
Part D: Directions of MS-DOS

2. Resource script: The resource script is an ASCII file that generally has the extension
.RC. This file contains definitions of menus, dialog boxes, string tables, and keyboard
accelerators used by the program. The resource script can also reference other files
that contain icons, cursors, bitmaps, and fonts in binary form, as well as other read­
only data defined by the programmer. When a program is running, Windows loads
resources into memory only when they are needed and in most cases can discard
them if additional memory space is required.

SAMPLE.RC, the resource script for the SAMPLE program, is shown in Figure 17-12; it
contains only the definition of the menu used in the program.

#include "sample.h"

Sample MENU
BEGIN

POPUP "&Typeface"
BEGIN

END
END

MENUITEM "&Script", IDM_SCRIPT, CHECKED
MENUITEM "&Modern", IDM_MODERN
MENUITEM "&Roman", IDM_ROMAN

Figure 17-12. The resource script for the SAMPLE program.

3. Header (or include) file: This file, with the extension .H, can contain definitions of
constants or macros, as is customary in C programming. For Windows programs, the
header file also reconciles constants used in both the resource script and the pro­
gram source-code file. For example, in the SAMPLE.RC resource script, each item in
the pop-up menu (Script, Modern, and Roman) also includes an identifier­
IDM_SCRIPT, IDM_MODERN, and IDM_ROMAN, respectively. These identifiers
are merely numbers that Windows uses to notify the program of the user's selection
of a menu item. The same names are used to identify the menu selection in the C
source-code file. And, because both the resource compiler and the source-code com­
piler must have access to these identifiers, the header file is included in both the
resource script and the source-code file.

The header file for the SAMPLE program, SAMPLE.H, is shown in Figure 17-13.

#define IDM_SCRIPT 1
#define IDM-MODERN 2
#define IDM_ROMAN 3

Figure 17-13. The SAMPLE.H header file.

4. Module-definition file: The module-definition file generally has a .DEF extension.
The Windows linker uses this file in creating the executable .EXE file. The module­
definition file specifies various attributes of the program's code and data segments,
and it lists all imported and exported functions in the source-code file. In large pro­
grams that are divided into multiple code segments, the module-definition file allows
the programmer to specify different attributes for each code segment.

516 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 526/1582

Article 17: Windows

The module-definition file for the SAMPLE program is named SAMPLE.DEF and is
shown in Figure 17-14.

NAME SAMPLE

DESCRIPTION 'Demonstration Windows Program'

STUB 'WINSTUB.EXE'

CODE MOVABLE

DATA MOVABLE MULTIPLE

HEAP SIZE 1024

STACKSIZE 4096

EXPORTS WndProc

Figure 17-14. The SAMPLE.DEF module-definition file.

5. Make file: To facilitate construction of the executable file from these different com­
ponents, Windows programmers often use the MAKE program to compile only those
files that have changed since the last time the program was linked. To do this, the
programmer first creates an ASCII text file called a make file. By convention, the
make file has no extension.

The make file for the SAMPLE program is named SAMPLE and is shown in Figure
17-15. The programmer can create the SAMPLE.EXE executable file by executing

C>MAKE SAMPLE <Enter>

A make file often contains several sections, each beginning with a target filename,
followed by a colon and one or more dependent filenames, such as

sample.obj : sample.c sample.h

If either or both the SAMPLE.C and SAMPLE.H files have a later creation time than
SAMPLE.OBJ, then MAKE runs the program or programs listed immediately below.
In the case of the SAMPLE make file, the program is the C compiler, and it compiles
the SAMPLE.C source code:

cl -c -Gsw -W2 -Zdp sample.c

Thus, if the programmer changes only one of the several files used in the develop­
ment of SAMPLE, then running MAKE ensures that the executable file is brought up
to date, while carrying out only the required steps.

sample.obj : sample.c sample.h
cl -c -Gsw -W2 -Zdp sample.c

sample.res : sample.rc sample.h

rc -r sample.rc

sample.exe : sample.obj sample.def sample.res

link4 sample, /align:16, /map /line, slibw, sample

rc sample.res

mapsym sample

Figure 17-15. The make file for the SAMPLE program.

Section IL· Programming in the MS-DOS Environment 517

HUAWEI EX. 1110 - 527/1582

Part D: Directions of MS-DOS

Construction of a Windows program

The make file shows the steps that create a program's .EXE file from the various
components:

1. Compiling the source-code file:

cl -c -Gsw -W2 -Zdp sample.c

This step uses the CL.EXE C compiler to create a .OBJ object-module file. The com­
mand line switches are
- -c: Compiles the program but does not link it. Windows programs must be linked ·

with Windows' LINK4linker, rather than with the LINK program the C compiler
would normally invoke.

- -Gsw: Includes two switches, -Gs and -Gw. The -Gs switch removes stack checks
from the program. The -Gw switch inserts special prologue and epilogue code in
all far functions defined in the program. This special code is required for Win­
dows' memory management.

- -W2: Compiles with warning level2. This is the highest warning level, and it causes
the compiler to display messages for conditions that may be acceptable in normal C
programs but that can cause serious errors in a Windows program.
-Zdp: Includes two switches, -Zd and -Zp. The -Zd switch includes line numbers
in the .OBJ file-helpful for debugging at the source-code level. The -Zp switch
packs structures on byte boundaries. The -Zp switch is required, because data
structures used within Windows are in a packed format.

2. Compiling the resource script:

rc -r sample.rc

This step runs the resource compiler and converts the ASCII .RC resource script into a
binary .RES form. The -r switch indicates that the resource script should be compiled
but the resources should not yet be added to the program's .EXE file.

3. Linking the program:

link4 sample, /align:16, /map /line, slibw, sample

This step uses the special Windows linker, LINK4. The first parameter listed is the
name of the .OBJ file. The /align: 16 switch instructs LINK4 to align segments in the
.EXE file on 16-byte boundaries. The /map and /line switches cause LINK4 to create a
.MAP file that contains program line numbers- again, useful for debugging source
code. Next, slibw is a reference to the SLIBW.LIB file, which is an import library that
contains module names and ordinal numbers for all Windows functions. The last
parameter, sample, is the program's module-definition file, SAMPLE.DEF.

4. Adding the resources to the .EXE file:

rc sample.res

518 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 528/1582

Article 17: Windows

This step runs the resource compiler a second time, using the compiled resource file,
SAMPLE.RES. This time, the resource compiler adds the resources to the .EXE file.

Module Program Header or
definition file source code include files Resource script

(.DEF) (.C, .PAS, or .ASM) (.Hor .INC) (.RC)

~ I
t ...

Cor Pascal RC.EXE
Compiler or

Resource compiler
Macro Assembler

~
Object module Libraries Compiled resources

(.OBJ) (.Lm) (.RES)

~ I
... ...
LINK4.EXE

Window linker

I ~ t

Map file Executable

(.MAP) without resources
(.EXE)

~ t
MAPSYM.EXE RC.EXE

Converts map file Resource compiler
to symbol file

t t

Symbol file Executable
(.SYM) (.EXE)

Figure 17-16. A block diagram showing the creation of a Windows .EXEfile.

Section II: Programming in the MS-DOS Environment 519

HUAWEI EX. 1110 - 529/1582

Part D: Directions of MS-DOS

5. Creating a symbol (.SYM) file from the linker's map (.MAP) file:

mapsym sample

This step is required for symbolic debugging with SYMDEB.

Figure 17-16 on the preceding page shows how the various components of a Windows pro-
gram fit into the creation of a .EXE file. ·

Program initialization

The SAMPLE.C program shown in Figure 17-11 contains some code that appears in almbst
every Windows program. The statement

#include <windows.h>

appears at the top of every Windows source-code file written in C. The WINDOWS.H file,
provided with the Microsoft Windows Software Development Kit, contains templates for
all Windows functions, structure definitions, and #define statements for many mnemonic
identifiers.

Some of the variable names in SAMPLE.C may look unusual to C programmers because
they begin with a prefix notation that denotes the data type of the variable. Windows
programmers are encouraged to use this type of notation. Some of the more common
prefixes are

Prefix

i or n
w

dw
h
sz
lpsz
lpfn

Data Type

Integer (16-bit signed integer)
Word (16-bit unsigned integer)
Long (32-bit signed integer)
Doubleword (32-bit unsigned integer)
Handle (16-bit unsigned integer)
Null-terminated string
Long pointer to null-terminated string
Long pointer to a function

The program's entry point (following some startup code) is the WinMain function,
which is passed the following parameters: a handle to the current instance of the
program (hlnstance), a handle to the most recent previous instance of the program
(hPrevlnstance), a long pointer to the program's command line (lpszCmdLine), and a
number (nCmdShow) that indicates whether the program should initially be displayed as a
normally sized window or as an icon.

The first job SAMPLE performs in the WinMain function is to register a window class- a
structure that describes characteristics of the windows that will be created in the class.
These characteristics include background color, the type of cursor to be displayed in the
window, the window's initial menu and icon, and the window function (the structure
member called lpfnWndProc).

520 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 530/1582

Article 17: Windows

Multiple instances of a program can share the same window class, so SAMPLE registers the
window class only for the first instance of the program:

if (!hPrevinstance)

wndclass.style

wndclass.lpfnWndProc
wndclass.cbClsExtra

wndclass.cbWndExtra
wndclass.hlnstance

wndclass.hlcon
wndclass.hCursor

wndclass.hbrBackground

wndclass.lpszMenuName

CS_HREDRAW CS_VREDRAW

WndProc

0 ;
0 ;

hlnstance

NULL ;
LoadCursor (NULL, IDC_ARROW)

GetStockObject (WHITE_BRUSH)

szAppName

wndclass.lpszClassName = szAppName

RegisterClass (&wndclass) ;
)

The SAMPLE program then creates a window using the CreateWindow call, displays it to
the screen by calling ShowWindow, and updates the client area by calling UpdateWindow:

hWnd = CreateWindow (szAppName, "Demonstration Windows Program",
WS_OVERLAPPEDWINDOW,

(int) CW_USEDEFAULT,O,

(int) CW_USEDEFAULT,O,

NULL, NULL, hinstance, NULL)

ShowWindow (hWnd, nCmdShow) ;

UpdateWindow (hWnd) ;

The first parameter to Create Window is the name of the window class. The second param­
eter is the actual text that appears iri the window's title bar. The third parameter is the style
of the window- in this case, the WINDOWS.H identifier WS_OVERLAPPEDWINDOW.
The WS_OVERLAPPEDWINDOW is the most common window style. The fourth through
seventh parameters specify the initial position and size of the window. The identifier
CW _USEDEFAULT tells Windows to position and size the window according to the default
rules.

After creating and displaying a Window, the SAMPLE program enters a piece of code
called the message loop:

while (GetMessage (&msg, NULL, 0, 0))
(

TranslateMessage (&msg)
DispatchMessage (&msg) ;

return msg.wParam ;

This loop continues to execute until the GetMessage call returns zero. When that happens,
the program instance terminates and the memory required for the instance is freed.

Section II: Programming in the MS-DOS Environment 521

HUAWEI EX. 1110 - 531/1582

Part D: Directions of MS-DOS

The Windows messaging system

Interactive programs written for the normal MS-DOS environment generally obtain user
input only from the keyboard, using either an MS-DOS or a ROM BIOS software interrupt
to check for keystrokes. When the user types something, such programs act on the key~
stroke and then return to wait for the next keystroke.

Programs written for Windows, however, can receive user input from a variety of sources,
including the keyboard, the mouse, the Windows timer, menus, scroll bars, and controls,
such as buttons and edit boxes.

Moreover, a Windows program must be informed of other events occurring within the
system. For instance, the user of a Windows program might choose to make its window
smaller or larger. Windows must make the program aware of this change so that the pro­
gram can adjust its screen output to fit the new window size. Thus, for example, if a Win­
dows program is minimized as an icon and the user maximizes its window to fill the full
screen, Windows must inform the program that the size of the client area has changed
and needs to be re-created.

Windows carries out this job of keeping a program informed of other events through the
use of formatted messages. In effect, Windows sends these messages to the program. The
Windows program receives and acts upon the messages.

This messaging makes the relationship between Windows and a Windows program much
different from the relationship between MS-DOS and an MS-DOS program. Whereas
MS-DOS does not provide information until a program requests it through an MS-DOS
function call, Windows must continually notify a program of all the events that affect its
window.

Window messages can be separated into two major categories: queued and nonqueued.

Queued messages are similar to the keyboard information an MS-DOS program obtains
from MS-DOS. When the Windows user presses a key on the keyboard, moves the mouse,
or presses one of the mouse buttons, Windows saves information about the event (in the
form of a data structure) in the system message queue. Each message is destined for a par­
ticular window in a particular instance of a Windows program. Windows therefore deter­
mines which window should get the information and then places the message in the
instance's own message queue.

A Windows program retrieves information from its queue in the message loop:

while (GetMessage (&msg, NULL, 0, ,0))
(

TranslateMessage (&msg)

DispatchMessage (&msg) ;

)

The msg variable is a structure. During the GetMessage call, Windows fills in the fields of
this structure with information about the message. The fields are as follows:

522 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 532/1582

Article 17: Windows

• hwnd: The handle for the window that is to receive the message.
• iMessage: A numeric code identifying the type of message (for example, keyboard

or mouse).
• wParam: A 16-bit value containing information specific to the message. See The

Windows Messages below.
• lParam: A 32-bit value containing information specific to the message.
• time: The time, in milliseconds, that the message was placed in the queue. The time

is a 32-bit value relative to the time at which the current Windows session began.
• pt.x: The horizontal coordinate of the mouse cursor at the time the event occurred.
• pt.y: The vertical coordinate of the mouse cursor at the time the event occurred.

GetMessage always returns a nonzero value except when it receives a quit message. The
quit message causes the message loop to end. The program should then terminate and
return control to Windows.

Within the message loop, the TranslateMessage function translates physical keystrokes into
character-code messages. Windows places these translated messages into the program's
message queue.

The DispatchMessage function essentially makes a call to the window function of the win­
dow specified by the hwnd field. This window function (WndProc in SAMPLE) is indicated
in the lpfn WndProc field of the window class structure.

When DispatchMessage passes the message to the window function, Windows uses the
first four fields of the message structure as parameters to the function. The window func­
tion can then process the message. In SAMPLE, for instance, the four fields passed to
WndProc are hwnd (the handle to the window), iMessage (the numeric message iden­
tifier), wParam, and lParam. Although Windows does not pass the time and mouse­
position information fields as parameters to the window function, this information is
available through the Windows functions GetMessageTime and GetMessagePos.

A Windows program obtains only a few specific types of messages through its message
queue. These are keyboard messages, mouse messages, timer messages, the paint message
that tells the program it must re-create the client area of its window, and the quit message
that tells the program it is being terminated.

In addition to the queued messages, however, a program's window function also receives
many nonqueued messages. Windows sends these nonqueued messages by bypassing the
message loop and calling the program's window function directly.

Many of these non queued messages are derived from queued messages. For example,
when the user clicks the mouse onthe menu bar, a mouse-click message is placed in the
program's message queue. The GetMessage function retrieves the message and the Dis­
patchMessage function sends it to the program's window function. However, because this
mouse message affects a nonclient area of the window (an area outside the window's cli­
ent area), the window function normally does not process it. Instead, the function passes
the message back to Windows. In this example, the message tells Windows to invoke a
pop-up menu. Windows calls up the menu and then sends the window function several
non queued messages to inform the program of this action.

Section !1: Programming in the MS-DOS Environment 523

HUAWEI EX. 1110 - 533/1582

Part D: Directions of MS-DOS

A Windows program is thus message driven. Once a program reaches the message loop,
it acts only when the window function receives a message. And, although a program
receives many messages that affect the window, the program usually processes only some
of them, sending the rest to Windows for normal default processing.

The Windows messages

Windows can send a window function more than 100 different messages. The
WINDOWS.H header file includes identifiersJor all these messages so that C programmers
do not have to remember the message numbers. Some of the more common messages and
the meanings of the wParam and lParam parameters are discussed here:

WM_CREATE. Windows sends a window function this nonqueued message while pro­
cessing the CreateWindow call. The lParam parameter is a pointer to a creation structure.
A window function can perform some program initialization during the WM_ CREATE .
message.

WM_MOVE. Windows sends a window function the nonqueued WM_MOVE message
when the window has been moved to another part of the display. The lParam parameter
gives the new coordinates of the window relative to the upper left corner of the screen.

WM_SIZE. This nonqueued message indicates that the size of the window has been
changed. The new size is encoded in the lParam parameter. Programs often save this
window size for later use.

WM_PAINT. This queued message indicates that a region in the window's client area
needs repainting. (The message queue can contain only one WM_ PAINT message.)

WM_COMMAND. This nonqueued message signals a program that a user has selected a
menu item or has triggered a keyboard accelerator. Child-window controls also use
WM_COMMAND to send messages to the parent window.

WM_KEYDOWN. The wParam parameter of this queued message is a virtual key code
that identifies the key being pressed. The lParam parameter includes flags that indicate
the previous key state and the number of keypresses the message represents.

WM_KEYUP. This queued message tells a window function that a key has been released.
The wParam parameter is a virtual key code.

WM_CHAR. This queued message is generated from WM_KEYDOWN messages during
the TranslateMessage call. The wParam parameter is the ASCII code of a keyboard key.

WM_MOUSEMOVE. Windows uses this queued message to tell a program about mouse
movement. The lParam parameter contains the coordinates of the mouse relative to the
upper left corner of the client area of the window. The wParam parameter contains flags
that indicate whether any mouse buttons or the Shift or Ctrl keys are currently pressed.

WM_xBUTTONDOWN. This queued message tells a program that a button on the mouse
was depressed while the mouse was in the window's. client area. The xcan be either L, R,
or M for the left, right, or middle mouse button. The wParam and lParam parameters are
the same as for WM_MOUSEMOVE.

524 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 534/1582

Article 17: Windows

WM_xBUTTONUP This queued message tells a program that the user has released a
mouse button.

WM_xBUTTONDBLCLK. When the user double-clicks a mouse button, Windows
generates a WM_xBUTTONDOWN message for the first click and a queued
WM_xBUTTONDBLCLK message for the second click.

WM_ TIMER. When a Windows program sets a timer with the SetTimer function,
Windows places a WM_ TIMER message in the message queue at periodic intervals.
The wParam parameter is a timer ID. (If the message queue already contains a
WM_TIMER message, Windows does not add another one to the queue.)

WM_ VSCROLL. A Windows program that includes a vertical scroll bar in its window
receives nonqueued WM_ VSCROLL messages indicating various types of scroll-bar
manipulation.

WM....;.HSCROLL. This nonqueued message indicates a user is manipulating a horizontal
scroll bar.

WM_CLOSE. Windows sends a window function this nonqueued message when the user
has selected Close from the window's system menu. A program can query the user to de­
termine whether any action, such as saving a file to disk, is needed before the program
is terminated.

WM_QUERYENDSESSION. This nonqueued message indicates that the user is shutting
down Windows by selecting Close from the MS-DOS Executive system menu. A program
can request the user to verify that the program should be ended. If the window function
returns a zero value from the message, Windows does not end the session.

WM_DESTROY. This nonqueued message is the last message a window function receives
before the program ends. A window function can perform some last-minute cleanup while
processing WM_DESTROY.

WM_QUIT. This is a queued message that never reaches the window function because it
causes GetMessage to return a zero value that causes the program to exit the message loop.

Message processing

Programmers can choose to process some messages and ignore others in the window
function. Messages that are ignored are generally passed on to the function
DefWindowProc for default processing within Windows.

Because Windows eventually has access to messages that a window function does not
process, it can send a program messages that might otherwise be regarded as pertaining to
system functions- for example, mouse messages that occur in a non client area of the win­
dow, or system keyboard messages that affect the menu. Unless these messages are passed
on to DefWindowProc, the menu and other system functions do not work properly.

A program can, however, trap some of these messages to override Windows' default pro­
cessing. For example, when Windows needs to repaint the nonclient area of a window (the
title bar, system-menu box, and scroll bars), it sends the window function a WM_NCPAINT

Section II: Programming in the MS-DOS Environment 525

HUAWEI EX. 1110 - 535/1582

Part D: Directions of MS-DOS

(nonclient paint) message. The window function normally passes this message to
DefWindowProc, which then calls routines to update the nonclient areas of the window.
The program can, however, choose to process the WM_NCPAINT message and paint the
. nonclient area itself. A program that does this can, for example, draw its own scroll bars.

The Windows messaging system also notifies a program of important events occurring
outside its window. For example, if the MS-DOS Executive were simply to end the Win­
dows session when the user selects the Close option from its system menu, then applica­
tions that were still running would not have a chance to save changed files to disk. Instead,
when the user selects Close from the last instance of the MS-DOS Executive's system
menu, the MS-DOS Executive sends a WM_QUERYENDSESSION message to each cur­
rently running application. If any application responds by returning a zero value, the MS­
DOS Executive does not end the Windows session.

Before responding, an application can process the WM_QUERYENDSESSION message
and display a message box asking the user if a file should be saved. The message box
should include three buttons labeled Yes, No, and Cancel. If the user answers Yes, the pro­
gram can save the file and then return a nonzero value to the WM_QUERYENDSESSION
message. If the user answers No, the program can return a nonzero value without saving
the file. But if the user answers Cancel, the program should return a zero value so that
the Windows session will not be ended. If a program does not process the
WM_QUERYENDSESSION message, DefWindowProc returns a nonzero value.

When a user selects Close from the system menu of a particular instance of an application,
rather than from the MS-DOS Executive's menu, Windows sends the window function a
WM_CLOSE message. If the program has an unsaved file loaded, it can query the user with
a message box-possibly the same one displayed when WM_QUERYENDSESSION is
processed. If the user responds Yes to the query, the program can save the file and then
call DestroyWindow. If the user responds No, the program can call DestroyWindow
without saving the file. If the user responds Cancel, the window function does not call
DestroyWindow and the program will not be terminated. If a program does not process
WM_CLOSE messages, DefWindowProc calls DestroyWindow.

Finally, a window function can send messages to other window functions, either within
the same program or in other programs, with the Windows Send Message function. This
function returns control to the calling program after the message has been processed. A
program can also place messages in a program's message queue with the PostMessage
function. This function returns control immediately after posting the message.

For example, when a program makes changes to the WIN.INI file (a file containing
Windows initialization information), it can notify all currently running instances of these
changes by sending them a WM_ WININICHANGE message:

SendMessage (-1, WM_WININICHANGE, 0, OL) ;

The -1 parameter indicates that the message is to be sent to all window functions of
all currently running instances. Windows calls the window functions with the
WM_WININICHANGE message and then returns control to the program that sent the
message.

526 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 536/1582

Article 17: Windows

SAMPLE's message processing

The SAMPLE program shown in Figure 17-11 processes only four messages:
WM_COMMAND, WM_SIZE, WM_PAINT, and WM_DESTROY. All other messages are
passed to DefWindowProc. As is typical with most Windows programs written inc,
SAMPLE uses a switch and case construction for processing messages.

The WM_COMMAND message signals the program that the user has selected a new font
from the menu. SAMPLE first obtains a handle to the menu and removes the checkmark
from the previously selected font:

hMenu = GetMenu (hWnd) ;
CheckMenuitem (hMenu, nCurrentFont, MF_UNCHECKED) ;

The value of wParam in the WM_COMMAND message is the menu ID of the newly
selected font. SAMPLE saves that value in a static variable (nCurrentFont) and then places a
checkmark on the new menu choice:

nCurrentFont = wParam ;
CheckMenuitem (hMenu, nCurrentFont, MF_CHECKED) ;

Because the typeface has changed, SAMPLE must repaint its display. The program does
not repaint it immediately, however. Instead, it calls the InvalidateRect function:

InvalidateRect (hWnd, NULL, TRUE) ;

This causes a WM_PAINT message to be placed in the program's message queue. The
NULL parameter indicates that the entire client area should be repainted. The TRUE
parameter indicates that the background should be erased.

The WM_SIZE message indicates that the size of SAMPLE's client area has changed.
SAMPLE simply saves the new dimensions of the client area in two static variables:

xClient = LOWORD (lParam) ;
yClient = HIWORD (lParam) ;

The LOWORD and HIWORD macros are defined in WINDOWS. H.

Windows also places a WM_PAINT message in SAMPLE's message queue when the size
of the client area has changed. As is the case with WM_COMMAND, the program does
not have to repaint the client area immediately, because the WM_ PAINT message is in the
message queue.

SAMPLE can receive a WM_PAINT message for many reasons. The first WM_PAINT mes­
sage it receives results from calling UpdateWindow in the WinMain function. Later, if the
current font is changed from the menu, the program itself causes a WM_ PAINT message
to be placed in the message queue by calling InvalidateRect. Windows also sends a win­
dow function a WM_ PAINT message whenever the user changes the size of the window
or when part of the window previously covered by another window is uncovered.

Programs begin processing WM_PAINT messages by calling Begin Paint:

BeginPaint (hWnd, &ps) ;

Section II: Programming in the MS-DOS Environment 527

HUAWEI EX. 1110 - 537/1582

Part D: Directions of MS-DOS

The SAMPLE program then creates a font based on the current size of the client area and
the current typeface selected from the menu:

hFont = CreateFont (yClient, xClient I 8,
0, O, 400, 0, 0, 0, OEM_CHARSET,
OUT_STROKE_pRECIS, OUT_STROKE_pRECIS,

DRAFT-QUALITY, (BYTE) VARIABLE_piTCH
cFamily [nCurrentFont- IDM___SCRIPT],

szFace [nCurrentFont- IDM___SCRIPT])

The font is selected into the device context (a data structure internal to Windows that
describes the characteristics of the output device); the program also saves the original
device-context font:

hFont = SelectObject (ps.hdc, hFont)

And the word Windows is displayed:

TextOut (ps.hdc, 0, 0, "Windows", 7)

The original font in the device context is then selected, and the font that was created is
now deleted:

DeleteObject (SelectObject (ps.hdc, hFont)) ;

Finally, SAMPLE calls EndPaint to signal Windows that the client area is now updated and
valid:

EndPaint (hWnd, &ps) ;

Although the processing of the WM_ PAINT message in this program is simple, the
method used is common to all Windows programs. The Begin Paint and End Paint func­
tions always occur in pairs, first to get information about the area that needs repainting
and then to mark that area as valid.

SAMPLE will display this text even when the program is minimized to be displayed as an
icon at the bottom of the screen. Although most Windows programs use a customized icon
for this purpose, the window-class structure in SAMPLE indicates that the program's icon
is NULL, meaning that the program is responsible for drawing its own icon. SAMPLE does
not, however, make any special provisions for drawing the icon. To it, the icon is simply
a small client area. As a result, SAMPLE displays the word Windows in its "icon," using a
small font size.

Windows sends the window function the WM_DESTROY message as a result of the
DestroyWindow function that DefWindowProc calls when processing a WM_ CLOSE
message. The standard processing involves placing a WM_QUIT message in the message
queue:

PostQuitMessage (0) ;

When the GetMessage function retrieves WM_QUIT from the message queue, GetMessage
returns 0. This terminates the message loop and the program.

528 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 538/1582

Article 17: Windows

For all other messages, SAMPLE calls DefWindowProc and exits the window function by
returning the value from the call:

return DefWindowProc (hWnd, iMessage, wPararn, lPararn) ;

This allows Windows to perform default processing on the messages SAMPLE ignores.

Windows' multitasking

Most operating systems or operating environments that allow multitasking use what is
called a preemptive scheduler. Generally, the procedure involves use of the computer's
clock to switch rapidly between programs and allow each a small time slice. When
switching between programs, the operating system must preserve the machine state.

Windows is different. It is a nonpreemptive multitasking environment. Although Windows
allows several programs to run simultaneously, it never switches from one program to
allow another to run. It switches between programs only when the currently running pro­
gram calls the GetMessage function or the related Peek Message and WaitMessage
functions.

When a Windows program calls GetMessage and the program's message queue contains
a message other than WM_ PAINT or WM_ TIMER, Windows returns control to the pro­
gram with the next message. However, if the program's message queue contains only a
WM_PAINT or WM_TIMER message and another program's queue contains a message
other than WM_ PAINT or WM_ TIMER, Windows returns control to the other program,
which is also waiting for its GetMessage call to return.

(Windows also switches between programs temporarily when a program uses
Send Message to send a message to a window function in another program, but control
returns to the calling program after the window function has processed the message sent
to it.)

To cooperate with Windows' nonpreemptive multitasking, programmers should try to
perform message processing as quickly as possible. Programs can, for example, split a
large amount of processing into several smaller pieces to allow other programs to run in
the interval. During long processing a program can also periodically call Peek Message to
allow other programs to run.

Graphics Device Interface

Programs receive input through the Windows message system. For program output,
Windows provides a device-independent interface to graphics output devices, such as the
video display, printers, and plotters. This interface is called the Graphics Device Interface,
orGDI.

Section IL- Programming in the MS-DOS Environment 529

HUAWEI EX. 1110 - 539/1582

Part D: Directions of MS-DOS

The device context (DC)

When a Windows program needs to send output to the video screen, the printer, or
another graphics output device, it must first obtain a handle to the device's device context,
or DC. Windows provides a number of functions for obtaining this device-context handle:

Begin Paint. Used for obtaining a video device-context handle during processing of a
WM_PAINT message. This device context applies only to the rectangular section of the
client area that is invalid (needs repainting). This region is also a clipping region, meaning
that a program cannot paint outside this rectangle. BeginPaint fills in the fields of a
PAINTSTRUCT structure. This structure contains the coordinates of the invalid rectangle
and a byte that indicates if the background of the invalid rectangle has been erased.

GetDC. Generally used for obtaining a video device-context handle during processing of
messages other than WM_PAINT. The handle obtained with this function references only
the client area of the window.

GetWindowDC. Used for obtaining a video device-context handle that encompasses the
entire window, including the title bar, menu bar, and scroll bars. A Windows program can
use this function if it is necessary to paint over areas of the window outside the client area.

CreateDC. Used for obtaining a device-context handle for the entire display or for a
printer, a plotter, or other graphics output device.

Create/C. Used for obtaining an information-context handle, which is similar to a
device-context handle but can be used only for obtaining information about the output
device, not for drawing.

CreateCompatibleDC. Used for obtaining a device-context handle to a memory device
context compatible with a particular graphics output device. This function is generally
used for transferring bitmaps to a graphics output device.

CreateMetaFile. Used for obtaining a metafile device-context handle. A metafile is a collec­
tion of GDI calls encoded in binary form.

The Windows program uses the device-context handle when calling GDI functions. In
addition to drawing, the various GDI functions can change the attributes of the device con­
text, select different drawing objects (such as pens and fonts) into the device context, and
determine the characteristics of the device context.

Device-independent programming

Windows supports such a wide variety of video displays, printers, and plotters that pro­
grams cannot make assumptions about the size and resolution of the device. Furthermore,
because the user can generally alter the size of a program's window, the program must be
able to adjust its output appropriately. The SAMPLE program, for example, showed how
the window function can use the WM_SIZE message to obtain the current size of a win­
dow to create a font that fits text within the window's client area.

Programs can also use other Windows functions to determine the physical characteristics
of a device. For instance, a program can use the GetDeviceCaps function to obtain

530 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 540/1582

Article 17: Windows

information aboutthe device context, including the resolution of the device, its physical
dimensions, and its relative pixel height and width.

Then, too, the GetTextMetrics function returns information about the current font selected
in the device context. In the default device context, this is the system font. Many Windows
programs base the size of their display output on the size of a system-font character.

Device-context attributes

The device context includes attributes that define how the graphics output functions work
on the device. When a program first obtains a handle to a device context, Windows sets
these attributes to default values, but the program can change them. Some of these
device-context attributes are as follows:

Pen. Windows uses the current pen for drawing lines. The default pen produces a solid
black line 1 pixel wide. A program can change the pen color, change to a dotted or dashed
line, or make the pen draw a solid line wider than 1 pixel.

Brush. Windows uses the current brush (sometimes called a pattern) for filling areas. A
brush is an 8-pixel-by-8-pixel bitmap. The default brush is solid white. Programs can
create colored brushes, hatched brushes, and customized brushes based on bitmaps.

Background color. Windows uses the background color to fill the spaces in and between
characters when drawing text and to color the open areas in hatched brushstrokes and 4
dotted or dashed pen lines. Windows uses the background color only if the background
mode (another attribute of the display context) is opaque. If the background mode is
transparent, Windows leaves the background unaltered. The default background color
is white.

Text color. Windows uses this color for drawing text. The default is black.

Font. Windows uses the font to determine the shape of text characters. The default is
called the system font, a fixed-pitch font that also appears in menus, caption bars, and
dialog boxes.

Additional device-context attributes (such as mapping modes) are described in the follow­
ing sections.

Mapping modes

Most GDI drawing functions in Windows have parameters that specify the coordinates or
size of an object. For instance, the Rectangle function has five parameters:

Rectangle lhDC, x1, y1, x2, y2) ;

The first parameter is the handle to the device context. The others are

• xl: horizontal coordinate of the upper left corner of the rectangle.
• yl: vertical coordinate of the upper left corner of the rectangle.
• x2: horizontal coordinate of the lower right corner of the rectangle.
• y2: vertical coordinate of the lower right corner of the rectangle.

Section JL- Programming in the MS-DOS Environment 531

HUAWEI EX. 1110 - 541/1582

Part D: Directions <;>f MS-DOS

In the Rectangle and most other GDI functions, coordinates are logical coordinates, which
are not necessarily the same as the physical coordinates (pixels) of the device. To translate
logical coordinates into physical coordinates, Windows uses the current mapping mode.

In actuality, the mapping mode defines a transformation of coordinates between a win­
dow, which is defined in terms of logical coordinates, and a viewport, which is defined in
terms of physical coordinates. For any mapping mode, a program can define separate win­
dow and viewport origins. The logical point defined as the window origin is then mapped
to the physical point defined as the viewport origin. For some mapping modes, a program
can also define window and viewport extents, which determine how the logical coordi­
nates are scaled to the physical coordinates.

Windows programs can select one of eight mapping modes. The first six are sometimes
called fully constrained, because the ratio between the window and viewport extents is
fixed and cannot be changed.

In MM_ TEXT, the default mapping mode, coordinates on the x axis increase from left to
right, and coordinates on the y axis increase from the top downward. In the other five fully
constrained mapping modes, coordinates on the x axis also increase from left to right, but
coordinates on the y axis increase from the bottom upward. The six fully constrained
mapping modes are

• MM_TEXT: Logical coordinates are the same as physical coordinates.
• MM_LOMETRIC: Logical coordinates are in units of 0.1 millimeter.
• MM_HIMETRIC: Logical coordinates are in units of 0.01 millimeter.
• MM_LOENGLISH: Logical coordinates are in units of 0.01 inch.
• MM_HIENGLISH: Logical coordinates are in units of 0.001 inch.
• MM_TWIPS: Logical coordinates are in units ofl/I44o inch. (These units are lho of a

typographic point, which is approximately lfn inch.)

The seventh mapping mode is called partially constrained, because a program can change
the window and viewport extents but Windows adjusts the values to ensure that equal
horizontal and vertical logical coordinates translate to equal horizontal and vertical physical
dimensions:

• MM_ISOTROPIC: Logical coordinates represent the same physical distance on both
the x andy axes.

The MM_ISOTROPIC mapping mode is useful for drawing circles and squares. The
MM_LOMETRIC, MM_HIMETRIC, MM_LOENGLISH, MM_HIENGLISH, and
MM_ TWIPS mapping modes are also isotropic, because equal logical coordinates map to
the same physical dimensions on both axes.

The final mapping mode is sometimes called unconstrained because a program is free to
set different window and viewport extents on the x andy axes.

• MM_ANISOTROPIC: Logical coordinates are mapped to arbitrarily scaled physical
coordinates.

532 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 542/1582

Article 17: Windows

Functions for drawing

Windows includes several functions that programs can use to draw in the client area of a
window. The most common of these functions are

SetPixel. Sets a point to a particular color.

LineTo. Draws a line from the current position to a point specified in the LineTo function.
The current position is defined in the device context and can be altered before the call to
LineTo with the MoveTo function, which changes the current position but does not draw
anything. Windows uses the current pen and the current drawing mode (see below) for
drawing the line.

Polyline. Draws multiple lines much like a series of LineTo calls but does not alter the cur­
rent position on completion.

Rectangle. Draws a filled rectangle with a border. Parameters to the Rectangle function
specify the coordinates of the upper left and lower right corners of the rectangle. Windows
draws the border of the rectangle with the current pen and current drawing mode defined
in the device context, just as if it were using the Polyline function then Windows fills tbe
rectangle with the current brush defined in the device context.

Ellipse. Uses the same parameters as Rectangle but draws an ellipse within the rectangular
area.

RoundRect. Draws a rectangle with rounded corners. Two parameters to this function
define the height and width of an ellipse that Windows uses for drawing the rounded
corners.

Polygon. Draws a polygon connecting a series of points and fills the enclosed areas in
either an alternate or winding mode. The winding mode causes Windows to fill every area
within the polygon. The alternate mode fills every other area. For a polygon that defines a
five-pointed star, for instance, the center is filled if the mode is winding but is not filled if
the mode is alternate.

Arc. Draws a curved line that is part of the circumference of an ellipse.

Chord. Similar to the Arc function, but Windows connects the beginning and ending
points of the arc with a straight line. The area is filled with the current brush defined in
the device context.

Pie. Similar to the Arc function, but Windows draws lines from the beginning and ending
points of the arc to the center of the ellipse. The area is filled with the current brush
defined in the device context.

TextOut. Writes text with the current font, text color, background color, and background
mode (transparent or opaque).

Windows also includes other drawing functions for filling areas, formatting text, and trans­
ferring bitmaps.

Section II: Programming in the MS-DOS Environment 533

HUAWEI EX. 1110 - 543/1582

Part D: Directions of MS-DOS

Raster operations for pens

When Windows uses a pen to write to a device context, it must first determine which pix­
els of the destination are to be altered by the pen (the foreground) and which pixels will
not be affected (the background). With dotted and dashed pens, the background-
the space between the dots or dashes- is left unaltered if the drawing mode is trans­
parent and is filled with the background color ifthe drawing mode is opaque.

When Windows alters the pixels of the destination that correspond to the foreground of
the pen, the most obvious result is that the color of the current pen defined in the display
context is used to color the destination. But this is not the only possible result. Windows
also generalizes the process by using a logical operation to combine the pixels of the pen
and the pixels of the destination.

This logical operation is defined by the drawing mode attribute of the device context. This
drawing mode can be set to one of 16 binary raster operations (abbreviated ROP2).

The following table shows the 16 binary raster operation codes defined in WINDOWS.H.
The column headed "Resultant Destination" shows how the destination changes, depend­
ing on the bit pattern of the pen and the bit pattern of the destination before the line is
drawn. The words OR, AND, XOR, and NOT are the logical operations.

Binary Raster
Operation

R2_BLACK
R2_COPYPEN
R2_MERGEPEN
R2_MASKPEN
R2_XORPEN
R2_NOTCOPYPEN
R2_NOTMERGEPEN
R2_NOTMASKPEN
R2_NOTXORPEN
R2_MERGEPENNOT
R2_MASKPENNOT
R2_MERGENOTPEN
R2_MASKNOTPEN
R2_NOP
R2_NOT
R2_WHITE

Resultant
Destination

0
pen
pen OR destination
pen AND destination
pen XOR destination
NOT pen
NOT (pen OR destination)
NOT (pen AND destination)
NOT (pen XOR destination)
pen OR (NOT destination)
pen AND (NOT destination)
(NOT pen) OR destination
(NOT pen) AND destination
destination
NOT destination
1

The default drawing mode defined in a device context is R2_COPYPEN, which simply
copies the pen to the destination. However, if the pen color is blue, the destination is red,
and the drawing mode is R2_MERGEPEN, then the drawn line appears as magenta, which

534 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 544/1582

Article 17: Windows

results from combining the pen and destination colors. If the pen color is blue, the desti­
nation is red, and the drawing mode is R2_NOTMERGEPEN, then the drawn line is green,
because the blue pen and the red destination are combined into magenta, which Windows
then inverts to make green.

Bit-block transfers

Windows also uses logical operations when transferring a rectangular pixel pattern (a bit
block) from one device context to another or from one area of a device context to another
area of the same device context.

While line drawing involves a logical combination of two sets of pixels (the pen·and the
destination), the bit -block transfer functions perform a logical combination of three sets
of pixels: a source bitmap, a destination bitmap, and the brush currently selected in the
destination device context. As shown in the preceding section, there are 16 different ROP2
drawing modes for all the possible combinations of two sets of pixels. The tertiary raster
operations (abbreviated ROP3) for bit-block transfers require 256 different operations for
all possible combinations.

Windows defines three functions for transferring rectangular pixel patterns: BitBlt (bit­
block transfer), StretchBlt (stretch-block transfer), and PatBlt (pattern-block transfer). Of
these three functions, StretchBlt is the most generalized. StretchBlt transfers a bitmap from
a source device context to a destination device context. Function parameters specify the
origin, width, and height of the bitmap. If the source and destination widths and heights
are different, Windows stretches or compresses the bitmap appropriately. Negative values
of widths and heights cause Windows to draw a mirror image of the bitmap.

The BitBlt function transfers a bitmap from a source device context to a destination device
context, but the width and height of the source and destination must be the same. If the
source and destination device contexts have different mapping modes, Windows uses
StretchBlt instead.

In both BitBlt and StretchBlt, Windows performs a bit-by-bit logical operation with the bit
block in the source device context, the bit block in the destination area of the destination
device context, and the brush currently selected in the destination device context.
Although Windows supports all 256 possible raster operations with these three bitmaps,
only a few have been given WINDOWS.H identifiers:

Raster
Operation

BLACKNESS
SRCCOPY
SRCAND
SRCPAINT

Resultant
Destination

0
source
source AND destination
source OR destination

(more)

Section II: Programming in the MS-DOS Environment 535

HUAWEI EX. 1110 - 545/1582

Part D: Directions of MS-DOS

Raster
Operation

SRCINVERT
SRCERASE
MERGEPAINT
NOTSRCCOPY
NOTSRCERASE
DSTINVERT
PA,TCOPY
MERGE COPY
PATINVERT
PATPAINT
WHITENESS

Resultant
Destination

source XOR destination
source AND (NOT destination)
source OR (NOT destination)
NOT source
NOT (source OR destination)
NOT destination
pattern
source AND pattern
destination XOR pattern
source OR (NOT destination) OR pattern
1

The PatBlt function is similar to BitBlt and StretchBlt but performs a logical operation only
between the currently selected brush and a destination area of the device context. Thus,
only 16 raster operations can be used with PatBlt; these are equivalent to the binary raster
operations used with line drawing.

Text and fonts
Windows supports file-based text fonts in two different formats: raster and vector. The
raster fonts, such as Courier, Helvetica, and Times Roman, are defined by digital represen­
tations of the bit patterns of the characters. Font files usually contain several different sizes
for each typeface. The vector fonts, such as Modern, Script, and Roman, are defined by
points that are connected to form the letters and can be scaled to different sizes.

When using a device such as a printer, which has built-in fonts, Windows can also use
these device-based fonts.

To specify a font, a Windows program uses the CreateFont function to create a logical
font- a detailed description of the desired font. When this logical font is selected into a
device context, Windows finds the actual font that best fits this description. In many cases,
this match is not exact. The program can then call GetTextMetrics to determine the char­
acteristics of the actual font that the device will use to display text.

Windows supports both fixed-width and variable-width fonts, as well as such attributes as
italics, underlining, and boldfacing. Programs can also justify text with the GetTextExtent
call, which obtains the width of a particular text string. The program can then insert extra
spaces between words with SetTextJustification or it can insert extra spaces between
letters with SetTextCharacterExtra.

Metafiles
As explained earlier, a metafile is a collection of GDI function calls stored in a binary
coded form. A program can create a metafile by calling CreateMetaFile and giving it either

536 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 546/1582

Article 17: Windows

an MS-DOS filename or NULL as a parameter. If CreateMetaFile is given an MS-DOS file­
name, Windows creates a disk-based metafile; if the parameter is NULL, Windows creates
a metafile in memory. The CreateMetaFile call returns a handle to a metafile device con­
text. Any GDI calls that reference this device-context handle become part of the metafile.

When the program calls CloseMetaFile, Windows closes the metafile device context and
returns a handle to the metafile. The program can then "play" this metafile on another
device context (such as the video display) without calling the GDI functions directly.

Metafiles provide a useful way to transfer device-independent pictures between programs.

Data Sharing and Data Exchange

Windows includes a variety of methods by which programs can share and exchange data.
These methods are discussed in the following sections.

Sharing local data among instances

Multiple instances of the same program can share data in the static data area of the pro­
gram's data segment. Later instances of a program can thus call GetlnstanceData and copy
configuration options established by the.user in the first instance. Multiple instances of
programs can also share resources, such as dialog-box templates.

The Windows Clipboard
The Windows Clipboard is a general-purpose mechanism that allows a user to transfer
data from one program to another. Programs that support the Clipboard generally include
a top-level menu item called Edit, which invokes a pop-up menu that offers at least these
three options:

• Cut: Copies the current selection to the Clipboard and deletes the selection from the
current program file.

• Copy: Copies the current selection to the Clipboard without deleting the selection
from the current program file.

• Paste: Copies the contents of the Clipboard to the current program file.

The Clipboard can hold only one item at a time. A program can transfer data to the Clip­
board through the function call SetClipboardData. With this function, the program passes
the Clipboard a handle to a global memory block, which then becomes the property of the
Clipboard. A program can access Clipboard data through the complementary function
GetClipboardData.

The Clipboard supports several formats:

• Text: ASCII text; each line ends with a carriage return and linefeed, and the text is
terminated with a NULL character.

• Bitmap: A collection of bits in the GDI bitmap format.

Section IL· Programming in the MS-DOS Environment 537

HUAWEI EX. 1110 - 547/1582

Part D: Directions of MS-DOS

• Metafile Picture: A structure that contains a handle to a metafile along with other
information suggesting the mapping mode and aspect ratio of the picture.

• SYLK: Microsoft's Symbolic Link format.
• DIF: Software Arts' Data Interchange Format.

Programs can also use the Clipboard for storing data in private formats.

Some programs, such as the CLIPBRD program included with Windows, can also become
Clipboard viewers. Such programs receive a message whenever the contents of the Clip­
board change.

Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is a protocol that cooperating programs can use to
exchange data without user intervention. DDE makes use of the facilities in Windows that
enable programs to send messages among themselves.

In DDE, the program that needs data from another program is called the client. The client
sends a WM_DDE_INITIATE message either to a dedicated server program or to all cur­
rently running programs. Parameters to the WM_DDE_INITIATE message are atoms,
which are numbers referring to text strings. A server application that has the data the client
needs sends a WM_ DDE_ACK message back to the client. The client can then be more
specific about the data it needs by sending the server a WM_DDE_ADVISE message. The
server can then pass global memory handles to the client with the WM_DDE_ DATA
message.

Internationalization

Windows includes several features that ease the conversion and translation of programs
for international markets. Among these features are keyboard drivers appropriate for many
European languages and use of the ANSI character set, which provides a richer set of
accented letters than does the character set resident in the IBM PC and compatibles.

Windows also includes several functions that assist in language-independent coding. The
AnsiUpper and AnsiLower functions translate characters or strings to uppercase or lower­
case in the full ANSI character set, rather than the more limited ASCII character set. In
addition, the AnsiNext and AnsiPrev functions allow scanning of text strings that may
contain 2 or more bytes per character.

Windows programmers can also help in program translation by defining all text strings
used within the program as resources contained in the resource script file. Because the
resource script file also contains menu templates and dialog-box templates, it thus
becomes the only file that needs alteration when a foreign-language version of the
program is created.

Charles Petzold

538 The MS-DOS Encyclopedia

I

I
I

I
-I
I

HUAWEI EX. 1110 - 548/1582

i .
(

PartE
Programming Tools

HUAWEI EX. 1110 - 549/1582

HUAWEI EX. 1110 - 550/1582HUAWEI EX. 1110 - 550/1582

1

,,
'

'

'

Article 18: Debugging in the MS-DOS Environment

Article 18
Debugging in the MS-DOS Environment

It is axiomatic that any program will need debugging at some time in its development
cycle, and programs written to run under MS-DOS are no exception. This article provides
an introduction to the debugging tools and techniques available to the serious program­
mer developing code in the MS-DOS environment. Space does not permit a thorough
investigation of the philosophy, psychology, and science of debugging computer pro­
grams; instead, a brief and practical discussion of the basic debugging approaches is pre­
sented, along with some rules-of-thumb for choosing the best approach. Nor are the details
of every single utility and command included in this article; these are described in detail
in the reference sections of this volume. The commands and utility programs that are
most useful for debugging are discussed and illustrated with examples and case histories
that also serve as models for the various debugging methods.

The reader of this article is assumed to be a programmer with sufficient experience to
understand an assembly-language program. The reader is also assumed to be familiar with
MS-DOS- terms like FCB and PSP are not explained. A reader without this background in
MS-DOS need not be deterred, however; these terms are thoroughly explained elsewhere
in this book. Besides assembly language, examples in this article are written in Microsoft
QuickBASIC and Microsoft C. A detailed knowledge of these languages is not required; the
examples are short and straightforward.

The reader should also keep in mind that the examples given here are real but not neces- 4
sarily realistic. To avoid the tedium that accompanies debugging, the examples have been
designed to reveal their bugs fairly quickly. All the methods and techniques shown are
accurate in detail but not always in scale. Most of the debugging examples presented here
would require one-half to one hour of work. It is possible for real debugging sessions to
last for hours or days, especially if the wrong approach or tool is chosen. One of the pur-
poses of this article is to help the programmer choose the correct tool and, thus, to reduce
the tedium.

The Programs

There are more than a dozen listings in this article. Some of them are correct and others
contain errors for use in illustrating debugging techniques. Many of the programs serve
as examples in multiple sections of the article. The following summary of the programs
(Table 18-1) is given to avoid confusion and to provide a common location to consult for
explanations of the programs.

Section 11- Programming in the MS-DOS Environment 541

HUAWEI EX. 1110 - 551/1582

Part E: Programming Tools

Table 18-1. Summary of Example Programs.

Name:
Figure:
Status:
Purpose:

Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:

Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:

Compiling:

Parameters:

EXP.BAS
18-1
Incorrect-do not use.
Computes EXP(x) (the exponential of x) to a specified precision using an
infinite series.
QBEXP;
LINKEXP;
Prompts for value for x and a convergence criterion. Enter zero to quit.

EXP.BAS
18-3
Correct version of Figure 18-1.
Computes EXP(x) (the exponential of x) to a specified precision using an
infinite series.
QBEXP;
LINKEXP;
Prompts for value for x and a convergence criterion. Enter zero to quit.

COMMSCOP.ASM
18-4
Correct.
Monitors the activity on a specified COM port and places a copy of all
transmitted and received data in a RAM buffer. Each entry in the buffer is
tagged to indicate whether the byte was sent by or received by the applica­
tion program under test. Control is provided to start, stop, and resume trac­
ing by means of a control interrupt. When tracing is stopped and resumed,
a marker is left in the buffer. COMMSCOP is a terminate-and-stay-resident
(TSR) program.
MASM COMMSCOP;
LINK COMMSCOP;
EXE2BIN COMMSCOP.EXE COMMSCOP.COM
DEL COMMSCOP.EXE
Installed by entering COMMSCOP; no parameters for installation. The
TSR is controlled by passing parameter data in registers with an Interrupt
60H call. The registers can have the following values:

AH: Command:
OOH STOP
01H FLUSH AND START
02H RESUME TRACE
03H RETURN TRACE BUFFER ADDRESS

(more)

542 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 552/1582

l
I

Name:
Figure:
Status:
Purpose:

COMPILING:

Parameters:

Name:
Figure:
Status:
Purpose:

Compiling:

Parameters:

Name
Figure:
Status:
Purpose:

Article 18: Debugging in the MS-DOS Environment

DX:
OOH
01H

COMport:
COM1
COM2

Interrupt 60H returns the following in response to function 3:

CX Buffer count in bytes
DX Segment address of buffer
BX Offset address of buffer

COMMSCMD.C
18-5
Correct.
Controls the COMMSCOP program by issuing Interrupt 60H calls.
eversion.
MSC COMMSCMD;
LINK COMMSCMD;
Commands are issued by
COMMSCMD [[cmd] [port]]
where: cmd is the command to be executed:

STOP Stop trace
START Flush buffer and start trace
RESUME Resume a stopped trace

port is the COM port (1 = COM1, 2 = COM2)
If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed.

COMMSCMD.BAS
18-6
Correct.
Controls the COMMSCOP program by issuing Interrupt 60H calls.
QuickBASIC version.
QB COMMSCMD;
LINK COMMSCMD USERLIB;
Commands are issued by
COMMSCMD [[cmd][,port]]
where: cmd is the command to be executed:

STOP Stop trace
START Flush buffer and start trace
RESUME Resume a stopped trace

port is the COM port (1 = COM1, 2 = COM2)
If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed.

COMMDUMP.BAS
18-7
Correct.
Produces a formatted dump of the communications trace buffer.

(more)

Section II: Programming in the MS-DOS Environment 543

HUAWEI EX. 1110 - 553/1582

Part E: Programming Tools

Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:

Compiling:

Parameters:

QB COMMDUMP;
LINK COMMDUMP USERLIB;
No parameters. When COMMDUMP is invoked, it formats and dumps the·
entire buffer.

TESTCOMM.ASM
18-9
Incorrect-do not use.
Provides test data for the COMMSCOP routine.
MASM TESTCOMM;
LINK TESTCOMM;
No parameters. TESTCOMM reads data from the keyboard and writes to
COM1 and reads COM1 data and displays it on the screen. Ctrl-C cancels.

TESTCOMM.ASM
18-10
Correct version of Figure 18-9.
Provides test data for the COMMSCOP routine.
MASM TESTCOMM;
LINK TESTCOMM;
No parameters. TESTCOMM reads data from the keyboard and writes to
COM1 and reads COM1 data and displays it on the screen. Ctrl-C cancels.

BADSCOP.ASM
18-11
Incorrect version of Figure 18-4-do not use.
Monitors the activity on a specified COM port and places a copy of all
transmitted and received data in a RAM buffer. Each entry in the buffer is
tagged to indicate whether the byte was sent by or received by the applica­
tion program under test. Control is provided to start, stop, and resume trac­
ing by means of a control interrupt. When tracing is stopped and resumed,
a marker is left in the buffer. BADSCOP is a terminate-and-stay-resident
(TSR) program.
MASM BADSCOP;
LINK BADSCOP;
EXE2BIN BADSCOP.EXE BADSCOP.COM
DEL BADSCOP.EXE
Installed by entering BADSCOP; no parameters for installation. The TSR is
controlled by passing parameter data in registers with an Interrupt60H
call. The registers can have the following values:

AH: Command:
OOH STOP
01H FLUSH AND START

(more)

544 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 554/1582

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Name:
Figure:
Status:
Purpose:
Compiling:

Parameters:

Article 18: Debugging in the MS-DOS Environment

.,

02H RESUME TRACE
03H RETURN TRACE BUFFER ADDRESS

DX: COM port:
OOH COM1
01H COM2

Interrupt 60H returns the following in response to function 3:

CX Buffer count in bytes
DX Segment address of buffer
BX Offset address of buffer

UPPERCAS.C
18-13
Incorrect-do not use.
Converts a fixed string to uppercase and prints it.
MSC /Zi UPPERCAS;
LINK UPPERCAS /CO;
No parameters.

UPPERCAS.C
18-14
Correct version of Figure 18-13.
Converts a fixed string to uppercase and prints it.
MSC /Zi UPPERCAS;
LINK UPPERCAS /CO;
No parameters.

ASCTBL.C
18-16
Incorrect-do not use.
Displays a table of all displayable characters.
MSC /Zi ASCTBL;
LINK ASCTBL /CO;
No parameters.

ASCTBL.C
18-17
Correct version of Figure 18-16.
Displays a table of all displayable characters.
MSC /Zi ASCTBL;
LINK ASCTBL /CO;
No parameters.

Section II: Programming in the MS-DOS Environment 545

HUAWEI EX. 1110 - 555/1582

PartE: Programming Tools

Debugging Tools and Techniques

MS-DOS provides a wide variety of tools to aid in the debugging process. Some are
intended specifically for debugging. For example, the DEBUG program is delivered with
MS-DOS and provides basic debugging aid; the more sophisticated SYMDEB is supplied
with MASM, Microsoft's macro assembler; Code View, a debugger for high-order languages,
is supplied with Microsoft C, Microsoft Pascal, and Microsoft FORTRAN. Others are gen­
eral MS-DOS services and features that are also useful in the debugging process.

Debugging, like programming, has aspects of both an art and a craft. The craft- the
mechanical details of using the tools- is discussed both here and elsewhere in this
volume, but the main subject of this article is the art of debugging- the choice of the
correct tool, the best techniques to use in various situations, the methods of extracting the
clues to the problem from a recalcitrant program.

Debugging a program is a form of puzzle solving. As with most intellectual detective
work, the following rule applies:

Gather enough information and the solution will be obvious.

The craft of debugging involves gathering the data; the art lies in deciding which data to
gather and in noticing when the solution has become obvious.

The methods of gathering data for debugging, listed in order of increasing difficulty and
tediousness, fall into four major categories:

• Inspection and observation
• Instrumentation
• Use of software debugging monitors (DEBUG, SYMDEB, and Code View)
• Use of hardware debugging aids

As mentioned above, part of the art of debugging is knowing which method to use. This
is one of the most difficult aspects of debugging-so difficult, in fact, that even program­
mers with years of experience make mistakes. Many programmers have spent hours
single-stepping through a program with DEBUG only to discover that the cause of the
problem would have been obvious if they had given the program's output even a cursory
check. The only universal rule for choosing the correct debugging method is

Try them all, starting with the simplest.

Inspection and observation

Inspection and observation is the oldest and, usually, the best method of program debug­
ging. It is also the basis for all the other methods. The first step with this method, as with
the others, is to gather all the pertinent materials. Program listings, file layouts, report
layouts, and program design materials (such as algorithm descriptions and flowcharts)
are all extremely valuable in the debugging process.

546 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 556/1582

l
I

Article 18: Debugging in the MS-DOS Environment

Desk-checking

Before a programmer can determine what a program is doing wrong, he or she must
know the correct operation of the program. There was a time, when computers were rare
and expensive resources, that programmers were encouraged not to run their programs
until the programs had been thoroughly desk-checked. The desk-checking process in­
volves sitting down with a listing, a hand calculator, and some sample data. The program­
mer then "plays computer," executing each line of the program manually and writing
down on paper the results of each program step. This process is extremely slow and
tedious. When the desk-checking is completed, however, the programmer not only has
found most of the bugs in the program but also has become intimately familiar with the
execution of the program and the values of the program variables at each step.

The advent of inexpensive yet powerful personal computers, combined with the rising
cost of programmer time, has made complete desk-checking nearly obsolete. It is now
cheaper to run the program and let the computer find the errors. However, the usefulness
of the desk-checking technique remains. Many programmers find it helpful to manually
execute those sections of a program that they suspect are causing trouble. Even if they
don't find errors in the code, the insight they gain into the workings of the code and the
values of the variables at each step can be invaluable when applying other debugging
techniques.

The inspection-and-observation methodology

The basic technique of the inspection-and-observation method is simple: After gathering
all the required materials, run the program and observe. Observe very carefully; events
that seem insignificant may be the very clues needed to discover where the program is
going astray. As the program executes, note whether each section performs correctly. 4
Does the program clear the screen when it should? Does it ask for input when it should?
Does it produce the correct results? Observable events are the debugger's milestones in
the execution of the program. If the program clears the screen but writes purple asterisks
instead of requesting input, then the problem lies somewhere after the program issues the
Clear Screen command but before it writes the input prompt on the screen. At this point,
the program listing and design data become important. Inspect the listing and examine
the area after the last successful milestone and before the missing milestone. Look for a
logic error in the code that could explain the observed data.

If the program produces printed reports, they may also be useful. Watch the screen and
listen to the printer. Clues can sometimes be found in the order in which things happen.
The light on the disk drive can be another indication of activity. See how disk activity co­
ordinates with screen and printer events. Try to identify each section of the program from
these clues. Then use this information to localize the inspection of the listing to isolate
the erroneous code.

The values of data given in reports and on the screen can also give clues to what's going
wrong. Examining the data and reconstructing the values used to compute it sometimes
leads to inferences about data problems. Perhaps a variable was misspelled in the code

Section 11· Programming in the MS-DOS Environment 547

HUAWEI EX. 1110 - 557/1582

Part E: Programming Tools

or perhaps a data file is in the wrong format or has been corrupted. With this information,
the bug can often be isolated. However, a very thorough knowledge of the program and its
algorithms is required. See Desk-checking above.

MS-DOS provides four commands and filters that are useful in the collection and examina­
tion of data for debugging: TYPE, PRINT, FIND, and DEBUG. All these commands display
the data in a file in some way. If the data is ASCII (displayable) characters, TYPE and
PRINT can be used, with some help from FIND. Binary files can be examined and modi­
fied with the DEBUG utility. See USER COMMANDS: FIND; PRINT; TYPE; PROGRAMMING
UTILITIES: DEBUG.

The TYPE command provides the simplest way to display ASCII data files. This method
can be used to examine both input and output files. Checking the input files may uncover
some bad (or unexpected) data that causes the program to malfunction; examining the
output files will show whether calculations are being performed correctly and may help
pinpoint the erroneous calculations if they are not.

The FIND utility is useful in locating specific data in a file. Using FIND is more accurate
and definitely less tedious than examining the file manually using the TYPE command.
The IN switch causes FIND to also display the relative line number of the matching line­
information that is most useful in debugging.

Sometimes the data is too complex to be examined on the screen and printed copy is
needed. The PRINT command will produce hard copy of an ASCII file as will the TYPE
command if its output is redirected to the printer with the >PRN command-line parameter
after the filename.

Not all data files contain pure ASCII data, and displaying such non-ASCII files requires a
different approach. The TYPE command can be used, but nonprintable characters will
produce garbage on the screen. This technique can still prove useful if the file has a large
amount of ASCII data or if the records are regular and the ASCII information always
appears at the same location, but no information can be gained about non-ASCII numeric
data in such files. Note also that the entire file might not be displayed using TYPE because
if TYPE encounters a byte containing lAH (Control-Z), it assumes it has reached the end
of the file and stops.

Clearly, a more useful tool for examining non-ASCII files would be a program that dumps
the file in hexadecimal, with an appropriate translation of all·displayable characters. Such
programs exist in the public domain (through bulletin-board services, for instance) and, in
any event, are not difficult to write. MS-DOS does not include a stand-alone file-dumping
program among its standard commands and utilities, but the DEBUG program can be
used, with minor inconvenience, to display files. This program is discussed in detail later
in this article; for now, simply follow these instructions to use DEBUG as a file dumper.
To load DEBUG and the program to be debugged, use the form

DEBUG [drive:] [path]jilename.ext

DEBUG will display a hyphen as a prompt. To see the contents of the file, enter D (the
DEBUG Display Memory command) and press Enter. DEBUG will display the first 128
(80H) bytes of the file in hexadecimal and will also show any displayable characters.

548 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 558/1582

&tide 18: Debugging in the MS-DOS Environment

To see the rest of the file, simply continue entering D until the desired area is found. Hard
copy of the contents of the display can be made by using the PrtSc key (or Ctrl-PrtSc to
print continuously). Note that the offset addresses for the bytes in the file begin at the
value in the program's CS:IP registers, which can be viewed by using the Debug R (Display
or Modify Registers) command. To obtain the true offsets, subtract CS:IP from the address
shown.

The essence of the inspection-and-observation method is careful and thoughtful observa­
tion. The computer and the operating system can provide tools to aid in the collection of
data, but the most important tool is the programmer's mind. By applying the logical skills
they already possess to the observed data, programmers can usually avoid the more
complex forms of debugging.

Instrumentation

Debugging by instrumentation is a traditional method that has been popular since pro­
grams were holes punched in cards. In general, this method consists of adding something
to the program, either internally or externally, to report on the progress of program execu­
tion. Programmers call this added mechanism instrumentation because of its resemblance
to the measuring instruments used in science and engineering. Instrumentation can be
software, hardware, or a combination of both; it can be internal to the program or external
to it. Internal instrumentation is always software, but external instrumentation may be
either hardware or software.

Internal instrumentation

Internal instrumentation usually consists of display or print statements placed at strategic
locations. Other signals to the user can be used if they are available. For instance, the sys-

4
tern beeper can be sounded at key locations, perhaps in a coded sequence of beeps; if the
device being debugged has lights that can be accessed by the program, these lights can be
flashed at important locations in the program. Beeping and flashing do not, however,
possess the information content usually required for debugging, so display or print state-
ments are preferred.

The use of display or print statements to display key data and milestones on the screen or
printer requires careful planning. First, apply the techniques of inspection and observation
described in the previous section to determine the most probable points of failure. Then, if
there is some doubt about what path execution is taking through the code, embed mes­
sages of the following types after key decision points:

BEGINNING SORT PHASE
ENDING PRINCIPAL CALCULATION
PROCESSING RECORD XX

A second way to use display or print statement instrumentation is to embed statements that
display the data and interim values used for calculations. This technique can be extremely
useful in finding problems related to the data being processed. Consider the QuickBASIC
program in Figure 18-1 as an example. The program has no syntax errors and compiles
cleanly, but it sometimes produces an incorrect answer.

Section /1- Programming in the MS-DOS Environment 549

/

HUAWEI EX. 1110 - 559/1582

Part E: Programming Tools

EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

I **
' *
' * EXP

' *

*
*
*

' * This routine computes EXP(x) using the following infinite series: *
' * *
' * X

' * EXP(x) 1 + + + + + ... *
' * 1! 2! 3! 4! 5!

' * *
' * *
' * The program requests a value for x and a value for the convergence *·
' * criterion, C. The program will continue evaluating the terms of *
' * the series until the difference between two terms is less than C. *
' * *
' * The result of the calculation and the number of terms required to *
' * converge are printed. The program will repeat until an x of 0 is *
' * entered. *
' * *
I **

Initialize program variables

INITIALIZE:

TERMS = 1

FACT =

LAST= 1.E35

DELTA = 1 .E34
EX = 1

Input user data

INPUT "Enter number:

IF X = 0 THEN END

"; X

INPUT "Enter convergence criterion (.0001 for 4 places)

Compute exponential until difference of last 2 terms is < C

WHILE ABS(LAST- DELTA) >= C

LAST = DELTA

WEND

FACT = FACT * TERMS

DELTA = XATERMS / FACT

EX = EX + DELTA

TERMS TERMS +

Figure 18-1. A routine to compute exponentials.

550 The MS-DOS Encyclopedia

"; c

(more)

HUAWEI EX. 1110 - 560/1582

.Article 18: Debugging in the MS-DOS Environment

·, Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge"

PRINT

GOTO INITIALIZE

Figure 18-1. Continued.

The purpose of the EXP.BAS program is to compute the exponential of a given number
to a specified precision using an infinite series. The program computes the value of each
term in the infinite series and adds it to a running total. To keep from executing forever,
the program checks the difference between the last two elements computed and stops
when this difference is less than the convergence criterion entered by the user.

When the program is run for several values, the following results are observed:

Enter number: ? 1

Enter convergence criterion (.0001 for 4 places): ? .0001

2.718282

10 elements required to converge

Enter number: ? 1.5

Enter convergence criterion (.0001 for 4 places): ? .0001

4.481686
11 elements required to converge

Enter number: ? 2
Enter convergence criterion (.0001 for 4 places): .0001

5
3 elements required to converge

Enter number: ? 2.5
Enter convergence criterion (.0001 for 4 places): .0001

12.18249
15 elements required to converge

Enter number: ? 3

Enter convergence criterion (.0001 for 4 places): ? .0001

13
4 elements required to converge

Enter number: ? 0

Some of these numbers are incorrect. Table 18-2 shows the computed values and the
correct values.

Section !1- Programming in the MS-DOS Environment 551

HUAWEI EX. 1110 - 561/1582

Part E: Programming Tools

Table 18-2. The Computed Values Generated by EXP.BAS and the Expected
Values.

X Computed Correct

1.0 2.718282 2.718282
1.5 4.481686 4.481689
2.0 5 7.389056
2.5 12.18249 12.18249
3.0 13 20.08554

Applying the methods from the first section of this article and observing the data quickly
reveals a pattern. With the exception of 1, all whole numbers give incorrect results, but all
numbers with fractions give results that are correct to the specified convergence criterion.
Examination of the listing shows no obvious reason for this. The answer is there, but only
an exceptionally intuitive numeric analyst would see it. Because no answer is obvious, the
next step is to validate the only information available- that whole numbers produce er­
rors and fractional ones do not. Repeating the first experiment with 2 and a number
very close to 2 yields the following results:

Enter number: ? 1.999
Enter convergence criterion (.0001 for 4 places): ? .0001

7.38167
13 elements required to converge

Enter number: ? 2
Enter convergence criterion (.0001 for 4 places): ? .0001

5

3 elements required to conve,rge

Enter number: ? 0

The outcome is the same- repeating the experiment with a number as near to 2 as the
convergence criterion permits (1.9999) produces the same result. The error is indeed
caused by the fact that the number is an integer.

Because no intuitive way can be found to solve the mystery by inspection, the program­
mer must turn to the next method in the hierarchy, instrumentation. The problem has
something to do with the calculation of the terms of the series. Therefore, the section of
the program that performs this calculation should be instrumented by placing PRINT
statements inside the WHILE loop (Figure 18-2) to display all the intermediate values
of the calculation.

WHILE ABS(LAST- DELTA) >= C
LAST = DELTA
FACT = FACT * TERMS
DELTA = X A TERMS / FACT

Figure 18-2. Instrumenting the WHILE loop.

552 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 562/1582

WEND

Article 18: Debugging in the MS-DOS Environment

EX = EX + DELTA

PRINT "TERMS="; TERMS; "EX="; EX; "FACT="; FACT; "DELTA="; DELTA;
PRINT "LAST="; LAST

TERMS = TERMS + 1

Figure 18-2. Continued.

The print statements used in this WHILE loop are typical of the type used for instrumenta­
tion. The program makes no attempt at fancy formatting. The print statements simply
identify each value with its variable name, allowing easy correlation of the data and the
code in the listing. Repeating the experiment with 1.999 and 2 yields

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001

TERMS= EX= 2.999 FACT= 1 DELTA= 1.999 LAST= 1E+34

TERMS.= 2 EX= 4. 997001 FACT= 2 DELTA= 1 . 998 LAST= 1 . 999
TERMS= 3 EX=
TERMS= 4 EX=
TERMS= 5 EX=

TERMS= 6 EX=

TERMS= 7 EX=
TERMS= 8 EX=

6.328335 FACT= 6 DELTA= 1.331334 LAST= 1.998
6.993669 FACT= 24 DELTA= .6653343 LAST= 1.331334

7.25967 FACT= 120 DELTA= .2660006 LAST= .6653343

7.348292 FACT= 720 DELTA= 8.862254E-02 LAST= .2660006

7.373601 FACT= 5040 DELTA= 2.530806E-02 LAST= 8.862254E-02

7.379924 FACT= 40320 DELTA= 6.323853E-03 LAST= 2.530806E-02
TERMS= 9 EX= 7.381329 FACT= 362880 DELTA= 1 .404598E-03 LAST= 6.323853E-03

TERMS= 10 EX= 7.3816T FACT= 3628800 DELTA= 2.807791E-04 LAST= 1 .404598E-03

TERMS= 11 EX= 7.381661 FACT= 3.99168E+07 DELTA= 5.102522E-05 LAST= 2.807791E-04
TERMS= 12 EX= 7.38167 FACT= 4.790016E+08 DELTA= 8.499951E-06 LAST= 5.102522E-05

7.38167

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
TERMS= EX= 3 FACT= 1 DELTA= 2 LAST= 1E+34

TERMS= 2 EX= 5 FACT= 2 DELTA= 2 LAST= 2

5

3 elements required to converge

Examination of the instrumentation printout for the two cases shows a drastically different
pattern. The fractional number went through 13 iterations following the expected pattern;
the whole number, however, quit on the third step. The loop is terminating prematurely.
Why? Look at the values calculated for DELTA and LAST on the last complete step. They
are the same, giving a difference of zero. Because this difference will always be less than
the convergence criterion, the loop will always terminate early. A moment's reflection
shows why. The numerator of the fraction for each term but the first in the infinite series is
a power of the number entered; the denominator is a factorial, a product formed by multi­
plying successive integers. Because n! = n •(n-1)!, when an integer is raised to a power
equal to itself and divided by the factorial of that integer the result will always be the same
as the preceding term. That is what has happened here.

Section Jl- Programming in the MS-DOS Environment. 553

HUAWEI EX. 1110 - 563/1582

Part E: Programming Tools

Now that the cause of the problem is found, it must be fixed. How can this problem be
prevented? In this case, the problem is caused by a logic error. The programmer misread
(or miswrote!) the algorithm and assumed that the criterion for termination was that the
difference between the last two terms be less than the specified value. This is incorrect.
Actually, the termination criterion should be that the difference between the forming
EXP(x) and the last term be less than the criterion. To simplify, the last term itself must be
less than the value specified. The correct program listing, including the new WHILE loop,
is shown in Figure 18-3.

EXP.BAS -- COMPUTE EXPONENTIAL WITH INFINITE SERIES

I **
' .
' * EXP
' . *

*
*

' * This routine computes EXP(x) using the following infinite series: *
' *
' * X

' * EXP(x) 1 +

' * 1!

+ --- + --- +
2! 3!

*
*
*
*

I * *.

' * *
' * The program requests a value for x and a value for the convergence *
' * criterion, C. The program will continue evaluating the terms of *
' * the series until the amount added with a term is less than C. *
' * *
' * The result of the calculation and the number of terms required to *
' * converge are printed. The program will repeat until an x of 0 is

' * entered. *
' * *
t **

Initialize program variables

INITIALIZE:

TERMS = 1

FACT = 1

DELTA= 1.E35
EX = 1

Input user data

INPUT "Enter number: "; X
IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places): "; c

Compute exponential until difference of last 2 terms is < C

Figure 18-3. Corrected exponential calculation routine.

554 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 564/1582

l
I

WHILE DELTA > C

WEND

FACT = FACT * TERMS
DELTA = XATERMS / FACT

EX = EX + DELTA

TERMS TERMS + 1

Article 18: Debugging in the MS-DOS Environment

Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge"
PRINT

GOTO INITIALIZE

Figure 18-3. Continued.

The program now produces the correct results within the limits of the specified accuracy:

Enter number: ? 1.999
Enter convergence criterion (.0001 for 4 places): ? .0001

7.381661

12 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001

7.389047
12 elements required to converge

Enter number: ? 0

This example illustrates how easy it is to use internal instrumentation in high-order lan­
guages. Because these languages usually have simple formatted output commands, they
require very little work to instrument. When these output commands are not available,
however, more work may be required. For instance, if the program being debugged is in
assembly language, it is possible that the code required to format and print internal data
will be longer than the program being debugged. For this reason, internal instrumentation
is rarely used on small and moderate assembly programs. However, large assembly pro­
grams and systems often already have print formatting routines built into them; in these
cases, internal instrumentation may be as easy as with high-order languages. ·

External instrumentation

Sometimes it is difficult to use internal instrumentation with a program. If, for instance,
the problem is timing related, adding print statements could cloud the problem or, worse
yet, make it go away completely. This leaves the programmer in the frustrating position of
having the problem only when the cause can't be seen and not having the problem when
it can. A solution to this type of problem can sometimes be found by moving the instru­
mentation outside the program itself. There are two types of external instrumentation:
hardware and software.

Section 11· Programming in the MS-DOS Environment 55 5

HUAWEI EX. 1110 - 565/1582

Part E: Programming Tools

Hardware instrumentation consists of whatever logic analyzers, oscilloscopes, meters,
lights, bells, or gongs are appropriate to the hardware and software under test. Hardware
instrumentation is difficult to set up and tedious to use. It is, therefore, usually reserved for
those problems directly associated with hardware. Such problems often arise when new
software is being run on new hardware and no one is quite sure where the bugs are.
Because most programmers reading this book are developing software on tried-and-true
personal computer hardware and because most of those programmers are unlikely to have
a logic analyzer costing several thousand dollars, we will skip over the use of hardware
instrumentation for software debugging. If a logic analyzer must be used, the programmer
should remember that the debugging philosophy and techniques discussed in this article
can still be applied effectively.

MS-DOS provides a feature that is very useful in building external instrumentation soft­
ware: the TSR, or terminate-and-stay-resident routine. See PROGRAMMING IN THE MS­
DOS ENVIRONMENT: CusTOMIZING Ms-nos: Terminate-and-Stay-Resident Utilities. This
feature of the operating system allows the programmer to build a monitoring routine that
is, in essence, a part of the operating system and outside the application program. The TSR
is loaded as a normal program, but instead of leaving the system when it is done, it remains
intact in memory. The operating system provides no way to reexecute the program after it
terminates, so most TSRs are interrupt driven.

Because TSRs exist outside the application program, they can be used to build external
instrumentation devices. This independence allows them to perform monitoring functions
without disturbing the logic flow of the application program. The only areas where inter­
ference is likely are those where the TSR and the program must use common resources.
These conflicts typically involve timing but can also involve other resources, such as 1/0
devices, disk files, and MS-DOS resources, including environment space. Some of these
problems are addressed in the next example.

The TSR type of external instrumentation software can prove useful in analyzing serial
communications. Such an instrumentation program monitors the serial communication
line and records all data. To detect protocol or timing problems, the program tags the
recorded data so that transmitted data can be differentiated from received data. Hardware
devices exist that plug into the serial port and perform both the monitoring and tagging
function, but they are expensive and not always handy. Fortunately, this inexpensive piece
of software instrumentation will serve in many cases.

Software interrupt calls are made with the INT instruction. Although their service routines
must obey similar rules, these interrupts should not be confused with hardware interrupts
caused by external hardware events. Software interrupts in MS-DOS are used by an appli­
cation program to communicate with the operating system and, by extension in IBM sys­
tems, with the ROM BIOS. For example, on IBM PCs and compatibles, application pro­
grams can use software Interrupt 14H to communicate with the ROM BIOS serial port
driver. The ROM BIOS routine, in turn, manages the hardware interrupts from the actual

556 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 566/1582

I

r

I
I

l
I

.Article 18: Debugging in the MS-DOS Environment

serial device. Thus, Interrupt 14H does not communicate directly with the hardware. All
the programs in this article deal with software interrupts to the ROM BIOS and MS-DOS.

A program to trace the serial data flow must have access to the serial data, so such a pro­
gram must replace the vector for Interrupt l4H with one that points to itself. The routine
can then record all the serial data and pass it along through the serial port. Because the
goal is to minimize the effect of this monitoring on the timing of the data, the method used
for recording the data should be fast. This requirement rules out writing to a disk file,
because unexpected delays can be introduced (and because doing disk I/0 from an inter­
rupt service routine under MS-DOS is difficult, if not impossible). Printing the data on
paper is clearly too slow, and data displayed on the screen is too ephemeral. Thus, about
the only thing that can be done with the data is to write it to RAM. Luckily, memory has
become cheap and most personal computers have plenty.

Writing a routine that monitors and records serial data is not enough, however. The data
must still flow through the serial port to and from the external serial device. Thus, the
monitor program can have only temporary custody of the data and must pass it on to the
serial interrupt service routine in the ROM BIOS. This is accomplished by using MS-DOS
function calls to extract the address of the serial interrupt handler before the new vector is
installed in its place. The process of intercepting interrupts and then passing the data on is
known as "daisy-chaining" interrupt handlers. So long as such intercepting programs are
careful to maintain the data and conditions upon entrance for subsequent routines (that is,
so long as routines are well behaved; see PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PRoGRAMMING FOR Ms-oos), several interrupt handlers can be daisy-chained
together with no detriment to processing. (Woe be unto the person who breaks the daisy
chain- the results are annoying at best and unpredictable at worst.)

The serial monitoring program, as described so far, correctly collects and stores serial data 4
and then passes it on to the serial port. This may be intellectually satisfying, but it is not of
much use in the real world. Some way must be provided to control the program- to start
collection, to stop collection, to pause and resume collection. Also, once data is collected,
a control function must be provided that returns the number of bytes collected and their
starting location, so that the data can be examined.

From all this, it is clear that a serial communications monitoring instrument must

1. Replace the Interrupt 14H vector with one pointing to itself.
2. Save the address of the old interrupt handler.
3. Collect the serial data, tag it as transmitted or received, and store it in RAM.
4. Pass the data on, in a completely transparent manner, to the old interrupt handler.
5. Provide some way to control data collection.

A program that meets all these criteria is shown in Figure 18-4. The COMMSCOP program
has three major parts:

Section /1· Programming in the MS-DOS Environment 557

HUAWEI EX. 1110 - 567/1582

PartE: Programming Tools

Procedure

COMMSCOPE
CONTROL
VECTOR_INIT

Purpose

Monitoring and tagging
External control
Interrupt vector initialization

The COMMSCOPE procedure provides the new Interrupt 14H handler that intercepts the
serial 1/0 interrupts. The CONTROL procequre provides the external control needed to
make the system work. The VECTOR_INIT procedure gets the old interrupt handler
address, installs COMMSCOPE as the new interrupt handler, and installs the interrupt
handler for the control interrupt.

TITLE COMMSCOP -- COMMUNICATIONS TRACE UTILITY

**
; * *
; * COMMSCOP -- *
; * THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH
ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
WAS SENT BY OR RECEIVED BY THE SYSTEM.

COMMSCOP IS INSTALLED BY ENTERING

COMMSCOP

THIS WILL INSTALL COMMSCOP AND SET UP A 64K BUFFER TO BE USED
FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR

*
*
*
*
*
*
*
*
*
* ; * EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT *

; * 30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD, *
; * ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY *

*.
; *

HOLD MORE THAN 30 SECONDS WORTH OF DATA. *
*

; * WHEN INSTALLED, COMMSCOP INTERCEPTS ALL INT 14H CALLS. IF THE *
; * PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE- *
; * CEIVE DATA, A COPY OF THE DATA BYTE, PROPERLY TAGGED, IS PLACED *
; * IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL
; * INT 14H HANDLER.

; *
; * COMMSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE !NT HAS
; * THE FOLLOWING CALLING SEQUENCE:

; *
; *
; *
; *
i "*
; *
; *
; *
; *

AH -- COMMAND

0 STOP TRACING, PLACE STOP MARK IN BUFFER
1 FLUSH BUFFER AND START TRACE
2 RESUME TRACE
3 RETURN COMM BUFFER ADDRESSES

DX -- COMM PORT (ONLY USED WITH AH = 1 or 2)
0 COM1
1 -- COM2

Figure 18-4. Communications trace utility.

558 The MS-DOS Encyclopedia

*
*
*
*
*
*
*
*
*
*
*
*
*
*

(more)

HUAWEI EX. 1110 - 568/1582

Article 18: Debugging in the MS-DOS Environment

; *
;· *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH 3:

CX -- BUFFER COUNT IN BYTES

OX -- SEGMENT ADDRESS OF THE START OF THE BUFFER

BX -- OFFSET ADDRESS OF THE START OF THE BUFFER

THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE
FOLLOWING FORM:

BYTE 0 -- CONTROL
BIT 0 ON FOR RECEIVED DATA, OFF FOR TRANS.

BIT 7 STOP MARK -- INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.

BYTE 1 -- 8-BIT DATA

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

**

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 1 OOH

INITIALIZE:

JMP VECTOR_INIT

SYSTEM VARIABLES

OLD_COMM.._INT

COUNT
COMMSCOPE_INT

STATUS

PORT

BUFPNTR

DO

ow
EQU

DB

DB

ow

?

0
60H

0

0
VECTOR_INIT

SUBTTL DATA INTERRUPT HANDLER

PAGE

;TO MAKE A COMM FILE

;JUMP TO THE INITIALIZATION
ROUTINE WHICH, TO SAVE SPACE,

; IS IN THE COMM BUFFER

;ADDRESS OF REAL COMM INT

;BUFFER COUNT

;COMMSCOPE CONTROL INT

;PROCESSING STATUS
; 0 -- OFF

; 1 -- ON

;COMM PORT BEING TRACED

;NEXT BUFFER LOCATION

**
; * *
; * COMMSCOPE

; *
; *
; *

THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA

IF APPROPRIATE.
*
*
*

**
COMMSCOPE

TEST
JZ

PROC NEAR

CS:STATUS,1
OLD_JUMP

;ARE WE ON?
; NO, SIMPLY JUMP TO OLD HANDLER

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 559

HUAWEI EX. 1110 - 569/1582

PartE: Programming Tools

' CMP AH,OOH ;SKIP SETUP CALLS

JE OLD_JUMP ;

CMP AH,03H ;SKIP STATUS REQUESTS
JAE, OLD_JUMP ;

CMP AH,02H ;IS THIS A READ REQUEST?

JE GET-READ ; YES, GO PROCESS

DATA WRITE REQUEST -- SAVE IF APPROPRIATE

CMP DL,CS:PORT ;IS WRITE FOR PORT BEING TRACED?

JNE OLD_ JUMP ; NO, JUST PASS IT THROUGH

PUSH DS ;SAVE CALLER'S REGISTERS

PUSH BX ;

PUSH cs ;SET UP DS FOR OUR PROGRAM
POP DS ;

MOV BX,BUFPNTR ;GET ADDR OF NEXT BUFFER LOC
MOV [BX],BYTE PTR 0 ;MARK AS TRANSMITTED BYTE

MOV [BX+1],AL ;SAVE DATA IN BUFFER

INC COUNT ;INCREMENT BUFFER BYTE COUNT

INC COUNT ;

INC BX ;POINT TO NEXT LOCATION

INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER

JNZ WRITE_DONE ;ZERO MEANS BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF
WRITE_DONE:

POP BX ;RESTORE CALLER'S REGISTERS
POP DS ;

JMP OLD_JUMP ;PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

GET-READ:

CMP DL,CS:PORT ;IS READ FOR PORT BEING TRACED?
JNE OLD_JUMP ; NO, JUST PASS IT THROUGH

PUSH DS ;SAVE CALLER'S REGISTERS
PUSH BX ;

PUSH cs ;SET UP DS FOR OUR PROGRAM
POP DS ;

PUSHF ;FAKE INT 14H CALL
CLI ;

CALL OLD_COMM_INT ;PASS REQUEST ON TO BIOS
TEST AH,SOH ;VALID READ?
JNZ READ _DONE ; NO, SKIP BUFFER UPDATE

Figure 18-4. Continued. (more)

560 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 570/1582

Article 18: Debugging in the MS-DOS Environment

MOV BX,BUFPNTR ;GET ADDR OF NEXT BUFFER LOC
MOV [BX] ,BYTE PTR ;MARK AS RECEIVED BYTE
MOV [BX+1] ,AL ;SAVE DATA IN BUFFER
INC COUNT ;INCREMENT BUFFER BYTE COUNT
INC COUNT ;

INC BX ;POINT TO NEXT LOCATION

INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER

JNZ READ __DONE ;ZERO MEANS BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF
READ__DONE:

POP BX ;RESTORE CALLER'S REGISTERS

POP DS ;

IRET

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP CS:OLD_COMM_INT

COMMSCOPE ENDP

SUBTTL CONTROL INTERRUPT HANDLER
PAGE

**
; *
; * CONTROL
; * THIS ROUTINE PROCESSES CONTROL REQUESTS.

; *

*
*
*

**

CONTROL PROC NEAR

.CMP AH,OOH ;STOP REQUEST?

JNE CNTL_START ; NO, CHECK START
PUSH DS ;SAVE REGISTERS

PUSH BX ;

PUSH cs ;SET DS FOR OUR ROUTINE

POP DS

MOV STATUS,O ;TURN PROCESSING OFF
MOV BX,BUFPNTR ;PLACE STOP MARK IN BUFFER
MOV [BX],BYTE PTR SOH ;

MOV [BX+1] ,BYTE PTR OFFH ;

INC BX ;INCREMENT BUFFER POINTER

INC BX ;

MOV BUFPNTR,BX ;

INC COUNT ;INCREMENT COUNT

INC COUNT ;

POP BX ;RESTORE REGISTERS

POP DS ;

JMP CONTROL_DONE

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 561

HUAWEI EX. 1110 - 571/1582

Part E: Programming Tools

CNTL_START:
CMP
JNE

AH,01H
CNTL__RESUME

;START REQUEST?
; NO, CHECK RESUME

MOV CS:PORT,DL ;SAVE PORT TO TRACE
MOV CS:BUFPNTR,OFFSET VECTOR-INIT ;RESET BUFFER TO START
MOV
MOV
JMP

CNTL__RESUME:
CMP
JNE
CMP
JE
MOV
MOV
JMP

CNTL_STATUS:
CMP
JNE
MOV
PUSH
POP
MOV

CONTROL__DONE:
IRET

CONTROL ENDP

SUB TTL
PAGE

CS:COUNT,O
CS:STATUS,1
CONTROL__j)ONE

AH,02H
CNTL_STATUS
CS:BUFPNTR,O
CONTROL_DONE
CS:PORT,DL
CS:STATUS,1
CONTROL_DONE

AH,03H
CONTROL_DONE
CX,CS:COUNT
cs
DX
BX,OFFSET VECTOR-INIT

;ZERO COUNT
;START LOGGING

;RESUME REQUEST?
; NO, CHECK STATUS
;END OF BUFFER CONDITION?
; YES, DO NOTHING
;SAVE PORT TO TRACE
;START LOGGING

;RETURN STATUS REQUEST?
; NO, ERROR -- DO NOTHING
; RETURN COUNT
;RETURN SEGMENT ADDR OF BUFFER

;RETURN OFFSET ADDR OF BUFFER

INITIALIZE INTERRUPT VECTORS

**
; * *
; * VECTOR-INIT *
; * THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *
; * EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *
; *
; *
; *

A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE
IN THE BUFFER IS THE OFFSET OF VECTOR-INIT.

*
*
*

**

EVEN
VECTOR-IN IT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

MOV AH, 35H

Figure 18-4. Continued.

562 The MS-DOS Encyclopedia

;ASSURE BUFFER ON EVEN BOUNDARY

(more)

HUAWEI EX. 1110 - 572/1582

Article 18: Debugging in the MS-DOS Environment

MOV AL, 14H
INT 21 H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX
MOV AX,ES
MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE
MOV AH,25H
MOV AL, 14H
INT 21 H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL
MOV AH, 25H
MOV AL,COMMSCOPE_INT
INT 21 H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV
MOV
INT

VECTOR_INIT ENDP
CSEG ENDS

AX,3100H
DX,1000H
21H

END INITIALIZE

Figure 18-4. Continued.

;TERM AND STAY RES COMMAND
;64K RESERVED
;DONE

The first executable statement of the program is a jump to the VECTOJL/NIT procedure.
The vector initialization code is needed only during installation; after initialization of the
vectors, the code can be discarded. In this case, the area where this code resides will
become the start of the trace buffer; therefore, it makes sense to put the initialization code
at the end of the program where it can be overlaid by the trace buffer. The jump at the start
of the program is required because the rules for making .COM files require that the entry
point be the first instruction of the program.

The vector initialization routine uses Interrupt 21H Function 35H (Get Interrupt Vector)
to get the address of the current Interrupt 14H service routine. The segment and offset ad­
dress (returned in the ES:BX registers) is stored in the doubleword at OW_ COMM_ /NT
Interrupt 21H Function 25H (Set Interrupt Vector) is then used to vector all Interrupt 14H
calls to COMMSCOPE. Another Function 25H call sets Interrupt 60H to vector to the
CONTROL routine. This interrupt, which provides the means to control and interrogate
the COMMSCOPE routine, was chosen because it is unused by MS-DOS and because some
IBM technical materials list 60H through 66H as being available for user interrupts. (If,
for some reason, Interrupt 60H is not available, simply change the equated symbol
COMMSCOPE_/NT to an available interrupt.)

Section II: Programming in the MS-DOS Environment 563

HUAWEI EX. 1110 - 573/1582

PartE: Programming Tools

When the vector initialization process is complete, the routine exits and stays resident by
using Interrupt 21H Function 31H (Terminate and Stay Resident). As part of the termina­
tion process, the routine requests lOOOH paragraphs, or 64 KB, of storage. A little over 500
bytes of this storage area is used for the code; the rest is available for trace data. If the serial
port is running at 2400 baud, a solid stream of data will fill this buffer in about two min­
utes. However, a solid 32 KB block of data is unusual in asynchronous communications
and, in reality, the buffer will usually contain many minutes worth of data. Note that the
buffer-handling routines in COMMSCOPJJ. require that the buffer be aligned on an even
byte boundary, so VECTOJLINIT is preceded by the EVEN directive.

The interrupt service routine, COMMSCOPE, receives all Interrupt 14H calls. First
COMMSCOPE checks its own status. If it has not been activated, it immediately passes
control to the real service routine. If the tracer is active, COMMSCOPE examines the Inter­
rupt 14H function in AH. Setup and status requests (AH = 0 and AH = 3) do not affect trac­
ing, so they are passed on directly to the the real service routine. If the Interrupt 14H call
is a write-data request (AH = 1), COMMSCOPE moves the byte marking the data as trans­
mitted and the data byte itself to the current buffer location and increments both the byte
count and the buffer pointer by 2. If the buffer pointer goes to zero, the buffer has
wrapped; data collection is turned off and cannot be turned on again without clearing the
trace buffer. Because the buffer, which starts at VECTOR_INIT, is always on an even byte
boundary, there is no danger of the first byte of the data pair forcing a wrap. After the
transmitted data is added to the buffer, COMMSCOPE passes control to the real service
routine.

A read-data request (AH = 2) must be handled a little differently. In this case, the data
to be collected is not yet available. In order to get it, COMMSCOPE must pass control to
the real service routine and then intercept the results on the way back. The code at
GET _READ fakes an interrupt to the service routine by pushing the flags onto the stack so
that the service routine's IRET will pop them off again. COMMSCOPE then calls the ser­
vice routine and, when it returns, retrieves the incoming serial data character from AL. If
the incoming data byte is valid (bit 7 of AH is zero), the byte marking the data as received
and the data byte itself are placed in the trace buffer, and both the byte count and the
buffer pointer are incremented by 2. The buffer-wrap condition is detected and handled in
the same manner as with transmitted data. Because the real service routine has already
been called, COMMSCOPE exits as if it were the service routine by issuing an IRET.

The CONTROL procedure provides the mechanism for external control of the trace pro­
cedure. The routine is entered whenever an Interrupt 60H is executed. Commands are
sent through the AH register and can cause the routine to STOP (AH = 0), START/FLUSH
(AH = 1), RESUME (AH = 2), or RETURN STATUS (AH = 3). This routine also sets the com­
munications port to be traced. The required information is provided in DX using the same
format as the Interrupt 14H routine. The port information is used only with START and
RESUME requests. The RETURN STATUS command returns data in registers: the byte
count (CX), the segment address of the buffer (DX), and the offset of the first byte in the
buffer (BX).

564 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 574/1582

Article 18: Debugging in the MS-DOS Environment

The COMMSCOP program is assembled using the Microsoft Macro Assembler (MASM),
linked using the Microsoft Object Linker (LINK), and then converted to a .COM file using
EXE2BIN (see PROGRAMMING UTILITIES):

C>MASM COMMSCOP; .<Enter>
C>LINK COMMSCOP; <Enter>
C>EXE2BIN COMMSCOP.EXE COMMSCOP.COM <Enter>
C>DEL COMMSCOP.EXE <Enter>

The linker will display the message Warning: no stack segment; this message can be
ignored because the rules for making a .COM file forbid a separate stack segment.

The program is installed by simply typing COMMSCOP. Tracing can then be started and
stopped using Interrupt 60H. MS-DOS does not allow resident routines to be removed, so
COMMSCOP will be in the system until the system is restarted. Also note that, because
COMMSCOP is well behaved, nothing disastrous will happen if multiple copies of it are
accidentally installed. As each new copy is installed, it chains to the previous copy. When
Interrupt 14H is intercepted, the new routine dutifully passes the data on to the previous
routine, which repeats the process until the real service routine is reached. The data is
added to the trace buffer of each copy, giving multiple, redundant copies of the same data.
Because Interrupt 60H is not chained, only the last copy's buffer can be accessed. Thus,
the other copies simply waste 64 KB each.

Two techniques can be used to start or stop a trace. The first is to issue Interrupt 60H
calls at strategic locations within the program being debugged. With assembly-language
programs, this is easy. The appropriate registers are loaded and an INT 60H instruction is
executed. Issuing this INT instruction is not much more difficult with higher-order Micro­
soft languages-both QuickBASIC and C provide a library routine called INT86 that
allows registers to be loaded and INT instructions to be executed. (In QuickBASIC, the
INT86library routine is included in the File USERLIB.OBJ; in Microsoft C, it is included in
the file DOS.H.) Embedded Interrupt 60H calls can be convenient because they limit trac­
ing to those areas where processing is suspect. Because COMMSCOP marks the buffer
each time the trace is stopped and resumed, the separate pieces of a trace are easy to dif­
ferentiate.

The second technique is to write a simple routine to start or stop the trace outside the pro­
gram being debugged. The example in Figure 18-5, COMMSCMD, is a Microsoft C program
that can perform these functions using the INT86 library function to issue Interrupt 60H
calls.

!**

*
* COMMSCMD *
• *
* This routine controls the COMMSCOP program that has been in- *
* stalled as a resident routine. The operation performed is de-
* termined by the command line. The COMMSCMD program is invoked *
* as follows:

* *
*
*

COMMSCMD [[cmd] [port]] *

Figure 18-5. A serial-trace control routine written in C. (more)

Section IL Programming in the MS-DOS Environment 565

HUAWEI EX. 1110 - 575/1582

Part E: Programming Tools

* where cmd is the command to be executed
* STOP stop trace

*
*
*
*

START flush trace buffer and start trace

RESUME resume a stopped trace
port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

* If cmd is omitted, STOP is assumed. If port is omitted, 1 is

* assumed.

*

*
*
*
*
*
*
*
*
*

**!

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#define COMMCMD Ox60

main(argc, argv)

int argc;
char *argv [1;
(

int cmd, port, result;
static char commands [3] [1 0]
union REGS inregs, outregs;

("STOPPED", "STARTED", "RESUMED");

cmd = 0;
port = 0;

if (argc > 1)
(

if (0 == stricmp(argv[1], "STOP"))

cmd =
else if (0

cmd =

else if (0

cmd =

if (argc == 3)
{

0;
-- stricmp(argv[1],

1;
== stricmp(argv[1],

2;

port= atoi(argv[2]);

if (port > 0)
port = port - 1 ;

inregs.h.ah = cmd;
inregs.x.dx =port;

"START"))

"RESUME"))

result= int86(COMMCMD, &inregs, &outregs);

printf("\nCommunications tracing %s for.port COM%1d:\n",

commands[cmd], port+ 1);

Figure 18-5. Continued.

566 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 576/1582

Article 18: Debugging in the MS-DOS Environment

COMMSCMD is passed arguments in the command line. The first argument is the com­
mand to be performed: STOP, START, or RESUME. If no command is specified, STOP is
assumed. The second argument is the port number: 1 (for COM1) or 2 (for COM2). If no
port number is specified, 1 is assumed.

The COMMSCMD program uses a simple IF filter to determine the function to be per­
formed. The program tests the number of arguments in the command line to see if a port
has been specified. If the argument count (argc) is 3 (one for the command name, one for
the command, and one for the port number), the port number argument is retrieved and
converted to an integer. The Interrupt 60H routine expects port numbers to be specified in
the same manner as for Interrupt 14H, so the port number is decremented if it is not already
zero. The AH register is loaded with the command (cmd), the DX register is loaded with
the port number (port), and the INT86 library function is then used to execute an Interrupt
60H call. When the interrupt returns, COMMSCMD displays a message showing the func­
tion and port.

The same function can be performed by the QuickBASIC program in Figure 18-6.

I **
. * *
' * COMMSCMD

I * *
1 * This routine controls the COMMSCOP program that has been in- *
1 * stalled as a resident routine. The operation performed is de- *
1 * termined by the command line. The COMMSCMD program is invoked *
1 * as follows: *
. *
. * COMMSCMD [[cmd] [,port]]

I *
1 * where cmd is the command to be executed

I *
I *
. *
. *
I *

STOP stop trace
START -- flush trace buffer and start trace
RESUME -- resume a stopped trace

port is the COMM port to be traced (1=COM1, 2=COM2, etc.)

1 * If cmd is omitted, STOP is assumed. If port is omitted, 1 is

*
*
*
*
*
*
*
*
*

' * assumed. *
. * *
' **

Establish system constants and variables

DEFINT A-Z

DIM INREG(7}, OUTREG(7} 'Define register arrays

Figure 18-6. A QuickBASICversion ofCOMMSCMD. (more)

Section II: Programming in the MS-DOS Environment 567

HUAWEI EX. 1110 - 577/1582

PartE: Programming Tools

SENDCMD:

RAX 0
RBX 1
RCX 2
RDX 3

RBP 4

RSI 5
RDI 6

RFL 7

DIM TEXT$(2)

TEXT$ (0) "STOPPED"
TEXT$(1) "STARTED"
TEXT$(2) "RESUMED"

Process command-line tail

C$ = COMMAND$

IF LEN (C$) = 0 THEN

CMD = 0
PORT = 0
GOTO SENDCMD

END IF

COMMA= INSTR(C$, ", ")

IF COMMA = 0 THEN
CMDTXT$ = C$

PORT = 0

ELSE

'Establish values for 8086
registers

'Get command-line data

'If no command line specified
'Set CMD to STOP

'Set PORT to COM1

'Extract operands

CMDTXT$ = LEFT$(C$, COMMA- 1)

PORT= VAL(MID$(C$, COMMA+ 1)) - 1
END IF

IF PORT < 0 THEN PORT = 0

IF CMDTXT$ = "STOP" THEN
CMD = 0

ELSEIF CMDTXT$

CMD = 1

ELSEIF CMDTXT$
CMD 2

ELSE

CMD 0

END IF

"START" THEN

"RESUME" THEN

Send command to COMMSCOP routine

INREG(RAX) 256 * CMD

Figure 18-6. Continued. (more)

568 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 578/1582

Article 18: Debugging in the MS-DOS Environment

INREG(RDX) =PORT

CALL INT86(&H60, VARPTR(INREG(O)), VARPTR(OUTREG(Q)))

Notify user that action is complete

PRINT : PRINT
PRINT "Communications tracing"; TEXT$(CMD);
IF CMD <> 0 THEN

PRINT" for port COM"; MID$(STR$(PORT + 1), 2);

ELSE
PRINT

END IF

END

Figure 18-6. Continued.

Both versions of COMMSCMD accept their commands from the command tail; both are
invoked with a STOP, START, or RESUME command and a serial port number (1 or 2). If
the operands are omitted, STOP and COMl are assumed.

After data has been collected and safely placed in the trace buffer, it must be read before
it can be useful. Interrupt 60H provides a function (AH = 3) that returns the buffer address
and the number of bytes in the buffer. The QuickBASIC routine in Figure 18-7 uses this
function to get the address of the data and then formats the data on the screen.

I **
' *
' * COMMDUMP

*
*

' * *
' * This routine dumps the contents of the COMMSCOP trace buffer to
' * the screen in a formatted manner. Received data is shown in *
' * reverse video. Where possible, the ASCII character for the byte
' * is shown; otherwise a dot is shown. !he value of the byte is
' * displayed in hex below the character. Points where tracing was
' * stopped are shown by a solid bar.

' *

*

*
*

' **

Establish system constants and variables

DEFINT A-Z

DIM INREG(7), OUTREG(7) 'Define register arrays

RAX 0 'Establish values for 8086
RBX 1 ' registers

RCX 2

RDX 3

Figure 18-7. Formatted dump routine for serial-trace buffer. (more)

Section II: Programming in the MS-DOS Environment · 569

HUAWEI EX. 1110 - 579/1582

PartE: Programming Tools

RBP 4
RSI 5
RDI 6
RFL 7

Interrogate COMMSCOP to obtain addresses and count of data in
trace buffer

INREG (RAX) = &H0300 ·,Request address data and count
CALL INT86(&H60, VARPTR(INREG(O)), VARPTR(OUTREG(O)))

NUM = OUTREG(RCX)
BUFSEG
BUFOFF

OUTREG(RDX)
OUTREG(RBX)

'Number of bytes in buffer
'Buffer segment address
'Offset of buffer start

IF NUM 0 THEN END

Set screen up and display control data

CLS
KEY OFF
LOCATE 25,
PRINT "NUM ="; NUM;"BUFSEG
PRINT HEX$(BUFOFF);
LOCATE 4, 1
PRINT STRING$(80,"-")
DEF SEG = BUFSEG

"; HEX$(BUFSEG); "BUFOFF

Set up display control variables

DLINE = 1
DCOL = 1
DSHOWN = 0

Fetch and display each character in buffer

FOR I= BUFOFF TO BUFOFF+NUM-2 STEP 2
STAT = PEEK(I)
DAT = PEEK(I + 1)

IF (STAT AND 1)

COLOR 7, 0
ELSE

COLOR 0, 7
END IF

0 THEN

RLINE = (DLINE-1) * 4 + 1

Figure 18-7. Continued.

570 The MS-DOS Encyclopedia

";

(more)

HUAWEI EX. 1110 - 580/1582

Article 18: Debugging in the MS-DOS Environment

IF (STAT AND &H80) = 0 THEN

LOCATE RLINE, DCOL

ELSE

C$ = CHR$(DAT)

IF DAT < 32 THEN C$

P.RINT C$;

H$ = RIGHT$("00" + HEX$(DAT), 2)

LOCATE RLINE + 1, DCOL

PRINT LEFT$(H$, 1);
LOCATE RLINE + 2, DCOL

PRINT RIGHT$(H$, 1);

LOCATE RLINE, DCOL

PRINT CHR$(178);

LOCATE RLINE.+ 1, DCOL

PRINT CHR$(178);
LOCATE RLINE + 2, DCOL

PRINT CHR$(178);

END IF

DCOL = DCOL + 1

IF DCOL > 80 THEN

COLOR 7, 0

DCOL = 1

DLINE = DLINE + 1
SHOWN = SHOWN + 1

IF SHOWN = 6 THEN

LOCATE 25, 50

COLOR 0, 7

PRINT "ENTER ANY KEY TO CONTINUE: ";
WHILE LEN(INKEY$) = 0

WEND

COLOR 7, 0

LOCATE 25, 50

PRINT SPACE$(29);
SHOWN = 0

END IF

IF DLINE > 6 THEN

LOCATE 24, 1

ELSE

PRINT : PRINT : PRINT : PRINT

LOCATE 24, 1

PRINT STRING$(80, "-");

DLINE = 6

LOCATE DLINE * 4,
PRINT STRING$(80, "-");

END IF

END IF

NEXT I

END

Figure 18-7. Continued.

Section II: Programming in the MS-DOS Environment 571

HUAWEI EX. 1110 - 581/1582

PartE: Programming Tools

COMMDUMP is a simple routine. Like most debugging aids, it lacks needless frills. When
it is executed, COMMDUMP displays the data in the trace buffer on the screen in the for­
mat shown in Figure 18-8 .

. 812832.132856788881886713285678888188671328567888818867132856788881886713285678
~333333833
18128323132856788881886713285678888188671328567888818867132856788881886713285678

~8818867132856788881886713285678888188671328567888818867.1.~812832.567813288881
~333821: 3333338333333333333
~8818867132856788881886713285678888188671328567888818867338·18128323567813288881

~8675678132888818867567813288881886756781328888188675678132888818867567813288881
~333
B8675678132888818867567813288881886756781328888188675678132888818867567813288881

B86756781328888188675678132888818867.1.~812832.88671328567888818867132856788881
~33333333333333333333333333333333333821: 333333833333333333333333333333333333333
88675678132BBBB18867567S132888818867338.1812832388671328567888818867132856788881

88671328567888818867132856788881886713285678888188671328567888818867132856788881
33
88671328567888818867132856788881886713285678888188671328567888818867132856788881

~867132856788881.1.~812832.1328567888818867132856788881886713285678888188671328
~333333333333333821: 333333833
~867132856788881338.181283231328567888818867132856788881886713285678888188671328

~UH = 1122 BUFSEG = 1313 BUFOFF = 288

Figure 18-8. Formatted trace dump routine output.

Note that the data for each byte is presented in two forms. If the byte is greater than
lFH, the ASCII character represented by that number is shown; otherwise, a dot is shown.
Directly below each character is the hexadecimal representation of the data. The display
shows received data in reverse video and transmitted data in normal video. The mark
placed in the buffer when collection is stopped and resumed is represented on the screen
as a vertical bar one character wide. The display pauses when the screen is full and waits
for a key to be pressed.

Data collected and displayed in this way can. be invaluable to the programmer trying to
debug a program involving a communications protocol. The example shown above is
part of an ordered exchange of sales data for a system using blocked transmissions and
ACK/NAK protocol. Like all debugging, finding bugs in such a system requires the collec­
tion of large amounts of data. With no data, the causes of problems can be almost impos­
sible to find; with sufficiently large amounts of data, the solutions are obvious.

Several things could be done to the COMMSCOP program to increase its usefulness. For
instance, there are six unused bits in the tag accompanying each data byte in the trace
buffer. These could be used to record the status of the modem control bits, to place timer
ticks in the buffer, or to coordinate the data with some outside event. (Such changes to
COMMSCOP would require a more complicated COMMDUMP routine to display them.)

572 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 582/1582

Article 18: Debugging in the MS-DOS Environment

Software debugging monitors

Debugging monitors provide the next level of sophistication in the hierarchy of debugging
methods. These monitors are coresident in memory with the application being debugged
and provide a controlled testing environment- that is, they allow the programmer to con­
trol the execution of the program and to monitor the results. They even allow some prob­
lems to be fixed directly and the result reexecuted immediately, without the need to
reassemble or recompile.

These monitors are analogous to the TSR serial monitor from the previous section. The
debugging monitors, however, do not reside permanently in memory and are controlled
interactively from the keyboard during the execution of the program under test. Although
this level of control is more flexible than instrumentation, it is also more intrusive into pro­
gram execution. While the debugging monitor sits and waits for input from the keyboard,
the application program is also idle. For programs that must run in real time or must
respond to external stimuli, long delays can be fatal. Careful planning and a thorough
knowledge of the internal workings of the program are required to debug in such an
environment.

Other problems with debugging monitors arise from the nature of the monitors them­
selves. They are programs, no different from the application program being debugged and
are therefore limited to those things that can be done with software. For instance, they can
break (stop execution to allow investigation of program status) when a specific instruction
address is executed (because this can be done with software), but they cannot break
when a data address is referenced (because this would require special hardware). Because
these monitors reside in RAM, as do the application program and MS-DOS, they are sus­
ceptible to damage from a program running wild. Some trial and error is usually involved
in locating the problem causing this kind of damage; breakpoints won't work here because
the problem kills the monitor (and usually MS-DOS also).

Microsoft provides three debugging monitors, each with greater capabilities than its pre­
decessor. In order of increasing sophistication, these three monitors are

Monitor

DEBUG

SYMDEB

Code View

Description

A basic debugging monitor with the ability to load files, modify memory
and registers, execute programs, set simple breakpoints, trace execution,
modify disk files, and enter assembly-language statements into memory.

A more advanced debugging monitor incorporating all the features of
DEBUG plus more sophisticated data display, support for graphics pro­
grams, support for the Intel80186/80286 microprocessors and the Intel
80287 math coprocessor, improved breakpoints, improved tracing,
recognition of symbols from the program being debugged, and limited
source-line display.

The most sophisticated debugging monitor, incorporating the func­
tionality of SYMDEB (with some differences in the details) plus win­
dows, full source-line support, mouse support, and generally more
sophistication on all functions.

Section II: Programming in the MS-DOS Environment 573

HUAWEI EX. 1110 - 583/1582

Part E: Programming Tools

Although all these debugging monitors will be discussed here, this section is not intended
to be a tutorial on all the commands and options of the monitors- those are presented
elsewhere in this volume and in the manuals accompanying the monitors. See PROGRAM­
MING UTILITIES: DEBuG; SYMDEB; ConE VIEw. Rather, this section uses case histories and
sample programs to illustrate the techniques for solving various types of common debug­
ging problems. The case histories have been chosen to show a wide range of problems,
from simple to extremely complex.

DEBUG

Although DEBUG is the least sophisticated of the software debugging monitors, it is quite
useful with moderately complex programs and is an effective tool for learning basic
techniques.

Basic techniques
The first sample program is written in assembly language. It is a test program that per­
forms serial input and output and was used to debug COMMSCOP, the serial-trace TSR
presented earlier. The routine reads from the keyboard and writes to COMl by means of
Interrupt 14H. It also accepts incoming serial data and displays it on the screen. This
process continues until Ctrl-C is pressed on the keyboard. A serial terminal is attached
to COMl to serve as a data source. Figure 18-9 shows the erroneous program.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

**
; *
; * TESTCOMM

*
*

; * THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS *
; * CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING *
; * INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE *
; * SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *
; *
; *

ON THE KEYBOARD. *
*

**

SSEG SEGMENT PARA STACK 'STACK'
DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT
ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR
PUSH DS ;SET UP FOR RET TOMS-DOS
XOR AX,AX
PUSH AX

Figure 18-9. Incorrect serial test routine.

57 4 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 584/1582

l
I
{

MAINLOOP:
MOV
MOV
INT
JZ

CMP
JNE
RET

SENDCOMM:
MOV
MOV
INT

TESTCOMM:
MOV
MOV
INT
AND
JZ
MOV
MOV
INT
MOV
INT
JMP

BEGIN ENDP
CSEG ENDS

END

AH,6
DL, OFFH
21
T,ESTCOMM

AL,03
SENDCOMM

AH, 01
DX,O
14H

AH,3
DX,O
14H
AH,1
MAINLOOP
AH,2
DX,O
14H
AH,6
21H
MAINLOOP

BEGIN

Figure 18-9. Continued.

Article 18: Debugging in the MS-DOS Environment

;USE MS-DOS CALL TO CHECK FOR
KEYBOARD ACTIVITY
IF NO CHARACTER, JUMP TO
COMM ACTIVITY TEST

;WAS CHARACTER A Ctrl-C?
NO, SEND IT TO SERIAL PORT

; YES, RETURN TO MS-DOS

;USE INT 14H WRITE FUNCTION TO
SEND DATA TO SERIAL PORT

;GET SERIAL PORT STATUS
;

;

;ANY DATA WAITING?
; NO, GO BACK TO KEYBOARD TEST
;READ SERIAL DATA
;

;WRITE SERIAL DATA TO SCREEN

;CONTINUE

When executed, this program produces a constant stream of zeros from the serial port.
Incoming serial data is not echoed on the screen, but the cursor moves as if it were. Fur­
ther, the Ctrl-C keystroke is not recognized, so the only way to stop the program is to
restart the system.

An examination of the listing should reveal the errors that cause these problems, but
things do not always happen that way. For the purposes of this case study, assume that the
listing was no help. Instrumentation is more difficult for assembly-language programs than
for programs written in higher-order languages, so in this case it is advantageous to go
directly to a debugging monitor. The monitor for this example is DEBUG.

The first step in using DEBUG is not to invoke the monitor; rather, it is to gather all perti­
nent listings, link maps, and program design documentation. In this case, the program is
so short that a link map will not be needed; all the design documentation that exists is in
the program comments.

Now begin DEBUG by typing

C>DEBUG TESTCOMM.EXE <Enter>

Section /1· Programming in the MS-DOS Environment 575

HUAWEI EX. 1110 - 585/1582

PartE: Programming Tools

The filename must be fully qualified; DEBUG makes no assumptions about the extension.
Any type of file can be examined with DEBUG, but only files with an extension of .COM,
.EXE, or .HEX are actually loaded and made ready for execution. Since TESTCOMM is a
.EXE file, DEBUG loads it and prepares it for execution in a manner compatible with the
MS-DOS loader. Type the Display or Modify Registers command, R.

-R <Enter>

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=OOOO NV UP EI PL NZ NA PO NC

1ACD:OOOO 1E PUSH DS

Notice that the SS and CS registers have been loaded to their correct values and that SP
points to the bottom of the stack. DS and ES point to an address lOOH bytes (lOH para­
graphs) before the stack segment. (This is because the system sets these registers to point
to the program segment prefix [PSP] when a .EXE program is loaded.) Normally, the pro­
gram code would be responsible for loading the correct value of DS, but this example does
not use the data segment, so the program doesn't bother. The register display also shows
the instruction at the current value of CS:IP, lACD:OOOOH. The instruction pointer was set
to this address because the END statement in the source program specified the procedure
BEGIN as the entry point and that procedure begins at CS:IP. Note that the instruction dis­
played below the register information has not yet been executed. This condition is true for
all register displays in DEBUG-IP always points to the next instruction to be executed,
so the instruction at IP has not been executed.

From the symptoms observed during program execution, it is clear that the keyboard data
is not reaching the serial port. The failure could be in the keyboard read routine or in the
serial port write routine. This code is compact and fairly linear, so the easiest way to find
out what is going on is to trace through the first few instructions of the program. Executing
five instructions with the Trace Program Execution command, T, will do this.

-TS <Enter>

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFE BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0001 NV UP EI PL NZ NA PO NC

1ACD:0001 33CO XOR AX, AX

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFE BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0003 NV UP EI PL ZR NA PE NC
1ACD:0003 50 PUSH AX

AX=OOOO BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0004 NV UP EI PL ZR NA PE NC
1ACD:0004 B406 MOV AH,06

AX=0600 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0006 NV UP EI PL ZR NA PE NC
1ACD:0006 B2FF MOV DL,FF

AX=0600 BX=OOOO CX=0131 DX=OOFF SP=OOFC BP=OOOO SI=OOOO · DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=OOOS NV UP EI PL ZR NA PE NC
1ACD:0008 CD15 INT 15

576 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 586/1582

Article 18: Debugging in the MS-DOS Environment

The Trace command shows the contents of the registers as each instruction is executed.
·The register contents are after the execution of the instruction listed above the registers
and the instruction shown with the registers is the nexf instruction to be executed. The
first register display in this example represents the state of affairs after the execution of the
PUSH DS instruction, as indicated by SP. The first three instructions set up the stack so
that the far return issued at the end of the program will pass control to the PSP for termina­
tion. The next two instructions set the registers for a Direct Console I/0 MS-DOS call
(AH = 060, DL = HFFH for input). After these registers are set up, the program should ex­
ecute the MS-DOS call INT 21H. However, the next instruction to be executed is INT 15H.
This is the reason the keyboard data is not being read. The code requests INT 21, not 21H.
This mistake is a common one. The assembler's default radix is decimal, so it converted 21
into 15H. This error can be corrected in memory from within DEBUG and, because the in­
struction hasn't executed yet, the fix can be tested immediately. To make the correction,
use the Assemble Machine Instructions command, A.

-A 8 <Enter>

1ACD:0008 int 21 <Enter>

1ACD:OOOA <Enter>

The A 8 code instructs DEBUG to begin assembling at CS:0008H. DEBUG prompts with
the address and waits for an instruction to be entered. The letter H is not needed after the
21 this time because DEBUG assumes all numbers entered with the Assemble command
are in hexadecimal form. In general, any valid 8086/8087/8088 assembly-language state­
ment can be entered this way and translated into executable machine code. See
PROGRAMMING UTILITIES: DEBUG: A. Within its restrictions, the Assemble command
is a handy way of making changes. The Enter Data command, E, could also have been
used to change the 15H to a 21H, but the Assemble command is safer, especially for com­
plex instructions. After the new instruction has been entered, press Enter again to stop
the assembly process.

There is a danger associated with making changes in memory during debugging: The
memory copy of the program is temporary; the changes exist only in memory and when
DEBUG exits, they are lost. Changes made to .EXE and .HEX files cannot be written back
to disk. To avoid forgetting the changes, write them down. When DEBUG exits, edit the
source file immediately. Changes made to other files can be written back to disk with
DEBUG's Write File or Sectors command, W.

To be sure that the change was made correctly, use the Disassemble (Unassemble)
Program command, U, to show the instructions starting at CS:0004H.

-U 4 <Enter>

1ACD:0004 B406 MOV AH,06

1ACD:0006 B2FF MOV DL,FF

1ACD:0008 CD21 INT 21

1ACD:OOOA 740C JZ 0018

1ACD:OOOC 3C03 CMP AL,03

1ACD:OOOE 7501 JNZ 0011

1ACD:0010 CB RETF

Section II: Programming in the MS-DOS Environment 577

HUAWEI EX. 1110 - 587/1582

PartE: Programming Tools

1ACD:0011 B401 MOV AH,01
1ACD:0013 BAOOOO MOV DX,OOOO
1ACD:0016 CD14 INT 14
1ACD:0018 B403 MOV AH,03
1ACD:001A BAOOOO MOV DXOOOO
1ACD:001D CD14 INT 14
1ACD:001F 80E401 AND AH, 01
1ACD:0022 74EO JZ 0004

The change has been correctly made. Now, to test the change, start the program to see if
characters make it out the serial port. The problem of data from the serial port not making
it to the screen remains, however, so instead of simply starting the program, set a break­
point at the location in the program that handles incoming serial data (CS:0024H). This.
technique allows the output section of the code to be tested separately. The breakpoint is
set using the Go command, G.

-G 24 <Enter>

AX=0130 BX=OOOO CX=0131 DX=OOOO ·SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0024 NV UP EI PL NZ NA PO NC
1ACD:0024 B402 MOV AH,02
-u <Enter>
1ACD:0024 B402 MOV AH,02
1ACD:0026 BAOOOO MOV DX,OOOO
1ACD:0029 CD14 INT 14
1ACD:002B B406 MOV AH,06
1ACD:002D CD21 INT 21
1ACD:002F EBD3 JMP 0004
1 ACD: 0031 0000 ADD [BX+SI) ,AL
1ACD:0033 0000 ADD [BX+SI) ,AL
1ACD:0035 0000 ADD [BX+SI] ,AL
1ACD:0037 0000 ADD [BX+SI] ,AL
1ACD:0039 0000 ADD [BX+SI),AL
1ACD:003B 0000 ADD [BX+SI) ,AL
1ACD:003D 0000 ADD [BX+SI) ,AL
1ACD:003F 0000 ADD [BX+SI),AL
1ACD:0041 0000 ADD [BX+SI] ,AL
1ACD:0043 0000 ADD [BX+SI) ,AL

As stated earlier, the serial port is attached to a serial terminal. After execution of the pro­
gram is started with the Go command, all keys typed on the keyboard are displayed cor­
rectly on the terminal, thus confirming the fix made to the INT 21H instruction. To test
serial input, a key must be pressed on the terminal, causing the breakpoint at CS:0024H
to be executed.

The fact that location CS:0024H was reached indicates that Interrupt 14H is detecting the
presence of an input character. To test if the character is now making it to the screen, a
breakpoint is needed after the write to the screen. The Disassemble command shows the
instructions starting at the current IP value. The program ends at CS:002FH; the instruc­
tions shown after that are whatever happened to be in memory when the program was
loaded. A good place to set the next breakpoint is CS:002FH, just after the Interrupt 21H
call.

578 '!he MS-DOS Encyclopedia

HUAWEI EX. 1110 - 588/1582

j Artkle ,., Debugging in ihe M~OOS En"'~meru

!

-G 2f <Enter>

AX=0600 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=002F NV UP EI PL NZ NA PO NC
1ACD:002F EBD3 JMP 0004

DEBUG shows that the breakpoint was reached and the character did not print (it should
have been on the line after -G 2/), so something must be wrong with the Interrupt 21H
call. A breakpoint just before the MS-DOS call at CS:002DH should reveal the cause of the
problem.

-G 2d <Enter>

AX=0662 BX=OOOO CX=0131 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=002D NV UP EI PL NZ NA PO NC
1ACD:002D CD21 INT 21

The key that was entered on the serial terminal (b) is in AL, where it was returned by
Interrupt 14H. Unfortunately, it is not in DL, where it is expected by the Direct Console 1/0
function (06H) of the MS-DOS command. The MS-DOS function was simply printing a null
(OOH) and then moving the cursor. An instruction (MOV DL,AL) is missing.

Fixing this problem requires the insertion of a line of code, which is usually difficult to do
inside DEBUG. The Move (Copy) Data command, M, can be used to move the code located
below the point where the insertion is to be made down 2 bytes, but this will probably
throw any subsequent addressing off. It is usually easier to exit DEBUG, edit the source file,
and then reassemble. In this case, however, because the instruction to be added is near the
last instruction, a patch can easily be made by entering only three instructions: the new
one and the two it destroys.

-A 2d <Enter>
1ACD:002D rnov dl,al <Enter>
1ACD:002F int 21 <Enter>
1ACD:0031 jrnp 4 <Enter>
1ACD:0033 <Enter>
-U 2b <Enter>
1ACD:002B 8406
1ACD:002D 88C2
1ACD:002F CD21
1ACD:0031 EBD1
1ACD:0033 0000
1ACD:0035 0000
1ACD:0037 0000
1ACD:0039 0000
1ACD:003B 0000
1ACD:003D 0000
1ACD:003F 0000
1ACD:0041 0000
1ACD:0043 0000
1ACD:0045 0000
1ACD:0047 0000
1ACD:0049 0000

MOV AH,06
MOV DL,AL
INT 21
JMP 0004
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL
ADD [BX+SI],AL

Section II: Programming in the MS-DOS Environment 579

HUAWEI EX. 1110 - 589/1582

Part E: Programming Tools

The new line of code has been inserted and verified with the Disassemble command. The
fix is ready to test. The Trace command could be used to single-step through the program
to verify execution. A word of warning is in order, however: The DEBUG Trace command
should never be used to trace an Interrupt 21H call. Once the trace enters the MS-DOS call,
it will wander around for a while and then lock the machine, requiring a restart. Avoid this
problem either by setting a breakpoint just beyond the Interrupt 21H call or by using the
Proceed Through Loop or Subroutine command, P. The Proceed command operates in a
similar manner to the Trace command but does not trace loops, calls, and interrupts.

Because the fix is fairly certain, use the Go command in its simple form with no break­
points. The program will execute without further intervention from DEBUG.

-G <Enter>
lasdfgh
Program terminated normally
-Q <Enter>

The lasdfgh text entered on the serial terminal is displayed correctly. When a Ctrl-C is
entered from the keyboard, the program terminates properly and DEBUG displays the
message Program terminated normally. Now exit DEBUG with the Quit command, Q.

The source code ofTESTCOMM should be edited immediately so that it reflects the two
changes made temporarily under DEBUG. Figure 18-10 shows the corrected listing.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

**
; * *
; * TESTCOMM *
; * THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS
; * CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COM1 USING *
; * INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE
; * SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *
; * ON THE KEYBOARD.

; *
*
*

**

SSEG SEGMENT PARA STACK 'STACK'
DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT
ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR

PUSH DS ;SET UP FOR RET TOMS-DOS

XOR AX,AX
PUSH AX

Figure 18-10. Correct serial test routine.

580 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 590/1582

Article 18: Debugging in the MS-DOS Environment

MAINLOOP:
MOV

MOV

INT

JZ

CMP

JNE

RET

SENDCOMM:
MOV
MOV

INT

TESTCOMM:

MOV
MOV

INT

AND

JZ
MOV

MOV

INT
MOV

MOV

INT

JMP

BEGIN ENDP

CSEG ENDS

END

AH,6
DL, OFFH

21H

TJ;:STCOMM

AL,03

SENDCOMM

AH,01

DX,O

14H

AH,3
DX,O

14H

AH, 1
MAINLOOP

AH,2

DX,O

14H
AH,6

DL,AL

21H

MAINLOOP

BEGIN

Figure 18-10. Continued.

;USE DOS CALL TO CHECK FOR
KEYBOARD ACTIVITY

IF NO CHARACTER, JUMP TO
COMM ACTIVITY TEST

;WAS CHARACTER A Ctrl-C?

NO, SEND IT TO SERIAL PORT
; YES, RETURN TO MS-DOS

;USE INT 14H WRITE FUNCTION TO

SEND DATA TO SERIAL PORT

;GET SERIAL PORT STATUS

;ANY DATA WAITING?

; NO, GO BACK TO KEYBOARD TEST

;READ SERIAL DATA
,:;

;WRITE SERIAL DATA TO SCREEN

;CONTINUE

DEBUG has a rich set of commands and features. The preceding case study shows the
more common ones in their most straightforward aspect. Some of the other commands
and some useful techniques are described below. See PROGRAMMING UTILITIES:
DEBUG.

Establishing initial conditions
When a program is loaded for testing, four areas may require initialization:

• Registers
• Dataareas
• Default file-control blocks (FCBs)
• Command tail

These areas may also require changes during testing, especially when the programmer is
working around bugs or establishing different test conditions.

Section /1- Programming in the MS-DOS Environment 581

HUAWEI EX. 1110 - 591/1582

Part E: Programming Tools

Registers. Registers are ordinarily set when the program is loaded. The values in them
depend on whether a .EXE, .COM, or .HEX file was loaded. Generally, the segment regis­
ters, the IP register, and the SP register are set to appropriate values; with the exception of
AX, BX, and CX, the rest of the registers are set to zero. BX and CX contain the length of
the loaded file. By MS-DOS convention, when a program is loaded, the contents of AL and
AH indicate the validity of the drive specifiers in the first and second DEBUG command­
line parameters, respectively. Each register contains zero if the corresponding drive was
valid, OlH if the drive was valid and wildcards were used, or OFFH if the drive was invalid.

To change the value of any register, use an alternate form of the Register command. Enter
R followed by the two-letter register name. Only 16-bit registers can be changed, so use the
X form of the general-purpose registers:

-R AX <Enter>

DEBUG will respond with the current contents of the register and prompt for a new value.
Either enter a new hexadecimal value or press Enter to keep the current value:

AX 0000
:FFFF <Enter>

In this example, the new value of AX is FFFFH.

When changing registers, exercise caution modifying the segment registers. These regis­
ters control the execution of the program and should be changed only after careful and
thoughtful consideration.

The Register command can also be used to modify the CPU flags.

Data areas. Initializing or changing data areas is easy, and several methods are provided.
The Fill Memory command, F, can be used to initialize areas of RAM. For instance,

-F 0 1400 0 <Enter>

fills DS:OOOOH through DS:03FFH with zero. (The absence of a segment override causes
the Fill command to use its default segment, DS.) Entering

-F CS:100 200 1B "[Hello" OD <Enter>

fills CS:OlOOH through CS:0200H with many repetitions of the string 1B 5B 48 65 6C 6C 6F
OD. (Note that an address range was specified, not a length.)

When the wholesale changing of memory is not appropriate, the Enter command can be
used to edit a small number of locations. The Enter command has two forms: One enters a
list of bytes into the specified memory location; the other prompts with the contents of
each location and waits for input. Either form can be used as appropriate.

Default file-control blocks and the command tail. The setting of the default FCBs and
of the command tail are related functions. When DEBUG is entered, the first parameter
following the command DEBUG is the name of the file to be loaded into memory for
debugging. If the next two parameters are filenames, FCBs for these files are formatted at

582 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 592/1582

Article 18: Debugging in the MS-DOS Environment

DS:005CH and DS:006CH in the PSP. See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: PROGRAMMING FOR Ms-oos: File and Record Management. If either parameter con­
tains a pathname, the corresponding FCB will contain only a valid drive number; the
filename field will not be valid. All filenames and switches following the name of the file
to be debugged are considered the command tail and are saved in memory starting at
DS:0081H. The length of the command tail is in DS:0080H. For example, entering

C>DEBUG CDMMDUMP.EXE FILE1 .DAT FILE2.DAT <Enter>

results in the first FCB (5CH), the second FCB (6CH), and the command tail (81H) being
loaded as follows:

-D 50 <Enter>

42C9:0050 CD 21 CB 00 00 00 00 00-00 00 00 00 00 46 49 4C . ! FIL

42C9:0060 45 31 20 20 20 44 41 54-00 00 00 00 00 46 49 4C E1 OAT FIL

42C9:0070 45 32 20 20 20 44 41 54-00 00 00 00 00 00 00 00 E2 DAT

42C9:0080 15 20 66 69 6C 65 31 2E-64 61 74 20 66 69 6C 65 file1 .dat file

42C9:0090 32 2E 64 61 74 20 OD 74-20 66 69 6C 65 32 2E 64 2.dat .t file2.d

42C9:00AO 61 74 20 OD 00 00 00 00-00 00 00 00 00 00 00 00 at ••• 0 0 ••••• 0 ••

42C9:00BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 0 •••• 0 0 0 •••• 0 • ••

42C9:00CO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ••• 0 0 0 •••••• 0 0 ••

In this example, location DS:005CH contains an unopened FCB for file FILEl.DAT on the
current drive. Location DS:006CH contains an unopened FCB for FILE2.DAT on the current
drive. (The second FCB cannot be used where it is and must be moved to another location
before the first FCB is opened.) Location DS:0080H contains the length of the command
tail, 15H (21) bytes. The next 21 bytes are the command tail prepared by DEBUG; they cor­
respond exactly to what the command tail would be if the program had been loaded by
COMMAND.COM instead of by DEBUG.

The default FCBs and the command tail can also be set after the program has been loaded,
by using the Name File or Command-Tail Parameters command, N. DEBUG treats the
string of characters that follow the Name command as the command tail: If the first two
parameters are filenames, they become the first and second FCBs, respectively. The Name
command also places the string at DS:0081H, with the length of the string at DS:0080H.
Entering the DEBUG command

-N FILE1 .OAT FILE2.DAT <Enter>

produces the same results as specifying the filenames in the command line. When em­
ployed in this manner, the Name command is useful for initializing command-tail data that
was not in the command line or for changing the command-tail data to test different
aspects of a program. (If files are named in this manner, they are not validated until the
Load File or Sectors command, L, is used.) Note that the data following the Name com­
mand need not be filenames; it can be any parameters, data, or switches that the applica­
tion program expects to see.

Section II: Programming in the MS-DOS Environment 583

HUAWEI EX. 1110 - 593/1582

PartE: Programming Tools

More on breakpoints
The case study at the beginning of this section used breakpoints in their simplest form:
Only a single breakpoint was specified at a time and the execution address was con­
sidered to be the current IP. The Go command is also capable of setting multiple break­
points and of beginning execution at any address in memory. The more general form of
the Go command is

G[=address] [address [address ...]]

If Go is used with no operands, execution begins at the current value of CS:IP and no
breakpoints are set. If the =address operand is used, DEBUG sets IP to the address speci­
fied and execution then begins at the new CS:IP. The other optional addresses are break­
points. When execution reaches one of these breakpoints, DEBUG stops and displays the
system's registers. As many as 10 breakpoints can be set on one Go command, and they
can be in any order.

The breakpoint addresses must be on instruction boundaries because DEBUG replaces
the instructio~ at each breakpoint address with an INT 03H instruction (OCCH). DEBUG
saves the replaced instructions internally. When any breakpoint is reached, DEBUG stops
execution and restores the instructions at all the breakpoints; if no breakpoint is reached,
the instructions are not restored and the Load command must be used to reload the origi­
nal program.

The multiple-breakpoint feature of the Go command allows the tracing of program exe­
cution when branches exist in the code. When a program contains, for instance, a condi­
tional jump on the zero flag, a breakpoint can be placed in each of the two possible
branches. When the branch is reached, one of the two breakpoints will be encountered
shortly thereafter. When DEBUG displays the breakpoint, the programmer knows which
branch was taken. Moving through a program with breakpoints at key locations is faster
than using the Trace command to execute each and every instruction.

Multiple breakpoints can also be used to home in on a bad piece of code. This technique
is particularly useful in those nasty situations when there are no symptoms except that the
system locks up and must be restarted. When debugging a problem such as this, set break­
points at each of the major sections of the program and then note those breakpoints that
are executed successfully, continuing until the system locks up. The problem lies some­
where between the last successful breakpoint and the next breakpoint set. Now repeat the
processes, setting breakpoints between the last breakpoint and the one that was never
reached. By progressively narrowing the gap between breakpoints, the exact offending
instruction can be isolated.

Some general comments about the Go command and breakpoints:

• After a program has reached completion and returned to MS-DOS, it must be reloaded
with the Load command before it can be executed again. (DEBUG intercepts this
return and displays Program terminated normally.)

• Because DEBUG replaces program instructions with an INT 03H instruction to form
breakpoints, the break address must be on an instruction boundary. If it is not, the
INT 03H will be stuck in the middle of an instruction, causing strange and sometimes
entertaining results.

584 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 594/1582

Article 18: Debugging in the MS-DOS Environment

• Breakpoints cannot be set in data, because data is not executed.
e The target program's SS:SP registers must point to a valid stack that has at least 6 bytes

of stack space available. When the Go command is executed, it pushes the target pro­
gram's flags and CS and IP registers onto the stack and then transfers control to the
program with an IRET instruction. Thus, if the target program's stack is not valid or
is too small, the system may crash.

• Finally, and obviously, breakpoints cannot be set in read-only memory (the ROM
BIOS, for instance).

Using the Write commands
After a program has been debugged, fixed, and tested with DEBUG, the temptation exists
to write the patched program directly back to the disk as a .COM file. This action is some­
times legitimate, but only rarely. The technique will be explained in a moment, but first a
sermon:

DON'T DO IT

One of the greatest sadnesses in a programmer's life comes when, after a program has
been running wonderfully, enhancements are made to the source code and the recom­
piled program suddenly has bugs in it that haven't been seen for months. Always make any
debugging patches permanent in the source file immediately.

Unless, of course, the source code is not available. This is the only time saving a patched
program is permissible. For example, sometimes commercial programs require patching
because the program does not quite fit the hardware it must run on or because bugs have
been found in the program. The source of these patches is sometimes word-of-mouth,
sometimes a bulletin-board service, and sometimes the program's manufacturer.

Even when legitimate reasons exist to save patched code, precautions should be taken. Be
very careful, meticulous, and alert as the patches are applied. Understand each step before
undertaking it. Most important of all, always have a backup of the original unpatched
program safely on a floppy disk.

Use the Write command to write the program image to disk. A starting address can op­
tionally be specified; otherwise the write starts at CS:OlOOH. The name of the file will be
either the name specified in the last Name command or the name of the program from the
DEBUG command line if the Name command has not been used. The number of bytes to
be written is in BX and CX, with the most significant half in BX. These registers will have
been loaded correctly when the program was loaded, but they should be checked if the
program has executed since it was loaded. ·

The .EXE and .HEX file types cannot be written to disk with the Write command. The
command performs no formatting and only writes the binary image of memory to the disk
file. Thus, all programs written with Write must be .COM files. The image of a .EXE or
.HEX file can still be written as a .COM file provided no segment fixups are required and
provided the other rules for a .COM file are followed. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure of an Application Program.
(A segment fixup is a segment address that must be provided by the loader when the

Section II: Programming in the MS-DOS Environment 585

HUAWEI EX. 1110 - 595/1582

Part E: Programming Tools

program is originally loaded. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRo­
GRAMMING TooLs: Object Modules.) If a .EXE file containing a segment fixup is written as a
.COM file, the new file will execute correctly only when loaded at exactly the same address
as the original file, and this is difficult to ensure for programs running under MS-DOS.

If it is necessary to patch a .EXE or .HEX file and the exact addresses relative to the start of
the file are known, use the following procedure:

1. Rename (or better yet, copy) the file to an extension other than .EXE or .HEX.
2. Load the program image into memory by placing the new name on DEBUG's com­

mand line. Note that the loaded file is an image of the disk file and is not executable.
3. Modify the program image in memory, but never try to execute the program. Results

would be unpredictable and the program image could be damaged.
4. Write the modified image back to disk using a simple w. No other action is needed,

because the original load will have set the filename and the correct length in BX
andCX.

5. Rename the file to a name with the correct .EXE or .HEX extension. The new name
need not be the same as the original, but it should have the same extension.

The same technique can be used to load, modify, and save data files. Simply make sure
that the file does not have an extension of .COM, .EXE, or .HEX. The data file will be
loaded at address CS:OlOOH. (DEBUG treats the file much the same as a .COM file.) After
patching the data (the Enter command works best), use the Write command to write it
back to the disk.

SYMDEB

SYMDEB is an extension of DEBUG; virtually all the DEBUG commands and techniques
still work as expected. The major new feature, and the source of the name SYMDEB, is
symbolic debugging: SYMDEB can use all public labels in a program for reference, instead
of using hexadecimal offset addresses. In addition, SYMDEB allows the use of line num­
bers for reference in compatible high-order languages; source-line display within SYMDEB
is also possible for these languages. Currently, the languages supporting these options are
Microsoft FORTRAN versions 3.0 and later, MicrosoftPascal versions 3.0 and later, and
Microsoft C versions 2.0 and later. Versions 4.0 and earlier of the Microsoft Macro Assem­
bler (MASM) do not generate the data needed for line-number display and source-line
debugging.

In addition to symbolic debugging, SYMDEB has added several other new features and has
expanded existing DEBUG features:

• Breakpoints have been made more sophisticated with the addition of "sticky"
breakpoints. Unlike the breakpoints set with the Go command, sticky breakpoints
remain attached to the program throughout a SYMDEB session until they are explic­
itly removed. Specific commands are supplied for listing, removing, enabling, and
disabling sticky breakpoints.

• DEBUG's Display Memory command, D, has been extended so that data can be
displayed in different formats.

586 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 596/1582

Article 18: Debugging in the MS-DOS Environment

• Full redirection is supported.
• A stack trace feature has been added.
• Terminate-and-stay-resident programs are supported.
• A shell escape command has been added to allow the execution of MS-DOS

commands and programs without leaving SYMDEB and the debugging session.

These additions allow more sophisticated debugging techniques to be used and, in some
cases, also simplify locating problems. To see the advantages of using symbols and sticky
breakpoints in debugging, consider a type of program that is one of the most difficult to
debug- the TSR.

Debugging TSRs with SYMDEB
Terminate-and-stay-resident routines can be difficult to debug. They exist in two worlds
and can have bugs associated with each. At the outset, they are usually simple programs
that perform some initialization task and then exit. At this point, they are transformed into
another type of beast entirely- resident routines that are more a part of the operating sys­
tem than of any application program. Each form of the program must be debugged sepa­
rately, using different techniques.

The TSR routine used for this case study is the same one created previously to serve
as external instrumentation to trace serial communications. The program was qlled
COMMSCOP, but to avoid confusion of that working program with the broken one pre­
sented here, the name has been changed to BADSCOP. BADSCOP was assembled and
linked in the usual manner and then converted to a .COM file using EXE2BIN. When it was
installed, it returned normally, but at the first attempt to issue an Interrupt 14H, the system
locked up completely. Warm booting was not sufficient to restore it, and a power-on cold
boot was required to get the system working again.

Figure 18-11 is a listing ofBADSCOP. The only difference from COMMSCOP, aside from the
errors, is the addition of two PUBLIC statements to make all the procedure names and the
important data names available to SYMDEB.

TITLE BADSCOP - BAD VERSION OF COMMUNICATIONS TRACE UTILITY

**
; *
; * BADSCOP -
; * THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT
; * AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH
; * ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE
; * WAS SENT BY OR RECEIVED BY THE SYSTEM.

; *
; * BADSCOP IS INSTALLED BY ENTERING

; *
; *
; *

BADSCOP

Figure 18-11. An incorrect version of the serial trace utility.

*
*
*
*
*
*
*
*
*
*

(more)

Section II: Programming in the MS-DOS Environment 587

HUAWEI EX. 1110 - 597/1582

PartE: Programming Tools

; * THIS WILL INSTALL BADSCOP AND SET UP A 64K BUFFER TO BE USED *
; * FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR

; *
; *
; *
; *
; *

EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT

30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD,
ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY .
HOLD MORE THAN 30 SECONDS WORTH OF DATA.

*
*

*
*

; * WHEN INSTALLED, BADSCOP INTERCEPTS ALL INT 14H CALLS. IF THE *
; * PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE- *
; * CEIVE DATA, A COPY OF THE DATA BYTE,. PROPERLY TAGGED, IS PLACED *
; * IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL *
; * INT 14H HANDLER.

; *
; * BADSCOP IS INVOKED BY ISSUING AN INT 60H CALL. THE INT HAS

; * THE FOLLOWING CALLING SEQUENCE:

; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

AH - COMMAND

0 STOP TRACING, PLACE STOP MARK IN BUFFER
FLUSH BUFFER AND START TRACE

2

3

RESUME TRACE

RETURN COMM BUFFER ADDRESSES
DX - COMM PORT (ONLY USED WITH AH = 1 or 2)

0 COM1
1 - COM2

; * THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH 3:

; *
; *
; *
; *
; *

ex
DX
BX

BUFFER COUNT IN BYTES

SEGMENT ADDRESS OF THE START OF THE BUFFER
OFFSET ADDRESS OF THE START OF THE BUFFER

; * THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE

; * FOLLOWING FORM:

; *
; *
; *
; *
; *
; *
; *

BYTE

BYTE

0 -

BIT

BIT

1 -

CONTROL

0 - ON FOR RECEIVED DATA, OFF FOR TRANS.
7 - STOP MARK - INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.

8-BIT DATA

*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*

~***************

CSEG

PUBLIC INITIALIZE,CONTROL,VECTOR_INIT,COMMSCOPE

PUBLIC OLD_COMM_INT,COUNT,STATUS,PORT,BUFPNTR

SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 1 OOH ;TO MAKE A COM FILE

Figure 18-11. Continued.

588 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 598/1582

INITIALIZE:

JMP VECTOR-IN IT

SYSTEM VARIABLES

OLO_COMM_INT

COUNT
COMMSCOPE_INT

STATUS

PORT

BUFPNTR

DO

ow
EQU
DB

DB

ow

?

0
60H

0

0
VECTOR_INIT

Article 18: Debugging in the MS-DOS Environment

;JUMP TO THE INITIALIZATION

ROUTINE WHICH, TO SAVE SPACE,
; IS IN THE COMM BUFFER

;ADDRESS OF REAL COMM INT

;BUFFER COUNT
;COMMSCOPE CONTROL INT

;PROCESSING STATUS

; 0 - OFF

; 1 -ON
;COMM PORT BEING TRACED

;NEXT BUFFER LOCATION

SUBTTL DATA INTERRUPT HANDLER

PAGE

************************************~************~********************
; * *
; * COMMSCOPE

; * THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *
; * IF APPROPRIATE.

; *
**

COMMSCOPE

TEST

JZ

CMP

JE

CMP

JAE

CMP

JE

PROC NEAR

CS: STATUS, 1
OLD_JUMP

AH,OOH
OLD_JUMP

AH,03H
OLO_JUMP

AH,02H
GET _READ

;ARE WE ON?

; NO, SIMPLY JUMP TO OLD HANDLER

;SKIP SETUP CALLS

;SKIP STATUS REQUESTS

;IS THIS A READ REQUEST?

; YES, GO PROCESS

DATA WRITE REQUEST - SAVE IF APPROPRIATE

CMP

JNE

PUSH

PUSH

PUSH

POP

MOV

DL,CS:PORT
OLO_JUMP

OS

BX

cs
OS

BX,BUFPNTR

;IS WRITE FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

;SAVE CALLER'S REGISTERS

; .
;SET UP OS FOR OUR PROGRAM

; .
;GET ADDRESS OF NEXT BUFFER LOCATION·

Figure 18-11. Continued. (more)

Section II: Programming in the MS-DOS Environment 589

HUAWEI EX. 1110 - 599/1582

PartE: Programming Tools

MOV [BX),BYTE PTR 0 ;MARK AS TRANSMITTED BYTE
MOV [BX+1], AL ;SAVE DATA IN BUFFER
INC COUNT ;INCREMENT BUFFER BYTE COUNT
INC COUNT ;

INC BX ;POINT TO NEXT LOCATION
INC BX ;

MOV BUFPNTR,BX ;SAVE NEW POINTER
JNZ WRITE_DONE ;ZERO INDICATES BUFFER HAS WRAPPED

MOV STATUS,O ;TURN COLLECTION OFF - BUFFER FULL

WRITEJJONE:

POP BX ;RESTORE CALLER'S REGISTERS
POP DS ;

JMP OLD_JUMP ;PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

GET_READ:

CMP DL,CS:PORT
JNE OLD_JUMP

PUSH DS

PUSH BX
PUSH cs
POP DS

PUSHF

CLI

CALL OLD_COMM_INT

TEST AH,BOH
JNZ READ_DONE

MOV BX,BUFPNTR
MOV [BX),BYTE PTR
MOV [BX+1) ,AL

INC COUNT

INC COUNT

INC BX
INC BX
MOV BUFPNTR,BX

JNZ READJJONE

MOV STATUS,O
READ_DONE:

POP BX
POP DS
IRET

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP OLD_COMM_INT

COMMSCOPE ENDP

Figure 18-11. Continued.

590 The MS-DOS Encyclopedia

;IS READ FOR PORT BEING TRACED?
; NO, JUST PASS IT THROUGH

;SAVE CALLER'S REGISTERS

;SET UP DS FOR OUR PROGRAM

;FAKE INT 14H CALL

;PASS REQUEST ON TO BIOS
;VALID READ?

; NO, SKIP BUFFER UPDATE

;GET ADDRESS OF NEXT BUFFER LOCATION

;MARK AS RECEIVED BYTE
;SAVE DATA IN BUFFER

;INCREMENT BUFFER BYTE COUNT

;POINT TO NEXT LOCATION

;SAVE NEW POINTER

;ZERO INDICATES BUFFER HAS WRAPPED

;TURN COLLECTION OFF - BUFFER FULL

;RESTORE CALLER'S REGISTERS

(more)

HUAWEI EX. 1110 - 600/1582

1
l
(

Article 18: Debugging in the MS-DOS Environment

SUB TTL CONTROL INTERRUPT HANDLER
PAGE

**
; *
; * CONTROL

; * THIS ROUTINE PROCESSES CONTROL REQUESTS.
*
* ; *

**

CONTROL PROC

CMP
JNE

PUSH

PUSH

PUSH
POP

MOV

MOV
MOV

MOV

INC

INC

POP
POP

JMP

CNTL_START:

CMP

JNE
MOV

MOV

MOV

MOV

JMP

CNTL-RESUME:
CMP

JNE

CMP

JE

MOV
MOV

JMP

CNTL_STATUS:

CMP

JNE
MOV

PUSH

POP
MOV

NEAR

AH,OOH
CNTL_START

OS
BX

cs
DS

STATUS,O

BX,BUFPNTR

[BX],BYTE PTR 80H
[BX+1],BYTE PTR OFFH

COUNT

COUNT

BX

OS
CONTROL_DONE

;STOP REQUEST?
; NO, CHECK START

;SAVE REGISTERS

; .
;SET OS FOR OUR ROUTINE

;TURN PROCESSING OFF

;PLACE STOP MARK IN BUFFER

;INCREMENT COUNT

;RESTORE REGISTERS

;START REQUEST?

; NO, CHECK RESUME

;SAVE PORT TO TRACE

AH,01H
CNTL_RESUME

CS:PORT,DL

CS:BUFPNTR,OFFSET

CS:COUNT,O
VECTOR_INIT ;RESET BUFFER TO START

;ZERO COUNT

CS: STATUS, 1
CONTROL_DONE

AH,02H
CNTL_STATUS

CS:BUFPNTR,O
CONTROL_DONE

CS:PORT,DL
CS:STATUS,1
CONTROL_DONE

AH,03H
CONTROL_DONE

CX,CS:COUNT

cs
ox
BX,OFFSET VECTOR_INIT

;START LOGGING

;RESUME REQUEST?

; NO, CHECK STATUS
;END OF BUFFER CONDITION?

; YES, DO NOTHING

;SAVE PORT TO TRACE

;START LOGGING

;RETURN STATUS REQUEST?

; NO, ERROR - DO NOTHING

;RETURN COUNT

;RETURN SEGMENT ADDR OF BUFFER

; .
;RETURN OFFSET ADDR OF BUFFER

Figure 18-11. Continued. (more)

Section II: Programming in the MS-DOS Environment 591

HUAWEI EX. 1110 - 601/1582

Part E: Programming Tools

CONTROL_DONE:

IRET

CONTROL ENDP

SUBTTL INITIALIZE INTERRUPT VECTORS
PAGE

**
; *
; * VECTOR....INIT
; * THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN
; * EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION.
; * A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE
; * IN THE BUFFER IS THE OFFSET OF VECTOR_INIT.

*
*
*
*

; * *
**

EVEN
VECTOR....INIT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

MOV AH,35H
MOV AL, 14H
INT 21H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX

MOV AX,ES

;ASSURE BUFFER ON EVEN BOUNDARY

MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE
MOV AH, 25H
MOV AL, 14H
INT 21H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL
MOV AH,25H
MOV AL,COMMSCOPE_INT
INT 21 H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV
MOV
INT

AX,3100H
DX,1000H
21H

Figure 18-11. Continued.

592 The MS-DOS Encyclopedia

;TERM AND STAY RES COMMAND
;64K RESERVED
;DONE

(more)

HUAWEI EX. 1110 - 602/1582

Article 18: Debugging in the MS-DOS Environment

VECTOR_INIT ENDP

CSEG ENDS
END INITIALIZE

Figure 18-11. Continued.

In order to use the symbolic debugging features of SYMDEB, a symbol file must be built in
a specific format. The SYMDEB utility MAPSYM performs this function, using the contents
of the .MAP file built by LINK. MAPSYM is easy to use because it has only two parameters:
the .MAP file and the /L switch (which triggers verbose mode). The symbol table for
BADSCOP is built as follows:

C>MAPSYM BADSCOP <Enter>

This operation produces a symbol file called BADSCOP.SYM.

Armed with the .SYM file and the usual collection of listing and design notes, the program­
mer can begin the debugging process using SYMDEB.

The first task is to discover if the BADSCOP TSR is installing correctly. To test this, run the
.COM file under SYMDEB by typing

C>SYMDEB BADSCOP.SYM BADSCOP.COM <Enter>

Note the order in which operands are passed to SYMDEB-it is not the order that
would be expected. All switches (none were used here) must immediately follow the
word SYMDEB. These switches must be followed in turn by the fully qualified names of
any symbol files (in this case, BADSCOP.SYM). Only then is the name of the file to be
debugged given. If BADSCOP expected any parameters in the command tail, they would 4
be last. This potential need for command-tail data is the reason the name of the file to be
debugged follows the name of the symbol file. SYMDEB knows that the first non-.SYM file
it encounters is the file to be loaded; the parameters that follow the filename may be of
any form and number.

When SYMDEB begins, it displays

Microsoft {R) Symbolic Debug Utility Version 4.00
Copyright {C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

The debugger identifies itself and then notes the type of CPU it is running on- in this
case, an Intel 80286. The Display or Modify Registers command, R, gives the same display
that DEBUG gives, with one exception.

-R <Enter>
AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1FDO SS=1FDO CS=1FD0 IP=0100 NV UP EI PL NZ NA PO NC
CSEG:INITIALIZE:
1FD0:0100 E90701 JMP VECTOR_INIT

Section JL- Programming in the MS-DOS Environment 593

HUAWEI EX. 1110 - 603/1582

PartE: Programming Tools

The instruction at CS:IP,]MP, is now preceded by the information that the instruction is
at label INITIALIZE within segment CSEG. An examination of Figure 18-11 shows that this
is indeed the case.

To check that all the symbols requested with the PUBLIC statement are present, use the
X?* form of the Examine Symbol Map command.

-X?* <Enter>

CSEG: (1 FDO)
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT 0109 STATUS

018F CONTROL 010A PORT 010B BUFPNTR 010D COMMSCOPE
020A VECTOR_INIT

The display shows that the value of CSEG (lFDOH) matches the current value of CS. The
offset values shown for the procedure names and data names match the numbers from an
assembled listing. Because this is a .COM file, there is only one segment. If there had been
other segments- a data segment, for instance- they would have been shown with their
values and associated labels and offsets.

The purpose of this test is to determine whether the problems this program is having are
caused by an incorrect installation. First, use the Trace Program Execution command, T, to
trace through the first few steps.

-T7 <Enter>
AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1FDO SS=1FDO CS=1FDO IP=020A NV UP EI PL NZ NA PO NC
CSEG:VECTOR_INIT:
1FD0:020A B435
AX=3500 BX=OOOO
DS=1FDO ES=1FDO
1FD0:020C B014
AX=3514 BX=OOOO
DS=1FDO ES=1FDO
1FD0:020E CD21
AX=3514 BX=1375
DS=1FDO ES=1567
1FD0:0210 891E0301
AX=3514 BX=1375
DS=1FDO ES=1567
1FD0:0214 8CCO
AX=1567 BX=1375
DS=1FDO ES=1567
1FD0:0216 A30501
AX=1567 BX=1375
DS=1FDO ES=1567
1FD0:0219 BA0D01

MOV AH,35 ;'5'
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=020C NV UP EI PL NZ NA PO NC .

MOV AL,14
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=020E NV UP EI PL NZ NA PO NC

INT 21 ;Get Interrupt Vector
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0210 NV UP EI PL NZ NA PO NC

MOV [OLD_COMM_INT],BX DS:0103=0000
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0214 NV UP EI PL NZ NA PO NC

MOV AX,ES
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0216 NV UP EI PL NZ NA PO NC

MOV [OLD_COMM_INT+02 (0105)],AX DS:0105=0000
CX=0133 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0219 NV UP EI PL NZ NA PO NC

MOV DX,010D

This part of the program uses Interrupt 21H Function 35H to obtain the current vector for
Interrupt 14H. Note that, unlike DEBUG, SYMDEB coasts right through an Interrupt 21H
call with no problems. It not only knows enough not to make the call but also displays the
type of function call being made, based on the value in AH.

594 The MS-DOS Encyclopedia

'

-I
i

. I

I

HUAWEI EX. 1110 - 604/1582

Article 18: Debugging in the MS-DOS Environment

To make sure that the correct vector for the old Interrupt 14H handler has been stored, use
the Display Doublewords command, DD, in conjunction with a symbol name.

-DD OLD_COMM_INT L1 <Enter>
1FD0:01030 1567:1375

This is the correct vector address (1567:1375H). Now trace through the next part of the
program, which establishes the new vectors for interrupts.

-T8 <Enter>
AX=1567 BX=1375 CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567
1FD0:021C B425
AX=2567 BX=1375
DS=1FDO ES=1567
1FD0:021E B014
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0220 CD21
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0222 BA8F01
AX=2514 BX=1375
DS=1FDO ES=1567
1FD0:0225 B425
AX=2514 BX=1375
DS=1FDO ES=1567

SS=1FD0 CS=1FDO IP=021C NV UP EI PL NZ NA PO NC
MOV AH,25 ;'%'

CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FD0 IP=021E NV UP EI PL NZ NA PO NC

MOV AL, 14
CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0220 NV UP EI PL NZ NA PO NC

INT 21 ; Set Vector
CX=0133 DX=010D SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FD0 CS=1FDO IP=0222 NV UP EI PL NZ NA PO NC

MOV DX,018F
CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0225 NV UP ~I PL NZ NA PO NC

MOV AH,25 ; '%'
CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
SS=1FDO CS=1FDO IP=0227 NV UP EI PL NZ NA PO NC

1 FDO: 0227 B060 MOV AL, 60 ; ' ''
AX=2560 BX=1375 CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567 SS=1FDO CS=1FDO IP=0229 NV UP EI PL NZ NA PO NC
1 FDO: 022 9 CD21 INT 21 ; Set Vector
AX=2560 BX=1375 CX=0133 DX=018F SP=FFFE BP=OOOO SI=OOOO DI=OOOO
DS=1FDO ES=1567 SS=1FDO CS=1FD0 IP=022B NV UP EI PL NZ NA PO NC
1FD0:022B B80031 MOV AX,3100

Examination of these trace steps shows that all went normally. The new Interrupt 14H
vector has been established at COMMSCOPE; the vector for the new Interrupt 60H has also
been correctly installed. Use the Go command, G, to allow the program to continue to
termination and then use the Quit command, Q, to exit SYMDEB.

-G <Enter>

Program terminated and stayed resident (0)

-Q <Enter>

SYMDEB displays the information that the program terminated with a completion code
of zero and stayed resident. This is as it should be, and the conclusion is that the installa­
tion portion of this TSR is running properly. The problem must be in the real-time execu­
tion of the program.

Debugging the resident portion of a TSR is complicated but not especially difficult. A sim­
ple program is used to exercise the TSR, and it is this program that is debugged. As this
driver program exercises the TSR, the tracing process continues into the resident routine.

Section /1· Programming in the MS-DOS Environment 595

HUAWEI EX. 1110 - 605/1582

PartE: Programming Tools

Because symbol tables exist for the TSR, symbolic debugging can be used to follow its
execution.

The driver program will be TESTCOMM, shown in Figure 18-10. To make the program
more easily usable by SYMDEB, one line has been added before the first SEGMENT
statement:

PUBLIC BEGIN,MAINLOOP,SENDCOMM,TESTCOMM

Using the .MAP file produced by LINK, the MAPSYM routine creates TESTCOMM.SYM.
TESTCOMM can now be invoked with two symbol files:

C>SYMDEB TESTCOMM.SYM BADSCOP.SYM TESTCOMM.EXE <Enter>

SYMDEB will load both symbol files and then load TESTCOMM.EXE. Because the name of
the TESTCOMM.SYM file matches the name of the program being loaded, SYMDEB makes
TESTCOMM.SYM the active symbol file.

Use the Register command to show that the test program was properly loaded.

-R <Enter>

AX=OOOO BX=OOOO CX=0133 DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=390E IP=OOOO NV UP EI PL NZ NA PO NC
CSEG:BEGIN:
390E:OOOO 1E PUSH DS

Then use the Examine Symbol Map command to determine whether the symbol files
were loaded correctly. The form X• lists all the symbol maps and their segments; the form
X?• lists all the symbols for the current symbol map and segment.

-X* <Enter>

[38FE TESTCOMM]
[390E CSEG]

0000 BADSCOP
0000 CSEG

-X?* <Enter>

CSEG: (390E)
0000 BEGIN 0004 MAINLOOP 0011 SENDCOMM 0018 TESTCOMM

The current symbol map and segment are shown in square brackets. The symbol map for
BADSCOP is also present but not selected. Note that there are no values associated with
BADSCOP in the listing produced by the X?• command, because all the symbols currently
available to SYMDEB are shown and only the symbols in TESTCOMM's CSEG are available
(that is, TESTCOMM.SYM is the only active symbol file).

Recall that the BADSCOP TSR loaded normally but locked the system up at the first attempt
to issue an Interrupt 14H. This behavior indicates that the problem is associated with an In­
terrupt 14H call. TESTCOMM repeatedly makes the system fail, but which of the Interrupt
14H calls within TESTCOMM is causing the trouble is not known. The most straightfor­
ward approach would be to put a breakpoint just before each Interrupt 14H instruction.
Use the Disassemble (Unassemble) command, U, to find the location of all Interrupt 14H
calls.

596 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 606/1582

Article 18: Debugging in the MS-DOS Environment

-u MAINLOOP 119 <Enter>
·csEG:MAINLOOP:

390E:0004 B406 MOV AH,06

390E:0006 B2FF MOV DL,FF

390E:0008 CD21 INT 21

390E:OOOA 740C JZ TESTCOMM

390E:OOOC 3C03 CMP AL,03

390E:OOOE 7501 JNZ SENDCOMM

390E:0010 CB RETF

CSEG:SENDCOMM:

390E:0011 B401 MOV AH,01

390E:0013 BAOOOO MOV DX,BADSCOP!CSEG

390E:0016 CD14 INT 14
CSEG:TESTCOMM:

390E:0018 B403 MOV AH,03

390E:001A BAOOOO MOV DX,BADSCOP!CSEG

390E:001D CD14 INT 14

390E:001F 80E401 AND l'.H, 01

390E:0022 74EO JZ MAINLOOP

390E:0024 B402 MOV AH,02

390E:0026 BAOOOO MOV DX,BADSCOP!CSEG
390E:0029 CD14 INT 14

390E:002B B406 MOV AH,06

390E:002D 8ADO MOV DL,AL

390E:002F CD21 INT 21

390E:0031 EBD1 JMP MAINLOOP

The Disassemble request starts at MAINLOOP and acts on the next 25 (19H) instructions.
SYMDEB displays symbol names instead of numbers whenever it can. However, it does
get confused from time to time, so a grain of salt might be needed when reading the dis­
assembly. Notice, for instance, the MOV DX,O instructions at offsets 13H, lAH, and 26H. 4
SYMDEB has decided that what is being moved is not zero, but BADSCOP!CSEG. (The!
identifies a mapname in the same way a : defines a segment.) In this case, SYMDEB
searched its map tables for an address of zero and found one at CSEG in BADSCOP. This
segment has the address of zero because it has not been initialized.

Ignoring the name confusions, the disassembly clearly shows the three INT 14H instruc­
tions at offsets 16H, lDH, and 29H. Use the Set Breakpoints command, BP, to set a sticky,
or permanent, breakpoint at each of these locations. In this way, any Interrupt 14H call
issued by TESTCOMM will be intercepted before it executes. Use the List Breakpoints
command, BL, to verify the breakpoints.

-BP 16 <Enter>

-BP 1 D <Enter>

-BP 2 9 <Enter>

-BL <Enter>
0 e 390E:0016 [CSEG:SENDCOMM+OS (0016)]

e 390E:001D [CSEG:TESTCOMM+OS (0010)]

2 e 390E: 0029 [CSEG: TESTCOMM+11 (0029)]

Section II: Programming in the MS-DOS Environment 597

HUAWEI EX. 1110 - 607/1582

I

Part E: Programming Tools

The List Breakpoints command shows that breakpoint 0 is enabled and set to
SENDCOMM+05, or CS:0016H. Likewise, breakpoint 1 is at CS:OOlDH and breakpoint 2 is at
CS:0029H. It is important to trap on an Interrupt 14H so that the subsequent actions of the
Interrupt 14H service routine can be traced. Now allow the program to execute until it
encounters a breakpoint.

-G <Enter>
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOFC BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=390E IP=001D NV UP EI PL ZR NA PE NC
390E:001D CD14 INT 14 ;BR1

The first Interrupt 14H encountered is the one at the second breakpoint, breakpoint 1, as
can be seen from the address at which execution broke. Also, SYMDEB was kind enough
to include the comment ;BRJ on the disassembled line, indicating that this is Break Re­
quest 1. The instruction at this location is a request for serial port status (AH = 3) and the
registers are loaded correctly. Execution can now be passed to the TSR by simply exe­
cuting the current instruction. (Remember that the instruction displayed at a breakpoint
has not yet been executed.)

-T <Enter>

AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOQO
DS=38EE ES=38EE SS=38FE CS=1FDO IP=010D NV UP DI PL ZR NA PE NC
1FD0:010D 2EF606090101 TEST Byte Ptr CS: [0109],01 CS:0109=00

The single Trace command has moved execution into the TSR. Note that the Interrupt
14H has changed the value of CS and jumped to location lODH off the new CS. This loca­
tion contains the first instruction of the COMMSCOPE procedure in the TSR. SYMDEB
does not know that a different segment is being executed and must be instructed to use a
different map table. Use the Open Symbol Map command, XO, to do this, instructing
SYMDEB to set the active map table to BADSCOP!.

-XO BADSCOP! <Enter>
-X?* <Enter>

CSEG: (0000}
0100 INITIALIZE 0103 OLD_COMM_INT 0107 COUNT
010A PORT 010B BUFPNTR 010D COMMSCOPE
020A VECTOR-INIT

0109 STATUS
018F CONTROL

The X?• command shows that the BADSCOP symbols are now the current map. They are
not usable, however, because the value of CSEG- zero-needs to be changed to the cur­
rent CS register. To correct this, use the SYMDEB Set Symbol Value command, Z. This
command can set any symbol in the current map table to any value; the value can be a
number, another symbol, or the contents of a register. In this case, set the value of CSEG
in BADSCOP! to the current contents of the CS register.

-Z CSEG CS <Eryter>
-X* <Enter>

38FE TESTCOMM
390E CSEG

[0000 BADSCOP]
[1FDO CSEG]

598 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 608/1582

Article 18: Debugging in the MS-DOS Environment

The X• command confirms that BADSCOP! is now the selected symbol map and that the
CSEG within it has the value lFDOH. The CSEG segment in TESTCOMM is an entirely dif­
ferent entity and still has its correct value, which will be valid when the TSR returns.

With the symbols set, the debugging can begin by tracing the first few instructions. Be­
cause COMMSCOPE is not currently active, the routine should quickly pass the processing
on to the old interrupt handler.

-T5 <Enter>
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=1FD0 IP=0113 NV UP DI PL ZR NAPE NC
1FD0:0113 7476 JZ COMMSCOPE+7E (018B)
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=1FDO IP=018B NV UP DI PL ZR NA PE NC
1FD0:018B FF2E0301 JMP FAR [0103] DS:0103=0000
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=OOOO NV UP DI PL ZR NA PE NC
0000:0000 381E6715 CMP [1567],BL 08:1567=00
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=OOF6 BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=0004 NV UP DI PL ZR NA PE NC
0000:0004 BC2CE1 MOV SP,E12C
AX=0300 BX=OOOO CX=0133 DX=OOOO SP=E12C BP=OOOO SI=OOOO DI=OOOO
DS=38EE ES=38EE SS=38FE CS=OOOO IP=0007 NV UP DI PL ZR NA PE NC
0000:0007 2F DAS

STATUS is tested with a mask of OlH at CS:OlODH; the test sets the zero flag, indicating that
tracing is disabled. TheJZ to COMMSCOPE+7E (CS:018BH) is taken. At this address is a far
jump to the old Interrupt 14H handler at 1567:1375H. The jump is taken and then disaster
strikes. Instead of going to the correct address, processing is suddenly at OOOO:OOOOH. Any
wild jump is dangerous, but a far jump into low memory is exceptionally so. This explains
the system's locking up and requiring a cold boot to recover.

Now that the bug has been caught in the act, it should be a simple matter to determine
what went wrong. When the BADSCOP TSR installed itself, it was seen to place the correct
offset address at 0103H. Yet whenever the resident portion of the TSR tries to use the value
at that address, it finds all zeros. The initialization routine placed the address at the symbol
OLD_COMM_!NT (1FDO:Ol03H). If that location is examined, the following is found:

-DD OLD_COMMLINT L1 <Enter>

1FD0:0103 1567:1375

This is the correct address. Why, then, did the programs find zero there? Use the Display
Doublewords command to look at the same memory location again, this time using the
specific address 0103H rather than a program symbol.

-DD 103 L1 <Enter>

38EE:01D3 0000:0000

The dump of OLD_COMM_!NT looked at 1FDO:Ol03H, but the simple dump looked at
38EE:Ol03H. The explanation is clear when the values of the registers just before the far
jump are examined. The CS register contains lFDOH and the DS register contains 38EEH.

Section II: Programming in the MS-DOS Environment 599

HUAWEI EX. 1110 - 609/1582

Part E: Programming Tools

This is the problem- there is a missing CS override on the indirect jump command.
When the TSR installed itself, CS and DS were the same because it was a .COM file. When
the TSR is entered as the result of an interrupt call, only CS is set; DS remains what it was
in the calling program. Without an override, the CPU assumed that the address of the desti­
nation of the far call was located at offset 103H from the DS register. This offset, unfortu­
nately, contained zeros, and the program locked up the system.

The problem is now easily corrected. Exit SYMDEB with the Quit command and edit the
program source so that the offending line reads

OLD_JUMP:
JMP CS:OLD_CQMM_INT

Debugging C programs with SYMDEB
One of SYMDEB's finest features is the ability to debug with source-line data from pro­
grams written in Microsoft C, Pascal, and FORTRAN. The actual lines of Cor FORTRAN
can be included in the debugging display, and the addresses for breakpoints show which
line of code the breakpoints are in. Combined with symbolic debugging, these features
provide a powerful tool that can significantly reduce debugging time for programs
written in a supported language.

The following rather complicated case illustrates SYMDEB at its best. The program
BADSCOP from the previous example was not completely debugged. Although the patch
to the BADSCOP code at OW_]UMP: did correct the disastrous problem that caused the
system to lock up, running the program in a realistic test situation reveals that a subtle
problem still remains that might be in either BADSCOP or one of the support programs.

Before we investigate the problem, a quick review of the programs in the COMMSCOP
system is in order. At the heart of the system is the Interrupt 14H intercept program
COMMSCOP. When executed, this program installs itself as a TSR and intercepts all Inter­
rupt 14H calls. (The in~orrect version of the COMMSCOP program is called BADSCOP.)
The installed COMMSCOP TSR passes all Interrupt 14H calls on to the real service routine
in the ROM BIOS until it is commanded to start tracing. The COMMSCMD routine controls
tracing. This control routine can request that COMMSCOP start, stop, or resume tracing for
a specific serial port. These commands are facilitated through Interrupt 60H, which is ·
recognized by the COMMSCOP TSR as a command request. When tracing is started, the
trace buffer is emptied by zeroing the trace count and setting the buffer pointer to the first
buffer location. When tracing is stopped by COMMSCMD's STOP command, a marker is
placed in the buffer to indicate the end of a trace segment. Tracing can be resumed with
COMMSCMD's RESUME command. Resuming a trace preserves collected data and places
new trace data after the marker in the trace buffer. The RESUME command differs from
the START command in that the buffer is not emptied.

Now the problem: When the serial data tracing is started with COMMSCMD (see Figure
18-5), data is collected normally. When COMMSCMD issues a STOP command and the
data is displayed with COMMDUMP (see Figure 18-7), the data appears normal. The
traced data ends with a stop mark just as it should. However, the RESUME command of

600 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 610/1582

'l

Article 18: Debugging in the MS-DOS Environment

COMMSCMD causes the stop mark to be overwritten with collected data. After this, when­
ever COMMDUMP displays data an extra byte appears at the end of the data. The problem
could be with either BADSCOP or COMMSCMD. SYMDEB has the facilities to debug both
the routines at one~.

The first step in the debugging process is, as usual, to gather all the listings and design
documentation. As a part of this process, the symbol tables needed for SYMDEB must be
prepared. The process of preparing a symbol table for BADSCOP has already been ex­
plained; however, preparing the SYMDEB input and supporting listings for a C program is
slightly more complicated.

First, when the C program is compiled, three switches must be specified. (C switches are
case sensitive and must be entered exactly as shown.)

C>MSC /Fe /Zd /Od COMMSCMD; <Enter>

The /Zd switch produces an object file containing line-number information that corre­
sponds to the line numbers of the source file. The /Od switch disables optimization that
involves complex code rearrangement; localized optimization, peephole optimization, and
other simple forms of optimization are still performed. The /Od switch is not required, but
code rearrangement can make the resulting object code more difficult to debug.

The /Fe switch invokes a feature of C that is especially important for debugging with
SYMDEB: a listing that contains the C source lines and the generated assembler code inter­
mixed. The file is a .COD file; the command line shown above would produce the file
COMMSCMD.COD. Figure 18-12 shows the contents of COMMSCMD.COD.

Static Name Aliases

$S142_commands EQU
TITLE commscmd

commands

NAME commscmd.C

.287
_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
DGROUP GROUP CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
EXTRN _int86:NEAR
EXTRN _printf:NEAR
EXTRN _stricmp:NEAR
EXTRN _atoi:NEAR
EXTRN __ chkstk:NEAR
_DATA SEGMENT

Figure 18-12. COMMSCMD.COD. (more)

Section II: Programming in the MS-DOS Environment 601

HUAWEI EX. 1110 - 611/1582

Part E: Programming Tools

$SG148 DB 'STOP', OOh

$SG151 DB 'START', OOh
.$SG154 DB 'RESUME', OOh

$SG157 DB Oah, 'Communications

$S 142-commands DB 'STOPPED',
ORG $+2

DB 'STARTED', OOh
ORG $+2

DB 'RESUMED', OOh

ORG $+2
ENDS _DATA

_TEXT SEGMENT

tracing %-s for port COM%-1d:', Oah, OOh

OOh

; :*** /**
;l*** * *
;:*** * COMMSCMD

;I**** *
; :••• * This routine controls the COMMSCOP program that has been in-

; : ** *
; : ***

*
*

stalled as a resident routine.
termined by the command line.

The operation performed is de­
The COMMSCMD .program is invoked

; :*** * as follows:

; : *** *
; : *** *
; : *** *

COMMSCMD [[cmd] [port]]

; :••• * where cmd is the command to be executed

;:••• * STOP stop trace

; : *** *
; : *** *
; : *** *
; : *** *

START flush trace buffer and start trace

RESUME resume a stopped trace

port is the COMM port to be traced (1 =COM.1 , 2=COM2, etc.)

*
*
*
*
*

*
*

*
*
*

; :••• * If cmd is omitted, STOP is assumed. If port is omitted, 1 is *
; :*** * assumed.

; : *** *
*
*

::*** **/
; : ***

iiinclude <stdlib.h>

#include <stdio.h>
#include <dos.h>

; : ***
; : ***
; : ***
i: ***
j II***

#define COMMSCMD Ox60

; : ***
; : ***

Line

_main

main(argc, argv)

int argc;

29
PUBLIC _main

PROC NEAR

*** 000000

*** 000001

*** 000003

*** 000006

*** 000009

*** OOOOOa

Figure 18-12. Continued.

602 The MS-DOS Encyclopedia

55

Sb ec

b8 22

e8 00

57

56

push bp
mov bp,sp

00 mov ax,34
00 call _chkstk

push di

push si

(more)

HUAWEI EX. 1110 - 612/1582

; :*** char *argv[];

; : *** {
Line 31

argc = 4
argv = 6

cmd = -4

port = -6
result = -2

inregs = -34

outregs = -20

Article 18: Debugging in the MS-DOS Environment

; : ***
; : ***
; : ***
; : ***
; : ***

int cmd, port, result;

static char commands [3] [1 OJ
union REGS inregs, outregs;

("STOPPED", "STARTED", "RESUMED"};

cmd = 0;

; Line 36

*** OOOOOb

; : *** port = 0;

; Line 37

*** 000010

; : ***
; : *** if (argc >
; Line 39

*** 000015

*** 000019

*** 00001b

; : ***
; Line 40

c7 46 fc 00 00

c7 46 fa 00 00

1)

83 7e 04 01
7f 03
e9 Sd 00

$JCC25:

mov

mov

crop
jg

WORD PTR [bp-4],0

WORD PTR [bp-6],0

WORD PTR [bp+4],1

$JCC25

jmp $1145

;cmd

;port

;argc

; : *** if (0 == stricmp(argv[1], "STOP"))

; Line 41

*** 00001e b8 00 00 mov ax, OFFSET DGROUP:$SG148

*** 000021 50 push ax

*** 000022 8b Se 06 mov bx, [bp+6] ;argv

*** 000025 ff 77 02 push WORD PTR [bx+2]

*** 000028 e8 00 00 call _stricmp

*** 00002b 83 c4 04 add sp,4

*** 00002e 3d 00 00 cmp ax,O

*** 000031 74 03 je $JCC49

*** 000033 e9 08 00 jmp $1147

$JCC4 9:

; : *** cmd 0;

; Line 42

*** 000036 c7 46 fc 00 00 mov WORD PTR [bp-4],0 ;cmd

; : *** else if (0 -- stricmp (argv [1], "START"))

Figure 18-12. Continued. (more)

Section /1· Programming in the MS-DOS Environment 603

~

HUAWEI EX. 1110 - 613/1582

Part E: Programming Tools

Line 43

*** 00003b e9 3d 00 jmp $1149

$1147:

*** 00003e b8 05 00 mov ax,OFFSET DGROUP:$SG151

*** 000041 50 push ax

*** 000042 8b 5e 06 mov bx, [bp+6] ;argv

*** 000045 ff 77 02 push WORD PTR [bx+2]

*** 000048 e8 00 00 call _stricmp

*** 00004b 83 c4 04 add sp,4

*** 00004e 3d 00 00 cmp ax,O

*** 000051 74 03 je $JCC81

*** 000053 e9 08 00 jmp $1150

$JCC81:

; : *** cmd 1;

; Line 44

*** 000056 c7 46 fc 01 00 mov WORD PTR [bp-4]' 1 ;cmd

; : *** else if (0 == stricmp(argv[1], "RESUME"))

; Line 45

*** 00005b e9 1d 00 jmp $1152

$1150:

*** 00005e b8 Ob 00 mov ax, OFFSET DGROUP:$SG154

*** 000061 50 push ax

*** 000062 8b 5e 06 mov bx, [bp+6] ;a·rgv

*** 000065 ff 77 02 push WORD PTR [bx+2]

*** 000068 e8 00 00 call _stricmp

*** 00006b 83 c4 04 add sp,4

*** 00006e 3d 00 00 cmp ax,O

*** 000071 74 03 je $JCC113

*** 000073 e9 05 00 jmp $1153

$JCC113:

; : *** cmd 2;

; Line 46

*** 000076 c7 46 fc 02 00 mov WORD PTR [bp-4], 2 ;cmd

; : *** }

; Line 47
$1153:

$1152:

$1149:

; : ***
; : ** * if (argc 3)

; Line 49
$1145:

*** 00007b 83 7e 04 03 cmp WORD PTR [bp+4] '3 ;argc

*** 00007f 74 03 je $JCC127

*** 000081 e9 1b 00 jmp $1155

$JCC127:

; : ** *
; Line 50

; : *** port atoi(argv[2]);

Figure 18-12. Continued.
(more)

604 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 614/1582

Article 18: Debugging in the MS-DOS Environment

Line 51

*** 000084 Sb Se 06 mov bx, [bp+6] ;argv
*** 000087 ff 77 04 push WORD PTR [bx+4]
*** 00008a e8 00 00 call _atoi

*** 00008cj 83 c4 02 add sp,2
*** 000090 89 46 fa mov [bp-6],ax ;port

; : *** if (port > 0)
; Line 52

*** 000093 83 7e fa 00 cmp WORD PTR [bp-6],0 ;port
*** 000097 7f 03 jg $JCC151

*** 000099 e9 03 00 jmp $I156

$JCC151:

; : *** port = port-1;
; Line 53

*** 00009c ff 4e fa dec WORD PTR [bp-6] ;port
; : ***)

; Line 54

$I156:

; : ** *
i: *** inregs.h.ah cmd;

; Line 56

$I155:

*** 00009f Sa 46 fc mov al, [bp-4] ;cmd
*** 0000a2 88 46 df mov [bp-33],al

; : *** inregs.x.dx = port;
; Line 57

*** OOOOaS Sb 46 fa mov ax, [bp-6] ;port
*** 0000a8 89 46 e4 mov [bp-28],ax

i: *** result = int86(COMMCMD, &inregs,. &outregs) ;
; Line 58

*** OOOOab Sd 46 ec lea ax, [bp-20]

'0'""•'4 *** OOOOae so push ax

*** OOOOaf Sd 46 de lea ax, [bp-34] ;lnregs
*** 0000b2 so push ax

*** 0000b3 b8 60 00 mov ax,96

*** 0000b6 so ptish ax
*** 0000b7 e8 00 00 call _int86

*** OOOOba 83 c4 06 add sp, 6

*** OOOObd 89 46 fe mov [bp-2],ax ;result

; : ** *
; : ***
; : *** printf("\nCommunications tracing %s for port COM%1d:\n",

; : *** commands [cmd], port + 1);
; Line 62

*** OOOOcO Sb 46 fa mov ax, [bp-6] ;port
*** OOOOc3 40 inc ax

*** 0000c4 50 push ax

*** OOOOcS Sb 46 fc mov ax, [bp-4] ;cmd

*** 0000c8 Sb c8 mov ex, ax
*** OOOOca d1 eO shl ax, 1

*** OOOOcc d1 eO shl ax, 1

*** OOOOce 03 c1 add ax, ex
*** OOOOdO d1 eO shl ax,1

Figure 18-12. Continued. (more)

Section 11- Programming in the MS-DOS Environment 605

HUAWEI EX. 1110 - 615/1582

PartE: Programming Tools

*** 0000d2 05 40 00

50

add ax,OFFSET DGROUP:$S142_comrnands

*** 0000d5

*** 0000d6

*** 0000d9

*** OOOOda

*** OOOOdd

i: ***)

; Line 63

*** OOOOeO

*** 0000e1

*** 0000e2

*** OOOOe4

*** 0000e5

_main ENDP
_TEXT ENDS

END

Figure 18-12. Continued.

b8 12 00

50

e8 00 00
83 c4 06

Se
Sf
8b es
Sd
c3

$EX138:

push

mov

push

call

add

pop

pop
mov

pop
ret

ax
ax,OFFSET DGROUP:$SG157

ax
_printf

sp, 6

si

di
sp,bp

bp

After the C program is compiled, it must be linked using the /LI switch to indicate that the
line number information is to be maintained:

C>LINK COMMSCMD /MAP /LI; <Enter>

The /MAP switch is still required to generate a map file of public names for use in building
the symbol file, which is created in the usual manner:

C>MAPSYM COMMSCMD <Enter>

Everything needed to debug COMMSCMD and BADSCOP is now available. The first test is
an attempt to start tracing. To invoke SYMDEB, type

C>SYMDEB COMMSCMD.SYM BADSCOP.SYM COMMSCMD.EXE START 1 <Enter>

SYMDEB first loads the symbol files for COMMSCMD and BADSCOP and then loads the
.EXE file for COMMSCMD. BADSCOP is already in memory, having been loaded by simply
running it. (It then stays resident.) The last two entries in the command line load the com­
mand tail for COMMSCMD with a start request for COMl. SYMDEB responds with

Microsoft (R) Symbolic Debug Utility Version 4.00

Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

Use the Register and Examine Symbol Map commands to display the initial register values
and symbol table information.

606 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 616/1582

Article 18: Debugging in the MS-DOS Environment

-R <Enter>

AX=OOOO 8X=OOOO CX=1928 DX=OOOO SP=0800 8P=OOOO SI=OOOO DI=OOOO
DS=2CAO ES=2CAO SS=2E85 CS=2C80 IP=010F NV UP EI PL NZ NA PO NC
_TEXT:_astart:
2C80:010F 8430
-X* <Enter>
[2C80 COMMSCMD]

[2C80 _TEXT]
2E08 DGROUP

0000 8ADSCOP
0000 CSEG

-X?* <Enter>
9876 _acrtused
_TEXT: (2C80)
0010 _main
OOF9 _chkstk
0189 _int86
02C2 _stbuf
0458 _cinit
0572 _dosretO
05EA __NMSG_WRITE
OF6D _flsbuf
1098 _forcdecpt
1125 ___myalloc
11 92 _flushall
11D1 _nmalloc
1351 _amalloc
1 4AD _Jnkctl
DGROUP: (2E08)
0094 STKHQQ
009A _abrktb
018C _iob2
021E _errno

0226 _osmajor
0228 _oserr
0240 _argv
0278 _cflush
028A _asegr
03DO ___bufout

MOV AH,30

9876 _acrtmsg

OOF6 _atoi
010F _astart
023A _printf
0361 _ftbuf
0507 _exit
057A _dosretax
0613 _output
1098 _fassign
1098 _cfltcvt
1167 _strlen
11C3 _free
1217 _write
1432 _amexpand

0096 _asizds
OOEA _abrktbe
0204 _lastiob
0220 _umaskval
0226 _dosvermajor
0228 _doserrno
0242 _environ
027A _asegds
028C _amblksiz
05DO ___bufin

i I 0 I

01AB _cintDIV 01AE _amsg_exit
0270 _strcmpi 0270 _stricmp
03E7 _cat ox 043C _nullcheck
051E _exit 054A _ctermsub
0586 _maperror 058A __NMSG_TEXT
OE22 _setargv OF07 _setenvp
1098 _crop zeros 1098 _positive
1098 _fflush 1103 :_isatty
1182 _ultoa 118C _fptrap
11C3 _nfree 11D1 _rnalloc
12F1 _cltoasub 12FD _cxtoa
146C _am link 148E _amallocbrk

0098 _atopsp
OOEA _abrkp OOEC _iob
0212 _aintdiv 0216 _fac

0222 _pspadr 0224 _psp
0227 _osminor 0227 _dosverminor
022A _osfile 023E _argc
0244 _child· 0246 _csigtab
0286 _aseg1 0288 _asegn
0292 _fpinit 03A8 _edata
07DO _end

The Register command shows that the first instruction to be executed will be at symbol
astart in the TEXT segment. (Note that C puts a single underscore in front of all public
library and routine names; a double underscore indicates routines for C's internal use.) The
Examine Symbol Map command reveals that the symbol map COMMSCMD! has two seg­
ments, _TEXT and DGROUP, with _TEXT currently selected. The segment in BADSCOP!,
CSEG, has no value assigned to it because SYMDEB doesn't know where it is; one of the
debugging tasks is to determine the location of CSEG.

C places initialization and preamble code at the front of its object modules. This code can
be skipped during debugging, so this example begins at the label_ main. Examination of
the code at this label using the Disassemble command reveals the following:

Section II: Programming in the MS-DOS Environment 607

HUAWEI EX. 1110 - 617/1582

Part E: Programming Tools

-u _main <Enter>
commscmd.C
29: int argc;
_TEXT:_main:
2CB0:0010 55 PUSH BP
2CB0:0011 BBEC MOV BP,SP
2CB0:0013 B82200 MOV AX,0022
2CB0:0016 EBEOOO CALL _chkstk

2CB0:0019 57 PUSH DI

This disassembly shows the way source-line information is displayed. These instructions
are generated by line 29 of COMMSCMD.C. When the disassembly is compared with the
listing in Figure 18-12, the same instructions are seen. However, their addresses are differ­
ent. The addresses in the disassembly are relative to the start of the segment _TEXT, but
the addresses in the listing are relative to the start of_ main. SYMDEB allows address ref­
erences to be made relative to a symbol, so breakpoints can be set as displacements from
_main and the addresses shown in the listing can be used.

Because the location of the problem being debugged is not known, breakpoints must be
placed strategically throughout COMMSCMD to trace the execution of the program. Use
the Set Breakpoints command to set the breakpoints.

-BP _main+1e <Enter>
-BP _main+36 <Enter>
-BP _main+56 <Enter>
-BP _main+76 <Enter>
-BP _main+7b <Enter>
-BP _main+9c <Enter>
-BP _main+b7 <Enter>
-BP _main+e5 <Enter>
-BL <Enter>
0 e 2CB0:002E [_TEXT:_main+1E (002E)] commscmd.C:41
1 e 2CB0:0046 [_TEXT:_main+36 (0046) l commscmd.C:42
2 e 2CB0:0066 [_TEXT:_main+56 (0066) l commscmd.C:44
3 e 2CB0:0086 [_TEXT:__main+76 (0086) l commscmd.C:46
4 e 2CB0:008B [_TEXT:__main+7B (008B)] commscmd.C:49
5 e 2CBO:OOAC [_TEXT:__main+9C (00AC)] commscmd.C:53
6 e 2CBO:OOC7 [_TEXT:__main+B7 (00C7)] commscmd.C:58
7 e 2CBO:OOF5 [_TEXT:__main+E5 (00F5)] commscmd.C:63

The List Breakpoints command shows the breakpoint addresses in three ways: first the
absolute segment:offset address, then the displacement from the label_ main, and finally
the line number in COMMSCMD.C.

The first part of the COMMSCMD program decodes the arguments and sets the appro­
priate values for cmd and port. If there are no arguments, this decoding is skipped; if there
are arguments, the decoding begins at line 41, so the first breakpoint is set there. If the cri­
terion of line 41 is met (the first argument is STOP), then line 42 is executed. The second
breakpoint is set there. Reaching the second breakpoint means that a STOP command was
properly decoded. If the command was not STOP, execution continues at line 43. If this

608 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 618/1582

Article 18: Debugging in the MS-DOS Environment

test is passed, line 44 is executed. This is the location of the third breakpoint. If the test at
line 44 fails but the one at line 45 is passed, then the breakpoint at line 46 is executed.
Whether or not one of the tests passes, execution ends up at line 49. At this point, the pro­
gram tests for the presence of a second operand. If there is a second operand, execution
traps at line 53, where the program decrements the port number to put it in the proper
form for the Interrupt 60H handler. Execution will then always, stop in line 58, just before
the call to _int86. (_int86 is a library routine that loads registers and executes INT
instructions.)

When the program is run with START 1 in the command tail, it gives the following results:

-G <Enter>
AX=0022 BX=OF82 CX=0019 DX=0098 SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC
41: if (0 stricmp(argv[1],"STOP"))
2CB0:002E 883600 MOV AX,0036 ;BRO
-G <Enter>
AX=OOOO BX=415A CX=OOOO DX=0098
DS=2E08 ES=2E08 SS=2E08 CS=2CBO
44: cmd = 1;

SP=OF7E BP=OFA4 SI=0089 0!=1065
IP=0066 NV UP EI PL ZR NA PE NC

2CB0:0066 C746FC0100 MOV Word Ptr [BP-04],0001 ;BR2 SS:OFAO=OOOO
-G <Enter>
AX=OOOO BX=415A CX=OOOO DX=0098 SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOBB NV UP EI PL ZR NA PE NC
49: if (argc == 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:OFA8=0003
-G <Enter>
AX=0001 BX=OODO CX=OOOO DX=OOOO SP=OF7E BP=OFA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOAC NV UP EI PL NZ NA PO NC
5 port = port-1;
2CB0:00AC FF4EFA DEC Word Ptr [BP-06] ;BR5 SS:OF9E=0001
-G <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF78 BP=0FA4 SI=0089 0!=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOC7 NV UP EI PL ZR NA PE NC
2CBO:OOC7 EBEFOO CALL _int86 ;BR6

The first break occurs at line 41, indicating that one or more arguments were present in
the command line. The next break is at line 44, where the program sets the cmd code for
Interrupt 60H to 1, the correct value for a start request. The next break occurs at line 49,
where the program checks the number of arguments. If this number is 3, then there is a
second argument in the command line. (Remember that, in C, the first argument is the
name of the routine, so an argument count of 3 actually means that there are 2 arguments
present.) The number of arguments is at BP+04, or SS:OFA8H, and it is indeed 3. Therefore,
the next break is at line 53. The program decrements the current value of port, leaving a
value of 0, which is what Interrupt 60H expects to see for COM1.

Continuing execution causes a break just before the call to _ int86. To validate that
the Interrupt 60H call is being made correctly, set a breakpoint just before the INT 60H
instruction is issued. Unfortunately, no listing of_ int86 is available, so no alternative

Section /1· Programming in the MS-DOS Environment 609

4

HUAWEI EX. 1110 - 619/1582

PartE: Programming Tools

exists but to trace the execution of the routine until the INT instruction is issued. The
details of the processing are of no interest to this debugging session, so they can be
ignored until an INT 60H is seen. (The trace offers a great deal of information about how C
interfaces with subroutines. Studying the trace would be educational but is beyond the
scope of this example.)

-T 5 <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F76 BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01B9 NV UP EI PL ZR NA PE NC
_TEXT:_int86:
2CB0:01B9 55
AX=0060 BX=OODO

PUSH BP
CX=OOOO DX=OOOO SP=0F74 BP=OFA4 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BA NV UP EI PL ZR NAPE NC
MOV BP, SP 2CB0:01BA 8BEC

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF74 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BC NV UP EI PL ZR NA PE NC
2CB0:01BC 56 PUSH SI
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF72 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01BD NV UP EI PL ZR NA PE NC
2CB0:01BD 57 PUSH DI
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF70 BP=OF74 SI=0089 DI=1065
DS=2E08. ES=2E08
2CB0:01BE 83ECOA
-T 5 <Enter>

SS=2E08 CS=2CBO IP=01BE NV UP EI PL ZR NA PE NC
SUB SP, +OA

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01C1 NV UP EI PL NZ AC PE NC
2CB0:01C1 C646F6CD MOV Byte Ptr [BP-OA],CD
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089

SS:OF6A=BE
DI=1065

DS=2E08 ES=2E08
2CB0:01C5 8B4604
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CB0:01C8 8846F7
AX=0060 BX=OODO
DS=2E08 ES=2E08

SS=2E08 CS=2CB0 IP=01C5
MOV AX, [BP+04]

CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CBO IP=01C8

NV UP EI PL NZ AC PE NC
SS:OF78=0060

BP=OF74 SI=0089 DI=1065
NV UP EI PL NZ AC PE NC

MOV [BP-09] ,AL
CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CB0 IP=01CB

SS: OF6B=01
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC
2CBO: 01 CB 3C25 CMP AL, 25 ; '%'

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01CD NV UP EI PL NZ AC PO NC
2CB0:01CD 740A JZ _int86+20 (01D9)
-T 5 <Enter>
AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08
2CB0:01CF 3C26
AX=0060 BX=OODO

SS=2E08 CS=2CBO IP=01CF NV UP EI PL NZ AC PO NC
CMP AL, 26 ; ' & '

CX=OOOO DX=OOOO SP=0F66 BP=OF74 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=01D1 NV UP EI PL NZ AC PE NC
2CB0:01D1 7406
AX=0060 BX=OODO CX=OOOO
DS=2E08 ES=2E08 SS=2E08
2CB0:01D3 C646F8CB
AX=0060 BX=OODO CX=OOOO

JZ _int86+20 (01D9)
DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
CS=2CBO IP=01D3 NV UP EI PL NZ AC PE NC

MOV Byte Ptr [BP-08],CB SS:OF6C=BO
DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=01D7 NV UP EI PL NZ AC PE NC

610 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 620/1582

r

2CB0:01D7 EBOC

AX=0060 BX=OODO
DS=2E08 ES=2E08

2CB0:01E5 8C56F4
-·T 5 <Enter>

Article 18: Debugging in the MS-DOS Environment

JMP _int86+2C (01E5)

CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065
SS=2E08 CS=2CB0 IP=01E5 NV UP EI PL NZ AC PE NC

MOV [BP-OC], SS SS: OF68=0F74

AX=0060 BX=OODO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=1065

DS=2E08 ES=2E08
2CB0:01E8 8D46F6

AX=OF6A BX=OODO

DS=2E08 ES=2E08

2CB0:01EB 8946F2
AX=OF6A BX=OODO

DS=2E08 ES=2E08
2CB0:01EE 8B7E06

AX=OF6A BX=OODO
DS=2E08 ES=2E08

2CB0:01F1 8B05

AX=0100 BX=OODO

DS=2E08 ES=2E08

2CB0:01F3 8B5D02
-T 5 <Enter>

SS=2E08

CX=OOOO

SS=2E08

CX=OOOO

SS=2E08

CX=OOOO
SS=2E08

CX=OOOO
SS=2E08

CS=2CB0 IP=01E8
LEA AX, [BP-OA]

DX=OOOO SP=OF66

CS=2CBO IP=01EB
MOV [BP-OE],AX

DX=OOOO SP=OF66

CS=2CBO IP=01EE
MOV DI, [BP+06]

DX=OOOO SP=OF66
CS=2CBO IP=01F1

MOV AX, [DI]

DX=OOOO SP=OF66

CS=2CBO IP=01F3

MOV BX, [DI+02]

NV UP EI PL NZ AC PE NC

SS:OF6A=60CD
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC

SS:OF66=0060
BP=OF74 SI=0089 DI=1065

NV UP EI PL NZ AC PE NC

SS:OF7A=OF82
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS.:OF82=01 00
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS:OF84=0000

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF66 BP=OF74 SI=0089 DI=OF82

DS=2E08 ES=2E08

2CB0:01F6 8B4D04
AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:01F9 8B5506

AX=0100 BX=OOOO

DS=2E08 ES=2E08
2CB0:01FC 8B7508

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:01FF 8B7DOA

AX=0100 BX=OOOO

SS=2E08 CS=2CBO IP=01F6
MOV CX, [DI+04]

CX=OOOO DX=OOOO SP=OF66

SS=2E08 CS=2CB0 IP=01F9
MOV DX, [DI+06]

CX=OOOO DX=OOOO SP=OF66
SS=2E08 CS=2CBO IP=01FC

MOV SI, [DI+OB]

CX=OOOO DX=OOOO SP=OF66

SS=2E08 CS=2CBO IP=01FF

MOV DI, [DI+OA]

CX=OOOO DX=OOOO SP=OF66

DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=0202

2CB0:0202 55
-T 5 <Enter>

PUSH BP

NV UP EI PL NZ AC PE NC

DS:OF86=0000
BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC
DS:OFBB=OOOO

BP=OF74 SI=0089 DI=OF82

NV UP EI PL NZ AC PE NC

DS:OFBA=OOOO

BP=OF74 SI=OOOO DI=OF82

NV UP EI PL NZ AC PE NC

DS:OFBC=OOOO

BP=OF74 SI=OOOO DI=OOOO
NV UP EI PL NZ AC PE NC

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF64 BP=OF74 SI=OOOO DI=OOOO

DS=2E08 ES=2E08

2CB0:0203 83EDOE

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2CB0:0206 FF5EOO

AX=0100 BX=OOOO

DS=2E08 ES=2E08

2EOB:OF6A CD60

AX=0100 BX=OOOO

DS=2E08 ES=2E08

SS=2E08 CS=2CBO IP=0203
SUB BP,+OE

CX=OOOO DX=OOOO SP=OF64
SS=2E08 CS=2CBO IP=0206

CALL FAR [BP+OO]

CX=OOOO DX=OOOO SP=OF60
SS=2E08 CS=2E08

INT 60
CX=OOOO DX=OOOO

SS=2E08 CS=1313

IP=OF6A

SP=OF5A

IP=0190

1313:0190 BOFCOO CMP AH,OO

NV UP EI PL NZ AC PE NC

BP=OF66 SI=OOOO DI=OOOO

NV UP EI PL NZ AC PE NC
SS:OF66=0F6A

BP=OF66 SI=OOOO DI=OOOO

NV UP EI PL NZ AC PE NC

BP=OF66 SI=OOOO DI=OOOO

NV UP DI PL NZ AC PE NC

AX=0100 BX=OOOO CX=OOOO DX=OOOO SP=OF5A BP=OF66 SI=OOOO DI=OOOO

DS=2EOB ES=2E08 SS=2E08 CS=1313 IP~0193 NV UP DI PL NZ NA PO NC

1313:0193 7521 JNZ 01B6

Section /1· Programming in the MS-DOS Environment 611

HUAWEI EX. 1110 - 621/1582

Part E: Programming Tools

When the Interrupt 60H call is encountered at offset OF6AH, the values passed to it can
be checked. AH contains 1 and DX contains 0-the correct values for START COMl.

In order to use the symbols for BADSCOP, use the Open Symbol Map command, XO, to
switch to the correct symbol map. Then, because the value of CSEG is not defined in the
map, use the Set Symbol Value command to set CSEG to the current value of CS. (CS was
changed to the correct value for BADSCOP when the program executed the INT 60H
instruction.)

-XO BAOSCOP! <Enter>
-z CSEG CS <Enter>
-X?* <Enter>

CSEG: (1313)
0100 INITIALIZE 0103 OLO_COMMLINT 0107 COUNT
010A PORT 010B BUFPNTR 0100 COMSCOPE
020A VECTOR_INIT

0109 STATUS
0190 CONTROL

Because the BADSCOP symbols now have meaning, a great deal of trouble can be avoided
by setting a breakpoint at CONTROL, the entry point for Interrupt 60H, so that it will no
longer be necessary to trace the _int86 routine to find the INT 60H command. Execution
will automatically stop when the Interrupt 60H handler is entered.

-BP CONTROL <Enter>
-BL <Enter>
0 e 2CB0:002E [COMMSCMO!_TEXT:_main+1E (002E)] commscmd.C:41
1 e 2CB0:0046 [COMMSCMO!_TEXT:_main+36 (0046) l commscmd.C:42

2 e 2CB0:0066 [COMMSCMO!_TEXT:_main+56 (0066) l commscmd.C:44
3 e 2CB0:0086 [COMMSCMO!_TEXT:_main+76 (0086) l commscmd.C:46
4 e 2CBO: 008B [COMMSCMO!_TEXT:_main+7B (008B)] commscmd.C:49
5 e 2CBO:OOAC [COMMSCMO!_TEXT:_main+9C (OOAC)] commscmd.C:53
6 e 2CB0:00C7 [COMMSCMO!_TEXT:_main+B7 (00C7)] commscmd. C: 58
7 e 2CBO:OOF5 [COMMSCMO!_TEXT:_main+E5 (00F5)] commscmd.C:63
8 e 1313:0190 [CSEGS:CONTROL]

With the housekeeping tasks done, the business of debugging BADSCOP can begin. The
first thing CONTROL does is check for a stop request. If no stop request is present, the
routine jumps to the check for a start request. (The first test and jump were already com­
plete when the trace ended above.) The test for a start request is passed. CONTROL
places the port number in a local variable, resets the buffer pointer and the buffer count,
and turns tracing status on. With all this complete, CONTROL returns.

-T 5 <Enter>
AX=01BB BX=E81E
OS=2E08 ES=2E08
1313:0186 80FC01
AX=01BB BX=E81E
OS=2E08 ES=2E08
1313:01B9 751C
AX=01BB BX=E81E
OS=2E08 ES=2E08

CX=3F48 OX=OOOO BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313

SP=OF5A
IP=01 B6 NV UP OI PL NZ NA PO NC

CMP AH, 01
CX=3F48 OX=OOOO SP=OF5A BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313 IP=01B9 NV UP OI PL ZR NAPE NC

JNZ CONTROL+47 (0107)
CX=3F48 OX=OOOO SP=OF5A BP=OF66 SI=1CE7 OI=7400
SS=2E08 CS=1313 IP=01BB

1313:01BB 2E88160A01 MOV CS: [PORT], OL
NV UP OI PL ZR NA PE NC

CS:010A=OO

612 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 622/1582

Article 18: Debugging in the MS-DOS Environment

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01CO NV UP D1 PL ZR NAPE NC
1313:01CO 2EC7060B010202 MOV Word Ptr CS: [BUFPNTR],VECTOR_1N1T (0209) CS:010B=0202
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2EOB ES=2E08 .SS=2E08 CS=1313 1P=01C7 NV UP D1 PL ZR NAPE NC
1313:01C7 2EC70607010000 MOV Word Ptr CS: [COUNT],OOOO CS:0107=0002
-·T 5 <Enter>

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01CE NV UP D1 PL ZR NAPE NC
1313:01CE 2EC606090101 MOV Byte Ptr CS: [STATUS],01 CS:0109=01
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=01D4 NV UP D1 PL ZR NAPE NC
1313:0104 EB2B JMP CONTROL+71 (0201)
AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF5A BP=OF66 S1=1CE7 DI=7400
DS=2E08 ES=2E08 SS=2E08 CS=1313 1P=0201 NV UP D1 PL ZR NAPE NC
1313:0201 CF
AX=01BB BX=E81E
DS=2E08 ES=2E08

IRET
CX=3F48 DX=OOOO
SS=2E08 CS=2E08

2E08:0F6C CB RETF

SP=OF60
1P=OF6C

BP=OF66 S1=lCE7 01=7400
NV UP EI PL NZ AC PE NC

AX=01BB BX=E81E CX=3F48 DX=OOOO SP=OF64 BP=OF66 SI=1CE7 01=7400
DS=2E08 ES=2E08 SS=2E08 CS=2CBO 1P=0209 NV UP E1 PL NZ AC PE NC
2CB0:0209 5D POP BP

As can be seen from the trace, CONTROL performed correctly, so execution of the routine
can continue.

-.G <Enter>

Communications tracing STARTED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=OFA6 BP=OOOO 51=0089 01=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO 1P=OOF5 NV UP E1 PL NZ NA PE NC
2CBO:OOF5 C3 RET ;BR7

COMMSCMD has written the message to the user and trapped at the breakpoint set at the
end of _main. The Examine Symbol Map command now shows that SYMDEB has auto­
matically switched to the symbol map for COMMSCMD.

-X* <Enter>

[2CBO COMMSCMD]
[2CB0 _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

No problems have been encountered with the START command; now the same process of
checking COMMSCMD and BADSCOP must be repeated for the STOP command. (Even if
problems had been found with the START command, it would be imprudent not to test the
other commands- they could have errors, too.) SYMDEB could be exited and restarted
with new commands, but this would mean the loss of the painfully created set of break­
points. Instead, a new copy of COMMSCMD is loaded without leaving SYMDEB. One
problem with this, however, is that when SYMDEB loads an .EXE file, it adds the value of
the initial CS register to the addresses of the segments in the symbol map whose name

Section IL Programming in the MS-DOS Environment 613

HUAWEI EX. 1110 - 623/1582

PartE: Programming Tools

matches the .EXE file. This is fine the first time the program loads, but the second time, all
the values are doubled and therefore incorrect. To avoid this error, the addresses must be
adjusted before the load. Use the Set Symbol Value command to subtract CS from each seg­
ment name in COMMSCMD!. The Examine Symbol Map command shows the new values.

-z -TEXT _TEXT-CS <Enter>
-z OGROUP OGROUP-CS <Enter>
-x* <Enter>
[2CBO COMM5CMO]

[0000 _TEXT]
0158 OGROUP

0000 BA05COP
1313 C5EG

The Name File or Command-Tail Parameters command, N, and the Load File or Sectors
command, L, can now be used to load a new copy of COMMSCMD.EXE.

-N COMMSCMO.EXE <Enter>
-L <Enter>
-x* <Enter>
[2CBO COMMSCMO]

[2CB0 _TEXT]
2E08 OGROUP

0000 BA05COP
1313 C5EG

Notice that the segment values inside COMMSCMD! are the same as they were when the
program was first loaded. Use the Name command again, this time to set the command tail
to contain a STOP command for COMl. The breakpoint table from the first execution is
still set, so the program can now be traced in the same way.

-N STOP 1 <Enter>
-G <Enter>
AX=0022 BX=OF84 CX=0019 OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 55=2E08 C5=2CB0 1P=002E NV UP E1 PL NZ NA PO NC
41: if (0 == stricmp(argv[1],"5TOP"))
2CB0: 002E B83600 MOV AX, 0036 ; BRO

-G <Enter>
AX=OOOO BX=415A CX=OOOO OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 S5=2E08 C5=2CB0 1P=0046 NV UP E1 PL ZR NA PE NC
42: cmd = 0;
2CB0:0046 C746FCOOOO MOV Word Ptr [BP-04],0000 ;BR1 5S:OFA2=0000

-G <Enter>
AX=OOOO BX=415A CX=OOOO OX=0098 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 ES=2E08 55=2E08 C5=2CB0 1P=008B NV UP E1 PL ZR NA PE NC
49: if (argc 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 55:0FAA=0003

-G <Enter>
AX=0001 BX=OOOO CX=OOOO OX=OOOO 5P=OF80 BP=OFA6 51=0089 01=1065
05=2E08 E5=2E08 55=2E08 C5=2CBO 1P=OOAC NV UP E1 PL NZ NA PO NC
53: port = port-1;

614 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 624/1582

.·1 ·.·.

Article 18: Debugging in the MS-DOS Environment

2CBO:OOAC FF4EFA
-'G <Enter>
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CBO:OOC7 EBEFOO

DEC Word Ptr [BP-06] ;BRS SS:OFA0=0001

CX=OOOO DX=OOOO SP=OF7A BP=OFA6 SI=0089 DI=1065
SS=2E08 CS=2CBO IP=00C7 NV UP EI PL ZR NA PE NC

CALL _int86 ;BR6

COMMSCMD detected that this is a stop request for COMl and set the arguments for
_int86 correctly. Because a breakpoint is now set at CONTROL, tracing until the Interrupt
60H call is found is not necessary. Simply executing the program will cause it to stop at
CONTROL.

-G <Enter>
AX=001E BX=3F48 CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0190 NV UP DI PL NZ AC PO NC
CSEG:CONTROL:
1313:0190 80FCOO CMP AH,OO ;BR8

The registers are set correctly for a stop request on COMl (AH = 0, DX = 0). The routine
can now be traced to check for correct operation. First, however, a quick look at the sym­
bol maps shows that SYMDEB has automatically switched to BADSCOP's symbols.

-X* <Enter>
2CBO COMMSCMD

2CBO _TEXT
2E08 DGROUP

[0000 BADSCOP]
[1313 CSEG]

-T 5 <Enter>
AX=001E BX=3F48
DS=2E08 ES=2EOB
1313:0193 7521
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0195 1E
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0196 53
AX=001E BX=3F48
DS=2E08 ES=2E08
1313:0197 OE
AX=001E
DS=2E08

BX=3F48
ES=2E08

1313:0198 1F
-T 5 <Enter>

CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0193 NV UP DI PL ZR NAPE NC

JNZ CONTROL+26 (01B6)
CX=OOOO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0195 NV UP DI PL ZR NAPE NC

PUSH DS
CX=OOOO DX=OOOO SP=OFSA BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0196 NV UP DI PL ZR NAPE NC

PUSH BX
CX=OOOO DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0197 NV UP. DI PL ZR NA PE NC

PUSH CS
CX=OOOO DX=OOOO SP=OF56 BP=OF68 SI=7400 DI=E903
SS=2E08 CS=1313 IP=0198 NV UP DI PL ZR NAPE NC

POP DS

AX=001E BX=3F48 CX=OOOO
DS=1313 ES=2E08 SS=2E08
1313:0199 C606090100

DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
CS=1313 IP=0199 NV UP DI PL ZR NAPE NC

MOV Byte Ptr [STATUS], 00 DS: 01 09=01
AX=001E
DS=1313

BX=3F48
ES=2E08

CX=OOOO
SS=2E08

1313:019E 8B1EOB01
AX=001E BX=0202 CX=OOOO

DX=OOOO SP=OF58 BP=OF68 SI=7400 DI=E903
CS=1313 IP=019E

MOV BX, [BUFPNTR]
NV UP DI PL ZR NA PE NC

DS:010B=0202

DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A2 NV UP DI PL ZR NAPE NC

(more)

Section II: Programming in the MS-DOS Environment 615

HUAWEI EX. 1110 - 625/1582

Part E: Programming Tools

1313:01A2 C607BO MOV Byte Ptr [BX],BO 05:0202=80
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF6B SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01A5 NV UP DI PL ZR NAPE NC
1313:01A5 C64701FF MOV Byte Ptr [BX+01),FF DS:0203=FF
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB
1313:01A9 FF060701

CS=1313 IP=01A9 NV UP DI PL ZR NAPE NC
INC Word Ptr [COUNT) 05:0107=0000

-T 5 <Enter>
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01AD NV UP DI PL NZ NA PO NC
1313:01AD FF060701 INC Word Ptr [COUNT) 05:0107=0001
AX=001E BX=0202 CX=OOOO DX=OOOO SP=OFSB BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01B1 NV UP DI PL NZ NA PO NC
1313:01B1 SB POP BX
AX=001E BX=3F4B CX=OOOO DX=OOOO SP=OFSA BP=OF68 SI=7400 DI=E903
05=1313 ES=2EOB SS=2EOB CS=1313 IP=01B2 NV UP DI PL NZ NA PO NC
1313:01B2 1F
AX=001E BX=3F4B
DS=2EOB ES=2EOB
1313:01B3 EB4C
AX=001E BX=3F4B
DS=2EOB ES=2EOB
1313:0201 CF

POP DS
CX=OODO DX=OOOO SP=OFSC BP=OF68 SI=7400 DI~E903

SS=2EOB CS=1313 IP=01B3 NV UP DI PL NZ NA PO NC
JMP CONTROL+71 (0201)

CX=OOOO DX=OOOO SP=OFSC BP=OF6B SI=7400 DI=E903
SS=2EOB CS=1313 IP=0201

IRET
NV UP DI PL NZ NA PO NC

CONTROL correctly detected that this was a stop request. It then saved the user's registers
and established aDS equal to CS. (Remember that BADSCOP is a .COM file and CS = DS =
SS.) Having done this, the routine moves a zero to STATUS, which turns the trace off. It
then moves SOH FFH to the buffer to indicate the end of a trace session, increments
COUNT to allow for the new entry, and restores the user's registers. What it does not do
is increment the buffer pointer to allow for the stop marker. This behavior is entirely con­
sistent with the observed phenomena: When a trace is stopped and resumed, the stop
marker is missing and the count is one too high. The fix is to add

INC
INC
MOV

BX
BX
BUFPNTR,BX

;INCREMENT BUFFER POINTER
; .

to the CONTROL procedure before the registers are restored. (Insert these lines later with
your favorite editor.)

Even though the bug lias been found, the rest of the routine should be checked for other
possible bugs.

-G <Enter>
Communications tracing STOPPED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=OFAB BP=OOOO SI=OOB9 DI=1065
DS=2EOB ES=2EOB SS=2EOB CS=2CB0 IP=OOFS NV UP EI PL NZ AC PO NC
2CBO:OOF5 C3 RET ;BR7

Loading a new copy of COMMSCMD, setting the command tail to RESUME 1, and monitor­
ing program· execution yields the following:

616 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 626/1582

Article 18: Debugging in the MS-DOS Environment

-N COMMSCMD.EXE <Enter>
-z _TEXT _TEXT-CS <Enter>
-z DGROUP DGROUP-CS <Enter>
-X* <Enter>
[2CBO COMMSCMD]

[0000 _TEXT]
0158 DGROUP

0000 BADSCOP
1313 CSEG

-L <Enter>
-X* <Enter>
[2CBO COMMSCMD]

[2CBO _TEXT]
2E08 DGROUP

0000 BADSCOP
1313 CSEG

-N RESUME 1 <Enter>
-G <Enter>
AX=0022 BX=OF82
DS=2E08 ES=2E08
41:

CX=0019 DX=0098 SP=OF7E BP=OFA4 SI=0089 DI=1065
SS=2E08 CS=2CBO IP=002E NV UP EI PL NZ NA PO NC

if (0 == stricmp(argv[1],"STOP"))
2CB0:002E B83600
-G <Enter>
AX=OOOO BX=415A CX=OOOO
DS=2E08 ES=2E08 SS=2E08
46: cmd
2CB0:0086 C746FC0200
-G <Enter>

AX=OOOO BX=415A CX=OOOO

MOV AX, 0036 ; BRO

DX=0098 SP=OF7E BP=OFA4 SI=0089 DI=1065
CS=2CB0 IP=0086 NV UP EI PL ZR NA PE NC

2;
MOV Word Ptr [BP-04],0002 ;BR3 SS:OFAO=OOOO

DX=0098 BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO

SP=OF7E
IP=008B NV UP EI PL ZR NA PE NC

49: if (argc 3)
2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:OFA8=0003
-G <Enter>
AX=0001 BX=OODO CX=OOOO DX=OOOO SP=OF7E BP=OFA4 SI=0089 DI=1065
DS=2E08 ES=2E08 SS=2E08 CS=2CBO IP=OOAC NV UP EI PL NZ NA PO NC
53: port port-1;
2CB0:00AC FF4EFA
-G <Enter>
AX=0060 BX=OODO
DS=2E08 ES=2E08
2CBO:OOC7 E8EFOO
-G <Enter>
AX=0265 BX=001E
DS=2E08 ES=2E08
CSEG:CONTROL:
1313:0190 80FCOO
-T 5 <Enter>

DEC Word Ptr [BP-06] ;BRS SS:OF9E=0001

CX=OOOO DX=OOOO SP=OF78
SS=2E08 CS=2CB0 IP=OOC7

CALL _int86

CX=3F48 DX=OOOO SP=OFSA
SS=2E08 CS=1313 IP=0190

CMP AH,OO

AX=0265 BX=001E CX=3F48 DX=OOOO SP=OFSA
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0193
1313:0193 7521 JNZ CONTROL+26
AX=0265 BX=001E CX=3F48 DX=OOOO SP=OFSA
DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B6
1313:01B6 80FC01 CMP AH,01

BP=OFA4 SI=0089 DI=1065
NV UP EI PL ZR NA PE NC

;BR6

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ AC PE NC

;BR8

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ NA PO NC

(01 B6)
BP=OF66 SI=OOOO DI=7400

NV UP DI PL NZ NA PO NC

(more)

Section II: Programming in the MS-DOS Environment 617

HUAWEI EX. 1110 - 627/1582

Part E: Programming Tools

AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01B9 751C
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:0107 80FC02
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01DA 7516

-T 5 <Enter>
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01DC 2E833EOB0100
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E2 741D

DX=OOOO SP=OFSA
CS=1313 IP=01B9

JNZ CONTROL+47
DX=OOOO SP=OFSA
CS=1313 IP=01D7

CMP AH,02
DX=OOOO SP=OFSA
CS=1313 IP=01DA

JNZ CONTROL+62

BP=OF66 SI=OOOO DI=7400
NV UP DI PL NZ NA PO NC

(01D7)
BP=OF66 SI=OOOO DI=7400

NV UP DI PL NZ NA PO NC

BP=OF66 SI=OOOO DI=7400
NV UP DI PL ZR NA PE NC

(01F2)

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01DC NV UP DI PL ZR NAPE NC

CMP , Word Ptr CS: [BUFPNTR], +00 CS: 01 OB=0202
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E2 NV UP DI PL NZ NA PO NC

JZ CONTROL+71 (0201)
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E4

AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E4 2E88160A01
AX=0265 BX=001E CX=3F48
DS=2E08 ES=2E08 SS=2E08
1313:01E9 2EC606090101

MOV CS: [PORT] , DL
NV UP DI PL NZ NA PO NC

CS:010A=00

AX=0265 BX=001E
DS=2E08 ES=2E08
1313:01EF EB10

-T 5 <Enter>
AX=0265 BX=001E
DS=2E08 ES=2E08
1 31 3: 0 2 01 CF
AX=0265 BX=001E
DS=2E08 ES=2E08
2E08:0F6C CB
AX=0265 BX=001E
DS=2EOB ES=2E08
2CB0:0209 SD
AX=0265 BX=001E
DS=2E08 ES=2E08
2CB0:020A 57
AX=0265 BX=001E
DS=2E08 ES=2E08
2CB0:020B 8B7E08

-G <Enter>

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

CX=3F48
SS=2E08

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01E9 NV UP DI PL NZ NA PO NC

MOV Byte Ptr CS:[STATUS],01 CS:0109=00
DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=01 EF NV UP DI PL NZ NA PO NC

JMP CONTROL+71 (0201)

DX=OOOO SP=OFSA BP=OF66 SI=OOOO DI=7400
CS=1313 IP=0201 NV UP DI PL NZ NA PO NC

IRET
DX=OOOO SP=OF60 BP=OF66 SI=OOOO DI=7400
CS=2E08 IP=OF6C NV UP EI PL NZ AC PE NC

RETF
DX=OOOO SP=OF64 BP=OF66 SI=OOOO DI=7400
CS=2CB0 IP=0209 NV UP EI PL NZ AC PE NC

POP BP
DX=OOOO SP=OF66 BP=OF74 SI=OOOO DI=7400
CS=2CB0 IP=020A NV UP EI PL NZ AC PE NC

PUSH DI
CX=3F48 DX=OOOO SP=OF64
SS=2E08 CS=2CB0 IP=020B

BP=OF74 SI=OOOO DI=7400
NV UP EI PL NZ AC PE NC

SS:OF7C=OF90 MOV DI, [BP+08]

Communications tracing RESUMED for port COM1 :
AX=002F BX=0001 CX=OC13 DX=OOOO SP=0FA6 BP=OOOO SI=0089 DI=1065
DS=2E08 ES=2E08 S~=2E08 CS=2CB0 IP=OOFS NV UP EI PL NZ NA PE NC
2CBO:OOF5 C3

-o <Enter>

RET ;BR7

The processing of a resume request is correct. Thus, the problem with stop processing
in BADSCOP was the only problem. The corrected BADSCOP, which is actually
COMMSCOP, is shown in Figure 18-4.

618 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 628/1582

I

Article 18: Debugging in the MS-DOS Environment

Code View

Code View is the most sophisticated debugging monitor produced by Microsoft. It
combines the philosophy and many of the commands of its predecessors, DEBUG and
SYMDEB, with true·source-code debugging. The availability of source lines and symbols
allows Code View to rival the convenience of program development and debugging pre­
viously available only in interpreters such as Microsoft GW-BASIC. However, this high level
of interaction with the source program is also the root of its problems for advanced
debugging.

In order to provide the debugger with the tools to debug at the source-line level and to
interrogate program variables, CodeView is required to have a detailed knowledge of how
high-order languages work and of their internal conventions. This is not a problem for lan­
guages like C, Pascal, and FORTRAN, versions of which are produced by the same com­
pany that created Code View. The object code generated by these compilers obeys a
stringent set of rules and conventions. Assembly-language programs, however, tend to fol­
fow their own rules and traditions, making them quite different from C programs, with
their own separate debugging needs.

C, Pascal, and FORTRAN programmers will find Code View a dream to use. Assembly­
language programmers using versions of MASM earlier than 5.0 will find Code View cum­
bersome and will have to weigh its advantages over its disadvantages. All users will,
however, appreciate the good design and programming that have gone into Code View. It
is pleasing to know that someone understands the programmer's debugging needs and is
trying to ease the burden.

Code View has added several welcome functions to the debugger's repertoire, but one
of these new features towers above the rest-watchpoints. The debugger can watch the 4
values of program variables or expressions and set breakpoints on them, making it possi-
ble to stop execution if an expression evaluates to zero or if a location changes. Previous
debugging monitors have been limited to tracing and breaking on instructions. This new
facet of debugging changes, somewhat, the approach to resolving a bug.

In the previous discussion of debugging techniques, an orderly application of techniques
from inspection and observation through instrumentation to debugging monitors was
recommended. This sequence is still recommended with Code View, but now the instru­
mentation features have been integrated into the debugging monitor.

A simple example
The following example shows how Code View uses the instrumentation approach to isolate
a problem and then uses the debugging monitor functions to solve it. The example is also
an introduction to Code View commands and techniques. The commands are, for the most
part, similar to those used by SYMDEB. Those commands that differ greatly are indicated.
This example, like all the examples and demonstrations in this article, is not intended to
be a complete tutorial-CodeView commands are summarized elsewhere in this book
and explained in detail in the manual accompanying the product. See PROGRAMMING
UTILITIES: coDEVIEW. The example simply shows some of the more common Code View
commands and demonstrates debugging techniques using them.

Section II: Programming in the MS-DOS Environment 619

HUAWEI EX. 1110 - 629/1582

PartE: Programming Tools

UPPERCAS.C (Figure 18-13) is a simple program whose sole function is to convert a canned
string to uppercase. When executed, the program prints a few of the characters from the
string and some that aren't in the string. Inspecting the listing doesn't reveal the cause of
the problem. (Some readers with experience writing C programs will see the cause of the
problem, because it is quite common; pr!'!tend, for now, that the listing is of no help and
enjoy the wonders of Code View.)

!**************************************~*********************************

*
* UPPERCAS.C

* This routine converts a fixed string to uppercase and prints it.

*

*
*
*

**/

#include <ctype.h>
#include <string.h>

#include <stdio.h>

main(argc,argv)

int argc;

char *argv[];

char *cp, c;

cp = ''a string\n'';

I* Convert *cp to uppercase and write to standard output */

while (*cp != '\0')
{

c = toupper(*cp++);

putchar(c);
)

Figure 18-13. An erroneous C program to convert a string to uppercase.

Like SYMDEB, Code View requires some special preparation to produce a suitable exe­
cutable file. Code View, however, makes the job much simpler. Using the Microsoft C Com­
piler, compile the program with

C>MSC /Zi UPPERCAS; <Enter>

(Remember that C is case sensitive when interpreting switches, so the /Zi switch should
be entered exactly as shown.) The /Zi switch instructs the compiler to generate the symbol
tables and line-number information needed by Code View. Other options appropriate to
the program can also be included, but /Zi is required.

To form an executable file, use the Microsoft Object Linker (LINK) as follows:

C>LINK /CO UPPERCAS; <Enter>

620 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 630/1582

Article 18: Debugging in the MS-DOS Environment

This command line instructs LINK to build an executable file with the information
needed for Code View. Other options can be used as needed or desired. The output of
LINK, UPPERCAS.EXE, will be larger than a .EXE file built without /CO (about 2600 bytes
larger in this case),_ but the program will run correctly when executed without Code View.

Starting Code View is straightforward. Simply type

C>CV UPPERCAS <Enter>

Code View loads UPPERCAS.EXE. It locates UPPERCAS.C, the source file, and loads that
too. It then presents a full-screen display similar to this:

File View Search Run Uatc~ Options Language Calls Help I F8=Trace FS=Go
, uppercas.C

1: /MM~! ~:
~: *
~: * UPPEHCAS.C
~: * This routine conuerts a fixed string to uppercase and prints it.
~= * r,:
~:
~: linclude <ctype.h>
18: linclude <string.h)
u: linclude <stdio.h)
12:
13: nain(argc,argu)
14:
15: int argc:
16: char •argu[);
17:
18: {

'"'
~icrosoft (H) CodeUiew CH> Version 2.8 I (C) Copyright Hicrosoft Corp. 1986, 1987. All rights reserued.
>

This display has two windows open: the display window, which shows the program being
debugged, and the the dialog window, which currently contains only the copyright notice
and a prompt (>) for input. The F6 function key moves the cursor back and forth between
the two windows.

Code View can be instructed from either window to go to a specific line (that is, to execute
·until a specific line is reached). If the cursor is in the display window, use the arrow keys
to select a line and press the F7 key. Execution will proceed until the selected line (or the
end of the program) is reached. TQ start execution without specifying a stop line, press F5.

The same functions can be performed from the dialog window using typed commands,
which may seem more familiar. Enter the Go Execute Program command, G, optionally
followed by an address. Execution will continue until the specified address is reached

Section IL· Programming in the MS-DOS Environment 621

HUAWEI EX. 1110 - 631/1582

PartE: Programming Tools

or until stopped by something else, such as the end of the program. In this sense, the
Code View Go command is the same as that of DEBUG and SYMDEB. Unlike those rou­
tines, however, Code View's Go command does not allow an equals operator (=).

The address for the Go command can be specified in several ways. Because the display
window is currently showing only source lines, it is appropriate to set the stop location in
terms of line numbers. The syntax of a line-number specification is the same as in
SYMDEB- simply enter the line number preceded by a period:

>G . 27 <Enter>

Note that the line number is specified in decimal. This seemingly innocent statement
uncovers one of the problem areas in Code View, especially for assembly-language pro­
grammers. The default radix for Code View is decimal. This convention works well for
things associated with the C program, such as line numbers, but is very inconvenient for
addresses and other similar items, which are usually in hexadecimal. Hexadecimal num­
bers must be specified using the cumbersome C notation. Thus, the number FF3EH would
be entered as Oxff3e. The radix can be changed using the Change Current Radix com­
mand, N (different from the DEBUG and SYMDEB N command). (The problems associ­
ated with hexadecimal numbers in early versions of Code View are no longer present in
versions 2.0 and later.)

The radix problem can be avoided, for the moment, by using labels. Issue

>G _main <Enter>

to cause Code View to execute until the main routine is reached. Code View then shows

File Uiew Search Run Uatch Options Language Calls Help 1 F8=Trace FS=Go

~:
18:
11:
12:
13:
14:

ftinclude <ctype.h>
ftinclude <string.h>
ftinclude <stdio.h>

nain(argc,argu)

uppercas.C

15: i nt argc; ,:,
1&:
17:
18:
19:
a:
1:
2:
3:
4:
s:
&:

char *argu[];

{

char *Cp,c;

cp = "a string\n";

I* Conuert *Cp to uppercase and write to standard output */

while (*Cp != '\8')
{

F===t
icrosoft (R) CodeView (R) Version 2.8

(C) Copyright Microsoft Corp. 1986, 1987. All rights reserued.
)g _nain

622 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 632/1582

Article 18: Debugging in the MS-DOS Environment

The display shows line 15 in reverse video, indicating that Code View has stopped there.
This is the first line of the main() module, but it is not executable. Press the FlO key,
which has the same effect as entering the Step Through Program command, P, in the dia­
log window, to cause line 19 to be executed. The reverse video line is then 21, which is the
next line to be executed.

To see the changes to cp, •cp, and c, establish a watch on these three variables. To use the
Watch Word command, WW, for the word cp, type

>WW cp <Enter>

When entered from the dialog window, this command opens the watch window at the top
of the screen and displays the current value of cp. To display the expression at •cp, use the
Watch Expression command, W?, as follows:

>W? cp,s <Enter>

This expression will display the null-delimited string at •cp. Finally, to see the ASCII char­
acter value of c, use the Watch ASCII command, WA:

>WA c <Enter>

The results of these watch commands are shown in the following screen:

File Uiew Search lltn Uatc~ Options Language Calls Help J FB=Trace F5=Go
, uppercas.C

IH cp : 55C4!BFFB 5527
p cp,s : uu

2l c : 55C4:BFF2

9: linclude <ctype.h>
18: linclude <string.h>
u: linclude <stdio.h>
12:
13: l!lain(argc,argu) i!!!
14:
15: int argc:
16: char •argu[];
17:
18: {

19:
~B:

char *Cp,c:

~I

22: i >ww cp
>w? cp,s

~ >wa c
>

The values displayed in the watch window are not yet defined because line 21, which
initialized cp, has not been executed. Press F8 to rectify this. Press it again to bring the ex­
ecution of the program into the main loop.

Section II: Programming in the MS-DOS Environment 623

HUAWEI EX. 1110 - 633/1582

Part E: Programming Tools

File View Search lltn Uatch Options Language Calls Help I FB=Trace FS=Go
uppercas.C

~) cp : 55C4:arra aa3&
1) cp,s : "a string
~) c : 55C4:aFF2

18: {

19: char *Cp,c:
~a:
~1: cp = "a string\n":
~2:
~3: I• Convert *Cp to uppercase and write to standard output •I
~4:
~5: while
~:

(*Cp != '\a') ji {

I IJ.Jl.l.l!J

~a: putchar(c):
~g: }

~a:
:u: }

t=
>ww cp
>w? cp,s

~\ >wa c
>

The pointer cp now contains the correct address. The Display Memory command, D,
could be used to display the contents of DS:0036H, just as in DEBUG and SYMDEB. (This
step is not necessary, however, because there is a formatted display of memory in the
watch window at 1). The variable c has not yet been initialized.

624 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 634/1582

Article 18: Debugging in the MS-DOS Environment

Press the F8 key to execute line 27. A curious and unexpected thing happens, as shown in
the next screen:

File Uiew Searcl) B:.tn Uatch Options Language Calls Help I F8=Trace FS=Go

~) : 55C4:8FF8 8838
1 uppercas.C 1

cp
1) cp,s : "string
~) c : 55C4:8FF2

18: {

19: char *Cp,c;
~8:
~1: cp = "a string\n":
~z:
~3: I* Conuert *Cp to uppercase and write to standard output *I
~4:
l?.s: while (*Cp != '\8')

I! ~G: {

~7: c = toupper(*Cp++);
r.~:

17.9: }

IJ8:
~1: }

t=
>ww cp
>w7 cp,s

~ >wa c
>

Notice that the value of cp has changed from 0036H to 0038H. The line of code, however,
indicates that the pointer should have been incremented by only one (*CP++). The second 4
character of the string, a blank, has been loaded into c. This could explain the apparent
random selection of characters being displayed (actually every other character) and the
garbage characters displayed (the zero at the end of the string might be skipped, causing
the routine to continue converting until a zero is encountered somewhere in memory).

Source-line debugging does not reveal enough about what is happening in this case. To
look more closely at the mechanism of the program, the program must be restarted.
Before doing this, set a breakpoint at line 27:

>BP .27 <Enter>

Section 11· Programming in the MS-DOS Environment 625

HUAWEI EX. 1110 - 635/1582

Part E: Programming Tools

Then restart (actually, reload) the program with the Reload Program command, L. Note
that watch commands and breakpoints are preserved when a program is restarted.
Executing the restarted program with G yields

File View Search a.tn Uatch Options Language Calls Help I FB=Trace FS=Go

~) : SSC4:8FF8 8836
1 uppercas .C r

cp
1) cp,s : "a string
~) c : SSC4:8FF2

18: {

19: char *Cp,c;
7.8:
21: cp = "a string\n";
zz:
7.3: I• Conuert *Cp to uppercase and write to standard output •I
24:
25: . while (*Cp != '\8')

~ 7'(,: {

I

~a: putchar(c);
~9: }

~8:
~1: }

~=-
)bp .27
>1 I)g
>

The display shows line 27 in reverse video, indicating that it is the next line to be executed.
The pointer cp has the correct value, as shown in the watch window. Now Press the F2 key
to turn on the register display and press F3 to show the assembly code.

626 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 636/1582

Article 18: Debugging in the MS-DOS Environment

File Uiew Search Jhn Watch Options Language Calls Help I FB=Trace FS=Go
uppercas.C

~) cp : 55C4:BFFB 8836 AX = 8884
1) cp,s : "a string BX = 8836
~) c : 55C4:BFFZ ex = BB19

DX = BBBB
Z7: c = touppep(trcp++); SP = BFFB
!1\.TA'M~ ~'AIWiilHnl I ' :uu-• BP = BFF4
55Z?:BBZ9 BAB? 110V AL,Byta Ptr lBXl I SI = BBA9 55Z?:B8ZB 98 CBW DI = 1BD5
b5Z?:8BZC BBDB 110V BX,AX DS = 55C4
55Z?:BBZE F68?B381BZ TEST Byte Ptr lBX+B1B3l,BZ l!li ES = 55C4
55Z?:BB33 74BC JZ -"'ain+31 (8841) SS = 55C4
5527:8835 8B5EFC 110V BX,Word Ptr [cpl CS = 55Z?
b5Z?:BB38 FF46FC INC Word Ptr lcpl IP = BBZG
b5Z?:BB3B BAB? 110V AL,Byte Ptr lBXl
~5Z?:BB3D ZCZB SUB AL,ZB NV UP
~5Z?:BB3F EBBS JI1P -"'ain+39 (8849) II PL
~527:8841 BBSEFC 110V BX,Word Ptr [cpl NZ NA
~SZ?:BB44 FF46FC INC Word Ptr [cpl PO NC

t=
)bp .Z? ss:erro
>I i 8836
)g
>

The display highlights line 27, indicating that a breakpoint exists at this line. The line of
code at CS:0026H is in reverse video, indicating that it is the next line to be executed.

The previous instruction has loaded BX with [cp]. The first thing the code for line 27
does is increment the word at memory location [cp]. The initial value of cp is in BX, so the
*Cp++ request can now be executed. Use the F8 key to single-step through the lines of
code. Notice that when only source lines are on the screen, F8 steps one source line at a
time, but when assembly code is shown, F8 steps one assembly line at a time. Single­
stepping through the code, note how the registers and watch window change. Everything
appears normal until CS:0038H is executed.

Section IL- Programming in the MS-DOS Environment 627

HUAWEI EX. 1110 - 637/1582

Part E: Programming Tools

File View Search Run Uatch Options ~nguage Calls Help I FB=Trace F5=Go
1 uppercas.C

AX = 8861 IH cp : 55C4 : 8FF8 8838 '
1) cp,s : "string BX = 8837 ,, c : 55C4:8FF2 ex = 8819

DX = 88BB
"0: c = toupper(ifCp++); SP = 8FF8
~:8826 FF46FC UIC 11oM Ftr [cp] ;BJ18 BP = 8FF4
~527!8829 BA87 1101J AL,Byte Ptr [BXl SI = 88A9
~527:882B 98 CBU DI = 18D~
~527:882C BBDB HOIJ BX,AX DS = 55C4
~27!882E F6B7B38182 TEST Byte Ptr [BX+81B31,82 iii! ES = 55C4
~527:8833 748C JZ _lllain+31 (8841) Iss = 55C4
~527:8835 BB5EFC 1101J BX,Uord Ptr [cp] cs = 5527
~527!8838 FF46FC IHC Uord Ptr [cp] IP = 883B
L..._.,.., .. ~ a:ua: • ~ I '11111 . . .
~527:883D 2C28 SUB AL,28 HIJ UP
~527!883F EB8B JtiP _lllain+39 (8849) EI PL
~527:8841 BB5EFC tiOIJ BX,Uord Ptr [cpl HZ HA
~527:8844 FF46FC IHC Uord Ptr [cpl PO HC

t=
)bp .27 DS:8837
>I I 28
)g
)

Notice that the value of cp in the watch window has incremented again. The line of C
code has two increments hidden in it, not the expected single increment. Why is this?

To find the answer, examine the toupper() macro. The following definition, extracted
from CTYPE.H, explains what is happening:

#define _UPPER Ox1 I* uppercase letter *I
#define _LOWER Ox2 I* lowercase letter *I
#define isupper(c) (_ctype+1) [c] & _UPPER)
#define islower(c) (_ctype+1) [c] & _LOWER)

#define _tolower (c) (c)- • A • + • a •
#define _toupper(c) (c)-'a'+'A'

#define toupper (c) (is lower (c)) ? _toupper (c) : (c))
#define tolower (c) (isupper (c)) ? _tolower (c) : (c))

The argument to toupper(), c, is used twice, once in the macro that checks for lowercase,
is/ower(), and once in _toupper(). The argument is replaced in this case with •cp++,
which has the famous C unexpected side effects. Because the unary post-increment is the
handiest way to perform the function desired in the program, fixing the problem by
changing the code in the main loop is undesirable. Another solution to the problem is to
use the function version of toupper(). Because toupper() is defined as a function in
STDIO.H, simply deleting #include <ctype.h> would solve the problem. Unfortunately,
this would also deprive the program of the other useful definitions in CTYPE.H. (Admit­
tedly, the features are not currently used by the program, but little programs sometimes
grow into mighty systems.) So to keep CTYPE.H but still remove the macro definition of

628 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 638/1582

Article 18: Debugging in the MS-DOS Environment

toupper(), use the #undef command. (Because to/ower() has the same problem, it should
also be undefined.) The corrected listing is shown in Figure 18-14.

!**
* *
* UPPERCAS.C *

This routine converts a fixed string to uppercase and prints it.

* *
**/

#include <ctype.h>

#undef toupper

#undef tolower
#include <string.h>

#include <stdio.h>

main(argc,argv)

int argc;
char *argv[];

char *cp,c;

cp = ''a string\n'';

I* Convert *cp to uppercase and write to standard output */

while (*cp != '\0')
{

c = toupper(*cp++);

putchar(c);
}

Figure 18-14. The corrected version ojUPPERCAS.C.

An example using screen output
A problem with DEBUG is that it writes to the same screen as the program does. Both
SYMDEB and Code View, however, allow the debugger to switch back and forth between
the screen containing the program's output and the screen containing the debugger's out­
put. This feature is a special option with SYMDEB and is sometimes clumsy to use, but
with Code View, keeping a separate program output screen is automatic and switching
back and forth involves simply pressing a function key (F4).

The following example program is intended to display an ASCII lookup table with all the
displayable characters available on an IBM PC. The expected output is shown in Figure
18-15.

Section II- Programming in the MS-DOS Environment 629

HUAWEI EX. 1110 - 639/1582

PartE: Programming Tools

l.)asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B c D E F
~ g 1!1 ' + oQo t fJ * 1

"'
... f !! '11 § . l f .j. +-

~ ! " II $:1. & ' () * + - I I·

8 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 ~ A B c D E F G H I J K L " tt.o
5 p Q R s T u v w X Y. z [\] A

-
~

. b d r h i j k 1 a c e g Ill n 0

p q r s t u II w X y z { I } - 0 I

~ ~ u e a a a. a g e e e i' i i A r.
l2 fl 0 i:i 0 0. u y ij u ¢ £ ¥ 1\ f

: a 1 6 u ii Fl !l !! (. r ., ~ ~ i « »

:~ ' II 1
~ t ' ! ~ il A i1 ,!1 Jl J

l c - f i II = Jl
T 1 ~

Jl 'f 11
b f IT + r • I •

0(p r n ~ cr jJ 1' !! e n ~ ... Ill E n
~ :!: ~ i r J ::: 0 J n z I -
r.>

Figure 18-15. The output expectedfromASCTBL.C.

The program that should produce this display, ASCTBL.C, is shown in Figure 18-16.

!**

* *
* ASCTBL.C *
* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *
* codes. *
*
**/

#include <ctype.h>

#include <stdio.h>

main()

int i, j, k;

I* Print table title. *I
printf("\n\n\n

I* Print column headers. *I
printf(" ")_;

for (i = 0; i < 16; i++)

printf(''%X '', i);
fputchar("\n");

ASCII LOOKUP TABLE\n\n");

Figure 18-16. An erroneous program to display ASCII characters.

630 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 640/1582

I* Print each line of the table. *I
for (i = 0, k 0; i < 16; i++)

{

Article 18: Debugging in the MS-DOS Environment

I* Print first hex digit of symbols on this line. *I
printf(''%X '', i);
I* Print each of the 16 symbols for this line. *I
for (j = 0; j < 16; j++)

{

I* Filter nonprintable characters. *I
if ! !k >= 7 && k <= 13! II !k >= 28 && k <= 31 l l

prin:tf(" ");

else

k++;
) I

fputchar("\n");

printf("%c ", k);

Figure 18-16. Continued.

The problem to be debugged in this example is evident when the program in Figure 18-16
is compiled, linked, and executed. Here is the resulting display:

p>asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B C D E F hB g ! ' + ~ t
" • y1 ~ ~ t " ~ § - t ' ' • y2

" It $:1. ll ' () * + , - • I y3 II 1 2 3 4 5 G 7 8
9 < = > 7 y4 @ A B C D E F G H I J K L M H 0 y5 P

Q R 8 T U V W X Y Z [\ 1 A _ yG ., a b c d e r g h i
j k I n n o y7 p q ~ s t u u w x y z { } - o y8 g

U e & a a l s & M e 1 1 l A A y9 E ~ R o o o u u y ij
UO£¥RfyA a16uiiH 11 L.--.~~i«»yB !!ii

I ll~ 1~11, illl'ii.!IJI~ 1 yC Lii ~-t ~ lfllrr
uD=1r-yD .n'f11 11 brrr~+J r .11 111 YE afl
rn~crJI1'!!9R~m!IIEnyF E±~S. fJ +=" · ·
J n z 1 y

p>

Section 11- Programming in the MS-DOS Environment 631

HUAWEI EX. 1110 - 641/1582

Part E: Programming Tools

Something is clearly wrong. The output is jumbled and no pattern is immediately obvious.
To locate the problem, first prepare a .EXE file and start Code View as follows:

C>MSC /Zi ASCTBL; <Enter>
C>LINK /CO ASCTBL; <Enter>
C>CV ASCTBL <Enter>

Code View starts and displays the following screen:

File Uiew Search :am Uatch Options Language Calls Help I FB=Trace FS=Go
asctbl.C

1:
2: IIUIMIUUIIIIUfiUIIIIIIEiflfi!IUIIUIIEIIIUIIflflflllllllflllflllflflllflfilUUIIIIIlfJflllllflllllllflfiUilflllfiUIJflfiiiiJflf)(lf::::

3: * 4: * ASCTBL.C
~= * This progran generates an ASCII lookup table For all displayable
&: * ASCII and extended IBMPC codes, leauing blanks For nondisplayable
?: * codes.
a: * 9:
10:
u: linclude <ctype.h)
12: linclude <stdio.h>
13:
14: nainO
15: {

16: int i, j, k:
17: I* Print table title. *I
18: printf("\n\n\n ASCII LOOJ<UP TABLE\n\n");

t=

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserued. ~ >

The start of the source program is shown in the display window and the dialog window
contains an input prompt. Press the FlO key three times to bring execution to line 21.
(Remember that the line indicated in reverse video has not yet been executed.)

632 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 642/1582

Article 18: Debugging in the MS-DOS Environment

File Uiew Search A.m Uatch Options Language Calls Help I F8=Trace FS=Go
1 asctbl.C 1

9:
HI:
11: Uinclude <~type.h>
12: Uinclude <stdio.h>
13: llll
14: 111ainO
15: {

16: int i, j, k:
17: I* Print table title. *I
18: printFC"\n\n\n ASCII LOOKUP TABLE\n\n"):
19:
?.B: I* Print colu111n headers. ~

22: For (i = B: i < 16: i++)
~3: printr C":xX " i); I

~4: FputcharC"\n");
25:
~6: 1*-Print each line oF the table. *I

t=

~icrosort CR> CodeView CR) Version Z.B

~ (C) Copyright MicrosoFt Corp. 1986, 1987. All rights reserved.
>

The display heading has been printed at line 18. Press the F4 key to display what the pro­
gram has written on the screen.

p)cu asctbl

ASCII LOOKUP TABLE

Section 11· Programming in the MS-DOS Environment 633

HUAWEI EX. 1110 - 643/1582

Part E: Programming Tools

Note: Any information on the screen when you started Code View will remain on the vir­
tual output screen until program execution clears it or forces it to scroll off.

The table heading has been properly written to the screen. Press the F4 key again to return
to the Code View display. Continue executing the program with the FlO key to bring the
program to line 24.

File Uiew Search Run Uatch Options Language Calls Help I FB=Trace FS=Go
F============l.• asctbl.C 1

~:
1a:
~1:
12:
13:
14:
15:
~G:
17:
18:
19:
~a:
z1:
22:
23:

Uinclude <ctype.h>
Uinclude <stdio.h}

MainO
{

int i, j, k;
I• Print table title. •I
printf("\n\n\n

I• Print coluMn headers. •I
printr(" ">;
for Ci = a; i < 1G; i++)

printr(":t.X ", D;

ASCII LOOKUP TABLE\n\n");

24: fputchar("\n"); ['
r.

I• Print each line of the table. •I
F===~

icrosort CR) CodeUiew CR) Version 2.a
(C) Copyright Microsoft Corp. 19BG, 1987. ~11 rights reserued.

At this point in program execution, the column headings have been written on the screen.
Press the F4 key again to see the results.

634 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 644/1582

l
}

Article 18: Debugging in the MS-DOS Environment

C>cu asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 G 7 B 9 A B C D E F

The output of the program is still correct, so allow execution to continue by pressing F4 to
return to the Code View screen and then pressing the FlO key. This will execute the call to
the fputchar() function to write a newline character.

File Uiew Search llm Uatch Options Language Calls Help I FB=Trace F5=Go

21: printf("
! asctbl.C 1

">:
22: for (i = 8: i < 1&: i++)
~3: printr<":t.X " i); I

24: fputchar("\n");
25:
2&: I* Print each line of the table. *I

I ~-~~ .
28: {

~ 29: I* Print first hex digit of sy~bols on this line. *I 1:•

~8: printf("XX " I i);

~1: I* Print each of the 1& sy~bols for this line. *I
~2: for (j = 8: J < 1&: j++)
~3: {

~4: I* Filter non-printable characters. *I
~5: if ((k >= 7 && k <~ 13) II (k >= 28 && k <= 31)
~&: printr (" ");
~7: else
~a: printf(":t.c " I k):

:=
~icrosoft (R) CodeUiew (R) Version 2.8 J (C) Copyright 11icrosoft Corp. 198&, 1987. All rights reserued.
>

Section /1- Programming in the MS-DOS Environment 635

HUAWEI EX. 1110 - 645/1582

Part E: Programming Tools

Examination of the output screen shows that the display is now incorrect.

C>cu asctbl

ASCII LOOKUP TABLE

8 1 2 3 4 5 6 7 8 9 A B C "D E F h

A lowercase h has been written to the screen instead of a newline character. Further ex­
ecution demonstrates that newline characters written with fputchar() are not working. A
closer inspection of the fputchar() function is needed.

To see what is happening, use the Reload Program command to restart execution at
the top of the program. Change the cursor window with the F6 key, use the arrow keys
to place the cursor on line 24, and press F7. This brings execution back to line 24, where
fputchar() is called. Press the F3 key to place the display in assembly mode and the F2
key to show the CPU registers and flags. The first assembly instruction of the Jputchar()
function call is about to be executed.

636 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 646/1582

Article 18: Debugging in the MS-DOS Environment

for (
:8858 C746FE8888
:885D C746FA8888
:8862 837EFE18
:8866 7D68
:8868 EBBS
:886A FF46FE
:886D EBF3

_fputchar (8194)
ADD SP,+82

i = a, k = a: i < 16: i++>
MOV Word Ptr [il,8888
MOV Word Ptr [kl,8888
CMP Word Ptr [il,+18
JGE _nain+c8 (88D8)
JMP _nain+Sf C886F)
IHC Word Ptr [il
JMP _nain+52 (8862)

printf(":t.X ", i);
PUSH Word Ptr [il
MOV AX,886A
PUSH AX
CALL _printf (81C1)

icrosoft (R) CodeView (R) Version 2.8
C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
1

HV UP
II PL
ZR HA
PI HC

Notice that the parameter being passed to the function by means of the stack is 0068H. Use
the Display Memory command to display DS:0068H. (Note the hexadecimal notation.)

File Uiew Search lhn Uatch Options , Language Calls Help I FB=Trace FS=Go

24:
. ! asctbl .C 1

~ AX = 8883 fputchar("\n");
,._.,,~ .. ~ ~~••ltlfnl ~ s I . s ~tnl BX = 8881
5527:8851 58 PUSH AX ex = aaa1
~527:8852 E83F81 CALL _fputchar (8194) DX = 83C8
~527:8855 83C482 ADD SP,+82 SP = 8F98
~7: for (i = a, k = a: i < 16: i++> BP = 8F96
~527:8858 C746FE8888 MOV Word Ptr [il,8888 SI = 88A9
~527:885D C746FA8888 MOV Word Ptr [kl,8888 ljii D I = 1875
~527:8862 837EFE18 CMP Word Ptr [il,+18 DS = 566D
~527:8866 7D68 JGE _nain+c8 (88D8) ES = 566D
~527:8869 EBBS JMP _nain+Sf (886F> SS = 566D
~527:886A FF46FE IHC Word Ptr [i] cs = 5527
~527:886D EBF3 JMP _nain+52 (8862) IP = 884E
~a: printr (":t.X " ' i);
~527:886F FF76FE PUSH Word Ptr [I] HV UP
~527:8872 BB6A88 MOV AX,886A II PL
~527:8875 58 PUSH AX ZR HA
~527:8876 EB4881 CALL _printf C81CD PI HC

:=
>1
>d 8x68 LB

·~ ~66D:8868 -BA 88 25 58 28 28 28 88
>

Section II: Programming in the MS-DOS Environment 637

HUAWEI EX. 1110 - 647/1582

Part E: Programming Tools

The contents of memory at this address consist of a null-delimited string containing a
newline character. The representation of \ n is correct. To see how the string is handled,
use the trace key, F8, to single-step through fputchar() and subordinate functions. These
functions are complicated; nearly 100 steps are required to reach the MS-DOS Interrupt
21H call that actually writes the screen.

File Uiew Search Run Uatch Options Language Calls Help FB=Trace FS=Go
F-============f asctbl.C !===========r=====9

527:18E9 51
527:18EA BBCF
5Z7:18EC ZBCA

PUSH CX
tiOV CX,Dl
SUB CX,DX

527:18F8 9C PUSHF
5Z7:18F1 83F8 ADD SI,AX
527:18F3 9D POPF
527:18F4 7384 JNB _write+BZ (18FA>
5Z7:18F~ B489 tiOV AH,89
527:18F8 EB1A JtiP _write+9c (1114)
527:18FA 8BC8 OR AX,AX
5Z7:18FC 751~ JNZ _write+9c (1114)
527:18FE F~87128248 TEST Byte Ptr lBX+ __ osfile1,48
527:1183 748B JZ _write+98 (1118)
527:1185 8B5E8~ tiOV BX,Word Ptr lBP+8~1
527:1188 883F1A CtiP Byte Ptr lBX1,1A

~5=2=7=:1=1=8=B=7=5=83=======J=N=Z===_=w=r=it=e=+9=8==(=11=1=8=)=========•1~ r5Z7:118D FB CLC +

~~D:88~8 -8A 88 25 58 28 28 28 88
>d 8xf84 LB !iii
~~D:8F88 ~8 88 DC 8B-A9 88 9~ 8F h

>

AX = 488A
BX = 8881
CX = 881U
DX = 8F84
SP = 8F~8
BP = 8FGE
SI = 8888
DI = 8F85
DS = S~~D
ES = S~~D
88 = 5~6D
cs = 5527
IP = 18EE

NV UP
EI PL
NZ NA
PO NC

The AH register's contents, 40H, indicate that the Interrupt 21H call is a request for a write
to a device. The BX register has the handle of the device, 1, which is the special file handle
for standard output (stdout). For this program as it was invoked, standard output is the
screen. The ex register indicates that 1 byte is to be written; DS:DX points to the data to be
written. The contents of memory at DS:OF84H finally reveal the cause of the problem:
This memory location contains the address of the data to be written, not the data. The
fputchar() function was called with the wrong level of indirection.

Examination of the listing shows that all the newline requests were made with

fputchar("\n");

Strings specified with double quotes are replaced in C functions with the address of the
string, but the function expected the actual character and not its address. The problem can
be corrected by replacing the fputchar() calls with

fputchar (1 \n 1) ;

The newline character will now be passed directly to the function.

638 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 648/1582

Article 18: Debugging in the MS-DOS Environment

This kind of problem can be avoided. C provides the ability to check the type of each
parameter passed to a function against the expected type. If the following definition is
included at the top of the C program, incorrect types will generate error messages:

#define LINT_ARGS·

The corrected listing is shown in Figure 18-17. This new program produces the correct
output.

!**
* *
* ASCTBL.C *
* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *
* codes. *
* *
**!

#define LINT_ARGS

#include <ctype.h>
#include <stdio.h>

main ()

int i, j, k;

I* Print table title. *I
printf("\n\n\n

I* Print column headers. *I
printf(" ");

for (i = 0; i < 16; i++)
printf(''%X '', i);

fputchar ('\n') ;

ASCII LOOKUP TABLE\n\n");

I* Print each line of the table. *I
for (i 0, k 0; i < 16; i++)

I* Print first hex digit of symbols on this line. *I
printf(''%X '', i);
I* Print each of the 16 symbols for this line. *I
for (j = 0; j < 16; j++)

{

I* Filter nonprintable characters. *I
if ((k >= 7 & & k <= 1 3 l II (k >= 2 s & & k <= 31 l l

printf(" ");

else

k++;

fputchar (' \n') ;

)

printf(''%c '', k);

Figure 18-17. The correct ASCII table generation program.

Section Il· Programming in the MS-DOS Environment 639

HUAWEI EX. 1110 - 649/1582

PartE: Programming Tools

Code View is a good choice for debugging C, Pascal, BASIC, and FORTRAN programs.
The fact that versions of MASM earlier than 5.0 do not generate data for Code View makes
Code View a poorer choice for these assembly-language programs. These disadvantages
must be weighed against the ability to set watchpoints and to trap nonmaskable interrupts
(NMis). Code View is also not as well suited as SYMDEB for debugging programs that in­
teract with TSRs and device drivers, because Code View does not provide any mechanism
for including symbol tables for routines not linked together.

Hardware debugging aids
Hardware de buggers are a combination of hardware and software designed to be installed
in a PC system. The software provides features much like those available with SYMDEB
and Code View. The advantages of hardware debuggers over purely software debuggers
can be summarized in three points:

• Crash protection
• Manual execution break
• Hardware breakpoints

A hardware debugger can provide program crash protection because of its independence
from the PC software. If the program being debugged goes wild and destroys the operat­
ing system of the PC, the hardware debugger is protected by virtue of being a separate
hardware system and is capable of recovering enough control to allow the user to find
out what happened.

All hardware de buggers offer a means of breaking into the program under test from some
external source-usually a push button in the hands of the programmer. The mechanism
used to get the attention of the PC's CPU is the nonmaskable interrupt (NMI). This inter­
rupt provides a more reliable means of interrupting program execution than the Break key
because its operation is independent of the state of interrupts and other conditions.

Hardware debuggers usually have access to the address and data lines on the PC bus,
allowing them to set hardware breakpoints. Thus, these debuggers can be set to break
when specific addresses are referenced. They execute the breakpoint code from a debug­
ging monitor, which generally runs from their own memory. This memory is usually
protected from the regular operating system and the application program.

Although hardware debuggers can be used to instrument a program, they should not be
confused with the external hardware instrumentation discussed earlier in this article. The
logic analyzers and in-circuit emulators mentioned there are general-purpose test instru­
ments; the hardware debuggers are highly specific devices intended to do only one thing
on one type of hardware- provide debugging monitor functions at a hardware level to
IBM PC-type machines. It is this specialization that makes hardware debuggers so much
easier to use for programmers trying to get a piece of code running.

Because this volume deals only with MS-DOS and associated Microsoft software, a detailed
discussion of hardware debuggers and debugging would not be appropriate. Instead, a
few popular hardware products that work with MS-DOS utilities are mentioned and a gen­
eral discussion of debugging with hardware is presented.

640 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 650/1582

Article 18: Debugging in the MS-DOS Environment

Several manufacturers make hardware products that can be used for debugging. These
products vary in the features offered and in their suitability for various kinds of debugging.
Three of these products that can be used with SYMDEB are,

• IBM Professional Debug Utility
• PC Probe and AT Probe from Atron Corporation
• Periscope from The Periscope Company, Inc.

These boards can be used with SYMDEB by specifying the IN switch when the program is
started. When used in this way, however, the hardware provides little more than a source
of NMis to interrupt program execution; otherwise, SYMDEB runs as usual. This restric­
tion may not be acceptable to a programmer who wants to use the sophisticated debug­
ging software that accompanies these products and makes use of their hardware features.
For this reason, these boards are rarely used with SYMDEB.

The general techniques of debugging with hardware aids will already be familiar to the
reader-they are the same techniques discussed at length earlier in this article. The tech­
niques of inspection and observation should still be applied; instrumentation is facilitated
by hardware; a debugging monitor accompanies all hardware debuggers and the same
techniques discussed for DEBUG, SYMDEB, and Code View apply. No new techniques are
needed to use these devices. The changes in the details of the techniques come with the
added features available with the hardware debuggers. (Remember that all these features
are not universally available on all hardware debuggers.)

The manual interrupt feature of hardware debuggers is useful in a system crash. Every
programmer, especially assembly-language programmers, has had the situation where the
program runs wild, destroys the operating system, and locks up the system. The tech­
niques described in previous sections of this article show that about the only way to solve
these problems without hardware help is to set breakpoints at strategic locations in the
program and see how many are passed before the system locks up. The breakpoints are
placed at finer and finer increments until the instruction causing the crash is located.

This long and ugly procedure can sometimes be shortened with a hardware debugger.
When the system crashes, the programmer can push the manual interrupt button, suspend
program execution, and give control to the debugger card. At this point, the programmer
can use the debugging monitor software supplied with the card to sniff around memory
looking for something suspicious. Clues can sometimes be found by examining the pro­
gram's stack and data areas-provided, of course, that they are still in memory and
haven't been destroyed, along with the operating system, by the rampaging program. This
approach is not always an immediate solution to the problem, however; often, the start­
and-set-breakpoints process has to be repeated even with a hardware debugger. The hard­
ware will, however, possibly shed some light on the causes of the problem and shorten the
procedure.

Another feature offered by many of the debugging boards is the ability to set breakpoints
on events other than the execution of a line of code. Often, these boards will allow the
programmer to break on a reference to a specific memory location, to a range of memory

Section 11· Programming in the MS-DOS Environment 641

HUAWEI EX. 1110 - 651/1582

Part E: Programming Tools

locations, or to an I/0 port. This feature allows a watch to be set on data, analogous to the
watchpoint feature of Code View. This technique is almost always useful, as it is with
Code View, but there is one class of problems where it is essential to reaching a solution.

Consider the case of a program that seems to be running well. Every so often, however,
an ampersand appears in the middle of a payroll amount, or occasionally the program
makes an erroneous branch and executes the wrong path. Suppose that, after painstaking
investigation, the programmer discovers that these problems are being caused by a change
in a specific location in memory sometime during the execution of the program. In debug­
ging, the discovery of the cause of a problem usually leads almost instantly to a fix. Not so
in this case. That byte of memory could be changed by an error in the program, by a glitch
in the operating system or in a device driver, or by cosmic rays from outer space. Discover­
ing the culprit in a case like this is almost impossible without the help of hardware break­
points. Setting a breakpoint on the affected memory location and running the program
will solve the problem. As soon as the memory location is changed, the breakpoint will be
executed and the state of the system registers will point a clear finger at the instruction
that caused the problem.

Hardware debuggers can provide significant aid to the serious programmer. They are
especially helpful in debugging operating systems and operating-system services such as
device drivers. They are also helpful in complicated situations where many programs may
be running at the same time. The consensus among programmers who have hardware
debuggers is that they are well worth the money.

Summary

Although Microsoft and others have provided an impressive array of technology to aid
in program debugging, the most important tool a programmer has is his or her native wit
and talent. As the examples in this article have illustrated, the technology makes the task
easier, but never easy. In all cases, however, it is the programmer who debugs the program
and solves the problems.

Technology will never be able to replace the person for solving the problem of a bug­
ridden program. (This is an area where artificial intelligence will undoubtedly fail.)
Therefore, it is the skills discussed in the first part of this article- debugging by inspec­
tion and observation- that deserve the greatest attention and practice. All the other tech­
niques and technologies, with their ever-increasing sophistication, are only extensions of
these basic techniques. A programmer who can debug effectively at the lowest level of
technology will always be ready to use whatever advanced technology is available.

Therefore, as a final word, remember the rule that opened this article:

Gather enough information and the solution will be obvious.

All the rest of this article was merely a discussion of ways to gather the information.

Steve Bostwick

642 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 652/1582

J

Article19
Object Modules

Article 19: Object Modules

Object modules are used primarily by programmers. The end user of an MS-DOS appli­
cation need never be concerned with object code, object modules, and object libraries
because application programs are almost always distributed as .EXE or .COM files that can
be executed with a simple startup command.

An application programmer writing in a high-level language can. use object modules and
object libraries without knowing either the format of object code or the details of what the
utilities that process object modules, such as the Microsoft Library Manager (LIB) and the
Microsoft Object Linker (LINK), are actually doing. Most application programmers simply
regard the contents of an object module as a "black box" and trust their compilers and
object module utility programs to do the right thing.

A programmer using assembly language or an assembly-language debugger such as
DEBUG or SYMDEB, however, might want to know more about the content and function
of object modules. The use of assembly language gives the programmer more control over
the actual contents of object modules, so knowing how the modules are constructed and
examining their contents can sometimes help with program debugging.

Finally, a programmer writing a compiler, an assembler, or a language translator must
know the details of object module format and processing. To take advantage of LIB and
LINK, a language translator must construct object modules that conform to the format and
usage conventions specified by Microsoft.

Note: This article assumes some background knowledge of the process by which source
code is converted into an executable file in the MS-DOS environment. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Structure of an
Application Program; PROGRAMMING TooLs: The Microsoft Object Linker; PROGRAMMING
UTILITIES.

The Use of Object Modules

Although some MS-DOS language translators generate executable 8086-family machine
code directly from source code, most produce object code instead. Typically, a translator
processes each file of source code individually and leaves the resulting object module
in a separate file bearing a .OBJ extension. The source-code files themselves remain
unchanged. After all of a program's source-code modules have been translated, the result­
ing object modules can be linked into a single executable program. Because object mod­
ules frequently represent only a portion of a complete program, each source-code module
usually contains instructions that indicate how its corresponding object code is to be
combined with the object code in other object modules when they are linked.

Section 11: Programming in the MS-DOS Environment 643

HUAWEI EX. 1110 - 653/1582

PartE: Programming Tools

The object code contained in each object module consists of a binary image of the pro­
gram plus program structure information. This object code is not directly executable. The
binary image corresponds to the executable code that will ultimately be loaded into mem­
ory for execution; it contains both machine code and program data. The program struc­
ture information includes descriptions of logical groupings defined in the source code
(such as named subroutines or segments) and symbolic references to addresses in other
object modules.

The program structure information is used by a linkage editor, or linker, such as Microsoft
LINK to edit the binary image of the program contained in the object module. The linker
combines the binary images from one or more object modules into a complete executable
program.

The linker's output is a .EXE file-a file containing executable machine code that can be
loaded into RAM and executed (Figure 19-1). The linker leaves intact all of the object
modules it processes.

+--- Object module __...
librarian (LIB)

Linker (LINK)

Executable
binary image
(.EXE file)

MS-DOS loader

(Program runs)

Figure 19-1. Generation of an executable (.EXE) file.

Object code thus serves as an intermediate form for compiled programs. This form offers
two major advantages:

• Modular intermediate code. The use of object modules eliminates the overhead of
repeated compilation of an entire program whenever changes are made to parts of its
source code. Instead, only those object modules affected by source-code revisions
need be recompiled.

• Shareable format. Object module format is well defined, so object modules can be
linked even if they were produced by different translators. Many high-level-language
compilers take advantage of this commonality of object-code format to support
"interlanguage" linkage ..

644 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 654/1582

Article 19: Object Modules

Contents of an object module

Object modules contain five basic types of information. Some of this information exists
explicitly in the source code (and is subsequently passed on to the object module), but
much is inferred by the program translator from the structure of the source code and the
way memory is accessed by the 8086.

Binary Image. As described earlier, the binary image comprises executable code (such as
opcodes and addresses) and program data. When object modules are linked, the linker
builds an executable program from the binary image in each object module it processes.
The binary image in each object module is always associated with program structure in­
formation that tells the linker how to combine it with related binary images in other object
modules.

External References. Because an object module generally represents only a small portion
of a larger program that will be constructed from several object modules, it usually con­
tains symbols that allow it to be linked to the other modules. Such references to corre­
sponding symbols in other object modules are resolved when the modules are linked.

For example, consider the following short C program:

main()

puts("Hello, world\n");

This program calls the C function puts() to display a character string, but puts() is not
defined in the source code. Rather, the name puts is a reference to a function that is exter­
nal to the program's main() routine. When the C compiler generates an object module for
this program, it will identify puts as an external reference. Later, the linker will resolve the
external reference by linking the object module containing the puts() routine with the
module containing the main() routine.

Address References. When a program is built from a group of object modules, the actual
values of many addresses cannot be computed until the linker combines the binary image
of executable code and the program data from each of the program's constituent object
modules. Object modules contain information that tells the linker how to resolve the
values of such addresses, either symbolically (as in the case of external references) or rela­
tively, in terms of some other address (such as the beginning of a block of executable code
or program data).

Debugging Information. An object module can also contain information that relates
addresses in the executable program to the corresponding source code. After the linker
performs its address fixups, it can use the object module's debugging information to relate
a line of source code in a program module to the executable code that corresponds to it.

Miscellaneous Information. Finally, an object module can contain comments, lists of
symbols defined in or referenced by the module, module identification information, and

Section Jl- Programming in the MS-DOS Environment 645

HUAWEI EX. 1110 - 655/1582

PartE: Programming Tools

information for use by an object library manager or a linker (for example, the names of
object libraries to be searched by default).

Object module terminology

When the linker generates an executable program, it organizes the structural components
of the program according to the information contained in the object modules. The layout
of the executable program can be conceptually described as a run-time memory map
after it has been loaded into memory.

The basic structure of every executable program for the 8086 family of microprocessors
must conform to the segmented architecture of the microprocessor. Thus, the run-time
memory map of an executable program is partitioned into segments, each of which can be
addressed by using one of the microprocessor's segment registers. This segmented struc­
ture of 8086-based programs is the basis for most of the following terminology.

Frames. The memory address space of the 8086 is conceptually divided into a sequence
of paragraph-aligned, overlapping 64 KB regions called frames. Frame 0 in the 8086's ad­
dress space is the 64 KB of memory starting at physical address OOOOOH (0000:0000 in seg­
ment:offset notation), frame 1 is the 64 KB of memory starting at OOOlOH (0001:0000), and
so on. A frame number thus denotes the beginning of any paragraph-aligned 64 KB of
memory. For example, the location of a 64 KB buffer that starts at address B800:0000 can
be specified as frame OB800H.

Logical Segments. The run-time memory map for every 8086 program is partitioned into
one or more logical segments, which are groupings of logically related portions of the pro­
gram. Typically, an MS-DOS program includes at least one code segment (that contains all
ofthe program's executable code), one or more data segments (that contain program
data), and one stack segment.

When a program is loaded into RAM to be executed, each logical segment in the program
can be addressed with a frame number- that is, a physical 8086 segment address. Before
the MS-DOS loader transfers control to a program in memory, it initializes the CS and SS
registers with the segment addresses of the program's executable code and stack seg­
ments. If an MS-DOS program has a separate logical segment for program data, the pro­
gram itself usually stores this segment's address in the DS register.

Relocatable Segments. In MS-DOS programs, most logical segments are relocatable.
The loader determines the physical addresses of a program's relocatable segments when
it places the program into memory to be executed. However, this address determination
poses a problem for the MS-DOS loader, because a program may contain references to the
address of a relocatable segment' even though the address value is not determined until
the program is loaded. The problem is solved by indicating where such references occur
within the program's object modules. The linker then extracts this information from the
object modules and uses it to build a list of such address references into a segment reloca­
tion table in the header of executable files. After the loader copies a program into memory
for execution, it uses the segment relocation table to update, or fix up, the segment address
references within the program.

646 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 656/1582

Article 19: Object Modules

Consider the following example, in which a program loads the starting addresses of two
data segments into the DS and ES segment registers:

mov ax,seg _DATA
mov
mov
.mov

ds,ax
ax,seg FAR_DATA

es,ax

make _DATA segment addressable through DS

make FAR_DATA segment addressable through ES

The actual addresses of the _DATA and FAR_ DATA segments are unknown when the
source code is assembled and the corresponding object module is constructed. The assem­
bler indicates this by including segment fixup information, instead of actual segment ad­
dresses, in the program's object module. When the object module is linked, the linker
builds this segment fixup information into the segment relocation table in the header of the
program's .EXE file. Then, when the .EXE file is loaded, the MS-DOS loader uses the infor­
mation in the .EXE file's header to patch the actual address values into the program.

Absolute Segments. Sometimes a program needs to address a predetermined segment of
memory. In this case, the program's source code must declare an absolute segment so that
a reference to the corresponding frame number can be built into the program's object
module.

For example, a program might need to address a video display buffer located at a specific
physical address. The following assembler directive declares the name of the segment and
its frame number:

VideoBufferSeg SEGMENT at 0B800h

Segment Alignment. When a program is loaded, the physical address of each logical seg-
ment is constrained by the segment's alignment. A segment can be page aligned (aligned 4
on a 256-byte boundary), paragraph aligned (aligned on a 16-byte paragraph boundary),.
word aligned (aligned on an even-byte boundary), or byte aligned (not aligned on any
particular boundary). A specification of each segment's alignment is part of every object
module's program structure information.

High-level-language translators generally align segments according to the type of data
they contain. For example, executable code segments are usually byte aligned; program
data segments are usually word aligned. With an assembler, segment alignment can be
specified with the SEGMENT directive and the assembler will build this information into
the program's object module.

Concatenated Segments. The linker can concatenate logical segments from different
object modules when it builds the executable program. For example, several object mod­
ules may each contain part of a program's executable code. When the linker processes
these object modules, it can concatenate the executable code from the different object
modules into one range of contiguous addresses.

The order in which the linker concatenates logical segments in the executable program is
determined by the order in which the linker processes its input files and by the program

Section IL- Programming in the MS-DOS Environment 647

HUAWEI EX. 1110 - 657/1582

Part E: Programming Tools

structure information in the object modules. With a high-level-language translator, the
translator infers which segments can be concatenated from the structure of the source
code and builds appropriate segment concatenation information into the object modules
it generates. With an assembler, the segment class type can be used to indicate which
segments can be concatenated.

Groups of Segments. Segments with different names may also be grouped together by the
linker so that they can all be addressed within the same 64 KB frame, even though they are
not concatenated. For example, it might be desirable to group program data segments and
a stack segment within the same 64 KB frame so that program data items and data on the
stack can be addressed with the same 8086 segment register.

In high-level languages, it is up to the translator to incorporate appropriate segment group­
ing information into the object modules it generates. With an assembler, groups of seg­
ments can be declared with the GROUP directive.

Fixups. Sometimes a compiler or an assembler encounters addresses whose values cannot
be determined from the source code. The addresses of external symbols are an obvious
example. The addresses of relocatable segments and of labels within those segments are
another example.

A fixup is a language translator's way of passing the buck about such addresses to the
linker. Typically, a translator builds a zero value in the binary image at locations where it
cannot store an actual address. Accompanying each such location is fixup information,
which allows the linker to determine the correct address. The linker then completes the
fixup by calculating the correct address value and adding it to the value in the correspond­
ing location in the binary image. The only fixups the linker cannot fully resolve are those
that refer to the segment address of a relocatable segment. Such addresses are not known
until the program is actually loaded, so the linker, in turn, passes the responsibility to the
MS-DOS loader by creating a segment relocation table in the header of the executable file.

To process fixups properly, the linker needs three pieces of information: the LOCATION
of the value in the object module, the nature of the TARGET (the address whose value is
not yet known), and the FRAME in which the address calculations are to take place. Object
modules contain the LOCATION, TARGET, and FRAME information the linker uses to
calculate the appropriate address for any given fixup.

Consider the "program" in Figure 19-2. The statement:

start: call far ptr FarProc

contains a reference to an address in the logical segment FarSeg2. Because the assembler
does not know the address of FarSeg2, it places fixup information about the address into
the object module. The LOCATION to be fixed up is 1 byte past the label start (the 4-byte
pointer following the call opcode 9AH). The TARGET is the address referenced in the call
instruction- that is, the label FarProc in the segment FarSeg2. The FRAME to which

648 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 658/1582

Article 19:·0bject Modules

the fixup relates is designated by the group FarGroup and is inferred from the statement

ASSUME cs:FarGroup

in the FarSeg2 segment.

0000

0000 9A 0000 ---- R

0005

0000

0000

0000

0000

0000 CB

0001

title fixups

FarGroup GROUP FarSeg1,FarSeg2

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

start: call far ptr FarProc

CodeSeg ENDS

FarSeg1 SEGMENT byte public ;part of FarGroup

FarSeg1 ENDS

FarSeg2 SEGMENT byte public

ASSUME cs:FarGroup

FarProc PROC far
ret ;a FAR return

FarProc ENDP

FarSeg2 ENDS

END

Figure 19-2. A sample "program" containing statements from whic,h the assembler derivesfixup information.

There are several different ways for a language translator to identify a fixup. For example,
the LOCATION might be a single byte, a 16-bit offset, or a 32-bit pointer, as in Figure 19-2.
The TARGET might be a label whose offset is relative either to the base (beginning) of a
particular segment or to the LOCATION itself. The FRAME might be a relocatable seg­
ment, an absolute segment, or a group of segments.

Taken together, all the information in an object module that concerns the alignment and
grouping of segments can be regarded as a specification of a program's run-time memory
map. In effect, the object module specifies what goes where in memory when a program
is loaded. The linker can then take the program structure information in the object mod­
ules and generate a file containing an executable program with the corresponding
structure.

Section 11- Programming in the MS-DOS Environment 649

HUAWEI EX. 1110 - 659/1582

Part E: Programming Tools

The Structure of an Object Module

Although object modules contain the information that ultimately determines the structure
of an executable program, they bear little structural resemblance to the resulting execut­
able program. Each object module is made up of a sequence of variable-length object
records. Different types of object records contain different types of program information.

Each object record begins with a 1-byte field that identifies its type. This is followed by a
2-byte field containing the length (in bytes) of the remainder of the record. Next comes the
actual structural or program information, represented in one or more fields of varied
lengths. Finally, each record ends with a 1-byte checksum.

The sequence in which object records appear in an object module is important. Because
the records vary in length, each object module must be constructed linearly, from start to
end. More important, however, is the fact that some types of object records contain ref­
erences to preceding object records. Because the linker processes object records sequen­
tially, the position of each object record within an object module depends primarily on
the type of information each record contains.

Types of object records

Microsoft LINK currently recognizes 14 types of object records, each of which carries a
specific type of information within the object module. Each type of object record is
assigned an identifying six-letter abbreviation, but these abbreviations are used only in
documentation, not within an object module itself. As already mentioned, the first byte
of each object record contains a value that indicates its type. In a hexadecimal dump of
the contents of an object module, these identifying bytes identify the start of each object
record.

Table 19-1lists the types of object records supported by LINK. The value of each record's
identifying byte (in hexadecimal) is included, along with the six-letter abbreviation and a
brief functional description. The functions of the 14 types of object records fall into six
general categories:

• Binary data (executable code and program data) is contained in the LEDATA and
LIDATA records.

• Address binding and relocation information is contained in FIXUPP records.
• The structure of the run-time memory map is indicated by SEGDEF, GRPDEF,

COMDEF, and TYPDEF records.
• Symbol names are declared in LNAMES, EXTDEF, and PUBDEF records.
• Debugging information is in the LINNUM record.
• Finally, the structure of the object module itself is determined by the THEADR,

COMENT, and MOD END records.

650 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 660/1582

Article 19: Object Modules

Table 19-1. Types of 8086 Object Records Supported by Microsoft LINK.

IDbyte Abbreviation

SOH THEADR
88H COME NT
8AH MOD END
8CH EXIDEF
8EH TYPDEF
90H PUBDEF
94H LINNUM
96H LNAMES
98H SEGDEF
9AH GRPDEF
9CH FIXUPP
OAOH LEDATA
OA2H LIDATA
OBOH COMDEF

Object record order

Description

Translator Header Record
Comment Record
Module End Record
External Names Definition Record
Type Definition Record
Public Names Definition Record
Line Number Record
List of Names Record
Segment Definition Record
Group Definition Record
Fixup Record
Logical Enumerated Data Record
Logical Iterated Data Record
Communal Names Definition Record

The sequence in which the types of object records appear in an object module is fairly
flexible in some respects. Several record types are optional, and if the type of information
they carry is unnecessary, they are omitted from an object module. In addition, most
object record types can occur more than once in the same object module. And, because
object records are variable in length, it is often possible to choose, as a matter of conve­
nience, between combining information into one large record or breaking it down into
several smaller records of the same type.

As stated previously, an important constraint on the order in which object records appear
is the need for some types of object records to refer to information contained in other
records. Because the linker processes the records sequentially, object records containing
such information must precede the records that refer to it. For example, two types of object
records, SEGDEF and GRPDEF, refer to the names contained in an LNAMES record. Thus,
an LNAMES record must appear before any SEGDEF or GRPDEF records that refer to it so
that the names in the LNAMES record are known to the linker by the time it processes the
SEGDEF or GRPDEF records.

A typical object module

Figure 19-3 contains the source code for HELLO.ASM, an assembly-language program
that displays a short message'. Figure 19-4 is a hexadecimal dump of HELLO.OBJ, the object
module generated by assembling HELLO.ASM with the Microsoft Macro Assembler. Figure
19-5 isolates the object records within the object module.

Section II: Programming in the MS-DOS Environment 651

HUAWEI EX. 1110 - 661/1582

Part E: Programming Tools

NAME HELLO

_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:-DATA

start:

mov ax,seg msg

mov ds,ax

mov dx,offset msg

mov ah,09h

int 21h

mov ax,4C00h

int 21h

_TEXT ENDS

-DATA SEGMENT word public 'DATA'

;program entry point

;DS:DX -> msg

;perform int 21H function 09H
; (Output character string)

;perform int 21H function 4CH

; (Terminate with return code)

msg DB 'Hello, world',ODh,OAh, '$'

_DATA ENDS

_STACK SEGMENT stack 'STACK'

DW SOh dup(?) ;stack depth 128 words

_STACK ENDS

END start

Figure 19-3. The source code for HELLO. ASM.

0 2 3 4 5 6 7 8 9 A B c D E F
0000 80 07 00 OS 48 45 4C 4C 4F 00 96 25 00 00 04 43 HELLO .. % ••• C
0010 4F 44 45 04 44 41 54 41 OS 53 54 41 43 4B OS SF ODE.DATA.STACK._
0020 44 41 54 41 06 SF 53 54 41 43 4B OS SF 54 45 58 DATA._STACK._TEX
0030 54 8B 98 07 00 28 11 00 07 02 01 1E 98 07 00 48 T (......... H
0040 OF 00 OS 03 01 01 98 07 00 74 00 01 06 04 01 E1 t
0050 AO 15 00 01 00 00 B8 00 00 BE DB BA 00 00 B4 09
0060 CD 21 B8 00 4C CD 21 DS 9C OB 00 cs 01 04 02,, 02 . ! .. L.!
0070 C4 06 04 02 02 B6 AO 13 00 02 00 00 48 65 6C 6C Hell
0080 6F 2C 20 77 6F 72 6C 64 OD OA 24 AS SA 07 00 C1 o, world .. $.•...

0090 00 01 01 00 00 AC

Figure 19-4. A hexadecimal dump ojHELLO.OB].

652 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 662/1582

THEADR

0000

LNAMES

0000

0010
0020

0030

SEGDEF

0030

SEGDEF

0030

0

80

4F
44

54

2 3 4 5 6 7 8 9 A B

07 00 05 48 45 4C 4C 4F 00

96 25
44 45 04 44 41 54 41 05 53 54 41

41 54 41 06 SF 53 54 41 43 4B 05
8B

98 07 00 28 11 00 07 02 01 1E

c D E F

00 00 04 43

43 4B OS SF

SF 54 45 58

98 07 00 48
0040 OF 00 05 03 01 01

SEGDEF

0040

LEDATA

0050

0060

FIXUPP

0060

0070

LEDATA

0070

0080

MOD END

0080

0090

AO

CD

C4

6F

00

15 00 01 00 00

21 B8 00 4C CD

06 04 02 02 B6

2C 20 77 6F 72

01 01 00 00 AC

98 07 00 74 00 01 06 04 01 E1

B8 00 00 SE 08 BA 00 00 B4 09

21 OS

9C OB 00 C8 01 04 02 02

AO 13 00 02 00 00 48 65 6C 6C

6C 64 OD OA 24 AS

SA 07 00 C1

Figure 19-5. The object records in HELLO.OB].

Article 19: Object Modules

.... HELLO.

.% ••• c
ODE.DATA.STACK._
DATA._STACK._TEX

T.

... (..... .

••• H

... t

•••••••••••• 0 0 ••

. ! .. L.!.

• 0 ••• 0 ••

...... Hell

o, world .. $.

As shown most clearly in Figure 19-5, each of the object records begins with the single byte
value identifying the record's type. The second and third bytes of each record contain a
single 16-bit value, stored with its low-order byte first, that represents the length (in bytes)
of the remainder of the object record.

The first record, THEADR, identifies the object module and the last record, MOD END,
terminates the object module. The second record, LNAMES, contains a list of segment
names and segment class names that LINK will use to lay out the run-time memory map.
The three succeeding SEGDEF records describe the three corresponding segments
defined in the source code.

Section 11· Programming in the MS-DOS Environment 653

HUAWEI EX. 1110 - 663/1582

PartE: Programming Tools

The order in which the object records appear reflects both the structure of the source
code and the record order constraints already mentioned. The LNAMES record appears
before the three SEGDEF records because each SEGDEF record contains a reference to
a name in the LNAMES record.

The binary data representing each of the two segments in the source code is contained
in the two LEDATA records. The first LEDATA record represents the _TEXT segment; the
second specifies the data in the _DATA segment. The FIXUPP record following the first
LEDATA record contains information about the address references in the _TEXT segment.
Again, the order in which the records appear is important: the FIXUPP record refers to
the LEDATA record preceding it.

References between object records

Object records can refer to information in other records either indirectly, by means of
implicit references, or directly, by means of indexed references to names or other records.

Implicit References. Some types of object records implicitly reference another record in
the same object module. The most important example of such implicit referencing is in the
FIXUPP record, which always contains fixup information for the preceding LEDATA or
LIDATA record in the object module. Whenever an LEDATA or LIDATA record contains a
value that needs to be fixed up, the next record in the object module is always a FIXUPP
record containing the actual fixup information.

Indexed References to Names. An object record that refers to a symbolic name, such as
the name of a segment or an external routine, uses an index into a list of names contained
in a previous object record. (The LNAMES record in Figure 19-5 is an example.) The first
name in such a list has the index number 1, the second name has index number 2, the third
has index number 3, and so on. Altogether, a list of as many as 32,767 (7FFFH) names can
be incorporated into an object module-generally adequate for even the most verbose
programmer. (LINK does, however, impose its own version-specific limits.)

Indexed References to Object Records. An object record can also refer to a previous
object record by using the same type of index. In this case, the index number refers to one
of a list of object records of a particular type. For example, a FIXUPP record might refer to
a segment by referencing one of several preceding SEGDEF records in the object module.
In that case, a value of 1 would indicate the first SEGDEF record in the object module, a
value of 2 would indicate the second, and so on.

The index-number field in an object record can be either 1 or 2 bytes long. If the number
is in the range 0-7FH, the high-order bit (bit 7) is 0 and the low-order 7 bits contain the
index number, so the field is only 1 byte long:

bit 7 6 5 4 3 2 0

0 index number

654 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 664/1582

Article 19: Object Modules

If the index number is in the range 80-7FFFH, the field is 2 bytes long. The high-order bit
of the first byte in the field is set to 1, and the high-order byte of the index number (which
must be in the range 0-7FH) fits in the remaining 7 bits. The low-order byte of the index
number is specified in the second byte of the field:

bit 7 6 5 4 3 2 0 7 6 5 4 3 2
r--.------------------------~----------------~--~--~0~

high-order byte of index number low-order byte of index number

first byte second byte

The same format is used whether an index refers to a list of names or to a previous object
record.

Microsoft 8086 Object Record Formats

Just as the design of the lntel8086 microprocessor reflects the design of its 8-bit predeces­
sors, 8086 object record formats are reminiscent of the 8-bit software tradition. In 8-bit sys­
tems, disk space and RAM were often at a premium. To minimize the space consumed by
object records, information is packed into bit fields within bytes and variable-length fields
are frequently used.

Microsoft LINK recognizes a major subset oflntel's original8086 object module speci­
fication (Intel Technical Specification 121748-001). Intel also proposed a six-letter name for
each type of object record and symbolic names for fields. These names are documented in
the foll0wing descriptions, which appear in the order shown earlier in Table 19-1.

The Intel record types that are not recognized by LINK provide information about an
executable program that MS-DOS obtains in other ways. (For example, information about
run-time overlays is supplied in LINK's command line rather than being encoded in object
records.) Because they are ignored by LINK, they are not included here.

All8086 object records conform to the following format:

The record type field is a 1-byte field containing the hexadecimal number that identifies
the type of object record (see Table 19-1).

The record length is a 2-byte field that gives the length of the remainder of the object
record in bytes (excluding the bytes in the record type and record length fields). The
record length is stored with the low-order byte first.

Section 11- Programming in the MS-DOS Environment 655

HUAWEI EX. 1110 - 665/1582

Part E: Programming Tools

The body field of the record varies in size and content, depending on the record type.

The checksum is a 1-byte field that contains the negative sum (modulo 256) of all other
bytes in the record. In other words, the checksum byte is calculated so that the low-order
byte of the sum of all the bytes in the record, including the checksum byte, equals zero.

Note: As shown in the preceding example, the boxes used to depict the fields vary in size.
The square boxes used for record type and chksum indicate a single byte, the rectangular
box used for record length indicates 2 bytes, and the diagonal lines used for body indicate
a variable-length field.

656 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 666/1582

Article 19: Object Modules

SOH THEADR Translator Header Record

The THEADR record contains the name of the object module. This name identifies an
object module within an object library or in messages produced by the linker.

Record format

~~-so_H_LI __ Ie_n~~-th--~--T--m~~~~~-le--~--~
T-module name

The T-module name field is a variable-length field that contains the name of the object
module. The first byte of the field contains the number of subsequent bytes that contain
the name itself. The name can be uppercase or lowercase and can be any string of
characters.

The T-module name is used by LIB and LINK within error messages. Language translators
frequently derive the T-module name from the name of the file that contains a program's
source code. Assembly-language programmers can specify the T-module name explicitly
with the assembler NAME directive.

Location in object module

As its name implies, the THEADR record must be the first record in every object mo..dule
generated by a language translator.

Example

The following THEADR record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 80 09 00 07 68 65 6C 6C 6F 2E 63 CB

• Byte OOH contains SOH, indicating a THEADR record.

.... hello.c.

• Bytes 01-02H contain 0009H, the length of the remainder of the record.
• Bytes 03-0AH contain the T-module name. Byte 03H contains 07H, the length of

the name, and bytes 04H through OAH contain the name itself (hello. c). (In object
modules generated by the Microsoft C Compiler, the THEADR record indicates
the filename that contained the C source code for the module.)

• Byte OBH contains the checksum, OCBH.

Section II: Programming in the MS-DOS Environment 657

HUAWEI EX. 1110 - 667/1582

PartE: Programming Tools

88H COMENT Comment Record

The COMENT record contains a character string that may represent a plain text comment,
a symbol meaningful to a program such as LIB or LINK, or even binary-encoded identifica­
tion data. An object module can contain any number of COMENT records.

Record format

Attrib

r---r---.----.---.---,.---~~~--~---,

comment
L---L---~--~---L--~----~~~--~--~

Attrib is a 1-byte field in which only the first 2 bits are meaningful:

bit 7 6 5 4 3 2 0
rlp-~-~-e~,--~-,---o--r--0-.--0-,~0--r--0~--0-,

• If bit 7 (no purge) is set to 1, utility programs that manipulate object modules should
not delete the comment record from the object module. Bit 7 can thus protect an
important comment, such as a copyright message, from deletion.

• If bit 6 (no list) is set to 1, utility programs that can list the contents of object modules
are directed not to list the comment. Bit 6 can thus hide a comment.

• Bits 5 through 0 are unused and should be set to 0.

Microsoft LIB ignores the attrib field.

Comment class

Comment class is a 1-byte field whose value provides information about the type of
comment. The original Intel specification provided for the following possible comment
class values:

Value

OOH

01H
02-9BH

Use

Language-translator comment (the name of the translator that generated the
object module).

Copyright comment.
Reserved for Intel proprietary software.

658 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 668/1582

Article 19: Object Modules

Microsoft language translators can generate several other classes of COMENT record that
communicate specific information about the object module to LINK:

Value

81H
9CH

9DH

9EH
9FH

OAlH

OCOH­
OFFH

Comment

Use

Obsolete; replaced by comment class 9FH.
MS-DOS version number. Some language translators create a COMENT record

with a 2-byte binary value in the comment field indicating the MS-DOS ver­
sion under which the module was created. This record is ignored by LINK.

Memory model. The comment field contains a string that indicates the mem­
ory model used by the language translator. The string contains one of the
lowercase letters s, c, m, l, and h to designate small, compact, medium, large,
and huge memory models. Microsoft language translators generate COMENT
records with this comment class only for compatibility with the XENIX ver­
sion of LINK. The MS-DOS version of LINK ignores these COMENT records.

Sets Microsoft LINK's DOSSEG switch.
Default library search name. LINK interprets the contents of the comment

field as the name of a library to be searched in order to resolve external ref­
erences within the object module. The default library search can be overrid­
den with LINK's NODEFAULTLIBRARYSEARCH switch.

Indicates that Microsoft extensions to the Intel object record specification are
used in the object module. For example, when COMDEF records are used
within an object module, a COMENT record with comment class OAlH must
appear in the object module at some point before the first COMDEF record.
LINK ignores the comment string in COMENT records with this comment
class.

Reserved for user-defined comment classes.

The comment field is a variable-length string of bytes that represent the comment. The
length of the string is inferred from the length of the object rec?rd.

Location in object module

A COMENT record can appear almost anywhere in an object module. Only two restric­
tions apply:

• A COMENT record cannot be placed between a FIXUPP record and the LEDATA or
LIDATA record to which it refers.

• A COMENT record cannot be the first or last record in an object module. (The first
record must always be a THEADR record and the last must always be MODEND.)

Section II: Programming in the MS-DOS Environment 659

HUAWEI EX. 1110 - 669/1582

PartE: Programming Tools

Examples
The following three examples are typical COMENT records taken from an object module
generated by the Microsoft C Compiler.

This first example is a language-translator comment:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 07 00 00 00 4D 53 20 43 6E ••••• MS en

• Byte OOH contains 88H, indicating that this is a COMENT record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.
• Byte 03H (the attrib field) contains OOH. Bit 7 (no purge) is set to 0, indicating that

this COMENT record may be purged from the object module by a utility program that
manipulates object modules. Bit 6 (no list) is set to 0, indicating that this comment
neecf not be excluded from any listing of the module's contents. The remaining bits
are all 0.

• Byte 04H (the comment class field) contains OOH, indicating that this COMENT record
contains the name of the language translator that generated the object module.

• Bytes 05H through 08H contain the name of the language translator, MS C.
• Byte 09H contains the checksum, 6EH.

The second example contains the name of an object library to be searched by default
when LINK processes the object module containing this COMENT record:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 09 00 00 9F 53 4C 49 42 46 50 10 SLIBFP.

• Byte 04H (the comment class field) contains 9FH, indicating that this record contains
the name of a library for LINK to use to resolve external references.

• Bytes 05-0AH contain the library name, SLIBFP. In this example, the name refers to
the Microsoft C Compiler's floating-point function library, SLIBFP.LIB.

The last example indicates that the object module contains Microsoft-defined extensions to
the Intel object module specification:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 88 06 00 00 A1 01 43 56 37 CV7

• Byte 04H indicates the comment class, OAlH.
• Bytes 05-07H, which contain the comment string, are ignored by LINK.

660 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 670/1582

Article 19: Object Modules

SAH MODEND Module End Record

The MOD END record denotes the end of an object module. It also indicates whether the
object module contains the main routine in a program, and it can, optionally, contain a
reference to a program's entry point.

Record format

Module type

The module type field is an 8-bit (1-byte) field:

bit 7 6 5 4

I main I start I 0 0

3

0

2

0

0

0

• Bit 7 (main) is set to 1 if the module is a main program module.
• Bit 6 (start) is set to 1 if the MOD END record contains an entry point (start address).
• Bit 0 is set to 1 if the start address field contains a relocatable address reference that

LINK must fix up. If bit 6 is set to 1, bit 0 must also be set to 1. (The Intel specification
allows bit 0 to be set to 0, to indicate that start address is an absolute physical address,
but this capability is not supported by LINK.)

Start address

The start address field appears in the MODEND record only when bit 6 is set to 1:

The format and interpretation of the start address field corresponds to the fixup field
of the FIXUPP record. The end dat field corresponds to the fix dat field in the FIXUPP
record. Bit 2 of the end dat field, which corresponds to the P bit in a fix dat field, must
be zero.

Location in object module

A MODEND record can appear only as the last record in an object module.

Section II: Programming in the MS-DOS Environment 661

HUAWEI EX. 1110 - 671/1582

Part E: Programming Tools

Example

Consider the MOD END record of the HELLO.ASM example:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 SA 07 00 C1 00 01 01 00 00 AC

• Byte OOH contains 8AH, indicating a MODEND record.
• Bytes 01-02H contain 0007H, the lengtl} of the remainder of the record.
• Byte 03H contains OC1H (llOOOOOlB). Bit 7 is set to 1, indicating that this module is

the main module of the program. Bit 6 is set to 1, indicating that a start address field is
present. Bit 0 is set to 1, indicating that the address referenced in the start address
field must be fixed up by LINK.

• Byte 04H (end dat in the start address field) contains OOH. As in a FIXUPP record,
bit 7 indicates that the frame for this fixup is specified explicitly, and bits 6 through 4
indicate that a SEGDEF index specifies the frame. Bit 3 indicates that the target refer­
ence is also specified explicitly, and bits 2 through 0 indicate that a SEGDEF index
also specifies the target. See also FIXUPP 9CH Fixup Record below.

• Byte 05H (frame datum in the start address field) contains OlH. This is a reference
to the first SEGDEF record in the module, which in this example corresponds to the
_TEXT segment. This reference tells LINK that the start address lies in the _TEXT
segment of the module.

• Byte 06H (target datum in the start address field) contains OlH. This too is a ref­
erence to the first SEGDEF record in the object module, which corresponds to the
_TEXT segment. LINK uses the following target displacement field to determine
where in the _TEXT segment the address lies.

• Bytes 07-08H (target displacement in the start address field) contain OOOOH. This is
the offset (in bytes) of the start address.

• Byte 09H contains the checksum, OACH.

662 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 672/1582

Article 19: Object Modules

SCH EXTDEF External Names Definition Record

The EXTDEF record contains a list of symbolic external references- that is, references to
symbols defined in other object modules. The linker resolves external references by
matching the symbols declared in EXTDEF records with symbols declared in PUBDEF
records.

Record format

External reference list

The external reference list is a variable-length field containing a list of names and name
types, each formatted as follows:

name

~~~--~~~--~--~ 

• The name length is a 1-byte field containing the length of the name field that follows 
it. (LINK restricts name length to a value between OlH and 7FH.) 

• The type index is a 1-byte reference to the TYPDEF record in the object module that 
describes the type of symbol the name represents. A type index value of zero indi- 4 
cates that no TYPDEF record is associated with the symbol. A nonzero value indicates 
which TYPDEF record is associated with the external name. Microsoft LINK recog-
nizes TYPDEF records only for the purpose of declaring communal variables. See 8EH 
TYPDEF Type Definition Record below. 

LINK imposes a limit of 1023 external mimes. 

Location in object module 

Any EXTDEF records in an object module must appear before the FIXUPP records that 
reference them. Also, if an EXTDEF record contains a nonzero type index, the indexed 
TYPDEF record must precede the EXTDEF record. 

Example 

Consider this EXTDEF record generated by the Microsoft C Compiler: 

0 1 2 3 4 s 6 7 8 9 
0000 8C 2S 00 OA SF SF 61 63 72 74 
0010 SF 6D 61 69 6E 00 OS SF 70 7S 
0020 63 68 6B 73 74 6B 00 AS 

A B c D E F 
7S 73 6S 64 00 OS .%. ,_acrtused .. 

74 73 00 08 SF SF __main .• _puts .. _ 

chkstk .• 

Section II: Programming in the MS-DOS Environment 663 

HUAWEI EX. 1110 - 673/1582



PartE: Programming Tools 

• Byte OOH contains 8CH, indicating that this is an EXTDEF record. 
• Bytes 01-02H contain 0025H, the length of the remainder of the record. 
• Bytes 03-26H contain a list of external references. The first reference starts in byte 

03H, which contains OAH, the length of the name _acrtused. The name itself fol­
lows in bytes 04-0DH. Byte OEH contains OOH, which indicates that the symbol's type 
is not defined by any TYPDEF record in this object module. Bytes OF-26H contain 
similar references to the external symbols _main, _puts, and _chkstk. 

• Byte 27H contains the checksum, 0A5H. 

664 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 674/1582



Article 19: Object Modules 

SEH TYPDEF Type Definition Record 

The TYPDEF record contains details about the type of data represented by a name 
declared in a PUBDEF or an EXTDEF record. This information may be used by the linker 
to validate references to names, or it may be used by a debugger to display data according 
to type. 

Starting with Microsoft LINK version 3.50, the COMDEF record should be used for declara­
tion of communal variables. For compatibility, however, later versions of LINK recognize 
TYPDEF records as well as COMDEF records. 

Record format 

Name 

Although the original Intel specification allowed for many different type specifications, 
such as scalar, pointer, and mixed data structure, LINK uses TYPDEF records to declare 
only communal variables. Communal variables represent globally shared memory areas­
for example, FORTRAN common blocks or uninitialized public variables in C. 

The size of a communal variable is declared explicitly in the TYPDEF record. If a 
communal variable has different sizes in different object modules, LINK uses the largest 
declared size when it generates an executable module. 

The name field of a TYPDEF record is a 1-byte field that is always null; that is, it contains a 
single zero byte. 

Eight-leaf descriptor 

The eight-leaf descriptor field, in the original Intel specification, was a variable-length 
field that contained as many as eight "leaves" that could be used to describe mixed data 
structures. 

Microsoft uses a stripped-down version of the eight-leaf descriptor, because the field's only 
function is to describe communal variables: 

~~~ 
~:-7

repeated

Section /1· Programming in the MS-DOS Environment 665

HUAWEI EX. 1110 - 675/1582

Part E: Programming Tools

• The first field in the eight-leaf descriptor is a 1-byte field that contains a zero byte.
• The leaf descriptor field is a variable-length field that is itself divided into four fields

("leaves") that describe the size and type of a variable. The two possible variable
types are NEAR and FAR.

If the field describes a NEAR variable (one that can be referenced as an offset within a
default data segment), the format is

- The 1-byte field containing 62H signifies a NEAR variable.
- The variable type field is a 1-byte field that specifies the variable type:

77H Array
79H Structure
7BH Scalar

This field is ignored by LINK.
- The length in bits field is a variable-length field that indicates the size of the com­

munal variable. Its format depends on the size it represents. If the size is less than
128 (SOH) bits, length in bits is a 1-byte field containing the actual size of the field:

If the size is 128 bits or greater, it cannot be represented in a single byte value, so
the length in bits field is formatted with an extra initial byte that indicates whether
the size is represented as a 2-, 3-, or 4-byte value:

lasH I : 4-byt:e size :

666 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 676/1582

Article 19: Object Modules

If the leaf descriptor field describes a FAR variable (one that must be referenced with
an explicit segment and offset), the format is

- The 1-byte field containing 61H signifies a FAR variable.
- The 1-byte variable type for a FAR communal variable is restricted to 77H (array).

(As with the NEAR variable type field, LINK ignores this field.)
- The number of elements is a variable-length field that contains the number of

elements in the array. It has the same format as the length in bits field in the leaf
descriptor for a· NEAR variable.

- The element type index is an index field that references a previous TYPDEF
record. A value of 1 indicates the first TYPDEF record in the object module, a value
of 2 indicates the second TYPDEF record, and so on. The TYPDEF record refer­
enced must describe a NEAR variable. This way, the data type and size of the
elements in the array can be determined.

Location in object module

Any TYPDEF records in an object module must precede the EXTDEF or PUBDEF records
that reference them.

Examples

The following three examples of TYPDEF records were generated by the Microsoft C
Compiler version 3.0. (Later versions use COMDEF records.)

The first sample TYPDEF record corresponds to the public declaration

int foe; I* 16-bit integer *I

The TYPEDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 8E 06 00 00 00 62 7B 10 7F b{ ..

• Byte OOH contains 8EH, indicating that this is a TYPDEF record.
• Bytes 01-02H contain 0006H, the length of the remainder of the record.
• Byte 03H (the name field) contains OOH, a null name.
• Bytes 04-07H represent the eight-leaf descriptor field. The first byte of this field

(byte 04H) contains OOH. The remaining bytes (bytes 05-07H) represent the leaf
descriptor field:
- Byte 05H contains 62H, indicating this TYPDEF record describes a NEAR variable.
- Byte 06H (the variable type field) contains 7BH, which describes this variable as

a scalar.
- Byte 07H (the length in bits field) contains 10H, the size of the variable in bits.

Section 11- Programming in the MS-DOS Environment 667

HUAWEI EX. 1110 - 677/1582

Part E: Programming Tools

• Byte 08H contains the checksum, 7FH.

The next example demonstrates how the variable size contained in the length in bits field
of the leaf descriptor is formatted:

char foo2[32768]; I* 32 KB array *I

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 8E 09 00 00 00 62 7B 84 00 00 04 04, b{

• The length in bits field (bytes 07 -OAH) starts with a byte containing 84H, which in­
dicates that the actual size of the variable is represented as a 3-byte value (the follow­
ing 3 bytes). Bytes 08-0AH contain the value 040000H, the size of the 32 KB array
in bits.

This third C statement, because it declares a FAR variable, causes two TYPDEF records to
be generated:

char far foo3 [10] [2] [20]; I* 400-element FAR array *I

The two TYPDEF records are

0123456789ABCDEF
0000 8E 06 00 00 00 62 7B 08 87 8E 09 00 00 00 61 77
0010 81 90 01 01 7E

.••.. b{ ...•.•. aw

' o o o • I

• Bytes 00-08H contain the first TYPDEF record, which defines the data type of the
elements of the array (NEAR, scalar, 8 bits in size).

• Bytes 09-14H contain the second TYPDEF record. The leaf descriptor field of this
record declares that the variable is FAR (byte OEH contains 61H) and an array (byte
OFH, the variable type, contains 77H).
- Because this TYPDEF record describes a FAR variable, bytes 10-12H represent

a number of elements field. The first byte of the field is 81H, indicating a 2-byte
value, so the next 2 bytes (bytes ll-12H) contain the number of elements in the
array, 0190H (400D).

• Byte 13H (the element type index) contains OlH, which is a reference to the first
TYPDEF record in the object module-in this example, the one in bytes 00-08H.

668 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 678/1582

Article 19: Object Modules

90H PUBDEF Public Names Definition Record

The PUBDEF record contains a list of public names. When object modules are linked, the
linker uses these m~mes to resolve external references in other object modules.

Record format

Public base

Each name in the PUBDEF record refers to a location (a 16-bit offset) in a particular seg­
ment or group. The public base, a variable-length field that specifies the segment or group,
is formatted as follows:

• Group index is an index field that references a previous GRPDEF record in the object
module. If the group index value is 0, no group is associated with this PUBDEF
record.

• Segment index is also an index field. It associates a particular segment with this
PUBDEF record by referencing a previous SEGDEF record. A value of 1 indicates the
first SEGDEF record in the object module, a value of 2 indicates the second, and so on.
If the segment index value is 0, the group index must also be 0-in this case, the
frame number appears in the public base field.

• The 2-byte frame number appears in the public base field only when the group
index and segment index are both 0. In other words, the frame number specifies
the start of an absolute segment. If present, the value in the frame number field indi­
cates the number of the frame containing the public name.

Public name

Public name is a variable-length field containing a public name. The first byte specifies
the length of the name; the remainder is the name itself. (The Intel specification allows
names of 1 to 255 bytes. Microsoft LINK restricts the maximum length of a public name to
127bytes.)

Section /1· Programming in the MS-DOS Environment 669

HUAWEI EX. 1110 - 679/1582

PartE: Programming Tools

Public offset

Public offset is a 2-byte field containing the offset of the location referred to by the public
name. This offset is assumed to lie within the segment, group, or frame specified in the
public base field.

Type index

Type index is an index field that references a previous TYPDEF record in the object mod­
ule. A value of 1 indicates the first TYPDEF record in the module, a value of 2 indicates the
second, and so on. The type index value can be 0 if no data type is associated with the
public name.

The public name, public offset, and type index fields can be repeated within a single
PUBDEF record. Thus, one PUBDEF record can declare a list of public names.

Location in object module

Any PUBDEF records in an object module must appear after the GRPDEF and SEGDEF
records to which they refer. Because PUBDEF records are not themselves referenced by
any other type of object record, they are generally placed near the end of an object
module.

Examples

The following two examples show PUBDEF records created by the Microsoft Macro
Assembler.

The first example is the record for the statement

PUBLIC GAMMA

The PUBDEF record is

0123456789ABCDEF
0000 90 OC 00 00 01 05 47 41 4D 4D 41 02 00 00 F9 GAMMA

• Byte OOH contains 90H, indicating a PUBDEF record.
• Bytes Ol-02H contain OOOCH, the length ofthe remainder of the record.
• Bytes 03-04H represent the public base field. Byte 03H (the group inde~) contains 0,

indicating that no group is associated with the name in this PUBDEF record. Byte 04H
(the segment index) contains 1, a reference to the first SEGDEF record in the object
module. This is the segment to which the name in this PUBDEF record refers.

• Bytes 05-0AH represent the public name field. Byte 05H contains 05H (the length of
the name), and bytes 06-0AH contain the name itself, GAMMA.

• Bytes OB-OCH contain 0002H, the public offset. The name GAMMA thus refers to the
location that is offset 2 bytes from the beginning of the segment referenced by the
public base.

• Byte ODH is the type index. The value of the type index is 0, indicating that no data
type is associated with the name GAMMA.

• Byte OEH contains the checksum, OF9H.

670 The MS-DOS Encyclopedia

j

HUAWEI EX. 1110 - 680/1582

Article 19: Object Modules

The next example is the PUBDEF record for the following absolute symbol declaration:

PUBLIC
ALPHA EQU

ALPHA
1234h

The PUBDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 90 OE 00 00 00 00 00 OS 41 4C 50 48 41 34 12 00 ALPHA4
0010 B1

• Bytes 03-06H (the public base field) contain a group index of 0 (byte 03H) and a
segment index of 0 (byte 04H). Since both the group index and segment index are 0,
a frame number also appears in the public base field. In this instance, the frame
number (bytes 05-06H) also happens to be 0.

• Bytes 07 -OCH (the public name field) contain the name ALPHA, preceded by its
length.

• Bytes OD-OEH (the public offset field) contain 1234H. This is the value associated
with the symbol ALPHA in the assembler EQU directive. If ALPHA is declared in
another object module with the declaration

EXTRN ALPHA:ABS

any references to ALPHA in that object module are fixed up as absolute references to
offset 1234H in frame 0. In other words, ALPHA would have the value 1234H.

• Byte OFH (the type index) contains 0.

Section Jl: Programming in the MS-DOS Environment 671

HUAWEI EX. 1110 - 681/1582

Part E: Programming Tools

94H LINNUM Line Number Record

The LINNUM record relates line numbers in source code to addresses in object code.

Record format

Line number base

The line number base describes the segment to which the line number refers. Although
the complete Intel specification allows the line number base to refer to a group or to an
absolute segment as well as to a relocatable segment, Microsoft restricts references in this
field to relocatable segments. The format of the line number base field is

• The group index field always contains a single zero byte.
• The segment index is an index field that references a previous SEGDEF record. A

value of 1 indicates the first SEGDEF record in the object module, a value of 2 indicates
the second, and so on.

Line number

Line number is a 2-byte field containing a line number between 0 and 32,767
(0-7FFFH).

Line number offset

The line number offset is a 2-byte field that specifies the offset of the executable code (in
the segment specified in the line number base field) to which the line number in the line
number field refers.

The line number and line number offset fields can be repeated, so a single LINNUM
record can specify multiple line numbers in the same segment.

Location in object module

Any LINNUM records in an object module must appear after the SEGDEF records to which
they refer. Because LINNUM records are not themselves referenced by any other type of
object record, they are generally placed near the end of an object module.

672 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 682/1582

Article 19: Object Modules

Example

The following LINNUM record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 94 OF 00 00 01 02 00 00 00 03 00 08 00 04 00 OF
0010 00 3C

• Byte OOH contains 94H, indicating that this is a LINNUM record.
• Bytes 01-02H contain OOOFH, the length of the remainder of the record.
• Bytes 03-04H represent the line number base field. Byte 03H (the group index field)

contains OOH, as it must. Byte 04H (the segment index field) contains OlH, indicating
that the line numbers in this LINNUM record refer to code in the segment defined in
the first SEGDEF record in this object module.

• Bytes 05-06H (a line number field) contain 0002H, and bytes 07 -08H (a line num­
ber offset field) contain OOOOH. Together, they indicate that source-code line number
0002 corresponds to offset OOOOH in the segment indicated in the line number base
field.

Similarly, the two pairs of line number and line number offset fields in bytes 09-lOH
specify that line number 0003 corresponds to offset 0008H and that line number 0004
corresponds to offset OOOFH.

• Byte llH contains the checksum, 3CH.

Section IL- Programming in the MS-DOS Environment 673

HUAWEI EX. 1110 - 683/1582

PartE: Programming Tools

96H LNAMES List of Names Record

The LNAMES record is a list of names that can be referenced by subsequent SEGDEF and
GRPDEF records in the object module.

Record format

Name list

Name list is a variable-length field that contains the list of names. Each name is preceded
by 1 byte that defines its length, which can be a value between 0 and 255 (0-0FFH).

The names in the list are indexed implicitly in the order they appear: The first name in the
list has an index of 1, the second name has an index of 2, and so forth. References to the
names contained in name list by subsequent object records, such as SEGDEF, are accom­
plished by using this index number. LINK imposes a limit of 255logical names per object
module.

Location in object module

Any LNAMES records in an object module must appear before the GRPDEF or SEGDEF
records that refer to them. Because it does not refer to any other type of object records, an
LNAMES record usually appears near the start of an object module.

Example

The following LNAMES record contains the segment and class names specified in all three
of the assembler statements:

_TEXT SEGMENT byte public 'CODE'
_DATA SEGMENT word public 'DATA'
_STACK SEGMENT para public 'STACK'

The LNAMES record is

0 1 2 3 4 5 6 7 8 9 A B c D E F

0000 96 25 00 00 04 43 4F 44 45 04 44 41 54 41 OS 53 .% ... CODE.DATA.S

0010 54 41 43 4B OS SF 44 41 54 41 06 SF 53 54 41 43 TACK._DATA._STAC

0020 4B 05 SF 54 45 58 54 BB K._TEXT.

• Byte OOH contains 96H, indicating that this is an LNAMES record.
• Bytes 01-02H contain 0025H, the length of the remainder of the record.

674 TheMS-DOSEncyclopedia

HUAWEI EX. 1110 - 684/1582

Article 19: Object Modules

• Byte 03H contains OOH, a zero-length name.
• Byte 04H contains 04H, the length of the class name CODE, which is found in bytes

05-08H. Bytes 09-26H contain the class names DATA and STACK and the segment
names _DATA, _STACK, and _TEXT, each preceded by 1 byte giving its length.

• Byte 27H contains the checksum, 8BH.

Section Jl- Programming in the MS-DOS Environment 675

HUAWEI EX. 1110 - 685/1582

PartE: Programming Tools

98H SEGDEF Segment Definition Record

The SEGDEF record describes a logical segment in an object module. It defines the seg­
ment's name, length, and alignment, and the way the segment can be combined with other
logical segments. LINK imposes a limit of 255 SEGDEF records per object module.

Object records that follow a SEG DEF record can refer to it to identify a particular segment.

Record format

r--.---.--.---~ ~--~--,---r---~ ~--~--~~~--~--~~~--~~
class name overlay name

index index
~--~--~~ ~~--._~

Segment attributes

Segment attributes is a variable-length field:

The ACBP byte

The contents and size of the segment attributes field depend on the first byte of the field,
the ACBP byte:

bit 7 6 5 4 3 2 0

A c B p

The bit fields in the ACBP byte describe the following characteristics of the segment:

A Alignment in the run-time memory map
C Combination with other segments
B Big (a segment of exactly 64 KB)
P Page-resident (not used in MS-DOS)

The A field. Bits 7-5 of the ACBP byte, the A field, describe the logical segment's
alignment:

A=O (OOOB)
A= 1 (OOlB)
A= 2 (OlOB)
A= 3 (OllB)
A= 4(100B)

Absolute (located at a specified frame address)
Relocatable, byte aligned
Relocatable, word aligned
Relocatable, paragraph aligned
Relocatable, page aligned

676 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 686/1582

Article 19: Object Modules

The original Intel specification includes two additional segment-alignment values not
supported in MS-DOS.

The following examples of Microsoft assembler SEGMENT directives show the resulting
values for the A field in the corresponding SEGDEF object record:

aseg

bseg

cseg

SEGMENT at 400h A = 0
; A= 1

; A = 3

SEGMENT byte public 'CODE'

SEGMENT para stack 'STACK'

The Cfield. Bits 4-2 of the ACBP byte, the C field, describe how the linker can combine
the segment with other segments. Under MS-DOS, segments with the same name and class
can be combined in two ways. They can be concatenated to form one logical segment, or
they can be overlapped. In the latter case, they have either the same starting address or the
same end address and they describe a common area of memory.

The value in the C field corresponds to one of these two methods of combining segments.
Meaningful values, however, also depend on whether the segment is absolute (A = 0) or
relocatable (A= 1, 2, 3, or 4). If A= 0, then C must also be 0, because absolute segments
cannot be combined. Values for the C field are

C= O(OOOB)

C= 1 (001B)
C= 2 (OlOB)

C= 3 (OllB)
C= 4(100B)
C= 5 (lOlB)

C= 6(110B)

C= 7 (111B)

Cannot be combined; used for segments whose combine type is not
explicitly specified (private segments).

Not used by Microsoft.
Can be concatenated with another segment of the same name; used for

segments with the public combine type.
Undefined.
As defined by Microsoft, same as C = 2.
Can be concatenated with another segment with the same name; used for

segments with the stack combine type.
Can be overlapped with another segment with the same name; used for

segments with the common combine type.
As defined by Microsoft, same as C = 2. ·

The following examples of assembler SEGMENT directives show the resulting values for
the C field in the corresponding SEGDEF object record:

aseg SEGMENT at 400H c = 0
bseg SEGMENT public 'DATA' c = 2

cseg SEGMENT stack 'STACK' c = 5

dseg SEGMENT common 'COMMON' c = 6

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING ToOLs: The
Microsoft Object Linker.

The Band P fields. Bit 1 of the ACBP byte, the B field, is set to 1 (and the segment length
field is set to 0) only if the segment is exactly 64 KB long.

Bit 0 of the ACBP byte, the P field, is unused in MS-DOS. Its value should always be 0.

Section JL- Programming in the MS-DOS Environment 677

HUAWEI EX. 1110 - 687/1582

PartE: Programming Tools

Frame number and offset
The frame number and offset fields of the segment attributes field are present only if the
segment is an absolute segment (A = 0 in the ACBP byte). Taken together, the frame num­
ber and offset indicate the starting address of the segment.

• Frame number is a 2-byte field that contains the frame number of the start of the
segment.

• Offset is a 1-byte field that contains an ?ffset between OOH and OFH within the speci­
fied frame. LINK ignores the offset field.

Segment length

Segment length is a 2-byte field that specifies the length of the segment in bytes. The
length can be from OOH to FFFF.H. If a segment is exactly 64 KB (10000H) in size, segment
length should be 0 and the B field in the ACBP byte should be 1.

Segment name index, class name index, and overlay name index

Each of the segment name index, class name index, and overlay name index fields
contains an index into the list of names defined in previous LNAMES records in the object
module. An index value of 1 indicates the first name in the LNAMES record, a value of 2 the
second, and so on.

• The segment name index identifies the segment with a unique name. The name may
have been assigned by the programmer, or it may have been generated by a compiler.

• The class name index identifies the segment with a class name (such as CODE,
FAR_ DATA, and STACK). The linker places segments with the same class name into
a contiguous area of memory in the run-time memory map.

• The overlay name index identifies the segment with a run-time overlay. Starting with
version 2.40, however, LINK ignores the overlay name index. In versions 2.40 and
later, command-line parameters to LINK, rather than information contained in object
modules, determine the creation of run-time overlays.

Location in object module

SEGDEF records must follow the LNAMES record to which they refer. In addition, SEGDEF
records must precede any PUBDEF, LINNUM, GRPDEF, FIXUPP, LEDATA, or LIDATA
records that refer to them.

Examples

In this first example, the segment is byte aligned:

0123456789ABCDEF

0000 98 07 00 28 11 00 07 02 01 1E ... (......

• Byte OOH contains 98H, indicating that this is a SEGDEF record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.

678 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 688/1582

Article 19: Object Modules

• Byte 03H contains 28H (00101000B), the ACBP byte. Bits 7-5 (the A field) contain 1
(OOlB), indicating that this segment is relocatable and byte aligned. Bits 4-2 (the C
field) contain 2 (OlOB), which represents a public combine type. (When this object
module is linked, this segment will be concatenated with all other segments with the
same name.) Bit 1 (the B field) is 0, indicating that this segment is smaller than 64 KB.
Bit 0 (the P field) is ignored and should be zero, as it is here.

• Bytes 04-05H contain 0011H, the size of the segment in bytes.
• Bytes 06-08H index the list of names defined in the module's LNAMES record. Byte

06H (the segment name index) contains 07H, so the name of this segment is the
seventh name in the LNAMES record. Byte 07H (the class name index) contains 02H,
so the segment's class name is the second name in the LNAMES record. Byte 08H (the
overlay name index) contains 1, a reference to the first name in the LNAMES record.
(This name is usually null, as MS-DOS ignores it anyway.)

• Byte 09H contains the checksum, lEH.

The second SEGDEF record declares a word-aligned segment. It differs only slightly from
the first.

0123456789ABCDEF

0000 98 07 00 48 OF 00 05 03 01 01 ... H .••.••

• Bits 7-5 (the A field) of byte 03H (the ACBP byte) contain 2 (OlOB), indicating that
this segment is relocatable and word aligned.

• Bytes 04-05H contain the size of the segment, OOOFH.
• Byte 06H (the segment name index) contains 05H, which refers to the fifth name in

the previous LNAMES record.
• Byte 07H (the class name index) contains 03H, a reference to the third name in the

LNAMES record.

Section /1· Programming in the MS-DOS Environment ·679

HUAWEI EX. 1110 - 689/1582

PartE: Programming Tools

9AH GRPDEF Group Definition Record

The GRPDEF record defines a group of segments, all of which lie within the same 64 KB
frame in the run-time memory map. LINK imposes a limit of 21 GRPDEF records per
object module.

Record format

Group name index

Group name index is an index field whose value refers to a name in the name list field of
a previous LNAMES record.

Group component descriptor

The group component descriptor consists of two fields:

• Type is a 1-byte field whose value is always OFFH, indicating that the following field
contains a segment index value. The original Intel specification defines four other
types of group component descriptor with the values OFEH, OFDH, OFBH, and OFAH.
LINK ignores these other type values, however, and assumes that the group compo­
nent descriptor contains a segment index value.

• The segment index field contains an index number that refers to a previous SEGDEF
record. A value of 1 indicates the first SEGDEF record in the object module, a value of
2 indicates the second, and so on.

The group component descriptor field is usually repeated within the GRPDEF record, so
all segments constituting the group can be included in one GRPDEF record.

Location in object module

GRPDEF records must follow the LNAMES and SEGDEF records to which they refer. They
must also precede any PUBDEF, LINNUM, FIXUPP, LEDATA, or LIDATA records that refer
to them.

680 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 690/1582

Article 19: Object Modules

Example

The following example of a GRPDEF record corresponds to the assembler directive:

tgroup GROUP seg1~seg2,seg3

The GRPDEF record is

0123456789ABCDEF
0000 9A 08 00 06 FF 01 FF 02 FF 03 55 U

• Byte OOH contains 9AH, indicating that this is a GRPDEF record.
• Bytes Ol-02H contain 0008H, the length of the remainder of the record.
• Byte 03H contains 06H, the group name index. In this instance, the index number

refers to the sixth name in the previous LNAMES record in the object module. That
name is the name of the group of segments defined in the remainder of the record.

• Bytes 04-05H contain the first of three group component descriptor fields. Byte 04H
contains the required OFFH, indicating that the subsequent field is a segment index.
Byte 05H contains OlH, a segment index that refers to the first SEGDEF record in the
object module. This SEGDEF record declared the first of three segments in the group.

• Bytes 06-07H represent the second group component descriptor, this one referring to
the second SEGDEF record in the object module.

• Similarly, bytes 08-09H are a group component descriptor field that references the
third SEGDEF record.

• Byte OAH contains the checksum, 55H.

Section Jl- Programming_in the MS-DOS Environment 681

HUAWEI EX. 1110 - 691/1582

Part E: Programming Tools

9CH FIXUPP Fixup Record

The FIXUPP record contains information that allows the linker to resolve (fix up) ad­
dresses whose values cannot be determined by the language translator. FIXUPP records
describe the LOCATION of each address value to be fixed up, the TARGET address to
which the fixup refers, and the FRAME relative to which the address computation is
performed.

Record format

Thread and fixup fields

A FIXUPP record can contain zero or more thread fields and zero or more fixup fields.
Each fixup field describes the method to be used by the linker to compute the TARGET
address to be placed at a particular location in the executable image, relative to a particular
FRAME. The information that determines the LOCATION, TARGET, and FRAME can be
specified explicitly in the fixup field. It can also be specified within the fixup field by a
reference to a previous thread field.

A thread field describes only the method to be used by the linker to refer to a particular
TARGET or FRAME. Because the same thread field can be referenced in several subse­
quent fixup fields, a FIXUPP record that uses thread fields may be smaller than one in
which thread fields are not used.

Thread and fixup fields are distinguished from one another by the high-order bit of the
first byte in the field. If the high-order bit is 0, the field is a thread field. If the high-order
bit is 1, the field is a fixup field.

The thread field
A thread field contains information that can be referenced in subsequent thread or fixup
fields in the same or subsequent FIXUPP records. It has the following format:

682 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 692/1582

Article 19: Object Modules
.,

The thread data field is a single byte comprising five subfields:

bit 7 6 5

0 D
0 ·I

4 3

method

2 0

thread
number

• Bit 7 of the thread data byte is 0, indicating the start of a thread field.
• The D field (bit 6) indicates whether the thread field specifies a FRAME or a

TARGET. The D bit is set to 1 to indicate a FRAME or to 0 to indicate a TARGET.
• Bit 5 of the thread data byte is not used. It should always be set to 0.
• Bits 4 through 2 represent the method field. If D = 1, the method field contains 0, 1, 2,

4, or 5. Each of these numbers corresponds to one method of specifying a FRAME (see
Table 19-2). If D = 0, the method field contains 0, 1, 2, 4, 5, or 6, each of which corre­
sponds to one of the methods of specifying a TARGET (see Table 19-3).

In the case of a TARGET address, only bits 3 and 2 of the method field are used. When
D = 0, the high-order bit of the value in the method field is derived from the P bit in
the fix dat field of any subsequent fixup field that refers to this thread field. Thus, if
D = 0, bit 4 of the method field is also 0, and the only meaningful values for the
method field are 0, 1, and 2.

• The thread number field (bits 1 and 0) contains a number between 0 and 3. This
number is used in subsequent fixup or thread fields to refer to this particular thread
field.

The thread number is implicitly associated with the D field by the linker, so as many
as eight different thread fields (four FRAMEs and four TARGETs) can be referenced at
any time. A thread number can be reused in an object module and, if it is, always
refers to the thread field in which it last appeared.

Table 19-2. FRAME Fixup Methods.

Method Description

0 The FRAME is specified by a segment index.
1 The FRAME is specified by a group index.
2 The FRAME is indicated by an external index. LINK determines the FRAME

from the external name's corresponding PUBDEF record in another object
module, which specifies either a logical segment or a group.

3 The FRAME is identified by an explicit frame number. (Not supported by
LINK.)

4 The FRAME is determined by the segment in which the LOCATION is defined.
In this case, the largest possible frame number is used.

5 The FRAME is determined by the TARGET's segment, group, or external
index.

Section II: Programming in the MS-DOS Environment 683

HUAWEI EX. 1110 - 693/1582

PartE: Programming Tools

Table 19-3. TARGET Fixup Methods.

Method Description

0 The TARGET is specified by a segment index and a displacement. The
displacement is given in the target displacement field of the FIXUPP record.

1 The TARGET is specified by a group index and a target displacement.
2 The TARGET is specified by an external index and a target displacement.

LINK adds the displacement to the address it determines from the external
name's corresponding PUBDEF record in another object module.

3 The TARGET is identified by an explicit frame number. (Not supported by
LINK.)

4 * The TARGET is specified by a segment index only.
5 * The TARGET is specified by a group index only.
6 * The TARGET is specified by an external index. The TARGET is the address

associated with the external name.
7* The TARGET is identified by an explicit frame number. (Not supported by

LINK.)

• TARGET methods 4-7 are analogous to the preceding four, except that methods 4-7 do not use an explicit
displacement to identify the TARGET. Instead, a displacement of 0 is assumed.

The index field either contains an index value that refers to a previous SEGDEF, GRPDEF,
or EXTDEF record, or it contains an explicit frame number. The interpretation of the index
value depends on the value of the method field of the thread data field:

method= 0
method= 1
method= 2
method= 3

Segment index (reference to a previous SEGDEF record)
Group index (reference to a previous GRPDEF record)
External index (reference to a previous EXTDEF record)
Frame number (not supported by LINK; ignored)

The fixup field
The fixup field provides the information needed by the linker to resolve a reference to a
relocatable or external address. The fixup field has the following format:

r---~--,-~-r----~~~--~----~

frame datum

~--~--~--~--~~~--~--~

The 2-byte locat field has an unusual format. Contrary to the usual byte order in Intel data
structures, the most significant bits of the locat field are found in the low-order, rather than
the high-order, byte:

low-order byte

bit 15 14 13 12 11 10 7

loc

684 The MS-DOS Encyclopedia

high-order byte

6 5 4 3

data record offset

2 0

HUAWEI EX. 1110 - 694/1582

I
i

.I

•
•
•
•

Article 19: Object Modules

Bit 15 (the high-order bit of the locat field) contains 1, indicating that this is a fixup
field.
Bit 14 (the M bit) is 1 if the fixup is segment relative and 0 if the fi.A'Up is self-relative .
Bit 13 (the S bit) is currently unused and should always be set to 0 .
Bits 12 through 10 represent the toe field. This field contains a number between 0 and
5 that indicates the type ofLOCATION to be fixed up:

loc = 0
loc = 1
loc = 2
loc = 3
loc = 4
loc = 5

Low-order byte
Offset
Segment
Pointer (segment:offset)
High-order byte (not recognized by LINK)
Loader-resolved offset (treated as toe = 1 by the linker)

• Bits 9 through 0 (the data record offset) indicate the position of the LOCATION to be
fixed up in the LEDATA or LIDATA record immediately preceding the FI:XUPP record.
This offset indicates either a byte in the data field of an LEDATA record or a data byte
in the content field of an iterated data block in an LIDATA record.

The fix dat field is a single byte comprising five fields:

bit 7 6 5 4 3 2 0

F frame T p targt

e Bit 7 (the F bit) is set to 1 if the FRAME for this fixup is specified by a reference to a 4
previous thread field. The F bit is 0 if the FRAME method is explicitly defined in this
fixup field.

• The interpretation of the frame field in bits 6 through 4 depends on the value of the
F bit. IfF= 1, the frame field contains a number between 0 and 3 that indicates the
thread field containing the FRAME method. IfF= 0, the frame field contains 0, 1, 2,
4, or 5, corresponding to one of the methods of specifying a FRAME listed in Table
19-2.

• Bit 3 (the T bit) is set to 1 if the TARGET for the fixup is specified by a reference to a
previous thread field. If the T bit is 0, the TARGET is explicitly defined in this fixup
field.

• Bit 2 (the P bit) and bits 1 and 0 (the targt field) can be considered a 3-bit field analo­
gous to the frame field.

• If the T bit indicates that the TARGET is specified by a previous thread reference
(T = 1), the targt field contains a number between 0 and 3 that refers to a previous
thread field containing the TARGET method. In this case, the P bit, combined with
the 2 low-order bits of the method field in the thread field, determines the TARGET
method.

Section IL- Programming in the MS-DOS Environment 685

HUAWEI EX. 1110 - 695/1582

Part E: Programming Tools

If the T bit is 0, indicating that the target is explicitly defined, the P and targt fields
together contain 0, 1, 2, 4, 5, or 6. This number corresponds to one of the TARGET
fixup methods listed in Table 19-3. On this case, the P bit can be regarded as the
high-order bit of the method number.)

Frame datum is an index field that refers to a previous SEGDEF, GRPDEF, or EXTDEF
record, depending on the FRAME method.

Similarly, the target datum field contains a: segment index, a group index, or an external
index, depending on the TARGET method.

The target displacement field, a 2-byte field, is present only if the P bit in the fixdat field
is set to 0, in which case the target displacement field contains the 16-bit offset used in
methods 0, 1, and 2 of specifying a TARGET.

Location in object module

FIXUPP records must appear after the SEGDEF, GRPDEF, or EXTDEF records to which
they refer. In addition, if a FIXUPP record contains any fixup fields, it must immediately
follow the LEDATA or LIDATA record to which the fixups refer.

Examples

Although crucial to the proper linking of object modules, FIXUPP records are terse:
Almost every bit is meaningful. For these reasons, the following three examples of FIXUPP
records are particularly detailed.

A good way to understand how a FIXUPP record is put together is to compare it to the cor­
responding source code. The Microsoft Macro Assembler is helpful in this regard, because
it marks in its source listing address references it cannot resolve. The "program" in Figure
19-6 is designed to show how some of the most frequently encountered fixups are encoded
in FIXUPP records.

0000

0000 E9 0000 E
0003 EB 00 E
0005 EA 0000 R
OOOA EA 0000 E

OOOF BB 0015 R
0012 B8 ---- R

TITLE fixupps _
_ TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

NearProc

EXTRN NearLabel:near
EXTRN FarLabel:far

PROC near

jmp NearLabel ;relocatable word offset
jmp short NearLabel ;relocatable byte offset
jmp far ptr FarProc ; far jump to a known seg
jmp FarLabel ; far jump to an unknown seg

mov bx,offset LocalLabel ;relocatable offset
mov ax,seg LocalLabel ;relocatable seg

Figure 19-6. A sample "program'' showing how some common fixups are encoded in FIXUPP records. (more)

686 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 696/1582

Article 19: Object Modules

0015 C3 LocalLabel: ret

NearProc ENDP

0016 _TEXT ENDS

0000 FAR_TEXT SEGMENT byte public 'FAR_CODE'
ASSUME cs:FAR_TEXT

0000 FarProc PROC far

0000 CB ret

FarProc ENDP

0001 FAR_ TEXT ENDS

END

Figure 19-6. Continued.

The assembler generates one LEDATA record for this program:

0 2 3 4 5 6 7 8 9 A B C D E F
0010 AO 1A 00 01 00 00 E9 00 00 EB 00 EA 00 00 00 00
0020 EA 00 00 00 00 BB 00 00 B8 00 00 C3 67 g

.Bytes 06-2BH (the data field) of this LEDATA record contain 8086 opcodes for each of
the instruction mnemonics in the source code. The gaps (zero values) in the data field
correspond to address values that the assembler cannot resolve. The linker will fix up the 4
address values in the gaps by computing the correct values and adding them to the zero
values in the gaps. The FIXUPP record that tells the linker how to do this immediately
follows the LEDATA record in the object module:

0 2 3 4 5 6 7 8 9 A B c D E F

0000 9C 21 00 84 01 06 01 02 80 04 06 01 02 cc 06 04 . ! 0 ••••••••

0010 02 02 CC OB 06 01 01 C4 10 00 01 01 15 00 C8 13 • 0 •••• 0 0.' 0 •••• 0

0020 04 01 01 A3

• Byte OOH contains 9CH, indicating this is a FIXUPP record.
• Bytes 01-02H contain 0021H, the length of the remainder of the record.
• Bytes 03-07H represent the first of the six fixup fields in this record:

The information in this fixup field will allow the linker to resolve the address refer­
ence in the statement

jmp NearLabel

Section 11· Programming in the MS-DOS Environment 687

HUAWEI EX. 1110 - 697/1582

Part E: Programming Tools

- Bytes 03-04H (the locat field) contain 8401H (lOOOOlOOOOOOOOOlB). (Recall that
this field does not conform to the usual Intel byte order.) Bit 15 is 1, signifying that
this is a fixup field, not a thread field. Bit 14 (theM bit) is 0, so this fixup is self­
relative. Bit 13 is unused and should be set to 0, as it is here. Bits 12-10 (the loc
field) contain 1 (OOlB), so the LOCATION to be fixed up is a 16-bit offset. Bits 9-0
(the data record offset) contain 1 (OOOOOOOOOlB), which informs the linker that the
LOCATION to be fixed up is at offset 1 in the data field ofthe LEDATA record im­
mediately preceding this FIXUPP record-in other words, the 2 bytes immedi­
ately following the first opcode OE9H.

- Byte 05H (the fix dat field) contains 06H (OOOOOllOB). Bit 7 (the F bit) is 0, mean­
ing the FRAME for this fixup is explicitly specified in this fixup field. Bits 6-4
(the frame field) contain 0 (OOOB), indicating that FRAME method 0 specifies the
FRAME. Bit 3 (the T bit) is 0, so the TARGET for this fixup is also explicitly speci­
fied. Bits 2-0 (the P bit) and the targt field contain 6 (110B), so TARGET method 6
specifies the TARGET.

- Byte 06H is a frame datum field, because the FRAME is explicitly specified (the
F bit of the fix dat field= 0). And, because method 0 is specified, the frame
datum is an index field that refers to a previous SEGDEF record. In this example,
the frame datum field contains 1, which indicates the first SEGDEF record in the
object module: the_ TEXT segment.

- Similarly, byte 07H is a target datum, because the TARGET is also explicitly speci­
fied (the T bit of the fix dat field = 0). The fix dat field also indicates that
TARGET method 6 is used, so the target datum is an index field that refers to the
external reference list in a previous EXTDEF record. The value of this index is 2,
so the TARGET is the second external reference declared in the EXTDEF record:
NearLabel in this object module.

• Bytes 08-0CH represent the second fixup field:

012345678 D E F

This fixup field corresponds to the statement

jrnp short NearLabel

The only difference between this statement and the first is that the jump uses an 8-bit,
rather than a 16-bit, offset. Thus, the loc field (bits 12-10 of byte 08H) contains 0
(OOOB) to indicate that the LOCATION to be fixed up is a low-order byte.

• Bytes OD-llH represent the third fixup field in this FIXUPP record:

This fixup field corresponds to the statement

jrnp far ptr FarProc

688 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 698/1582

Article 19: Object Modules

In this case, both the TARGET's frame (the segment FAR_ TEXT) and offset (the label
FarProc) are known to the assembler. Both the segment address and the label offset are
relocatable, however, so in the FIXUPP record the assembler passes the responsibility
for resolving the addresses to the linker.
- Bytes OD-OEH (the locat field) indicate that the field is a fixup field (bit 15 = 1)

and that the fixup is segment relative (bit 14- theM bit= 1). The toe field (bits
12-10) contains 3 (OllB), so the LOCATION being fixed up is a 32-bit (FAR) pointer
(segment and offset). The data record offset (bits 9-0) is 6 (OOOOOOOllOB); the
LOCATION is the 4 bytes following the first far jump opcode (EAH) in the preced­
ing LEDATA record.

- In byte OFH (the fix dat field), the F bit and the frame field are 0, indicating that
method 0 (a segment index) is used to specify the FRAME. The T bit is 0 (meaning
the target is explicitly defined in the fixup field); therefore, the P bit and targt
fields together indicate method 4 (a segment index) to specify the TARGET.

- Because the FRAME is specified with a segment index, byte 10H (the frame
datum field) is a reference to the second SEGDEF record in the object module,
which in this example declared the FAR_ TEXT segment. Similarly, byte llH (the
target datum field) references the FAR_ TEXT segment. In this case, the FRAME
is the same as the TARGET segment; had FAIL TEXT been one of a group of seg­
ments, the FRAME could have referred to the group instead.

• The fourth assembler statement is different from the third because it references a
segment not known to the assembler:

jmp FarLabel

Bytes 12-16H contain the corresponding fixup field:

The significant difference between this and the preceding fixup field is that the
P bit and targt field of the fix dat byte (byte 14H) specify TARGET method 6. In this
fixup field, the target datum (byte 16H) refers to the first EXTDEF record in the
object module, which declares FarLabel as an external reference.

• The fifthfixup field (bytes 17-lDH) is

This fixup field contains information that enables the linker to calculate the value of
the relocatable offset Loca!Label:

mov bx,offset LocalLabel

Section 11· Programming in the MS-DOS Environment 689

HUAWEI EX. 1110 - 699/1582

PartE: Programming Tools

- Bytes 17 -18H (the locat field) contain C410H (1100010000010000B). Bit 15 is 1,
denoting a fixup field. TheM bit (bit 14) is 1, indicating that this fixup is segment
relative. The loc field (bits 12-10) contains 1 (OOlB), so the LOCATION is a 16-bit
offset. The data record offset (bits 9-0) is lOH (OOOOOlOOOOB), a reference to the
2 bytes in the LEDATA record following the opcode OBBH.

- Byte 19H (the fix dat byte) contains OOH. The F bit, frame field, T bit, P bit, and
targt field are all 0, so FRAME method 0 and TARGET method 0 are explicitly
specified in this fixup field. ,.

- Because FRAME method 0 is used, byte lAH (the frame datum field) is an index
field. It contains 01H, a reference to the first SEGDEF record in the object module,
which declares the segment _TEXT.

Similarly, byte lBH (the target datum field) references the _TEXT segment.
- Because TARGET method 0 is specified, an offset, in addition to a segment, is

required to define the TARGET. This offset appears in the target displacement
field in bytes 1C-1DH. The value of this offset is 0015H, corresponding to the offset
of the TARGET (Loca!Label) in its segment (_TEXT).

• The sixth and final fixup field in this FIXUPP record (bytes 1E-22H) is

0 1 2 3 4 5 6 7 8 9 A B C D E F

This corresponds to the segment of the relocatable address Loca!Label:

mov ax,seg LocalLabel

- Bytes 1E-1FH (the locat field) contain C813H (1100100000010011B). Bit 15 is 1, so
this is a fixup field. TheM bit (bit 14) is 1, so the fixup is segment relative. The loc
field (bits 12-10) contains 2 (OlOB), so the LOCATION is a 16-bit segment value.
The data record offset (bits 9-0) indicates the 2 bytes in the LEDATA record
following the opcode OB8H.

- Byte 20H (the fix dat byte) contains 04H, so FRAME method 0 and TARGET
method 4 are explicitly specified in this fixup field.

- Byte 21H (the frame datum field) contains OlH. Because FRAME method 0 is
specified, the frame datum is an index value that refers to the first SEGDEF record
in the object module (corresponding to the_ TEXT segment).

- Byte 22H (the target datum field) contains OlH. Because TARGET method 4 is
specified, the target datum also references the _TEXT segment.

• Finally, byte 23H contains this FIXUPP record's checksum, OA3H.

The next two FIXUPP records show how thread fields are used. The first of the two
contains six thread fields that can be referenced by both thread and fixup fields in sub­
sequent FIXUPP records in the same object module:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 9C OD 00 00 03 01 02 02 01 03 04 40 01 45 01 CO•.... @ ••••

690 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 700/1582

Article 19: Object Modules

Bytes 03-04H, 05-06H, 07-08H, 09-0AH, OB-OCH, and OD-OEH represent the six
thread fields in this FIXUPP record. The high-order bit of the first byte of each of these
fields is 0, indicating that they are, indeed, thread fields and not fixup fields.

• Byte 03H, which contains OOH, is the thread data byte of the first thread field. Bit 7
of this byte is 0, indicating this is a thread field. Bit 6(the D bit) is 0, so this field
specifies a TARGET. Bit 5 is 0, as it must always be. Bits 4 through 2 (the method field)
contain 0 (OOOB), which specifies TARGET method 0. Finally, bits 1 and 0 contain 0
(OOB), the thread number that identifies this thread field.

Byte 04H represents a segment index field, because method 0 of specifying a
TARGET references a segment. The value of the index, 3, is a reference to the third
SEGDEF record defined in the object module.

• Bytes 05-06H, 07-08H, and 09-0AH contain similar thread fields. In each, the
method field specifies TARGET method 0. The three thread fields also have thread
numbers of 1, 2, and 3. Because TARGET method 0 is specified for each thread field,
bytes 06H, 08H, and OAH represent segment index fields, which reference the
second, first, and fourth SEGDEF records, respectively.

• Byte OBH (the thread data byte of the fifth thread field in this FIXUPP record) con­
tains 40H (OlOOOOOOB). The D bit (bit 6) is 1, so this thread field specifies a FRAME.
The method field (bits 4 through 2) contains 0 (OOOB), which specifies FRAME
method 0. Byte OCH (which contains OlH) is therefore interpreted as a segment index
reference to the first SEGDEF record in the object module.

• Byte ODH is the thread data byte of the sixth thread field. It contains 45H
(01000101B). Bit 6 is 1, which indicates that this thread specifies a FRAME. The
method field (bits 4 through 2) contains 1 (OOlB), which specifies FRAME method 1.
Byte OEH (which contains 01H) is therefore interpreted as a group index to the first
preceding GRPDEF record.

The thread number fields of the fifth and sixth thread fields contain 0 and 1, respec­
tively, but these thread numbers do not conflict with the ones used in the first and
second thread fields, because the latter represent TARGET references, not FRAME
references.

The next FIXUPP example appears after the preceding record, in the same object module.
This FIXUPP record contains a fixup field in bytes 03-05H that refers to a thread in the
previous FIXUPP record:

0123456789ABCDEF
0000 9C 04 00 C4 09 9D F6

• Bytes 03-04H represent the 16-bit locat field, which contains C409H
(1100010000001001B). Bit 15 of the locat field is 1, indicating a fixup field. The M bit
(bit 14) is 1, so this fixup is relative to a particular segment, which is specified later in
the fixup field. Bit 13 is 0, as it should be. Bits 12-10 (the loc field) contain 1 (OOlB),
so the LOCATION to be fixed up is a 16-bit offset. Bits 9-0 (the data record offset
field) contain 9 (0000001001B), so the LOCATION to be fixed up is represented at an
offset of 9 bytes into the data field of the preceding LEDATA or LIDATA record.

Section II: Programming in the MS-DOS Environment 691

HUAWEI EX. 1110 - 701/1582

PartE: Programming Tools

• Byte 05H (the fix dat byte) contains 9DH (10011101B). The F bit (bit 7) is 1, so this
fixup field references a thread field that, in turn, defines the method of specifying
the FRAME for the fixup. Bits 6-4 (the frame field) contain 1 (OOlB), the number of
the thread that contains the FRAME method. This thread contains a method number
of 1, which references the first GRPDEF record in the object module, thus specifying
the FRAME.

The T bit (bit 3 in the fix dat byte) is 1, so the TARGET method is also defined in a
preceding thread field. The targt field(bits 1 and 0 in the fix dat byte) contains 1
(OlB), so the TARGET thread field whose thread number is 1 specifies the TARGET.
The P bit (bit 3 in the fix dat byte) contains 1, which is combined with the low-order
bits of the method field in the thread field that describes the target to obtain TARGET
method number 4 (lOOB). The TARGET thread references the second SEGDEF record
to specify the TARGET.

The last FIXUPP example illustrates that the linker performs a fixup by adding the calcu­
lated address value to the value in the LOCATION being fixed up. This function of the
linker can be exploited to use fixups to modify opcodes or program data, as well as to
resolve address references.

Consider how the following assembler instruction might be fixed up:

lea bx,alpha+10h ; alpha is an external symbol

Typically, this instruction is translated into an LEDATA record with zero in the LOCATION
(bytes 08-09H) to be fixed up:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 AO 08 00 01 00 00 8D 1E 00 00 AC

The corresponding FIXUPP record contains a target displacement of lOH bytes (bytes
08-09H):

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 0 0 9C 0 8 0 0 C4 0 2 0 2 01 01 1 0 0 0 8 2

This FIXUPP record specifies TARGET method 2, which is indicated by the targt field
(bits 2-0) of the fixdat field (byte 05H). In this case, the linker adds the target displace­
ment to the address it has determined for the TARGET (alpha) and then completes the
fixup by adding this calculated address value to the zero value in the LOCATION.

The same result can be achieved by storing the displacement (lOH) directly in the
LOCATION in the LEDATA record:

0123456789ABCDEF

0000 AO 08 00 01 00 00 8D 1E 10 00 9C

Then, the target displacement can be omitted from the FIXUPP record:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 9C 06 00 C4 02 06 01 01 90

692 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 702/1582

If

I
Article 19: Object Modules

This FIXUPP record specifies TARGET method 6, which does not use a target displace­
ment. The linker performs this fixup by adding the address of alpha to the value in the
LOCATION, so the result is identical to the preceding one.

The difference between the two techniques is that in the latter the linker does not perform
error checking when it adds the calculated fixup value to the value in the LOCATION. If
this second technique is used, the linker will not flag arithmetic overflow or underflow
errors when it adds the displacement to the TARGET address. The first technique, then,
traps all errors; the second can be used when overflow or underflow is irrelevant and an
error message would be undesirable.

Section IL Programming in the MS-DOS Environment 693

HUAWEI EX. 1110 - 703/1582

Part E: Programming Tools

OAOH LEDATA Logical Enumerated Data Record

The LEDATA record contains contiguous binary data- executable code or program
data-that is eventually copied into the program's executable binary image.

The binary data in an LEDATA record can be modified by the linker if the record is fol­
lowed by a FIXUPP record.

Record format

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value ofl indicates the first SEGDEF
record, a value of 2 the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LEDATA record is to be placed.

Enumerated data offset

Data

The enumerated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
enumerated data offset fields indicate the location where the enumerated data will be
placed in the run-time memory map.

The data field contains the actual data, which can be either executable 8086 instructions
or program data. The maximum size of the data field is 1024 bytes.

Location in object module

Any LEDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LEDATA record requires a fixup, a FIXUPP record must imme­
diately follow the LEDATA record.

Example

The following LEDATA record contains a simple text string:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 AO 13 00 02 00 00 48 65 6C 6C 6F 2C 20 77 6F 72 Hello, wor
0010 6C 64 OD OA 24 A8 ld .. $.

• Byte OOH contains OAOH, which identifies this as an LEDATA record.
• Bytes 01-02H contain 0013H, the length of the remainder of the record.

694 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 704/1582

Article 19: Object Modules

• Byte 03H (the segment index field) contains 02H, a reference to the second SEGDEF
record in the object module.

• Bytes 04-05H (the enumerated data offset field) contain OOOOH. This is the offset,
from the base of the segment indicated by the segment index field, at which the data
in the data field will be placed when the program is linked. Of course, this offset is
subject to relocation by the linker because the segment declared in the specified
SEGDEF record may be relocatable and may be combined with other segments
declared in other object modules.

• Bytes 06-14H (the data field) contain the actual data.
• Byte 15H contains the checksum, OA8H.

Section IL Programming in the MS-DOS Environment 695

HUAWEI EX. 1110 - 705/1582

Part E: Programming Tools

OA2H LIDATA Logical Iterated Data Record

Like the LEDATA record, the LID ATA record contains binary data- executable code or
program data. The data in an LIDATA record, however, is specified as a repeating pattern
(iterated), rather than by explicit enumeration.

The data in an LIDATA record may be modified by the linker if the LIDATA record is
followed by a FIXUPP record.

Record format

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value of 1 indicates the first SEGDEF
record, 2 indicates the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LIDATA record is to be placed when the program is
executed.

Iterated data offset

The iterated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
iterated data offset fields indicate the location where the iterated data will be placed in
the run-time memory map.

Iterated data block

The iterated data block is a variable-length field containing the actual data-executable
code and program data. Iterated data blocks can be nested, so one iterated data block
can contain one or more other iterated data blocks. Microsoft LINK restricts the maximum
size of an iterated data block to 512 bytes.

The format of the iterated data block is

• Repeat count is a 2-byte field indicating the number of times the content field is to
be repeated.

• Block count is a 2-byte field indicating the number of iterated data blocks in the
content field. If the block count is 0, the content field contains data only.

696 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 706/1582

Article 19: Object Modules

• Content is a variable-length field that can contain either nested iterated data blocks
(if the block count is nonzero) or data (if the block count is 0). If the content field
contains data, the field contains a 1-byte count of the number of data bytes in the field,
followed by the actual data.

Location in object module

Any LIDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LIDATA record requires a fixup, a FIXUPP record must imme­
diately follow the LIDATA record.

Example

This sample LIDATA record corresponds to the following assembler statement, which
declares a 10-element array containing the strings ALPHA and BETA:

db 1 0 dup ('ALPHA', 'BETA')

The LIDATA record is

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 A2 1B 00 01 00 00 OA 00 02 00 01 00 00 00 OS 41 A
0010 4C 50 48 41 01 00 00 00 04 42 45 54 41 A9 LPHA BETA.

• Byte OOH contains OA2H, identifying this as an LIDATA record.
• Bytes 01-02H contain lBH, the length of the remainder of the record.
• Byte 03H (the segment index) contains 01H, a reference to the first SEGDEF record in

this object module, indicating that the data declared in this LIDATA record is to be
placed into the segment described by the first SEGDEF record.

• Bytes 04-05H (the iterated data offset) contain OOOOH, so the data in this LIDATA 4
record is to be located at offset OOOOH in the segment designated by the segment
index.

• Bytes 06-1CH represent an iterated data block:
- Bytes 06-07H contain the repeat count, OOOAH~ which indicates that the content

field of this iterated data block is to be repeated 10 times.
- Bytes 08-09H (the block count for this iterated data block) contain 0002H, which

indicates that the content field of this iterated data block (bytes OA -1CH) con­
tains two nested iterated data block fields (bytes OA-13H and bytes 14-1CH).

- Bytes OA-OBH contain OOOlH, the repeat count for the first nested iterated data
block. Bytes OC-ODH contain OOOOH, indicating that the content field of this
nested iterated data block contains data, rather than more nested iterated data
blocks. The content field (bytes OE-13H) contains the data: Byte OEH contains
05H, the number of subsequent data bytes, and bytes OF -13H contain the actual
data (the string ALPHA).

- Bytes 14-1CH represent the second nested iterated data block, which has a format
similar to that of the block in bytes OA -13H. This second nested iterated data
block represents the 4-byte string BETA.

• Byte 1DH is the checksum, OA9H.

Section 11· Programming in the MS-DOS Environment 697

HUAWEI EX. 1110 - 707/1582

Part E: Programming Tools

OBOH COMDEF Communal Names Definition Record

The COMDEF record is a Microsoft extension to the basic set of 8086 object record types
defined by Intel that declares a list of one or more communal variables. The COMDEF
record is recognized by versions 3.50 and later of LINK. Microsoft encourages the use
of the COMDEF record for declaration of communal variables.

Record format

Communal name

The communal name field is a variable-length field that contains the name of a communal
variable. The first byte of this field indicates the length of the name contained in the re­
mainder of the field.

Type index

The type index field is an index field that references a previous TYPDEF record in the
object module. A value of 1 indicates the first TYPDEF record in the module, a value of 2
indicates the second, and so on. The type index value can be 0 if no data type is associated
with the public name.

Data segment type

The data segment type field is a single byte that indicates whether the communal variable
is FAR or NEAR. There are only two possible values for data segment type:

61H FAR variable
62H NEAR variable

Communal length

The communal length is a variable-length field that indicates the amount of memory to be
allocated for the communal variable. The contents of this field depend on the value in the
data segment type field. If the data segment type is NEAR (62H), the communal length
field contains the size (in bytes) of the communal variable:

698 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 708/1582

Article 19: Object Modules

If the data segment type is FAR (61H), the communal length field is formatted 1:ts follows:

~er of .elem::l.:;isize I ments
:1.:~--'-----,1

A FAR communal variable is viewed as an array of elements of a specified size. Thus, the
number of elements field is a variable-length field representing the number of elements in
the array, and the element size field is a variable-length field that indicates the size (in
bytes) of each element. The amount of memory required for a FAR communal variable is
thus the product of the number of elements and the element size.

The format of the variable size, number of elements, and element size fields depends upon
the magnitude of the values they contain:

• If the value is less than 12S (SOH), the field is formatted as a 1-byte field containing the
actual value:

• If the value is 12S (SOH) or greater, the field is formatted with an extra initial byte that
indicates whether the value is represented in the subsequent 2, 3, or 4 bytes:

Groups of communal name, type index, data segment type, and communal length fields
can be repeated so that more than one communal variable can be declared in the same
COMDEF record.

Location in object module

Any object module that contains COMDEF records must also contain one COMENT record
with the comment class OA1H, indicating that Microsoft extensions to the Intel object
record specification are included in the object module. This COMENT record must appear
before any COMDEF records in the object module.

Section II: Programming in the MS-DOS Environment 699

HUAWEI EX. 1110 - 709/1582

PartE: Programming Tools

Example

The following COMDEF record was generated by the Microsoft C Compiler version 4.0 for
these public variable declarations:

int
char
char

foo;
foo2[32768];
far foo3[10][2][20];

I* 2-byte integer *I
I* 32768-byte array *I
I* 400-byte array *I

The COMDEF record is

0 1 2 3 4 S 6 7 8 9 A B C D E F
0000 BO 20 00 04 SF 66 6F 6F 00 62 02 OS SF 66 6F 6F ... _foo.b .. _foo
0010 32 00 62 81 00 80 OS SF 66 6F 6F 33 00 61 81 90 2.b _foo3.a ..

0020 01 01 99

• Byte OOH contains OBOH, indicating that this is a COMDEF record.
• Bytes 01-02H contain 0020H, the length of the remainder of the record.
• Bytes 03-0AH, OB-15H, and 16-21H represent three declarations for the communal

variables foo, foo2, and foo3. The C compiler prepends an underscore to each of the
names declared in the source code, so the symbols represented in this COMDEF
record are _foo, _foo2, and _foo3.
- Byte 03H contains 04H, the length of the first communal name in this record.

Bytes 04-07H contain the name itself (_joo). Byte 08H (the type index field) con­
tains OOH, as required. Byte 09H (the data segment type field) contains 62H, indi­
cating this is a NEAR variable. Byte OAH (the communal length field) contains
02H, the size of the variable in bytes.

- Byte OBH contains 05H, the length of the second communal name. Bytes OC-10H
contain the name, _foo2. Byte llH is the type index field, which again contains
OOH as required. Byte 12H (the data segment type field) contains 62H, indicating
that _foo2 is a NEAR variable.

Bytes 13-15H (the communal length field) contain the size in bytes of the variable.
The first byte of the communal length field (byte 13H) is 81H, indicating that the
size is represented in the subsequent 2 bytes of data-bytes 14-15H, which con­
tain the value 8000H.

- Bytes 16-lBH represent the communal name field for _foo3, the third communal
variable declared in this record. Byte 1CH (the type index field) again contains
OOH as required. Byte lDH (the data segment type field) contains 61H, indicating
this is a FAR variable. This means the communal length field is formatted as a
number of elements field (bytes 1E-20H, which contain the value 0190H) and an
element size field (byte 21H, which contains 01H). The total size of this communal
variable is thus 190H times 1, or 400 bytes.

• Byte 22H contains the checksum, 99H.

Richard Wilton

700 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 710/1582

Article 20: The Microsoft Object Linker

Article 20
The Microsoft Object Linker

MS-DOS object modules can be processed in two ways: They can be grouped together in
object libraries, or they can be linked into executable files. All Microsoft language transla­
tors are distributed with two utility programs that process object modules: The Microsoft
Library Manager (LIB) creates and modifies object libraries; the Microsoft Object Linker
(LINK) processes the individual object records within object modules to create executable
files.

The following discussion focuses on LINK because of its crucial role in creating an execut­
able file. Before delving into the complexities of LINK, however, it is worthwhile reviewing
how object modules are managed.

Object Files, Object Libraries, and LIB

Compilers and assemblers translate source-code modules into object modules (Figure
20-1). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING Toms:
Object Modules. An object module consists of a sequence of object records that describe
the form and content of part of an executable program. An MS-DOS object module always
starts with a THEADR record; subsequent object records in the module follow the
sequence discussed in the Object Modules article.

Object modules can be stored in either of two types of MS-DOS files: object files and object
libraries. By convention, object files have the filename extension .OBJ and object libraries
have the extension .LIB. Although both object files and object libraries contain one or

......_ Object module
librarian (LIB)__...

Linker (LINK)

Executable
binary image
(.EXE file)

MS-DOS loader

(Program runs)

Figure 20-1. Object modules, object libraries, LIB, and LINK.

Section II: Programming in the MS-DOS Environment 701

HUAWEI EX. 1110 - 711/1582

PartE: Programming Tools

more object modules, the files and the libraries have different internal organization.
Furthermore, LINK processes object files and libraries differently.

The structures of object files and libraries are compared in Figure 20-2. An object file is a
simple concatenation of object modules in any arbitrary order. (Microsoft discourages the
use of object files that contain more than one object module; Microsoft language translators
never generate more than one object module in an object file.) In contrast, a library con­
tains a hashed aictionary of all the public symbols declared in each of the object modules,
in addition to the object modules themselves. Each symbol in the dictionary is associated
with a reference to the object module in which the symbol was declared.

LINK processes object files differently than it does libraries. When LINK builds an execut­
able file, it incorporates all the object modules in all the object files it processes. In con­
trast, when LINK processes libraries, it uses the hashed symbol dictionary in each library
to extract object modules selectively- it uses an object module from a library only when
the object module contains a symbol that is referenced within some other object module.
This distinction between object files and libraries is important in understanding what
LINK does.

(a)

Object module

Object module

Object module

(b)
Library header

Object module

Object module

Object module

Symbol dictionary

Figure 20-2. Structures of an object file and an object library. (a) An object file contains one or more object
modules. (Microsoft discourages using more than one object module per object file.) (b) An object library con­
tains one or more object modules plus a hashed symbol dictionary indicating the object modules in which
each public symbol is defined.

702 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 712/1582

Article 20: The Microsoft Object Linker

What LINK Does

The function of LINK is to translate object modules into an executable program. LINK's
input consists of one or more object files (.OBJ files) and, optionally, one or more libraries
(.LIB files). LINK's output is an executable file (.EXE file) containing binary data that can
be loaded directly from the file into memory and executed. LINK can also generate a sym­
bolic address map listing (.MAP file)- a text file that describes the organization of the
.EXE file and the correspondence of symbols declared in the object modules to addresses
in the executable file.

Building an executable file

LINK builds two types of information into a .EXE file. First, it extracts executable code and
data from the LEDATA and LIDATA records in object modules, arranges them in a specified
order according to its rules for segment combination and relocation, and copies the result
into the .EXE file. Second, LINK builds a header for the .EXE file. The header describes the
size of the executable program and also contains a table of load-time segment relocations
and initial values for certain CPU registers. See Pass 2 below.

Relocation and linking

In building an executable image from object modules, LINK performs two essential tasks:
relocation and linking. As it combines and rearranges the executable code and data it ex­
tracts from the object modules it processes, LINK frequently adjusts, or relocates, address
references to account for the rearrangements (Figure 20-3). LINK links object modules by

· resolving address references among them. It does this by matching the symbols declared
in EXTDEF and PUBDEF object records (Figure 20-4). LINK uses FIXUPP records to deter­
mine exactly how to compute both address relocations a:nd linked address references.

Object Module Order

LINK processes input files from three sources: object files and libraries specified explicitly
by the user (in the command line, in response to LINK's prompts, or in a response file)
and object libraries named in object module COMENT records.

Code segment (64H bytes)

Labell at offset 1 OH

Module!

Code segment (50H bytes)
Label2 at offset lOH

Module2

Code segment (B4H bytes)

Labell at offset lOH
Label2 at offset 74H

Combined code segment

Figure 20-3. A simple relocation. Both object modules contain code that LINK combines into one logical
segment. In this example, LINK appends the 50H bytes of code in Module2 to the 64H bytes of code in Modulel.
LINK relocates all references to addresses in the code segment so that they apply to the combined segment.

Section 11- Programming in the MS-DOS Environment 703

HUAWEI EX. 1110 - 713/1582

Part E: Programming Tools

Code segment
EXTDEF Label2

jmpi;-abel2

Module!

Code segment
PUBDEF Label2

Label2: :

Module2

Code segment;

Label2:

Combined code segment

Figure 20-4. Resolving an external reference. LINK resolves the external reference in Modulel (declared in
an EXTDEF record) with the address of Label2 in Module2 (declared in a PUBDEF record).

LINK always uses all the object modules in the object files it processes. In contrast, it
extracts individual object modules from libraries- only those object modules needed to
resolve references to public symbols are used. This difference is implicit in the order in
which LINK reads its input files:

1. Object files specified in the command line or in response to the Object Modules
prompt

2. Libraries specified in the command line or in response to the Libraries prompt
3. Libraries specified in COMENT records

The order in which LINK processes object modules influences the resulting executable
file in three ways. First, the order in which segments appear in LINK's input files is
reflected in the segment structure of the executable file. Second, the order in which LINK
resolves external references to public symbols depends on the order in which it finds the
public symbols in its input files. Finally, LINK derives the default name of the executable
file from the name of the first input object file.

Segment order in the executable file

In general, LINK builds named segments into the executable file in the order in which it
first encounters the SEGDEF records that declare the segments. (The /DOSSEG switch also
affects segment order. See Using the /DOSSEG Switch below.) This means that the order in
which segments appear in the executable file can be controlled by linking object modules
in a specific order. In assembly-language programs, it is best to declare all the segments
used in the program in the first object module to be linked so that the segment order in
the executable file is under complete control.

Order in which references are resolved

LINK resolves external references in the order in which it encounters the corresponding
public declarations. This fact is important because it determines the order in which LINK
extracts object modules from libraries. When a public symbol required to resolve an exter­
nal reference is declared more than once among the object modules in the input libraries,
LINK uses the first object module that contains the public symbol. This means that the
actual executable code or data associated with a particular external reference can be
varied by changing the order in which LINK processes its input libraries.

704 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 714/1582

Article 20: The Microsoft Object Linker

For example, imagine that a C programmer has written two versions of a function named
myfunc() that is called by the program MYPROG .C. One version of myfunc() is for
debugging; its object module is found in MYFUNC.OBJ. The other is a production version
whose object module resides in MYLIB.LIB. Under normal circumstances, the program­
mer links the production version of myfunc() by using MYLIB.LIB (Figure 20-5). To use
the debugging version of myfunc(), the programmer explicitly includes its object module
(MYFUNC.OBJ) when LINK is executed. This causes LINK to build the debugging version
of myfunc() into the executable file because it encounters the debugging version in
MYFUNC.OBJ before it finds the qther version in MYLIB.LIB.

To exploit the order in which LINK resolves external references, it is important to know
LINK's library search strategy: Each individual library is searched repeatedly (from first
library to last, in the sequence in which they are input to LINK) until no further external
references can be resolved. /

main ()
{ EXTDEF for myfunc() r--

x=rnyfunc (y);
)

MYPROG.C MYPROG.OBJ
Executable code

rnyfunc(a)
contains myfunc()

~ derived from either
int a;

PUBDEF for myfunc() MYFUNC.OBJ or -
{

MYLIB.OBJ

MYFUNC.OBJ

)

MYFUNC.C

PUBDEF for myfunc() -

MYLIB.LIB

Figure 20-5. Ordered object module processing by LINK. (a) With the command LINK MYPROG,,MYLIB,
the production version of myfunc () in MYLIB.LIB is used. (b) With the command LINK MYPROG+
MYFUNC,,MYLIB, the debugging version ofmyfunc () in MYFUNC.OB] is used.

Section II: Programming in the MS-DOS Environment 705

HUAWEI EX. 1110 - 715/1582

Part E: Programming Tools

Module A
Call C

ModuleB

LIBl.LIB

ModuleC
CallB

LIB2.LIB

ModuleMAIN
CallA

MYPROG.OBJ

Module MAIN
Start of
program

1---------1

ModuleA

ModuleC

ModuleB

MYPROG.EXE

Figure 20-6. Library search order. Modules are incorporated into the executable file as LINK extracts them
from the libraries to resolve external references.

The example in Figure 20-6 demonstrates this search strategy. Library LIBl.LIB contains
object modules A and B, library LIB2.LIB contains object module C, and the object file
MYPROG.OBJ contains the object module MAIN; modules MAIN, A, and C each contain
an external reference to a symbol declared in another module. When this program is
linked with

C>LINK MYPROG,,,LIB1+LIB2 <Enter>

LINK starts by incorporating the object module MAIN into the executable program. It
then searches the input libraries until it resolves all the external references:

1. Process MYPROG.OBJ, find unresolved external reference to A.
2. Search LIBl.LIB, extract A, find unresolved external reference to C.
3. Search LIBl.LIB again; reference to Cremains unresolved.
4. Search LIB2.LIB, extract C, find unresolved external reference to B.
5. Search LIB2.LIB again; reference to B remains unresolved.
6. Search LIBl.LIB again, extract B.
7. No more unresolved external references, so end library search.

The order in which the modules appear in the executable file thus reflects the order in
which LINK resolves the external references; this, in turn, depends on which modules
were contained in the libraries and on the order in which the libraries are input to LINK.

Name of the executable file

If no filename is specified in the command line or in response to the Run File prompt,
LINK derives the name of the executable file from the name of the first object file it pro­
cesses. For example, if the object files PROGl.OBJ and PROG2.0BJ are linked with the
command

C>LINK PROG1+PROG2; <Enter>

the resulting executable file, PROGl.EXE, takes its name from the first object file pro­
cessed by LINK.

706 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 716/1582

Article 20: The Microsoft Object Linker

Segment Order and Segment Combinations

LINK builds segments into the executable file by applying the following sequence of rules:

1. Segments appear in the executable file in the order in which their SEGDEF declara­
tions first appear in the input object modules .

. 2. Segments in different object modules are combined if they have the same name and
class and a public, memory, stack, or common combine type. All address references
within the combined segments are relocated relative to the start of the combined
segment.
- Segments with the same name and either the public or the memory combine type

are combined in the order in which they are processed by LINK. The size of the
resulting segment equals the total size of the combined segments.
Segments with the same name and the stack combine type are overlapped so that
the data in each of the overlapped segments ends at the same address. The size of
the resulting segment equals the total size of the combined segments. The resulting
segment is always paragraph aligned.
Segments with the same name and the common combine type are overlapped so
that the data in each of the overlapped segments starts at the same address. The
size of the resulting segment equals the size of the largest of the overlapped
segments.

3. Segments with the same class name are concatenated.
4. If the /DOSSEG switch is used, the segments are rearranged in conjunction with

DGROUP. See Using the /DOSSEG Switch below.

These rules allow the programmer to control the organization of segments in the execut­
able file by ordering SEGMENT declarations in an assembly-language source module,
which produces the same order of SEGDEF records in the corresponding object module,
and by placing this object module first in the order in which LINK processes its input files.

A typical MS-DOS program is constructed by declaring all executable code and data seg­
ments with the public combine type, thus enabling the programmer to compile the pro­
gram's source code from separate source-code modules into separate object modules.
When these object modules are linked, LINK combines the segments from the object
modules according to the above rules to create logically unified code and data segments
in the executable file.

Segment classes

LINK concatenates segments with the same class name after it combines segments with
the same segment name and class. For example, Figure 20-7 shows the following compiling
and linking:

C>MASM MYPROG1; <Enter>
C>MASM MYPROG2; <Enter>
C>LINK MYPROG1+MYPROG2; <Enter>

Section 11· Programming in the MS-DOS Environment 707

HUAWEI EX. 1110 - 717/1582

PartE: Programming Tools

_TEXT SEGMENT public 'CODE'
SEGDEF for_ TEXT

FAR TEXT SEGMENT public 'CODE' ~ SEGDEF for FAR_ TEXT - segment 'CODE'
_TEXT }

SEGDEF for _DATA
_DATA SEGMENT public 'DATA'

MYPROG l.ASM MYPROGl.OBJ

•'

_TEXT SEGMENT public 'CODE'
SEGDEF for _TEXT
SEGDEF for FAR_ TEXT

FAR_TEXT SEGMENT public 'CODE'

MYPROG2.ASM MYPROG2.0BJ

~

class
FAR_TEXT
segment

_DATA
egment s

f- MYPROG l.EXE

Figure 20-7. Segment order and concatenation by LINK. The start of each file, corresponding to the lowest
address, is at the top.

After MYPROGl.ASM and MYPROG2.ASM have been compiled, LINK builds the _TEXT
and FAR_ TEXT segments by combining segments with the same name from the different
object modules. Then, _TEXT and FAR_ TEXT are concatenated because they have the
same class name ('CODE'). _TEXT appears before FAR_TEXT in the executable file
because LINK encounters the SEGDEF record for _TEXT before it finds the SEGDEF
record for FAR_ TEXT.

Se~entali~ent

LINK aligns the starting address of each segment it processes according to the alignment
specified in each SEGDEF record. It adjusts the alignment of each segment it encounters
regardless of how that segment is combined with other segments of the same name or
class. (The one exception is stack segments, which always start on a paragraph
boundary.)

_DATA SEGMENT byte public
35Hbytes

Module!

Resulting _DATA segment in .EXE file

_DATA SEGMENT word public
35Hbytes

Module2

35H bytes (byte aligned)

35H bytes (word aligned)

35H bytes (paragraph aligned)

_DATA SEGMENT para public
35H bytes

Module3

Figure 20-8. Alignment of combined segments. LINK enforces segment alignment by padding combined
segments with uninitialized data bytes.

708 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 718/1582

Article 20: The Microsoft Object Linker

Segment alignment is particularly important when public segments with the same name
and class are combined from different object modules. Note what happens in Figure 20-8,
where the three concatenated _DATA segments have different alignments. To enforce the
word alignment and paragraph alignment of the _DATA segments in Module2 and
Module3, LINK inserts one or more bytes of padding between the segments.

Segment groups

A segment group establishes a logical segment address to which all offsets in a group of
segments can refer. That is, all addresses in all segments in the group can be expressed as
offsets relative to the segment value associated with the group (Figure 20-9). Declaring
segments in a group does not affect their positions in the executable file; the segments in
a group may or may not be contiguous and can appear in any order as long as all address
references to the group fall within 64 KB of each other.

DataGroup GROUP DataSeg1,DataSeg2

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

mov ax, offset DataSeg2:TestData
mov ax, offset DataGroup:TestData

CodeSeg ENDS

DataSeg1 SEGMENT para public 'DATA'

DB 100h dup(?)

DataSeg1 ENDS

DataSeg2 SEGMENT para public 'DATA'
TestData DB
DataSeg2 ENDS

END

Figure 20-9. Example of group addressing. The first MOV loads the value OOH into AX (the offset of TestData
relative to DataSeg2); the second MOV loads the value lOOH into AX (the offset of TestData relative to the group
DataGroup).

LINK reserves one group name, DGROUP, for use by Microsoft language translators.
DGROUP is used to group compiler-generated data segments and a default stack segment.
See DGROUP below.

LINK Internals

Many programmers use LINK as a "black box" program that transforms object modules
into executable files. Nevertheless, it is helpful to observe how LINK processes object
records to accomplish this task.

Section IL· Programming in the MS-DOS Environment 709

HUAWEI EX. 1110 - 719/1582

PartE: Programming Tools

Passl

LINK is a two-pass linker; that is, it reads all its input object modules twice. On Pass 1,
LINK builds an address map of the segments and symbols in the object modules. On Pass
2, it extracts the executable code and program data from the object modules and builds
a memory image- an exact replica- of the executable file.

The reason LINK builds an image of the executable file in memory, instead of simply
copying code and data from object modules into the executable file, is that it organizes the
executable file by segments and not by the order in which it processes object modules.
The most efficient way to concatenate, comb'!ne, and relocate the code and data is to build
a map of the executable file in memory during Pass 1 and then fill in the map with code
and data during Pass 2.

In versions 3.52 and later, whenever the /1 (/INFORMATION) switch is specified in the
command line, LINK displays status messages at the start of each pass and as it processes
each object module. If the /M UMAP) switch is used in addition to the /I switch, LINK also
displays the total length of each segment declared in the object modules. This information
is helpful in determining how the structure of an executable file corresponds to the con­
tents of the object modules processed by LINK.

During Pass 1, LINK processes the LNAMES, SEGDEF, GRPDEF, COMDEF, EXTDEF, and
PUBDEF records in each input object module and uses the information in these object
records to construct a symbol table and an address map of segments and segment groups.

Symbol table

As each object module is processed, LINK uses the symbol table to resolve external
references (declared in EXTDEF and COMDEF records) to public symbols. If LINK pro­
cesses all the object files without resolving all the external references in the symbol table,
it searches the input libraries for public symbols that match the unresolved external
references. LINK continues to search each library until all the external references in the
symbol table are resolved.

Segments and groups

LINK processes each SEGDEF record according to the segment name, class name, and
attributes specified in the record. LINK constructs a table of named segments and updates
it as it concatenates or combines segments. This allows LINK to associate each public sym­
bol in the symbol table with an offset into the segment in which the symbol is declared.

LINK also generates default segments into which it places communal variables declared
in COMDEF records. Near communal variables are placed in one paragraph-aligned public
segment named c_common, with.class name BSS (block storage space) and group

710 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 720/1582

Article 20: The Microsoft Object Linker

DGROUP. Far communal variables are placed in a paragraph-aligned segment named
FAlLBSS, with class name FAlLBSS. The combine type of each far communal variable's
FAlLBSS segment is private (that is, not public, memory, common, or stack). As many
FAlLBSS segments as necessary are generated.

After all the object files have been read and all the external references in the symbol table
have been resolved, LINK has a complete map of the addresses of all segments and sym­
bols in the program. If a .MAP file has been requested, LINK creates the file and writes
the address map to it. Then LINK initiates Pass 2.

Pass2

In Pass 2, LINK extracts executable code and program data from the LEDATA and LIDATA
records in the object modules. It builds the code and data into a memory image of the
executable file. Durirtg Pass 2, LINK also carries out all the address relocations and fixups
related to segment relocation, segment grouping, and resolution of external references, as
well as any other address fixups specified explicitly in object module FIXUPP records.

If it determines during Pass 2 that not enough RAM is available to contain the entire image,
LINK creates a temporary file in the current directory on the default disk drive. (LINK ver­
sions 3.60 and later use the environment variable TMP to find the directory for the tempo­
rary scratch file.) LINK then uses this file in addition to all the available RAM to construct
the image of the executable file. (In versions of MS-DOS earlier than 3.0, the temporary file
is named VM.TMP; in versions 3.0 and later, LINK uses Interrupt 21H Function 5AH to
create the file.)

LINK reads each of the input object modules in the same order as it did in Pass 1. This time
it copies the information from each object module's LEDATA and LIDATA records into the
memory image of each segment in the proper sequence. This is when LINK expands the
iterated data in each LIDATA record it processes.

LINK processes each LEDATA and LIDATA record along with the corresponding FIXUPP
record, if one exists. LINK processes the FIXUPP record, performs the address calculations
required for relocation, segment grouping, and resolving external references, and then
stores binary data from the LEDATA or LIDATA record, including the results of the address
calculations, in the proper segment in the memory image. The only exception to this
process occurs when a FIXUPP record refers to a segment address. In this case, LINK adds
the address of the fixup to a table of segment fixups; this table is used later to generate the
segment relocation table in the .EXE header.

When all the data has been extracted from the object modules and all the fixups have
been carried out, the memory image is complete. LINK now has all the information it
needs to build the .EXE header (Table 20-1). At this point, therefore, LINK creates the
executable file and writes the header and all segments into it. ·

Section IL- Programming in the MS-DOS Environment 711

HUAWEI EX. 1110 - 721/1582

Part E: Programming Tools

Table 20-1. How LINK Builds a .EXE File Header.

Offset

OOH
02H

04H

06H

08H

OAH

OCH

OEH

10H

12H

Contents

'MZ'
Length of executable

image MOD 512
Length of executable image in

512-byte pages, including last
partial page (if any)

Number of run-time segment
relocations

Size of the .EXE header in 16-byte
paragraphs

MINALLOC: Minimum amount of
RAM to be allocated above end of
the loaded program (in 16-byte
paragraphs)

MAXALLOC: Maximum amount of
RAM to be allocated above end
of the loaded program (in 16-byte
paragraphs)

Stack segment (initial value for SS
I

register); relocated by MS-DOS
when program is loaded

Stack pointer (initial value for
register SP)

Checksum

Comments

.EXE file signature

}

Total size of all segments plus .EXE
file header

Number of segment fixups

Size of segment relocation table

Size of uninitialized data and/or stack
segments at end of program (0 if /HI
switch is used)

0 if /HI switch is used; value specified
with /CP switch; FFFFH if /CP and
/HI switches are not used

Address of stack segment relative to
start of executable image

Size of stack segment in bytes

One's complement of sum of all words
in file, excluding checksum itself

14H

16H

Entry point offset (initial value for }
register IP)

Entry point segment (initial value
·for register CS); relocated by
MS-DOS when program is loaded

Offset of start of segment relocation
table relative to start of .EXE
header

MOD END object record that specifies
program start address

18H

1AH Overlay number

1 CH Reserved

712 The MS-DOS Encyclopedia

0 for resident segments; >0 for overlay
segments

HUAWEI EX. 1110 - 722/1582

Article 20: The Microsoft Object Linker

Using LINK to Organize Memory

By using LINK to rearrange and combine segments, a programmer can generate an exe­
cutable file in which segment order and addressing serve specific purposes. As the follow­
ing examples demonstrate, careful use of LINK leads to more efficient use of memory and
simpler, more efficient programs.

Segment order for a TSR

In a terminate-and-stay-resident (TSR) program, LINK must be used carefully to generate
segments in the executable file in the proper order. A typical TSR program consists of a
resident portion, in which the TSR application is implemented, and a transient portion,
which executes only once to initialize the resident portion. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Terminate-and-Stay-Resident Utilities.

Because the transient portion of the TSR program is executed only once, the memory
it occupies should be freed after the resident portion has been initialized. To allow the
MS-DOS Terminate and Stay Resident function (Interrupt 21H Function 31H) to free this
memory when it leaves the resident portion of the TSR program in memory, the TSR pro­
gram must have its resident portion at lower addresses than its transient portion.

Low Memory ResidentCodeSeg SEGMENT para

. (executable code)

ResidentCodeSeg ENDS

ResidentDataSeg SEGMENT word

. (program data)

ResidentDataSeg ENDS

StackSeg SEGMENT para

. (stack)

StackSeg ENDS

TransientCodeSeg SEGMENT para

. (executable code)

TransientCodeSeg ENDS

TransientDataSeg SEGMENT word

. (program data)

High Memory TransientDataSeg ENDS

Figure 20-10. Segment order for a terminate-and-stay-resident program.

Resident
portion

Transient
portion

Section IL· Programming in the MS-DOS Environment 713

HUAWEI EX. 1110 - 723/1582

PartE: Programming Tools

In Figure 20-10, the segments containing the resident code and data are declared before
the segments that represent the transient portion of the program. Because LINK preserves
this segment order, the executable program has the desired structure, with resident code
and data at lower addresses than transient code and data. Moreover, the number of para­
graphs in the resident portion of the program, which must be computed before Interrupt
21H Function 31H is called, is easy to derive from the segment structure: This value is the
difference between the segment address of the program segment prefix, which immedi­
ately precedes the first segment in the resident portion, and the address of the first seg­
ment in the transient portion of the program.

Groups for unified segment addressing

In some programs it is desirable to maintain executable code and data in separate logical
segments but to address both code and data with the same segment register. For example,
in a hardware interrupt handler, using the CS register to address program data is generally
simpler than using DS orES.

In the routine in Figure 20-11, code and data are maintained in separate segments for pro­
gram clarity, yet both can be addressed using the CS register because both code and data
segments are included in the same group. (The SNAP.ASM listing in the Terminate-and­
Stay-Resident Utilities article is another example of this use of a group to unify segment
addressing.)

ISRgroup GROUP CodeSeg,DataSeg

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs: ISRgroup
mov ax, offset ISRgroup:CodeLabel

CodeLabel: mov bx,ISRgroup:DataLabel

CodeSeg ENDS

DataSeg SEGMENT para public 'DATA'

DataLabel ow ?

DataSeg ENDS

END

Figure 20-11 . . Code and data included in the same group. In this example, addresses within both CodeSeg
and DataSeg are referenced relative to the CS register by grouping the segments (using the assembler GROUP
directive) and addressing the group through CS (using the assembler ASSUME directive).

Uninitialized data segments

A segment that contains only uninitialized data can be processed by LINK in two ways,
depending on the position of the segment in the program. If the segment is not at the end
of the program, LINK generates a block of bytes initialized to zero to represent the seg­
ment in the executable file. If the segment appears at the end of the program, however,
LINK does not generate a block of zeroed bytes. Instead, it increases the minimum run­
time memory allocation by increasing MINALLOC (specified at offset OAH in the .EXE
header) by the amount of memory required for the segment.

714 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 724/1582

Article 20: The Microsoft Object Linker

Therefore, if it is necessary to reserve a large amount of uninitialized memory in a seg­
ment, the size of the .EXE file can be decreased by building the segment at the end of a
program (Figure 20-12). This is why, for example, Microsoft high-level-language translators
always build BSS and STACK segments at the end of compiled programs. (The loader does
not fill these segments with zeros; a program must still initialize them with appropriate
values.)

(a) CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg,ds:DataSeg

ret

CodeSeg ENDS

DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

END

(b) DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

CodeSeg SEGMENT byte public 'CODE'
ASSUME cs:CodeSeg,ds:DataSeg
ret

CodeSeg ENDS
END

Figure 20-12. LINK processing of uninitialized data segments. (a) When DataSeg, which contains only
uninitialized data, is placed at the end of this program, the size of the .EXEfile is only 513 bytes. (b) When
DataSeg is not placed at the end of the program, the size of the .EXEfile is 10513 bytes.

Overlays

If a program contains two or more subroutines that are mutually independent- that is,
subroutines that do not transfer control to each other-LINK can be instructed to build
each subroutine into a separately loaded portion of the executable file. (This instruction
is indicated in the command line when LINK is executed by enclosing each overlay sub­
routine or group of subroutines in parentheses.) Each of the subroutines can then be over­
laid as it is needed in the same area of memory (Figure 20-13). The amount of memory
required to run a program that uses overlays is, therefore, less than the amount required
to run the same program without overlays.

A program that uses overlays must include the Microsoft run-time overlay manager. The
overlay manager is responsible for copying overlay code from the executable file into
memory whenever the program attempts to transfer control to code in an overlay. A pro­
gram that uses overlays runs slower than a program that does not use them, because it
takes longer to extract overlays separately from the .EXE file than it does to read the entire
.EXE file into memory at once.

Section IL- Programming in the MS-DOS Environment 715

HUAWEI EX. 1110 - 725/1582

PartE: Programming Tools

(a)

E

D CallE()

c

B Call C()

A Call B()
Call D()

LINK A+B+C+D+E;

(b)

A
Call B()
CallD()

LINK A+(B+C)+(D+E);

Figure 20-13. Memory use in a program linked (a) without overlays and (b) with overlays. In (b), either
modules (B+C) or modules (D+E) can be loaded into the overlay area at run time.

The default object libraries that accompany Microsoft high-level-language compilers con­
tain object modules that support the Microsoft run-time overlay manager. The following
description of LINK's relationship to the run-time overlay manager applies to versions
3.00 through 3.60 of LINK; implementation details may vary in future versions.

Overlay format in a .EXE file

An executable file that contains overlays has a .EXE header preceding each overlay (Figure
20-14). The overlays are numbered in sequence, starting at 0; the overlay number is stored
in the word at offset lAH in each overlay's .EXE header. When the contents of the .EXE file
are loaded into memory for execution, only the resident, nonoverlaid part of the program
is copied into memory. The overlays must be read into memory from the .EXE file by the
run-time overlay manager.

Start of file
.EXEheader Overlay number 0

A
Overlay segments

.EXEheader Overlay number 1

B
c

.EXEheader Overlay number 2

D
E

End of file

Figure 20-14 .. EXEfile structure produced by LINK A+ (B+C) + (D+E).

716 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 726/1582

Article 20: The Microsoft Object Linker

Segments for overlays

When LINK produces an executable file that contains overlays, it adds three segments
to those defined in the object modules: OVERLAY_AREA, OVERLAY_ END, and
OVERLAY_DATA. LINK assigns the segment class name 'CODE' to OVERLAY_AREA
and OVERLAY_END and includes OVERLAY_DATA in the default group DGROUP.

OVERLAY_AREA is a reserved segment into which the run-time overlay manager is
expected to load each overlay as it is needed. Therefore, LINK sets the size of
OVERLAY_AREA to fit the largest overlay in the program. The OVERLAY_END seg­
ment is declared immediately after OVERLAY_AREA, so a program can determine the
size of the OVERLAY_AREA segment by subtracting its segment address from that of
OVERLAY _END. The OVERLAY_DATA segment is initialized by LINK with information
about the executable file, the number of overlays, and other data useful to the run-time
overlay manager.

LINK requires the executable code used in overlays to be contained in segments whose
class names end in CODE and whose segment names differ from those of the segments
used in the resident (nonoverlaid) portion of the program. In assembly language, this is
accomplished by using the SEGMENT directive; in high-levellanguages, the technique of
ensuring unique segment names depends on the compiler. In Microsoft C, for example, the
!A switch in the command line selects the memory model and thus the segment naming
defaults used by the compiler; in medium, large, and huge memory models, the compiler
generates a unique segment name for each C function in the source code. In Microsoft
FORTRAN, on the other hand, the compiler always generates a uniquely named segment
for each SUBROUTINE and FUNCTION in the source code, so no special programming
is required.

LINK substitutes all far CALL instructions from root to overlay or from overlay to
overlay with a software interrupt followed by an overlay number and an offset into the
overlay segment (Figure 20-15). The interrupt number can be specified with LINK's
/OVERLAYINTERRUPT switch; if the switch is omitted; LINK uses Interrupt 3FH by
default. By replacing calls to overlay code with a software interrupt, LINK provides a
mechanism for the run-time overlay manager to take control, load a specified overlay
into memory, and transfer control to a specified offset within the overlay.

(a)

(b)

EXTRN

call

int

DB
DW

OverlayEntryPoint:far
OverlayEntryPoint far CALL

IntNo interrupt number

6verlayNumber
OverlayEntry

specified with /OVERLAYINTERRUPT
switch (default 3FH)

overlay number
offset of overlay entry point

(the address to which
the overlay manager transfers

control)

Figure 20-15. Executable code modification by LINK for accessing overlays. (a) Code as written. (b) Code as
modified by LINK.

Section IL- Programming in the MS-DOS Environment 717

HUAWEI EX. 1110 - 727/1582

PartE: Programming Tools

Run-time processing of overlays

The resident (nonoverlaid) portion of a program that uses overlays initializes the overlay
interrupt vector specified by LINK with the address of the run-time overlay manager. (The
OVERLAY_DATA segment contains the interrupt number.) The overlay manager then
takes control wherever LINK has substituted a software interrupt for a far call in the exe­
cutable code.

Each time the overlay manager executes, its.Jirst task is to determine which overlay is
being called. It does this by using the return address left on the stack by the INT instruc­
tion that invoked the overlay manager; this address points to the overlay number stored in
the byte after the interrupt instruction that just executed. The overlay manager then deter­
mines whether the destination overlay is already resident and loads it only if necessary.
Next, the overlay manager opens the .EXE file, using the filename in the OVERLAY_ DATA
segment. It locates the start of the specified overlay in the file by examining the length
(offset 02H and offset 04H) and overlay number (offset lAH) in each overlay's .EXE
header.

The overlay manager can then read the overlay from the .EXE file into the
OVERLAY_AREA segment. It uses the overlay's segment relocation table to fix up any seg­
ment references in the over lay. The overlay manager transfers control to the overlay with a
far call to the OVERLAY_AREA segment, using the offset stored by LINK 1 byte after the
interrupt instruction (see Figure 20-15).

Interrupt 2m Function 4BH

LINK's protocol for implementing overlays is not recognized by Interrupt 21H Function
4BH (Load and Execute Program). This MS-DOS function, when called withAL = 03H,
loads an overlay from a .EXE file into a specified location in memory. See SYSTEM CALLS:
INTERRUPT 21H: Function 4BH. However, Function 4BH does not use an overlay number, so
it cannot find overlays in a .EXE file formatted by LINK with multiple .EXE headers.

DGROUP

LINK always includes DGROUP in its internal table of segment groups. In object modules
generated by Microsoft high-level-language translators, DGROUP contains both the default
data segment and the stack segment. LINK's /DOSSEG and /DSALLOCATE switches both
affect the way LINK treats DGROUP. Changing the way LINK manages DGROUP ulti­
mately affects segment order and addressing in the executable file.

Using the /DOSSEG switch

The /DOSSEG switch causes LINK to arrange segments in the default order used by
Microsoft high-level-language translators:

1. All segments with a class name ending in CODE. These segments contain executable
code.

2. All other segments outside DGROUP. These segments typically contain far data items.

718 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 728/1582

Article 20: The Microsoft Object Linker

3. DGROUP segments. These are a program's near data and stack segments. The order
in which segments appear in DGROUP is
- Any segments of class BEG DATA. (This class name is reserved for Microsoft use.)
- Any segments not of class BEG DATA, BSS, or STACK.
- Segments of class BSS.

Segments of class STACK.

This segment order is necessary if programs compiled by Microsoft translators are to run
properly. The /DOSSEG switch can be used whenever an object module produced by an
assembler is linked ahead of object modules generated by a Microsoft compiler, to ensure
that segments in the executable file are ordered as in the preceding list regardless of the
order of segments in the assembled object module.

When the /DOSSEG switch is in effect, LINK always places DGROUP at the end of the
executable program, with all uninitalized data segments at the end of the group. As dis­
cussed above, this placement helps to minimize the size of the executable file. The
/DOSSEG switch also causes LINK to restructure the executable program to support
certain conventions used by Microsoft language translators:

• Compiler-generated segments with the class name BEG DATA are placed at the begin­
ning of DGROUP.

• The public symbols _edata and _end are generated to point to the beginning of the
BSS and STACK segments.

• Sixteen bytes of zero are inserted in front of the _TEXT segment.

Microsoft compilers that rely on /DOSSEG conventions generate a special COMENT object
record that sets the /DOSSEG switch when the record is processed by LINK.

Using the /HIGH and /DSALLOCATE switches

When a program has been linked without using LINK's /HIGH switch, MS-DOS loads
program code and data segments from the .EXE file at the lowest address in the first avail­
able block of RAM large enough to contain the program (Figure 20-16). The value in the
.EXE header at offset OCH specifies the maximum amount of extra RAM MS-DOS must
allocate to the program above what is loaded from the .EXE file. Above that, all unused
RAM is managed by MS-DOS. With this memory allocation strategy, a program can use
Interrupt 21H Functions 48H (Allocate Memory Block) and 4AH (Resize Memory Block)
to increase or decrease the amount of RAM allocated to it.

When a program is linked with LINK's /HIGH switch, LINK zeros the words it stores in
the .EXE header at offset OAH and OCH. Setting the words at OAH and OCH to zero indi­
cates that the program is to be loaded into RAM at the highest address possible (Figure
20-16). With this memory layciut, however, a program can no longer change its memory
allocation dynamically because all available RAM is allocated to the program when it is
loaded and the uninitialized RAM between the program segment prefix and the program
itself cannot be freed.

Section II: Programming in the MS-DOS Environment 719

HUAWEI EX. 1110 - 729/1582

PartE: Programming Tools

FFFFFH

System ROM, etc.

(Unused)

Uninitialized
program RAM

Environment, PSP

Resident portion of
MS-DOS

OOOOOH
(a)

}
Specified in
.EXEheader

}

Program code and ,
data segments
copied from .EXE file

System ROM, etc.

Uninitialized program
RAM

Environment, PSP

Resident portion of
MS-DOS

(b)

FFFFFH

}

Program code arid
data segments
copied from .EXE file

OOOOOH

Figure 20-16. Effect of the /HIGH switch on run-time memory use. (a) The program is linked without the
!HIGH switch. (b) The program is linked with the !HIGH switch.

The only reason to load a program with this type of memory allocation is to allow a pro­
gram data structure to be dynamically extended toward lower memory addresses. For
example, both stacks and heaps can be implemented in this way. If a program's stack
segment is the first segment in its memory map, the stack can grow downward without
colliding with other program data.

To facilitate addressing in such a segment, LINK provides the /DSALLOCATE switch.
When a program is linked using this switch, all addresses within DGROUP are relocated in
such a way that the last byte in the group has offset FFFFH. For example, if the program in
Figure 20-17 is linked without the /DSALLOCATE and /HIGH switches, the value of offset
DGROUP:Dataltem would be OOH; if these switches are used, the linker adjusts the seg­
ment value of DGROUP downward so that the offset of Dataltem within DGROUP
becomes FFFOH.

Early versions of Microsoft Pascal (before version 3.30) and Microsoft FORTRAN (before
version 3.30) generated object code that had to be linked with the /DSALLOCATE switch.
For this reason, LINK sets the /DSALLOCATE switch by defau~t if it processes an object
module containing a COMENT record generated by one of these compilers. (Such a
COMENT record contains the string MS PASCAL or FORTRAN 77. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING ToOLs: Object Modules.) Apart from this
special requirement of certain language translators, however, the use of /DSALLOCATE
and /HIGH should probably be avoided because of the limitations they place on run-time
memory allocation.

720 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 730/1582

Article 20: The Microsoft Object Linker

DGROUP GROUP _DATA

~ATA SEGMENT word public 'DATA'

Dataitem DB 10h dup (?)

_])ATA ENDS

_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:DGROUP

mov bx,offset DGROUP:Dataitem
_TEXT ENDS

END

Figure 20-17. The value of offset DGROUP:Dataltem in this program is FFFOH if the program is linked with
the /DSALLOCATE switch or OOH if the program is linked without using the switch.

Summary

LINK's characteristic support for segment ordering, for run-time memory management,
and for dynamic overlays has an impact in many different situations. Programmers who
write their own language translators must bear in mind the special conventions followed
by LINK in support of Microsoft language translators. Application programmers must be
familiar with LINK's capabilities when they use assembly language or link assembly-lan­
guage programs with object modules generated by Microsoft compilers. LINK is a power­
ful program development tool and understanding its special capabilities can lead
to more efficient programs.

Richard Wilton

Section /1: Programming in the MS-DOS Environment 721

HUAWEI EX. 1110 - 731/1582

HUAWEI EX. 1110 - 732/1582

HUAWEI EX. 1110 - 733/1582

HUAWEI EX. 1110 - 734/1582HUAWEI EX. 1110 - 734/1582

User Commands Introduction

Introduction

This section of The'MS-DOS Encyclopedia describes the standard internal and external
MS-DOS commands available to the user who is running MS-DOS (versions 1.0 through
3.2). System configuration options, special batch-file directives, the line editor (EDLIN)
and the installable device drivers normally included with MS-DOS are also covered. '

Entries are arranged alphabetically by the name of the command or driver. The config­
uration, batch-file, and line-editor directives appear alphabetically under the headings
CONFIG.SYS, BATCH, and EDLIN, respectively. Each entry includes

• Command name
• Version dependencies and network information
• Command purpose .
• Prototype command and summary of options
• Detailed description of command
• One or more examples of command use
• Return codes (where applicable)
• Informational and error messages

The experienced user can find information with a quick glance at the first part of a com­
mand entry; a less experienced user can refer to the detailed explanation and examples in
a more leisurely fashion. The next two pages contain an example of a typical entry from
the User Commands section, with explanations of each component. This example is
followed by listings of the commands by functional group.

The following terms are used for command-line variables in the sample syntax:

drive

path

pathname

filename

a letter in the range A-Z, followed by a colon, indicating a logical disk
drive.
a specific location in a disk's hierarchical directory structure; can include
the special directory names • and •• ; elements are separated by backslash
characters (\).
a file specification that can include a path and/or drive and/or filename
extension.
the name of a file, generally with its extension; cannot include a drive or
path.

Note: PC-DOS, though not an official product name, is used in this section to indicate
IBM's version of the disk operating system originally provided by Microsoft. Commands
sometimes have slightly different options or appear for the first time in different versions
of MS-DOS and PC-DOS. When a command appears only in the IBM versions, the abbre­
viation IBM appears in the heading area. Significant differences between MS-DOS and
PC-DOS versions of a command are indicated in the Syntax and Description portions
of the entry.

Section Ill: User Commands 725

HUAWEI EX. 1110 - 735/1582

User Commands Introduction/Key

HEADING------+----...,
The command name as
the user would enter it
or as it would be used
in a batch or system­
configuration file.

ICON-1-------t-'
MS-DOS version
dependency.

ICON-2 -------+~
Whether the command
is internal (built into
COMMAND.COM) or
external (loaded from a
disk file when needed).

ICON-3 -------+.....J
The abbreviation IBM if
the command is present
only in PC-DOS and the
warning No Net if the
command cannot be
used across a network.

PURPOSE ------+-..1
An abstract of command
purpose and usage.

SYNTAX--------+-~
A prototype command
line, with variable names
in italic and optional

REP LAC

REPLACE 3.2

External

REPLACE !drlve,]palhname !driue,]!path]I/Al!/D]!!Pl!!Rl!/Sli/W]

where:

path name

drlve:path

/A

/D

/P
/R
IS

/W

Description

is the name and location oflhe source files to transferred, optionally
preceded by a drive; wildcard characters a permitted in the filename.
is the destination for the file being trans reed; filenames are not permit­
ted in the destination parameter.
transfers only those source files th do not exist at the destination (cannot
be used with /S or /D).
transfers only those source f ith a more rece!n date than their destina­
tion counterparts (cannot e us d with /A).
prompts the user for c umati n before each file is transferred.
allows REPLACE to erwrite tination read-only files.
searches all subd' ctories of th destination directory for a match with
the source file cannot be used ith //\).
causes REP CE to wait for the isk to be changed before transferring
files.

The path parameter (the source) specifies the name an ocation of the files to be
transferred optionally preceded by a drive); wildcards are ermitted in the filename. The
drlve:path arameter (the destination) specifies the lo on of the files to be replaced
and can co istofa drive, a path, orboth.Ifonlya dr' e i specified as the destination,
REPLACE umes the current directory ofthe dis n tha drive. If the destination is omit-
ted comple ly, REPLACE assumes the current ve and irectory. The IS switch causes
REPLACE also search all subdirectories of e destinati n directory for files to be
replaced.

parameters in square
brackets. The various

t)llj

elements of the com-
mand line should be
entered in the order
shown. Any punctuation
must be used exactly as
shown; in commands
that use commas as
separators, the comma
usually must be included
as a placeholder even if
the parameter is omit-
ted. Except where noted,
commands, parameters,
and switches can be
entered in either upper-
case or lowercase. With
MS-DOS versions 3.0
and later, external com-
mands can be preceded
by a drive and/or path.

726 The MS-DOS Encyclopedia

BELOW WHERE
A brief explanation of
each command parame­
ter and switch. Drives,
paths, and filenames are
always listed first, fol­
lowed by the switches in
alphabetic order. Any
special position required
for a filename or switch
is shown in the syntax
line and noted in the
explanation.

DESCRIPTION
A detailed description of
the command, including
a full explanation of
MS-DOS version depen­
dencies, default values,
possible interactions of
command parameters
and options, useful
background information,
and any applicable
warnings.

HUAWEI EX. 1110 - 736/1582

REPU.CE

those source files that match t e destination filenames but have a more recent date than
their destination counterparts (The /D switch is not available with the PC-DOS version of
REPLACE.) The /P switch cau es REPLACE to prompt the user for confirmation before
each file is transferred.

User Commands Introduction/Key

RETURN CODES
Exit codes returned by
the command (if any)
that can be tested in a
batch file or by another
program.

The /R switch allows the repl cement of read-only as well as normal files. If the /R switch
is not used and one of the des ination files !h'"t"Wtllrldcctt.,..,;·.,.-t.,.,..:ph!t:od;,;-,rmikt:d----t­ EXAMPLES
read-only, the REPLACE prog am terminal with an error message. (REPLACE cannot be
used to update hidden or syst m files.)

Return Codes

e.
8 Memory as insufficient to run the REPLACE command.

15 An inv. id drive was specified the command line.
Other St ardMS-OOS error codes (eturned on a failed Interrupt 21H file-function

quesO.

Examples

To replace the files in the directory \SOUR Eon e current drive with all matching files
e, type

. One or more examples
of the command at work
including examples of '
the resulting output
where appropriate. User
entry appears in color;
do not type the prompt,
which appears in black.
Press the Enter key
(labeled Return on some
keyboards) as directed
at the end of each
command line.

....----------+- MESSAGES

rent directory, type

C>REPLAC£ A: •. • ll\

Messages
n Flle(s) added

An alphabetic list of
messages that may be
displayed when the
command is used in

After the replacement operation is completed, if the h switc s used in the command MS-DOS version 3.2
(may vary slightly in
earlier versions). Both
messages generated by

line, REPLACE displays the total number of files adde

n File(s) replaced
After the replacement operation is completed, REP
processed.

Seclion/ll:UserCommands 91')

the command itself and
applicable messages gen­
erated by MS-DOS are
included. Following each
message is a brief
explanation of the con­
dition that produces the
message and, where
appropriate, any action
that should be taken.

Section Ill: User Commands 727

HUAWEI EX. 1110 - 737/1582

User Commands Introduction

Contents by Functional Group

The MS-DOS commands can be divided into several distinct groups according to the func­
tions they perform. These are listed on the following pages.

Command Action

System Configuration and Control
BREAK Set Control-C check.
COMMAND
DATE
EXIT
PROMPT
SELECT
SET
SHARE
TIME
VER

Install secondary copy of command processor.
Set date.
Terminate command processor.
Define system prompt.
Configure system disk for a specific country.
Set environment variable.
Install file-sharing support.
Set system time.
Display version.

Character-Device Management
CLS Clear screen.
CTTY Assign standard input/output.
GRAFTABL Load graphics character set.
GRAPHICS Print graphics screen-dump program.
KEYBxx Define keyboard.
MODE Configure device.
PRINT Print file (background print spooler).

File Management
ATTRIB
BACKUP
COMP
COPY
DEVERASE
EDLIN
FC
RECOVER
RENAME
REPLACE
RESTORE
TYPE
X COPY

728 The MS-DOS Encyclopedia

Change file attributes.
Back up files.
Compare files.
Copy file or device.
Delete file.
Create or modify text file (see also commands below).
Compare files.
Recover files.
Change filename.
Update files.
Restore backup files.
Display file.
Copy files.

(more)

HUAWEI EX. 1110 - 738/1582

Command

Filters
FIND
MORE
SORT

Action

Find string.
Display by screenful.
Sort file or character stream alphabetically.

Directory Management
APPEND Set data-file search path.
CHOIR Change current directory.
DIR Display directory.
MKDIR Make directory.
PATH Define command search path.
RMDIR Remove directory.
TREE Display directory structure .

. Disk Management
ASSIGN
CHKDSK
DISKCOMP
DISK COPY
FORMAT
FDISK
JOIN
LABEL
SUBST
SYS
VERIFY
VOL

Assign drive alias.
Check disk status.
Compare floppy disks.
Copy floppy disks.
Initialize disk.
Configure fixed disk.
Join disk to directory.
Display volume label.
Substitute drive for subdirectory.
Transfer system files.
Set verify flag.
Display disk name.

Installable Device Drivers
ANSI.SYS ANSI console driver.
DRIVER.SYS
RAMDRIVE.SYS
VDISK.SYS

Configurable external-disk-drive driver.
Virtual disk.
Virtual disk.

System-Configuration File Directives
BREAK Configure Control-C checking.
BUFFERS Configure internal disk buffers.
COUNTRY Set country code.
DEVICE Install device driver.

Set block-device parameters.

User Commands Introduction

DRIVPARM
PCBS Set maximum open files using File Control Blocks (FCBs).

(more)

Section III: User Commands 729

HUAWEI EX. 1110 - 739/1582

User Commands Introduction

Command Action

System-Configuration File Directives (continued)

FILES Set maximum open files using handles.
LASTDRIVE Set highest logical drive.
SHELL· Specify command processor.
STACKS Configure internal stacks.

Batch-File Directives
AUTO EXEC. BAT System startup batch file.
ECHO Display text.
FOR Execute command on file set.
GOTO Jump to label.
IF Perform conditional execution.
PAUSE Suspend batch-file execution.
REM Include comment line.
SHIFT Shift replaceable parameters.

EDLIN Commands
linenumber
A
c
D
E

L
M
p

Q
R
s
T
w

730 The MS-DOS Encyclopedia

Edit line.
Append lines from disk.
Copy lines.
Delete lines.
End editing session.
Insert lines.
List lines.
Move lines.
Display in pages.
Quit.
Replace text.
Search for text.
Transfer another file.
Write lines to disk.

HUAWEI EX. 1110 - 740/1582

ANSI.SYS

'·'

ANSI.SYS 2.0 and later

ANSI Console Driver External

Purpose

Allows the user to employ a subset of the American National Standards Institute (ANSI)
standard escape sequences for control of the console.

Syntax

DEVICE=[drive:][path]ANSI.SYS

where:

drive:path is the drive and/or path to search for ANSI.SYS if it is not in the root direc­
tory of the startup disk.

Description

The ANSI.SYS file contains an installable character-device driver that supersedes the
system's default driver for the console device (video display and keyboard). After
ANSI.SYS is installed by means of a DEVICE=ANSI.SYS command in the CONFIG.SYS file
of the disk used to start the system, programs can use a subset of the ANSI 3.64-1979 stan­
dard escape sequences to erase the display, set the display mode and attributes, and con­
trol the cursor in a hardware-independent fashion. (A supplementary set of escape
sequences that are not part of the ANSI standard allows reprogramming of the keyboard.)

Programs that use ANSI.SYS for control of the screen can run on any MS-DOS machine
without modification, regardless of its hardware configuration. However, most popular ap­
plication programs for the IBM PC and compatibles circumvent ANSI.SYS and manipulate
the video controller and its video buffer directly to achieve maximum performance.

The ANSI.SYS device driver detects ANSI escape sequences in a character stream and 4
interprets them as commands to control the keyboard and display. An ANSI escape se-
quence is a sequence of ASCII characters, the first two of which must be the Escape char-.
acter (lBH) and the left-bracket character (5BH). The characters following the Escape and
left-bracket characters vary with the type of control function being performed; most con-
sist of an alphanumeric code followed by a letter. In some cases this code is a single char-
acter; in others it is more than one character or a two-part string separated by a semicolon.
Each ANSI escape sequence ends in a unique letter character that identifies the sequence;
case is significant for these letters. The escape sequences supported by the ANSI.SYS
driver are summarized in the tables on the following pages.

An escape sequence cannot be entered directly at the system prompt because each ANSI
escape sequence must begin with an Escape character, and pressing the Esc key (or Alt-27
on the numeric keypad) causes MS-DOS to cancel the command line. There are three
methods of executing ANSI escape sequences that do not require writing a program:

Section III: User Commands 731

HUAWEI EX. 1110 - 741/1582

ANSI.SYS

• Include the escape sequences in a PROMPT command.
• Enter the escape sequences into a word processor or text editor, save the file as an

ASCII text file, and then execute the file by using the TYPE or COPY command (spec­
ifying CON as the destination for COPY) from the MS-DOS system prompt.
(If the escape sequences are echoed on the screen when the file is executed, a
DEVICE=ANSI.SYS command was not included in the CONFIG.SYS file when the
system was turned on.)

• Place the escape sequences in a batch (,BAT) file as part of an ECHO command. .
When the batch file is executed, the sequences are sent to the console.

When escape sequences are entered using the PROMPT command, the Escape character
is entered as $e. When escape sequences are entered using a word processor to create an
ASCII text or batch file, the Escape character is usually entered by pressing the Esc key or
by holding down the Alt key while typing 27 on the numeric keypad. (See the documenta­
tion provided with the word-processor for specific instructions.) In most cases, the escape
character will appear in the word processor or text editor as a back-arrow character (~)
or a caret-left bracket combimition (A[).

Note: When the escape character is represented as A[(as it is in EDLIN, for example), an
additional left-bracket character must still be added to properly begin an ANSI escape se­
quence. Thus, the beginning of a valid ANSI escape sequence in EDLIN appears as A[[.

The tables in this section use the abbreviation ESC to show where the ASCII escape char­
acter 27 (1BH) appears in the string.

Note: Case is significant for the terminal character in the string.

The following escape sequences control cursor movement:

Operation Escape Sequence

Cursor Up ESC[numberA

Cursor Down ESC[numberB

Cursor Right ESC[numberC

Cursor Left ESC[numberD

Position Cursor ESC[row;columnH

732 The MS-DOS Encyclopedia

Effect

Moves the cursor up number rows (1- 24,
default = 1). Has no effect if cursor is on
thetoprow.

Moves the cursor down number rows
(1-24, default= 1). Has no effect if cursor
is on the bottom row.

Moves the cursor right number rows (1-79,
default = 1). Has no effect if cursor is in
the far right column.

Moves the cursor left number rows (1-79,
default = 1). Has no effect if cursor is in
the far left column.

Moves the cursor to the specified row
(1-25, default= 1) and column (1-80,
default = 1). If row is omitted, the semi­
colon before column must be specified.

(more)

HUAWEI EX. 1110 - 742/1582

I
l
:

Operation Escape Sequence

Position Cursor ESC[row;columnf
Save Cursor Position ESC[s

Restore Cursor ESC[u
Position

ANSI.SYS

Effect

Same as above.
Stores the current row and column position

of the cursor. Cursor can be restored to
this position later with a Restore Cursor
Position escape sequence.

Moves the cursor to the position of the
most recent Save Cursor Position escape
sequence.

The following two escape sequences are used to erase all or part of the display:

Operation Escape Sequence

Erase Display ESC[2J

Erase Line ESC[K

Effect

Clears the screen and places the cursor at
the home position.

Erases from the cursor position to the end
of the same row.

The following escape sequences control the width and the color capability of the display.
The use of any of these sequences clears the screen.

Operation

Set Mode

Escape Sequence

ESC[=Oh
ESC[=lh
ESC[=2h
ESC[=3h
ESC[=4h
ESC[=5h

ESC[=6h

Effect

Sets display to 40 x 25 monochrome (text).
Sets display to 40 x 25 color (text).
Sets display to 80 x 25 monochrome (text).
Sets display to 80 x 25 color (text).
Sets display to 320 x 200 4-color (graphics).
Sets display to 320 x 200 4-color (graphics,

color burst disabled).
Sets display to 640 x 200 2-color (graphics).

The following escape sequences control whether characters will wrap around to the first
column of the next row after the rightmost column in the current row has been filled:

Operation

Enable Character
Wrap

Disable Character
Wrap

Escape Sequence

ESC[=7h

ESC[=71

Effect

Sets character wrap.

Disables character wrap. (Note that the
terminating letter is a lowercase L.)

Section III: User Commands 733

HUAWEI EX. 1110 - 743/1582

ANSI.SYS

The following escape sequence controls specific graphics attributes such as intensity,
blinking, superscript, and subscript, as well as the foreground and background colors:

ESC[attrib; ... ;attribm

where:

attrib

Value

0
1
2
4

5
7
8

is one or more of the following values. Multiple values must be separated by
semicolons.

Attribute Value Foreground Value Background
Color Color

All attributes off 30 Black 40 Black
High intensity (bold) 31 Red 41 Red
Normal intensity 32 Green 42 Green
Underline (mono-

chrome only) 33 Yellow 43 Yellow
Blink 34 Blue 44 Blue
Reverse video 35 Magenta 45 Magenta
Concealed (invisible) 36 Cyan 46 Cyan

37 White 47 White

Note: Values 30 through 47 meet the ISO 6429 standard.

The following escape sequence allows redefinition of keyboard keys to a specified string:

ESC[code;string; ... p

where:

code

string

Key

F1
F2
F3
F4
F5
F6

is one or more of the following values that represent keyboard keys.
Semicolons shown in this table must be entered in addition to the required
semicolons in the command line.
is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A

Code

Alone Shift- Ctrl- Alt-

0;59 0;84 0;94 0;104
0;60 0;85 0;95 0;105
0;61 0;86 0;96 0;106
0;62 0;87 0;97 0;107
0;63 0;88 0;98 0;108
0;64 0;89 0;99 0;109

(more)

734 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 744/1582

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

F7 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112
FlO 0;68 0;93 0;103 0;113
Home 0;71 55 0;119
UpArrow 0;72 56
PgUp 0;73 57 0;132
Left Arrow 0;75 52 0;115
Down Arrow 0;77 54 0;116
End 0;79 49 0;117
Down Arrow 0;80 50
PgDn 0;81 51 0;118
Ins 0;82 48
Del 0;83 46
PrtSc 0;114
A 97 65 1 0;30
B 98 66 2 0;48
c 99 67 3 0;46
D 100 68 4 0;32
E 101 69 5 0;18
F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23

J 106 74 10 0;36
K 107 75 11 0;37
L 108 76 12 0;38
M 109 77 13 0;50
N 110 78 14 0;49
0 111 79 15 0;24
p 112 80 16 0;25
Q 113 81 17 0;16
R 114 82 18 0;19
s 115 83 19 0;31
T 116 84 20 0;20
u 117 85 21 0;22
v 118 86 22 0;47
w 119 87 23 0;17
X 120 88 24 0;45

(more)

Section Ill: User Commands 735

HUAWEI EX. 1110 - 745/1582

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

y 121 89 25 0;21
z 122 90 26 0;44
1 49 33 0;120
2 50 64 0;121
3 51 35 :.:'.' 0;122
4 52 36 0;123
5 53 37 0;124
6 54 94 0;125
7 55 38 0;126
8 56 42 0;127
9 57 40 0;128
0 48 41 0;129

45 95 0;130
61 43 0;131

Tab 9 0;15
Null 0;3

Examples

The following examples use ESC or $e to show where the ASCII escape character 27 (lBH)
appears in the string. The PROMPT examples can be typed as shown, but for the examples
that use ESC to denote the escape character, the actual escape character should be typed in
its place.

To move the cursor to row 10, column 30 and display the string Main Menu, use the escape
sequence

ESC[10;30fMain Menu

or

ESC[10;30HMain Menu

To move the cursor to row 5, column 10 and display the letter A (ESC[5;10jA), move the
cursor down one row (ESC[B), move the cursor back one space and display the letter B
(ESC[DB), move the cursor down one row (ESC[B), and move the cursor back one space
and display the letter C (ESC[DC), use the escape sequence

ESC[5;10fAESC[BESC[DBESC[BESC[DC

To use ANSI escape sequences with the PROMPT command to save the current cursor
position ($e[s), move the cursor to row 1, column 69 ($e[1;69j), display the current time
using the PROMPT command's $t function, restore the cursor position ($e[u), and then

736 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 746/1582

ANSI.SYS

display the current path using the PROMPT command's $p function and display a greater­
than sign using the PROMPT co~mand's $g function, use the escape sequence

C>PROMPT $e[s$e[1;69fte[upg <Enter>

To erase the display (ESC(2j), then move the cursor to row 10, column 30 and display the
string Main Menu (ESC(l0;30fMain Menu), use the escape sequence

ESC[2JESC[10;30fMain Menu

To move the cursor to row 5, column 40 (ESC(5;40f) and erase the remainder of the row
starting at the current cursor position (ESC(K), use the escape sequence

ESC[5;40fESC[K

To move the cursor to row 3 (ESC(3;/), erase the entire row (ESC[K), move the cursor
down one row (ESC[B), erase that entire row (ESC(K), move the cursor down one row and
erase that entire row, use the escape sequence

ESC[3;fESC[KESC[BESC[KESC[BESC[K

To set the display mode to 25 rows of 80 columns in color (ESC(= 3h) and disable character
wrap (ESC(= 7/), use the escape sequence

ESC[=3hESC[=71

Note that ESC[=3h will also clear the screen.

To enable character wrap, use the escape sequence

ESC[=7h

To set the foreground color to black and the background color to blue (ESC(30;44m), clear
the display (ESC(2j), then position the cursor at row 10, column 30 and display the string
MainMenu(ESC(10;30fMainMenu), use the escape sequence

ESC[30;44mESC[2JESC[10;30fMain Menu

To (effectively) exchange the backslash and question-mark keys using literal strings to
denote the keys, use the escape sequence

ESC[''\'';''?''pESC[''?'';''\''p

To exchange the backslash and question-mark keys using each key's ASCII value to denote
the key, use the escape sequence

ESC[92;63pESC[63;92p

To restore the backslash and question-mark keys to their original meanings, use the escape
sequence

ESC[''\'';''\''pESC[''?'';"?''p

or

ESC[92;92pESC[63;63p

Section Ill: UserCommands 737

HUAWEI EX. 1110 - 747/1582

ANSI.SYS

To redefine the Alt-F9 key combination (ESC[0;112) so that it issues a CLS command
(;"CLS") plus a carriage return (;13) to execute the CLS command, then issues a DIR com­
mand piped through the SORT filter starting at column 24 (; ''DIR /SORT/+ 24") followed
by another carriage return, use the escape sequence

ESC[0;112;"CLS";13;"DIR : SORT /+24";13p

To restore the Alt-F9 key combination to its original meaning, use the escape sequence

ESC[0;112;0;112p

\

738 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 748/1582

APPEND

APPEND 3.2

Set Data-File Search Path External

Purpose

Specifies a search path for open operations on data files. (Also supported with some
implementations of version 3.1, for use with networks.)

Syntax

APPEND [[drive:] path] [;[drive:]path ...]

or

APPEND;

where:

path is the name of a valid directory, optionally preceded by a drive.

Description

APPEND is a terminate-and-stay-resident program that is used to specify a path or paths to
be searched for data files (in contrast with the PATH command, which specifies a path to
be searched for executable or batch files). The search path can include a network drive. If
a program attempts to open a file and the file is not found in the current or specified direc­
tory, each path given in the APPEND command is searched.

If the APPEND command is entered with a path consisting of on:ly a semicolon character
(;), a "null" search path for data files is set; that is, no directory other than the current or
specified directory is searched. This effectively cancels any search paths previously set
with an APPEND command but does not free the memory used by APPEND.

An APPEND command without any parameters displays the current search path(s) for data
files.

Note that a program cannot detect whether an opened file was found where it was ex­
pected (in the current or specified directory) or in some other directory specified in the
APPEND command.

Warning: When an assigned drive is to be part of the search path, the ASSIGN command
must be used before the APPEND command. Use of the ASSIGN command should be
avoided whenever possible because it hides drive characteristics from those programs that
require detailed knowledge of the drive size and format.

Section Ill: User Commands 739

HUAWEI EX. 1110 - 749/1582

APPEND

Examples

To cause the directories C: \SYSTEM and C: \SOURCE to be searched for a file during an
open operation if the file is not found in the current or specified directory, type

C>APPEND C:\SYSTEM;C:\SOURCE <Enter>

To display the current search path for data files, type

C>APPEND <Enter>

MS-DOS then displays

APPEND=C:\SYSTEM;C:\SOURCE

To ensure that no directories other than the current or specified directory are searched
during a file open operation, type

C>APPEND <Enter>

Messages

APPEND/ ASSIGN Conflict
APPEND was used before ASSIGN.

Incorrect DOS version
The version of APPEND is not compatible with the version of MS-DOS that is running.

No appended directories
The APPEND command had no parameters and no APPEND search path is active.

740 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 750/1582

ASSIGN

ASSIGN 3.0 and later

Assign Drive Alias External

Purpose

Redirects requests for disk operations on one drive to a different drive. (Available with
PC-DOS beginning with version 2.0.)

Syntax

ASSIGN [x=y [. ..]]

where:

x is a valid designator (A, B, C, etc.) for a disk drive that physically exists in the
system.

y is a valid designator for the drive to be accessed by references to x.

Description

ASSIGN is a terminate-and-stay-resident program that redirects all references to drive xor
files on drive x to drive y. The ASSIGN command is intended for use with application pro­
grams that require files to reside on drive A orB and have no provision within the pro­
gram for changing those drives.

Multiple drive assignments can be requested in the same ASSIGN command line; the drive
pairs must be separated with spaces, commas, or semicolons. Unlike the form in most
other MS-DOS commands, the drive letters are not followed by colon characters (:). When
a single drive is assigned, the equal sign is optional.

ASSIGN commands are not incremental. Each new ASSIGN command replaces assign­
ments made with the previous ASSIGN command and cancels any assignments not specifi­
cally replaced. Entering ASSIGN with no parameters cancels all current drive assignments.

Warning: Use of the ASSIGN command should be avoided whenever possible because it
hides drive characteristics from those programs that require detailed knowledge of the
drive size and format; in particular, drives redirected with an ASSIGN statement should
never be used with a BACKUP, RESTORE, LABEL, JOIN, SUBST, or PRINT command.
ASSIGN can also defeat the checking performed by the COPY command to prevent a file
from being copied onto itself. The FORMAT, SYS, DISK COPY, and DISKCOMP commands
ignore any drive reassignments made with ASSIGN.

With MS-DOS versions 3.1 and later, the SUBST command should be used instead of
ASSIGN. For example, the command

C>ASSIGN A=C <Enter>

should be replaced with the command

C>SUBST A: C:\ <Enter>

Section///: UserCommands 741

HUAWEI EX. 1110 - 751/1582

ASSIGN

Examples

To redirect all reqll:ests for drive A to drive C, type

C>ASSIGN A=C <Enter>

To redirect all requests for drives A and B to drive C, type

C>ASSIGN A=C B=C <Enter>

To cancel all drive redirections currently in effect, type

C>ASSIGN <Enter>

Messages

Incorrect DOS version
The version of ASSIGN is not compatible with the version of MS-DOS that is running.

Invalid parameter
One of the specified drive designators refers to a drive that does not exist in the system.

7 42 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 752/1582

ATTRIB
Change File Attributes

Purpose

3.0 and later

External

ATTRIB

Sets, removes, or displays a file's read-only and/or archive attributes.

Syntax

ATTRIB [+R:-RJ [+A:-AJ [drive:]pathname

where:

+ R marks the file read-only.
-R removes the read-only attribute.
+A sets the file's archive flag (version 3.2).
-A removes the file's archive flag (version 3.2).
pathname is the name and location, optionally preceded by a drive, of the file whose

attributes are to be changed or displayed; wildcard characters are permitted in
the filename.

Description

Each file has an entry in the disk's directory that contains its name, location, and size; the
date and time it was created or last modified; and an attribute byte. For normal files, bits 0,
1, 2, and 5 in the attribute byte designate, respectively, whether the file is read-only, hid­
den, or system and whether it has been changed since it was last backed up.

The ATTRIB command provides a way to alter the read-only and archive bits from the
MS-DOS command level. If a file is marked read-only, it cannot be deleted or modified;
thus, crucial programs or data can be protected from accidental erasure. A file's archive
flag can be used together with the /M switch of the BACKUP command or the /M or /A
switch of the XCOPY command to allow an incremental or selective backup of files from
one disk to another.

If the ATTRIB command is entered with only a pathname, the current attributes of the
selected file are displayed. An R is displayed next to the name of a file that is marked read­
only and an A is displayed if the file has the archive flag set.

Examples

To make the file MENUMGR.C in the current directory of the current drive a read-only file,
type

C>ATTRIB +R MENUMGR.C <Enter>

To display the attributes of the file LETTER. DOC in the directory \SOURCE on the disk in
drive D, type

C>ATTRIB D:\SOURCE\LETTER.DOC <Enter>

Section !I/: UserCommands 743

HUAWEI EX. 1110 - 753/1582

ATTRIB

MS-DOS then displays

R A D:\SOURCE\LETTER.DOC

to indicate that the file is marked read-only and the archive flag has been set.

To set the archive flag on all files in the directory \SYSTEM on drive C and mark them as
read-only, type

C>ATTRIB +A +R C:\SYSTEM*.* <Enter>

Messages

Access denied
ATTRIB cannot be used to alter or replace the attributes of a file in use across a network.

DOS 2.0 or later required
ATTRIB does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of ATTRIB is not compatible with the version of MS-DOS that is running.

Invalid number of parameters
More than two attributes were used before the pathname.

Invalid path or file not found
The file named in the command line or one of the directories in the given path does not
exist.

Syntax error
An invalid attribute was supplied or the attribute was not properly placed before the path­
name in the command line.

7 44 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 754/1582

BACKUP
Back Up Files

Purpose

2.0 and later

External

BACKUP

Creates backup copies of files, along with the associated directory information necessary
to restore the files to their original locations.

Syntax

BACKUP source destination [!A] [/D:date] [/L:filename] [!M] [!P] [IS) [!T:time]

where:

source

destination
!A

/D:date
!L:filename

/M
!P

IS
/T:time

is the location (drive and/or path) and, optionally, the name of the files to
be backed up; wildcard characters are permitted in the filename.
is the drive to receive the backup files.
adds the files to existing files on the destination disk without erasing the
destination disk.
backs up only those files modified on or after date.
creates a log file with the specified name in the root directory of the
disk being backed up. If filename is not specified, BACKUP creates a
file named BACKUP. LOG and places the log entries there. Use of the
/L:filename switch may cause loss of IBM compatibility.
backs up only those files modified since the last backup.
packs the destination disk with as many files as possible, creating sub­
directories, if necessary, to hold some of the files. Use of the /P switch
causes loss of IBM compatibility.
backs up the contents of all subdirectories of the source directory.
backs up only those files modified on or after time.

Note: Not all switches are supported by all implementations of MS-DOS.

Description

The BACKUP command creates a backup copy of the specified file or files, transferring
them from either a floppy disk or a fixed disk to another removable or fixed disk. The
backup file is in a special format that includes information about the original file's location
in the directory structure. Files created by BACKUP can be restored to their original form
only with the RESTORE command.

BACKUP can back up a single file or many files in the same operation. If only a drive letter
is given as the source, all the files in the current directory of that disk are backed up. If
only a path is given as the source, all the files in the specified directory are backed up. If
the IS switch is used, all the files in the current or specified directory are backed up, and

Section III: User Commands 745

HUAWEI EX. 1110 - 755/1582

BACKUP

the files in all its subdirectories as well. If both a path and a filename are entered as the
source, the specified file or files in the named directory are backed up.

If the source file is marked read-only, the resulting backup file will also be marked read­
only. If the source file's archive bit is set, it will be cleared for both the source and the des­
tination files. BACKUP also backs up hidden files; the files will remain hidden on the desti-

. nation disk.

If the destination disk is a floppy disk, its previous contents are erased as part of the
backup operation (unless the /A switch is included in the command line and the destina­
tion disk has already been used as a backup disk- that is, the disk contains a valid
BACKUPID.@@@ file). If the files being backed up do not fit onto a single floppy disk, the
user will be prompted to insert additional disks until the backup operation is complete.

If the destination disk is a fixed disk, the backed-up files are placed in a directory named
\BACKUP. If a \BACKUP directory already exists on the fixed disk, any files previously
contained in it are erased as part of the backup operation (unless the I A switch is included
in the command line and the destination disk has already been used as a backup disk­
that is, the \BACKUP directory contains a valid BACKUPID.@@@ file). Other files on the
destination fixed disk are not disturbed.

A control file named BACKUPID.@@@ is placed on every floppy disk onto which files are
backed up or in the /BACKUP directory if the files are· backed up onto a fixed disk. The
BACKUPID.@@@ file has the following format:

Byte Value Use

OOH OOorFFH Not last floppy disk/last floppy disk
01-0ZH nn Floppy disk number in low-byte/high-byte decimal format
03-04H nnnn Full year in low-byte/high-byte order
05H 1-31 Day of the month
06H 1-12 Month of the year
07-0AH nnnn Standard MS-DOS system time if the /T: time switch was used;

otherwiseO
OB-7FH 00 Not used

Each backed-up file also has a 128-byte header added to it when it is created. The header
has the following format:

Byte

OOH
01H
02-04H

Value Use

00 or FFH Not last floppy disk/last floppy disk on which this file resides
nn Floppy disk number
00 Notused

7 46 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1110 - 756/1582

l
I

Byte Value

05-44H nn
45-52H 00
53H nn
54-7FH 00

Use

File's full pathname, except for drive designator
Not used
Length of the file's pathname plus one
Not used

BACKUP

The IT: time, !D:date, and/M switches allow incremental or partial backups. The IT: time
switch excludes files modified or created before a certain time and should be used in the
form of the COUNTRY command in effect. For the USA, the format is /T: hh:mm: ss. (The
IT: time switch is not supported in all implementations of BACKUP.) The /D: date switch
excludes files modified or created before a certain date and should be used in the form
of the COUNTRY command in effect. For the USA, the format is /D: mm-dd-yy. The /M
switch selects only those files that have been modified since the last backup operation.

The /L:filename switch causes a log file to be created on the source disk. This file
includes the name of each file backed up, the time and date, and the number of the des­
tination disk that received that backup file. If filename is omitted, the name defaults to
BACKUP.LOG. Use of the !L:filename switch can cause compatibility problems between
MS-DOS and PC-DOS because the backup log file may match the search pattern and be
backed up, too, resulting in an extra file on the backup disk.

The /P switcl:l causes backup files to be packed as densely as possible on the destination
disk. When many short files are being backed up to floppy disks, the number of files that
fit on the destination disk may exceed the number of entries that will fit in the destina­
tion's root directory. If the /P switch is included in the command line, subdirectories are
created on the destination disk as needed to use the disk space more effectively. The /P
switch is not supported under PC-DOS; backup disks created with the /P switch will not
be compatible with IBM's BACKUP and RESTORE commands.

Warning: BACKUP should not be used on disk directories or drives that have been
redirected with an ASSIGN,JOIN, or SUBST command.

Return Codes

0 Backup operation was successful.
1 No files were found to back up.
2 Some files were not backed up because of sharing conflicts (versions 3.0 and later).
3 Backup operation was terminated by user.
4 Backup operation was terminated because of error.

Examples

To back up the file REPORT. TXT in the current directory on the current drive, placing the
backup file on the disk in drive A, type

C>BACKUP REPORT.TXT A: <Enter>

Section Ill: User Commands 747

HUAWEI EX. 1110 - 757/1582

BACKUP

To back up all the files in the subdirectory B: \V2\ SOURCE, placing the backup files on the
disk in drive A, type

C>~ACKUP B:\V2\SOURCE A: <Enter>

To back up all the files with extension .C in the directory \V2\SOURCE on the current
drive, placing the backup files on the disk in drive A, type

C>BACKUP \V2\SOURCE*.C A: <Enter>

To back up all the files with the extension .ASM from the current directory on the current
drive and from all its subdirectories, placing the backup files on the disk in drive A, type

C>BACKUP *.ASM A: /S <Enter>

To back up all the files that have been modified since the last backup from all the sub­
directories on drive C, placing the backup files on the disk in drive A, type

C>~ACKUP C:\ A: /S /M <Enter>

To back up all the files with the extension .C from the directory C: \V2\SOURCE that were
modified on or after October 16, 1985, placing the backup files on the disk in drive A, type

C>BACKUP C:\V2\SOURCE*.C A: /D:10-16-85 <Enter>

Messages

•••Backing up files to drive X: ***
Diskette Number: n
This informational message informs the user of the progress or' the BACKUP command.

•••Last file not backed up ***
The destination drive does not have enough space to back up the last file.

•••Notable to back up file ***
One of the system calls used by BACKUP failed unexpectedly; for example, a file could not
be opened, read, or written.

Cannot create Subdirectory BACKUP on driveX:
Drive X is full or its root directory is full.

DOS 2.0 or later required
BACKUP does not work with versions of MS-DOS earlier than 2.0.

Error trying to open backup log file
Continuing without making log entries
The /L switch was used and BACKUP is unable to create the backup log file.

7 48 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 758/1582

Files cannot be added to this. diskette
unless the PACK (!P) switch is used
Set the switch (Y /N)?

BACKUP

The root directory of the destination disk is full and a subdirectory must be created to hold
the remaining files. Respond with Y to cause BACKUP to create a subdirectory and con­
tinue backing up files into it; respond with N to return to MS-DOS.

Incorrect DOS version
The version of BACKUP is not compatible with the version of MS-DOS that is running.

Insert backup diskette in drive X:
Strike any key when ready
This message prompts the user to insert a disk to receive the backup files into the speci­
fied destination drive.

Insert backup diskette n in drive X:
Strike any key when ready
The files being backed up will not fit onto a single floppy disk; this message prompts the
user to insert the next floppy disk. Multiple-floppy-disk backup disks should be labeled
and numbered to match the number displayed in this message.

Insert backup source diskette in drive X:
Strike any key when ready
This message prompts the user to insert the floppy disk to be backed up into the specified
source drive.

Insert last backup diskett~ in drive X:
Strike any key when ready
This message prompts the user to insert the final disk that will receive the backup files
into the specified destination drive.

Insufficient memory
Available system memory is insufficient to run the BACKUP program.

Invalid argument
One of the switches specified in the command line is invalid or is not supported in the ver­
sion of BACKUP being used.

Invalid Date/Time
An invalid date or time was given with the /D: date or /T: time switch.

Invalid drive specification
The source or destination drive specified in the command line is not available or is not
valid.

Invalid number of parameters
At least two parameters, the source and the destination, must be specified in the com­
mand line; a maximum of seven switches can be specified after the source and
destination.

Section ill: User Commands 749

HUAWEI EX. 1110 - 759/1582

BACKUP

Invalid parameter
One of the switches supplied in the command line is invalid.

Invalid path
The path specified as the source is invalid or does not exist.

Last backup diskette not inserted
Insert last backup diskette in drive X:
Strike any key when ready
The backup disk inserted as the last backup disk was not the correct disk. Insert the cor­
rect disk.

No space left on device
The destination disk is full.

No such file or directory
The source specified is invalid or does not exist.

Source and target drives are the same
The disks specified as the source and destination disks are identical.

Source disk is Non-removable
The disk containing the files to be backed up is a fixed disk.

Target can not be used for backup
The disk specified as the destination disk is damaged or the I A switch was used in the
command line and the disk does not contain a valid BACKUPID.@@@ file.

Target disk is Non-removable
The disk that will contain the backed-up files is a fixed disk.

Target is a floppy disk

or

Target is a hard disk
This informational message indicates which type of disk was specified as the destination
disk.

Too many open files
Too many files are open. Increase the value of the FILES command in the CONFIG.SYS
file. ·

Unable to erase filename
BACKUP is unable to erase an older version of a backed-up file because the file is read­
only or is in use by another program.

750 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 760/1582

Warning! Files in the target drive
X: \root directory will be erased
Strike any key when ready

BACKUP

The destination is a floppy-disk drive and this message warns the user that all files in its
root directory will be erased before the backup operation.

Warning! Files in the target drive
C: \BACKUP directory will be erased
Strike any key when ready
BACKUP is ready to begin backing up files to the \BACKUP directory on drive C. All exist­
ing files in the \BACKUP directory will be deleted. Press Crtl-Break to terminate the
backup operation or press any key to continue.

Warning! No files were found to back up
No files were found on the source disk in the current or specified directory or no files were
found matching the filename supplied.

Section III: UserCommands 751

HUAWEI EX. 1110 - 761/1582

BATCH

BATCH 1. 0 and later

Internal System Batch-File Interpreter

Purpose

Sequentially executes commands stored in·a batch file (a text-only file with a .BAT
extension).

Syntax

filename [[parameterl [parameter2 [...]]]]

where:

filename

parameterl

parameter2

Description

is the name of the batch file to be executed, without the .BAT extension.
(The filename is always %0 in the list of replaceable parameters.)
is the filename, switch, or string that is the value of the first replaceable
parameter (%1).
is the filename, switch, or string that is the value of the second replaceable
parameter (o/o2). As many additional replaceable parameters can be speci­
fied as the command line will hold.

A batch file is an ASCII text file that contains one or more MS-DOS commands. It is a use­
ful way to perform sequences of frequently used commands without having to type them
all each time they are needed. When a batch file is invoked by entering its name, the com­
mands it contains are carried out in sequence by a special batch-file interpreter built into
COMMAND.COM. Additional information entered in the batch-file command line can be
passed to other programs by means of replaceable parameters (see below).

A batch file must always have the extension .BAT. The file can contain any number of lines
of ASCII text; each line can contain a maximum of 128 characters. Batch files can be cre­
ated with EDLIN or another text editor or with a word processor in nondocument mode.
(Formatted document files cannot be used as batch files because they contain special con­
trol codes or escape sequences that cannot be processed by the batch-file interpreter.)
Batch files can also be created with the MS-DOS COPY command by specifying the CON
device (keyboard) as the source file and the desired batch-file name as the destination file.
For example, after the command

C>COPY CON MYFILE.BAT <Enter>

each line that is typed will be placed into MYFILE.BAT. This form of the COPY command
is terminated by pressing Ctrl-Z or the F6 key, followed by the Enter key.

The commands in a batch file can be any combination of internal MS-DOS commands
(such as DIR or COPY), external MS-DOS commands (such as CHKDSK or BACKUP), the
names of other programs or batch files, or the following special batch-file directives:

752 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 762/1582

Command

ECHO
FOR

GOTO

IF

PAUSE

REM

SHIFT

BATCH

Action

Displays a message on standard output (versions 2.0 and later).
Executes a command on each of a set of files (versions 2.0 and

later).
Transfers control to another point in a batch file (versions 2.0

and later).
Conditionally executes a command based on the existence of a

file, the equality of two strings, or the return code of a previously
run program (versions 2.0 and later).

Waits for the user to press a key before executing the remainder of
the batch file.

Allows comment lines to be placed in batch files for internal
documentation.

Provides access to more than 10 command-line parameters (ver­
sions 2.0 and later).

These special batch commands are discussed individually, with examples, in the following
pages.

A batch file is executed by entering its name, without the .BAT extension, in response to
the MS-DOS prompt. The system's command processor, COMMAND. COM, searches the
current directory and then each directory named in the PATH environment variable for a
file with the specified name and the extension .COM, .EXE, or .BAT, in that order. If a
.COM or .EXE file is found, it is loaded into memory and receives control; if a .BAT file is
found, it is assumed to be a text file and is passed to the batch-file interpreter. (If two files
with the same name exist in the same, directory, one with a .COM or .EXE extension and
the other with a .BAT extension, it is not possible to execute the .BAT file- the .COM or
.EXE file is always loaded instead.)

If the disk that contains a batch file is removed before all the commands in the batch file
are executed, COMMAND. COM will prompt the user to replace the disk so that the batch 4
file can be completed. Execution of a batch file can be terminated by pressing Ctrl-C or
Ctrl-Break, causing COMMAND. COM to issue the message Terminate batch job? (YIN). If
the user responds with Y, the batch file is abandoned and COMMAND. COM displays its
usual prompt.

The input redirection(<), output redirection(> or>>), and piping G) characters have no
effect when they are used in a command line that invokes a batch file. However, they can
be used in individual command lines within the file.

Ordinarily, if a batch file includes the name of another batch file, control passes to the sec­
ond batch file and never returns. That is, when the commands in the second batch file are
completed, the batch-file interpreter terminates and any remaining commands in the first

Section III: User Commands 753

HUAWEI EX. 1110 - 763/1582

BATCH

batch file are not processed. However, a batch file can execute another batch file without
itself being terminated by first loading a secondary copy of the system's command pro­
cessor. To accomplish this, the first batch file must contain a command of the form

COMMAND !C batch2

where batch2 is the name of the second batch file. When all the commands in the second
batch file have been processed, the secondary copy of COMMAND. COM exits and the
first batch file continues where it left off. (See USER COMMANDS: coMMAND for details on
the use of the /C switch with COMMAND. COM.)

A batch file can be made more flexible by including replaceable parameters inside the file.
A replaceable parameter takes the form %n, where n is a numeral in the range 0 through 9.
Replaceable parameters simply hold places in the batch file for filenames or other informa­
tion that the user will supply in the command line when the batch file is invoked.

When a batch file is interpreted and a command containing a replaceable parameter is
encountered, the corresponding value specified in the batch-file command line is substi­
tuted for the replaceable parameter and the command is then executed. The %0 replace­
able parameter is replaced by the name of the batch file itself; parameters %1 through %9
are replaced sequentially with the remaining values specified in the command line. If a
replaceable parameter references a command-line entry that does not exist, the parameter
is replaced with a null (zero-length) string.

For example, if the batch file MYBATCH.BAT contains the single line

COPY %1 .COM %2.SAV

and is executed by entry of

C>MYBATCH FILE1 FILE2 <Enter>

the actual command that is carried out is

COPY FILE1 .COM FILE2.SAV

(The SHIFT batch command makes it possible to use more than 10 replaceable parame­
ters. See USER COMMANDS: BATCH:SHIFT)

An environment variable is a special case of a replaceable parameter. If the SET command
is used in the form

SET name=value

to add an environment variable to the system's environment block, the string value will be
substituted for the string %name% wherever the latter is encountered during the inter­
pretation of a batch file. This capability is available only in versions 2.x, 3.1, and 3.2.

754 TheMS-DOS Encyclopedia

HUAWEI EX. 1110 - 764/1582

BATCH: AUTOEXEC.BAT
System Startup Batch File

Description

BATCH: AUTOEXEC.BAT

1.0 and later

The AUTO EXEC. BAT file is an optional batch file containing a series of MS-DOS com­
mands that automatically execute when the system is turned on or restarted.

When the system's default command processor, COMMAND. COM, is first loaded, it
looks in the root directory of the current drive for a file named AUTO EXEC. BAT. If
AUTO EXEC. BAT is not found, COMMAND. COM prompts the user to enter the current
time and date and then displays the MS-DOS copyright notice and command prompt. If
AUTOEXEC.BAT is found, COMMAND. COM sequentially executes the commands within
the file. No prompts to enter the time and date are issued unless the TIME and DATE
commands are explicitly included in the batch file; no copyright notice is displayed.

Typical uses of the AUTO EXEC. BAT file include

• Running a program to set the system time and date from a real-time clock/calendar
located on a multipurpose expansion board (IBM PC, PC/XT, or compatibles only)

• Using the MODE command to configure a serial port or to redirect printing
• Executing SET commands to configure environment variables
• Setting display colors on a color monitor (if the command DEVICE=ANSI.SYShas

been included in the CONFIG.SYS file)
• Installing terminate-and-stay-resident (TSR) utilities
• Using the PATH command to tell COMMAND. COM where to find executable pro­

gram files if they are not in the current drive and/or directory
• Defining a custom prompt using the PROMPT command
• Invoking an application program such as a database, spreadsheet, or word processor

A secondary copy of the command processor can also be loaded from within the
AUTO EXEC. BAT file. If this copy of COMMAND.COM is loaded with the /P switch, it too
searches for an AUTO EXEC. BAT file on the current drive and processes the file if it is
found. This feature can be useful for performing special operations. For example, on very
old PCs that are unable to start from a fixed disk, a secondary copy of the command pro­
cessor can be used to make the fixed disk's copy of COMMAND. COM the copy used by
the system from that point on (at the expense of some system memory). If the
AUTO EXEC. BAT file containing the lines

C:
COMMAND C:\ /P

is stored on the floppy disk in drive A when the system is turned on or restarted, the
first line of the file causes drive C to become the current drive; then the second line

Section Ill: User Commands 755

HUAWEI EX. 1110 - 765/1582

BATCH: AUTOEXEC.BAT

permanently loads a secondary copy of COMMAND.COM from drive C and instructs
COMMAND. COM to reload its transient portion from the root directory of drive C when
necessary. This in turn triggers the execution of the AUTO EXEC. BAT file on the fixed
disk to perform the actual system configuration. Because the transient part of
COMMAND.COM will be reloaded from the fixed disk when necessary, rather than
from the floppy disk, system performance is improved considerably.

Example
The following example illustrates several common uses of the AUTO EXEC. BAT file to con­
figure the MS-DOS system at startup time. (The line numbers are included for reference
and are not part of the actual file.)

ECHO OFF
2 SETCLOCK
3 PROMPT pg
4 MD D: \BIN
5 COPY C:\SYSTEM*.* D:\BIN >NUL
6 PATH=D:\BIN;C:\WP\WORD;C:\MSC\BIN;C:\ASM
7 APPEND 0:\BIN;C:\WP\WORD;C:\ASM
8 SET INCLUDE=C:\MSC\INCLUDE
9 SET LIB=C:\MSC\LIB
10 SET TMP=C:\TEMP
11 MODE COM1 :9600,n,8,1,p
12 MODE LPT1:=COM1:

Line 1 causes the batch-file processor to operate silently; that is, the commands in the
batch file are not displayed on the screen as they are executed.

Line 2 runs a utility program called SETCLOCK, which reads the current time and date
from a real-time clock chip on a multifunction board and sets the system time and date
accordingly.

Line 3 configures COMMAND. COM's user prompt so that it displays the current drive and
directory.

Line 4 creates a directory named \BIN on drive D, which in this case is a RAMdisk that
was created by an entry in the system's CONFIG.SYS file.

l
Line 5 copies all the programs in the \SYSTEM directory on drive C to the \BIN directory
on drive D. The normal output of this COPY command is redirected to the NUL device­
in effect, the output is thrown away- to avoid cluttering the screen.

Line 6 sets the search path for executable files and line 7 sets the search path for data files.
Note that the RAMdisk directory D: \BIN is specified as the first directory in the PATH
command; therefore, if the name of a program is entered and it cannot be found in the cur­
rent directory, COMMAND. COM will look next in the directory D:\BIN. This strategy
allows commonly used programs (in this example, the programs in the \SYSTEM direc­
tory that were copied into D: \BIN) to be located and loaded quickly.

756 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 766/1582

BATCH: AUTOEXEC.BAT

Lines 8 through 10 add the environment variables INCLUDE, LIB, and TMP to the system's
environment. These variables are used by the Microsoft C Compiler and the Microsoft
Object Linker.

Line 11 configures the first serial communications port (COMl) and line 12 causes program
output to the system's first parallel port (LPTl) to be redirected to the first serial port. This
pair of commands allows a serial-interface Hewlett Packard Laser jet printer to be used as
the system list device.

Note: Depending on the version of MS-DOS in use, some commands in this example may
not be available or may support different options. See the individual command entries for
more detailed information.

Section Ill: User Commands 757

HUAWEI EX. 1110 - 767/1582

BATCH: ECHO

BATCH: ECHO 2.0 and later

Display Text Internal

Purpose

Displays a message during the execution oh batch file and controls whether or not batch­
file commands are listed on the screen as they are executed.

Syntax

ECHO [ONiOFFimessage]

where:

ON enables the display of all subsequent batch-file commands as they are
executed.

OFF disables the display of all subsequent batch-file commands as they are
executed.

message is a text string to be displayed on standard output.

Description

Each command line of a batch file is ordinarily displayed on the screen as it is executed.
The ECHO command has a dual usage: to control the display of these commands and to
display a message to the user.

ECHO is used with ON or OFF to enable or disable the display of commands during
batch-file processing. If the ECHO command is used with no parameter, the current status
of the batch processor's ECHO flag is displayed. Note that the ECHO flag is always forced
on at the start of any batch-file processing, even if that batch file was invoked by another
batch file.

The ECHO command is not limited to batch files; an ECHO command can also be issued
at the command prompt. ECHO OFF entered at the command prompt prevents the
prompt from subsequently being displayed. ECHO ON entered interactively restores the
display. If ECHO is entered interactively without a parameter, the current status of the
ECHO flag is displayed.

ECHO can also be followed by a message to be sent to standard output regardless of the
status of the ECHO flag (on or off). Note that if ECHO is on, two copies ofthe message
are actually displayed, the first copy preceded by the word ECHO. ECHO message is fre­
quently used to display prompts and informative text during the execution of a batch file
because text following REM or PAUSE commands is not displayed if ECHO is off.

ECHO message can also be used to build lists or other batch files dynamically while the
batch file is executing. For example, the messages in the following ECHO commands are
used to build the file STARTUP.BAT:

ECHO CHKDSK > STARTUP.BAT
ECHO DIR /W >> STARTUP.BAT
ECHO PROMPT pg >> STARTUP.BAT

758 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 768/1582

BATCH: ECHO

The first ECHO command causes the message CHKDSK to be redirected to the file
STARTUP.BAT. The second and third ECHO commands cause the messages DIR/W and
PROMPT pg to be appended to the existing contents of STARTUP. BAT. The completed
STARTUP. BAT file contains the following:

CHKDSK
DIR /W

PROMPT pg

Note: When the pipe symbol (:) is used in message, the symbol and any characters follow­
ing it are ignored until a redirection symbol (<,>,or>>) is encountered, at which point the
redirection symbol and the remaining characters are recognized. For example, if the line

ECHO DIR : SORT > STARTUP.BAT

was placed in a batch file and subsequently executed, the only characters echoed to the
file STARTUP. BAT would be D~R; the pipe symbol and the characters between it and the
redirection symbol > would be ignored.

Examples

To disable the display of each batch-file command as it is executed, include the following
line as the first line in the batch file:

ECHO OFF

To display the message Now formatting disk on standard output, include the following
line in the batch file:

ECHO Now formatting disk

To display the current status of the ECHO flag, include the following line in the batch file:

ECHO

If the ECHO flag is currently off, MS-DOS displays:

ECHO is off

To echo a blank line to the screen with versions 2.x, type a space after the ECHO com­
mand and press Enter. To echo a blank line with versions 3.x, type the ECHO command
and a space, then hold down Alt and type 255 on the numeric keypad; finally, release the
Alt key and press Enter.

Messages

ECHO is off

or

ECHO is on
If the ECHO command is entered without a parameter, one of these lines is displayed to
give the current status of the batch processor's ECHO flag.

Section III: User Commands 759

HUAWEI EX. 1110 - 769/1582

BATCH: FOR

BATCH: FOR
Execute Command on File Set

2.0 and later

Internal

Purpose

Executes a command or program for each file in a set of files.

Syntax

FOR %%variable IN (set) DO command (batch processing)

or

FOR %variable IN (set) DO command (interactive processing)

where:

variable

set

command

Description

is a variable name that can be any single character except the numerals 0
through 9, the redirection symbols (<, >, and»), and the pipe symbol CD;
case is significant.
is one or more filenames, pathnames, character strings, or metacharacters,
separated by spaces, commas, or semicolons; wildcard characters are per­
mitted in filenames.
is any MS-DOS command or program except the FOR command; the vari­
able name %%variable (or %variable in interactive mode) can be part of
the command.

The FOR command allows sequential execution of the same command or program on
each member of a set of files.

The set parameter can contain multiple filenames (including wildcards), pathnames, char­
acter strings, or metacharacters such as the replaceable parameters %0 through %9. Each of
the following lines is an example of a valid set:

(FILE1 .TXT %1 %2 B:\PROG\LISTING?.TXT)

(A:\%1 A:\%2 C:\LETTERS*.TXT C:MEMO?.*)
(%PATH%)

Each filename from set is assigned in turn to %variable and then the specified command
or program is executed. (When the FOR command line is executed in a batch file, the
leading percent sign ofo/oo/ovariable is removed, leaving %variable.) If a filename in set
contains wildcards, each matching file is used before the batch processor goes on to the
next member of set.

760 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 770/1582

BATCH: FOR

Note: In versions 2.x, set can consist only of a list of single filenames, a single filename
with wildcard characters, or a combination of single filenames and metacharacters. Inver­
sions 3.x, however, all combinations of these are allowed in the same set.

The FOR command can also be used interactively at the MS-DOS prompt to perform a
single command on several files without entering the same command for each file. When
FOR is used in this manner, only one percent sign (%) should be used before the dummy
alphabetic variable; in this case, the percent sign is not removed during processing. When
the FOR command is used interactively, environment variables such as %PATH% cannot
be used as part of the filename set.

Examples

To view all the files with the extension .TXT in the current directory, include the following
line in the batch file:

FOR %%X IN (*.TXT) DO TYPE %%X

To perform the same function interactively, type

C>FOR %X IN (*.TXT) DO TYPE %X <Enter>

To copy up to nine files to the disk in drive A, specifying the names of the files in the
batch-file command line, include the following line in the batch file:

FOR %%Y IN (%1 %2 %3 %4 %5 %6 %7 %8 %9) DO COPY %%Y A:

(Recall that %0 is the name of the batch file.)

To execute successive batch files under the control of one batch file, use the /C switch with
COMMAND, as in the following batch-file line:

FOR %%Z IN (BAT1 BAT2 BAT3) DO COMMAND /C %%Z

Message

FOR cannot be nested
The command or program performed by a FOR command cannot be another FOR
command.

Section Ill: User Commands 761

HUAWEI EX. 1110 - 771/1582

BATCH:GOTO

BATCH:GOTO
Jump to Label

Purpose

2.0 and later

Internal

Transfers program control to the batch-file !,ine following the specified label.

Syntax

GOTO name

where:

name is a batch-file label declared elsewhere in the file in the form :name.

Description

The GOTO command causes the batch-file processor to transfer its point of execution to
the line following the specified label. If the label does not exist in the file, execution of the
batch file is terminated with the message Label not found.

A batch-file label is defined as a line with a colon character(:) in the first column, followed
by any text (including spaces but not other separator characters such as semicolons or
equal signs). Only the first eight characters following the colon are significant; spaces are
not counted in the eight characters.

Examples

The GOTO command is frequently used in combination with the IF and SHIFT batch
commands to perform some action based on the return code from a program. For exam­
ple, the following batch file will back up a variable number of files or directories, whose
names are specified in the batch-file command line, to a floppy disk in drive A. The batch
file accomplishes this by executing the BACKUP program with successive pathnames
specified in the command line until BACKUP returns a nonzero (error) code. Control is
then transferred to the label :DONE, and the batch file is terminated.

ECHO OFF
2 :START
3 BACKUP %1 A:
4 IF ERRORLEVEL 1 GOTO DONE
5 SHIFT
6 GOTO START
7 :DONE

Note thatthe batch file includes two labels, :START and :DONE, in lines 2 and 7, respec­
tively. It also includes two GOTO commands, in lines 4 and 6. (The line numbers in the
listing above are included only for reference and are not present in the actual batch file.) If
the condition in line 4 is true (the BACKUP program returned an exit code of 1 or higher),
the remainder of line 4 is executed and program control passes to the :DONE label in

762 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 772/1582

BATCH:GOTO

line 7. If the condition is false, program control passes to line 5, the SHIFT command is
executed, and program control goes to line 6, where the GOTO statement returns pro­
gram control to line 2.

Message

Label not found
The specified label does not exist in the batch file.

Section Ill: User Commands 763

HUAWEI EX. 1110 - 773/1582

BATCH: IF

BATCH: IF
Perform Conditional Execution

2.0 and later

Internal

Purpose

Tests a condition and executes a command ~or program if the condition is met.

Syntax

IF [NOT] condition command

where:

condition

command

Description

is one of the following:

ERRORLEVEL number
The condition is true if the exit code of the program last executed by
COMMAND. COM was equal to or greater than number. Note that not all
MS-DOS commands return explicit exit codes.

string 1= = string2
The condition is true if stringl and string2are identical after parameter
substitution; case is significant. The strings cannot contain separator char­
acters such as commas, semicolons, equal signs, or spaces.

EXIST pathname
The condition is true if the specified file exists. The pathname can include
metacharacters.

is the command or program to be executed if the condition is true.

The IF command provides conditional execution of a command or program in a batch file.
When condition is true, IF executes the specified command, which can be another IF
command, any other MS-DOS internal command, or a program. When condition is not
true, MS-DOS ignores command and proceeds to the next line in the batch file. The sense
of any condition can be reversed by preceding the test or expression with NOT.

Examples

To branch to the label :ERROR if the file LEDGER.DAT does not exist, include the follow­
ing line in the batch file:

IF NOT EXIST LEDGER.DAT GOTO ERROR

764 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 774/1582

BATCH: IF

To branch to the label :ONEPAR if the batch-file command line does not contain at least
two parameters, include the following line in the batch file:

IF "%2"==""GOTO ONEPAR

or

IF %2-==- GOTO ONEPAR

Note that the existence of a replaceable parameter can be determined by concatenating it
to another string. In the first example, quotation marks are concatenated on either side of
the replaceable parameter; if%2 doesn't exist, "%2"== ""evaluates to '"'=='"~which is true
and will allow GOTO ONEPAR to be executed. In the second example, a tilde character is
concatenated to the end of the replaceable parameter; if %2 doesn't exist, the argument
becomes -==-.

To copy the file specified by the first replaceable batch-file parameter to drive A only if it
does not already exist on the disk in drive A, include the following line in the batch file:

IF NOT EXIST A:%1 COPY %1 A:

To branch to the label :DONE if the first replaceable batch-file parameter exists in the
\ PROG directory on drive C and in the \BACKUP directory on drive C, include the follow­
ing line in the batch file:

IF EXIST C:\PROG\%1 IF EXIST C:\BACKUP\%1 GOTO DONE

Messages

Bad command or filename
The command following the condition in the IF statement was misspelled, does not exist,
or was represented by a replaceable parameter that was not supplied in the command line
that invoked the batch file.

Syntax error
The condition specified in the IF statement cannot be tested.

Section II/: UserCommands 765

HUAWEI EX. 1110 - 775/1582

BATCH: PAUSE

BATCH: PAUSE
Suspend Batch-File Execution

Purpose

1.0 and later

Internal

Displays a message, suspends execution of.a batch file, and waits for the·user to press a
key.

Syntax

PAUSE [message]

where:

message is a text string to be displayed on standard output.

Description

The PAUSE command displays the message Strike a key when ready ... and suspends
execution of a batch file until the user presses a key. This command can be used to allow
time for the operator to change disks, change the type of forms on the printer, or take
some other action that is necessary before the batch file can continue.

If the batch processor's ECHO flag is on when the PAUSE command is executed, the entire
line containing the PAUSE statement is displayed on the screen so that the optional mes-
sage is visible to the user. The message Strike a key when ready ... is then displayed on a
new line and the system waits. Note that Strike a key when ready ... is always displayed,
even if the ECHO flag is off. When the user presses a key, execution of the batch file
resumes.

Note: Redirection symbols should not be used within message. They prevent the message
Strike a key when ready ... from being displayed on the screen.

If the user presses Ctrl-C or Ctrl-Break while a PAUSE command is waiting for a key to be
pressed, a prompt is displayed that gives the user the opportunity to terminate the execu­
tion of the batch file. This same message is displayed whenever the user presses Ctrl-C or
Ctrl-Break during the execution of a batch file; however, using PAUSE commands supple­
mented by appropriate ECHO commands at strategic points within a batch file provides
the user with clearly defined breakpoints for terminating the file.

Examples

To display the message Put an empty disk in drive A and then wait until the user has
pressed a key, include the following line in the batch file:

PAUSE Put an empty disk in drive A

7 66 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 776/1582

BATCH: PAUSE

When this line of the batch file is executed, if the ECHO flag is on, the user sees the fol­
lowing messages on the screen:

C>PAUSE Put an empty disk in drive A

Strike a key when.ready ...

If the ECHO flag is off, only the message Strike a key when ready . .. appears.

To display the message without the prompt and command, the PAUSE command can be
used immediately after an ECHO command, as follows:

ECHO OFF

CLS
ECHO Put an empty disk in drive A

PAUSE

This batch file will display the following message on the screen:

Put an empty disk in drive A

Strike a key when ready . . .

Note that the message must be included in an ECHO command. With ECHO off, a PAUSE
message is not displayed.

Section Ill: User Commands 767

HUAWEI EX. 1110 - 777/1582

BATCH: REM

BATCH: REM
Include Comment Line

Purpose

Designates a remark, or comment, line in a patch file.

Syntax

REM [message]

where:

message is any text.

Description

1.0 and later

Internal

The REM command allows inclusion of remarks, or comments, within a batch file.
Remarks are often used to document the purpose of other commands within the file for
the benefit of those who may wish to modify the file later.

If the ECHO flag is on, remarks are displayed on the screen during the execution of a
batch file. Thus, remarks can also be used to provide information, guidance, or prompts to
the user; however, the ECHO and PAUSE commands are more suitable for these purposes.

REM can also be used alone to insert blank lines in a batch file to improve readability. (If
ECHO is on, the word REM will still be displayed.)

Note: The redirection symbols (<,>,and>>) and piping character C) produce no mean­
ingful results with the REM command and should not be used.

Example

To document a batch file's revision history with the internal comment This batch file last
modified on 6/18/87, include the following line in the batch file:

REM This batch file last modified on 6/18/87

768 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 778/1582

BATCH: SHIFT

BATCH: SHIFT 2.0 and later

Shift Replaceable Parameters Internal

Purpose

Changes the position of the replaceable parameters in a batch-file command line, thereby
allowing more than 10 replaceable parameters.

Syntax

SHIFT

Description

Ordinarily only 10 replaceable parameters (%0 through %9, where %0 is the name of the
batch file) can be referenced within a batch file. The SHIFT command allows access to ad­
ditional parameters specified in the command line by shifting the contents of each of the
previously assigned parameters to a lower number (%1 becomes %0, %2 becomes %1, and
so on). The previous contents of %0 are lost and are not recoverable. The eleventh param­
eter in the batch-file command line is then moved into %9. This allows more than 10
parameters to be specified in the batch-file command line and subsequently processed
in the batch file.

Example

The following batch file will copy a variable number of files, whose names are entered in
the batch-file command line, to the disk in drive A:

ECHO OFF
:NEXT
IF "%1"=="" GOTO DONE
COPY %1 A:
SHIFT
GOTO NEXT
:DONE

Section Ill: User Commands 769

HUAWEI EX. 1110 - 779/1582

BREAK

BREAK 2.0 and later

Set Control-C Check Internal

Purpose

Sets or clears MS-DOS's internal flag for Cootrol-C checking.

Syntax

BREAK [ON:OFF)

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro­
gram, unless the program itself contains instructions that disable MS-DOS's Control-C han­
dling. As a rule, MS-DOS checks the keyboard for a Control-C only when a character is
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executes for long periods without performing such character 1/0,
detection of the user's entry of a Control-C may be delayed. The BREAK ON command
causes MS-DOS to also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK OFF command disables such extended
Control-C checking. The default setting for BREAK is off.

If the BREAK command is entered alone, the current status of MS-DOS's internal BREAK
flag is displayed.

Examples

To display the current status of the MS-DOS internal flag for extended Control-C checking,
type

C>BREAK <Enter>

MS-DOS displays

BREAK is off

or

BREAK is on

depending on the status of the BREAK flag.

To enable extended checking for Control-C during disk operations, type

C>BREAK ON <Enter>

770 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 780/1582

BREAK

Messages

BREAK is on

or

BREAK is off
Extended Control-C checking is enabled or disabled, respectively. These messages occur
in response to a BREAK status check.

Must specify ON or OFF
An invalid parameter was supplied in a BREAK command.

Section III: User Commands 771

HUAWEI EX. 1110 - 781/1582

CHDIRorCD

CHDIRorCD
Change Current Directory

Purpose

2.0 and later

Internal

Changes the current directory or displays the current path of the specified or default disk
drive.

Syntax

CHOIR [drive:][pathl

or

CD [drive:] [path]

where:

drive

path

Description

is the letter of the drive for which the current directory will be changed or
displayed, followed by a colon. Note that use of the drive parameter does not
change the currently active drive.
is one or more directory names, separated by backslash characters(\), that
define an existing path.

The CHOIR command, when followed by an existing path, is used to set the working
directory for the default or specified disk drive.

The path parameter consists of the name of an existing directory, optionally followed by
the names of existing subdirectories, each separated from the next by a backslash charac­
ter. If path begins with a backslash, CHOIR assumes that the first named directory is a sub­
directory of the root directory; otherwise, CHOIR assumes that the first named directory is
a subdirectory of the current directory. The special directory name .• , which is an alias for
the parent directory of the current directory, can be used as the path.

When CHOIR is entered alone or with only a drive letter followed by a colon, the full path
of the current directory for the default or specified drive is displayed.

CD is simply an alias for CHOIR; the two commands are identical.

Examples

To change the current directory for the current (default) disk drive to the path
\V2\SOURCE, type

C>CD \V2\SOURCE <Enter>

772 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 782/1582

CHDIRorCD

To display the name of the current directory for the disk in drive D, type

C>co D: <Enter>

To return to the pal,"ent directory of the current directory, type

C>co <Enter>

Messages

Invalid directory
One of the directories in the specified path does not exist.

Invalid drive specification
An invalid drive letter was given or the named drive does not exist in the system.

Section Ill: User Commands 773

HUAWEI EX. 1110 - 783/1582

CHKDSK

CHKDSK 1. 0 and later

Check Disk Status External

Purpose

Analyzes the allocation of storage space on a disk and displays a summary report of the
space occupied by files and directories.

Syntax

CHKDSK [drive:][pathname] [/F] [/V]

where:

drive

path name

IF
/V

Description

is the letter of the drive containing the disk to be analyzed, followed by a
colon.
is the location and, optionally, the name of the file(s) to be checked for
fragmentation; wildcard characters are permitted in the filename.
repairs errors (versions 2.0 and later).
''verbose mode," reports the name of each file as it is checked (versions
2.0 and later).

The CHKDSK command analyzes the disk directory and file allocation table for consis­
tency and reports any errors. If the /V switch is included in the command line, the name of
each file processed is displayed as the disk is being analyzed.

After analyzing the disk, CHKDSK displays a summary of the disk and RAM space used
and available. The disk-space report includes

• Total disk space in bytes
• Number of bytes allocated to hidden files
• Number of bytes contained in directories
• Number of bytes contained in user files
• Number of bytes contained in bad (unusable) sectors
• Number of available bytes on the disk

(Hidden files are files that do not appear in a directory listing. A bootable MS-DOS or
PC-DOS disk always contains two hidden files- MSDOS.SYS and IO.SYS or IBMDOS. COM
and IBMBIO.COM, respectively-that contain the operating system. A volume label, if
present, counts as a hidden file. In addition, some application programs create hidden files
for copy protection or other purposes.)

Directory errors detected by CHKDSK include

• Invalid pointers to data areas
• Bad file attributes in directory entries

77 4 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 784/1582

CHKDSK

• Damage to a portion of the directory that makes it impossible to check one or more
paths

• Damage to an entire directory that makes the files contained in that directory
inaccessible

File allocation table (FAT) errors detected by CHKDSK include

• Defective disk sectors in the FAT
• Invalid cluster (disk allocation unit) numbers in the FAT
• Lost clusters
• Cross-linking of files on the same cluster

If the IF switch is included in the command line, CHKDSK will attempt to repair errors in
disk allocation and recover as much data as possible. Because repairs usually involve
changes to the disk's file allocation table that may cause a loss of information, the user is
prompted for confirmation. Lost clusters are collected into files in the root directory with
names of the form FILEnnnn.CHK.

If the command line contains a file specification, CHKDSK will examine all files that
match the specification and report on their fragmentation- that is, on whether or not
their sectors are contiguous on the disk. (Fragmented files can degrade the performance of
the system because of the time required to move the drive head back and forth across the
disk to reach the various parts of the file.) Files on a floppy disk can be collected into con­
tiguous sectors by copying them to an empty floppy disk. Files on a fixed disk can be col­
lected into contiguous sectors by backing them all up to floppy disks, erasing all files and
subdirectories on the fixed disk, and then restoring the files from the floppy disk.

Warning: CHKDSK should not be used on a network drive or on a drive created or
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To check the disk in the current drive, type

C>CHKDSK <Enter>

If CHKDSK finds no errors, a report such as the following is displayed:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

11 6736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory
566576 bytes free

Section Ill: User Commands 775

HUAWEI EX. 1110 - 785/1582

CHKDSK

Note that the line containing the volume name and creation date does not appear if the
disk has not been assigned a volume name.

If CHKDSK finds errors, a message such as the following is displayed:

Errors found, F parameter not specified.
Corrections will not be written to disk.

10 lost clusters found in 3 chains.
Convert lost chains to files (Y/N)?

A Y response at this point does not convert the lost chains to files; to do this, enter the
CHKDSK command again with the IF switch specified.

To correct any allocation errors found by the CHKDSK command, type

C>CHKDSK /F <Enter>

In this example, CHKDSK displays its usual report, followed by an error message:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space
38912 bytes in 3 hidden files

116736 bytes in 53 directories
17055744 bytes in 715 user files

20480 bytes in bad sectors
3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

10 lost clusters found in 3 chains.
Convert lost chains to files (Y/N) ?

A Y response causes CHKDSK to recover the lost chains of clusters into files in the root
directory, giving the files the names FILEOOOO.CHK, FILEOOOl.CHK, FILE0002.CHK, and
so on. An N response causes CHKDSK to free the lost chains of clusters without saving the
contents to files.

To check all files in the directory C:\SYSTEM with the extension .COM for fragmentation,
type

C>CHKDSK C:\SYSTEM*.COM <Enter>

776 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 786/1582

CHKDSK displays its usual report, followed by a list of fragmented files:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space

38912 bytes in 3 hidden files

116736 bytes in 53 directories

17055744 bytes in 715 user files

20480 bytes in bad sectors

3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

C:\SYSTEM\ALUSQ.COM

Contains 2 non-contiguous blocks.

C:\SYSTEM\EJECT.COM

Contains 4 non-contiguous blocks.

Messages

. Does not exist.

or

.. Does not exist.
The • (alias for the current directory) or the •• (alias for the parent directory) entry is
missing.

filename Is cross linked on clustern

CHKDSK

Two or more files have been assigned the same cluster. Make a copy of both files on
another disk and then delete them from the disk containing the error. One or both of the
resulting files may contain information belonging to the other file.

· x lost clusters found iny chains.
Convert lost chains to files (YIN)? 4
Clusters have been identified that are not assigned to any existing file. If the IF switch was
included in the original command line, respond with Y to convert the lost clusters to files
in the root directory of the disk with names of the form FILE nnnn.CHK. If desired, the
recovered clusters can then be returned to the free-disk-space pool by erasing the .CHK
files.

Allocation error, size adjusted.
The size of the file indicated in the disk directory is not consistent with the number of
clusters allocated to the file. If the IF switch was included in the command line, the file is
truncated to the size indicated in the disk directory.

All specified flle(s) are contiguous.
The clusters belonging to the specified file(s) are allocated contiguously (without
fragmentation).

Section Ill: User Commands 777

HUAWEI EX. 1110 - 787/1582

CHKDSK

Cannot CHDIR to pathname
tree past this point not processed.
The tree directory structure of the disk being checked cannot be traveled to the specified
directory. This message indicates severe damage to the disk's directories or files.

CannotCEU>IRtoroot
Processing cannot continue.
In traversing the tree directory structure of the disk being checked, CHKDSK was unable
to return to the root directory. This message indicates severe damage to the disk's directo­
ries or files.

Cannot CHKDSK a Network drive
The drive containing the disk to be checked has been assigned to a network.

Cannot CHKDSK a SUBSTed or ASSIGNed drive
The drive containing the disk to be checked has been substituted or assigned.

Cannot recover . entry, processing continued.
The special directory entry. (alias for the current directory) is defective.

Cannot recover .. entry,
Entry has a bad attribute

or

Cannot recover .. entry,
Entry has a bad link

or

Cannot recover .. entry,
Entry has a bad size
The special directory entry •. (alias for the parent directory ofthe current directory) is
defective due to a bad attribute, link, or size.

CHDIR .. failed, trying alternate method.
While checking the tree structure, CHKDSK was unable to return to the parent directory
of the current directory. It will attempt to return to that directory by starting over at the
root directory and searching again.

Contains n non-contiguo'uS blocks.
The clusters assigned to the specified file are not allocated contiguously on the disk.

Directory is joined
CHKDSK cannot process directories that have been joined using the JOIN command. Use
the JOIN /D command to unjoin the directories, then run CHKDSK again.

Directory is totally empty, no . or ..
The specified directory does not contain the usual aliases for the current and parent direc­
tories. This message indicates severe damage to the disk's directories or files. Delete the
directory and recreate it.

778 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 788/1582

CHKDSK

Disk error reading FAT n

or

Disk error writitJ.g FAT n
One of the file allocation tables for the disk being checked contains a defective sector.
MS-DOS will use the alternate FAT if one is available. It is advisable to copy all the files on
the disk containing the defective sector to another disk.

Errors found, F parameter not specified.
Corrections will not be written to disk.
Errors were found on the disk being checked, but the IF switch was not included in the
command line.

File allocation table bad drive X:
The disk is not an MS-DOS disk. Repeat CHKDSK with the IF option; if this message is
displayed again, reformat the disk.

File not found.
CHKDSK was unable to find the specified file.

First cluster number is invalid, entry truncated.
The directory entry for the specified file contains an invalid pointer to the disk's data area.
If the IF switch was included in the command line, the file is truncated to a zero-length
file.

General Failure error reading drive X:
The format of the disk being checked is not compatible with MS-DOS or the disk has not
been formatted for use by MS-DOS.

Has iJ:lvalid cluster, file truncated.
The file directory contains an invalid pointer to the disk's data area. If the IF switch was
included in the command line, the file is truncated to a zero-length file.

Incorrect DOS version
The version of CHKDSK is not compatible with the version of MS-DOS that is running.

Insufficient memory
Processing cannot continue.
The computer does not have enough memory to contain the tables necessary for CHKDSK
to process the specified disk.

Insufficient room in root directory.
Erase files in root and repeat CHKDSK.
The root directory is full and does not have room for the entries for recovered files. Delete
some files from the root directory of the disk being checked and rerun the CHKDSK
program.

Section III: User Commands 779

HUAWEI EX. 1110 - 789/1582

CHKDSK

Invalid current directory
Processing cannot continue.
The directory structure of the disk is so badly damaged that the disk is unusable.

Invalid drive specification
The CHKDSK command contained an invalid disk drive.

Invalid parameter
One of the switches in the command line isinvalid.

Invalid sub-directory entry.
The directory name specified in the command line does not exist or is invalid.

Path not found.
One of the directories in the path specified in the command line does not exist or is
invalid. '

Probable non-DOS disk
Continue (Y /N)?
The disk being checked was not formatted by MS-DOS or the file allocation table has been
severely damaged or destroyed.

Unrecoverable error in directory.
Convert directory to file (Y /N)?
The specified directory is damaged and unusable. If the IF switch was included in the
original command line, respond with Y to convert the damaged directory to a file in the
root directory of the disk with a name of the form FILE nnnn.CHK. If desired, the .CHK file
can then be deleted. Any files that were previously reached through the damaged direc­
tory will be lost.

780 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 790/1582

CLS
Clear Screen

Purpose

Clears the video display.

·syntax

CLS

Description

2.0 and later

Internal

The CLS command clears the video display and displays the current prompt.

CLS

In some implementations of MS-DOS, proper operation of the CLS command may require
installation of the ANSI.SYS console driver with a DEV/CE=ANSI.SYS command in the
CONFIG.SYS file.

Examples

To clear the screen, type

C>CLS <Enter>

To save the ANSI escape sequence used bythe CLS command (ESC[2J) into a file named
CLEAR.TXT, type

C>CLS > CLEAR.TXT <Enter>

Section III: UserCommands 781

HUAWEI EX. 1110 - 791/1582

COMMAND

COMMAND
Command Processor

Purpose

Loads a secondary copy of the MS-DOS default command processor.

Syntax

COMMAND [drive:Hpath] [device] [/E:n] [/P] [/C string]

where:

1.0 and later

External

path is the name of the directory to be searched for COMMAND. COM when the
transient portion needs to be reloaded; a drive letter can be included with ver­
sions 2.0 and later.

device is the name of a character device to be used instead of CON for the command
processor's input and output (versions 2.0 and later).

/E: n is the initial size, in bytes, of the command processor's environment block
(160-32768, default= 160) (version 3.2).

/P fixes the newly loaded command processor permanently in memory (versions
2.0 and later).

/C string causes the command processor to behave as a transient program and execute
the command or program specified by string(versions 2.0 and later).

Description

The command processor is the module of the operating system that is responsible for
issuing prompts to the user, interpreting commands, loading and executing transient appli­
cation programs, and interpreting batch files. The file COMMAND. COM contains the
MS-DOS default command processor, or shell. It is ordinarily loaded from the root direc­
tory of the system disk when the system is turned on or restarted, unless the SHELL com­
mand is used in the CONFIG.SYS file to specify another command processor or an
alternate location for COMMAND. COM.

With versions l.x, COMMAND. COM is invoked by the COMMAND command in re­
sponse to a shell prompt or within a batch file. A second copy of the resident portion of
COMMAND. COM is loaded and the memory occupied by the original resident portion is
lost. The second copy of the transient portion simply overlays the original transient por­
tion. (Versions l.x of COMMAND support no switches or other parameters and any speci­
fied in the command line are ignored.) With versions 2.0 and later, the new copy of
COMMAND. COM is loaded in addition to the parent command processor and serves ·
as a secondary command processor.

782 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 792/1582

COMMAND

The path parameter specifies the location of the COMMAND. COM file that is used to
reload the transient part of the command processor if it is overlaid by application pro­
grams. If absent, path defaults to the root directory of the system (startup) disk.

The device parameter allows a character device other than CON to be used by the com­
mand processor for input and output. For example, use of AUX as the device parameter
allows a personal computer to be controlled from a terminal attached to a serial port,
instead of from the usual built-in keyboard and memory-mapped video display.

The secondary copy of COMMAND. COM ordinarily remains in memory and serves as the
active command processor until an EXIT command is entered. If a /P switch is used with
the COMMAND command, the new copy of COMMAND.COM is fixed in memory and the
EXIT command is disabled. In such cases, the memory occupied by previously loaded
copies of COMMAND. COM is simply lost.

The /E: n switch controls the size of the environment block initially allocated for the
command processor. The default size of the block is 160 bytes, but the /E: n switch allows
the initial allocation to be as large as 32768 bytes. This switch is frequently used when
COMMAND. COM is included in the SHELL command in the CONFIG.SYS file.

When the /C string switch is included in the command line, followed by a string desig­
nating a command or program name, the new copy of COMMAND. COM carries out the
operation specified by string and then exits, returning control to its parent command pro­
cessor or other program. This option allows a batch file to invoke another batch file and
then resume its own execution. (If a batch file names another batch file directly without
using COMMAND /C string as an intermediary, the first batch file is terminated.) Note
that when the /C string switch is used in combination with other switches, it must be
the last switch in the command line.

A secondary copy of COMMAND. COM always inherits a copy of the environment of
the command processor or other program that loaded it. Changes made to the new
COMMAND. COM's environment with a SET, PROMPT, or PATH command do not affect
the environment of any previously loaded program or command processor.

Examples
To execute the batch file MENU2.BAT from the batch file MENUl.BAT and then resume
execution of MENUl.BAT, include the following line in MENUl.BAT:

COMMAND /C MENU2

To cause COMMAND. COM to be loaded from the directory \SYSTEM on drive C rather
than from the root directory and to allocate an initial environment block of 1024 bytes,
include the following line in the CONFIG.SYS file:

SHELL=C:\SYSTEM\COMMAND.COM C:\SYSTEM /P /E:1024

Section Ill: User Commands 783

HUAWEI EX. 1110 - 793/1582

COMMAND

Messages

Bad or missing command interpreter
The file COMMAND. COM is not present in the root directory of the system disk and no
SHELL command is present to specify an alternate command processor file or location, or
the location specified for COMMAND. COM in a SHELL command is not correct. This mes­
sage may also be seen if COMMAND. COM is moved from its original location after the
system is booted. ""

Invalid device
The character device specified in the command line is not valid or does not exist.

Invalid environment size specified
The value supplied with the /E: n switch was less than 160 bytes or greater than 32768
bytes.

784 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 794/1582

COMP

COMP IBM

Compare Files External

Purpose

Compares two files or sets of files. This command is available only with PC-DOS.

Syntax

COMP [primary] [secondary]

where:

primary is the name of the file to be compared against and can be preceded by a
drive arid/or path; wildcard characters are permitted in the filename.

secondary is the name of the file to be compared with primary and can be preceded
by a drive and/or path; wildcard characters are permitted in the filename.

Description

The COMP command compares one file or set of files with another. As each pair of files is
compared, the program reports whether the files are identical, different in size, or the
same size but different in content.

The primary and secondary parameters can be any combination of drive,· path, and file­
name, optionally including wildcards to allow sets of files to be compared. (With versions
l.x, using wildcards does not cause multiple file comparisons- only the first secondary
file whose name matches the first primary filename is compared.) The primary parameter
generally designates the specific files to be compared; the secondary parameter is usually
only a drive and/or path, except when the files being compared have different names or
extensions.

If both primary and secondary are omitted from the command line, the COMP program
prompts for them interactively. If primary is given as a drive or path only, COMP assumes
*·*to be the primary file. If secondary is given as a drive or path only, COMP compares all
files on that drive or path whose filenames match those of the primary files.

The COMP command is included only with PC-DOS. MS-DOS versions 2.0 and later
provide a similar function in the FC command, which also displays the differences be­
tween files.

Examples

To compare the file MYFILE.DAT on the disk in drive A with the file LEDGER.DAT on the
disk in drive B, type

c>COMP A:MYFILE.DAT B:LEDGER.DAT <Enter>

Section Ill: User Commands 785

HUAWEI EX. 1110 - 795/1582

COMP

To compare all the files in the current directory of the disk in drive A with the
corresponding files in the current directory of the disk in drive D, type

C>COMP A:*.* D: <Enter>

To compare all the files with the extension .ASM in the directory C: \SOURCE with the
corresponding files with extension .BAK on the disk in drive B, type

C>COMP C:\SOURCE*.ASM B:*.BAK <Enter>

Messages

10 mismatches- ending compare
The primary and secondary files are the same size but have more than 10 internal differ­
ences. The compare operation on this pair of files is aborted and COMP proceeds to the
next pair of files, if any.

filename and .filename
This informational message shows the full filenames of the two files currently being
compared.

Access Denied
An attempt was made to compare a locked file.

Cannot compare file to itself
An attempt was made to compare a file with itself.

Compare error at OFFSET nn
Filel=nn
File2 =nn
This informational message itemizes the first 10 differences in data between the two files
being compared (if the files are the same size), displaying the file offset and the differing
bytes from each file as hexadecimal values.

Compare more files (YIN)?
After all specified pairs of files have been compared, the COMP program allows the entry
of another pair of file specifications. Respond with Y or press Enter to continue; respond
with N to terminate the COMP program.

Enter 2nd file name or drive id
If the secondary filename was not specified in the COMP command, this message prompts
the user to enter it (or a path, if the secondary file has the same name as the primary file).

Enter primary file name
If no parameter was entered after COMP, this message prompts the user to enter the pri­
mary filename. If a drive or path is specified, COMP assumes •.• for the primary filename.

EOF mark not found
The last byte at the logical end of the file was not a Control-Z character 0Z, or lAH). This
message is commonly seen during comparison of two files that are not ASCII text files,
such as executable program files.

786 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 796/1582

. Files compare OK
The files being compared were the same length and contained identical data.

File not found
The specified filename was invalid or the file does not exist.

Files are different sizes
The two files being compared have different sizes recorded in the directory. No com­
parison on the data within the files is attempted.

File sharing conflict
COMP is unable to compare the two current files because one of the files is in use by
another process.

Incorrect DOS version
The version of COMP is not compatible with the version of PC-DOS that is running.

Insufficient memory
The available system memory is insufficient to run the COMP program.

Invalid drive specification
The drive specification in primary or secondary is invalid or does not exist.

Invalid path
The path or directory in primary or secondary is invalid or does not exist.

Too many files open

COMP

No more system file handles are available. Increase the value of the FILES command in the
CONFIG.SYS file and restart the system.

Section III: User Commands 787

HUAWEI EX. 1110 - 797/1582

CONFIG.SYS

CONFIG.SYS 2.0 and later

System Configuration File

Purpose

Allows the user to configure the operating system.

Description

The CONFIG.SYS file is an ASCII text file that MS-DOS processes during initialization
(when the system is turned on or restarted). It allows the user to configure certain aspects
of the operating system, such as the number of internal disk buffers allocated, the number
of files that can be open at one time, the formats for date and currency, and the name and
location of the executable file containing the command processor. CONFIG.SYS can also
contain commands that extend the system with installable device drivers for terminal
emulation, virtual disks or RAMdisks, extended or expanded memory, and other special
peripheral devices.

The CONFIG.SYS file can be created or modified with EDLIN or with any other editor or
word processor that can produce ordinary ASCII text files (nondocument files) and save
them to disk. The CONFIG.SYS file must be in the root directory of the disk that is used to
start the operating system in order for it to be processed during system initialization.
When changes are made to the CONFIG.SYS file, they do not take effect until the system
is restarted.

Commands in the CONFIG.SYS file take the form

command[=]value

(Note that the equal sign is optional; any other valid MS-DOS separator [semicolon, tab, or
space] can be used instead.) The commands supported are

Comniand

BREAK
BUFFERS

COUNTRY
DEVICE
DRIVPARM

FCBS

Action

Controls extended checking for Control-C.
Specifies the number of internal disk-sector buffers available for use by

MS-DOS when reading from or writing to a disk.
Controls date, time, and currency formatting.
Specifies the filename of an installable device driver.
Redefines the default characteristics of the resident MS-DOS block

device(s) (version 3.2).
Specifies the maximum number of simultaneously open file control blocks

(versions 3.0 and later).

(more)

788 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 798/1582

!
I

CONFIG.SYS

.Command Action

FILES . Specifies the maximum number of simultaneously open files controlled by
handles.

LASTDRIVE Sets the highest valid drive letter (versions 3.0 and later).
SHELL Specifies the filename (and optionally the drive and/or path) of the system

command processor.
STACKS Sets the number and size of stack frames for the system.

Each of these commands is discussed in detail on the following pages.

Message

Unrecognized command in CONFIG.SYS
A command in the CONFIG.SYS file was misspelled, an invalid parameter was used, or a
command was included that is not compatible with the version of MS-DOS that is running.
Correct the CONFIG.SYS file and restart the system.

Section Ill: User Commands 789

HUAWEI EX. 1110 - 799/1582

CONFIG.SYS: BREAK

CONFIG.SYS: BREAK
Configure Control-C Checking

Purpose

Sets or clears MS-DOS's internal flag for Control-C checking.

Syntax

BREAK=ON :OFF

Description

2.0 and later

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro­
gram, unless the program itself contains instructions that disable MS-DOS's Control-C
handling. As a rule, MS-DOS checks the keyboard fora Control-C only when a character is
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executes for long periods without performing such character 1/0,
detection of the user's entry of a Control-C may be delayed. The BREAK=ON command
causes MS-DOS to also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK=OFF command disables such extended
Control-C checking. The default setting for BREAK is off.

Extended Control-C checking can also be enabled or disabled at the command prompt
with the interactive form of the BREAK command whenever the system is running.

Example

To enable extended Control-C checking during MS-DOS disk operations, insert the line

BREAK=ON

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
The setting supplied for the BREAK command was not ON or OFF. Correct the
CONFIG.SYS file and restart the system.

790 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 800/1582

CONFIG.SYS: BUFFERS
Configure Internal Disk Buffers

Purpose

Sets the number of MS-DOS's internal disk buffers.

Syntax

BUFFERS=nn

where:

CONFIG.SYS: BUFFERS

2.0 and later

nn is the number of buffers (1-99, default = 2; default = 3 for IBM PC/AT and
compatibles).

Description

MS-DOS maintains a set of internal buffers (sometimes referred to as a disk cache) in
which it keeps copies of the sectors most recently read from or written to the disk. When­
ever a program requests a disk read, MS-DOS first searches the disk buffers to determine
whether a copy of the disk sector containing the required data is already present in RAM.
If the sector is found, the actual disk access is bypassed. This technique can significantly
improve the overall performance of the disk operating system.

By using the BUFFERS command in the CONFIG.SYS file, the user can control the number
of buffers in MS-DOS's disk cache. The default number of buffers is 2 for an IBM PC,
PC/XT, or compatible and 3 for an IBM PC/AT or compatible. The optimum number of
buffers varies, depending in part on the characteristics and types of the system disk drives,
the types of application programs used on the system, the number and levels of subdirec­
tories in the file structure, and the amount of RAM in the system.

If the system has only floppy-disk drives, the default setting of 2 buffers is sufficient. If the
system includes a fixed disk, increasing the number of buffers to 10 or so typically speeds
up overall system operation. Configuring the system for too many buffers, however, can
actually degrade the performance of the system.

Increases in the number of buffers should be tailored to the type of application most fre­
quently used. For example, allocation of extra disk buffers will not improve the perfor­
mance of programs that use primarily sequential file access but may considerably enhance
the execution times of programs that perform random access on a relatively small number
of disk records (such as the index for a database file). In addition, if the system has many
subdirectories organized in several levels, increasing the number of buffers can signifi­
cantly increase the speed of disk operations.

The ideal number of buffers for a given system is difficult to predict because of the interac­
tions between the access time of the disk, the speed of the central processing unit, and the

Section Ill: User Commands 791

HUAWEI EX. 1110 - 801/1582

CONFIG.SYS: BUFFERS

RAM requirements and disk access behavior of the mix of application programs. However,
a reasonably optimal number of buffers can be quickly estimated experimentally by in­
creasing the number of buffers in increments of five or so, restarting the system, perform­
ing some simple timing tests on the most frequently used application programs, and
observing at what number of buffers system performance begins to degrade.

Example

To allocate 20 internal disk buffers, insert tbe line

BUFFERS=20

into the CONFIG.SYS file and restart the system.

Message
Unrecognized command in CONFIG.SYS
The value supplied for the BUFFERS command was not a number in the range 1 through
99.

792 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 802/1582

CONFIG.SYS: COUNTRY

CONFIG.SYS: COUNTRY 2.1 and later

Set Country Code

Purpose

Configures MS-DOS's internationalization support for a specific country.

Syntax

COUNTRY=nnn

where:

nnn is the international telephone dialing prefix for the country (001-999, default =

001):

Australia 061
Belgium 032
Denmark 045
Finland 358
France 033
Israel 972
Italy 039
Netherlands 031
Norway 047
Spain 034
Sweden 046
Switzerland 041
United Kingdom 044
USA 001
West Germany 049

Note: In versions 2.x (except 2.0), nnn is 01 through 99. Individual computer manufactur­
ers determine the specific codes supported by their versions of MS-DOS.

Description

The COUNTRY command enables the user to tailor MS-DOS's date, time, and currency
displays for a specific country. This capability, termed internationalization support, is
achieved through use of a country code that controls the contents of the table MS-DOS
uses to format these displays (including numeric separators). (The internationalization
table is made available to application programs through Interrupt 21H Function 38H.)
Beginning with version 3.0, PC-DOS also supports the COUNTRY command.

Section Ill: User Commands 793

HUAWEI EX. 1110 - 803/1582

CONFIG.SYS: COUNTRY

Example

In West Germany, the format for the date is dd.mm.yy. To configure MS-DOS to use this
date format, insert the line

COUNTRY=049

into the CONFIG.SYS file and restart the system.

Message

Invalid country code
The specified country code is not supported by the version of MS-DOS that is running.

794 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 804/1582

CONFIG.SYS: DEVICE

CONFIG.SYS: DEVICE 2.0 and later

Install Device Driver

Purpose

Loads and links an installable device driver into the operating system during initialization.

Syntax

DEVICE=[drive:][pathlfilename [options]

where:

filename is the name of the device-driver file, optionally preceded by a drive and/or
path.

options specifies any switches or other parameters needed by the device driver; the
DEVICE command itself has no switches.

Description

Device drivers are the modules of the operating system that control the interface between
the operating system and peripheral devices such as disk drives, magnetic-tape drives,
CRT terminals, and printers.

As supplied, MS-DOS already contains device drivers for the keyboard, video display, serial
port, printer, real-time clock, and disk devices. Device drivers for additional peripheral
devices can be linked into the operating system by adding a DEVICE command to the
CONFIG.SYS file, placing the file containing the device driver on the system startup disk
(or at the location specified by the drive: and/or path parameter), and restarting the
computer.

If a drive other than the one containing the system disk is named as the location of the
device driver, that drive must either be accessible via the system's default disk driver or be
a drive configured with a previous DEVICE command.

Most OEM implementations of version 3.2 provide three installable device drivers:
ANSI.SYS, which allows the video display and keyboard to be controlled by ANSI standard
escape sequences; DRIVER.SYS, which supports external disk drives; and RAMDRIVE.SYS
(VDISK.SYS with PC-DOS), which uses a portion of the machine's RAM to emulate a disk
drive. See USER COMMANDS: ANSI.sYs; DRIVER.sYs; RAMDRIVE.SYS; VDISK.SYS.

Many manufacturers of add-on products for MS-DOS machines (such as network interfaces
or Lotus/Intel/Microsoft Expanded Memory boards) also supply installable device drivers
for use with their hardware. For information concerning these drivers, see the product
manufacturer's user's manual.

Section III: User Commands 795

HUAWEI EX. 1110 - 805/1582

CONFIG.SYS: DEVICE

Examples

To load the ANSI standard console driver, insert the line

DEVICE=ANSI.SYS

into the CONFIG.SYS file, place the file ANSI.SYS in the root directory of the system disk,
and restart the system.

To load the RAMDRIVE.SYS driver located !V the \DRIVERS directory on the disk in drive
A, configt!ring it for 1024 KB in extended memory, insert the line

DEVICE=A:\DRIVERS\RAMDRIVE.SYS 1024 /E

into the CONFIG.SYS file and restart the system.

Messages

Bad or missing filename
The filename specified in the DEVICE command is invalid or does not exist or the file
does not contain a valid MS-DOS installable device driver.

Sector size too large in file filename
The specified installable device driver uses a sector size that is larger than the sector size
used by any of the system's default disk drivers. Such a driver cannot be used because
MS-DOS's internal disk buffers will not be large enough to hold a sector read from the
device.

796 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 806/1582

CONFIG.SYS: DRIVPARM

CONFIG.SYS: DRIVPARM 3.2

Set Block-Device Parameters

Purpose

Alters the system's list of characteristics for an existing block device.

Syntax

DRIVPARM=/D:n[/C] [/F:n] [/H:n] [/N] [/S:n] [/T:n]

where:

/D: n is the drive number (0-255; 0 =A, 1 = B, etc.) and must always be the first
switch in the command line.

!C indicates that the device provides door-lock-status support.
/F: n is a form-factor index from the following table (default= 2 if the DRIVPARM

command is present but this switch is omitted):

0 320 KB or 360 KB
1 1.2MB
2 720KB
3 8-inch single-density floppy disk
4 8-inch double-density floppy disk
5 Fixed disk
6 Tapedrive
7 Other

/H: n is the number of read/write heads (1-99).
IN indicates that the block device is not removable.
IS: n is the number of sectors per track (1-99).
IT: n is the number of tracks per side (1-999).

Note: The DRIVPARM command must not be used to specify device characteristics that
the device driver is not capable of supporting.

Description

Whenever the device driver for a block device such as a disk drive or magnetic-tape drive
performs input or output, it refers to an internal table of characteristics for the device that
allows it to convert logical addresses to physical addresses. The DRIVPARM command
modifies the default MS-DOS values in the table of characteristics for a particular block
device during system initialization (when the computer is turned on or restarted). Multiple
DRIVPARM commands, each modifying the characteristics of a different block device, can
be included in the same CONFIG.SYS file. Any characteristics not specifically altered in

Section III: User Commands 797

HUAWEI EX. 1110 - 807/1582

CONFIG.SYS: DRIVPARM

the DRIVPARM command for a particular device retain their original values, except for
/F: n, which defaults to 2.

DRIVPARM commands that alter the characteristics for block devices controlled by install­
able device drivers must follow the DEVICE command that loads the device driver itself.

Example

Assume that drive B is a floppy-disk drive originally configured for 40 tracks with 8 sectors
per track. To reconfigure the drive to read or write 80 tracks of 9 sectors each, insert the
line

DRIVPARM=/D:1 /S:9 /T:SO

into the CONFIG.SYS file and restart the system. For this command to be valid the drive
must be capable of supporting these parameters.

Message

Unrecognized command in CONFIG.SYS
An invalid parameter was specified in a DRIVPARM command.

798 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 808/1582

CONFIG.SYS: PCBS

CONFIG.SYS: FCBS 3.0 and later

Set Maximum Open Files Using File Control Blocks (FCBs)

Purpose

Configures the maximum number of files that can be open concurrently using file control
blocks (FCBs). This command has no practical effect unless either the file-sharing support
module SHARE.EXE or networking support has been loaded.

Syntax

FCBS=m,p

where:

m is the maximum number of files that can be open concurrently using FCBs (1-255,
default = 4).

p is the number of files opened with FCBs that are protected against automatic closure
(0-m, default= 0).

Description

MS-DOS supports two methods of file access: file control blocks and file handles. A file
control block is a data structure that stores information about an open file. It resides inside
an application program's memory space and is accessed by both MS-DOS and the applica­
tion. (See USER COMMANDS: coNFIG.sYs: FILEs for information on file handles.)

In a network environment, a large number of active FCBs or improper use of FCBs by
an application can seriously degrade the performance of the network as a whole. Conse­
quently, MS-DOS versions 3.0 and later provide the FCBS command to enable the user to
limit the number of files that can be open concurrently using FCBs if either the file-sharing
support module SHARE.EXE (see USER COMMANDS: SHARE) or rietwork support has
been loaded. If an application program attempts to exceed the specified number of files,
MS-DOS closes the file with the least recently used FCB.

The p parameter in the FCBS command line allows the user to protect files from unilateral
closure by MS-DOS. The value of pis the number of files, counting from the first file
opened using an FCB, that cannot be closed automatically.

If the current value of FCBS is 4, 0 (the default) when the file-sharing module SHARE.EXE
or network support is loaded, MS-DOS automatically increases the maximum number of
files that can be open concurrently to 16 and the number of files protected against automa­
tic closure to 8. (When multiple FCBs refer to the same file, the file is counted only once.)

Section Ill: User Commands 799

HUAWEI EX. 1110 - 809/1582

CONFIG.SYS: PCBS

Examples

To set the maximum number of files that can be concurrently open using FCBs to 10 and
protect none of the FCB-opened files against automatic closure by MS-DOS, insert the line

FCBS=10,0

into the CONFIG.SYS file and restart the system.

To set the maximum number of files that can be concurrently open using FCBs to 8 but
protect the first 4 FCB-opened files against automatic closure by MS-DOS, insert the line

FCBS=8,4

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified as one of the parameters in the FCBS command.

800 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 810/1582

CONFIG.SYS: FILES

CONFIG.SYS: FILES 2.0 and later

Set Maximum Open Files Using Handles

Purpose

Configures the maximum number of files and/or devices that can be open concurrently
using file handles.

Syntax

FILES=n

where:

n is the maximum number of files and devices that can be open concurrently using file
handles {8-255, default= 8).

Description

MS-DOS supports two methods of file access: file handles and file control blocks (FCBs).
During i~itialization, MS-DOS allocates a data structure that holds information about files
and/or devices opened with the handle, or extended-file-management, function calls. This
structure resides inside the operating system's memory space and is accessed only by
MS-DOS. (See USER COMMANDS: coNFIG.sYs: FCBs.) The default size of this data structure
allows 8 files and/or devices to be open concurrently using the file-handle functions. The
FILES command enables the user to change the size of the data structure. (Note that in­
creasing the size of the data structure decreases the amount of RAM available to applica­
tion programs.)

The FILES command controls the maximum number of files and/or devices opened with ·
handles for all active processes in the system combined. The limit on the number of files
and/or devices opened for a single process using handles is 20 or the number of entries in
the allocated data structure, whichever is less. Five of the 20 possible handles for a given 4
process are automatically assigned to standard input, standard output, standard error, stan-
dard auxiliary, and standard list. However, since standard input, standard output, and
standard error all default to the same device (CON), only three of the allocated data-
structure entries are actually expended. In addition, the preassigned standard device
handles for a process can be closed and reused for other files and devices, if necessary.

Section Ill: User Commands 801

HUAWEI EX. 1110 - 811/1582

CONFIG.SYS: FILES

Example

To set the maximum number of files and/or devices that can be concurrently open using
the handle functions to 20, insert the line

FILES=20

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified in the FILES command.

802 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 812/1582

CONFIG.SYS: LASTDRIVE

CONFIG.SYS: LASTDRIVE 3.0 and later

Set Highest Logical Drive

Purpose

Defines the highest letter that MS-DOS will recognize as a disk-drive code.

Syntax

LASTDRIVE=drive

where:

drive is a single letter (A-Z).

Description

MS-DOS block devices (floppy-disk drives, fixed-disk drives, and magnetic-tape drives)
are referred to by logical drive codes consisting of a single letter from A through Z. In most
MS-DOS systems, drives A and B are floppy-disk drives, drive C is a fixed disk, and drives
D and above are such devices as additional fixed disks, RAMdisks, or network volumes. In
some cases, a single physical drive (such as a very large fixed disk) is partitioned into two
or more logical drives, each of which is assigned a drive letter.

MS-DOS validates the drive code in a command or filename before carrying out a com­
mand. In the default case, MS-DOS recognizes a maximum of five drives (A-E), depend­
ing on the total number of default devices and devices incorporated into the system using
installable device drivers. (MS-DOS does not consider a drive letter valid unless it refers to
a physical or logical device.) The LASTDRIVE command configures MS-DOS to accept
additional drive codes, to a total of 26 (A-Z). This also makes it possible to use fictitious
drive letters with the SUBST command to assign a drive letter to a subdirectory.

If the letter code for a LASTDRIVE command specifies fewer drives than are physically
present in the system (including installed device drivers), MS-DOS uses the actual number
of physical drives.

Example

To configure MS-DOS to recognize a maximum of eight logical disk drives, insert the line

LASTDRIVE=H

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An illegal value was specified in the LASTDRIVE command.

Section Ill: User Commands 803

HUAWEI EX. 1110 - 813/1582

CONFIG.SYS: SHELL

CONFIG.SYS: SHELL 2.0 and later

Specify Command Processor

Purpose

Defines the name and, optionally, the loc~tion of the file that contains the operating
system's command processor.

Syntax

SHELL=[drive:] [path]jilename [options]

where:

filename is the name of the file containing the command processor, optionally pre­
ceded by a drive and/or path.

options specifies any switches and other parameters needed by the designated com­
mand processor; the SHELL command itself has no switches.

Description

The command processor, or shell, is the user's interface to the operating system. It is
responsible for parsing and carrying out the user's commands, including the loading and
execution of other programs from the disk. MS-DOS uses the SHELL command in the
CONFIG.SYS file to locate and load the command interpreter for the system during its
initialization process.

The default shell for MS-DOS is the file COMMAND. COM. This file is loaded by MS-DOS
from the root directory of the system disk if no SHELL command is found in the
CONFIG .SYS file or if no CONFIG.SYS file exists.

The most common use of the SHELL command is simply to advise MS-DOS that
COMMAND.COM is stored in a location other than the root directory; MS-DOS then sets
the COMSPEC variable in the environment block to COMMAND. COM, preceded by the
location specified in the SHELL command. (This can be verified by typing the SET com­
mand at the command prompt.) Another common use of SHELL is to specify switches or
other parameters for COMMAND.COM itself (see USER COMMANDS: coMMAND).

Example

To specify the file VISUAL. COM in the root directory of drive Cas the system's command
processor, insert the line

SHELL=C:\VISUAL.COM

into the CONFIG.SYS file and restart the system.

Message

Bad or missing command interpreter
The path or filename in the SHELL command is invalid or the file does not exist.

804 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 814/1582

CONFIG.SYS: STACKS
Configure Internal Stacks

Purpose

Defines the number and size of stacks for system interrupt handlers.

Syntax

STACKS= number, size

where:

CONFIG.SYS: STACK

3.2

number is the number of stacks allocated for use by interrupt handlers (8-64, default=
9).

size is the size of each stack in bytes (32-512, default= 128).

Description

Each time certain hardware interrupts occur (02H, 08-0EH, 70H, and 72-77H), MS-DOS
version 3.2 switches to an internal stack before transferring control to the handler that will
service the interrupt. In the case of nested interrupts, MS-DOS checks to ensure that both
interrupts do not get the same stack. After the interrupt has been processed, the stack is
released. This protects the stacks owned by application programs or system device drivers
from overflowing when several interrupts occur in rapid succession.

The STACKS command configures the number and size of internal stacks available for
interrupt handling and thus controls the number of interrupts that can exist only partially
processed while still allowing another interrupt to occur.

The number parameter sets the number of internal stacks to be allocated; number must
be in the range 8 through 64. The size parameter is the number of bytes allocated per
stack frame; size must be in the range 32 through 512.

If too many interrupts occur too quickly and the pool of internal stack frames is exhausted,
the system halts with the message Internal Stack Overflow. Increasing the number
parameter in the STACKS command usually corrects the problem.

Example

To configure 10 stacks of 256 bytes each for use by interrupt handlers, insert the line

STACKS=10,256

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified in the STACKS command.

Section Ill: User Commands 805

HUAWEI EX. 1110 - 815/1582

COPY

COPY 1.0 and later

Copy File or Device Internal

Purpose

Copies one or more files from one disk, directory, or filename to another. Can also copy
files to or from character devices.

Syntax

COPY source[/A] [/B] [+source[/A] [/Bl.. .] [destination] [/A] [/B] [/V]

where: \\

source

destination

/A
!B
/V

Description

is the names of the file(s) to be copied, optionally preceded by a drive
and/or path; wildcard characters are permitted in filenames. The source
can also be a device.
is the location and, optionally, the name(s) for the copied file(s) and can
be preceded by a drive; wildcard characters are permitted in the filename.
The destination can also be a device.
indicates that the previous file is an ASCII text file.
indicates that the previous file is a binary file.
performs read-after-write verification of destination file(s).

The COPY command copies one or more source files to one or more destination files.
When multiple files are copied, the name of each source file is displayed as it is processed.
The COPY command can also be used to send the contents of a file to a character device
or to copy input from a character device into a file.

The source parameter identifies the file or files to be copied. It can consist of any combina­
tion of drive, path, and filename or it can be a device name. If a path without a filename is
specified, all files in the named directory are copied. Several source files can be concate­
nated into a single destination file by placing a + operator between their names; if the
source filename contains a wildcard but the destination name does not, all the source files
are concatenated into the specified destination.

Warning: When multiple source files are concatenated into a destination file with the
same name as one of the source files, that filename should be specified as the first source
file. Otherwise, the contents of the source file will be destroyed before the file is copied.

When a device is specified as the source, it is usually the console (CON), for copying key­
board input to a file or another device. Keyboard input is terminated by pressing Ctrl-Z or
F6 (on IBM PCs or compatibles) and then the Enter key.

806 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 816/1582

COPY

The destination parameter also can consist of any combination of drive, path, and file­
name or be a device name. Unless the source files are being renamed as part of the opera­
tion, destination is usually simply a drive and/or path specifying where to place the
copied files. If no destination is specified, the source file is copied to a file with the same
name in the current directory of the default disk drive; if the source file in this case is itself
in the current directory of the current drive, an error message is displayed and the copy
operation is aborted. If files are being concatenated and no destination is specified, the
source files are copied sequentially into one file in the current <firectory with the same
name as the first source file. If the first source file already exists, the second file and any
additional specified files are appended sequentially to the first source file.

The /A and /B switches control the manner in which the COPY command operates on a
file. Both switches affect the file specification immediately preceding them and any subse­
quent file specifications in the command until another /A or /B switch is encountered, at
which point the new /A or /B switch takes effect for the file immediately preceding it and
for any subsequent files.

The /A switch indicates that a file is an ASCII text file. When the /A switch is applied to a
source file, the file is copied up to, but not including, the first Control-Z (!'Z) character in
the file. When the /A switch is applied to a destination file, a Control-Z character is ap­
pended by the COPY command as the last character of the new file ..

The /B switch indicates a binary file. When /B is applied to a source file, the exact number
of bytes in the original file are copied without regard to Control-Z or any other control
characters. When the /B switch is applied to a destination file, no Control-Z character is
appended to the newly created file.

The default values for the /A and /B switches for file-to-file copies are /A when source files
are being concatenated and /B otherwise. When a file is being copied to or from a charac­
ter device, the /A switch is the default.

The /V switch causes a read-after-write verification of each block of the destination file. Its
effect is equivalent to that of the VERIFY ON command. No comparison is made between
the source and destination files- the /V switch simply causes MS-DOS to verify that the
destination file has been written correctly.

Examples

To copy the file REPORT. TXT from the root directory of the disk in drive B to a file named
FINAL.RPT in the \WP\DOCS directory on the current drive, type

C>COPY B:\REPORT.TXT \WP\DOCS\FINAL.RPT <Enter>

To make a copy of the file A:\V2\SOURCE\MENUMGR.C in the current directory of the
current drive, type

C>COPY A:\V2\SOURCE\MENUMGR.C <Enter>

Section Ill: User Commands 807

HUAWEI EX. 1110 - 817/1582

COPY

To copy all files with the extension .DOC in the current directory of the disk in drive A to
files with the same filenames but a .TXT extension in the current directory of the current
drive, type

C>COPY A:*.DOC *.TXT <Enter>

To combine the files PROLOG.C, MENUMGR.C, and EPILOG.C in the current directory of
the current drive into a single file named VISUAL. C in the current directory of the current
drive, type

C>COPY PROLOG.C+MENUMGR.C+EPILOG.C VISUAL.C <Enter>

To append the files MENUMGR.C and EPILOG.C to an existing file named PROLOG.C in
the current directory of the current drive, type

C>COPY PROLOG.C+MENUMGR.C+EPILOG.C <Enter>

To copy the file MENUMGR.MAP in the current directory of the current drive to the system
printer, type

C>COPY MENUMGR.MAP PRN <Enter>

To copy input from the keyboard (CON) to a file named MENU.BAT in the current direc­
tory of the current drive, type

C>COPY CON MENU.BAT <Enter>

Text subsequently entered from the keyboard is placed into the file MENU. BAT until a
Ctrl-Z or F6 is pressed.

To copy all files in the \MEMOS directory on the current drive to the \ARCHIVE directory
on the disk in drive B, type

C>COPY \MEMOS*.* B:\ARCHIVE <Enter>

or

c>COPY \MEMOS B:\ARCHIVE <Enter>

Messages

n File{s) copied
This informational message is displayed at the completion of a COPY command and indi­
cates the total number of source files processed.

Cannot do binary reads from a device
The COPY command specified a copy from a character device in binary mode. Reenter
the command without a /B switch.

Content of destination lost before copy
One of the source files specified as a destination file was overwritten prior to completion
of the copy. When the destination name is the same as one of the source names, that file
should be specified as the first source file.

808 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 818/1582

I

I
I
I

COPY

File cannot be copied onto itself
The source directory and filename of a file being copied are the same as the destination
directory and filename.

File not found
A file specified in the COPY command is invalid or does not exist.

Invalid directory
A directory specified in the COPY command is invalid or does not exist.

Section Ill: User Commands 809

HUAWEI EX. 1110 - 819/1582

CTTY

CTTY 2.0 and later

Internal Assign Standard Input/Output Device

Purpose

Specifies the character device to be used as· standard input and output.

Syntax

CTTY device

where:

device

Description

is the logical character-device name.

MS-DOS ordinarily uses the computer's built-in keyboard and screen (CON) as standard
input and output. The CTTY command allows another character device to be assigned
instead.

CTTY allows MS-DOS commands to be issued from a terminal attached to the computer's
serial port or from another custom device with a screen and keyboard. Although PRN and
NUL are valid MS-DOS device names, they should not be used with this command, as they
have no input capability.

Programs that do not use MS-DOS function calls to perform their input and output will not
be affected by the CTTY command. Microsoft BASIC is an example of such a program.

Examples

To use a terminal connected to the serial port as standard input and output for programs,
type

C>CTTY AUX <Enter>

To reinstate the normal keyboard and video display (CON) as standard input and output
for programs, type

C>CTTY CON <Enter>

on the currently assigned console device.

Message

Invalid device
The specified device is not a legal character-device name or does not exist in the system.

810 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 820/1582

DATE
Set Date

Purpose

Sets or displays the system date.

Syntax
DATE mm-dd-yy

or

DATE mm!ddlyy

or

DATE mm.dd.yy (versions 3.0 and later)

where:

mm is the month (1-12).
dd istheday(l-31).

1.0 and later

Internal

DATE

yy is the year (80-99 or 1980-1999; 80-79 or 1980-2079 with versions 3.0 and
later).

Description

All computers that run MS-DOS have as part of their hardware configuration a timer, or
clock, that maintains the current system date and time. Among other uses, the current date
and time are inserted into a file's directory entry when the file is created or modified.

The DATE command allows the user to display or modify the current date that is being
maintained by the system's real-time clock. The command is.executed automatically by
MS-DOS when the system is initialized, unless there is an AUTO EXEC. BAT file on the sys­
tem disk, in which case DATE is executed only if it is included in the file.

A date entered using the DATE command does not permanently change the system date;
the newly entered date will be lost when the system is turned off or reset. On IBM PC/ATs
and compatibles, which have a built-in battery-backed clock/calendar, the system setup
program (found on the Diagnostics for IBM Personal Computer AT disk or equivalent) must
be used to permanently alter the date stored in the machine. On IBM PCs, PC/XTs, and
compatibles equipped with add-on cards containing battery-backed clock/calendar cir­
cuitry, it is generally necessary to run a time/date installation program (included with
the card) when the system is turned on to set the system date and time from the clock/
calendar on the card. The DATE command usually has no effect on these card-mounted
clock/calendars.

Sectionlii: UserCommands 811

HUAWEI EX. 1110 - 821/1582

DATE

The order of the day, month, and year in the DATE command depends on the country
code, which is set with the COUNTRY command in the CONFIG.SYS file. The format
shown here is for the USA.

Examples

To set the system date to October 15, 1987, type

C>DATE 10-15-87 <Enter>

or

C>DATE 10/15/87 <Enter>

or

C>DATE 10.15.87 <Enter>

To display the current system date, type

C>DATE <Enter>

and MS-DOS will respond in the form

Current date is Thu 10-15-1987
Enter new date (mm-dd-yy) :

To leave the date unchanged, press the Enter key.

Messages

Current date is day mm-dd-yyyy
Enter new date (mm-dd-yy):
This informational message and prompt are displayed when MS-DOS is started and there
is no AUTOEXEC.BAT file on the system disk, when the DATE command is entered alone,
or when the DATE command is included in the AUTO EXEC. BAT file.

Invalid date
Enter new date (mm-dd-yy):
The date entered in the command line or in response to the prompt from the DATE com­
mand was not formatted properly or was invalid.

812 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 822/1582

DEL or ERASE
Delete File

Purpose

Deletes a file or set of files. DEL and ERASE are synonymous.

Syntax

DEL [drive:] [path]filename

or

ERASE [drive:] [path]jilename

where:

DEL or ERASE

1.0 and later

Internal

filename is the name of the file(s) to be deleted, optionally preceded by a drive and/or
path; wildcard characters are permitted in the filename.

Description

The DEL command marks the directory entry for the specified file as deleted and frees the
disk sectors occupied by the file. If the command line ends with•.•or a directory name
(including the special directory names. and ..), MS-DOS prompts the user for confirma­
tion before deleting all the files in the current or specified directory. Note that in the case
of a directory name, the directory itself is not removed; only the files within it are deleted.

Warning: If the filename specification begins with an • wildcard and the extension is
also • (for example, •xyz. *), DEL interprets the specification as *. * and prompts the user for
confirmation before deleting all files from the current or specified directory.

Examples

To delete the file HELLO.C from the current directory on the current drive, type

C>DEL HELLO.C <Enter>

To delete all files with the extension .OBJ from the \SOURCE directory on the disk in drive
D, type

C>DEL 0:\SOURCE*.OBJ <Enter>

To delete all files from the current directory on the current drive, type

C>DEL *·* <Enter>

or

C>DEL <Enter>

In this case, MS-DOS will prompt for confirmation that all files should be deleted.

Section Ill: User Commands 813

HUAWEI EX. 1110 - 823/1582

DEL or ERASE

To delete all files from the directory \WORD\LETTERS on the current drive, type

C>DEL \WORD\LETTERS <Enter>

Again, MS-DOS will prompt for confirmation that all files should be deleted.

Messages

Access denied
The specified file is read-only. Use the ATTRIB command with the -R switch to remove
the file's read-only status.

Are you sure (YIN)?
This message prompts the user for confirmation if the command would delete all files in
a directory (if the command line ends with a directory name or *. *). Respond with Y to
delete all files in the directory; respond with N to terminate the command.

File not found
The filename in the command is invalid or the file does not exist in the specified directory.

Invalid directory
One of the directories named in the file specification is invalid or does not exist.

Invalid drive specification
The drive code in the file specification is invalid or the named drive does not exist in the
system.

814 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 824/1582

DIR

DIR 1.0 and later

Display Directory Internal

Purpose

Displays a list of a directory's files and subdirectories.

Syntax

DIR [drive:][path][jilename] [/P] [/W]

where:

filename is the name of the file, optionally preceded by a drive and/or path, whose
directory entry is to be displayed; wildcard characters are permitted.

/P causes a pause after each screen page of display.
/W causes a wide display of filenames formatted five across.

Description

The DIR command displays information about the files in a directory. It also displays infor­
mation about the volume name of the disk that contains the directory, the total number of
files and subdirectories in the directory, and the amount of free space remaining on the
disk.

The normal format of the DIR command's output is

Volume in drive C is HARDDISK
Directory of C:\ASM

<DIR> 9-19-85 7: 09p.
<DIR> 9-19-85 7:09p

LIB <DIR> 9-17-86 11 :31p
SOURCE <DIR> 9-17-86 11 :31p
AT86 EXE 41146 5-13-85 5:18p
CREF EXE 15028 10-16-85 4:00a
DEBUG COM 15552 3-07-85 1 :43p
EXE2BIN EXE 2816 3-07-85 1: 43p
EXEMOD EXE 11034 10-16-85 4:00a
EXEPACK EXE 10848 10-16-85 4:00a
LIB EXE 28716 10-16-85 4:00a
LINK EXE 43988 10-16-85 4:00a
MAKE EXE 24300 10-16-85 4:00a
MAPSYM EXE 18026 10-16-85 4:00a
MASM EXE 85566 1 0-1 6-85 4:00a
SYMDEB EXE 37021 10-16-85 4:00a
T86 EXE 49024 12-06-84 4:03p

17 File(s) 4022272 bytes free

The first line shows the volume label of the disk that contains the directory being dis­
played; the second line gives the full pathname of the directory. The subsequent lines are

Section III: UserCommands 815

HUAWEI EX. 1110 - 825/1582

DIR

the names of the files and subdirectories within the current or specified directory. Each
entry includes the time and date the file or subdirectory was created or last modified.

Files are shown with their exact size in bytes; directories are shown with the symbol
<DIR>. If the directory being listed is not the root directory of the disk, it always contains
the two special directory entries • and •• , which are aliases for the current directory and the
parent directory, respectively. These aliases are included in the total file count in the last
line of the display.

Subsets of the files and subdirectories in the current or specified directory of the current
or specified drive can be listed by including a filename with wildcards in the command
line. For example, the filename • .DOC will cause DIR to list only the files with a .DOC
extension.

If the command line ends with a drive or path, DIR automatically appends an •.•, causing.
all files and subdirectories in the current or specified directory of the current or specified
drive to be listed. If a filename is included but no extension is given, DIR appends a .• to
the filename, causing all files with that name to be listed, regardless of their extension. If a
filename ending with a • is included, nothing is appended and all matchin:g subdirectories
and filenames without extensions are listed.

The /P switch causes a pause in the display after each screen page (23lines plus a mes­
sage). The listing resumes when the user presses a key.

The /W switch causes the list to be in a more compact format by omitting size and date/
time information and by displaying the filenames five across:

Volume in drive C is HARDDISK
Directory of C:\ASM

LIB SOURCE AT86 EXE
CREF EXE .DEBUG
LIB EXE LINK
SYMDEB EXE T86

COM EXE2BIN EXE EXEMOD EXE EXEPACK EXE
EXE MAKE
EXE

EXE MAPSYM EXE MASM EXE

17 File(s) 4022272 bytes free

When the /W form of the listing is displayed, subdirectories are not easily distinguished
from files because the <DIR> symbol is not shown.

Examples

To list all files in the current directory on the current drive, type

C>DIR <Enter>

To list all files in the current directory on the disk in drive B, type

C>DIR B: <Enter>

or

C>DIR B:*.* <Enter>

816 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 826/1582

DIR

To list all files in the directory \SOURCE on the current drive, type

C>DIR \SOURCE <Enter>

or

C>DIR \SOURCE*.* <Enter>

To list all files with the extension .OBJ in the \LIB directory on the disk in drive D, type

C>DIR D:\LIB*.OBJ <Enter>

To list all files in the parent directory of the current directory on the current drive, type.

C>DIR . . <Enter>

To list all files in the current directory on the current drive, sorted by filename and exten­
sion, type

C>DIR : SORT <Enter>

To list all files in the current directory on the current drive, sorted by extension, type

c>DIR : SORT /+10 <Enter>

The I+ 10 instructs SORT to sort the directory entries starting at the tenth column, which is
the first column of the filename extension.

To list the subdirectories and files without extensions in the current directory, type

C>DIR *· <Enter>

To print the directory on an attached printer instead of displaying it on the screen, type

C>DIR > PRN <Enter>

To make a copy of the directory in a file called FILES. TXT, type

C>DIR > FILES.TXT <Enter>

Messages

File not found
A filename was included in the command line and no matching files were found.

Invalid directory
An element of the path included in the command line does not exist.

Invalid drive specification
The specified drive is invalid or is not present in the system.

Strike a key when ready . ..
If the DIR command includes the /P switch, the display is suspended after each 23 lines
and this message prompts the user to press a key to see the next screenful of entries.

Section III: User Commands 817

HUAWEI EX. 1110 - 827/1582

DISKCOMP

DISKCOMP
Compare Floppy Disks

Purpose

3.2

External

Compares two entire floppy disks on a sectgr-by-sector basis and reports any differences.
This command was included with PC-DOS beginning with version 1.0. To compare indi­
vidual files, see USER COMMANDS: coMP; Fe.

Syntax
DISKCOMP [drivel:] [drive2:] [/1] [/8]

where:

drivel
drive2
/1
/8

Description

is the drive containing the first disk to be compared.
is the drive containing the second disk to be compared.
compares only the first sides of the disks.
compares only the first eight sectors of each track.

The DISKCOMP command compares the physical sectors of one floppy disk with those
of another. The drivel and drive2 parameters designate the drives holding the two disks
to be compared; the drives should always be of the same type. If drive2 is omitted,
DISKCOMP uses the current drive. If both drivel and drive2 are omitted or are identical,
DISKCOMP performs the comparison using a single drive, prompting the user to swap
disks as required.

Ordinarily, DISKCOMP determines the disk format by inspecting the disk in drivel. The /1
and /8 switches override this check so that only one side of the disks or only the first eight
sectors of each track are compared, regardless of the actual format of the disks.

If all the sectors on all the tracks are identical, DISKCOMP displays the message Compare
OK If differences are found, DISKCOMP reports them by issuing a message that includes
the numbers of the track and disk side (read/write head) where the differences occur.
Because DISKCOMP works at the level of the disks' physical sectors and is ignorant of the
control areas and file structures imposed on a disk by Ms-DOS, it also reports as errors bad
sectors that were marked during the FORMAT process.

When DISKCOMP finishes comparing two disks, it displays a prompt that allows the user
to choose between comparing another pair of disks and returning to the MS-DOS com­
mand level.

DISKCOMP cannot be used with a network drive or with a drive created or affected by an
ASSIGN, JOIN, or SUBST command, nor can it be used with fixed disks.

818 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 828/1582

Return Codes

0 Compared disks were identical.
1 Differences were found between the compared disks.
2 DISKCOMP was terminated with a Control-C.
3 Bad sector was found on one of the disks being compared.

DISKCOMP

4 Initialization error was encountered: not enough memory, syntax error in command
line, or invalid drive specified in command line.

Note: Return codes are not present in the PC-DOS version of DISKCOMP.

Examples

To compare the disk in drive A with the disk in drive B, type

C>.DISKCOMP A: B: <Enter>

To compare two disks using only drive A, type

C>DISKCOMP A: A: <Enter>

To compare only the first side of the disk in drive A with the first side of the disk in drive
B, type

C>.DISKCOMP A: B: /1 <Enter>

To compare only the first eight sectors of each track on one side of one disk with the first
eight sectors of each track on one side of another disk using only drive A, type

C>DISKCOMP A: A: /1 /8 <Enter>

Messages

Cannot DISKCOMP to or from
an ASSIGNed or SUBSTed drive
One of the specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOMP to or from
a network drive
One of the specified drives is a network device.

Compare another diskette (Y /N) ?
This prompt allows comparison of another pair of disks. Respond with Y to cause
DISKCOMP to prompt for insertion of the next pair of disks to be compared; respond with
N to exit to MS-DOS.

Compare error on side n, trackn
A difference was detected between the two disks being compared.

Compare OK
The two disks being compared are identical.

Section III: User Commands 819

HUAWEI EX. 1110 - 829/1582

DISKCOMP

Compare process ended
The disk comparison was terminated as the result of a fatal error.

Comparing n tracks,
n sectors per track, n side(s)
This informational message specifies the format of the two disks being compared.

DEVICE Support Not Present
The disk drive does not support MS-DOS 3.2 device control.

Drive X not ready
Make sure a diskette is inserted into
the drive and the door is closed
DISKCOMP was unable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be compared with double-sided disks, nor high-density disks
with double-density disks.

FIRST diskette bad or incompatible
DISKCOMP is unable to determine the format of the first disk.

Incorrect DOS version
The version of DISKCOMP is not compatible with the version of MS-DOS that is running.

Insert diskette with directory that contains
COMMAND.COM in driveX and strike any key when ready
If the system was booted from a floppy disk and the system disk was then removed in
order to use DISKCOMP, the user must replace the system disk after the compare opera­
tion is complete.

Insert FIRST diskette in drive X:
Press any key when ready . ..
This message prompts the user to insert the first disk of a pair to be compared.

Insert SECOND diskette in drive X:
Press any key when ready . ..
This message prompts the user to insert the second disk of a pair to be compared.

Insufficient memory
The available system memory is insufficient to load and execute the DISKCOMP program.

Invalid drive specification
Specified drive does not exist
or is non-removable
One of the drives specified in the command line is invalid or does not exist.

820 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 830/1582

I
I
r

l
I
I

I

DISKCOMP

Invalid parameter
Do not specify filename(s)
Command format: DISKCOMP d: d: [/1] [/8]
A syntax error was c;ietected in the command line, usually caused by an incorrect switch.

SECOND diskette bad or incompatible
The second disk of a pair to be compared does not have the same format as the first disk or
has bad sectors preventing DISKCOMP from determining its format.

Unrecoverable read error on drive X:
The disk in the specified drive contains an unreadable sector.

Section III: User Commands 821

HUAWEI EX. 1110 - 831/1582

DISK COPY

DISKCOPY
Copy Floppy Disks

Purpose

2.0 and later

External

Performs a sector-by-sector copy of one entire floppy disk to another floppy disk. This
command was included with PC-DOS beginning with version 1.0. To copy individual files,
see USER COMMANDS: COPY.

Syntax

DISKCOPY [drivel:] [drive2:] [/1]

where:

drivel
drive2
/1

Description

is the drive containing the disk to be copied.
is the drive containing the disk that will become the copy.
copies only the first side of the disk in drivel (MS-DOS version 3.2).

The DISK COPY command duplicates a floppy disk, performing the copy on a physical
sector-by-sector basis. The drivel parameter specifies the location of the disk to be copied
(the source disk). The drive2 parameter specifies the location of the disk that will become
the copy (the destination disk). If drive2 is omitted, the current drive is used as the desti­
nation drive; if both drivel and drive2 parameters are omitted or are the same, DISKCOPY
performs the copy operation using a single drive, prompting the user to swap the disks as
necessary.

DISK COPY examines the destination disk before writing any information and terminates
with an error message if it does not have the same format as the source disk. If the destina­
tion disk is not formatted, DISK COPY formats it with the same format as the source disk, as
part of the DISK COPY operation.

Note: With MS-DOS versions 2.0 through 3.1, the destination disk must be formatted using
the FORMAT command before DISK COPY can be used. All PC-DOS versions of
DISK COPY will automatically format the destination disk, if necessary.

When DISK COPY finishes copying a disk, it displays a prompt that allows the user to
choose between copying another disk and returning to the MS-DOS command level.

Because DISK COPY creates an exact duplicate of the source disk, any file fragmentation
present on the source disk is also present on the destination disk after the DISK COPY
process is complete. To eliminate fragmentation of the source files, they should be copied
to the destination disk individually using COPY or XCOPY.

The DISK COPY command cannot be used with a network drive or with a drive created or
affected by an ASSIGN, JOIN, or SUBST command, nor can it be used with fixed disks.

822 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 832/1582

DISK COPY

Return Codes

0 Disk was copied successfully.
1 Nonfatal but unrecoverable read or write error occurred (no Interrupt 24H generated).
2 DISK COPY was terminated with a Control-C.
3 Fatal error was encountered: unreadable source disk or unformattable destination

disk.
4 Initialization error was encountered: not enough memory, syntax error in command

line, or invalid drive specified in command line.

Note: Return codes are not present in the PC-DOS version of DISK COPY.

Examples

To copy the contents of the disk in drive A to the disk in drive B, type

C>DISKCOPY A: B: <Enter>

To copy the contents of the disk in drive A using only one drive, type

C>DISKCOPY A: A: <Enter>

To copy only the first side of the disk in drive A to the first side of the disk in drive B, type

C>DISKCOPY A: B: /1 <Enter>

Messages

Cannot DISKCOPY to or from
an ASSIGNed or SUBSTed drive
One of the specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOPY to or from
a network drive
One of the specified drives is a network device.

Copy another diskette (Y /N) ?

This prompt allows copying of another disk. Respond with Y to cause DISK COPY to
prompt for insertion of the next set of disks; respond with N to exit to MS-DOS.

Copying n tracks
n sectors per track, n side(s)
This informational message specifies the format of the source disk being copied.

Copy process ended
The DISKCOPY process has been successfully completed or has been terminated by a fatal
error. In the latter case, this message is preceded by another message explaining the error.

DEVICE Support Not Present
The disk drive does not support MS-DOS version 3.2 device control.

Section Ill: User Commands 823

HUAWEI EX. 1110 - 833/1582

DISK COPY

Disk error while reading drive X:
Abort, Retry, Ign()re?
A bad sector was detected on the source disk. This does not necessarily invalidate the disk
copy; the bad sector may originally have been detected and flagged by the FORMAT pro­
gram and therefore not included in any file. One solution is to copy the files individually
using the COPY command.

Drive X: not ready
Make sure a diskette is inserted into
the drive and the door is closed
DISKCOPY was unable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be copied to or from double-sided disks, nor high-density disks
to or from double-density disks.

Formatting while copying
The destination disk was not previously formatted. It is given the same format as the
source disk as part of the DISK COPY operation (MS-DOS version 3.2).

Incorrect DOS version
The version of DISK COPY is not compatible with the version of MS-DOS that is running.

Insert diskette with directory that contains
COMMAND.COM in drive X and strike any key when ready
If the system was booted from a floppy disk and the system disk was then removed in
order to use DISKCOPY, the user must replace the system disk after the copy operation is
complete.

Insert SOURCE diskette in drive X:
Press any key when ready . ..

or

Insert TARGET diskette in drive X:
Press any key when ready . ..
These messages prompt the user to insert the source and destination disks before begin­
ning the copy operation.

Insufficient memory
The available system memory is insufficient to load and execute the DISK COPY program.

Invalid drive specification
Specified drive does not exist,
or is non-removable
One of the drives specified in the command line is invalid or does not exist. A fixed disk
cannot be the source or destination disk for a DISK COPY operation.

824 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 834/1582

DISK COPY

Invalid parameter
Do not specify filename(s)
Command Format: DISKCOPY d: d: [11]
A syntax error was ~etected in the command line, usually caused by an incorrect switch or
by the use of a filename instead of (or in addition to) a disk drive.

SOURCE diskette bad or incompatible

or

TARGET diskette bad or incompatible
The source disk could not be read or the destination disk could not be formatted.

Target diskette is write protected
The destination disk has a write-protect tab on it.

Target diskette may be unusable
Unrecoverable read or write errors were encountered while copying the source disk to the
destination disk. The newly copied disk may not be an accurate copy.

Unrecoverable read error on drive X:
siden, trackn

or

Unrecoverable write error on drive X:
siden, trackn
The disk in the specified drive contained a sector that could not be successfully read or
written.

Section Ill: User Commands 825

HUAWEI EX. 1110 - 835/1582

DRIVER.SYS

DRIVER.SYS 3.2

Configurable External-Disk-Drive Driver External

Purpose

Installs and configures external disk drives or assigns logical drive letters to existing
floppy-disk drives.

Syntax

DEVICE=DRIVER.SYS /D: n [/C] [/F: n] [/H: n] [/N] [/S: n] [/T: n]

where:

/D: n is the drive number (0-127 for floppy disks, 128-255 for fixed disks) and must
always be the first switch in the command line.

!C specifies that door-lock-status support is available.
/F: n is the form-factor index for the device (default= 2):

0 320/360KB
1 1.2MB
2 720KB
3 8" single-density floppy disk
4 8" double-density floppy disk
5 fixeddisk
6 magnetic-tape drive
7 other

/H: n is the number of heads supported by the disk drive (1-99).
IN specifies a nonremovable block device.
/S: n is the number of sectors per track (1-40).
IT: n is the tracks per read/write head (1-999).

Description

When the computer is turned on or restarted, MS-DOS assigns numbers to all existing in­
ternal disk drives. The DRIVER.SYS file-an installable, configurable block-device driver
for external disk drives and other mass-storage devices- allows installation of peripheral
devices that are not supported by the resident drivers in the MS-DOS BIOS module.
DRIVER.SYS can also assign a logical drive letter to an existing disk drive, thus giving the
device two drive letters. (This allows such activities as copying files between like media­
for example, copying files from one 1.2MB 5.25-inch disk to another-using the same
drive.)

826 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 836/1582

DRIVER.SYS

The /D: n switch assigns a unit number to the additional disk drive or specifies the number
of the existing disk drive that is to be assigned a logical drive letter. (Floppy-disk unit num­
bers begin at 0; fixed-disk numbers begin at SOH.) For example, if the system contains two
floppy-disk drives (0 and 1), an external floppy-disk drive requiring DRIVER.SYS would
be assigned the value 2; MS-DOS would then assign that drive the next available drive let­
ter. If the number used with the /D: n switch references an existing drive (for example, o,
the first floppy-disk drive), MS-DOS assigns the drive the next available drive letter, allow­
ing the one drive unit to be referenced by two drive letters. The /D: n switch is not op­
tional and must precede all other switches in the command line.

The /C, IF: n, and /N switches describe characteristics of the disk drive that is being se­
lected for use with DRIVER.SYS. The /C switch is included only if the device has a status
line indicating whether the disk in the drive has been changed. (This information is used
by the driver to optimize disk accesses to the directory and file allocation table.) If the
device does not have a status line, /C will have no effect. The IF: n option describes the
form-factor index used by the device. The permissible values for n are given in the pre­
ceding table; the default type is a 720 KB disk. The IN switch indicates that the block
device is nonremovable. Access to such devices is more efficient than access to removable
media because MS-DOS can eliminate calls to the driver for a media-change check.

The /H: n, IS: n, and /T: n switches describe the physical layout of the recording medium.
/H: n specifies the number of recording surfaces, or read~ write heads, supported by the
drive (1-99). IS: n is the number of sectors per track (1-40) and IT: n is the tracks per side
(1-999). (The total number of physical sectors on a given disk is found by multiplying the
number of heads by the tracks per side and the sectors per track.)

Note: The values used with these switches must be supported by the device being in­
stalled. If DRIVER.SYS is used to assign a logical drive letter to an existing physical device,
the values used with the switches must be identical to the characteristics imposed by the
default device driver.

Examples

To install a driver for an external 720 KB disk drive in a system that already has two
5.25-inch floppy-disk drives, insert the line

DEVICE=DRIVER.SYS /0:02

into the CONFIG.SYS file and restart the system.

Assume that an IBM PC/AT or compatible has three disk drives installed: Drive A is a 1.2
MB 5.25-inch floppy-disk drive; drive B is a 360 KB 5.25-inch floppy-disk drive; drive Cis
a 30 MB fixed-disk drive. To assign the logical drive letter D to the existing drive A, effec­
tively giving the one drive two drive letters, insert the line

DEVICE=DRIVER.SYS /0:0 /F:1 /H:2 /8:15 /T.:SO /C

into the CONFIG.SYS file and restart the system.

Section Ill: User Commands 827

HUAWEI EX. 1110 - 837/1582

DRIVER.SYS

Messages

Bad or missing DRIVER.SYS
The file DRIVER.SYS could not be found in the root or specified directory or has been
damaged.

ERROR- Incorrect DOS version
The version of DRIVER.SYS is not compatible with the version of MS-DOS that is running.

ERROR- No drive specified
The /D: n switch was not included in the command line.

Loaded External Disk Driver for Drive X
The device driver has been successfully installed and this message informs the user of the
drive letter assigned to the device.

Sector size too large in file DRIVER.SYS
DRIVER.SYS uses a sector size that is larger than the sector size used by any of the system's
default disk drivers. The driver cannot be used because MS-DOS's internal disk buffers will
not be large enough to hold a sector read from the device.

828 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 838/1582

EDLIN
Line Editor

Purpose

Creates and changes ASCII text files.

·syntax

EDLIN [drive:J[path]filename [/B]

where:

1.0 and later

External

EDLIN

filename is the name of an ASCII text file to be created or edited, optionally preceded
by a drive and/or path.

/B causes logical end-of-file marks within the file to be ignored (versions 2.0 and
later).

Description

The EDLIN program is a simple line-oriented editor that can be used to create or maintain
short text files. The user references and edits text by line number; EDLIN displays these
numbers for convenience but they do not become part of the file. Each line of the file
being edited can be a maximum of 253 characters.

The filename parameter specifies a plain ASCII text file; if the file does not already exist,
EDLIN creates it. (EDLIN cannot be used on most files created by word-processing pro­
grams because such document files have embedded formatting codes and other format­
ting information that EDLIN cannot interpret.) EDLIN does not assume any extensions; the
user must type the complete filename. (EDLIN does not permit editing of a .BAK file.)

If filename is a previously existing text file, EDLIN loads lines from the file into memory
until the editing buffer is 75 percent full or until a logical end-of-file mark or the physical 4
end of the file is reached. The /B switch forces EDLIN to ignore any logical end-of-file
marks (lAH, or Control-Z) the file may contain. If the file is too large for the edit buffer, the
Write Lines to Disk (W) and Append Lines from Disk (A) commands are used during the
edit session to process the remaining portions of the file.

Once the file is created or loaded into the editing buffer, EDLIN displays its asterisk
prompt (•) and the user can begin entering editing commands.

EDLIN commands consist of a single character, in either uppercase or lowercase, usually
preceded by one or more line numbers. More than one command can be entered on a
single line by separating the commands with semicolons. EDLIN does not execute a com­
mand until the Enter key is pressed.

Section III: User Commands 829

HUAWEI EX. 1110 - 839/1582

EDLIN

The EDLIN commands are

Command

linen umber
A
c
D
E
I
L
M
p

Q
R
s
T
w

Action

Edit line.
Append lines from disk.
Copy lines (versions 2.0 and later).
Delete lines.
End editing session.
Insert lines.
List lines.
Move lines (versions 2.0 and later).
Display in pages (versions 2.0 and later).
Quit without saving changes.
Replace text.
Search for text.
Transfer another file into the edit buffer (versions 2.0 and later).
Write lines to disk.

Each of these commands is discussed in detail in the following pages.

All EDLIN commands that accept a line number or range of line numbers can also recog­
nize the following symbolic references:

Symbol

+n or-n

Meaning

The line after the last line in the edit buffer
The current line
A line number relative to the current line

(for example, +5 = five lines past the current line)

When the user terminates the editing session with the E command, EDLIN gives the new
file the same name as the original file and renames the original (unchanged) file with the
extension .BAK. Any previous file with the same name and the extension .BAK is lost.
When the user terminates the editing session with the Q command, the original filename
remains unchanged.

Example

To edit the file AUTO EXEC. BAT in the root directory of the current drive, type

C>EDLIN \AUTOEXEC.BAT <Enter>

Messages

Cannot edit .BAK file- rename file
Files with the extension .BAK cannot be edited with EOLIN. Rename the file or copy it to a
file with the same name but a different extension.

830 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 840/1582

EDLIN

End of input file
The entire file has been read into memory.

File is READ-ONLY
Files marked with the read-only attribute cannot be edited. Remove the read-only attribute
with the ATTRIB command or copy the file to a file with a different name.

File name must be specified
The command line did not include a filename.

File not found
The file named in the command line could not be found or does not exist.

Incorrect DOS version
The version of EDLIN is not compatible with the version of MS-DOS that is running.

Insufficient memory
Not enough memory is available to carry out the requested command.

Invalid drive or file name
The command line included a drive that is invalid or does not exist in the system or the
filename is not valid.

Invalid Parameter
The command line contained an illegal switch or other invalid parameter.

New file
The file named in the command line did not previously exist. The file is created and the
edit buffer is emptied.

Read error in: .filename
MS-DOS was unable to read the entire file. Run CHKDSK to determine whether the file or
disk has been damaged.

Section III: User Commands 831

HUAWEI EX. 1110 - 841/1582

EDLIN: linenumber

EDLIN: linenumber
Edit Line

1.0 and later

Purpose

Selects a line of text for editing.

Syntax

linenumber

where:

linenumber is the number assigned by EDLIN to the text line to be edited (1-65534).

Description

The command to edit a particular line of text is simply the line's number or one of the spe­
cial symbols or expressions that evaluate to a line number, followed by the Enter key.
EDLIN displays the current contents of the specified line and copies them to a special edit­
ing buffer called the template, then moves the cursor to a new line and displays a prompt
in the form of the line number followed by a colon and an asterisk. If a line number is not
specified (that is, if the Enter key alone is pressed in response to the EDLIN prompt),
EDLIN displays the line following the current line and makes it the current line.

The user can change the text of the specified line by simply entering new text followed by
a press of the Enter key, leave the text unchanged by pressing Enter alone, or modify the
text by using special editing keys to change a portion of the text that has been placed in
the template. These editing keys and their actions are

Key

Fl
F2char

F3
Del
F4char
Esc
Ins
F5
~

f­

Backspace

Action

Copies one character from the template to the new line.
Copies all characters up to the specified character from the template to the

newline.
Copies all remaining characters in the template to the new line.
Does not copy (skips over) one character.
Does not copy (skips over) all characters up to the specified character.
Restarts editing for the current line, leaving the template unchanged.
Enters/exits character-insert mode.
Makes the newly edited line the new template.
Copies one character from the template to the new line.
Deletes one character from the new line.
Deletes one character from the new line.

Note: Computers that are not IBM-compatible may use a different set of editing keys to
perform these actions.

832 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 842/1582

EDLIN: linenumber

Control characters (those characters with ASCII codes in the range 0-lFH) cannot be in­
serted into text with the usual Control-key combinations. Instead, the user must press the
sequence Ctrl-V, followed by an uppercase character or symbol. For example, Ctrl-C (ASCII
code 03H) is entere.d into text by pressing Ctrl-V followed by a capital C; the Escape char­
acter (ASCII code lBH) is generated by pressing Ctrl-V followed by a left square-bracket
character ([).

Examples
To edit line 4, type

*4 <Enter>

To edit the line two lines ahead of the current line, type

*+2 <Enter>

Section Ill: User Commands 833

HUAWEI EX. 1110 - 843/1582

EDLIN: A

EDLIN: A
Append Lines from Disk

Purpose

Reads lines from the file being edited into the edit buffer.

Syntax

[n]A

where:

n is the number of lines to be read from the file.

Description

1.0 and later

If the file being edited isJoo large to fit into the edit buffer, EDLIN ordinarily reads only
enough text to fill 75 percent of the buffer when it opens the file, reserving 25 percent of
the buffer for additions and changes to the text. The user must then employ the Write Lines
to Disk (W) and Append Lines from Disk (A) commands to write and read successive
blocks of text until the entire file has passed through the edit buffer.

The A command alone has no effect if the edit buffer is 75 percent or more full. TheW
command must be used to write lines to the output file and delete them from the buffer;
then the A command can read new lines from the input file and append them to the end of
the text remaining in the buffer.

The n parameter specifies the number of lines to be read from the file. If n is omitted or
is too large, EDLIN reads only enough lines to fill the editing buffer to 75 percent of its
capacity.

Examples

To append 200 lines from the disk file to the edit buffer, type

*200A <Enter>

To append as many lines from the file as possible (until the edit buffer is 75 percent full),
type

*A <Enter>

Message

End of input file
The last section of the file being edited has been read into the edit buffer.

834 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 844/1582

EDLIN: C

EDLIN: C 2.0 and later

Copy Lines

Purpose

Copies one or more lines from one location in the edit buffer to another.

·Syntax

[first],[last], destination[, count]C

where:

first is the number of the first line to be copied.
is the number of the last line to be copied. last

destination
count

is the number of the line before which the copied lines are to appear.
is the number of times to execute the copy operation.

Description

The Copy Lines (C) command copies one or more text lines, inserting the copied lines at
another location in the edit buffer. The original lines that were copied are unchanged.
EDLIN then renumbers the edit buffer and makes the first copied line at the destination
the new current line.

The first and last line-number parameters define the block of lines to be copied. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line number is used), but the
commas must still be entered as placeholders. The destination parameter specifies the
line before which the copied lines are to be inserted; it is not optional and must not fall
within the range of line numbers specified by firstand last. One of the special symbols
. (current line) or# (end of buffer) or an expression relative to the current line number
(+n or -n) can be used instead of absolute line numbers.

To replicate the line or lines multiple times, the copy operation can be repeated automat­
ically with the optional parameter count. The default value for count is one.

Examples

If the current line is line 10, to copy lines 10 through 15 and place the copied lines before
line 5, type

*10,15,5C <Enter>

or

*,15,5C <Enter>

or

*,+5,-SC <Enter>

Section Ill: ·user Commands 835

HUAWEI EX. 1110 - 845/1582

EDLIN: C

If the current line is line 10, to place three copies of lines 10 through 15 before line 1, type

*10,15,1,3C <Enter>

or

*,15,1,3C <Enter>

or

*,+5,1,3C <Enter>

Messages

Entry error
The command line contained an error such as a first line number that was greater than the
last line number or a destination line number that fell within the range first, last.

Insufficient memory
The edit buffer does not have sufficient room for EDLIN to carry out the specified
command.

Must specify destination line number
No destination line number was specified in the command line; therefore, no changes
were made to the edit buffer.

836 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 846/1582

EDLIN:D
Delete Lines

Purpose

Deletes one or more lines from the edit buffer.

·syntax

[first][,last] D

where:

first is the number of the first line to delete.
last is the number of the last line to delete.

Description

EDLIN: D

1.0 and later

The Delete Lines (D) command removes one or more text lines from the edit buffer. The
line after the last line deleted becomes the new current line.

The first and last line-number parameters define the block of lines to be deleted. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line number is used), but a
leading comma is required as a placeholder if first is omitted when last is present. One of
the special symbols. (current line) or# (end of buffer) or an expression relative to the cur­
rent line number (+n or -n) can be used instead of absolute line numbers.

Examples

If the current line is line 10, to delete the current line, type

*10D <Enter>

or

*D <Enter>

If the current line is line 10, to delete lines 10 through 15, type

*10,150 <Enter>

or

*,15D <Enter>

or

*,+SD <Enter>

Section Ill: User Commands 837

HUAWEI EX. 1110 - 847/1582

EDLIN: D

If the current line is line 10, to delete all lines from the current line to the end of the buffer,
type

•10,#D <Enter>

or

*,#D <Enter>

Message

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

838 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 848/1582

EDLIN:E
End Editing Session

Purpose

Saves the edited file to disk and exits from EDLIN.

Syntax

E

Description

EDLIN:E

1.0 and later

The End Editing Session (E) command writes the contents of the edit buffer to the current
directory of the disk in the current drive. If a previously existing file was being edited and
there is any text remaining in the original file that has not yet passed through the edit
buffer, EDLIN copies this text to the output file. EDLIN gives the newly edited file the same
name as the original file and renames the original (unchanged) file with the extension
.BAK. Any previous file with the same name and the extension .BAK is lost. EDLIN then
returns to MS-DOS.

If the disk does not have enough space to hold the edited file in addition to the original
file, EDLIN writes as much of the edited file as possible into a file with the extension . $$$;
the remainder of the edited text is lost. The name and contents of the original file are left
unchanged.

Example

To end an editing session, type

*E <Enter>

Messages

Disk full. Edits lost.
The disk does not contain enough free space for the edited file. A partial file may have
been created with the extension.$$$.

File Creation Error
The .BAK file is marked read-only, the root directory is full or cannot contain any more
files, or the filename is the same as a volume label o~ directory name.

No room in directory for file
The file could not be saved because its destination was the root directory and the root
directory is full.

Too many files open
MS-DOS was unable to open the .BAK file due to a lack of available system file handles.
Increase the value of the FILES command in the CONFIG .SYS file.

Section III: User Commands 839

HUAWEI EX. 1110 - 849/1582

EDLIN: I

EDLIN: I
Insert Lines

Purpose

Inserts new lines into the edit buffer.

Syntax

[destination]I

1.0 and later

where:

destination is the number of the line before which text is to be inserted.

Description

The Insert Lines (I) command enables insert mode and allows new text to be placed be­
tween previously existing lines of text. When insert mode is terminated, the first line fol­
lowing the inserted lines becomes the new current line.

EDLIN places the new text before the line specified by the destination parameter. If
destination is omitted, EDLIN assumes the current line; if destination is larger than the
number of lines in the edit buffer, EDLIN simply appends the new text after the actual last
line.·one of the special symbols. (current line) or# (end of buffer) or an expression rela­
tive to the current line number (+n or -n) can be used instead of an absolute line number.

After an I command, EDLIN issues a prompt consisting of the line number for the inserted
text followed by a colon and an asterisk and continues to issue such prompts each time the
Enter key is pressed until the user terminates insert mode by pressing Ctrl-C or Ctrl-Break.

Examples

If the current line is line 10, to insert text before line 7, type

*7I <Enter>

or

*-3I <Enter>

To insert lines at the beginning of the buffer, type

*1I <Enter>

To insert lines at the end of the buffer, type

*#I <Enter>

Message

Insufficient memory
The edit buffer does not have sufficient room for EDLIN to complete the specified
command.

840 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 850/1582

EDLIN:L
List Lines

Purpose

Displays one or more lines from the edit buffer.

Syntax

[first][,last]L

where:

first is the number of the first line to be displayed.
last is the number of the last line to be displayed.

Description

EDLIN:L

1.0 and later

The List Lines (L) command displays text lines on standard output. If the current line lies
within the range of lines listed, EDLIN displays an asterisk next to its number. The current
line is not changed.

The first and last line-number parameters define the block of lines to be listed. (Note that
the first line number must be less than or equal to the last line number.) Either or both of
these numbers can be omitted, but a leading comma is required as a placeholder if first is
omitted when last is present. One of the special symbols . (current line) and# (end of
buffer) or an expression relative to the current line number (+n or -n) can be used instead
of absolute line numbers.

If only the first line number is specified, EDLIN displays text in 23-line increments starting
with that number. If only the last line number is specified, EDLIN displays text beginning
lllines before the current line and continuing to the specified last line. If no line numbers
are specified in the command, EDLIN lists the 23 lines centered around the current line; if
the current line number is less than 13, EDLIN lists the first 23 lines in the buffer.

Examples

To display lines 20 through 30, type

*20,30L <Enter>

If the current line is 20, to display the 23 lines centered around the current line, type

*L <Enter>

EDLIN displays lines 9 through 31.

Message

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

Section III: User Commands 841

HUAWEI EX. 1110 - 851/1582

EDLIN:M

EDLIN:M
Move Lines.

Purpose

Moves lines from one place in the edit buffeJ to another.

Syntax

[first],[last],destinationM

where:

first is the number of the first line to be moved.
is the number of the last line to be moved.

2.0 and later

last
destination is the number of the line before which the moved lines are to be inserted.

Description

The Move Lines (M) command transfers one or more text lines from one location in the
edit buffer to another. EDLIN then deletes the original lines and renumbers the edit buffer.
The first moved line becomes the new current line.

The first and last line-number parameters define the block of lines to be moved. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line nuniber is used), but the
commas must still be entered as placeholders. The destination parameter specifies the
line before which the moved lines are to be inserted; it is not optional and must not fall
within the range of line numbers specified by firstand last. One of the special symbols
• (current line) or # (end of buffer) or an expression relative to the current line number
(+n or -n) can be used instead of absolute line numbers.

Example

If the current line is line 10, to move lines 10 through 15 and place them before line 5, type

*10,15,5M <Enter>

or

*,lS,SM <Enter>

or

*,+5,-SM <Enter>

842 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 852/1582

EDLIN:M

Messages

Entry error
The command line contained an error such as a first line number that was greater than the
last line number or a destination line number that fell within the range first,last.

Must specify destination line number
No destination line number was specified in the command line; therefore, no changes
were made to the edit buffer.

Section Ill: User Commands 843

HUAWEI EX. 1110 - 853/1582

EDLIN:P

EDLIN:P
Display in Pages

Purpose

Displays lines for viewing in successive scr~~nfuls (pages).

Syntax

[first][,last]P

where:

first is the number of the first line to be displayed.
last is the number of the last line to be displayed.

Description

2.0 and later

The Display in Pages (P) command displays text lines on standard output one screenful
at a time. Unlike the List Lines (L) command, which has no effect on the current line, P
causes the last line displayed to become the new current line. Thus, although the edit
buffer is not actually organized into pages, the user can employ repeated P commands to
sequentially view successive groups of lines.

The first and last line-number parameters define the block of lines to be listed; the dis­
play starts with the line specified by first. (Note that the first line number must be less
than or equal to the last line number.) Either or both of these numbers can be omitted, but
a leading comma is required as a placeholder if first is omitted when last is present. If
omitted, first defaults to the line after the current line and last defaults to the line 23 lines
after the current line. One of the special symbols. (current line) or# (end of buffer) or an
expression relative to the current line number (+n or -n) can be used instead of absolute
line numbers.

Examples

If the current line is 20, to view the next page of lines in the edit buffer, type

*P <Enter>

EDLIN displays 23 lines, beginning with line 21, and changes the current line to line 43.

To view successive pages of 23 lines, repeatedly type

*P <Enter>

Message

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

844 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 854/1582

EDLIN:Q
Quit

Purpose

EDLIN: Q

1.0 and later

Terminates the editing session without saving the revised file.

Syntax

Q

Description

The Quit (Q) command causes EDLIN to exit without saving any of the changes made to
the edited file during the session. The original file's name and contents are left unchanged
and no new file is created.

To reduce the danger of accidentally losing the contents of the edit buffer, EDLIN prompts
the user for confirmation before carrying out the Q command.

Example

To quit an editing session, type

*Q <Enter>

EDLIN issues a prompt for confirmation and, if the response from the user is Y, exits to
MS-DOS without saving any changes made to the file during the session.

Message

Abort edit (Y /N)?
This prompt is displayed in response to the Q command. Respond with Y to exit to
MS-DOS without saving changes made to the file; respond with N to continue the editing
session.

Section Ill: User Commands 845

HUAWEI EX. 1110 - 855/1582

EDLIN: R

EDLIN:R
Replace Text

Purpose

Replaces one string in the edit buffer with aqpther.

Syntax

[first] [,last] [?]R[stringl] [Azstring2]

where:

first is the number of the first line to be searched.
last is the number of the last line to be searched.

1.0 and later

causes the user to be prompted for confirmation before each replacement is
made.

stringl
Az
string2

is the sequence of characters to be searched for.
is a Control-Z character.
is the sequence of characters to be substituted for stringl.

Note: The character limit for the Replace Text command is 127 characters, including both
strings and all other parameters.

Description

The Replace Text (R) command substitutes one character string for another within a speci­
fied range of lines. The last line in which a replacement occurs becomes the new current
line.

The first and last line-number parameters define the range of lines to be searched for
strings to replace. (Note that the first line number must be less than or equal to the last line
number.) Either or both of these numbers can be omitted, but a leading comma is required
as a placeholder if first is omitted when last is present. If omitted, first defaults to the
line after the current line and last defaults to the last line in the buffer. One of the special
symbols. (current line) or# (end of buffer) or an expression relative to the current line
number (+nor -n) can be used instead of absolute line numbers.

If stringl is omitted, EDLIN uses the stringl from the preceding R command; if there was
no preceding R command, EDLIN displays an error message. If string2 is omitted, EDLIN
deletes all occurrences of stringl. stringl must be separated from string2 by a Control-Z
(AZ) character. If stringl is omitted, a Control-Z character must still be included to mark
the beginning of string2, but if string2 is omitted when stringl is present, the Control-Z
character has no effect and is therefore optional. (The Control-Z character is entered by
pressing Ctrl-Z or the F6 key.)

846 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 856/1582

EDLIN: R

If the ? option is not included in the command line, EDLIN displays each line that contains
a match after the replacement is carried out. If the ? option is used, EDLIN displays each
line containing a match as it is found and prompts the user for confirmation before the
string is replaced.

The matching operation is case sensitive; EDLIN carries out the substitution only on
sequences of characters that match stringl exactly. Wildcards are not permitted.

Examples

If the current line is line 10, to replace all occurrences of the string logical with the string
bitwise in lines 11 through 20, type

*11,20RlogicalAZbitwise <Enter>

or

*,20RlogicalAZbitwise <Enter>

To cause EDLIN to prompt for confirmation before replacing each string, type

*11,20?RlogicalAZbitwise <Enter>

or

*,20?RlogicalAZbitwise <Enter>

To delete all occurrences of the string OOH in line 20, type

*20,20RQQHAZ <Enter>

Messages

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

Insufficient memory
The edit buffer has insufficient room for EDLIN to carry out the specified Replace Text
command.

Line too long
The replacement would cause the line being edited to expand beyond 253 characters.

Not found
No occurrence or further occurrences of the string to be replaced were found in the speci­
fied range of lines.

O.K.?
If the ? option is used in the command line, this prompt is displayed each time a matching
string is found. Respond with Y or press the Enter key to replace the string and continue
searching; press any other key to leave the string unchanged and continue searching.

Section Ill: User Commands 847

HUAWEI EX. 1110 - 857/1582

EDLIN: S

EDLIN: S 1.0 and later

Search for Text

Purpose

Searches the edit buffer for a character string.

Syntax

[first][, last][?] S [string]

where:

first
last
?

string

Description

is the number of the first line to be searched.
is the number of the last line to be searched.
causes the user to be prompted for confirmation before the search is
terminated.
is the sequence of characters to be searched for (maximum 126 characters).

The Search for Text (S) command searches for a character string within a specified range
of lines. When a match is found, EDLIN displays the line containing the match and that
line becomes the new current line. If no lines containing the specified string are found,
EDLIN displays the message Not found and the current line number remains unchanged.

The first and last line-number parameters define the block of lines to be searched for
strings. (Note that the first line number must be less than or equal to the last line number.)
Either or both of these numbers can be omitted, but a leading comma is required as a
placeholder if first is omitted when last is present. If omitted, first defaults to the line
after the current line and last defaults to the last line in the buffer. One of the special
symbols. (current line) or# (end of buffer) or an expression relative to the current line
number (+nor -n) can be used instead of absolute line numbers.

If string is omitted, EDLIN uses the string from the last S command or stringl from the
last Replace Text (R) command instead.

If the ? option is not included in the command line, EDLIN displays the first line that con­
tains a match for string, makes this the new current line, and terminates the search. If the
? option is used, EDLIN displays each line containing a match for string as it is found, fol­
lowed by an O.K.? prompt. If the user responds with Y or presses the Enter key, EDLIN ter­
minates the search; if the user presses any other key, the search continues.

The matching operation is case sensitive; EDLIN reports only sequences of characters that
match string exactly. Wildcards are not permitted.

848 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 858/1582

EDLIN: S

Examples

If the current line is line 10, to find the first occurrence of the string xyz in lines 11 through
20, type

*11,20Sxyz <Enter>

*,20Sxyz <Enter>

To find a particular occurrence of proc in the edit buffer, type

*1,#?Sproc <Enter>

EDLIN displays the first line containing proc and prompts with

O.K.?

Type Y or press Enter to stop the search; press any other key to continue the search.

Messages

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

Not found
No match or no further matches for string were found in the specified range of lines.

O.K.?
If the ? option is used in the command line, this prompt is displayed each time a matching
string is found. Respond with Y or press the Enter key to stop searching; press any other
key to continue searching.

Section Ill: User Commands 849

HUAWEI EX. 1110 - 859/1582

EDLIN: T

EDLIN:T
· Transfer Another File

Purpose

Merges the contents of another file with th~Jile in the edit buffer.

Syntax

[destination]T[drive:] [path]filename

where:

2.0 and later

destination is the number of the line before which the text from filename is to be
inserted.

path
filename

Description

is the location of the file to be merged (versions 3.0 and later).
is the name of the disk file from which text is to be merged.

The Transfer Another File (T) command merges the contents of a text file with the current
contents of the edit buffer and then renumbers the contents of the edit buffer. The first line
of the merged text becomes the current line.

The destination parameter specifies the line before which the transferred lines are to be
inserted. If omitted, destination defaults to the current line. One of the special symbols
. (current line) or# (end of buffer) or an expression relative to the current line number
(+nor -n) can be used instead of an absolute line number.

The filename parameter specifies the file from which text is to be merged and can include
a drive and, in versions 3.0 and later, a path. If a drive or path is not specified, the file to
be merged into the edit buffer with the T command must be in the current directory of the
current drive.

Example

If the current line is line 10, to merge the contents of the file named KEYDEFS.C before
line 10 ofthe edit buffer, type

*10Tkeydefs.c <Enter>

or

* Tkeydefs. c <Enter>

850 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 860/1582

EDLIN:T

Messages

File not found
The specified filename does not exist in the current or specified location.

Not enough room to merge the entire file
The space available in the edit buffer is not sufficient to hold the entire file named in the T
command. Use the Write Lines to Disk (W) command to partially empty the edit buffer.

Section Ill: User Commancfs 851

HUAWEI EX. 1110 - 861/1582

EDLIN:W

EDLIN:W
Write Lines to Disk

Purpose

Writes lines from the edit buffer to the disk.

Syntax

[n]W

where:

n is the number of lines to be written to the file.

Description

1.0 and later

If the file being edited is too large to fit into the edit buffer, EDLIN ordinarily reads only
enough text to fill 75 percent of the buffer when it opens the file, reserving 25 percent of
the buffer for changes and additions to the text. The user must then employ the Write Lines
to Disk (W) command and the Append Lines from Disk (A) command to transfer succes­
sive blocks of text from the disk until the entire file has passed through the edit buffer. The
W command causes EDLIN to write lines to the disk file and delete them from the buffer;
then the A command can read new lines from the input file, placing them after the end of
the text remaining in the buffer.

The n parameter specifies the number of lines to be written to the output file; if n is omit­
ted or is larger than the number of lines in the edit buffer, EDLIN writes only enough lines
to leave the edit buffer about 25 percent full. EDLIN then renumbers the lines remaining in
the edit buffer so that the first remaining line becomes line number one.

Examples

To write 200 lines from the edit buffer to disk (effectively deleting those lines from the
buffer), type

*200W <Enter>

To write lines from the edit buffer to the disk until the edit buffer is only 25 percent full,
type

*W <Enter>

852 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 862/1582

EXIT
Terminate Command Processor

Purpose

Terminates a secondary copy of the command processor.

·Syntax

EXIT

Description

EXIT

2.0 and later

Internal

Many communications programs, word processors, database managers, and other applica­
tion programs load and execute a secondary copy of the system's command processor
(COMMAND. COM) to let the user carry out MS-DOS commands without losing the context
of the work in progress. Secondary copies of the command processor are also commonly
used to execute one batch file under the control of another. (For more information about
secondary copies of the command processor, see USER COMMANDS: coMMAND.)

The EXIT command cancels a secondary command processor. The terminating processor
displays no message and control returns directly to the parent program or command
processor.

EXIT has no effect on the currently executing command processor if it was loaded with
the /P (permanent) switch or if it is the original command processor (the one loaded dur­
ing system initialization, when the computer was turned on or restarted).

The EXIT command also allows the user to choose Close from the system menu if a
COMMAND window is open under Microsoft Windows.

Example

To terminate the currently executing command processor, type

C>EXIT <Enter>

Message

Bad command or filename
The EXIT command did not exist in versions earlier than 2.0, so MS-DOS attempted to
execute a nonexistent program named EXIT instead.

Section III: User Commands 853

HUAWEI EX. 1110 - 863/1582

FC

FC
Compare Files

2. 0 and later

External

Purpose

Compares two files and lists the differences on standard output.

Syntax

FC [/A] [/C] [/Ll [/LBn] [/N] [/nnnn] [IT] [/Wl [drive:]pathnamel [drive:]pathname2

or

FC (!B] [drive:]pathnamel [drive:]pathname2

where:

pathnamel

pathname2

/A

/B

/C
/L

/LBn

IN

/nnnn

IT

/W

Description

is the name and location of the first file to be compared, optionally pre­
ceded by a drive; wildcard characters are not permitted.
is the name and location of the second file to be compared, optionally pre­
ceded by a drive; wildcard characters are not permitted.
causes FC to abbreviate the output when comparing ASCII text files
(version 3.2).
causes a byte-by-byte (binary) comparison; may not be used with any
other switch (default when file extension is .EXE, .COM, .SYS, .OBJ, .LIB,
or .BIN).
causes FC to ignore case when comparing alphabetic characters.
causes a line-by-line comparison of two ASCII text files (default when file
extension is not .EXE, .COM, .SYS, .OBJ, .LIB, or .BIN) (version 3.2).
sets the size of the internal line buffer to n lines (default= 100)
(version 3.2).
includes line numbers on the output of an ASCII file comparison
(version 3.2).
is the number of lines that must match to resynchronize during an ASCII
file comparison (default= 2; in versions 2.0 through 3.1, range= 1-9,
default = 3).
causes FC to compare tabs in text files literally (default = tabs expanded to
spaces, with stops at each eighth character position) (version 3.2).
causes FC to ignore spaces, tabs, and blank lines in text files.

The FC utility compares two text files containing lines of ASCII text delimited by new-line
characters or two binary files containing data of any type (such as executable programs).

854 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 864/1582

FC

The differences between the two files are listed on standard output, which defaults to the
video display but can be redirected to another character device or a file or can be piped to
another program.

The FC program first examines the extensions of the two files being compared and, in
most cases, selects the appropriate type of comparison automatiCally. However, the /B
switch can be used to force a binary, or byte-by-byte, comparison of the two files named;
the /L switch can be used to force a line-by-line comparison. When the /B switch is
present, use of the /L, IN, and /nnnn switches causes an error message to be displayed;
any other switches in the command line are ignored.

When comparing ASCII text files, FC loads a buffer with sequential sets of lines from each
file and compares the two sets. The size of this buffer defaults to 100 lines but can be modi­
fied by including the /LBn switch in the command line. If differences are found, the name
of the first file, the last matched line, and any mismatched lines from that file are dis­
played, followed by the first rematched line; then the name of the second file, the last
matched line, and any mismatched lines are displayed, followed by the first rematched
line from that file. The number of consecutive matching lines that must be detected in
order for FC to consider the files resynchronized is controlled with the /nnnn switch; the
default is 2.

If no lines match, if no lines match after the first mismatch, or if the number of mis­
matched lines exceeds the size of the line buffer, FC displays the message Resynch failed.
Files are too different (or ***Files are differentm in versions 2.x and 3.0) and terminates.

The /C, IT, and /W switches modify the way in which two text files are compared. The
/C switch causes FC to ignore case when comparing alphabetic characters. The IT switch
causes FC to compare tab characters (ASCII code 09H) literally, rather than expand them
to spaces before comparing corresponding lines. Finally, the /W, or whitespace, switch
causes FC to ignore spaces, tabs, and blank lines during the comparison.

The !A and /N switches control the format of the listing of differences between the two
text files. The /A switch causes FC to compress the listing of each mismatched set of lines
to the first and last lines of each set, separated by ellipsis points. The IN switch causes FC
to include the line numbers of the mismatched lines in the display.

During a binary comparison of two files, FC' s buffer is reloaded as many times as is neces­
sary to compare the complete files. Unlike the procedure with text-file comparisons, no at­
tempt is made to resynchronize the data if a mismatch is detected and, regardless of the
number of mismatches, the comparison process is not terminated. Any differences are dis­
played with the offset from the start of the file and the actual data from each file. If one file
is shorter than the other, FC also displays a warning message at the end of the comparison.

The FC command is present only in MS-DOS. PC-DOS versions 1.0 and later provide a
similar function in the COMP command.

Section Ill: User Commands 855

HUAWEI EX. 1110 - 865/1582

FC

Examples
Assume that FILEl.TXT and FILE2.TXT are in the current directory on the disk in the cur­
rent drive and that they contain the following lines:

FILEl.TXT

First line.
Second line.
Third line.
Fourth line.
Fifth line.
Sixth line.
Seventh line.
Eighth line.
Ninth line.
Tenth line.

FILE2.TXT

First line.
Second line.
Third line.
Fourth line.
Sixth line.
Fifth line.
Seventh line.
Eighth line.
Ninth line.
Tenth line.

To compare these files line by line, type

C>FC FILE1 .TXT FILE2.TXT <Enter>

This will result in the following display:

***** file1 . txt
Fourth line.
Fifth line.
Sixth line.
Seventh line.

***** file2.txt
Fourth line.
Sixth line.
Fifth line.
Seventh line.

To compare the same two files and produce an abbreviated listing of differences that in­
cludes line numbers, type

C>FC /A /N FILE1 .TXT FILE2.TXT <Enter>

This will result in the following display:

***** file1 . txt
4: Fourth line.

7: Seventh line.

***** file2. txt
4: Fourth line.

7: Seventh line.

856 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 866/1582

Assume that two binary files, FILEl.BIN and FILE2.BIN, are the same length and contain
only the following three differences:

Offset

19H

33H
42H

FILEl.BIN

04H

4AH

52H

FILE2.BIN

03H
4BH

51H

To compare these two binary files, type

C>FC /B FILE1 .BIN FILE2.BIN <Enter>

This will result in the following display:

00000019: 04 03

00000033: 4A 4B

00000042: 52 51

Note: The use of the /B switch in this example is optional; binary comparison is the
default when .BIN files are compared.

Messages

filename longer than filename
After all the corresponding data in the two files was compared, data remained in one of
the files.

cannot open filename - No such file or directory
The specified file cannot be found or does not exist.

DOS 2.0 or later required
FC does not work with versions of MS-DOS earlier than 2.0.

Incompatible switches
The /B switch was used in combination with one or more of the other switches.

Incorrect DOS version
The version of FC is not compatible with the version of MS-DOS that is running.

no differences encountered
The two files being compared are identical.

out of memory
The available memory in the transient program area is insufficient to compare the two
files.

Resynch failed. Files are too different

FC

The number of mismatched lines in an ASCII file comparison exceeded the number of
lines that can be loaded into FC's comparison buffer (which by default is 100 lines). Rerun
the comparison using the /LBn switch to allocate a larger buffer.

usage: fc [/a] [/b] [/c) [/1] [/lbNN] [!w] [/t] [/n] [/NNNN] filet file2
The command line included an invalid switch or FC was entered without any switches or
other parameters.

Section III: User Commands 857

HUAWEI EX. 1110 - 867/1582

FDISK

FDISK 3.2

Configure Fixed Disk · External No Net

Purpose

Configures an MS-DOS partition on a fixed disk. This command is included with PC-DOS
beginning with version 2.0.

Syntax

FDISK

Description

A fixed disk can be divided into areas of contiguous tracks, or partitions, that are used by
different operating systems. A master control record (partition table) on the disk specifies
the ID number and the starting and ending disk tracks for each partition. Each fixed disk
can have as many as four partitions, but only one partition can be active (bootable) at any
given time.

The FDISK utility is a menu-driven program that adds or deletes an MS-DOS partition on a
fixed disk, selects one partition as active, and displays the size and status of all partitions.
With most implementations of MS-DOS, each fixed disk can contain only one MS-DOS
partition.

After an MS-DOS partition is created, the FORMAT command must be used to initialize the
partition's directory structure. To make it possible to start the computer from the MS-DOS
partition on the fixed-disk drive, the /S switch must be used with FORMAT to transfer the
operating-system files and the MS-DOS partition must be the active partition.

Warning: If the MS-DOS partition is deleted, any files stored in the partition are irretriev­
ably lost.

Examples

To display the current partitioning of the fixed disk, cype

C>FDISK <Enter>

858 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 868/1582

The FDISK utility then displays the following menu:

Fixed Disk Setup Program Version 0.02
(C) Copyright Microsoft, 1985.

FDISK Options

Choose one of the following:

1 . Create DOS Partition
2. Change Active Partition

3. Delete DOS Partition
4. Display Partition Data

Enter choice: [1]

Press ESC to return to DOS

FDISK

Note: A fifth option, Select Next Fixed Drive, will appear if more than one fixed disk is in­
stalled in the system.

Choose option 4 (Display Partition Data). FDISK then displays the partition data for the
disk in the following form:

Display Partition Information

Partition Status Type Start End Size
A DOS 0 613 614

Total disk space is 614 cylinders.

Press ESC to return to FDISK Options

Assume that the low-level (hardware) formatting for fixed-disk drive C has just been com­
pleted by using the drive manufacturer's setup utility. To establish a bootable MS-DOS par­
tition on the disk, type

A>FDISK <Enter>

When the menu is displayed, press Enter to choose option 1 (Create DOS Partition). FDISK
responds with the following message:

Create DOS Partition

Do you wish to use the entire fixed
disk for DOS (Y /N} ? [Y]

Press ESC to return to FDISK Options

To partition the entire fixed disk for MS-DOS, press Enter to select Y (the default). When
the FDISK main menu is again displayed, choose option 4 (Display Partition Data) to
verify that the MS-DOS partition has in fact been established on the fixed disk.

Section III: User Commands 859

HUAWEI EX. 1110 - 869/1582

FDISK

Messages

n is not a choice. Please enter Y or N.
The response to an FDISK prompt requiring a yes or no answer was not Y or N.

n is not a choice. Please enter a choice
The response to an FDISK prompt requiring a number was not in the proper range or was
not a number.

DOS partition created
A new MS-DOS partition has been established on the fixed disk Use the FORMAT utility
to create a directory structure in that partition.

DOS partition deleted
The previously existing MS-DOS partition on the fixed disk has been deleted. Any files
contained in the partition are irretrievably lost. ·

DOS 2.0 or later required
FDISK does not work with versions of MS-DOS earlier than 2.0.

Do you wish to use the entire fixed
disk for DOS (Y /N) ?[Y)
Option 1, Create DOS Partition, has been chosen from the main menu. Respond with Y or
press Enter to use all available cylinders for a single DOS partition; respond with N to
specify that only part of the fixed disk should be used.

Enter starting cylinder number .. :[n)
Option 1, Create DOS Partition, has been chosen from the main menu and the user has re­
sponded N to the Do you wish to use the entire fixed disk for DOS? prompt. This message
then prompts for the starting cylinder number of the DOS partition being created.

Enter the number of the partition you
wantto make active :[n)
Option 2, Change Active Partition, has been chosen from the main menu and this message
prompts the user to enter the number of the partition that will become the active partition.

Error loading operating system
An error occurred while attempting to start the system from the fixed disk Attempt to
restart the system. If that fails, start the system from a floppy disk and use the SYS com­
mand to copy a new set of the operating-system files to the fixed disk.

Error reading fixed disk
An unrecoverable hardware error was encountered while FDISK was reading data from
the fixed disk The disk may require a low-level (hardware) formatting operation before
FDISK can be used; this is usually performed with a special utility program provided by
the drive manufacturer.

860 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 870/1582

FDISK

Error writing fixed disk
An unrecoverable hardware error was encountered while FDISK was writing the new par­
tition control record to the fixed disk Test the fixed disk with hardware diagnostics before
further use.

Fixed disk already has a DOS partition.
The specified fixed disk already contains an MS-DOS partition. Be sure that the correct
fixed disk has been selected before proceeding.

Incorrect DOS version
The version of FDISK is not compatible with the version of MS-DOS that is running.

Invalid partition table
The fixed disk's partition table is invalid and the operating system could not be loaded
from the fixed disk during system initialization. Restart the computer using a floppy disk
and rerun FDISK to determine and correct the problem.

Missing operating system
The DOS partition is the active partition, but it does not contain the operating system.
(This message occurs only during system startup.) Use the SYS command to install the
operating system.

No DOS partition to delete.
The fixed disk does not contain an MS-DOS partition.

No fixed disks present
FDISK cannot detect a fixed disk in the system. This may reflect a hardware problem with
the fixed disk or its controller.

No partitions defined.
This informational message is displayed after the user has chosen option 4, Display
Partition Data, to indicate that no partitions are currently defined.

No partitions to make active
The fixed disk has not been previously partitioned using FDISK; therefore, an active parti­
tion cannot be selected.

No space for a nnn cylinder partition.
The fixed disk does not have enough free cylinde~s to create the desired partition.

No space to create a DOS partition.
The fixed disk does not have enough free cylinders to create an MS-DOS partition.

Partition n is already active
The selected partition is already active (bootable); therefore, no action was taken.

Partition n made active
This informational message indicates that the selected partition has been made the active
partition.

Section Ill: UserCommands 861

HUAWEI EX. 1110 - 871/1582

FDISK

System will now restart
Insert DOS diskette in drive A:
Press any key when ready ...
The DOS partition has successfully been created. Strike any key and the system will restart
from the disk in drive A.

The current active partition is n.
This informational message indicates which partition is currently bootable.

,,.·,

The table partition can't be made active.
The master partition record cannot be made bootable.

Total disk space is nnn cylinders.
This informational message indicates the total number of cylinders on the fixed disk.

Total disk space is nnn cylinders.
Maximum available space is nnn
cylinders atn.
The user has responded N to the Do you wish to use the entire fixed disk for DOS? prompt
and this informational message indicates how much space is available for the DOS
partition.

Warning: Data in the DOS partition
will be lost. Do you wish to
continue ?[N]
If the MS-DOS partition is deleted, all files within the partition are lost. Be sure that the
files are backed up to another disk qefore proceeding. Respond with N to return to the
FDISK main menu; respond with Y to delete the DOS partition and lose any files within it.

862 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 872/1582

FIND
Find Character String

Purpose

2.0 and later

External

FIND

Searches the character stream from a file or from standard input for a string and displays
any lines that contain the string on standard output.

Syntax
FIND [/C) [/N) [/V) "string" [[drive:] [path]jilename] [[drive:] [path]jilename ...)

where:

string is the character string to be searched for, always enclosed in quotation marks;
case is significant.

filename is the name of the file to be searched, optionally preceded by a drive and/or
path; wildcard characters are not permitted.

/C displays only the count of the lines containing string.
IN includes the relative line number with each line.
/V displays only those lines that do not contain string.

Description

The FIND command searches for all occurrences of a specified string in one or more files
(or from standard input). Normally, FIND copies each line in which the string is found to
standard output, which defaults to the video display but can be redirected to a file or
another character device or can be piped to another program.

The string to be searched for must be enclosed in quotation marks. If the search string it­
self contains sets of quotation marks, each of those sets of quotation marks must be sur­
rounded by an additional set of quotation marks. FIND's string search is case sensitive.

The search string can be followed by the names of one or more source files; these file­
names cannot include wildcards. If no filename is supplied, FIND reads lines from stan­
dard input; unless input has been redirected from a file or from the output of another
program, this means that FIND reads input from the keyboard. (Keyboard input is termi­
nated by pressing Ctrl-Z or F6 followed by Enter.)

The /C switch counts the total number of lines in which the string appears and sends the
count, rather than the lines themselves, to standard output. If the /C switch is used with /V,
only the total count of lines that do not contain the specified search string is displayed. If
both /C and /N are included in the same FIND command, the IN is ignored.

The IN switch includes a relative line number with each line sent to standard output. This
is especially helpful when the output of FIND is to be used as a guide to editing the files.

The /V switch reverses the action of FIND so that it copies to standard output all lines that
do not include the specified string.

Section Ill: User Commands 863

HUAWEI EX. 1110 - 873/1582

FIND

Examples

To find and display all lines in the files BREAK.ASM, TALK.ASM, and SHELL.ASM that con­
tain the string es:, type

C>FIND "es:" BREAK.ASM TALK.ASM SHELL.ASM <Enter>

To find and display all lines in the file STORY. TXT that contain the string he said "no",
type

C>FIND "he said ""no""" STORY.TXT <Enter>

To search the file \SOURCE\MENUMGR.ASM on the current drive and display all lines
that do not contain the string Error, type

C>FIND /V "Error" \SOURCE\MENUMGR.ASM <Enter>

To obtain a listing on the printer of the lines in the file SHELL.ASM in the current directory
of the current drive that contain the string proc, including line numbers, type

C>FIND /N "proc" SHELL.ASM > PRN <Enter>

To search for all lines that contain two strings, pipe the output of one FIND command to
be the input of another. For example, to find only those lines in the file MENUMGR.ASM in
the current directory of the current drive that contain both the strings MOV and AX, type

C>FIND "MOV" MENUMGR.ASM : FIND "AX" <Enter>

Messages

----------filename
This informational message gives the name of the file that is currently being searched.

FIND: Access denied
The specified file is locked or being accessed by another application.

FIND: File not found filename
The specified file does not exist or the path or drive is not correct.

FIND: Invalid number of parameters
The command line did not include a search string.

FIND: Invalid Parameter option
The command line included an invalid switch.

FIND: Read error in filename
A disk error occurred during processing of the specified file.

FIND: Syntax error
The command line included an invalid search string. The string must be enclosed in
quotation marks.

Incorrect DOS version
The version of FIND is not compatible with the version of MS-DOS that is running.

864 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 874/1582

FORMAT
Initialize Disk

Purpose

FORMAT

1.0 and later

External No Net

Prepares a disk for use by initializing the directory and file allocation table (FAT).

·syntax

FORMAT [drive:] [/S] (versions 1.x)

or

FORMAT [drive:] [/0] [/V] [/S] (versions 2.0-3.1)

or

FORMAT drive: [/1] [/41 [/8] [/N:n] [/T:n] [/V] [/S] (version 3.2)

or

FORMAT drive: [/1] [/B] [/N:n] [/T: n] (version 3.2)

where:

drive
/1
/4

/8
/B

!N:n
/0
IS

/T:n
/V

is the location of the disk to be formatted.
formats a single-sided disk in a double-sided disk drive.
formats a standard double-sided, double-density disk (360 KB) on a quad­
density disk drive.
formats a disk with 8 sectors per track.
formats a disk with 8 sectors per track and preallocates space for the hidden
operating-system files.
formats a disk with n sectors per track.
formats a disk that is compatible with PC-DOS versions l.x.
creates a system (bootable) disk; for most implementations of FORMAT, this
must be the last switch in the command line.
formats a disk with n tracks.
allows a volume label to be assigned to the disk after formatting.

Note: Each OEM determines which switches will be supported by the FORMAT utility in­
cluded with the versions of MS-DOS sold with its computers.

Description

The FORMAT command effectively erases any existing data on a disk and creates a new
root directory and file allocation table. Each sector of the disk is checked for defects and
unusable sectors are marked so that they will not be assigned to files.

Section Ill: User Commands 865

HUAWEI EX. 1110 - 875/1582

FORMAT

If the drive parameter is not supplied, the current or default drive is formatted. (A drive
letter must be specified with version 3.2.) With versions 3.0 and later, the FORMAT pro­
gram displays a warning if the drive to be formatted is a fixed disk and asks for confirma­
tion before continuing.

When the formatting operation is complete, FORMAT displays the total amount of disk
space, the number of bytes lost to defective sectors, the space reserved for or occupied by
the hidden operating-system files (if the /B or /S switch was used), and the remaining free
disk space. If a floppy disk was formatted, FORMAT then prompts the user to select be­
tween formatting another disk and returning to MS-DOS.

Normally, the type of disk drive determines the format that is given to a disk. For example,
if a disk is formatted in a standard double-sided, double-density drive, the format defaults
to double-sided, 40 tracks per side, 9 sectors per track. The version-specific default formats
are 9 or 15 sectors per track with versions 3.0 and later, depending on the drive type; 9 sec­
tors per track with versions 2.x; and 8 sectors per track with versions l.x. The /1, /4, /8,
/N: n, and /T: n switches can be used to override the default format in some cases. (Not all
combinations of /N:n and /T:n are supported on all hardware.)

Note: A disk formatted with the /4 switch might not be reliably read on a single- or double­
sided double-density drive.

The /S switch creates a system (boatable) disk that contains a copy of the operating
system. After the format operation is complete, the two hidden files IO.SYS and
MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS) and the nonhidden file
COMMAND. COM are copied to the newly formatted disk. Most implementations of
FORMAT require that the /S switch, if used, be the last switch in the command line.

The /V switch allows a volume label to be assigned to the new disk. After formatting is
complete, FORMAT prompts the user for a volume name, which can be as many as 11 char­
acters. (The characters •? I : . , ; : + = < > [1 and tab are not permitted in a volume label.)
Volume labels are displayed by the DIR, CHKDSK, TREE, and VOL commands and, with
MS-DOS versions 3.1 and later and PC-DOS versions 3.0 and later, can be modified with the
LABEL command after the disk has been formatted.

The /0 switch causes FORMAT to write an OE5H byte at the start of each directory entry so
that the resulting disk is compatible with MS-DOS and PC-DOS versions l.x.

The /B switch formats a disk for 8 sectors per track and reserves room on the disk for the
operating-system files. The operating system can then be transferred to the disk with the
SYS command to make the disk boatable. The /B switch cannot be used in the same
FORMAT command line as the /V or /S switch.

Warning: Disks in drives affected by an ASSIGN, JOIN, or SUBST command should not be
formatted. Disks cannot be formatted over a network.

866 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 876/1582

FORMAT
.;

Return Codes

0 The FORMAT operation was successful.
3 The program was terminated by entry of a Ctrl-C or Ctrl-Break.
4 The program viras terminated because of a fatal system error (any error other than 0, 3,

or5).
5 The program was terminated by an N response to the fixed-disk prompt Proceed with

FORMAT (YIN)?

Note: Return codes are available with MS-DOS version 3.2.

Examples

To format the disk in drive B, type

C>FORMAT B: <Enter>

In response, FORMAT displays the following message:

Insert new diskette for drive B:
and strike ENTER when ready

With versions earlier than 3.2, FORMAT then displays the message

Formatting ...

after the Enter key is pressed, to show that the formatting operation is in progress. With
version 3.2, FORMAT displays the message

Head: n Cylinder: nn

instead, to show the progress of the formatting operation. With all versions, FORMAT dis­
plays the following messages if the formatting operation is successful:

Format complete
362496 bytes total disk space
362496 bytes available on disk

Format another (Y/N)?

The byte values may vary depending on the drive type or the switches used in the com­
mand line. If bad sectors were encountered during the format operation, FORMAT also
displays the number of bytes in bad sectors.

Note: The Format complete message overwrites the head/cylinder status line but is ap­
pended to the Formatting ... status line.

To format and assign a volume label to the disk in drive B, type

C>FORMAT B: /V <Enter>

After the usual formatting messages, FORMAT prompts as follows:

Volume label (11 characters, ENTER for none) ?

Section Ill: User Commands 867

HUAWEI EX. 1110 - 877/1582

FORMAT

The user can then enter a volume name of as many as 11 characters (except •? I : . , ; : + =

< > []or tab), followed by a press of the Enter key.

To format the disk in drive Band make it a system (boatable) disk, type

C>FORMAT B: /S <Enter>

FORMAT initializes the disk in the usual manner and then copies the two files containing
the operating system (IO.SYS and MSDOS.SYS or IBMBIO.COM andiBMDOS.COM) and
the file COMMAND. COM onto the disk. When the formatting operation is completed on a
360 KB floppy disk, the following messages appear:

Format complete
System transferred

362496.bytes total disk space
62464 bytes used by system

300032 bytes available on disk

Format another (Y/N)?

The number of bytes used by the system will vary with the version of MS-DOS in use.

Messages

n bytes total disk space
n bytes used by system
n bytes in bad sectors
n bytes available on disk
When formatting is complete, FORMAT displays this message with information about
space available on the disk. The bytes used by system line will not appear if the /S switch
was not specified; the bytes in bad sectors line will not appear if no bad sectors were
found.

Attempted write-protect violation
The disk to be formatted is write protected. Remove the write-protect tab and respond
with a Y to the Format another (YIN)? prompt.

Cannot find System Flles
The /S switch was used and FORMAT was unable to find the necessary system files in the
default drive or in drive A.

Cannot FORMAT a Network drive
An attempt was made to format a disk in a drive that has been assigned to a network.

Cannot format an ASSIGNed or SUBSTed drive.
An attempt was made to format a disk in a drive affected by an ASSIGN or SUBST
command.

Disk unsuitable for system disk
Defective sectors were detected on the tracks where the operating-system files would nor­
mally reside on a boatable disk. Such a disk should be used only for data files, if at all.

868 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 878/1582

FORMAT

Drive letter must be specified
A drive letter must be specified when using version 3.2.

Drive not ready
The floppy-disk drive is empty or the drive door is not closed.

Enter current Volume Label for drive X:
The specified drive is a fixed disk, so FORMAT prompts the user to enter the current
volume label for verification.

Error in IOCTL call
An internal system error occurred when a pre-version-3.2 block-device driver was used
with version 3.2 of FORMAT.

Error reading partition table
FORMAT was unable to read the fixed disk's partition table. Use FDISK on the fixed disk
and then try the FORMAT command again.

Error writing directory
FORMAT was unable to create a directory on the disk it is attempting to format. The disk is
defective. ·

Error writing FAT
FORMAT was unable to create the FAT on the disk it is attempting to format. The disk is
defective.

Error writing partition table
FORMAT was unable to write the fixed disk's partition table. Use FDISK on the fixed disk
and then try the FORMAT command again.

Format another (Y /N)?
At the end of a successful formatting operation or after a nonfatal error, this prompt offers
the user the opportunity to format another disk using the same switches specified in the
original FORMAT command. Respond with Y to format another disk; respond with N to
return to MS-DOS.

Format complete
The formatting operation has ended. This message contains a number of space characters
after it and is printed over the top of the head/cylinder status message, effectively erasing
it.

Format failure
The formatting operation was not successful. (This message is usually preceded by
another message telling the user why the format failed.) This message contains a number
of space characters after it and is printed over the top of the head/cylinder status message,
effectively erasing it.

Format not supported on drive X:
Device parameters that the computer cannot support were specified in the FORMAT com­
mand line.

Section Ill: User Commands 869

HUAWEI EX. 1110 - 879/1582

FORMAT

Formatting . ..
This informational message indicates that the FORMAT operation is in progress (versions
1.0 through 3.1).

Head: n Cylinder: nn
This informational message indicates the progress of the FORMAT command during the
formatting operation (version 3.2).

Incorrect DOS version
The version of FORMAT is not compatible with the version of MS-DOS that is running.

Insert DOS disk in drive X:
and strike ENTER when ready
The IS switch was specified in the FORMAT command line and the disk containing the
FORMAT command does not also contain the hidden system files.

Insert new diskette for drive X:
and strike ENTER when ready
This prompt allows the user to change disks before the FORMAT operation continues.

Insufficient memory for system transfer
The command line included the IS switch, but available RAM is insufficient to hold the
system files during the FORMAT operation.

Invalid characters in volume label
Certain characters(*? I i . , ; : + = < > []and tab) are not allowed in a volume name.

Invalid device parameters from device driver
The DEVICE or DRIVPARM device-driver parameters in the CONFIG.SYS file were incor­
rectly set or the fixed disk specified in the command line was formatted using MS-DOS
versions 2.x without first running FDISK. FORMAT displays this message when the number
of hidden sectors is not evenly divisible by the number of sectors per track (meaning that
the partition does not start on a track boundary).

Invalid drive specification
The drive specified after the FORMAT command is not a valid drive.

Invalid media or Track 0 bad- disk unusable
One of the switches supplied in the command line is not valid for the drive containing the
disk to be formatted (for example, the 18 switch for a quad-density floppy disk) or track 0
of the disk being formatted is unusable to the point that FORMAT is unable to create a
directory or file allocation table (FAT).

Invalid parameter
One of the switches supplied in the command line is not valid or is not supported by the
version of FORMAT being used.

Invalid volume ID
The volume label entered in response to the Enter current Volume Label for drive X
prompt was not the same as the current volume label. Use the VOL command to determine
the current volume label.

870 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 880/1582

FORMAT

Non-System disk or disk error
·Replace and strike any key when ready
The command line contained a /S or /B switch, but the source disk does not contain the
operating-system files.

Not a block device
The drive containing the disk to be formatted is not recognized by MS-DOS as a valid
block device.

Parameters not compatible
Switches that cannot be used together were specified in the command line.

Parameters not compatible with fixed disk
One of the switches specified in the command line is not compatible with the specified
drive.

Parameters not supported
One of the parameters specified in the command line is not supported by the version of
FORMAT being used.

Parameters not Supported by Drive
The device driver for the specified drive does not support generic IOCTL function
requests.

Re-insert diskette for drive X:
This message prompts the user to reinsert the disk being formatted into the specified
drive. ·

System transferred
The system files IO.SYS and MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS)
and the file COMMAND. COM have been successfully transferred to the newly formatted
disk.

Too many open files
FORMAT was unable to write the volume label because insufficient system file handles
were available. Increase the value of FILES in the CONFIG.SYS file.

Volume label (11 characters, ENTER for none)?
After formatting a disk with the /V option, FORMAT offers the user the opportunity to en­
ter a volume label for the disk.

Unable to write BOOT
The first track of the disk or MS-DOS partition is bad and cannot be made boatable.

WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE X: WILL BE LOST!
Proceed with Format (YIN)?
If a fixed disk is specified as the disk to be formatted, FORMAT warns the user and gives
the opportunity to cancel the FORMAT command (versions 3.0 and later).

Section II/: UserCommands 871

HUAWEI EX. 1110 - 881/1582

GRAFTABL

GRAFTABL
Load Graphics Character Set

Purpose

3.0 and later

External

Installs a RAM-resident table of bitmaps that defines the screen appearance of character
codes 12S through 255 in graphics mode.

Syntax

GRAFTABL

Description

On IBM PCs and compatibles in graphics display modes, the video-display BIOS routines
(Interrupt lOH) display characters by writing bitmapped matrices of dots to the display.
The dot pattern of each screen character's matrix is defined by an entry in a table of bit­
maps. The table of bitmaps for the regular ASCII characters, coded 0 through 7FH (0-127),
is permanently located in ROM and is always available for use by the system's video driver.
The GRAFTABL utility contains a similar table of bitmaps for the upper (extended) charac­
ters, coded SOH through OFFH (12S-255). The GRAFTABL command loads this table into
RAM and ~laces the address of the table in the vector for lnterruptlFH.

The GRAFTABL command is not needed for the IBM PCjr or for an enhanced graphics
adapter; their ROM BIOS already contains tables of bitmaps for the extended character set.

GRAFTABL is a terminate-and-stay-resident (TSR) program; therefore, its installation
reduces the amount of RAM available for use by application programs.

The GRAFTABL command can be executed only once after the computer has been turned
on or restarted. An attempt to execute it again will result in an informational message stat­
ing that the graphics characters are already loaded.

Example

To load the table of bitmaps for characters SOH through OFFH (12S-255) for use in graphics
mode, type

C>GRAFTABL <Enter>

Messages

DOS 2.0 or later required
GRAFTABL does not work with versions of MS-DOS earlier than 2.0.

Graphics characters already loaded
The GRAFTABL command has already been executed since the system was turned on or
restarted.

S72 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 882/1582

GRAFTABL

Graphics characters loaded
The table of bitmaps has been successfully loaded into RAM and the interrupt vector that
points to the table has been initialized.

Incorrect DOS version
The version of GRAFTABL is not compatible with the version of MS-DOS that is running.

Section III: User Commands 873

HUAWEI EX. 1110 - 883/1582

GRAPHICS

GRAPHICS 3.2

Load Graphics Screen-Dump Program External

Purpose

Installs a resident program that can dump screen contents to the printer in graphics.mode.
This command is also available with PC-DOS versions 2.0 and later.

Syntax

GRAPHICS

or

(PC-DOS 2.x)

GRAPHICS [printer] [/B] [/R] (PC-DOS 3.0 and above)

or

GRAPHICS [printer] [/B] [/C] [/F] [/P port] [/R] (MS-DOS 3.2)

where:

printer

/B

!C
IF
/P port

!R

Description

is the type of printer to be supported, from the following list:

COLOR1
COLOR4

COLORS

COMPACT
GRAPHICS

IBM Personal Computer Color Printer with black ribbon
IBM Personal Computer Color Printer with red-green-blue­

black (RGB) ribbon
IBM Personal Computer Color Printer with cyan-magenta­

yellow-black (CMY) ribbon
IBM Personal Computer Compact Printer
IBM Personal Computer Graphics Printer or compatible

(the default)

prints the background in color; valid only with the COLOR4 and COLORS
printers.
centers the printout on the page.
flips (rotates) the printout 90 degrees.
specifies which port the printer is attached to (1-3, where 1 = LPTl, 2 = LPT2,
and 3 = LPT3).
prints the image as it appears on the screen (white characters on a black back­
ground) rather than reversed (the default, black characters on a white
background).

The default system routine for dumping the screen to the printer (invoked by Shift-PrtSc)
cannot interpret the display in graphics modes. The GRAPHICS command loads a more

S7 4 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 884/1582

GRAPHICS

sophisticated routine that can dump eGA-compatible graphics displays to several models
of IBM graphics printers or compatibles. The GRAPHICS command is not compatible with
the Hercules monochrome graphics card or with an enhanced graphics adapter in its en­
hanced display modes.

If the display is in 640 x 200 graphics mode, the screen dump is printed sideways (rotated
90 degrees). A 320 x 200 graphic can be rotated manually by specifying the IF switch in
the command line; however, the image will be elongated horizontally. A rotated image is
printed along the left side of the page, which is actually the top of the page in terms of im­
age orientation. The /C option can be used to center a rotated 320 x 200 image on the
page.

When used with a printer with a black ribbon, GRAPHICS produces screen dumps with as
many as four shades of gray to represent the colors. When used with a printer with a color
ribbon (type COLOR4 or COLORS), GRAPHICS prints all the colors except the background
color. With printer types COLOR4 and COLORS, the /B switch can be used to print the
background color also.

Ordinarily, the screen image being dumped is reversed from its appearance on the screen;
that is, the light areas on the screen are dark on the printed output and vice versa. The /R
switch produces a screen dump that is not reversed in this manner.

If the printer parameter is not included in the command line, the GRAPHICS program
assumes an IBM Personal Computer Graphics Printer or compatible.

If two or more printers are attached to the system, the /P switch can be used to specify
which printer GRAPHICS should use.

The GRAPHICS command is a terminate-and-stay-resident (TSR) program; therefore, its
installation reduces the amount of RAM available for use by application programs.

Examples
To load the graphics printing program for use with an IBM Personal Computer Graphics
Printer or compatible connected to LPT2, type

C>"GRAPHICS /P 2 <Enter>

Note: A tab, a semicolon character(;), or an equal sign (=) can be used between the /P and
the port number instead of a space.

To load the graphics printing program for use with the IBM Personal Computer Color Prin­
ter with an RGB ribbon and specify that the background color be printed, type

C>·GRAPHICS COLOR4 /B <Enter>

To load the graphics printing program for use with the IBM Personal Computer Compact
Printer and specify that the images be printed sideways and centered on the page, type

C>·GRAPHICS COMPACT /F /C <Enter>

Section Ill: User Commands S75

HUAWEI EX. 1110 - 885/1582

GRAPHICS

Messages
DOS 2.0 or later required
GRAPHICS does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of GRAPHICS is not compatible with the version of MS-DOS that is running.

Unrecognized printer
The printer type specified in the command line is invalid or the printer is not supported.

Unrecognized printer port
The port specified with the /P switch is not a number in the range 1 through 3 or an invalid

separator character was used.

876 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 886/1582

JOIN

JOIN
Join Disk to Directory

3.0 and later

External No Net

Purpose

Joins the directory structure of a disk drive to a subdirectory on another drive.

Syntax

JOIN [drivel: drive2:path]

or

JOIN drivel: !D

where:

drivel

drive2:path
!D

Description

is the drive whose directory structure will be joined to a subdirectory of
another drive.
is the drive and directory that will be used to reference files on drivel.
cancels the effect of a previous JOIN command on drivel.

The JOIN command allows the directory structure of a disk in one drive to be joined, or
spliced, into an empty subdirectory of a disk in another drive. After a JOIN, the entire
directory structure of the disk in drivel, starting at the root, together with all the files that
it contains, appears to be the directory structure of the specified subdirectory on the disk
in drive2; the drive letter for drivel is no longer available. If the directory at the end of the
path on drive2 already exists, it must not contain any files; if it does not exist, JOIN will
attempt to create it.

The current directory status of drivel has no effect on the JOIN operation. Regardless of
which directory or subdirectory is active when the JOIN command is entered, the entire
directory structure, including the root directory, is joined to the subdirectory on the disk in
drive2.

The /D switch cancels any previous JOIN command for a specific drive.

If the JOIN command is entered without parameters, it displays a list of all joins currently
in effect.

Warning: The JOIN command should not be used on drives affected by a SUBST or
ASSIGN command. Similarly, the BACKUP, RESTORE, FORMAT, DISKCOPY, and
DISKCOMP commands should not be used on drives affected by the JOIN command.
Drives that have been redirected over a network cannot be joined.

Section Ill: User Commands 877

HUAWEI EX. 1110 - 887/1582

JOIN

Examples

To join drive B to the subdirectory \ DRIVEB on drive C, type

C>JOIN B: C:\DRIVEB <Enter>

A subsequent JOIN command without parameters displays

B: => C:\DRIVEB

To then list the files in the root directory of'the disk in drive B, type

C>DIR C:\DRIVEB <Enter>

To cancel a previous JOIN command affecting drive B, type

C>JOIN B: /D <Enter>

Messages

Cannot JOIN a network drive
A drive assigned to a network cannot be joined to another drive.

Directory not empty
A drive cannot be joined to a directory that already contains files.

DOS 2.0 or later required
JOIN does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of JOIN is not compatible with the version of MS-DOS that is running.

Incorrect number of parameters
There were missing, extra, or incorrect parameters in the command line.

Invalid parameter
A drive cannot be joined to the root directory of any drive.

Not enough memory
The available system memory is insufficient for MS-DOS to run the JOIN command.

878 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 888/1582

KEYBxx
Define Keyboard

Purpose

KEYBxx

3.2

External

Installs a table that defines the translation of keys to the extended character codes, replac­
ing the default table in the ROM BIOS. This command is included with PC-DOS beginning
with version 3.0.

Syntax

KEYBxx

where:

xx is a code that selects a keyboard configuration:

DV Dvorak keyboard (MS-DOS only)
FR French.
GR German
IT Italian
SP European Spanish
UK United Kingdom English

Note: KEYBxx is hardware dependent; therefore, implementation of this command may
vary for different OEM versions of MS-DOS.

Description
t

The KEYBxx utility configures the keyboard for use with a language other than United
States English, making available special characters that are appropriate for the specified
country's language and currency. These special characters are represented by the ex­
tended character codes (128-255) that correspond to the characters implemented on the
OEM's display adapter. (Both the KEYBxx and the GRAFTABL commands must be used
to make these characters available in graphics modes on a color/graphics adapter.)

After KEYBxx is loaded, special accented characters not part of the language in use are
also available through the use of dead keys-keys that are pressed and released before
the letter key is pressed. The following dead keys are available on a United States English
keyboard for an IBM PC, PC/XT, PC/AT, or strict compatible:

Section Ill: User Commands 879

HUAWEI EX. 1110 - 889/1582

KEYBxx

Keyboard
Program

KEYBGR (Germany)

KEYBFR (France)

KEYBSP (Spain)

KEYBUK (United Kingdom)
KEYBIT (Italy)

Dead
Key

+

[
{

[

]
{
)

Not supported
Not supported

Resulting
Accent

The dead-key combinations supported are

Keyboard
Program

Germany
France
Spain

United Kingdom
Italy

Combinations
Supported

ae:Ei6uael:ou
a.Aei:obuuyaelou
a.Ae1oOuDyae:E16u
ael:ouaeiou
Dead key not supported
Dead key not supported

On an IBM PC, PC/XT, PC/AT, or strict compatible, the key sequence Ctrl-Alt-Fl can be
used at any ti&e to return the keyboard to the default (United States English) configura­
tion; the sequence Ctrl-Alt-F2 then returns the keyboard to the selected configuration.

KEYBxx should be loaded only once during an MS-DOS session; the computer should be
restarted if KEYBxx is loaded for use with a different language.

KEYBxx is a terminate-and-stay-resident (TSR) utility and therefore reduces the amount
of memory available to transient application programs (by approximately 2 KB). The only
way to reclaim this memory is to restart the system.

Example

To configure the keyboard for Germany, type

C>KEYBGR <Enter>

880 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 890/1582

KEYBxx

Messages

Bad command or filename
The selected keyboard does not exist or the program that configures the keyboard is not
present on the disk.

Incorrect DOS version
The version of KEYBxx is not compatible with the version of MS-DOS that is running.

Section Ill: User Commands 881

HUAWEI EX. 1110 - 891/1582

LABEL

LABEL 3.1 and later

External No Net Modify Volume Label

Purpose

Adds, alters, or deletes a volume label on a disk. This command is included with PC-DOS
beginning with version 3.0.

Syntax

LABEL [drive:] [label]

where:

drive is any valid disk drive.
label is a name up to 11 characters long.

Description

With MS-DOS versions 2.0 and later, each disk can have a name called a volume label,
which is implemented as a special type of entry in the disk's root directory. With MS-DOS
versions 2.x, this volume label can be assigned to a disk only at the time the disk is format­
ted, using the FORMAT command's /V switch. However, with PC-DOS versions 3.0 and ·
later and MS-DOS versions 3.1 and later, the volume label can be added, modified, or
deleted at any time using the LABEL command. (A disk's volume label can be displayed
with the VOL command; the label is also included as part of the output from the CHKDSK,
DIR, and TREE commands.)

If a new volume name is included in the LABEL command line, the disk's label is changed
immediately. If LABEL is entered alone or with only a drive letter, a message is displayed
giving the current volume label of the disk in the specified drive (or the default drive, if no
drive letter is given) and prompting the user for a new label. (A volume label can be from 1
to 11 characters; it cannot contain any of the characters*? I \ : . , ; : + = < > [] or tab.) If no
new volume name is supplied (the user did not type a volume label before pressing Enter),
LABEL prompts the user to indicate whether the prdious volume label should be deleted.
Existing files on the disk are in no way affected by the LABEL command.

The LABEL command cannot be used on a network drive. With MS-DOS version 3.2, the
LABEL command also cannot be used on a disk in a drive that is affected by an ASSIGN or
SUBST command.

Examples

To give the volume label PAYROLL to the disk in drive B, type

C>LABEL B:PAYROLL <Enter>

882 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 892/1582

LABEL

Note that LABEL immediately overwrites any existing volume label on drive B with the
new name; no warning of an existing volume label is given.

To remove the volume label LEDGER from the disk in drive A, type

C>LABEL A: <Enter>

The LABEL command displays

Volume in drive A is LEDGER
Volume label (11 characters, ENTER for none)?

Press the Enter key to receive the additional prompt

Delete current volume label (Y/N)?

Then respond with Y and Enter to remove the volume label from the disk in drive A.

Messages

Cannot LABEL a Network drive
The disk drive specified in the command line cannot be a network drive.

Cannot LABEL a SUBSTed or ASSIGNed drive
The disk drive specified in the command line is currently affected by a SUBST or ASSIGN
command (MS-DOS version 3.2).

Delete current volume label (YIN)?
No volume label was entered in response to the volume-label prompt and a volume label
already exists on the disk. Respond with Y to delete the current label; respond with N to
terminate the command.

Incorrect DOS version
The version of LABEL is not compatible with the version of MS-DOS that is running.

Invalid characters in volume label
The characters •? I \ : . , ; : + = < > [] and tab cannot be part of a volume label.

Invalid drive specification
The drive specified in the command line is not valid or does not exist in the system.

No room in root directory
The root directory of the disk in the designated drive is full and a volume label cannot be
added. Delete a file or subdirectory from the root directory to make room for the label.

Too many files open
LABEL was unable to write the volume label because no system file handles were avail­
able. Increase the value ofFILES in the CONFIG.SYS file.

Section Ill: User Commands 883

HUAWEI EX. 1110 - 893/1582

LABEL

Volume in drive X has no label
Volume label (11 characters, ENTER for none)?

or

Volume in drive X is xxxxxxxxxxx
Volume label (11 characters, ENTER for none)?
This informational message informs the user of the current volume label and prompts the
user to add, change, or delete it.

884 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 894/1582

MKDIRorMD
Make Directory

Purpose

Creates a new directory.

Syntax

MKDIR [drive:] [path] new_directory

or

MD [drive:] [path] new_ directory

where:

MKDIRorMD

2.0 and later

Internal

new_directory is a valid directory name, optionally preceded by an existing path
and/or a disk drive.

Description

The MKDIR command creates a directory, adding a branch to the hierarchical directory
structure of the disk. If the name of the new directory is preceded by a path, indicating
that the new directory is to be a subdirectory of that path, the specified path must already
exist.

If new_directory is not preceded by an existing path or a backslash character(\), it is
presumed to be relative to the current directory. If new_ directory is preceded by a back­
slash alone, the directory created will be a subdirectory of the root directory, regardless of
the current directory. The length of the full path (including new_ directory) must not ex­
ceed 63 characters.

Warning: The MKDIR command should not be used to create new directories on drives
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To create a directory named SOURCE in the current directory of the disk in the current
drive, type

C>MKDIR SOURCE <Enter>

or

C>Mo SOURCE <Enter>

Section Ill: User Commands 885

HUAWEI EX. 1110 - 895/1582

MKDIRorMD

To create a directory named LETTERS in the existing directory named WORD (which is a
subdirectory of the root directory) on the disk in drive D, type

C>MKDIR D:\WORD\LETTERS <Enter>

or

C>MD D:\WORD\LETTERS <Enter>

Messages

Invalid drive specification
The drive specified in the command line is not valid or does not exist in the system.

Invalid number of parameters
The name of the new directory was not included in the MKDIR command line.

Unable to create directory
The specified directory cannot be created. This may be caused by a full disk (if the new
directory would cause the current directory to be extended), a full root directory (if the
new directory's parent is the root directory), the existence of a file or directory with the
same name, or an invalid new_directory name.

886 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 896/1582

MODE

MODE 3.2

Configure Device External

Purpose

The MODE command has four distinct uses:

• To reconfigure a printer attached to a parallel port (LPTl, LPT2, or LPT3) for printing
at 80 or 132 characters per line, 6 or 8 lines per inch, or both (if the printer supports
these features). In this form, MODE can also be used to select a parallel printer other
than the one attached to LPTl for use as the default printer.

• To select another display or reconfigure the current display .. Reconfiguration includes
changing between 40-column and 80-column display, changing between mono­
chrome and color display, centering the display on the screen, or any combination of
these.

• To configure the baud rate, parity, and number of databits and stop bits of a serial
communications port (COMl or COM2) for use with a specific printer, modem, or
other serial device.

• To redirect printer output from a parallel port to one of the serial ports, so that the
serial port becomes the system's default printer port.

Because the syntax for each of these uses of MODE is different, they are discussed
separately on the following pages.

Although each form of the MODE command can be issued at the system prompt, MODE
commands are commonly used within the AUTO EXEC. BAT file to automatically perform
any necessary reconfiguration each time the system is turned on or restarted.

The MODE command is included with PC-DOS beginning with version 1.0.

Message

Incorrect Version of MODE
The version of MODE is not compatible with the version of MS-DOS.that is running.

Section Ill: User Commands 887

HUAWEI EX. 1110 - 897/1582

MODE

MODE 3.2

Configure Printer External

Purpose

Sets characteristics for IBM-compatible printers connected to a parallel printer port (LPTl,
LPT2, or LPT3). This form of the MODE command is included with PC-DOS beginning
with version 1.0.

Syntax

MODE LPTn[:][cpl] [,[lpi][,P]]

where:

LPTn
cpl
I pi
p

Description

is the parallel printer port (n = 1, 2, or 3).
is the number of characters per line (80 or 132, default = 80).
is the number of lines per inch (6 or 8, default= 6).
causes continuous retries when the printer is not ready.

This form.of the MODE command configures an IBM or compatible printer connected to
parallel port n. Its effect on other printer types may vary. The command has the side effect
of canceling any redirection that was previously applied to the specified port with a
Redirect Printing MODE command.

The first parameter, LPT n, designates the parallel printer port to be configured (LPTl,
LPT2, or LPT3). All the other parameters are optional.

The cpl parameter selects between printing 80 characters on a line (the default) and 132
characters on a line. The I pi parameter selects between 6 lines per inch (the default) and 8
lines per inch. (Note that the attached printer must be capable of printing 132 characters
per line or 8lines per inch and of understanding IBM-compatible printer-control codes;
otherwise, specifying these values will have no effect.)

The last parameter in the command line, P, configures the system to retry output contin­
uously (or until Ctrl-Break is pressed) if the printer is not ready or not on line (interpreted
by the computer as a time-out error), rather than display an error message. (Note that ifP is
used and lpi is omitted, the comma preceding I pi must be specified.) Use of the P option
causes part of the MODE program to become permanently resident in memory. (This
option is not available in PC-DOS version 1.0.)

Examples

To configure the printer on the first parallel port to print 132 characters per line, with 8
lines per inch, type

C>MODE LPT1 :132,8 <Enter>

888 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 898/1582

MODE

To configure the system to continually send output to the printer on the second parallel
·port if a time-out error occurs but to leave the other values at their defaults, type

C>MODE LPT2:,,P <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of MODE is not compatible with the version of MS-DOS that is running.

Infinite retry of parallel printer timeout
The P option was included in the command line and the system will continuously retry to
send output to the printer attached to the specified port if it is not ready or not on line.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Invalid parameters
The command line included an incorrect parallel-port specification or one of the con­
figuration parameters was not correct.

LPTn: set for 80
The specified printer has been configured for 80 characters per line.

LPTn: set for 132
The specified printer has been configured for 132 characters per line.

Printer error
The configuration command could not be carried out because the printer is turned off, not
ready, or not on line.

Printer lines per inch set
The printer has successfully been configured for the specified 6 or 8 lines per inch.

Resident portion of MODE loaded
The P option was specified in the command line and part of the MODE command has
become permanently resident in memory, decreasing slightly the amount of memory avail­
able to other programs.

Section Ill: User Commands 889

HUAWEI EX. 1110 - 899/1582

MODE

MODE 3.2

Set Display Mode External

Purpose

Selects the active video adapter and its display mode or reconfigures the current display.
This form of the MODE command is included with PC-DOS beginning with version 2.0.

Syntax

MODE display

or

MODE [display],shift[,T]

where:

display is a video adapter and display mode from the following list:

40
80
BW40

BW80

C040
coso
MONO

Color/graphics adapter, 40 characters per line
Color/graphics adapter, 80 characters per line
Color/graphics adapter, 40 characters per line, color disabled from

composite output
Color/graphics adapter, 80 characters per line, color disabled from

composite output
Color/graphics adapter, 40 characters per line, color enabled
Color/graphics adapter, 80 characters per line, color enabled
Monochrome adapter

shift is R or L, to shift the display left or right one (40-column display) or two
(80-column display) character positions.

T causes a test pattern to be displayed for screen alignment.

Description

This form of the MODE command has two uses. The first is to select the active video
adapter and its display mode (if more than one adapter is present in the system) or to
reconfigure the current adapter. The second is to shift the screen display to the left or right
to center it. In both cases, the screen is cleared as a side effect of the command.

The display parameter selects the active video adapter and mode or reconfigures the cur­
rent adapter. If a display adapter that is not available is specified, MODE displays an error
message.

The shift parameter is simply the single character R or L preceded by a comma. Each shift
command causes the screen image to be shifted by two characters if the display adapter is
in 80-column mode or by one character if it is in 40-column mode. When the T option is

890 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 900/1582

MODE

also included in the command line, the screen image is shifted, a test pattern is displayed,
and the user is prompted ro indicate whether the screen should be shifted again. Note that
use of shift causes part of the MODE program to become permanently resident in memory.

Examples

In a system with both a color/graphics adapter and a monochrome display adapter, to
select the monochrome display as the active display, type

C>NODE MONO <Enter>

To select a color 80-column text mode on the color/graphics adapter, shift the screen image
two characters to the left, and display a test pattern, type

C>.MODE COBO,L,T <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Do you see the leftmost 0? (YIN)

or

Do you see the rightmost 9? (Y /N)
When the shift and T options are used together, this message allows the user to shift the
test-pattern display successive positions until it is properly centered.

Incorrect DOS version
The version of MODE is not compatible with the version. of MS-DOS that is running.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Invalid parameter
The specified display adapter or mode is not available.

Requested Screen Shift out of range
The display cannot be shifted any further.

Unable to shift Screen left
The screen has already been shifted as far left as possible or the active display adapter can­
not be shifted (monochrome or enhanced graphics adapter).

Unable to shift Screen rlght
The screen has already been shifted as far right as possible or the active display adapter
cannot be shifted (monochrome or enhanced graphics adapter).

Section III: UserCommands 891

HUAWEI EX. 1110 - 901/1582

MODE

MODE 3.2

Configure Serial Port External

Purpose

Controls the configuration of the serial communications adapter. This form of the MODE
command is included with PC-DOS beginning with version 1.1.

Syntax

MODE COMn[:]baud[,parity[,databits[,stopbits(,P]]]]

where:

COMn
baud
parity
databits
stopbits

p

Description

is the serial port (n = 1 or 2).
is the baud rate (110, 150, 300, 1200, 2400, 4800, or 9600).
is the type of parity checking (N = none, 0 = odd, E = even, default = E).
is the number of bits per character (7 or 8, default= 7).
is the number of stop bits (1 or 2, default= 1, except with 110 baud where
default = 2).
causes continuous retries when the output device is not ready.

This form of the MODE command configures the specified serial port for communication
with an external device such as a printer, a terminal, or a modem.

The first parameter, COMn, designates the serial port to be configured (COM1 or COM2).
Except for the port number and the baud rate, which are required, a parameter can be left
unchanged by entering a comma without a value in its position in the command line. (If
all optional parameters are to be left unchanged and P is not used in the command line,
no commas are required.)

The baud rate must be one of the values 110, 150, 300, 600, 1200, 2400, 4800, or 9600. The
first two digits can be used as an abbreviation for the full value.

The parity parameter specifies the type of parity checking to be done on each character
and must be one of the characters N, 0, orE (for none, odd, or even, respectively); the
default is even parity. The databits parameter specifies the length of a character and must
be either 7 or 8; the default is 7. The stopbits parameter is either 1 or 2. If baud is set for
110, the default number of stopbits is 2; otherwise, the default is 1.

The last parameter in the command line, P, configures the system to retry output con­
tinuously (or until Ctrl-Break is pressed) if the device interfaced to the serial port is not
ready or not on line, rather than display an error message. Use of the P option causes part
of the MODE program to become permanently resident in memory.

892 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 902/1582

MODE

Consult the user's manual for the specific printer, modem, terminal, or other device to de­
termine the proper settings for the MODE parameters.

If a serial printer is to be used instead ofLPTl as the system's default printer, the Redirect
Printing MODE command must be specified after the Configure Serial Port MODE
command.

Example

To configure the first serial port for 9600 baud, no parity, 8 databits, and 1 stop bit, type

C>MODE COM1 :9600,N,8,1 <Enter>

Messages

COMn: baud,parity, databits, stopbits, timeout
After the serial port is configured successfully, MODE displays an advisory message con­
firming the settings. If the P option was not used in the command line, a hyphen character
(-) is displayed for timeout, to indicate no continuous retries if the printer is not ready or is
not online.

COM port does not exist
The serial port specified in the command line does not exist in the system.

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of MODE is not compatible with the version of MS-DOS that is running.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Inyalid baud rate specified .
The baud rate included in the command line was not one of the allowed values or was ab­
breviated incorrectly.

Invalid parameters
The command line specified a COM port that does not exist in the system or one of the
configuration parameters for the COM port was not valid.

No COM: ports
The computer does not have any serial ports installed.

Resident portion of MODE loaded
The P option was specified in the command line and part of the MODE command has
become permanently resident in memory, decreasing slightly the amount of memory avail­
able to other programs.

Section Ill: User Commands 893

HUAWEI EX. 1110 - 903/1582

MODE

MODE 3.2

Redirect Printing External

Purpose

Redirects output from a parallel port to a ser!fll communications port. This form of the
MODE command is included with PC-DOS beginning with version 1.1.

Syntax

MODE LPTn[:][=COMn[:ll

where:

LPTn
COMn

Description

is the parallel port to be redirected (n = 1, 2, or 3).
is the serial port (n = 1 or 2) to be used for output instead ofLPTn.

This form of the MODE command redirects any output for the specified parallel port,
sending it to the specified serial communications port instead. The parallel port can be
LPTl, LPT2, or LPT3; the seri!ll port can be either COM1 or COM2. A Configure Serial Port
MODE command is required before the Redirect Printing MODE command, to configure
the serial port for the proper baud rate, parity, word length, and stop bits.

Redirection can be canceled by entering MODE LPTn alone.

Use of MODE to redirect printer output causes part of the MODE program to become
permanently resident in memory. Canceling the redirection will not remove this resident
portion from memory.

Example

To cause all output to the first parallel port (LPTl) to be redirected to the first serial port
(COMl), type

C>MODE LPT1 :=COM1: <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Illegal device name
Either the parallel port or the serial port specified in the command line does not exist in
the system.

894 · The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 904/1582

MODE

Incorrect DOS version
The version of MODE is not compatible with the version of MS-DOS that is running.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

LPTn: not redirected
No serial port was specified and any previous redirection from the specified parallel port
was canceled.

LPTn: redirected to COMn:
The MODE command has successfully redirected the output for the specified parallel port
to the specified serial port.

Resident portion of MODE loaded
Part of the MODE command has become permanently resident in memory, decreasing
slightly the amount of memory available to other programs.

Section Ill: User Commands 895

HUAWEI EX. 1110 - 905/1582

MORE

MORE 2.0 and later

Display by Screenful

Purpose

Displays output one screenful at a time on standard output.

Syntax

MORE

Description

External

The MORE filter reads lines of text from standard input and sends them to standard output
one screenful (23 lines) at a time; At the end of each screenful, MORE displays the message
--More-- and then waits for any key to be pressed before it continues. (Pressing Crtl-C or
Ctrl-Break terminates the MORE filter.)

The default input device is the keyboard; the default output device is the video display.
Because standard input can be redirected, the MORE filter can also accept input from
another character device or a file or from the piped output of another program or filter.
Similarly, the output of MORE can be redirected to any character device or file or can be
piped to another program (however, the message -- More-- will be included with the
redirected or piped output).

Examples

To display the file SHELL.C one screenful at a time, type

C>MORE < SHELL.C <Enter>

To display the directory of \MASM\SOURCE in the current drive one screenful at a time,
pipe the output of the DIR command to the MORE filter by typing

C>DIR \MASM\SOURCE : MORE <Enter>

Messages

--More--
This informational message is displayed at the end of each screenful of text. Press any key
to resume output.

MORE: Incorrect DOS version
The version of MORE is not compatible with the version of MS-DOS that is running.

896 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 906/1582

PATH

PATH 2.0 and later

Define Command Search Path Internal

Purpose

Specifies one or more additional drives and/or directories to be searched for a program or
batch file if the file cannot be found in the current or specified drive and directory.

Syntax

PATH [drive:] [path][; [drive:] [path] . ..]

or

PATH;

where:

drive
path

Description

is the drive containing the disk to be searched for the executable file.
is the name of the directory to be searched for the executable file.

When a command line is entered at the MS-DOS system prompt, the command processor
first checks to see if the specified command is one of its internal commands. If it is not,
the command processor searches the current directory of the current drive for a file with
the same name and the extension .COM, .EXE, or .BAT, in thatorder. If found, the file is
loaded into memory and executed (if the extension is .COM or .EXE) or interpreted by the
resident batch-file processor (if the extension is .BAT); otherwise, MS-DOS displays the
message Bad command or file name, followed by the system prompt. In versions 3.0 and
later, a path can precede the command name, causing MS-DOS to make the initial search
for a program or batch file under the specified path.

The PATH command designates one or more disk drives and/or directory paths to be
searched sequentially for a program or batch file if the file cannot be found in the current
or specified drive and directory. The drives and/or directory paths are searched in the
order they appear in the PATH command. Multiple drive:path pairs can be specified,
separated by semicolons. A copy of the PATH string is passed to each executing process as
a part of the process's environment.

If the drive parameter is specified without an associated path, MS-DOS assumes the root
directory of drive. If the PATH command is followed only by a semicolon, MS-DOS deletes
the existing path. If the PATH command is entered with no parameters, MS-DOS displays
the existing path. ·

Invalid or nonexistent drives and/or paths in the PATH command do not result in an error
message but are ignored when the PATH string is inspected later during a search for a pro­
gram or batch file.

Section Ill: User Commands 897

HUAWEI EX. 1110 - 907/1582

PATH

The PATH command is generally placed in the AUTOEXEC.BAT file on the system disk so
that the search order will be defined each time the system is turned on or restarted.

Examples

To define the directory \BIN on the disk in drive A as the directory to be searched for a
program or batch file if the file is not found in the current or specified directory, type

C>PATH A:\BIN <Enter>

Subsequent entry of the command

C>PATH <Enter>

results in the display

PATH=A: \BIN

To define the root, \BIN, \DOS, and \DATA directories on drive C and the \UTIL directory
on the disk in drive B as the locations to be searched for a program or batch file if the file
is not found in the current or specified directory, type

C>PATH C:\;C:\BIN;C:\DOS;C:\DATA;B:\UTIL <Enter>

To delete the current search path, type

C>PATH <Enter>

Message

No Path
The PATH command was entered without parameters and no search path is currently in
effect.

898 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 908/1582

~
~ j

PRINT

PRINT 2.0 and later

Print Spooler External

Purpose

Loads and configures the background print spooler or adds or deletes files from the print
spooler's queue.

Syntax

PRINT [/D:device] [/B:n] [/M:n] [/Q:n] [/S:n] [/U:n] [[drive:][path]jilename] [/C][/Pl
[[[drive:] [path]jilename] [/C] [/Pl ...]

or

PRINT IT

where:

filename

/B:n

!C

!D:device

/M:n

!P

/Q:n

/S:n

IT
/U:n

is the name of the file to be added to or deleted from the print queue,
optionally preceded by a drive (and a path with versions 3.0 and later);
wildcard characters are permitted.
sets the print-buffer size in bytes (1-32767, default= 512) (versions 3.0
and later).
deletes the immediately preceding file and all subsequent files from the
print queue (until a /P switch is encountered).
is the character device to be used for printing (default= PRN); must be the
first switch, if used (versions 3.0 and later).
is the length of time in timer ticks that PRINT keeps control during each
of its time slices (1-255, default= 2) (versions 3.0 and later).
adds the immediately preceding file and all subsequent files to the print
queue (until a /C switch is encountered).
is the maximum number of files allowed in the print queue (1-32, default
= 10) (versions 3.0 and later).
is the number of time slices per second that PRINT gives control to the
foreground process (1-255, default= 8) (versions 3.0 and later).
terminates printing and empties the print queue.
is the number of timer ticks that PRINT waits for a busy or unavailable
printer or for a disk access or MS-DOS function call to terminate before
giving up the time slice (1-255, default= 1) (versions 3.0 and later).·

Section Ill: User Commands 899

HUAWEI EX. 1110 - 909/1582

PRINT

Description

The PRINT utility is a terminate-and-stay-resident (TSR) program that can print files from
disk while other programs are running. PRINT maintains a first-in, first-out (FIFO) queue
that can hold the names of as many as 32 files. PRINT does not attempt to interpret the
contents of a file, except to expand tab characters (ASCII code 09H) with spaces to the
next eight-column boundary and to interpret 1AH characters as end-of-file marks. (A pro­
gram such as PRINT that can transfer files to .a printer without any special knowledge of
their contents or origin is called a print spooler.)

Note: The PRINT utility continues printing a file until it encounters an end-of-file charac­
ter (1AH). Therefore, if PRINT is used with nontext files, it may encounter a 1AH character
before reaching the end of the file and terminate printing before the entire file has been
processed. In such cases, files should be printed using the COPY command, with PRN as
the destination.

The PRINT program employs a technique called time-slicing, which is based on its use of
the timer-tick interrupt and its detailed knowledge of MS-DOS. PRINT uses this interrupt,
which occurs 18.2 times per second on IBM PC-compatible machines, to divide the pro­
cessor's time between an application or utility program (such as a word processor or a
spreadsheet) and the print spooler. Because the application program typically controls the
display screen and the keyboard and receives most of the CPU time, it is called the fore­
ground program. The print spooler, which receives a lesser part of the CPU time and
usually operates without indicating its status or progress to the operator, is called the back­
ground program.

The /B: n, !D: device, !Q: n, /M: n, IS: n, and /U: n switches configure the PRINT utility.
These switches are used only the first time the PRINT command is entered after the sys­
tem has been turned on or restarted.

The !D:device switch, which must be the first switch in the command line if used, speci­
fies the peripheral device the print spooler is to use for output. This can be any legal
character-output device that is present in the system. If !D:device is not included in the
first PRINT command, PRINT prompts the user to select an output device (default = PRN).
Once an output device has been assigned, a new device cannot be selected without restart­
ing the system.

The /B: n switch sets the size of PRINT's file buffer, which controls the amount of data that
is read from a file at one time for printing. The value of n must be between 1 and 32767
bytes (default value = 512). Large file buffers reduce the amount of extra disk activity
caused by the print spooler, but they also reduce the amount of memory available for use
by other programs. The !Q: n switch controls the size of PRINT's queue-that is, the
number of files that can be held in the buffer pending printing. The queue can be con­
figured to hold 1 to 32 files (default = 10).

The /S: n, /M: n, and /U: n switches, available only with versions 3.0 and later, control the
time-slicing behavior of PRINT. The /S: n switch sets the number of time slices per
second- that is, how many times per second-PRINT will be given control; n is in the

900 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 910/1582

PRINT

range 1 through 255 (default= 8). The /M:n switch sets the length of time (in timer ticks)
that PRINT will keep control during each of its time slices; n is in the range 1 through 255
(default= 2). The /U: n switch specifies how long (in timer ticks) PRINT should wait for a
busy or unavailable printer or for a disk access or MS-DOS function call to terminate before
giving up its time slice; again, n is in the range 1 through 255 (default = 1). Unless there
are special circumstances, the default values for these switches will give acceptable
performance.

Files are added to the print queue by entering PRINT followed by one or more pathnames.
Files are printed in the order they are placed in the queue. At the end of each file, the print
spooler advances the paper to the top of the next page. If a filename containing wildcards
is used, all matching files are added to the queue in the order in which they appear in the
directory. After a file is queued for printing, it should not be renamed or erased, nor should
the disk containing the file be removed, until the printing is complete.

Note: Each print queue entry can be a maximum of 63 characters, including the drive and
path.

The /P and /C switches allow files to be added to and deleted from the print queue in the
same command line. The /P switch (the default) adds to the print queue the immediately
preceding file in the command line and all subsequent files until a /C switch is encoun­
tered. Conversely, the /C switch cancels printing for the immediately preceding file in the
command line and for all subsequent files until a /P switch is encountered. If a canceled
file is currently being printed, PRINT prints the message File filename canceled by opera­
tor on the listing, sounds the printer's alarm (if it has one), and advances the paper to the
top of the next page.

The IT switch terminates printing by deleting all files from the print queue. If a file is cur­
rently being printed, PRINT prints the message All files canceled by operator on the list­
ing, sounds the printer's alarm {if it has one), and advances the paper to the top of the next
page.

If PRINT encounters a disk error while attempting to print a particular file, it cancels that
file, prints an error message on the printer, sounds the printer's alarm (if it has one), ad­
vances the paper to the top of the next page, and goes to the next file in the print queue.

If the PRINT command is entered with no parameters, the contents of the print queue are
displayed.

Because PRINT is a TSR utility, it reduces the amount of memory available for use by other
programs. The only way to recover the memory occupied by PRINT, even after printing is
complete, is to restart the system.

Examples
To install and configure the PRINT program and specify the auxiliary device (AUX) as the
printing device, with a print queue that can hold as many as 32 filenames and with a buffer
size of 2048 bytes, type

C>.PRINT /D:AUX /Q:32 /B:2048 <Enter>

Section III: User Commands 901

HUAWEI EX. 1110 - 911/1582

PRINT

To add the file DOC .TXT in the current directory of the current drive to the print spooler's
queue, type

C>rRINT DOC.TXT <Enter>

To delete the file READY. TXT from the print queue and simultaneously add the files
FINAL. TXT and REPORT. TXT to the queue, type

C>rRINT READY.TXT /C FINAL.TXT /P REPORT.TXT <Enter>
... ~-

To cancel the file being printed and remove all pending files from the print queue, type

C>PRINT /T <Enter>

Messages

filename File not found
A disk was changed or the file was renamed or erased after the PRINT command was en­
tered but before the file was actually printed.

filename File not in print queue
A command line with a /C switch specified a file that is not in the print queue.

filename is currently being printed
This informational message shows which file PRINT is currently printing.

filename is in queue
This informational message shows which file is in the queue waiting to be printed.

filename Pathname too long
The pathname of a file to be printed exceeded 63 characters.

Access denied
An attempt was made to print a locked file.

All files canceled by operator
The IT switch was included in the command line. PRINT terminates printing of the cur­
rent file, empties the print queue, sounds the printer alarm (if it has one), and advances the
paper to the top of the next page.

Cannot use PRINT- Use NET PRINT
If network support has been installed, the NET PRINT command must be used to print
files.

Errors on list device indicate that it
may be off-line. Please check it.
The printer has been turned off or placed off line while files are still in the print queue.

File filename canceled by operator
A PRINT command was entered with the /C switch to cancel a specific file. If the specified
file is currently being printed, PRINT terminates printing of the file, sounds the printer
alarm (if it has one), advances the paper to the top of the next page, and resumes printing
with the next file in the queue.

902 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 912/1582

PRINT

Incorrect DOS version
The version of PRINT is not compatible with the version of MS-DOS that is running.

Invalid drive specification
A drive letter specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line included an invalid switch or configuration switches were used after
the first time the PRINT command was used.

List output is not assigned to a device
An invalid destination device was previously entered. Restart the system and specify a
valid device in the PRINT command.

Name of list device [PRN]:
This message is displayed in response to the first PRINT command line if the !D:device
switch was not included. Specify any valid character-output device (default= PRN).

No paper error writing device device
An out -of-paper device error was detected while printing on the specified device.

PRINT queue is empty
No files are waiting to be printed.

PRINT queue is full
No additional files can be added to the print queue until the current file is printed. To in­
crease the size of the print queue, restart the system and use the /Q: n switch in the PRINT
command.

Resident part of PRINT installed
This informational message is displayed on the first entry of a PRINT command to indicate
that the PRINT utility is now resident in memory. The amount of memory available to ap­
plication programs is reduced accordingly.

Section Ill: User Commands 903

HUAWEI EX. 1110 - 913/1582

PROMPT

PROMPT 2.0 and later

Define System Prompt Internal

Purpose

Defines the form of the command processor:s prompt. This command is included in
PC-DOS beginning with version 2.1.

Syntax

PROMPT [string]

where:

string is a combination of ordinary printable characters and the following special dis­
play codes:

Description

Code

$b
$d
$e
$g
$h
$1
$n
$p
$q
$t
$v
$_

$$

Meaning

:character
Current date (in the form Day mm-dd-yyyy)
Escape character (lBH)
>character
Backspace character (erases the previous character)
<character
Current drive
Current drive and path
=character
Current time (in the form hh:mm:ss.hh)
MS-DOS version number
Carriage return/linefeed pair (starts a new line)
$character

The system's default command processor, COMMAND.COM, displays a prompt on the
screen whenever it is ready to accept a command from the user. The command processor
determines the format of the prompt from the PROMPT environment variable, if it exists.
Otherwise, it uses the default format, which in most OEM implementations of MS-DOS is
the letter of the current drive followed by a greater-than sign (for example, C>).

The PROMPT command allows the user to customize the system prompt. This command
is usually included in the AUTOEXEC.BAT file so that MS-DOS displays the custom prompt
when the system is turned on or restarted.

904 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 914/1582

PROMPT

The string parameter can be any combination of printable characters and the special $
control codes listed in the preceding table. The special $ codes allow certain variable in­
formation, such as the date and time, to be obtained from the operating system and dis­
played as part of the prompt. Such system information can be edited in the prompt with
the backspace function, which is invoked with the code $h.

Note: When the time is displayed as part of a prompt, it is updated only when the com­
mand processor redisplays the prompt.

The escape character, invoked with the code $e, can be used to include standard ANSI
escape sequences in string to control the appearance of text or its position on the screen.
See USER COMMANDS: ANSI.SYS for further information on the ANSI escape sequences
and the ANSI device driver.

If PROMPT is entered with no parameters, the system prompt is reset to the default format.

The PROMPT command works by modifying the PROMPT environment variable. The
same result can be obtained using the SET command with PROMPT=string as its argu­
ment. See USER COMMANDS: SET for further discussion of the environment block and
environment variables.

Examples
To define the system prompt as the word Command followed by a colon, type

C>PROMPT Command: <Enter>

bn fixed-disk-based systems it is desirable to display the current drive and path as part of
the prompt. To define such a prompt followed by a > character, type

C>PROMPT pg <Enter>

To define the system prompt to display the time, date, and current drive and path followed
by a > character, each on a separate line, type

C>PROMPT t_d_pg <Enter>

The system will respond with a display in the following form:

16:07:31.56
Thu 6-18-1987
C:\BIN\DOS>

To create a prompt that displays the time without the seconds and hundredths of a second,
followed by a space and the date without the year, followed by a space and the current
drive and a > character, type

C>PROMPT thhhhh$h dhhhhh ng <Enter>

The system will respond with

16:07 Thu 6-18 C>

Section Ill: User Commands 905

HUAWEI EX. 1110 - 915/1582

PROMPT

To define a prompt that always displays the current time and date in the upper right corner
of the screen before displaying the current drive and the > character on the current line,
type

C>PROMPT $e[s$e[0;60Hthhhhh$h de[ung <Enter>

The escape sequence $e[s saves the current cursor position; the sequence $e[0;60H posi­
tions the cursor at row 0, column 60; the next several codes format the date and time; the
sequence $e[u restores the original cursor position. (This example requires that the ANSI
driver be loaded to interpret the escape sequences.)

906 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 916/1582

RAMDRIVE.SYS

RAMDRIVE.SYS
Virtual Disk

3.2

External

Purpose

Creates a virtual disk in memory.

·syntax

DEVICE=[drive:][path]RAMDRIVE.SYS [size] [sector] [directory] [/A :IE]

where:

size
sector
directory

!A

IE

is the size of the virtual disk in kilobytes (minimum= 16, default= 64).
is the sector size in bytes (128, 256, 512, or 1024; default= 128).
is the maximum number of entries in the virtual disk's root directory
(3-1024, default= 64).
causes RAMDRIVE to use Lotus/Intel/Microsoft Expanded Memory for
storage (cannot be used with /E).
causes RAMDRIVE to use extended memory for storage (cannot be used
with/A).

Note: Unless a /A or IE switch is used, the virtual disk is created in conventional memory.

Description

The RAMDRIVE.SYS installable device driver allows the configuration of one or more
virtual disks (sometimes referred to as electronic disks or RAMdisks). A virtual disk is im­
plemented by mapping a disk's structure- directory, file allocation table, and files area­
onto an area of random-access memory, rather than onto actual sectors located on a
magnetic recording medium. Access to files stored on a virtual disk is very fast, because
no moving parts are involved and the "disk" operates at the speed of the system's memory.

Warning: Because a RAMdisk resides entirely in RAM and is therefore volatile, any infor­
mation stored there is irretrievably lost when the computer loses power or is restarted.

RAMDRIVE.SYS can create a virtual disk in conventional memory, extended memory, or
Lotus/Intel/Microsoft Expanded Memory. Conventional memory is the term for the up­
to-640 KB of RAM that contain MS-DOS and any application programs, Extended memory
is the term for the membry at addresses above 1 MB (100000H) that is available on 80286-
based pe~sonal computers such as the IBM PC/AT. Expanded memory is the term for a sub­
system of bank-switched memory boards (and a driver to manage them) that is compatible
with the Lotus/lntel/Microsoft Expanded Memory Specification (LIM EMS).

A virtual disk can be installed in conventional memory by simply inserting the line
DEVICE=RAMDRIVE.SYS into the system's CONFIG.SYS file and restarting the system. A

Section III: User Commands 907

HUAWEI EX. 1110 - 917/1582

RAMDRIVE.SYS

new "drive" then becomes available in the system, with a default size of 64 KB, 128-byte
sectors, and 64 available directory entries (assuming memory is sufficient). The virtual disk
is assigned the next available drive letter (which is displayed in RAMDRIVE's sign-on mes­
sage). The drive letter assigned depends on the number of other physical and virtual disks
in the system and also on the position of the DEVICE= RAMDRIVE.SYS line in the CON­
FIG.SYS file relative to other installed block devices. Available memory permitting, multi­
ple virtual disks can be created by using multiple DEVICE= RAMDR/VE.SYS lines. Several
optional parameters allow the user to custorp.ize the size and configuration of the virtual
disk and to use extended memory or expanded memory if it is available.

The size parameter specifies the amount of RAM, in kilobytes, to be allocated to the virtual
disk. The default is 64 KB, but any size from 16 KB to the total amount of available memory
can be specified.

The sector parameter sets the virtual sector size used within the virtual disk. The sector
value can be 128, 256, 512, or 1024 bytes (default= 128 bytes). Selection of the smallest sec­
tor size results in a minimum of wasted virtual disk space per file but also results in a
somewhat slower transfer of data. Physical disk devices on IBM PC-compatible systems
always use 512-byte sectors.

Warning: The 1024-byte sector size is not supported in most implementations of MS-DOS
and will terminate the installation of RAMDRIVE.SYS if it is used. Check the documenta­
tion included with the computer to see if this value is supported.

The directory parameter sets the nu'mber of available entries in the virtual disk's root
directory. The allowed range is 3 to 1024 (default = 64). Each directory entry requires 32
bytes. RAMDRIVE rounds the number of available directory entries up, if necessary, so
that an integral number of sectors are assigned to the root directory.

The /A switch causes Lotus/lntel!Microsoft Expanded Memory to be used for the virtual
disk, rather than conventional memory; the /E switch causes extended memory to be used.
Either option allows very large virtual disks to be configured while still leaving the max­
imum amount of conventional memory available for use by application programs. The /A
and /E switches cannot be used together.

Note: If RAMDRIVE uses conventional memory for virtual disk storage, the memory can­
not be reclaimed except by modifying the CONFIG.SYS file and restarting the system.

Examples

To create a virtual disk drive with the default values of 64 KB disk size, 128-byte sectors,
and 64 available directory entries, include the following command

DEVICE=RAMDRIVE.SYS

in the CONFIG.SYS file and restart the system.

908 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 918/1582

RAMDRIVE.SYS

To create a 4 MB virtual disk drive in Lotus/Intel/Microsoft Expanded Memory, with
512-byte sectors and 224 available directory entries, when RAMDRIVE.SYS is located in a
directory named \DRIVERS on drive C, include the command

DEVICE=C:\DRIVERS\RAMDRIVE.SYS 4096 512 224 /A

in the CONFIG.SYS file and restart the system.

Messages

Microsoft RAMDrive version n.nn virtual diskX:
Disk size: nnk
Sector size: nnn bytes
Allocation unit: n sectors
Directory entries: nnn

RAMDRIVE.SYS was successfully installed and this message informs the user of the ver­
sion of RAMDRIVE.SYS that created the virtual disk, the drive letter assigned to the disk,
and the characteristics of the disk.

RAMDrive: Above Board Memory Manager not present
The /A switch was used in the command line and the Lotus!Intel/Microsoft Expanded
Memory Manager is not present in the system. Place the DEVICE command that loads the
memory manager before the DEVJCE=RAMDRIVE.SYScommand in the CONFIG.SYS
file.

RAMDrive: Above Board Memory Status shows errors
The Above Board device driver is bad or damaged or the board itself is defective. Consult
the Above Board manual or the manufacturer.

RAMDrive: Computer must be PC-AT, or PC-AT compatible.
The /E switch was used in the command line and the computer is not an 80286-based IBM
PC/AT or compatible.

RAMDrive: Incorrect DOS version
The version of RAMDRIVE.SYS is not compatible with the version of MS-DOS that is
running.

RAMDrive: Insufficient memory
Available memory is insufficient for RAMDRIVE.SYS to create a virtual drive.

RAMDrive: Invalid parameter
One of the parameters supplied in the command line is incorrect or is not supported by
the computer.

RAMDrive: I/0 error accessing drive memory
The Expanded Memory Manager device driver is bad or damaged or the board itself is
defective. Consult the board's manual or contact the manufacturer.

RAMDrive: No extended memory available
The /E switch was specified but the system does not contain extended memory.

Section Ill: User Commands 909

HUAWEI EX. 1110 - 919/1582

RECOVER

RECOVER
Recover Files

Purpose

2.0 and later

External No Net

Reconstructs files from a disk that has developed unreadable sectors or has a damaged
directory.

Syntax

RECOVER drive:

or

RECOVER [drive:] [path]filename

where:

drive
filename

Description

is the letter of the drive holding the disk with a damaged directory.
is the name of the file that will be reconstructed, optionally preceded by a
drive and/or path; wildcard characters are not permitted.

The RECOVER command partially rescues a file on a disk that has developed bad sectors
by deleting the bad sectors from the file. RECOVER can also reconstruct files (including
files stored in subdirectories) from a disk that has a damaged directory.

When RECOVER is used with a filename, the file is read allocation unit by allocation unit;
unreadable allocation units are marked as bad and are no longer allocated to the file. The
resulting file is usable, although the data contained in the bad allocation units is lost. (The
recovered file may or may not be reusable by the specific application that created it.) The
directory entry for filename is also adjusted to reflect the sectors that were lost and the
bad sectors are marked in the disk's file allocation table so that they are not reused for
another file.

If a disk's directory is damaged, it still may be possible to recover all the files on the disk
and build a new directory by using RECOVER with drive as the only command-line
parameter. RECOVER completely erases the previous contents of the damaged directory
and constructs new directory entries for each of the original files by inspecting the disk's
file allocation table. The recovered files receive names of the form FILEnnnn.REC, starting
with FILEOOOl.REC. Each recovered file's size is always a multiple of the disk cluster size,
so recovered files may require editing to eliminate spurious data at the ends of the files.

RECOVER restores each subdirectory as an individual file that contains the names of the
files originally stored in it. The actual files contained within those subdirectories are also
reconstructed, although they are no longer associated with the subdirectory in which they

910 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 920/1582

RECOVER

. originally resided. Restored files and subdirectories, regardless of their location on the
damaged disk, are placed in the new root directory. If there are more files on the damaged
disk than can be contained in the new root directory (for example, more than 112 for a
5.25-inch, 360 KB floppy disk), the user must repeat the RECOVER command after copy­
ing the already-recovered files to another disk and deleting them from the damaged disk.

Examples

To recover the file MENUMGR.C in the current directory of the current drive, type

C>.RECOVER MENUMGR. C <Enter>

To recover all files on the disk in drive B, which has a damaged directory, type

C>RECOVER B: <Enter>

Messages

n file(s) recovered
When RECOVER is used on a disk with a damaged directory, this informational message
is displayed at the conclusion of processing to indicate how many files of the form
FILEnnnn.REC were constructed.

n ofn bytes recovered
When RECOVER is used on a damaged file, this informational message is displayed at the
conclusion of processing to advise how many bytes of the file were recovered.

Cannot RECOVER a Network drive
Files on a drive assigned to a network cannot be recovered.

File not found
The file specified in the command line cannot be found or does not exist.

Incorrect DOS version
The version of RECOVER is not compatible with the version of MS-DOS that is running.

Invalid drive or file name
An invalid drive letter was specified or the filename contains a wildcard.

Invalid number of parameters
More than one drive letter or filename was specified in the command line.

Press any key to begin recovery of the
file(s) on drive X
This prompt message gives the user the opportunity to change disks after the RECOVER
program is loaded but before processing begins.

Warning- directory fuJI
New directory entries for tl;le reconstructed files cannot be created because the root direc­
tory is full. Copy the recovered files to another disk, delete them from the damaged disk,
and then repeat the RECOVER command on the damaged disk.

Section///: UserCommands 911

HUAWEI EX. 1110 - 921/1582

RENAME ORREN

RENAME or REN
Change Filename

Purpose

Changes the name of a file or set of files.

Syntax

RENAME [drive:l[path]oldname newname

or

REN [drive:Hpath]oldname newname

where:

1.0 and later

Internal

old name is the name of an existing file or set of files, optionally preceded by a drive
and/or path; wildcard characters are permitted.

newname

Description

is the new name to be assigned to oldname; wildcard characters are per­
mitted, but a drive and/or path cannot be specified.

The RENAME command changes the name of an existing file or set of files. It does not
make copies of files or move files from one location in the disk's directory structure to
another or from one drive to another.

The oldname parameter can refer to a single file or can include wildcards to specify a set
of files; a drive and path can be included as part of oldname.

The newname parameter specifies the new name to be given to the file or files; it cannot
include a drive or path. A wildcard in newname causes that portion of the original file­
name to be left unchanged. If the new name for a file is the same as the name of an exist­
ing file, RENAME terminates with an error message.

Examples

To rename the file REVS. DOC, located in the current directory of the current drive, to
CHANGES.TXT, type

C>RENAME REVS.DOC CHANGES.TXT <Enter>

or

C>REN REVS.DOC CHANGES.TXT <Enter>

To rename all files with a .DOC extension in the \SOURCE directory on the disk in drive D
to have a .TXT extension, type

C>REN D:\SOURCE*.DOC *.TXT <Enter>

912 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 922/1582

RENAME ORREN

Messages

Duplicate file name or File not found
The new name specified for a file already exists or a file with the old name cannot be
found or does not exist.

Invalid directory
The command line included a reference to a directory that is invalid or does not exist.

Invalid drive specification
The command line included a reference to a disk drive that is invalid or does not exist in
the system.

Invalid number of parameters
The command line included too few or too many filenames.

Invalid parameter
The newname parameter in the command line included a drive and/or path.

Section III: User Commands 913

HUAWEI EX. 1110 - 923/1582

REPLACE

REPLACE
Update Files

Purpose

3.2

External

Selectively adds or replaces files on a disk.

Syntax

REPLACE [drive:]pathname [drive:][path] [/A][/D][/P][/R][/S][/W]

where:

path name

drive:path

!A

!D

/P
/R
IS

/W

Description

is the name and location of the source files to be transferred, optionally
preceded by a drive; wildcard characters are permitted in the filename.
is the destination for the file being transferred; filenames are not permit­
ted in the destination parameter.
transfers only those source files that do not exist at the destination (cannot
be used with /S or /D).
transfers only those source files with a more recent date than their destina­
tion counterparts (cannot be used with /A).
prompts the user for confirmation before each file is transferred.
allows REPLACE to overwrite destination read-only files.
searches all subdirectories of the destination directory for a match with
the source files (cannot be used with /A).
causes REPLACE to wait for the disk to be changed before transferring
files.

The REPLACE utility allows files to be updated easily to more recent versions. REPLACE
examines the source and destination directories and, depending on the switches used in
the command line, selectively updates matching files or copies only those files that exist
on the source disk but not the destination disk.

The pathname parameter (the source) specifies the name and location ofthe files to be
transferred (optionally preceded by a drive); wildcards are permitted in the filename. The
drive:path parameter (the destination) specifies the location of the files to be replaced
and can consist of a drive, a path, or both. If only a drive is specified as the destination,
REPLACE assumes the current directory of the disk in that drive. If the destination is omit­
ted completely, REPLACE assumes the current drive and directory. The IS switch causes
REPLACE to also search all subdirectories of the destination directory for files to be
replaced.

The /A, !D, and /P switches allow selective replacement of files on the destination disk.
When the /A switch is used, REPLACE transfers only those files on the source disk that do
not exist in the destination directory. When the /D switch is used, REPLACE transfers only

914 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 924/1582

REPLACE

those source files that match the destination filenames but have a more recent date than
their destination counterparts. (The /D switch is not available with the PC-DOS version of
REPLACE.) The /P switch causes REPLACE to prompt the user for confirmation before
each file is transfei.'red.

The /R switch allows the replacement of read-only as well as normal files. If the /R switch
is not used and one of the destination files that would otherwise be replaced is marked
read-only, the REPLACE program terminates with an error message. (REPLACE cannot be
used to update hidden or system files.)

The /W switch causes REPLACE to pause and wait for the user to press any key before
beginning the transfer of files. This allows the user to change disks in floppy-disk systems
with no fixed disk and in those cases where the REPLACE program itself is present on
neither the source nor the destination disk.

Return Codes \

0 The REPLACE operation was successful.
1 An error was found in the REPLACE command line.
2 No matching files were found to replace.
3 The source or destination path was invalid or does not exist.
5 One of the files to be replaced was marked read-only and the /R switch was

not included in the command line.
8 Memory was insufficient to run the REPLACE command.

15 An invalid drive was specified in the command line.
Other Standard MS-DOS error codes (returned on a failed Interrupt 21H file-function

request).

Examples

To replace the files in the directory \SOURCE on the current drive with all matching files
on the disk in drive A that have a more recent date, type

C>REPLACE A:*.* \SOURCE /D <Enter>

To transfer from the disk in drive A only those files that are not already present in the cur­
.. rent directory, type

C>REPLACE A:*.* /A <Enter>

Messages

n File(s) added
After the replacement operation is completed, if the /A switch was used in the command
line, REPLACE displays the total number of files added.

n File(s) replaced
After the replacement operation is completed, REPLACE displays the total number of files
processed.

Section I!/: UserCommands 915

HUAWEI EX. 1110 - 925/1582

REPLACE

Access denied 'Pathname'
One of the files to be replaced on the destination disk is marked read-only and the /R
switch was not included in the command line.

Add pathname? (YIN)
The /A and /P switches were specified in the command line and REPLACE prompts the
user for confirmation before adding each file.

Adding pathname
The /A switch was specified in the command line and REPLACE displays the name of each
file it adds.

File cannot be copied onto itself 'Pathname'
The source and destination command-line parameters specified the same file in the same
location.

Incorrect DOS Version
The version of REPLACE is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The destination disk does not have enough available space to hold the files being added or
replaced.

Insufficient memory
The system does not have enough RAM available to process the REPLACE command.

Invalid drive specification 'X:'
The command line specified a disk drive that is invalid or does not exist in the system.

Invalid parameter 'switch'
The command line included a switch that is not supported by the REPLACE command.

No files added
The /A switch was used and the specified file(s) already exist on the destination disk.

No files found 'Pathname'
The files to be added or replaced on the destination disk were not found on the source
disk.

No files replaced
The files at the destination are identical with the files on the source disk or do not meet the
criteria specified by the switches.

Parameters not compatible
The command line included two or more switches that cannot be used together.

Path not Found 'pathname'
The source or destination parameter included a nonexistent path or directory.

916 TheMS-DOSEncyclopedia

HUAWEI EX. 1110 - 926/1582

REPLACE

Path too long
The source or destination parameter included a path element that is too large (probably
because of a missing backslash character [\]).

Press any key to-begin adding file(s)
The /W and /A switches were specified in the command line and REPLACE waits for the
user to press a key before proceeding, allowing disks to be changed.

Press any key to begin replacing file(s)
The /W switch was specified in the command line and REPLACE waits for the user to
press a key before proceeding, allowing disks to be changed.

Replace pathname? (Y /N)
The /P switch was specified in the command line and REPLACE prompts the user for con-
firmation before replacing the file. '

Replacing pathname
This informational message indicates the progress of the REPLACE command by display­
ing the name of each file as it is being replaced.

Source path required
Although the destination parameter can usually be omitted and defaults to the current
drive and directory, the source location for the files to be replaced must always be
specified.

Unexpected DOS Errorn
This message usually indicates a bad or damaged disk. Use the CHKDSK command to de­
termine the problem.

Section///: User Commands 917

HUAWEI EX. 1110 - 927/1582

RESTORE

RESTORE
Restore Backup Files

2.0 and later

External

Purpose

Restores files from a disk created with the BACKUP command.

Syntax

RESTORE drivel: [drive2:](pathname] [lA: date] [/B:date] [IE: time] [IL:time](IM][IN]
[IS][IP]

where:

drivel

drive2
path name

lA: date
IB:date
IE: time
IL:time
IM
IN
IP

IS

is the drive that contains the backup files created by the BACKUP
command.
is the drive to which the backup files will be restored.
is the name of the file(s) to be restored from drivel; wildcard characters
are permitted in the filename. If a path is used, a filename must be
specified.
restores files that were modified on or after date.
restores files that were modified on or before date.
restores files modified at or before time.
restores files modified at or after time.
restores only files modified since the last backup.
restores only files that no longer exist on the destination disk.
prompts the user for confirmation before restoring hidden or read-only
files or before overwriting files that have changed since they were last
backed up.
restores all files in the subdirectories of the specified directory, in addition

. to the files in the specified directory.

Note: The PC-DOS version of RESTORE supports only the IP and IS switches.

Description

The RESTORE command restores files from a backup disk or directory created with the
BACKUP command to their original location in a directory structure. Before version 3.1,
the RESTORE command could restore files only from one floppy disk to another or from a
floppy disk to a fixed disk. With later versions, RESTORE can also restore files from one
fixed disk to another or from a fixed disk to a floppy disk.

The drivel parameter specifies the source for the backed-up files. If the source disk is a
fixed disk, the backup files are always obtained from the directory \BACKUP. If multiple
floppy disks were used to hold the backed-up files, RESTORE prompts the user for each
disk as it is required.

918 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 928/1582

.,
i

RESTORE

The destination can be any combination of a drive, a path, and a filename; the filename
can include wildcards. If the destination drive is omitted, MS-DOS assumes the current
drive. If a path is not specified, the files are restored to the current directory. (Note that
files must be restored to the same directory they were backed up from.) If a path is speci­
fied, a filename must be specified as well. If neither a path nor a filename is included in
the command line, all directories, subdirectories, and files on the backup disk(s) are
restored to the destination disk. The /S switch can be used to force restoration of the files
in all the subdirectories of a named directory.

Files are restored in the order they were backed up, regardless of their current order on the
destination disk. If files with the same name and location already exist on the destination
disk, they are replaced by the backup copies.

The RESTORE program supports a number of switches that allow selective restoration of
files from the backup disk. The /A: date, !B: date, IE: time, and /L: time switches allow files
to be restored based on the time and/or date they were backed up. The /M switch restores
only those files that have been changed on the destination disk since the backup disk was
created. The /P switch prompts the user before restoring a hidden or read-only file or a file
that has been changed since it was last backed up.

The MS-DOS and PC-DOS RESTORE programs are compatible except when a /A: date,
!B:date, IE: time, !L:time, !M, or IN switch is used. These switches are not supported in the
PC-DOS version.

Warning: The RESTORE command should not be used on a disk drive affected by an
ASSIGN, SUBST, or JOIN command.

Return Codes

0 The restore operation was successful.
1 No files were found to restore.
2 Some files were not restored because of a file-sharing conflict (versions 3.0 and later).
3 The restore operation was terminated by the user ..
4 The program was terminated by an unrecoverable (critical) hardware error.

Examples

To restore the file named MENUMGR.C from the backup disk in drive A to the directory
named \SOURCE on the disk in drive B, type

C>RESTORE A: B:\SOURCE\MENUMGR.C <Enter>

To restore all the files on the backup disk in drive A to their original locations in the direc­
tory structure of drive C, type

C>RESTORE A: C:*.* /S <Enter>

Section Ill: User Commands 919

HUAWEI EX. 1110 - 929/1582

RESTORE

To restore all the files with the extension .C from the backup disk in drive A to the directory
named \SOURCE on drive C, requesting confirmation for those files that are read-only or
hidden, type

C>RESTORE A: C:\SOURCE*.C /P <Enter>

Messages

••• Files were backed up at time on date •••
This informational message shows when th:e BACKUP command was used on the backed­
up files.

••• Not able to restore file •••
The backup file or the destination disk contains an error. Use the CHKDSK command to
determine the problem.

*** Restoring files from drive X: ***
Diskette:n
This informational message indicates the progress of the RESTORE command.

DOS 2.0 or later required
RESTORE does not work with versions of MS-DOS earlier than 2.0.

File creation error
The destination directory is full. This usually occurs only if the destination is the root
directory but can also happen if a file is being restored to a subdirectory and the disk itself
is full.

Incorrect DOS version
The version of RESTORE is not compatible with the version of MS-DOS that is running.

Insert backup diskette n in drive X:
Strike any key when ready
This message prompts the user to insert the next backup disk in sequence. Disks used in
multidisk backups should always be labeled and numbered during a BACKUP operation.

Insert restore target diskette in drive X:
Strike any key when ready
This prompt is displayed when files are being restored to a floppy disk.

Insufficient memory
Available memory is not sufficient for the RESTORE program to execute.

Invalid drive specification
The command line included a drive that is invalid or does not exist in the system.

Invalid number of parameters
The command line included too many or too few parameters.

Invalid parameter
The command line included an invalid switch or other parameter.

920 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 930/1582

RESTORE

Invalid path
The destination parameter included a path that is invalid or does not exist.

Restore file sequence error
Files are being restored from a multidisk set of backup disks and a floppy disk was used
out of order.

Source and target drives are the same
Files cannot be restored from a drive to the same drive.

Source does not contain backup files
The files on the backup disk are not in the special format used by the BACKUP and
RESTORE programs.

System files restored
Target disk may not be bootable
The backup disk included copies of the hidden operating-system files MSDOS.SYS and
IO.SYS (or IBMDOS.COM and IBMBIO.COM in PC-DOS) and these files were restored to
the destination disk. The destination disk is boatable only if these two files are the first
files on the disk and IO.SYS (or IBMBIO.COM) is written into contiguous clusters.

Target is full
The destination disk is full and no further files can be restored.

Target is Non-Removable
The disk to which files are being restored is not removable.

The last file was not restored
The destination disk is full or the last file on the backup disk was bad.

Warning! Diskette is out of sequence
Replace diskette or continue if okay
Files are being restored from a multidisk set of backup disks and a floppy disk was used
out of order.

Warning! File .filename 4
is a hidden file
Replace the file (Y /N)?
The backed-up file has the same filename as a hidden file on the destination disk, which
may be overwritten. (This message appears only if the /P switch was used.) Respond with
Y to overwrite the file on the destination disk; respond with N to leave the destination file
unchanged and continue the RESTORE operation.

Warning! File .filename
is a read-only file
Replace the file (Y/N)?
The backed-up file has the same name as a read-only file on the destination disk, which
may be overwritten. (This message appears only if the /P switch was used.) Respond with

Section III: User Commands 921

HUAWEI EX. 1110 - 931/1582

RESTORE

Y to overwrite the file on the destination disk; respond with N to leave the destination file
unchanged and continue the RESTORE operation.

Warning! File .filename
was changed after it was backed up
Replace the file (Y /N)?
Data has been changed or added to the destination file since the backup disk was created
and this data will be lost if the file is restored. (This message appears only if the /P switch
was used.) Respond with Y to restore the backed-up file; respond with N to leave the des­
tination file unchanged and continue the RESTORE operation.

Warning! No files were found to restore
No files were found on the backup disk that matched the destination file specification.

922 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 932/1582

RMDIRorRD

RMDIRorRD
Remove Directory

Purpose

Removes an empty directory from the hierarchical file structure.

·Syntax

RMDIR [drive:][path]directory_name

or

RD [drive:][path]directory_name

where:

2.0 and later

Internal

directory_ name is the mime of the directory to be removed, optionally preceded by
a drive and/or path.

Description

The RMDIR command removes an empty directory from a disk's hierarchical file struc­
ture. The directory being deleted cannot contain any files or subdirectories (except for the
special • and .• entries). The root directory or current directory of a disk cannot be deleted.

If the path parameter is used, it must specify a valid existing path. If no path is specified
and directory_ name is not preceded by a backslash (\), MS-DOS assumes that the direc­
tory to be removed is a subdirectory of the current directory. If no path is specified and
directory_ name is preceded by a backslash, MS-DOS assumes that the directory is a sub­
directory of the root directory. The length of the full path (including the drive designator
and directory name) must not exceed 63 characters.

The RMDIR command should not be used to remove subdirectories from drives affected
by an ASSIGN or JOIN command. A directory affected by the SUBST command cannot be
removed.

Note: If a directory contains files marked as hidden or system, that directory cannot be
removed even though no files appear to exist when the directory contents are viewed
using the DIR command.

Example

To remove the empty directory \LIB, which is a subdirectory of the \MSC directory on the
disk in drive A, type

C>RMDIR A:\MSC\LIB <Enter>

or

C>RD A:\MSC\LIB <Enter>

Section Ill: User Commands 923

HUAWEI EX. 1110 - 933/1582

RMDIRorRD

Message

Invalid path, not directory, or directory not empty
The named directory cannot be deleted because it does not exist, some element of the
path to the directory does not exist, or the directory contains files or subdirectories.

924 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 934/1582

SELECT

SELECT IBM

Configure System Disk for a Specific Country External

Purpose

Creates a system disk with time, date, and keyboard configured for a selected country. This
command is available only with PC-DOS.

Syntax

SELECT [[drivel:] drive2:[path]] country keyboard

where:

drivel

drive2

country

keyboard

is a floppy-disk drive (A or B) containing the distribution disk or, at
a minimum, the PC-DOS system files, COMMAND. COM, and the FORMAT
and XCOPYutilities (default= drive A) (version 3.2).
is the drive containing the disk to receive the PC-DOS system files and
country information and can include a path (default= drive B) (version
3.2).
is a code from the table below that controls the time, date, and currency
formats.
is a code from the table below that controls the keyboard configuration.

Country Keyboard
Country Code Code

Australia 061
Belgium 032 *
Canadian French 002 *
Denmark 045 *
Finland 358 *
France 033 FR
West Germany 049 GR
Israel 972 *
Italy 039 IT
Middle East 785 *
Netherlands 031 *
Norway 047 *
Portugal 351 *
Spain 034 SP
Sweden 046 *
Switzerland 041 *

(more)

Section Ill: User Commands 925

HUAWEI EX. 1110 - 935/1582

SELECT

Country

United Kingdom
United States

Country
Code

044
001

Keyboard
Code

UK
us

• Available only in version 3.2 and may be supplied on a separate floppy disk.

Description

The SELECT utility allows the user to create a boatable system disk configured for a par­
ticular country's keyboard layout and date, time, and currency formats without performing
these steps separately.

Version 3.2 of SELECT uses the FORMAT command to format the disk in drive2, then uses
the XCOPY command to copy all files on the disk in drivel (including the hidden system
files) to drive2. If a country configuration other than one of the six KEYBxx utilities sup­
plied on the distribution disk is specified, SELECT prompts the user to insert the disk con­
taining the appropriate file.

Versions 3.0 and 3.1 of SELECT use the DISKCOPYprogram to copy all files on the disk in
drive A (including the hidden system files) to the disk in drive B, formatting the disk if
necessary.

All versions then add the appropriate CONFIG.SYS andAUTOEXEC.BAT files to the new
disk to configure PC-DOS for use with the specified keyboard and country configuration.
The specified configuration does not take effect until the computer is turned on or
restarted using the new disk.

Examples

To create a PC-DOS system disk configured for West Germany using version 3.0 or 3.1,
place a copy of the original PC-DOS distribution disk in drive A and a blank disk in drive
B; then type

A>SELECT 049 GR <Enter>

During the copy operation, the usual DISK COPY prompts and messages are displayed.
When the copy operation is complete, the two disks are compared using DISKCOMP, pro­
ducing the usual DISKCOMP prompts and messages. The resulting disk includes all the
files from the distribution disk (including the hidden system files), a CONFIG.SYS file that
contains the line

COUNTRY=049

and an AUTO EXEC. BAT file that contains the following lines:

KEYBGR

ECHO OFF

CLS

DATE
TIME

VER

926 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 936/1582

SELECT

To create a PC-DOS system disk configured for West Germany using version 3.2, place a
copy of the original PC-DOS distribution disk in drive A and a blank disk in drive B; then
type

A>SELECT 049 GR <Enter>

SELECT first uses the FORMAT command to format the disk in drive B, then uses XCOPY
to copy all files on the distribution disk (including the system files), and finally creates a
CONFIG.SYS file that contains the line

COUNTRY=049

and an AUTO EXEC. BAT file that contains the following lines:

PATH \;
KEYBGR
ECHO OFF
CLS
DATE
TIME
VER

Messages

Cannot executeX:fllename
One of the files needed by SELECT (FORMAT, DISK COPY, DISKCOMP, or XCOPY) is not
on the source disk or is a version that is not compatible with the version of PC-DOS that is
running.

File creation error
The root directory of the destination disk is full or unable to contain any more files or one
of the files being created has the same name as a directory already on the destination disk.

Incorrect DOS version
The version of SELECT is not compatible with the version of PC-DOS that is running (ver­
sion 3.2).

Incorrect number of parameters
Too many or too few parameters were specified in the command line or a separator char­
acterwas omitted between two parameters (version 3.2).

Insert DOS diskette in drive A:
Strike any key when ready
This message prompts the user to insert the distribution disk containing the system files
and COMMAND. COM into drive A (version 3.2).

Insert KEYBxx .COM diskette in drive X:
Strike any key when ready
The user responded Y to a previous prompt asking if KEYBxx is on another disk. This
message prompts the user to insert that disk into the specified drive (version 3.2).

Section Ill: User Commands 927

HUAWEI EX. 1110 - 937/1582

SELECT

Insert target diskette in drive A:
Strike any key when ready
This message prompts the user to insert the disk that will become the country-specific sys­
tem disk into drive A (versions 3.0 and 3.1).

Insert target diskette in drive B:
Strike any key when ready
This message prompts the user to insert the disk that will become the country-specific sys­
tem disk into drive B (version 3.2).

Invalid country code
The country code given in the command line is not supported by this version of PC-DOS
or is not a valid country code.

Invalid drive specification
One of the drives specified in the command line is invalid or does not exist in the system
(version 3.2).

Invalid keyboard code
The keyboard code given in the command line is not supported by this version of PC-DOS
or is not a valid keyboard code.

Invalid parameter
One of the parameters specified in the command line is invalid or is not supported by the
version of SELECT that is running (version 3.2).

Invalid path
The path specified for drive2 is invalid, contains invalid characters, or is longer than 63
characters (version 3.2).

Is KEYBxx .COM on another
diskette (Y /N)?
The keyboard reconfiguration file for the specified country is not on the source disk.
Respond with Y to cause SELECT to prompt for the disk containing the keyboard file after
the FORMAT operation is completed; respond with N to terminate the SELECT command
(version 3.2).

Keyboard routine not found.
The user responded N to a previous prompt asking if KEYBxx is on another disk
(version 3.2).

SELECT is used to install DOS the first
time. Select erases everything on the
specified target and then installs DOS.
Do you want to continue (Y /N)?
This message warns the user that the specified disk will be formatted and all files on the
source disk will be copied over. Respond with Y to continue; respond with N to terminate
the SELECT command (version 3.2).

928 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 938/1582

SELECT

Unable to copy keyboard routine
An error occurred while the KEYBxx.COM program was being copied. Use the CHKDSK
command to check the keyboard program on the source disk for damage (version 3.2).

Unable to create directory
The directory specified in the command line was not created because a directory with the
same name already exists on the destination disk, the root directory of the destination disk
is full, one of the directory names specified in the path does not exist, or a file with the
same name already exists (version 3.2).

Section Ill: User Commands 929

HUAWEI EX. 1110 - 939/1582

SET

SET
Set Environment Variable

2.0 and later

Internal

Purpose

Defines an environment variable and a strin~ that is its value.

Syntax

SET [name= value]

or

SET name=

where:

name

value

Description

is a string of characters that defines an environment variable; lowercase letters
are automatically converted to uppercase.
is a string of characters, a pathname, or a filename that defines the current
value of name; no case conversion is made for value.

The environment is a series of null-terminated ASCII (ASCIIZ) strings that contains envi­
ronment variables and their values. (An environment variable associates a string consisting
of a filename, a pathname, or other literal data with a symbolic name that can be refer­
enced by programs. The form of the association is name= value.) The original, or master,
environment belongs to the command processor and is established when the system is
turned on or restarted. When a program is subsequently executed by the command pro­
cessor or by another program, the new program inherits a private copy of its parent's
environment.

The SET command enables the user to add, change, or delete an environment variable
from the command processor's environment. If value is not included in the SET com­
mand, MS-DOS deletes the environment variable name from the environment. If the SET
command is issued with no parameters, MS-DOS displays the values of all the variables in
the environment.

With MS-DOS versions 2.x and 3.x, two particular variables are always found in an envi­
ronment: PATH and COMSPEC. These variables are initialized during the system startup
process and tell COMMAND. COM which subdirectories to search for executable files and
where to find the transient portion of COMMAND.COM for reloading (versions 3.0 and
later). (By default, PATH is a null string and therefore searches only the current or speci­
fied directory.) These special environment variables are influenced by the PATH and
SHELL commands, respectively, but can also be changed with SET commands. Note,
however, that changing the value of COMSPEC with SET will serve no useful purpose­
changing to a different command processor must be done using an appropriate SHELL

930 T/le MS-DOS Encyclopedia

HUAWEI EX. 1110 - 940/1582

SET

command in the CONFIG.SYS file (the system must be restarted for it to take effect). Note
also that it is not necessary to use the SET command with the PATH or PROMPT com­
mands-MS-DOS will automatically add their new values to the environment if they are
changed.

The environment, which can be as large as 32 KB, can be an effective source of global con­
figuration information to executing programs. For instance, the Microsoft C Compiler and
Microsoft Object Linker use environment variables to locate include and object library
files. Environment variables can also be referenced as replaceable parameters in batch
files, using the form %name%.

Under normal circumstances, MS-DOS expands the environment as necessary when SET
commands are entered. However, when a batch file is being interpreted or when
terminate-and-stay-resident (TSR) utilities have been loaded, the size of the command pro­
cessor's enviropment becomes fixed. Under these circumstances, a SET command may
result in the error message Out of environment space.

With version 3.2, the initial size of the environment can be increased either by using the
COMMAND command with the /P and /E: nnnn switches at the system prompt or by in­
cluding a SHELL command specifying COMMAND. COM followed by the /E: nnnn switch
in the CONFIG.SYS file. See USER COMMANDS: coMMAND; coNFIG.sYs: SHELL.

Examples

To define the environment variable USER and set its value to FRED, type

C>SET USER=FRED <Enter>

To change the value of the environment variable USER to SALLY, type

C>SET USER=SALLY <Enter>

To delete the environment variable USER and its value from the environment, type

C>SET USER= <Enter>

To display all the environment variables, type

C>SET <Enter>

The output of this command will be in the following form:

COMSPEC=C:\DOS3\COMMAND.COM
PROMPT=p_ng

PATH=D:\BIN;C:\DOS3;C:\WP\WORD;C:\ASM;C:\MSC\BIN
INCLUDE=c:\msc\include;c:\windows\lib
LIB=c:\msc\lib;c:\windows\lib
TMP=c:\temp
PCF32=c:\forth\pc32
PROCOMM=c:\procomm\

Section ill: User Commands 931

HUAWEI EX. 1110 - 941/1582

SET

Message

Out of environment space
The command processor's environment is full and cannot be expanded (usually because
the SET command was issued from a batch file or the system has terminate-and-stay­
resident [TSR] utilities installed).

932 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 942/1582

SHARE
Install File-Sharing Support

Purpose

3.0 and later

External

Loads the resident file-sharing support module required by Microsoft Networks.

Syntax

SHARE [IF:n] [IL:n]

where:

SHARE

IF: n allocates n bytes of memory to hold file-sharing information (default= 2048).
IL:n configures support for n simultaneous file-region locks (default= 20).

Description

The code that supports file sharing and locking in a networking environment is isolated in
the user-installable SHARE module. After SHARE is loaded, MS-DOS checks all read and
write requests against the file-sharing module. On personal computers that do not utilize
network services, the SHARE module need not be loaded, leaving more memory for ap­
plication programs.

The IF: n switch controls the amount of buffer space allocated for file-sharing information.
Each open file requires the length of its full name, including the path, plus some overhead;
the average pathname is approximately 20 bytes long. If the IF: n switch is not included in
the command line, the buffer size defaults to 2048 bytes (sufficient for approximately 100
files with pathnames of average length).

The IL: n switch controls the number of entries to be allocated for an internal table con­
taining file-locking information. Each active lock on a region of a file occupies one entry in
the table. If the IL: n switch is absent, the default is support for 20 simultaneously active
locks.

Example

To install the file-sharing support module, allocating 4096 bytes of space for file-sharing
information and 40 file-region locks, type

C>SHARE /F:4096 /L:40 <Enter>

Messages

Incorrect DOS version
The version of SHARE is not compatible with the version of MS-DOS that is running.

Incorrect parameter
The command line included an invalid switch.

Section !I/: UserCommands 933

HUAWEI EX. 1110 - 943/1582

SHARE

Not enough memory
System memory is insufficient to load the SHARE module or to reserve the designated file­
sharing information space or file-region locks.

SHARE already installed
The SHARE command has already been executed since the system was turned on or
restarted; additional executions have no effect.

934 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 944/1582

SORT

SORT 2.0 and later

Alphabetic Sort Filter External

Purpose

Reads records from standard input, sorts them alphabetically, and writes the sorted records
to standard output.

Syntax

SORT [/R][/+column]

where:

!R
/+column

Description

specifies a reverse, or descending, alphabetic sort.
specifies the first column to be used for sorting each line (default = 1).

The SORT program is a filter that reads lines from standard input until an end-of-file
marker is reached, sorts the lines into alphabetic order, and writes the sorted lines to stan­
dard output.

Standard input defaults to the keyboard; standard output defaults to the video display.
Because standard input can be redirected, the SORT filter can also accept input from an­
other character device, a file, or the piped output of another program or filter. (The most
common use of SORT is to sort the redirected input from an ASCII text file.) Similarly, the
output of SORT can be redirected to any character device or file or can be piped to another
program.

SORT normally orders the lines of the input text stream alphabetically using the entire line,
starting with column 1 as the sort key. Tab characters are not expanded to spaces. If the
character in the sort-key column of one line is identical with the character in the sort-key 4
column of the next line, SORT checks the next column to the right to determine which line
will go before the other. If the second columns are also identical, the search continues to
the right until a differing column is found. The maximum amount of data that can be
sorted is 63 KB.

The /R switch causes SORT to arrange the set of lines in reverse alphabetic order. The
/+column switch lets the user specify a column other than column 1 as the first sort key.

With versions 2.x, SORT arranges the input lines based on the ASCII value of the character
in each line's sort-key column; the sort operation is therefore case sensitive. With versions
3.0 and later, SORT assigns lowercase letters the same ASCII value as uppercase letters;
hence, case is effectively ignored. Depending on the COUNTRY command in effect (see
USER COMMANDS: coNFIG.SYS: couNTRY), versions 3.0 and later map accented characters
with ASCII codes in the range SOH through OE1H (128- 225) to their unaccented equiva­
lents for sorting.

Section Ill: User Commands 935

HUAWEI EX. 1110 - 945/1582

SORT

Warning: If the output of the SORT command is redirected to a file with the same name as
the input file, the contents of the input file may be destroyed.

Examples
The examples in this entry operate on an ASCII text file named RECORDS.TXT that con­
tains the following lines:

Smith
Adams
Zoole
Jones

Seattle
New York
Bellevue
Boston

Each line of the file contains a person's surname, starting in column 1, and a city name,
starting in column 10.

To sort the file RECORDS. TXT by surname and display the sorted lines on standard output,
type

C>SORT < RECORDS.TXT <Enter>

This will result in the following display:

Adams
.Jones
Smith
Zoole

New York
Boston
Seattle
Bellevue

To sort the file RECORDS. TXT by surname and write the sorted lines into the file
READY.DOC, type

C>SORT < RECORDS.TXT > READY.DOC <Enter>

To sort the file RECORDS. TXT by surname in reverse alphabetic order and display the
sorted lines on standard output, type

C>SORT /R < RECORDS.TXT <Enter>

This will result in the following display:

Zoole
Smith

Jones
Adams

Bellevue
Seattle
Boston
New York

To sort the file RECORDS. TXT by city name and display the sorted lines on standard out­
put, type

C>SORT /+10 < RECORDS.TXT <Enter>

This will result in the following display:

Zoole
Jones
Adams
Smith

Bellevue
Boston
New York

Seattle

936 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 946/1582

I

SORT

To use SORT as a filter to arrange a directory listing alphabetically, type

C>DIR : SORT <Enter>

To use SORT as a filter to arrange a directory listing alphabetically based on the first char­
acter of each file's extension, type

C>DIR : SORT /+10 <Enter>

Messages

Invalid parameter
One of the parameters specified in the command line is invalid or the syntax is incorrect.

SORT: Incorrect DOS version
The version of SORT is not compatible with the version of MS-DOS that is running.

SORT: Insufficient disk space
The output of the SORT filter has been redirected to a file and the disk is full.

SORT: Insufficient memory
The available system memory is insufficient to run the SORT program.

Section Ill: User Commands 937

HUAWEI EX. 1110 - 947/1582

SUBST

SUBST 3.1 and later

External No Net Substitute Drive for Subdirectory

Purpose

Causes a drive letter to be substituted for a directory name. SUBST is present in MS-DOS to
support older application programs that do not accept pathnames. ·

Syntax

SUBST [drivel: [drive2:]path]

or

SUBST drivel: /D

where:

drivel
drive2

path

!D

Description

is the drive letter to be used to reference the files in path.
is a drive letter other than drive 1 that can optionally precede the name of the
subdirectory being substituted. ,
is the subdirectory to be accessed when drivel is referenced, optionally pre­
ceded by drive2.
cancels the effect of a previous SUBST command for drivel.

The SUBST command allows a drive letter to be substituted for a subdirectory name.

The drivel parameter can be any valid drive letter except the current drive or drive2.
Drive letters A through E are always available; drive letters beyond E require that an ap­
propriate LASTDRIVE command be added to the CONFIG.SYS file and the system be re­
started (see USER COMMANDS: coNFIG.SYS: LASTDRIVE).

After a SUBST command, the files on the disk normally referenced by drivel are no longer
accessible. However, the files in the location specified by path can still be referenced by
the usual methods (using their actual drive and path) as well as by the substituted drive
designator.

If the SUBST command is entered without parameters, MS-DOS displays the substitutions
currently in effect.

Warning: The SUBST command masks the actual disk-drive characteristics from com­
mands that perform critical disk operations. Therefore, ASSIGN, BACKUP, CHKDSK,
DISKCOMP, DISK COPY, FDISK, FORMAT, JOIN, LABEL, and RESTORE should not be used
on a drive affected by a SUBST command. CHDIR, MKDIR, RMDIR, and PATH commands
that include the affected drive should be used with caution. A network drive cannot be
named in a SUBST command.

938 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 948/1582

SUBST

Examples

To substitute drive B for the directory C: \ASM\SOURCE, type

C>SUBST B: C:\ASM\SOURCE <Enter>

To display the substitutions currently in effect, type

C>SUBST <Enter>

In this case, the SUBST command displays

B: => C:\ASM\SOURCE

To cancel the effect of a previous SUBST command that substituted drive B for a subdirec­
tory, type

C>SUBST B: /D <Enter>

Messages

Cannot SUBST a network drive
One or both of the drive parameters in the command line referred to a drive that is
assigned to a network.

•
DOS 2.0 or later required
SUBST does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of SUBST is not compatible with the version of MS-DOS that is running.

Incorrect number of parameters
The command line included too many or too few parameters.

Invalid parameter
The drivenamed in the command line is invalid, does not exist, is the default drive, or is
the same as the drive in the path to be substituted.

Not enough memory
The available system memory is insufficient to run the SUBST command.

Path not foi:and
An element of the path included in the command line is invalid or does not exist.

Section Ill: User Commands 939

HUAWEI EX. 1110 - 949/1582

SYS

SYS
Transfer System Files

1.0 and later

External No Net

Purpose

Copies the hidden files that contain the operating system from the disk in the current drive
to another formatted disk.

Syntax

SYS drive:

where:

drive is the location of the disk that will receive the system files. This parameter is
required.

Description

An MS-DOS system disk must contain three files to be boatable: the two operating-system
files and the command processor. The operating system itself is contained in the files
IO.SYS and MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS), which must al­
ways be the first two files in the disk's directory. Both have file attributes set for system
and hidden (all versions) and read-only (versions 2.0 and later). IO.SYS (or IBMBIO.COM)
contains the default set of device drivers for the system; it must occupy contiguous sectors
in the disk's files area. MSDOS.SYS (or IBMDOS.COM) contains the kernel of the operating
system proper. The third required file is the shell, or command processor, which by
default is COMMAND. COM. This is an unrestricted file and can be located anywhere on
the disk.

The SYS command transfers the two operating-system files from the default drive to the
specified destination disk. The destination disk that receives the files must meet one of the
following requirements:

• The disk is formatted but completely empty.
• The disk currently contains hidden MS-DOS system files that are large enough to

allow replacement by the new system files.
• The disk has been formatted with the /B switch to reserve room for the system files.

(Note that /B produces a disk with only eight sectors per track.)

If the disk already contains the two hidden system files, the SYS command can be used to
transfer an equivalent or later version of MS-DOS.

After the two hidden operating-system files are installed with the SYS command, the
COMMAND. COM file (or another command processor) must be transferred to the destina­
tion disk with the COPY command. The resulting disk is a boatable system disk.

940 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 950/1582

SYS

Note: Because the two system files have the hidden attribute, they do not appear on a
directory listing produced by the DIR command. The CHKDSK command does report the
presence of hidden files on a disk and will list their names if the /V switch is used but will
not list such information as the file size or date and time of creation.

Example

To transfer a copy of the system files to the disk in drive B, type

C>SYS B: <Enter>

Messages

Cannot SYS to a Network drive
The drive specified in the command line is currently assigned to a network.

Destination disk cannot be booted
The hidden operating-system files were transferred to the destination disk but could not
be placed in contiguous sectors.

Incompatible system size
The destination disk already contains operating-system files and they are smaller than
those being copied.

Incorrect DOS version
The version of SYS is not compatible with the version of MS-DOS that is running.

Insert destination disk in drive X
and strike any key when ready
This message prompts the user to insert the disk onto which the operating-system files
will be copied into the specified drive.

Insert system disk in driveX
and strike any key when ready
This message prompts the user to insert a disk containing the operating-system files into
the specified drive.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line contained an invalid drive letter.

No room for system on destination disk
Contiguous space at the beginning of the destination disk is insufficient for the operating­
system files. This can occur when files already exist on the destination disk or when sec­
tions of the disk are marked as unusable by the FORMAT command.

No system on default drive
The disk in the default drive does not contain the two hidden system files. Replace the disk
with a boatable system disk.

System transferred
The operating-system files have been successfully transferred to the destination disk.

Section III: UserCommands 941

HUAWEI EX. 1110 - 951/1582

TIME

TIME 1.0 and later

Internal Set System Time

Purpose

Sets or displays the system time. TIME is ail external command with PC-DOS version 1.0.

Syntax

TIME [hh:mm[:ss[.xx]]]

where:

hh is hours (0-23).
mm is minutes (0-59).
ss is seconds (0-59).
xx is hundredths of a second (0-99).

Note: No spaces are allowed between any of the time parameters.

Description

All computers that run MS-DOS have as part of their hardware configuration a timer, or
clock, that maintains the current system date and time. One use of this clock, among
others, is to insert the current date and time into a file's directory entry when the file is
created or modified.

The TIME command allows the user to display or modify the current time that is being
maintained by the system's real-time clock. TIME is also executed by MS-DOS when the
system is turned on or restarted, unless an AUTO EXEC. BAT file is on the system disk, in
which case the command is executed only if it is included in the AUTO EXEC. BAT file.

On IBM PC/ATs and compatibles, the TIME command does not permanently change the
system time stored in the built-in battery-backed clock/calendar; the newly entered time is
lost when the system is turned off or restarted. On these machines, the SETUP program
(found on the Diagnostics for IBM Personal Computer AT disk or equivalent) must be used
to permanently alter the clock/calendar's current time.

On IBM PCs, PC/XTs, and compatibles equipped with add-on cards containing battery­
backed clock/calendar circuitry, it is usually necessary to run a time/date installation pro­
gram (included with the card) to set the system date and time from the clock/calendar
on the card. The TIME command generally has no effect on these card-mounted
clock/calendars.

The format of times displayed by the system depends on the current country code, which
is determined by the optional COUNTRY command in the CONFIG.SYS file (see USER
COMMANDS: CONFIG.SYS: couNTRY). The default display format is the 24-hour format
(00:00- 23: 59).

942 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 952/1582

i

I
!

Examples

To display the current time, type

C>TIME <Enter>

This results in output of the following form:

Current time is 12:49:04.93
Enter new time:

To leave the time unchanged, press the Enter key .

. To set the system time to 8:30 P.M., type

C>TIME 20:30 <Enter>

Messages

Current time is hh:mm:ss.xx
This informational message is displayed in response to any valid TIME command.

Invalid parameter

TIME

The delimiter in the time parameter included in the command line was not a colon (:) or a
period(.).

Invalid time
Enter new time:
An invalid time, time format, or delimiter was specified in the command line or in
response to the Enter new time: prompt. Note that no spaces are allowed around
delimiters.

Section Ill: User Commands 943

HUAWEI EX. 1110 - 953/1582

TREE

TREE 3.2

Display Directory Structure External

Purpose

Displays the hierarchical directory structure of a disk and, optionally, the names of the
files in each subdirectory. This command is included with PC-DOS beginning with
version 2.0.

Syntax

TREE [drive:][/F]

where:

drive
IF

Description

is the location of the disk whose directory structure is to be displayed.
displays the filenames in each directory in addition to the directory names.

The TREE command displays on standard output the pathname of each directory on the
disk in the specified drive, beginning with the subdirectories of the root directory. If a disk
drive is not designated, TREE assumes the current, or default, drive. The name of each
directory is followed by a list of its subdirectories. If the /F switch is included in the com­
mand line, the names of the files in each subdirectory are also displayed. (Prior to version
3.1, the PC-DOS TREE command does not list the files in the root directory if /F is used.)

The output of the TREE command can be redirected to another output device or a file or
can be piped to another program.

Examples

Assume that the root directory of the disk in drive B contains three subdirectories:
\SOURCE, \LIBS, and \DOC. The subdirectory \SOURCE in turn contains two subdirec­
tories: \ASM and \PASCAL. To display the directory structure of this disk, type

C>TREE B: <Enter>

The TREE command displays the following list:

944 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 954/1582

DIRECTORY PATH LISTING FOR VOLUME MYDISK

Path: B:\SOURCE

Sub-directories: ASM
PASCAL

Path: B:\SOURCE\ASM

Sub-directories: None

Path: B:\SOURCE\PASCAL

Sub-directories: None

Path: B:\LIBS

Sub-directories: None

Path: B:\DOC

Sub-directories: None

TREE

To display the directory structure of the disk in drive B and also display all files in each
directory, type

C>TREE B: /F <Enter>

To print the directory-structure listing of the disk in drive B on an attached printer, type

C>TREE B: > PRN <Enter>

To display the directory structure of the disk in drive B one screenful at a time, type

C>TREE B: : MORE <Enter>

For a more compressed listing of all subdirectories on the disk in drive B, type

C>TREE B: : FIND "Path:" <Enter>

The output appears in the following form:

Path: B:\SOURCE
Path: B:\SOURCE\ASM
Path: B:\SOURCE\PASCAL
Path: B:\LIBS
Path: B: \DOC

Section Ill: User Commands 945

HUAWEI EX. 1110 - 955/1582

TREE

Messages

DOS 2.0 or later required
TREE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version
The version of TREE is not compatible with the version of MS-DOS that is running.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line contained a path or filename in addition to a disk drive or contained an
invalid switch.

No sub-directories exist
The specified drive has no subdirectories.

946 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 956/1582

TYPE
Display File

Purpose

Sends the contents of an ASCII text file to standard output.

Syntax

TYPE [drive:][path)jilename

where:

1.0 and later

Internal

filename is the name of the text file to be displayed, optionally preceded by a drive
and/or path; wildcard characters are not permitted.

Description

TYPE

The TYPE command displays the contents of a text file on standard output (usually the
video display) until it encounters an end-of-file character (ASCII code 1AH). Tab charac­
ters in the file are expanded to spaces with tab stops at each eighth character position. If a
file contains characters with ASCII values less than 32 or greater than 127, the resulting dis­
play includes graphics characters and other unintelligible information.

The output of the TYPE command can be redirected to another file or character device or
can be piped to another program.

Examples

To display the file SHELL.C in the directory \SOURCE on the disk in drive A, type

C>TYPE A:\SOURCE\SHELL.C <Enter>

To direct the output of the same file to the printer, type

C>~YPE A:\SOURCE\SHELL.C > PRN <Enter>

The TYPE command can be used with the MORE filter to paginate output. For example, to
display the contents of the file MENU.ASM one screenful at a time, type

C>~YPE MENU.ASM : MORE <Enter>

Messages

File not found
The file specified in the command line cannot be found or does not exist.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid path or file name
The path specified in the command line is invalid or does not exist.

Sectionlll: User Commands 947

HUAWEI EX. 1110 - 957/1582

VDISK.SYS

VDISK.SYS IBM

Virtual Disk External

Purpose

Creates a virtual disk in memory. This installable driver is available only with PC-DOS.

Syntax

DEVICE=[drive:J[path]VDISK.SYS [size] [sector] [directory] [/E] (version 3.0)

or

DEVICE=[drive:J[path]VDISK.SYS [size] [sector] [directory] [/E[:maxll (version 3.1)

or

DEVICE=[drive:][path]VDISK.SYS [comment] [size] [comment] [sector] [comment]
[directory] [IE[: max]] (version 3.2)

where:

comment

size
sector
directory

IE
IE: max

is a string of ASCII characters in the range 32 through 126, excluding the
slash character(/) (version 3.2).
is the size ofthe virtual disk in kilobytes (minimum= 1, default= 64).
is the sector size in bytes (128, 256, or 512; default= 128).
is the maximum number of entries in the virtual disk's root directory
(2-512, default= 64).
causes VDISK to use extended memory.
causes VDISK to use extended memory and sets the maximum number of
sectors (1-8, default= 8) to transfer from extended memory at one time
(versions 3.1 and later).

Note: Unless the IE switch is used, the virtual disk is created in conventional memory.

Description

The VDISK.SYS installable device driver allows the configuration of one or more virtual
disks (sometimes referred to as electronic disks or RAMdisks). A virtual disk is imple­
mented by mapping a disk's structure- directory, file allocation table, and files area­
onto an area of random-access memory, rather than onto actual sectors located on a
magnetic recording medium. Access to files stored in a virtual disk is very fast, because
no moving parts are involved and the "disk" operates at the speed of the system's mem­
ory. (The VDISK driver is available only with PC-DOS; a similar program named
RAMDRIVE.SYS is included with MS-DOS.)

Warning: Because a RAMdisk resides entirely in RAM and is therefore volatile, any infor­
mation stored there is irretrievably lost when the computer loses power or is restarted.

948 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 958/1582

VDISK.SYS

VDISK can create a virtual disk in either conventional memory or extended memory. Con­
ventional memory is the term for the up-to-640 KB of RAM that contain PC-DOS and any
application programs. Extended memory is the term for the memory at addresses above 1
MB (lOOOOOH) that is available on 80286-based personal computers such as the IBM PC/AT.

A virtual disk can be installed in conventional memory by simply inserting the line
DEVICE= VDISK.SYS into the system's CONFIG.SYS file and restarting the system. (If the
file VDISK.SYS is not in the root directory of the startup disk, it may be preceded by a
drive and/or path.) A new "drive" then becomes available in the system, with default
values of 64 KB disk size, 128-byte sectors, and 64 available directory entries (assuming
there is sufficient memory). The virtual disk is assigned the next available drive letter
(which is displayed in VDISK's sign-on message). The drive letter assigned depends on the
number of other physical and virtual disks in the system and also on the position of the
DEVICE= VDISK.SYS line in the CONFIG.SYS file relative to other installed block devices.
Available memory permitting, multiple virtual disks can be created by using multiple
DEVICE= VDISK.SYS lines. Several optional parameters allow the user to customize the
size and configuration of the virtual disk and to use extended memory if it is available.

The size parameter specifies the amount of RAM, in kilobytes, to be allocated to the virtual
disk. The default is 64 KB, but any size from 1 KB to the total amount of available memory
can be specified. If the size specified is greater than available memory or less than 1 KB,
VDISK ignores it and creates a virtual disk of 64 KB. If necessary, VDISK also adjusts the
size value to ensure that at least 64 KB of memory remain available in the system.

The sector parameter sets the virtual sector size used within the virtual disk. The sector
value may be 128, 256, or 512 bytes (default= 128 bytes). Selection of the smallest sector
size results in a minimum of wasted virtual disk space per file but also results in somewhat
slower transfer of data.

Note: Physical disk devices in IBM PC-compatible systems always use 512-byte sectors.

The directory parameter sets the number of available entries in the virtual disk's root
directory. The allowed range is 2 through 512 (default= 64). Each directory entry requires
32 bytes. VDISK rounds the number of available directory entries up, if necessary, so that
an integral number of sectors are assigned to the root directory.

The /E switch causes VDISK to use extended memory for the virtual disk, rather than con­
ventional memory. This allows very large virtual disks to be configured while still leaving
the maximum amount of conventional memory available for use by application programs.
If the /E switch is used and extended memory is not present in the system, the VDISK
driver will not install itself.

When /E is used in the form /E: max, the variable max controls how many virtual sectors
can be transferred at a time from extended memory. The value of max must be in the
range 1 through 8 (default= 8). If VDISK operation appears to conflict with the communi­
cations port or other interrupt-driven peripheral devices, the max variable should be set to
a smaller number. The max option is available only with versions 3.1 and 3.2.

Section Ill: User Commands 949

HUAWEI EX. 1110 - 959/1582

VDISK.SYS

Note: If VDISK uses conventional memory for virtual disk storage, the memory cannot be
reclaimed except by modifying the CONFIG.SYS file and restarting the system.

Examples

To create a virtual disk drive with the default values of 64 KB disk size, 128-byte sectors,
and 64 available directory entries, include the command

DEVICE=VDISK.SYS

in the CONFIG.SYS file and restart the system.

To create a 360 KB virtual disk with 512-byte sectors and 112 available directory entries
when the file VDISK.SYS is located in a directory named \BIN on drive C, include the
command

DEVICE=C:\BIN\VDISK.SYS 360 512 112

in the CONFIG.SYS file and restart the system. The directory for this virtual disk requires
3584 bytes (112 entries • 32 bytes), or 7 sectors.

With version 3. 2, comments can be inserted between the values to identify them. For ex­
ample, to create a 1 MB virtual disk drive in extended memory with 256-byte sectors and
128 directory entries, placing comments before the values to identify them, include the
command

DEVICE=VDISK.SYS DISK_SIZE: 1024 SECTOR_SIZE: 256 DIR_ENTRIES: 128 /E

in the CONFIG.SYS file and restart the system.

Messages

Buffer size adjusted
No size value was specified or the specified value was larger than the amount of available
memory.

Directory entries adjusted
No directory value was specified, VDISK adjusted the directory value up to the nearest
sector-size boundary, or the size value was too small to hold the file allocation table, the
directory, and two additional sectors, in which case VDISK adjusted directory downward
until these conditions were met.

Invalid switch character
A slash character (/) was included in a comment or the /E switch was entered incorrectly.

Sector size adjusted
The sector value was missing from the command line or an incorrect value was entered;
therefore, VDISK used the default value of 128 bytes.

950 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 960/1582

VDISK.SYS

Transfer size adjusted
. A value outside the range 1 through 8 was specified with the /E: max switch; therefore,

VDISK used the default value of 8.

VDISK not installed- Extender Card switches
do not match the system memory size
The switch settings on the extender card are not correct or the extended memory exists in
an expansion unit, which VDISK is not capable of using.

VDISK not installed- insufficient memory
Less than 64 KB of system memory remained after attempted installation, the /E switch
was specified and the system does not contain extended memory, or the amount of avail­
able extended memory was too small to support the installation of VDISK.

VDISK Version n.nn virtual diskX:
Buffer size: nn KB
Sector size: nnn
Directory size: nnn
Transfer size: n

VDISK was successfully installed and this message informs the user of the drive letter
assigned to the virtual disk, the version ofVDISK that created the disk, and the character­
istics of the disk. The Transfer size: message appears only in versions 3.1 and 3.2 and only
if the /E switch was used.

Section III: User Commands 951

HUAWEI EX. 1110 - 961/1582

VER

VER 2.0 and later

Internal Display Version

Purpose

Displays the MS-DOS version number.

Syntax

VER

Description

The VER command displays on standard output (usually the video display) the number of
the MS-DOS version that is running. The version number is also displayed as part of the
copyright notice when the system is turned on or restarted, unless an AUTO EXEC. BAT file
is on the system disk. (The VER command can be included in the AUTO EXEC. BAT file to
display the version number, but it will not display the copyright information.)

Examples

To display the MS-DOS version number, type

C>VER <Enter>

On a system that is running MS-DOS version 3.2, the following message is displayed:

MS-DOS Version 3.2

To print the MS-DOS version number on an attached printer instead of displaying it on the
screen, type

C>VER > PRN <Enter>

95 2 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 962/1582

I
l

I

VERIFY

VERIFY
Set Verify Flag

Purpose

Sets the system's internal flag controlling verification of disk writes.

·syntax

VERIFY [ON I OFF]

Description

2.0 and later

Internal

The VERIFY command sets or clears an internal MS-DOS flag that controls verification of
data written to disks. (The actual verification process is usually carried out by the device
driver and the disk-drive controller.) The VERIFY ON command has the same effect on a
global basis as the /V switch has on COPY operations. (When VERIFY is on, use of the /V
switch with COPY has no additional effect.) VERIFY ON remains in effect until a program
turns it off with a Set Verify system call or until the user types VERIFY OFF at the com­
mand prompt. The VERIFY command does not affect the operation of character devices.

When the VERIFY command is entered without an ON or OFF, MS-DOS displays the cur­
rent state of the system's internal verify flag. The default setting of the verify flag is off.

Examples

To turn on verification of disk writes, type

C>VERIFY ON <Enter>

To display the current status of the verify flag, type

C>VERIFY <Enter>

Messages

Must specify ON or OFF
The command line contained an invalid parameter.

VERIFY is off

or

VERIFY is on
No setting was specified in the command line and VERIFY displays this informational
message indicating the current status of the verify flag.

Section Ill: User Commands 953

HUAWEI EX. 1110 - 963/1582

VOL

VOL 2.0 and later

Internal Display Disk Name

Purpose

Displays a disk's volume label if one exists.·

Syntax

VOL [drive:]

where:

drive is the location of the disk whose volume label is to be displayed.

Description

The VOL command displays a disk's name, or volume label. If drive is not included in the
command line, the volume label of the disk in the current drive is displayed.

A volume label can be assigned to a disk when it is formatted by using the /V switch with
the FORMAT command. A volume label can be added, changed, or deleted after a disk
has already been formatted by using the LABEL command (PC-DOS versions 3.0 and later,
MS-DOS versions 3.1 and later). The CHKDSK, DIR, and TREE commands also display a
disk's volume label as part of their output.

Example

To display the volume label for the disk in the current drive, type

C>VOL <Enter>

If the disk's name is HARD DISK, the VOL command produces the following output:

Volume in drive c is HARDDISK

Messages

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Volume in drive X has no label
The disk in the current or specified drive was not previously assigned a volume label with
the FORMAT or LABEL command.

954 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 964/1582

X COPY
Copy Files

Purpose

XCOPY

3.2

External

Copies files and directories, optionally also copying subdirectories and the files they
contain.

Syntax

XCOPY source [destination][/A] [/D:mm-dd-yy] [/E] [/M] [/P] [/S] [/V] [/W]

where:

source

destination

!A
/D: mm-dd-yy

IE

!M

/P
IS

/V
/W

Description

is th~ name of the file(s) to be copied, optionally preceded by a
drive and/or path; wildcard characters are permitted in the file­
name. If the path is omitted, a drive letter must be specified; this
parameter is not optional.
is the destination location and, optionally, the name for the copied
files, and can be preceded by a drive; wildcard characters are per­
mitted in the filename.
copies only those source files with the archive bit set.
copies only files modified on or after the specified date. (The date
format depends on the COUNTRY command in effect, if any.)
copies empty subdirectories; if this switch is used, the IS switch
must also be specified.
copies only those files with the archive bit set; also turns off the
archive bjt of each source file after it is copied.
prompts the user for confirmation before copying each file.
copies all nonempty subdirectories of source and the files they
contain.
performs read-after-write verification of destination file(s).
waits for the user to press a key before copying any files, allowing
disks to be changed.

The XCOPY command copies one or more source files to one or more destination files.
Unlike the COPY command, however, a single XCOPY command can copy all files con­
tained in the entire hierarchical file structure of the source disk to the destination disk,
creating a corresponding set of directories and subdirectories at the destination to hold the
copied files.

The source parameter identifies the file or files to be copied. It can consist of any combina­
tion of a drive, path, and filename (optionally including wildcards) but must include either

Section III: User Commands 955

HUAWEI EX. 1110 - 965/1582

X COPY

a drive or a pathname. If only a drive is specified, all files in the current directory of that
drive are copied. If a path without a drive or filename is specified, all files in the named
directory are copied from the current drive.

The destination parameter can also consist of any combination of drive, path, and file­
name. Unless only a single file is being copied and it is also being renamed as part of the
XCOPY operation, destination is usually simply a drive and/or path specifying where to
.place the copied file. If destination includes a filename, XCOPY displays a message asking
if the specified destination is a file or a directory. Depending on the user's response,
XCOPY then either copies the source file to a destination file with the specified name or
creates a directory with the specified name and copies the source files into it. (Note that if
the user responds that the destination is to be a file and multiple source files were speci­
fied in the command line, only the last source file is copied to the specified destination.) If
no destination is specified, the source file is copied to a file with the same name in the cur­
rent directory of the current drive.

The /A, /D: mm-dd-yy, /M, and /P switches allow selective copying of files. The /A switch
is used to copy only source files with the archive bit set; the /M switch also copies only
source files with the archive bit set but turns off each source file's archive bit after the file
is copied. The /D: mm-dd-yy switch is used to copy files that were modified on or after a
selected date; the date must be entered in one of the formats discussed in the entry for the
system's DATE command or in the format of the COUNTRY command currently in effect
(see USER COMMANDS: CONFIG.SYS: couNTRY). The /P switch causes XCOPY to prompt
the user for confirmation before transferring each file.

The /E and /S switches allow an entire branch of the source disk's hierarchical directory
structure to be copied. If the /S switch is specified, XCOPY copies all nonempty subdirec­
tories of source, creating equivalent destination subdirectories, if necessary, to hold the
files. If the /E switch is specified, XCOPY also dlJplicates empty source subdirectories in
the equivalent destination locations. If the /E switch is used, the /S switch must also be
specified.

The /V switch causes a Verify call to be issued on the destination file(s) to ensure that the
data was written correctly. Its effect is equivalent to that of the VERIFY ON command.

Finally, the /W switch causes XCOPY to wait for the user to press a key before copying any
files, thus allowing an exchange of disks before the files are transferred. This is useful in
systems without a fixed disk, because it allows XCOPY to be used when the program itself
is not on either the source or the destination disk.

Note: With MS-DOS versions ofXCOPY, the related program MCOPY can be created by
simply copying the file XCOPY.EXE to a file named MCOPY.EXE using the following
command:

C>COPY /B XCOPY.EXE MCOPY.EXE <Enter>

What distinguishes MCOPY from XCOPY is the program name; when either program is
loaded, it looks at the name under which it was invoked and reconfigures itself accord­
ingly. MCOPY's behavior is similar to XCOPY's, except that MCOPY automatically

956 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 966/1582

XCOPY

determines whether the name specified as the destination is a file or a directory according
to the following rules:

• If the source is a directory, the specified destination is a directory.
• If the source includes multiple files, the specified destination is a directory.
• If the destination name ends with a backslash character(\), the specified destination

is a directory.

MCOPY supports all the XCOPY switches.

Not all implementations ofXCOPY can be renamed to MCOPY and function accordingly.
The PC-DOS version ofXCOPY, for example, does not support this feature.

Return Codes

0 No errors were detected during the copy operation.
1 No files were found to copy.
2 The copy operation was terminated by a Ctrl-C or Ctrl-Break.
4 Initialization error occurred: not enough memory, file not found, or command-line

syntax error.
5 The copy operation was terminated by an A response to an Abort, Retry, Ignore?

prompt.

Examples

To copy all files in the directory C: \SOURCE to the directory C: \SOURCE\BACKUP, type

C>XCOPY C:\SOURCE*.* C:\SOURCE\BACKUP <Enter>

To copy all files and directories on drive C to the disk in drive D, type

C>XCOPY C:*.* D: /S /E <Enter>

Messages

nn File(s) copied
This informational message is displayed at the completion of an XCOPY command and in­
dicates the total number of source files processed.

filename File not found
The source file specified in the command line is invalid or does not exist.

X:pathname (Y /N)?
The /P switch was specified in the command line. XCOPY displays the name of each file,
preceded by a drive (and path, if one was specified), and asks for confirmation before
copying the file.

Access denied
A destination file could not be overwritten because it was marked read-only.

Section III: User Commands 957

HUAWEI EX. 1110 - 967/1582

X COPY

Cannot COPY from a reserved device
A character device such as AUX or COMl cannot be the source of an XCOPY operation.

Cannot COPY to a reserved device
A character device such as PRN cannot be the destination of an XCOPY operation.

Cannot perform a cyclic copy
The command line included a /S switch and the destination directory is a subdirectory of
the source directory. A subdirectory cannot be copied onto itself.

Does name specify a file name
or directory name on the target
(F =file, D =directory)?
The specified destination directory does not already exist; the user is prompted to deter­
mine whether it should be created. Respond with F to copy the source file to a file named
name; respond with D to create a subdirectory named name and copy the source file
into it.

File cannot be copied onto itself
The name and location of the source file are the same as the name and location of the des­
tination file.

File creation error
A destination file or directory could not be created. The destination disk may be full.

Incorrect DOS version
The version of X COPY is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The disk does not contain enough available space to perform the specified XCOPY
operation.

Insufficient memory
The available system memory is insufficient to perform the XCOPY operation.

Invalid date
The command included a /D switch and the date was not formatted properly.

Invalid drive specification
The source or destination drive specified in the command line is not valid or does not ex­
ist in the system.

Invalid number of parameters
The command line contained too many or too few filenames or other parameters.

Invalid parameter
A switch supplied in the command line is not valid.

Invalid path
A directory specified in the command line is invalid or does not exist.

958 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 968/1582

X COPY

Lock Violation
. XCOPY attempted to access a file in use by another program. Respond with A to the error­
message prompt and try XCOPY later or wait for a few minutes and respond with R.

Path not found
One of the pathnames specified in the command line is invalid or does not exist.

Path too long
The path element of the source or destination parameter was longer than 63 characters.

Press any key to begincopyingfile(s)
The /W switch was specified in the command line and XCOPY waits for the user to press a
key before beginning the copy process.

Reading source file(s) ...
This informational message is displayed during the XCOPY operation.

Sharing violation
XCOPY attempted to access a file ill; use by another program. Respond with A to the e~;mr­
message prompt and try XCOPY later or wait a few minutes and respond with R.

Too many open files
XCOPY failed due to a lack of available system file handles. Increase the size of the FILES
command in the CONFIG.SYS file, restart the system, and attempt the XCOPY command
again.

Unable to create directory
A destination directory cannot have the same name as an existing file in the prospective
parent directory.

Section Ill: User Commands 959

HUAWEI EX. 1110 - 969/1582

HUAWEI EX. 1110 - 970/1582

HUAWEI EX. 1110 - 971/1582

HUAWEI EX. 1110 - 972/1582

Programming Utilities Introduction

Introduction

This section of The MS-DOS Encyclopedia describes the Microsoft utilities, documentation
aids, and debuggers that can be used with the Microsoft C, FORTRAN, Pascal, and BASIC
compilers and with the Microsoft Macro Assembler (MASM). Included are operating in­
structions for MASM, the Macro Assembler; LIB, the Library Manager; LINK, the Microsoft
Object Linker; the DEBUG, SYMDEB, and Code View program debuggers; MAKE, which
automates maintenance of programs; CREF, which produces a cross-reference listing of
symbols; and EXE2BIN, EXEMOD, and EXEPACK, which modify executable files.

Entries (except for the program debuggers) are arranged alphabetically by the name of the
programming utility. The three Microsoft debuggers are listed at the end of the section in
the following order: DEBUG, SYMDEB, Code View. Individual DEBUG and SYMDEB com­
mands appear alphabetically under the headings DEBUG and SYMDEB.

Each utility entry includes

• Utility name
• Utility purpose
• Prototype command line and summary of options
• Detailed description of utility
• One or more examples of utility use
• Return codes (where applicable)
• Error messages and warnings (where applicable)

The experienced user can find information with a quick glance at the first part of a utility
entry; a less experienced user can refer to the detailed explanation and examples in a more
leisurely fashion. The next two pages contain an example of a typical entry from the
Programming Utilities section, with explanations of each component.

Section IV: Programming Utilities 963

HUAWEI EX. 1110 - 973/1582

Programming Utilities Introduction/Key

HEADING-----+------,
The utility name.

PURPOSE
An abstract of utility
purpose and usage plus
a statement of which
Microsoft products the
utility is supplied with
and the utility version
described in the entry.

EXEPACK

EXEPACK
Compress .EXE File

Purpose

Compresses an executable .EXE program file so that it requires less space on the disk.
The EXEPACK utili[}' is supplied with the Microsoft Macro Assembler (MASM), C Compiler,
FORTRAN Compiler, and ~I Compiler. This documentation describes EXEPACK
version 4.04.

SYNTAX ------+--syntax
A prototype command EXEPACK exe_ftlepacketLftle

line, with variable names ,_ ___ ..;.w;.:;h;;:er=e'-----.....,

in italic and optional exe_file is the name e executable .EXE program file to be compressed.
packed_file is the name the compressed program file.

parameters in square Description

brackets. The various The EXEPACK utility compresses an executable .EXE program by packing uences or
elements of the COffi- identical bytes and optimizing the relocation table. The EXEPACK utility . not compatible
mand line should be en- with versions or MS·DOS earlier than 2.0.

tered in the order shown.
Any punctuation must
be used exactly
as shown; in commands
that use commas as sep­
arators, the comma
usually must be included
as a placeholder even if
the parameter is omit­
ted. Except where noted,
commands, parameters,
and switches can be en­
tered in either uppercase
or lowercase. Utility
names can be preceded
by a drive and/or path.

964 The MS-DOS Encyclopedia

The exe_file parameter specifies the name of the program file p Ouced by the Microsoft
Object Linker (LINK) and must contain the extension .EXE. T packed-file parameter
specifies the name and extension of the resulting compress file. EXEPACK has no
default extensions.

The name for packed_file must be different from th exe_file filename. Although it is
possible to fool EXEPACK into creating a packed f with the same name by specifying a
different but equivalent path name for the outp ile, the resulting packed file will proba-
bly be damaged. If the packed file is to rep! the original.EXE file, a different name
should be specified for the packed file; t the input file should be deleted and the
packed file renamed with the name of e original file.

When EXEPACK is used to compr an executable overlay file or a program that calls

976 The MS·DOS Encyclopedia

BELOW WHERE
A brief explanation
of each command
parameter and switch.
Filenames are always
listed first, followed by
the switches in alpha­
betic order. Any special
position required for a
filename or switch is
shown in the syntax
line and noted in the
explanation.

e renamed with its original name before use to avoid
anager prompt.

DESCRIPTION
A detailed description
of the utility, including
a full explanation of
default values, possible
interactions of command
parameters and options,
useful background infor­
mation, and any applic­
able warnings.

HUAWEI EX. 1110 - 974/1582

Programming Utilities Introduction/Key

Using EXEPACK on a previou ly linked program is equivalent to specifying LINK's
/EXEPACK switch while linki g that program.

EXEPACK

Note: When using the EXEM D utility with packed .EXE files created with EXEPACK
or the /EXEPACK linker switc , use the EXEMOD version shipped with LINK or with the
EXEPACK utility to ensure co patibil

Return Codes

0 No error; the EXEPACK o tion as successful.
1 An error was encounter that ter ina ted execution of the EXEPAC~ utility.

Example
To compress the file BtiiLD.EXE into e named BUIIDX.EXE, type

C>E:XE:PACK BUILD. EX£ BUILDX.E:XE

Messages

fatal errorUllOO: out of space on output file
The destination disk has insufficient space for the omput file, or the root dir

fatal error UllOl:jflename : rue not found
The .EXE file specified in the command line cannot be found.

fatal error U1102:jflename :permission dented
A file with the same name as the specified output file already

fatal error U1103: cannot pack fOe onto Itself
The file cannot be compressed because the name spec' ed forth packed file is the same
as the name of the source .EXE file.

fatal error U1104: usage : exepack <lnflle> outfUe>
The command line contained a syntax error, r the output filename was not specified.

fatal error Ult06: cannot cha e lo~hlgb. program
The file cannot be compresse ecause the minimum allocation value and the maximum
allocation value are both z . See also PROGRAMMING UTILITIES: EXF.Moo.

fatal error U1 : Invalid .EXE file; actual length less than reported
The file size · 8icated in the .EXE file header does not match the size recorded in the disk
directory.

s~uon IV: Programmtns Utllftfes 9n

RETURN CODES
Exit codes returned by
the utility (if any) that
can be tested in a batch
file or by another
program.

EXAMPLES
One or more examples
of the utility at work,
including examples of
the resulting output
where appropriate. User
entry appears in color;
do not type the prompt,
which appears in black.
Press the Enter key
(labeled Return on some
keyboards) as directed
at the end of each com­
mand line.

MESSAGES
An alphabetic list of
messages that may be
displayed when the
utility is used. Following
each message is a brief
explanation of the con­
dition that produco;:s the
message and, where
appropriate, any action
that should be taken.

Section IV: Programming Utilities 965

HUAWEI EX. 1110 - 975/1582

HUAWEI EX. 1110 - 976/1582

I
I

CREF

CREF
Generate Cross-Reference Listing

Purpose

Produces a cross-reference listing of all symbols in an assembly-language program. The
CREF utility is supplied with the Microsoft Macro Assembler (MASM). This documentation
describes CREF version 4.0.

Syntax

CREF

or

CREF crf_file[;]

or

CREF crf_file, ref_file

where:

crf_file
ref_ file

Description

is the input file previously produced by MASM (default extension= .CRF).
is the output ASCII text file to be created (default extension= .REF).

The CREF utility processes a file produced by MASM and generates an ASCII cross­
reference listing in a file on disk or directly on a character device (such as a printer). The
output file contains an alphabetic list of the symbols in the assembled program, including
the line number of each reference to the symbol and the total number of symbols in the
program. A pound sign (#) follows the line number of the reference that defines the
symbol.

The crf_file has the default extension .CRF. It is produced by providing MASM with a file­
name other than NUL in the cross-reference position in the command line, by responding
to the Cross-reference: prompt, or by including the /C switch in the MASM command line
or at any MASM prompt. An assembly source listing file (.LST) must also be requested in
the MASM command line or in response to the MASM prompts in order to generate a valid
.CRF file.

If a semicolon follows the crf_file parameter in the CREF command, the resulting ref_file
containing the cross-reference listing is given the same drive and pathname as crf_file,
with a .REF extension. If the optional ref_file parameter is present, it can consist of any
pathname with an optional extension (default is .REF). The cross-reference listing can be
sent directly to a character device, rather than to a file, by specifying a valid character
device name (such as PRN) in the ref_file position.

Section IV.· Programming Utilities 967

HUAWEI EX. 1110 - 977/1582

CREF

If the CREF utility is run without any parameters or with some parameters missing, the
CREF utility prompts the operator for the necessary information.

Return Codes

0 No error; the CREF operation was successful.
1 An error was encountered that terminated execution of the CREF utility.

Examples

To process the file MENUMGR.CRF (created during assembly of MENUMGR.ASM) into the
cross-reference file MENUMGR.REF, type

C>CREF MENUMGR; <Enter>

To process the file MENUMGR.CRF and assign the name MENU.REF to the resulting cross­
reference file, type

C>CREF MENUMGR,MENU <Enter>

To process the file MENUMGR.CRF and send the cross-reference listing directly to the
printer, type

C>CREF MENUMGR,PRN <Enter>

To run the CREF program in interactive mode, type

C>CREF <Enter>

The following is an example of an interactive CREF session:

C>CREF <Enter>
Microsoft (R) Cross Reference Utility Version 4.00
Copyright (C) Microsoft Corp 1~81, 1983, 1984, 1985. All rights reserved.

Cross-reference [.CRF): MENUMGR <Enter>
Listing [MENUMGR.REF): <Enter>

9 Symbols

C>

The following sequence of commands produces the cross-reference listing HELLO. REF
from the assembly-language source file HELLO.ASM:

C>MASM HELLO,HELLO,HELLO,HELLO <Enter>
C>CREF HELLO; <Enter>

968 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 978/1582

Contents of the file HELLO.ASM:

name

page
title

hello
55,132
HELLO.ASM - print Hello on terminal

HELLO.COM utility to demonstrate CREF listing

cr
lf

equ
equ

Odh
Oah

;ASCII carriage return
; ASCII line feed

cseg segment para public "CODE"

org 1 OOh

assume cs:cseg,ds:cseg,es:cseg,ss:cseg

print proc near
mov dx,offset message

mov ah,9 ;print the string "Hello"

int 21h
mov ax,4c00h ;exit to MS-DOS

int 21h ;with "return code" of zero

print endp

message db cr,lf, 'Hello! ',cr,lf,'$'

cseg ends

end print

Contents of the file HELLO.REF:

Microsoft Cross-Reference Version 4.00
HELLO.ASM - print Hello on terminal

Mon Sep 07 23:31:21 1987

Symbol Cross-Reference (# is definition) Cref-1

CODE 10

CR 7 7# 24 25

CSEG 10 10# 14 14 14 14 27

LF 8 8# 24 25

MESSAGE. 17 24 24#

PRINT. 1 6 16# 29

6 Symbols

CREF

Section IV: Programming Utilities 969

HUAWEI EX. 1110 - 979/1582

CREF

Messages

can't open cross-reference file for reading
The pathname or drive specified for the input .CRF file is invalid or does not exist.

can't open listing file for writing
A write error has halted the creation of the .REF listing file. This indicates that the disk is
full or write-protected, that the specified output file is read-only, or that the specified
device is not available.

cref has no switches
A switch was specified in the command line; CREF has no optional switches.

DOS 2.0 or later required
CREF does not work with versions of MS-DOS earlier than 2.0.

extra file name ignored
More than two filenames were specified in the command line. The CREF utility generates
the cross-reference listing using the first two filenames specified.

line invalid, start again
No .CRF file was specified in the command line or at the prompt. Specify a valid .CRF file
at the prompt following this message.

out of heap space
Memory is insufficient to process the .CRF fil1. Remove memory-resident programs and
shells or add more memory.

premature eof
The input file specified is damaged or is not a valid .CRF file.

read error on stdin
A Control-Z was received from the keyboard or a redirected file and has halted CREF.

970 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 980/1582

EXE2BIN

EXE2BIN
Convert .EXE File to Binary-Image File

Purpose

Converts an executable file in the .EXE format to a memory-image file in binary format.
The EXE2BIN utility is supplied with the MS-DOS distribution disks.

Syntax

EXE2BIN exe_file [bin_file]

where:

exe_file
bin_file

Description

is the .EXE-format file to be converted (default extension= .EXE).
is the name to be given to the converted file (default extension = .BIN).

The .EXE executable program files produced by the Microsoft Object Linker (LINK)
contain a special header and a relocation table as well as the program code and data. The
EXE2BIN utility can be used to convert a .EXE file to a .COM executable file, which is an
absolute memory image of the program to be executed and does not contain a special
header or relocation table. The EXE2BIN utility can also be used to convert .EXE files with
an origin of zero (such as installable MS-DOS device drivers) to pure memory-image files.
Files in memory-image format (a common format for device drivers and for programs to be
placed in ROM for execution) usually have a .BIN or .SYS extension.

To convert a .EXE program to a binary-image file, the following are required:

• The program must be a valid .EXE file produced by LINK.
• The program can contain only one segment and cannot contain a declared stack

segment.
• The program code and data portion of the .EXE file must be less than 64 KB.

To convert a .EXE program to an executable .COM file, the following are required:

• The origin of the program must be OlOOH, which must also be specified as the entry
point.

• The program code and data portion of the .EXE file must be less than 65227 bytes
(64 KB ininus 256 bytes used by the program segment prefix minus 2 bytes initially
placed on the stack).

• The program must not include any FAR references.

Section IV.· Programming Utilities 971

HUAWEI EX. 1110 - 981/1582

EXE2BIN

Note: Many compilers cannot create programs that can be converted to .COM files. Check
the compiler documentation for specific information concerning executable .COM files.

The exe_file parameter in the command line can have any filename and can include a
drive and path; the default extension is .EXE. The optional bin_file parameter can also
contain any filename and a drive and path; the default extension is .BIN. If no path is spec­
ified with the bin_ file parameter, the output file is given the same drive and path as the
exe_file. If no bin_ file parameter is supplied, the output file is given the same name as
the exe_file, with the extension .BIN.

If the program in the .EXE file requires segment fixups (that is, if the program contains
instructions requiring segment relocation, which would ordinarily be done by the MS-DOS
loader using the .EXE file's relocation table), EXE2BIN prompts for a base segment ad­
dress. When segment fixups are necessary, the resulting program is not relocatable and
must be loaded at the given location to be executed; the MS-DOS loader cannot load the
program.

Examples

To convert the file HELLO.EXE to the file HELLO.BIN, type

C>EXE2BIN HELLO <Enter>

To convert the file CLEAN .EXE, which has an origin of OlOOH and meets the requirements
for an executable .COM file, to the file CLEAN.COM, type

C>EXE2BIN CLEAN.EXE CLEAN.COM <Enter>

To convert the file ASYNCH.EXE, produced by assembling and linking the device-driver
source file ASYNCH.ASM, to the installable·device-driver file ASYNCH.SYS, type

C>EXE2BIN ASYNCH.EXE ASYNCH.SYS <Enter>

Messages

File cannot be converted
The program to be converted has one of the following problems: The program has an
origin of OlOOH but a different entry point; the program requires segment fixups; the pro­
gram code and data are larger than 64 KB; the program has more than one declared seg­
ment; or the file is not a valid .EXE-format file.

File creation error
. EXE2BIN cannot create the output file because a read-only file with the same name
already exists, because the specified directory is full, or because the specified disk is full,
write-protected, or unreadable.

File not found
The file does not exist or the incorrect path was given.

972 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 982/1582

EXE2BIN

Fixups needed- base segment (hex):
The .EXE-format file contains segment references that would ordinarily be relocated by
the .EXE file loader. Specify the absolute segment address at which the converted module
will be executed.

Incorrect DOS version
The version of EXE2BIN is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The destination disk has insufficent space to create the memory-image output file.

Insufficient memory
Not enough memory is available to run EXE2BIN.

WARNING- Read error in EXE file.
Amount read less than size in header.

The file size given in the .EXE header is inconsistent with the actual size of the file.

Section IV: Programming Utilities 973

HUAWEI EX. 1110 - 983/1582

EXEMOD

EXEMOD
Modify .EXE File Header

Purpose

Allows inspection or modification of the fields in a .EXE file header. The EXEMOD utility
is supplied with the Microsoft Macro Assembler (MASM), C Compiler, FORTRAN Compiler,
and Pascal Compiler. This documentation describes EXEMOD version 4.02.

Syntax

EXEMOD exe_file[/H]

or

EXEMOD exe_file[!STACK n] [/MAX n] [/MIN n]

where:

exe_file

/H
!STACKn

!MAXn

/MINn

is the name of an executable program in .EXE format (the extension .EXE
is assumed).
displays the values in the file's header.
modifies the size of the program's stack segment to n (hexadecimal)
bytes.
sets the maximum memory allocation for the program to n (hexadecimal)
paragraphs.
sets the minimum memory allocation for the program to n (hexadecimal)
paragraphs.

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-)
instead of a forward slash (/).

Description

Programs that are executable under MS-DOS can be in one of two file formats: .COM,
which is an absolute image of the file to be executed and limits the program size to 65227
bytes (64 KB minus 256 bytes used by the program segment prefix minus 2 bytes initially
placed on the stack); or .EXE, which allows a program of any size to be loaded and has a
special header containing information about the program's entry point, stack size, and
memory requirements, plus a relocation table.

The EXEMOD utility can be used to display or modify those fields of a .EXE program
header that control the size of the stack segment and the amount of memory allocated to
the program when MS-DOS loads the program into the transient program area for
execution.

The !STACKn switch controls the number of bytes in the program's STACK segment by
setting the initial SP to the hexadecimal value specified. The minimum paragraph alloca­
tion value is adjusted if necessary. The EXEMOD !STACKn switch should be used only
with programs compiled by Microsoft C version 3.0 or later, Microsoft Pascal version 3.3

974 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 984/1582

EXEMOD

or later, or Microsoft FORTRAN version 3.0 or later. Use of the /STACKn switch with a pro­
gram developed with another compiler can cause the program to fail or cause EXEMOD to
return an error message.

The !MAXn switch specifies the maximum number of additional paragraphs of memory
to allocate for use by the program. The /MIN n switch specifies the minimum number of
paragraphs of memory, in addition to the size of the program itself and its stack and data
segments, that are required for the program to execute. If enough memory exists to satisfy
the minimum additional paragraphs requested but not enough exists to satisfy the max­
imum, MS-DOS allocates all available memory to the program.

To display the current memory allocation and stack size values from a .EXE file's header,
the /H switch can be used or the file's name can be entered as the only parameter in the
command line.

When EXEMOD is used on a previously packed .EXE file (a file that was processed by
EXEPACK or linked with the /EXEPACK switch), the values set or displayed in the file's
header are the values that will apply after the file is expanded at load time. EXEMOD dis­
plays a message advising the user that the file being modified was previously packed.

The EXEMOD switches !MAXn and !STACKn correspond to the Microsoft Object Linker's
/CPARMAXALLOC: n and /STACK: n switches, respectively. See PROGRAMMING
UTILITIES: LINK ..

Return Codes

0 No error; EXEMOD operation was successful.
1 An error was encountered that terminated execution of the EXEMOD program.

Examples

To display the values in the file header of the DUMP.EXE program, type

C>EXEMOD DUMP.EXE <Enter>

or

C>EXEMOD DUMP.EXE /H <Enter>

The EXEMOD utility displays the following:

Microsoft (R) EXE File Header Utility Version 4.02
Copyright (C) Microsoft Corp 1985. All rights reserved.
DUMP. EXE (hex) (dec)

.EXE size (bytes) 580 1408
Minimum load size (bytes) 383 899
Overlay number 0 0
Initial CS:IP 0000:0000
Initial SS:SP 0034:0040 64
Minimum allocation (para) 5 5

Maximum allocation (para) FFFF 65535
Header size (para) 20 32

Relocation table offset 20 32

Relocation entries

Section IV: Programming Utilities 975

HUAWEI EX. 1110 - 985/1582

EXEMOD

To change the size of the STACK segment for the DUMP.EXE prqgram to 400H (1024)
bytes, type

C>EXEMOD DUMP.EXE /STACK 400 <Enter>

EXEMOD displays the message

EXEMOD : warning U4051: minimum allocation less than stack; correcting minimum

Messages

errorU1050: usage: exemodfile[-/h)[-/stackn][-/maxn][-/minn]
An error was detected in the EXEMOD command line.

error U1051: invalid .EXE file : bad header
The file is not an executable file or has an invalid file header.

error Ul052: invalid .EXE file: actual length less than reported
The file size indicated in the .EXE file header does not match the size recorded in the disk
directory.

error U1053: cannot change load-high program
The header of the file cannot be modified because the minimum allocation value and the
maximum allocation value are both zero.

error Ul054: file not .EXE
The file specified does not have a .EXE extension.

error Ul055: filename : cannot find file
The .EXE file specified in the command line cannot be found.

error Ul056: filename : permission denied
The .EXE file specified in the command line is read-only.

warning U4050: packed file
The specified file is a packed file; that is, it was previously processed with the EXEPACK
utility or was linked with the /EXEPACK switch. This is an informational message only;
EXEMOD still modifies the file. The header values displayed are the values that will apply
after the packed value is expanded at load time.

warning U4051: minimum allocation less than stack; correcting minimum
The minimum allocation value is not large enough to accommodate the stack; the
minimum allocation value is adjusted. This is an informational message only.

warning U4052: minimum allocation greater than maximum; correcting
maximum
If the minimum allocation value is greater than the maximum allocation value, the maxi­
mum value is adjusted. This is an informational message only.

976 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 986/1582

EXEPACK
Compress .EXE File

Purpose

EXEPACK

Compresses an executable .EXE program file so that it requires less space on the disk.
The EXEPACK utility is supplied with the Microsoft Macro Assembler (MASM), c Compiler,
FORTRAN Compiler, and Pascal Compiler. This documentation describes EXEPACK
version 4.04.

Syntax

EXEPACK exe_file packed_file

where:

exe_file
packed_file

Description

is the name of the executable .EXE program file to be compressed.
is the name of the compressed program file.

The EXEPACK utility compresses an executable .EXE program by packing sequences of
identical bytes and optimizing the relocation table. The EXEPACK utility is not compatible
with versions of MS-DOS earlier than 2.0.

The exe_file parameter specifies the name of the program file produced by the Microsoft
Object Linker (LINK) and must contain the extension .EXE. The packed_file parameter
specifies the name and extension of the resulting compressed file. EXEPACK has no
default extensions.

The name for packed_file must be different from the exe_file filename. Although it is
possible to fool EXEPACK into creating a packed file with the same name by specifying a
different but equivalent pathname for the output file, the resulting packed file will proba­
bly be damaged. If the packed file is to replace the original .EXE file, a different name
should be specified for the packed file; then the input file should be deleted and the
packed file renamed with the name of the original file.

When EXEPACK is used to compress an executable overlay file or a program that calls
overlays, the packed file should be renamed with its original name before use to avoid
interruption by the overlay-manager prompt.

The effects of EXEPACK depend on program characteristics. Most programs can be pro­
cessed with EXEPACK to occupy significantly less disk space. Programs thus compressed
also load for execution more quickly. Occasionally programs (particularly small ones) ac­
tually become larger after processing with EXEPACK; in such cases the file produced by
EXEPACK should be discarded. Microsoft Windows programs or programs to be debugged
under DEBUG, SYMDEB, or Code View should not be compressed with EXEPACK.

Section IV: Programming Utilities 977

HUAWEI EX. 1110 - 987/1582

EXEPACK

Using EXEPACK on a previously linked program is equivalent to specifying LINK's
/EXEPACK switch while linking that program.

Note: When using the EXEMOD utility with packed .EXE files created with EXEPACK
or the /EXEPACK linker switch, use the EXEMOD version shipped with LINK or with the
EXEPACK utility to ensure compatibility.

Return Codes

0 No error; the EXEPACK operation was 'successful.
1 An error was encountered that terminated execution of the EXEPACK utility.

Example

To compress the file BUILD.EXE into a file named BUILDX.EXE, type

C>EXEPACK BUILD.EXE BUILDX.EXE <Enter>

Messages

fatal error UllOO: out of space on output file
The destination disk has insufficient space for the output file, or the root directory is full.

fatal error UllOl: filename : file not found
The .EXE file specified in the command line cannot be found.

fatal error Ul102: filename : permission denied
A file with the same name as the specified output file already exists and is read-only.

fatal error Ul103: cannot pack file onto itself
The file cannot be compressed because the name specified for the packed file is the same
as the name of the source .EXE file.

fatal error Ul104: usage : exepack <infile> <outfile>
The command line contained a syntax error, or the output filename was not specified.

fatal error Ul105: .invalid .EXE file; bad header
The file is not an executable file or has an invalid file header.

fatal error Ul106: cannot change load-high program
The file cannot be compressed because the minimum allocation value and the maximum
allocation value are both zero. See also PROGRAMMING UTILITIES: EXEMOD.

fatal error Ul107: cannot pack already-packed file
The file specified has already been packed with EXEPACK.

fatal error UllOS: invalid .EXE file; actuallength less than reported
The file size indicated in the .EXE file header does not match the size recorded in the disk
directory.

fatal error Ul109: out of memory
The EXEPACK utility did not have enough memory to operate.

978 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 988/1582

EXEPACK

fatal error UlllO: error reading relocation table
·The file cannot be compressed because the relocation table cannot be found or is invalid.

fatal error Ullll: file not suitable for packing
The file could not be packed because the packed load image of the specified file was
larger than the unpacked load image.

fatal error Ull12: filename : unknown error
An unknown system error occurred while the specified file was being processed.

warning U4100: omitting debug data from output file
EXEPACK has stripped all symbolic debug information from the output file.

Section IV: Programming Utilities 979

HUAWEI EX. 1110 - 989/1582

LIB

LIB
Library Manager

Purpose

Creates or modifies an object module library file. The LIB utility is supplied with the
Microsoft Macro Assembler (MASM), C Compiler, FORTRAN Compiler, and Pascal Com­
piler. This documentation describes LIB version 3.06.

Syntax

LIB

or

LIB library_file [/PAGESIZE:n] [operation] [,[list_file][,[new_library_filelll [;]

or

LIB @ response_file

where:

library_Jile

/PAGESIZE:n

operation

list_ file

new_library_file

response_file

980 The MS-DOS Encyclopedia

is the name of the object module library file to be created or modi­
fied (default extension= .LIB).
is the page size of the library file and must immediately follow
library_Jile if used; n is a power of 2 between 16 and 32768,
inclusive (default= 16). Can be abbreviated /P: n.
is one or more library manipulations to be performed. Each
operation is specified as a code followed by an object module
name (case is not significant):

+name
-name
-+name
•name
-•name

Add object module or another library to library.
Delete object module from library.
Replace object module in library.
Copy object module from library to object file.
Copy object module to object file and then delete
object module from library.

is the name of the file or character device to receive the cross­
reference listing for the library file (default= NUL device).
is the name to be assigned to the modified object module library
file. (The default name is the same as library_file; if the default is
used, the originallibrary_file is renamed with the extension
.BAK.)
is the name of a text file containing LIB parameters in the same
order in which they are supplied if entered interactively. The name
of the response file must be preceded by the @ symbol.

HUAWEI EX. 1110 - 990/1582

!

l

I

Description

The Microsoft Library Manager (LIB) creates and modifies library files, checks existing
library files for consistency, and prints listings of the contents of library files. The LIB
utility does not work with versions of MS-DOS earlier than 2.0.

LIB

A library file consists of relocatable object modules that are indexed by their names and
public symbols. The Microsoft Object Linker (LINK) uses these files during the creation of
an executable (.EXE) program to resolve external references to routines and variables con­
tained in other object modules.

The library_file parameter specifies the name of the object module library file to be
created or modified. This parameter is required; if it is not included, LIB prompts for it.
The default extension for a library file is .LIB.

The /PAGESIZE:n switch (abbreviated /P:n) sets the page size (in bytes) for a new library
file or changes the page size of an existing library file. The value of n must be a power of 2
between 16 and 32768, inclusive. The default is 16 for a new library file; for an existing li­
brary file, the default is the current page size. Because the index to a library file is con­
tained in a fixed number of pages, setting a larger page size increases the number of index
entries (and thus the number of object modules) that a library file can contain but results in
more wasted disk space (an average of half a library page per object module).

The operation parameter specifies one or more relocatable object modules to add to,
replace in, copy from, move from, or delete from library_file. Each operation is repre­
sented by a code specifying the type of operation, followed by the object module name.
When an object module is copied or moved from the library file, the drive and pathname
of the object module are set to the default drive, current directory, and specified module
name, and the extension of the object module defaults to .OBJ. When an object module is
added or replaced, LIB assumes a default extension of .OB].

The operation +name adds the object module in the file name.OBJ to the library file. This
operation can also be used to add the contents of another entire object module library file
to the library file being updated, in which case the extension .LIB must be included in
name. The operation -name deletes the object module name from the library. The
operation -+name deletes the object module name from the library file and replaces it
with the contents of the file name.OB]. The operation •name copies the object module
name from the library file into the file name.OB], which LIB creates in the current direc-
tory. The operation -•name also copies the object module name from the library file into ~
a .OBJ file but then deletes the module from the library file. (Although name must have
exactly the same spelling as the name in the library's reference listing, case is not
significant.)

Note: LIB does not actually delete object modules from the specified library file. Instead, it
marks the selected object modules for deletion, creates a new library file, and copies only

Section IV: Programming Utilities 981

HUAWEI EX. 1110 - 991/1582

LIB

the modules not marked for deletion into the new file. Thus, if LIB is terminated for any
reason, the original file is not lost. Enough space must be available on the disk for both the
original library file and the copy.

The list_file parameter specifies the file or character device to receive a reference listing
for the library file. Any valid drive, pathname, and extension or any valid character device,
such as PRN, is permitted (default= NUL). If this parameter is omitted, no listing is
generated.

The reference listing consists of two tables. The first table contains all the public symbols
in the object modules in the library, listed alphabetically, with each symbol followed by
the name of the object module in which it is referenced. The second table contains the
names of all the object modules, listed alphabetically, with each name followed by the
offset from the start of the library file, the code and data size, and an alphabetic listing of
the public symbols in that object module.

The new_libri:wy_file parameter specifies the name for the modified library file that is
created. If this parameter is omitted, LIB gives the modified library file the same name as
the original library file, and the original library file is renamed with a .BAK extension.
When a new library file is being created, this parameter is not necessary.

When the command line is used to supply LIB with filenames and switches, typing a semi­
colon character (;) after any parameter (except library_file) causes LIB to use the default
values for the remaining parameters. If a semicolon is entered after library_file, LIB sim­
ply checks the file for consistency and usability. (This is seldom necessary, because
LIB checks each object module for consistency before adding it to the library.)

If the LIB command is entered without any parameters, LIB prompts the user for each
parameter needed. If there are too many operations to fit on one line, the line can be
ended with the ampersand character(&), causing LIB to repeat the Operations: prompt. If
any response except library_file is terminated with a semicolon character, LIB uses the
default values for the remaining filenames. When the library_file parameter is followed
by a semicolon or a semicolon is entered at the Operations: prompt, LIB takes no action
except to verify that the contents of the specified file are consistent and usable.

The response_file parameter allows the automation of complex LIB sessions involving
many files. A response file contains ASCII text that corresponds line for line to the re­
sponses that are entered in a normal interactive LIB session, in the form

library_file [!P:n)
[Y)

[operations)
[list_ file)
[new_library_file) [;)

The response file name must be preceded in the command line by the at symbol(@) and
can also be preceded by a path and/or drive letter. If library_file is a new file, the letter Y

982 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 992/1582

LIB

must appear by itself on the second line of the response file to approve the creation of a
library file. The last line of the response file must end with a semicolon or a carriage re­
turn. (LIB ignores any lines following a semicolon.) If all the parameters required by LIB
are not present in the response file or the response file does not end with a semicolon,
LIB prompts the user for the missing information.

Return Codes

0 No error; LIB operation was successful.
1 An error that terminated execution of the LIB utility was encountered.

Examples

To create a library file named MYLIB.LIB and insert the object files VIDEO.OBJ,
COMM.OBJ, and DOSINT.OBJ, type

C>LIB MYLIB +VIDEO +COMM +DOSINT; <Enter>

To print a listing of the object modules in the library file MYLIB.LIB, type

C>LIB MYLIB,PRN <Enter>

If the LIB command is entered without parameters, the user is prompted for the necessary
information. For example, if the user wanted to add the module VIDEO.OBJ to the library
file SLIBC.LIB, produce a reference listing in the file SLIBC.LST, and produce a new output
library file named SLIBC2.LIB, the following dialogue would take place:

C>LIB <Enter>

Microsoft (R) Library Manager Version 3.06
Copyright (C) Microsoft Corp 1983, 1984, 1985, 1986. All rights reserved.

Library name: SLIBC <Enter>
Operations: +VIDEO <Enter>
List file: SLIBC.LST <Enter>
Output library: SLIBC2 <Enter>

Messages

filename: cannot access file.
LIB is unable to access an object module specified in a response file, in the command line,
or at the Operations: prompt.

filename: cannot create extract file
The object module cannot be copied or moved from the library file into a separate disk file
called filename because the root directory or disk is full or because filename already
exists and is read-only.

filename: cannot create listing
The list file specified in the response file, in the command line, or at the List file: prompt
cannot be created because the root directory or disk is full or because filename already
exists and is read-only.

Section IV: Programming Utilities 983

HUAWEI EX. 1110 - 993/1582

LIB

filename: invalid format (x xxx); file ignored.
The hexadecimal signature byte or word xxxx of the specified file was not one of the
following recognized types: Microsoft library, Intel library, Microsoft object, or XENIX
archive.

filename: invalid library header.
The input library file either is not a library file or is damaged.

filename: invalid library header; file ignored.
The input library file is in the wrong format.

modulename: invalid object module near location
The specified object module has an invalid format near the hexadecimal offset indicated.

modulename: module not in library; ignored
The object module specified in the response file, in the command line, or at the
Operations: prompt is not in the specified input library file.

modulename: module redefinition ignored
An object module was specified to be added to a library file but an object module with the
same name was already in the library file, or the same object module was specified twice
in an add operation in the command line.

number: page size too small; ignored
The size specified with a /P:n switch must be a power of 2 between 16 and 32768 bytes,
inclusive.

symbol (modulename) : symbol redefinition ignored
The specified symbol was defined in more than one module. Only the first definition of a
symbol is accepted. All redefinitions are ignored.

cannot create new library
The root directory is full, or a library file with the same name already exists and is read­
only.

cannot open response file
The specified response file cannot be found or does not exist.

cannot rename old library
The old library file cannot be renamed with a .BAK extension because such a file already
exists and is read-only.

cannot reopen library
The old library file could not be reopened after it was renamed with the .BAK extension.
This error usually indicates damage to the operating system or to the disk directory
structure.

comma or new line missing
A comma or carriage return was expected in the command line but was not found.

984 The MS-DOS Encyclopedia

HUAWEI EX. 1110 - 994/1582

LIB

Do not change diskette in drive X:
LiB may have placed important temporary files on the specified disk. Do not remove the
disk until the LIB operation is complete or these files may be lost.

error writing to cross-reference file
The disk or root directory is full.

error writing to new library
The new library file cannot be created because the disk is full.

free: not allocated
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

insufficient memory
Not enough memory is available in the transient program area for LIB to successfully per­
form the requested operations.

internal failure
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

Library does not exist. Create?
The specified library_file does not exist on disk. Respond with Y to create the library
file; respond with N to terminate the LIB utility.

mark: not allocated
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

option unknown
The command line included a switch other than /P:n.

output-library specification ignored
An output library file was specified in addition to a new library file. This is only a warning.
The output library file specification will be disregarded.

page size too small
The page size of an input library file was less than 16 bytes, indicating a damaged or other­
wise invalid .LIB file. See LIB message number: page size too small; ignored.

syntax error
The command line included an invalid parameter or switch.

syntax error: illegal file specification
A command operator (such as*,-, or+) was given without an object module name.

syntax error: illegal input
The command line included an invalid parameter or switch.

Section IV: Programming Utilities 985

HUAWEI EX. 1110 - 995/1582

LIB

syntax error: option name missing
The command line included a forward slash (/) that was not followed by P:n.

syntax error: option value missing
The /P switch was not followed by the page size value in bytes.

terminator missing
Either a control character (such as Control-Z) was specified at the Output library: prompt
or the response file line that corresponds to LIB's Output library: prompt was not termi­
nated by a carriage return or semicolon.

too many symbols
The maximum number of public symbols allowed in a library file has been exceeded. The
limit for all object modules (combined) is 4609.

unexpected end-of-file on command input
The response file did not include all the necessary LIB parameters.

write to extract file failed
The destination disk has insufficient space for the complete object module, or the root
directory is full.

write to library file failed
The destination disk has insufficient space to create the new library file, or the root direc-
~~~ . 

986 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 996/1582



LINK 

LINK 
Create .EXE File 

Purpose 

Combines relocatable object modules into an executable (.EXE) file. The Microsoft Object 
Linker (LINK) is supplied with the Microsoft Macro Assembler (MASM), C Compiler, Pascal 
Compiler, and FORTRAN Compiler. This documentation describes LINK version 3.50. 

Syntax 

LINK 

or 

LINK obj_file[+obj_file ... ][,[exe_file]][,[map_file]][,[library[+library . .. ]]] [options][;] 

or 

LINK @ response_file 

where: 

obj_file 

exe_file 

is the name of a file containing a relocatable object module produced by 
MASM or by a high-level-language compiler (default extension= .OBJ). 
is the name of the executable file to be produced by LINK (default exten­
sion = .EXE). 

map_file is the name of the file or character device to receive a listing of the names, 
load addresses, and lengths of the segments in exe_file (default= NUL 
device; default extension = .MAP). 

library is the name of an object module library to be searched to resolve external 
references in the object file(s) (default extension= .LIB). 

response_file is the name of a text file containing LINK parameters in the order in which 
they are supplied during an interactive LINK session. 

options specifies one or more of the following switches. Switches can be either up­
percase or lowercase. 
/CP: n C/CPARMAXALLOC: n) Sets the maximum number of extra 

memory paragraphs required by exe_file (default = 65535). ~ 
IDS (/DSALLOCATE) Loads the data in DGROUP at the high end 

of the data segment. 
/DO C/DOSSEG) Arranges segments according to the Microsoft lan­

guage segment-ordering convention. 
/E C/EXEPACK) Compresses repetitive sequences of bytes and 

optimizes exe_file's relocation table. 

(more) 

Section IV: Programming Utilities 987 

HUAWEI EX. 1110 - 997/1582



LINK 

/HI 

/HE 

/LI 

!M 

!NOD 

!NOG 

/NOI 

!O:n 

/P 

/SE:n 

/ST:n 

(/HIGH) Causes exe_file to be loaded as high as possible in 
memory when exe_file is executed. 
(/HELP) Lists LINK options on the screen. No-other switches 
or filenames should be used with this switch. 
(/LINENUMBERS) Copies line-number information (if avail­
able) from obj_file to map_file. If a map file was not speci­
fied, this switch creates one. 
(/MAP) Copies a list of all public symbols declared in obj_file 
to map_file. If a map file was not specified, this switch creates 
one. 
(/NODEFAULTLIBRARYSEARCH) Causes LINK to ignore any 
library names inserted in the object file by the language 
compiler. 
C/NOGROUPASSOCIATION) Causes LINK to ignore GROUP 
associations when assigning addresses. 
(/NOIGNORECASE) Causes LINK to be case sensitive when 
resolving external names. 
C/OVERLAYINTERRUPT: n) Overrides the interrupt number 
used by the overlay manager (0-255, default= 63, or 3FH). 
This switch should be used only when linking with a run-time 
module from a language compiler that supports overlays. 
(/PAUSE) Causes LINK to pause and prompt the user to 
change disks before writing the exe_file. 
(!SEGMENTS: n) Sets the maximum number of segments that 
can be processed (1-1024, default= 128). 
(/STACK: n) Sets the size of the exe_file's stack segment to n 
bytes (1-65535). 

Description 

LINK combines relocatable object modules into an executable file in the .EXE format. 
LINK can be used with object files produced by any high-level-language compiler or as­
sembler that supports the Microsoft object module format. See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: PROGRAMMING TooLs: Object Modules; The Microsoft Object 
Linker. 

The obj_file parameter, which is required, specifies one or more files containing reloca­
table object modules. If multiple object files are linked, their names should be separated by 
a plus operator ( +) or a space. If an extension is not specified for an object file, LINK sup­
plies the extension .OBJ. Some high-level-language compilers support partitioning of the 
executable program into a root segment and one or more overlay segments and include a 
special overlay manager in their libraries; when these compilers are used, the object mod­
ules that compose each overlay segment should be surrounded with parentheses in the 
LINK command line. 

The exe_file parameter specifies the name of the executable file that is created by LINK. 
The default is the same filename as the first object file, but with the extension .EXE. 

988 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 998/1582



I 
I 

I 

LINK 

The map_file parameter designates the file or character device to receive LINK's listing of 
the name, load address, and length of each of exe_file's segments. The map file also in­
cludes the names and load addresses of any groups in the program, the program entry 
point, and, if the /M switch is used, all public symbols and their addresses. If the /LI switch 
is used and if line numbers were inserted into obj_file by the compiler, the starting ad­
dress of each obj_Jile program line is also copied to map_file. The default extension for a 
map file is .MAP. If the /M or /LI switch is used, a map file is created using the name of the 
specified .EXE file even if map_file is not specified. If neither the /M nor the /LI switch is 
used and map_Jile is not specified, no listing is created. 

The library parameter specifies the object module library or libraries that will be 
searched to resolve external references after all the object files are processed. The default 
extension for library files is .LIB. Multiple library names should be separated by plus 
operators ( +) or spaces. A maximum of 16 search paths can be specified in the LINK com­
mand line. If a library name is preceded by a drive and/or path, LINK searches only the 
specified location. If no drive or path precedes a library name, LINK searches for library 
files in the following order: 

1. Current drive and directory 
2. Any other library search paths specified in the command line, in the order they were 

entered 
3. Directories specified in the LIB= environment variable, if one exists 

In the following example, LINK searches only the \ALTLIB directory on drive A to find the 
library MATH.LIB. To find the library COMMON.LIB, LINK searches the current directory 
on the current drive, then the current directory on drive B, then directory \LIB on drive D, 
and finally, any directories named in the LIB environment variable. 

C>LINK TEST,,TEST,A:\ALTLIB\MATH.LIB+COMMON+B:+D:\LIB\ <Enter> 

If default libraries are specified within the object files through special records inserted by 
certain high-level-language compilers, those libraries will be searched after the libraries 
named in the command line or response file. 

If the LINK command is entered without parameters, LINK prompts the user for each file­
name needed. The default response for each prompt (except the obj_file prompt) is dis­
played in square brackets and can be selected by pressing the Enter key. If there are too 
many obj_file or library names to fit on one line, the line can be terminated by entering 
a plus operator ( +) and pressing the Enter key; LINK then repeats the prompt. If the user 
ends any response with a semicolon character(;), LINK uses the default values for the 
remaining fields. 

When the command line contains filenames and switches, commas must be used to 
separate the obj_file, exe_Jile, map_file, and library parameters. If a filename is not 
supplied, a comma must be used to mark its place. If the user places a semicolon after any 
parameter in the command line, LINK terminates the command line at the semicolon and 
uses the default values for any remaining parameters. 

Section IV.· Programming Utilities 989 

HUAWEI EX. 1110 - 999/1582



LINK 

The user can automate complex LINK sessions involving multiple files by creating a 
response file. The response_ file parameter must be the name of an ASCII file that corre­
sponds line for line to the responses that are entered in a normal interactive LINK session. 
The last line of the response file must end with a semicolon character (;) or a carriage 
return. If all parameters required by LINK are not present in the response file and the 
response file does not end with a semicolon or carriage return, LINK prompts the user 
.for the missing information. 

LINK supports many options that can be invoked by including a switch in the command 
line, as part of the response to a LINK prompt, or in a response file. To simplify this 
description, these switches are grouped according to their functions. 

The /E, /HE, /NOD, /NOI, /P, and /SE: n switches affect LINK's general operation. The 
IE switch compresses repetitive sequences of bytes in exe_file and optimizes certain 
parts of the relocation table in exe_file's header. The /E switch functions exactly like the 
EXEPACK utility. 

Note: The /E switch does not always save a significant amount of disk space and may even 
increase file size when used with small programs that have few load-time relocations or 
repeated characters. The Microsoft Symbolic Debugger (SYMDEB) utility cannot be used 
with packed files. 

The /HE switch displays the available options on the screen. No other switches or file­
names should be specified if the /HE switch is used. The /NOD switch causes LINK to 
ignore any default libraries that have been added to the object modules by the high-level­
language compiler that produced the modules, thus restricting searches to those libraries 
specified in the command line or response file. The /NOI switch causes LINK to be case 
sensitive when resolving external references to symbols between object modules. The 
/NOI switch is typically used with object files created by high-level-language compilers 
that differentiate between uppercase and lowercase letters. 

The /P switch causes LINK to pause and prompt the user before writing exe_file to 
disk, thus allowing tne user to exchange the disk used during the linking operation for 
another that has more space available. The /SE: n switch controls the number of program 
segments processed by LINK. The n must be a decimal, octal, or hexadecimal number 
from 1 through 1024, inclusive (default= 128). Octal numbers must have a leading zero; 
hexadecimal numbers must begin with Ox. 

The /M and /LI switches affect the production and contents of the optional map file. 
The /M switch creates a map file with the same name as exe_file or, if exe_file is not 
specified, with the same name as the first object file and the extension .MAP. The resulting 
map file includes a list of all public symbols and their addresses. The /LI switch also cre­
ates a map file and includes line-number information if available in the object file. (MASM 
and some high-level-language compilers do not insert line-number information into object 
files.) 

990 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1000/1582



l 
! 

LINK 

The /D, /DO, !NOG, and /0: n switches affect the structure of the code in exe_file. Use of 
the /D switch places the data in DGROUP at the top (highest address) of the memory seg­
ment pointed to by the DS register, rather than at the bottom (the default). The !DO switch 
arranges the program segments according to a convention expected by all Microsoft lan­
guage compilers: All segments with the class name CODE are placed first in the execut­
able file; any other segments that do not belong to DGROUP are placed immediately after 
the CODE segments; all segments belonging to DGROUP are placed at the end of the file. 
The !NOG switch causes LINK to ignore group associations specified in the object mod­
ules when assigning addresses to data and code items; that is, segments that would or­
dinarily have been collected into the same physical memory segment because of their 
association within a GROUP are decoupled. The !NOG switch provides compatibility with 
LINK versions 2.02 and earlier and with early versions of Microsoft language compilers. 
The /0: n switch controls the interrupt number used by the resident overlay manager if the 
linked program includes overlays. The number n can be any decimal, octal, or hexadeci­
mal number in the range 0 through 255 (default = 63, or 3FH). Octal numbers must have 
a leading zero; hexadecimal numbers must begin with Ox. 

Note: MASM and many high-level-language compilers do not include overlay managers in 
their libraries. Users should check their compiler documentation to determine if the /0: n 
switch can be used. 

Warning: Interrupt numbers that conflict with the software interrupts used to obtain 
MS-DOS or ROM BIOS services or with hardware interrupts assigned to peripheral device 
controllers should not be used in the /0: n switch. 

The /C: n, !H, and /ST: n switches control the information in exe_file's header that affects 
the behavior of the MS-DOS system loader when the file is read from the disk into RAM for 
execution. The /C: n switch sets the maximum number of 16-byte paragraphs of memory 
to be made available to the program when it is loaded into memory, in addition to the 
memory required to hold the program's code, data, and stacks; the default is 65535, which 
causes the program to be allocated all available memory. The /H switch causes the pro-
gram to be loaded as high as possible in the transient program area (free memory), rather 
than as low as possible (the default). The !ST:n switch sets the stack size (in bytes) to be 
allocated for the program when it is loaded and overrides any stack segment size declara-
tions in the original source code. The number n can be any decimal, octal, or hexadecimal 
number from 1 through 65535; however n must be large enough to accommodate any ini-
tialized data in the stack segment. Octal numbers must have a leading zero; hexadecimal 
numbers must begin with Ox. If the /ST: n switch is not used, LINK calculates a program's 4 
stack size, basing the size on the size of any stack segments given in the object files. The 
/C: n and /ST: n values in the exe_file header can be altered after linking by using the 
EXEMOD utility. 

If LINK is unable to hold in RAM all the data it is processing, it creates a temporary disk 
file named VM.TMP (Virtual Memory) in the current directory of the default disk drive. If a 
floppy disk is in the default drive, LINK issues a warning message to prevent the user from 
changing disks until the LINK session is completed. After .LINK finishes processing, it 
deletes the temporary file. 

Section IV: Programming Utilities 991 

HUAWEI EX. 1110 - 1001/1582



LINK 

Warning: Any file named VM.TMP that is already on the disk will be destroyed if LINK 
creates the temporary disk file. 

Return Codes 

0 No errors or unresolved references were encountered during creation of exe_Jile. 
1 A miscellaneous LINK error occurred that was not covered by the other return 

codes. 
16 A data record was too large to process. 
32 No object files were specified in the command line or response file. 
33 The map file could not be created. 
66 A COMMON area was declared that is larger than 65535 (one segment). 
96 Too many libraries were specified. 

144 An invalid object module (obj_file) was detected. 
145 Too many TYPDEFs were found in the specified object modules. 
146 Too many group, segment, or class names were found in one object module. 
147 Too many segments were found in all the object modules combined, or too many 

segments were found in one object module. 
148 Too many overlays were specified. 
149 The size of a segment exceeded 65535. 
150 Too many groups or GRPDEFs were found in one object module. 
151 Too many external symbols were found in one object module. 
177 The size of a group exceeded 65535. 

Examples 

The simplest use of LINK is to process a single object' file to produce an executable file, 
using all the default values. For example, to process the file SHELL.OBJ, create an exe­
cutable file named SHELL.EXE, and search only the default libraries, type 

C>LINK SHELL; <Enter> 

The semicolon after the filename causes LINK to use the default values for all other 
parameters. 

To link three object files named SHELL.OBJ, VIDEO.OBJ, and DOSINT.OBJ into an exe­
cutable file named SHELL.EXE and search the library DEVLIB.LIB on drive B before 
searching any default libraries, type 

C>LINK SHELL+VIDEO+DOSINT,,,B:DEVLIB <Enter> 

If the LINK command is entered without parameters, LINK prompts the user for the 
necessary information. For example, the following interactive session links the file 

992 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1002/1582



I 
I 

I 
I 

LINK 

MENUMGR.OBJ into the executable file MENUMGR.EXE, creates a map file named 
· MENUMGR.MAP, and searches the math floating-point emulator library EM. LIB before 
any default libraries: 

C>LINK <Enter> 

Microsoft (R) 8086 Object Linker Version 3.05 
Copyright (C) Microsoft Corp 1983,1984,1985. All rights reserved. 

Object Modules [.OBJ]: MENUMGR <Enter> 
Run File [MENUMGR.EXE]: <Enter> 
List File [NUL.MAP]: MENUMGR <Enter> 
Libraries [.LIB]: EM <Enter> 

Messages 

filename is not a valid library 
The file specified as an object module library either is corrupt or is not a library in the 
format created by the Microsoft LIB utility. 

About to generate .EXE file 
Change diskette in drive X and press <ENTER> 
The /P switch was used in the command line. LINK is prompting the user to change disks 
before LINK creates the file containing the executable program. 

Ambiguous switch error: "option" 
A valid switch was not entered after a forward slash (/) in the command line. 

Array element size mismatch 
A FAR communal array was declared with two or more different array-element sizes (for 
example, once as an array of characters and once as an array of real numbers). This error 
occurs only with programs produced by the Microsoft C Compiler or other compilers that 
support FAR communal arrays; it does not occur with object files produced by MASM. 

Attempt to access data outside segment bounds 
A data record in an object module specified data extending beyond the end of a segment. 
This is a translator error. Note which compiler or assembler produced the invalid object 
module and notify Microsoft Corporation. 

Attempt to put segment name in more than one group in file filename 
A segment was declared to be a member of two groups. Correct the source code and re­
create the object modules. 

Bad value for cparMaxAlloc 
The value specified using the /C:n option is not in the range 1 through 65535. 

Cannot create temporary file 
The destination disk has insufficient space for the temporary file, or the root directory is 
full. 

Section IV: Programming Utilities 993 

HUAWEI EX. 1110 - 1003/1582



LINK 

Cannot find file .filename 
Change diskette and press <ENTER> 
The specified object file cannot be found in the current drive. 

Cannot find library: filename 
Enter new file spec: 
The specified library file cannot be found or does not exist. Enter the correct drive letter, 
check the spelling of the filename and path, or make sure that the LIB environment vari­
able has been set up properly. 

Cannot nest response files 
A response file was named within a response file. Revise the response file to eliminate the 
nested file. 

Cannot open list file 
The destination disk has insufficient space for the listing, or the root directory is full. 

Cannot open response file: .filename 
LINK cannot find the specified response file. 

Cannot open run file 
The destination disk has insufficient space for the .EXE file, or the root directory is full. 

Cannot open temporary file 
The destination disk has insufficient space for the temporary file, or the root directory is 
full. 

Cannot reopen list file 
The original disk was not replaced when requested. Restart LINK. 

Common area longer than 65536 bytes 
The program has more than 64 KB of communal variables. This error occurs only with 
programs produced by the Microsoft C Compiler or other compilers that support commu­
nal variables. 

Data record too large 
An LEDATA record (in an object module) contains more than 1024 bytes of data. This is a 
symptom of an error in the compiler used to generate the object module. Document the 
circumstances and contact Microsoft Corporation. 

Dup record too large 
An LIDATA record (in an object module) contains more than 512 bytes of data. This error 
may be caused by a complex structure definition or by a series of deeply nested DUP 
operators. 

File not suitable for /EXEPACK, relink without 
The file linked with the /E switch would hav:e been smaller if it had not been compressed. 
Relink without the /E switch. 

994 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1004/1582



LINK 

Fixup overflow near number in segment name in filename offset number 
A group is larger than 64 KB, the original source file contains an intersegment short jump 
or intersegment short call, the name of a data item conflicts with that of a library sub­
routine, or an EXT~ declaration is placed inside the wrong segment. 

Incorrect DOS version, use DOS 2.0 or later 
LINK uses the extended file management calls to provide path support and, thus, does not 
work with versions of MS-DOS earlier than 2.0. 

Insufficient stack space 
Not enough memory is available to run LINK. 

Interrupt number exceeds 255 
The number specified in the /0: n switch is not in the range 0 through 255. 

Invalid numeric switch specification 
An incorrect value was entered with one of the LINK options. 

Invalid object module 
One of the object modules is invalid. Recompile the source file. If the error persists after 
recompiling, document the circumstances and contact Microsoft Corporation. 

NEAR/HUGE conflict 
Conflicting NEAR and HUGE definitions were given for a communal variable. This error 
occurs only with programs produced by the Microsoft C Compiler or other compilers that 
support communal variables. 

Nested left parentheses 
An opening (left) parenthesis is needed on the left side of an overlay module. 

Nested right parentheses 
A closing (right) parenthesis is needed on the right side of an overlay module. 

No object modules specified 
No object file names were specified in the command line or response file. 

Object not found 
One of the object files specified in the command line was not found. 

Out of space on list file 
The destination disk has insufficient space for the listing. 

Out of space on run file 
The destination disk has insufficient space for the .EXE file. 

Out of space on scratch file 
The disk in the default drive has insufficient space for temporary files. 

Overlay manager symbol already defined: name 
A symbol name was defined that conflicts with one of the special overlay manager names. 
Use another symbol name. 

Section IV: Programming Utilities 995 

HUAWEI EX. 1110 - 1005/1582



LINK 

Please replace original diskette 
in drive X and press <ENTER> 
The /P switch was specified in the command line and the disk to receive the .EXE file pro­
duced by LINK has already been inserted. This message indicates that the .EXE file was 
successfully created and that the original disk should again be placed in the drive. 

Relocation table overflow 
More than 32768 long calls, long jumps, or other long pointers were found in the program. 
The program may need to be restructured to reduce the number of FAR references. (Pascal 
and FORTRAN users should try turning off the debugging option before restructuring the 
program.) 

Response line too long 
A line in a response file had more than 127 characters. 

Segment limit set too high 
The number specified in the /SE: n switch was not in the range 1 through 1024. 

Segment limit too high 
Not enough memory is available for LINK to allocate tables to describe the number of 
segments requested (default= 128 or the number specified in the /SE: n switch). Use the 
/SE: n switch to specify a smaller number of segments, or alter the system configuration 
to increase the amount of free memory. 

Segment size exceeds 64K 
The program is a small-model program with more than 64 KB of code or data, a compact­
model program with more than 64 KB of code, or a medium-model program with more 
than 64 KB of data. Selection of a different model or alteration of the program code may 
be required to successfully complete the LINK process. 

Stack size exceeds 65536 bytes 
The size specified for the stack in the /ST: n switch was too large, or the combined length 
of multiple declared stack segments exceeded 64 KB. 

Symbol already defined: "symbol" 
One of the special overlay symbols required for overlay support was previously defined. 

Symbol defined more than once: "symbol" in file 
A symbol has been defined more than once in the object module. Remove the extra sym­
bol definition. 

Symbol table overflow 
The program has more than 256 KB of symbolic information (publics, externals, segments, 
groups, classes, files, and so on). Eliminate as many public symbols as possible, combine 
modules and/or segments, and recreate the object files. 

Terminated by user 
Ctrl-C or Ctrl-Break was pressed, causing the LINK session to be terminated prematurely. 

996 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1006/1582



LINK 

Too many external symbols in one module 
An object module contains more than the limit of 1023 external symbols. 

Too many group-, segment-, and class-names in one module 
One of the object modules for the program contains too many group, segment, and class 
names. The source file for the object module may need to be divided or restructured. 

Too many groups 
The program defines more than nine groups (including DGROUP). Groups must be com­
bined or eliminated. 

Too many GRPDEFs in one module 
LINK encountered more than nine group definitions (GRPDEFs) in a single object module. 
Reduce the number of GRPDEFs or split the object module. 

Too many libraries 
More than 16libraries were specified. Combine libraries or use object modules that require 
fewer libraries. 

Too many overlays 
The program defines more than 63 overlays. Reduce the number of overlays. 

Too many segments 
The program has more than the maximum number of segments as specified by the default 
of 128 or with the /SE: n switch. Use the /SE: n switch to specify a greater number of 
segments. 

Too many segments in one module 
An object module has more than 255 segments. Split the module or combine segments. 

Too many TYPDEFs 
An object module contains too many TYPDEF records (these records describe communal 
variables). This error occurs only with programs produced with the Microsoft C Compiler 
or other compilers that support communal variables. 

Unexpected end-of-file on library 
This message may indicate that the disk containing the library in use was removed 
prematurely. 

Unexpected end-of-file on scratch file 
The disk containing VM.TMP was removed. 

Unmatched left parenthesis 
A syntax error was detected in the specification of an overlay structure. Refer to the lan­
guage compiler manual for instructions on specifying overlays to LINK. 

Unmatched right parenthesis 
A syntax error was detected in the specification of an overlay structure. Refer to the lan­
guage compiler manual for instructions on specifying overlays to LINK. 

Section IV: Programming Utilities 997 

HUAWEI EX. 1110 - 1007/1582



LINK 

Unrecognized switch error: "option" 
An unrecognized character was entered after a forward slash (/) in the command line. 

Unresolved COMDEF; Microsoft internal error 
This is a serious problem. Note the circumstances of the failure and contact Microsoft 
Corporation. 

Unresolved externals: list 
A symbol was declared external (EXTRN) in one object module but was not declared 
PUBLIC in the object module in which it was defined, or a necessary library specification 
was omitted from the command line or response file. 

VM.TMP is an illegal file name 
and has been ignored 
VM.TMP was specified as an object file name. If an object file named VM.TMP exists, 
rename it. 

Warning: load-high disables exepack 
The /H and /E switches cannot be used at the same time. 

Warning: no stack segment 
The program contains no segment with the STACK combine type. This message can be 
ignored if there is a specific reason for not defining a stack (for example, if the .EXE file 
will subsequently be converted to a .COM file) or for defining one without the STACK 
combine type. 

WARNING: Segment longer than reliable size 
Although code segments can be as long as 65536 bytes, code segments longer than 
65500 bytes can be unreliable on the Intel 80286 microprocessor. Reduce all code seg­
ments to 65500 bytes or less. 

Warning: too many public symbols 
The /M switch was used to request a sorted listing of public symbols in the map file, but 
there are too many symbols to sort. LINK will produce an unsorted listing instead. 

998 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1008/1582



MAKE 

MAKE 
Maintain Programs 

Purpose 

Interprets a text file of commands to compare dates of files and carry out other operations 
on the basis of the comparison. MAKE is customarily used to update the executable ver­
sion of a program after a change to one or more of its source files. The MAKE utility is sup­
plied with the Microsoft Macro Assembler (MASM), C Compiler, and FORTRAN Compiler. 
This documentation describes MAKE version 4.05. 

Syntax 

MAKE [/D] [/I] (IN] [/S] [name= value ... J filename 

where: 

filename is an ASCII text file that contains MAKE dependency statements, com­
mands, macro definitions, and inference rules. 

name=value declares a MAKE macro, associating a specific value with the dummy 
parameter name. 

ID displays the last modification date of each file as it is scanned. 
II causes MAKE to ignore exit codes returned by programs called by 

filename. 
IN displays but does not execute the commands in filename. 
IS selects "silent" mode (commands are not displayed as they are executed). 

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-) 
instead of a forward slash(/). Versions of MAKE earlier than 4.0 have no switches. 

Description 

The MAKE utility allows maintenance of complex programs to be automated. Its basic 
operation is to compare the dates of files and to carry out, or not carry out, an associated 
list of commands on the basis of the comparison. 

The filename parameter specifies an ASCII text file often referred to as a make file. By 
convention, filename is the same as the name of the executable program being main­
tained, but without an extension. A make file can contain the following types of entries: 

• Dependency statements 

• Commands 

• Macro definitions 

• Inference rules 

• Comments 

Section IV.· Programming Utilities 999 

HUAWEI EX. 1110 - 1009/1582



MAKE 

The basic form of a make file is a dependency statement followed by one or more valid 
MS-DOS command lines: 

targetfile: dependentfilel [dependentfile2 . .. ] 
commandl 
[command2] 

where targetfile designates the file that may need updating, dependentfile is a source file 
or files on which targetfile depends, and commandl, command2, and so forth are any 
valid MS-DOS internal commands or external programs. These commands or programs 
are executed only if the date and time stamps of any dependent file are more recent than 
those of the target file or if the target file does not exist. Only one target file can be speci­
fied. Any number of dependent files can be included; each dependent filename must be 
separated from the next by at least one space. If too many dependent files are included to 
fit on a single line, the line can be terminated with a backslash character(\) and the list 
continued on the next line. 

Any number of MS-DOS command lines can follow a ·dependency statement. The last 
command line should be followed by a blank line to set it off from the next MAKE entry. It 
is recommended that each command line include a leading space or tab character for com­
patibility with future versions of MAKE and existing versions of XENIX MAKE. 

A macro definition takes the form 

name= value 

where both name and value are any string. Whenever name is referenced in the make 
file in the form $(name), name is replaced by the string value before the statement that 
contains it is evaluated or executed. Macro definitions can be nested, although very com­
plex macro definitions can result in the premature termination of the MAKE process be­
cause of lack of memory. If name is not defined in the file but is defined in the system 
environment block by a previous SET command, $(name) is replaced by the string follow­
ing the equal sign ( =) in the environment block. If the command line contains a parameter 
of the form name= value, the command line overrides any definition of name in the make 
file or in the environment block. Thus, the precedence for macro definitions with the 
same name is 

1. Command line 
2. Make file 
3. Environment block 

MAKE contains several special macros that make it more convenient to form commands: 

Macro Action 

Substitutes as the base portion of targetfile (the filename without the 
extension). 
Substitutes as the complete targetfile name. 
Substitutes as the complete dependentfile list. 

1000 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1010/1582



I 
I 

l 

MAKE 

An inference rule specifies a series of commands to be carried out for a matching depen­
dency statement that is not followed by its own list of commands. Inference rules allow a 
set of commands to be applied to more than one targetfile: dependentfile description, 
eliminating repetition of the same set of commands for several descriptions. An inference 
rule takes the form 

.dependentextension.targetextension: 
commandl 
[command2] 

Whenever MAKE finds a dependency statement not followed by any commands, the 
utility first searches the make file for an inference rule. If MAKE doesn't find an inference 
rule in the make file, the utility then searches the current drive and directory (or any di­
rectories specified with the MS-DOS PATH command) for the tools initialization file 
(TOOLS.INI) and searches the [make] section of TOOLS.INI for an inference rule that 
matches the extensions of the target file and dependent files in the dependency statement. 

A make file can contain any number of comment lines. If a comment is placed where 
MAKE expects to find a command, the comm~nt must be on a separate line and must have 
the pound character(#) as the first character of the line. Elsewhere, a pound character and 
following comment text can be placed either on a line alone or after the last dependent file 
or command listed on a line. Characters appearing on a line after the pound character are 
ignored during execution. 

The ID, IN, and IS switches affect MAKE's output to the display while MAKE is executing. 
The ID switch causes the last modification date of each file to be displayed as the file is 
scanned. The IN switch causes the commands in the make file to be expanded and dis­
played, but not executed; this is useful for determining the result of a specific MAKE 
process without first examining the file dates and without recompiling or relinking files. 
The IS switch selects "silent" mode, in which commands are not displayed as they are 
executed. 

The II switch causes MAKE to ignore error codes returned by the compilers, assemblers, 
linkers, or other programs called by the make file. When the II switch is used, the MAKE 
process proceeds to completion regardless of errors instead of terminating immediately as 
it ordinarily would, but the resulting files may not be executable. 

Return Codes 

0 No error; the MAKE process was successful. 
1 Processing was terminated because of a fatal error by MAKE or by one of the pro­

grams called by MAKE. 

Section IV: Programming Utilities 1001 

HUAWEI EX. 1110 - 1011/1582



MAKE 

Example 

Assume that the file SHELL contains the following MAKE dependency statements and 
commands: 

video.obj: video.asm 

masm video; 

shell.obj: shell.c 

msc shell; 

shell.exe:' shell.obj video.obj 
link /map shell+video,shell,shell,slibc2 

The SHELL file asserts that the executable program SHELL.EXE is composed of the files 
SHELL.OBJ and VIDEO.OBJ, which are in turn compiled or assembled from the source 
files SHELL.C and VIDEO.ASM. To update the file SHELL.EXE if either of the source files 
for its constituent modules has been changed, type 

C>MAKE SHELL <Enter> 

Messages 

fatalerrorU1001: macro definition larger than 512 
A single macro was defined to have a value string longer than the 512-byte maximum. 
Rewrite the make file to use two or more short lines instead of one long line. 

fatal error U1002: infinitely recursive macro 
The macros defined in the make file form a circular chain. 

fatal error U1003: out of memory 
The make file cannot be processed because insufficent memory is available in the tran­
sient program area. Split the make file into two make files or reconfigure the system to 
increase available memory. 

fatal error U1004: syntax error : macro name missing 
A macro name is missing from the left side of the equal sign ( = ). 

fatalerrorU1005: syntaxerror: colonmissing 
A line that should be a dependency statement lacks the colon that separates a target file 
from its dependent files. MAKE expects any line that follows a blank line to be a depen­
dency statement. 

fatal error U1006: targetname : macro expansion larger than 512 
A single macro expansion, plus the length of any string to which it may be concatenated, 
is longer than 512 bytes. Rewrite the make file to use two or more short lines instead of one 
long line. · 

fatal error U1007: multiple sources 
An inference rule has been defined more than once in the make file. 

1002 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1012/1582



fatal error U1008: filename : cannot find file 
The specified file does not exist. 

fatal error Ul009: command : argument list too long 

MAKE 

A command line in the make file is longer than 128 characters (the maximum MS-DOS 
allows). 

fatal error UlOlO: filename : permission denied 
The specified file is read-only. 

fatal error UlOll: not enough memory 
Memory is insufficient in the transient program area to execute a program listed in the 
make file. Reconfigure the system to increase available memory, if necessary. 

fatal error U1012: filename : unknown error 
This is a serious problem. Note the circumstances of the failure and notify Microsoft 
Corporation. 

fatal e~or U1013: command : errorreturncode 
One of the programs or commands called by MAKE was not able to execute correctly. 
MAKE terminates and displays the error code from the program that failed. 

warning U4000: filename : target does not exist 
The target file does not already exist. The dependency statement is evaluated as though 
the target file exists and has a date earlier than that of any of the dependent files. 

warningU4001: dependentfilename does not exist; 
target filename not built 
One of the dependent files does not exist or could not be found, so MAKE terminated 
without creating a new target file. 

warningU4013: command : errorreturncode (ignored) 
One of the programs or commands called by MAKE did not execute successfully and has 
returned the specified return code. Because MAKE was run with the /I switch, MAKE 
ignores the error and continues processing the make file. 

warning U4014: usage : make [In] [!d) [!i] [/s) [name=value ... ] file 
An errorwas detected in the MAKE command line. 

Section IV: Programming Utilities 1003 

HUAWEI EX. 1110 - 1013/1582



MAPSYM 

MAPSYM 
Create Symbol File for SYMDEB 

Purpose 

Processes a map file generated by the Microsoft Object Linker (LINK) to create a special 
symbol file for use with SYMDEB, the symbolic debugging program. The MAPSYM utility 
is supplied with the Microsoft Macro Assembler (MASM). This documentation describes 
MAPSYM version 4.0. · 

Syntax 

MAPSYM [/L] map_file 

where: 

map_file 
/L 

is a map file produced by LINK (default extension= .MAP). 
causes information about the symbol file to be displayed as it is created. 

Note: The /L switch can be either uppercase or lowercase and can be preceded by a dash 
(-) instead of a forward slash (/). 

Description 

LINK combines relocatable object records (produced by MASM or a high-level-language 
compiler) into an executable program, which is stored in a specially formatted file with a 
.EXE extension. LINK can also produce an optional map file that contains information 
about public symbols and addresses in the linked program. The map file is an ordinary 
ASCII text file and has a default extension of .MAP. 

To create a map file to use with MAPSYM, the LINK command line should include the 
/MAP switch, which creates the file, and the /LINENUMBERS switch, which includes line 
numbers. See PROGRAMMING UTILITIES: LINK. 

The MAPSYM utility processes a map file into a special symbol file that can be used by 
SYMDEB. A drive and pathname can be specified if the map file is not in the current direc­
tory. If a file extension is not specified, .MAP is assumed. 

The symbol file created by MAPSYM is placed in the current directory and has the same 
name as the map file but has the extension .SYM. It can contain a maximum of 1024 seg­
ments (or as many segments as can fit into available memory) and 10,000 symbols per 
segment. See PROGRAMMING UTILITIES: SYMDEB. 

When the /L switch precedes map_ file in the command line, MAPSYM displays the 
names of groups defined in the program described by the map and symbol files, plus the 
program's starting address. The /L switch does not affect the format of the symbol file that 
is generated. 

1004 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1014/1582



MAPSYM 

Return Codes 

0 No error; the MAPSYM process was successful. 
1 Processing was terminated because of a write failure, because the map file specified 

does not exist, or because the symbol file could not be created. 
4 Processing was terminated because an unexpected end-of-file mark was detected, 

because too many segments exist in the map file, because no public symbols exist in 
the map file, or because not enough memory is available to create the symbol file. 

Example 

To convert the file HELLO.MAP, which was produced by assembling and linking the file 
HELLO.ASM, to a symbol file that can be used by SYMDEB, type 

C>.MAPSYM /L HELLO <Enter> 

MAPSYM displays the following: 

Microsoft (R) Symbol File Generator Version 4.00 
Copyright (C) Microsoft Corp 1984, 1985. All rights reserved. 
Building: HELLO.SYM 
HELLO.MAP 

Program entry point at 0000:0100 
HELLO 0 segment 

The symbol file produced by MAPSYM symbol has the name HELLO.SYM. 

Messages 

Can't create: <filename> 
The drive specified does not exist, the current disk or directory is full, or the output file 
already exists and is read-only. 

Can't open MAP file: <filename> 
The file named in the command line does not exist. 

DOS 2.0 or later required 
MAPSYM does not work with versions of MS-DOS earlier than 2.0. 

nnapsynn:outofnnennory 
System memory is insufficient to process the map file. 

mapsynn: segnnent table (n) exceeded. 
More than 1024 segments have been used in the map file. The number displayed is the 
total number of segments in the map file. 

No public synnbols 
Re-link file with the /M switch! 
The map file created by LINK does not include a list of public names. The .EXE file must 
be relinked using the /MAP switch to generate a map file that can be used with MAPSYM. 

Section IV: Programming Utilities 1005 

HUAWEI EX. 1110 - 1015/1582



MAPSYM 

Unexpected eof reading~ <filename> 
The map file contains no symbols, is corrupt, or is otherwise invalid. The .EXE file must be 
relinked and a new map file generated. 

usage: MAPSYM [/1] maplist 
A syntax error was detected in the command line. 

Write fail on: <filename> 
An error occurred during the creation of the output file. 

1006 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1016/1582



I 
t 

f 

MASM 

MASM 
Microsoft Macro Assembler 

Purpose 

Translates an assembly-language source program into a relocatable object module. MASM 
is part of the Microsoft Macro Assembler (MASM) retail package. This documentation 
describes MASM version 4.0. 

Syntax 

MASM 

or 

MASM source_file [,[object_file][,[list_file][,[cref_file]]]] [options][;] 

where: 

source_file 

object_file 

list_file 

cref_file 

options 

is the name of the file containing the assembly-language source code 
(default extension= .ASM). 
is the name of the file to receive the assembled object module (default 
extension= .OBJ). 
is the name of the file or device to receive the assembly listing 
(default = NUL). (If destination = file, default extension = .LST.) 
is the name of the cross-reference file to receive information for later 
processing by the CREF utility (default = NUL). (If destination = file, 
default extension= .CRF.) 
is one or more switches from the list below. 

/A Writes the program segments in alphabetic order. 
IBn Sets the size of the source-file buffer in kilobytes (1-63, 

default = 32). 
Creates a cross-reference (.CRF) file. /C 

!D Adds a first-pass program listing to list_file if a list file was 
specified (default= second-pass listing only). 

/Dsymbol 
. /E 

/I path 
/L 
/ML 

Defines symbol as a null text string. 
Assembles code for an 8087/80287 emulator . 
Defines a directory to be searched for include files. 
Creates a list (.LST) file with line-number information. 
Preserves case sensitivity in all symbol names. 

(more) 

Section IV: Programming Utilities 1007 

HUAWEI EX. 1110 - 1017/1582



MASM 

IMU Converts all lowercase names to uppercase names. 
IMX Preserves lowercase in public and external names only. 
IN Suppresses generation of tables of macros, structures, records, 

groups, segments, and symbols at the end of the list file. 
IP Checks for impure code in 80286 protected mode; has no 

effect unless the .286P directive is included in the source file. 
IR Assembles code for an 8087180287 math coprocessor. 
IS Arranges program segments in order of occurrence. 
IT Selects terse mode, suppressing all messages generated during 

assembly except error messages. 
IV Selects verbose mode, displaying the number of lines and 

symbols at the end of assembly. 
IX Includes false conditionals in the list file. 
IZ Displays source lines with errors during assembly. 

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-) 
instead of a forward slash (!). 

Description 

MASM translates assembly-language source code into relocatable object modules. The 
object modules can then be placed in a library file or processed by the Microsoft Object 
Linker (LINK) to create an executable program. 

The source_file parameter is the only required filename. It specifies a file containing 
the assembly-language source code in ASCII text. If no extension is specified, MASM 
uses .ASM. If no source file is entered in the command line, MASM prompts for a source 
file name. 

The object_file parameter specifies the file that will contain the assembled relocatable 
object code. If this parameter is not supplied, MASM uses the same filename as 
source_file but substitutes the extension .OBJ. 

The list_file parameter specifies a destination file or device for the optional program 
listing. The listing contains the original source code, the assembled machine code, macro 
definitions and expansions, and other useful information, formatted into pages with titles, 
dates, and page numbers. If the destination of the listing is a file, the file's default exten­
sion is .LST. If the list_file parameter is not included in the command line, MASM sends 
the listing to NUL (that is, a listing is not produced). 

The cref_file parameter specifies the name of a cross-reference file to receive information 
to be processed by the CREF utility. If a file extension is not specified, MASM uses .CRF. If 
the cref_file parameter is not included in the command line, MASM sends the file to NUL 
(that is, no cross-reference file is generated). 

1008 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1018/1582



I 

l 
I 

MASM 

If the MASM command is entered without parameters, MASM prompts the user for each 
·filename. The default response for each prompt (except the source file prompt) is dis­
played in square brackets and can be selected by pressing the Enter key. 

After the source file is specified, if MASM encounters a semicolon character(;) in the 
command line or at any prompt, it uses default values for the remaining parameters. MASM 
ignores any parameters specified after the semicolon. 

MASM does two passes to translate the assembly-language code in the source file into 
relocatable object code. Any errors detected during translation are displayed on standard 
output and included in the program listing (if one is requested). Two types of errors may 
be detected: warning errors and severe errors. If MASM encounters a warning error, it still 
creates the object file, although the resulting file may be unusable. If MASM encounters a 
severe error, it does not create the object file. After a file has been successfully assembled 
without errors, the LINK utility can be used to convert the resulting object file into an 
executable program file. 

MASM supports a wide variety of options that can be selected by including switches in the 
command line or by responding to any prompt. 

The /A and /S switches determine the order of segments in the resulting object module 
file. The /A switch places the segments into the object file in alphabetic order. The IS 
switch (the default) arranges the segments in the same order they occur in the source file. 

The IBn, /Dsymbol, and !I path switches have rather general effects on the behavior of 
MASM. The IBn switch sets the size (in kilobytes) of the source file's RAM buffer; the 
value of n must be between 1 and 63, inclusive (default= 32). If the RAM buffer is large 
enough, the entire source file can be kept resident in memory, reducing disk activity dur­
ing passes. The /Dsymbol switch defines a null text-string symbol from the command 
line. This symbol can be referenced inside the program with the IFDEF directive to con­
trol the conditional assembly of portions of the program. The /I path switch specifies a 
directory that will be searched for files named in assembler INCLUDE statements if those 
statements do not include an explicit directory. As many as 10 such search paths can be 
specified with individual /I path switches. 

The /E and /R switches affect the generation of code for the 8087/80287 emulator or 
8087/80287 math coprocessor. (Support for the 80287 is included with MASM versions 3.0 
and later.) The /E switch generates software interrupts to floating-point-processor emula­
tor routines. A subprogram assembled with the /E switch can be linked to C, Pascal, and 
FORTRAN programs and can use the emulator libraries. The /R switch produces in-line 
machine instructions for the math coprocessor when floating-point mnemonics are used. 

The /ML, /MU, and /MX switches control MASM's handling of uppercase and lowercase 
names. The /ML switch makes MASM case sensitive; that is, it makes MASM differentiate a 

Section IV: Programming Utilities 1009 

HUAWEI EX. 1110 - 1019/1582



MASM 

name in uppercase letters from the same name in lowercase letters. (The /ML switch 
should not be used if the source file contains 8087 WAIT instructions and MASM 4.0 is 
being used to translate the file.) The /MU switch (the default) makes MASM case insensi­
tive; all lowercase letters are converted to uppercase for purposes of assembly. The /MX 
switch makes MASM case sensitive for public and external names only (names defined 
with PUBLIC or EXTRN directives). The /MX switch is often used to process assembly­
language functions for C programs. 

The /P switch checks for impure code segments that will cause problems if the assembled 
program is run in 80286 protected mode. The switch checks by flagging any instruction 
that will change a memory location addressed through the processor's CS register. The /P 
switch has no effect unless the assembly-language source file includes the .286P diJ;"ective. 

The /C, /D, /L, IN, and /X switches control the contents of the program listing and other 
optional files that are generated as a result of assembly. The /C switch causes the creation 
of a cross-reference (. CRF) file and the addition of line numbers to the list (.LST) file (if 
one exists). The /C switch should be included in the command line if the cross-reference 
file will be used later with the CREF utility to produce a cross-reference listing. The /D 
switch includes a listing from the first pass as well as a listing from the second pass in the 
list file if a list file was specified (default= second-pass listing only). By comparing the two 
listings, the user can isolate an instruction causing a phase error. (A phase error occurs 
when MASM makes assumptions about addresses, values, or data types on the first pass 
that are not valid in the second pass.) The /L switch creates a list file with line-number in­
formation and gives it the same name as the source file, with the extension .LST. The IN 
switch suppresses generation of tables- symbols, segments, groups, structures, records, 
and macros- at the end. of a program listing. The /X switch includes statements inside 
false conditional statements in the list file, allowing conditionals that do not generate code 
to be displayed. /X has no effect if the .SFCOND or the .LFCOND directive is used in the 
source file; if the .TFCOND directive is used, the effects of /X are reversed. 

Note: The effects of /X are also reversed in MASM version 1. 2. In that version, statements 
within a false conditional are included in the list file by default, and /X will suppress them. 

The /T, /V, and /Z switches affect MASM's display on standard output. The /T (terse) 
switch suppresses messages to standard output, except for messages indicating warning 
errors or severe errors. The /V (verbose) switch displays information about the number of 
source lines and symbols at the end of the assembly, in addition to displaying the normal 
error and symbol space information. The /Z switch displays the actual source lines pro­
ducing assembly errors (rather than displaying just the error type and line number). 

1010 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1020/1582



MASM 

Note: Versions of MASM earlier than 4.0 always show both the source line and the error 
message. 

Return Codes 

0 No errors were found during assembly. 
1 An error was detected in one of the command-line parameters. 
2 The assembly-language source file could not be opened. 
3 The list file could not be created. 
4 The object file could not be created. 
5 The cross-reference file could not be created. 
6 An include file could not be opened. 
7 At least one severe error was detected during assembly. (MASM deletes the invalid 

object file.) 
8 The assembly was terminated because a memory allocation error occurred. 
10 An error occurred in defining a symbol (with the /Dsymbol switch) from the 

command line. 
11 Assembly was interrupted by the user's pressing Ctrl-C or Ctrl-Break. 

Examples 

To assemble the source file CLEAN.ASM in the current drive and directory and place the 
resulting relocatable object module in the file CLEAN.OBJ without producing a listing or a 
cross-reference file, type 

C>MASM CLEAN; <Enter> 

The semicolon after the first parameter causes MASM to use the default values for the rest 
of the parameters. 

To assemble the source file CLEAN.ASM, put the object code in a file named CLEAN.OBJ, 
create a list file named CLEAN.LST, and place information for later processing by the CREF 
utility in the cross-reference file CLEAN.CRF, type 

C>MASM CLEAN,CLEAN,CLEAN,CLEAN <Enter> 

or 

C>MASM CLEAN,,CLEAN,CLEAN <Enter> 

To use MASM interactively, enter its name without parameters: 

C>MASM <Enter> 

MASM then prompts for all the necessary information. For example, the interactive session 
on the next page assembles the file HELLO.ASM into the file HELLO.OBJ, producing no 
listing or .CRF file. 

Section TV.· Programming Utilities 1011 

HUAWEI EX. 1110 - 1021/1582



MASM 

C>MASM <Enter> 
Microsoft (R) Macro Assembler Version 4.00 
Copyright (C) Microsoft Corp 1981, 1983, 1984, 1985. All rights reserved. 

Source filename: [.ASM]: HELLO <Enter> 
Object filename: [HELLO.OBJ]: <Enter> 
Source listing [NUL.LST]: <Enter> 
Cross-reference [NUL.CRF]: <Enter> 

51004 Bytes symbol space free 

0 Warning Errors 
0 Severe Errors 

Messages 

8087 opcode can't be emulated 
An 8087. opcode or the operands used with it produced an instruction the emulator cannot 
support. 

Already defined locally 
An attempt was made to define a symbol as EXTRN that had already been defined locally. 

Already had ELSE clause 
An attempt was made to define an ELSE clause within an existing ELSE clause. (ELSE can­
not be nested without nesting IF ... ENDIF.) 

Already have base register 
More than one base register was specified within an operand. 

Already have index register 
More than one index register was specified within an operand .. 

Block nesting error 
A segment, structure, macro, IRC, IRP, REPT, or nested procedure was not terminated 
properly. 

Byte register is illegal 
A byte register was used incorrectly in an instruction. 

Can't override ES segment 
An attempt was made to override the ES segment in an instruction in which this override is 
invalid. 

Can't reach with segment reg 
No ASSUME directive was given to make the variable reachable. 

Can't use EVEN on BYTE segment 
An EVEN directive was used on a segment declared to be a byte segment. 

Circular chain ofEQU aliases 
An alias EQU ultimately points to itself. 

1012 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1022/1582



r 

I 

I 

MASM 

Constant was expected 
A constant was expected, but an item was received that does not evaluate to a constant. 

CS register illegal usage 
The CS register was used incorrectly in one of the instructions. 

Data emitted with no segment 
Code that is not located within a segment attempted to generate data. 

Directive illegal in STRUC 
All statements within STRUC blocks must be either comments preceded by a semicolon 
character (;) or one of the define directives (DB, DW, and so on). 

Division by 0 or overflow 
An expression was encountered that resulted in either a division by 0 or a number too 
large to be represented. 

DUP is too large for linker 
Nesting of DUP operators was such that a record too large for LINK was created. 

End of file, no END directive 
No END statement was encountered, or a nesting error occurred. 

Extra characters on line 
Superfluous characters were detected on a line after sufficient information to define an 
instruction was interpreted. 

extra file name ignored 
The command line contained more than four filename parameters. 

Field cannot be overridden 
An attempt was made to give a value to a field that cannot be overridden with a STRUC 
initialization statement. 

Forced error 
An error was forced with the .ERR directive. 

Forced error- expression equals 0 
An error was forced with the .ERRE directive. 

Forced error- expression not equal 0 
An error was forced with the .ERRNZ directive. 

Forced error- passl 
An error was forced with the .ERRl directive. 

Forced error- pass2 
An error was forced with the .ERR2 directive. 

Forced error- string blank 
An error was forced with the .ERRB directive. 

Section IV.· Programming Utilities 1013 

HUAWEI EX. 1110 - 1023/1582



MASM 

1014 

Forced error- string not blank 
An error was forced with the .ERRNB directive. 

Forced error- strings different 
An error was forced with the .ERRDIF directive. 

Forced error- strings identical 
An error was forced with the .ERRIDN directive. 

Forced error- symbol defined 
An error was forced with the .ERRDEF directive. 

Forced error- symbol not defined 
An error was forced with the .ERRNDEF directive. 

Forward reference is illegal 
An item was referenced in the operand of an EQU or equal-sign ( =) directive before it was 
defined. 

Illegal register value 
A specified register value does not fit into the reg field (that is, the value is greater than 7). 

Illegal size for item 
The size of the referenced item is invalid. This error also frequently occurs when an 
attempt is made to assemble source code written for assemblers with less strict type­
checking than that of the Microsoft Macro Assembler (such as early versions of the IBM 
assembler). The problem can usually be solved by overriding the type of the operand with 
the PTR operator. 

Illegal use of external 
A variable that was declared external was used incorrectly. 

Illegal use of register 
An attempt was made to use a register with an instruction in which a register cannot be 
used. 

ffiegal value for DUP COlJnt 
The DUP count was not a constant that evaluates to a positive integer greater than zero. 

Improper operand type 
An operand was used in a way that prevents opcode generation. 

Improper use of segment register 
An attempt was made to use a segment register in an instruction in which use of a segment 
register is not permitted. 

Impure memory reference 
An attempt was made to store data in the code segment when the .286P directive and the 
/P switch were in effect. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1024/1582



MASM 

. Index dis pl. must be constant 
An index displacement was used incorrectly or did not evaluate to an absolute number or 
memory address. 

Internal error · 
An internal logic error was detected in the assembler. Document the circumstances and 
contact Microsoft Corporation. 

Label can't have seg. override 
A segment override was used incorrectly. 

Left operand must have segment 
The content of the right operand requires that a segment be specified in the left operand. 

Line too long expanding symbol 
A symbol defined by an EQU or equal-sign ( =) directive is so long that expanding it will 
cause the assembler's internal buffers to overflow. This message may indicate a recursive 
text macro. 

Missing data; zero assumed 
An operand is missing from a statement and MASM assumes its value is zero. This is a 
warning error; the object file is not deleted as it is with severe errors. 

More values than defined with 
Too many initial values were given when defining a variable using a REC or STRUC type. 

Must be associated with code 
A data-related item was used where a code-related item was expected. 

Must be associated with data 
A code-related item was used where a data-related item was expected. 

Must be AX orAL 
A register other than AX orAL was specified where only these are acceptable. 

Must be in segment block 
An attempt was made to generate code by instructions that were not contained within a 
segment. 

Must be index or base register 
An instruction requires a base or index register, and some other register was specified 
within square brackets([]). 

Must be record field name 
A record field name was expected, but something else was encountered. 

Must be record or fieldname 
A record name or field name was expected, but something else was encountered. 

Must be register 
A register was expected as the operand, but something else was encountered. 

Section IV: Programming Utilities 1015 

HUAWEI EX. 1110 - 1025/1582



MASM 

Must be segment or group 
A segment or group was expected, but something else was encountered. 

Must be structure field name 
A structure field name was expected, but something else was encountered. 

Must be symbol type 
A BYTE, WORD, DWORD, or similar designation was expected, but something else was 
encountered. 

Must be var, label or constant 
A variable, label, or constant was expected, but something else was encountered. 

Must have opcode after prefix 
A REP, REPE, REPNE, REPZ, or REPNZ instruction was not followed by the mnemonic for a 
string operation. 

Near JMP/CALL to different CS 
An attempt was made to do a NEAR jump or call to a location in a code segment defined 
with a different ASSUME:CS. 

No immediate mode 
Immediate data was supplied as an operand for an instruction that cannot use immediate 
data. For example, immediate data cannot be moved directly with a MOV instruction to a 
segment register; it must first be moved into a general register and then copied to the seg­
ment register. 

No or unreachable CS 
An attempt was made to jump to a label that is unreachable. 

Normal type operand expected 
A STRUC, BYTE, WORD, or some other invalid operand was encountered when a variable 
label was expected. 

Not in conditional block 
AnENDIF or ELSE statement was encountered, and no previous conditional-assembly 
directive was active. 

Not proper align/combine type 
The SEGMENT parameters are incorrect. Check the align and combine types to be sure 
they are valid. 

One operand must be const 
The addition operator was used incorrectly. 

Only initialize list legal 
An attempt was made to use a STRUC name without angle brackets ( <>). 

Operand combination illegal 
A two-operand instruction was specified and the combination specified was invalid. 

1016 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1026/1582



I 

I 
I 
I 

MASM 

. Operand must have segment 
A SEG directive was used incorrectly. 

Operand must have size 
An operand was encountered that needed a specified size, but none had been provided. 
Often this error can be remedied by using the PTR operator to specify a size type. 

Operand not in IP segment 
An operand cannot be accessed because it is not in the segment last assigned to CS with an 
ASSUME directive. 

Operand types must match 
MASM encountered different kinds or sizes of arguments in a case where they must match. 

Operand was expected 
MASM expected an operand, but an operator was encountered. 

Operands must be same or 1 abs 
The subtraction operator was used incorrectly. 

Operator was expected 
MASM expected an operator, but an operand was encountered. 

Out of memory 
System memory is insufficient to complete the assembly. If a listing (.LST) or cross­
reference (.CRF) file was being generated, retry the assembly, generating only an object 
file. It may also be necessary to modify the source program to reduce the load on the sym­
bol table (by shortening names or reducing the number of EQU statements or macros, for 
example). 

Override is of wrong type 
An attempt was made to use a data item of incorrect size in a STRUC initialization 
statement. 

Override value is wrong length 
The override value for a structure field is too large to fit in the field. 

Override with DUP is illegal 
An attempt was made to use DUP to override in a STRUC initialization statement. 

Phase error between passes 
The program has ambiguous instruction directives that caused the location of a label in 4 
the program to change in value between the first and second passes of MASM. A common 
cause is a forward reference to a typed data item in the instructions preceding the label 
that generated the phase error message. Use the /D switch to produce a first-pass listing 
to aid in resolving phase errors between passes. 

Redefinition of symbol 
This message is displayed during first pass upon the second declaration of a symbol that 
has been defined in more than one place. 

Section IV: Programming Utilities 1017 

HUAWEI EX. 1110 - 1027/1582



MASM 

Reference to mult defined 
The instruction references a symbol that has been defined more than once. 

Register already defined 
An internal error was detected. Note the circumstances of the failure and contact Microsoft 
Corporation. 

Relative jump out of range 
A conditional jump references a label that is out of the allowed range of -128 to + 127 bytes 
relative to the current instruction. The problem usually can be corrected by reversing the 
condition of the jump and using an unconditional jump (JMP) to the out-of-range label. 

Segment parameters are changed 
The list of parameters encountered for a SEGMENT was not identical to the list specified 
the first time the segment was used. 

Shift count is negative 
A shift expression was generated that resulted in a negative shift count. 

Should have been group name 
A group name was expected, but something else was encountered. 

Symbol already different kind 
An attempt was made to redefine an already defined symbol. 

Symbol has no segment 
An attempt was made to use a variable with SEG that has no known segment. 

Symbol is already external 
An attempt was made to redefine a symbol as local that has already been defined as 
external. 

Symbol is multi-defined 
This message is displayed during the second pass upon each declaration of a symbol that 
has been defined in more than one place. 

Symbol is reserved word 
An attempt was made to use a reserved MASM word as a symbol. 

Symbol not defined 
A symbol that had not been defined was used. 

Symbol type usage illegal 
A PUBLIC symbol was used incorrectly. 

Syntax error 
The syntax of the statement does not match any recognizable syntax. 

Type illegal in context 
The type specified is of an unacceptable size. 

1018 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1028/1582



Unable to open input file .filename 
The specified source file cannot be found. 

unknown switch letter 
The command line included an invalid switch. 

MASM 

Unknown symbol type 
MASM does not recognize the size type specified in a label or external declaration. Rewrite 
with a valid type such as BYTE, WORD, or NEAR. 

Value is out of range 
A value is too large for its expected use. 

Wrong type of register 
A directive or instruction expected one type of register, but another type was 
encountered. 

Section IV Programming Utilities 1019 

HUAWEI EX. 1110 - 1029/1582



DEBUG 

DEBUG 
Program Debugger 

Purpose 

Allows the controlled execution of a program for debugging purposes or the alteration of 
the binary contents of any file. The DEBUG utility is supplied with the MS-DOS distribu­
tion disks. 

Syntax 

DEBUG 

or 

DEBUG filename [parameter ... ] 

where: 

filename is the name of the file that contains data to be modified or a program to be 
debugged. If filename includes an extension, it must be specified. 

parameter. . . is one or more filenames or switches required by a program being 
debugged. 

Description 

The DEBUG program allows a file to be loaded, examined, and altered. If the file is not a 
.EXE file or a .HEX file, it may also be written back to disk. If the file contains a program, 
the program can be disassembled, modified, traced one instruction at a time, or executed 
at full speed with preset breakpoints. DEBUG can also be used to read from and write to 
input/output (I/0) ports and to read, modify, and write absolute disk sectors. 

The command line typically includes the filename parameter, which is the name of an 
executable program (with the extension .COM or .EXE) to be loaded into DEBUG's mem­
ory buffer. Files with the extension .EXE are loaded in a manner compatible with the 
MS-DOS loader; if necessary, the contents of the file are relocated so that the program is 
ready to execute. Files with the extension .HEX are converted to binary images and loaded 
at the internally specified address. All other files are assumed to be direct memory images 
and are read directly into memory starting at offset lOOH. 

An appropriate program segment prefix (PSP) is synthesized at the head of DEBUG's 
buffer for use by the target program (the program being debugged). The PSP includes a 
command tail at offset SOH and default file control blocks (FCBs) at offsets 5CH and 6CH, 
constructed from the optional parameters following filename. 

After DEBUG is loaded and the first file named in the command line is also located and 
loaded, DEBUG displays its special prompt character, a hyphen(-), and awaits a com­
mand. DEBUG commands consist of a single letter, usually followed by one or more 

1020 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1030/1582



DEBUG 

parameters. Uppercase and lowercase characters are treated the same except when they 
are contained in strings enclosed within single or double quotation marks. All commands 
are executed by pressing the Enter key. 

The DEBUG commands are 

Command Action 

A Assemble machine instructions (versions 2.0 and later). 
C Compare memory areas. 
D Display memory. 
E Enter data. 
F Fill memory. 
G Go execute program. 
H Perform hexadecimal arithmetic. 
I Input from port. 
L Load file or sectors. 
M Move (copy) data. 
N Name file or command-tail parameters. 
0 Output to port. 
P Proceed through loop or subroutine (versions 3.0 and later). 
Q Quit debugger. 
R Display or modify registers. 
S Search memory. 
T Trace program execution. 
U Disassemble (unassemble) program. 
W Write file or sectors. 

The parameters for a DEBUG command include addresses, ranges, 8-bit or 16-bit hexa­
decimal values, and lists. Multiple parameters can be separated by spaces, tabs, or 
commas, but separators are required only between hexadecimal values. 

An address can be a simple offset or a complete address in the form segment: offset. The 
offset is always a hexadecimal number in the range OOH through FFFFH; the segment can 
be either a hexadecimal value in the same range or a two-character segment register name 
(CS, DS, ES, or SS). If the segment portion of an address is absent, DEBUG uses DS unless 
an A, G, L, T, U, or W command is used, in which case DEBUG uses CS. 

A range specifies an area of memory and can be expressed as either two addresses or a 
starting address and a length. A segment can be included only in the first element of a 
range; an error message is displayed if a segment is found in the second address. A length is 
represented by the letter L, followed by a hexadecimal value between OOH and FFFFH that 
indicates the number of bytes following the starting address that the command should 
operate on. 

Note: Any length that causes an address to exceed 16 bits will generate an error. 

A byte, or 8-bit, value is entered as one or two hexadecimal digits, whereas a word, or 
16-bit, value is entered as one to four hexadecimal digits. Leading zeros can be omitted. 

Section IV: Programming Utilities 1021 

HUAWEI EX. 1110 - 1031/1582



DEBUG 

A list is composed of one or more byte values or strings, separated by spaces, commas, or 
tabs. A string is one or more ASCII characters enclosed within single or double quotation 
marks. Case is significant within a string. If the same type of quote character that is used to 
delimit the string occurs inside the string itself, the character must be doubled inside the 
string in order to be interpreted correctly. For example: 

''This ''''string'''' is OK.'' 

When used, a list must be the last parameter in the command line. 

DEBUG responds to an invalid command by pointing to the approximate location of the 
error with a caret character(") and displaying the word Error. For example: 

-D CS:0100,CS:0200 <Enter> 

" Error 

DEBUG maintains a set of virtual CPU registers for a program being debugged. These 
registers can be examined and modified with DEBUG commands. When a program is first 
loaded for debugging, the virtual registers are initialized with the following values: 

Register .COM Program .EXE Program 

AX Valid drive error code Valid drive error code 
BX Upper half of program size Upper half of program size 
ex Lower half of program size Lower half of program size 
DX Zero Zero 
SI Zero Zero 
DI Zero Zero 
BP Zero Zero 
SP FFFEH or top of available Size of stack segment 

memory minus 2 
IP lOOH Offset of entry point within target 

program's code segment 
cs PSP Base of target program's code segment 
DS PSP PSP 
ES PSP PSP 
ss PSP Base of target program's stack segment 

Note: DEBUG checks the first three parameters in the command line. If the second and 
third parameters are filenames, DEBUG checks any drive specifications with those file­
names to verify that they designate valid drives. Register AX contains one of the following 
codes: 

Code 

OOOOH 

OOFFH 
FFOOH 
FFFFH 

Meaning 

The drives specified with the second and third filenames are both valid, or 
only one filename was specified in the command line. 

The drive specified with the second filename is invalid. 
The drive specified with the third filename is invalid. 
The drives specified with the second and third filenames are both invalid. 

1022 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1032/1582



I, 

I 
' 

l 
I 

DEBUG 

. DEBUG also maintains a set of virtual flags, which may be set or cleared. The flags are 

Flag Name Value If Set (1) Value If Clear (0) 

Overflow OV (Overflow) NV (No Overflow) 
Direction DN(Down) UP(Up) 
Interrupt EI (Enabled) DI (Disabled) 
Sign ~'G (Minus) PL(Plus) 
Zero ZR(Zero) NZ (Not Zero) 
AuxCarry AC (Aux Carry) NA (No Aux Carry) 
Parity PE(Even) PO(Odd) 
Carry CY(Carry) NC (No Carry) 

Before DEBUG transfers control to the target program, it saves the actual CPU registers and 
then loads them with the current values of the virtual registers. Conversely, when control 
reverts to DEBUG from the target program, the returned register contents are stored back 
in the virtual register set for inspection and alteration by the user. 

Examples 

To load the file SHELL.EXE in the current directory for execution under the control of 
DEBUG, type 

C>DEBUG SHELL.EXE <Enter> 

To use the DEBUG program to inspect or modify memory or to read, modify, and write 
absolute disk sectors, simply type 

C>DEBUG <Enter> 

Message 

File not found 
The filename supplied as the first parameter in the DEBUG command line cannot be 
found. 

Section IV: Programming Utilities 1023 

HUAWEI EX. 1110 - 1033/1582



DEBUG: A 

DEBUG: A 
Assemble Machine Instructions 

Purpose 

Allows entry of assembler mnemonics and translates them into executable machine code. 

Syntax 

A[address] 

where: 

address is the starting location for the assembled machine code. 

Description 

1024 

The Assemble Machine Instructions (A) command accepts assembly-language statements, 
rather than hexadecimal values, for the Intel 8086/8088 microprocessors and the Intel 8087 
math coprocessor and then assembles each statement into executable machine code. 

The address parameter specifies the location where entry of assembly-language 
mnemonics will begin. If address is omitted, DEBUG uses the address following the last 
instruction generated the last time the A command was used. If the A command has not 
been used, DEBUG uses the current value of the target program's CS:IP registers. 

After an A command is entered, DEBUG prompts for each assembly-language statement 
by displaying the address, in the form of a segment and an offset, in which the assembled 
code will be stored. When the Enter key is pressed, the assembly-language statement is 
translated, and each byte of the resulting machine instruction is stored sequentially in 
memory (overwriting existing information), beginning at the displayed address. The ad­
dress following the last byte of the machine instruction is then displayed so that the user 
can enter the next assembly-language statement. Pressing the Enter key alone in response 
to the address prompt terminates the A command. 

The syntax of assembly-language statements accepted by the DEBUG A command differs 
slightly from that of the usual Microsoft Macro Assembler programming statements. The 
differences can be summarized as follows: 

• All numbers are assumed to be hexadecimal integers and should be entered without a 
trailing H character. 

• Segment overrides must be specified by preceding the entire instruction with CS:, 
DS:, ES:, or SS:. 

• File control directives (NAME, PAGE, TITLE, and so forth), macro definitions, record 
structures, and conditional assembly directives are not supported by DEBUG. 

• Specific hexadecimal values, rather than program labels, must be included. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1034/1582



DEBUG: A 

• When the data type (word or byte) is not implicit in the instruction, the type must be 
specified by preceding the operand with BYTE PTR (or BY) or WORD PTR (or WO). 

• The size of the string in a string operation must be specified by adding a B (byte) or 
W (word) to tl).e string instruction mnemonic (for example, LODSB or LODSW). 

• The DB and DW instructions accept a parameter of the type list and assemble byte 
and word values directly. 

• The WAIT or FWAIT opcodes for 8087 assembler statements are not generated by 
default, so they must be coded explicitly. 

• Memory locations are differentiated from immediate operands by enclosing memory 
addresses in square brackets. 

• Repeat prefixes, such as REP, REPZ, or REPNZ, can be entered either alone on the line 
preceding the statement they affect or immediately preceding the statement on the 
same line. 

• Although the assembler generates the optimal form (SHORT, NEAR, or FAR) for jumps 
or calls, depending on the destination address, these designations can be overridden 
by preceding the operand with a NEAR (orNE) or FAR (no abbreviation) prefix. 

e The mnemonic for a FAR RETURN is RETF. 

Examples 
To begin assembling code at address CS:OlOOH, type 

-A 1 00 <Enter> 

To assemble the instruction sequence 

LODS WORD PTR [SI] 
XCHG BX,AX 
JMP [BX] 

beginning at address CS:OlOOH, the following dialogue would take place: 

-A 100 <Enter> 
1983:0100 LODSW <Enter> 
1983:0101 XCHG BX,AX <Enter> 
1983:0103 JMP [BX] <Enter> 
1983:0105 <Enter> 

To continue assembling at the location following the last instruction generated by a pre­
vious A command, type 

-A <Enter> 

Section IV.· Programming Utilities 1025 

HUAWEI EX. 1110 - 1035/1582



DEBUG:C 

DEBUG:C 
Compare Memory Areas 

Purpose 

Compares two areas of memory and reports any differences. 

Syntax 

C range address 

where: 

range is the starting and ending addresses or the starting address and length of the 
first area of memory to be compared. 

address is the starting address of the second area of memory to be compared. 

Description 

The Compare Memory Areas (C) command compares the contents of two areas of mem­
ory. The location and contents of any differing bytes are displayed in the following format: 

addressl bytel byte2 address2 

If no differences are found, the DEBUG prompt returns. 

The range parameter specifies the starting and ending addresses or the starting address 
and length in bytes of the first area of memory to be compared. The address parameter 
specifies the beginning address of the second area of memory to be compared. If a 
segment is not included in range or address, DEBUG uses DS. 

Example 

To compare the 64 bytes beginning at CS:CEOOH with the 64 bytes beginning at 
CS:CFOAH, type 

-C CS:CEOO CE3F CS:CFOA <Enter> 

or 

-C CS:CEOO L40 CS:CFOA <Enter> 

If any differences are found, DEBUG displays them in the following format: 

2124:CE06 00 FF 2124:CF10 

1026 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1036/1582



DEBUG:D 

DEBUG:D 
Display Memory 

Purpose 

Displays the contents of an area of memory in hexadecimal and ASCII format. 

·Syntax 

D [range] 

where: 

range 

Description 

is the starting and ending addresses or the starting address and length of the 
area to be displayed. 

The Display Memory (D), or Dump, command displays the contents of a specified range of 
memory addresses in hexadecimal and ASCII format. 

The range parameter gives the starting and ending addresses or the starting address and 
length in bytes of the memory to be displayed. If range does not include a segment, 
DEBUG uses DS. 

If range is omitted the first time the D command is used, the display starts at the target 
program's CS:IP registers. If range was specified in a preceding D command, the memory 
address following the last address displayed by that command is used. If a length is not ex­
plicitly stated in a D command, 128 bytes are displayed. 

Each line displays a segment and offset, followed by the contents of 16 bytes of memory 
represented as hexadecimal values and separated by spaces (except the eighth and ninth 
values, which are separated by a dash), followed by the ASCII character equivalents (if 
any) of the same 16 bytes. In the ASCII portion, nonprinting characters are displayed as 
periods. 

Examples 

To display the contents of the 128 bytes of memory beginning at 7FOO:OlOOH, type 

-D 7F00:0100 <Enter> 

The contents of the memory addresses are displayed in the following format: 

7F00:0100 

7F00:0110 

7F00:0120 

7F00:0130 
7F00:0140 

7F00:0150 

7F00:0160 

7F00:0170 

20 64 65 76 69 63 

39 08 20 08 00 81 

2E 26 45 AF 11 47 

11 50 DF 11 51 AB 

24 co 11 00 03 4E 

4C 45 56 45 4C 85 

03 44 49 52 03 91 

OF 03 52 45 4E 01 

65 

39 

B3 

11 

4F 

08 

oc 
co 

OD-OA 00 60 39 OD OA 00 7C deviCe . .. '9 . .. : 

04-1B SB 32 4A 42 BD 11 44 9. ... 9 .. [2JB=.D 

11-48 AS 11 4C BS 11 4E D3 .&E/.G3.H%.L8.NS 

54-DF 1E 56 37 11 SF 9F 16 .P_.Q+.T_.V7 ·-·. 

54-C1 07 OA 45 52 52 4F 52 $@ ... NOTA .. ERROR 

05-45 58 49 53 54 18 08 00 LEVEL ... EXIST ... 

06-52 45 4E fl1 4D 45 01 co .DIR .... RENAME.@ 

OF-05 45 52 41 53 45 01 68 .. REN.@ .. ERASE.h 

Section IV: Programming Utilities 1027 

HUAWEI EX. 1110 - 1037/1582



DEBUG:D 

To view the next 128 bytes of memory, type 

-D <Enter> 

In this case, the contents of memory addresses 7F00:0180H through 7F00:01FFH are 
displayed. 

1028 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1038/1582



I 
I 

DEBUG:E 

DEBUG:E 
Enter Data 

Purpose 

Enters data into memory. 

·Syntax 

E address [list] 

where: 

address is the first memory location for data entry. 
list . specifies the data to be entered into successive bytes of memory, starting at 

address. 

Description 

The Enter Data (E) command allows data to be entered into successive memory locations. 
The data can be entered in either hexadecimal or ASCII format. Data previously stored in 
the specified locations is lost. 

The address parameter specifies the first byte to be modified. If address does not include 
a segment, DEBUG uses DS. The address is incremented for each byte of data stored. 

The list parameter is one or more hexadecimal byte values and/or strings, separated by 
spaces, commas, or tab characters. Strings must be enclosed within single or double quota­
tion marks, and case is significant within a string. 

If list is included in the command line, the changes to memory are made unless an error is 
detected in the command line, in which case an error message is displayed and the E com­
mand is terminated. If list is omitted from the command line, the user is prompted byte 
by byte for data to be entered into memory, starting at address. The current contents of a 
byte are displayed, followed by a period. A new value for that byte can be entered as one 
or two hexadecimal digits (extra characters are ignored) or the contents can be left un­
changed. Pressing the spacebar displays the contents of the next byte. Entering a minus 
sign or hyphen character (-) instead of pressing the spacebar displays the contents of the 
previous byte. A maximum of 8 bytes can be entered on each input line; a new line is 
begun each time an 8-byte boundary is crossed. Pressing the Enter key without pressing 
the spacebar or entering any data terminates data entry. 

Text strings can be entered only by using the list parameter; they cannot be entered in 
response to an address prompt. 

Section IV: Programming Utilities 1029 

HUAWEI EX. 1110 - 1039/1582



DEBUG:E 

Examples 
To store the byte values OOH, ODH, and OAH in the three bytes beginning at DS:1FB3H, 

type 

-E 1FB3 00 OD OA <Enter> 

To store the string MAIN MENU into memory beginning at address ES:OC14H, type 

-E ES: C 1 4 "MAIN MENU" <Enter> 

1030 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1040/1582



DEBUG:F 
Fill Memory 

Purpose 

Stores a repetitive data pattern in an area of memory. 

Syntax 

F range list 

where: 

DEBUG:F 

range is the starting and ending addresses or starting address and length of the mem­
ory to be filled. 

list is the data to be entered. 

Description 

The Fill Memory (F) command fills an area of memory with the data from a list. The data 
can be entered in either hexadecimal or ASCII format. Any data previously stored at the 
specified locations is lost. If an error message is displayed, the original values in memory 
remain unchanged. 

The range parameter specifies the starting and ending addresses or the starting address 
and hexadecimal length in bytes of the area of memory to be filled. If range does not 
specify a segment, DEBUG uses OS. 

The list parameter specifies one or more hexadecimal byte values and/or strings, sepa­
rated by spaces, commas, or tab characters. Strings must be enclosed in single or double 
quotation marks, and case is significant within a string. 

If the area to be filled is larger than the data list, the list is repeated as often as necessary to 
fill the area. If the data list is longer than the area of memory to be filled, it is truncated to 
fit into the area. 

Examples 

To fill the area of memory from DS:OB10H through DS:OB4FH with the value OE8H, type 

-F B10 B4F ES <Enter> 

or 

-F B10 L40 ES <Enter> 

Section IV.· Programming Utilities 1031 

HUAWEI EX. 1110 - 1041/1582



DEBUG:F 

To fill the 16 bytes of memory beginning at address CS:1FAOH by replicating the 2-byte 
sequence ODH OAH, type 

-F CS:1FA0 1FAF OD OA <Enter> 

or 

-F CS:1FAO L10 OD OA <Enter> 

To fill the area of memory from ES:OBOOH through ES:OBFFH by replicating the text string 
BUFFER, type 

-F ES:BOO BFF "BUFFER" <Enter> 

or 

-T ES:BOO L100 "BUFFER" <Enter> 

1032 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1042/1582



DEBUG:G 
Go 

Purpose 

Transfers control from DEBUG to the program being debugged. 

Syntax 

G [=address] [ breakO [. . . break9]] 

where: 

address 
breakO . .. break9 

Description 

is the location DEBUG begins execution. 
specify from 1 to 10 temporary breakpoints. 

DEBUG:G 

The Go (G) command transfers control from DEBUG to the program being debugged. If 
no breakpoints are set, the program executes until it crashes or finishes, in which latter 
case the message Program terminated normally is displayed and control returns to 
DEBUG. (After this message is. displayed, the program may need to be reloaded before it 
can be executed again.) 

The address parameter can specify any location in memory. If no segment is specified, 
DEBUG uses the target program's CS register. If address is omitted, DEBUG transfers to 
the current address in the target program's CS:IP registers. An equal sign ( =) must precede 
address to distinguish it from the breakpoints breakO . .. break9. 

The parameters breakO ... break9 are addresses that represent from 1 to 10 temporary 
breakpoints that can be set as part of the G command. A breakpoint is an address at which 
execution stops. Breakpoints can be placed in any order, because execution stops at the 
first breakpoint address encountered, regardless of the position of that breakpoint in the 
list. Each breakpoint address must contain the first byte of an 8086 opcode. DEBUG in­
stalls breakpoints by replacing the first byte of the machine instruction at each breakpoint 
address with an INT 03H instruction (opcode OCCH). If the program encounters a break­
point, execution is suspended and control returns to DEBUG. DEBUG then restores the 
original machine code to the breakpoint addresses; displays the contents of the registers, 4 
the status of the flags, and the instruction pointed to by CS:IP; and displays the DEBUG 
prompt. If the program executes to completion without encountering any of the break-
points or stops for any reason other than because it encountered a breakpoint, DEBUG 
does not replace the INT 03H instructions with the original machine code, and the Load 
File or Sectors (L) command must be used to reload the original program. 

The G command requires that the target program's SS:SP registers point to a valid stack 
that has at least 6 bytes of stack space available. When the G command is executed, it 

Section IV: Programming Utilities 1033 

HUAWEI EX. 1110 - 1043/1582



DEBUG:G 

pushes the target program's flags and CS and IP registers onto the stack and then transfers 
control to the target program with an IRET instruction. Thus, if the target program's stack 
is not valid or is too small, the system may crash. 

Examples 

To begin execution of the program in DEBUG's buffer at location CS:llOAH and set break­
points at CS:12FCH and CS:l303H, type 

-G =110A 12FC 1303 <Enter> 

To resume execution of the program after a breakpoint has been encountered and control 
has been returned to DEBUG, type 

-G <Enter> 

Messages 

bpError 
More than 10 breakpoints were specified in a G command. The command must be entered 
again with 10 or fewer breakpoints. 

Program terminated normally 
No breakpoints were encountered and the target program executed to completion. If 
breakpoints were set, the original program should be restored with the L command. 

1034 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1044/1582



DEBUG:H 

'\ 

DEBUG:H 
Perform Hexadecimal Arithmetic 

Purpose 

Displays the sum and difference of two hexadecimal numbers. 

Syntax 

H valuel value2 

where: 

valuel and value2 are any two hexadecimal numbers from 0 through FFFFH. 

Description 

The Perform Hexadecimal Arithmetic (H) command displays the sum and the difference 
of two 16-bit hexadecimal numbers- that is, the result of the operations valuel+value2 
and valuel- value2. If value2 is greater than valuel, the difference of the two values is dis­
played as a two's complement number. This command is convenient for quickly calculat­
ing addresses and other values during an interactive debugging session. 

Examples 

To display the sum and the difference of the values 4B03H and 104H, type 

~H 4B03 104 <Enter> 

This produces the following display: 

4C07 49FF 

If the addition produces an overflow, the four least significant digits are displayed. For 
example, the command line 

-H FFFF 2 <Enter> 

produces the following display: 

0001 FFFD 

If the second number is bigger than the first, the difference is displayed in two's comple­
ment form. For example, the command line 

-H 1 2 <Enter> 

produces the following display: 

0003 FFFF 

Section IV: Programming Utilities 1035 

HUAWEI EX. 1110 - 1045/1582



DEBUG: I 

DEBUG: I 
Input from Port 

Purpose 

Reads and displays 1 byte from an input/Ol,ltput (I/O) port. 

Syntax 

I port 

where: 

port is an I/0 port address from 0 through FFFFH. 

Description 

The Input from Port (I) command reads the specified 1/0 port address and displays the 
data as a two-digit hexadecimal number. 

Warning: The I command should be used with caution because it directly accesses the 
computer hardware and no error checking is performed. Input operations directed to the 
ports assigned to some peripheral device controllers may interfere with the proper opera­
tion of the system. If no device has been assigned to the specified I/0 port or if the port is 
write-only, the value displayed by an I command is unreliable. 

Example 

To read and display the contents of 1/0 port 10AH, type 

-I 1 OA <Enter> 

An example of the output of this command is 

FF 

1036 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1046/1582



., 

~ A 

DEBUG:L 
Load File or Sectors 

Purpose 

Loads a file or individual sectors from a disk into DEBUG's memory. 

Syntax 

L[address] 

or 

L address drive start number 

where: 

address is the memory location for the data to be read from the disk. 

DEBUG:L 

drive is the number of the disk drive to read (0 = drive A, 1 = drive B, 2 = drive C, 
and soon). 

start is the hexadecimal number of the first logical sector to load (0-FFFFH). 
number is the hexadecimal number of consecutive sectors to load (0-FFFFH). 

Description 

The Load File or Sectors (L) command loads a file or individual sectors from a disk. When 
the L command is entered without parameters or with only an address, the file specified in 
the DEBUG command line or the one in the most recent Name File or Command-Tail 
Parameters (N) command line is loaded from the disk into memory. If no segment is speci­
fied in address, DEBUG uses CS. If the file's extension is .EXE, the file is placed in 
DEBUG's target program buffer at the load address specified in the .EXE file's header. If 
the file's extension is .COM, the file is loaded at offset 100H. (If for some reason an address 
other than 100H is entered for a .EXE or .COM file, an error message is displayed; if the ad­
dress is 100H, the specification is ignored.) The length of the file or, in the case of a .EXE 
file, the actual length of the program (the length of the file minus the header) is placed in 
the target program's BX and CX registers, with the most significant 16 bits in register BX. 

The L command can also be used to bypass the MS-DOS file system and directly access 
logical sectors on the disk. The memory address (address), disk drive number (drive), 
starting logical sector number (start), and number of sectors to load (number) must all be 
specified in the command line. 

Note: The L command should not be used to access logical sectors on network drives. 

Examples 

To load the file specified in the DEBUG command line or in the most recent N command 
into DEBUG's target program buffer, type 

-L <Enter> 

Section IV.· Programming Utilities 1037 

HUAWEI EX. 1110 - 1047/1582



DEBUG:L 

To load eight sectors from drive B, starting at logical sector 0, to memory location 
CS:OlOOH, type 

-L 100 1 0 8 <Enter> 

Messages 

Disk error reading drive X 
The specified drive does not exist or the disk in the specified drive is defective. 

File not found 
The file specified in the most recent N command cannot be found. 

1038 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1048/1582



DEBUG:M 
Move (Copy) Data 

Purpose 

Copies the contents of one area of memory to another. 

Syntax 

M range address 

where: 

DEBUG:M 

range specifies the starting and ending addresses or the starting address and length 
of the area of memory to be copied. 

address is the first byte in which the copied data will be placed. 

Description 

The Move (Copy) Data (M) command copies data from one memory location to another 
without altering the data in the original location. If the source and destination areas over­
lap, the data is copied so that the resulting copy is correct; the data in the original location 
is changed where the two areas overlap. 

The range parameter specifies either the starting and ending addresses or the starting 
address and length of the memory to be copied. The address parameter is the first byte in 
which the copy will be placed. If range does not contain an explicit segment, DEBUG uses 
DS; if address does not contain a segment, DEBUG uses the segment used for range. 

Example 

To copy the data in locations DS:0800H through DS:08FFH to locations DS:0900H through 
DS:09FFH, type 

-M 800 8FF 900 <Enter> 

or 

-M 800 L100 900 <Enter> 

Section IV.· Programming Utilities 1039 

HUAWEI EX. 1110 - 1049/1582



DEBUG:N 

DEBUG:N 
Name File or Command-Tail Parameters 

Purpose 

Inserts filenames and/or switches into the simulated program segment prefix (PSP). 

Syntax 

N parameter [parameter, .. ] 

where: 

parameter is one or more filenames or switches to be placed in the simulated PSP. 

· Description 

The Name File or Command-Tail Parameters (N) command is used to enter one or more 
parameters into the simulated PSP that is built at the base of the buffer holding the pro­
gram to be debugged. The N command can also be used before the Load File or Sectors (L) 
and Write File or Sectors (W) commands to name the file to be read from or written to a 
disk. 

The count of the characters following the N command is placed at DS:0080H in the simu­
lated PSP, and the characters themselves are copied into the PSP starting at offset 81H. The 
string is terminated by a carriage return (ODH), which is not included in the count. If the 
first and second parameters follow the naming conventions for MS-DOS files, they are 
parsed into the default file control blocks (FCBs) in the simulated PSP at offsets 5CH and 
6CH, respectively. (Switches specified as parameters are stored in the PSP starting at offset 
81H along with the rest of the command line but are not included in the FCBs.) 

If the N command line contains only one filename, any parameters placed in the default 
FCBs by a previous N command are destroyed. If the drive specified with the first filename 
parameter is invalid, the AL register is set to OFFH. If the drive specified with the second 
filename parameter is invalid, the AH register is set to OFFH. The existence of a file speci­
fied with the N command is not verified until it is loaded with the L command. 

Examples 

Assume that DEBUG was started without specifying the name of a target program in the 
. command line. To load the program CLEAN.COM for execution under the control of 

DEBUG, use the N and L commands together as follows: 

-N CLEAN.COM <Enter> 
-L <Enter> 

Then, to place the parameter MYFILE.DAT in the simulated PSP's command tail and 
parse MYFILE.DAT into the first default FCB, type 

-N MYFILE.DAT <Enter> 

1040 The MS-DOS Encyclopedia 

HUAWEI EX. 1110 - 1050/1582


