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126 ANALYSIS AND TRANSMISSION OF SIGNALS

Although we have proved these results for a real g(t), Eqs. (3.79), (3.80), (3.81), and (3.84)
are equally valid for a complex g(t).

The concept and relationships for signal power are parallel to those for signal energy.
This is brought out in Table 3.3.

Signal Power Is Its Mean Square Value

A glance at Eq. (3.75) shows that the signal power is the time average or mean of its squared
value. In other words Pg is the mean square value of g(t). We must remember, however, that
this is a time mean, not a statistical mean (to be discussed in later chapters). Statistical means
are denoted by ovcrbars. Thus, the (statistical) mean square of a variable x is denoted by
To distinguish from this kind of mean, we shall use a wavy overline to denote a time average,
Thus, the time mean square value of g(t) will be denoted by 235). The time averages are
conventionally denoted by pointed brackets, such as < g2(t) >. We shall, however, use the
wavy overline notation because it is much easier to associate means with a bar on top rather
than the brackets. Using this notation, we see that

WM 1 T/2

Pg =g2(t) = lim — / 522(1) dt (3.853)T—>oo T _2-/2

Note that the rms value of a signal is the square root of its mean square value. Therefore,

I£’(f)ltms = mg (3-35b)

From Eqs. (3.82), it is clear that for a real signal g(t), the time autocorrelation function
Rg(r) is the time mean of g(t)g(t + r). Thus,

Raw) = g(t)g(t as r) (3.86)

This discussion also explains why we have been using the term time autocorrelation
rather than just autocorrelation. This is to distinguish clearly the present autocorrelation
function (a time average) from the statistical autocorrelation function (a statistical average) to
be introduced in a future chapter.

Interpretation of Power Spectral Density
Because the PSD is a time average of the ESD of g(t), we can argue along the lines used in the
interpretation of ESD. We can readily show that the PSD Sg (cu) represents the power per unit
Table 3.3
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bandwidth (in hertz) of the spectral components at the frequency a). The power contributed by
the spectral components within the band an to C02 is given by(L);

r
APg = — Sg(a)) da) (3.87)IT 59]

Autocorrelation Method: A Powerful Tool

For a signal g(t), the ESD, which is equal to |G(w) |2, can also be found by taking the
Fourier transform of its autocorrelation function. If the Fourier transform of a signal is enough
to determine its ESD, then why do we needlessly complicate our lives by talking about
autocorrelation functions? The reason for following this alternate route is to lay a foundation

for dealing with power signals and random signals. The Fourier transform of a power signal
generally does not exist. Moreover, the luxury of finding the Fourier transform is available only
for deterministic signals, which can be described as functions of time. The random message
signals that occur in communication problems (e.g., random binary pulse train) cannot be
described as functions of time, and it is impossible to find their Fourier transforms. However. the
autocorrelation function for such signals can be determined from their statistical information.

This allows us to determine the PSD (the spectral information) of such a signal. Indeed, we
may consider the autocorrelation approach as the generalization of Fourier techniques to power
signals and random signals. The following example of a random binary pulse train dramatically
illustrates the power of this technique.

EXAMPLE 3.23 Figure 3.4221 shows a random binary pulse train g(t). The pulse width is Tb/2, and one binary
digit is transmitted every T;, seconds. A binary 1 is transmitted by the positive pulse, and a binary
0 is transmitted by the negative pulse. The two symbols are equally likely and occur randomly.
We shall determine the autocorrelation function, the PSD, and the essential bandwidth of this
signal.

We cannot describe this signal as a function of time because the precise waveform is
not known due to its random nature. We do, however, know its behavior in terms of
the averages (the statistical information). The autocorrelation function, being an average
parameter (time average) of the signal, is determinable from the given statistical (average)
information. We have [Eq. (3.82b)j

. 1 T/2

Rm) = 1.13130 ; /_T/2 g(t)g(t — r) dt
Figure 3.42b shows g(t) by solid lines and g(t — T), which is g(t) delayed by 1:, by
dashed lines. To determine the integrand on the right-hand side of the above equation, we
multiply g(t) with g(z — r), find the area under the product g(t)g(t — 1'), and divide it
by me averaging interval T. Let there be N bits (pulses) during this interval T so that
T = NT;,, andas T —+ oo, N 4 00. Thus,

1 NTb/2

Rg(r)= lim ff g(t)g(tvI) dtN—>oo b —NT1,/2

Let us first consider the case of 1: < Tb/2. In this case there is an overlap (shown
by the shaded region) between each pulse of g(t) and that of g(r — 1'). The area under
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