIFY953
VOL954

Disk management system calls 1182
Disk Reset 1213-14
Disk Services. See Interrupt 13H
Disk transfer area (DTA)

default 267-68

HUAWEI EX. 1110 - 1550/1582

Disk transfer area (continued)
getting address (see Interrupt 21H

Function 2FH)
setting address (see Interrupt 21H

Functio111AH)
TSR programs 353

Display 10-Byte Reals (SYMDEB DT) 1087-88
Display ASCII (SYMDEB DA) 1077-78
Display by Screenful (MORE) 896
Display Bytes (SYMDEB DB) 1079-80
Display Directory (DIR) 815-17
Display Directory Structure (TREE) 944-46
Display Disk Name (VOL) 954
Display Doublewords (SYMDEB DD) 1081-82
Display File (TYPE) 947
Display in Pages (EDLIN P) 844
Display Long Reals (SYMDEB DL) 1083-84
Display Memory

DEBUG D 1027-28
SYMDEB D 1075-76

Display Memory Areas 1075-76
Display or Modify Registers

DEBUG R 1045-47
SYMDEB R 1122-24

Display output 157-60. See also Character-device
input/output; CON; Screen

of batch-file execution 758
CH2.ASM communications module 225-30
color capability of 733
controlling the screen 158-59
cursor movement control 732-33
debugging with CodeView.629-40
erasing733
graphics attributes 734
inpages844
programming examples 160
role of ROM BIOS in 159
by screenful 896
setting mode 890-91
width 733
wrap around 733

Display Short Reals (SYMDEB DS) 1085-86
Display Source Line (SYMDEB .) 1151
Display String. See Interrupt 21H Function 09H
Display Text (ECHO) 758
Display Version (VER) 952
Display window commands (Code View) 1159-62
Display Words (SYMDEB DW) 1089-90
Divide by Zero exception. See Interrupt OOH
DIVZERO.ASM program 419, 420-24
DMA (direct memory access) controller 69
/DOSSEG switch, LINK use of718-19
Double-Fault Exception. See Interrupt 08H

Doublewords
displaying 1081
entering 1097

Drive(s)
assigning aliases 741-42
substituting for subdirectory 938

DRIVER.SYS 826-28

Subject

DRIVPARM command (CONFIG .SYS) 788, 797-98
/DSALLOCATE switch, LINK use of719-21
Dump. See Display Memory
Duplicate File Handle. See Interrupt 21H

Function 45H
Dynamic Data Exchange (DDE) 538

E

EBCDIC character set 1469-70
ECHO command (BATCH) 66, 753; 758-59

and PAUSE 766
Edit Line (EDLIN linenumber) 832-33
EDLIN commands 730,829-52

A command 834
C command 835-36
D command837-38
E command 839
escape character in 732
I command 840
L command 841
linenumber command 832-33
M command 842-43
P command 844
Q command 845
R command 846-47
s command 848-49
T command 850-51
W command 852

Enable Breakpoints (SYMDEB BE) 1069-70
Enable Source and Machine Code Display Mode

(SYMDEB S&) 1129
Enable Source Display Mode (SYMDEB S+) 1127
End Editing Session (EDLIN E) 839
ENGINE.ASM program 207-8
Enhanced Graphics Adapter (EGA) 157

MS-DOS version 3.3 code-page switching 1447
Enter 10-Byte Reals (SYMDEB ET) 1102-3
Enter ASCII String (SYMDEB EA) 1093-94
Enter Bytes (SYMDEB EB) 1095-96
Enter Comment (SYMDEB •) 1156
Enter Data

DEBUG E 1029-30
SYMDEB E 1091-92

Indexes 1541

HUAWEI EX. 1110 - 1551/1582

Subject

Enter Doublewords (SYMDEB ED) 1097
Enter Long Reals (SYMDEB EL) 1098-99
Enter Short Reals (SYMDEB ES) 1100-1101
Enter Words (SYMDEB EW) 1104
Environment(s)

in child program execution 326-27
MS-DOS operating 51-52, 65-66

Environment variable, set 930
Equipment Information. See Interrupt 11H
ERASE. See DEL/ERASE command
Error codes

device-driver 454(table)
extended, in MS-DOS version 3.31461-63
MS-DOS, MS OS/2 compatibility 495

Error handling. See also Critical error handler;
Extended error information

file control block 269
file handle function 250-51

Error messages 24-25
Escape (Esc) characters 731

in CTERM.C terminal emulator 244-45
Escape sequences, controlling screen display with

731-36
Escape to Shell (SYMDEB!) 1154-55
Evans, Eric 37, 39
Examine Symbol Map (SYMDEB X) 1138-39
Exception handler(s) 385-408

communications device driver 223-25
Control-Chandler 386-89
critical error handler 390-98
extended error information 401-8
hardware-generated exception interrupts

398-400
overview of 385-86

EXE2BIN utility 144, 971-73
EXEC function 321-43. See also Interrupt 21H

Function 4BH
functioning of 322-23
loading external commmands with 79
loading overlays with 336-41

loading and executing 336-37
making memory available 335-36
preparing parameters 336
program example 337-42

loading programs with 323-35
making memory available 323
parent and child program example 329-33
preparing parameters 323-26
running child programs 327-29
using COMMAND. COM with 328-29

loading shell program with 328
running SORT as a child process with 442-46

EXECSORT.ASM program 442-46

1542 The MS-DOS Encyclopedia

Execute Command on File Set (FOR) 760-61
EXEMOD utility 974-76
EXEPACK utility 977-79
.EXE program files 23, 64, 107-42

compressing 977
vs .COM programs 147-48
controlling the structure of

MASM GROUP directive 131-32
MASM SEGMENT directive 125-30
sample program 132-37

converting to binary memory-image and .COM
files 971

creating with LINK 643-44(fig.) (see also
Object Linker)

giving control to 108-15
preallocated memory 112-13
program segment prefix 108-11
registers 113-15
stacks 111-12

loading 124-25
memory allocated to 300, 302-3
memory diagram 137(fig.)
memory map report 136-37(fig.)
memory map segments (see Memory segments)
memory models and 137-40
modifying file header with EXEMOD 140-41,

974-76
patching with DEBUG 141-42, 585-86
structure of119-24

file header 119-24
load module 124

terminating 115-19
RET instruction 118-19
Terminate Process function 119
Terminate Process with Return Code

function 115-17
Terminate Program interrupt 117
terminating and staying resident 119
Warm Boot/Terminate vector 117-18

Windows construction of 518-20
EXIT command 853
Expanded memory 907-8, 305-16

checking for 307-9
manager 305-6
relationship to conventional memory 306(fig.)
using the manager 309-16

error codes 313-14(table)
program skeleton 314 -15(fig.)
software interface to application programs

provided by 310-12(table)
Expanded Memory Specification (EMS) 305
EXP.BAS programs 542

corrected code 554-55

HUAWEI EX. 1110 - 1552/1582

EXP.BAS programs (continued)
incorrect code 550-51

EXIDEF External Names Definition object record
651,663-64

Extended error information 401-8
Function 59H and newer system calls 406-8
Function 59H and older system calls 405-6
MS-DOS version 3.31461-63
MS-DOS versions 2.0 and 3.0 401-5
TSR set/get functions 352

Extended memory 316-19, 907
block move descriptor table format 317(table)
PC/AT ROM BIOS Interrupt 15H functions

316-17, 316-17(tables)
program transferring data from, to conventional

memory 318-19
External disk drive, configurable driver for 826

F

Family API 489-90
FASTOPEN command 1433-34
FCBS command (CONFIG.SYS) 44, 788, 799-800
FC command 785, 854-57
FDISK command 92, 858-62

MS-DOS version 3.3 1437
File allocation table (FAT) 54,97-101

analyze for errors 774, 775
assembly-language routine to access 12-bit and

16-bit 100(figs.)
development of 8, 13, 23
initialize 865
relationship to file data area 98, 99(fig.)
space allocation 98(fig.)

File(s) and file/record management 247-78. See also
Batch file(s); .COM program files; .EXE
program files

attribute getting/setting 261-62
backing up 745-51
changing name 912
changing read-only/archive attributes 743
closing

with FCBs 271
with handles 255-56

comparing 785-87, 854-57
copying 806, 955
creating

with FCBs 269
with handles 251-53

date/time getting and setting 262
date/time stamping of 25

Subject

File(s) and file/record management (continued)
delete/erase command and 813
deleting

with FCBs 276-77
with handles 260-61

displaying 947
duplicating/redirecting handles 262-63
error handling

with FCBs 269
with handles 250-51

file control block (see File control blocks)
finding size of, and testing for existence 277
getting/setting file attributes 261-62
getting/setting file date and time 262
handles (see File handles)
hidden 774, 940-41
historical perspective 247-48
loading 1037, 1113
MS-DOS version 3.3 changes 1433-35, 1448-51
names (see Filenames)
opening existing

with FCBs 270-71
:with handles 253-55

positioning the read/write pointer 258-59
reading and writing

with FCBs 271-75
with handles 256-58

recovering 910
renaming

with FCBs 275-76
with handles 260

restoring backup 918
setting maximum open 799-800, 801-2
system calls for 1182-83
transferring system 940
transferring with ED LINT 850
updating 914
writing file or sectors 1052, 1136

File control blocks (FCBs) 22, 32, 38, 44, 247, 263-77
closing files 271
compatibility issues 494
creating files 269
DEBUG initializing 582-83
default, in executing child programs 327
deleting files 276-77
error handling and 269
extended 266-67
finding file size and testing for existence 277
opening files 270-71
parsing filenames 268-69
program segment prefixes and 267-68
reading/writing files 271-75
renaming files 275-76

Indexes 1543

HUAWEI EX. 1110 - 1553/1582

Subject

File control blocks (continued)
setting maximum open files using 799-800
structure of 264-67

extended 1475(table), 1476(fig.)
normal1473(fig.), 1474-75(table)

File data area 103
relationship to FAT 98, 99

File handles 32, 38, 56,801-2, 247-63
closing a file 255-56
creating a file 251-53
deleting a file 260-61
duplicating and redirecting handles 262-63
error handling 250-51
getting/setting date and time 262
getting/setting file attributes 261-62
opening an existing file 253-55
positioning the read/write pointer 258-59
reading and writing with 256-58
renaming a file 260

File header 119-24
modify with EXEMOD 974-76
segmented (new) .EXE format 1487-97

File management commands 728
ATTRIB 743-44
BACKUP 745-51
COMP785-87
COPY806-9
DEL/ERASE 813-14
EDLIN 829-52
FC 854-57
RECOVER 910-11
RENAME/REN 912-13
REPLACE 914-17
RESTORE 918-22
TYPE947
XCOPY 955-59

File management system, MS-DOS
networking and 44
versions 2.x 30-'-32

File menu (Code View) 1159
Filenames 101

common extensions for 1485-86
compatibility issues 492-93
parameters 1040, 1116
parsing 268-69

FILES command (CONFIG.SYS) 250, 789, 801-2
File set, execute command or program on a 760
File sharing support, installing 933
File system

block device layout of93-103
boot sector 94-96
file allocation table 97-101
file area 103

1544 The MS-DOS Encyclopedia

File system (continued)
block device layout (continued)

root directory 101-3
MS-DOS kernel 54-55

Fill Memory
DEBUG F 1031-32
SYMDEB F 1105-6

Filter(s) 429-46
building 431-41
how filters work 430-31
system support for 429-30
used as child process 441-46

Filter commands 729, 863, 896, 935
Find Character String (FIND) 863-64
FIND command 863-64
FIND.C program 439-41
Find First File. See Interrupt 21H Function 11H;

Interrupt 21H Function 4EH
Find Next File. See Interrupt 21H Function 12H;

Interrupt 21H Function 4FH
Fixed disk

configuring 858-62
interleaving 90(fig.)
layout of 86-87
.partitions 90-92,858
sectors 88-89

FIXUPP Fixup object record 651, 682-93
examples 686-93

Flags

fixup field 684-86
FRAME fixup methods 683
location 686
TARGET fixup methods 684
thread field 682-84

display with DEBUG 1045-47
maintained by DEBUG 1023
maintained by SYMDEB 1060

Floating-point numbers
display

10-byte 1087-88
long (64-bit) 1083-84
short (32-bit) 1085-86

enter
10-byte 1102-03
long (64-bit) 1098-99
short (32-bit) 1100-1101

Floppy disk
comparing 818-21
copying 822-26
layout of 86-87
sectors 88-89

Flow control168, 204

HUAWEI EX. 1110 - 1554/1582

Flush Buffer, Read Keyboard. See Interrupt 21H
Function OCH

Flux reversal 86
Force Duplicate File Handle. See Interrupt 21H

Function 46H
FOR command (BATCH) 66, 753, 760-61
Foreground program 900
Format and Verify Track on Logical Drive. See

Interrupt 21H Function 44H
Subfunction ODH

FORMAT command 44, 865-71
ASSIGN and 741
directory format 281-83
DISKCOPY and 822
FDISK and 858
JOIN and 877-78

Format Disk Tracks. See Interrupt 13H Function 05H
FORTRAN (language) 8, 14
FORTRAN Compiler, Microsoft

memory models using 137-40
utilities with 974, 977, 980, 987, 999

Free Memory Block. See Interrupt 21H Function 49H
Frequency modulation (FM) recording 86
Function calls. See System calls

G

Gates, Bill8(fig.), 16(fig.)
in the development of early BASIC 3-8, 11
in the development of MS-DOS 14-15, 20

General Protection exception. See Interrupt ODH
Generate Cross-Reference Listing (CREF) 967-70
Generic I/0 Control for Block Devices. See Interrupt

21H Function 44H Subfunction ODH
Generic I/0 Control for Handles. See Interrupt 21H

Function 44H Subfunction OCH
Get and Set Time. See Interrupt lAH
Get Assign-List Entry. See Interrupt 21H Function

5FH Subfunction 02H
Get Current Country. See Interrupt 21H Function 38H
Get Current Directory. See Interrupt 21H

·Function 47H
Get Current Disk. See Interrupt 21H Function 19H
Get Current Drive Parameters. See Interrupt 13H

Function 08H
Get Current Video Mode. See Interrupt lOH

Function OFH
Get Date. See Interrupt 21H Function 2AH
Get Default Drive Data. See Interrupt 21H

Function 1BH
Get Device Data. See Interrupt 21H Function 44H

Subfunction OOH

Subject

Get Disk Free Space. See Interrupt 21H Function 36H
Get Disk Status. See Interrupt 13H Function 01H
Get Disk Type. See Interrupt 13H Function 15H
Get Drive Data. See Interrupt 21H Function 1CH
Get DTA Address. See Interrupt 21H Function 2FH
Get Extended Country Information. See Interrupt

21H Function 65H
Get Extended Error Information. See Interrupt 21H

Function 59H
Get File Size. See Interrupt 21H Function 23H
Get Interrupt Vector. See Interrupt 21H Function 35H
Get Lead Byte Table. See Interrupt 21H Function 63H
Get Logical Drive Map. See Interrupt 21H Function

44H Subfunction OEH
Get Machine Name. See Interrupt 21H Function 5EH

Subfunction OOH
Get MS-DOS Version Number. See Interrupt 21H

Function 30H
Get Peripheral Equipment List. See Interrupt 11H
Get Port Status. See Interrupt 14H Function 03H
Get Printer Setup. See Interrupt 21H Function 5EH

Subfunction 03H
Get Printer Status. See Interrupt 17H Function 02H
Get Program Segment Prefix Address. See Interrupt

21H Function 51H; Interrupt 21H
Function 62H

Get Return Code of the Child Process. See Interrupt
21H Function 4DH

Get/Set Allocation Strategy. See Interrupt 21H
Function 58H

Get/Set Controi-C Check Flag. See Interrupt 21H
Function 33H

Get/Set Date/Time of File. See Interrupt 21H
Function 57H

Get/Set File Attributes. See Interrupt 21H
Function 43H

Get Shift Status. See Interrupt 16H Function 02H
Get Time. See Interrupt 21H Function 2CH
Get/Set Time/Date. See Interrupt lAH
Get Usable Memory Size (KB). See Interrupt 12H
Get Verify Flag. See Interrupt 21H Function 54H
Gilbert, Paul 5-6
Global descriptor table (GDT) 317
Go

DEBUG G 584-85, 1033-34
SYMDEB G 1107-8

GOTO command (BATCH) 67, 753, 762-63
GRAFTABL command 872-73

MS-DOS version 3.31445
Graphics

loading character set 872-73
loading screen-dump program 874-76
screen-display attributes 734

Graphics Character Table. See Interrupt 1FH

Indexes 1545

HUAWEI EX. 1110 - 1555/1582

Subject

GRAPHICS command 874-76
Graphics Device Interface (GDI), Windows 529-37

bit-block transfers 535-36
device context 530
device-context attributes 531
device-independent programming 530-31
drawing functions 533
mapping modes 531-32
metafiles 536-37
raster operations for pens 534-35
text and fonts 536

Greenberg, Bob 8(fig.)
GROUP directive (MASM), controlling .EXE

programs with 131-32
sample .EXE program using 132-37

GRPDEF Group Definition object record 651, 680-81

H

Handle-type function calls, for accessing character
devices 150, 152-53, 155, 158, 161, 163

Hangeul characters 37
Hard disk. See Fixed disk
Hardware

breakpoints 640, 641, 642
for communications 170-80
compatibility issues, with MS OS/2 489-92

BIOS491
CPU speed 491
family API 489-90
linear vs segmented memory 490-91
program timing 491
protected mode 489

debugging aids 640-42
developers of, and MS-DOS 27-29,35-37
MS-DOS requirements for

memory 58
microprocessor 57-58
peripheral devices 59
ROM BIOS 59-60

Hardware instrumentation 555-56
Hardware interrupts 398-400,409-27

categories 411-12
characteristics of maskable interrupts 412-13
handling maskable interrupts 413-19
IBM interrupt usage 410(table)
Intel reserved exception 398(table),

409-10(table) ·
programming for 419-27

sample replacement handler 419-24
supplementary handlers 424-26

1546 The MS-DOS Encyclopedia

Hardware IRQO (timer tick). See Interrupt 08H
Hardware IRQ1 (keyboard). See Interrupt 09H
Hardware IRQ2 (reserved). See Interrupt OAH
Hardware IRQ3 (COM2). See Interrupt OBH
Hardware IRQ4 (COMl). See Interrupt OCH
Hardware IRQ5 (fixed disk). See Interrupt ODH
Hardware IRQ6 (floppy disk). See Interrupt OEH
Hardware IRQ7 (printer). See Interrupt OFH
Heads, read/write 86, 88
HELLO. ASM program 357-59

as typical object module 651-54
Help menu (Code View) 1162
Help or Evaluate Expression (SYMDEB ?) 1152-53
Hercules Graphics Card 157
Hewlett Packard HP150 computer 34
Hexadecimal arithmetic 1035, 1109

binary-to-hexadecimal file conversion
utility 1503-5

Hexadecimal bytes
displaying contents of memory as 1079-80
entering into memory 1095-96

Hexadecimal object file format 1499-1505
.HEX files, and DEBUG 585-86, 1020, 1052
/HIGH switch, LINK use of719-21
Hooks, MS-DOS 53
Hot-key sequence 348, 382
Huge memory model139

I

IBMBIO.COM 20, 33, 52, 448, 774, 940
IBM Corporation computers

interrupt usage 410(table)
PC (Personal Computer) 19(fig.), 20, 21(fig.),

26, 34(fig.)
PC/AT computer 39-43, 417-18
PCjr computer 35, 36, 37
PC/XT computer 30, 34(fig.)
Personal System/2, MS-DOS version 3.3

1448
role in the development of MS-DOS 14-15, 26

IBMDOS.COM 20, 447, 774, 940
loading 52

IBM extended character set 1465-67
IBM Professional Debug Utility 641
Idle Interrupt. See Interrupt 28H
IF command (BATCH) 67, 753, 764-65

with GOTO 762
Include Comment Line (REM) 768
InDOS flag 355-56
Inference rule, and MAKE utility 1001
Information management system calls, list 1183

HUAWEI EX. 1110 - 1556/1582

Initialization. See Interrupt 14H Function OOH
Initialize Disk (FORMAT) 865-71
Initialize Hard-Disk Parameter Table. See Interrupt

13H Function 09H
Initialize Port Parameters. See Interrupt 14H

Function OOH
Initialize Printer. See Interrupt 17H Function 01H
Initial SP value field (.EXE file header) 122

modifying 140
Input from Port

DEBUGI1036
SYMDEB I 1110

Input/output (I/0). See also Character-device
input/output

input port 1036, 1110
output port 1042, 1118
redirection 67-68
redirection and filters 429-30
SYMDEB redirection 1143-49

INS8250 Universal Asynchronous Receiver
Transmitter (UART) 171-72

architecture 172-79
bit rate divisor table 175(table)
control circuits 173, 174-77
interrupt enable register constants

177(table)
interrupt identification and causes 178(table)
line control register bit values 175-76(table)
line status register bit values 177(table)
modem control register bit values 176(table)
port offset from base address 174(table)
programming interface 173-74
receiver 172
status circuits 173, 177-79
transmitter 172-73

programming 179-80
Insert Lines (EDLIN I) 840
Inspection-and-observation debugging 547-49
Install Device Driver (DEVICE) 795-96
Install File-Sharing Support (SHARE) 933-34
Instruction sets

8086/80881479-80
802861480-82
80386 1482-84

Instrumentation debugging
external555-72
internal549-55

INT24.ASM critical error handling program 394,
395-98

Intel 4004 chip 5(fig.)
Intel 8008 chip 5(fig.)
Intel8080 chip 5(fig.), 10
Intel8086 chip 11(fig;), 12, 58

compatibility issues 1507-8

Subject

Intel8086 chip (continued)
exception interrupts 398(table), 409-10(table)
instruction set 1479-80
interrupt priorities 411

Intel8088 chip 58
compatibility issues 1507-8
instruction set 1479-80

Intel8259A Programmable Interrupt Controller (PIC)
349, 411, 414(fig.), 415, 416(fig.). See also
Maskable interrupts

Intel 80186 chip 58
Intel 80188 chip 58
Intel80286 chip 42(fig.), 58

compatibility issues 489-92
instruction set 1481-82

Inte180386 chip 42(fig.), 58
compatibility issues 489
instruction set 1483-84

Interleaving, disk 89-90
Internal disk buffers, configure 791-92
Internal stacks

configuring 805
at entry to a critical error exception handler

391(fig.)
in .EXE programs 111-12
performing stack trace 1111-12
in TSR programs 353, 354-55(fig.)

Internationalization
MS-DOS and 32-33,35-37
MS-DOS version 2.251415-16
new national language support, MS-DOS

version 3.31438-48, 1451-55
support793
Windows538

Interrupt(s)
configure internal stacks for 805
daisy-chaining handlers 557
hardware (see Hardware interrupts)
manual640, 641
TSR processing of hardware 349

Interrupt OOH, Divide by Zero 398, 399, 409
demonstration handler 419-24

Interrupt OlH, Single Step 398, 399, 409
Interrupt 02H, Nonmaskable Interrupt (NMI) 398,

399, 409, 411
Interrupt 03H, Breakpoint Trap 400, 409
Interrupt 04H, Overflow Trap 398, 400, 409
Interrupt05H

IBM, Print Screen 410
Intel, BOUND Range Exceeded 398,400, 409

Interrupt 06H
IBM, Unused 410
Intel, Invalid Opcode 398, 400, 409

Indexes 1547

HUAWEI EX. 1110 - 1557/1582

Subject

Interrupt 07H
IBM, Unused 4IO
Intel, Coprocessor Not Available 398, 409

Interrupt 08H
IBM, Hardware IRQO/ (Time Tick) 382, 383, 4IO,

42S-26
Intel, Double-Fault Exception 398, 409

Interrupt 09H
IBM, Hardware IRQI (Keyboard) 348, 382, 4IO
Intel, Coprocessor Segment Overrun 398, 409

Interrupt OAH
IBM, Hardware IRQ2 (Reserved) 4IO
Intel, Invalid Task State Segment (TSS) 398, 409

Interrupt OBH
IBM, Hardware IRQ3 (COM2) 410
Intel, Segment Not Present 398, 409

Interrupt OCH
IBM, Hardware IRQ4 (COMl) 4IO
Intel, Stack Exception 398, 409

Interrupt ODH
IBM, Hardware IRQS (Fixed Disk) 410
Intel, General Protection Exception 398, 409

Interrupt OEH
IBM, Hardware IRQ6 (Floppy Disk) 4IO
Intel, Page Fault 398, 409

Interrupt OFH
IBM, Hardware IRQ7 (Printer) 4IO
Intel, Reserved 398, 4IO

Interrupt IOH
IBM, PC ROM BIOS video driver IS9, 410, '872,

ISI3-I8
Function OOH, Set Video Mode ISI3
Function OIH, Set Cursor Size and Shape ISI4
Function 02H, Set Cursor Position ISI4
Function 03H, Read Cursor Position, Size,

and Shape ISI4
Function 04H, Read Light-Pen Position

ISI4-IS
Function OSH, Select Active Page ISIS
Function 06H, &roll Window Up ISIS
Function 07H, &roll Window Down ISIS
Function 08H, Read Character and Attribute

at Cursor ISIS-I6
Function 09H, Write Character and Attribute

ISI6
Function OAH, Write Character Only ISI6
Function OBH, Select Color Palette ISI6
Function OCH, Write Pixel Dot ISI7
Function ODH, Read Pixel Dot ISI7
Function OEH, Write Character as TTY ISI7
Function OFH, Get Current Video Mode ISI7
Function I3H, Write Character String ISI8

Intel, Coprocessor Error 398, 4IO
Interrupt llH; Get Peripheral Equipment List ISI8

1548 The MS-DOS Encyclopedia

Interrupt I2H, Get Usable Memory Size (KB) ISI9
Interrupt I3H, Disk Services ISI9-23

Function OOH, Reset Disk System ISI9
Function OIH, Get Disk Status ISI9-20
Function 02H, Read Disk Sectors IS20
Function 03H, Write Disk Sectors IS20
Function 04H, Verify Disk Sectors IS20
Function OSH, Format Disk Tracks IS20
Function 08H, Get Current Drive Parameters

IS20-2I
Function 09H, Initialize Hard-Disk Parameter

Table IS2I
Function OAH, Read Long IS2I
Function OBH, Write Long IS2I
Function OCH, Seek to Head IS2I
Function ODH, Alternate Disk Reset IS22
Function IOH, Test for Drive Ready IS22
Function llH, Recalibrate Drive IS22
Function I4H, Controller Diagnostic IS22
Function ISH, Get Disk Type IS22-23
Function I6H, Check for Change of Floppy Disk

Status IS23
Function I7H, Set Disk Type IS23

Interrupt I4H, Serial Port Services I6I, IS23-2S
debugging and SS6-S7
Function OOH, Initialize Port Parameters 222,

IS23-24
Function OIH, Send One Character IS24
Function 02H, Receive One Character IS24
Function 03H, Get Port Status IS24-2S

Interrupt ISH, Miscellaneous System Services
IS2S-26

access to extended memory functions
3I6-I7(table)

block move descriptor table format 3I7(table)
Function 02H, Read Data from Cassette IS2S-26
Function 03H, Write Data to Cassette IS26
Function 87H, Move Extended Memory Block

3I6-I7
Function 88H, Obtain Size of Extended Memory

3I6(table)
Interrupt I6H, Keyboard Services IS26-27

Function OOH, Read Next Character IS26
Function OIH, Report If Character Ready IS27 ·
Function 02H, Get Shift Status IS27

Interrupt I7H, Printer Services IS27- 28
Function OOH, Send Byte to Printer IS27
Function OlH, Initialize Printer IS28
Function 02H, Get Printer Status IS28

Interrupt I8H, Transfer Control to ROM-BASIC IS28
Interrupt I9H, Reboot Computer (Warm Start) IS28
Interrupt lAH, Get/Set Time/Date IS28-30

Function OOH, Read Current Clock Count
IS28-29

HUAWEI EX. 1110 - 1558/1582

Interrupt lAH (continued)
· Function 01H, Set Current Clock Count 1529

Function 02H, Read Real-Time Clock 1529
Function 03H, Set Real-Time Clock 1529
Function 04H, Read Date from Real-Time Clock

1529-30
Function 05H, Set Date in Real-Time Clock 1530
Function 06H, Set Alarm 1530
Functiop. 07H, Reset Alarm (Turn Alarm Off)

1530
Interrupt lBH, Control-Break (user defined) 387-89,

410
Interrupt 1CH, Timer Tick (user defined) 410
Interrupt 1DH, Video Parameter Pointer 410
Interrupt 1EH, Disk Parameter Pointer 410
Interrupt 1FH, Graphics Character Table 872-73
Interrupt 20H, Terminate Program 63, 108, 1185-86

terminating .EXE programs 117, 118
Interrupt 21H, MS-DOS system calls 63, 110, 1050

for accessing directories 284-86(table)
compatibility, with MS OS/2 493-94
error information 401, 402
for file and record management 248(table)
Function OOH, Terminate Process 1187-88
Function 01H, Character Input with Echo 154,

1189-90
Function 02H, Character Output 158, 1191-92
Function 03H, Auxiliary Input 161, 169, 1193-94
Function 04H, Auxiliary Output 161, 1195-96
Function 05H, Print Character 163, 1197-98
Function 06H, Direct Console 1/0 154, 158,

1199-1200
Function 07H, Unfiltered Character Input

Without Echo 154, 1201-2
Function 08H, Character Input Without Echo

154, 169, 1203-4
Function 09H, Display Stri·ng 158,1205-6
Function OAH, Buffered Keyboard Input 154,

155,1207-8
Function OBH, Check Keyboard Status 154, 155,

169, 1209-10
Function OCH, Flush Buffer, Read Keyboard 154,

155,1211-12
Function ODH, Disk Reset 1213-14
Function OEH, Select Disk 1215-16
Function OFH, Open File with FCB 270,

1217-19
Function 10H, Close File with FCB 271, 1220-21
Function llH, Find First File 277, 286, 287,

1222-24
Function 12H, Find Next File 286, 287, 1225-26
Function 13H, Delete File 276-77, 1227-28
Function 14H, Sequential Read 272, 1229-30
Function 15H, Sequential Write 272,1231-32

Subject

Interrupt 21H (continued)
Function 16H, Create File with FCB 156, 269,

1233-34
Function 17H, Rename File 275, 287, 1235-36
Function 19H, Get Current Disk 1237
Function lAH, Set DTA Address 268, 353,

1238-39
Function lBH, Get Default Drive Data 1240-41
Function 1CH, Get Drive Data 1242-44
Function 21H, Random Read 272, 1245-46
Function 22H, Random Write 273, 1247-48
Function 23H, Get File Size 277, 1249-50
Function 24H, Set Relative Record 1251-52
Function 25H, Set Interrupt Vector 352, 419,

1253-54
Function 26H, Create New Program Segment

Prefix 1255-56
Function 27H, Random Block Read 273,

1257-59
Function 28H, Random Block Write 273-75,

1260-62
Function 29H, Parse Filename 268, 1263-65
Function 2AH, Get Date 1266-67
Function 2BH, Set Date 1268-69
Function 2CH, Get Time 1270-71
Function 2DH, Set Time 1272-73
Function 2EH, Set/Reset Verify Flag 1274-75
Function 2FH, Get DTA Address 268, 353, 1276
Function 30H, Get MS-DOS Version Number

1277-78
Function 31H, Terminate and Stay Resident 351,

381, 1279-80 (see also Terminate-and­
stay-resident utilities)

Function 33H, Get/Set Control-C Check Flag
1281-82

Function 34H, Return Address of InDOS Flag
355-56, 1283

Function 35H, Get Interrupt Vector 307, 315, 352,
419,1284

Function 36H, Get Disk Free Space 1285-86
Function 38H, Get/Set Current Country 793,

1451
Get Current Country 1287-89
Set Current Country 1290

Function 39H, Create Directory 287, 1291-92
Function 3AH, Remove Directory 287, 1293-94
Function 3BH, Change Current Directory 281,

288,1295-96
Function 3CH, Create File with Handle 251, 287,

1297-99
Function 3DH, Open File with Handle 155, 158,

161,163, 253, 282, 307, 315, 1300-1303
Function 3EH, Close File 255,307, 1304-5
Function 3FH, Read File or Device 154, 155, 161,

256, 4~1, 1306-7

Indexes 1549

HUAWEI EX. 1110 - 1559/1582

Subject

Interrupt 21HI(continued)
Functio~ 40H, Write File or Device 158, 161, 163,

256, 431, 1308-9
Function 41H, Delete File 260, 287, 1310-11
Function 42H, Move File Pointer 258, 1312-14
Function 43H, Get/Set File Attributes 261-62,

287, 1315-16
Function 44H, IOCTL 164-66, 203, 315,

1317-18
extended MS-DOS version 3.31455-58
Subfunction OOH, Get Device Data 164, 165,

307, 1319-21
Subfunction 01H, Set Device Data 164, 165,

1322-23
Subfunction 02H, Receive Control Data from

Character Device 164-65, 1324-25
Subfunction 03H, Send Control Data to

Character Device 165, 1324-25
Subfunction 04H, Receive Control Data from

Block Device 1326-28
Subfunction 05H, Send Control Data to

Block Device 1326-28
Subfunction 06H, Check Input Status 155,

1<$5, 1329-30
Subfunction 07H, Check Output Status 165,

1329-30
Subfunction 08H, Check If Block Device Is

Removable 1331-32
Subfunction 09H, Check If Block Device Is

Remote 1333-34
Subfunction OAH, Check If Handle Is

Remote 165, 1335-36
Subfunction OBH, Change Sharing Retry

Count 1337-38
Subfunction OCH, Generic I/0 Control for

Handles 165, 1339-40, 1455-58
Subfunction ODH, Generic I/0 Control for

Block Devices 1341-42
Subfunction ODH, minor code 40H, Set

Device Parameters 1343-46
Subfunction ODH, minor code 41H, Write

Track on Logical Drive 1350-51
Subfunction ODH, minor code 42H, Format

and Verify Track on Logical Drive
1352-53

Subfunction ODH, minor code 60H, Get
Device Parameters 1347-49

Subfunction ODH, minor code 61H, Read
Track on Logical Drive 1350-51

Subfunction ODH, minor code 62H, Verify
Track on Logical Drive 1352-53

Subfunction OEH, Get Logical Drive Map
1354-55

1550 The MS-DOS Encyclopedia

Interrupt 21H (continued)
Function 44H, IOCTL (continued)

Subfunction OFH, Set Logical Drive Map
1354-55

Function 45H, Duplicate File Handle 67, 262,
1356-57

Function 46H, Force Duplicate File Handle 67,
263, 1358-59

Function 47H, Get Current Directory 288,
1360-61

Function 48H, Allocate Memory Block 299, 303,
352, 1362-63

Function 49H, Free Memory Block 299, 303, 352,
1364-65

Function 4AH, Resize Memory Block 299, 323,
1366-67

Function 4BH, Load and Execute Program
(EXEC) 64, 718, 1368-74. (see also
EXEC function)

Function 4CH, Terminate Process with Return
Code 115-17, 144, 1375-76

Function 4DH, Get Return Code of Child
Process 328, 1377-78

Function 4EH, Find First File 285, 286, 287,
288-90, 1379-81

Function 4FH, Find Next File 285, 286, 287,
288-90, 1382-84

Function 50H, Set Program Segment Prefix
Address 352, 383

Function 51H, Get Program Segment Prefix
Address 352, 383

Function 54H, Get Verify Flag 1385
Function 56H, Rename File 260, 287, 1386-87
Function 57H, Get/Set Date/Time of File 262,

265,287,1388-90
Function 58H, Get/Set Allocation Strategy

1391-92
Function 59H, Get Extended Error Information

269, 327, 383-84, 1393-96
and newer system calls 406-8
and older system calls 405-6

Function 5AH, Create Temporary File 251, 252,
1397-98

Function 5BH, Create New File 251, 252,
1399-1400

Function 5CH, Lock/Unlock File Region
1401-3

Function 5DH, Set Extended Error Information
352

Function 5EH, Network Machine Name/Printer
Setup

Subfunction OOH, Get Machine Name 1404
Subfunction 02H, Set Printer Setup 1405-6
Subfunction 03H, Get Printer Setup 1405-6

HUAWEI EX. 1110 - 1560/1582

Interrupt 21H (continued)
Function 5FH, Get/Make Assign-List Entry

Subfunction 02H, Get Assign-List Entry
1407-8

Subfunction 03H, Make Assign-List Entry
1409-10

Subfunction 04H, Cancel Assign-List Entry
1411-12

Function 62H, Get Program Segment Prefix
Address 1413-14

Function 63H, Get Lead Byte Table 1415-16
Function 65H, Get Extended Country

Information 1451-54
Function 66H, Select Code Page 1454-55
Function 67H, Set Handle Count 1448-50
Function 68H, Commit File 1448, 1450-51
for terminate-and-stay-resident programs

350-53
Interrupt 22H, Terminate Routine Address 63, 110,

1417
Interrupt 23H, Control-C Handler Address 63, 110,

386-89,1418
Interrupt 24H, Critical Error Handler Address 63, 110,

354, 390-98, 1419-21
MS-DOS versions 2.0 and later 402-3

Interrupt 25H, Absolute Disk Read 63, 1422-23
Interrupt 26H, Absolute Disk Write 63, 1424-25
Interrupt 27H, Terminate and Stay Resident 63, 266,

351, 1426-27. See also Terminate-and­
stay-resident utilities

Interrupt 28H, Idle Interrupt 63, 266, 353
Interrupt 2FH, Multiplex Interrupt 63, 356-57, 381,

1428-29
Interrupt 30H 63
Interrupt 60H 565, 600
Interrupt 67H 306, 307, 309, 315
Interrupt enable register constants, INS8250 UART

chip 177(table)
Interrupt identification and causes, INS8250 UART

chip 178(table)
Interrupt request lines (IRQ) 414, 416-19

16-Ievel designs 417-19
cascade effect 417, 418(fig.)
eight-level designs 417(table)

Interrupt routine (/ntr), device driver 453-68
Build BIOS Parameter Block function 459-60
command-code functions 454-55
Device Open/Close functions 464-65
Flush Input/Output Buffer functions 463-64
Generic IOCTL function 466
Get/Set Logical Device functions 467-68
Init (Initialization) function 455-57
Input/Output Status functions 463
IOCTL Read/Write functions 464

Interrupt routine (continued)
Media Check function 457-59
Nondestructive Read function 462
Output Until Busy function 466

Subject

Read, Write, and Write with Verify functions
461-62

Removable Media function 465-66
Interrupt service routine (ISR) 180, 203-4, 412

in COMDVR.ASM 196-98, 203-4
hardware module 215-22

Interrupt vector functions, in TSR programs 352
Interrupt vector table 58

in conventional memory 297-98
initializing 69, 70(fig.)

Invalid Opcode exception. See Interrupt 06H
Invalid Task State Segment (TSS) exception. See

Interrupt OAH
IOCTL. See Interrupt 21H Function 44H
IO.SYS 33, 448, 774, 940

BIOS and 61-62
loading 52, 72(fig.)
modules73

ISO Open System Interconnect 42
ISR. See Interrupt service routine

J
JOIN command 877-78

ASSIGN and 741
BACKUP and 747
CHKDSK and 775
DISKCOMP and 818
DISKCOPY and 822
FORMAT and 866
MKDIR/MD and 885

Join Disk to Directory (JOIN) 877-78
Jump to Label (GOTO) 762-63

K

Kanji characters 37(fig.)
Kernel. See MS-DOS kernel
KEYB command 1440-41
Keyboard 154-57

ANSI.SYS key and extended key codes1471-72
character input functions 154(table)
defining 879, 1440-41
redefining to a specific string 734-36
sample input programs156-57
TSR input (see Hot-key sequence)

Indexes 1551

HUAWEI EX. 1110 - 1561/1582

Subject

Keyboard (KEYB) 1440-41
Keyboard Services. See Interrupt 16H
KEYBxx command 879-81
Key commands (Code View) 1163
Kildall, Gary 10

L

Label(s)
displaying volume 954
jumping to batch-file line following specified

label 762-63
modify volume 882

LABEL command 882-84
ASSIGN and 741

Lane, Jim 8(fig.)
Language menu (Code View) 1161-62
Large memory model139
LASIDRIVE command (CONFIG.SYS) 789, 803
LC.ASM lowercase filter program 437-39
LEDATA Logical Enumerated Data object record 651,

694-95
Letwin, Gordon 8(fig.)
Lewis, Andrea 8(fig.)
Library Manager. See LIB utility
LIB utility 701-2, 980-86
LIDATA Logical Iterated Data object record 651,

696-97
Lifeboat Associates 12, 27
Line control register bit values 175(table)
Line Editor (EDLIN) 829-31
Line number, defined 1058
Line Status Register bit values 177(table)
LINK. See Object Linker
LINNUM Line Number object record 651, 672-73
List Breakpoints (SYMDEB BL) 1071
List Lines (EDLIN L) 841
LNAMES List of Names object record 651, 674-75
Load and Execute Program. See EXEC function;

Interrupt 21H Function 4BH
Loader, operating system 52, 72
Load File or Sectors

DEBUG L 1037-38
SYMDEB L 1113-14

Load Graphics Character Set (GRAFTABL) 872-73
Load Graphics Screen-Dump Program (GRAPHICS)

874-76
Loading MS-DOS 68-83

COMMAND.COM shell 76-83
ROM BIOS, POST and bootstrapping 68-72
system initialization 73-76

Lock/Unlock File Region 1401-3

1552 The MS-DOS Encyclopedia

Loop or Subroutine, Proceed Through 1043
LPTl (first parallel printer port) 151, 163
LPT2 (second parallel printer port) 151, 163
LPT3 (third parallel printer port) 151, 163

M

McDonald, Marc 8 (fig.), 9
Machine Code Display Mode, Enable 1129
Machine language

assembling 1024, 1063
disassembling programs in 1051, 1132

Macro(s), in MAKE utility 1000-1001
Macro Assembler, Microsoft See Microsoft Macro

Assembler
Maintain Programs (MAKE) 999-1003
Make Assign-List Entry 1409-10
Make Directory (MKDIR or MD) 885-86
MAKE utility 999-1003
Map files, processed to create symbol files 1004
MAPSYM utility 593, 1004-6
MARK condition 172
Maskable interrupts 412-19

characteristics of 412-13
general interrupt sequence 413(fig.)
handling 413-19

8259A Programmable Interrupt Controller
(PIC) 415, 416(fig.)

IRQ levels 416-19
MASM. See Microsoft Macro Assembler
MAXALLOC field 121, 124, 322

.EXE memory"300-301
modifying 140

MCOPY program 956-57
MD command. See MKDIR/MD command
M-DOS, developmentof8-9,12,15-19
Medium memory model138
Memory 297-319

allocated to .COM and .EXE programs 142,
300-305

comparing areas of 1026, 1074
conventional (see Conventional memory)
displaying 1027, 1075-90
entering data into 1029,1091-1104
expanded (see Expanded memory)
extended (see Extended memory)
filling 1031, 1105
linear vs segmented 490-91
making available with EXEC 323, 336-37
management

withMS-DOS kernel 53-54
with Windows 510-11

HUAWEI EX. 1110 - 1562/1582

Memory (continued)
moving area contents 1039
MS-DOS requirements 58
preallocated, in .EXE programs 112-13
searching 1048, 1125
segments (see Memory segments)
system calls for 1184
transient use of, by COMMAND. COM 24
TSR RAM management 351-52
virtual disk in 907

Memory arena 298
Memory-image files, converting .EXE files to 971
Memory models, for .EXE programs 137-40
MEMORY parameter 128
Memory segments

absolute segments 647
alignment of 647, 708-9
classes of707-8
concatenated segments 647-48
creating values 490-91
DGROUP 718-21
fixups 648, 649(fig.)
frames646
groups for unified addressing 714
groups of segments 648-49, 709
vs linear memory 490
logical segments 646
order and combinations 707-9
overlays 715-18
relocatable segments 646-47
TSRprograms 713-14
uninitialized data 714-15

Memory Size. See Interrupt 12H
MEMO. TXT program 252
Messaging system, Windows 522-29
Metafiles (Windows) 536-37
Micro Instrumentation Telemetry Systems (MITS) 4,

7(fig.)
Microprocessor, MS-DOS requirements for 57-58. See

also specific chips
Microsoft Corporation

8086 chip technology and 11-13
BASIC development 3-8, 14
competition with CP/M 9-10,27-29
M-DOS development 8-9, 15-19
MS-DOS (see Development of MS-DOS; MS-DOS

operating system; MS-DOS versions 1.x
through version 3.3)

OS/2 (see MS OS/2)
personnel in 1978 8(fig.)

Microsoft Macro Assembler (MASM)
description 1007-11
messages 1012-19
sample program structuring with SEGMENT

and GROUP 132-36

Subject

Microsoft Macro Assembler (continued)
using GROUP to control.EXE programs 131-32
using SEGMENT to control .EXE programs

125-37
utilities with 967, 974, 977, 980, 987, 1004,

1054, 1157
Microsoft Networks 43-44, 933. See also Networking
Microsoft Object Linker (LINK). See Object Linker
Microsoft Windows. See Windows
MINALLOC field 121, 124

.EXE memory 300
modifying 140

Miscellaneous System Services. See Interrupt 15H
Mitsubishi Corporation 35
MKDIR/MD command 885-86
Mode(s), real vs protected operating 58, 316
MODE command 887

AUTOEXEC.BAT and 755, 887
code-page options 1446-47
display 890-91
MS-DOS version 3.3 1438, 1446-47
printer 888-89
redirect printing 894-95
serial port 892-93

Modem 170-71
Modem Control Register bit values 176(table)
Modem engine 168, 206-9

code 207-8
implementing with MS-DOS functions 168-70

Modem Status Register bit values 178(table)
MODEND Module End object record 651, 661-62
Modified frequency modulation (MFM) 86
Modify .EXE File Header (EXEMOD) 974-76
Modify Volume Label (LABEL) 882-84
MODULE-A program 132-34
MODULE~B program 134-35
MODULE-C program 135-36
Monochrome Display Adapter (MDA) 157
MORE command 896
Move (Copy) Data

DEBUGM1039
SYMDEB M 1115

Move Extended Memory Block. See Interrupt 15H
Function 87H

Move File Pointer. See Interrupt 21H Function 42H
Move Lines (EDLIN M) 842-43
MS-DOS Executive (Windows) 505-6(fig.)
MS-DOS kernel 53-55, 62-63, 447. See also

MSDOS.SYS
file system 54-55
initializing 73, 74
memory management 53-54
peripheral support 54
process control 53

Indexes 1553

HUAWEI EX. 1110 - 1563/1582

Subject

MS-DOS operating system 51-60. See also BIOS;·
COMMAND.COM; MS-DOS kernel

basic character devices 151-64
basic requirements for 57-60
compatibility with OS/2 489-97

hardware issues 489-92
operating-system issues 492-97

development of (see Development of MS-DOS)
displaying version 952
loading 68-83
major elements of 61-68
system components 52-57
system initialization (see SYSINIT)
three operating system types 51(table)
user interface 55 (see also COMMAND. COM;

SHELL comand)
versions 55-57. See also names of individual

versions, e.g., MS-DOS versions l.x
MSDOS.SYS 62, 447, 774, 940. See also MS-DOS

kernel
loading 52, 72(fig.)
moving to begin initialization 73, 74(fig.)

MS-DOS system calls. See System calls, MS-DOS
MS-DOS versions 1.x

development of 20-29
MS-DOS versions 2.x

development of 30-38
internal stack use in TSR programs 353, 354-55

MS-DOS version 3.0
development of 39-44
extended error information 401-8
internal stack use in TSR programs 343, 354-55

MS-DOS version 3.1
development of 43-44
extended error information 401-8

MS-DOS version 3.2
development of 44
extended error information 401-8

MS-DOS version 3.31433-59
critical error handling 390
new national language support 1438-48
programming considerations 1448-58

extension ofiOCTL 1455-58
file management 1448-51
internationalization support 1451-55
MS-DOS partitions extension 1458

user considerations 1433-48
batch-file processing 1434-35
enhanced commands 1436-38
FASTOPEN command 1433-34
PC-DOS commands 1435-36

1554 The MS-DOS Encyclopedia

MS OS/2 operating system,wogramming for
compatibility 489-97

hardware 489-92 1

operating-system issues 492-97
Multi-Color Graphics Array (MCGA) 157
Multiplex Interrupt. See Interrupt 2FH
Multitasking 53

compatibility issues in 496-97
Windows529

MYFILE.DAT program 257-58, 274-75

N

Name File or Command-Tail Parameters
DEBUG N 1040-41, 1052
SYMDEB N 1116-17

National language support, MS-DOS version 3.3
1438-48. See also COUNTRY
command

code pages and code-page switching 1438-39
for EGA-only systems 1447
for PS/2 and printer 1448

modified support commands 1442-47
new support commands 1440-42
system files 1439

National Language Support Function (NLSFUNC)
command, MS-DOS 1441-42

Network Adapter card, IBM 42, 43
Networking

installing file-sharing support 933
MS-DOS versions 3.x 35, 39-44

Network Machine Name/Printer Setup. See Interrupt
21H Function 5EH

New Executable file header format 1487-97
code and data segment 1495-97
entry table 1493-94
imported names table 1493
module reference table 1493
nonresident names tables 1494-95
vs old1487
resident names table 1492-93
resource table 1491-92
segment table 1490

Nishi, Kay 14-15
NLSFUNC command 1441-42
Nonmaskable interrupt (NMI) 399, 411, 640. See also

· Interrupt 02H
NOTEPAD display (Windows) 501-4(fig.)
NUL device 59, 151

andCTTY810

HUAWEI EX. 1110 - 1564/1582

0

OBJDUMP.C program 1509-12
Object files 701-2

hexadecimal files format 1499-1505
Object Linker (LINK) 701-21, 757, 981, 993-98, 1004

building a .EXE file header 712(table)
combine parameters 127-28
converting .EXE files produced by, with

EXE2BIN 971-73
creating .EXE files 620-21
creating map files with 1004
description of988-92
environmental variables in 931
functions of 703
LINK intervals 709-12
messages 993-98
object files, object libraries, and LIB 701-2
object module order 703-6
operating in .EXE program 111, 113
organizing memory with 713-21
return codes 992-93
segment order/combinations 707-9

Object module(s) 643-700
contents of 645-46
dump utility 1509-12
linking (see Object Linker)
object record formats 655-56
object records listed 657-700
order of 703-6
structure of650-55

object record order 651
references between records 654-55

terminology 646-49
translation of assembly programs into

relocatable (see Microsoft Macro
Assembler)

types of 650, 651(fig.)
typical651-54
use of 643-44

Object module library file 701-2
creating/modifying 980-86

Object records
formats 655-56
listed 657-700
order651
references between 654-55
types 650, 651(fig.)

Obtain Size of Extended Memory. See Interrupt 15H
Function 88H

OFFSET operator (MASM), using on labels in
grouped segments 131-32

Subject

Open File with FCB. See Interrupt 21H Function OFH
Open File with Handle. See Interrupt 21H

Function 3DH
Open-loop servomechanism 89
Open Symbol Map (SYMDEB XO) 1140
Operating system

compatibility issues, MS-DOS and MS OS/2
492-97

error codes 495
filenames 492-93
MS-DOS function calls 493-94
multitasking concerns 496-97
seeks495

in conventional memory 298
three types of 51(table), 52
transfer 940

Operating-system loader 52, 72
Options menu (Code View) 1161
O'Rear, Bob 8(fig.), 15-19
OS/2 operating system. See MS OS/2 operating

system
Output to Port

DEBUG01042
SYMDEB 0 1118

Overflow Trap exception. See Interrupt 04H
OVERLAY.ASM program 342
Overlays, program 122-23

EXEC function and 321, 322-23, 335-43
example program 337-42
loading and executing 336-37
making memory available 335-36
preparing parameters 336-37

LINK memory organization using 715-18

p

PAGE alignment 126-27
Page Fault exception. See Interrupt OEH
Panners, Nancy 34
PARA alignment 126
Parallel port, input/output 163
PARENT.ASM program 330-34
Parent program, use of EXEC by 321

sample program 330-36
Parity parameters 892
Parse Filename. See Interrupt 21H Function 29H
Partition(s)

block device 90-92, 858
extended, in MS-DOS version 3.3 1458

Partition table 91, 92
Pascal (language) 14

Indexes 1555

HUAWEI EX. 1110 - 1565/1582

Subject

Pascal Compiler, Microsoft, utilities with 974, 977,
980, 987, 1157

Paterson, Tim 6, 12-13,16
PATH commmand 739,897-98

AUTOEXEC.BAT and 65, 755
COMMAND.COM and 65, 783
SET and 930, 931

PATH variable 930
PAUSE command (BATCH) 67, 753, 766-67
PC-DOS xix, 27, 55-57,725

basic character devices 151-64
commands from, included in MS-DOS version

3.31435-36
commands only in 725, 785, 925, 948
loading 52
memory requirements 58
versions 55-57

PC Probe hardware debugging aid 641
PC ROM BIOS function calls 1513-30. See also

Interrupt 10H through lAH
Perform Conditional Execution (IF) 764-65
Perform Hexadecimal Arithmetic

DEBUGH1035
SYMDEB H 1109

Perform Stack Trace (SYMDEB K) 1111-12
Peripheral devices supported by MS-DOS 59
Peripheral support, with MS-DOS kernel 54
Periscope hardware debugging aid 641
Peters, Chris 33-34, 39
PIFEDIT (Windows) 507
Pipes 53

I/0 redirection through 67
POST (power-on self test), and loading MS-DOS

68-72
Print Character. See Interrupt 21H Function 05H
PRINT command 33, 899-903

ASSIGN and 741
Printer. See also PRN

configuring 888
input/output 163-64
redirecting output 894-95

Printer Services. See Interrupt 17H
Print Screen. See Interrupt 05H
Print Spooler (PRINT) 899-903

development in MS-DOS 33
PRN (printer output) 22, 59, 62, 151, 163-64. See also

LPTl; LPT2; LPT3
CTTYand810
filters and 429
opening76

1556 The MS-DOS Encyclopedia

Proceed Through Loop or Subroutine
DEBUGP1043
SYMDEB P 1119-20

Process control, with MS-DOS kernel 53
Process management system calls 1183
Program(s). See also .COM program files; .EXE

program files
assembling machine instructions for 1024
crash protection for 640
debugger 1020-23
disassembling 1051
go execute 1033, 1107
loading (see EXEC function)
overlays (see Overlays, program)
timing of 491
trace execution of1050, 1130-31

Program Debugger (DEBUG) 1020-23. See also
Debugging in MS-DOS; DEBUG utility

Program Information File (PIP) 500
Programmable Interrupt Controller. See Intel8259A

Programmable Interrupt Controller
(PIC); Maskable interrupts ·

Program segment(s)
controlling .EXE programs with MASM GROUP

131-32
controlling .EXE programs with MASM

SEGMENT 125-30
size reduction of 130

Program segment prefix (PSP) 1020
.EXE programs 108-11
file control block functions and 267-68
get/set address functions in TSR programs 352
inserting filenames/switches into

simulated 1040
structure 1477
warm boot/terminate vector 117-18

PROMPT command 904-6
AUTOEXEC.BAT and 65, 755
COMMAND.COM and 65, 783
escape sequences in 732
SETand931

Protected mode
compatibility issues 489
vs real mode 58, 316

PROTOC. ASM character filter program 431-33
PROTOC.C character filter program 433
PROTOL.ASM line filter program 434-35
PROTOL.C line filter program 436
p-System operating system 26
PUBDEF Public Names Definition object record 651,

669-71
PUBLIC parameter 127

HUAWEI EX. 1110 - 1566/1582

Q
QDOS operating system 12, 27
QuickBASIC programs 550-55, 567-69, 569-72,

1503-5
Quit DEBUG (DEBUG Q) 1044
Quit EDLIN (EDLIN Q) 845
Quit SYMDEB (SYMDEB Q) 1121

R

RAMdisk86
RAMDRIVE.SYS 907-9
Random Block Read. See Interrupt 21H Function 27H
Random Block Write. See Interrupt 21H Function 28H
Random Read. See Interrupt 21H Function 21H
Random Write. See Interrupt 21H Function 22H
Range, defined 1058
Raster operation codes (Windows) 534, 535-36
Raw versus cooked mode 153-54
RD command. See RMDIR!RD command
Read Character and Attribute at Cursor. See Interrupt

lOH Function 08H
Read Current Clock Count. See Interrupt lAH

Function OOH
Read Cursor Position, Size, and Shape. See Interrupt

10H Function 03H
Read Data from Cassette. See Interrupt 15H

Function 02H
Read Date from Real-Time Clock. See Interrupt lAH

Function 04H
Read Disk Sectors. See Interrupt 13H Function 02H
Read File or Device. See Interrupt 21H Function 3FH
Read Light-Pen Position. See Interrupt 10H

Function 04H
Read Long. See Interrupt 13H Function OAH
Read Next Character. See Interrupt 16H Function OOH
Read Pixel Dot. See Interrupt 10H Function ODH
Read Real-Time Clock. See Interrupt lAH ·

Function 02H
Read Track on Logical Drive. See Interrupt 21H

Function 44H Subfunction ODH
Read/write multiple sectors 24
Real mode 58, 316
Reboot Computer (Warm Start). See Interrupt 19H
Recalibrate Drive. See Interrupt 13H Function 11H
Receive Control Data from Block Device. See

Interrupt 21H Function 44H
Subfunction 04H

Receive Control Data from Character Device. See
Interrupt 21H Function 44H
Subfunction 02H

Receive One Character. See Interrupt 14H
Function 02H

RECOVER command 910-11
Recover Files (RECOVER) 910-11
Redirectable 1/0, and filter operation 429-30
Redirect Printing (MODE) 894-95
Redirect SYMDEB Input (SYMDEB <) 1143-44
Redirect SYMDEB Input and Output

(SYMDEB ~) 1146

Subject

Redirect SYMDEB Output (SYMDEB >) 1145
Redirect Target Program Input (SYMDEB {) 1147
Redirect Target Program Input and Output

(SYMDEB-) 1149
Redirect Target Program Output (Symdeb)) 1148
Registers

AX-extended error code, MS-DOS version 3.3
1461-62

BH-error class, MS-DOS version 3.3 1462
BL-suggested action, MS-DOS version 3.31463
child program execution 328-
CH-locus, MS-DOS version 3.3 1463
critical error handling 394-98
DEBUG initialization 582
displaying or modifying 1045, 1122
.EXE program settings 113-15
expanded memory 310-12
extended error information 401-2,404-5
extended memory 316-19
INS8250 UART chip 171-80
maintained by DEBUG 1022
maintained by SYMDEB 1060-61
overlay execution 337
PC1045

Relocation pointer table, in .EXE file headers 123
REM command (BATCH) 67, 753, 768
Remove Directory. See Interrupt 21H Function 3AH
Remove Directory (RMDIR or RD) 923-24
Rename File (RENAME or REN). See Interrupt 21H

Function 17H; Interrupt 21H
Function 56H

RENAME/REN command 912-13
REPLACE command 914-17
Replace Text (EDLIN R) 846-47
Report If Character Ready. See Inter~upt 16H

Function 01H
Request header, device driver 452-53(fig.)

device open/close 464(fig.)
flush input/output status 463(fig.)
generic IOCTL 466-67(fig.)
get/set logical device 467 -68(fig.)
initialization 456(fig.)
input/output status 463(fig.)
IOCTL Read, Write, Write with Verify 461(fig.)
media check 458(fig.)

Indexes 1557

HUAWEI EX. 1110 - 1567/1582

Subject

Request header (continued)
nondestructive read 462
removable media 464(fig.), 464-66
status word 454(table)

Reset Alarm (Turn Alarm Off). See Interrupt lAH
Function 07H

Reset Disk System. See Interrupt 13H Function OOH
Resize Memory Block. See Interrupt 21H

Function 4AH
Restart System. See Interrupt 19H
Restore Backup Files (RESTORE) 918-22
RESTORE command 918-22

ASSIGN and 741
BACKUP and 745,918
JOINand877

RET instruction, terminating .EXE programs
with 118-19

Return Address of InDOS Flag. See Interrupt 21H
Function 34H

Reynolds, Aaron, in development of MS-DOS 30, 34,
35,39,43

RMDIR/RD command 923-24
ROM BASIC. See Interrupt 18H
ROM BIOS 20, 59-60

loading MS-DOS and 68-72
location in memory 69(fig.)
role in display I/0 159
role in keyboard I/0 156
system calls 1513-30 (see also Interrupts lOH

through lAH)
tables 69, 70(fig.)
TSR interrupt processing 349

ROM monitor operating system 51
ROOT.ASM program 338-42
Root directory 101-3
RS232C signals 170, 17l(table)
Run length limited (RLL) encoding 87
Run menu (Code View) 1160

s
SAMPLE.C program (Windows) 512-17

display 512(fig.)
.EXE file construction 518-20
header 516(fig.)
make file 517(fig.)
message processing 527-29
module-definition file 516-17(fig.)
program initialization 520-21
resource script 516
source code 513-15

Sams,Jack 14

1558 The MS-DOS Encyclopedia

Screen. See also Display output
ANSI.SYS escape sequences to control 731-38
clearing 781
controlling 158-59
graphics mode (see Graphics)
screen output debugging with Code View

629-40
swap 1055, 1150

Scroll Window Down. See Interrupt lOH
Function 07H

Scroll Window Up. See Interrupt lOH Function 06H
Search for Text (EDLIN S) 848-49
Search Memory

DEBUGS 1048-49
SYMDEB S 1125-26

Search menu (Code View) 1160
Search path

defining command 897
setting with APPEND 739

Seattle Computer Products, and 86-DOS 12-13, 15
Sector, disk 88-89

loading 1037, 1113
writing 1052, 1136

Seeks, compatibility issues 495
Seek to Head. See Interrupt 13H Function OCH
SEGDEF Segment Definition object record 651,

676-79
Segment. See Memory segments; Program

segment(s); Program segment prefix
(PSP); SEGMENT directive

SEGMENT directive (MASM), to structure .EXE
programsl25-30

align type parameter 125-27
class type parameter 128-30
combine type parameter 127-28
ordering segments to shrink .EXE files 130
sample .EXE program using 132-37

Segment Not Present exception. See Interrupt OBH
Select Active Page. See Interrupt 10H Function 05H
Select Code Page function 1454-55
Select Color Palette. See Interrupt lOH Function OBH
SELECT command 925-29

MS-DOSversion 3.31435-36
Select Disk. See Interrupt 21H Function OEH
Send Byte to Printer. See Interrupt 17H Function OOH
Send Control Data to Block Device. See Interrupt 21H

Function 44H Subfunction 05H
Send Control Data to Character Device. See Interrupt

21H Function 44H Subfunction 03H
Send One Character. See Interrupt 14H Function 01H
Sequential Read. See Interrupt 21H Function 14H
Sequential Write. See Interrupt 21H Function 15H
Serial communications monitoring 556-57

debugging program 587-600
demonstration program 557-72

HUAWEI EX. 1110 - 1568/1582

Serial communications ports 161-62
configuring 892-93
hardware 171-80
programming examples 162

Serial Port Services. See Interrupt 14H
Servomechanism, open vs closed loop 89
Set Alarm 1530
Set Block-Device Parameters (DRIVPARM) 797-98
Set Breakpoints (SYMDEB BP) 1072-73
SET command 930-32

AUTOEXEC.BAT and 65, 755
COMMAND. COM and 65, 66, 783

Set Control-C Check (BREAK) 770-71
Set Country Code (COUNTRY) 793-94
Set Current Clock Count. See Interrupt lAH

Function 01H
Set Current Country. See Interrupt 21H Function 38H
Set Cursor Position. See Interrupt lOH Function 02H
Set Cursor Size and Shape. See Interrupt 10H

Function 01H
Set Data-File Search Path (APPEND) 739-40
Set Date (DATE) 811-12,1268-69
Set Date in Real-Time Clock. See Interrupt lAH

Function 05H
Set Device Data. See Interrupt 21H Function 44H

Subfunction 01H
Set Device Parameters. See Interrupt 21H Function

44H Subfunction ODH
Set Disk Type. See Interrupt 13H Function 17H
Set Display Mode (MODE) 890-91
Set DTA Address. See Interrupt 21H Function lAH
Set Environment Variable (SET) 930-32
Set Extended Error Information. See Interrupt 21H

Function 5DH
Set Handle Count Function 1449-50
Set Highest Logical Drive (LASTDRIVE) 803
Set Interrupt Vector. See Interrupt 21H Function 25H
Set Logical Drive Map. See Interrupt 21H Function

44H Subfunction OFH
Set Maximum Open Files

using file control blocks (FCBs) 799-800
using handles (FILES) 801-2

set_mdm() parameter coding 222(table)
Set Printer Setup. See Interrupt 21H Function 5EH

Subfunction 02H
Set Program Segment Prefix Address. See Interrupt

21H Function 50H
Set Real-Time Clock. See Interrupt lAH Function 03H
Set Relative Record. See Interrupt 21H Function 24H
Set/Reset Verify Flag. See Interrupt 21H

Function 2EH
Set Symbol Value (SYMDEB Z) 1141-42
Set System Time (TIME) 942-43
Set Time. See Interrupt 21H Function 2DH

Subject

SETUP program 942
Set Verify Flag (VERIFY) 953
Set Video Mode. See Interrupt lOH Function OOH
SHARE command 799, 933-34
Shell 55, 63-68, 76-83. See also COMMAND.COM

custom 79-83
escape to 1154-55

SHELL.ASM program 81-83
SHELL command (CONFIG.SYS) 789, 804

COMMAND. COM and 65-66
replacing COMMAND. COM with a custom shell

79-83
SET and 930, 931

SHIFT command (BATCH) 67, 753, 754, 769
with GOTO 762

Shift Replaceable Parameters (SHIFT) 769
Single Step exception. See Interrupt 01H
Small memory model138
SNAP.ASM program 359-84

activating the application 382-83
block structure of 381(fig.)
code 360-80
detecting a hot key 382
executing 383-84
installing 381-82

Softcard 11
SofTech Microsystems 26
Software. See also Application programs; Operating

system; Program(s)
in the development of MS-DOS 38
instrumentation debugging 555-72
three layers of 447-48

Software Bus 86 operating system 27
Software Development Kit (Windows) 511-12
SORT command 935-37
SORT.EXEprogram 442-46
Source code

displaying mode
disabling 1128
enabling 1127, 1129

displaying source line 1151
viewing 1134-35

SPACE signal172
Special characters 879-81

Kanji and Hangeul 37
Specify Command Processor (SHELL) 804
SPOOLER (Windows) 507
Stack(s). See Internal stacks
Stack exception. See Interrupt OCH
STACK parameter 127-28
STACKS command (CONFIG.SYS) 805
Stand-alone Disk BASIC 3, 8, 12
Stop bits 892
Storage devices 85-103. See also Block device(s)

Indexes 1559

HUAWEI EX. 1110 - 1569/1582

Subject

Storage devices (continued)
block device layout 86-90
file system layout 93-103
partition layout 90-92

Strategy routine (Strat), in device drivers 452-53
Subdirectory 282

copying955
substituting drive for 938

Subroutine, proceed through 1043
SUBST command 938-39

ASSIGN and 741
BACKUP and 747
CHKDSK and 775
DISKCOMP and 818
DISKCOPY and 822
FORMAT and 866
JOINand877
LABEL and 882
MKDIR/MD and 885
RMDIR/RD and 923

Substitute Drive for Subdirectory (SUBST) 938-39
Suspend Batch-File Execution (PAUSE) 766-67
Swap Screen (SYMDEB \) 1055,1150
Symbol

defined 1057
set value 1141-42

Symbol file, for use with with SYMDEB 1004-6
Symbolic Debugger (SYMDEB). 1054-62 See also

Debugging in MS-DOS; SYMDEB utility
Symbol map

examining 1138-39
opening 1140

SYMDEB utility 573, 586-618, 115, 1054-62
A command 1063-64
BC command 1065-66
BD command 1067-68
BE command 1069-70
binary operators 1059
BL command 597-98, 608, 1071
BP command 597, 608, 1072-73
C command 1074
commands and actions 1056-57(table)
creating symbol file for 1004
D command 1075-76
DA command 1077-78
DB command 1079-80
DD command 595, 599, 1081-82
debugging C programs with 600-618
debugging TSRs with 587-600
description 1054-61
DL command 1083-84
DS command 1085-86
DT command 1087-88
DW command 1089-90

1560 The MS-DOS Encyclopedia

SYMDEB utility (continued)
E command 1091-92
EA command 1093-94
EB command 1095-96
ED command 1097
EL command 1098-99
ES command 1100-1101
ET command 1102-3
EW command 1104
examples 1061-62
F command 1105-6
G command 595, 1107-8
H command 1109
I command 1110
K command 1111-12
L command 1113-14
MAPSYM and 1004-5
M command 1115
N command 614, 1116-17, 1136
0 command 1118
P command 1119-20
Q command 595, 1121
R command 593, 596, 606, 1122-24
registers and flags 1060
S command 1125-26
S+ command 1127
S- command 1128
S& command 1129
T command 594, 598, 1130-31
U command 1132-33
unary operators 1059
V command 1134-35
W command 1136-37
X command 594, 596, 598-99, 606, 607, 613, 614,

1138-39
XO command 598, 612, 1140
Z command 598, 612, 1141-42
<command 1143-44
>command 1145
= command 1146
{command 1147
l command 1148
-command 1149
\ command 1150
. command 1151
? command 1152-53
! command 1154-55
• command 1156

SYS command 940-41
ASSIGN and 741

SYSINIT 61,73-76
System batch-file interpreter (BATCH) 752-69
System calls, MS-DOS 1177-84. See also Interrupts

20H through 2FH

HUAWEI EX. 1110 - 1570/1582

System calls (continued)
arranged by functional group 1181-84
format 1178-81
PC ROM BIOS 1513-30
version differences 1177-78

System configuration and control commands 728
BREAK 770-71
COMMAND 782-84
DATE811-12
EXIT853
PROMPT 904-6
SELECT 925-29
SET930-32
SHARE 933-34
TIME942-43
VER952

System Configuration File (CONFIG.SYS) 788-89
System configuration file directives 729-30,788-89

BREAK790
BUFFERS 791-92
COUNTRY 793-94
DEVICE 795-96
DRIVPARM 797-98
PCBS 799-800
FILES 801-2
LASTDRIVE 803
SHELL804
STACKS805

System Startup Batch File (AUTOEXEC.BAT) 755-57

T

Tandy 2000 computer 34
Tape drive storage 103
Template, editing buffer 832
TEMPLATE.ASM character-device driver 471-78
TERMINAL dialog box (Windows) 505(fig.)
Terminal emulator CTERM.C 230-46
Terminate and Stay Resident. See Interrupt 21H

Function 31H; Interrupt 27H
Terminate-and-stay-resident utilities 347-84. See

also Interrupt 21H Function 31H;
Interrupt 27H

APPEND command 739-40
building instrumentation software for

debugging with 556-72
determining MS-DOS status 353-56
multiplex interrupt 356-57
organization in memory 348(fig.)
programming examples 357-81

HELLO.ASM 357-59
SNAP.ASM 359-81

segment order for 713-14

Subject

Terminate-and-stay-resident utilities (continued)
structure of 275-349
system calls for 350-53
using SYMDEB to debug 587-600

Terminate Command Processor (EXIT) 853
Terminate Process. See Interrupt 21H Function OOH
Terminate Process with Return Code. See Interrupt

21H Function 4CH
Terminate Program. See Interrupt 20H
Terminate Routine Address. See Interrupt 22H
TESTCOMM.ASM programs 544

corrected code 580-81
incorrect code 574-75

Test for Drive Ready. See Interrupt 13H Function lOH
Text and files (Windows) 536
Text editor, escape sequences in 732. See also EDLIN

commands
THEADR Translator Header object record 651, 657
TIME command 942-43
Timer

setting date 811
setting time 942

Timer Tick (user defined). See Interrupt lCH
Time-slicing 900
TINYDISK.ASM block-device driver 478-86
Torode, John 10
Trace Program Execution

DEBUGT1050
SYMDEB T 1130-31

Tracks, disk 87, 88(fig.)
Traf-0-Data machine 5-6
Transfer Another File (EDLIN T) 850-51
Transfer Control to ROM-BASIC. See Interrupt 18H
Transfer System Files (SYS) 940-41
Transient program area (TPA) 79

in conventional memory 298-99
TREE command 944-46
TSR. See Terminate-and-stay-resident utilities
TYPDEF Type Definition object record 651, 665-68
TYPE command 947

escape sequences using 732

u
UART. See INS8250 Universal Asynchronous Receiver

Transmitter (UART)
Ulloa, Mani 34, 37
Unary operators, SYMDEB 1059
Unfiltered Character Input Without Echo. See

Interrupt 21H Function 07H
UNIX operating system 68

directories 284
file management 30

Indexes 1561

HUAWEI EX. 1110 - 1571/1582

Subject

Update Files (REPLACE) 914-17
UPPERCAS.C programs 545

correct code 629(fig.)
correction of 620-29
incorrect 620(fig.)

v
VDISK.SYS 948-51
VER command 952
VERIFY command 953
Verify Disk Sectors. See Interrupt 13H Function 04H
Verify flag, set 953
Verify Track on Logical Drive. See Interrupt 21H

Function 44H Subfunction ODH
Version, display 952
Victor Corporation 35
Video. See Character-device input/output; Display

output; Screen
Video Graphics Array (VGA) 157
Video Parameter Pointer. See Interrupt 1DH
Video Services. See Interrupt 10H
View menu (CodeView) 1160
View Source Code (SYMDEB V) 1134-35
Virtual Disk (RAMDRIVE.SYS) 907-9
Virtual Disk (VDISK.SYS) 948-51
VOL command 954
Volume label(s) 103, 283-84

displaying 954
modifying 882
program example for updating 292-96

w
Wallace, Bob 8(fig.)
Warmboot68
Warm Boot/Terminate vector 117-18
Watch menu (Code View) 1161
Watchpoints 619
Wildcard(s)

COPY806
DEL/ERASE 813
DIR816
directory searches 286-87
REPLACE914
RESTORE918

Window-Oriented Debugger (Code View). 1157-73
See also Code View utility; Debugging
inMS-DOS

1562 The MS-DOS Encyclopedia

Windows 499-538
application and utility programs in 506-7
data sharing/data exchange

Clipboard 537-38
dynamic data exchange 538

display 500-505
dialog boxes 504-5
parts of the window 501-4

graphics device interface 529-37
internationalization 538
memory management 510-11
MS-DOS Executive 505, 506(fig.)
multitasking 529
new executable header 1487-97
program categories 499-500
structure of 507-10

libraries and programs 509-10
modules 507-9

structure of a program 511- 29
message processing 525-26
message processing example 527-29
messages 524-25
messaging system 522-24
program components 512-17
program construction 518-20
program initialization 520-21
software development kit 511-12

Wood, Marla 8(fig.)
Wood, Steve 8(fig.)
Word(s), 16-bit 172, 222

displaying 1089-90
entering 1104

WORD alignment 126
Wrap around, screen display 733
Write Character and Attribute. See Interrupt 10H

Function 09H
Write Character as TTY. See Interrupt lOH

Function OEH
Write Character Only. See Interrupt 10H

Function OAH
Write Character String. See Interrupt 10H

Function 13H
Write Data to Cassette. See Interrupt 15H

Function 03H
Write Disk Sectors. See Interrupt 13H Function 03H
Write File or Device. See Interrupt 21H

Function 40H
Write File or Sectors

DEBUG W 586-87, 1052-53
SYMDEB W1136-37

Write Lines to Disk (EDLIN W) 852
Write Long. See Interrupt 13H Function OBH
Write Pixel Dot. See Interrupt 10H Function OCH
Write Track on Logical Drive. See Interrupt 21H

Function 44H Subfunction ODH

HUAWEI EX. 1110 - 1572/1582

X

XCOPY command 955-59
ATTRIB and 743
DISKCOPY and 822

XENIX operating system 30, 31, 68
directories 284

XON/XOFF 168

Subject

z
Zbikowski, Mark, in the development of MS-DOS 30,

34,35,37,39,43
Z-DOS operating system 27

Indexes 1563

HUAWEI EX. 1110 - 1573/1582

HUAWEI EX. 1110 - 1574/1582

·commands and System Calls

Commands and System Calls
This index lists only primary command and system call entries. Please use the Subject Index for related entries.

SYMBOLS

@ (BATCH) 1434

A

ANSI.SYS 731-38
APPEND 739-40, 1436-37
ASSIGN 741-42
ATTRIB 743-44, 1437
AUTOEXEC.BAT (BATCH) 755-57

B

BACKUP 745-51, 1437
BATCH 752-69,1434-35
BREAK 770-71
BREAK (CONFIG.SYS) 790
BUFFERS (CONFIG.SYS) 791-92

c
CALL (BATCH) 1434-35
CD772-73
CHCP1440
CHDIR 772-73
CHKDSK 774-80
CLS 781
Code View utility 1157-73
COMMAND 782-84
COMP 785-87, 1435
CONFIG.SYS 788-805
COPY806-9
COUNTRY (CONFIG.SYS) 793-94, 1442-43
CREF utility 967-70
CTTY810

D

DATE 811-12
DEBUG, general1020-23
DEBUG utility 1020-53

A command 1024-25
C command 1026
D command 1027-28
E command 1029-30
F command 1031-32
G command 1033-34
H command 1035
I command 1036
L command 1037-38
M command 1039
N command 1040-41
0 command 1042
P command 1043
Q command 1044
R command 1045-47
S command 1048-49
T command 1050
U command 1051
W command 1052-53

DELETE813-14
DEVICE (CONFIG.SYS) 795-96, 1443-45
DIR815-17
DISKCOMP 818-21
DISKCOPY 822-25
DRIVER.SYS 826-28
DRIVPARM (CONFIG.SYS) 797-98

E

ECHO (BATCH) 758-59
EDLIN, general829-31
EDLIN line editor 829-52

A command 834
C command 835-36
D command 837-38
E command 839

Indexes 1565

HUAWEI EX. 1110 - 1575/1582

Commands and System Calls

EDLIN line editor (continued)
I command 840
L command 841
linenumber command 832-33
M command 842-43
P command 844
Q command 845
R command 846-47
S command 848-49
T command 850-51
W command 852

ERASE 813-14
EXE2BIN utility 971-73
EXEMOD utility 974-76
EXEPACK utility 977-79
EXIT853

F

FASTOPEN 1433-34
FC 854-57
FCBS (CONFIG.SYS) 799-800
FDISK858-62, 1437
FILES (CONFIG.SYS) 801-2
FIND863-64
FOR (BATCH) 760-61
FORMAT 865-71

G

GOTO (BATCH) 762-63
GRAFTABL 872-73, 1445
GRAPHICS 874-76

I

IF (BATCH) 764-65
Interrupt 10H, Video Services 1513-18

Function OOH, Set Video Mode 1513
Function 01H, Set Cursor Size and Shape 1514
Function 02H, Set Cursor Position 1514
Function 03H, Read Cursor Position, Size, and

Shape 1514
Function 04H, Read Light-Pen Position 1514-15
Function 05H, Select Active Page 1515
Function 06H, Scroll Window Up 1515
Function 07H, Scroll Window Down 1515

1566 The MS-DOS Encyclopedia

Interrupt 10H (continued)
Function 08H, Read Character and Attribute at

Cursor 1515-16
Function 09H, Write Character and Attribute

1516
Function OAH, Write Character Only 1516
Function OBH, Select Color Palette 1516
Function OCH, Write Pixel Dot 1517
Function ODH, Read Pixel Dot 1517
Function OEH, Write Character as TTY 1517
Function OFH, Get Current Video Mode 1517
Function 13H, Write Character String 1518

Interrupt llH, Get Peripheral Equipment List 1518
Interrupt 12H, Get Usable Memory Size (KB) 1519
Interrupt 13H, Disk Services 1519-23

Function OOH, Reset Disk System 1519
Function 01H, Get Disk Status 1519-20
Function 02H, Read Disk Sectors 1520
Function 03H, Write Disk Sectors 1520
Function 04H, Verify Disk Sectors 1520
Function 05H, Format Disk Tracks 1520
Function 08H, Get Current Drive Parameters

1520-21
Function 09H, Initialize Hard-Disk Parameter

Table 1521
Function OAH, Read Long 1521
Function OBH, Write Long 1521
Function OCH, Seek to Head 1521
Function ODH, Alternate Disk Reset 1522
Function lOH, Test for Drive Ready 1522
Function llH, Recalibrate Drive 1522
Function 14H, Controller Diagnostic 1522
Function 15H, Get Disk Type 1522-23
Function 16H, Check for Change of Floppy-Disk

Status 1523
Function 17H, Set Disk Type 1523

Interrupt 14H, Serial Port Services 1523-25
Function OOH, Initialize Port Parameters

1523-24
Function OlH, Send One Character 1524
Function 02H, Receive One Character 1524
Function 03H, Get Port Status 1524-25

Interrupt 15H, Miscellaneous System Services
1525-26

Function OOH, Turn On Cassette Motor 1525
Function 01H, Turn Off Cassette Motor 1525
Function 02H, Read Data from Cassette 1525-26
Function 03H, Write Data to Cassette 1526

Interrupt 16H, Keyboard Services 1526-27
Function OOH, Read Next Character 1526
Function 01H, Report If Character Ready 1527
Function 02H, Get Shift Status 1527

Interrupt 17H, Printer Services 1527-28

HUAWEI EX. 1110 - 1576/1582

Interrupt 17H (continued)
Function OOH, Send Byte to Printer 1527
Function 01H, Initialize Printer 1528
Function 02H, Get Printer Status 1528

Interrupt 18H, Transfer Control to ROM-BASIC 1528
Interrupt 19H, Reboot Computer (Warm Start) i528
Interrupt lAH, Get and Set Time 1528-30

Function OOH, Read Current Clock Count
1528-29

.Function 01H, Set Current Clock Count 1529
Function 02H, Read Real-Time Clock 1529
Function 03H, Set Real-Time Clock 1529
Function 04H, Read Date from Real-Time Clock

1529-30
Function 05H, Set Date in Real-Time Clock 1530
Function 06H, Set Alarm 1530
Function 07H, Reset Alarm (Turn Alarm Off)

1530
Interrupt 20H, Terminate Program 1185-86
Interrupt 21H, MS-DOS function calls 1187-1416

Function OOH, Terminate Process 1187-88
Function 01H, Character Input with Echo

1189-90
Function 02H, Character Output 1191-92
Function 03H, Auxiliary Input 1193-94
Function 04H, Auxiliary Output 1195-96
Function 05H, Print Character 1197-98
Function 06H, Direct Console I/0 1199-1200
Function 07H, Unfiltered Character Input

Without Echo 1201-2
Function 08H, Character Input Without Echo

1203-4
Function 09H, Display String 1205-6
Function OAH, Buffered Keyboard Input 1207-8
Function OBH, Check Keyboard Status 1209-10
Function OCH, Flush Buffer, Read Keyboard

1211-12
Function ODH, Disk Reset 1213-14
Function OEH, Select Disk 1215-16
Function OFH, Open File with PCB 1217-19
Function 10H, Close File with PCB 1220-21
Function 11H, Find First File 1222-24
Function 12H, Find Next File 1225-26
Function 13H, Delete File 1227-28
Function 14H, Sequential Read 1229-30
Function 15H, Sequential Write 1231-32
Function 16H, Create File with PCB 1233-34
Function 17H, Rename File 1235-36
Function 19H, Get Current Disk 1237
Function lAH, Set DTA Address 1238-39
Function IBH, Get Default Drive Data 1240-41
Function 1CH, Get Drive Data 1242-44
Function 21H, Random Read 1245-46
Function 22H, Random Write 1247-48

Commands and System Calls

Interrupt 21H (continued)
Function 23H, Get File Size 1249-50
Function 24H, Set Relative Record 1251-52
Function 25H, Set Interrupt Vector 1253-54
Function 26H, Create New Program Segment

Prefix 1255-56
Function 27H, Random Block Read 1257-59
Function 28H, Random Block Write 1260-62
Function 29H, Parse Filename 1263-65
Function 2AH, Get Date 1266-67
Function 2BH, Set Date 1268-69
Function 2CH, Get Time 1270-71
Function 2DH, Set Time 1272-73
Function 2EH, Set/Reset Verify Flag 1274-75
Function 2FH, Get DTA Address 1276
Function 30H, Get MS-DOS Version Number

1277-78
Function 31H, Terminate and Stay Resident

1279-80 -
Function 33H, Get/Set Control-C Check Flag

1281-82
Function 34H, Return Address of InDOS Flag

1283
Function 35H, Get Interrupt Vector 1284
Function 36H, Get Disk Free Space 1285-86
Function 38H, Get/Set Current Country 1287-90

Get Current Country 1287-89
Set Current Country 1290

Function 39H, Create Directory 1291-92
Function 3AH, Remove Directory 1293-94
Function 3BH, Change Current Directory

1295-96
Function 3CH, Create File with Handle 1297-99
Function 3qH, Open File with Handle

1300-1303
Function 3EH, Close File 1304-5
Function 3FH, Read File or Device 1306-7
Function 40H, Write File or Device 1308-9
Function 41H, Delete File 1310-11
Function 42H, Move File Pointer 1312-14
Function 43H, Get/Set File Attributes 1315-16
Function 44H, IOCTL 1317-18

Subfunction OOH, Get Device Data 1319-21
Subfunction OlH, Set Device Data 1322-23
Subfunction 02H, Receive Control Data from

Character Device 1324-25
Subfunction 03H, Send Control Data to

Character Device 1324-25
Subfunction 04H, Receive Control Data from

Block Device 1326-28
Subfunction 05H, Send Control Data to

Block Device 1326-28
Subfunction 06H, Check Input Status

1329-30

Indexes 1567

HUAWEI EX. 1110 - 1577/1582

Commands and System Calls

Interrupt 21H (continued)
Function 44H (continued)

Subfunction 07H, Check Output Status
1329-30

Subfunction 08H, Check If Block Device Is
Removable 1331-32

Subfunction 09H, Check If Block Device Is
Remote 1333-34

Subfunction OAH, Check If Handle Is
Remote 1335-36

Subfunction OBH, Change Sharing Retry
Count 1337-38

Subfunction OCH, Generic I/0 Control for
Handles 1339-40, 1455-58

Subfunction ODH, Generic I/0 Control for
Block Devices 1341-42

Subfunction ODH, minor code 40H, Set
Device Parameters 1343-46

Subfunction ODH, minor code 41H, Write
Track on Logical Drive 1350-51

Subfunction ODH, minor code 42H, Format
and Verify Track on Logical Drive
1352-53

Subfunction ODH, minor code 60H, Get
Device Parameters 1347-49

Subfunction ODH, minor code 61H, Read
Track on Logical Drive 1350-51

Subfunction ODH, minor code 62H, Verify
Track on Logical Drive 1352-53

Subfunction OEH, Get Logical Drive Map
1354-55

Subfunction OFH, Set Logical Drive Map
1354-55

Function 45H, Duplicate File Handle 1356-57
Function 46H, Force Duplicate File Handle

1358-59
Function 47H, Get Current Directory 1360-61
Function 48H, Allocate Memory Block 1362-63
Function 49H, Free Memory Block 1364-65
Function 4AH, Resize Memory Block 1366-67
Function 4BH, Load and Execute Program

(EXEC) 1368-74
Function 4CH, Terminate Process with Return

Code 1375-76
Function 4DH, Get Return Code of Child

Process 1377-78
Function 4EH, Find First File 1379-81
Function 4FH, Find Next File 1382-84
Function 54H, Get Verify Flag 1385
Function 56H, Rename File 1386-87
Function 57H, Get/Set Date/Time of File

1388-90
Function 58H, Get/Set Allocation Strategy

1391-92

1568 The MS-DOS Encyclopedia

Interrupt 21H (continued)
Function 59H, Get Extended Error Information

1393-96
Function 5AH, Create Temporary File 1397-98
Function 5BH, Create New File 1399-1400
Function 5CH, Lock/Unlock File Region

1401-3
Function 5EH, Network Machine Name/Printer

Setup 1404-6
Subfunction OOH, Get Machine Name 1404
Subfunction 02H, Set Printer Setup 1405-6
Subfunction 03H, Get Printer Setup 1405-6

Function 5FH, Get/Make Assign-List Entry
1407-12

Subfunction 02H, Get Assign-List Entry
1407-8

Subfunction 03H, Make Assign-List Entry
1409-10

Subfunction 04H, Cancel Assign-List Entry
1411-12

Function 62H, Get Program Segment Prefix
Address 1413-14

Function 63H, Get Lead Byte Table 1415-16
Function 65H, Get Extended Country

Information 1451-54
Function 66H, Select Code Page 1454-55
Function 67H, Set Handle Count 1449-50
Function 68H, Commit File Function 1450-51

Interrupt 22H, Terminate Routine Address 1417
Interrupt 23H, Control-CHandler Address 1418
Interrupt 24H, Critical Error Handler Address 1419-21
Interrupt 25H, Absolute Disk Read 1422-23
Interrupt 26H, Absolute Disk Write 1424-25
Interrupt 27H, Terminate and Stay Resident 1426-27
Interrupt 2FH, Multiplex Interrupt 1428-29

J,K,L

JOIN877-78
KEYB 1440-41
KEYBxx 879-81
LABEL 882-84
LASTDRIVE (CONFIG.SYS) 803
LIB utility 980-86
LINK utility 987-98

M

MAKE utility 999-1003
MAPSYM utility 1004-6

, I

HUAWEI EX. 1110 - 1578/1582

MASM utility 1007-19
MD885-86
MKDIR 885-86
MODE 887-95, 1446-47
MORE896

N,P
NLSFUNC 1441-42
PATH897-98
PAUSE (BATCH) 766-67
PRINT 899-903
Programming Utilities (Introduction) 963-65
PROMPT 904-6

R

RAMDRIVE.SYS 907-9
RD923-24
RECOVER 910-11
REM (BATCH) 768
REN912-13
RENAME 912-13
REPLACE 914-17
RESTORE 918-22
RMDIR 923-24

s
SELECT 925-29, 1435-36
SET930-32
SHARE 933-34
SHELL (CONFIG.SYS) 804
SHIFT (BATCH) 769
SORT935-37
STACKS (CONFIG.SYS) 805
SUBST 938-39
SYMDEB, general1054-62
SYMDEB utility 1054-1156

A command 1063-64
BC command 1065-66
BD command 1067-68
BE command 1069-70
BL command 1071
BP command 1072-73
C command 1074
D command 1075-76

Commands and System Calls

SYMDEB utility (continued)
DA command 1077-78
DB command 1079-80
DD command 1081-82
DL command 1083-84
DS command 1085-86
DT command 1087-88
DW command 1089-90
E command 1091-92
EA command 1093-94
EB command 1095-96
ED command 1097
EL command 1098-99
ES command 1100-1101
ET command 1102-3
EW command 1104
F command 1105-6
G command 1107-8
H command 1109
I command 1110
K command 1111-12
L command 1113-14
M command 1115
N command 1116-17
0 command 1118
P command 1119-20
Q command 1121
R command 1122-24
S command 1125-26
S+ command 1127
S- command 1128
S& command 1129
T command 1130-31
U command 1132-33
V command 1134-35
W command 1136-37
X command 1138-39
XO command 1140
Z command 1141-42
<command 1143-44
>command 1145
=command 1146
(command 1147
} command 1148
-command 1149
\ command 1150
• command 1151
? command 1152-53
! command 1154-55
• command 1156

SYS940-41
System Calls (Introduction) 1177-84

format of entries 1178-81

Indexes 1569

HUAWEI EX. 1110 - 1579/1582

Commands and System Calls

System Calls (continued)
by functional group 1181-84
version differences 1177-78

T,U
TIME942-43
TREE944-46
TYPE947
User Commands (Introduction) 725-30

by functional group 728-30
key to entries 726-27

1570 The MS-DOS Encyclopedia

V,X
VDISK.SYS 948-51
VER952
VERIFY953
VOL954
XCOPY 955-59

HUAWEI EX. 1110 - 1580/1582

Book Design by The NBB] Group, Seattle, Washington

Cover Design by Greg Hickman

Principal Typography by Carol L. Luke

The manuscript for this book was prepared and submitted to Microsoft Press in electronic
form. Text files were processed and formatted using Microsoft Word.

Text composition by Microsoft Press in Garamond with display in Garamond Bold using
the Magna composition system and the Linotronic 300 laser imagesetter.

HUAWEI EX. 1110 - 1581/1582

Praise for
The MS-DOS® Encyclopedia:

"A superb, nearly inexhaustible ref­
erence work Anyone serious
about programming for MS-DOS
will not want to be without [THE
MS-DOS ENCYCLOPEDIA]."

"For those with any technical in­
volvement in the PC industry, this is
the one and the only volume worth
reading." PC WEEK

"If you like the idea of a one-stop
DOS reference book, then this book
is for you." PC Magazine

Online Today

"The ultimate authority."
Reference & Research Book News

"A splendid volume."
"There's no doubting that this is a
superb reference work on MS-DOS."

U.S.A.
U.K.
AustraL'

Dr. Dobb's Journal of Software Tools EXE magazine

Here, from Microsoft Press, is the ultimate resource for writing, maintaining,
and upgrading well-behaved, efficient, reliable, and robust MS-DOS programs.
Covering all MS-DOS releases through version 3.2, with a special section on
version 3.3, this encyclopedia is the standard reference for the working com­
munity of MS-DOS programmers and for anyone making strategic decisions
about MS-DOS implementation. Included are version-specific technical data
and descriptions for:

• More than 100 system calls-each accompanied by C-callable
assembly-language routines and programmer's notes

• More than 90 user commands- the most comprehensive version­
specific analysis ever assembled

• Key MS-DOS programming utilities and debuggers

THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and
thousands of lines of great sample code plus in-depth articles on debugging,
writing filters, installable device drivers, TSRs, Windows, memory manage­
ment, the future of MS-DOS, and much more. There are also more than a dozen
appendixes, an index to commands and system_calls, and a subject index. THE
MS-DOS ENCYCLOPEDIA was researched and written by a team ofMS-DOS
experts- many involved in the creation and development of MS-DOS- so you
know it's accurate and authoritative.

$69.95
£48.95

$104.95
(recommended)

HUAWEI EX. 1110 - 1582/1582

