
Formal Specification and Verification of Control Software for
Cryptographic Equipment

D. Richard Kuhn and James F. Dray

National Computer Systems Laboratory
National Institute of Standards and Technology

Gaithersburg, Md. 20899

ABSTRACT

This paper describes the application of
formal specification and verification methods to
two microprocessor-based cryptographic
devices: a "smart token" system that controls
access to a network of work.stations, and a
message authentication device implementing the
ANSI X9.9 message authentication standard.
Formal specification and verification were found
to be practical, cost-effective tools for detecting
potential security weaknesses, and helped to
significantly strengthen the security of the access
control system.

1. Introduction

Microprocessor-based systems are increasingly
being used to provide improved security. 1be
improvements in security are often accomplished at the
cost of increased complexity, as when a smart card
microprocessor replaces a simple password system for
network access control. Formal methods are recognized
as an effective means of assuring the security of systems,
and have been used in several military security
applications over the past 15 years [Neumann et al., 1974;
Tagney et al., 1977; Feiertag et al., 1977; Neuman et al.,
1980; Young et al., 1986; Levin et al., 1989]. This paper
reports on the application of formal methods to two
civilian security-critical systems: the NIST Token-Based
Access Control System (TBACS), a "smart token" 1

system that controls access to a network of work.stations,
and a message authentication device implementing the

U.S. Government work.
Not protected by U.S. copyright.

ANSI X9.9 message authentication standard [ANSI,
1986]. A state-based specification was prepared for the
smart token system. The message authentication device
specification used the notation of the Vienna Development

Method.
The projects were undertaken primarily as exercises

in preparation for a larger project that is planned, but the
results surpassed the initial goal of gaining familiarity
with verification tools. It is noteworthy that no funding
was available for formal methods work in either case. A
verification tool, Unisys' Formal Development
Methodology (FDM) [Eggert et al., 1988], was obtained at
no cost and the formal methods work was done as time
permitted. Even with limited time available, we found the
effort worthwhile. In the smart token access control
system, several inconsistencies were found that led to
improved security. In addition, a subtle error was
discovered that could have compromised the security of
TBACS, had it been released A breakdown of hours and
resources used in the access control system verification is
given in section 2.8. The most interesting result of this
work, beyond the increased assurance for TBACS
security, is that it gives additional evidence that formal
methods can be successfully applied to ''real world''
problems. Formal methods are rarely used today and are
often rejected out-of-hand as being too difficult or
expensive. Our experience has convinced us that, at least
for small projects, or for small portions of large systems,
formal methods are a practical and cost-effective adjunct
to traditional software engineering methods.

2. The Token Based Access Control System

2.1. System Desaiption

The Token Based Access Control System (TBACS)
was developed as an experimental system to replace
traditional password based systems. Based on the TBACS
proof-of-concept, a Smart card based Access Control
System (SACS) that incorporates the TBACS design and

I Strictly speaking, a smart token is different from a smart card, although the two terms arc often used interchangably.
Both arc hand-carried devices containing microprocessors and memory, but there is an ISO standard for smart cards. A

smart token is typically larger than a smart card.

32
TH0351-7/90/0000/0032$01.00©1990 IEEE

IPR2017-00430
UNIFIED EX1023

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

code is now under development TBACS uses a portable
device called a smart token to control access to the
resources of networked computer systems. 1be TBACS
smart token performs cryptographic authentication to
identify the user and up to 100 computers which the user
wishes to access.

1be system configuration for TBACS consists of a
number of workstations and host computers
interconnected by a communications network. Each
workstation on the network is connected to a reader/writer
device, which provides the electrical interface between the
TBACS token and the workstation. When the user inserts
a token into the reader/writer, a program running on the
workstation manages the authentication process by issuing
a sequence of commands to the token and receiving the
token's responses to these commands.

2.1.1. Hardware

1be smart token consists of a plastic carrier
containing a microprocessor and non-volatile memory.
The carrier has the same major dimensions as a standard
credit card, with six recessed metallic contacts along one
edge. 1be reader/writer connects to the workstation
through a standard asynchronous serial communications
port, eliminating the need for a custom communications
interface.

2.1.2. Software

1be TBACS token responds to a set of 17
commands (see Table 1), which are implemented in
firmware stored in the token's non-volatile memory. The
firmware code is approximately 2,600 lines of C. 1be
sequence in which these commands are executed is
controlled by a set of flags which are checked at the first
step of each command. If the flags are not set correctly,
the given command will not be executed and the token
will return an error code.

1be commands are grouped into three general
classes: security officer (SO) commands, user/workstation
authentication commands, and user/remote host
authentication commands. The SO commands provide for
the initialization of new tokens by loading host IDs,
cryptographic keys, and PINs. The token is ready to be
issued to the user after the SO has completed this
initialization process. The remaunng commands
implement the authentications required by TBACS to
control the login process.

33

Table 1. TBACS Commands

Command Verified

Reset no

Enter SO PIN yes

Authenticate SO yes

Enter User PIN yes

Load Key yes

Authenticate Token yes

Generate Challenge yes

Authenticate User yes

Change Token PIN yes

Workstation Verify and Respond yes

Output ID Table no

Host Verify and Respond yes

Read Zone no

Write Zone no

Append Zone no

Call DES no

Test no

2.2. Authentication Processes

For a user to gain access to computing resources on
a network using TBACS, a series of authentications
between the smart token, the user, and various host
computers must be performed. TBACS selectively
controls access to all computers on the network, including
the user's local workstation. By taking advantage of the
processing capabilities of the smart token, the login
process can proceed transparently to the user while
providing a high level of authentication. The DES
algorithm, operating firmware, and critical data are stored
internally on the smart token, providing a higher level of
security than systems which use tokens only as data
storage devices.

2.2.1. User/Token Authentications

When a user begins the login process on a
workstation, he or she should have some means of
determining the identity of the token. A program called
the ''login manager'' is executed on the workstation when
the user initiates a login, and is responsible for mediating
the required series of authentications between the user, the
token, and the workstation. First, the user must prove his
or her identity to the token. The next step performed by
the login manager is to request the token identification
number from the token and display it on the user's screen
for visual verification. The user can choose to either

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

continue the login process or abort by simply pressing a
key. The login manager prompts the user for his or her
PIN/password, which is then encrypted and transmitted to
the token along with the user ID. The token decrypts the
user PIN and uses it as the key to encrypt the user ID. The
result is then compared to the value stored on the token,
and if these values match the token accepts the identity of
the user. From this point on, TBACS uses the token to
represent the user's identity for the :remaining
authentications.

2.2.2. Three-Way Handshake Protocol

Once the previous steps have been completed, the
token and the workstation must authenticate to each other.
This is accomplished through a three-way handshake
protocol which allows each party to prove that it posesses
the same cryptographic key as the other party, without
having to physically exchange keys [NIST, 1988]. This
protocol worlcs as follows:

1 Party A generates a 64-bit random number and
transmits it to party B.

2 Party B encrypts the random number using its secret
key, generates a second random number, and
transmits both values to party A.

3 Party A decrypts the first number and verifies the
result. Party A then encrypts the second random
number and transmits it to party B.

4 Party B decrypts and verifies the second random
number. At this point, each party is satisfied that the
other party posesses the same secret key.

2.2.3. User/Workstation Authentications

After the user and token authenticate to each other,
the token must authenticate to the workstation. To
perform the authentications between the workstation and
the token, the login manager requests a random number
from the token. The three-way handshake then proceeds
with the token acting as party A and the workstation as
party B. If this handshake is completed successfully, the
login manager tenninates and the user is logged in to the
system.

2.2.4. User/Remote Bost Authentications

At some point during a session, the user may decide
to connect to a remote host via the network. The user
activates an rlogin manager, which requests a table of the
allowed TBACS hosts for this user from the token and
displays this table in a menu format. After the user selects
the desired remote host from this menu, the rlogin
manager connects to an rlogin server on the remote host

34

At this point, the local rlogin manager acts primarily as a
communications path between the token and the remote
rlogin server. The token is provided with the host ID,
which it uses to select the proper key for subsequent
cryptographic operations. The steps of the three-way
handshake are repeated between the token and the rlogin
server on the remote host, and finally the rlogin server
terminates and the standard rlogin process connects the
user to the remote host.

2.3. Token Deactivation

In addition to sequence control, the TBACS token is
capable of deactivating itself after three failed login
attempts or when the token expiration date is reached.
Deactivation is accomplished by deleting the internal
token identification number, after which none of the
authentication steps required for user login will execute.
A token is reactivated when a security officer installs a
new token identification number.

2.4. Key Management

When a user first enrolls on a TBACS computer
system, the user must contact the appropriate security
officer for that computer. The SO initializes a blank token
by loading the following: the security officer's ID,
encrypted under the security officer's PIN; the user's ID,
encrypted under an initial user PIN; a token identification
number; and the token expiration date.

The SO next generates a DES key which is loaded
onto the token. The random number generation capability
of the security officer's token can be used to generate
these keys. The token encrypts this key using the user's
PIN and stores it in the key table along with the
computer's host identification number. The host computer
can generate this key from the user's PIN and the host
master key as required during future login processes. As
an alternative, the DES key could be stored in the
computer's key database indexed by the user's identity.
After receiving the token from the SO, the user may
change the token identification number and the user PIN
by entering the current values.

The user may now enroll on another TBACS
computer by contacting that computer's SO, who
generates another DES key which is stored on the token
and the host computer as previously described. The

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

TBACS token is designed so that only the SO who first
initialized the token can delete token keys. Other security
officers can only append keys to the token key table. 2

In order to activate the token during a login, the user
must supply the correct user PIN. Once activated, the
token can be used to authenticate the user to the user's
workstation and then to other host computers by means of
the three-way handshake previously described.

2.S. Development

TBACS is a small but reasonably complex
embedded system containing custom hardware. It was
developed at NIST primarily as a proof-of-concept for the
Smart card based Access Control System. Initially, a
software simulation of TBACS was written to serve as a
prototype. Experimentation with the prototype resulted in
several design changes that were later incorporated into
TBACS. 1be prototype also served as a specification for
TBACS functions. Because of hardware requirements,
most of the simulation code could not be used in the
TBACS implementation. SACS, however, does
incorporate almost all of the TBACS code. For this
reason, the formal specification was based on the design as
reflected in the TBACS code.

The formal specification and verification were done
after the TBACS hardware and software had been
implemented because, as noted earlier, formal verification
was not initially part of the development plan.
Fortunately however, we were able to complete the
verification before the implementation of the Smart card
based Access Control System, allowing a problem
detected in the formal verification to be corrected in the
SACS implementation.

2.6. Security Policy

Generally accepted practice for developing trusted
systems requires the statement of a security policy that
describes the security properties of the system [NSA,
1985; Tavilla, 1986; Bell, 1988]. A formal model defining
the meaning of the security policy in terms of

mathematical logic can then be constructed. Confidence is
gained in the security of the system by showing that it
implements the requirements of the model. When a
formal top-level specification of the system is prepared, its
consistency with the model can be shown by rigorous
mathematical argument. Proofs of lower level
specifications and of the code may be formal or informal,
depending on the complexity of the system and the
resources available. Showing the consistency of the
model with the policy statement is necessarily an informal
process.

A formal model must be oriented toward a
particular class of systems [Nessett, 1986]. For example, a
model prepared for an operating system is not appropriate
for expressing the security requirements for a network.
Significant work has been done on the definition of formal
models for multi-level secure operating systems [Bell and
LaPadula, 1976; Feiertag et al., 1977], and for trusted
networks [Gove, 1985; Freeman et al., 1988;]. Integrity
models, such as those of Biba [1977], Lipner [1982], and
Clark and Wtlson [1987) are more directly related to
TBACS verification requirements, but even these are not
completely appropriate, so we developed a model that is
particular to the requirements of TBACS.

Figure 1 summarizes the rules of operation that
were originally defined as the security policy for TBACS,
detailed in Dray et al. [1989] and Smid et al. [1989). 1be
original security policy was developed informally. The
formal specification effort was started later. Initially we
derived mathematical statements of the assertions given in

Figure 1. However, it was not immediately clear that the
conjunction of these assertions would guarantee the
security of TBACS. For a greater degree of assurance, a
more rigorously developed model of the security policy
was required. The goal of this model development was to
prepare a formal statement, P , of the security policy at a
sufficiently abstract level that its security would be clear.
Detailed assertions, A 1, ••• , An , such as those in Figure 1,
could then be stated and the model of TBACS functions
shown correct with respect to these detailed assertions
provided that A 1 & A 2 & ... & An => P . This model and
its derivation are documented in the next section.

2 Anyone can in fact append keys to the key table. This somewhat suprising feature was determined to be a reasonable
design lradcoff. Security officers maintain control over the keys for their systems, and a user must have a valid key to ac­
cess a particular host. A user can append a key, but it will be of no use unless it is the conect one that is controlled by the
security officer. An alternative to this design would be to have each security officer store an encrypted secret key on the
token, but this would require the token to be initialized by up to l 00 security officers, since it is not known in advance
which hosts a user will eventually need access to. Another alternative would be to have a "master key" that could be used
by any security officer. But such a key would add little security, since a key known to over 100 people would likely be
leaked in a short time in a civilian environment, where there arc no criminal penalties for disclosure of confidential infor­
mation.

35

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1: Token commands may only be executed in legal se­
quences: user authorization; token authorization; works­
tation authorization; remote host authorization.

2: A token deactivates itself when its expiration date is
reached.

3: A user must enter correct ID and PIN to be authorized:

4: A token deactivates itself after three failed login at­
tempts

5: A deactivated token will not permit login.

6: A token allows a user access only to hosts whose ID and
key are stored on the token.

7: The user cannot open the token if fail limit exceeded or
token expired.

8: The user cannot get SO privileges.

9: An SO must enter correct ID and PIN to be authorized:

10: Only an SO may initialize a blank token.

11: A PIN for a particular token may be changed only by
an SO or by the owner of that token.

12: After an SO has initialized a token, only this SO can
enter the user PIN.

13: After an SO has initialized a token, only this SO can
reactivate the token after it has been deactivated.

14: After an SO has initialized a token, only this SO can
delete a key from the token. '

15: Only the SO can change the expiration date.

Figure 1. Security Assertions

2.7. Security Model

1bis section describes the derivation of the formal
statement of security policy. In summary, TBACS security
is defined as the conjunction of the following conditions:

1. Access control: Access to the network is granted
only if the user posesses the correct PIN and a valid
token. Ensuring this condition holds requires
condition 2.

2. Change control: An invalid token cannot be made
valid by the user, only by the security officer.
Ensuring this condition holds requires condition 3.

3. Privilege control: A user cannot gain security
officer privileges through manipulation of TBACS
functions. 3

2.7 .1. Terms

The primitive terms shown in Table 2 are used. In
the remainder of the paper, the symbols &, I . --,, =>
represent and, or, not, implies, respectively. The notation
x' indicates the value of variable x after a state ttansition.
The universal quantifier is denoted by A and the
existential quantifier by E.

2.7.2. Formal Statement of Model

2.7 .2.1. Access Control

Access to the network is permitted only if the user
possesses a PIN which encrypts the user ID to the value
stored on the token, and the token is valid. That is,

(1) access=> Epin_in(id_in)=user_pin & token_valid

where EK(!) represents the encryption of I with key K.
Access is defined as authorization of remote host,
workstation, token, or user. 'The token is valid when the
token has not expired and is active, the failure limit has
not been reached, and the workstation ID is in the token's
host table. Substituting terms for these conditions into

invariant (1) gives

(2)

remote_host_autbd I ws_authd I token_authd I user_authd
=> E pin_in(id _in) = user_pin &

today < exp_date &
fail_log < 3 &
token_pin '# null &
ws_id E host_ids

2.7.2.2. Change Control

Invariant (2) must be maintained across state
ttansitions. If the user could change the variables that
determine if the token is valid, an invalid token could be
made valid illegitimately. Thus for each variable in the
definition of token_ valid, we must define the conditions
under which its value can change:4

3 Note that this refers only to user actions within the system, and does not deal with actions that arc beyond the con1r0l
ofTBACS, such as the user observing the security officer's PIN being entered, which is a separate concern.

4 ~ th~t no ~stricti?'1 is placed on the addition of keys to the host table, as explained in Key Management, Section
2.4. Secunty m this case 1S external to TBACS and relies on the security officers for the different hosts maintaining
confidentiality of keys.

36

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

