
The

Foreword, Bill Gates
General Editor, Ray Duncan

HUAWEI EX. 1010 - 1/1582

The

Encyclopedia

HUAWEI EX. 1010 - 2/1582

Published by
Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 I
editor, Ray Duncan.

p. em.
Includes indexes.
1. MS-DOS (Computer operating system) I. Duncan, Ray, 1952-
11. Microsoft Press.
QA76.76.063M74
005.4'46--dc19
ISBN 1-55615-174-8

1988 87-21452
CIP

Printed and bound in the United States of America.

123456789RMRM321098

Distributed to the book trade in the
United States by Harper & Row.

Distributed to the book trade in
Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and Top View® are registered trademarks of International Business Machines Corporation.
GW-BASIC®, Microsoft®, MS®, MS-DOS®, SOFTCARD®, and XENIX® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum.
Pages 5, 11, 42: Intel4004, 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from Popular Electronics, January 1975 Copyright© 1975 Ziff Communications Company.
Page 13: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission of The Seattle Times Copyright© 1983.
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright© 1981, 1982, 1984. All rights reserved.
Page 21: "Big IBM's Little Computer" Copyright © 1981 by The New York Times Company. Reprinted by
permission.
"IBM Announces New Microcomputer System" Reprinted with permission of Info World Copyright© 1981.
"IBM really gets personal" Reprinted with permission of Personal Computing Copyright© 1981.
"Personal Computer from IBM" Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
"IBM's New Line Likely to Shake up the Market for Personal Computers" Reprinted by permission of The Wall
Street Journal Copyright© Dow Jones & Company, Inc. 1981. All Rights Reserved.
Page 36: "Irresistible DOS 3.0" and "The Ascent of DOS" Reprinted from PC Tech journal,
December 1984 and October 1986. Copyright © 1984, 1986 Ziff Communications Company.
"MS-DOS 2.00: A Hands-On Tutorial" Reprinted by permission of PC World from Volume 1, Issue 3, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107.

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi Ikeda.

HUAWEI EX. 1010 - 3/1582

Published by
Microsoft Press

A Division of Microsoft Corporation
16011 NE 56th Way, Box 97017, Redmond, Washington 98075-9717
Copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 /
editor, Ray Duncan.

p. cm.
Includes indexes.

1. MS-DOS (Computer operating system) 1. Duncan, Ray, 1952-
11. Microsoft Press.

QA76.76.063M74 1988 87-21452
005.4'46--dc19 CIP
ISBN 1—55615-174-8

Printed and bound in the United States of America.

123456789RMRM321098

Distributed to the book trade in the

United States by Harper 8; Row.

Distributed to the book trade in

Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the

United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books NZ. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and TopView® are registered trademarks of International Business Machines Corporation.
GW-BASIC®, Microsoft®, MS®, MS—DOS®, SOFTCARD®, and XEN1X® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum. '
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from PopularElectronics, January 1975 Copyright © 1975 Ziff Communications Company.
Page 15: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission ofThe Seattle Times Copyright © 1983.
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright © 1981, 1982, 1984. All rights reserved.
Page 21: “Big IBM’s Little Computer" Copyright © 1981 by The New York Times Company. Reprinted by

. permission.
“IBM Announces New Microcomputer System” Reprinted with permission of InfoWorld Copyright © 1981.
“IBM really gets personal” Reprinted with permission of Personal Computing Copyright © 1981.
“Personal Computer from IBM” Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
“IBM’s New Line Likely to Shake up the Market for Personal Computers” Reprinted by permission of The Wall
StreetJournal Copyright © DowJones 8: Company, Inc. 1981. All Rights Reserved.
Page 56: “Irresistible DOS 3.0" and “The Ascent of DOS” Reprinted from PC TechJournal,
December 1984 and October 1986. Copyright © 1984, 1986 Ziff Communications Company.
“MSvDOS 2.00: A Hands-On Tutorial” Reprinted by permission of PC World from Volume 1, Issue 5, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107.

Special thanks to Bob O’Rear, Aaron Reynolds, and Kenichi Ikeda.

HUAWEI EX.1010-3/1582

Encyclopedia Staff

Editor-in-Chlef: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee1 Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kern, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown

Director of Production: Christopher D. Banks

Publisher: Min S. Yee

...

HUAWEI EX. 1010 - 4/1582

Contributors

Ray Duncan, General Editor Duncan received a B.A. in Chemistry from the University of Califor-
nia, Riverside, and an M.D. from the University of California, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He
has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr. Dobb·s
journal, and Sojtalk!PC, and is the author of the Microsoft Press book Advanced MS-DOS. He is the
founder of Laboratory Microsystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Bostwick Bostwick holds a B.S. in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systems for applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer ofiBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

Robert A Byers Byers is the author of the bestselling Everyman "s Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc.

Thorn Hogan During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer, a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmers Sourcebook.

jim Kyle Kyle has 23 years' experience in computing. Since 1967, he has been a systems program-
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently MIS Administrator for BTl Systems, Inc., the OEM Division ofBancTec Inc., manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine's CLMFORUM on CompuServe since early 1985.

Gordon Letwin Letwin is Chief Architect, Systems Software, Microsoft Corporation. He is the author
of Inside OS/2, published by Microsoft Press.

Charles Petzold Petzold holds an M.S. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2. 0, a contributing editor to PC Magazine, and a frequent contributor to the Microsoft Systems
journal.

Chip Rabinowitz Rabinowitz has been a programmer for 11 years. He is presently chief program
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986.

Contributors Vii

HUAWEI EX. 1010 - 5/1582

Jim TomUn Tomlin holds a B.S. and an M.S. in Mathematics. He has programmed at Boeing,
Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, whkh specializes in PC systems programming and industrial machine vision applications.

Richard Wilton Wilton has programmed extensively in PL/1, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer's Guide to PC & PS/2 Video Systems, published
by Microsoft Press. ·

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

William Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor
Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newell Ralph Ryan
John Butler Kaamel Kermaani TaniNewell Karl Schulmeisters
Chuck Carroll Adrian King David Norris RajenShah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw
David Chell James Landowski BobO'Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka
Mike Courtney Thomas Lennon Larry Osterman Jon Smirl
Mike Dryfoos DanLipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Suni!Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold SteveZeck

Viii The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 6/1582

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development ofMS-DOS

Section II: Programming in the MS-DOS Environment

Part A: Structure of MS-DOS

Article 1:
Article 2:
Article 3:

An Introduction to MS-DOS 51
The Components of MS-DOS 61
MS-DOS Storage Devices 85

Part B: Programming for MS-DOS

Article 4: Structure of an Application Program 107
Article 5: Character Device Input and Output 149
Article 6: Interrupt-Driven Communications 167
Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279
Article 9: Memory Management 297
Article 10: The MS-DOS EXEC Function 321

Part C: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385
Article 13: Hardware Interrupt Handlers 409
Article 14: Writing MS-DOS Filters 429
Article 15: Installable Device Drivers 447

Part D: Directions ofMS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

xiii

XV

xvii

1

47

Contents ix

HUAWEI EX. 1010 - 7/1582

Section lll: User. Commands

Introduction 725

User commands are listed in alphabetic order. This section includes ANSI.SYS,
BATCH, CONFIG.SYS, DRIVER.SYS,_ EDLIN, RAMDRIVE.SYS, and VDISK.SYS.

723

Section IV: Programming Utilities 961

Introduction 963

CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
LIB 980
LINK 987
MAKE 999
MAPSYM 1004
MASM 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054
CodeView 1157

Section V: System Calls

Introduction 1177

System calls are listed in numeric order.

Appendixes

Appendix A:
AppendixB:
AppendixC:
AppendixD:
AppendixE:
AppendixF:
AppendixG:
AppendixH:
Appendix I:
Appendix]:
AppendixK:
AppendixL:
AppendixM:
AppendixN:
AppendixO:

MS-DOS Version 3.3 1433
Critical Error Codes 1459
Extended Error Codes 1461
ASCII and IBM Extended ASCII Character Sets 1465
EBCDIC Character Set 1469
ANSI.SYS Key and Extended Key Codes 1471
File Control Block (FCB) Structure 1473
Program Segment Prefix (PSP) Structure 1477
8086/8088/80286/80386 Instruction Sets 1479
Common MS-DOS Filename Extensions 1485
Segmented (New) .EXE File Header Format 1487
Intel Hexadecimal Object File Format 1499
8086/8088 Software Compatibility Issues 1507
An Object Module Dump Utility 1509
IBM PC BIOS Calls 1513

X The MS-DOS Encyclopedia

1175

1431

HUAWEI EX. 1010 - 8/1582

Indexes 1531

Subject 1533
Commands and System Calls 1565

Contents xi

HUAWEI EX. 1010 - 9/1582

I
!
'

Foreword

Microsoft's MS-DOS is the most popular piece of software in the world. It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications- the largest set of applications in any computer environment. As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur
thering Microsoft's original vision- a computer for every desktop and in every home. The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applic:;ttions is incredible, but Microsoft has been committed to meet
ing this challenge since the release of MS-DOS in 1981. The true measure of our success
in this effort is MS-DOS's continued prominence in the microcomputer industry.

Since MS-DOS's creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DO$ reestablishes its position as the foundation
for new applications as well as for old. To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM's deci
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel8080 microprocessor. This technolog
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort- each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this beqmse different manu
facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually
every personal computer manufacturer-Radio Shack, Commodore, Apple, and doz~ns
of others- to build Microsoft BASIC into its machines. For the first time, one common lan
guage cut across all hardware vendor lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli
cations from one vendor's machine to another.

Most machines produced during this early period did not have a built-in disk drive.
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market. A standard disk operating system that could accommodate these develop
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CP/M-80, Digital Research's 8080 DOS.

Foreword Xiii

HUAWEI EX. 1010 - 10/1582

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs. It was important that software designed for
the new 16-bit machines have this same advantage. No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard- a standard that would be the software
industry's lifeblood. The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for IBM, is not the key point here. The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft's BASIC had prevailed on the 8-bit systems.

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer "Man of the Year." MS
DOS was integral to this acceptance and popularity, and we have continued to adapt
MS-DOS to support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile.

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers. The length of this book is many
times greater than the source listing of the first version of MS-DOS- evidence of the
growing complexity and sophistication of the operating system. The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor. MS-DOS will continue to play an integral part iri this effort. Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno
vative graphical user interface, and communication subsystems. MS-DOS version 3, which
runs in real mode on 80286~based and 80386-based machines, is a vital link in the Family
API of OS/2. Users will continue to benefit from our commitment to improved operating
system performance and usability as the future unfolds.

Bill Gates

XiV The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 11/1582

The 8—bit era proved the importance of having a multiple-manufacturer standard that

permitted the free interchange of programs. It was important that software designed for

the new 16—bit machines have this same advantage. No personal computer manufacturer in

1980 could have predicted with any accuracy how quickly a third-party software industry

would grow and get behind a strong standard— a standard that would be the software

industry’s lifeblood. The intricacies of how MS-DOS became the most common 16-bit

operating system, in part through the work we did for IBM, is not the key point here. The

key point is that it was inevitable for a popular operating system to emerge for the 16-bit

machine, just as Microsoft’s BASIC had prevailed on the 8—bit systems.

It Was overwhelmingly evident that the personal computer had reached broad acceptance

in the market when Time in 1982 named the personal computer “Man of the Year.” MS-

DOS was integral to this acceptance and popularity, and we have continued to adapt

MS-DOS to support more powerful computers without sacrificing the compatibility that is

essential to keeping it an industry standard. The presence of the 80386 microprocessor

guarantees that continued investments in Intel-architecture software will be worthwhile.

OUr goal with The MS—DOS Encyclopedia is to provide the most thorough and accessible

resource available anywhere for MS—DOS programmers. The length of this book is many

times greater than the source listing of the first version of MS-DOS — evidence of the

growing complexity and sophistication of the operating system. The encyclopedia will be

especially useful to software developers faced with preserving continuity yet enhancing

the portability of their applications. -

Our thriving industry is committed to exploiting the advantages offered by the protected

mode introduced with the 80286 microprocessor and the virtual mode introduced with the

80386 microprocessor. MS-DOS will continue to play an integral part in this effort. Faster

and more powerful machines running Microsoft OS/2 mean an exciting future of multi-

tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno-

vative graphical user interface, and communication subsystems. MS-DOS version 3, which

runs in real mode on 80286-based and 80586-based machines, is a vital link in the Family

API of 05/2. Users will continue to benefit from our commitment to improved operating-

system performance and usability as the future unfolds.

Bill Gates

xiU The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 11/1582

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information. MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines.

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit. The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers. We have therefore been free to bypass elemen
tary subjects such as the number of bits in a byte a:nd the interpretation of hexadecimal
numbers. Instead, we have emphasized detailed technical explanations, working code ex
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, and install
able device drivers. We have commissioned definitive articles on the relocatable object
modules generated by Microsoft language translators, the operation of the Microsoft Ob
ject Linker, and terminate-and-stay-resident utilities. We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain
ing, illustrated account of the origins of Microsoft's standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS seryices, commands, directives, and utilities. In many instances, the manu
scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are
timely and trustworthy. In a work of this size, however, it is inevitable that errors and omis
sions will occur. If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow programmers. To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information. ·

Ray Duncan

Preface XV

HUAWEI EX. 1010 - 12/1582

Preface

In the space of six years, MS—DOS has become the most widely used computer operating

system in the world, running on more than 10 million machines. It has grown, matured,

and stabilized into a flexible, easily extendable system that can support networking,

graphical user interfaces, nearly any peripheral device, and even CD ROMs containing

massive amounts of on—line information. MS—DOS will be with us for many years to come

as the platform for applications that run on low—cost, 8086/8088—based machines.

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its

orbit. The number of books on MS-DOS and its commands, languages, and applications

dwarfs the list of titles for any other operating system. Why, then, yet another book on

MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS—DOS Encyclopedia with one audience in mind:

the community of working programmers. We have therefore been free to bypass elemen-

tary subjects such as the number of bits in a byte and the interpretation of hexadecimal

numbers. Instead, we have emphasized detailed technical explanations, working code ex— ‘

amples that can be adapted and incorporated into new applications, and a systems View of
even the most common MS-DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth

that other MS—DOS books mention only briefly, such as exception and error handling,

interrupt-driven communications, debugging strategies, memory management, and install-

able device drivers. We have commissioned definitive articles on the relocatable object

' modules generated by Microsoft language translators, the operation of the Microsoft Ob-

ject Linker, and terminate-and—stay—resident utilities. We have even interviewed the key

developers of MS—DOS and drawn on their files and bulletin boards to offer an entertain-

ing, illustrated account of the origins of Microsoft’s standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and

writers, the expertise and resources of Microsoft software developers, and the publishing

know—how of Microsoft Press, we have assembled a unique and comprehensive reference

to MS—DOS services, commands, directives, and utilities. In many instances, the manu—

scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are

timely and trustworthy. In a work of this size, however, it is inevitable that errors and omis-

sions will occur. If you discover any such errors, please bring them to our attention so that

they can be repaired in future printings and thus aid your fellow programmers. To this

end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections

and comments. Please refer to page xvi for more information. I

Ray Duncan

Preface xv

HUAWEI EX.1010- 12/1582

Introduction

The MS-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system. Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information oriall the
MS-DOS commands, utilities, and system calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content. Special typographic conven
tions are also used to clarify the material.

Organization of the Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes. Each
section has a unique internal organization; explanatory introductions are included where
appropriate.

Section I, The Development of MS-DOS, presents the history of Microsoft's standard
setting operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotations are included.

Section II, Programming in the MS-DOS Environment, is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools. Each part contains several articles by acknowledged experts on these
topics. The articles include numerous figures, tables, and programming examples that pro
vide detail about the subject.

Section III, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, includingANSI.SYS, BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN,
RAMDRIVE.SYS, and VDISK.SYS. Each command is presented in a structure that allows
the experienced user to quickly review syntax and restrictions on variables; the less
experienced user can refer to the detailed discussion of the command and its uses.

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and Code View
debuggers. Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefore included to create a corp.
prehensive reference.

Introduction XVii

HUAWEI EX. 1010 - 13/1582

Introduction

The MS—DOS Encyclopedia is the most comprehensive reference work available on

Microsoft’s industry—standard operating system. Written for experienced microcomputer
users and programmers, it contains detailed, version—specific information on'all the

MS—DOS commands, utilities, and system calls, plus articles by recognized experts in

specialized areas of MS-DOS programming. This wealth of material is organized into

major topic areas, each with a format suited to its content. Special typographic conven-

tions are also used to Clarify the material.

Organization ofthe Book

The MS—DOS Encyclopedia is organized into five major sectidns,“plus appendixes. Each

section has a unique internal organization; explanatory introductions are included where
appropriate.

Section I, The Developmentof MS-DOS, presents the history of Microsoft’s standard—
setting operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotations are included.

Section 11, Programming'in the MS_—DOS Environment,15 divided into five parts: Structure

of MS—DOS, Programming for MS-DOS, Customizing MS—DOS, Directions of MS-DOS, and
Programming Tools. Each part contains severalarticles by acknowledged experts on these

topics. The articles include numerous figures, tables, and programming examples that pro-
vide detail about the subject.

Section III, User Commands, presents all the MS—DOS internal and external commands in

alphabetic order, including ANSI.SYS, BATCH, CONFIGSYS, DRIVERSYS, EDLIN,

RAMDRIVE.SYS, and VDISK.SYS. Each command is presented in a structure that allows

the experienced user to quickly review syntax and restrictions on variables; the less—

experienced user can refer to the detailed discussion of the command and its uses. -

Section IV, Programming Utilities, uses the same format as the User Commands section to

present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
debuggers. Although some of these utilities are supplied only with Microsoft language

products and are not included on the MS-DQS system or supplemental disks, their use is

intrinsic to programming for MS—DOS, and they are therefore included to create a com-

prehensive reference.

Introduction xm’z’

HUAWEI EX.

1010- 13/1582

u;()atesto 'fhe MS-DOS Ericyclop~dhL · ..
Periqdic~lly,th<i·s~f~fTheMS7DO~Enf;'yctopedia~"WillpublisB~pd~te~'tol1taining._ ·-·
cfarifica~i()ns_.o): cOJ!~diqns to the i11formatimi pr~s~n~ed_ie•_thiscurf~nt·~q1ti09··.'fo 0b~, · .. •t~tn ~f1for!hadof1 ~Bc)tit r~c~ivi~g these ~pd31t<~$,-piease c~~ckt~e if)f>ro¢ti~te bpxcmthe

. b~sibessrepiy, ca:rd.ln th~baFk .of:this boC>k; or send Youtn~rn~ ~n<:l a~klte,$~1:(): l\1S~I)<)s ·.'·
. Ell.cy~l<:>pedia pf>date Information;· clojvncrosoft'~r~ss; lq011 NE ~6tb?\VaY~Bof 9"7017, ·
l{~dfi1c)t1d,WA98Q73;:97i7. ·.· ; (

0

; : ······ <.\ "~

nrillet~ti J3oard:ser\TiC:e · · .,,,\ .<• ·· ..
···Microsoft·PressJs--spdnsorinff~lJtille~iO:~oar~ cihMCllWaiJf~rpo~firig'In4re~~lvingc0f~ ..

·recti oris and .comments. fqrThe .ys.,D_os,E_ncy(;{opeai(J;,'f:otl~(;!.t!J.i~ $t:!Kv~ce; lpg 611. to·MCI •
:Mailand; a£terreceivingthe·P.r9n1pt/fy_pe\ · , · · ·· " . /'>; · c.·5

~IEW.·<Ent~t;. . <:: .. }"·' " :·.'3.:i,.:; :i(!··,. ;:•·· ·•· ••
"'j~f:: J3uikt~n iloa/dit~/rte:~rqili~t;iil~~ dis~I~y2~1)r~¥~~~ .. i.< .. C:-. ;~ .. ;-,,~

:.· ··:o:, • /.,· ·.. -:· .. :" • ··';"",.·:·>"'o'·_,", o"("e< •," • "'}r-·,~·.-i' ""'· ··:~~:·:·-') • • '0•:,·.~~ ,:·',
,M:SPRESS.' ''<Ent:et>.' · C~<'iC' >,:'· ... ·. '' · '. ·· ,·.,;;: .::.- ... ;:::c·:·:: ,,;. <'i,: . ' . \'':

·•-·•, t~. co~ri~dt-~oih~ ~fi~~~~dftPr~g~l)~ti~ti~,~~isci.':1,if~~kltfi~l~Ml~{~~Jgi~~b~~ff,Ri~~sv
bulkt.in. .l:>oards wilLb~, displayecksi¢ply~ho6se MSPress+JO$l?JYCJ1't()'¢'ritertlie~h-" ·
cydopedi~'sbtill,etin..b(?ard. · . /·. :: '.· · i .·-•·--·--·~--·-•.·: __ ...• _ •.. · .. i. ~:%-~ . /;;t- \ ... _._. ··- ·n ;: ·· · .·.··.

. >-~ .>. . . ~<:;~·;'~<''> ·F "':\.:! :.:> . "<r·.. . {:::/--~·',:<+ .

' ~vf!~li,tl.t~~l)~w~41)~~~k§~~~·, .. ~ ?.(~/;. :.-;- ·>:. ,.
·.·_.Micro~oft·J>resshas (Zreateda_set ~fValu'~~le,;tiin~~~iBg@tri~~~~d~.~t~~{(~Theft!s-hos •.
·-· EncycloP£!dia:Theycontainthe'r<)utirte~·~t}~fl.ipctioha,l"~r,6gr,awst~t~r~}l}~t~~·t!froug;!f-·\
· -·. 'outtrlis• book ••.•.••. _.tnousar1Cls of lines of:exec~tabl~ g{)g~Yp?nvf?:~l¢iltly·9f~~'pized1 ,tne~e·

disk&w1Hsave youhoursoftyp1ngtirn~.ap~lallo)Yypu:~ti~t~rtB5in~th~-~d#ei{llll1~diaylr
The companion disk$ ate only available ~ir,~<W~ffq~Mi~ro~oftb~~s{'f'tr()rder/us~ tl1e ... · .

-;f¥ii~~rrt~~~ec~tJ~}~6~t~kd;;~~bt~§!f{r;f~t!!~i~JK&i~.i~Ji0{~at~~~~:stid:·--· ·-
. foreign order:s, ·to;, 1\1iFfqsoft Press; Axtfi:. ¢C>mRapJ{)n bisk:pffe1',·:2!$>f92oilfA.v~:-.• ~.E·:, Box ·
3011; Bothell, WA 98041:3o1J. Pleasespecify·5~25~r~9hqf3.'?Lirlch (6i'ip~t.:P~yl#entm~stb~
in us: funds. You may pay By·checkQr~tn'on~yorder (payable'tOM!~ro~8fth~ss),:pr by

. American Express, VISA,; orMaster(;ard; ple~~ei11c;lud~ your tr~(!ircard';null1?~i an(l ex-.
piration date. All domestic orders are shipped 2nq: dayair 1Jpon receipt of ord~r by

, Microsoft. · · ··· · · · · · c > •/ ··
C:A residents s% plus loca(optio~ tax;CJ7.5o/o,FL 6~; MA5%,1\1N 6~,;~<5·~;21!5~,~~:4% plUs local
option tax,WAState 7.8o/o.

~" . .':'_;.. _; ..

xvi The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 14/1582

Viz-“‘thlyontaxWAVStatve7S o_

xm’ The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 14/1582

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan
guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase l and the numerall in both text and
program listings.

1

Cross-references appear in the form SECTION NAME: PART NAME, CoMMAND NAME, OR IN
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple
mentation of MS-DOS. If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter> is included in a
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control~C, Control-Z, and so
forth when the resulting code is the true reference. Thus, an article might reference the
Control-Chandler but state that it is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (h in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash- for example, 07 -OAH.

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page. The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages.

Introduction xix
HUAWEI EX. 1010 - 15/1582

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functions are listed in individual entries. This section, like the User Com
mands and Programming Utilities sections, presents a quick review of usage for the ex
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

The book includes two indexes- one organized by subject and one organized by com
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com
mand or system call.

Program listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles. Most of these
programs are complete utilities; some are routines that can be incorporated into function
ing programs. Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 2.0.

The functional programs and larger routines are also available on disk. Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume.

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text.

xviii The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 16/1582

HUAWEI EX. 1010 - 17/1582

010 - 17/1582

HUAWEI EX. 1010 - 18/1582

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected- so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft's decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft's decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac
complishments; and in this respect the roots of MS-DOS reach farther back, to four hard
ware and software developments of the 1970s: Microsoft's disk-based and stand-alone
versions of BASIC, Digital Research's CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section L· The Development of MS-DOS 3

HUAWEI EX. 1010 - 19/1582

1975
The Development ofMS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the

cabinet, and it is through MS—DOS that they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is

indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and

the chips it works with are, in fact, closely connected— so closely that the story of

MS—DOS is really part of a larger history that encompasses not only an operating system

but also a microprocessor and, in retrospect, part of the explosive growth of personal

computing itself.

Chronologically, the history of MS—DOS can be divided into three parts. First came the

formation of Microsoft and the events preceding Microsoft’s decision to develop an

operating system. Then came the creation of the first version of MS-DOS. Finally, there is

the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not

provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin-

ions and memories are appropriate, they are included here to provide a fuller picture of

the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create

MS-DOS has been well publicized. But events, like inventions, always build on prior ac-

complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-

ware and software developments of the 19705: Microsoft’s disk-based and stand-alone

versions of BASIC, Digital Research’s CP/M—80 operating system, the emergence of the

8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-

ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of

file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand—alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de—

veloped a version of BASIC for a revolutionary small computer named the Altair, which

was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development ofMS—DOS 3

HUAWEI EX. 1010 - 19/1582

1975

HOW TO "READ" FM TUNER SPECIFICATIONS

f!}pJ!}~~~£!f!!!~~
PROJECT BREAKTHROUGH I

Worlds First Minicomputer Kit
to Rival Commercial Models ...

"ALTAIR 8800" SAVE OVER $1000

ALSO IN THIS ISSUE•.
• An Under-$90 Scientific Calculator ProJect

• CCD's-TV Camera Tube Successor?
• Thyrlstor-C~ntrolled Photoflashers

TEST REPORTS 1

Technics 200 Spea~er System
Pioneer RT·lOUOpen·Reel Recorder
Tram Diamond·40 CB AM Transceiver
Edmund Scientific "Kirlian• Photo Kit
Hewlett-Packard 5381 Frequency Counter

The january 1975 cover of Popular
ElectroniCs magazine, featuring the
machine that caught the imaginations
of thousands of like-minded electron
ics enthusiasts - among them, Paul
Allen and Bill Gates.

Although it was too limited to serve as the central processor for a general-purpose compu
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc
tion set were concerned. Thus Traf-0-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

6 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 20/1582

1975

, . TheJanuary 1975 cover of Popular
HOW TO “READ" FM TUNER SPECIFICATIONS ElethoniCS magazine,featuring the

machine that Caught the imaginations

P_0plllal' EICCIICIIICS ‘ it:mazeatg‘izzitfiizr*WORLDS LARGESYSELLING ELECTRONICS MAGAZINE JANUARY 1975/75c , Allen and Bill Gates-

PROJECT BREAKTHROUGH!

Worlds First Minicomputer Kit
to Rival Commercial Models...

"ALTAIR 8800”, sAvcwovcn $1000

ALSO IN THIS ISSUE: ' ’

0 An Under-$90 SclcnIlflc Calculator Project »
”“ ~ 0 CCD’s-TV Camera Tube Successor?

ThyrIsIdr-ConIrolch PhoIoIII'Ishen -
TEST REPORTS:
Technics 200 Speaker System
Pioneer RT-lOHAOpen-Reel Recorder
Tram Diamond-40 08 AM Transceiver
Edmund Scientific “Kirlian' Photo Kit
Hewlett-Packard 5381 Frequency Counter

Although it was too limited to serve as the central processor for a general—purpose compu-

ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc-

tion set were concerned. Thus Traf—O-Data’s work with the 8008 gave Gates and Allen a

head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular

Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,

a student at Harvard University, to develop a BASIC for the new computer. The two wrote

their version of BASIC for the 8080 .in six weeks, and Allen flew to New Mexico to demon-

strate the language for MITS. The developers gave themselves the company name of

Microsoft and licensed their BASIC t0 MITS as Microsoft’s first product.

Though not a direct forerunner of MS—DOS, Altair BASIC, like the machine for which it was

developed, was a landmark product in the history of personal computing. On another

level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim

Paterson and the disk operating system he developed for Seattle Computer Products for

the 8086 Chip.

6 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 20/1582

[5li<"EiVlJJ

[sTl'--rop]

[1'11-E'T'bf'J

~
t>~h·~:r to_~'! \•~
"'"'"''/ J,~ ~
c~c..r~c\'..e<' o"" ~~~
7-er·o

~(2.(,1M\ "-boo= ~ "'"""'~ \,_:.>
-zero ('- L'r t<> /

S •~rle. v.._,:,evb ks . c:; ><,~ fV voria-if{
'2 b ~re;. "{tve t~ ""-.L...
'-t r..~h 'fW<! tw. v{).l..-e.,
< f2e. p-e <Lt -for € .. c.L, V<O.r ;,; C.)>.

r~r~?k ~~~~~> '2. b ~+>< t .. -qit.,j
va.l>-

~pv•-h .f,r -e~vl.. o.,yay'
low<,f /,.,~f tfr'.. .Q.. .s-1•~

Frc..e. sr<>-ev (st.,...., k '" kre)
1\'>o<+ C'(.Ge-..t .51-c.Y e ... ~ry
st ... c\'- 1

bo+f~<"'> of s~<..c/(. I ~1' loc«t..,d•r sfN:q5

{ <-U.. '7 jiC ¢.-

C..V..c('ew\- s-\-"''j "'So..'l.e.
sit\ 1N G-.S

"'-'11-.o.s+ ""'"tl.,,.:./bca..{t-~.

Loading Software

Software from :1ITS will be pro
vided in a checksummed format.
There will be a bootstrap loader
tt'lat you key in manually (less than
25 bytes). This will read a check
SUII loader (the 'bin' loader) which
will be about 120 bytes .

ror audio cassette loading the
bootstrap and checksum loaders will
be lonser. All of this will be ex
plained in detail in a cover package
that will go out with all software.

For loading non-checksumtned
paper tapes here is a short proogram:

STKLOC: 011 GETNEll
(2 bytes-Hl lov byte of

Gt'I'HEW address
12 high byte of

GCTHEY address)

START: LXI H ,0
GETNEW: LXI SP, STJ<LOC

IH <flag-input channel>
RAL ;get input ready bit
RHZ ;ready?
IN <data-input channel>

CHGLOC: CPI <01.13 = IHX 8>
RNZ
INR A
STA CHGLOC
P.ET

(22 bytes)

Punch a paper tape with leader,
a 0143 start byte, the byte to be
stored at loc o, the byte to be
stored at 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. :~ake
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI ... 376.

1976

On the left, Bill Gates's original handwritten notes describing memory configuration for Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in the july 1975 edition of the
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair- the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section I: The Development of MS-DOS 7

HUAWEI EX. 1010 - 21/1582

1976

 5+0 rqg} (dz/o} w 1’ (1;.— 345 I Q m Mom/JULY, 1975

@ ze/o (1 6“: Loading Software
Crrw‘m’] 7mm: +° «a w (ulna) videdsié‘z‘izeifimi?5:33;? P’“

W7 w» *i (2 ms) 2:532:1522 i:§§§§i§“(i2§2‘§han
character «m MM (5%,, Mtg n 25 byte:). This "in read a check-

Zerp £4- 6511*) :Kllgdzgoé:hizobgéei?adefi which
For audio cassette loading the

bootstrap and chocksum loader: will

4 11% (1* a" t be longer. All of this will be ex—

1’ ~ ‘74:" ‘€M\’\ HY) plainod in detail in a cove:- package
_ 'Zfiro 1H,”) that will go out with all software.
URRTRB'] Slmrlc var-10461.55 ‘ G bfify 1’" ”/1an For loading non-checksumod

1 blfie; glee +141 n paper tape: here is a short program:
Li (.7 k; we L“ aim?“ STKLOC: DH 65mm

*1 7 v (- 2 bytes-ll]. 10v byte of
< Re, p.243!” 4:”- ead" Var 141G. > GETNEH address

[AQW’M'B] Aux”; V‘grlwélz-j #2 M5“ byte °f
2 5 I111 ham . GETNL‘d address)

2 a 5+: 1: >4qu START: mu ",0GETNEW: LXI SP STXLOC

V1'W5 "' lN (flag-input channeh
2% tarkS ”Gar fer-A a" RAL we! input ready bit

P RNZ ;ready7
SWEWU’J [9‘0451‘ land” mt ‘GI‘ sic IN (data-input channel.)CHGLOC: CPI <0“3 = IN! B>

E K Free, spongy (it can k 7— Ive) RNZ5T TOP] 5* ca ‘ ”R A“"9 or. ‘3’ 514°" 9")"7/ STA cucwc$Tuc\‘~ an

[FflETbP’J boH’m of {lack/1991651” “who‘d" 5+“'15 (22 ”a“Punch a paper tape with leader,

4 a 0M3 start byteI the byte to be

(F2 F] tea spew stored at inc 0. the byte to beg’f‘b CU- . stored at l - — - etc. Start at
N‘Cwl’ S‘l’mnj “917% START. making sure the memory theSTKlNG’S Loader is in is unprotected. Makesure you don‘t wipe out the Loader

CMEMVZ) \quNS‘l‘ MIAMI (Mahala. by loading on top of it.
To run this again change CHGLOCback to CPI — 375.

/\IN 5 SW allows for Slrfgzg
4—0/ch thaw aW’l’. Owl? colLCoth‘ oh0(5- ~€54" gfr‘v'iqS L‘UhIMA arm’s-l7 (vx LIKEMW

|________~____~__J

On the left, Bill Gates’s original handwritten notes describing memory configurationforAltair BASIC. On
the right, a short bootstrapprogram written by GatesforAltair users,- published in thejuly 1975 edition ofthe
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap

to load the tape was entered into memory by flipping switches on the front panel of the

computer. In late 1975, however, MITS decided to release a floppy—disk system for the

Altair—the first retail floppy—disk system on the market. As a result, in February 1976

Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of

Altair BASIC. The Altair had no operating system and hence no method of managing files,

so the disk BASIC would have to include some file-management routines. It would, in

effect, have to function as a rudimentary operating system.

Section I: The Development ofMS—DOS 7

HUAWEI EX. 1010 - 21/1582

I ,,

/ 1975

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night's destination of the starship Enterprise. The photograph
clearly shows the input switches on the front panel of the cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first "personal" computer to appear in an environ
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair's combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

4 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 22/1582

1975

4

TheAltair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was namedfor the night’s destination ofthe starship Enterprise. Thephotograph
clearly shows the input switches on thefrontpanel ofthe cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful

makes and models, the Altair was the first “personal” computer to appear in an environ-

ment dominated by minicomputers and mainframes. It was, simply, a metal box with a

panel of switches and lights for input and output, a power supply, a motherboard with 18

slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080

microprocessor at its heart; the other board provided 256 bytes of random-access memory.

This miniature computer had no keyboard, no monitor, and no device for permanent

storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is

easy to see that the Altair’s combination of small size and affordability was the thin edge

of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of

people. In 1975, however, the computing environment was still primarily a matter of data

processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

:raaaammrmfi

HUAWEI EX. 1010 - 22/1582

1975

Intel's 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced. At the bottom left is ~he 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-0-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built. The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language- and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf -0-Data to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section L The Development of MS-DOS 5

HUAWEI EX. 1010 - 23/1582

1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was namedfor the approximate
number ofold-fashioned transistors it replaced. At the bottom left is the 8— bit 8008, which addressed 16KB of
memory; this was the chip used in the Traf-O-Data tape—reader built by Paul Gilbert. At the right is the 8080,
afaster 8—bit chip that could address 64 KB ofmemory. The brain ofthe MITSAltair; the 8080 was, in many
respects, the chip on which thepersonal computing industry was built. The 4004 and 8008 chips were
developed early in the 19705,- the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed most by its

users was not a word processor or a spreadsheet, but a programming language —— and the

language first developed for it was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had become friends in their teens, while attending Lakeside School in

Seattle. They shared an intense interest in computers, and by the time Gates was in the

tenth grade, they and another friend named Paul Gilbert had formed a company called

Traf—O-Data to produce a machine that automated the reading of 16-channel, 4—digit,

binary-coded decimal (BCD) tapes generated by traffic—monitoring recorders. This ma-

chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section I: The Development ofMS-DOS 5

HUAWEI EX. 1010 - 23/1582

1975

HOW TO "READ" FM TUMER SPECIFICATIOMS

&lit~~L~~£tl!!i£~
PROJECT BREAKTHROUGH I

World's First Minicomputer Kit
to Rival Commercial Models ...

"ALTAIR 8800'" SAVE OVER $1000

ALSO IM THIS ISSUE: .
• An Under-$90 scientific Calculator ProJect

• CCD's-TV Camera Tube Successor?
• Thyristor-Controlled Photoflashers

TEST REPORTS •
Technics 200 Speaker System
Pioneer RT-1011 Open· Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific "Kirlian• Photo Kit
Hewlett-Packard 5381 Frequency Counter

The january 1975 cover of Popular
ElectroniCs magazine, featuring the
machine that caught the imaginations
of thousands of/ike-minded electron
ics enthusiasts - among them, Paul
Allen and Bill Gates.

Although it was too limited to serve as the central processor for a general-purpose compu
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc
tion set were concerned. Thus Traf-0-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

6 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 24/1582

1975

6

. , Thejanuary 1975 cover of Popular
HOW TO “READ” FM TUNER SPECIFICATIONS Elecmnics magazmafeflm’mg the

machine that caught the imaginations

ngularEICthCniCS _ at:mafizaz‘izatzzr
WORLDS LARGESTSELLING ELECTRONICS MAGAZINE JANUARV1975775¢ ' All?" andBill Gates-

F—

ii

7).1
‘i,

PROJECT BREAKTI-IROUC-iI-II
Worlds First lliinicomputerKit
to Rival CommérCial Models... ,

"ALTAIR 8800” SAVE oavn $1000

ALSO IN THIS ISSU
OAn Und -$9.0 Scientific Calculator Project ,

' O CCD's-TV Camera Tube Successor?

, 0 TIIyrlslor-Conlrolled Photoflashcrs

- TEST REPORTS!
’ Technics 200 Speaker System

Pioneer RT-1011 Open-Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific “Kirlian' Photo Kit
Hewlett-Packard 5381 Frequency Counter

Although it was too limited to serve as the central processor for a general-purpose compu-

ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc-

tion set were concerned. Thus Traf—O-Data’s work with the 8008 gave Gates and Allen a

head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular

Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,

a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-

strate the language for MITS. The developers gave themselves the company name of

Microsoft and licensed their BASIC to MITS as Microsoft’s first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was l
developed, was a landmark product in the history of personal computing. On another

level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim

Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

TheMS'DOSEmyC’OPed‘” HUAWEI EX. 1010 - 24/1582

[511<"E'IVIJJ

[sTl'-mP]

[Fil£-rbPJ

[r..eMSTZ..)

~
,~.,·~:r +• ~x1),~

b-1.11"\':l.~, h..-.k ~
c~c..rac::-\--e<" o~o<~ 1,~
"Z-er-o

"- ~~ ~·-\ <t bee -f;u. 'e'"-<-~ I , _.:. >
-z_e.,... ('-L'r-~-es) .

S •~rLe. v<>.r:•<>--6 k.s . b 1.-r,i"j fV vo,,aJ~
':2 b 't-Ie;. flve fl.,;, "~
Lf 1.~k' 1~ t~.u. vo.l~.
<~p-ea.,+ -for e .. cJ.., ""'-' ;,J~ >
Arr-"1 ,,._;,"'bU._>

~~ ~~~ h,::1·:J
l ""' ~- L,j

~r-eo.As .f,r -e~cJ... """""'('
low<lt 1.,~-r ,.... .(1_ s-la~

F~ 5r<>-ev (H • .,..., k '" k.re)
t'V>o•t N.dl.t 5-jaol' e..,-try
St<>.c\'- I

brtrM o-f s:J-.._c{::.; f~i' loe.rlwvfor stn;q5

{.-= "'Jji<' <.12--

Cu.r<-e"'-\- _s.-\·,-,',J '< Sa-'J-'2.-
Sii'Z 1tJ G--.S

~r-,1w.s+ "-'a.tl.,,.:./o<a..{c:-;...,.

--v---·s s~ ttLlbvo> f..,.- s1;:r4
-rc.--bk I'-d...' li~"t- O'"'l;t colLcc:-tu-
(>. -{o.r -;.{r1r,'15 kJI-,,~ ~trel'\.1-t {V\ 4/C l?fl-5\C

o::K'tm:R !Cfr£S/ JULY, 1975

Loading Software

Software from :-!ITS will be pro•
vided in a checksummed format.
There will be a bootstrap loader
t!'lat you key in manually (less than
25 bytes). This will read a check
sua loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex ...
plained in detail in a cover package
that will go out with all software.

For loading non-checksUift1lleci
paper tapes here is a short program:

STKLOC: OW GETNEII
(2 bytes-Ml low bvte of

GE:TNtil address
N2 high byte of

GETNEW address)

START: LXI !1,0
GET~CW: LXI SP, ST!<'LOC

IN <flag-input cf,annel>
RAL ;get input ready bit
RNZ ;ready?
IN <data-input channel>

CHGLOC: CPI <0113 = IHY. B)o
RNZ
INR A
STA CHGLOC
P.ET

(22 bytes)

Punch a paper tape wi'th leader,
a 043 start byte, the byte to be
stored at loe 0, the byte to be
stored at 1 1 - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. :Q.ke
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI - 376.

1976

On the left, Bill Gates's original handwritten notes describing memory configuration/or Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in the july 1975 edition of the
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair- the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section 1: The Development of MS-DOS 7

HUAWEI EX. 1010 - 25/1582

1976

l_—————~—___—‘__l “*1
S l ‘l’ Q, Z46IC mm/auu,1975 +0 racy 4A1 w

@ ZEN (,1 (WP. Loading Software. Software from HITS will be pro-
C-rx‘r’IA‘Dj Puml‘zr +9 qxi \.~((Luna) vided in a checksummed format.4, ‘ 4» There will be a bootstrap loader

“no“? “A? ‘ (7- L‘7 F5) that you key in manually (less than
character oh ‘IM (5 E Molt ll 25 byte;). (This will. read a check-. sun lea or tho 'bin' Loader) which
Zero (1. 6‘11“) will be about 120 bytes.

For audio cassette loading thebootstrap and checksum loaders will

4 limped fl.‘ 3 Q '€¢O\q l)..‘<> bt long". All. of this will be ex—plained in detail in a cover package

_ 26:9 (11“! +6) that will go out with all software.
URRTHBj ' SnyLe, var-iwh [5.5 ~ é (“1+5 f’" ”Hula For loading non—checkaumad

1 5‘11”?! 7"” +111 n paper tapes hero is a short program:
Liz bqkfi qwe +1“ Val/N7" STKLOC: DH 65mm. (2 bytes-91 low byte of
< Raped” fir eat/Li Var IaJQ > GETNEH address

Aflb/WB] AM”? “(mug In high byte of
1 b .1 k kqw ~ GETNDI address)
7. up}: (twin. START: Lxr u,oGETNEW: LXI SP, STKLOC
\IGJM} "‘ IN <flag-input channeh
26 {oaks ‘9“ fad-x a." RAL ;get input ready bit

m 9 RNZ :ready?5' EWD’J law¢;+ (gent-hen. GP S-{g IN (data-input channel.)CHGLDC: CPI <0M3 = IN! 5’

, Free symw (91 (4“ b: w lcre) “"2 V
[51*ij (hos‘l' meewl- s—tacl’ atm- INR A7/ STA CHGLOCSteel’— _ FLT

mama?) bum» of #th / taped loemxio' Sim "2 W“Punch a paper tape with leader,
a oua start byte. the byte to be

Kg; FT] (nu, 595w stored at 1o: 0, the byte to be:Tb Cu. . stored at 1. - - - etc. Start at
“Mk‘l’ S‘l’n “j “5473 START, making sure the memory theSTfllNGrs loader is in is unprotected. Makesure you don't wipe out the loader

CMEM€m3 MifiW$+ Walkin- {bta~+LV‘-\ - by loading on top of it.
To run this again change CHGLOCback to CF! - 376.

/\L~xs SW allbwo§ ‘ér smré.
swig mama ”l1 Owl colicoTlr
(5. {or g-frfiifghjjw (4.)th arehj'l' [vx [1K Efiju. 93
WL _I

On the left, Bill Gates’s original handwritten notes describing memory configurationforAltair BASIC. On
the right, a short bootstrapprogram written by GdtesforAltair users; published in theJuly 1975 edition ofthe
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap

to load the tape was entered into memory by flipping switches on the front panel of the

computer. In late 1975, however, MITS decided to release a floppy—disk system for the

Altair—the first retail floppy—disk system on the market. As a result, in February 1976

Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of

Altair BASIC. The Altair had no operating system and hence no method of managing files,

so the disk BASIC would have to include some file-management routines. It would, in

effect, have to function as a rudimentary operating system.

Section I: The Development ofMS—DOS 7

HUAWEI EX. 1010 - 25/1582

I II''
I' : ·,
,I,,

1977-1978

Microsoft, 1978, Albuquerque,
New Mexico. Top row, left to right:
Steve Wood, Bob Wallace, jim Lane.
Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this versiori of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft's entry into the business of languages for per
sonal computers- not only for the MITS Altair, but also for such companies as Data
Terminals Cotporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file
management scheme called the FAT, or file allocation table that used a linked list for man
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
"chained" references pointing to the actual storage locations on disk. Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit .operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

8 The MS-DOS Encyclopedia

/ HUAWEI EX. 1010 - 26/1582

1977-1978

Microsoft, 1978, Albuquerque,
New Mexico. Top row, left to right.-
Steue Wood, Bob Wallace, Jim Lane.
Middle row, left to right: Bob O’Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Marla Wood, PaulAllen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went

,, to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a

‘3 i' stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for

‘ the new version of BASIC. Arriving at MITS with the code and a request to be left alone,

Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair; _

l This disk-based BASIC marked Microsoft’s entry into the business of languages for per-
I sonal computers -— not only for the MITS Altair, but also for such companies as Data

5 , Terminals Corporation and General Electric. Along the way, Microsoft BASICtook on
1,551 ‘ added features, such as enhanced mathematics capabilities, and, more tothe point in
ii terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

i . .

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man-

aging disk files. The FAT, born during one of a series of discussions between McDonald

and Bill Gates, enabled disk-allocation information to be kept in one location, with

“chained” references pointing to the actual storage locations on disk. Fast and flexible,

this file—management strategy was later used in a stand-alone version of BASIC for the 8086

chip and eventually, through an operating system named M-DOS, became the basis for the

file-handling routines in MS—DOS.

M—DOS

.‘l During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an

f increasingly popular 8—bit operating system called CP/M. At the end. of 1978, Gates and

1 Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con-

%, tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

8 The MS—DOS Encyclopedia

HUAWEI EX/1010 - 26/1582

CP/M

Only one company sets the pace with
software for microprocessors.

MACR0'80 PACKAGE axrelocotob~ooem
THAT'S MICROSOFr.

b!er f"biJ hOS·o,compJete_ ~ foctlily including liP.,
IRPC. REP£.43'. lOcal voriobles ond EXITM. L!Sfing cOntrOl ond
""""'ionclossemblfhavebeeng<eol1yonhoncod;Aro~N>r

··plus -lheos.semblef1Sf"'¢N1wice osfostos PfeV!OOS~ons.
1he ~0 Package, inc~-.lding MICfOaclfs Ltr'lking Looder
ond Ctoss Reference Program, rna., I10'W' be purchased sepor
aretytrom H)!~J'RAN-80. Single copy $200 .'v1onuol 515. (.1VtACRQ..
80 i5 included in FOi<l'RAN-80. Version 3.t)

.Whether ifs BASIC. F(Jf<iRAN. or
C030l. '!he lorgest-se!!1ng rni
crocornputer systerns use soft
wore by Mtcrosoft:

M!IASIC- NEW RELEASE 1>lenew""'on50MilASIC>n
~ .br'l9 vonoble norres. vonob!e length records. ovnomic string
space O!locotio~. V\tfiLEN.JEt\'0. orQtected fik.""S. ord ctlaining Wlih COM"·
lv'ON \~SOISfv!lvANStcorripahb!e 0.JrM6AS!Cdocumentoltonhos
been comple!e!y !'e't..ril'.en cno iS srgruf1can!ty irnpro.red Single CQPII. 5350.
Nto,"'UQ!· $20

RodtGSnock.Tekttorl~X.NCR.
Apple, CcrTlf'!'10001e. C)l')

lel. 6s1hngs, Exls>nsys. lrrl·
SOl C'hoScren!!frc:. Cro·

rnerrco. N:.OS. l<!o~.

EDIT-80 PACKAGE (CP! M version only)l>le '"'"'' tc~ """"'
on !he l'l'lOfket. No mOle seo;ctung fl">roogh Iiies or crypt!C cornrnonc:i& 71'\iS rcndom
occess. !ire·Ciienled editcr 1$ SlffiliOf to !hose used en Iorge corr.puters !1ke lhe PDP·
~0. Also includes FtCOM. 1he h1e cornpore uh!ity. v.rt11Ch oi!OWS corr.paroon at source
ond Oinaryflles. Single cop.J. $120 Manual: $10

, ANSI74 COB0l-80,,,""'""''1Col<>wilnlu:""'''ed'>AM"''"'C<ed"t~cctc"'
.accEPT/DSPI.AY. <;C'P'1 and EXTEND S.tQie COPY. $750 Manual· $20

M'".lslek. Notrono1.
i<cck'Neil. ond

rnor.yuthers:

PREVIEW OF UPCOMING PRODUCTS An eoeo;z.so !YISC cOm,tter suo·
port1ng the same !eot'..tes os Cl."' interore!er. the 10"1g-crnoJfed 8080/Z·/33 A>1. Interpre
ter. and o e<:mpiete set ti ~we:"nS. S<Jftwate ptodl,.l(% fOl' both u·e 8006 ono Z8!YJO

Ail sottwor.: <J~i~?bk~ ct si•;g!<~··GOJY1 p1ice~ or OF.M/
Deeter agreement pncos

1978

A Microsoft advertisement from the
january 1979 issue of Byte magazine
mentioning some products and the
machines they ran on. In the lower
right corner is an announcement of
the company's move to Bellevue,
Washington.

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced "Midas" or "My DOS"). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system. At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele
gated to the back room. As Allen describes it, "Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that."

In the volatile microcomputer era of 1976 through 1978, both users and developers of per
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft's Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section 1: The Development of MS-DOS 9

HUAWEI EX. 1010 - 27/1582

1978

A Microsoft advertisementfrom the
January 1979 issue of Byte magazine
mentioning someproducts and the
machines they ran on. In the lower
right corner is an announcement of
the company ’5 move to Bellevue,
Washington.

‘ «mlCfiDCompUiZi ‘
~ ~ ' sot-More

l Only one company sets the pace with
‘ sottwcre tor microprocessors.

, , Ff.
MACRO-80 PACKAGEmIeimeossem mm?”biernow hasacompletewe icetlity includingno - - J r l
lRPC REPEAT. local moniesand EXITM Listing control and ,Vfi'gggllfiqgfislg 333?"?ccndflionclossembwmbeengre‘awmhcedgmu , , ' ages “ 9 '
plus ,— theassemblet Is now as last as pranws vetsions; _ ‘ crocomcuter SYSYGmS U59 50‘1'

' Meoscfl’s Linking Lauder , were by Mucrmo‘t;, ogr now be wetmsed separ- .
otetytrom FCIETRAN-60 Single capv $200 Mmacl 3:5 (MACDO-80 isircluded inFOP'mAN80 Verszcn 31-)
MBASIC~ NEW RELEASE me newversm 50 Music m
eludes long womb-e fumes mm length records :1eran strlng
space allocation WHtLE/aJEND protected files. and chaining win mili-

. , NON xersion 50is fully ANSI GOmDOltble ()1 MEASIC mnifflm has many others:
__ been ccmplelety :ewvit'en one is slgnnccnlty imprcved single copy 3350.

-. ' Manual 910 Ar! :l ‘V fl, (GI EIGOSO .
_.ED_lT--80 PACKAGE (C?4M version only) the may m edilcx new things are
an the matte? No more sea'crum through lites or cfvp'ic camrmhas 'he random mppérmg 0|!' _ access lireoriented editor vs eimilcno those used enlarge computers we #19 POP ' T”
40 N93 includes FLOOM the tile ampere ututty whion ohcms corrmmn of sauce ,
and oinciviiles Singleccpy. 5420 Manual: 340

ANSl ’74 COBOL-80 t5 now amiable Mthluilyleslcd 15AM untamed intercel‘rhe ,, W/D‘Smw’VOYU EXTEND Single copy; 5750 Manual 520 _ .

L " PREVIEW OF UPCOMING PRODUCTS An 8080/Zso566'posing the same team's; as cur interwele! the Img-cwoned 8080/Z50 All
her. and a complete set ‘0! syste:“s Sammie txoductstor Both the 8086 and 28090 _, '

:1 A11 sottware «reliable c132 New mice» or OPNM 7 ‘ I ‘ [KAICRO‘E’OFE‘' Dealer agree nt DHCCS
_ ‘ . 10800 NE Eighlh. Suite 819

Belle-we.Washington‘ISflflfl.206-455-8080

During this same period, Marc McDonald also worked on developing an 8—bit operating

system called M—DOS (usually pronounced “Midas” or “My DOS”). Although it never

became a real part of the Microsoft product line, M-DOS was a true multitasking operating

system modeled after the DEC TOPS—10 operating system. M-DOS provided good perfor-

mance and, with a more flexible FAT than that built into BASIC, had a better file—handling

structure than the up-and—coming CP/M operating system. At about 50 KB, however,

M—DOS was unfortunately too big for an 8—bit environment and so ended up being rele—

gated to the back room. As Allen describes it, “Trying to do a large, full-blown operating

system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only

64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that.”

CP/M

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-

sonal computers quickly came to recognize the limitations of running applications on top

of Microsoft’s Stand—alone Disk BASIC or any other language. MITS, for example, scheduled

Section I: The Development ofMS—DOS 9

HUAWEI EX. 1010 - 27/1582

1978

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair's Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall;released its Control Program/Monitor, or CP/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M's history is that the software was developed several
years before its release date- actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall's
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build
a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu
ter and the disk drive while Kildall worked on the software portion- the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat
ing systems.

Digital Research's CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output- disk I/0, screen display, print requests, and so on- CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

10 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 28/1582

1978

code from the Altair’s Disk BASIC. In the’same year, Digital Research, headed by Gary

Kildallfi‘irejlejaétSed its Control Program/Monitor, or CP/M
CP/M was a typical microcomputer software product of the 19705in that it was written by
one personnot a group, in response to a specific need that had nOt yet been filled One of

T the moSt interesting aspects of CP/M’s history18 that the software was developed several

l years before its release date — actually, several years before the hardware on which it
would bea standard became commercially available.

1 . . , .

E i , 21Jllly 1976‘release date for an independent operating system for its machine that used the
1

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
1 Monterey, California, was working with an 8080-based small computer given him by Intel

'13 Corporation in return for some programming he had done for the company. Kildall’s
i machine, equipped with a monitor and paper-tape reader, was certainly advanced for the

time, but Kildall became convinced that magnetic-disk storage would make the machine

1‘ even more efficient than it was.
I .

‘i Trading some programming for a disk drive from Shugart, Kildall first attempted to build
1‘ a drive controller on his own. Lacking the necessary engineering ability, he contacted a

1; friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu—
‘1 ‘E ter and the disk drive while Kildall worked on the software portion— the refinement of an

operating system he had written earlier that year. The result was CP/M.

The version of CP/M developedby Kildall in 1975 underwent several refinements. Kildall

enhanced the CP/M debugger and» assembler, added a BASIC interpreter, and did some

work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat—
ing systems. ‘

Digital Research’s CP/M included a command interpreter called CCP (Console Command

Processor), which acted as the interface between the user and the operating system itself,

and an operations handler called BDOS (Basic Disk Operating System), which was

responsible for file stOrage, directory maintenance, and other such housekeeping chores.

For actual input and output— disk I/O, screen display, print requests, and so on— CP/M

included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware

on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the

allocation units were listed in a directory entry that included the filename and a table giv-

ing the disk locations of 16 allocation units. If a long file required more than 16 allocation

units, CP/M‘ created additional directory entries as required. Small files could be accessed

rapidly under this system, but large files with more than a single directory entry could re-

quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of

hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in

all respects, the undisputed standard in the 8—bit world, and remained so until, and even

after, the appearance of the 8086.

10 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 28/1582

The8086

The 16-bit Inte/8086 chip, introduced in 1978.
Much faster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte of memory.

1978

When Intel released the 8-bit 8080 chip in 197 4, the Altair was still a year in the future.
The 8080 was designed not to make computing a part of everyday life but to make house
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086's full16-bit buses made it fast
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080's 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson's operating system for the 8086 and, through Paterson's
work, on the first reieased version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen's
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple II users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal- more than one voice in the trade press warned that industry invest
ment in 8-bit equipment and software was too great to successfully introduce a new stan
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I: The Development of MS-DOS 11

HUAWEI EX. 1010 - 29/1582
Fe

1978

The 16-bit Intel 8086 chip, introduced in 1978.
Muchfaster andfar morepowerful than its 8—b1‘!
predecessor the 8080, the 8086 had the ability to
address one megabyte ofmemory.

The 8086

When Intel released the 8—bit 8080 chip in 1974, the Altair was still a year in the future.

The 8080 was designed not to make computing a part of everyday life but to make house- '
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced

the 16-bit 8086, the microcomputer was a reality and the new chip represented a major

step ahead in performance and memory capacity. The 8086’s full 16—bit buses made it fast-

er than the 8080, and its ability to address one megabyte of random—access memory was a

giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the

8080, it was architecturally similar to its predecessor and 8080 source code could be me-

chanically translated to run on it. This translation capability, in fact, was a major influence

on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s
Work, on the first released version of MS—DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with

two choices: continue working in the familiar 8—bit world or turn to the broader horizons

offered by the new 16—bit technology. For a time, Microsoft did both. Acting on Paul Allen’s

suggestion, the company developed the SoftCard for the popular Apple II, which was

based on the 8—bit 6502 microprocessor. The SoftCard included a 280 microprocessor and

a copy of CP/M—SO licensed from Digital Research. With the SoftCard, Apple 11 users could

run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who

believed that this would soon become the standard for microcomputers. Their optimism

was not universal — more than one voice in the trade press warned that industry invest—

ment in 8—bit equipment and software was too great to successfully introduce a new stan—
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it

had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I: The Development ofMS—DOS 1 1

HUAWEI EX. 1010 - 29/1582

1979-1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer

·Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his emptoyer, Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, "all its instructions
worked on both 8 and 16 bits, and you didn't have to do everything through the accumu
lator. It was also real fast-it could do a 16-bitADD in three clocks."

After the seminar, Paterson-again with Brock's support-began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on'Seattle Computer's new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital's represen
tative said December 1979, which meant, according to Paterson's diary, "we'll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we'll be
able to switch to a real operating system."

Early in June, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates' ten-by-ten foot
booth, and Paterson had been invited by Paul Allen tQ show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track oftlisk files- the FAT devel
oped for Stand-alone BASIC- that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson's major goals for the new operating system. To achieve this compatibility, the sys

. tern he developed mimicked CP/M-80's functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 30/1582

L3} ' 12

1979-1980

At the same time and, coincidentally, a fewmiles south in Tukwila, Washington, a major

contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer

Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S-100 bus machine

86-DOS

Paterson was introduced to the 8086 chip at a seminar held by Intel inJune 1978. He had

attended the seminar at the suggestion ofhis employer, 'Rod Brock of Seattle Computer
PrOducts. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu—

lator. It was also real fast—it could do a 16-bit ADD in three clocks.” _

After the seminar, Paterson —— again with Brock’s support —- began work with the 8086.

He finished the design of his first 8086 CPU board inJanuary 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. InJune, Paterson

took his system to Microsoft to try it with Stand—alone BASIC, and soon after, Microsoft

BASIC was running on'Seattle Computer’s new board.

During this period, Paterson also received a call from Digital Research asking whether

they could borrow the new board for developing CP/M-86. Though Seattle Computer did

not have a board to loan, Paterson asked when CP/M—86 would be ready. Digital’s represen-

tative said December 1979, which meant, according to Paterson’s diary, “we’ll have to live

with Stand—alone BASIC for a few months after we start shipping the CPU but then we’ll be
able to switch to a real operating system.”

Early inJune, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by—ten foot

booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100

8086 system. At that meeting, Paterson was introduced to Microsoft’s M—DOS, which he

found interesting because it used a system for keeping track ofdisk files —the FAT devel-
oped for Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products

decided to develop a 16-bit operating system of its own. Originally, three operating sys—

tems were planned: a single—user system, a multiuser version, and a small interim product

soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system

for the 8086 was mandatory if users were to be assured of a wide range of application soft—

ware and languages. CP/M had become the standard for 8—bit machines, so the ability to

mechanically translate existing CP/M applications to run on a 16-bit system became one of

Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-

‘ tern he developed mimicked CP/M-SO’S functions and command structure, including its,
use of file control blocks (FCBs) and its approach to executable files.

The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 30/1582

....

1980

GO 16-BIT NOW- WE HAVE MADE IT EASY

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte.

8086
8 Mhz. 2-card CPU Set

WITH 86-DOS@J $595
ASSEMBLED, TESTED, GUARANTEED

W1th our 2-card 8086 CPU set you can upgrade your ZBO 8·
bit S-100 system to ru':lthree limes as fast by swappmg the
CPUs. If you use our 16-bit memory. it will run five times as
last. Up to 64K of your static B·bit memory may be used in the
BOSS's 1-megabyte addressing range. A switch allows either 4
or 8 Mhz. operation. Memory access requirements at 4 Mhz.
exceed 500 nsec.

The EPROM monitor allows you to display, alter, and
search memory, do inputs and outputs, and boot your disk.
Debugging aids include register display and change, single
stepping, and execute with breakpoints.

The set includes a serial port with programmable baud rate,
four mdependenl programmable 16-bil timers (two may be
combined lor a lime-of-day clock), a parallel in and parallel out
port, and an interrupt controller with 15 inputs. External power
may be applied to the timers to maintain the clock dunng
system power-oft time. Total power: 2 amps at + BV ,less than
100 ma. at + 16V and at ·16V.

86-DOS'·. our $195 8086 single user disk operatmg
sy~tem, is provided without addilional charge. It allows
functions such as console I 0 of characters and str~ngs. and
random or sequencia! reading and wntingto named disk hies.
Whtle 11 has a different format from CP M, •t perlorms similar
cans plus some extensions (CP"M IS a registered trademark of
O•g•tal Research Corporat1on).lts construction allows relat•ve
ly easy cont,guration of I 0 to differenl hardware. D•rectly
supported are the Tarbell and Cromemco disk controllers.

The 86·005 •• package includes an 8086 restdent as
sembler, a Z80 to 8086 source code lranslator, a ut•lity lo read
l•les wntten in CP M and convert them to the 86-00S format, a
11ne ed•tor. and d1sk ma1ntenance uhlit•es. Of S1gn1hcance to
Z80 users •s the ab•lity of the translator to accept Z80 source

8/16 16-BIT MEMORY
Th•s board was des•gned for the 1980s. lt1s conl•gured as

16K by 8 blls when accessed by an 8-b•t processor and
configured 8K by 16 bitS when used w•th a 16-blt processor
The conf•gurat•on switchmg •s automatic and •s done by the
card sampling the ··s•xteen request" s•gnat sent out by all S·
100 IEEE 16-bit CPU boards. The card has all the h•gh no1se
•mmuMy features of our welt known PLUS RAM cards as well
as ""extended addressing··. Extended address•ng •s a replace
ment for bank select. II makes use of a total of 24 address hnes
10 g•vf' <1 d•rectly addressable range of over 16 megabytes.
(For older systems, a sw•tch w•ll cause the card to •gnore the
top 8 address lines.) Th1s card ensures that your memory
board purchase will not soon be obsolete. It •s guaranteed to
run w•thout wa•t states w1th our 8086 CPU set us1ng an 8 Mhz
ctock. Sh1pped from stock. Pnces: 1-4,$280: s-g. S260. 10-up.
$240

code wrmen for CP M. translate th1s to 8086 source code.
assemble the source code, and then run the program on th~
8086 processor under 86·005. Th•s al!ows the converston of
any Z80 program, for wh•ch source code is ava•lable.to run on
the much higher perlormance 8086.

BASIC-86 by Microsoft is available lor the 8086 at S350
Several f•rms are work•ng on apphcaiiOn programs Can lor
current software status.

All software licensed lor use on a smgle computer only
Non·d•sclosure agreements requlfed. Shippmg from stock to
one week. Bank cards, personal checks. COOs okay There •s
a 1 0-day return privilege. AU boards are guaranteed one year
- both parts and tabor. Sh1pped prepa•d by a~r m US and
Canada. Fore•gn purchases must be prepa•d 1n US funds
Also add $10 per board lor overseas atr sh•pment

Jt eottle Computer Products,lnc. ~ 1114 lnduslry Orr,e. Seanle. WA 98188

(2061 575-1830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I: The Development of MS-DOS 13

HUAWEI EX. 1010 - 31/1582

1980

_‘—‘fi An advertisementfor

GO 1 e-an' NOW -—- we HAVE MADE IT EASY the 59“”19 Computer
Products 8086 CPL;
with 86-DOS; published

. in the December 1980

issue of Byte.8 Mhz. 2-card CPU Set

WITH 36-00533 $595
ASSEMBLED, TESTED. GUARANTEED

With our 2-card 8086 CPU set you can upgrade yourZBO 8-
bit S-100 system to run three times as last by swapping the
CPUs. it you use our 16-bit memory. it will run five times as
last. Up to 64K 01 your static B-blt memory may be used in the
6036's 1-megabyte addressing range. Aswitch allows eithera
Dr 8 Mhz. operation. Memory access requirements at 4 Mhz.exceed 500 nsec.

The EPROM monitor allows you to display. alter. and
search memory. do inputs and outputs. and boot your disk.
Debugging aids include register display and change, single
stepping. and execute with breakpoints.

The set includes a serial port with programmable baud rate.
lour independent programmable 16-bit timers (two may be
combined lot a time-ol-day clock), a parallel in and parallel out
port. and an interrupt controller with 15 inputs. External power
may be applied to the timers to maintain the clock during
system power-all time. Total power:2amps at + 8V, less than

100 mat at + ISV and at -t6V. code written lor OF M. translate this to 5086 source code.

BS-DOS". our $195 8086 single user disk operating assemble the source code. and then run the program on the
system. is provided without additional charge. It allows 8086 processor under 86-008, This allows the conversion at
lunctions such as console I 0 ol characters and strings, and any 280 program, lot which source code is available, to run on
random or sequencial reading and writing to named disk lites. the much higher perlormance 8086.
While it has a dillerent lormat lrom OF M. it pedorms similar BASIC-86 by Microsolt is available tor the 8086 at 5350
calls plus some extensions (CP‘M isaregisleredtrademarkol Several lirms are working on application programs Call lor
Digital Research Corporation). lts construction allows relative- current software status.
Iy easy conliguration 0! to to dilterenl hardware. Directly All software licensed lor use on a srngle computer only.
supported are the Tarbell and Cromemco disk controllers. Non-disclosure agreements required. Shipping liom stock to

The 86-005" package includes an 8066 resident as- one week. Bank cards. personal checks, CODs okay There is
sembler. a 280 to 5086 source code translator. autility to read a 10-day return privilege. All boards are guaranteed one year
tiles written in CF Mandconventhemtothe86~DOSicrmaL a — both parts and labor. Shipped prepaid by air in US and
line editor. and disk maintenance utilities. Oi srgnilicance to Canada. Foreign purchases must be prepaid in US lunds
280 users is the ability ol the translator to accept ZBO source Also add $10 per board lor overseas air shipment

8/16 16-BIT MEMORY
This board was designed lor the 19805. It is conligured as

16K by 8 bits when accessed by an 6-bit processor and
conlrgured 8K by 16 bus when used With a 16-bit processor
The configuration switching is automatic and IS done by the
card sampling the "sixteen request“ srgnal sent out by all S-
100 lEEE 16-bit CPU boards. The card has all the high noise
immunity ieatures 0! our well known PLUS RAM cards as well
as "extended addressing". Extended addressing isa replace-ment lor bank select. It makes use 01 a total at 24 address lines
to give a directly addressable range at over 16 megabytes.(For older systems. a switch WI" cause the card to ignore the
top 8 address lines.) This card ensures that your memory
board purchase wtll not soon be obsolete, It is guaranteed to
run without wait states Wllh our 5086 CPU set usmg an 8 Mhz

clock. Shipped lrom SIOCKPVICESZ1'4,$28015'9.5260.10-Upi SGOKI'G COMPU‘G! PI‘OUUCIS II“
, .5240

“Id industry Drive. Seattle. WA 98166
(206) 5754830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one

of them being its file-allocation system, which he considered inefficient in the use of disk

space and too slow in operation. So for fast, efficient file handling, he used a file allocation

table, as Microsoft had done with Stand—alone Disk BASIC and M—DOS. He also wrote a

translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80

assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,

officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time

to ask the company to write a version of BASIC to run on his system.

Section I: The Development ofMS—DOS 1 3

HUAWEI EX. 1010 - 31/1582

,:
I,
I : ~
(
I'
I
I.
I

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten
tion to the possibility of developing a low-end workstation for a market it knew well: busi
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM's interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles- typically four or five years- and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One ofiBM's solutions-the one outlined by Sams's group-was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques
tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel's 8086 chip instead? At the end
of this meeting- the first of many- Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April1981, ·provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft's BASIC had been
designed to run as a stand-alone product, it was unique in that respect- the other lan
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development afDigital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM- approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

That state of indecision, then, was Microsoft's situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen; and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates's eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, "Kay and I were just sitting there at
night and Paul was on the couch. Kay said, 'Got to do it, got to do it.' It was only 20 more K

14 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 32/1582

1980

IBM

While Paterson was developing 86—DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten-
tion to the possibility of developing a low-end workstation for a market it knew well: busi-

ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man namedJack Sams, told Microsoft of IBM’s interest

in developing a computer based on a microprocessor. IBM was, however, unsure of micro—

computing technology and the microcomputing market. Traditionally, IBM relied on long

development cycles —— typically four or five years — and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One of IBM’s solutions—the one outlined by Sams’s group —was to base the new

machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques-

tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for

it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8—bit ,

computer? Why not release a 16-bit machine based on Intel’s 8086 chip instead? At the end

of this meeting—the first of many— Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was

named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been

designed to run as a stand—alone product, it was unique in that respect—the other lan-

guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at‘Digital Research, and in fact made the initial contact for IBM. Digital

Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM — approximately 400

KB of code. But to do this within the allotted six—month schedule, the company needed

some assurances about the operating system IBM was going to use. Further, it needed

specific information on the internals of the operating system, because the ROM BASIC

would interact intimately with the BIOS.

The turning point ~

14

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,

when Bill Gates, Paul Allen,- and Kay Nishi, a Microsoft vice president and president of

ASCII Corporation inJapan, sat in Gates’s eighth-floor corner office in the Old National

Bank Building in Bellevue, Washington. Gates recalls, “Kay and I were just sitting there at

night and Paul was on the couch. Kay said, ‘Got to do it, got to do it.’ It was only 20 more K

The MS-DOS Encyclopedia
HUAWEI EX.1010 - 32/1582

I' ··:)•

1980

of code at most- actually, it turned out to be 12 more K on top ofthe 400. It wasn't that big
a deal, and once Kay said it, it was obvious. We'd always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit."

At that point, Gates and Allen began looking again at Microsoft's proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson's 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM's new computer, the more
possible- even preferable- the idea became.

Allen's first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP's operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, "If I was awake, I was thinking about
the project."

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86~DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson's
86-DOS- not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT)- arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%-inch disks, so Microsoft needed to de
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I: The Development of MS-DOS 15

HUAWEI EX. 1010 - 33/1582

1980 '

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn’t that big

a deal, and once Kay said it, it was obvious. We’d always wanted to do a low—end operating

system, we had specs for low-end operating systems, and we knew we were going to do

one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their

estimated 400 KB of code included four languages, an assembler, and a linker. To add an

operating system would require only another 20 KB or so, and they already knew of a

working model for the 8086: Tim Paterson’s 86—DOS. The more Gates, Allen, and Nishi

talked that night about developing an operating system for IBM’s new computer, the more

possible —— even preferable — the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that

Microsoft wanted to develop and market SCP’s operating system and that the company had

an OEM customer for it. Seattle Computer Products, which was not in the business of

marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the

operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86—DOS on its own machines.

In October 1980, with 86—DOS in hand, Microsoft submitted another proposal to IBM. This

time the plan included both an operating system and the languages for the new computer.

Time was short and the boundaries between the languages and the operating system were

unclear, so Microsoft explained that it needed to control the development of the operating

system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul

Allen, and, primarily, Bob O’Rear began a schedule of long, sometimes hectic days and

total immersion in the project. As O’Rear recalls, “If I was awake, I was thinking about

the project.”

The first task handled by the team was bringing up 86—DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-

ment while changes were also being made to the specifications of the budding operating

system itself.

As part of the process, 86—DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s

86-DOS —— not counting utilities such as EDLIN, CHKDSK, and INIT (later named

FORMAT) — arrived at Microsoft as one large assembly-language program on an 8—inch

floppy disk. The IBM machine, however, used 51/4-inch disks, so Microsoft needed to de-

termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I.- The Development ofMS—DOS 1 5

HUAWEI EX. 1.010 - 33/1582

I

I
1:
lji
j,l
il
l'i

r .!
I!
:!

1980-1981

16

Paul Allen and
Bill Gates (1982).

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC:-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format-different from Paterson's 8-inch
format-was an added challenge. Paterson's ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system's startup
messages to changes in EDLIN, the line editor he had written for his own use. Throughout
this process, IBM's security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, ~hroughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 34/1582

1980-1981

PaulAllen and

Bill Gates (1982).

This work, handled by O’Rear, fell into a series of steps. First, he moved a section of code

from the 8—inch disk and compiled it. Then, he converted the code to Intel hexadecimal

format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel

fixed-disk deVelopment system with an In—Circuit Emulator. The DEC—2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading

the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM

development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS—DOS disk format— different from Paterson’s 8—inch

format—was an added challenge. Paterson’s ultimate goal for 86—DOS was logical device

independence, but during this first stage of development, the operating system simply had

to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86—DOS and by the

end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as Well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens

of changes requested by Microsoft, from modifications to the operating system’s startup

messages to changes in EDLIN, the line editor he had written for his own use. Throughout

this process, IBM’s security restrictions meant that Paterson was never told the name of the

OEM and never shown the prototype machines until he left Seattle Computer Products and

joined Microsoft in May 1981,

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.

There were, for example, the serial card interrupts that occurred when they should not

and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and

that resulted in sporadic crashes during early MS-DOS operations.

J 1 16 The MS—DOS Encyclopedia
’l . HUAWEI EX. 1010-34/1582

1980-1981

Bob O'Rear's sketch of
the steps involved in
moving 86-DOS to the
IBM prototype.

Section I: The Development of MS-DOS 17
HUAWEI EX. 1010 - 35/1582

1980-1981

Bob 0 ’Rear’s sketch of

When; : + 44%;.“ , the steps involved in

WW1} misfit “a”: 1‘Ma“ moving 86—DOS to the
' IBMprototype.

i

f
r

i

i

I Section I- The Development ofMS—DOS 1 7
HUAWEI EX. 1010 - 35/1582

l ”exam

1980-1981

18

r;-S" l'f~IIIOq~-;r-J<f5to'
~ ~ ~ ~ ~ ~~"'"''""'<~dddd

Part of Bob 0 'Rear's "laundry" list of operating-system changes and corrections for early April1981. Around
this time, interim beta copies were shipped to IBM for testing.

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 36/1582

18

1980-1981

'DO$ sinces

0,7»thWmmwwm
:0 W” A 'to allow“ W

lf/ flaggmug M ”its 52» “3M (mu £5493
W5 to (,0: c all

MSLWOo. XGDDSM bloc. 3%:th

y/T§d& F.“ UGstéii—oww‘ubmm
7/» 8 969.306 To 4%

M MW (€u~Jm~ sq) bmbs.

kfi‘jw at swam: W
l~—.

M; 4; fixes
[.m‘WhMWOgofz5923

M 5021 1$sqsa|ophhddddd

5°13 7‘1‘1‘11'1‘1"
«31“— M

«no WM-als'luu ‘ns I4I3IxIIIOQE1LJ4;:;IoI'1‘; 11-1 “humid“;

RAW“ mnv-t» sums EW~ WMM
William? 86305 thnktmhmnnfiah;. 771—3 W (.0an ”lb Auuk G» Rurosxec.b&1’~r

db (1 Mylar-11554112 14‘ Munoz-rec Bk H?M W “MW

271.39 da’
‘ on W @0125 +93X>YW<MA~EZ W

1({1 S. MiFORMfl—f 1.}; We MM LLQM(gal/”i2: k ism-ML.
{(2. .62 W \A‘Wx 2:100 am) ste who. a. W

:/: q,cAuAn&RS-33>.W;A ‘kaS

1, MMMEDM w4Jk+hluy~MWW Univ: an

L M MCMVLQ% mpg 63:, "rm
u.m f...“ cgusr. K} W Mame:

51
“2%m

Part ofBob 0 ’Rear’s "laundry” list ofoperating—system changes and correctionsfor early April 1981. Around
this time, interim beta copies were shipped to IBMfor testing.

V The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 36/1582

''My own IBM computer.
Imagine thaf'

Presenting the IBM of
Personal Computers.

JU*>I"prr----------------------------'----.
l'"'""t;';.JJ ..
"'P~•rh
fl<:"'-"';1)

~~;~·t..:': ,...,,.,.,r
ll),tl ''Dad, can I use

the IBM computer
q;, -j£ I] tonight?''

~~~~ l"oo<M"""""' ool"""lgr.<pW",f""''"""'"'"''"~wiUdl"""' 
\2 

phc:nomcnon. It what makes a computer tick-and what it can do. lbcy 
"....i 1~ 1 SUI'lS when your can take the same word processing program you use r<-.... ~............,""'~ son asks to 10 cn:alc: bUSineSs reports to wrtu: and Wit book reports 

\,;: ~ bo!TUI'o' (aodkamhowtotypeinthc:proccss}Yourkidsmight ( l~ .:-"- ,.;,,o, ~g«~"oomp"~"mu'""""'"'""'~"lng 

I 1 when your their own programs in BASIC~ Pa.o;cal. 
daughter Ultimalely, a.n IBM Personal Computer can be one 

~-.......; Wllllllito ofthcbestlnvestmc:ntsyoumakt:inyourfamlly':>futurc. 
to use your metal racquet. Sometimes yoo let them. Often And one of the least expcn51ve. Starting at ]e55 than 
you don't. But when they start asking to use your IBM Sl600' therc:!s a system that, with the addition of one 
Personal CompUiet, it'll better to say yo. simple device, hooks up to your home 1V and uses your 

Because learning about computers is a subject your audio cas.o;cnc recorder. 
kids can study and enjoy at home. 1b introduce your family to the IBM Personal 

It's also a fact that the IBM Personal Computer can Computer, visit any Computefl..alld& store Of Scars 
be as useful in your home :15 it is in yourollke.Th help Busine55Sy~emsCcnter. Or see it all at one of our IBM 
plan the: family budget, for ifl5tance. Or to compute Product Center.;. (The IBM National Accounts DivisiOn 
anything from interest paid to calories consumed. You 
can even lap directly into the Dow jones dala bank with 
your telephone and an ine'lpensive adapter. 

But as surely as an IBM Personal Computer 
can help you, it can also help your children. 
Because just by playing games or drawing 

will serve business customers who want to purehasc in 
qllantity.) 

And remember. When your kids ask to usc your 
IDM Pcr.;onal Computer, let !hem. But just make 

sure you can get it back. After all your son's 

still wearing that tie.==-~==- .=:• 
~~F~E. 

1981 

The 1981 debut of the 
IBM Personal 
Computer. 

In spite of such difficulties, however, the new operating system ran on the prototype for 
the first time in February 1981. In the six months that followed, the system was continually 
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM 
Personal Computer on which it appeared, had become a functional product for home 
and office use. 

Section 1· The Development of MS-DOS 19 

...•. ;.~ 

HUAWEI EX. 1010 - 37/1582

1981 

The 1981 debut ofthe
IBMPersonal

Computer. “My own IBM computer. 
 

 
us.out nm“N hlsth

.. Presenting the IBM of
1 Personal Computers.

3755?: $3.25.”

who uyour urn
 

AMI asor anmh

snnph- 4will MIA!

 . .. “Dad, can I use

.1 the IBM computerW as." - a

fig .\ J- tonight?
NW)

starting "Ill' .lltlltlum- 1vilula
Milk wllMcMimpom m
huh then I

ll wM‘I'lu \\
llk' youpour u.hk'  

 

  
lts not an unusual colorful graphlos. yourson or daughter wlu discover
phenomenon It what makes a computer nut—anal what it can do. They
suns when your can take Ill: slut: word processing program you use

“‘mv" son asks to to create ouslnass reports to write and edit book reportsborrow (and learn how to type lo the process) Your kids might
mm: ( a tie. Or even gel so ‘compumrimuk' mey'll start writing
child im [ when your thelr own pmgnms In allst or Pascal.mm daughter ultlmalely. an IBM Personal computer can he oneK.\ wants to «the best. lllvislmems you malac in your rarnllys nature.

to use your metal racquci. Sometimes you let them. orten And on: 0(“15':ISKEXPGI§1V¢.SIZIIDIS at less than
you don't. But when they slarl asking to use your IBM "600' thus: a system that. with the addltloll oionc
Personal Computer. its better to say yes sirnplc d=vlc¢. hooks up lo your home TV and uses your

Because Imming about computers is a sublcct your audio cassette tcconicr.
kids can study and enjoy at home. To introduce your family In the HM pcrsonal

Its also an (act that the IBM Personal Computer can Computer. vislt any Compuch store or Sears
be as usesul in ymlr home as it is in your once. 11: help Business Systems Cenler. Or see It all at on: orour IEM
plan the family budgcl. for imuncc. Or to compute Product C:m:rs. (Th: IBM National Accounts Division
anything from inltrcsl paid to along consumed. You wlll serve lat-sinus customers who want to purchase in
an mu lap dimclly into the Dow Jones dzu bank with qua-idly.)
your telephone and an lnexpenslvc adapter And remember. When your kids ask to use your

But as surely as an IBM Personal Computer
can help you. it can also help your children.
Because lust by playing games or drawing

lllM Pusannl Computer. let them. Bul just make
sure you can gcl it hacle After all your son‘s

stlll wearing that t
 

  
 

The IBM Pessonal Computer

 

  
n. n. lnu Mundl-mndrflsvmsrw nu mu...»

  
 

In spite of such difficulties, however, the new operating system ran on the prototype for

the first time in February 1981. In the six months that followed, the system was continually

refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM

Personal Computer on which it appeared, had become a functional product for home
and office use.

Section L The Development 0 MS—DOS 19
UAWEI EX. 1010 _ 37/1582



'11.11·'·1'' 
"'I 

'll•.!,i : il 
.1 1,1 

.[l1 ;I 
11 •, 

': :1 

1981 

Versionl 

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi
sioned as a final model for 16-bit computer systems. According to Bill Gates, "Basically, 
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file 
system and everything ... the key thing [in developing version 1.0] was my saying, 'Look, 
we can come out with a subset first and just go upward from that.'" 

This first version- Gates's subset of MS-DOS-was actually a good compromise be
tween the present and the future in two important respects: It enabled Microsoft to meet 
the development schedule for IBM and it maintained program-translation compatibility 
with CP/M. 

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of 
assembly-language source code and ran in 8 KB of memory. In addition to utilities such 
as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file, 
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and 
character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in
cluding the application~program interface and the disk-file and memory managers. The 
third file, COMMAND.COM, was the external command processor-the part ofMS-DOS 
most visible to the user. 

To take advantage of the existing base of languages and such popular applications as 
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan
ically translate source code for the 8080 to run on the 8086. And because of this link, 
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating 
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames 
and three-character extensions, and it had the same conventions for identifying disk drives 
in command prompts. For the most part, MS-DOS also used the same command language, 
offered the same file services, and had the same general structure as CP/M. The resem
blance was even more striking at the programming level, with an almost one-to-one cor
respondence between CP/M and MS-DOS in the system calls available to application 
programs. 

New Features 

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextriCably 
bonded to the IBM PC. Hoping to create a product that would be successful over the long 
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate 
changes and new directions in the hardware technology- disks, memory boards, even 
microprocessors- on which it depended. The first steps toward this independence from 

20 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 38/1582

    
      

 
‘, 20

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi—

sioned as a final model for 16—bit computer systems. According to Bill Gates, “Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file

system and everything. . .the key thing [in developing version 1.0] was my saying, ‘Look,

we can come out with a subset first and just go upward from that.”

This first version— Gates’s subset of MS—DOS -—was actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet

the development schedule for IBM and it maintained program-translation compatibility
with CP/M. l '

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of

assembly-language source code and ran in 8 KB of memory. In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and

character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in—

cluding the application-program interface and the disk—file and memory managers. The

third file, COMMANDCOM, was the external command processor— the part of MS—DOS
most visible to the user.

T0 take advantage of the existing base of languages and such popular applications as

WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan-

ically translate source code for the 8080 to run on the 8086. And because of this link,

MS-DOS looked and acted like CP/M-80, at that time still the standard among operating

systems for microcomputers. Like its 8—bit relative, MS-DOS used eight—character filenames

and three-character extensions, and it had the same conventions for identifying disk drives

in command prompts. For the most part, MS-DOS also used the same command language,

offered the same file services, and had the same general structure as CP/M. The resem—

blance was even more striking at the programming level, with an almost one-to—one cor-

respondence between CP/M and MS-DOS in the system calls available to application
programS.

New Features

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably

bonded to the IBM PC. Hoping to create a product that would be successful over the long

term, Microsoft had taken steps to make MS—DOS flexible enough to accommodate

changes and new directions in the hardware technology— disks, memory boards, even

microprocessors —— on which it depended. The first steps toward this independence from

The MS-DOS Encyclopedia
HUAWEI EX.1010 - 38/1582



IBMAnnouncesNewMicrocomputerSystem 
It's Officia~ One surprise ,---=-----=-------_J'-'""-""'-""--'--------, 

PERSONAL 
COMPUTER 
FROM IBM 
The mainframer's lang .. 
awaited entry into the personal 
computinc market aims lor 
corporate as well as home 
users. 
With uncharacteristic but resounding fan
fare, 18M ended the summer's most popular 
guessing game for the industry by introduc
ing its Personal Computer. Highly compa· 
rable to offerings from arch-contenders Ap
ple and Radio Shack. the machine repre· 
sentsseveralnewtacksfortheleadingeom
puter manufacturer as it attempts to hitch its 
wagon to one of the fastest growing seg
ments of the industry. 

The computer, which is designed to 

appeal to home users as well as corporate 
professionals, ranges in price from Sl ,565 
for a bare-bones configuration to $6,300 for 
the full-blown modcl.ll will be sold through 

OUTLOOK 

IBM really gets personal. 

Sears and Computcrland computer retail 
Slorcs as well as directly to large corporate 
and educational users. IBM says, pointing 
out that it has set up a special national mar
keting team to handle such volume orders. 

Donald Esrridgc, !he aniculatc di
rector of IBM's cnuy systems business who 
braved sttobes and movie lighLS at the ma
chine's Waldorf-Astoria introduction, de
clines to say how many personnel have been 
dedicated to the national marlccting effort, 
but says it will be selling in volumes of 20 
machines or more. Several weeks after the 
unveiling, he said response so far had been 
''very, very good,'' with orders being taken 
but no deliveries to be made before this 
month. 

In addition to the game of Adven
ture. which Estridge said has been thor
oughly exercised by his Boca Raton, Aa., 
sr.aff, IBM has decked out the machine with 
an array of packaged applications programs 
lhat are ell.pccted to make it attractive to the 
corporate user. 

Among lhese are the: popular Visi
Calc spreadsheet package from Personal 
Software, accounting packages from Man
agement Science America's Peachtree Soft
ware operation. and Information Unlimit· 
ed's EasyWriter word processing system. 
Although IBM wouldn't say, more indepen
dently developed packages are cenain to be 
offered for the computer as well as packages 

modubl:or)fora display. (1bl: machine isf'uUy FCC 
certified for home: opaation as a class 8 
computing device.) 

IBMlscognizantofthe:f:actthatthisminimally 
configured machine probably won't last a serious 
computerist long before he: wants to expand. The 
company offers upgraded versions iJf the machine, 
and will sc:U them in different configutallons. for 
c:xamplc:,thefimllistsamoretypkalconligural:ion 
for home or sdlool as 64k d malo mc:mory, one disk 

continued on page 17 

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal 
Computer. 

1981 

Section I: The Development of MS-DOS 21 

HUAWEI EX. 1010 - 39/1582

 
1981 

 

 
  EUSINE 85

l gestup.» . ntts- -. ~0-     Its Desk—Top
Model Brings
A New Image  n-eu-me queen-hunt met»,at . m. .4 twnnm 

 

Big I.B.M.‘s Little Computer

IBM's New Line Likely to Shake Up
The Market for Personal Computers

mu Desktopcmtpmorm
mar suwusnrs mus wsmvurms
 

 
 

 

  
  

Retail Sales

In US. Up
1.3% in July

But Analysts
Are Dubious of
General Uptum

 

 3'! Growl Mont:A‘dlllmv-Imweuaumaw-nu.
NEW YORK—Intm-mmnt autumn Ma-rntner Corp. has made In hold any lnluthe petsmalmnputer market. end expertsbelieve the WI" [lull could Clplul! the

lead In In; yuttutnu industry within twovents.
Vesterdey the company Introduced sev-rrat versions or I smell compiler designedlot me In W. schools and attic-a. Fries

entrnnrp. The Inn nieenines operate on anlanl mrn' m mtrmpmeessor. a Interand W yer-emu "rhlp" thin the.» nunIn flvus‘ nuchutes. IBM 1M Ill-1 obtained
[or distribution Elf—I pupil-ll! 9mm! atVulcan. I unmet-l mull] model mu"“led by Peru]! 50'"!!! Inc.01M! lam-me. 01 50mm, (or thetan equipment include Ihe Eesywntrrword-mm system. three mountingput-ea hunt Pelthlne Soltvare lite. and

 [If "Ell". NulVIlElll (0 Int"? mar. l.“
typewritten pages. an. new Iawfiw; meanwm, Wnrm'tmattthnttapaetty,wt t .- _ n mm mm- . 7-
use mu ennhte them tn work with lower llnfi‘twwnflu Wm?" :ii.”»‘..."fl;,'.‘.fi“:‘:..mop-nuts nun more data than commit . ”I". l , urn-e Amulet
minutes and to display lmlns on their :Mmfirw $533.13“ When avideo streets In greater detail. 53:; s m if an em-Mul ”r, 4..

But the added memory came: at a price. as. . a.1.T..’.‘i'.i“..'J.-"t'r'utetu it; :nfim‘tmfiyflfn‘zIan unto-teats that a nuiy mm mm ”ifi‘.‘*”‘ 'nl‘om'i‘ftnm i..“"...i::‘..t."puttr win east mm in more. It; trade In rsn'iutnmrmMum nan-mate...“H.555 III-thine tomes withlsnm characters "lllnluuunzurmmtm nurture-mummy.-”mm" um um- .t... . «mud rt .

  
E:  
 

BBC. "BYEtime that you 

IBMAnnouncesNewMicrocomputerSystemIt's Ofi‘iciak One surprise5y ibool Hogan. rwsuw'u:wvrm;m-—mu.manmnitmnmu thmtllhrltniimltuflxl'ilmt'lmbt‘he lNEun-tkr a. ll!” meta «mun I luau nnun. Mirna n Krill“! rumWhflhfltrntulhtllwdlmrlllylfin‘tllllr Inprutmutimtrtuunrems-mamelt-lwrvrennin-unto.“ Sfusmnl'rnttnllll IIwI rum-rmrte rpm .1 )VII «in nutt- nae-t remit rm will ut- mine the mutual Output"m/amm. mm- were aw unnrm In the nun temmwunrinrttu tlivhkltt‘mt‘IBM mm\vlwnL dint-tat flvt‘ panel in bat: Illll'm-lnu llnup tn nudge mt-tntdtlfllttlt «nit mm. nnntrn Int-r n... .tn. mam-k.tenant tlw (cut it [hf nutm art the pm: newt-t it "suntan“, my"vtrlthr Bank” the lltfilmzlhlt we\\' «an we retitled rather It mat-Intra- ltn‘Mwmunu autumn. summit-ti Mknndl mt

 

 
Sears Ind Computerland computer retailPERSONAL COMPUTERS States as well as directly to large corporate
and educational users. taM says. pointing
out that it has set up u special nllianll mar-
keting team to handle such volume orders.

Donald Estn'dge. the articulate di-
rector of IBM's entry systems business who
braved strobes and movie lights at the tubehine‘s Waldorf-Astana introduction. des
clines to say how many personnel have been
dedicated to the national mlrkeling effort.

. but says it will be selling in volumes or 20
The matnlramar's long- machines or more. Severn weeks after the
awaited entry into the persona] unveiling. he said response so in had been- "very. very good." withorders being taken
computing "'"k'l 3"": l" but no deliveries to be made before thiscorporate as wall as home mm"5075- In addition to the game or Adven-
witlt uncharacteristic but resounding fan- lure. which Esuidge said has been thor-
tare. IBM ended the summer‘s most popqu oughly exercised by his Boca Rllon. Fla”
guessing genie [or the industry by introduc- stall. IBM has decked out the mlchine with
in; its Personal Computer. Highly compa- an array ofpackaged applicadms programs
rable Ia offerings from arch-contenders Ap- that are expected to make it uttrzctive to the
ple and Radio Shack the machine repre- corporate user.
scnts several new tacks [or the leading eom- Among these are the popular Visi- .
puter munufactureras it attempts to hitch its Cali: spreadsheet package from Personal
wagon to one of the fastest growing seg- Software. accounting packages from Man-
Inents ol' the industry. agement Science America‘s Peachll'ee So

The computer. Which is designed to ware operation. Ind Information Unlim
appeal In home users as well as corporate ed's EssyWriter word processing system.
professionals. ranges in price from SI .565 Although IBM wouldn't say, more indepen-ror n hare-bones configuration to $6,300 (or dently developed packages are certain to be
lht: full-blown model. It will be sold through offered {or the Computeras well as packages

l

  
 

   
 
 
 
 
 
  
  
  
  
 
  
  
 
 

  
 
  
   

 

 

 

  l2 Peasant Cnmptulng/Octuhrt mt

 
  tIy unveiled Its first ofi‘eringln the

. . computer nutter—rite IBM Peisonal
Cmnputcr. The milk. perhaps surprisingly. playsmusic and includes game software to say nothingof the standard features available,

The machine is irnprtsslvc. Its starting price is a computerist long before he wants to expand. The
mere rises. For that price the buyer gets the ss~
hey keyboard. the computer Itsetr based on an
3088 microproctssor. and Iék of main memory
'l'hlsrnirurnalconfigumimcanuscatapecassette forhomeorsdtoolasakot‘mainmxmedlsk
for mass stung: and a television set (with an rt mntinuadonpagefl

modulatorflura dlsplzy. (The machine ismuy rcc
certified for home apt-tattoo as a class B
computing device)

IBM ls cognlnntofiht fact that this minimally
configured machine probably won’t last a serious

 

 
  
 
 company 06:“ upgmdedversim utthc machine

andwiflselltbcmlndlfl'etcntoonliguntmfor
example, the firm lists a more typical cmflgumion

 

 
 
 
 

  
  

A sampling ofthe headlines and newspaper articles that abounded when IBM announced its Personal
Computer.

Section I: The Development ofMS-DOS 21

HUAWEI EX. 1010 - 39/1582

 



1981 

,~~~ onltlew'"""'"'"'"'''' ~ lhop&l10"""''"'.""·'"" 
trJie'J)feteronmanyproc:eSSOfS 
andoperatingsystems,thus 
assuringlhatappllcalloopro
gramscreatedwith BASCOM 
have,andwillcontinuetohave, 
thebroadestp:~SSiblamarll.et. 

lrtdustry'sheSIIancyovera 
serioust6-bitsol!ware 
commitment has flnany been 
btoken:andsecond,the 
capabill~esollhet6-bil 
processorsaref1nanybeing 
puttosomereallyexci\lnguses. 

A16-bllprocessorgJVes 
software designers many 
advantageslnherent~an 

enhancedlnstructionsei.For 
e~ample. we'vetakenaclvan
tageolthee~pandedaddress· 
ing~nourMS·UNK.ahnkerlor 
PascatorFORTRAN programs 
lhatareuptoamegabyteinsize. 
ln96Kolmemory.lheMicrosofl 
80B6BAStCinterpretercan 
executea64Kprogram.almost 
doublelhesizee~ecutabteon 
an 8-blt run\lme. Appi1C8tions 
pi'ograms can be more sophis
~catedll'ltheirleatures,human 
engineenngtactors,andin 
solvingproblemslhatlrivolve 
largeramountsoldata. 
Thel~ernumberolreg

istersWI!hthe8086/808Spro
cessorsalsomeansthatcom· 

I 
tasking environment 
imponantleatufeso!MS-OOS 
includeerrorrecovery,devic:e 
indepefldimti/Q.andbuilt·in 
variabtetength~iskreadsancl 

~~::::~~=!~,~ 
IBM Personal Computer wiU 
no doubt become an industry 
standard. 

Nowthatthet6·llllsoftware 
barrier has been crossed and 
thetechnk:alcapabiU\Iesolthe 
16-bitprocessorsarebeing 
apprecialed. MicrOsoft e~pectS 
toseemanyt6-tilpersonal 
computers.ll"s an industry move 

~~~~~-~::!~·:n~~ 
o!IBM,I\Should soonbeintun

Microsoft
COBOL
Passes GSA
Validation

Mtcrosofttsatwayscon
cernedaboutstand&dsloratl
tis products The UMed States
government. the largest user
otcomputereqUipmentand
sortwaremthewo~d.hasde·
veJopedtestslorcornphance
Wllhandimptemenlabonol
standardslorcomptlers Tesllng
olcomptlers,calledvall11atton.
tsperformedbygovemment tn·
spectors.whoareindependent
ofsoltwaredevelopels

MK:fOSOIISubmltledds
COBOLcomptler(under\he
CP/M operating system) lor
validation. The General
SeMcesAdministratKJn(GSA)
pefformedthevabdab011tests
andvahdatedMtClOSOII COBOL
asalow·tnterme(fla\etmptemen
tationolthet974ANStstandard
!OJ" COBOL

Why IS Microsoft concerned
aboutstan~rds.andwhydtd

we submrtMtcrosoftCOBOL
torvabdatton? Mike Orr, COBOL
productmanager.olleredthe
loiiOWIIlgreasons·
(con~nuedonbadl)

A page from Microsoft's third-quarter
reportfor 1981.

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files: To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application's portion of the memory space. It includes, among other things, the file
name, the extensiqn, and information about the size and starting location of the file
on disk.)

Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap
plication did not have to be modified if new devices were added to the system. From the

22 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 40/1582

1981

 ROSOFI'
mRTERLV

This policy is especially advan-
tageous when a large number orprograms is distributed using asingle copy or the tuntime mod-ule because ontyone royaltypayment is paid.(Mtuosott still supports the
mnllme system used with prevtws velsms ll application
programmers link the old libraryto their applications. there is
no royalty lee, This applies toversions 5.2 and earlier. loo.)This change in lhe
BASCOM royalty policy ioltectsMicrosolt's wlsll (0 increase the
number or application packageson the market. This policy
change the addition 0' CHAINwith COMMON. and the Im-
plementation utme runtlmemule make EASGUM a mummore flexible and melted toollot the applicallon programmer.SASCOM 5.3 IS available
now tot cP/M systems.Including Ibe We II with theMicromll Salicard. Mmsolt
isoornrrimed to supportingBASCOM and the BASIC
tnterpreierort many processors
and operating systems. thusassuring that applicalmfl pio-
grarns createdwith sascouhave. and will continue [D have.
the broadest possible market.

Paul Allen plex operations. such as "eating ,
‘ point and graphics routines Mlcrosofl

'lBM Breaks the
16-Bit Barrier

The most important lealure DI
the new taM Personal Compu-Iel Is as 8088 CPU IBM's choice
oitho mopersuoiwoaraasat the industry that have been

PIuIMU'I item-mitt mum
on the verge olchanging torthe past to monihs‘ lust. the
Induslry‘s hastlanw overaserious I6-bil sotnvare
commitment has finally oeanbroken: and second. the
capabilities ol the ‘6»th
processors aiatinatiyoeingpul to some really exciting uses.

A ts-on orocessorgrvasSomalis designers manyadvantages inherent in anenhanced instruction set. For
example. we‘ve taken advan-
lags ot the expanded address»ing in our MS-LINK, a linkerlmpascal or FORTRAN programsthatareuptoemagahyte in size.in 96K ot memory. the Microsottwas estate lnterprelercanexecute a 54K program, almostmuble Ins size executableon
an 8-bil runlime. Applications
programs an be more sophis-iicated in their leaiures. human
engineering tumors. and insolving problems that Irt'vohrelarger arrtouns otdala. -

The iargornumoer ot reg-isters with the 8056/5055 plo-cessors also means thatodm~

_ alreadyorovidedtorthe IBM

execute much taster. The
speed otthe graphics primitives COBOLIn MEASIGBB makes ll very
esyismiruaagaans Passes GSA‘ a loan: Without mau‘i na ‘ '
£91m; ' ValidationWith ins [BM announcement
ol the Personal Computer. it Mum“ ls always non-tooxs as though the Industryts
““wa“Norma”: earned aoout standards tor all154)“ saitware Suppvnr In addi»lion la lhe Mlcmsoll software '

i|S products The united States
government. the largest usernl computer equtplnenl andsoltware rn the world. has dot
veiopeo tests tor compliancewill! and implementation 01
standards tor compilers restingor compilers. called validation.
ls partotmed oygovammenl in-spectors. who are independent
oi sottware developersMrcrosolt suhmmed its
COBOL compiler (under the
cp/M operating system) torvalidation, the Gsnerai
Servrces Administration (GSA)pertorined the validation testsand validated Mlurosoll COBOL
as a Iow-tntemtedlate implemen-tation ot the 1974 ANSI standard

Personal Computer. we'reptanningatuii lino alts-billalt-gtrages andentiuset soltware

6M envtronmenl. especially
rinse programs almadywltttanMicrosall BASIC.

Thu “linen pin" 01 Microsoll's9W IG-bfl product itne lorihe3056/8088 isoul COMPBCI.
exihia operating system, Msnos. MSDOS is the primary

operallrlg system on the IBMPersonal Computer. We'vemaintained commodity wnriexisting CFIM 2.x operating' - , tor COBOL.system calls. so it s a Straight- .
lorward process to convert 6060 Why is Mrcmwlt concernedandzaooiogiamstoruriunder MulslanflardslmvmydidMS-Dos. Ms-oos also pm- we stiomtt Microsolt wall
was a Mum "99,,“ pa", tor Valldallon’ Mike Orr. COBOLproduct manager. otteiedthetollowurg reasons:(continued on neck)
to the XENIX mullirusel. mulli-
tasking environment. Otherimportant leatules al MS-DOS
include errarleotwery. deviceindependent I/o. and buillsin
variable length disk reads andwniea What is now the start;data operating system tor theIBM Personal Computer willnodouot become an industryslandala.Now ms! the 154)“ soltware
barrier has been crossed and
the technical capabilities at thetoott prooossorsare beingappreciated. Microsoll expectsto sea many tout personalcomputers. It's an industry move
we've anlldnatled tor quite sometime and. given the momentumOl IBM. "should sombailtlullSWlng.

A pagefrom Microsoft ’5 third-quarter
reportfor I981.

specific hardware configurations appeared in MS—DOS version 1.0 in the form of device~

independent input and output, variable record lengths, relocatable program files, and a

replaceable command processor.

MS-DOS made input and output device—independent by treating peripheral devices as if

they were files; To do this, it assigned a reserved filename to each of the three devices it

recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for

the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-
trol block of a file named in a Command, all operations were directed to the device, rather

than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located

in an application’s portion of the memory space. It includes, among other things, the file—

name, the extension, and information about the size and starting location of the file
on disk.)

Such device independence benefited both application developers and computer users.

On the development side, it meant that applications could use one set of read and write

calls, rather than a number of different calls for different devices, and it meant that an ap—

plication did not have to be modified if new devices were added to the system. From the

22 The MS—DOS Encyclopedia
HUAWEI EX.1010 - 40/1582

1981

user's point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/0 only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys
tem maintained file lengths to the exact size in bytes and could be relied on to support logi
cal records of any size desired.

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of

· which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND. COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

_Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM's phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk.

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table-the
FAT- that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al
location map -a list of sixteen 1 KB allocation units where successive parts of the file
were stored-an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I- The Development of MS-DOS 23

HUAWEI EX. 1010 - 41/1582

1981

user’s point of View, device independence meant greater flexibility. For example, even if a

program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi-

cal and physical record lengths were identical: 128 bytes. Files could be accessed only in

units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With

MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-

tem maintained file lengths to the exact size in bytes and could be relied on to support logi—

cal records of any size desired.

Another new feature in MS—DOS was the relocatable program file. Unlike CP/M, MS—DOS

had the ability to load two different types of program files, identified by the extensions

.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They

were more compact than .EXE files and loaded somewhat faster, but the combined pro-

gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other

hand, could be much larger because the file could contain multiple segments, each of

l ‘ which could be up to 64KB. Once the segments were in memory, MS-DOS then used part

of the file header, the relocation table, to automatically set the correct addresses for each

segment reference.

In addition to supporting .EXE files, MS—DOS made the external command processor,
COMMANDCOM, more adaptable by making it a separate relocatable file just like any

other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMANDCOM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became thedominant
operating system on 8086-based microcomputers. There were several reasons for this, not

least of which was acceptance of MS-DOS as the operating system for IBM’s phenomenally

successful line of personal computers. But even though MS—DOS was the only operating

system available when the first IBM PCs were shipped, positioning alone would not neces—

sarily have guaranteed its ability to outstrip CP/M—86, which appeared six months later.

MS—DOS also offered significant advantages to the user in a number of areas, including the

allocation and management of storage space on disk.

Like CP/M, MS—DOS shared out disk space in allocation units. Unlike CP/M, hOWever,

MS-DOS mapped the use of these allocation units in a central file allocation table ——the

FAT— that was always in memory. Both operating systems used a directory entry for

recording information about each file, but whereas a CP/M directory entry included an al-

location map —- a list of sixteen 1 KB allocation units where successive parts of the file

were stored— an MS-DOS directory entry pointed only to the first allocation unit in the

FAT and each entry in the table then pointed to the next unit associated with the file. Thus,

CP/M might require several directory entries (and more than one disk access) to load a file

Section I: The Development ofMS—DOS 23

HUAWEI EX. 1010 - 41/1582

I.

I
I
I
I
I

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS's
ability to find and load even very long files was extremely rapid compared with CP/M's.

Two other important features- the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor_:_ provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre
sponding sectors automatically.

Another innovative feature ofMS-DOS version 1.0 was the division of the command pro
cessor, COMMAND. COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTO EXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND. COM to include commonly requested func
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND. COM
that could be overwritten by any application requiring more memory. To maintain the in
tegrity of the functions for the user, the resident part of COMMAND. COM was given the
job of checking the transient portion for damage when an application terminated. If neces
sary, this resident portion would then load a new copy of its transient partner into memory.

EaseofUse

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing.

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to. in
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications.

24 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 42/1582

1981

larger than 16 KB, bUt MS-DOS retained a complete in-memory list of all file components

and all available disk .space without having to access the disk at all. As a result, MS—DOS’s

ability to find and load even very long files was extremely rapid compared with CP/M’s.

Two other important features — the ability to read and write multiple records with one

operating-system call and the transient use of memory by the MS—DOS command

’ processor—4 provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the

ability to read and Write multiple sectors. When reading multiple records in CP/M, an appli—

cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap-

plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS—DOS would then load all of the corre—

sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro—

cessor, COMMANDCOM, into a resident portion and a transient portion. (There is also a

third part, an initialization portion, which carries out the commands in an AUTOEXEC

batch file at startup. This part of COMMANDCOM is discarded from memory when its

work is finished.) The reason for creating resident and transient portions of the command

processor had to do with maximizing the efficiency of MS—DOS for the user: On the one

hand, the programmers wanted COMMANDCOM to include commonly requested func-

tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these

commands meant increasing the size of the command processor, with a resulting decrease

in the memory available to application programs. The solution to this trade—off of speed

versus utility was to include the extra functions in a transient portion of COMMANDCOM

that could be overwritten by any application requiring more memory. To maintain the in-

tegrity of the functions for the user, the resident part of COMMAND. COM was given the
job of checking the transient portion for damage when an application terminated. If neces-

sary, this resident portion would then load a new copy of its transient partner into memory.

Ease ofUse

24

In addition to its moves toward hardware independence and efficiency, MS-DOS included

several services and utilities designed to make life easier for users and application devel-

opers. Among these services were improved error handling, automatic logging of disks,

date and time stamping of files, and batch processing.

MS—DOS and the IBM PC were targeted at a nontechnical group of users, and from the

beginning IBM had stressed the importance of data integrity. Because data is mostlikely

to be lost when a user responds incorrectly to an error message, an effort was made to_ in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin—

terpretation, Microsoft used these messages consistently across all MS-DOS functions and

utilities and encouraged developers to use the same messages, where appropriate, in their

applications.

The MS-DOS Encyclopedia
HUAWEI EX

_.ux...cmtg.»s

.1010 -42/1582

'
0

0

0

Package Contents

1 dislotette, with the followinq files:
COMMAND • COM
MSDOS.COM
EDLIN.COM
OEBUG.COM
FILCOM.COM

1 MS-oos Disk Operating System Manual

System Requirements

The MS-OOS Operating Syatem requires 8K bytes of memory.

0

0

0

Introduction

Features and Benefits of MS-oos
Using This Manual
Syntax Notation
Ms-oos s.tructure and Characteristics

Chapter 1
1.1
1.2
1.3

Chapter 2

2.1
2.2
2.3
2.3.1
2.3.2

Chapter l

3.1
3.2
3.2.1
3,2.2
3.3

General Ms-oos Commands
Control Function Charllcters
Special Edi tinq Collll'llands
Disk EJ:Crors

COMMAND.COM

Prompt
Filenames
Co~~U~~ands

Internal Co!IIJIIands
External Commands

EDLIN

Involdng EDLIN
Commands

Command Parameters
Interline Coromands

Error Messages

Chapter 4 DEBUG

4 .1 Invoking O&BUG
4.2 Co~~~~~~<~nds
4. 2 .1 Co!IUIIand Pa~:ametera
4.2.2 Cornmand Descriptions
4.3 Error Messaqes

Chapter 5 FILCOM

5.1 Involdnq FILCOM
5.2 Colflll\ands
5.2.1 Filenames
5.2.2 switches
5.3 &xafllples

ChapteJ: 6 Instructions for Sinqle Disk Drive Use:te

Two pages from Microsoft's MS-DOS version 1.0 manual. On the left, the system's requirements- 8 KB of
memory; on the right, the 118-page manual's complete table of contents.

1981

In a further attempt to safeguard data, MS-DOS also trapped hard errors- such as critical
hardware errors- that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them-a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature- one visible with the DIR command- was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Development of MS-DOS 25

HUAWEI EX. 1010 - 43/1582

1981

0 Package Contents1 diskette, with the following files:COMMAND.COHMSDDS.COHEnumconnzaue.conEncomcou

. Contents1 MS-DOS Disk Operatlnq System Manual
introduction

Features and Benefits of MS-DOS
Using This Hanna).Syntax Notation
his—Dos structure and characteristics

system Requixalnents chapter 1 General PIS-DOS commas1.) Control Function Characters
x.2 Special Editing (Demand:The MS-DOS operating System requiran ax byte: of memory. 1.3 Disk Errors

0 chapcer z CDHHAND.COM2.x Prompt:2‘2 Filenamea2.3 Commands2.3.1 Internal Comanfls2. 3. 2 External Command:

0 Chapter 3 sum3,) lnvakinq EDLIN3.2 Commands3. 2.1 Command Parnmetexs3. 2.2 Interline Command:
3.: Error Messages

chaptex 4 DEBuG
a.) Invoking DEBUG4.2 Commands4.2.1 Command Parameters
4.2.2 Command Description;1.3 Error Message:

0 Chapter 5 rucon5.x Invoking Fucuu5.2 Cow-mantle5. 2. 1 Puma-nus5.2.2 Switches
5.: Examples

Chapter Instructions in: single Disk Drive users

Twopagesfrom Microsoft’sMS—DOS version 1.0 manual. On the left, the system’s requirements —— 8K8 of
memory; on the right, the 118—page manual '5 complete table ofcontents.

In a further attempt to safeguard data, MS—DOS also trapped hard errors —— such as critical

hardware errors —— that had previously been left to the hardware—dependent logic. Now

the hardware logic could simply report the nature of the error and the operating system

would handle the problem in a consistent and systematic way. MS—DOS could also trap the

Control—C break sequence so that an application could either protect against accidental

termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-

ory information about the disk when it was changed. In CP/M, users had to log new disks

as they changed them ——a cumbersome procedure on single—disk systems or when data

was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as

no file was currently open.

Another new feature —— one visible with the DIR command— was date and time stamping

of disk files. Even in its earliest forms, MS—DOS tracked the system date and displayed it at

every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Developth ofMS—DOS 25

HUAWEI EX. 1010 - 43/1582

1''1'

'jl
I

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added. to MS-DOS to help IBM. IBM wanted to run
scripts- sequences of commands or other operations-one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and SofTech Microsystem's p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the Info World bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con
cern was compatibility: To what extent was Microsoft's new operating system compatible
with the existing s~andard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that "our most optimistic view of
the number of machines using MS-DOS wouldn't have matched what really ended up
happening."

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM's name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC- in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the "CP/M Record Player"-presumably in
anticipation of a vast inventory of CP/M applications for the new computer-and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 44/1582

1981-1982

were needed for file-header information, the MS—DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally addedto MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations —- one after the other to test various

functions of the system. To do this, the testers needed an automated method of calling

routines sequentially. The result was the batch processor, which later also provided users

with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex—

ample, in less sophisticated operating systems, applications and other programs remained

in memory only as long as they were active; when terminated, they were removed from

memory. MS-DOS, however, added a terminate-and—stay—resident function that enabled a

program to be locked into memory and, in effect, become part of the operating—system
environment until the computer system itself was shut down or restarted.

The Marketplace

When IBM announced the Personal Computer, it said that the new machine would run

three operating systems: MS-DOS, CP/M—86, and SofTech Microsystem’s p—System. Of the

three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS—DOS

was released, nine out of ten programs on the InfoW/orld bestseller list for 1981 ran under

CP/M—SO, and CP/M-86, which became available about six months later, was the operating

system of choice to most writers and reviewers in the trade press.

Understandably, MS—DOS was compared with CP/M-80 and, later, CP/M—86. The main con-

cern was compatibility: To what extent was Microsoft’s new operating system compatible

with the existing standard? No one could have foreseen that MS-DOS would not only catch

up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of

the number of machines using MS-DOS wouldn’t have matched what reallyended up
happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a

year, IBM was selling 30,000 PCs per month, thanks in large part to a business community

that was already comfortable with IBM’s name and reputation and, at least in retrospect,

was ready for the leap to personal computing. MS-DOS, of course, benefited enormously

from the success of the IBM PC — in large part because IBM supplied all its languages and
applications in MS-DOS format. “

But, at first, writers in the trade press still believed in CP/M and questioned the viability of

a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that

a CP/M-86 machine could run CP/M—80 applications. Even before CP/M-86 was available,

Future Computing referred to the IBM PC as the “CP/M Record Player” — presumably in

anticipation of a vast inventory of CP/M applications for the new computer— and led its

readers to assume that the PC was actually a CP/M machine.

26 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 44/1582

'I:_:·
I .. •

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM's machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard for a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be
the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM's new operating system.

An operating system by any other name ...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson's
"Quick and Dirty Operating System" for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM's version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
oftrademarked Software Bus products, another of which was a product called SB-80,
Lifeboat's version of CP/M-80. ·

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as
COMPAQ-DOS and Zenith's Z-DOS.

Given this confusing host of names for a product it believed could become the industry
standard, Microsoft finally took the lead and, as developer, insisted that the operating sys
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft's business
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section 1: The Development of MS-DOS 27

HUAWEI EX. 1010 - 45/1582

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other

16—bit microcomputer depended ultimately on the emergence of an industry standard for a

16-bit operating system. Software developers could not afford to develop software for even

two or three different operating systems, and users could (or would) not pay the prices the

developers would have to charge if they did. Furthermore, users would almost certainly

rebel against the inconvenience of sharing data stored under different operating—system

formats. There had to be one operating system, and Microsoft wanted MS—DOS to be
the one.

The company had already taken the first step toward a standard by choosing hardware

independent designs wherever possible. Machine independence meant portability, and

portability meant that Microsoft could sell one version of MS-DOS to different hardware

manufacturers who, in turn, could adapt it to their own equipment. Portability alone,

however, was no guarantee of industry-wide acceptance. To make MS—DOS the standard,

Microsoft needed to convince software developers to write programs for MS—DOS. And in

1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name . . .

A tangle of names gave rise to one point of confusion about MS—DOS. Tim Paterson’s

“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle

Computer Products as 86-DOS. After Microsoft purchased 86—DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as

MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating

system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP, that

were not included in MS—DOS, the generic version available for license by other manufac—

turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS—DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS—DOS but

decided to call the operating system Software Bus 86. MS—DOS thus became one of a line

of trademarked Software Bus products, another of which was a product called SB-SO,
Lifeboat’s version of CP/M-80. '

Finally, some of the first hardware companies to license MS-DOS also wanted to use their

own names for the operating system. Out of this situation came such additional names as

COMPAQ-DOS and Zenith’s Z—DOS.

Given this confusing host of names for a product it believed could become the industry

standard, Microsoft finally took the lead and, as developer, insisted that the operating sys-

tem was to be called MS—DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business ——

much larger revenues were generated by BASIC and other languages. In addition, in the

first two years after the introduction of the IBM PC, the growth of CP/M—86 and other

Section I: The Development ofMS-DOS 27

HUAWEI EX.1010 -45/1582

I
I

I
I
I i

I.

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS's biggest competitor.

Giv~~ the uncertain outcome of this two-horse race, some other software developers
chose to ~ait and see which way the hardware manufacturers would jump. For their part,
th{! hardware manufacturers were confronting the issue of compatibility between operat
ing systems. Specifically, they needed to be convinced that MS-DOS was not .a maverick
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

• First, one of Microsoft's goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

• Second, translation was possible only for software written in 8080 or 280 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502.

• Third, many applications were written in a high-levellanguage, rather than in assem
bly language.

• Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86in its compatibility with existing-and appropriate
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to iriclude both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines- although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so.

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft's list of MS-DOS custom
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of1983 the technical supe
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to makeMS-DOS the pri
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and "dramatically" better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 46/1582

"1981—1982

environments nearly paralleled that of MS—DOS. So Microsoft fotmd itself in the unenviable

position of giving its support to MS—DOS while also selling languages to run on CP/M—86,

thereby contributing to the growth of software for MS—DOS’5 biggest competitor
Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers wouldJump. For their part,

I the hardware manufacturers were confrontingtheissue of compatibility between operat—

28

ing Systems. Specifically, they needed to be convinced that MS—DOS was not a maverick ——

that it could perform as well as CP/M-86 as a base for applications that hadbeen ported

from the CP/M80 environment for use on 16—bit computers.

Microsoft approached the problem byemphasizing four related points in its discussions
with hardware manufacturers:

0 First, one of Microsoft’s goals in developing the first version of MS—DOS had always

been translation compatibility from CP/M-SO to MS—DOS software. ‘

0 Second, translation was possible only for software written in 8080 or 280 assembly

language; thus, neither MS-DOS nor CP/M-86 could run programs written for other

8—bit processors, such as the 6800 or the 6502.

0 Third, many applications were written in a high-level language, rather than in assem-
bly language. I

0 Fourth, most of those high—level languages were Microsoft products and ran on
MS—DOS.

Thus, even though some people had originally believed that only CP/M—86 would auto-

matically make the installed base of CP/M—80 software available to the IBM PC and other

16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in

actuality, as flexible as CP/M—86in its compatibility with existing— and appropriate —
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced

several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit

and 16-bit software used on the same machine, the user could rely on the same disk format

for both types of software. Because MS—DOS used a different disk format, CP/M had the

edge in these dual-processor machines— although, in fact, it did not seem to have much

effect on the survival of CP/M—86 after the first year or so.

Although making MS—DOS the operating system of obvious preference was not as easy as

simply convincing hardware manufacturers to offer it, Microsoft’s list of MS—DOS custom-
ers grewsteadily from the time the operating system was introduCed. Many manufacturers
continued to offer CP/M—86 along with MS—DOS, but by the end of.1983 the technical supe-

riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried

the market. For example, when DEC, a longtime holdout, decided to makevMS-DOS the pri-

mary operating system for its Rainbow computer, the company mentioned the richer set of

commands and “dramatically” better disk performance of MS—DOS as reasons for its
choice over CP/M-86.

The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 46/1582

MS-DOS

Standard Operating System for 8086 Micros

MS·DOS is a diSk operating system !rom Mocrosoft lor
80861808Bmicroprocessors.lnternaiiOnaiBus•nessMachmes
Corp. chose M5·DOS (called IBM Per50nat Computer DOS) to
be Its operating system of choice tor Its Personal Computer.
Microsoft's agreements with IBM and several other major
compu1ermanufacturersindlcatethatend·usersyst&ms

What Makes MS-OOS Important?

All of Microsoft's languages (BASIC lnt&rpreter, BASIC
Compiler. FORTRAN, COBOL, Pascal) are available
Immediately under M5·005. Users Of MS·OOS,are assured
that their operating systam wilt be the l1rst that Microsoft wiLl
support when any new products or major relenes are
announced.lnaddition,the8·bltverslonso1Microsolt'5
tanguagesareupwardcompatlbtewiththe16·bitverslona.
Thus, application p10grams wrillen In 8-bit Microsoft
lal'lguages can be rul'l under MS-005 with Utile or no
modificatlon.Microsoflwantstoencourageboththe
transporting of8·blt to 16·bil GOIIware, and tl'le development ol
new16·bltsoltware.

Here are the major features that make M5·005 the operating
system people want to use on 80B6 machil'les:

• E11y Convenlon from 8080 to 8088

MS.005 allows" much lf&O$portab1Uty of8·blt machine
language software as Is poaslble. MS.COS emulates
system calls to CP/M-80. By &Imply running assembly
tanguageaourcecodelhroughthelntetcorweraion
program, almost all 8080 programs wltt worll without
modllicetlon. In most ceaes. a converSion to MS.OOS is
easier thal'l conversion to other operating systems.

• DhlcelndeP*ndenti/D

M5·00S slmplllles 110 to different devices on the UNIX
concept. A alngte set of 1/0 calls lraats all devices atike
tromtheuser'aperspectiva.Therelsnoneedtorewrite
programs when 11 new device is added to the syslem.
Simply OPEN the device and READ or WRITE. Also,
devlceindependentiiOusuresthatdlflerentcontrot
charaeters(speciflcetlyTAB)erehandledthesameby
the different devices.

The Future of MS·DOS

Mlcroaott plans to et~hance MS-OOS. The additional
addressingspaceolthe8086proeessormakesmultl·taskinga
par1icularlyattractlveenhaneement.Anupwardmigratlonpath
to the X EN IX operatil'lg system through XENIX compatible
aystemcalls,"pipes,"and'1orking"llanotherpltiMed
enhancement.

Additional MS~DOS Features and Benefits

• WrltttnEnU,.Iyln8086AuemblyLtnguagt

ThlaprovidesslgnlliearllspeedlmprOYtlmefllsover
opere\lngsystemslhatarelargelytranslatedlromthelr8·
bi\COU11!6rplrta.

•F••tEtfleltn!FIIeS!rucluno

The formal ellminatea !he need for "extents." minimizes
acceutothedireclorytreck,andprovideslorduplicale
directorylnlormallonandverUyalterwrite.

• No NMd to Log In Oltkt

Aslongesno llle lscurrenllyopen,therels no need to
log In a new disk by typing connot-e. This greatly
improvesuaabllilylorsingladisksystamusersandlor
peopltwhollketoatorathelrdataonseparatedisketles.

• No Phytlelll Flle/Ditk Sire Um!biUon

UnlikeusersofoperatlngsystemsthatarehmltedtoB
megabytes. MS·DOS users would not have to break e 24
megabyteharddisklntothreesepa~atedrives

runnong M5·00S w1U be w•dely available 1n the near future.
making M5·005 the stal'ldard low-end operat•ng system lor
8086 micros. Why IS MS·DOS becoming popular? MS·DOS IS

animportantadvance•nmicrocomputeroperatingsystems

• AdolanctdErrotRe-eoveryProcedurea

M5·00S doesn't simp.ly lade away when errors occur. II
adiskerroroccursatanytimeduringanyprogram.MS·
DOS will retry the operation three times. II the opera lion
cannot be completed auccesslully, MS-OOS will return
anerrormessage,thenwaltfortheusertoentera
response.Theusercananemptrecoveryratherthan
reboottheoperatingsystem.

• Complete Pro;ram Retocatablllty

MS-005 15 a truly retocatable operating system. Not only
cantheMicrosoltreloeatablelinkingtoaderprovtdelor
separale segments. but also the COMMAND program il'l
MS-005 relocates the modules during loading rather
!han loading them to preset addresses. Thus, M5·DOS
does not h!We the 641(program space limllation Of other
operat1ngsystems.

• Powertut, Flulble File Chanc•rt•tlc:a

MS-005 has no practical limit on file or disk site. M5·
DOS usea4·byle XENIX OS compatible logical po,nter&
lorll!eandd1Skcapacityupto4glgabytes

Withll'l a single diskette. the user ol M5-005 can have
lil8$ ol dillerenttogical record lengths. MS·DOS 11

deslgnedtobtockal'lddeblock ltsownphys•calsectors:
128 is not a sacreo t~umber in MS·OOS.

M5-D05 remembers the exact end oil lie marker. Thus.
:-t..:~uldnneopenalllewithelogicalrecordtengthotMr

!han the physical record length, M5·D05 remembers
exaetlywherethelileendslothebyte,ratherthan
rotmdedto128bytes.Thisalleviatestheneedlorlorcmg
Contro:-Z'sorthetikeattheendolafile.

Plans tor M5·005 also include disk bullenng. graph1cs and
cursorpositiomng,kan,,support,mulh·userandharOd•sk
support,anonetwork•ng.

1981-1982

• No Overhud lor Non·1Z8-Byte Phy11cel Seclora

Onedoesnothavetoworryaboutdlllerentphysical
sector si:., when wflting a BIOS.

• Tlme/OI!tSiampt

Thisallev!ates.lorinstance,theneedtorecompilealileil
thotimeontherelocatablellleismorerecentthanonthe
sourcelile.

• LlfeboatA .. oclatea

TheworiO'slargestindapendentdlstributorol
microcomputer software has chosen to support M5·005
asitslow-end16·bitoperatingsystem.Recogni:ingthe
impor1ant migrotiol'l path from the 8·blt level to XENlX
O.S. Liteboat will be ottering a wide range ol software for
thO M5·D05 environment

• 100'/oiBMCompetlbl•
IBM is offering GOftware running under MS·COS. IBM has
announced Microsoft BASIC al'ld Microsoft Pascal. along
wilhaccounting,flnanclalptannlng,andwordprocessing
software running under M5·00S.

Mlcrosolt,lnc.
10800NEEighth,5u!te819
Bellevue.WA98004
206-455-8080 Tetex328945

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS.

Section I: The Development of MS-DOS 29

HUAWEI EX. 1010 - 47/1582

1981-1982

mm

Addlllonnl MS-DOS Features and Benet":
. wnnen Enllrely In em A-umbly Longing. - Ne Onrh ed Ior Non-I 1”er Physicei Seelon

Thlu provides sieniiiceni speed Imermemenie am One does nor hlva re worry aboul dmereni physiclldeeming sysiems IheI ere Ierqeiy ireniieied irorn Iheire- «cior sins when wIiIinu e dies,on couniereene. . rune/one sump.
. e... mgr,” F... slum" Yhis_lllavlnlos. lor insienee. Ihe_ need Io recompile e IiIe ii. . . . ihe Irnre on ihe relocauhlc Iiie rs more receni men on meTm iorrneI ellminltu Ine need Ior "exienrs. rninnniees “mm, m._e ess ieihe direciory Ildnk. end providesicr dueiiceiedirecidry InIdrrneIion end vdrlly eIier mire. . Liieeeei Aeeecieiee

The world's Iercesi independeni disiricurcr oI
. No Need In Leg In nie microcomeurer soiiwere hes chosen In euooon MS-DOSes in luw~ehd Ie-oii coereiine sysiern. Recognizing Ihe
220.,”'° ..
irneroues Iluhlllly Ior sincie disk sysiem users end Icr %S'§E€I:g§ W‘“ 3‘ ”'3‘“ ‘ M“ ""1" °‘ ““"m ""people who Iike In sidre rheir deu on seesrere erseeiies, ° ' °’“" °"'“ '

. Inn-r. iau Complllbll
’ “‘7 “1"“ "WW" 5'” ”’""“'°" IBM is oIIerine coirwere running under MS-DOS. IBM neeUnllkn users or opereiing syererns rnei ere Inniied re s announced Microscii BASIC end Microson Peecei. eiengmegebyier. MS-DOS users would nol have re bralk e 24 wirh eccounring, Iinenciei pllnnlng. end word processingrnegeiryie herd disk inid Inree seoerere drives. scriwere running under MS-DOS.

M S-DOS
Standard Operallng syslem lor 8086 Micros
MS-DOS in e disk opereiing syeiern Irom Microsovi Ior running M5005 wrii be wideiy avnrieoie rn Ihe heer Iqure.noes/now microprocessors. Inierneiicnei Business Mechines mlkiuu MS-DOS Ihe sienderd iowend noerehnc eysrern Ier
corp. chose MS-DDS (celled IBM Pevwnll coinpuier DOS) Io BDBS micres. why Is MS-DOS btccm‘na wvulir’? MS-DDS is
be in ope Iino eysrern or choice Ior irs Poreunei Comouien en impeneni edeence .n rnicrocanrouier updruling systems.‘ Microseir'e egreernenis w'ilh um and were: diner meier

5 cumomer nrnnuieciurers indiceie ihnI end-user eysmnr

5' Who! Makes MS-DOS Importam?
.1 All or Microsdii'e llngulgas (BASIC Inierererer. BASIC - Amlncld Emu Recovery Procedure-
’ “"19“."- Fofi‘m‘w‘ COBOL Pu“) "' “l“lbli WIS-DOS doesn'I simply Iade ewey when errors occur. iiImmedimly under MS'DOS Us” 0' ”15-005.”e mm" is disk error occurs nI eny lime during my pruvllm, MS-rher Iheir operlllng syslnm wiii ee Ihe IrrcI Inei Microsofl WI“ 005 w". ”W m, ”mm," "1,” “m” u m Oman“

wvvofl when "'1ng viaduct! or mtior val-Ital m cennei be cemeieied euccessiuiiy. Ms—nos will reiurnenncunced. In eddnron. Ine a~eii versions or Microsoiis A" am, ".553“, m" w." h, m. “a, ,0 am, I

Ienguegee e udnrerd comp-Illble wiih Ihe Is-eir versions. ”5”,,“ 1h, m, m mm.“ mm” mm, m." MWQfiQ H"m. nppiiceiion programs wriIIen in Mi Microscn “We. m, ”mm.“ ”mm -
langulgas cen he run under Ms-Dos wilh lime or no MI I n I
rhodiiiceiion. Micrdsdn wenie Io encourage ham Ine ' Comvleh Prom-m Helmublllty mgng‘fiz' 1‘3“" 5mm :19llansponing oi o-oir re is-oii eoiiwnr end me dereioornenr oi MS-DOS is n Irury rcioceieoie eeereiine eysiem. NdI only Egflgyua. We 93004new is-cii seirwnre. can Inc Microsoii reidcaiecie iinkine Ieeder provrde ier 20645§~8080 Telex 523945
N - . h K v sepereie seemenis. oui niro Inc COMMAND pregrenr in

ere ere Ine meier Ice uresI eI ml e MS nos Ihe operaiine Mums "low“ "w mow“ Wing mam ”In”

5 I W ID ll I1 36 In hlflB ‘

‘Y "m 9"” ' '"‘ 5° ° 5° °‘ * ihen landing Ihern Io crcseieddresses.1hus.Ms-nosam "0‘ II“! "‘3 54K nvfivllm SDI” “HIKING" 0‘ D"!!'
- Elly Comer-Ion "am am lo and noereI-ng syeieme.

Ms—oos Illowl ee much llampnfllblllry oi a-eiI rnecnine . pom“. plum, y", cmmmnmIenguede sum-re es is poulbln. M54305 enrdieies . , . . .MS—DOS her no precucei IImII on Me or disk size. Ms-
s’m'" “H‘ '° CP’M'M‘ 3’ "'“p'y "‘"""'" ““mw Dos uses 442er xENIx os cumpnilbie iogicei onrniere
Ilngulvl source code through Ihe lnIeI convererdn m “I. no disk ”puny up In ‘ W",Y‘“crodr eirriosi on mac crogrerns rriii work wilhouk _ .rnodIIIceIion. In nicer ceue. e convulsion In MS<DOS Is WW" I “III" “M“.- I": user 0' M54305 65" “"5rim oI dmereni logicnl record iengihe. MSvDOS rseesier Inen conversion Ie diner operelino mums. designed Io block end debluck iIs awn ohysrcel seciors;

. neeice Ind-innueni Ho :25 is nor e secrcd number in MS-DOS.
MS—DOS sinreimes I/o Id dinereni devices on Ihe UNIX MS-DOS (emambeu Ihe execi end or Iiie mereer. rhus
conceoi. A eingie on or Ila cells Ireeis all devices eiixe sneuid one open e Irie wilh e logic-i record Iengih oIherirom me more perspenivd. Yhere Is no new In rdwriie men “w physical record IengIn, MS-DOS remembersprogrerris when n new device is edded Id Ihe sysiern. exacuy where me iiie ends Io Inc 5er. reiher Ihen
Slmvlv OPEN "I! dwim Ind READ U'WRIYE. Also. rounded Id 128 byms. This allevinles Ihe need Ior Idmngdevice independoni i/o eseuree Inei dinereni conrrei Cannot-I‘d or Ihe Iiko er his end 0! a Iiie.chernciers Ispeciiicew TAB) ere hendied Ihe same byme diflaranl devices.

The Future 0! MS-DOS
Micresen plane In enhence MS-DOS. rne eddiiione: Piens Icr MS~DOS else Inciude disk ouIIerrng. green-cs endeddressinq specs oi Inc 8086 processor mekee muiIi-Iesking e cursor oesiiicmng. «enn suppers, rnuncuser end nerd disk
oerIicuierIy eiireciive enhencerneni. An upwero ml'fimnon earn supperi. nd neiweriung.
Id In: XEMX docre ’hu sysiehi Ihrdugh XENIX compeiibledyllaih gens. 'Dipe 'eno "lurking" is endiher plannedehhencemenl.

W

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths ofMS—DOS.

Section I: The Development ofMS—DOS 29

HUAWEI EX. 1010 - 47/1582

1982-1983

Version2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided tO IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft's UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS- one closer to the operating system Microsoft had envisioned from the start
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. Themajor design issue
confronting the developers, as well as the most visible example of its difference from ver
sions 1.0, 1.1, and 1.25, was the introduction of<~; hierarchical file system to handle the file
management needs of the XT's fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file
management system implemented in XENIX, and it was the MS-DOS team's choice for
handling files on the XT's fixed disk.

I

30 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 48/1582

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS—DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to‘ IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.

This version, referred to as 1.25 by all but IBM, was the first version of MS—DOS shipped by

other OEMs, including COMPAQ and Zenith. ’

Even before these intermediate releases were available, however, Microsoft began plan-

ning for future versions of MS-DOS. In developing the first version, the programmers had

had two primary goals: running translated CP/M-SO software and keeping MS-DOS small.

They had neither the time nor the room to include more sophisticated features, such as

those typical of Microsoft’s UNIX~based multiuser, multitasking operating system, XENIX.

But when IBM informed Microsoft that the next major edition of the PC would be the

Personal Computer XT with a 10—megabyte fixed disk, at larger, more powerful version of

MS—DOS —— one closer to the operating system Microsoft had envisioned from the start—
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,

installable device drivers, and some type of multitasking. Each of these features contrib-

uted to version 2.0, and together they represented a major change in MS-DOS while still
_ maintaining compatibility with version 1.0.

fl The File System

50

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. Thevmajor design issue

cOnfronting the developers, as well as the most visible example of its difference from ver-

sions 1.0, 1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-

management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well

enough on a disk of limited capacity, but on a' 10-megabyte fixed disk a single directory

could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high—capacity storage media by using a partitioning

scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy—disk

drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and

subdirectories to organize files and make them readily accessible. This was the file-

management system implemented in XENIX, and it was the MS-DOS team’s choice for

handling files on the XT’s fixed disk.

The MS—DOS Encyclopedia
HUAWEI EX.1010 - 48/1582

1982-1983

The MS-DOS Jersion 1.0 manual next to the version 2.0 manual.

Partitioning, IBM's initial choice, had the advantages of familiarity, size, and ease of imple
mentation. Many small-system users- particularly software developers- were already
familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub
stantial growth in the storage capacity of disk-based media. Second, partitioning de
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
l.x, and was based on a root, or main, directory under which the user could create a sys
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which .could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions l.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM's
request, decided to use the backslash as the separator instead. Although the backslash

Section L The Development of MS-DOS 31
HUAWEI EX. 1010 - 49/1582

.,..,x‘

"’5

1982-1983

The MS—DOS dersion 1.0 manual next to the version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-

mentation. Many small-system users —— particularly software developers — were already

familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel-

0pment time was also a major concern, and the code needed to develop a partitioning

scheme would be minimal compared with the code required to manage a hierarchical file

system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would

decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub—

stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the

size of the partitions must also be changed in the code for both the operating system and

the application programs. For Microsoft, with its commitment to hardware independence,

partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independent of the physical

device. A disk could be partitioned logically, rather than physically. And because these

partitions (directories) were controlled by the user, they were open-ended and enabled

the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even—

tually convinced everyone that it was, indeed, the better and more flexible solution to the

problem of supporting a fixed disk. The file system was logically consistent with the

XENIX file structure, yet physically consistent with the file access incorporated in versions

1.x, and was based on a root, or main, directory under which the user could create a sys-

tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden-

tified by the directory path leading to it, and the number of subdirectories was limited only

by the length of the pathname, whichcould not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated

from one another by backslash characters, which represented the only anomaly in the

XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,

but versions 1.x of MS—DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s

request, decided to use the backslash as the separator instead. Although the backslash

Section E The Development ofMS-DOS 31
HUAWEI EX.1010 - 49/1582

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did im:roduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to th~ new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services.

Versions l.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when
ever an MS-DOS program opened a file. All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure- different
from an PCB-so that the program never had to deal directly with information about the
file's location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program's input and out
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND. COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

lnstallable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM's approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it-the BIOS

32 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 50/1582

1982-1983

character createdno practical problems, except on keyboards that lacked a backslash this

decision did introduce inconsistency between MS-DOS and existing UNIX—like operating
systems And although Microsoft solved the keyboard prOblem by enabling the user to
change the switch character from a slash to a hyphen,the solution itself created compati—

V bility problems for people who wished to exchange batch files.

Another major change1n the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new

way of calling file services.

Versions 1.x of MS—DOS used CP/M—like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent

information about the size and location of a file but did not allow the user to specify a file

in a different directory. Therefore, version 2.0 of MS—DOS needed the added ability to ac-

cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS—DOS returned a handle when-

ever an MS—DOS program opened a file. All further interaction with the file involved only

this handle. MS-DOS made all necessary adjustments to an internal structure ——- different
from an FCB —— so that the program never had to deal directly with information about the

file’s location in memory. Furthermore, even if future versions of MS-DOS were to change

the structure of the internal control units, program code would not need to be rewritten —-

the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting

handles for FCBs also made it possible for MS-DOS to redirect a program’s input and out-

put. A system function was provided that enabled MS—DOS to divert the reads or writes ,

directed to one handle to the file or device assigned to another handle. This capability was

used by COMMAND.COM to allow output from a file to be redirected to a device, such as a

printer, or to be piped to another program. It also allowed system cleanup on programterminations

Installable Device. Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized

that many third-party peripheral devices were not working well with one another. Each

manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party

devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that

users could simply slide new cards into the computer whenever new input/output de-

vices, such as fixed disks or printers, were added to the system. Unfortunately, version

1.0 of MS-DOS did not have a corresponding open architecture built into it—the B108

32 TheMS—DOS Encyclopedia H UAWEI EX .1010 - 50/1582

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer's operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version
ofMS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, IO.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list- this time, of device drivers- that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre
viously installed driver- for example, the ANSI.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM's request, version 2.0 of MS-DOS also possessed the undocumented ability to per
form rudimentary background processing- an interim solution to a growing awareness of
the potentials of multitasking.

Background print spooling was sufficient to meet the needs of most people in most situa
tions, so the print spooler, PRINT. COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT. COM would be in
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, an:d print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section L· The Development of MS-DOS 33

HUAWEI EX. 1010 - 51/1582

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde—

pendent hardware manufacturers wanted to develop equipment for use with a computer

manufacturer’s operating system, they would have to either completely rewrite the device

drivers or write a complicated utility to read the existing drivers, alter them, add the code

to support the new device, and produce a working set of drivers. If the user installed more

than one device, these patches would often conflict with one another. Furthermore, they

would have to be revised each time the computer manufacturer updated its version
of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install

any device driver at run time was vital. They implemented installable device drivers by

making the drivers more modular. Like the FAT, IO.SYS (IBMBIO.COM in PC—DOS)

became, in effect, a linked list—— this time, of device drivers ——that could be expanded

through commands in the CONFIGSYS file on the system boot disk. Manufacturers could

now write a device driver that the user could install at run time by including it in the
CONFIGSYS file. MS—DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre—

viously installed driver—for example, the ANSI.SYS console driver that supports the ANSI

standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-

form rudimentary background processing— an interim solution to a growing awareness of

the potentials of multitasking.

Background print Spooling was sufficient to meet the needs of most people in most situa-

tions, so the print spooler, PRINT. COM, was designed to run whenever MS-DOS had

nothing else to do. When the parent application became active, PRINTCOM would be in-

terrupted until the next lull. This type of background processing, though both limited and

l extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print Spooling were the major design

decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS—DOS had to access the disk more often, and file

access became much slower as a result. In trying to find a solution to this problem, Chris

Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section L The Development ofMS—DOS 35

HUAWEI EX. 1010 - 51/1582

.» 31.2112}!

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel
oped. On the left, the
original IBM PC (ver
sion l.OofMS-DOS);
on the right, the IBM
PCIXT(version 2.0).

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM-whether for a fixed disk or a floppy- was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code.
Though it maintained its compatibility with versions l.x,it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

34

/

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined- if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 52/1582

1982—1985

Two members ofthe
IBM line ofpersonal
computersfor which
versions I and 2 of
MS—DOS were devel-

oped. On the left, the
original IBM PC (ver-
sion 1 .0 ofMS—DOS);
on the right, the IBM
PC/XT(version 2. 0).

[a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM —whether for a fixed disk or a floppy—Was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had

MS—DOS check to see how much time had gone by since the last disk access. If less than

two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted

and that the disk information in RAM was still valid. With this little trick, the speed of file

handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was releasedin March 1985, the product of a surprisingly small team of six de-

velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,

and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code.

Though it maintained its compatibility with versions 1.x,it was in reality a vastly different

operating system. Within six months of its release, version 2.0 gained widespread public

acceptance. In addition, popular application programs such as Lotus 1—2—3 took advantage

of the features of this new version of MS-DOS and thus helped secure its future as the

industry standard for 8086 processors.

Versions 2.1 and 2.25

34

/

The world into which version 2.0 of MS-DOS emerged was considerably different from the

one in which version 1.0 made its debut. When IBM released its original PC, the business

market for microcomputers was as yet undefined —— if not in scope, at least in terms of who

and what would dominate the field. A year and a half later, when the PC/XT came on the

scene, the market was much better known. It had, in fact, been heavily influenced by IBM

itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett

Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new

computers knew that IBM was a force to consider and many chose to compete with the

IBM PC by emulating it. Software developers, too, had gained an understanding of busi—

ness computing and were confident they could position their software accurately in the
enormous MS—DOS market. ‘

The MS—DOS Encyclopedia

HUAWEI EX.1010 - 52/1582

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half
height 51f4-inch drives, would employ a slightly different disk-controller architecture. Be
cause of these differences from the standard PC line, IBM's immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys
tem, because the larger storage capacity of the 20-megabyte disk stretched the size lim ita-·
tions for the file allocati:on table as it worked in version 2.0.

However, IBM's primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile ...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country's huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi's
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer's support for
MS-DOS.

Section L· The Development of MS-DOS 35

HUAWEI EX. 1010 - 53/1582

1983

In such an environment, concerns about the existing base of CP/M software faded as

developers focused their attention on the fast-growing business market and MS-DOS

quickly secured its position as an industry standard. Now, With the obstacles to MS-DOS

diminished, Micro-soft found itself with a new concern: maintaining the standard it had

created. Henceforth, MS—DOS had to be many things to many people. IBM had require—
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its Per. The Per

would have the ability to run programs from ROM cartridges and, in addition to using half-

height 51/4—inch drives, would employ a slightly different disk-controller architecture. Be—
cause of these differences from the standard PC line, IBM’s immediate concern was for a
version 2.1 of MS—DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte

fixed disk. This prospect meant Microsoft needed to look again at its file-management sys—

tem, because the larger storage capacity of the 20—megabyte disk stretched the size limita-‘
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS—DOS was networking.

Microsoft would have preferred to pursue multitasking as the next stage in the develop—

ment of MS—DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in

card with an 80188 chip to handle communications. 80 as soon as version 2.0 was released,

the MS—DOS team, again headed by Zbikowski and Reynolds, began work on a networking

version (3.0) of the operating system.

Meanwhile . . .

The international market for MS-DOS was not significant in the first few years after the

release of the IBM PC and version 1.0 of MS-DOS. IBM did not, at first, ship its Personal

Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the

company gained a significant advantage over CP/M-86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already

licensed CP/M-86. Working closely with Victor, Microsoft provided special development

support for its graphics adaptors and eventually convinced the company to offer its pro-

ducts only on MS-DOS. InJapan, the most popular computers were 280 machines, and

given the country’s huge installed base of 8-bit machines, 16—bit computers were not taking

hold. Mitsubishi, however, offered a 16—bit computer. Although CP/M-86 was Mitsubishi’s

original choice for an operating system, Microsoft helped get Multiplan and FORTRAN

running on the CP/M—86 system, and eventually won the manufacturer’s support for
MS—DOS.

Section I: The Development ofMS—DOS 55

HUAWEI EX. 1010 - 53/1582

;

'i

1983

[)()Sl.O

Irresistible
DOS 3.0
{nJemaJiona/ support,ft!Nharing capa
bilities, and marry other jeaJuTes in DOS
3.0 result In a siiJn!fo:anlly enbanad
operating system.

The Ascent
of DOS

!herefore.:..Ktesoonl,a
WmwnoiiMBolllllfiiO<y.
OOS).IIlSupotdlycompol~

...,hDOSl.lbutdoeonoiR
II,one~bcln,ithoiOOS

Olswbstan•llllyi>Jacr.~
S30ttq~>ln:s~lw.36KB<ll

~~:;:'~
rmemarybc96KS-ori!SKB

lhafiuddisll.
lltcauschsU.Chzlbeenift.

e Hands On: ()penning Syncms

MS-DOS 2.00: A
Hands-On Tutorial

A/,.,..,lht•---~~~o(t!MIBMI'tlftl..alCootr·
PJ~UTXTr•obbtdlhtht«<li..n~f• ... iu~mriitrz.tht
IAuu wnio1r o(Mimlu:ft'r Did! DpmUing Syut"'
(OOSl.OO},iltlrol....d""tM-M,_,.rk.c.,
~t>tUIIJiotoo/1/Mc..p.obt/irin""""'bWro..ll
I'CNSm"fott•""'"'/IOrlhtf/owo(UIIlbttW<tJitht
PC'•ptO<m«<mdptl'iplmg{<k~.'Tim·•tick!OJotf
•<Jouw,,_of~•WnWMlllr,tspocU~~y
thr~rtr-o~r,,.dfi/<ltfi)"UmaMntwb..tcb(ik

__ .._

E..,. bdoeo- II>< Lnm .., of changn, MS-DOS '"*'
ontofthcbn!bu,,for!l>tPC.ForS..O..,,..,,,.uoof
thiopad<O&ttombi""a~cdi<ar,olilo·koepin&•YII<m,
b.mhprom,;ns.alink<randdcbugpmarom.andmuch
........ M~UO(ftlO\I<IID<IIydlo:JUrfO<to/rhi•pado
Mosrcfthtirtim<~lpONintheapplocOiion$cmir<HI•
mmtofoprepada&<dprosr•m.Thet~pQiw<>lll
~insopc-r....,.,foraamplo,ron:l,u~-<>•ny
OOSeornmonck bcoidn fORMAT ond.COPV. Some
IIKniDI><honlwchpn:><n,.ngondll<>d•bout•du<e
!OryltldcopyC<>It>nWI<Iouoin&wtldcotdomgloNI
dl.o~•m.

"Thton:l«~mpUitr....,.,onlheooMrh.ond.,lw
-.!thtrn.on .. llootinafotncwondinoctmill8com.
mondoandproctdlltn.OOS..,...onl.OOpromisnJObc
• .,;....,btingpod:*"'forthnt~~>m,and.<onoidmngoll
thencwfmumyougtrfOtonlySISO,iowouldbcobaf..
pin•<twi<ctkcp<i..,.

TheforntcfFilol
DOSl.OOuriliznot=-.,n.u:oumllili"&l)'<ttm.tnthi•
l)'po!oflm"Fff'""IIIOOI,orbu<,llil"f<IOryholclo•
cmainnurnbtrollii<LSom<olthoselilna,.,r..mRI""
dirro;tarin:chcro .. aauallroubdi,...ooriuofohe....,.
dorraoryandanct~~~,.inlilnltld<ubdorrccorinot.:,.,..

r=cdoodtatnatically,OOSIS
suppllodoni'MI~

~a>"''J''*diOII'c>Jrwlo·
•<k<ldi>hii<!Suscd&JrPf"''ouf

~o..erasonrorthe
lnJI<elsihalrnonypMIS

the op:nling 'l'll•m appear 10

been"""lllcnintheCian
...,..Abo,lnlldloltheiiCIW<nll
upponprom!oedl<>tDOSJ.IIIol·

inmllcd,lndudlnsN•slur-

"""'"""""

A sample of the reviews that appeared
with each new version of MS-DOS.

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs.
Several wanted a networking capability, adding weight to IBM's request, but a more urgent
need for many- a need not shared by IBM at the time-was support for international
products. SpecifiCally, these manufacturers needed a version of MS-DOS that could be sold
in other countries- a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats. ·

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file.

36 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 54/1582

1983

A sample ofthe reviews that appeared
with each new version ofMS—DOS.

 , , Irresistible
D0530
Imamabnalsuppon, 119W cope
3.0 rasul! #1::me enhanced
apwwfnggm

ullmdnleflnmmlyl.immaimaammmagnum-mm...»wnszwdoe-mm» lmmkmflum

.mdmmnsmiamm”magnum-2:mmummmmow-mqum-wam 0 Hands On: Operating Syrians

MS-DOS. 2.00: A

Hands-On Tutorial
Tml skim
mm m mammal": om: m4 mm: Cu!!-mn‘ywmea/mmmw, a.turn union «mm/n um Win;mm[905mm Wrnlnfldmlhmday. mmWaunt-bu um. ups-[Erin 0-1th m A!rcmrwmnqlumanmmimnmPC!pmandpm'pbnllluim. m "Lid- um”I”. Mum D/lbnamhlnumnfl.¢1pm'lllya. Prr-lmlundfihh' 17mm "debauhfihMenuhin

EmbdmukbmmdmmMS-meumallkbeulmyxlonhcl’cfwmwmm Lian!IN! Min mnbilfl In tdimv. l filt-kkpin‘ Willem,mu 9mm. . linker ma Adm: mum. mi miM. MW m. w» mly on: will“ a mix ”Chg.Mu! Bl their time is wall in the apleuiom (mim.moi. Wma mum Thuypial maMilli over-cur, In! «ample. ugly um i"!DOS comm-Ms bulk: FORMAT awd COPY. some

my Mk a. bum Wm...“ dndabomeduavnavy and copy mud! min; was and: .,. [lob-ldunelm
m "a (martian M m: "Mr hind. hamm Mun looking In: W .m imam‘m; cm ,nundl and uranium Dos mm magma“ m b:- "mu-i... pxhae In! rim mm, mi New“ :ummlmmnywmlumlyswfilwwubuwpin .- mm m wine.

m Fowl a run
006 um urilim . lmllmflu’d flin‘lyxmn. 1.. minw nhmmmnlm.whlklflimmlyholdu .«ruin Inrmba nifiln. Svmtollhue 51:: m lhcmldmdinmrin: they m lnllllly iubdimlmiu ohhenvdxmnvy and an (villain flu and mbdnmmis mu»m

 m

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft’s other customers were becoming more vocal about their own needs.

Several wanted a networking capability, adding weight to IBM’s request, but a more urgent

need for many— a need not shared by IBM at the time —— was support for international

products. Specifically, these manufacturers needed a version of MS-DOS that could be sold

in other countries —— a version of MS-DOS that could display messages in other languages

and adapt to country-specific conventions, such as date and time formats. I

5 Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying

l the operating system to support the Per, also added functions and a COUNTRY command

that allowed users to set the date and time formats and other country—dependent variables
in the CONFIG.SYS file.

56 The MS-DOSEncyclopedia
HUAWEI EX. 1010 - 54/1582

NEC PC-9800 Series Personal Computer

"<{?01?f MS-OOS 11•-;• •~ 3. 10
Copyright 1981,1985 Microsoft Corp. I NEC Corporation

~Of.JiW!Ji3J1il?:"t't"
~$;1ft;!:, "h 1/ ;/ r 1-'71-:/(J) NECD!C • SYS "t't"

CCMMND.N -~ .. 3/ 3. 10

A>D!R IW

1-'717 A' (J)-;"{:Z.:7(J);T,IJ~-L>.7~JL·t<l: KAlAl RYU
-;" { 1.-':7 r IJ t;l: A'¥B!N -

CHKDSK EXE COPY2 COM ~ij~~ ~ ~
FC EXE FIND EXE FORMAT EXE
MORE COM SPEED COM SWITCH COM

20 @1(1)7.,. 1 Jvf.li<l) I? ll:t".
3604480 1<1 1-:QiW!Ji'iJjjl?:"t't".

R [:Q>tJ:] ~MS-DOS

ATTR!B EXE
D!SKCOPY COM.
KEY COM
SYS EXE

BACKUP EXE
MOUSE SYS
LABEL EXE
SORT COM

<

1983

A Kanji screen with
the MS-DOS copyright
message.

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo
grams) arose. The difficulty with Kanji -is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char
acters, however, sometimes use one byte, sometimes two. This variability creates prob
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ
ence between their version of the operating system and IBM's introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM's.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages. Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji.

Section 1- The Development of MS-DOS 3 7

HUAWEI EX. 1010 - 55/1582

1983

A Kanji screen with

the MS—DOS copyright
message.

NEC PC—QBDO Series Personal Computer

7470‘)” MS-DOS I\' 41' 3‘1 3. 10
Copyright 1931,1965 Microsoft Corp. / NEC Corporation

maramtemasam
figm, i: w I~ F5 4 7'0 NECDIC .svs I"?

COMAANDJV -‘J’ 5‘) 3. 10

A>DIR /VI

F547" A: 0-?4 170$U:—A5’<lbli KAVALRYU
734 V7 I- In: A:¥BIN

;

l
g

. . . ASSIGN COM ATTRIB EXE_ BACKUP EXECHKDSK EXE COPY2 COM COPYA CW DISKCOPY COM MOUSE SVSFC EXE FIND EXE FORMAT EXE KEY COM LABEL EXE
MORE COM SPEE D COM SWITCH C(M SYS E XE SORT COM

20 {@037 7 4 1106MB D is”.
3504450 ”4 Mififiifilfifi'c’é’.

A>74 7 n77 mates

arm: fiMS-DOS <

L_ .1

At about the same time, another international requirement appeared. The Japanese market

for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo—

grams) arose. The difficulty with Kanji is that it requires dual-byte Characters. For English

and most European character sets, one byte corresponds to one character. Japanese char—

acters, however, sometimes use one byte, sometimes two. This variability creates prob-

lems in parsing, and as a result MS—DOS had to be modified to parse a string from the

beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS—DOS.

IBM did not want this version, so support for the Per, developed by Zbikowski, Reynolds,

Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus—

tomers that wanted to have the same version of MS—DOS as IBM. Some, such as COMPAQ,

were in the business of selling loo-percent compatibility with IBM. For them, any differ-

ence between their version of the operating system and IBM’s introduced the possibility of

incompatibility. Satisfying these requests was difficult, however, and it was not until ver-

sion 3.1 that MicrOsoft was able to supply a system that other OEMs agreed was identical
with IBM’s.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to

create version 2.11. Although IBM did not accept this because of the internationalization

code, version 2.11 became the standard version for all non—IBM customers running any

form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into

about 10 different languages. Two other intermediate versions provided support for

Hangeul (the Korean character set) and Chinese Kanji.

Section I: The Development ofMS—DOS 57

HUAWEI EX. 1010 - 55/1582

I

I j

I

I
i
I

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance
and difficulty- of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordS tar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver
sion of MS-DOS had to continue supporting CP/M-style calls.

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version l.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft's own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made iteasy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2.0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems-requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be al::>le to detect which version of the operating system the user was running.
For versions l.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM's upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone's best interest.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 56/1582

1983

Software Concerns

58

After the release of version 2.0, Microsoft also gained an appreciation of the importance ~——

and difficulty— of supporting the people who were developing software for MS—DOS.

Software developers worried about downward compatibility. They also worried about

upward compatibility. But despite these concerns, they sometimes used programming

practices that could guarantee neither. When this happened and the resulting programs

were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-

face had been published, software developers could, and often did, work directly with the

hardware in order to get more speed. This meant sidestepping the operating system for

some operations. However, by choosing to work at the lower levels, these developers lost

the protection provided by the operating system against hardware changes. Thus, when

low-level changes were made in the hardware, their programs either did not work or did

not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re-

quest a function; in MS—DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first Version of MS-DOS allowed a pro-
gramto request functions by either method. One of the CP/M-based programs supported

in this fashion was the very.popular WordStar. Since Microsoft could not make changes in

MS-DOS that would make it impossible to run such a widely used program, each new ver-
sion of MS—DOS had to continue supporting CP/M-style calls.

A more pervasive CP/M-related issue was the use of PCB—style calls for file and record
management. The version 1.x releases of MS-DOS had used PCB-style calls exclusively, as

had CP/M. Version-2.0 introduced the more efficient and flexible handle calls, but Microsoft

could not simply abolish the old PCB-style calls, because so many popular programs used
them. In fact, some of Microsoft’s own languages used them. So, MS-DOS had to support

both types of calls in the version 2.x series. To encourage the use of the new handle calls,

however, Microsoft made iteasy for MS—DOS users to upgrade to version 2.0. In addition,
the company COnvinced IBM to require version 2.0 for the PC/XT and also encouraged

‘ software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0

because they were concerned about problems with the installed user base of 1.0

systems—requiring version 2.0 meant supporting both sets of calls. Applications also

needed to be able to detect which version of the operating system the user was running.

For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would

use the file handles to exploit the flexibility of MS—DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on

version 3.0 and the support for IBM’s upcoming 20—megabyte fixed disk, it had become

apparent that the change had been in everyone’s best interest.

The MS—DOS Encyclopedia

HUAWEI EX.1010 - 56/1582

·.·
-~.'

1983-1984

Version3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project,
"there was a very long period of time between 2.1 and 3.0-almost a year and a half. Dur
ing that time, we believed we understood all the problems involved in making DOS a net
working product. [But] as time progressed, we realized that we didn't fully understand it,
either from a compatibility standpoint or from an operating-system standpqint. We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short."

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and'; in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0
All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage
ment, and logical device independence at the network level. Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 3.0 supported the AT's larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft's other OEM
customers as version 3.05.

Section I: The Development of MS-DOS 39

HUAWEI EX. 1010 - 57/1582

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS

for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or Without a multitasking capability, requires a level of cooperation

and compatibility among programs that had never been an issue in earlier versions of

MS—DOS. As described by Mark Zbikowski, one of the principals involved in the project,

“there was a very long period of time between 2.1 and 3.0 — almost a year and a half. Dur-

ing that time, we believed we understood all the problems involved in making DOS a net—

working product. [But] as time progressed, we realized that we didn’t fully understand it,

either from a compatibility standpoint or from an operating-system standpoint. We knew

very well how it [DOS] ran in a single—tasking environment, but we started going to this

new environment and found places where it came up short.”

In fact, the great variability in programs and programming approaches that MS-DOS

supported eventually proved to be one of the biggest obstacles to the development of a

sophisticated networking system and’, in the longer term, to the addition of true

multitasking.

Further, by the time Microsoft began work on version 5.0, the programming style of the

MS—DOS team had changed considerably. The team was still small, with a core group of

just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for

maintainability that had dominated programming in larger systems had percolated down

to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be

tempered by the need for clarity and maintainability, and the small package of tightly

written code that was the early MS-DOS had to be sacrificed for the same reasons.

,VersiOn 3.0

All told, the work on version 5.0 of MS-DOS proved to be long and difficult. For a year and

a half, Microsoft grappled with problems of software incompatibility, remote file manage-

ment, and logical device independence at the network level. Even so, when IBM was ready

to announce its new Personal Computer AT, the network software for MS—DOS was not

quite ready, so in August 1984, Microsoft released version 5. 0 to IBM without network
software.

Version 3.0 supported the ATS larger fixed disk, its new CMOS clock, and its high-capacity

1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft’s other OEM

customers 3.8 VCI‘SiOI'l SHOS

Section I: The Development ofMS—DOS 39

HUAWEI EX. 1010 - 57/1582

I

1983-1984

RoW\

R.CJWI

c.
N~>xrsr c.

/FIAIOE.,t.y f:-
@E')(tfZ~y-r--

Aaron Reynolds's diagram of version 3. O's network support, sketched out to enable him to add the fail option
to Interrupt 24 and find all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagram pinned to his office wall simply because "it was so much work
to put together. "

40 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 58/1582

1983-1984

ms 5 DISK—RESET —e—"Icmkz" FAIL [
@ Mime RENAM e.z ——-———-——'“fir‘fo id'- C'I' c. ATTV:

LTflLC Kgsd- Epvl‘r
am CLOSE“

ROM W Delefe DE L ETE°

_-h.
— I binning—‘—

ROM :ElLbiLKS I[If m. MAPcLus‘I. IIIJ‘BIIF'

CHECKFLUSH BuFum

’ ' R@I 96.3!ng
c r 52;»

W m l— W '

6

-_‘mm
R0“ M l'. NSR Raw ...-7 om

OPTIMIZE i loam; WRITE ,

Ne: Mao-ks
If!» INN-us

DATA

\1/3.

Aaron Reynolds’s diagram ofversion 3.0’5 network support, sketched out to enable him to add thefail option
to Interrupt 24 andfindallplaces where existingparts ofMS-DOS were aflected. Even after networking had
become a reality, Reynolds kept this diagrampinned to his office wall simply because ”it was so much work
toput together. ”

i

40 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 58/1582

J ~lRO~LL
GLoSE:

.l>tR

TRAr'SPATH C

Section I: The Development of MS-DOS

1983-1984

{JiR.

{)Wf'o

41

HUAWEI EX. 1010 - 59/1582

1983-1984

atom/9 {mil inshpA 0F I6 None ’1 Ref “+50“

4761

Section I: The Development ofMS—DOS 41

HUAWEI EX. 1010 - 59/1582

Mafi’fi

1983-1984

The Intel 80286 micro
processor, the chip at
the heart of the IBM
PCJ4.T, which is shown
beside it. Version 3.0 of
MS-DOS, developedfor
this machine, offered
support for networks
and the PCJ4.T's 1.2-
megabyte floppy disk
drive and built-in
CMOS clock.

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS-DOS 1.0 used FCBs, requests in version 2.0 used
file handles. However, the version 2.0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 1.0. The redirected input and
output in version 2.0 further complicated the file-system requests. When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this
redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of I/0 calls that could be called directly by both FCB calls and handle
calls. The look-alike calls for CP/M-compatible character I/0 were included as part of the
set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the ISO Open System Intercon
nect model Microsoft was using for networking. The ISO model describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physical link- plugging into the network- at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data. Th,e layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware.

On the IBM PC network, the transport layer and the server functions were handled by
IBM's Network Adapter card and the task of MS-DOS was to support this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3.0 did not provide this general-purpose
networking software, it did provide the basic support for IBM's networking hardware.

The support for IBM consisted of redirector and sharer software. MS-DOS used an ap
proach to networking in which remote requests were routed by a redirector that was able

42 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 60/1582

1983-1984

The Intel 80286 micro-

- the heart ofthe IBM
PC1472 which is shown
beside it. Version 3 .0 of
MS—DOS, developedfor
this machine, oflered
supportfor networks
and the PCMT’s 1,2—

' megabytefloppy dis/e
drive and built-in
CMOS clock.

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net—

working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS-DOS 1.0 used FCBs, requests in version 20 used

file handles. However, the version 2.0 handle calls would simply parse the pathname and

then use the underlying FCB calls in the same way as version 1.0. The redirected input and

output in version 2.0 further complicated the file~system requests. When a program used

one of the CP/M-compatible calls for character input or output, MS-DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this

redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it

with a standard set of I/O calls that could be called directly by both FCB calls and handle

calls. The look-alike calls for CP/M-compatible character I/O were included as part of the

set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new

structure made it easier to handle network requests under the ISO Open System Intercon-

nect model Microsoft was using for networking. The ISO model describes a number of

protocol layers, ranging from the application-to—application interface at the top level down

to the physical link— plugging into the network — at the lowest level. In the middle is the

transport layer, which manages the actual transfer of data. The layers above the transport

layer belong to the realm of the operating system; the layers below the transport layer are

traditionally the domain of the network software or hardware.

On the IBM PC network, the transport layer and the server functions were handled by

IBM’s Network Adapter card and the task of MS-DOS was to support this hardware. For its

other OEM customers, however, Microsoft needed to supply both the transport and the

server functions as software. Although version 3.0 did not provide this general-purpose

networking software, it did provide the basic support for IBM’s networking hardware.

.‘ The support for IBM consisted of redirector and sharer software. MS-DOS used an ap-

proach to networking in which remote requests were routed by a redirector that was able

1

. ‘ 42 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 60/1582

1984

to interact with the transport layer of the network. The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-level file I/0 code, the operating sys
tem determined whether the call was local or remote. A local call would be allowed to fall
through to the local file 1/0 code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local.

Version3.1

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place
in version 3.0 when it was delivered to IBM, but the redirector itself wasn't ready. Version
3.1, completed by Zbikowski and Reynolds and released three months later,. completed this
network support and made it available in the form of Microsoft Networks for use on non
IBM network cards.

Microsoft Networks was built on the concept of "services" and "consumers." Services
were provided by a file server, which was part of the Networks application and ran on a
computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk.
The requesting programs- the consumers- did not need any knowledge of the remote
machine, not even what type of file system it had.

This ability to pass a high-level request to a remote server without having to know the
details of the server's file structure allowed another level of generalization of the system.
In MS-DOS 3.1, different types of file systems could be accessed on the same network. It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files.

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

• First were the MS-DOS-compatible programs. These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any M5-DOS machine without problems.

• Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines.

• Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor
mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.

Section l· The Development of MS-DOS 43

HUAWEI EX. 1010 - 61/1582

1984

to interact with the transport layer of the network. The transport layer was composed of ‘

the device drivers that could reliably transfer data from one part of the network to another.

Just before a call was sent to the newly designed low-level file I/O code, the operating sys—
tem determined whether the call was local or remote. A local call would be allowed to fall

through to the local file I/O code; a remote call would be passed to the redirector which,

working with the operating system, would make the resources on a remote machine

appear as if they were local.

Version 3.1

Both the redirector and the sharer interfaces for IBM’s Network Adapter card were in place

in version 3.0 when it was delivered to IBM, but the redirector itself wasn’t ready. Version

3.1, completed by Zbikowski and Reynolds and released three months later, completed this

network support and made it available in the form of Microsoft Networks for use on non—
IBM network cards.

Microsoft Networks was built on the concept of “services” and “consumers. " Services

were provided by a file server, which was part of the Networks application and ran on a

computer dedicated to the task. Consumers were programs on various network machines.

Requests for information were passed at a high level to the file server; it was then the

responsibility of the file server to determine where to find the information on the disk.

The requesting programs -— the consumers —— did not need any knowledge of the remote

machine, not even what type of file system it had.

This ability to pass a high—level request to a remote server without having to know the

details of the server’s file structure allowed another level of generalization of the system.

In MS-DOS 5.1, different types of file systems could be accessed on the same network. It

was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files.

Microsoft Networks was designed to be hardware independent. Yet the variability of the

classes of programs that would be using its structures was a major problem in developing

a networking system that would be transparent to the user. In evaluating this variability,

Microsoft identified three types of programs:

0 First were the MS—DOS-compatible programs. These used only the documented

software—interrupt method of requesting services from the operating system and

would run on any MS-DOS machine without problems.

0 Second were the MS—DOS—based programs. These would run on IBM—compatible

computers but not necessarily on all MS—DOS machines.

0 Third were the programs that used undocumented features of MS-DOS or that

addressed the hardware directly. These programs tended to have the best perfor—

mance but were also the most difficult to support.

' 1lr..l
i
ll

i

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.

Section I: The Development ofMS—DOS 43

HUAWEI EX

1o - 61/1582

I,,

1986

Network concerns

The file-accessmodule was changed in version 3.0 to simplify file management on the
network, but this did not solve all the problems. For instance, MS-DOS still needed to han
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it. One of the functions of the server was to keep track of all open files
on the network, and it ran into difficulties when an FCB was opened 50 or 100 times and •
never closed. To solve this problem, Microsoft introduced an FCB cache inversion 3.1 that
allowed only four FCBs to be open at any one time. If a fifth FCB was opened, the least re
cently used one was dosed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure.

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning- and generated new problems-with networking. One problem concerned
printers on the network. Commonly, networks are used to allow several people to share a
printer. The network could easily accommodate a program that would open the printer,
write to it, and close it again. Some programs, however, would try to use the direct IBM
BIOS interface to access the printer. To handle this situation, Microsoft's designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out tt-).e ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most
types of printer output on the network in a transp?-rent manner.

Version3.2

44

In January 1986, Microsoft released another revision of MS-DOS, version 3.2, which
supported 31/z-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacturers
·of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 62/1582

1986 ,

Network concerns

The file-accessmodule was changed in version 3.0 to simplify file management on the

nethork, but this did not Solve all the problems. For instance, MS-DOS still needed to han-
dle FCB requeSts from programs that used them, but many programs would open an PCB
and never close it. One of the functions of the server was to keep track of all open files
on the network, and it ran into difficulties When an FCB was opened 50 or 100 times and 1

never closed. To solve this problem, Microsoft introduced an FCB cache inversion 3.1 that
allowed only four FCBS to be open at any one time. If a fifth FCB was opened, the least re-

cently used one was closed automatically and released. In addition, an FCBS command

was added in the CONFIG.SYS file to allow the user or network manager to change the

maximum number of FCBS that could be open at any one time and to protect some of theFCBS from automatic closure

In general, the logical device independence that had been a goal of MS—DOS acquired new

meaning —— and generated new problems —with networking. One problem concerned

printers on the network. Commonly, networks are used to allow several people to share a

printer. The network could easily accommodate a program that would open the printer,

write to it, and close it again. Some programs, however, would try to use the direct IBM

BIOS interface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most

types of printer output on the network in a transparent manner.

Version 3.2

. In January 1986, Microsoft released another revision of MS—DOS, version 3.2, which

supported 51/2-inch floppy disks. Version 3.2 also moved the formatting function for a

device out of the FORMAT utility routine and into the device driver, eliminating the need

for a special hardware-dependent program in addition to the device driver. It included a

sample installable—block-device driver and, finally, benefited the users and manufacturers
of IBM—compatible computers by including major rewrites of the MS—DOS utilities to
increase compatibility with those of IBM.

44 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 62/1582

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment. Not only has it "taught" millions of personal computers
"how to think," it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 ofMS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users. In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story
of MS-DOS will, of course, remain even longer. For this operating system has earned its
place in microcomputing history.

joAnne Woodcock

Section L· The Development of MS-DOS 45

HUAWEI EX. 1010 - 63/1582

swag
£va1»; 1987

The Future

Since its appearance in 1981, MS—DOS has taken and held an enviable position in the

microcomputer environment. Not only has it “taught” millions of personal computers

“how to think,” it has taught equal millions of people how to use computers. Many highly

sophisticated computer users can trace their first encounter with these machines to the

original IBM PC and version 1.0 of MS—DOS. The MS—DOS command interface is the one

with which they are comfortable and it is the MS—DOS file structure that, in one way or

another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS

will continue to evolve and grow, changing as it has done in the past to satisfy the needs of

its millions of users. In the long term, MS—DOS, the product of a surprisingly small group of

gifted people, will undoubtedly remain the industry standard for as long as 8086-based

(and to some extent, 80286—based) microcomputers exist in the business world. The story

' - of MS—DOS will, of course, remain even longer. For this operating system has earned its

place in microcomputing history.

\ joAnne Woodcock

Section I: The Development ofMS—DOS 45

HUAWEI EX. 1010 - 63/1582

HUAWEI EX. 1010 - 64/1582

HUAWEI EX. 1010 - 64/1582

Part A
Structure of MS-DOS

HUAWEI EX. 1010 - 65/1582

}
ix9
1

HUAWEI EX. 1010 - 65/1582

Afl

Article 1: An Introduction to MS-DOS

Articlel
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

• Storage management
• Processing management
• Security
• Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments. The general charac
teristics ofthe three categories are listed in Table 1-1.

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional
ROM Operating Operating
Monitor System Environment

Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk
Programs on ROM Disk Disk
Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular
hardware configuration and provides a program with basic- and often direct- access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additional features such as a file system and log
ical access to peripherals. (Logical access to peripherals allows applications to run in a
hardware-independent manner.) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution.
MS-DOS is a traditional operating system.

An operating environment is built on top of a traditional operating system. The operating
environment provides additional services, such as common menu and forms support, that

Section II· Programming in the MS-DOS Environment 51

HUAWEI EX. 1010 - 66/1582

Article 1: An Introduction to MS—DOS

Article 1 ,

An Introduction toMS-DOS

An operating system is a set of interrelated supervisory programs that manage and control

computer processing. In general, an operating system provides

0 Storage management

0 Processing management

0 Security
0 Human interface

Existing operating systems for microcomputers fall into three major categories: ROM

monitors, traditional operating systems, and operating environments. The general charac-

teristics of the three categories are listed in Table 1—1.

Table 1-1. Characteristics of the Three Major Types ofOperating Systems.

Traditional

ROM Operating Operating
Monitor System Environment

Complexity Low Medium High

Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk

Programs on ROM Disk Disk

Peripheral support Physical logical logical

Disk access Sector File system File system

Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular

hardware configuration and provides a program with basic —- and often direct—— access to

peripherals attached to the computer. Programs coupled with a ROM monitor are often

used for dedicated applications such as controlling a microwave oven or controlling the

engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS

(basic input/output system), and provides additional features such as a file system and log-

ical access to peripherals. (logical access to peripherals allows applications to run in a

hardware-independent manner.) A traditional operating system also stores programs in

files on peripheral storage devices and, on request, loads them into memory for execution.

MS-DOS is a traditional operating system.

ii
IlI
5

An operating environment is built on top of a traditional operating system. The operating

environment provides additional services, such as common menu and forms support, that

Section 11- Programming in the MS—DOS Environment 51

HUAWEI EX. 1010 - 66/1582

,.,1 I
'I 1:'.

1 'II
i. i

·I '
i!i

li

'li
II
·'

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent. Microsoft
Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

• The operating-system loader
• The MS-DOS BIOS
• The MS-DOS kernel
• The user interface (shell)
• Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF MS-oos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved. (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps.) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS-MSDOS.SYS and IO.SYS
(IBMDOS.COM and IBMBIO.COM with PC-DOS)- from conventional disk files into mem
ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS's tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRuc
TURE oF Ms-oos: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution. This loader is different from the ROM
loader and the operating-system loader.)

The MS-DOS BIOS

52

The MS-DOS BIOS, loaded from the file IO.SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel ap.d the hardware. An
application performs input and output by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly. See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers.
(A device driver is a specialized program that provides support for a specific device such as

The MS-DOS Encyclopedia

\

HUAWEI EX. 1010 - 67/1582

Part A: Structure of MS—DOS

simplify program operation and make the user interface more consistent. Microsoft
Windows is an operating environment.

MS-DOS System Components

The MicroSoft Disk Operating System, MS—DOS, is a traditional microcomputer operating
system that consists of five major components:

0 The operating-system loader
The MS—DOS BIOS

The MS-DOS kernel

The user interface (shell)

Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE

MS-DOS ENVIRONMENT: STRUCTURE OF Ms-Dos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

1 .I The complete loading process, called bootstrapping, is often complex, and multiple
‘ loaders may be involved. (The term bootstrapping came about because each level pulls up

‘ ‘ . the next part of the system, like pulling up on a pair of bootstraps.) For example, in most

: l standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
‘ first program the microcomputer executes when it is turned on or restarted, reads the disk

l bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS ——MSDOS.SYS and IO.SYS
(IBMDOS.COM and IBMBIO.COM with PC—DOS) — from conventional disk files into mem-

ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS’s tables and

‘ buffers and discards itself. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUC—l

TURF. OF Ms-Dos: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings

application programs into memory for execution. This loader is different from the ROM
l: loader and the operating-system loader.)1

l The MS-DOS BIOS

i? The MS-DOS BIOS, loaded from the file IO.SYS during system initialization, is the layer of

the operating system that sits between the operating-system kernel and the hardware. An

application performs input and output by making requests to the operating-system kernel,

which, in turn, calls the MS—DOS BIOS routines that access the hardware directly. See

SYSTEM CALLS. This division of function allows application programs to be written in a

hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers.

(A device driver is a specialized program that provides support for a specific device such as

52 TheMS'DOSE"C”’°P"‘”“ HUAWEI EX. 1010 - 67/1582

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur
ing system initialization as a result of DEVICE directives in the system's configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: lnstallable
Device Drivers; USER COMMANDS: coNFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

• Process control
• Memory management
• Peripheral support
• A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few "hooks" that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is "idle," and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it
is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53

HUAWEI EX. 1010 - 68/1582

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the

interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0

and later, additional device drivers, called installable drivers, can optionally be loaded dur-

ing system initialization as a result of DEVICE directives in the system’s configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING Ms—Dos: Installable

Device Drivers; USER COMMANDS: CONFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

0 Process control

Memory management

Peripheral support

A file system

The MS—DOS kernel is loaded from the file MSDOSSYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task

scheduling, and intertask communication.

Although MS—DOS is not a multitasking operating system, it can have multiple programs

residing in memory at the same time. One program can invoke another, which then

becomes the active (foreground) task. When the invoked task terminates, the invoking

. program again becomes the foreground task. Because these tasks never execute simulta-
i neously, this stack—like operation is still considered to be a single-tasking operating

11. system.

MS—DOS does have a few “hooks” that allow certain programs to do some multitasking

on their own. For example, terminate—and—stay—resident (TSR) programs such as PRINT

use these hooks to perform limited concurrent processing by taking control of system

resources while MS-DOS is “idle,” and the Microsoft Windows operating environment

adds support for nonpreernptive task switching.

The traditional intertask communication methods include semaphores, queues, shared

memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,

unidirectional, sequential stream of data that is written by one program and read by

another.) The data in a pipe resides in memory or in a disk file, depending on the imple-

mentation; MS—DOS uses disk files for intermediate storage of data in pipes because it

is a single—tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the

traditional operating system ordinarily provides memory—management functions. Memory

Section II: Programming in the MS—DOS Environment 55

é»; HUAWEI EX. 1010 - 68/1582
7AW“

I'

j

''

I
I
I
I
I
I
I
I

I
:I
\'I•

'II'

:,1.1 !i
,!

I·'· 1'1;

; ·Ill
' 1,,11

, I 1:

d
II

,i'
~ i

Part A: Structure of MS-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable-size memory blocks. The
two basic memory"management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool.
Many programs perform their own memory management by using a local memory pool, or
heap- an additional memory block allocated from the operating system that the applica
tion program itself divides into blocks for use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Memory M~nagement.

Peripheral support

The operating system provides peripheral support to programs through a set of operating
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices-and
block devices in general- have the greatest number of features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system.

The file system

The file system is one of the largest portions of an operating system. A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS: MS-DOS
Storage Devices.

The file allocation information can take various forms, depending on the operating sys
tem, but all forms basically track the space used by files and the space available for new
data. The directory contains a list of the files stored on the device, their sizes, and informa
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS-DOS uses a
particular allocation method called a file allocation table (FAT) and a hierarchical directory

54 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 69/1582

Part A: Structure ofMS-DOS

requirements can also vary during program execution, and memory management is

especially necessary when two or more programs are present in memory at the same time.

MS—DOS memory management is based on a pool of variable—size memory blocks. The

two basic memory-management actions are to allocate a block from the pool and to return

an allocated block to the pool. MS—DOS allocates program space from the pool when the

program is loaded; programs themselves can allocate additional memory from the pool.

Many programs perform their own memory management by using a local memory pool, or

heap —- an additional memory block allocated from the operating system that the applica-

tion program itself divides into blocks for use by its various routines. See PROGRAMMING

IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS—DOS: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-

system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical—to-physical-device translation or the operating

system can interject additional features or translations. Keyboards, displays, and printers

usually require only logical—to-physical-device translations; that is, the data is transferred

between the application program and the physical device with minimal alterations, if any,

by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating—system-dependent time and date formats. Disk devices— and '

block devices in general — have the greatest number of features added by the operating

system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral

devices or with any special features the devices might have. Because the operating system

takes care of all the logical—to-physical—device translations, the application program need

only make requests of the operating system.

The file system

54

The file system is one of the largest portions of an operating system. A file system is built

on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk

contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE OF Ms—Dos': MS-DOS

Storage Devices.

The file allocation information can take various forms, depending on the operating sys-

tem, but all forms basically track the space used by files and the space available for new

data. The directory contains a list of the files stored on the device, their sizes, and informa—
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS—DOS uses a

particular allocation method called a file allocation table (FAT) and a hierarchical directory

The MS-DOS Encyclopedia H UAWE I EX .1010 - 69/1582

L

r1.!!''
i

Article 1: An Introduction to MS-DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE oF Ms-oos:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These
device "files" can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such
files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND. COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro
gram terminates, control returns to the shell, which prompts the user for another com
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem
ory space versus speed and flexibility. Early microcomputer-based operating systems pro
vided a minimal number of resident shell commands because of limited memory space;
modern operating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND. COM. Because
these programs are stored as executable files on disk, they are essentially the same as ap
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running). See USER COMMANDS.

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See THE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum
marized in the following table.

Section !1- Programming in the MS-DOS Environment 55

HUAWEI EX. 1010 - 70/1582

75“.»?
7.5,; .r.

Article 1: An Introduction to MS~DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:

MS—DOS Storage Devices; PROGRAMMING FOR MS-DOS'. Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the

implementation. Some systems, such as MS~DOS, have files that are accessible to the byte

level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These

device “files” can be opened, closed, read from, and written to like normal disk files, but

all transactions occur directly with the specified character device. Device files provide a

useful consistency to the environment. for application programs; MS-DOS supports such

files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is

generally a conventional program that allows the user to interact with the operating sys-

tem itself. The default MS—DOS user interface is a replaceable shell program called
COMMANDCOM.

One of the fundamental tasks of a shell is to load a program into memory on request and

pass control of the system to the program so that the program can execute. When the pro- '

gram terminates, control returns to the shell, which prompts the user for another com—

mand. In addition, the shell usually includes functions for file and directory maintenance

and display. In theory, most of these functions could be provided as programs, but making

them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-

ory space versus speed and flexibility. Early microcomputer-based operating systems pro-

vided a minimal number of resident shell commands because of limited memory space;

modern operating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS—DOS software includes support programs that provide access to operating—system

facilities not supplied as resident shell commands built into COMMAND. COM. Because

these programs are stored as executable files on disk, they are essentially the same as ap-

plication programs and MS—DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,

include disk utilities such as FORMAT and CHKDSK and more general support programs

such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be

printed while another program is running). See USER COMMANDS.

MS~DOS releases

MS~DOS and PC—DOS have been released in a number of forms, starting in 1981. See THE

DEVELOPMENT OF MS-DOS. The major MS-DOS and PC—DOS implementations are sum-

marized in the following table.

Section 11,- Programming in the MS—DOS Environment 55
HUAWEI EX. 1010 - 70/1582

::.:

Part A: Structure of MS-DOS

56

Version

PC-DOS 1.0

PC-DOS 1.1
MS-DOS 1.25
MS-DOS/PC-DOS 2.0

PC-DOS 2.1
MS-DOS 2.11

MS-DOS/PC-DOS 3.0

MS-DOS/PC-DOS 3.1
MS-DOS/PC-DOS 3.2

MS-DOS/PC-DOS 3.3

Date

1981

1982
1982
1983

1984

1984
1986

1987

Special Characteristics

First operating system for the IBM PC
Record-oriented files

Double-sided-disk support
First OEM release of MS-DOS
Operating system for the IBM PC/XT

UNIX/XENIX-like file system
Installable device drivers
Byte-oriented files
Support for fixed disks

Operating system for the IBM PCjr
Internationalization support

2.0x bug fixes
Operating system for the IBM PC/AT

Support for 1.2MB floppy disks
Support for large fixed disks
Support for file and record locking
Application control of print spooler

Support forMS Networks
3.5-inch floppy-disk support

Disk track formatting support added to
device drivers

Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32MB

PC-DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions l.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the lntel8080 (the predecessor of the 8086). These ver
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks. Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS.

Although they retained compatibility with versions l.x, MS-DOS and PC-DOS versions 2.x
represented a major change. In addition to providing support for fixed disks, the new ver
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file
handle access instead of FCBs. (A file handle is a 16-bit number used to reference an inter
nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table.) The UNIX/XENIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records. Applications can read or write
1 to 65535 bytes in a single operation, starting at any byte offset within the file. Filenames

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 71/1582

Part A: Structure of MS-DOS

 Version Date Special Characteristics

PC-DOS 1.0 1981 First operating system for the IBM PC
Record-oriented files

PC—DOS 1.1 1982 ‘ Double—sided—disk support
MS—DOS 1.25 1982 First OEM release of MS—DOS

MS—DOS/PC—DOS 2.0 1983 Operating system for the IBM PC/XT

UNIX/XENDC—like file system
Installable device drivers

Byte-oriented files

Support for fixed disks

PC-DOS 2.1 Operating system for the IBM Per

MS-DOS 2.11 Internationalization support 8
, 2.0x bug fixes

MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks

Support for large fixed disks

Support for file and record locking

' Application control of print spooler

MS-DOS/PC—DOS 3.1 1984 Support for MS Networks

MS-DOS/PC—DOS 3.2 1986 3.5-inch floppy-disk support
Disk track formatting support added to
device drivers

MS-DOS/PC—DOS 3.3 1987 Support for the IBM PS/Z

Enhanced internationalization support

Improved file-system performance

Partitioning support for disks with capacity
above 32 MB

PC—DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the

original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and

PC—DOS versions 1.x were similar in many ways to CP/M, the popular operating system for

8—bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver—

sions of MS-DOS uSed a single-level file system with no subdirectory support and did not

support installable device drivers or networks. Programs accessed files using file control

blocks (FCBs) similar to those found in CP/M programs. File operations were record

oriented, again like CP/M, although record sizes could be varied in MS—DOS.

‘ it Although they retained compatibility with versions 1.x, MS—DOS and PC—DOS versions 2.x

Ii represented a major change. In addition to providing support for fixed disks, the new ver—

1 sions switched to a hierarchical file system like that found in UNlX/XENIX and to file-
handle access instead of FCBs. (A file handle is a 16-bit number used to reference an inter-

nal table that MS-DOS uses to keep track of currently open files; an application program

has no access to this internal table.) The UNIX/XENlX-style file functions allow files to be

treated as a byte stream instead of as a collection of records. Applications can read or write

1 to 65535 bytes in a single operation, starting at any byte offset Within the file. Filenames

56 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 71/1582

Article 1: An Introduction to MS-DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.
Installable device drivers were another major enhancement.

MS-DOS and PC-DOS versions 3.x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-locking
and record-locking functions. Network support was added by providing hooks for a redi
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system. It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera
tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel8086-compatible microproces
sor. See Specific Hardware Requirements below.

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program. The RAM must start at ad
dress OOOO:OOOOH and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family -1 MB.

The final requirement for MS-DOS is a set of devices supported by device drivers, includ
ing at least one block device, one character device, and a clock device. The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the character
device is usually a keyboard/display combination for interaction with the user; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub
multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
components include

• An 8086-family microprocessor
• Memory
• Peripheral devices
• A ROM BIOS (PC-DOS only)

The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, including the Intel8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40.

Section Il- Programming in the MS-DOS Environment 57

HUAWEI EX. 1010 - 72/1582

Article 1: An Introduction to MS-DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.

Installable device drivers were another major enhancement.

MS-DOS and PC—DOS versions 3.x added a number of valuable features, including support

for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file—locking

and record-locking functions. Network support was added by providing hooks for a redi-

rector (an additional operating-system module that has the ability to redirect local system

service requests to a remote system by means of a local area network).

With all these changes, MS—DOS remains a traditional single-tasking operating system. It

provides a large number of system services in a transparent fashion so that, as long as they

use only the MS-DOS—supplied services and refrain from using hardware-specific opera-

tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086—compatible microproces-

sor. See Specific Hardware Requirements below. ’

The next requirement is the ROM bootstrap loader and enough RAM to contain the

MS—DOS BIOS, kernel, and shell and an application program. The RAM must start at ad—

dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. The upper limit

for RAM is the limit placed upon the system by the 8086 family—1 MB.

The final requirement for MS-DOS is a set of devices supported by device drivers, includ—

ing at least one block device, one character device, and a clock device. The block device is

usually the boot disk device (the disk device from which MS-DOS is loaded); the character

device is usually a keyboard/display combination for interaction with the user; the clock

device, required for time-of-day and date support, is a hardware counter driven in a sub-

; multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These

components include

0 An 8086—family microprocessor

Memory

Peripheral devices

A ROM BIOS (PC—DOS only)

The microprocessor

MS—DOS runs on any machine that uses a microprocessor that executes the 8086/8088

instruction set, including the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V50, and V40.

Section 11: Programming in the MS—DOS Environment 57

i. ’ HUAWEI EX. 1010 - 72/1582
v ' r

I

I

I
''II I'

Part A: Structure of MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timer; and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Hardware Interrupt Handlers.
MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS. Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088).

The 80386 adds further instructions and a third mode called virtual86 mode. The 80386
instructions operate in either a 16-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386.

Memory requirements

58

At a minimum, MS-DOS versions l.x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is
1MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.
MS-DOS <;an use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters.)

PC-DOS has the same minimum memory requireme~ts but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include

Base Address

AOOO:OOOOH
BOOO:OOOOH
B800:0000H
C800:0000H
FOOO:OOOOH

Size (bytes)

10000H (64 KB)
1000H(4KB)
4000H (16 KB)
4000H (16 KB)
10000H (64 KB)

Description

EGA video buffer
Monochrome video buffer
Color/graphics video buffer
Fixed-disk ROM
PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro
processor for an interrupt vector table- that is, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 73/1582

Part A: Structure of MS—DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with

direct memory access, timer, and interrupt support functions. PC-DOS cannot usually run

on the 80186 or 80188 because these chips have internal interrupt and interface register

addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CUSTOMIZING Ms-Dos: Hardware Interrupt Handlers.

MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.

Real mode is compatible with the 8086/8088 and runs MS—DOS. Protected mode, used by

operating systems like UNIX/XENIX and MS 08/2, is partially compatible with real mode

in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088). '

The 80386 adds further instructions and a third mode called Virtua186 mode. The 80386

instructions operate in either a 16—bit or a 32-bit environment. MS—DOS can run on the

80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386.

Memory requirements

At a minimum, MS—DOS versions 1.x require 64 KB of contiguous RAM from the base of

memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is

1 MB, although most MS—DOS machines have a 640 KB limit for IBM PC compatibility.

MS—DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver

is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed

disks, and network adapters.)

PC—DOS has the same minimum memory requirements but has an upper limit of 640 KB

on the initial contiguous RAM, which is generally referred to as conventional memory.

This limit was imposed by the architecture of the original IBM PC, with the remaining

area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include '

Base Address Size (bytes) Description

AOOO:OOOOH 10000H (64 KB) EGA video buffer

B000:0000H 1000H (4 KB) Monochrome video buffer

B800:0000H 4000H (16 KB) Color/graphics Video buffer
C80010000H 4000H (16 KB) Fixed—disk ROM

F000:0000H ‘ 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations OOOOO-OOSFFH) are used by the micro—

processor for an interrupt vector table — that is, a list of addresses for interrupt handler

routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts

20H through 2FH, to store addresses of its own tables and routines and to provide linkage

to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use

many additional vectors for the same purposes.

58 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 73/1582

t. ..

Article 1: An Introduction to MS-DOS

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS-DOS system:

Device Name

CON
PRN
AUX
CLOCK$
Varies (A-E)

Description

Console input and output
Printer output
Auxiliary input and output
Date and time support
One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.
However, most MS-DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos:
Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a "bit
bucket"- that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end-of-file marker. One common use for the NUL device is as the redirected
output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file's menus and displays.

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
IO.SYS file loaded at initialization. PC-DOS, on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou
tines used by the device drivers found in IBMBIO.COM (the PC-DOS version of IO.SYS).
The support provided by a PC ROM BIOS includes

• Power-on self test (POST)
• Bootstrap loader
• Keyboard
• Displays (monochrome and color/graphics adapters)
• Serial ports 1 and 2
• Parallel printer ports 1, 2, and 3
• Clock
• Print screen

Section II: Programming in the MS-DOS Environment 59

HUAWEI EX. 1010 - 74/1582

Article 1: An Introduction to MS—DOS

Peripheral devices

MS—DOS can support a wide variety of devices, including floppy disks, fixed disks, CD

ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS—DOS is

provided by the MS-DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS—DOS system:

Device Name Description

CON Console input and output

PRN Printer output

AUX Auxiliary input and output

CLOCK$ Date and time support
Varies (A—E) One block device
These five logical devices can be implemented with a BIOS supporting a minimum of

three physical devices: a keyboard and display, a timer or clock/calendar chip that can

provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.

However, most MS-DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS:

Character Device Input and Output.

1rgfix?;4ggggggIf:AM;_",3.
 The MS—DOS kernel provides one additional device: the NUL device. NUL is a “bit

bucket” ——that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end—of—file marker. One common use for the NUL device is as the redirected

output device of a command or application that is being run in a batch file; this redirection

prevents screen clutter and disruption of the batch file’s menus and displays.

The ROM BIOS|

{ MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
' E and does not care whether device-driver support resides in ROM or is part of the MS—DOS

' l IO.SYS file loaded at initialization. PC-DOS, on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou—

tines used by the device drivers found in IBMBIOCOM (the PC-DOS version of IO.SYS).

{ The support provided by a PC ROM BIOS includes

0 Power—on self test (POST)

Bootstrap loader

Keyboard

Displays (monochrome and color/graphics adapters)

Serial ports 1 and 2

Parallel printer ports 1, 2, and 3
Clock

Print screen

Section 11: Programming in the MS—DOS Environment 59

HUAWEI EX. 1010 - 74/1582

I:

I

I
i

,I

I
I' "
I!
'!' r
'I
i

,, I
:' i

iJ I

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit
for additional ROMs. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs. (The fixed-disk ROM also includes an additional loader routine that
allows the system to start from the fixed disk.)

Summary

60

MS~DOS is a widely accepted traditional operating system. Its consistent and well-defined
interface makes it one of the easier operating systems to adapt and program.

MS-DOS is also a growing operating system- each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver
sion has included more support for different devices, from 5.25-inch floppy disks to high
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become
more sophisticated, MS-DOS too will continue to evolve.

Willian: Wong

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 75/1582

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC—DOS 640 KB limit

for additional ROMS. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain Such ROMS. (The fixed-disk ROM also includes an additional loader routine that

allows the system to start from the fixed diskl)

Summary

MS—‘DOS is a widely accepted traditional operating system. Its consistent and well-defined

interface makes it one of the easier operating systems to adapt and program.

MS—DOS is also a growing operating system— each version has added more features yet

made the system easier to use for both end-users and programmers, In addition, each ver—

sion has included more support for different devices, from 5.25—inch floppy disks to high-

density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become

more sophisticated, MS—DOS too will continue to evolve.

William Wong

60 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 75/1582

iii. ...

Article 2: The Components ofMS-DOS

Article 2
The Components of MS-DOS

MS-DOS is a modular operating system consisting of multiple components with special
ized functions. When MS-DOS is copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, when it is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module

MS-DOSBIOS
MS-DOS kernel
MS-DOS shell

MS-DOS Fllename

IO.SYS
MSDOS.SYS
COMMAND. COM

PC-DOS Fllename

IBMBIO.COM
IBMDOS.COM
COMMAND. COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-nos: An Introduction to MS-DOS. The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS-that is, no modifications are made by the OEM. The shell is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND. COM, is supplied by Microsoft.

The MS-DOS BIOS

The file IO.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into IO.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section II: Programming in the MS-DOS Environment 61

HUAWEI EX. 1010 - 76/1582

Article 2: The Components of MS—DOS

Article 2

The Components ofMS-DOS

MS-DOS is a modular operating system consisting of multiple components with special—

ized functions. When MS-DOS is copied into memory during the loading process, many of

its components are moved, adjusted, or discarded. However, when it is running, MS—DOS

is a relatively static entity and its components are predictable and easy to study. Therefore,

this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module MS-DOS Filename PC-DOS Filename

MS—DOS BIOS IO.SYS IBMBIO.COM
MS—DOS kernel MSDOS.SYS IBMDOS.COM

MS—DOS shell COMMANDCOM COMMANDCOM

During system initialization, these modules are loaded into memory, in the order given,

just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial-

ization modules are omitted from this list because they are discarded as soon as MS—DOS

is running. See Loading MS—DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that

distributes MS—DOS, usually for a particular computer. See PROGRAMMING IN THE
MS—DOS ENVIRONMENT: STRUCTURE or Ms-Dos: An Introduction to MS-DOS. The kernel

is supplied by Microsoft and is the same across all OEMs for a particular version of

MS—DOS— that is, no modifications are made by the OEM. The shell is a replaceable

module that can be supplied by the OEM or replaced by the user; the default shell,

COMMANDCOM, is supplied by Microsoft.

The MS-DOS BIOS

The file IO.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,

SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT

is supplied by Microsoft and is put into IO.SYS by the OEM when the file is created. See

Loading MS—DOS below.

Section II: Programming in the MS—DOS Environment 61

HUAWEI EX. 1010 - 76/1582

. I

II. ' I

Pari :A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa
tion module created by the OEM. The device drivers appear first in IO.SYS because they
remain resident after IO.SYS is initialized; the MS-DOS BIOS initialization routine and
SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$, and the driver
for one block device. The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel.

Device driver code can be split between IO.SYS and ROM. For example, most MS-DOS sys
tems and all PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations.)

The IO.SYS file is an absolute program image and does not contain relocation information.
The routines in IO.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, IO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Structure of an Application
Program. Larger IO.SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside
the first 64 KB.

The MS-DOS kernel

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi
tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programs in a hardware-independent manner and, in turn, is iso
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

• File and directory management
• Character device input and output
• Time and date support

It also provides the following non-device-related functions:

• Memory management
• Task and environment management
• Country-specific co~iguration

62 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 77/1582

.;.r::..«,.-=~m,.r.:3~a'{~'.
PartiA'; Structure ofMS-DOS

The MS—DOS BIOS consists of a list of resident device drivers and an additional initializa-

tion module created by the OEM. The device drivers appear first in IO.SYS because they

remain resident after IO.SYS is initialized; the MS—DOS BIOS initialization routine and

SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$, and the driver

for one block device. The resident character-device drivers appear in the driver list before

the resident block—device drivers; installable character-device drivers are placed ahead of

the resident device drivers in the list; installable block-device drivers are placed after the

resident device drivers in the list. This sequence allows installable character—device drivers

to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is COntained in the MS—DOS kernel.

Device driver code can be split between IO.SYS and ROM. For example, most MS-DOS sys—

tems and all PC—DOS-compatible systems have a ROM BIOS that contains primitive device

support routines. These routines are generally used by resident and installable device

drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes

the driver dependent on a particular hardware configuration; placing part of the driver in

ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains

constant for many different hardware configurations.)

The IO.SYS file is an absolute program image and does not contain relocation information.

The routines in IO.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, IO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING

IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application

Program. Larger IO.SYS files are possible, but all device driver headers must lie in the first

64 KB and the code must rely on its own segment arithmetic to access routines outside
the first 64 KB.

The MS-DOS kernel

The MS—DOS kernel is the heart of MS—DOS and provides the functions found in a tradi—

tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied

by Microsoft Corporation. The kernel provides its support functions (referred to as system

functions) to application programs in a hardware-independent manner and, in turn, is iso-

lated from hardware characteristics by relying on the driver routines in the MS—DOS BIOS

to perform physical input and output operations.

The MS—DOS kernel provides the following services through the use of device drivers:

0 File and directory management

0 Character device input and output

0 Time and date support

It also provides the following non-device-related functions:

0 Memory management

0 Task and environment management

0 Country-specific configuration

2 - no G {a
6 771911450055 3’ [Oped HUAWEI EX. 1010 - 77/1582

··.t ..

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS-DOS
reserves Interrupts 20H through 3FH for this purpose. The MS-DOS interrupts are

Interrupt

20H
21H
22H
23H
24H
25H
26H
27H
28H-2EH
2FH
30H-3FH

Name

Terminate Program
MS-DOS Function Calls
Terminate Routine Address
Control-C Handler Address
Critical Error Handler Address
Absolute Disk Read
Absolute Disk Write
Terminate and Stay Resident
Reserved
Multiplex
Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The CP/M interface was provided in MS-DOS version 1.0
solely to assist in movement of CP/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively.)

MS-DOS version 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG.SYS file. CONFIG.SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de
vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG.SYS.

The MS-.DOS shell

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized. It provides the interface
between the kernel and the user. The default MS-DOS shell, COMMAND. COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented.

COMMAND. COM is a replaceable shell. A number of commercial products can be used
as COMMAND. COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND. COM or by using
the SHELL command in CONFIG.SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section Il- Programming in the MS-DOS Environment 63

HUAWEI EX. 1010 - 78/1582

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS—DOS

reserves Interrupts 20H through SFH for this purpose. The MS—DOS interrupts are

Interrupt Name

20H Terminate Program
21H MS—DOS Function Calls

22H Terminate Routine Address

23H Control—C Handler Address
24H Critical Error Handler Address

25H Absolute Disk Read
26H Absolute Disk Write

27H Terminate and Stay Resident
28H—2EH Reserved

2FI-I Multiplex
SOH—SFH Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are

implemented by placing a function number in the AH register, placing any necessary

parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports

a call instruction interface for CP/M compatibility. The function and parameter registers

differ from the interrupt interface. The CP/M interface was provided in MS—DOS version 1.0

solely to assist in movement of CP/M—based applications to MS—DOS. New applications

should use Interrupt 21H functions exclusively.)

MS-DOS version 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS

and kernel: the CONFIGSYS file. CONFIGSYS is a text file containing command options

that modify the size or configuration of internal MS—DOS tables and cause additional de-

vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG.SYS.

The MS-DOS shell

The shell, or command interpreter, is the first program started by MS—DOS after the

MS—DOS BIOS and kernel have been loaded and initialized. It provides the interface

between the kernel and the user. The default MS-DOS shell, COMMANDCOM, is a

command-oriented interface; other shells may be menu—driven or screen—oriented.

COMMANDCOM is a replaceable shell. A number of commercial products can be used

as COMMANDCOM replacements, or a programmer can develop a customized shell. The

new shell program is installed by renaming the program to COMMANDCOM or by using

§ the SHELL command in CONFIG.SYS. The latter method is preferred because it allows
I initialization parameters to be passed to the shell program.

Section 11- Programming in the MS-DOS Environment 63

HUAWEI EX. 1010 - 78/1582

. I

i
I
I
I I
I ,

i
I

I
I

I
I

II
ll
II
q
I
I

'I
, I

, !'.I
~.~~I· ,.I

'lir.!'

Part A: Structure of MS-DOS

COMMAND. COM can execute a set of internal (built-in) commands, load and execute
programs, or interpret batch files. Most of the internal commands support file and direc
tory operations and manipulate the program environment segment maintained by
COMMAND.COM. The programs executed by COMMAND. COM are .COM or .EXE files
loaded from a block device. The batch (.BAT) files supported by COMMAND. COM pro
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands. In particular, when it is first loaded by
MS-DOS, COMMAND. COM searches for the batch file AUTOEXEC.BAT and interprets it, if
found, before taking any other action. COMMAND. COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter
rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-oos: Exception Handlers.

COMMAND.COM's split personality

COMMAND. COM is a conventional .COM application with a slight twist. Ordinarily, a
.COM program is loaded into a single memory segment. COMMAND. COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in low memory. The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated
and the resident portion of COMMAND. COM regains control of the system. The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND. COM continues its normal
operation.

This "split personality" exists because MS-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND.COM, which contains the
built~ in commands and batch~file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional
RAM and allows larger application programs to be run.

Command execution

64

COMMAND. COM interprets commands by first checking to see if the specified command
matches the name of an internal command. If so, it executes the command; otherwise, it
searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM
or .EXE program is found, COMMAND. COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMAND. COM itself interprets .BAT files.
If no file is found, the message Bad command or file name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name to be preceded by a full pathname. If a path is not
explicitly specified, the COMMAND.COM search mechanism uses the contents of the

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 79/1582

l .I
I
l
|l

Part A: Structure of MS—DOS

COMMANDCOM can execute a set of internal (built-in) commands, load and execute

programs, or interpret batch files. Most of the internal commands support file and direc-

tory operations and manipulate the program environment segment maintained by

COMMANDCOM. The programs executed by COMMANDCOM are .COM or .EXE files

loaded from a block device. The batch (.BAT) files supported by COMMANDCOM pro-

vide a limited programming language and are therefore useful for performing small,

frequently used series of MS—DOS commands. In particular, when it is first loaded by

MS-DOS, COMMAND. COM searches for the batch file AUTOEXECBAT and interprets it, if

found, before taking any other action. COMMAND. COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter—

rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS—DOS ENVIRONMENT:

CUSTOMIZING Ms-Dos: Exception Handlers.

COMMAND.COM’s split personality

COMMANDCOM is a conventional .COM application with a slight twist. Ordinarily, a

.COM program isloaded into a single memory segment. COMMANDCOM starts this way

but then copies the nonresident portion of itself into high memory and keeps the resident

portion in low memory. The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMANDCOM regains control of the system. The resident

portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches

a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the

nonresident portion is reloaded from disk and COMMANDCOM continues its normal
operation.

This “split personality” exists because MS-DOS was originally designed for systems with a

limited amount of RAM. The nonresident portion of COMMANDCOM, which contains the

built4in commands and batch4file—processing routines that are not essential to regaining

control and reloading itself, is much larger than the resident portion, which is responsible

for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional

RAM and allows larger application programs to be run.

Command execution

COMMANDCOM interprets commands by first checking to see if the specified command

matches the name of an internal command. If so, it executes the command; otherwise, it

searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM

or .EXE program is found, COMMANDCOM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMANDCOM itself interprets .BAT files.

If no file is found, the message Bad command orfz'le name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions

3.0 and later allow a command name to be preceded by a full pathname. If a path is not

explicitly specified, the COMMANDCOM search mechanism uses the contents of the

64 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 79/1582

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted. For example, the PATH
specification

PATH C:\BIN;D:\BIN;E:\

causes COMMAND. COM to search the current directory, then C: \BIN, then D: \BIN, and
finally the root directory of drive E. COMMAND. COM searches each directory for a match
ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS. An environment is a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable==value

that provide such information as the current search path used by COMMAND. COM to find
executable files, the location of COMMAND.COM itself, and the format of the user prompt.
The end of the set of strings is marked by a null string- that is, a single zero byte. A
specific environment is associated with each program in memory through a pointer con
tained at offset 2CH in the 256-byte program segment prefix (PSP). The maximum size of
an environment is 32 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of
the new program's environment are provided to MS-DOS by the initiating program- one
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program's
environment. The default environment provided to the new program is a copy of the
initiating program's environment.

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program's environment, because MS-DOS provides a pointer
to this environment only to the new program. Any changes made to the new program's en
vironment during program execution are invisible to the initiating program because a
child program's environment is always discarded when the child program terminates.

The system's master environment is normally associated with the shell COMMAND. COM.
COMMAND. COM creates this set of environment strings within itself from the contents
of the CONFIG.SYS and AUTOEXEC.BAT files, using the SET, PATH, and PROMPT com
mands. See USER COMMANDS: AUTOEXEC.BAT; coNFIG.sYs. In MS-DOS version 3.2, the
initial size of COMMAND. COM's environment can be controlled by loading
COMMAND. COM with the IE parameter, using the SHELL directive in CONFIG.SYS.
For example, placing the line

SHELL=COMMAND.COM /E:2048 /P

Section 11- Programming in the MS-DOS Environment 65

HUAWEI EX. 1010 - 80/1582

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-

mands. The search starts with the current directory and proceeds through the directories

specified by PATH until a file is found or the list is exhausted. For example, the PATH

specification

PATH C:\BIN;D:\BIN;E:\

causes COMMAND. COM to search the current directory, then C:\BIN, then D:\BIN, and

finally the root directory of drive E. COMMAND. COM searches each directory for a match-

ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS—DOS. An environment is a

paragraph-aligned memory segment containing a concatenated set of zero—terminated

(ASCIIZ) variable-length strings of the form

variable= value

that provide such information as the current search path used by COMMANDCOM to find

executable files, the location of COMMANDCOM itself, and the format of the user prompt.

The end of the set of strings is marked by a null string— that is, a single zero byte. A

specific environment is associated with each program in memory through a pointer con—

tained at offset ZCH in the ZSébyte program segment prefix (PSP). The maximum size of

an environment is 32 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of

the new program’s environment are provided to MS—DOS by the initiating program— one

of the parameters passed to the MS—DOS EXEC function is a pointer to the new program’s

environment. The default environment provided to the new program is a copy of the

initiating program’s environment.

A program that uses the EXEC function to load and execute another program will not

itself have access to the new program’s environment, because MS—DOS provides a pointer

to this environment only to the new program. Any changes made to the new program’s en-

vironment during program execution are invisible to the initiating program because a

’ child program’s environment is always discarded when the child program terminates.

The system’s master environment is normally associated with the shell COMMAND. COM.

COMMANDCOM creates this set of environment strings within itself from the contents

of the CONFIGSYS and AUTOEXECBAT files, using the SET, PATH, and PROMPT com-

mands. See USER COMMANDS: AUTOEXECBAT; CONFIG.SYS. In MS—DOS version 3.2, the

initial size of COMMANDCOM’S environment can be controlled by loading

COMMAND. COM with the /E parameter, using the SHELL directive in CONFIGSYS.

For example, placing the line

SHELL=COMMAND .COM /E : 2048 /P

Section II: Programming in the MS—DOS Environment 65

R HUAWEI EX. 1010 - 80/1582

N

I
I
I
I

I
I

I I
I I

I.
I

I I i

I! i
j; i

lj

.J lj ,,,

I' II

I 'i
I I

I
I
I

it : l
'I''

'I I 11

,,,! .lill'l

Part A: Structure of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND. COM's environment to 2 KB. (The /P
option prevents COMMAND. COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted.)

The SET command is used to displ.ay or change the COMMAND. COM environment con
tents. SET with no parameters displays the list of all the environment strings in the envi
ronment. A typical listing might show the following settings:

COMSPEC=A:\COMMAND.COM
PATH=C:\;A:\;B:\
PROMPT=$p $d t_ng

TMP=C:\TEMP

The following is a dump of the environment segment containing the previous environment
example:

0 2 3 4 5 6 7 8 9 A B c D E F
0000 43 4F 4D 53 50 45 43 3D-41 3A SC 43 4F 4D 4D 41 COMSPEC=A:\COMMA
0010 4E 44 2E 43 4F 4D 00 50-41 54 48 3D 43 3A SC 3B ND.COM.PATH=C:\;
0020 41 3A SC 3B 42 3A SC 00-50 52 4F 4D 50 54 3D 24 A:\;B:\.PROMPT=$
0030 70 20 20 24 64 20 20 24-74 24 SF 24 6E 24 67 00 p $d t_ng.

0040 54 4D 50 3D 43 3A SC 54-45 4D 50 00 00 00 00 00 TMP=C:\TEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a .BAT extension that contain MS-DOS user and batch com
mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: BATCH. Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE.BAT <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the
screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND.COM one line at a time. In addition to the stan
dard MS-DOS commands, COMMAND. COM's batch-file interpreter supports a number of
special batch commands:

Command

ECHO*
FOR*

Meaning

Display a message.
Execute a command for a list of files.

66 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1010 - 81/1582

f’art A: Structure of MS-DOS

in CONFIGSYS sets the initial size of COMMANDCOM’s environment to 2 KB. (The /P

option prevents COMMANDCOM from terminating, thus causing it to remain in memory

until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND. COM environment con-

tents. SET with no parameters displays the list of all the environment strings in the envi—

ronment. A typical listing might show the following settings:

COMSPEC=A:\COMMAND.COM
PATH=C:\;A:\;B:\
PROMPT=$p $d t_ng
TMP=C:\TEMP

The following is a dump of the environment segment containing the previous environment

example:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 43 4F 4D 53 50 45 43 3D-4l 3A 5C 43 4F 4D 4D 41 COMSPEC=A:\COMMA
0010 4E 44 2E 43 4F 4D 00 50—41 54 48 3D 43 3A 5C 3B ND.COM.PATH=C:\;
0020 41 3A 5C 35 42 3A 5C 00-50 52 4F 4D 50 54 3D 24 A:\;B:\.PROMPT=$

0030 70 20 20 24 64 20 20 24—74 24 5F 24 6E 24 67 00 p $d t_ng.

0040 54 4D 50 3D 43 3A 5C‘54-45 4D 50 00 00 00 00 00 TMP=C:\TEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari—
able from the environment.

A program can ignore the'contents of its environment; however, use of the environment

can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a .BAT extension that contain MS-DOS user and batch com-

mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: BATCH. Batch

files can be created using most text editors, including EDLIN, and short batch files can

even be created using the COPY command:

C>COPY CON SAMPLE.BAT <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the

screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on

IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND. COM one line at a time. In addition to the stan—

dard MS-DOS commands, COMMANDCOM’s batch-file interpreter supports a number of
special batch commands:

Command Meaning

ECHO * Display a message.
FOR * Execute a command for a list of files.

(more)

66 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 81/1582

Command

GOTO*
IF*
PAUSE
REM
SHIFT*

Meaning

Transfer control to another point.
Conditionally execute a command.
Wait for any key to be pressed.
Insert comment line.
Access more than 10 parameters.

• MS-DOS versions 2.0 and later

Article 2: The Components of MS-DOS

Execution of a batch file can be terminated before completion by pressing Ctrl-C or
Ctrl-Break, causing COMMAND. COM to display the prompt

Terminate batch job? (Y/N)

1/0 redirection

1/0 redirection was introduced with MS-DOS version 2.0. The redirection facility is imple
mented within COMMAND.COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H). COMMAND.COM uses these func
tions to provide both redirection at the command level and a UNIX/XENIX-like pipe
facility.

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and output file handles. The in
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the
special characters>,>>, and<. Standard output (default= CON) is redirected using> and
>>followed by the name of a file or character device. The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device. See also PRO
GRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Writing MS-DOS
Filters.

The redirection facility can also be used to pass information from one program to an
other through a "pipe." A pipe in MS-DOS is a special file created by COMMAND.COM.
COMMAND.COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar CD, separates the pro
gram names. Multiple program names can be piped together in the same command line:

C>DIR *·* : SORT : MORE <Enter>

This command is equivalent to

C>DIR *·* >PIPED <Enter>
C>SORT < PIPED > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section Jl- Programming in the MS-DOS Environment 67

HUAWEI EX. 1010 - 82/1582

Article 2: The Components of MS-DOS

Command Meaning

GOTO * Transfer control to another point.

IF * Conditionally execute a command.

PAUSE Wait for any key to be pressed.
REM Insert comment line.

SHIFT * Access more than 10 parameters.

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Ctrl—C or

Ctrl—Break, causing COMMAN D. COM to display the prompt

Terminate batch job? (Y/N)

I/O redirection

I/O redirection was introduced with MS-DOS version 2.0. The redirection facility is imple-

mented within COMMANDCOM using the Interrupt 21H system functions Duplicate File

Handle (45H) and Force Duplicate File Handle (46H). COMMANDCOM uses these func—

tions to provide both redirection at the command level and a UNIX/XENIX—like pipe

facility.

Redirection is transparent to application programs, but to take advantage of redirection, an

application program must make use of the standard input and output file handles. The in-

put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the

special characters >, >>, and <. Standard output (default = CON) is redirected using > and

>> followed by the name of a file or character device. The former character creates a new

file (or overwrites an existing file with the same name); the latter appends text to an exist-

ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected

with the < character followed by the name of a file or character device. See also PRO-

GRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Writing MS-DOS
Filters.

The redirection facility can also be used to pass information from one program to an—

other through a “pipe.” A pipe in MS-DOS is a special file created by COMMANDCOM.

COMMANDCOM redirects the output of one program into this file and then redirects this

file as the input to the next program. The pipe symbol, a vertical bar (l), separates the pro—

gram names. Multiple program names can be piped together in the same command line:

1i

lll
l

C>DIR *.* : 'SORT .' MORE <Enter>

This command is equivalent to

C>DIR *.* > PIPEO <‘Enter>
C>SORT < PIPEO > PIPEl <Enter>
C>MORE < PIPE1 <Enter>

Section 11: Programming in the MS—DOS Enviromfient 67

HUAWEI EX. 1010 - 82/1582
,.

I I

I II I
I I
! I

'II I: ~~·I I ,,

I ' ji! I

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper
ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations. This section discusses the complete process normally asspciated with MS-DOS
versions 2.0 and later. (MS-DOS versions l.x use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a "cold boot" or a "warm boot." On IBM-compatible
machines, a cold boot is performed when the computer is first turned on or when a hard
ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time. For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:

MS-DOS Storage Devices. The body of MS-DOS is contained in two files: IO.SYS and
MSDOS.SYS (IBMBIO.COM and IBMDOS.COM with PC-DOS). IO.SYS contains the
Microsoft system initialization module, SYSINIT, which configures MS-DOS using either
default values or the specifications in the CONFIG.SYS file, if one exists, and then starts up
the shell program (usually COMMAND. COM, the default). COMMAND. COM checks for an
AUTO EXEC. BAT file and interprets the file if found. (Other shells might not support such
batch files.) Finally, COMMAND. COM prompts the user for a command. (The standard
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

68

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:OOOOH, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine. (This has nothing to do with MS-DOS;
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS
occupies the address space from FOOO:OOOOH to this jump instruction. Figure 2-1 shows the
location of the ROM BIOS within the 1MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 83/1582

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UN]X/XEN1X is a multitasking oper-

ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory

buffers to connect the programs, whereas MS—DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of

variations. This section discusses the complete process normally associated with MS—DOS

versions 2.0 and later. (MS—DOS versions 1.x use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a “cold boot" or a “warm boot.” On IBM-compatible

machines, a cold boot is performed when the computer is first turned on or when a hard-

ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter—

mines the amount of memory available, as well as which peripheral adapters are installed.

The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of

time. For example, an IBM—compatible ROM BIOS tests all conventional and extended

RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that

can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,

and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE or MS-DOS:

MS—DOS Storage Devices. The body of MS-DOS is contained in two files: IO.SYS and
MSDOS.SYS (IBMBIO.COM and IBMDOS.COM with PC—DOS). IO.SYS contains the

Microsoft system initialization module, SYSINIT, which configures MS-DOS using either

default values or the specifications in the CONFIGSYS file, if one exists, and then starts up

the shell program (usually COMMANDCOM, the default). COMMANDCOM checks for an

AUTOEXECBAT file and interprets the file if found. (Other shells might not support such

batch files.) Finally, COMMANDCOM prompts the user for a command. (The standard

MS—DOS prompt is A> if the system was booted from a floppy disk and C> if the system

i was booted from a fixed disk.) Each of these steps is discussed in detail below.

I The ROM BIOS, POST, and bootstrapping

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to

FFFF:OOOOH, which typically contains a jump instruction to a destination in the ROM BIOS
! that contains the initialization code for the machine. (This has nothing to do with MS—DOS;

it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS

occupies the address space from FOOO:OOOOH to this jump instruction. Figure 2-1 shows the

location of the ROM BIOS within the 1 MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

3! All interrupts are disabled when the microprocessor starts execution and it is up to the

11: initialization routine to set up the interrupt vectors at the base of memory.

2 .l , l 68 TheMS—DOSEncyclopedia
i i; HUAWEI EX. 1010 - 83/1582

.----------,....- FFFF:OOOFH(l MB)

ROM BIOS ,.._ FFFF:OOOOH

1----------i....- FOOO:OOOOH

Other ROM and RAM

1----------l....- Top of RAM
(AOOO:OOOOH for IBM PC)

Free RAM

~.-______ __.,.._ OOOO:OOOOH

Figure 2-1. Memory layout at startup.

Article 2: The Components of MS-DOS

The initialization routine in the ROM BIOS-the POST procedure- typically deter
mines what devices are installed and operational and checks conventional memory (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB). The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera
tion. First, it initializes the interrupt vector table at the beginning of memory and any inter
rupt controllers that reference the table. The interrupt vector table area is located from
OOOO:OOOOH to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done
before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is running; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BlOSs are installed
by scanning the memory from AOOO:OOOOH to FOOO:OOOOH for a particular sequence of sig
nature bytes. If additional ROM BlOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT's fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a boatable

Section I1- Programming in the MS-DOS Environment 69

HUAWEI EX. 1010 - 84/1582

Article 2: The Components of MS—DOS

(—— FFFF:000FH(1MB)
(- FFFF:OOOOH

(—— F000:0000H

ROM BIOS

Other ROM and RAM

(- Top of RAM
(A000:0000H for IBM PC)

. Free RAM

(— 0000:0000H

Figure 2—1. Memory layout at startup.

The initialization routine in the ROM BIOS -the POST procedure —typically deter-

mines what devices are installed and operational and checks conventional memory (the

first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1

MB). The devices are tested, where possible, and any problems are reported using a series

of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera-

tion. First, it initializes the interrupt vector table at the beginning of memory and any inter—

rupt controllers that reference the table. The interrupt vector table area is located from

0000:0000H to 0000:05FFH. On IBM-compatible machines, some of the subsequent mem—

ory (starting at address 0000:04001-1) is used for table storage by various ROM BIOS rou—

tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in

the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory

access (DMA) controllers, serial ports, and the like. Some hardware setup may be done

before the interrupt vector table area is set up. For example, the IBM PC DMA controller

also provides refresh for the dynamic RAM chips and RAM cannot be used until the

refresh DMA is running; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed

by scanning the memory from A000:0000H to F000:0000H for a particular sequence of sig—

nature bytes. If additional ROM BIOSs are found, their initialization routines are called to

initialize the associated devices. Examples of additional ROMS for the IBM PC family are
the PC/XT’S fixed—disk ROM BIOS and the EGA ROM BIOS.

§ The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.

On the IBM PC, this routine checks the first floppy—disk drive to see if there is a bootable

Section II: Programming in the MS—DOS Environment 69

HUAWEI EX. 1010 - 84/1582

“m '

Part A: Structure of MS-DOS

,.---------, ~ FFFF:OOOFH(I MB)

ROM BIOS ~ FFFF:OOOOH

1--------i ~ FOOO:OOOOH

Other ROM and RAM

1----------1 ~ Top of RAM
(AOOO:OOOOH for IBM PC)

Free RAM

1--R-O_M_B_IO-S-ta-bl-es---f ~ 0000:0600H
1-----------1 ~ 0000:0400H

Interrupt vectors

'------------' ~ OOOO:OOOOH

Figure 2-2. The interrupt vector table and the ROM BIOS table.

disk in it. If there is not, the routine then invokes the ROM associated with another boot
able device to see if that device contains a boo table disk. This procedure is repeated until
a boatable disk is found or until all boatable devices have been checked without success,
in which case ROM BASIC is enabled.

Boatable devices can be detected by a number of proprietary means. The IBM PC ROM
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family
short or long jump at the beginning of the sector and for AA55H in the last word of the sec
tor. This signature indicates that the sector contains the operating-system loader. Data
disks- those disks not set up with the MS-DOS system files- usually cause the ROM
loader routine to display a message indicating that the disk is not a boatable system disk.
The customary recovery procedure is to display a message asking the user to insert
another disk (with the operating system files on it) and press a key to try the load opera
tion again. The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure.

When it finds a boatable device, the ROM loader routine loads the operating-system loader
and transfers control to it. The operating-system loader then uses the ROM BIOS services
through the interrupt table to load the next part of the operating system into low memory.

Before it can proceed, the operating-system loader must know something about the con
figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data
structure that contains this information. This structure, known as the BIOS parameter
block (BPB), is located in the same sector as the operating-system loader. From the con
tents of the BPB, the operating-system loader calculates the location of the root directory

70 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 85/1582

Part A: Structure of MS-DOS

(—- FFFF:000FH(1 MB)
4-— FFFFIOOOOH

(— FOOO:0000H

ROM BIOS

Other ROM and RAM

(—- Top of RAM .

(A00020000H for IBM PC)

(-— 0000:0600H
ROM BIOS t bl

«- 0000940011

Interrupt vectors

Figure 2—2. The interrupt vector table and the ROMBIOS table.

(- 0000:0000H

disk in it. If there is not, the routine then invokes the ROM associated with another boot-

able device to see if that device contains a bootable disk. This procedure is repeated until
a bootable disk is found or until all bootable devices have been checked without success,

in which case ROM BASIC is enabled.

Bootable devices can be detected by a number of proprietary means. The IBM PC ROM

BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086—family

short or long jump at the beginning of the sector and for AASSH in the last word of the sec—

tor. This signature indicates that the sector contains the operating—system loader. Data

disks — those disks not set up with the MS—DOS system files —- usually cause the ROM

loader routine to display a message indicating that the disk is not a bootable system disk.

The customary recovery procedure is to display a message asking the user to insert ‘

another disk (with the operating system files on it) and press a key to try the load opera-

tion again. The ROM loader routine is then typically reexecuted from the beginning so

that it can repeat its normal search procedure.

When it finds a bOOtable device, the ROM loader routine loads the operating-system loader

and transfers control to it. The operating-system loader then uses the ROM BIOS services

through the interrupt table to load the next part of the operating system into low memory.

Before it can proceed, the operating-system loader must know something about the con-

figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data

structure that contains this information. This structure, known as the BIOS parameter

block (BPB), is located in the same sector as the operating-system loader. From the con-

tents of the BPB, the operating-system loader calculates the location of the root directory

70 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 85/1582

I

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

ROM BIOS tables

Interrupt vectors

+- FFFF:OOOFH(l MB)

+- FFFF:OOOOH

+- FOOO:OOOOH

+- TopofRAM
(AOOO:OOOOH for IBM PC)

+- Arbitrary location

+- 0000:0600H

+- 0000:0400H

+- OOOO:OOOOH

Figure 2-3. A loaded boot sector.

Boot sector +- First sector on the disk

Reserved
(optional)

FAT#l

FAT#2

Root directory

IO.SYS

MSDOS.SYS

File data area

Figure 2-4. Boot-disk configuration.

Article 2: The Components of MS-DOS

Section II: Programming in the MS-DOS Environment 71

HUAWEI EX. 1010 - 86/1582

I Article 2: The Components of MS-DOS

(- FFFF:000FH(1 MB)
(— FFFF:0000H

(— F000:0000H

(— Top of RAM
(A00020000H for IBM PC)

Possible free RAM

Boot sector ‘ <— Arbitrary location

Free RAM

ROM BIOSt ble *- 00002060014a S <- 0000:0400};

(— 0000:0000H

Figure 2-3. A loaded boot sector.

Boot sector (— First sector on the disk

Reserved

(optional)

, FAT#1

Root directory

IO.SYS

MSDOS.SYS '

Figure 2—4. Boot-disk configuration.

71
Section 11: Programming in the MS—DOS Environment

HUAWEI EX. 1010 - 86/1582

l
I

I
I

. I

I

I
I
I
I
I

I
!

I I
I
I

II
:'II

I i
II
i I I

i .,1

Part:A:•.Structure of MS-DOS

72

for the boot disk so that it can verify that the first two entries in the root directory are
IO.SYS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
loader usually does not check the file allocation table [FAT] to see ifiO.SYS and
MSDOS.SYS are actually stored in contiguous sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE oF Ms-nos: MS-DOS Storage Devices.

Next, the operating-system loader reads the sectors containing IO.SYS and MSDOS.SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5). (An alterna
tive method is to take advantage of the operating-system loader's final jump to the entry
point in IO.SYS and include routines in IO.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating-system loader
transfers control to IO.SYS, passing the identity of the boot device. The operating-system
loader is no longer needed and its RAM is made available for other purposes .

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

MSDOS.SYS

IO.SYS

ROM BIOS tables

Interrupt vectors

._ FFFF:OOOFH(l MB)

._ FOOO:OOOOH

._ TopofRAM
(AOOO:OOOOH for IBM PC)

._ Arbitrary location

._ SYSINIT

._ MS-DOS BIOS (resident device drivers)

._ 0000:0600H

._ 0000:0400H

._ OOOO:OOOOH

Figure 2-5. IO.SYS and MSDOS.SYS loaded.

The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 87/1582

Part{A:{Structure of MS—DOS

for the boot disk so that it can verify that the first two entries in the root directory are

IO.SYS and MSDOS.SYS. For versions of MS—DOS through 5.2, these files must also be the

first two files in the file data area, and they must be contiguous. (The operating-system

loader usually does not check the file allocation table [FAT] to see if IO.SYS and

MSDOS.SYS are actually stored in comiguous sectors.) See PROGRAMMING IN THE
MS—DOS ENVIRONMENT: STRUCTURE OF MS-DOS: MS—DOS Storage Devices.

Next; the operating—system loader reads the sectors containing IO.SYS and MSDOS.SYS

into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5). (An alterna-

tive method is to take advantage of the operating—system loader’s final jump to the entry

point in IO.SYS and include routines in IO.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating-system loader

transfers control to IO.SYS, passing the identity of the boot device. The operating—system

loader is no longer needed and its RAM is made available for other purposes.

ROM BIOS

Other ROM and RAM

Possible free RAM

Free RAM

MSDOS.SYS

IO.SYS

ROM BIOS tables

Interrupt vectors

Figure 2-5. 10.5YS andMSDOS.SYS loaded.

(- FFFF:000FH(1 MB)

(— F00020000H

(— Top of RAM

(A000:0000H for IBM PC)

(— Arbitrary location

(— SYSINIT

(— MS—DOS BIOS (resident device drivers)
<— 0000:0600H

(— 0000:0400H
 (—- 0000:0000H

HUAWEI EX. 1010 - 87/1582

(72 The MS—DOS Encyclopedia

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded IO.SYS
and MSDOS.SYS and transferred control to the beginning of IO.SYS. To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to IO.SYS, however, MS-DOS imposes its standards.

The IO.SYS file is divided into three modules:

• The resident device drivers
• The basic MS-DOS BIOS initialization module
• The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the IO.SYS file,
before the initialization modules.

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created IO.SYS. On IBM-compatible machines, it then

. examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust
ment usually entails removing those drivers that have no corresponding installed hard
ware. The initialization routine may also modify internal tables within the device drivers.
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with system initialization. The first step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of IO.SYS, which contains the resident device drivers. This move over
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou
tine, which are no longer needed. The resulting memory layout is shown in Figure 2-6.

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel. This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH.

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver to set up vectors for any external hardware interrupts used by the
device. Each block-device driver returns a pointer to a BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF Ms-oos:
MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section IL- Programming tn the MS-DOS Environment 73

HUAWEI EX. 1010 - 88/1582

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS—DOS system initialization begins after the operating-system loader has loaded IO.SYS

and MSDOSSYS and transferred control to the beginning of IO.SYS. To this point, there

has been no standard loading procedure imposed by MS—DOS, although the IBM PC load-

ing procedure outlined here has become the de facto standard for most MS—DOS machines.

When control is transferred to IO.SYS, however, MS—DOS imposes its standards.

The IO.SYS file is divided into three modules:

0 The resident device drivers

0 The basic MS—DOS BIOS initialization module

0 The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS—DOS is completely

initialized and the shell program is running; the resident device drivers remain in memory

While MS—DOS is running and are therefore placed in the first part of the IO.SYS file,
before the initialization modules

The MS—DOS BIOS initialization module ordinarily displays a sign—on message and the

copyright notice for the OEM that created IO.SYS. On IBM-compatible machines, it then

. examines entries in the interrupt table to determine what devices were found by the ROM

BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust—

ment usually entails removing those drivers that have no corresponding installed hard—

ware. The initialization routine may also modify internal tables Within the device drivers.

The device driver initialization routines will be called later by SYSINIT, so the MS-DOS

BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy

and the copy proceeds with system initialization. The first step is to move MSDOS.SYS,

which contains the MS-DOS kernel, to a position immediately following the end of the

resident portion of IO.SYS, which contains the resident device drivers. This move over-

writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou-

tine, which are no longer needed. The resulting memory layout is shown in Figure 2—6.

SYSINIT then calls the initialization routine in the newly relocated MS—DOS kernel. This

routine performs the internal setup for the kernel, including putting the appropriate values

into the vectors for Interrupts 20H through 3FH.

f The MS—DOS kernel initialization routine then calls the initialization function of each
1 resident device driver to set up vectors for any external hardware interrupts used by the
l device. Each block-device driver returns a pointer to a BPB for each drive that it supports;

these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE OF MS-DOS:

MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the

size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section 11.- Programming in the MS-DOS Environment 73

& HUAWEI EX. 1010 - 88/1582
M

! ,(.

! 'I
I'
I I

I:
I·

I

i
i

rl
il
I I

,:r

I
i

II
I

i.

Part A: Structure of MS-DOS

74

ROM BIOS

Other ROM and RAM

SYSINIT

Free RAM

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

~ FFFF:OOOFH(l MB)

~ FOOO:OOOOH

~ TopofRAM
(AOOO:OOOOH for ffiM PC)

~ Resident device drivers

~ 0000:0600H

~ 0000:0400H

~. OOOO:OOOOH

Figure 2-6. SYSINIT and MSDOS.SYS relocated.

The kernel initialization routine's final operation before returning to SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS~DOS is now com
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIG .SYS file in the root directory of the boot
drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these struc
tures are allocated following the MS-DOS kernel (Figure 2-7).

Then SYSINIT processes the CONFIG.SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is
loaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI
RONMENT: CusTOMIZING MS-oos: Installable Device Drivers.

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 89/1582

Part A: Structure of MS-DOS

(— FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

SYSINIT

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

Figure 2-6. SYSINITandMSDOS.SYS relocated.

{—- F000:0000H

(— Top of RAM
(A00020000H for IBM PC)

(— Resident device drivers

(— 0000:0600H

{-— 0000:0400H

 4—, 0000:0000H

The kernel initialization routine’s final operation before returning to SYSINIT is to display

.. . the MS—DOS copyright message. The loading of the system portion of MS-DOS is now com-

;‘3 . plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
{3 j.” device drivers.

% ‘ 1 SYSINIT next attempts to open the CONFIG.SYS file in the root directory of the boot

I drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to

uppercase. The file contents are then processed to determine such settings as the number

‘ of disk buffers, the number of entries in the file tables, and the number of entries in the

' drive translation table (depending on the specific commands in the file), and these struc-

tures are allocated following the MS—DOS kernel (Figure 2-7).

‘ . Then SYSINIT processes the CONFIG.SYS text sequentially to determine what installable

i device drivers are to be implemented and loads the installable device driver files into

memory after the system disk buffers and the file and drive tables. Installable device driver

. 3 files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is

loaded into memory. The initialization procedure is the same as for resident device drivers,

except that SYSINIT uses an address returned by the device driver itself to determine

‘ _ where the next device driver15 to be placed. See PROGRAMMING IN THE MS-DOS ENVI—

li RONMENT: CUSTOMIZING MS-DOS: Installable Device Drivers.

{9 ' X 74 The MS—DOS Encyclopedia
* ‘ HUAWEI EX. 1010 - 89/1582

ROM BIOS

Other ROM and RAM

SYSINIT

'

Free RAM

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.,__ FFFF:OOOFH(l MB)

.,__ FOOO:OOOOH

.,__ TopofRAM
(AOOO:OOOOH for IBM PC)

.,__ Resident device drivers

.,__ 0000:0600H

.,__ 0000:0400H

.,__ OOOO:OOOOH

Article 2: The Components of MS-DOS

Figure 2-7. Tables allocated and installable device drivers loaded.

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
device driver initialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character
device drivers supersede resident character-device drivers with the same name; installable
block-device drivers cannot supersede resident block-drivers and are assigned drive letters
following those of the resident block-device drivers.

Section II: Programming in the MS-DOS Environment 75

HUAWEI EX. 1010 - 90/1582

Article 2: The Components of MS—DOS

{- FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

SYSINIT

Installable
device drivers

(— F000:0000H

(— Top of RAM

(AOOO:OOOOH for IBM PC)

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

Figure 2— 7. Tables allocated and installable device drivers loaded.

(- Resident device drivers

(— 0000:0600H

(— 0000:0400H

(- 0000:0000H

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the

device driver initialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character-

device drivers supersede resident character-device drivers with the same name; installable

block-device drivers cannot supersede resident block-drivers and are assigned drive letters

following those of the resident block-device drivers.

Section 11: Programming in the MS—DOS Environment 75

E; HUAWEI EX. 1010 - 90/1582
rum

ParGA:' StrUCture of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX. The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to LPTl); the standard auxiliary port
is AUX (which defaults to COMl). Installable device drivers with these names will replace
any resident versions.

Starting the shell
SYSINIT's last function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING
FORMs-nos: The MS-DOS EXEC Function. The SHELL statement in CONFIG .SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND. COM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8).

COMMAND.COM

COMMAND. COM consists of three parts:

• A resident portion
• An initialization module
• A transient portion

The resident portion contains support for termination of programs started by
COMMAND. COM and presents critical-error messages. It is also responsible for re
loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran
sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG.SYS file, if any. See USER
COMMANDS: COMMAND. Next, it processes the AUTOEXEC.BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. the relocated transient portion then displays
the MS-DOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes
it. Commands are divided into three categories:

• Internal commands
• Batch files
• External commands

Internal commands are routines contained within COMMAND. COM and include opera
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran
sient portion. Internal commands consist of a keyword, sometimes followed by a list of ·
command-specific parameters.

76 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 91/1582

r???»

 .Sly'ti‘uc'tuufe of Ms-Dos

SYSINIT now closes all open files and then opens the three character devices CON, PRN,

and AUX. The console (CON) is used as standard input, standard output, and standard

error; the standard printer port is PRN (which defaults to LPT1); the standard auxiliary port

is AUX (which defaults to COMl). Installable device drivers with these names will replace

any resident versions. '

Starting the shell

SYSINIT’s last function is to load and execute the shell program by using the MS—DOS
EXEC function. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: PROGRAMMING

FOR MS-DOS: The MS-DOS EXEC Function. The SHELL statement in CONFIG.SYS specifies

both the name of the shell program and its initial parameters; the default MS—DOS shell is

COMMANDCOM. The shell program is loaded at the start of free memory after the .
installable device drivers or after the last internal MS—DOS file control block if there are l

no installable device drivers (Figure 2—8). l

COMMAND.COM

COMMANDCOM consists of three parts:

O A resident portion
0 An initialization module

0 A transient portion

The resident portion contains support for termination of programs started by

COMMANDCOM and presents critical-error messages. It is also responsible for re-

loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran—

sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the

parameters specified in the SHELL command in the CONFIG.SYS file, if any. See USER

COMMANDS: COMMAND. Next, it processes the AUTOEXEC.BAT file, if one exists, and

finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The relocated transient portion then displays

the MS—DOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes

it. Commands are divided into three categories:

0 Internal commands

0 Batch files

0 External commands

Internal commands are routines contained within COMMANDCOM and include opera-
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran-

sient portion. Internal commands consist of a keyword, sometimes followed by a list of ’
command—specific parameters.

76 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 91/1582

l

ROM BIOS

Other ROM and RAM

SYSINIT

.

Free RAM

COMMAND.COM
(transient)

COMMAND. COM
(initialization)

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

,..__ FFFF:OOOFH(l MB)

,..__ FOOO:OOOOH

,..__ Top of RAM
(AOOO:OOOOH for IBM PC)

,..__ Resident device drivers

,..__ 0000:0600H

,..__ 0000:0400H

,..__ OOOO:OOOOH

Article 2: The Components of MS-DOS

Figure 2-8. COMMAND. COM loaded.

Section IL- Programming in the MS-DOS Environment 77

------------....... HUAWEI EX. 1010 - 92/1582

Article 2: The Components of MS—DOS

<- FFFFIOOOFHU MB)

ROM BIOS

Other ROM and RAM

SYSINIT

COMMANDCOM

(transient)

COMMANDCOM

(initialization)

COMMANDCOM

(resident)

{- F000:0000H

<— Top of RAM
(A000:0000H for IBM PC)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

 MS-DOS kernel

(MSDOS.SYS)

 MS-DOS BIOS

(IO.SYS) -

ROM BIOS tables

Interrupt vectors

Figure 2—8. COMMAND. COM loaded.

(‘- Resident device drivers

4— 0000:0600H

4- 0000:0400H
 {- 0000:0000H

il
2

Section 11.- Programming in the MS—DOSEnvironment 77

&. HUAWEI EX. 1010 - 92/1582

N

Part A: Structure of MS-DOS

78

ROM BIOS

Other ROM and RAM

COMMAND.COM
(transient)

Free RAM

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOSBIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.__ FFFF:OOOFH(l MB)

.__ FOOO:OOOOH

.__ TopofRAM
(AOOO:OOOOH for IBM PC)

.__ Resident device drivers

.__ 0000:0600H

.__ 0000:0400H

.__ OOOO:OOOOH

Figure 2-9. COMMAND. COM after relocation.

Batch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: BATCH.

External commands, which are actually executable programs, are stored in separate
files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Struc
ture of an Application Program. These programs are invoked with the name of the file
without the extension. (MS-DOS versions 3.x allow the complete pathname of the external
command to be specified.)

The MS-DOS Encyclopedia HUAWEI EX. 1010 - 93/1582

Part A: Structure of MS-DOS

{—- FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

COMMAND.COM

(transient)

COMMAND.COM

(resident)

Installable
device drivers

(— F000:0000H
<— Top of RAM

(A000:0000H for IBM PC)

File control blocks

Disk buffers

MS—DOS tables

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

Figure 2-9. COMMAND. COM after relocation.

(— Resident device drivers

(— 0000:0600H

(- 0000:0400H
 (— 0000:0000H

Batch files are text files that contain internal commands, external commands, batch—file

directives, and nonexecutable comments. See USER COMMANDS: BATCH.

‘ External commands, which are actually executable programs, are stored in separate
‘ files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.

3 ‘ See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Struc-

' ture of an Application Program. These programs are invoked with the name of the file
without the extension. (MS-DOS versions 3.x allow the complete pathname 'of the external

command to be specified.)

is: 78 TheMS—Dosmydopedm HUAWEI EX. 1010 - 93/1582

Article 2: The Components of MS-DOS

External commands are loaded by COMMAND. COM by means of the MS-DOS EXEC func
tion. The EXEC function loads a program into the free memory area, also called the tran
sient program area (TPA), and then passes it control. Control returns to COMMAND. COM
when the new program terminates. Memory used by the program is released unless it is a
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: CusTOMIZING Ms-oos: Terminate-and-Stay-Resident Utilities.

After a program terminates, the resident portion of COMMAND. COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion's memory space. The validity check is done by computing a check
sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND. COM file.

Just as COMMAND. COM uses the EXEC function to load and execute a program, pro
grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active task- the last one executed- ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND. COM. RAM-resident programs that remain in memory after they have termi
nated are the exception. In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is still in effect.

A custom shell program

The SHELL directive in the CONFIG.SYS file can be used to replace the system's default
shell, COMMAND. COM, with a custom shell. Nearly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions.
For example, the program in Figure 2-11 can be used to make any application program
appear to be a shell program- if the application program terminates, SHELL. COM
restarts it, giving the appearance that the application program is the shell program.

SHELL. COM sets up the segment registers for operation as a .COM file and reduces the
program segment size to less than 1 KB. It then initializes the segment values in the param
eter table for the EXEC function, because .COM files cannot set up segment values within a
program. The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL. COM prints a
message if the EXEC operation fails. The loop continues forever and SHELL. COM will
never return to the now-discarded SYSINIT that started it.

Section II: Programming in the MS-DOS Environment 79

HUAWEI EX. 1010 - 94/1582

Article 2: The Components of MS-DOS

External commands are loaded by COMMANDCOM by means of the MS-DOS EXEC func—
tion. The EXEC function loads a program into the free memory area, also called the tran-

sient program area (TPA), and then passes it control. Control returns to COMMANDCOM

when the new program terminates. Memory used by the program is released unless it is a

terminate—and-stay—resident (TSR) program, in which case some of the memory is retained

for the resident portion of the program. See PROGRAMMING IN THE MS—DOS ENVIRON—

MENT: CUSTOMIZING MS-DOS: Terminate—and—Stay—Resident Utilities.

After a program terminates, the resident portion of COMMANDCOM checks to see if the

transient portion is still valid, because if the program was large, it may have overwritten
the transient portion’s memory space. The validity check is done by computing a check-

sum on the transient portion and comparing it with a stored value. If the checksums do

not match, the resident portion loads a new copy of the transient portion from the
COMMANDCOM file.

Just as COMMANDCOM uses the EXEC function to load and execute a program, pro—

grams can load and execute other programs until the system runs out of memory. Figure

2-10 shows a typical memory configuration for multiple applications loaded at the same

time. The active task-— the last one executed —- ordinarily has complete control over the

system, with the exception of the hardware interrupt handlers, which gain control

whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi-

dent in memory, only one program can be active at a time. The stack-like nature of the

system is apparent in Figure 2-10. The top program is the active one; the next program

down will continue to run when the top program exits, and so on until control returns to

COMMAND. COM. RAM—resident programs that remain in memory after they have termi—

nated are the exception. In this case, a program lower in memory than another program

can become the active program, although the one-active—process limit is still in effect.

A custom shell program

The SHELL directive in the CONFIG.SYS file can be used to replace the system’s default

shell, COMMAND. COM, with a custom shell. Nearly any program can be used as a system

shell as long as it supplies default handlers for the Control-C and critical error exceptions.

For example, the program in Figure 2—11 can be used to make any application program

appear to be a shell program— if the application program terminates, SHELLCOM

restarts it, giving the appearance that the application program is the shell program.

SHELLCOM sets up the segment registers for operation as a .COM file and reduces the

program segment size to less than 1 KB. It then initializes the segment values in the param—

eter table for the EXEC function, because .COM files cannot set up segment values within a

program. The Control-C and critical error interrupt handler vectors are set to the address of

the main program loop, which tries to load the new shell program. SHELLCOM prints a

message if the EXEC operation fails. The loop continues forever and SHELL.COM will
never return to the now-discarded SYSINIT that started it.

Section 11.- Programming in the MS—DOS Environment 79

HUAWEI EX. 1010 - 94/1582

N

'c

a

I)' ,I

•!'
I'

.I
I Part A: Structure of MS-DOS

80

ROM BIOS

Other ROM and RAM

COMMAND.COM
(transient)

Free RAM

Program#3
(active)

Program#2

Program#!

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

.._ FFFF:OOOFH(l MB)

.._ FOOO:OOOOH

.._ TopofRAM
(AOOO:OOOOH for IBM PC)

.._ Resident device drivers

.._ 0000:0600H

.._ 0000:0400H

.._ OOOO:OOOOH

Figure 2-10. Multiple programs loaded.

The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 95/1582

Part A: Structure of MS—DOS

(— FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

COMMANDCOM

(transrent)

Free RAM

Program #3
(active)

Program #2

Program #1

COMMAND.COM

(resident)

(— F00020000H
<— Ton of RAM

(A000:0000H for IBM PC)

Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS—DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

Figure 2-10. Multipleprograms loaded.

*— Resident device drivers

(— 0000:06OOH

4- 0000:0400H

(— 0000:0000H

80 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - Q5/1582

r
{~

I
ii ;r
·t

f:;
I,

Article 2: The Components of MS-DOS

SHELL.ASM A simple program to run an application as an
MS-DOS shell program. The program name and
startup parameters must be adjusted before
SHELL is assembled.

Written by William wong

To create SHELL.COM:

stderr
cr
lf
cseg

start

start

C>MASM SHELL;
C>LINK SHELL;
C>EXE2BIN SHELL.EXE SHELL.COM

equ 2 standard error
equ Odh ASCII carriage return
equ Oah ASCII line feed
segment para public 'CODE'

Set up DS, ES, and SS:SP to run as .COM

assume cs:cseg
proc far
mov ax,cs set up segment registers
add ax,10h AX = segment after PSP
mov ds,ax
mov ss,ax set up stack pointer
mov sp,offset stk
mov ax, offset shell
push cs push original cs
push ds push segment of shell

push ax push offset of shell

ret jump to shell
endp

Main program running as .COM

CS, DS, SS = cseg
Original CS value on top of stack

assume cs:cseg,ds:cseg,ss:cseg
seg_size equ (((offset last) - (offset start)) + 10fh)/16
shell proc near

pop es ES segment to shrink
mov
mov

int
mov
mov

bx,seg_size
ah,4ah
21h
cmcL.seg,ds
fcb1_seg,ds

mov fcb2_seg,ds

BX new segment size
AH modify memory block
free excess memory
setup segments in
parameter block for EXEC

mov dx,offset main_loop
mov ax,2523h ; AX= set Control-Chandler

Figure 2-11. A simple program to run an application as an MS-DOS shell. (more)

Section II: Programming in the MS-DOS Environment 81

HUAWEI EX. 1010 - 96/1582

Article 2: The Components of MS—DOSWW—

; SHELL.ASM A simple program to run an application as an
; MS—DOS shell program. The program name and
; startup parameters must be adjusted before
i SHELL is assembled.

; Written by William Wong

; To create SHELL.COM:

; C>MASM SHELL;
; C>LINK SHELL;
; C>EXE2BIN SHELL.EXE SHELL.COM

stderr equ 2 ; standard error
or equ Odh ; ASCII carriage return
if equ Oah ; ASCII linefeed
cseg segment para public 'CODE'

; —— Set up DS, ES, and SS:SP to run as .COM -—

assume cs:cseg

start proc far
mov ax,cs ; set up segment registers
add ax,10h ; AX = segment after PSP
mov ds,ax
mov ss,ax ; set up stack pointer
mov sp,offset stk
mov ax,offset shell

push cs ; push original CS
push ds ; push segment of shell
push ax ; push offset of shell
ret ; jump to shell

start endp
; .
; —— Main program running as .COM ——
;

; CS, DS, SS = cseg
; Original CS value on top of stack
,

assume cs:cseg,ds:cseg,ss:cseg

seg_size equ (((offset last) - (offset start)) + 1th)/16
shell proc near

pop es _ ; ES = segment to shrink

f I mov bx,seg.size ; BX = new segment size
v mov ah,4ah ; AH = modify memory block

int 21h ; free excess memory
mov cmd_seg,ds ; setup segments in
mov fcb1-seg,ds ; parameter block for EXEC
mov fcb2_seg,ds
mov dx,offset main_loop
mov ax,2523h ; AX = set Control—C handler

Figure 2—11. A simpleprogram to run an application as an MS-DOS shell. (more)

Section 11: Programming in theMS-DOS Environment 81

HUAWEI EX. 1010 - 96/1582
'r——————-—--l-I--.-IIIIIII

I
I

'II 1,1
i

II
li
.'i
i'l
lj

/'.
'i

! ' I :
iII
, I

I: ,.,f

Part A: Structure of MS-DOS

82

int 21h
dx,offset
ax,2524h
21h

; set handler to DS:DX

mov
mov

int

main_loop

main_loop:
push ds
push es
mov
mov
mov
mov
mov
int
mov
mov
pop
pop
jnc
mov
mov

cs:stk_seg,ss
cs:stk_off,sp
dx,offset pgm_name
bx,offset par_blk

ax,4b00h
21h
ss,cs:stk_seg
sp,cs:stk_off

es
ds
main_loop
dx,offset loact_msg
cx,loact_msg_length

AX = set critical error handler
set handler to DS:DX
Note: OS is equal to CS

save segment registers

save stack pointer

AX = EXEC/run program
carry = EXEC failed
restore stack pointer

restore segment registers

loop if program run

call print display error message

mov ah,08h AH = read without echo

int 21h wait for any character

jmp main_loop

shell endp

Print string

DS:DX

ex

print

print

address of string

size

proc near
mov ah,40h
mov bx,stderr

int 21h

ret
endp

Message strings

loact_msg db cr,lf

execute forever

AH = write to file
BX = file handle
print string

db 'Cannot load program. ',cr,lf
db 'Press any key to try again. ',cr,lf

loact_msg_length equ $-load_msg

Program data area

0

0

stack segment pointer
save area during EXEC

stk_seg dw
stk_off dw
pgm_name db '\NEWSHELL.COM',O ; any program will do

Figure 2-11. Continued.

The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1010 - 97/1582

Part A: Structure ofMS-DOS__.

int 21h ; set handler to DS:DX
mov dx,offset main_loop
mov ax,2524h ; AX = set critical error handler
int 21h ; set handler to DS:DX

; Note: DS is equal to CS

main_loop:

push ds ; save segment registers
push es
mov cs:stk_seg,ss ; save stack pointer
mov cs:stk_off,sp

mov dx,offset pgm_name'
mov bx,offset par_blk
mov ax,4b00h ; AX = EXEC/run program
int 21h ; carry = EXEC failed
mov ss,cs:stk_seg ; restore stack pointer
mov sp,cs:stk_off
pop es ; restore segment registers
pop ds
jnc main_loop ' ; loop if program run
mov dx,offset load_msg
mov cx,load_msg_length
call print ; display error message
mov ah,08h ; AH = read without echo
int 21h ; wait for any character
jmp main_loop ; execute forever

shell endp

—— Print string >--

; DS:DX = address of string

; CX = size
i

print proc near
mov ah,40h ; AH = write to file
mov bx,stderr ; BX = file handle
int 21h ; print string
ret

‘t . print endp

; -— Message strings —-

“ load_msg db cr,lf
‘H db 'Cannot load program.',cr,lf

db 'Press any key to try again.',cr,lf
3 load_msg_length equ $-load_msg

r 5 r'
; —— Program data area ~-

1 1'

{ stk_seg dw O ; stack segment pointer
stk_off dw 0 ; save area during EXEC

pgm_name db '\NEWSHELL.COM',O ; any program will do

Figure 2-1]. Continued. (more)

82 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - Q7/1582

Article 2: The Components of MS-DOS

par_.blk dw 0 use current environment

dw offset cmd-line command-line address

cmd-seg dw 0 fill in at initialization

dw offset fcb1 default FCB #1

fcb1_seg dw 0 fill in at initialization

dw offset fcb2 default FCB #2
fcb2_seg dw 0 fill in at initialization

cmd-line db O,cr actual command line

fcb1 db 0

db 11 dup (' ')

db 25 dup (0)

fcb2 db 0

db 11 dup (' ')

db 25 dup (0)

dw 200 dup (0) program stack area

stk dw 0
last equ $ last address used

cseg ends

end start

Figure 2-11. Continued.

SHELL. COM is very short and not too smart. It needs to be changed and rebuilt if the name
of the application program changes. A simple extension to SHELL-call it XSHELL
would be to place the name of the application program and any parameters in the com
mand line. XSHELL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function. The CONFIG.SYS line for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAM2 PARAM3

SHELL. COM does not set up a new environment but simply uses the one passed to it.

William Wong

Section !1- Programming in the MS-DOS Environment 83

HUAWEI EX. 1010 - 98/1582

par_blk dw

dw

cmd_seg dw
dw

fcb1_seg dw
dw

fcb2_seg dw
cmd_1ine db
fcb1 db

db
db

fcb2 db
db
db
dw

stk dw

last equ
cseg ends

end

0
offset cmd_line
0
offset fcb1
0
offset fcb2
0

0,cr
0

11 dup (' ')
25 dup (0 l
O

11 dup (' ‘)
25 dup (0)
200 dup (0'
0
$

start

Figure 2—11. Continued.

Article 2: The Components of MS—DOS

' use current environment
' command-line address
' fill in at initialization
' default FCB #1
' fill in at initialization
- default FCB #2
- fill in at initialization
‘ actual command line

' program stack area

‘ last address used

SHELLCOM is very short and not too smart. It needs to be changed and rebuilt if the name .

of the application program changes. A simple extension to SHELL—call it XSHELL-

would be to place the name of the application program and any parameters in the com-

mand line. XSHELL would then have to parse the program name and the contents of the

tw0 FCBs needed for the EXEC function. The CONFIGSYS line for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAMl PARAMZ PARAM3

SHELLCOM does not set up a new environment but simply uses the one passed to it.

William Wong

Section II: Programming in the MS—DOS Environment 85

HUAWEI EX. 1010 - 98/1582

nn——~—------IIIIIIIII.-IIIIIII

Article 3: MS-DOS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file
system support that is part ofthe MS-DOS kernel. The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in IO.SYS and installable block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: STRUCTURE oF Ms-oos: The Components of MS-DOS; CusTOMIZING
Ms-oos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver. Information
about the number of heads, tracks, and so on is required only for those partitioning pro
grams that allocate logical devices along these boundaries. See Layout of a Partition below.

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving on to the logical layout of the file sys
tem. The scheme examined is for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

• Physical device layout
• Logical device layout
• Logical block layout
• MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device. A partitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one. Each logical device

Section II: Programming in the MS-DOS Environment 85

HUAWEI EX. 1010 - 99/1582

Article 3: MSDOS Storage Devices

Article 3

MS-DOS Storage Devices

Application programs access data on MS—DOS storage devices through the MS—DOS file-

system support that is part of the MS-DOS kernel. The MS—DOS kernel accesses these

storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in IO.SYS and installable block—device drivers loaded

from individual files when MS—DOS is loaded. See PROGRAMMING IN THE MS—DOS

ENVIRONMENT: STRUCTURE OF MS-DOS: The Components of MS—DOS; CUSTOMIZING
Ms-Dos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage

device as long as there is a device driver for it. MS—DOS needs to know only the sector size-

and the maximum number of sectors for the device; the appropriate translation between

logical sector number and physical location is made by the device driver. Information

about the number of heads, tracks, and so on is required only for those partitioning pro-

grams that allocate logical devices along these boundaries. See Layout of a Partition below. -

The floppy—disk drive is perhaps the best—known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile

RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device

driver, MS—DOS can place a file system on any of these devices (except read—only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting

with the physical layout of a disk and then moving on to the logical layout of the file sys—
tem. The scheme examined is for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS—DOS disk can be viewed in a number of ways:

0 Physical device layout

Logical device layout

Logical block layout

MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical

device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical

device maps onto a physical device. A partitioned physical device contains multiple logical

devices; a physical device that cannot be partitioned contains only one. Each logical device

Section II: Programming in theMS—DOS Environment 85

k ‘ HUAWEI EX. 1010 - 99/1582
M

I '
I

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PRoGRAMMING FORMs-nos: File and Record Management; Disk Directo
ries and Volume Labels.

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag
netic media such as floppy or fixed disks. Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAM disks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer's power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its contents are not lost when the computer's power is turned off). Second, tliey are
usually not portable.

Physical disks

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material. The disk is rotated in the drive at high
speeds- approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term "fixed" refers to the fact that the medium is built permanently
into the drive, notto the motion of the medium.) Fixed disks are also referred to as "hard"
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium. The regions act like small bar magnets with
north and south poles. The magnetic regions of the medium can be logically oriented
toward one or the other of these poles-orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli
ably capable of flux reversal. Higher densities of these regions yield higher-capacity disks.
The flux density of a particular system depends on the drive mechanics, the characteris
tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

86 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 100/1582

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See also PROGRAMMING IN THE MS—DOS

ENVIRONMENT: PROGRAMMING FOR MS-DOS: File and Record Management; Disk Directo-
ries and Volume Labels.

Layout ofa physical block device

The two major block—device implementations are solid—state RAMdisks and rotating mag-

netic media such as floppy or fixed disks. Both implementations provide a fixed amount of

storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the

RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are

computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any

sector is fixed, making the RAMdisk the fastest block device available. HOWever, there are

significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably

lost when the computer’s power is turned off (although a special implementation of the

RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures

that its contents are not lost when the computer’s power is turned off). Second, they are

usually not portable.

physical disks

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving

platters coated With a special magnetic material. The disk is rotated in the drive at high

speeds —— approximately 300 revolutions per minute (rpm) for floppy disks and 5600 rpm

for fixed disks. (The term “fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium.) Fixed disks are also referred to as “hard”

disks, because the disk itself is usually made from a rigid material such as metal or glass;

floppy disks are usually made from a flexible material such as plastic.

‘ A transducer element called the read/write head is used to read and write tiny magnetic

‘ regions on the rotating magnetic medium. The regions act like small bar magnets with
2 . ' north and south poles. The magnetic regions of the medium can be logically oriented
’ toward one or the other of these poles — orientation toward one pole is interpreted as a

. specific binary state (1 or O) and orientation toward the other pole is interpreted as the

3 “ opposite binary state. A change in the direction of orientation (and hence a change in the
l : binary value) between two adjacent regions is called a flux reversal, and the density of a

particular disk-implementation can be measured by the number of regions per inch reli—

, ‘ ably capable of flux reversal. Higher densities of these regions yield higher-capacity disks.

1 . 1 The flux density of a particular system depends on the drive mechanics, the characteris—

tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

86 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 100/1582

Article 3: MS-DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding.
Each technique offers double the data encoding density of the previous one. The associ
ated control logic is more complex for the denser techniques.

Tracks
A read/write head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circular fashion around the disk (Figure 3-1). Standard 5.25-
inch floppy disks contain either 40 (0-39) or 80 (0-79) tracks per side. Like-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track. For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer
media usually use one of two types of concentric rings. The first type keeps the same num
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc
ity (CAY). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter. This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLY).

Sector

'\,~/

Figure 3-1. The physical layout of a CAV 9-sector, 5.25-inch floppy disk.

Most MS-DOS computers use CAY disks, although a CLY disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the flux density of the medium and a CAY disk must maintain the same number
of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,
the sectors on or near the perimeter do not use the full capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLY disks (such as CD ROMs) usually have slower access times than CAY disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track. Thus, CAY disks are preferred for MS-DOS systems.

Section II: Programming in the MS-DOS Environment 87
HUAWEI EX. 1010 - 101/1582

Article 3: MS-DOS Storage Devices
run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding. '
Each technique offers double the data encoding density of the previous one. The associ-

ated control logic is more‘complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a

track, which is laid out in a circular fashion around the disk (Figure 3—1). Standard 5.25-

inch floppy disks contain either 40 (0—39) or 80 (0—79) tracks per side. Like-numbered

tracks on either side of a double—sided disk are distinguished by the number of the read/

write head used to access the track. For example, track 1 on the top of the disk is identified

as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

‘svamm-zram
*Wm

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer

media usually use one of two types of concentric rings. The first type keeps the same num-

ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-

ity (CAV). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the

perimeter. This latter type of disk is rotated at different speeds to keep the medium under

the magnetic head moving at a constant linear velocity (CLV).

Figure 3—1. Thephysical layout ofa CAV9—sector, 5.25-inchfloppy disk.

Most MS-DOS computers use CAV disks, although a CLV disk can store more sectors using

the same type of medium. This difference in storage capacity occurs because the limiting

factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the full capability of the medium and the

heads, because the space reserved for each magnetic flux region on the perimeter is larger

than that available near the center of the disk. In spite of their greater storage capacity,

however, CLV disks (such as CD ROMS) usually have slower access times than CAV disks

because of the constant need to fine-tune the motor speed as the head moves from track to

track. Thus, CAV disks are preferred for MS—DOS systems.

Section II: Programming in the MS-DOS Environment 87
HUAWEI EX. 1010 -101/1582

Part A: Structure of MS-DOS

Heads
Simple disk systems use a single disk, or platter, and use one or two sides of the platter;
more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor. The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter. (Performance
can be increased by increasing the number of heads to as many as one head per track,
elimina.ting the positioning mechanism. However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of
a single platter, whereas the term cylinder refers to the number of like-numbered tracks on
a device (Figure 3-2).

cylinder

Side 3, track 7

Figure 3-2. Tracks and cylinders on a fixed-disk system.

Sectors
Each track is divided into equal-size portions called sectors. The size of a sector is a power
of 2 and is usually greater than 128 bytes- typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and
the medium. Hard-sectored disks are implemented using a series of small holes near the

88 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 102/1582

88

Part A: Structure ofMS-DOS

Heads

Simple disk systems use a single disk, or platter, and use one or two sides of the platter;

more complex systems, such as fixed disks, use multiple platters. Disk systems that use

both sides of a disk have one read/write head per side; the heads are positioned over the

track to be read from or written to by means of a positioning mechanism such as a solenoid

or servomotor. The heads are ordinarily moved in unison, using a single head-movement

mechanism; thus, heads on opposite sides of a platter in a double-sided disk system

typically access the same logical track on their associated sides of the platter. (Performance

can be increased by increasing thenumber of heads to as many as one head per track,

eliminating the positioning mechanism. However, because they are quite expensive, such

multiple-head systems are generally found only on high—performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters

in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.

Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of

a single platter, whereas the term cylinder refers to the number of like-numbered tracks on

a device (Figure 3-2).

Side 0, track 7

Side 1,
track 7

1

cylinder

Side 2, track 7
Side 3, track 7

Figure 3—2. Trades and cylinders on afixed—disle system.

Sectors

Each track is divided into equal—size portions called sectors. The size of a sector is a power
of 2 and is usually greater than 128 bytes— typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and

the medium. Hard-sectored disks are implemented using a series of small holes near the

TheMS-DOSEncyclopedia
HUAWEI EX. 1010 - 102/1582

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per
formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a
disk drive built for use with soft-sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.
The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec
tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To
access a particular sector, the disk drive controller hardware moves all heads to the speci
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen
tations. The first method, used with floppy disks, employs an "open-loop" servomecha
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed
position.) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly- the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second method-a "closed-loop" servomechanism that
reserves one side of one platter for positioning information. This information, which indi
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled. Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly. This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller. Because the "servo platter" usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving
CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency).

Section II: Programming in the MS-DOS Environment 89

HUAWEI EX. 1010 - 103/1582

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a

photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft—

sectored disk has a single hole near the center of the disk (see Figure 5—1) that marks the

location of sector 0 for reference when the disk is formatted or when error detection is per-

formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple—

mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a

disk drive built for use with soft—sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of

overhead information, such as error correction and sector identification, in each sector.

The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec-

tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a

complete specification of the read/write head, cylinder number, and sector number. To

access a particular sector, the disk drive controller hardware moves all heads to the speci— .

fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-

tations, The first method, used with floppy disks, employs an “open—loop” servomecha—

nism in which the softWare computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed

position.) An open-loop system employs no feedback mechanism to determine whether

the heads were positioned correctly‘the hardware simply moves the heads to the

requested position and returns an error if the information read there is not what was

expected. The positioning mechanism in floppy—disk drives is made with close tolerances

because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second method— a “closed—loop” servomechanism that

reserves one side of one platter for positioning information. This information, which indi—

cates where the tracks and sectors are located, is written on the disk at the factory when

the drive is assembled. Positioning the read/write heads in a closed—loop system is actually

a two—step process: First, the head assembly is moved to the approximate location of the

read or write operation; then the disk controller reads the closed-loop servo information,

compares it to the desired location, and fine-tunes the head position accordingly. This

fine—tuning approach yields faster access times and also allows for higher-capacity disks

because the positioning can be more accurate and the distances between tracks can

therefore be smaller. Because the “servo platter” usually has positioning information on

one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving

CAV MS—DOS disks are described in terms of bytes per sector, sectors per track, number of

cylinders, and number of read/write heads. Overall access time is based on how fast the

disk rotates (rotational latency) and how fast the heads can move from track to track

(track-to—track latency).

Section 11.- Programming in the MS—DOS Environment 89

HUAWEI EX. 1010 - 103/1582

EM

/
I

P;1rt A:<Stq.Jcture of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3). The underlying
pie is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track. This staggering of sectors is called skewing or, more com-.
manly, interleaving. A 2-to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave
means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction

Figure 3-3. A 3:1 interleave.

One approach to improving fixed-disk performance is to decrease the interleave ratio.
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,
provided the disk controller can process at that speed. The normal interleave for an IBM
PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail
able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS
based computers all have a 1:1 interleave ratio.

Layout of a.partition

For several reasons, large physical block devices such as fixed disks are often logically par
titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow
a device to be shared among different operating systems. Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MB restriction (important for
large fixed disks). MS-DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of
the disk. This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table.)

90 The MS-DOS Encyclopedia
HUAWEI EX. 1010 - 104/1582

Part- AxLStructure of MS—DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that

logically sequential sectors are not physically adjacent (Figure 3-3). The underlying princ

pie is that, because the controller cannot finish processing one sector before the next

sequential sector arrives under the read/write head, the logically numbered sectors must

be staggered around the track. This staggering of sectors is called skewing or, more com

monly, interleaving. A 2-to—1 (2:1) interleave places sequentially accessed sectors so that

there is one additional sector between them; a 3:1 interleave places two additional sectors

between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave

means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction

‘ Figure 3-3. A 3:] interleave.

One approach to improving fixed—disk performance is to decrease the interleave ratio.

This generally requires a Specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,

provided the disk controller can process at that speed. The normal interleave for an IBM
PC/AT and its standard fixed disk and disk controller is 5:1, but disk controllers are avail-

able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS-

based computers all have a 1:1 interleave ratio. ’
a»;s11;::Mr-vr‘?

Layout of a.partition ' :1

For several reasons, large physical block devices such as fixed disks are often logically par-

titioned into smaller logical block devices (Figure 5-4). For instance, such partitions allow

a device to be shared among different operating systems. Partitions can also be used to 3

keep the size of each logical device within the PC—DOS 32 MB restriction (important for

large fixed disks). MS—DOS permits a maximum of four partitions. 3

A partitioned block device has a partition table located in One sector at the beginning of

the disk. This table indicates where the logical block devices are physically located. (Even

a partitioned device with only one partition usually has such a table.)

90 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 104/1582

i,.

Article 3: MS-DOS Storage Devices

[

Partition 1

l Partition 3 I
Partition 2

~~~artition4 

Figure 3-4. A partitioned disk. 

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con
tains the partition table and a bootstrap program capable of checking the partition table 
for a boatable partition, loading the boatable partition's boot sector, and transferring con
trol to it The partition table, located at the end of the first physical sector of the disk, can 
contain a maximum of four entries: 

Offset From 
Start of Sector Size (bytes) Description 

OlBEH 16 Partition #4 
OlCEH 16 Partition #3 
01DEH 16 Partition #2 
01EEH 16 Partition #1 
01FEH 2 Signature: AA55H 

The partitions are allocated in reverse order. Each 16-byte entry contains the following 
information: 

Offset From 
Start of Entry 

OOH 
01H 

Size (bytes) 

1 
1 

Description 

Boot indicator 
Beginning head 

(more) 

Section II: Programming in the MS-DOS Environment 91 

HUAWEI EX. 1010 - 105/1582

Article 3: MS~DOS Storage Devices 

Partition 1
Partition 2

l Partition 3I Partition 4

I 6

Figure 3-4. Apartitioned disk.

Under the MS—DOS partitioning standard, the first physical sector on the fixed disk con—

tains the partition table and a bootstrap program capable of checking the partition table

for a bootable partition, loading the bootable partition’s boot sector, and transferring con-

trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start ofSector SiZe (bytes) Description

OlBEH 16 Partition #4

01CEH 16 Partition #3
01DEH 16 Partition #2

OlEEH 16 , Partition #1

OlFEH 2 Signature: AASSH

 
The partitions are allocated in reverse order. Each 16—byte entry contains the following

‘ information:

Offset From

Start ofEntry Size (bytes) Description

00H 1 Boot indicator

01H 1 Beginning head

(more)-

Section II: Programming in the MS—DOS Environment 91

HUAWEI EX. 1010 - 105/1582



Part A: Structure of MS-DOS 

Offset From 
Start of Entry Size (bytes) Description 

02H 1 Beginning sector 
03H 1 Beginning cylinder 
04H 1 System indicator 
05H 1 Ending head 
06H 1 Ending sector 
07H 1 Ending cylinder 
08H 4 Starting sector (relative to beginning 

of disk) 
OCH 4 Number of sectors in partition 

The boot indicator is zero for a nonbootable partition and SOH for a boatable (active) parti
tion. A fixed disk can have only one boatable partition. (When setting a boatable partition, 
partition programs such as FDISK reset the boot indicators for all other partitions to zero.) 
See USER COMMANDS: FDISK. 

The system indicators are 

Code 

OOH 
01H 
04H 

Meaning 

Unknown 
MS-DOS, 12-bit FAT 
MS-DOS, 16-bit FAT 

Each partition's boot sector is located at the start of the partition, which is specified in 
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor
mation, stored in the partition table in this order, is loaded into the DX and CX registers by 
the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting 
sector of the partition relative to the beginning of the disk is also indicated. The ending 
head, sector, and cylinder numbers, also included in the partition table, specify the last ac
cessible sector for the partition. The total number of sectors in a partition is the difference 
between the starting and ending head and cylinder numbers times the number of sectors 
per cylinder. 

MS-DOS versions 2.0 through 3.2 allow only one.MS-DOS partition per partitioned device. 
Various device drivers have been implemented that use a different partition table that 
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS parti
tions are usually accessible only by means of an installable device driver that knows about 
this change. (Even with additional MS-DOS partitions, a fixed disk can have only one boot
able partition.) 

92 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 106/1582

Part A: Structure of MS-DOS 

  Offset From

Start ofEntry Size (bytes) Description 7;

02H 1 Beginning sector

03H 1 Beginning cylinder I
04H 1 System indicator

05H 1 Ending head

06H 1 Ending sector

07H 1 Ending cylinder

08H 4 Starting sector (relative to beginning
, of disk)

1 OCH 4 Number of sectors in partition

  
The boot indicator is zero for a nonbootable partition and 80H for a bootable (active) parti-

tion. A fixed disk can have only one bootable partition. (When setting a bootable partition,

partition programs such as FDISK reset the boot indicators for all other partitions to zero.)
See USER COMMANDS: FDISK.

I 1 11‘ i The system indicators are

Code Meaning

 
. 1;; 3 00H Unknown

‘1‘ 1 01H MS—DOS, 12—bit FAT
:1 ‘ 04H MS—DOS, 16—bit FAT

1 1 a Each partition’s boot sector is located at the start of the partition, which is specified in

, : terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-

1 mation, stored in the partition table in this order, is loaded into the DX and CX registers by
the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting

sector of the partition relative to the beginning of the disk is also indicated. The ending

head, sector, and cylinder numbers, also included in the partition table, specify the last ac-

cessible sector for the partition. The total number of sectors in a partition is the difference

between the starting and ending head and cylinder numbers times the number of sectors

per cylinder. ,

‘ MS-DOS versions 2.0 through 5.2 allow only oneMS-DOS partition per partitioned device.
3 g Various device drivers have been implemented that use a different partition table that

' allows more than one MS—DOS partition to be installed, but the secondary MS-DOS parti-

tions are usually accessible only by means of an installable device driver that knows about

this change. (Even with additional MS—DOS partitions, a fixed disk can have only one boot-

able partition.)

   
92 The MS-DOSEncyclopedia

HUAWEI EX. 1010 - 106/1582

  



Article 3: MS-DOS Storage Devices 

Layout of a file system 

Block devices are accessed on a sector basis. The MS-DOS kernel, through the device 
driver, sees a block device as a logical fixed-size array of sectors and assumes that the array 
contains a valid MS-DOS file system. The device driver, in turn, translates the logical sector 
requests from MS-DOS into physical locations on the block device. 

The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT 
program. See USER COMMANDS: FORMAT. The general layout for the file system is shown 
in Figure 3-5. 

OEM identification, BIOS parameter block, Loader routine 
Reserved area 

File allocation table (FAT) #1 

Possible additional copies of FAT 

Root disk directory 

---[ ---------==-~ 
Files area __j 

Figure 3-5. The MS-DOS file system. 

The boot sector is always at the beginning of a partition. It contains the OEM identifica
tion, a loader routine, and a BIOS parameter block (BPB) with information about the 
device, and it is followed by an optional area of reserved sectors. See The Boot Sector 
below. The reserved area has no specific use, but an OEM might require a more complex 
loader routine and place it in this area. The file allocation tables (FATs) indicate how the 
file data area is allocated; the root directory contains a fixed number of directory entries; 
and the file data area contains data files, subdirectory files, and free data sectors. 

Section II: Programming in the MS-DOS Environment 93 

HUAWEI EX. 1010 - 107/1582

Article 3: MS-DOS Storage Devices 

Layout ofa file system

Block devices are accessed on a sector basis. The MS—DOS kernel, through the device

driver, sees a block device as a logical fixed-size array of sectors and assumes that the array

contains a valid MS—DOS file system. The device driver, in turn, translates the logical sector
requests from MS-DOS into physical locations on the block device.

The initial MS—DOS file system is written to the storage medium by the MS—DOS FORMAT

program. See USER COMMANDS: FORMAT. The general layout for the file system is shown

in Figure 3-5.

OEM identification, BIOS parameter block, Loader routine
Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory 
Files area

Figure 3-5. The MS—DOSfi‘le system.

The boot sector is always at the beginning of a partition. It contains the OEM identifica-

tion, a loader routine, and a BIOS parameter block (BPB) with information about the

device, and it is followed by an optional area of reserved sectors. See The Boot Sector

-[ below. The reserved area has no specific use, but an OEM might require a more complex

3 loader routine and place it in this area. The file allocation tables (FATS) indicate how the

file data area is allocated; the root directory contains a fixed number of directory entries;

and the file data area contains data files, subdirectory files, and free data sectors.

Section 11.- Programming in theMS—DOS Environment 93

Q HUAWEI EX. 1010 -107/1582'
~—-—-————_



Part A: Structure of MS-DOS 

All the areas just described-the boot sector, the FAT, the root directory, and the file data 
area-are of fixed size; that is, they do not change after FORMAT sets up the medium. 
The size of each of these areas depends on various factors. For instance, the size of the FAT 
is proportional to the file data area. The root directory size ordinarily depends on the type 
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can 
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and 
some implementations of FORMAT allow the number of directory entries to be specified.) 

The file data area is allocated in terms of clusters. A cluster is a fixed number of con
tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually 
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are 
possible. Commonly used MS-DOS cluster sizes are 

Disk Type Sectors/Cluster 

Single-sided floppy disk 1 
Double-sided floppy disk 2 
PC/AT fixed disk 4 
PC/XT fixed disk . 8 
Otl)er fixed disks 16 
Other fixed disks 32 

• Assumes 512 bytes per sector. 

Bytes/Cluster• 

512 
1024 
2048 
4096 
8192 

16384 

In general, larger cluster sizes are used to support larger fixed disks. Although smaller clus
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for 
random and sequential access, especially if the clusters for a single file are not sequentially 
allocated. 

The file allocation table contains one entry per cluster in the file data area. Doubling the 
sectors per cluster will also halve the number of FAT entries for a given partition. See The 
File Allocation Table below. · 

The boot sector 

The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some 
other fields useful to device drivers. The BPB describes a number of physical parameters 
of the device, as well as the location and size of the other areas on the device. The device 
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter
mine how the disk is configured. 

Figure 3-7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot sec
tor shown in Figure 3-7 would be E9H 2CH OOH if a long jump were used instead of a short 
one (as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, are a 
fixed signature used by the loader routine to verify that the sector is a valid boot sector. 

94 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 108/1582

Part A: Structure of MS—DOS  
All the areas just described—the boot sector, the FAT, the root directory, and the file data
area —are of fixed size; that is, they do not change after FORMAT sets up the medium.
The size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file data area. The root directory size ordinarily depends on the tYPe
of device; a single-sided floppy disk can hold 64 entries, a double—sided floppy disk can
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and
some implementations of FORMAT allow the number of directory entries to be specified.)

The file data area is allocated in terms of clusters. A cluster is a fixed number of con—

tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are

possible. Commonly used MS-DOS cluster sizes are

 
 

 

 
Disk Type ' Sectors/Cluster Bytes/Cluster’

Single-sided floppy disk 1 512

1 Double-sided floppy disk 2 1024
l PC/AT fixed disk 4 2048

l; PC/XT fixed disk .8 4096
Other fixed disks 16 8192

 
Other fixed disks 32 16384

' :1 )1 ‘Assumes 512 bytes per sector.

‘ In general, larger cluster sizes are used to support larger fixed disks. Although smaller CNS-
.1 1 1 ter sizes make allocation more space—efficient, larger clusters are usually more efficient for

random and sequential access, especially if the clusters for a single file are not sequentially
. . allocated.

  
l 1 The file allocation table contains one entry per cluster in the file data area. Doubling the

sectors per cluster will also halve the number of FAT entries for a given partition. See The
File Allocation Table below.

The boot sector

1 The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some
l other fields useful to device drivers. The BPB describes a number of physical parameterS

l i of the device, as well as the location and size of the other areas on the device. The device
1 driver returns the BPB information to MS—DOS when requested, so that MS-DOS can deter-

mine how the disk is configured.

Figure 3—7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot sec—

' 1 tor shown in Figure 3—7 would be E9H 2CH 00H if a long jump were used instead of a short
- 1 one (as in early versions of MS~DOS). The last 2 bytes in the sector, SSH and AAH, are a
j l fixed signature used by the loader routine to verify that the sector is a valid boot sector.

,3.‘ 94 TheMS'DOSE"Cyf’°Pedm HUAWEI EX. 1010 - 108/1582

 



l 

Article 3: MS-DOS Storage Devices 

OOH 

03H 

OBH 

ODH 

OEH 

lOH 

llH 

13H 

15H 

16H 

ISH 

lAH 

lCH 

lEH 

E9 XX XX or EB XX 90 

OEM name and version (8 bytes) 

Bytes per sector (2 bytes) 

Sectors per allocation unit (1 byte) 

Reserved sectors, starting at 0 (2 bytes) 

Number of FATs (1 byte) 

Number of root-directory entries (2 bytes) 

Total sectors in logical volume (2 bytes) 

Media descriptor byte 

Number of sectors per FAT (2 bytes) 

Sectors per track (2 bytes) 

Number of heads (2 bytes) 

Number of hidden sectors (2 bytes) 

Loader routine 

l 
BPB 

J 

Figure 3-6. Map of the boot sector of an MS-DOS disk. Bytes OBH through 17H are the BIOS parameter block 
(BPB). 

The BPB information contained in bytes OBH through 17H indicates that there are 

512 bytes per sector 
2 sectors per cluster 
1 reserved sector (for the boot sector) 
2 FATs 

112 root directory entries 
1440 sectors on the disk 
F9H media descriptor 

3 sectors per FAT 

Section Jl- Programming in the MS-DOS Environment 95 

--------------.... HUAWEI EX. 1010 - 109/1582

Article 3: MS-DOS Storage Devices 

 

 
 

 
  

  
  
  

 
 
 

 
 

00H
E9 XX XX or EB XX 90

03H

OEM name and version (8 bytes)

OBH B 2 b )es er sector ( ytes
ODH yt p

Sectors per allocation unit (1 byte)OEH

10H Reserved sectors, starting at 0 (2 bytes)
Number of FATS (1 byte)

1 1H BPB

13H Number of root-directory entries (2 bytes)

15H Total sectors in logical volume (2 bytes)

16H Media descriptor byte  
  

 
 

 

Number of sectors per FAT (2 bytes)

18“—Sectors er track (2 b tes)
lAH p y

Number of heads (2 bytes)1CH

Number of hidden sectors (2 bytes)lEH

Figure 3-6. Map ofthe boot sector ofan MS—DOS disk. Bytes OBI-I through 1 7Hare the BIOSparameter bloc/e
(BPB).

  
The BPB information contained in bytes OBH through 17H indicates that there are

512 bytes per sector

2 sectors per cluster
1 reserved sector (for the boot sector)
2 FATS

112 root directory entries
1440 sectors on the disk

F9H media descriptor

3 sectors per FAT

 
Section 11: Programming in the MS—DOS Environment 95

HUAWEI EX. 1010 - 109/1582

“r“

 



' !I 

Part A: Structure of MS-DOS 

0 2 3 4 5 6 7 8 9 A B c D E F 
0000 EB 2D 90 20 20 20 20 20 k-. 

0010 00 02 00 00 00 00 00 .p . . y .......... 

0020 00 OA 00 00 DF 02 25 02-09 2A FF 50 F6 OA 02 FA •••• _. % •• * . Pv .. z 

0030 B8 co 07 8E D8 BC 00 7C-33 CO 8E DO 8E CO FB FC 8@ .. X<. :3@.P.@{: 

0180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu 

0190 72 65 OD OA OD OA 4E 6F-6E 2D 53 79 73 74 65 6D re .... Non-System 

01AO 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 65 72 disk or disk er 
01BO 72 6F 72 OD OA 52 65 70-6C 61 63 65 20 61 6E 64 ror .. Replace and 

01CO 20 70 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w 
01DO 68 65 6E 20 72 65 61 64-79 OD OA 00 00 00 00 00 hen ready ....... 
01EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 •• 0. 0 0 0 ••••••••• 

01FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA •••••••• 0 •• 0. 0 0 * 

Figure 3-7. Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted. 

Additional information immediately after the BPB indicates that there are 9 sectors per 
track, 2 read/write heads, and 0 hidden sectors. 

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to 
indicate the type of medium currently in a drive. IBM-compatible media have the follow
ing descriptors: 

Descriptor Media Type MS-DOS Versions 

OF8H Fixed disk 2,3 
OFOH 3.5-inch, 2-sided, 18 sector 3.2 
OF9H 3.5-inch, 2-sided, 9 sector 3.2 
OF9H 5.25-inch, 2-sided, 15 sector 3.x 
OFCH 5.25-inch, 1-sided, 9 sector 2.x, 3.x 
OFDH 5.25-inch, 2-sided, 9 sector 2.x, 3.x 
OFEH 5.25-inch, 1-sided, 8 sector l.x, 2.x, 3.x 
OFFH 5.25-inch, 2-sided, 8 sector l.x (except 1.0), 2, 3 
OFEH 8-inch, 1-sided, single-density 
OFDH 8-inch, 2-sided, single-density 
OFEH 8-inch, 1-sided, double-density 
OFDH 8-inch, 2-sided, double-density 

96 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 110/1582

Part A: Structure of MS—DOS

0000
0010
0020 .... .

0030 B8 C0 07 8E D8 BC 00 7C-33 CO 8E D0 8E C0 FB FC 8@..X<.13@.P.@{:

 

0180 0A 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu

0190 72 65 0D 0A 0D 0A 4E 6F-6E 2D 53 79 73 74 65 6D re....Non-System
01A0 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 65 72 disk or disk er

01B0 72 6F 72 0D 0A 52 65 70-6C 61 63 65 20 61 6E 64 ror..Replace and
01C0 20 7O 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w
01D0 68 65 6E 20 72 65 61 64-79 0D 0A 00 00 00 00 00 hen ready .......

01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA ............... *

   
Figure 3— 7. Hexadecimal dump ofan MS—DOS boot sector. The BPB is highlighted.

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
indicate the type of medium currently in a drive. IBM-compatible media have the follow—

 
 

   1 1? ‘ ing descriptors:

‘ 1 1 Descriptor Media Type MS-DOS Versions

1: 3 OF8H Fixed disk 2, 5

1 OFOH 5.5-inch, 2—sided, 18 sector 5.2

1 { £11 OF9H 5.5-inch, Z-sided, 9 sector ' 3.2
‘ 1 : 0F9H 5.25-inch, 2—sided, 15 sector 3.x

1 1 11 1 OFCH 5.25-inch, 1—sided, 9 sector 2.x, 3.x
1 1 ‘ OFDH 5.25-inch, Z-sided, 9 sector 2.x, 3.x

' ' 1 OFEH 5.25-inch, l-sided, 8 sector 1.x, 2.x, 3.x
1 OFFH 5.25-inch, 2—sided, 8 sector 1.); (except 1.0), 2, 51 11 OFEH 8-inch, 1—sided, single-density

11 1 ” OFDH 8-inch, 2-sided, single—density
' 11 OFEH 8-inch, 1—sided, double-density

1 OFDH 8—inch, 2—sided, double-density

 
96 TheMS'DOSEMWPM‘“ HUAWEI EX. 1010 - 110/1582



Article 3: MS-DOS Storage Devices 

The file allocation table 

The file allocation table provides a map to the storage locations of files on a disk by indi
cating which clusters are allocated to each file and in what order. To enable MS-DOS to 
locate a file, the file's directory entry contains its beginning FAT entry number. This FAT 
entry, in turn, contains the entry number of the next cluster ifthe file is larger than one 
cluster or a last-cluster number if there is only one cluster associated with the file. A file 
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links. 
(The set of links for a particular file is called a chain.) 

Additional copies of the FAT are used to provide backup in case of damage to the first, 
or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are 
arranged sequentially after the boot sector, with some possible intervening reserved area. 
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs. 
It also compares all FATs when a disk is first accessed, to make sure they match. 

MS-DOS supports two types ofF AT: One uses 12-bit links; the other, introduced with 
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit 
links. 

The first two entries of a FAT are always reserved and are filled with a copy of the media 
descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown 
in the following dumps ofthe first 16 bytes of the FAT: 

12-bitFAT: 

F9 FF FF 03 40 00 FF 6F-00 07 FO FF 00 00 00 00 

16-bitFAT: 

FS FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF 

The remaining FAT entries have a one-to-one relationship with the clusters in the file data 
area. Each cluster's use status is indicated by its corresponding FAT value. (FORMAT in
itially marks the FAT entry for each cluster as free.) The use status is one of the following: 

12-bit 16-bit Meaning 

OOOH OOOOH Free cluster 
001H 0001H Unused code 
FFO-FF6H FFFO-FFF6H Reserved 
FF7H FFF7H Bad cluster; cannot be used 
FF8-FFFH FFF8-FFFFH Last cluster of file 
All other values All other values Link to next cluster in file 

Section II: Programming in the MS-DOS Environment 97 
HUAWEI EX. 1010 - 111/1582

Article 3: MS—DOS Storage Devices 

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi—

cating which clusters are allocated to each file and in what order. To enable MS-DOS to

locate a file, the file’s directory entry contains its beginning FAT entry number. This FAT

entry, in turn, contains the entry number of the next cluster if the file is larger than one

cluster or a last-cluster number if there is only one cluster associated with the file. A file

whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links.

(The set of links for a particular file is called a chain.)

Additional copies of the FAT are used to provide backup in case of damage to the first,

or primary, FAT; the typical floppy disk or fixed disk contains two FATS. The FATs are

arranged sequentially after the boot sector, with some possible intervening reserved area.

MS-DOS ordinarily uses the primary FAT but updates all FATS when a change occurs.

It also compares all FATS when a disk is first accessed, to make sure they match.

MS—DOS supports two types of FAT: One uses 12-bit links; the other, introduced with

version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media

descriptor byte and two (for a 12—bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown

in the following dumps of the first 16 bytes of the FAT:

12-bitFAT:

r9 FF FF 03 4o 00 FF 6F—00 07 F0 FF 00 oo 00 oo

16-bitFAT:

F8 FF FF FF 03 00 04 OO—FF FF 06 00 07 00 FF FF

The remaining FAT entries have a one—to-one relationship with the clusters in the file data

area. Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in—

itially marks the FAT entry for each cluster as free.) The use status is one of the following:

12-bit 16-bit Meaning

OOOH OOOOH Free cluster

OOIH 00011-1 Unused code

FFO—FF6H FFFO—FFF6H Reserved

FF7H FFF7H Bad cluster; cannot be used
FF8—FFFH FFF8—FFFFH Last cluster of file '

All other values All other values Link to next cluster-in file

 
a Section 11: Programming in theMS—DOSEnviWAmEl E7X. 101 0 _ 1 1 1 /1 582

 



Part A: Structure of MS-DOS 

98 

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is 
found by scanning the FAT from the beginning to find the first zero value. Bad clusters are 
ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain. 

FATentry: 0 2 3 4 5 6 7 8 9 

n1 +n 
FFDH FFFH 003H 005H FF7H 006H FFFH OOOH OOOH OOOH 
(4093) (4095) (3) (5) (4087) (6) (4095) (0) (0) (0) co ntinues ... 

'--- Unused; available cluste r 

'-- Unusable 

'--- Unused; not available 

- -D1sk IS double s1ded, double-density 

Figure 3-8. Space allocation in the FAT for a typical MS-DOS disk. 

Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first 
allocatable link number, associated with the first available cluster in the file data area, is 2, 
which is the number assigned to the first physical cluster in the file data area. Figure 3-9 
shows the relationship of files, FAT entries, and clusters in the file data area. 

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries; 
the difference is simply in the storage and access methods. Because the 8086 is specifically 
designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit 
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11). 

Special considerations 
The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can 
occur. One tradeoff is having a partially filled cluster at the end of a file. This situation 
leads to an efficiency problem when a large cluster size is used, because an entire cluster is 
allocated, regardless of the number of bytes it contains. For example, ten 100-byte files on a 
disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus
ters use only 10 KB- a difference of 150 KB, or 15 times less storage used by the smaller 
cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty 
(and therefore slowness) of moving through a large file that has a long linked list of many 
small clusters. Therefore, the nature of the data must be considered: Large database appli
cations work best with a larger cluster size; a smaller cluster size allows many small text 
files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily 
sets the cluster size.) 

The MS-DOS Encyclopedia HUAWEI EX. 1010 - 112/1582

Part A: Structure of MS-DOS 

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is

found by scanning the FAT from the beginning to find the first zero value. Bad clusters are

ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain.
   

FAT entry: 0 1 2 . 3‘ 4 s 6 7 s 9

FFDH FFFH 003B OOSH FF7H 006H FFFH 000a OOOH OOOH

(4093) (4095) (3) (5) (4087) (6) (4095) (0) (0) (0)

Unused; available cluster 
 

 
 

continues... 
Unusable

  

Unused; not available

Disk is double-sided, double—density
 

Figure 3-8. Space allocation in the FATfora typical MS-DOS dis/e.

Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first

allocatable link number, associated with the first available cluster in the file data area, is 2,

which is the number assigned to the first physical cluster in the file data area. Figure 3-9

shows the relationship of files, FAT entries, and clusters in the file data area.

   
There is no logical difference between the operation of the 12—bit and 16-bit FAT entries;

the difference is simply in the storage and access methods. Because the 8086 is specifically

designed to manipulate 8— or 16-bit values efficiently, the access procedure for the 12-bit

FAT is more complex than that for the 16—bit FAT (see Figures 3—10 and 3-11).

Special considerations

The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can

occur. One tradeoff is having a partially filled cluster at the end of a file. This situation

leads to an efficiency problem when a large cluster size is used, because an entire cluster is

allocated, regardless of the number of bytes it contains. For example, ten 100—byte files on a

disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus-

ters use only 10 KB — a difference of 150 KB, or 15 times less storage used by the smaller

cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty

’ (and therefore slowness) of moving through a large file that has a long linked list of many
l small clusters. Therefore, the nature of the data must be considered: Large database appli-
’ " cations work best with a larger Cluster size; a smaller cluster size allows many small text
‘ files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily

‘ 1 sets the cluster size.)

 
98 ”BMS'DOSEW’OPW HUAWEI EX. 1010 - 112/1582

 
  



Article 3: MS-DOS Storage Devices 

12-bitFAT: 

Reserved 003H FFFH 007H OOOH 

I I~ ~ ~ ~ 
F9 FF FF 03 

t:J 
FF [_9 07 [J 00 00 

004H 006H FFFH 

16bitFAT; 

Reserved 

0003H 0004H FFFFH 0006H 0007H FFFFH OOOOH 
I 111111111111111 
F8 FF FF FF 03 00 04 00 FF FF 06 00 07 00 FF FF 00 00 

FAT entry; 0 1 2 3 4 5 6 7 8 

12-bitFAT: 
continues ... 

16-bitFAT: 

Directory entry 

File data area Corresponding FAT entry 

FILEl. TXT 2 

FILEl. TXT 3 

FILEl. TXT 4 

FILE2. TXT 5 

FILE2. TXT 6 

FILE2. TXT 7 

Unused (available) 8 

Figure 3-9. Correspondence between the FAT and the file data area. 

Section II: Programming in the MS7DOS Environment 99 
HUAWEI EX. 1010 - 113/1582

Article 3: MS—DOS Storage Devices

12-bit FAT:

Reserved 0031-1 FFFH 007H OOOH

shame—Him
“1331531153

  

   
 

 

004E 006H FFFH

16bitFAT:

Reserved

0003H 00041-1 FFFFH 0006H OOO7H FFFFH 00001-1

F8 FF FF FF FF FF FF FF

FATcnu'y:

lZ—bitFAT: 003H 004H FFFH 006H 007B .FE‘FH OOOH
Reserved continues...

16-bitFAT: 0003i0004iFFFFH 0006B-0007H'FFFFH OOOOH
Directoryentry

 
 

 
 

FILEl. TXT

(oints to FAT en 2)
 

 
 

 
FILE2. TXT

 

  
 
 

 

  
 

  
  

noints to FAT en - 5

1
File data area Corresponding FAT entry

2

3

4

FILE2. TXT 5

.

7

.

Figure 3—9, Correspondence between the FATand thefile data area.

Section 11: Programming in the MS¢DOS Environment 99

L i V HUAWEI EX. 1010 - 113/1582



i 
I 
I 
I 
I 

I 
I 

:.I 
ill 
'II 

,il 
:i f 
:i! i 
'1'1' i' ;jl ',,I 

'il 
Part A: Structure of MS-DOS 

---- Obtain the next link number from a 12-bit FAT 

current entry number 
, Parameters: 

ax 

ds:bx address of FAT. (must be contiguous) 

Returns: 
ax = next link number 

Uses: ax, bx, ex 

next12 proc near 
add bx,ax ds:bx = partial index 

shr ax, 1 ax = offset/2 

carry = no shift needed 

pushf save carry 

add bx,ax ds:bx = next cluster number index 

100 

mov ax, [bx] ax = next cluster number 

popf carry = no shift needed 

jc shift skip if using top 12 bits 

and ax,Offfh ax lower 12 bits 

ret 

shift: mov cx,4 ex shift count 

shr ax,cl ax top 12 bits in lower 

ret 
next12 endp 

Figure 3-10. Assembly-language routine to access a 12-bit FAT. 

----Obtain the next link number from a 16-bit FAT 

Parameters: 

ax 
ds:bx 

Returns: 

current entry number 
address of FAT (must be contiguous) 

ax next link number 

Uses: ax, bx, ex 

next16 proc near 

add ax, ax ax = word offset 

add bx,ax ds:bx = next link number 

mov ax, [bx] ax = next link number 

ret 

next16 endp 

Figure 3-11. Assembly-language routine to access a 16-bit FAT. 

The MS-DOS Encyclopedia 

12 bits 

index 

HUAWEI EX. 1010 - 114/1582

Part A: Structure of MS—DOS

; ---- Obtain the next link number from a 12—bit FAT —————

7 Parameters:
; ax = current entry number

    
; dssz = address of FAT (must be contiguous)

; Returns:
ax = next link number

; Uses: ax, bx, cx

  
next12 proc near

add bx,ax ; dssz = partial index

;‘ shr ax,1 ; ax = offset/2
jE‘ ; carry = no shift needed

If? pushf ; save carry

'ib add bx,ax ; ds:bx = next cluster number index
i“ mov ax,[bx] ;-ax = next cluster number

H popf ; carry = no shift needed
{7 jc shift ; skip if using top 12 bits
11 and ax,0fffh ; ax = lower 12 bits
fii‘ ret

_ shift: mov cx,4 ; ex = shift count

.uF‘ shr ax,cl ; ax'= top 12 bits in lower 12 bits
1 ‘ ret
 next12 endp

- ‘ 1 5 Figure 3-10. Assembly-language routine to access a 12—bit FAT.

“ ; —--— Obtain the next link number from a 16—bit FAT -----

E51 ; Parameters:
Olfl ; ax = current entry number

”‘ ; ds:bx = address of FAT (must be contiguous)

; Returns:
; ax = next link number1

1
1

'1‘ ; Uses: ax, bx, cx
g 11 next16 proc near
1 add ax,ax ; ax = word offset

M add bx,ax ; dssz = next link number index

‘1 mov ax,[bx] » ; ax = next link number" ret

3i next16 endp
V

Figure 3—11. Assembly—language routine to access a 16-bit FAT.

100 TheMs-DOSEncyclopedz'a HUAWEI EX. 1010 - 1 14/1582

 
  



1 

Article 3: MS-DOS Storage Devices 

Problems with corrupted directories or FATs, induced by such events as power failures 
and programs running wild, can lead to greater problems if not corrected. The MS-DOS 
CHKDSK program can detect and fix some of these problems. See USER COMMANDS: 
CHKDSK. For example, one common problem is dangling allocation lists caused by the 
absence of a directory entry pointing to the start of the list. This situation often results 
when the directory entry was not updated because a file was not closed before the com
puter was turned off or restarted. The effect is relatively benign: The data is inaccessible, 
but this limitation does not affect other file allocation operations. CHKDSK can fix this 
problem by making a new directory entry and linking it to the list. 

Another difficulty occurs when the file size in a directory entry does not match the file 
length as computed by traversing the linked list in the FAT. This problem can result in 
improper operation of a program and in error responses from MS-DOS. 

A more complex (and rarer) problem occurs when the directory entry is properly set up 
but all or some portion of the linked list is also referenced by another directory entry. The 
problem is grave, because writing or appending to one file changes the contents of the 
other file. This error usually causes severe data and/or directory corruption or causes the 
system to crash. 

A similar difficulty occurs when a linked list terminates with a free cluster instead of a 
last-cluster number. If the free cluster is allocated before the error is corrected, the 
problem eventually reverts to the preceding problem. An associated difficulty occurs if a 
link value ofl or a link value that exceeds the size of the FAT is encountered. 

In addition to CHKDSK, a number of commercially available utility programs can be used 
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially 
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially 
in the file data area and, of course, in the FAT. 

The root directory 

Directory entries, which are 32 bytes long, are found in both the root directory and the 
subdirectories. Each entry includes a filename and extension, the file's size, the starting 
FAT entry, the time and date the file was created or last revised, and the file's attributes. 
This structure resembles the format of the CP/M-style file control blocks (FCBs) used by 
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels. 

The MS-DOS file-naming convention is also derived from CP/M: an eight-character file
name followed by a three-character file type, each left aligned and padded with spaces if 
necessary. Within the limitations of the character set, the name and type are completely 
arbitrary. The time and date stamps are in the same format used by other MS-DOS func
tions and reflect the time the file was last written to. 

Figure 3-12 shows a dump of a 512-byte directory sector containing 16 directory entries. 
(Each entry occupies two lines in this example.) The byte at offset OABH, containing a 
lOH, signifies that the entry starting at OAOH is for a subdirectory. The byte at offset 160H, 
containing OE5H, means that the file has been deleted. The byte at offset 8BH, containing 

Section 11- Programming in the MS-DOS Environment 101 

HUAWEI EX. 1010 - 115/1582

Article 3: MS-DOS Storage Devices 

Problems with corrupted directories or FATs, induced by such events as power failures

and programs running Wild, can lead to greater problems if not corrected. The MS—DOS

CHKDSK program can detect and fix some of these problems. See USER COMMANDS:

CHKDSK.‘For example, one common problem is dangling allocation lists caused by the

absence of a directory entry pointing to the start of the list. This situation often results

when the directory entry was not updated because a file was not closed before the com-

puter was turned off or restarted. The effect is relatively benign: The data is inaccessible,

but this limitation does not affect other file allocation operations. CHKDSK can fix this
problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entry does not match the file

length as computed by traversing the linked list in the FAT. This problem can result in

improper operation of a program and in error responses from MS—DOS.

A more complex (and rarer) problem occurs when the directory entry is properly set up

but all or some portion of the linked list is also referenced by another directory entry. The

problem is grave, because writing or appending to one file changes the contents of the

other file. This error usually causes severe data and/or directory corruption or causes the
system to crash.

A similar difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster number. If the free cluster is allocated before the error is corrected, the

problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered.

In addition to CI-IKDSK, a number of commercially available utility programs can be used

to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially

rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT.

The root directory

Directory entries, which are 52 bytes long, are found in both the root directory and the

subdirectories. Each entry includes a filename and extension, the file’s size, the starting

FAT entry, the time and date the file was created or last revised, and the file’s attributes.

This structure resembles the format of the CP/M-style file control blocks (FCBS) used by
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: PROGRAMMING FOR MS-DOS'. Disk Directories and Volume Labels.

The MS-DOS file-naming convention is also derived from CP/M: an eight—character file-

name followed by a three—character file type, each left aligned and padded with spaces if

necessary. Within the limitations of the character set, the name and type are completely

arbitrary. The time and date stamps are in the same format used by other MS-DOS func-
tions and reflect the time the file was last written to.

 
Figure 3—12 shows a dump of a BIZ-byte directory sector containing 16 directory entries.

(Each entry occupies two lines in this example.) The byte at offset OABH, containing a

10H, signifies that the entry starting at OAOH is for a subdirectory. The byte at offset 160H,

containing OESH, means that the file has been deleted. The byte at offset 8BH, containing

Section 11- Programming in the MS—DOS Environment 101

E HUAWEI EX. 1010 - 115/1582
N



Part A: Structure of MS-DOS 

the value 08H, indicates that the directory entry beginning at offset 80H is a volume label. 
Finally the zero byte at offset lEOH marks the end of the directory, indicating that the sub
sequent entries in the directory have never been used and therefore need not be searched 
(versions 2.0 and later). 

0000 

0010 
0020 

0030 

0040 
0050 

0060 
0070 

0080 

0090 

OOAO 
OOBO 

ooco 
OODO 

OOEO 
OOFO 

0100 

0110 
0120 

0130 
0140 

0150 
0160 
0170 

0180 

0190 

01AO 
01BO 

01CO 

01DO 
01EO 

01FO 

0 2 3 4 5 6 7 8 9 A B C D E F 
49 4F 20 20 20 20 20 20-53 59 53 27 00 00 00 00 

00 00 00 00 00 00 59 53-89 OB 02 00 D1 12 00 00 
4F 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 

00 00 00 00 00 00 41 49-52 OA 07 00 C9 43 00 00 

41 4E 53 49 20 20 20 20-53 59 53 20 00 00 00 00 
00 00 00 00 00 00 41 49-52 OA 18 00 76 07 00 00 

58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 00 

00 00 00 00 00 00 F7 7D-38 09 23 02 84 OB 01 00 
4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 00 

00 00 00 00 00 00 BC 20-2A 09 00 00 00 00 00 00 

4C 4F 54 55 53 20 20 20-20 iO 20 10 00 00 00 00 
00 00 00 00 00 00 EO 0A-E1 06 A6 01 00 00 00 00 

4C 54 53 4C 4F 41 44 20-43 4F 4D 20 00 00 00 00 
00 00 00 00 00 00 EO 0A-E1 06 A7 01 AO 27 00 00 

4D 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 

00 00 00 00 00 00 46 19-32 OD B1 01 79 04 00 00 
58 Sft 41 4C 4B 20 20 20-48 4C 50 20 00 00 00 00 

00 00 00 00 00 00 CS 6D-73 07 A3 02 AF 88 00 00 
54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 00 00 

00 00 00 00 00 00 05 61-65 OC 39 01 EB 20 00 00 
43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 

00 00 00 00 00 00 41 49-52 OA 27 00 55 3F 00 00 
ES 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 

00 00 00 00 00 00 9C B2-85 OB 42 01 80 SF 01 00 
47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9A 01 SB 08 00 00 

4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9D 01 60 01 00 00 
50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 

00 00 00 00 00 00 EO 0A-E1 06 9E 01 49 01 00 00 
00 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 

F6 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 

Figure 3-12. Hexadecimal dump of a 512-byte directory sector. 

IO SYS' .... 

...... YS .... Q ••. 

MSDOS SYS' .... 
...... AIR ... IC .. 

ANSI SYS ... . 

...... AIR ... v .. . 
XTALK EXE ... . 

. • . • • • w}B .# .... . 
LABEL 

....... *.D .. R .. 

LOTUS 

...... '.a.&.a .. . 
LTSLOAD COM ... . 
• • • • • • I ,a, I • I o • 

MCI-SF XTK ... . 
...... F.2.1.y .. . 

XTALK HLP ... . 

...... Ems.#./ .. . 
TX COM ... . 
. . . . . . . ae. 9.h .. 

COMMAND COM .... 
...... AIR.' .U? .. 

e23 EXE .... 

....... 2 .. B.·-·. 
GD DRV ... . 

...... '.a ... [ .. . 
KB DRV ... . 
, o o o o o I ,a,, o I,,, 

PR DRV .... 

...... '.a ... I ... 

The sector shown in Figure 3-12 is actually an example of the first directory sector in the 
root directory of a boatable disk. Notice that IO.SYS and MSDOS.SYS are the first two files 
in the directory and that the file attribute byte (offset OBH in a directory entry) has a 
binary value of 00100111, indicating that both files have hidden (bit 1 = 1), system (bit 0 = 1), 
and read-only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for 
possible backup. 

102 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 116/1582

 

      

Part A: Structure of MS-DOS

the value 08H, indicates that the directory entry beginning at offset 80H is a volume label.

Finally the zero byte at offset 1EOH marks the end of the directory, indicating that the sub-

sequent entries in the directory have never been used and therefore need not be searched
(versions 2.0 and later).

0123456789ABCDEF
0000 49 4F 20 20 20 20 20 20—53 59 53 27 00 00 00 00 IO sys'....

0010 00 00 00 00 00 00 59 53—89 013 02 00 01 12 00 00 ...... YS....Q...
0020 4F 53 44 4F 53 20 20 20—53 59 53 27 00 00 00 00 MSDOS sys'....
0030 00 00 00 00 00 00 41 49~52 0A 07 00 c9 43 00 00 ...... AIR...IC..
0040 41 4E 53 49 20 20 20 20—53 59 53 20 00 00 00 00 ANSI sys
0050 00 00 00 00 00 00 41 49—52 0A 18 00 76 07 00 00 ...... AIR...V...
0060 58 54 41 40 4B 20 20 20—45 58 45 20 00 00 00 00 XTALK EXE

0070 00 00 00 00 00 00 F7 7D—38 09 23 02 84 013 01 00 ...... w)8.# .....
0080 4c 41 42 45 4c 20 20 20—20 20 20 08 00 00 00 00 LABEL
0090 00 00 00 00 00 00 8C 20—2A 09 00 00 00 00 00 00 ....... *.D..R..

00A0 40 4F 54 55 53 20 20 20—20 20 20 10 00 00 00 00 LOTUS
0030 00 00 00 00 00 00 E0 0A-E1 06 A6 01 00 00 00 00 ...... '.a.&.a...
00c0 4c 54 53 40 4F 41 44 20-43 4F 4D 20 00 00 00 00 LTSLOAD COM
0000 00 00 00 00 00 00 E0 0A—F1 06 A7 01 A0 27 00 00 ...... '..'.a

00130 4D 43 49 20 53 46 20' 20—58 54 4B 20 00 00 00 00 MCI-SF XTK
com 00 00 00 00 00 00 4619—32 00 B1 01 79 04 00 00 ...... F.2.1.y...
0100 58 54 41 4c 4B 20 20 20-48 4c 50 20 00 00 00 00 XTALK. HLP

1. 0110 00 00 00 00 00 00 c5 6D—73 07 A3 02 AF 88 00 00 ...... Ems.#./...
3-. ‘ 0120 54 58 20 20 20 20 20 20—43 4F 4D 20 00 00 00 00 TX COM
21‘1 0130 00 00 00 00 00 00. 05 61—65 0c 39 01 E8 20 00 00 ....... ae.9.h ..

31 0140 43 4F 40 40 41 4E 44 20—43 41“ 4D 20 00 00 00 00 COMMAND com
1 0150 00 00 00 00 00 00 41 49—52 0A 27 00 55 3F 00 00 ...... AIR.'.U?..

0160 135 32 33 20 20 20 20 20—45 58 45 20 00 00 00 00 e23 an
0170 00 00 00 00 00 00 9c B2—85 013 42 01 80 5F 01 00 ....... 2..B.._..
0180 47 44 20 20 20 20 20 20—44 52 56 20 00 00 00 00 GD DRV

. 0190 00 00 00 00 00 00 E0 0A-E1 06 9A 01515 08 00 00 ...... '.a...[.,.
l- 01A0 4B 42 20 20 20 20 20 20—44 52 56 20 00 00 00 00 KB DRV

.. 01130 00 00 00 00 00 00 130 0A—E1 06 90 0160 0100 00 ...... "....a...01c0 50 52 20 20 20 20 20 20—44 52 56 20 00 00 00 00 PR DRV
0100 00 00 00 00 00 00 E0 0A—E106 QB 0149 01 00 00 ...... '.a...I...

‘ 1 0150 00 F6 F6 F6 F6 F6 F6 F6—F6 F6 F6 F6 F6 F6 F6 F6 ................

5 mm F6 F6 F6 F6 F6 F6 F6 F6—F6 F6 F6 F6 F6 F6 F6 F6 ................

3 1! . 1 Figure 3-12. Hexadecimal dump ofa 512—byte directory sector.‘11l

‘g The sector shown in Figure 3-12 is actually an example of the first directory sector in the

1 root directory of a bootable disk. Notice that IO.SYS and MSDOS.SYS are the first two files

l in the directory and that the file attribute byte (offset OBH in a directory entry) has a

, binary value ‘of 00100111, indicating that both files have hidden (bit 1 = 1), system (bit 0 = 1),

 
1 1‘ 1 ‘ ' and read—only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for

‘ possible backup.

102 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 116/1582

   



Article 3: MS-DOS Storage Devices 

The root directory can optionally have a special type of entry called a volume label, iden
tified by an attribute type of 08H, that is used to identify disks by name. A root directory 
can contain only one volume label. The root directory can also contain entries that point to 
subdirectories; such entries are identified by an attribute type of lOH and a file size of zero. 
Programs that manipulate subdirectories must do so by tracing through their chains of 
clusters in the FAT. 

Two other special types of directory entries are found only within subdirectories. These 
entries have the filenames • and •• and correspond to the current directory and the parent 
directory of the current directory. These special entries, sometimes called directory 
aliases, can be used to move quickly through the directory structure. 

The maximum pathname length supported by MS-DOS, excluding a drive specifier but 
including any filename and extension and subdirectory name separators, is 64 characters. 
The size of the directory structure itself is limited only by the number of root directory 
entries and the available disk space. 

The file area 

The file area contains subdirectories, file data, and unallocated clusters. The area is 
divided into fixed~size clusters and the use for a particular cluster is specified by the corre
sponding FAT entry. 

Other MS-DOS Storage Devices 

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic
tape drives and CD ROM drives. Tape drives are most often used for archiving and for 
sequential transaction processing and therefore are not discussed here. 

CD ROMs are compact laser discs that hold a massive amount of information- a single 
side of a C:Q ROM can hold almost 500 MB of data. However, there are some drawbacks to 
current CO ROM technology. For instance, data cannot be written to them- the informa
tion is placed on the compact disk at the factory when the disk is made and is available ori 
a read-only basis. In addition, the access time for a CD ROM is much slower than for most 
magnetic-disk systems. Even with these limitations, however, the ability to hold so much 
information makes CD ROM a good method for storing large amounts of static information. 

William Wong 

Section II: Programming in the MS-DOS Environment 103 

HUAWEI EX. 1010 - 117/1582

Article 3: MS-DOS Storage Devices 

The root directory can optionally have a special type of entry called a volume label, iden-

tified by an attribute type of 08H, that is used to identify disks by name. A root directory

can contain only one volume label. The root directory can also contain entries that point to

subdirectories; such entries are identified by an attribute type of 10H and a file size of zero.

Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These

entries have the filenames . and .. and correspond to the current directory and the parent

directory of the current directory. These special entries, sometimes called directory

aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS—DOS, excluding a drive specifier but

including any filename and extension and subdirectory name separators, is 64 characters.

The size of the directory structure itself is limited only by the number of root directory

entries and the available disk space.

The file area

The file area contains subdirectories, file data, and unallocated clusters. The area is

divided into fixed¥size clusters and the use for a particular cluster is specified by the Corre-

sponding FAT entry.

Other MS-DOS Storage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-

tape drives and CD ROM drives. Tape drives are most often used for archiving and for

sequential transaction processing and therefore are not discussed here.

CD ROMS are compact laser discs that hold a massive amount of information— a single

side of a C ROM can hold almost 500 MB of data. However, there are some drawbacks to

current C ROM technology. For instance, data cannot be written to them —-— the informa-

tion is placed on the compact disk at the factory when the disk is made and is available on

a read—only basis. In addition, the access time for a CD ROM is much slower than for most

magnetic-disk systems. Even with these limitations, however, the ability to hold so much

information makes CD ROM a good method for storing large amounts of static information.

William Wong

 
l.
|ll

l

Section 11: Programming in the MS—DOS Environment 103

E; HUAWEI EX. 1010 - 117/1582



PartB 
Programming for MS-DOS 

l HUAWEI EX. 1010 - 118/1582

 

Part B

Programming for MS-DOS

 
 
L I HUAWEI EX. 1010 - 118/1582



' l
,, 

Article 4: Structure of an Application Program 

Article4 
Structure of an Application Program 

Planning an MS-DOS application program requires serious analysis of the program's size. 
This analysis can help the programmer determine which of the two program styles sup
ported by MS-DOS best suits the application. The .EXE program structure provides a large 
program with benefits resulting from the extra 512 bytes (or more) of header that preface 
all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program 
structure does not burden a small program with the overhead of these extra header bytes. 

Because .COM programs start their lives as .EXE programs (before being converted by 
EXE2BIN) and because several aspects of application programming under MS-DOS 
remain similar regardless of the program structure used, a solid understanding of .EXE 
structures is beneficial even to the programmer who plans on writing only .COM pro
grams. Therefore, we'll begin our discussion with the structure and behavior of .EXE 
programs and then look at differences between .COM programs and .EXE programs, 
including restrictions on the structure and content of .COM programs. 

The .EXE Program 

The .EXE program has several advantages over the .COM program for application design. 
Considerations that could lead to the choice of the .EXE format include 

• Extremely large programs 
• Multiple segments 
• Overlays 
• Segment and far address constants 
• Longcalls 
• Possibility of upgrading programs to MS OS/2 protected mode 

The principal advantages of the .EXE format are provided by the file header. Most 
important, the header contains information that permits a program to make direct seg
ment address references- a requirement if the program is to grow beyond 64 KB. 

The file header also tells MS-DOS how much memory the program requires. This informa
tion keeps memory not required by the program from being allocated to the program
an important consideration if the program is to be upgraded in the future to run efficiently 
under MS OS/2 protected mode. 

Before discussing the .EXE program structure in detail, we'll look at how .EXE programs 
behave. 

Section II: Programming in the MS-DOS Environment 107 

HUAWEI EX. 1010 - 119/1582

Article 4: Structure of an Application Program 

Article 4

Structure ofan Application Program

Planning an MS-DOS application program requires serious analysis of the program’s size.

This analysis can help the programmer determine which of the two program styles sup—

ported by MS—DOS best suits the application. The .EXE program structure provides a large

program With benefits resulting from the extra 512 bytes (or more) of header that preface

all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program

structure does not burden a small program with the overhead of these extra header bytes.

Because .COM programs start their lives as .EXE programs (before being converted by

EXEZBIN) and because several aspects of application programming under MS—DOS

remain similar regardless of the program structure used, a solid understanding of .EXE

structures is beneficial even to the programmer who plans on writing only .COM pro—

grams. Therefore, we’ll begin our discussion with the structure and behavior of .EXE

programs and then look at differences between .COM programs and .EXE programs,

including restrictions on the structure and content of .COM programs.

The .EXE Program

The .EXE program has several advantages over the .COM program for application design.
Considerations that could lead to the choice of the .EXE format include

Extremely large programs

Multiple segments

Overlays

Segment and far address constants

Long calls

Possibility of upgrading programs to MS OS/Z protected mode

The principal advantages of the .EXE format are provided by the file header. Most
important, the header contains information that permits a program to make direct seg-

ment address references —— a requirement if the program is to grow beyond 64 KB.

The file header also tells MS—DOS how much memory the program requires. This informa-

tion keeps memory not required by the program from being allocated to the program——

an important consideration if the program is to be upgraded in the future to run efficiently

under MS OS/Z protected mode.

 
Before discussing the .EXE program structure in detail, we’ll look at how .EXE programs
behave.

Section II.- Programming in the MS—DOS Environment 107

E HUAWEI EX. 1010 -119/1582
“fl



I 

I 
I 

!i 
I 

Part B: Programming for MS-DOS 

Giving control to the .EXE program 

Figure 4-1 gives an example of how a .EXE program might appear in memory when 
MS-DOS first gives the program control. The diagram shows Microsoft's preferred pro
gram segment arrangement. 

Any segments with class 
.... SP 

STACK 

All segments Any segments with class 

declared BSS 
as part of group Any DGROUP segments 

DGROUP not shown elsewhere 

Any segments with class 
BEGDATA 

Any segments with class names 
ending with CODE 

Start segment 
and start of ... 

1 
program image Program segment prefix (PSP) 
(load module) 

- 1 .... DS,ES 

Figure 4-1. The·.EXE program: memory map diagram with register pointers. 

Before transferring control to the .EXE program, MS-DOS initializes various areas of 
memory and several of the microprocessor's registers. The following discussion explains 
what to expect from MS-DOS before it gives the .EXE program control. 

The program segment prefix 

The program segment prefix (PSP) is not a direct result of any program code. Rather, this 
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all .EXE 
and .COM programs when they are loaded into memory. Although the PSP does contain 
several fields of use to newer programs, it exists primarily as a remnant of CP/M
Microsoft adopted the PSP for ease in porting the vast number of programs available under 
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP. 

PSP.OOOOH (Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family 
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The 
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm 
Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping 
to this vector. This method of termination should not be used in newer programs. See 
Terminating the .EXE Program below. 

PSP:0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word 
at offset 02H into the PSP. It contains the segment address of the paragraph following the 
block of memory allocated to the program. This address should be used only to determine 
the size or the end of the memory block allocated to the program; it must not be con
sidered a pointer to free memory that the program can appropriate. In most cases this ad
dress will not point to free memory, because any free memory will already have been 

108 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 120/1582

 
  

    
Part B: Programming for MS—DOS 

Giving control to the .EXE program

Figure 4-1 gives an example of how a .EXE program might appear in memory when

MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro-
gram segment arrangement.

 
4 P

Any segments with class S
STACK

‘ 4 SS
All segments Any segments wrth class

declared BSS

as pan 0f group Any DGROUP segments
DGROUP not shown elsewhere

Any segments with class
BEGDATA

Start segment Any segrgents wghccclfigi:names 4 1p
and startof } en mg w1t ‘ CSu I '

program image Program segment prefix (PSP) I

(load module) '_ ______ l ‘ DS ES

Figure 4-1. The :EXEprogram: memory map diagram with registerpointers.

Before transferring control to the .EXE program, MS-DOS initializes various areas of

memory and several of the microprocessor’s registers. The following discussion explains

what to expect from MS-DOS before it gives the .EXE program control.

The program segment prefix

The program segment prefix (PSP) is not a direct result of any program code. Rather, this
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all .EXE

and .COM programs when they are loaded into memory. Although the PSP does contain

several fields of use to newer programs, it exists primarily as a remnant of CP/M -—

Microsoft adopted the PSP for ease in porting the vast number of programs available under

CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP.

PSP-OOOOH (Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family

INT 20H instruction, which the program can use to transfer control back to MS-DOS. The
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm

Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping

to this vector. This method of termination should not be used in newer programs. See

Terminating the .EXE Program below.

PSP:0002H (Address ofLast SegmentAllocated to Program) MS-DOS introduced the word

at offset 02H into the PSP. It contains the segment address of the paragraph following the

block of memory allocated to the program. This address should be used only to determine

the size or the end of the memory block allocated to the program; it must not be con—

sidered a pointer to free memory that the program can appropriate. In most cases this ad-

dress Will not point to free memory, because any free memory will already have been 
108 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 120/1582



Article 4: Structure of an Application Program 

xOH x!H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

OxH 

lxH 
... address Prev critical error address Reserved ... 

2xH 

3xH 

4xH ... Reserved 

SxH !NT 21H and RETF 

OCDH 

6xH 

7xH 
e 

8xH 
Command tail and default disk transfer area (DT A) (continues through OFFH) ... 

un I 
Figure 4-2. The program segment prefix (PSP). 

allocated to the program unless the program was linked using the /CPARMAXALLOC 
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block 
of memory only as big as the program requires. Well-behaved programs should acquire 
additional memory only through the MS-DOS function calls provided for that purpose. 

PSP:0005H (MS-DOS Function Call [old BDOS] Vector) Offset 05H is also a hand-me
down from CP/M. This location contains an 8086-family far (intersegment) call instruction 
to MS-DOS's function request handler. (Under CP/M, this address was the Basic Disk Oper
ating System [BDOS] vector, which served a similar purpose.) This vector should not be 
used to call MS-DOS in newer programs. The System Calls section of this book explains 
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup
port CP/M-style programs and therefore honors only the CP/M-style functions (00- 24H) 
through it. 

PSP:OOOAH-0015H (Parent's 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses 
offsets OAH through 15H to save the contents of three program-specific interrupt vectors. 
MS-DOS must save these vectors because it permits any program to execute another pro
gram (called a child process) through an MS-DOS function call that returns control to the 
original program when the called program terminates. Because the original program 
resumes executing when the child program terminates, MS-DOS must restore these three 

Section II: Programming in the MS-DOS Environment 109 
HUAWEI EX. 1010 - 121/1582

Article 4: Structure of an Application Program 

xOH XXH x2H x3H x4I-l XSH x6H x7H x8H X9H xAH XBH XCH xDH XEH xFH

INT 20H End alloc Resv. Far call to MS—Dos fn handler Prev terminate address Prev Cir] C...

0CDH 20H seglo seg hi 9AH ofslo ofshi seg lo seg hi ofslo ofs hi seglo seg hi ofslo ofs hi

...address Prev critical error address Reserved...

 
 

 
 

 

 

OXH

 
 
  
  

 
 

lxI-l
seglo seg hi ofslo or: hi seglo seg hi

2X“ ...Reserved nl' eservedseg 10 seg hi

3X“ ...Reserved... L.—xi'figfoi'gl

4x“ ...Reserved

““8””
ocou 21H OCBH d F i 1

6xH ...Primary file control block (FCB) Secondary FCB...
e n a m e E x EOOHOOHOOHOOHd F i 1

7m ...Secondary file control block (FCB) Reserved
e n a m e E X t OOHOOHOOHOOH

8xH Command tail and default disk transfer area (DTA) (continues through OFFH)“.
' Len I

Figure 4—2. Theprogram segmentprefix (PSP).

allocated to the program unless the program was linked using the /CPARMAXALLOC

switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block

of memory only as big as the program requires. Well-behaved programs should acquire

additional memory only through the MS-DOS function calls provided for that purpose.

PSP:0005H (MS-DOS Function Call [oldBDOS] Vector) Offset 05H is also a hand-me—

down from CP/M. This location contains an 8086-family far (intersegment) call instruction

to MS-DOS’s function request handler. (Under CP/M, this address was the Basic Disk Oper—

ating System [BDOS] vector, which served a similar purpose.) This vector should not be

used to call MS-DOS in newer programs. The System Calls section of this book explains

the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup-

port CP/M-style programs and therefore honors only the CP/M-style functions (00—24H)

through it.

P5P:000AH-0015H (Parent’s 22H, 23H, and 24HInterrupt Vector Save) MS-DOS uses

offsets OAH through 15H to save the contents of three program-specific interrupt vectors.

MS—DOS must save these vectors because it permits any program to execute another pro—

gram (called a child process) through an MS—DOS function call that returns control to the

original program when the called program terminates. Because the original program

resumes executing when the child program terminates, MS—DOS must restore these three

Section II: Programming in the MS—DOS Environment 109

HUAWEI EX. 1010 - 121/1582

 



', l 

Part B: Programming for MS-DOS 

interrupt vectors for the original program in case the called program changed them. The 
three vectors involved include the program termination handler vector (Interrupt 22H), 
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler 
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors 
in the child program's PSP as doubleword fields beginning at offsets OAH for the program 
termination handler vector, OEH for the Control-C/Control-Break handler vector, and 12H 
for the critical error handler vector. 

PSP.002CH (Segment Address of Environment) Under MS-DOS versions 2.0 and later, the 
word at offset 2CH contains one of the most useful pieces of information a program can 
find in the PSP- the segment address of the first paragraph of the MS-DOS environment. 
This pointer enables the program to search through the environment for any configuration 
or directory search path strings placed there by users with the SET command. 

PSP:0050H (New MS-DOS Call Vector) Many programmers disregard the contents of offset 
SOH. The location co'nsists simply of an INT 21H instruction followed by a RETF. A .EXE 
program can call this location using a far call as a means of accessing the MS-DOS function 
handler. Of course, the program can also simply do an INT 21H directly,, which is smaller 
and faster than calling SOH. Unlike calls to offset OSH, calls to offset SOH can request the 
full range of MS-DOS functions. 

PSP:005CH (Default File Control Block 1) and PSP:006CH (Default File Control Block 2) 
MS-DOS parses the first two parameters the user enters in the command line following the 
program's name. If the first parameter qualifies as a valid (limited) MS-DOS filename 
(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes 
offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for 
the specified file. If the second parameter also qualifies as a valid MS-DOS filename, 
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for 
the second specified file. If the user specifies a directory path as part of either filename, 
MS-DOS initializes only the drive code in the associated FCB. Many programmers no 
longer use this feature, because file access using FCBs does not support directory paths 
and other newer MS-DOS features. 

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset 
SCH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB. Similarly, 
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of 
the command tail and default disk transfer area (DTA). (The command tail and default 
DTA are described below.) To use the contents of both default FCBs, the program should 
copy the FCBs to a pair of 37-byte fields located in the program's data area. The program 
can use the first FCB without moving it only after relocating the second FCB (if necessary) 
and only by performing sequential reads or writes when using the first FCB. To perform 
random reads and writes using the first FCB, the programmer must either move the first 
FCB or change the default DTA address. Otherwise, the first FCB's random record field will 
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: PRoGRAMMING FOR Ms-oos: File and Record Management. 

110 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 122/1582

Part B: Programming for MS—DOS 

interrupt vectors for the original program in case the called program changed them. The

three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Control—Break handler vector (Interrupt 23H), and the critical error handler

vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors

in the child program’s PSP as doubleword fields beginning at offsets OAH for the program

termination handler vector, OEH for the Control-C/Control—Break handler vector, and 12H
for the critical error handler vector.

PSP-OOZCH (SegmentAddress ofEnvironment) Under MS-DOS versions 2.0 and later, the

word at offset ZCH contains one of the most useful pieces of information a program can

find in the PSP —the segment address of the first paragraph of the MS—DOS environment.

This pointer enables the program to search through the environment for any configuration
or directory search path strings placed there by users with the SET command.

   
g 1 . ' PSP-OOSOH (New MS—DOS Call Vector) Many programmers disregard the contents of offset

1 g, l 1 50H. The location consists simply of an INT 21H instruction followed by a RETF. A .EXE
program can call this location using a far call as a means of accessing the MS-DOS function

‘ ‘ 3 g handler. Of course, the program can also simply do an INT 21H directly; which is smaller
1 ; ll _ and faster than calling 50H. Unlike calls to offset 05H, calls to offset 50H can request the

full range of MS—DOS functions.

3 ' PSP-005CH (Default File ControlBlade 1) andPSP-006CH (Default File ControlBlade 2)
j ’ l ‘ MS-DOS parses the first two parameters the user enters in the command line following the

program’s name. If the first parameter qualifies as a valid (limited) MS—DOS filename

; 5 (the name can be preceded by a drive letter but not a directory path), MS-DOS initializes
‘ offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for

l I 3 the specified file. If the second parameter also qualifies as a valid MS-DOS filename,

j MS—DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
1 ‘ the second specified file. If the user specifies a directory path as part of either filename,

l 1 MS-DOS initializes only the drive code in the associated FCB. Many programmers no
, longer use this feature, because file access using FCBs does not support directory paths

and other newer MS—DOS features.

  
    

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset

SCH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB. Similarly,

opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA). (The command tail and default

DTA are described below.) To use the contents of both default FCBs, the program should

copy the FCBs to a pair of 37-byte fields located in the program’s data area. The program

can use the first FCB without moving it only after relocating the second FCB (if necessary)

and only by performing sequential reads or writes when using the first FCB. To perform

random reads and writes using the first FCB, the programmer must either move the first

FCB or change the default DTA address. Otherwise, the first FCB’s random record field will

overlap the start ofthe default DTA. See PROGRAMMING IN THE MS—DOS ENVIRON—

MENT: PROGRAMMING FOR Ms~Dos: File and Record Management.

110 e - co m
Th ”“00”“de . HUAWEI EX. 1010- 122/1582

 
  



Article 4: Structure of an Application Program 

PSP·OOBOH (Command Tail and Default DTA) The default DTA resides in the entire sec
ond half (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record 
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited 
this location from CP/M. (MS-DOS provides a function the program can call to change the 
address MS-DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 21H: Func
tion lAH.) Because the default DTA serves no purpose until the program performs some 
file activity that requires it, MS-DOS places the command tail in this area for the program 
to examine. The command tail consists of any text the user types following the program 
name when executing the program. Normally, an ASCII space (20H) is the first character 
in the command tail, but any character MS-DOS recognizes as a separator can occupy this 
position. MS-DOS stores the command-tail text starting at offset 81H and always places an 
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length 
of the command tail at offset 80H. This length includes all characters except the final ODH. 
For example, the command line 

C>DOIT WITH CLASS <Enter> 

will result in the program DOlT being executed with PSP:0080H containing 

OB 20 57 49 54 48 20 43 4C 41 53 53 OD 
len sp W I T H sp C L A S S cr 

The stack 

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs 
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to 

supply its own stack. (Figure 4-1 shows the program's stack as the top box in the diagram.) 

Microsoft's high-level-language compilers create a stack themselves, but when writing in 
assembly language the programmer must specifically declare one or more segments with 
the STACK combine type. If the programmer declares multiple stack segments, possibly in 
different source modules, the linker combines them into one large segment. See Control
ling the .EXE Program's Structure below. 

Many programmers declare their stack segments as preinitialized with some recognizable 
repeating string such as *STACK This makes it possible to examine the program's stack in 
memory (using a debugger such as DEBUG) to determine how much stack space the pro
gram actually used. On the other hand, if the stack is left as uninitialized memory and 
linked at the end of the .EXE program, it will not require space within the .EXE file. (The 
reason for this will become more apparent when we examine the structure of a .EXE file.) 

Note: When multiple stack segments have been declared in different .ASM files, the 
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci
fied in all the source modules, but the initialization data from all modules is overlapped 
module by module at the high end of the combined segment. 

An important difference between .COM and .EXE programs is that MS-DOS preinitializes 
a .COM program's stack with a termination address before transferring control to the pro
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply 
execute an 8086-family RET instruction as a means of terminating. 

Section JL- Programming in the MS-DOS Environment 111 

HUAWEI EX. 1010 - 123/1582

Article 4: Structure of an Application Program 

PSP:0080H (Command Tail and Default DTA) The default DTA resides in the entire sec—

ond half (128 bytes) of the PSP. MS—DOS uses this area of memory as the default record

buffer if the program uses the PCB—style file access functions. Again, MS—DOS inherited

this location from CP/M. (MS—DOS provides a function the program can call to change the
address MS—DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 21H: Func—

tion lAH.) Because the default DTA serves no purpose until the program performs some

file activity that requires it, MS—DOS places the command tail in this area for the program

to examine. The command tail consists of any text the user types following the program

name when executing the program. Normally, an ASCII space (20H) is the first character

in the command tail, but any character MS-DOS recognizes as a separator can occupy this

position. MS—DOS stores the command-tail text starting at offset 81H and always places an

ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length

of the command tail at offset 80H. This length includes all characters except the final ODH.

For example, the command line

C>DOIT WITH CLASS <Enter>

will result in the program DOIT being executed with PSP:0080H containing

OB 20 57 49 54 48 20 43 4C 41 53 53 0D

lenspWITl-lspCLASScr

The stack

Because .EXE—style programs did not exist under CP/M, MS-DOS expects .EXE programs

to operate in strictly MS-DOS fashion. For example, MS—DOS expects the .EXE program to

supply its own stack. (Figure 4—1 shows the program’s stack as the top box in the diagram.)

Microsoft’s high-level—language compilers create a stack themselves, but when writing in

assembly language the programmer must specifically declare one or more segments with

the STACK combine type. If the programmer declares multiple stack segments, possibly in

different source modules, the linker combines them into one large segment. See Control—

ling the .EXE Program’s Structure below.

Many programmers declare their stack segments as preinitialized with some recognizable

repeating string such as *STACK. This makes it possible to examine the program’s stack in

memory (using a debugger such as DEBUG) to determine how much stack space the pro-

gram actually used. On the other hand, if the stack is left as uninitialized memory and
linked at the end of the .EXE program, it will not require space within the .EXE file. (The

reason for this will become more apparent when we examine the structure of a .EXE file.)

Note: When multiple stack segments have been declared in different .ASM files, the

Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci—

fied in all the source modules, but the initialization data from all modules is overlapped

module by module at the high end of the combined segment.

An important difference between .COM and .EXE programs is that MS—DOS preinitializes

a .COM program’s stack with a termination address before transferring control to the pro—

gram. MS—DOS does not do this for .EXE programs, so a .EXE program cannot simply

execute an 8086-family RET instruction as a means of terminating.

Section 11: Programming in the MS-DOS Environment 1 1 1

HUAWEIIEX. 1010 - 123/1582

 
 



'i 

Part B: Programming for MS-DOS 

Note: In the assembly-language files generated for a Microsoft C program or for programs 
in most other high-level-languages, the compiler's placement of a RET instruction at the 
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS 
does not place any return address on the stack. The compiler places the RET at the end of 
main because main does l).Ot receive control directly from MS-DOS. A library initializa
tion routine receives control from MS-DOS; this routine then calls main. When main per
forms the RET, it returns control to a library termination routine, which then terminates 
back to MS-DOS in an approved manner. 

Preallocated memory 

While loading a .EXE program, MS-DOS performs several steps to determine the initial 
amount of memory to be allocated to the program. First, MS-DOS reads the two values the 
linker places near the start of the .EXE header: The first value, MINALLOC, indicates the 
minimum amount of extra memory the program requires to start executing; the second 
value, MAXALLOC, indicates the maximum amount of extra memory the program would 
like allocated before it starts executing. Next, MS-DOS locates the largest free block of 
memory available. If the size of the program's image within the .EXE file combined with 
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns 
an error to the process trying to load the program. If that process is COMMAND. COM, 
COMMAND.COM then displays a Program too big to fit in memory error message and 
terminates the user's execution request. If the block exceeds the program's MINALLOC 
requirement, MS-DOS then compares the memory block against the program's image 
combined with the MAXALLOC request. If the free block exceeds the maximum memory 
requested by the program, MS-DOS allocates only the maximum request; otherwise, it 
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads 
the program's image from the .EXE file into memory following the PSP. 

This process ensures that the extra memory allocated to the program will immediately 
follow the program's image. The same will not necessarily be true for any memory 
MS-DOS allocates to the program as a result of MS-DOS function calls the program per
forms during its execution. Only function calls requesting MS-DOS to increase the initial 
allocation can guarantee additional contiguous memory. (Of course, the granting of such 
increase requests depends on the availability of free memory following the initial 
allocation.) 

Programmers writing .EXE programs sometimes find the lack of keywords or compiler/ 
assembler switches that deal with MINALLOC (and possibly MAXALLOC) confusing. The 
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC 
to the total size of all uninitialized data and/ or stack segments linked at the very end of the 
program. The MINALLOC field allows the compiler to indicate the size of the initialized 
data fields in the load module without actually including the fields themselves, resulting in 
a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program 
must be coded and linked in such a way as to place all uninitialized data fields at the end 
of the program. Microsoft high-level-language compilers handle this automatically; 
assembly-language programmers must give LINK a little help. 

112 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 124/1582

 

l
l
l

k . E Part B: Programming for MS-DOS 

 
Note: In the assembly—language files generated for a Microsoft C program or for programs

in most other high—level—languages, the compiler’s placement of a RET instruction at the

end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS

does not place any return address on the stack. The compiler places the RET at the end of

main because main does not receive control directly from MS—DOS. A library initializa—

tion routine receives control from MS-DOS; this routine then calls main. When min per—

forms the RET, it returns control to a library termination routine, which then terminates

back to MS—DOS in an approved manner.

Preallocated memory

While loading a .EXE program, MS—DOS performs several steps to determine the initial

amount of memory to be allocated to the program. First, MS-DOS reads the two values the

linker places near the start of the .EXE header: The first value, MINALLOC, indicates the

minimum amount of extra memory the program requires to start executing; the second

value, MAXALLOC, indicates the maximum amount of extra memory the program would

like allocated before it starts executing. Next, MS—DOS locates the largest free block of

, memory available. If the size of the program’s image within the .EXE file combined with

l .1 the value specified for MINALLOC exceeds the memory block it found, MS—DOS returns

‘ H E an error to the process trying to load the program. If that process is COMMANDCOM,
x COMMANDCOM then displays a Program too big tofit in memory error message and

E terminates the user’s execution request. If the block exceeds the program’s MINALLOC

requirement, MS-DOS then compares the memory block against the program’s image .
E combined with the MAXALLOC request. If the free block exceeds the maximum memory

'f . E requested by the program, MS—DOS allocates only the maximum request; otherwise, it

 
allocates the entire block. MS—DOS then builds a PSP at the start of this block and loads

the program’s image from the .EXE file into memory following the PSP.

 
’ j l i . This process ensures that the extra memory allocated to the program will immediately

7 i? follow the program’s image. The same will not necessarily be true for any memory

.. MS—DOS allocates to the program as a result of MS-DOS function calls the program per—
‘ j l forms during its execution. Only function calls requesting MS-DOS to increase the initial
, allocation can guarantee additional contiguous memory. (Of course, the granting of such

l :i l increase requests depends on the availability of free memory following the initial

l l allocation.)

 
Programmers writing .EXE programs sometimes find the lack of keywords or compiler/

assembler switches that deal with M1NALLOC (and possibly MAXALLOC) confusing. The

:. programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC

‘ E to the total size of all uninitialized data and/or stack segments linked at the very end of the
program. The MINALLOC field allows the compiler to indicate the size of the initialized

E! data fields in the load module without actually including the fields themselves, resulting in
' l a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program

l i must be coded and linked in such a way as to place all uninitialized data fields at the end

of the program. Microsoft high-level—language compilers handle this automatically;

assembly-language programmers must give LINK a little help.

  
 E

EE ‘Ei “2 TheMS‘DOSEmyC’OW’i“ HUAWEI EX. 1010- 124/1582
l l Emi}.



1 

Article 4: Structure of an Application Program 

Note: Beginning and even advanced assembly-language programmers can easily fall into 
an argument with the assembler over field addressing when attempting to place data fields 
after the code in the source file. This argument can be avoided if programmers use the 
SEGMENT and GROUP assembler directives. See Controlling the .EXE Program's Struc
turebelow. 

No reliable method exists for the linker to determine the correct MAXALLOC value 
required by the .EXE program. Therefore, LINK uses a "safe" value of FFFFH, which 
causes MS-DOS to allocate all of the largest block of free memory- which is usually all 
free memory-to the program. Unless a program specifically releases the memory for 
which jt has no use, it denies multitasking supervisor programs, such as IBM's Top View, 
any memory in which to execute additional programs-hence the rule that a well
behaved program releases unneeded memory during its initialization. Unfortunately, this 
memory conservation approach provides no help if a multitasking supervisor supports the 
ability to load several programs into memory without executing them. Therefore, pro
grams that have correctly established MAXALLOC values actually are well-behaved 
programs. 

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch 
to permit specification of the maximum amount of memory required by the program. The 
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to 
be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:l) forces 
MS-DOS to allocate only MINALLOC extra paragraphs to the program. In addition, 
Microsoft supplies a program called EXEMOD with most of its languages. This program 
permits modification of the MAXALLOC field in the headers of existing .EXE programs. 
See Modifying the .EXE File Header below. 

The registers 

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers 
before transferring control to a .EXE program. MS-DOS determines most of the original 
register values from information the linker places in the .EXE file header at the start of the 
.EXEfile. 

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg
ments declared with the STACK combine type and sets the SP register to the offset from SS 
of the byte immediately after the combined stack segments. (If no stack segment is 
declared, MS-DOS sets SS:SP to CS:OOOO.) Because in the 8086-family architecture a stack 
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of 
the stack. Therefore, if the programmer declares stack segments when writing an assem
bly-language program, the program will not need to initialize the SS and SP registers. 
Microsoft's high-level-language compilers handle the creation of stack segments automati
cally. In both cases, the linker determines the initial SS and SP values and places them in 
the header at the start of the .EXE program file. 

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES 
registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of 

Section 11· Programming in the MS-DOS Environment 113 

HUAWEI EX. 1010 - 125/1582

Article 4: Structure of an Application Program 

Note: Beginning and even advanced assembly—language programmers can easily fall into

an argument with the assembler over field addressing when attempting to place data fields
after the code in the source file. This argument can be avoided if programmers use the

SEGMENT and GROUP assembler directives. See Controlling the .EXE Program’s Struc—
ture below.

No reliable method exists for the linker to determine the correct MAXALLOC value

required by the .EXE program. Therefore, LINK uses a “safe” value of FFFFH, which

causes MS-DOS to allocate all of the largest block of free memory— which is usually all

free memory—to the program. Unless a program specifically releases the memory for

which it has no use, it denies multitasking supervisor programs, such as IBM’s TopView,

any memory in which to execute additional programs ———hence the rule that a well—

behaved program releases unneeded memory during its initialization. Unfortunately, this

memory conservation approach provides no help if a multitasking supervisor supports the

ability to load several programs into memory without executing them. Therefore, pro-

grams that have correctly established MAXALLOC values actually are well—behaved
programs.

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch

to permit specification of the maximum amount of memory required by the program. The
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to

be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:1) forces

MS—DOS to allocate only MINALLOC extra paragraphs to the program. In addition,

Microsoft supplies a program called EXEMOD with most of its languages. This program

permits modification of the MAXALLOC field in the headers of existing .EXE programs.

See Modifying the .EXE File Header below.

The registers

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers

before transferring control to a .EXE program. MS-DOS determines most of the original

register values from information the linker places in the .EXE file header at the start of the
.EXE file.

MS—DOS sets the SS register to the segment (paragraph) address of the start of any seg-

ments declared with the STACK combine type and sets the SP register to the offset from SS

of the byte immediately after the combined stack segments. (If no stack segment is

declared, MS-DOS sets SS:SP to CS:0000.) Because in the 8086-family architecture a stack

grows from high to low memory addresses, this effectively sets SS:SP to point to the base of

the stack. Therefore, if the programmer declares stack segments when writing an assem-

bly-language program, the program will not need to initialize the SS and SP registers.

Microsoft’s high—level-language compilers handle the creation of stack segments automati-

cally. In both cases, the linker determines the initial SS and SP values and places them in

the header at the start of the .EXE program file.

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES

registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of

 
Section 11- Programming in the MS—DOS Environment ‘ 1 13

HUAWEI EX. 1010 - 125/1582

W .“AW



Part B: Programming for MS-DOS 

114 

the PSP. It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to 
tell the program the address of the PSP; second, most programs start by examining the 
command tail within the PSP. Because the program starts without DS pointing to the data 
segments, the program must initialize DS and (optionally) ES to point to the data segments 
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE 
programs can do this easily because they can make direct references to segments, as 
follows: 

MOV AX,SEG DATA_SEGMENT_QR_GROUP_NAME 
MOV DS,AX 
MOV ES,AX 

High-level-language programs need not initialize and maintain DS and ES; the compiler 
and library support routines do this. 

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and AL to reflect the 
validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS-DOS sets 
AL to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier; 
otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier 
placed inthe second FCB at PSP:006CH. 

When MS-DOS analyzes the first two command-line parameters fol·lowing the program 
name in order to build the first and second FCBs, it treats any character followed by a 
colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through 
z ), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it 
subtracts 40H from the character, regardless of its original value. This converts the drive 
prefix letters A through Z to the drive codes OlH through lAH, as required by the two 
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB. 

This process does not actually preclude invalid drive specifications from being placed in 
the FCBs. For instance, MS-DOS will accept the drive prefix ! : and place a drive code of 
OElH in the FCB (! = 21H; 21H-40H = OElH). However, MS-DOS will then check the drive 
code to see if it represents an existing drive attached to the computer and will pass a value 
of OFFH to the program in the appropriate register (AL or AH) if it does not. 

As a side effect of this process, M5-DOS accepts@: as a valid drive prefix because the 
subtraction of 40H converts the @ character ( 40H) to OOH. MS-DOS accepts the OOH value 
as valid because a OOH drive code represents the current default drive. MS-DOS will leave 
the FCB's drive code set to OOH rather than translating it to the code for the default drive 
because the MS-DOS function calls that use FCBs accept the OOH code. 

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program's 
entry point. Programs developed using high-level-language compilers usually receive con
trol at a library initialization routine. A programmer writing an assembly-language pro
gram using the Microsoft Macro Assembler (MASM) can declare any label within the 

The MS-DOS Encyclopedia HUAWEI EX. 1010 - 126/1582

Part B: Programming for MS-DOS 

the PSP. It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to

tell the program the address of the PSP; second, most programs start by examining the

command tail within the PSP. Because the program starts without DS pointing to the, data
segments, the program must initialize DS and (optionally) ES to point to the data segments
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE

programs can do this easily because they can make direct references to segments, as  follows:

MOV AX , SEG DATA._SEGMENT_OLGROUP_NAME
MOV DS, AX
MOV ES, AX

High-level-language programs need not initialize and maintain DS and ES; the compiler

and library support routines do this.

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and AL to reflect the

validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS—DOS sets
AL to OFFH if the first FCB at PSPzOOSCH was initialized with a nonexistent drive identifier;

otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier

placed in-the second FCB at PSP:006CH.

When MS-DOS analyzes the first two command-line parameters fol-lowing the program

1 , name in order to build the first and second FCBs, it treats any character followed by a

1 colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through

:51 E z), MS—DOS starts by converting the character to uppercase (ASCII A through Z). Then it
‘ l subtracts 40H from the character, regardless of its original value. This converts the drive

‘ prefix letters A through Z to the drive codes 01H through 1AH, as required by the two

5 l FCBs. Finally, MS—DOS places the drive code in the appropriate FCB.

  
; “ This process does not actually preclude invalid drive specifications from being placed in

the FCBs. For instance, MS-DOS will accept the drive prefix !: and place a drive code of
0E1H in the FCB (! = 21H; 21H—40H = OElH). However, MS-DOS will then check the drive

‘ code to see if it represents an existing drive attached to the computer and will pass a value

1 of OFFH to the program in the appropriate register (AL or AH) if it does not.

As a side effect of this process, MS—DOS accepts @: as a valid drive prefix because the

subtraction of 40H converts the @ character (40H) to 00H. MS-DOS accepts the 00H value

as valid because a OOH drive code represents the current default drive. MS-DOS will leave

the FCB’s drive code set to 00H rather than translating it to the code for the default drive

because the MS—DOS function calls that use FCBs accept the 00H code.

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program’s

_ entry point. Programs developed using high-level—language compilers usually receive con-
?“ trol at a library initialization routine. A programmer writing an assembly-language pro-

3 gram using the Microsoft Macro Assembler (MASM) can declare any label within the

“4 Them—DOSEW’OPW HUAWEI EX. 1010 - 126/1582

   



l 

Article 4: Structure of an Application Program 

program as the entry point by placing the label after the END statement as the last line of the 
program: 

END ENTRY_PQINT_LABEL 

With multiple source files, only one of the files should have a label following the END 
statement. If more than one source file has such a label, LINK uses the first one it encoun
ters as the entry point. 

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when 
the program receives control from MS-DOS. Once again, high-level-language program
mers can ignore this fact-the compiler and library support routines deal with the situa
tion. However, assembly-language programmers should keep this fact in mind. It may give 
needed insight sometime in the future when a program functions at certain times and 
not at others. 

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to 
some predictable but undocumented state. For instance, some debuggers may predictably 
set BP to zero before starting program execution. However, a program must not rely on 
such debugger actions, because MS-DOS makes no such promises. Situations like this 
could account for a program that fails when executed directly under MS-DOS but works 
fine when executed using a debugger. 

Terminating the .EXE program 

After MS-DOS has given the .EXE program control and it has completed whatever task 
it set out to perform, the program needs to give control back to MS-DOS. Because of 
MS-DOS's evolution, five methods of program termination have accumulated- not 
including the several ways MS-DOS allows programs to terminate but remain resident 
in memory. 

Before using any of the termination methods supported by MS-DOS, the program should 
always close any files it had open, especially those to which data has been written or 
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files 
opened using handles. However, good programming practice dictates that the program 
not rely on the operating system to close the program's files. In addition, programs written 
to use shared files under MS-DOS versions 3.0 and later should release any file locks before 
closing the files and terminating. 

The Terminate Process with Return Code function 

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with 
Return Code function ( 4CH) is recommended for programs running under MS-DOS ver
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro
gram, regardless of its structure or segment register settings. The Terminate Process with 
Return Code function call simply consists of the following: 

MOV 
MOV 
INT 

AH,4CH 
AL,RETURN_CODE 
21H 

;load the MS-DOS function code 
;load the termination code 
;call MS-DOS to terminate program 

Section II: Programming in the MS-DOS Environment 115 

HUAWEI EX. 1010 - 127/1582

Article 4: Structure of an Application Program 

program as the entry point by placing the label after the END statement as the last line of the
program:

END ENTRY..POINT._LABEL

With multiple source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, LINK uses the first one it encoun-

ters as the entry point.

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when

the program receives control from MS-DOS. Once again, high-level-language program-

mers can ignore this fact—the compiler and library support routines deal with the situa-

tion. However, assembly—language programmers should keep this fact in mind. It may give

needed insight sometime in the future when a program functions at certain times and
not at others.

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to

some predictable but undocumented state. For instance, some debuggers may predictably

set BP to zero before starting program execution. However, a program must not rely on
such debugger actions, because MS-DOS makes no such promises. Situations like this

could account for a program that fails when executed directly under MS-DOS but works

fine when executed using a debugger.

Terminating the .EXE program

After MS—DOS has given the .EXE program control and it has completed whatever task

it set out to perform, the program needs to give control back to MS-DOS. Because of

MS-DOS’s evolution, five methods of program termination have accumulated~ not

including the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should

always close any files it had open, especially those to which data has been written or

Whose lengths were changed. Under versions 2.0 and later, MS—DOS closes any files

opened using handles. However, good programming practice dictates that the program

not rely on the operating system to close the program’s files. In addition, programs written

to use shared files under MS-DOS versions 3.0 and later should release any file locks before

closing the files and terminating.

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with

Return Code function (4CH) is recommended for programs running under MS-DOS ver-

sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-

gram, regardless of its structure or segment register settings. The Terminate Process with

Return Code function call simply consists of the following:

 
MOV AH,4CH ;load the MS—DOS function code
MOV AL,RETURN_CODE ;load the termination code
INT 21H ;call MS—DOS to terminate program

Section II: Programming in the MS-DOS Environment 1 1 5
HUAWEI EX. 1010 - 127/1582

‘—-————_—_—



I .I ! 
id: , I 

Part B: Programming for MS-DOS 

116 

The example loads the AH register with the Terminate Process with Return Code function 
code. Then it loads the AL register with a return code. Normally, the return code repre
sents the reason the program terminated or the result of any operation the program 
performed. 

A program that executes another program as a child process can recover and analyze the 
child program's return code if the child process used this termination method. Likewise, 
the child process can recover the RETURN_ CODE returned by any program it executes as 
a child process. When a program is terminated using this method and control returns to 
MS-DOS, a batch (.BAT) file can be used to test the terminated program's return code 
using the IF ERRORLEVEL statement. 

Only two general conventions have been adopted for the value of RETURN_ CODE: 
First, a RETURN_CODE value of OOH indicates a normal no-error termination of the 
program; second, increasing RETURN_ CODE values indicate increasing severity of con
ditions under which the program terminated. For instance, a compiler could use the 
RETURN_ CODE OOH if it found no errors in the source file, OlH if it found only warning 
errors, or 02H if it found severe errors. 

If a program has no need to return any special RETURN_ CODE values, then the following 
instructions will suffice to terminate the program with a RETURN_CODE of OOH: 

MOV AX,4COOH 
INT 21H 

Apart from being the approved termination method, Terminate Process with Return Code 
is easier to use with .EXE programs than any other termination method because all other 
methods require that the CS register point to the start of the PSP when the program termi
nates. This restriction causes problems for .EXE programs because they have code seg
ments with segment addresses different from that of the PSP. 

The only problem with Terminate Process with Return Code is that it is not available under 
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible 
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the 
approved termination method when available but still remain pre-2.0 compatible. See The 
Warm Boot/Terminate Vector below. 

TEXT SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

TERM... VECTOR DD ? 

ENTRY_pROC PROC FAR 

;save pointer to termination vector in PSP 

MOV WORD PTR CS:TERM...VECTOR+O,OOOOh ;save offset of Warm Boot vector 
MOV WORD PTR CS:TERM...VECTOR+2,DS ;save segment address of PSP 

Figure 4-3. Terminating properly under any MS-DOS version. (more) 

The MS-DOS Encyclopedia HUAWEI EX. 1010 - 128/1582

Part B: Programming for MS-DOS 

The example loads the AH register with the Terminate Process with Return Code function

code. Then it loads the AL register with a return code. Normally, the return code repre-

sents the reason the program terminated or the result of any operation the program

performed.

  
A program that executes another program as a child process can recover and analyze the

child program’s return code if the child process used this termination method. Likewise,

the child process can recover the RETURN_CODE returned by any program it executes as

a child process. When a program is terminated using this method and control returns to

MS-DOS, a batch (.BAT) file can be used to test the terminated program’s return code

using the IFERRORLEVEL statement.

 
Only two general conventions have been adopted for the value of RETURN_CODE:
First, a RETURN_CODE value of 00H indicates a normal no-error termination of the

program; second, increasing RETURN_CODE values indicate increasing severity of con—

ditions under which the program terminated. For instance, a compiler could use the

RETURN_CODE OOH if it found no errors in the source file, 01H if it found only warning
errors, or 02H if it found severe errors.

    
If a program has no need to return any special RETURN_CODE values, then the following

instructions will suffice to terminate the program With a RETURN_CODE of 00H:

MOV . AX,4CO0H
INT 21H

Apart from being the approved termination method, Terminate Process with Return Code

is easier to use with .EXE programs than any other termination method because all other

methods require that the CS register point to the start of the PSP when the program termi—

, nates. This restriction causes problems for .EXE programs because they have code seg—

‘ ‘ ments with segment addresses different from that of the PSP.

The only problem with Terminate Process with Return Code is that it is not available under

MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible

,- ,i , with early MS-DOS versions. However, Figure 4-5 shows how a program can use the

E E approved termination method when available but still remain pre—2.0 compatible. See The
= l Warm Boot/Terminate Vector below.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING

TERM_VECTOR~ DD ?

ENTRY_PROC PROC FAR

;save pointer to termination vector in PSP
: l

l l MOV WORD PTR CS:TERM.__VECTOR+0,0000h ;save offset of Warm Boot vector
l E

it
Figure 4—3. Terminatingproperly under any MS—DOS version. (more)

l
i

l
l

l

i
lll
x4

l
ll

E . l
. ‘ E MOV WORD PTR CS:TERM_VECTOR+2,DS ;save segment address of PSPI .

i

. 1 . _

1 E 2 . 116 TheMS—DOSEncyclopedm HUAWEI EX. 1010 - 128/1582
{till it ;.

   



L 

Article 4: Structure of an Application Program 

;***** Place main task here ***** 

;determine which MS-DOS version is active, take jump if 2.0 or later 

MOV 
INT 
OR 
JNZ 

AH, 30h 
21h 
AL,AL 
TEruL0200 

;terminate under pre-2.0 MS-DOS 

;load Get MS-DOS Version Number function code 
;call MS-DOS to get version number 
;see if pre-2.0 MS-DOS 
;jump if 2.0 or later 

JMP CS:TERM_.VECTOR ;jump to Warm Boot vector in PSP 

;terminate under MS-DOS 2.0 or later 

TEruL0200: 
MOV AX,4C00h 

INT 21h 

ENTRY_PROC ENDP 

TEXT END.S 

END ENTRY_PROC 

Figure 4-3. Continued. 

The Terminate Program interrupt 

;load MS-DOS termination function code 
;and return code 
;call MS-DOS to terminate 

;define entry point 

Before MS-DOS version 2.0, terminating with an approved method meant executing 
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was 
replaced as the approved termination method for two primary reasons: First, it did not 
provide a means whereby programs could return a termination code; second, CS had 
to point to the PSP before the INT 20H instruction was executed. 

The restriction placed on the value of CS at termination did not pose a problem for .COM 
programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro
gram, on the other hand, executes with CS pointing to various code segments of the pro
gram, and the value of CS cannot be changed arbitrarily when the program is ready to 
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro
gram interrupt from directly within their own code segments. Instead, they usually use 
the termination method discussed next. 

The Warm Boot/Terminate vector 

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE 
program can use to terminate: Offset OOH within the PSP contains an INT 20H instruction 
to which the program can jump in order to terminate. MS-DOS adopted this technique to 
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was 
referred to as the Warm Boot vector because the CP/M operating system was always 
reloaded from disk (rebooted) whenever a program terminated. 

Section IL- Programming in the MS-DOS Environment 117 

HUAWEI EX. 1010 - 129/1582

Article 4: Structure of an Application Program 

;***** Place main task here *****

;determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH,30h ;load Get MS-DOS Version Number function code

INT 21h ;call MS—DOS to get version number
OR AL,AL :see if pre—2.0 MS-DOS
JNZ TERM_0200 ;jump if 2.0 or later

;terminate under pre-2.0 MS-DOS

JMP CS:TERM_VECTOR :jump to Warm Boot vector in PSP

;terminate under MS—DOS 2.0 or later

TERM.0200: . .
MOV AX,4C00h ;load MS—DOS termination function code

;and return code
INT 21h :call MS-DOS to terminate

ENTRY_PROC ENDP

TEXT ENDS

END ENTRY_PROC ;define entry point

Figure 4—3. Continued.

The Terminate Program interrupt

Before MS-DOS version 2.0, terminating with an approved method meant executing

an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was

replaced as the approved termination method for two primary reasons: First, it did not

provide a means whereby programs could return a termination code; second, CS had

to point to the PSP before the INT 20H instruction was executed.

The restriction placed on the value of CS at termination did not pose a problem for .COM

programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro-

gram, on the other hand, executes with CS pointing to various code segments of the pro—

gram, and the value of CS cannot be changed arbitrarily when the program is ready to

terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro—

gram interrupt from directly within their own code segments. Instead, they usually use
the termination method discussed next.

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE

program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction

to which the program can jump in order to terminate. MS—DOS adopted this technique to

support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was

referred to as the Warm Boot vector because the CP/M operating system was always

reloaded from disk (rebooted) whenever a program terminated.

Section [1: Programming in the MS—DOS Environment 1 17

HUAWEI EX. 1010 - 129/1582

.________——--IIIIlIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'

 



Part B: programming for MS-DOS 

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location 
terminates a program in the same manner as an INT 20H included directly within the pro
gram, but with one important difference: By jumping to PSP:OOOOH, the program sets the 
CS register to point to the beginning of the PSP, thereby satisfying the only restriction 
imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func
tion 4CH gave an example of how a .EXE program can terminate via PSP:OOOOH. The ex
ample first asks MS-DOS for its version number and then terminates via PSP:OOOOH only 
under versions of MS-DOS earlier than 2.0. Programs can also use PSP:OOOOH under 
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is 
preferred under the later MS-DOS versions. 

The RET instruction 

The other popular method used by CP/M programs to terminate involved simply execut
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot 
vector onto the stack before giving the program control. MS-DOS provides this support 
only for .COM-style programs; it does not push a termination address onto the stack 
before giving .EXE programs control. 

The programmer who wants to use the RET instruction to return to MS-DOS can use the 
variation of the Figure 4-3 listing shown in Figure 4-4. 

TEXT SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

ENTRY_FROC PROC FAR ;make proc FAR so RET will be FAR 

;Push pointer to termination vector in PSP 
PUSH DS ;push PSP's segment address 
XOR AX,AX ;ax = 0 = offset of Warm Boot vector in PSP 
PUSH AX ;push Warm Boot vector offset 

;***** Place main task here ***** 

;Determine which MS-DOS version is active, take jump if 2.0 or later 

MOV 

INT 

OR 

JNZ 

AH,30h 
21h 

AL,AL 

TEruL0200 

;load Get MS-DOS Version Number function code 

;call MS-DOS to get version number 
;see if pre-2.0 MS-DOS 

;jump if 2.0 or later 

;Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR) 

RET ;pop PSP:OOH into CS:IP to terminate 

Figure 4-4. Using RET to return control to MS-DOS. 

118 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 130/1582

Part :3: Programming for MS-DOS 

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location

terminates a program in the same manner as an INT 20H included directly within the pro—

gram, but with one important difference: By jumping to PSP:OOOOH, the program sets the

CS register to point to the beginning of the PSP, thereby satisfying the only restriction

imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func-

tion 4CH gave an example of how a .EXE program can terminate via PSP:0000H. The ex-

ample first asks MS—DOS for its version number and then terminates via PSP:OOOOH only

under versions of MS-DOS earlier than 2.0. Programs can also use PSP:OOOOH under

MS—DOS versions 2.0 and later; the example uses Function 4CH simply because it is

preferred under the later MS-DOS versions.

The RET instruction

The other popular method used by CP/M programs to terminate involved simply execut-

ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot

vector onto the stack before giving the program control. MS-DOS provides this support
only for .COM-style programs; it does not push a termination address onto the stack

before giving .EXE programs control.

The programmer who wants to use the RET instruction to return to MS-DOS can use the
variation of the Figure 4-5 listing shown in Figure 4-4.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING

ENTRY_PROC PROC FAR ;make proc FAR so RET will be FAR_

 
;Push pointer to termination vector in PSP

 
 PUSH DS ;push PSP’s segment address
1‘ XOR AX,AX ;ax = 0 = offset of Warm Boot vector in PSP

In PUSH AX ;push Warm Boot vector offset

;$**** Place main task here *****

;Determine which MS—DOS version is active, take jump if 2.0 or later

',i MOV AH,30h ;load Get MS—DOS Version Number function code
:1} INT 21h ;call MS—DOS to get version number

' l OR AL,AL ;see if pre—2.0 MS—DOS
5 JNZ . TERM_0200 ;jump if 2.0 or later

;Terminate under pre—2.0 MS—DOS (this is a FAR proc, so RET will be FAR)
RET ‘ ;pop PSP:OOH into CS:IP to terminate

Figure 4—44 Using RETto return control to MS—DOS. (more) 
HUAWEI EX. 1010 - 130/1582

 
l

l
3‘ 1 18 The MS—DOS Encyclopedial
l

l



l 

Article 4: Structure of an Application Program 

;Terminate under MS-DOS 2.0 or later 
TERM-.0200: 

MOV AX,4C00h 

INT 21h 

ENTRY_PROC ENDP 

·TEXT ENDS 

END ENTRY_PROC 

Figure 4-4. Continued. 

The Terminate Process function 

;AH = MS-DOS Terminate Process with Return Code 
;function code, AL =return code of OOH 
;call MS-DOS to terminate 

;declare the program's entry point 

The final method for terminating a .EXE program is Interrupt 21H Function OOH (Termi
nate Process). This method maintains the same restriction as all other older termination 
methods: CS must point to the PSP. Because of this restriction, .EXE programs typically 
avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs 
executing under versions of MS-DOS earlier than 2.0. 

Terminating and staying resident 

A .EXE program can use any of several additional termination methods to return con-
trol to MS-DOS but still remain resident within memory to service a special event. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Terminate-and
Stay-Resident Utilities. 

Structure of the .EXE files 

So far we've examined how the .EXE program looks in memory, how MS-DOS gives the 
program control of the computer, and how the program should return control to MS-DOS. 
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it 
into memory. Figure 4-5 shows the general structure of a .EXE file. 

The file header 

Unlike .COM program files, .EXE program files contain information that permits the 
.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces
sors. The linker places all this extra information in a header at the start of the .EXE file. 
Although the .EXE file structure could easily accommodate a header as small as 32 bytes, 
the linker never creates a header smaller than 512 bytes. (This minimum header size corre
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains 
the following information, which MS-DOS reads into a temporary work area in memory 
for use while loading the .EXE program: 

00-0JH (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to 
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes 
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH 5AH 

Section II: Programming in the MS-DOS Environment 119 

HUAWEI EX. 1010 - 131/1582

Article 4: Structure of an Application Program“WM

;Terminate under MS—DOS 2.0 or later
TERM_.0200:

MOV AX,4C00h ;AH = MS-DOS Terminate Process with Return Code
;function code, AL = return code of 00H

INT 21h ;call MS—DOS to terminate

ENTRY_PROC ENDP

'TEXT ENDS

END ENTRY._PROC ;declare the program’s entry point

Figure 4-4. Continued.

The Terminate Process function

The final method for terminating a .EXE program is Interrupt 21H Function 00H (Termi-
nate Process). This method maintains the same restriction as all other older termination

methods: CS must point to the PSP. Because of this restriction, .EXE programs typically

avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs

executing under versions of MS-DOS earlier than 2.0.

Terminating and staying resident

A .EXE program can use any of several additional termination methods to return con-

trol to MS—DOS but still remain resident within memory to service a special event. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Terminate—and—

Stay-Resident Utilities. . \

Structure of the .EXE files

So far we’ve examined how the .EXE program looks in memory, how MS—DOS gives the

program control of the computer, and how the program should return control to MS—DOS.

Next we’ll investigate what the program looks like as a disk file, before MS—DOS loads it

into memory. Figure 4-5 shows the general structure of a .EXE file.

The file header

Unlike .COM program files, .EXE program files contain information that permits the

.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces—

sors. The linker places all this extra information in a header at the start of the .EXE file.

Although the .EXE file structure could easily accommodate a header as small as 32 bytes,

the linker never creates a header smaller than 512 bytes. (This minimum header size corre—

sponds to the standard record size preferred by MS—DOS.) The .EXE file header contains

the following information, which MS-DOS reads into a temporary work area in memory

for use while loading the .EXE program:

 
00—01H (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to

determine whether a file contains a .COM or a .EXE program. Instead, MS—DOS recognizes

the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section II: Programming in the MS—DOS Environment 1 19

HUAWEI EX. 1010 - 131/1582

 
 



Part B: Programming for MS-DOS 

xOH x!H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

UseReloc 

Thl Ofs at ISH 

(offset is from 

start of file) 

Use Header 

Paras at 08H 

(load module 1Jo- ~-----.,--------_:===============-----1 
always starts on A 

_Program image _ 
paragraph boundary) - - - - .i. - - - - - - - - A - - - - -

(load .odule) Use Last Pa e Size at 02H Final 512-byte page as 
Endoffile IJo-

1 

'-----

Figure 4-5. Structure of a .EXEfi/e. 

indicated by File Pages at 04H 
~ 

(ASCII characters M and Z). If either or both of the signature bytes contain other values, 
MS-DOS assumes the file contains a .COM program, regardless of the extension. The 
reverse is not necessarily true- that is, MS-DOS does not accept the file as a .EXE pro
gram simply because the file begins with a .EXE signature. The file must also pass several 
other tests. 

\ 

02-03H (Last Page Size) The word at this location indicates the actual number of bytes 
in the final 512-byte page of the file. This word combines with the following word to deter-
mine the actual size of the file. \ 

04-05H (File Pages) This word contains a count of the total number of 512-byte pages 
required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H; 
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last 
Page Size, 02-03H) is used to determine the number of valid bytes inthe final512-byte 
page. Thus, if the file contains 1024 bytes, the Last Page Size word contains OOOOH because 
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page 
Size word contains OOOlH because the final page contains only a single valid byte (the 
1025th byte).· 

06-07H (Relocation Items) This word gives the number of entries that exist in the reloca
tion pointer table. See Relocation Pointer Table below. 

120 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 132/1582

  

 
  
 

 

      
Part B: Programming for MS-DOS 

x0H le x2H x3H x4H XSH x6H x7H x8H x9H XAH XBH XCH xDH XEH XFH

Signature I . tPage Siz File Pages Reloc Items Header Paras MINALLOC MAXALLOC PreReloc SS
4131-1 5AH 10 byt hi byt o byt hi byt o byt hi byt lo byt hi byt lo byt hi byt lo byt hi byt o byt hi byt

Initial SP Neg Chksum Initial IP Pre Reloc CS Reloc Tbl Ofs Overlay Num
ofs lo ofs hi lo byt hi byt ofs lo ofs hi seg 10 seg hi lo byt hi byt 10 by“ i byt

   

  
    

 
 

0m)

  
 

 

le D
 

 
  

Use Reloc

’I‘bl Ofs at 18H Seg Relocation Ptr #1 Seg Relocation Pl: #2 Seg Relocation Ptr #3 Seg Relocation Ptr #4
(a, >
start of file)

Use Reloc

‘

ofs lo ofs hi seg 10 seg hi ofs 10 -fs hi seg 10 seg hi ofs 10 fs hi seg 10 seg hi ofs lo ufs hi seg 10 seg hi at 06HUse Header
Paras at 08H

(load module y
always starts on

Program image
paragraph boundary) """ I ______ Z """" (106d module) Use Last Pa - e Size at 02H ' _

V Final 512 byte page asd m

E" ° ‘3 >, indicated by trivia Pages at04H

Figure 4-5. Structure ofa ,EXEfile.

(ASCII characters M and Z). If either or both of the signature bytes contain other values,

MS—DOS assumes the file contains a .COM program, regardless of the extension. The

reverse is not necessarily true — that is, MS—DOS does not accept the file as a .EXE pro-

gram simply because the file begins with a .EXE signature. The file must also pass several

other tests. \

02—03H (Last Page Size) The word at this location indicates the actual number of bytes

in the final 512-byte page of the file. This word combines with the following word to deter-
mine the actual size of the file.

04—05H (File Pages) This word contains a count of the total number of 512-byte pages

required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H;

if the file contains 1025 bytes, this word contains the value OOOSH. The previous word (Last

Page Size, 02-05H) is used to determine the number of valid bytes in'the final 512-byte

page. Thus, if the file contains 1024 bytes, the Last Page Size word contains OOOOH because

no bytes overflow into a final partly used page; if the file contains1025 bytes, the Last Page
Size word contains 00011-1 because the final page contains only a single valid byte (the ,
1025th byte): L

06—0 7H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table. See Relocation Pointer Table below. '

120 ' TheMS—DOS Encyclopedia
HUAWEI EX. 1010 - 132/1582



I 
l 

Article 4: Structure of an Application Program 

08-09H (Header Paragraphs) This word gives the size of the .EXE file header in 16-byte 
paragraphs. It indicates the offset ofthe program's compiled/assembled and linked image 
(the load module) within the .EXE file. Subtracting this word from the two file-size words 
starting at 02H and 04H reveals the size of the program's image. The header always spans 
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte 
header and a 513-byte program image, then the file's total size is 1025 bytes. As discussed 
before, the Last Page Size word (02-03H) will contain 0001H and the File Pages word 
(04-05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs 
word (08-09H) will contain 32 (0020H). (That is, 32 paragraphs times 16 bytes per para
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total 
file size, the size of the program's image can.be determined-in this case, 513 bytes. 

OA -OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs 
the program requires to begin execution in addition to the memory required to hold 
the program's image. MINALLOC normally represents the total size of any uninitialized 
data and/ or stack segments linked at the end of the program. LINK excludes the 
space reserved by these fields from the end of the .EXE file to avoid wasting disk space. 
If not enough memory remains to satisfy MINALLOC when loading the program, MS
DOS returns an error to the process trying to load the program. If the process is 
COM~AND.COM, COMMAND. COM then displays a Program too big to fit in memory 
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE 
File Header below. 

OC -ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs 
the program would like allocated to it before it begins execution. MAXALLOC indicates 
additional memory desired beyond that required to hold the program's image. MS-DOS 
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para
graphs are not available, the program receives the largest memory block available- at 
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field 
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained 
heap, for example. 

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets 
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory 
it has available to the program. To make the program compatible with multitasking super
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum 
number of extra paragraphs the program desires. The EXEMOD utility can also be used 
to alter this field. 

Note: If both MINALLOC and MAXALLOC have been set to OOOOH, MS-DOS loads the 
program as high in memory as possible. LINK sets these fields to OOOOH if the /HIGH 
switch was used; the EXEMOD utility can also be used to modify these fields. 

OE-OFH (Initial SS Value) This word contains the paragraph address of the stack segment 
relative to the start of the load module. At load time, MS-DOS relocates this value by adding 
the program's start segment address to it, and the resulting value is placed in the SS regis
ter before giving the program control. (The start segment corresponds to the first segment 
boundary in memory following the PSP.) 

Section II- Programming in the MS-DOS Environment 121 

HUAWEI EX. 1010 - 133/1582

Article 4: Structure of an Application Program 

08—09H (HeaderParagraphs) This word gives the size of the .EXE file header in 16—byte

paragraphs. It indicates the offset of the program’s compiled/assembled and linked image

(the load module) within the .EXE file. Subtracting this word from the two file-size words

starting at 02H and 04H reveals the size of the program’s image. The header always spans

an even multiple of16-byte paragraphs. For example, if the file consists of a 512—byte

header and a 513—byte program image, then the file’s total size is 1025 bytes. As discussed

before, the Last Page Size word (OZ—03H) will contain 0001H and the File Pages word

(04—05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs

word (08—O9H) will contain 32 (0020H). (That is, 32 paragraphs times 16 bytes per para—

graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025—byte total

file size, the size of the program’s image can.be determined— in this case, 515 bytes.

0A —OBH (MINALLOC) This word indicates the minimum number of 16—byte paragraphs

the program requires to begin execution in addition to the memory required to hold

the program’s image. MINALLOC normally represents the total size of any uninitialized

data and/or stack segments linked at the end of the program. LINK excludes the

space reserved by these fields from the end of the .EXE file to avoid wasting disk space.

If not enough memory remains to satisfy MINALLOC when loading the program, MS—

DOS returns an error to the process trying to load the program. If the process is

COMMANDCOM, COMMANDCOM then displays a Program too big tofit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE
File Header below.

OC—ODH (MAXALLOC) This word indicates the maximum number of 16—byte paragraphs

the program would like allocated to it before it begins execution. MAXALLOC indicates

additional memory desired beyond that required to hold the program’s image. MS—DOS

uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para—

graphs are not available, the program receives the largest memory block available —— at

least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field

to request that MS-DOS allocate space for use as a print buffer or as a program—maintained

heap, for example.

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets

MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory

it has available to the program. To make the program compatible with multitasking super—

visor programs, the programmer should use /CPARMAXALLOC to set the true maximum

number of extra paragraphs the program desires. The EXEMOD utility can also be used
to alter this field.

Note: If both MINALLOC and MAXALLOC have been set to 0000H, MS-DOS loads the

program as high in memory as possible. LINK sets these fields to OOOOH if the /HIGH

switch was used; the EXEMOD utility can also be used to modify these fields.

 
OE—OFH (Initial 53 Value) This word contains the paragraph address of the stack segment

relative to the start of the load module. At load time, MS-DOS relocates this value by adding

the program’s start segment address to it, and the resulting value is placed in the SS regis—

ter before giving the program control. (The start segment corresponds to the first segment

boundary in memory following the PSP.)

Section 11,- Programming in the MS—DOS Environment 121

HUAWEI EX. 1010 - 133/1582 



Part B: Programming for MS-DOS 

122 

10-llH (Initial SP Value) This word contains the absolute value that MS-DOS loads 
into the SP register before giving the program control. Because MS-DOS always loads pro
grams starting on a segment address boundary, and because the linker knows the size of 
the stack segment, the linker is able to determine the correct SP offset at link time; there
fore, MS-DOS does not need to adjust this value at load time. The EXEMOD utility can be 
used to alter this field. 

12-13H (Complemented Checksum) This word contains the one's complement of the 
summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this 
word when they load a .EXE program; however, future versions might not. When LINK 
generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE 
header) by treating the entire file as a long sequence of 16-bit words. During this addition, 
LINK gives the Complemented Checksum word (12-13H) a temporary value ofOOOOH. If 
the file consists of an odd number of bytes, then the final byte is treated as a word with a 
high byte of OOH. Once LINK has totaled all words in the .EXE file, it performs a one's 
complement operation on the total and records the answer in the .EXE file header at 
offsets 12-13H. The validity of a .EXE file can then be s:hecked by performing the same 
word-totaling process as LINK performed. The total should be FFFFH, because the total 
will include LINK's calculated complemented checksum, which is designed to give the file 
the FFFFH total. 

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This 
is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic
titious file contained the bytes 8CH C8H 8EH D8H BAH lOH B4H, then the file's total 
would be calculated using C88CH + D88EH +lOBAR+ OOB4H = 1B288H. (Overflow past 16 
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then 
the B288H total would have been FFFFH instead. 

14-15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into 
the IP register in order to transfer control to the program. Because MS-DOS always loads 
programs starting on a segment address boundary, the linker can calculate the correct IP 
offset from the initial CS register value at link time; therefore, MS-DOS does not need 
to adjust this value at load time. 

16-17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to 
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro
gram control. MS-DOS adjusts this value in the same manner as the initial SS value before 
loading it into the CS register. 

18-19H (Relocation Table Offset) This word gives the offset from the start of the file to 
the relocation pointer table. This word must be used to locate the relocation pointer table, 
because variable-length information pertaining to program overlays can occur before the 
table, thus causing the position of the table to vary. 

1A -JBH (Overlay Number) This word is normally set to OOOOH, indicating that the .EXE 
file consists of the resident, or primary, part of the program. This number changes only in 
files containing programs that use overlays, which are sections of a program that remain 

The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 134/1582

Part B: Programming for MS—DOS 

10—11H (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control. Because MS—DOS always loads pro-

grams starting on a segment address boundary, and because the linker knows the size of

the stack segment, the linker is able to determine the correct SP offset at link time; there-

fore, MS—DOS does not need to adiust this value at load time; The EXEMOD utility can be

used to alter this field. ' ' g

  
12—J3H (Complemented Checksum) This word contains the one’s complement of the

summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this

word when they load a .EXE program; however, future versions might not. When LINK

generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE

header) by treating the entire file as a long sequence of 16-bit words. During this addition,

LINK gives the Complemented Checksum word (12—13H) a temporary value of OOOOH. If

the file consists of an odd number of bytes, then the final byte is treated as a word with a

high byte of OOH. Once LINK has totaled all words in the .EXE file, it performs a one’s

complement operation on the total and records the answer in the .EXE file header at

offsets 12—13H. The validity of a .EXE file can then be checked by performing the same

word-totaling process as LINK performed. The total should be FFFFH, because the total

will include LINK’s calculated complemented Checksum, which is designed to give the file
the FFFFH total.

 
 

Z An example 7—byte .EXE file illustrates how .EXE file checksums are calculated. (This

‘ 2 l is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic—
titious file contained the bytes 8CH C8H 8EH DSH BAH 10H B4H, then the file’s total

would be calculated using C88CH+ D88EH + 10BAH + 00B4H= 18288H. (Overflow past 16

bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then
the B288H total would have been FFFFH instead.

‘ ‘ 14—15H (Initial [P Value) This word contains the absolute value that MS—DOS loads into

the IP register in order to transfer control to the program. Because MS—DOS always loads

programs starting on a segment address boundary, the linker can calculate the correct 1P

offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this value at load time.

 
16—1 7H (Pre—RelocatedInitial CS Value) This word contains the initial value, relative to

the start of the load module, that MS-DOS places in the CS register to give the .EXE pro-

gram control. MS-DOS adjusts this value in the same manner as the initial SS value before

loading it into the CS register.

l

E
l
l
l

l

l

I8—19H (Relocation Table Ofi’set) This word gives the offset from the start of the file to

, i the relocation pointer table. This word must be used to locate the relocation pointer table,
. i; l 3 because variable-length information pertaining to program overlays can occur before the

l table, thus causing the position of the table to vary.

'IA—IBH (Overlay Number) This word is normally set to OOOOH, indicating that the .EXE

file consists of the resident, or primary, part of the program. This number changes only in

files containing programs that use overlays, which are sections of a program that remain

 
122 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 134/1582

   



Article 4: Structure of an Application Program 

on disk until the program actually requires them. These program sections are loaded into 
memory by special overlay managing routines included in the run-time libraries supplied 
with some Microsoft high-level-language compilers. 

The preceding section of the header (00-lBH) is known as the formatted area. Optional 
information used by high-level-language overlay managers can follow this formatted area. 
Unless the program in the .EXE file incorporates such information, the relocation pointer 
table immediately follows the formatted header area. 

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words 
within the .EXE program image that Ms-DOS must adjust before giving the program con
trol. These words consist of references made by the program to the segments that make up 
the program. MS-DOS must adjust these segment address references when it loads the pro
gram, because it can load the program into memory starting at any segment address 
boundary. 

Each pointer in the table consists of a doubleword. The first word contains an offset from 
the segment address given in the second word, which in turn indicates a segment address 
relative to the start of the load module. Together, these two words point to a third word 
within the load module that must have the start segment address added to it. (The start seg
ment corresponds to the segment address at which MS-DOS started loading the program's 

.EXEFile 

r----------. End of file 

Rel Seg Ref=003CH 
Abs Seg Ref=25D1H 

Load module 

Relocation pointer 
0002H:OOOSH -

Relocation pointer table ~ 0002H:OOOSH 
+ 2595H 

Memory 

003C~~ 
_. +2595H Rel Seg Ref=003CH 

2SD1H--J Abs Seg Ref=25D1H 

"Start Seg" 
Load module 

Fonnatted header area 
2597H:OOOSH- 2595H ... 

Program segment prefix 

St art offile 

Figure 4-6. The .EXEfile relocation procedure. 

Section II: Programming in the MS-DOS Environment 123 

HUAWEI EX. 1010 - 135/1582

Article 4: Structure of an Application Program 

on disk until the program actually requires them. These program sections are loaded into

memory by special overlay managing routines included in the run-time libraries supplied
with some Microsoft high-level—language compilers.

The preceding section of the header (OO—lBH) is known as the formatted area. Optional

information used by high-level—language overlay managers can follow this formatted area.

Unless the program in the .EXE file incorporates such information, the relocation pointer

table immediately follows the formatted header area.

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words

within the .EXE program image that MS—DOS must adjust before giving the program con-

trol. These words consist of references made by the program to the segments that make up

the program. MS—DOS must adjust these segment address references when it loads the pro—

gram, because it can load the program into memory starting at any segment address

boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from

the segment address given in the second word, which in turn indicates a segment address

relative to the start of the load module. Together, these two words point to a third word

within the load module that must have the start segment address added to it. (The start seg-

ment corresponds to the segment address at which MS—DOS started loading the program’s

.EXE File

End of file

 
  Rel Seg Ref=003CH

Abs Seg Ref=25D1H
 

 
 

Load module

Memory

 
 

 
 
 

003CH
+ 2595H

25D1H  
  

Relocation pointer
0002H:0005H  Rel Seg Ref=003CH

Abs Seg Ref=25D1H

 

 
 
 
  

    
Relocation pointer table OOOZHIOOOSH Load module

_ +2595H
: 5

Formatted header area 259711 000 H Program segment prefix
Start of file

Figure 4-6. The .EXEfile relocationprocedure.

Section 1!: Programming in the MS—DOS Environment 1 25

HUAWEI EX. 1010 - 135/1582 
N



I 

Part B: Programming for MS-DOS 

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS 
performs for each relocation table entry. 

The load module 

The load module starts where the .EXE header ends and consists of the fully linked image 
of the program. The load module appears within the .EXE file exactly as it would appear in 
memory if MS-DOS were to load it at segment address OOOOH. The only changes MS-DOS 
makes to the load module involve relocating any direct segment references. 

Although the .EXE file contains distinct segment images within the load module, it pro
vides no information for separating those individual segments from one another. Existing 
versions of MS-DOS ignore how the program is segmented; they simply copy the load 
module into memory, relocate any direct segment references, and give the program 
control. 

Loading the .EXE program 

So far we've covered all the characteristiCs of the .EXE program as it resides in memory 
and on disk. We've also touched on all the steps MS-DOS performs while loading the .EXE 
program from disk and executing it. The following list recaps the .EXE program loading 
process in the order in which MS-DOS performs it: 

1. MS-DOS reads the formatted area of the header (the first 1BH bytes) from the .EXE 
file into a work area. 

2. MS-DOS determines the size of the largest available block of memory. 
3. MS-DOS determines the size of the load module using the Last Page Size (offset 

02H), File Pages (offset 04H), and Header Paragraphs (offset OBH) fields from the 
header. An example of this process is in the discussion of the Header Paragraphs 
field. 

4. MS-DOS adds the MINALLOC field (offset OAH) in the header to the calculated load
module size and the size of the PSP (lOOH bytes). If this total exceeds the size of the 
largest available block, MS-DOS terminates the load process and returns an error to 
the calling process. If the calling process was COMMAND. COM, COMMAND. COM 
then displays a Program too big to fit in memory error message. 

5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated 
load-module size and the size of the PSP. If the memory block found earlier exceeds 
this calculated total, MS-DOS allocates the calculated memory size to the program 
from the memory block; if the calculated total exceeds the block's size, MS-DOS 
allocates the entire block. 

6. If the MINALLOC and MAXALLOC fields both contain OOOOH, MS-DOS uses the 
calculated load-module size to determine a start segment. MS-DOS calculates the 
start segment so that the load module will load into the high end of the allocated 
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal 
case), MS-DOS establishes the start segment as the segment following the PSP. 

7. MS-DOS loads the load module into memory starting at the start segment. 

124 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 136/1582

Part B.- Programming for MS—DOS 

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS
performs for each relocation table entry.

The load module

The load module starts where the .EXE header ends and consists of the fully linked image

of the program. The load module appears within the .EXE file exactly as it would appear in

memory if MS-DOS were to load it at segment address OOOOH. The only changes MS-DOS

makes to the load module involve relocating any direct segment references.

 
Although the .EXE file contains distinct segment images within the load module, it pro—

vides no information for separating those individual segments from One another. Existing

versions of MS-DOS ignore how the program is segmented; they simply copy the load

module into memory, relocate any direct segment references, and give the program
control.

Loading the .EXE program

So far we’ve covered all the characteristics of the .EXE program as it resides in memory

and on disk. We’ve also touched on all the steps MS—DOS performs while loading the .EXE

program from disk and executing it. The following list recaps the .EXE program loading

process in the order in which MS-DOS performs it:

1. MS—DOS reads the formatted area of the header (the first lBH bytes) from the .EXE
file into a work area.

2. MS—DOS determines the size of the largest available block of memory.

1. i W 3. MS-DOS determines the size of the load module using the Last Page Size (offset

‘ l l ‘ 02H), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
l f3 I header. An example of this process is in the discussion of the Header Paragraphs
1% ‘ l field.

I l 1 4. MS—DOS adds the MINALLOC field (offset OAH) in the header to the calculated load—

” 1 “ module size and the size of the PSP (100H bytes). If this total exceeds the size of the

. g '1 largest available block, MS—DOS terminates the load process and returns an error to
‘l I the calling process. If the calling process was COMMANDCOM, COMMANDCOM

l . a then displays a Program too big tofi't in memory error message.
l ; 3 5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated1

l

         
 

. 1 load-module size and the size of the PSP. If the memory block found earlier exceeds

l . l ‘ this calculatedtotal, MS—DOS allocates the calculated memory size to the program
‘ 1 ‘ from the memory block; if the calculated total exceeds the block’s size, MS-DOS

l ‘ allocates the entire block. .

6. If the MINALLOC and MAXALLOC fields both contain OOOOH, MS-DOS uses the

calculated load-module size to determine a start segment. MS-DOS calculates the

start segment so that the load module will load into the high end of the allocated
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal

case), MS—DOS establishes the start segment as the segment following the PSP.

l . 7. MS-DOS loads the load module into memory starting at the start segment.

124 The MS—DOS Encyclopedia

1 HUAWEI EX. 1010 - 136/1582
l .

  



L, 

Article 4: Structure of an Application Program 

8. MS-DOS reads the relocation pointers into a Work area and relocates the load mod
ule's direct segment references, as shown in Figure 4-6. 

9. MS-DOS builds a PSP in the first 1 OOH bytes of the allocated memory block. While 
building the two FCBs within the PSP, MS-DOS determines the initial values for the 
AL and AH registers. 

10. MS-DOS sets the SS and SP registers to the values in the header after the start seg
ment is added to the SS value. 

11. MS-DOS sets the DS andES registers to point to the beginning of the PSP. 
12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in 

the header after adding the start segment to the CS value. 

Controlling the .EXE program's structure 

We've now covered almost every aspect of a completed .EXE program. Next, we'll discuss 
how to control the structure of the final .EXE program from the source level. We'll start by 
covering the statements provided by MASM that permit the programmer to define the 
structure of the program when programming in assembly language. Then we'll cover the 
five standard memory models provided by Microsoft's C and FORTRAN compilers (both 
version 4.0), which provide predefined structuring over which the programmer has 
limited control. 

The MASM SEGMENT directive 

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and 
end of a program segment. Program segments contain collections of code or data that have 
offset addresses relative to the same common segment address. 

In addition to the required segment name, the SEGMENT directive has three optional 
parameters: 

segname SEGMENT [align] [combine] ['class'] 

With MASM, the contents of a segment can be defined at one point in the source file and 
the definition can be resumed as many times as necessary throughout the remainder of 
the file. When MASM encounters a SEGMENT directive with a segname it has previously 
encountered, it simply resumes the segment definition where it left off. This occurs regard
less of the combine type specified in the SEGMENT directive- the combine type influ
ences only the actions of the linker. See The combine Type Parameter below. 

The align type parameter 
The optional align parameter lets the programmer send the linker an instruction on how 
to align a segment within memory. In reality, the linker can align the segment only in rela
tion to the start of the program's load module, but the result remains the same because 
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE 
align type creates a special exception, as discussed below.) 

The following alignment types are permitted: 

BYTE This align type instructs the linker to start the segment on the byte immediately 
following the previous segment. BYTE alignment prevents any wasted memory between 
the previous segment and the BYTE-aligned segment. 

Section Jlo Programming in the MS-DOS Environment 125 

HUAWEI EX. 1010 - 137/1582

Article 4: Structure of an Application Program 

8. MS—DOS reads the relocation pointers into a Work area and relocates the load mod-

ule’s direct segment references, as shown in Figure 4-6.

9. MS—DOS builds a PSP in the first IOOH bytes of the allocated memory block. While

building the two FCBs within the PSP, MS-DOS determines the initial values for the

AL and AH registers.

10. MS—DOS sets the SS and SP registers to the values in the header after the start seg-
ment is added to the SS value.

11. MS—DOS sets the DS and ES registers to point to the beginning of the PSP.

12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in

the header after adding the start segment to the CS value.

Controlling the .EXE program’s structure

We’ve now covered almost every aspect of a completed .EXE program. Next, we’ll discuss
how to control the structure of the final .EXE program from the source level. We’ll start by

covering the statements provided by MASM that permit the programmer to define the

structure of the program when programming in assembly language. Then we’ll cover the

five standard memory models provided by Microsoft’s C and FORTRAN compilers (both

version 4.0), which provide predefined structuring over which the programmer has
limited control.

The MASM SEGMENT dirCCtive

MASM’s SEGMENT directive and its associated ENDS directiVe mark the beginning and

end of a program segment. Program segments contain collections of code or data that have

offset addresses relative to the same common segment address.

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT [align] [combine] ['class']

With MASM, the contents of a segment can be defined at one point in the source file and

the definition can be resumed as many times as necessary throughout the remainder of

the file. When MASM encounters a SEGMENT directive with a segname it has previously

encountered, it simply resumes the segment definition where it left off. This occurs regard-

less of the combine type specified in the SEGMENT directive—the combine type influ—

ences only the actions of the linker. See The combine Type Parameter below.

The align type parameter

The optional align parameter lets the programmer send the linker an instruction on how

to align a segment within memory. In reality, the linker can align the segment only in rela-

tion to the start of the program’s load module, but the result remains the same because

MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE

align type creates a special exception, as discussed below.)

The following alignment types are permitted:

 
l BYTE This align type instructs the linker to start the segment on the byte immediately

following the previous segment. BYTE alignment prevents any wasted memory between

the previous segment and the BYTE—aligned segment.

Section II: Programming in the MS—DOS Environment 1 25

L HUAWEI EX. 1010 - 137/1582

N



. I' 
, I , 

Part B: Programming for MS-DOS 

126 

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might 
not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many 
as 15 bytes behind the start of the segment. This means that the segment size should not 
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

Another possible concern is execution speed on true 16-bit 8086-family microprocessors. 
When using non-8088 microprocessors, a program can actually run faster if the instruc
tions and word data fields within segments are aligned on word boundaries. This permits 
the 16-bit processors to fetch full words in a single memory read, rather than having to per
form two single-byte reads. The EVEN directive tells MASM to align instructions and data 
fields on word boundaries; however, MASM can establish this alignment only in relation to 
the start of the segment, so the entire segment must start aligned on a word or larger 
boundary to guarantee alignment of the items within the segment. 

WORD This align type instructs the linker to start the segment on the next word bound
ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in 
which the least significant bit contains a zero). WORD alignment permits alignment of data 
fields and instructions within the segment on word boundaries, as discussed for the BYTE 
alignment type. However, the linker may have to waste 1 byte of memory between the pre
vious segment and the word-aligned segment in order to position the new segment on a 
word boundary. 

Another minor disadvantage to WORD alignment is that the 8086-family segment registers 
might not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many as 
14 bytes behind the start of the segment. This means that the segment size should not be 
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

PARA This align type instructs the linker to start the segment on the next paragraph 
boundary. The segments default to PARA if no alignment type is specified. Paragraph 
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end
ing in zero (OOOOH, OOlOH, 0020H, and so forth). Paragraph alignment ensures that the 
segment begins on a segment register addressing boundary, thus making it possible to ad
dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA 
alignment has the same advantages as WORD alignment. The only real disadvantage to 
PARA alignment is that the linker may have to waste as many as 15 bytes of memory 
between the previous segment and the paragraph-aligned segment. 

PAGE This align type instructs the linker to start the segment on the next page boundary. 
Page boundaries occur every 256 bytes and consist of all addresses in which the low 
address byte equals zero (OOOOH, OlOOH, 0200H, and so forth). PAGE alignment ensures 

The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 138/1582

Part B: Programming for MS—DOS 

A minor disadvantage to BYTE alignment is that the 8086—family segment registers might

not be able to directly address the start of the segment in all cases. Because they can

address only on paragraph boundaries, the segment registers may have to point as many

as 15 bytes behind the start of the segment. This means that the segment size should not

be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer-

ences to compensate for differences between the physical segment start and the paragraph

addressing boundary.

  
Another possible concern is execution speed on true 16-bit 8086-family microprocessors.

When using non-8088 microprocessors, a program can actually run faster if the instruc—

tions and word data fields within segments are aligned on word boundaries. This permits

the 16-bit processors to fetch full words in a single memory read, rather than having to per-

form two single-byte reads. The EVEN directive tells MASM to align instructions and data

fields on word boundaries; however, MASM can establish this alignment only in relation to

the start of the segment, so the entire segment must start aligned on a word or larger

boundary to guarantee alignment of the items within the segment.

     
WORD This align type instructs the linker to start the segment on the next word bound-

ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in

which the least significant bit contains a zero). WORD alignment permits alignment of data

fields and instructions within the segment on word boundaries, as discussed for the BYTE

alignment type. However, the linker may have to waste 1 byte of memory between the pre-

‘ 1 i vious segment and the word—aligned segment in order to position the new segment on a
l word boundary. '

 
Another minor disadvantage to WORD alignment is that the 8086—family segment registers

might not be able to directly address the start of the segment in all cases. Because they can

address only on paragraph boundaries, the segment registers may have to point as many as

14 bytes behind the start of the segment. This means that the segment size should not be

more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-

‘ 5 ences to compensate for differences between the physical segment start and the paragraph

‘3 addressing boundary.

 
PARA This align type instructs the linker to start the segment on the next paragraph

boundary. The segments default to PARA if no alignment type is specified. Paragraph

boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end—

ing in zero (OOOOH, OOlOH, OOZOH, and so forth). Paragraph alignment ensures that the

segment begins on a segment register addressing boundary, thus making it possible to ad—

dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA

alignment has the same advantages as WORD alignment. The only real disadvantage to

PARA alignmem is that the linker may have to waste as many as 15 bytes of memory

between the previous segment and the paragraph-aligned segment.

PAGE This align type instructs the linker to start the segment on the next page boundary.

Page boundaries occur every 256 bytes and consist of all addresses in which the low

address byte equals zero (OOOOH, OlOOH, OZOOH, and so forth). PAGE alignment ensures

126 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 138/1582

   



Article 4: Structure of an Application Program 

only that the linker positions the segment on a page boundary relative to the start of the 
load module. Unfortunately, this does not also ensure alignment of the segment on an 
absolute page within memory, because MS-DOS only guarantees alignment of the entire 
load module on a paragraph boundary. 

When a programmer declares pieces of a segment with the same name in different source 
modules, the align type specified for each segment piece influences the alignment of that 
specific piece -of the segment. For example, assume the following two segment declara
tions appear in different source modules: 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '123' 

_DATA ENDS 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '456' 

_DATA ENDS 

The linker starts by aligning the first segment piece located in the first object module on a 
paragraph boundary, as requested. When the linker encounters the second segment piece 
in the second object module, it aligns that piece on the first paragraph boundary following 
the first segment piece. This results in a 13-byte gap between the first segment piece and 
the second. The segment pieces must exist in separate source modules for this to occur. If 
the segment pieces exist in the same source module, MASM assumes that the second seg
ment declaration is simply a resumption of the first and creates an object module with 
segment declarations equivalent to the following: 

_DATA SEGMENT PARA PUBLIC 'DATA' 
DB '123' 
DB '456' 

-DATA ENDS 

The combine type parameter 
The optional combine parameter allows the programmer to send directions to the linker 
on how to combine segments with the same segname occurring in different object mod
ules. If no combine type is specified, the linker treats such segments as if each had a dif
ferent segname. The combine type has no effect on the relationship of segments with 
different segnames. MASM and LINK both support the following combine types: 

PUBLIC This combine type instructs the linker to concatenate multiple segments having 
the same segname into a single contiguous segment. The linker adjusts any address refer
ences to labels within the concatenated segments to reflect the new position of those 
labels relative to the start of the combined segment. This combine type is useful for ac
cessing code or data in different source modules using a common segment register value. 

STACK This combine type operates similarly to the PUBLIC combine type, except for 
two additional effects: The STACK type tells the linker that this segment comprises part of 
the program's stack and initialization data contained within STACK segments is handled 
differently than in PUBLIC segments. Declaring segments with the STACK combine type 
permits the linker to determine the initial SS and SP register values it places in the .EXE 

Section II: Programming in theMS-DOS Environment 127 

4 

HUAWEI EX. 1010 - 139/1582

Article 4: Structure of an Application Program 

only that the linker positions the segment on a page boundary relative to the start of the

load module. Unfortunately, this does not also ensure alignment of the segment on an

absolute page within memory, because MS-DOS only guarantees alignment of the entire

load module on a paragraph boundary.

When a programmer declares pieces of a segment with the same name in different source

modules, the align type specified for each segment piece influences the alignment of that

specific piece’of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

_DATA SEGMENT PARA PUBLIC 'DATA'
DB '123'

_DATA ENDS

_DATA SEGMENT PARA PUBLIC ‘DATA'
DB '456'

_DATA ENDS

The linker starts by aligning the first segment piece located in the first object module on a

paragraph boundary, as requested. When the linker encounters the second segment piece

in the second object module, it aligns that piece on the first paragraph boundary following

the first segment piece. This results in a 13-byte gap between the first segment piece and

the second. The segment pieces must exist in separate source modules for this to occur. If

the segment pieces exist in the same source module, MASM assumes that the second seg-

ment declaration is simply a resumption of the first and creates an object module with

segment declarations equivalent to the following:

_DATA SEGMENT PARA PUBLIC 'DATA'
DB '123'
DE '456'

_DATA ENDS

Thecombine type parameter

The optional combine parameter allows the programmer to send directions to the linker

on how to combine segments with the same segname occurring in different object mod—

ules. If no combine type is specified, the linker treats such segments as if each had a dif-

ferent segname. The combine type has no effect on the relationship of segments with

different segnames. MASM and LINK both support the following combine types:

PUBLIC This combine type instructs the linker to concatenate multiple segments having

the same segname into a single contiguous segment. The linker adjusts any address refer—

ences to labels within the concatenated segments to reflect the new position of those

labels relative to the start of the combined segment. This combine type is useful for ac—

cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for

two additional effects: The STACK type tells the linker that this segment comprises part of

the program’s stack and initialization data contained within STACK segments is handled

differently than in PUBLIC segments. Declaring segments with the STACK combine type

permits the linker to determine the initial SS and SP register values it places in the .EXE

Section 1]: Programming in theMS—DOS Environment 127

HUAWEI EX. 1010 - 139/1582

 



Part B: Programming for MS-DOS 

file header. Normally, a programmer would declare only one STACK segment in one of the 
source modules. If pieces of the stack are declared in different source modules, the linker 
will concatenate them in the same fashion as PUBLIC segments. However, initialization 
data declared within any STACK segment is placed at the high end of the combined STACK 
segments on a module-by-module basis. Thus, each successive module's initialization data 
overlays the previous module's data. At least one segment must be declared with the 
STACK combine type; otherwise, the linker will issue a warning message because it can
not determine the program's initial SS and SP values. (The warning can be ignored if the 
program itself initializes SS and SP.) 

COMMON This combine type instructs the linker to overlap multiple segments having 
the same segname. The length of the resulting segment reflects the length of the longest 
segment declared. If any code or data is declared in the overlapping segments, the data 
contained in the final segments linked replaces any data in previously loaded segments. 
This combine type is useful when a data area is to be shared by code in different source 
modules. 

MEMORY Microsoft's LINK treats this combine type the same as it treats the PUBLIC 
type. MASM, however, supports the MEMORY type for compatibility with other linkers 
that use Intel's definition of a MEMORY combine type. 

AT address This combine type instructs LINK to pretend that the segment will reside at 
the absolute segment address. LINK then adjusts all address references to the segment in 
accordance with the masquerade. LINK will not create an image of the segment in the 
load module, and it will ignore any data defined within the segment. This behavior is con
sistent with the fact that MS-DOS does not support the loading of program segments into 
absolute memory segments. All programs must be able to execute from any segment ad
dress at which MS-DOS can find available memory. The SEGMENT AT address combine 
type is useful for creating templates of various areas in memory outside the program. For 
instance, SEGMENT AT OOOOH could be used to create a template of the 8086-family inter
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed 
by LINK and not by MASM (which places the data in the object module), it is possible to 
use .OBJ files generated by MASM with another linker that supports ROM or other absolute 
code generation should the programmer require this specialized capability. 

The class type parameter 
The class parameter provides the means to organize different segments into classifications. 
For instance, here are three source modules, each with its own separate code and data 
segments: 

;Module "A"' 

A-DATA SEGMENT PARA PUBLIC 'DATA' 
;Module "A" data fields 
A-DATA ENDS 
A-CODE SEGMENT PARA PUBLIC 'CODE' 
;Module "A" code 
A-CODE ENDS 

END 

128 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 140/1582

Part B: Programming for MS-DOS 

file header. Normally, a programmer would declare only one STACK segment in one of the

source modules. If pieces of the stack are declared in different source modules, the linker

will concatenate them in the same fashion as PUBLIC segments. However, initialization

data declared within any STACK segment is placed at the high end of the combined STACK

segments on a module-by—module basis. Thus, each successive module’s initialization data
overlays the previous module’s data. At least one segment must be declared with the

STACK combine type; otherwise, the linker will issue a warning message because it can—

not determine the program’s initial 88 and SP values. (The warning can be ignored if the

program itself initializes SS and SP.)

  
COMMON This combine type instructs the linker to overlap multiple segments having

the same segname. The length of the resulting segment reflects the length of the longest

segment declared. If any code or data is declared in the overlapping segments, the data

contained in the final segments linked replaces any data in previously loaded segments.

This combine type is useful when a data area is to be shared by code in different source
modules.

MEMORY Microsoft’s LINK treats this combine type the same as it treats the PUBLIC

type. MASM, however, supports the MEMORY type for compatibility with other linkers

that use Intel’s definition of a MEMORY combine type.

ATaddress This combine type instructs LINK to pretend that the segment will reside at

the absolute segment address. LINK then adjusts all address references to the segment in

accordance with the masquerade. LINK will not create an image of the segment in the

load module, and it will ignore any data defined within the segment. This behavior is con—

sistent with the fact that MS—DOS does not support the loading of program segments into

absolute memory segments. All programs must be able to execute from any segment ad-

, . . dress at which MS—DOS can find available memory. The SEGMENT AT address combine
' 'E . l 3 type is useful for creating templates of various areas in memory outside the program. For

’ “ instance, SEGMENTATOOOOH could be used to create a template of the 8086-family inter—
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed

_ E. s by LINK and not by MASM (which places the data in the object module), it is possible to

I E ‘ 3 use .OBJ files generated by MASM with another linker that supports ROM or other absolute

' E ; 1 code generation should the programmer require this specialized capability.

  
. . Theclass type parameter

E 5 E The class parameter provides the means to organize different segments into classifications.
E For instance, here are three source modules, each with its own separate code and data

segments:

;Module "A"‘
A_DATA SEGMENT PARA PUBLIC 'DATA'

. ;Module "A" data fields

! E I A_DATA ENDS ,
. i A_CODE SEGMENT PARA PUBLIC 'CODE'

1 ‘ :Module "A" code
E A_CODE ENDS

‘ ‘ END

(more)

128 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 140/1582

 
 



Article 4: Structure of an Application Program 

;Module "B" 

B_DATA SEGMENT PARA PUBLIC 'DATA' 

;Module "Bn data fields 

B_DATA ENDS 

B-CODE SEGMENT PARA PUBLIC 'CODE' 

;Module "B" code 
B_CODE ENDS 

END 

;Module "Cu 

C_DATA SEGMENT PARA PUBLIC 'DATA' 
;Module ncn data fields 
C_DATA ENDS 
C_CODE SEGMENT PARA PUBLIC 'CODE' 
;Module "C" code 
C_CODE ENDS 

END 

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown 
above, the linker organizes the segments as it encounters them. If the programmer speci
fies the modules to the linker in alphabetic order, the linker produces the following 
segment ordering: 

A_DATA 

lLCODE 
B_DATA 
B_CODE 
C_DATA 
C_CODE 

However, if the programmer specifies the class types shown in the sample source mod
ules, the linker organizes the segments by classification as follows: 

'DATA' class: 

'CODE' class: 

lLDATA 
B_DATA 
C_DATA 

lLCODE 
B_CODE 
C_CODE 

Notice that the linker still organizes the classifications in the order in which it encounters 
the segments belonging to the various classifications. To completely control the order in 
which the linker organizes the segments, the programmer must use one of three basic 
approaches. The preferred method involves using the /DOSSEG switch with the linker. 
This produces the segment ordering shown in Figure 4-1. The second method involves 
creating a special source module that contains empty SEGMENT-ENDS blocks for all the 
segments declared in the various other source modules. The programmer creates the list 
in the order the segments are to be arranged in memory and then specifies the .OBJ file for 
this module as the first file for the linker to process. This procedure establishes the order 
of all the segments before LINK begins processing the other program modules, so the 

Section II- Programming in the MS-DOS Environment 129 

HUAWEI EX. 1010 - 141/1582

 
Article 4: Structure of an Application ProgramWWW

;Module
B_DATA
;Module
B.DATA
B_CODE
;Module
B_CODE

;Module
C_DATA

iModule
C_DATA
C_CODE

;Module
C_CODE

"B"
SEGMENT PARA PUBLIC
"B" data fields
ENDS
SEGMENT PARA PUBLIC
"B" code
ENDS
END

llcll
SEGMENT PARA PUBLIC
"C" data fields
ENDS
SEGMENT PARA PUBLIC
"C" code
ENDS
END

'DATA'

'CODE'

'DATA'

'CODE‘

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown

above, the linker organizes the segments as it encounters them. If the programmer speci—

fies the modules to the linker in alphabetic order, the linker produces the following

segment ordering:
A_DATA
A#CODE
B_DATA
B_CODE
C_DATA
C_CODE

However, if the programmer specifies the class types shown in the sample source mod-

ules, the linker organizes the segments by classification as follows:

'DATA' class: A.DATA
B_DATA
C_DATA

'CODE' class: A_CODE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters

the segments belonging to the various classifications. To completely control the order in

which the linker organizes the segments, the programmer must use one of three basic

approaches The preferred method involves using the /DOSSEG switch with the linker.

This produces the segment ordering shown in Figure 4-1. The second method involves

creating a special source module that contains empty SEGMENT—ENDS blocks for all the

segments declared in the various other source modules. The programmer creates the list

in the order the segments are to be arranged in memory and then specifies the DB} file for

this module as the first file for the linker to process. This procedure establishes the order

of all the segments before LINK begins processing the other program modules, so the

Section 11: Programming in the MS-DOS Environment 129

HUAWEI EX. 1010 - 141/1582

cA———-—----l-I--I--IIIIIIII



Part B: Programming for MS-DOS 

130 

programmer can declare segments in these other modules in any convenient order. For 
instance, the following source module rearranges the result of the previous example so 
that the linker places the 'CODE' class before the 'DATA' class: 

lLCODE SEGMENT PARA PUBLIC 'CODE' 

lLCODE ENDS 
B_CODE SEGMENT PARA PUBLIC 'CODE' 
B_CODE ENDS 
C_CODE SEGMENT PARA PUBLIC 'CODE' 
C_CQDE ENDS 

lLDATA SEGMENT PARA PUBLIC 'DATA' 

lLDATA ENDS 
B_DATA SEGMENT PARA PUBLIC 'DATA' 
B__DATA ENDS 
C__DATA SEGMENT PARA PUBLIC 'DATA' 
C__DATA ENDS 

END 

Rather than creating a new module, the third method places the same segment ordering 
list shown above at the start of the first module containing actual code or data that the 
programmer will be specifying for the linker. This duplicates the approach used by 
Microsoft's newer compilers, such as C version 4.0. 

The ordering of segments within the load module has no direct effect on the linker's 
adjustment of address references to locations within the various segments. Only the 
GROUP directive and the SEGMENT directive's combine parameter affect address 
adjustments performed by the linker. See The MASM GROUP Directive below. 

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object 
file in alphabetic order regardless of their order in the source file. These older versions can 
limit efforts to control segment ordering. Upgrading to a new version of the assembler is 

·the best solution to this problem. 

Ordering segments to shrink the .EXE file 
Correct segment ordering can significantly decrease the size of a .EXE program as it 
resides on disk. This size-reduction ordering is achieved by placing all uninitialized data 
fields in their own segments and then controlling the linker's ordering of the program's 
segments so that the uninitialized data field segments all reside at the end of the program. 
When the program modules are assembled, MASM places information in the object mod
ules to tell the linker about initialized and uninitialized areas of all segments. The linker 
then uses this information to prevent the writing of uninitialized data areas that occur at 
the end of the program image as part of the resulting .EXE file. To account for the memory 
space required by these fields, the linker also sets the MINALLOC field in the .EXE file 
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC 
field to reallocate this missing space when loading the program. 

The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 142/1582

Part B: Programming for MS-DOS 

programmer can declare segments in these other modules in any convenient order. For

instance, the following source module rearranges the result of the previous example so

that the linker places the 'CODE’ class before the 'DATA' class:

A_CODE SEGMENT PARA PUBLIC 'CODE'
A_CODE ENDS
B_CODE SEGMENT PARA PUBLIC 'CODE'
B_CODE ENDS
C_CODE SEGMENT PARA PUBLIC 'CODE'
C_CODE ENDS

 
A_DATA SEGMENT PARA PUBLIC 'DATA'
A_DATA ENDS '
B_DATA SEGMENT PARA PUBLIC 'DATA'
B_DATA ENDS
C_DATA SEGMENT PARA PUBLIC 'DATA'
C_DATA ENDS

 
END

Rather than creating a new module, the third method places the same segment ordering

list shown above at the start of the first module containing actual code or data that the

programmer will be specifying for the linker. This duplicates the approach used by

Microsoft’s newer compilers, such as C version 4.0.

   
The ordering of segments within the load module has no direct effect on the linker’s

adjustment of address references to locations within the various segments. Only the
GROUP directive and the SEGMENT directive’s combine parameter affect address

adjustments performed by the linker. See The MASM GROUP Directive below.

 
Note: Certain older versions of the IBM Macro Assembler wrote segments to the object

file in alphabetic order regardless of their order in the source file. These older versions can
limit efforts to control segment ordering. Upgrading to a new version of the assembler is

"the best solution to this problem.

 
Ordering segments to shrink the .EXE file

Correct segment ordering can significantly decrease the size of a .EXE program as it

resides on disk. This size—reduction ordering is achieved by placing all uninitialized data

fields in their own segments and then controlling the linkers ordering of the program’s

segments so that the uninitialized data field segments all reside at the end of the program.

When the program modules are assembled, MASM places information in the object mod-

ules to tell the linker about initialized and uninitialized areas of all segments. The linker

then uses this information to prevent the writing of uninitialized data areas that occur at

the end of the program image as part of the resulting .EXE file. To account for the memory

space required by these fields, the linker also sets the MINALLOC field in the .EXE file

header to represent the data area not written to the file. MS-DOS then uses the MINALLOC

field to reallocate this missing space when loading the program.

130 The Ms—Dos Encyclopedia
HUAWEI EX. 1010 - 142/1582

  



Article 4: Structure of an Application Program 

The MASM GROUP directive 

The MASM GROUP directive can also have a strong impact on a .EXE program. However, 
the GROUP directive has no effect on the arrangement of program segments within mem
ory. Rather, GROUP associates program segments for addressing purposes. 

The GROUP directive has the following syntax: 

grpname GROUP segname,segname,segname, ... 

This directive causes the linker to adjust all address references to labels within any speci
fied segname to be relative to the start of the declared group. The start of the group is de
termined at link time. The group starts with whichever of the segments in the GROUP list 
the linker places lowest in memory. 

That the GROUP directive neither causes nor requires contiguous arrangement of the 
grouped segments creates some interesting, although not necessarily desirable, possi
bilities. For instance, it permits the programmer to locate segments not belonging to the 
declared group between segments that do belong to the group. The only restriction im
posed on the declared group is that the last byte of the last segment in the group must 
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment 
arrangement: 

l 
64KB 

maximum 

j 

---- LABEL_C ... 

i t LABEL_B ... 

Offset to 
LABEL B 

Offsetto + -
~-----

LABlEL_C t LABEL_A ... 

Offset to 

LABlL_A 

SEGMENT_C 
(listed with GROUP directive) 

SEGMENT_B 
(not listed with GROUP directive) 

SEGMENT_A 
(listed with GROUP directive) 

Figure 4-7. Noncontiguous segments in the same GROUP 

Warning: One of the most confusing aspects of the GROUP directive relates to MASM's 
OFFSET operator. The GROUP directive affects only the offset addresses generated by 
such direct addressing instructions as 

MOV AX,FIELD_LABEL 

but it has no effect on immediate address values generated by such instructions as 

MOV AX,OFFSET FIELD_LABEL 

Section II: Programming in the MS-DOS Environment 131 

HUAWEI EX. 1010 - 143/1582

Article 4: Structure of an Application Program 

The MASM GROUP directive

The MASM GROUP directive can also have a strong impact on a .EXE program. However,

the GROUP directive has no effect on the arrangement of program segments within mem—

ory. Rather, GROUP associates program segments for addressing purposes. '

The GROUP directive has the following syntax:

grpname GROUP segname,segnnme,segname, . . .

This directive causes the linker to adjust all address references to labels within any speci-

fied segname to be relative to the start of the declared group. The start of the group is de-

termined at link time. The group starts with whichever of the segments in the GROUP list

the linker places lowest in memory.

That the GROUP directive neither causes nor requires contiguous arrangement of the

grouped segments creates some interesting, although not necessarily desirable, possi-

bilities. For instance, it permits the programmer to locate segments not belonging to the

declared group between segments that do belong to the group. The only restriction im—

posed on the declared group is that the last byte of the last segment in the group must

occur within 64 KB of the start of the group. Figure 4—7 illustrates this type of segment
arrangement:

SEGMENT_C
(listed with GROUP directive)

LABEL_C >

—— LABEL_B }

64 KB 0ff:t to SEGMENT_B
maximum LABEL_B (not listed With GROUP directive)

' Offset to

LABEL-C —- LABEL__A D
SEGMENT_A

Offset ‘0 (listed with GROUP directive)LABEL_A

 
+

Figure 4— 7. Noncontz’guous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM’s

OFFSET operator. The GROUP directive affects only the offset addresses generated by

such direct addressing instructions as

MOV AX, FIELD_LABEL

but it has no effect on immediate address values generated by such instructions as

MOV AX , OFFSET FIELD—LABEL

Section 11: Programming in the MS-DOS Environment 1 3 1

HUAWEI EX. 1010 - 143/1582

 



Part B: Programming for MS-OOS 

Using the OFFSET operator on labels contained within grouped segments requires the 
following approach: 

MOV AX,OFFSET GROUP_NAME:FIELD_LABEL 

The programmer must explicitly request the offset from the group base, because MASM 
defines the result of the OFFSET operator to be the offset of the label from the start of its 
segment, not its group. 

Structuring a small program with SEGMENT and GROUP 

132 

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc
tives, we'll put both directives to work structuring a skeleton program. The program, 
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A, 
MODULE_B, and MODULE_ C), each using the following four program segments: 

Segment Definition 

The code or program text segment _TEXT 
_DATA The standard data segment containing preinitialized data fields the pro

gram might change 
CONST The constant data segment containing constant data fields the program 

will not change 
_BSS The "block storage segment/space" segment containing uninitialized data 

fields• 

• Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as 
"block started at symbol," which reflects an equally appropriate, although somewhat more elaborate, defini
tion of the abbreviation. Other common translations of BSS, such as "blank static storage," misrepresent the 
segment name, because blanking of BSS segments does not occur- the memory contains undetermined 
values when the program begins execution. 

;Source Module MODULE-A 

;Predeclare all segments to force the linker's segment ordering ************** 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 
_TEXT ENDS 

_DATA SEGMENT WORD PUBLIC 'DATA' 
_DATA ENDS 

CONST SEGMENT WORD PUBLIC 'CONST' 
CONST ENDS 

_BSS SEGMENT WORD PUBLIC 'BSS' 
_BSS ENDS 

Figure 4-8. Structuring a .EXE program: MODULE_A. 

The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 144/1582

 
  

 
 

    

 
Part B; Programming for MS-DOS 

Using the OFFSET operator on labels contained within grouped segments requires the

following approach:

MOV AX,OFFSET GROUP_NAME:FIELD_LABEL

The programmer must explicitly request the offset from the group base, because MASM

defines the result of the OFFSET operator to be the offset of the label from the start of its

segment, not its group. /

Structuring a small program with SEGMENT and GROUP

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc—

tives, we’ll put both directives to work structuring a skeleton program. The program,

shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A,

MODULE_B, and MODULE_C), each using the following four program segments:

Segment Definition

_TEXT The code or program text segment

_DATA The standard data segment containing preinitialized data fields the pro—

gram might change

CONST The constant data segment containing constant data fields the program

will not change

_BSS The “block storage segment/space” segment containing uninitialized data
fields "

‘ Programmers familiar with the IBM 1620/1650 or CDC 6000 and Cyber assemblers may recognize BSS as
“block started at symbol,” which reflects an equally appropriate, although somewhat more elaborate, defini-
tion of the abbreviation. Other common translations of B85, such as “blank static storage,” misrepresent the
segment name, because blanking of 885 segments does not occur—the memory contains undetermined
values when the program begins execution.

;Source Module MODULE_A

;Precleclare all segments to force the linker's segment ordering **************

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

Figure 4-8. Structuring a .EXEprogram: MODULE_A. (more)

132 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 144/1582



Article 4: Structure of an Application Program 

STACK 
STACK 

SEGMENT PARA STACK 'STACK' 

ENDS 

DGROUP GROUP _DATA,CONST,_BSS,STACK 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_A DB 'Constant A' ;declare a MODULE_A constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA_FIELD_A DB 'Data A' ;declare a MODULE_A preinitialized field 

_DATA ENDS 

;Uninitialized data fields ***********************************~*************** 

_BSS SEGMENT WORD PUBLIC 'BSS' 

BSS_FIELD_A DB 5 DUP(?) ;declare a MODULE_A uninitialized field 

_BSS ENDS 

;Program text **************************************************************** 

_TEXT 

PROC_A 

PROC_A 

-TEXT 

SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

EXTRN 
EXTRN 

PROC 

CALL 
CALL 

MOV 
IN 'I' 

ENDP 

ENDS 

PROC_B:NEAR 
PROC_C:NEAR 

NEAR 

PROC_B 
PROC_C 

AX,4COOH 
21H 

;label is in _TEXT segment (NEAR) 
;label is in _TEXT segment (NEAR) 

;call into MODULE_B 
;call into MODULE_C 

;terminate (MS-DOS 2.0 or later only) 

Figure 4-8. Continued. (more) 

Section II: Programming in the MS-DOS Environment 133 

HUAWEI EX. 1010 - 145/1582

Article 4: Structure of an Application Program 

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

DGROUP GROUP _DATA,CONST,_BSS,STACK

;Constant declarations *******************************************************

CONST SEGMENT WORD PUBLIC 'CONST‘

CONST_FIELD_A DB 'Constant A' ;declare a MODULE_A constant

CONST ENDS

;Preinitialized data fields **************************************************

_DATA SEGMENT WORD PUBLIC 'DATA'

DATAEFIELD_A DB 'Data A' ;declare a MODULE_A preinitialized field

_DATA ENDS

;Uninitialized data fields ***************************************************

_BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_A DB 5 DUP(?) ;declare a MODULE_A uninitialized field

_BSS ENDS

,‘Program text ****************************************************************

_TEXT SEGMENT BYTE PUBLIC ‘CODE'

ASSUME CS:ETEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

EXTRN PROC_B:NEAR ;label is in -TEXT segment (NEAR)
EXTRN PROC_C:NEAR ;label is in _TEXT segment (NEAR)

PROC_A PROC NEAR

CALL PROC_B ;Call into MODULE.B
CALL PROC.C Icall into MODULE_C

MOV AX,4COOH ;terminate (MS—DOS 2.0 or later only)
INT 21H

PROC_A ENDP

_TEXT ENDS

Figure 4—8. Continued. (more)

Section 11: Programming in the MS-DOS Environment 133

HUAWEI EX. 1010 - 145/1582

‘-———«

 



Part B: Programming for MS.DOS 

;Stack *********************************************************************** 

STACK SEGMENT PARA STACK 'STACK' 

ow 
STAC!LBASE 

128 DUP(?) 

LABEL WORD 

STACK ENDS 

END PROC_A 

Figure 4-8. Continued. 

;Source Module MODULE-B 

;declare some space to use as stack 

;declare PROC-A as entry point 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_B DB 'Constant B.' ;declare a MODULE-B constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_j)ATA SEGMENT WORD PUBLIC 'DATA' 

DATA....FIELD_B DB 'Data B' ;declare a MODULE_B preinitialized field 

_j)ATA ENDS 

;Uninitialized data fields'*************************************************** 

-BSS SEGMENT WORD PUBLIC 'BSS' 

BSSJIELD_B DB 5 DUP (?) ;declare a MODULE_B uninitialized field 

_BSS ENDS 

;Program text **************************************************************** 

DGROUP GROUP _j)ATA,CONST,_BSS 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-9. Structuring a .EXE program: MODULE_B. (more) 

134 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 146/1582

Part B: Programming for MS—DOS 

;Stack ***********************************************************************

STACK SEGMENT PARA STACK 'STACK'  
DW 128 DUP(?) . ;declare same space to use as stack

STACK—BASE LABEL WORD

 
STACK ENDS 3

END PROC_A ;declare PROC_A as entry point

Figure 4-8. Continued.

;Source Module MODULE_B

 
;Constant declarations *******************************************************

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_B DB 'Constant Bf ;declare a MODULE_B constant

 
CONST ENDS

;Preinitialized data fields **************************************************

 
_DATA SEGMENT WORD PUBLIC 'DATA'

 W DATA_FIELD_B DB ‘Data B' ;declare a MODULE_B preinitialized field

M _DATA ENDS

,‘ .
1 ;Uninitialized data fields‘***************************************************

 
_BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_B DB 5 DUP(?) ;declare a MODULE_B uninitialized field

_BSS ENDS

;Program text ****************************************************************

DGROUP GROUP _DATA,CONSTr_BSS

; 1 _TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

Figure 4-9. Structuring a .EXEprogmm: MODULE__B. (more)

134 TheMS'DOSEWC’We‘fi“ HUAWEI EX. 1010 - 146/1582

 
 



Article 4: Structure of an Application Program 

PUBLIC PROC_B ;reference in MODULE_A 
PROC_B PROC NEAR 

RET 

PROC_B ENDP 

_TEXT ENDS 

END 

Figure 4-9. Continued. 

;Source Module MODULE_C 

;Constant declarations ******************************************************* 

CONST SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_C DB 'Constant C' ;declare a MODULE_C constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA-FIELD_C DB 'Data C' ;declare a MODULE_C preinitialized field 

_DATA ENDS 

;Uninitialized data fields *************************************************** 

_BSS SEGMENT WORD PUBLIC 'BSS' 

BSS.J'IELD_C DB 5 DUP (?) ;declare a MODULE_C uninitialized field 

_Bss ENDS 

;Program text **************************************************************** 

DGROUP GROUP _DATA,CONST,_BSS 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-10. Structuring a .EXEprogram: MODULE_ C. (more) 

Section II: Programming in the MS-DOS Environment 135 

------------...... HUAWEI EX. 1010 - 147/1582

Article 4: Structure of an Application Program 

PUBLIC PROC_B ;reference in MODULE_A
PROC_B PROC NEAR

RET

PROC.B ENDP

_TEXT ENDS

END

Figure 4-9. Continued

;Source Module MODULE-C

;Constant declarations **************************$****************************

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD__C DB 'Constant C' ;declare a MODULE_C constant

CONST ENDS

;Preinitialized data fields **************************************************

EDATA SEGMENT WORD PUBLIC 'DATA'

DATAEFIELD-C DB 'Data C' ;declare a MODULE_C preinitialized field

_DATA ENDS

;Uninitialized data fields ***************************************************

_BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_C DB 5 DUP(?) ;declare a MODULE-C uninitialized field

.888 ENDS

;Program text ******************************=1:********>16************************

DGROUP GROUP -DATA,CONST,_BSS

_TEXT SEGMENT BYTE PUBLIC ‘CODE'

ASSUME CS:-TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

 
Figure 4—10. Structuring a .EXEprogram: MODULE_C. (more)

Section [1: Programming in the MS—DOS Environment 155

HUAWEI EX. 1010 - 147/1582

N

 



Part B: Programming for MS-DOS 

PUBLIC PROC_C ;referenced in MODULE-A 
PROC_C PROC NEAR 

RET 

PROC_C ENDP 

_TEXT ENDS 

END 

·Figure 4-10. Continued. 

This example creates a small memory model program image, so the linked program can 
have only a single code segment and a single data segment- the simplest standard form 
of a .EXE program. See Using Microsoft's Contemporary Memory Models below. 

In addition to declaring the four segments already discussed, MODULE_ A declares a 
STACK segment in which to define a block of memory for use as the program's stack and 
also defines the linking order of the five segments. Defining the linking order leaves the 
programmer free to declare the segments in any order when defining the segment con
tents- a necessity because the assembler has difficulty assembling programs that use 
forward references. 

With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com
mands can be made into a batch file: 

MASM STRUCA; 
MASM STRUCB; 
MASM STRUCC; 
LINK STRUCA+STRUCB+STRUCC/M; 

These commands will assemble and link all the .ASM files listed, producing the memory 
map report file STRUCA.MAP shown in Figure 4-11. 

Start Stop Length Name 

OOOOOH OOOOCH OOOODH _TEXT 

OOOOEH 0001FH 00012H _DATA 

00020H 0003DH 0001EH CONST 

0003EH 0004EH 00011H _BSS 

OOOSOH 0014FH 00100H STACK 

Origin Group 
0000:0 DGROUP 

Address Publics by Name 

OOOO:OOOB 
OOOO:OOOC 

PROC_B 
PROC_C 

Class 

CODE 
DATA 
CONST 
BSS 
STACK 

Figure 4-11. Structuring a .EXE program: memory map report. 

136 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 148/1582

Part B: Programming for MS-DOS  
PUBLIC PRoc_C ;referenced in MODULE_A

PROC_C PROC NEAR

RET

PROC_C ENDP

__TEXT ENDS‘

END 
" Figure 4—10. Continued.

This example creates a small memory model program image, so the linked program can

have only a single code segment and a single data segment — the simplest standard form

of a .EXE program. See Using Microsoft’s Contemporary Memory Models below.

     
In addition to declaring the four segments already discussed, MODULE_ A declares a

STACK segment in which to define a block of memory for use as the program’s stack and

also defines the linking order of the five segments. Defining the linking order leaves the

programmer free to declare the segments in any order when defining the segment con-

tents — a necessity because the assembler has difficulty assembling programs that use
forward references.

With Microsoft’s MASM and LINK on the same disk with the .ASM files, the following com-
mands can be made into a batch file:

 
MASM STRUCA;
MASM STRUCB;
MASM STRUCC;
LINK STRUCA+STRUCB+STRUCC/M;

 
These commands will assemble and link all the .ASM files listed, producing the memory

map report file STRUCAMAP shown in Figure 4-11. 
 

Start Stop Length Name Class
ooooou ooooca 0000011 _TEXT CODE

1 OOOOEH OOOlFH 00012H _DATA DATA
1 1; 000on 0003014 0001EI-1 cowsr CONST

. “13: 00031311 0004EH 000115 .388 BSS
1‘ 1‘; ooosoa OO14FH 001003 STACK STACK

 
Origin Group
0000:O DGROUP

Address / Publics by Name
1 1 .
i :1 0000:000B PROC_.B
1 I 0000:000C PROC.C

1 ‘ Figure 4-11. Structuring a .EXEprogram: memory map report. (more)

" 1 1 136 The MS—DOS Encyclopedia HUAWEI EX. 1010 - 148/1582

 
  



L 

Article 4: Structure of an Application Program 

Address Publics by Value 

OOOO:OOOB PROC_B 
OOOO:OOOC PROC_C 

Program entry point at 0000:0000 

Figure 4-11. Continued. 

The above memory map report represents the memory diagram shown in Figure 4-12. 

Absolute 
address Size in bytes 

00150H ... 

STACK STACK(A) 
Class 

256 

00050H ... 
0004FH ... 
0004AH ... 
00049H ... 
00044H ... 
00043H ... 
0003EH ... 
00034H ... 
0002AH ... 
00020H ... 
OOOIAH ... 
OOOI4H ... 
OOOOEH ... 
OOOODH ... 
OOOOCH ... 

DGROUP OOOOBH ... 
addressing ... OOOOOH ... 

- -- --
- -- -- PARA align gap 

- -- - - -- --- BSS (C) 

- -- - -- BSS -
WORD align gap 

- -- - - - Class - BSS (B) 

-DGROUP-
WORD align gap - - ---

Group - BSS (A) 

- - CONST-
CONST(C) 

-- --
-- - - - - Class - CONST(B) 

-- - -- CONST(A) 

- - - - - - DATA - DATA (C) 

- -- -- - Class - DATA (B) 

DATA(A) --- - -
WORD align gap 

--- - CODE - - - TEXT(C) 

-- - - Class - - - TEXT(B) 

TEXT(A) 

I 

5 i 
5 15 

1 321 
5 

10 ; 
10 30 

10 ~ 
6 ; 
6 18 

6 ~ 

+ 
13 

11 ~ 
base 

Figure 4-12. Structure of the sample .EXE program. 

Using Microsoft's contemporary memory models 

Now that we've analyzed the various aspects of designing assembly-language .EXE pro
grams, we can look at how Microsoft's high-level-language compilers create .EXE pro
grams from high-level-language source files. Even assembly-language programmers will 
find this discussion of interest and should seriously consider using the five standard 
memory models outlined here. 

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the 
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code 
generator currently available. These newer compilers generate code based on three to five 

Section n Programming in the MS-DOS Environment 137 

HUAWEI EX. 1010 - 149/1582

Article 4: Structure of an Application Program 

Address Publics by Value

0000:0003 PROC-B
0000:000C PROC_C

Program entry point at 0000:0000

Figure 4—11. Continued. ,

The above memory map report represents the memory diagram shown in Figure 4—12.

  

 
 

 

 

Absolute

address Size in bytes

OOlSOH )

STACK STACK (A) 256Class

OOOSOH ' ——

0004FH PARA align 5:}; C ;
0004A}! 0RD al(igr: gap
00ng B85 (B) 5“”4““

00043H BSS (A) 5 321
0003EH CONST (C) 10
00034H CONST (B) 100002AH

 

CONST (A) 10OOOZOH
DATA (C) 6000 1 AH

000 1 4H

OOOOEH

OOOODH

OOOOCH

DGROUP OOOOBH

addressing b OOOOOH
base

IFEB-D{—E+§—3+<~—G—>
Figure 4-12. Structure ofthe sample .EXEprogram.

Using Microsoft’s contemporary memory models

Now that we’ve analyzed the various aspects of designing assembly-language .EXE pro-

grams, we can look at how Microsoft’s high-level—language compilers create .EXE pro—

grams from high—level—language source files. Even assembly-language programmers will

find this discussion of interest and should seriously consider using the five standard

memory models outlined here.

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the

Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
generator currently available. These newer compilers generate code based on three to five

 
Section II: Programming in the MS—DOS Environment 137

L . HUAWEI EX. 1010 - 149/1582
M



I i 

I 

'i' 
i i 

I' 

Part B: Programming for MS-DOS 

138 

of the following standard programmer-selectable program structures, referred to as mem
ory models. The discussion of each of these memory models will center on the model's 
use with the Microsoft C Compiler and will close with comments regarding any differences 
for the Microsoft FORTRAN Compiler. 

Small ( C compiler switch MS) This model, the default, includes only a single code seg
ment and a single data segment. All code must fit within 64 KB, and all data must fit within 
an additional 64 KB. Most C program designs fall into this category. Data can exceed the 
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far 
addressing, and the linker to place far and huge data items into separate segments. The 
data-size-threshold switch described for the compact model is ignored by the Microsoft C 
Compiler when used with a small model. The C compiler uses the default segment name 
_TEXT for all code and the default segment name_ DATA for all non-far/huge data. 
Microsoft FORTRAN programs can generate a semblance of this model only by using the 
!NM (name module) and /AM (medium model) compiler switches in combination with the 
near attribute on all subprogram declarations. 

Medium (C and FORTRAN compiler switch !AM) This model includes only a single data 
segment but breaks the code into multiple code segments. All data must fit within 64 KB, 
but the 64 KB restriction on code size applies only on a module-by-module basis. Data can 
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to 
use far addressing, and the linker to place far and huge data items into separate segments. 
The data-size-threshold switch described for the compact model is ignored by the 
Microsoft C Compiler when used with a medium model. The compiler uses the default seg
ment name _DATA for all non-far/huge data and the template module_TEXT to create 
names for all code segments. The module element of module_TEXT indicates where the 
compiler is to substitute the name of the source module. For example, if the source module 
HELPFUNC.C is compiled using the medium model, the compiler creates the code seg
ment HELPFUNC_ TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports 
the medium model. 

Compact (C compiler switch lAC) This model includes only a single code segment but 
breaks the data into multiple data segments. All code must fit within 64 KB, but the data is 
allowed to consume all the remaining available memory. The Microsoft C Compiler's op
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into 
additional data segments, leaving the smaller items in the default segment for faster access. 
Individual data items within the program cannot exceed 64 KB under the compact model 
without being explicitly declared huge. The compiler uses the default segment name 
_TEXT for all code segments and the template module#_DATA to create names for all data 
segments. The module element indicates where the compiler is to substitute the source 
module's name; the # element represents a digit that the compiler changes for each addi
tional data segment required to hold the module's data. The compiler starts with the digit 5 
and counts up. For example, if the name of the source module is HELPFUNC.C, the com
piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate 
a semblance of this model only by using the /NM (name module) and /AL (large model) 
compiler switches in combination with the near attribute on all subprogram declarations. 

The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 150/1582

Part B: Programming for MS—DOS 

of the following standard programmer-selectable program structures, referred to as mem—

ory models. The discussion of each of these memory models will center on the model’s

use with the Microsoft C Compiler and will close with comments regarding any differences

for the Microsoft FORTRAN Compiler.

Small (C compiler switch /AS) This model, the default, includes only a single code seg-

ment and a single data segment. All code must fit within 64 KB, and all data must fit within

an additional 64 KB. Most C program designs fall into this category. Data can exceed the

64 KB limit only if the far and huge attributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments. The

data-size—threshold switch described for the compact model is ignored by the Microsoft C

Compiler when used with a small model. The C compiler uses the default segment name

_TEXT for all code and the default segment name _ DATA for all non-far/huge data.

Microsoft FORTRAN programs can generate a semblance of this model only by using the

/NM (name module) and /AM (medium model) compiler switches in combination with the

near attribute on all subprogram declarations.

        
Medium (C andFORTRANcompilerswitch /AM) This model includes only a single data

segment but breaks the code into multiple code segments. All data must fit within 64 KB,

but the 64 KB restriction on code size applies only on a module-by—module basis. Data can

exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments.

The data—size—threshold switch described for the compact model is ignored by the

Microsoft C Compiler when used with a medium model. The compiler uses the default seg—
ment name _DATA for all non—far/huge data and the template module_TEXT to create

names for all code segments. The module element of module__TEXT indicates where the

compiler is to substitute the name of the source module. For example, if the source module

HELPFUNC.C is compiled using the medium model, the compiler creates the code seg-

ment HELPFUNC__TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports

_ 3 the medium model.

  
‘ l l

3 l j l ‘ Compact (C compiler switch /AC) This model includes only a single code segment but
1l . 1' l breaks the data into multiple data segments. All code must fit within 64 KB, but the data is

‘ ‘ allowed to consume all the remaining available memory. The Microsoft C Compiler’s op—
tional data-size-threshold switch (/60 controls the placement of the larger data items into

l additional data segments, leaving the smaller items in the default segment for faster access.

. : Individual data items within the program cannot exceed 64 KB under the compact model
i l ‘ ‘ without being explicitly declared huge. The compiler uses the default segment name

_TEXT for all code segments and the template module#_DATA to create names for all data

J . segments. The module element indicates where the compiler is to substitute the source
1 l . 3 module’s name; the # element represents a digit that the compiler changes for each addi-

‘ tional data segment required to hold the module’s data. The compiler starts with the digit 5
_ and counts up. For example, if the name of the source module is HELPFUNC.C, the com—

; i . piler names the first data segment HELPFUNCS_DATA. FORTRAN programs can generate

l . a semblance of this model only by using the /NM (name module) and /AL (large model)
‘ l compiler switches in combination with the near attribute on all subprogram declarations.

  
I Y 138 The MS-DOS Encyclopedia

. ”I l j ' . HUAWEI EX. 1010- 150/1582

  



Article 4: Structure of an Application Program 

Large ( C and FORTRAN compiler switch !AL) This model creates multiple code and data 
segments. The compiler treats data in the same manner as it does for the compact model 
and treats code in the same manner as it does for the medium model. The Microsoft 
FORTRAN Compiler version 4.0 directly supports the large model. 

Huge ( C and FORTRAN compiler switch !AH) Allocation of segments under the huge 
model follows the same rules as for the large model. The difference is that individual data 
items can exceed 64 KB. Under the huge model, the compiler generates the necessary 
code to index arrays or adjust pointers across segment boundaries, effectively transforming 
the microprocessor's segment-addressed memory into linear-addressed memory. This 
makes the huge model especially useful for porting a program originally written for a pro
cessor that used linear addressing. The speed penalties the program pays in exchange for 
this addressing freedom require serious consideration. If the program actually contains 
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best 
to avoid using the huge model by explicitly declaring those few data items as huge using 
the huge keyword within the source module. This prevents penalizing all the non-huge 
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly 
supports the huge model. 

Figure 4-13 shows an example of the segment arrangement created by a large/huge model 
program. The example assumes two source modules: MSCA.C and MSCB.C. Each source 
module specifies enough data to cause the compiler to create two extra data segments for 
that module. The diagram does not show all the various segments that occur as a result of 
linking with the run-time library or as a result of compiling with the intention of using the 
Code View debugger. 

Groups Classes 

STACK 

BSS 
DGROUP 

CONST 

DATA 

FAR_BSS 

FAR_DATA 

CODE 

Segments 

STACK 

c_common 

_BSS 

CONST 

_DATA 

FAR_BSS 

MSCB6 DATA 

~SCBS DATA 

MSCA6_DATA 

MSCAS_DATA 

TEXT 

MSCB_TEXT 

MSCA_TEXT 

<1111 SMCLH: Program stack 

<1111 SM: All uninitialized global items, CLH: Empty 

<1111 SMCLH: All uninitialized non-far/huge items 

<1111 SMCLH: Constants (floating point constraints, segment addresses, etc.) 

<1111 SMCLH: All items that don't end up anywhere else 

<1111 SM: Nonexistent, CLH: All uninitialized global items 

<1111 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

<1111 SC: All code, MLH: Run-time library code only 

<1111 SC: Nonexistent, MLH: MSCB.C Code 

<1111 SC: Nonexistent, MLH: MSCA.C Code 

S = Small model 
M =Medium model 
C = Compact model 

L = Large model 
H = Huge model 

Figure 4-13. General structure of a Microsoft C program. 

Section II: Programming in the MS-DOS Environment 139 

HUAWEI EX. 1010 - 151/1582

Article 4: Structure of an Application Program 

Large (C and FORTRANcompilerswitch /AL) This model creates multiple code and data

segments. The compiler treats data in the same manner as it does for the compact model
and treats code in the same manner as it does for the medium model. The Microsoft

FORTRAN Compiler version 4.0 directly supports the large model.

Huge (C and FORTRAN compiler switch /AH) Allocation of segments under the huge

model follows the same rules as for the large model. The difference is that individual data

items can exceed 64 KB. Under the huge model, the compiler generates the necessary
code to index arrays or adjust pointers across segment boundaries, effectively transforming

the microprocessor’s segment-addressed memory into linear-addressed memory. This

makes the huge model especially useful for porting a program originally written for a pro—

cessor that used linear addressing. The speed penalties the program pays in exchange for

this addressing freedom require serious consideration. If the program actually contains

any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best

to avoid using the huge model by explicitly declaring those few data items as huge using

the huge keyword within the source module. This prevents penalizing all the non-huge

items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly

supports the huge model.

Figure 4-13 shows an example of the segment arrangement created by a large/huge model

program. The example assumes two source modules: MSCAC and MSCB.C. Each source '

module specifies enough data to cause the compiler to create two extra data segments for

that module. The diagram does not show all the various segments that occur as a result of

linking with the run—time library or as a result of compiling with the intention of using the

CodeView debugger.

Groups Classes Segments
4 SMCLH: Program stack

4 SM: All uninitialized global items, CLH: Empty

DGROUP 4 SMCLH: All uninitialized non-far/huge items

4 SMCLI—I: Constants (floating point constraints, segment addresses, etc.)

DATA _DATA 4 SMCLH: All items that don't end up anywhere else

FAR_BSS FAR_BSS 4 SM: Nonexistent, CLH: All uninitialized global items

4 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold

FAR DATA 4 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold
'— 4 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold

4 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold

4 SC: All code, MLH: Run—time library code only

CODE 4 sc: Nonexistent, MLH: MSCB.C Code

4 sc: Nonexistent, MLH: MSCA.C Code

I S = Small model L = Large model
M = Medium model H: Huge model
C = Compact model

     

  
 

  

  
  
  

  

  
   

Figure 4-13. General structure ofa Microsoft Cprogram.

i
5
El
ii
l
1

Section 11,- Programming in the MS-DOS Environment 139

HUAWEI EX. 1010 - 151/1582 



Part B: Programming for MS-DOS 

Note that if the program declares an extremely large number of small data items, it can 
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory 
model specified. This occurs because the data items all fall below the data-size-threshold 
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment. 
Lowering the data size threshold or explicitly using the far attribute within the source 
modules eliminates this problem. 

Modifying the .EXE file header 
With most of its language compilers, Microsoft supplies a utility program called EXEMOD. 
See PROGRAMMING UTILITIES: EXEMOD. This utility allows the programmer to display 
and modify certain fields contained within the .EXE file header. Following are the header 
fields EXEMOD can modify (based on EXEMOD version 4.0): 

MAXALLOC This field can be modified by using EXEMOD's /MAX switch. Because 
EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be 
used to modify the MAXALLOC field in existing .EXE programs that contain the default 
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS's allocating 
all free memory to them. EXEMOD's /MAX switch functions in an identical manner to 
LINK's /CPARMAXALLOC switch. 

MINALLOC This field can be modified by using EXEMOD's /MIN switch. Unlike the case 
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC. 
MINALLOC normally represents uninitialized memory and stack space the linker has com
pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value 
within a .EXE program written by someone else. If a program requires some minimum 
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in
creased to ensure that the program will have this extra memory before receiving control. If 
this is done, the program will not have to verify that MS-DOS allocated enough memory to 
meet program needs. Of course, the same result can be achieved without EXEMOD by 
declaring this minimum extra memory as an uninitialized field at the end of the program. 

Initial SP Value This field can be modified by using the /STACK switch to increase or 
decrease the size of a program's stack. However, modifying the initial SP value for pro
grams developed using Microsoft language compiler versions earlier than the following 
may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version 
3.3. Other language compilers may have the same restriction. The /STACK switch can also 
be used with programs developed using MASM, provided the stack space is linked at the 
end of the program, but it would probably be wise to change the size of the STACK seg
ment declaration within the program instead. The linker also provides a /STACK switch 
that performs the same purpose. 

Note: With the /H switch set, EXEMOD displays the current values of the fields within 
the .EXE header. This switch should not be used with the other switches. EXEMOD also 
displays field values if no switches are used. 

140 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 152/1582

 

 

  

 
 

Part B: Programming for MS-DOS 

Note that if the program declares an extremely large number of small data items, it can

exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory

model specified. This occurs because the data items all fall below the data-size-threshold

limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.

Lowering the data size threshold or explicitly ‘using the far attribute within the source

modules eliminates this problem.

Modifying the .EXE file header

With most of its language compilers, Microsoft supplies a utility program called EXEMOD.

See PROGRAMMING UTILITIES: EXEMOD. This utility allows the programmer to display

and modify certain fields contained within the .EXE file header. Following are the header

fields EXEMOD can modify (based on EXEMOD version 4.0):

MAXALLOC This field can be modified by using EXEMOD’s /MAX switch. Because

EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be

used to modify the MAXALLOC field in existing .EXE programs that contain the default

MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS’s allocating

all free memory to them. EXEMOD’s /MAX switch functions in an identical manner to
LINK’S /CPARMAXALLOC switch.

MINALLOC This field can be modified by using EXEMOD’s /MIN switch. Unlike the case

with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC.

MINALLOC normally represents uninitialized memory and stack space the linker has com-

pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value

within a .EXE program written by someone else. If a program requires some minimum

amount of extra dynamic memory in addition to any static fields, MINALLOC can be in-

creased to ensure that the program will have this extra memory before receiving control. If

this is done, the program will not have to verify that MS-DOS allocated enough memory to

meet program needs. Of course, the same result can be achieved Without EXEMOD by

declaring this minimum extra memory as an uninitialized field at the end of the program.

Initial SP Value This field can be modified by using the /STACK switch to increase or

decrease the size of a program’s stack. However, modifying the initial SP value for pro-

grams developed using Microsoft language compiler versions earlier than the following

may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version

3.3. Other language compilers may have the same restriction. The /STACK switch can also

be used with programs developed using MASM, provided the stack space is linked at the

end of the program, but it would probably be wise to change the size of the STACK seg-

ment declaration within the program instead. The linker also provides a /STACK switch

that performs the same purpose.

Note: With the /H switch 'set, EXEMOD displays the current values of the fields within
the .EXE header. This switch should not be used with the other switches. EXEMOD also

displays field values if no switches are used.

140 TheMS—DOSEncyclopedia
HUAWEI EX. 1010 - 152/1582



Article 4: Structure of an Application Program 

Warning: EXEMOD also functions correctly when used with packed .EXE files created 
using EXEPACK or the /EXEPACK linker switch. However, it is important to use the 
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in 
the packing method may result in incompatibilities between EXEMOD and nonassociated 
linker/EXEPACK versions. 

Patching the .EXE program using DEBUG 

Every experienced programmer knows that programs always seem to have at least one 
unspotted error. If a program has been distributed to other users, the programmer will 
probably need to provide those users with corrections when such bugs come to light. One 
inexpensive updating approach used by many large companies consists of mailing out 
single-page instructions explaining how the user can patch the program to correct the 
problem. 

Program patching usually involves loading the program file into the DEBUG utility sup
plied with MS-DOS, storing new bytes into the program image, and then saving the pro
gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory 
and then save it back to disk in . EXE format. The programmer must trick DEBUG into 
patching .EXE program files, using the procedure outlined below. See PROGRAMMING 
UTILITIES: DEBUG. 

Note: Users should be reminded to make backup copies of their program before attempt
ing the patching procedure. 

1. Rename the .EXE file using a filename extension that does not have special meaning 
for DEBUG. (Avoid .EXE, .COM, and .HEX.) For instance, MYPROG.BIN serves well as 
a temporary new name for MYPROG.EXE because DEBUG does not recognize a file 
with a .BIN extension as anything special. DEBUG will load the entire image of 
MYPROG.BIN, including the .EXE header and relocation table, into memory starting 
at offset 100H within a .COM-style program segment (as discussed previously). 

2. Locate the area within the load module section of the .EXE file image that requires 
patching. The previous discussion of the .EXE file image, together with compiler/ 
assembler listings and linker memory map reports, provides the information neces
sary to locate the error within the .EXE file image. DEBUG loads the file image start
ing at offset 100H within a .COM-style program segment, so the programmer must 
compensate for this offset when calculating addresses within the file image. Also, the 
compiler listings and linker memory map reports provide addresses relative to the 
start of the program image within the .EXE file, not relative to the start of the file 
itself. Therefore, the programmer must first check the information contained in the 
.EXE file header to determine where the load module (the program's image) starts 
within the file. 

3. Use DEBUG's E (Enter Data) or A (Assemble Machine Instructions) command to 
insert the corrections. (Normally, patch instructions to users would simply give an 
address at which the user should apply the patch. The user need not know how to 
determine the address.) 

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors) 
command to write the corrected image back to disk under the same filename, pro
vided the patch has not increased the size of the program. If program size has 

Section JL- Programming in the MS-DOS Environment 141 
HUAWEI EX. 1010 - 153/1582

Article 4: Structure of an Application Program 

‘Waming: EXEMOD also functions correctly when used with packed .EXE files created

using EXEPACK or the /EXEPACK linker switch. However, it is important to use the

EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in

the packing method may result in incompatibilities between EXEMOD and nonassociated
linker/EXEPACK versions.

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at least one

unspotted error. If a program has been distributed to other users, the programmer will

probably need to provide those users with corrections when such bugs come to light. One

inexpensive updating approach used by many large companies consists of mailing out

single-page instructions explaining how the user can patch the program to correct the

problem.

Program patching usually involves loading the program file into the DEBUG utility sup—

plied with MS-DOS, storing new bytes into the program image, and then saving the pro—

gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory

and then, save it back to disk in .EXE format. The programmer must trick DEBUG into

patching .EXE program files, using the procedure outlined below. See PROGRAMMING ,
UTILITIES: DEBUG.

Note: Users should be reminded to make backup copies of their program before attempt-

ing the patching procedure.

1. Rename the .EXE file using a filename extension that does not have special meaning
for DEBUG, (Avoid .EXE, .COM, and .HEX.) For instance, MYPROGBIN serves well as

a temporary new name for MYPROGEXE because DEBUG does not recognize a file

with a .BIN extension as anything special. DEBUG will load the entire image of

MYPROG.BIN, including the .EXE header and relocation table, into memory starting

at offset IOOH within a .COM-style program segment (as discussed previously).

2. Locate the area within the load module section of the .EXE file image that requires

patching. The previous discussion of the .EXE file image, together with compiler/

assembler listings and linker memory map reports, provides the information neces-

sary to locate the error within the .EXE file image. DEBUG loads the file image start-

ing at offset 100H within a .COM-style program segment, so the programmer must

compensate for this offset when calculating addresses within the file image. Also, the

compiler listings and linker memory map reports provide addresses relative to the

start of the program image within the .EXE file, not relative to the start of the file

itself. Therefore, the programmer must first check the information contained in the

.EXE file header to determine where the load module (the program’s image) starts
within the file.

3. Use DEBUG’s E (Enter Data) or A (Assemble Machine Instructions) command to

insert the corrections. (Normally, patch instructions to users would simply give an

address at which the user should apply the patch. The user need not know how to
determine the address.)

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors)

command to write the corrected image back to disk under the same filename, pro-

vided the patch has not increased the size of the program. If program size has

Section 11: Programming in the MS—DOS Environment 141
HUAWEI EX. 1010 - 153/1582

 
 



Part B: Programming for MS-DOS 

increased, first change the appropriate size fields in the .EXE header at the start of the 
file and use the DEBUG R (Display or Modify Registers) command to modify the BX 
and CX registers so that they contain the file image's new size. Then use the W com
mand to write the image back to disk under the same name. 

5. Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then 
rename the file to the original .EXE filename extension . 

. EXE summary 

To summarize, the .EXE program and file structures provide considerable flexibility in the 
design of programs, providing the programmer with the necessary freedom to produce 
large-scale applications. Programs written using Microsoft's high-level-language compilers 
have access to five standardized program structure models (small, medium, compact, 
large, and huge). These standardized models are excellent examples of ways to structure 
assembly-language programs. 

The .COM Program 

The majority of differences between .COM and .EXE programs exist because .COM 
program files are not prefaced by header information. Therefore, .COM programs do not 
benefit from the features the .EXE header provides. 

The absence of a header leaves MS-DOS with no way of knowing how much memory the 
.COM program requires in addition to the size ofthe program's image. Therefore, MS-DOS 
must always allocate the largest free block of memory to the .COM program, regardless of 
the program's true memory requirements. As was discussed for .EXE programs, this allo
cation of the largest block of free memory usually results in MS-DOS's allocating all 
remaining free memory- an action that can cause problems for multitasking supervisor 
programs. 

The .EXE program header also includes the direct segment address relocation pointer 
table. Because they lack this table, .COM programs cannot make address references to the 
labels specified in SEGMENT directives, with the exception of SEGMENT AT address 
directives. If a .COM program did make these references, MS-DOS would have no way of 
adjusting the addresses to correspond to the actual segment address into which MS-DOS 
loaded the program. See Creating the .COM Program below. 

The .COM program structure exists primarily to support the vast number of CP/M pro
grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding 
the 512 bytes or more of .EXE header information onto small, simple programs that often 
do not exceed 512 bytes by themselves. 

The .COM program structure has another advantage: Its memory organization places the 
PSP within the same address segment as the rest of the program. Thus, it is easier to access 
fields within the PSP in .COM programs. 

142 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 154/1582

     

  
Part B: Programming for MS-DOS

increased, first change the appropriate size fields in the .EXE header at the start of the

file and use the DEBUG R (Display or Modify Registers) command to modify the BX

and CX registers so that they contain the file image’s new size. Then use the W com-

mand to write the image back to disk under the same name.
5. Use the DEBUG Q (Quit) command to return to MS—DOS command level, and then

rename the file to the original .EXE filename extension.

.EXE summary

To summarize, the .EXE program and file structures provide considerable flexibility in the

design of programs, providing the programmer with the necessary freedom to produce

large—scale applications. Programs written using Microsoft’s high-level—language compilers

have access to five standardized program structure models (small, medium, compact,

large, and huge). These standardized models are excellent examples of ways to structure

assembly-language programs.

The .COM Program

The majority of differences between .COM and .EXE programs exist because .COM

program files are not prefaced by header information. Therefore, .COM programs do not

benefit from the features the .EXE header provides.

The absence of a header leaves MS—DOS with no way of knowing how much memory the

.COM program requires in addition to the size of the program’s image. Therefore, MS-DOS

must always allocate the largest free block of memory to the .COM program, regardless of

the program’s true memory requirements. As was discussed for .EXE programs, this allo—

cation of the largest block of free memory usually results in MS-DOS’s allocating all

remaining free memory— an action that can cause problems for multitasking supervisor
programs.

The .EXE program header also includes the direct segment address relocation pointer

table. Because they lack this table, .COM programs cannot make address references to the

labels specified in SEGMENT directives, with the exception of SEGMENT AT address

directives. If a .COM program did make these references, MS—DOS would have no way of

adjusting the addresses to correspond to the actual segment address into which MS-DOS

loaded the program. See Creating the .COM Program below.

The .COM program structure exists primarily to support the vast number of CP/M pro-

grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding

the 512 bytes or more of .EXE header information onto small, simple programs that often

do not exceed 512 bytes by themselves.

The .COM program structure has another advantage: Its memory organization places the

PSP within the same address segment as the rest of the program. Thus, it is easier to access

fields within the PSP in .COM programs.

142 TheMS-DOSEnCyclOPEdm HUAWEI EX. 101 O - 1 54/1 582



Article 4: Structure of an Application Program 

Giving control to the .COM program 

After allocating the largest block of free memory to the .COM program, MS-DOS builds 
a PSP in the lowest lOOH bytes of the block. No difference exists between the PSP MS-DOS 
builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro
grams, MS-DOS determines the initial values for the ALand AH registers at this time and 
then loads the entire .COM-file image into memory immediately following the PSP. 
Because .COM files have no file-size header fields, MS-DOS relies on the size recorded in 
the disk directory to determine the size of the program image. It loads the program exactly 
as it appears in the file, without checking the file's contents. 

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If 
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH 
+ 1 (OOOOH) to establish an initial stack; if less than 64 KB are available for allocation to the 
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In 
either case, MS-DOS then pushes a single word of OOOOH onto the program's stack for 
use in terminating the program. 

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP's 
segment address and the IP register to OlOOH. This means that the program's entry point 
must exist at the very start of the program's image, as shown in later examples. 

Figure 4-14 shows the overall structure of. a .COM program as it receives control from 
MS-DOS. 

.COM program memory image 

SP=FFFEH* 
()()HI OOH I 

Remaining free memory 
within first 64 KB allocated 

to .COM program 
(provided a full64 KB was available) 

64KB* 

I 
.. COM program image ~ 

.COM program image from file 

~ IP=OlOOH 
Program segment prefix 

~ CS,DS,ES,SS 

*The SP and 64 KB values are dependent upon 
MS-DOS having 64 KB or more of memory 
available to allocate to the .COM program 
at load time. 

1 
Figure 4-14. The. COM program: memory map diagram with register pointers. 

Section IL- Programming in the MS-DOS Environment 143 

HUAWEI EX. 1010 - 155/1582

Article 4: Structure of an Application Program 

Giving control to the .COM program

After allocating the largest block of free memory to the .COM program, MS-DOS builds

a PSP in the lowest lOOH bytes of the block. No difference exists between the PSP MS—DOS

builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro-

grams, MS-DOS determines the initial values for the AL and AH registers at this time and

then loads the entire .COM—file image into memory immediately following the PSP.

Because .COM files have no file—size header fields, MS—DOS relies on the size recorded in

the disk directory to determine the size of the program image. It loads the program exactly

as it appears in the file, without checking the file’s contents.

MS—DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If

able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH
+ 1 (OOOOH) to establish an initial stack; if less than 64 KB are available for allocation to the

program, MS—DOS sets the SP to 1 byte past the highest offset owned by the program. In

either case, MS—DOS then pushes a single word of OOOOH onto the program’s stack for
use in terminating the program.

Finally, MS—DOS transfers control to the program by setting the CS register to the PSP’s
segment address and the IP register to 0100H. This means that the program’s entry point

must exist at the very start of the program’s image, as shown in later examples.

Figure 4-14 shows the overall structure ofa .COM program as it receives control from
MS—DOS.

.COM program memory image

SP=FFFEH*

 
 

 Remaining free memory
within first 64 KB allocated

to .COM program
(provided a full 64 KB was available)

 

  
 
 

64 KB*

.COM program image from file

Program segment prefix

1 CS,DS,ES,SS

*The SP and 64 KB values are dependent upon
MS—DOS having 64 KB or more of memory
available to allocate to the .COM program
at load time.

 ..COM program image 4 IP=0100H

 

Figure 4—14. The .COMprogram: memory map diagram with registerpointers.

 
Section 11: Programming in the MS—DOS Environment 143

E HUAWEI EX. 1010 - 155/1582

\



Part B: Programming for MS-DOS 

Terminating the .COM program 

A .COM program can use all the termination methods described for .EXE programs but 
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function 
( 4CH) as the preferred method. If the .COM program must remain compatible with ver
sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods, 
including those described as difficult to use from .EXE programs, because .COM programs 
execute with the CS register pointing to the PSP as required by these methods. 

Creating the .COM program 

A .COM program is created in the same manner as a .EXE program and then converted 
using the MS-DOS EXE2BIN utility. See PROGRAMMING UTILITIES: EXE2BIN. 

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot 
exceed 64 KB minus IOOH bytes for the PSP minus 2 bytes for the zero word initially 
pushed on the stack. 

Next, only a single segment- or at least a single addressing group- should exist within 
the program. The following two examples show ways to structure a .COM program to sat
isfy both this restriction and MASM's need to have data fields precede program code in the 
source file. 

COMPROG1.ASM (Figure 4-15) declares only a single segment (COMSEG), so no special 
considerations apply when using the MASM OFFSET operator. See The MASM GROUP 
Directive above. COMPROG2.ASM (Figure 4-16) declares separate code (CSEG) and data 
(DSEG) segments, which the GROUP directive ties into a common addressing block. 
Thus, the programmer can declare data fields at the start of the source file and have the 
linker place the data fields segment (DSEG) after the code segment ( CSEG) when it links 
the program, as discussed for the .EXE program structure. This second example simulates 
the program structuring provided under CP/M by Microsoft's old Macro-80 (M80) macro 
assembler and Link-80 (180) linker. The design also expands easily to accommodate 
COMMON or other additional segments. 

COMSEG SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG 
ORG 01 OOH 

BEGIN: 
JMP START ;skip over data fields 

;Place your data fields here. 

START: 
;Place your program text here. 

MOV AX,4COOH ;terminate (MS-DOS 2.0 or later only) 
!NT 21H 

COMSEG ENDS 
END BEGIN 

Figure 4-15. . COM program with data at start. 

144 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 156/1582

Part B: Programming for MS-DOS 

Terminating the .COM program

A .COM program can use all the termination methods described for .EXE programs but

should still use the MS—DOS Interrupt 21H Terminate Process with Return Code function

(4CH) as the preferred method. If the .COM program must remain compatible with ver-

sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods,

including those described as difficult to use from .EXE programs, because .COM programs

execute with the CS register pointing to the PSP as required by these methods.

Creating the .COM program

A .COM program is created in the same manner as a .EXE program and then converted
using the MS—DOS EXEZBIN utility. See PROGRAMMING UTILITIES: EXEZBIN.

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot

exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially

pushed on the stack.

Next, only a single segment— or at least a single addressing group — should exist within

the program. The following two examples show ways to structure a .COM program to sat—

isfy both this restriction and MASM’s need to have data fields precede program code in the

source file. _

COMPROGIASM (Figure 4-15) declares only a single segment (COMSEG), so no special

considerations apply when using the MASM OFFSET operator. See The MASM GROUP

Directive above. COMPROG2.ASM (Figure 4—16) declares separate code (CSEG) and data

(DSEG) segments, which the GROUP directive ties into a common addressing block.

Thus, the programmer can declare data fields at the start of the source file and have the

linker place the data fields segment (DSEG) after the code segment (CSEG) when it links

the program, as discussed for the .EXE program structure. This second example simulates

the program structuring provided under CP/M by Microsoft’s old Macro-80 (M80) macro

assembler and Link-80 (L80) linker. The design also expands easily to accommodate

COMMON or other additional segments.

   
COMSEG SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG
ORG 0100H

BEGIN:

 
JMP START ;skip over data fields

;Place your data fields here.

‘l 1. START: ,
I} ‘ ;Place your program text here.

; MOV AX,4COOH ;terminate (MS—DOS 2.0 or later only)
i I INT 21H
' ‘ COMSEG ENDS

END BEGIN

Figure 4-15, .COMprogram with data at start.

,2. H} 144 The MS—DOSEncyclopedia
HUAWEI EX. 1010 - 156/1582

 
 



Article 4: Structure of an Application Program 

CSEG SEGMENT BYTE PUBLIC 'CODE' ;establish segment order 
CSEG ENDS 
DSEG SEGMENT BYTE PUBLIC 'DATA' 
DSEG ENDS 

COMGRP GROUP CSEG,DSEG ;establish joint address base 
DSEG SEGMENT 
;Place your data fields here. 
DSEG ENDS 
CSEG SEGMENT 

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP 
ORG 01 OOH 

BEGIN: 
;Place your program text here. Remember to use 
;OFFSET COMGRP:LABEL whenever you use OFFSET. 

MOV AX,4COOH ;terminate (MS-DOS 2.0 or later only) 
INT 21H 

CSEG ENDS 
END BEGIN 

Figure 4-16 .. COM program with data at end. 

These examples demonstrate other significant requirements for producing a functioning 
.COM program. For instance, the ORG OJOOH statement in both examples tells MASM to 
start assembling the code at offset lOOH within the encompassing segment. This corre
sponds to MS-DOS's transferring control to the program at IP = OlOOH. In addition, the 
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a 
parameter to the END statement. Together, these factors satisfy the requirement that .COM 
programs declare their entry point at offset lOOH. If any factor is missing, the MS-DOS 
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM 
file. Specifically, if a .COM program declares an entry point (as a parameter to the END 
statement) that is at neither offset OlOOH nor offset OOOOH, EXE2BIN rejects the .EXE file 
when the programmer attempts to convert it. If the program fails to declare an entry point 
or declares an entry point at offset OOOOH, EXE2BIN assumes that the .EXE file is to be 
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE 
file to a non-.COM binary file, it does not strip the extra lOOH bytes the linker places in 
front of the code as a result of the ORG OJOOH instruction. Thus, the program actually 
begins at offset 200H when MS-DOS loads it into memory, but all the program's address 
references will have been assembled and linked based on the lOOH offset. As a result, the 
program- and probably the rest of the system as well- is likely to crash. 

A .COM program also must not contain direct segment address references to any segments 
that make up the program. Thus, the .COM program cannot reference any segment labels 
or reference any labels as long (FAR) pointers. (This rule does not prevent the program 
from referencing segment labels declared using the SEGMENT AT address directive.) 
Following are various examples of direct segment address references that are not per
mitted as part of .COM programs: 

Section II: Programming in the MS-DOS Environment 145 
HUAWEI EX. 1010 - 157/1582

Article 4: Structure of an Application Program—-———-———————-————-—-———————————-—————————————-————————__.___._

CSEG SEGMENT BYTE PUBLIC ‘CODE' ;establish segment order
CSEG ENDS '
DSEG SEGMENT BYTE PUBLIC 'DATA'
DSEG ENDS

COMGRP GROUP CSEG,DSEG ;establish joint address baSe
DSEG SEGMENT

;Place your data fields here.
DSEG ENDS
CSEG SEGMENT

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP
ORG 0100H

BEGIN:

;Place your program text here. Remember to use
:OFFSET COMGRPzLABEL whenever you use OFFSET.

MOV AX,4COOH ;terminate (MS—DOS 2.0 or later only)
INT 21H

CSEG ENDS
END BEGIN

Figure 4-16. .COMprogram with data at end.

These examples demonstrate other significant requirements for producing a functioning

.COM program. For instance, the ORG 0100H statement in both examples tells MASM to

start assembling the code at offset 100H within the encompassing segment. This corre—

sponds to MS—DOS’s transferring control to the program at IP = 0100H. In addition, the

entry—point label (BEGIN) immediately follows the ORG statement and appears again as a

parameter to the END statement. Together, these factors satisfy the requirement that .COM

programs declare their entry point at offset 100H. If any factor is missing, the MS—DOS

EXEZBIN utility will not properly convert the .EXE file produced by the linker into a .COM

file. Specifically, if a .COM program declares an entry point (as a parameter to the END

statement) that is at neither offset OlOOH nor offset OOOOH, EXEZBIN rejects the .EXE file

when the programmer attempts to convert it. If the program fails to declare an entry point

or declares an entry point at offset OOOOH, EXEZBIN assumes that the .EXE file is to be

converted to a binary image rather than to a .COM image. When EXEZBIN converts a .EXE

file to a non-.COM binary file, it does not strip the extra IOOH bytes the linker places in

front of the code as a result of the ORG 0100H instruction. Thus, the program actually

begins at offset ZOOH when MS—DOS loads it into memory, but all the program’s address

references will have been assembled and linked based on the 100H offset. As a result, the

program— and probably the rest of the system as well —— is likely to crash.

A .COM program also must not contain direct segment address references to any segments

that make up the program. Thus, the .COM program cannot reference any segment labels

or reference any labels as long (FAR) pointers. (This rule does not prevent the program

from referencing segment labels declared using the SEGMENT AT address directive.)

Following are various examples of direct segment address references that are not per-

mitted as part of .COM programs:

Section 11: Programming in the MS—DOS Environment 145
HUAWEI EX. 1010 - 157/1582

 



i: 

': 
It 

:I' 
I:; 

I 
i 

,I I I, 

Part B: Programming for MS-DOS 

PROC_A PROC FAR 
PROC_A ENDP 

CALL PROC_A ;intersegment call 
JMP PROC_A ;intersegment jump 

or 

EXTRN PROC_A:FAR 

CALL PROC_A ;intersegment call 
JMP PROC_A ;intersegment jump 

or 

MOV AX,SEG SEG_A ;segment address 
DD LABEL_A ;segment:offset pointer 

Finally, .COM programs must not declare any segments with the STACK combine type. If 
a program declares a segment with the STACK combine type, the linker will insert initial 
SS and SP values into the .EXE file header, causing EXE2BIN to reject the .EXE file. A .COM 
program does not have explicitly declared stacks, although it can reserve space in a non
STACK combine type segment to which it can initialize the SP register after it receives 
control. The absence of a stack segment will cause the linker to issue a harmless warning 
message. 

When the program is assembled and linked into a .EXE file, it must be converted into a 
binary file with a .COM extension by using the EXE2BIN utility as shown in the following 
example for the file YOURPROG.EXE: 

C>EXE2BIN YOURPROG YOURPROG.COM <Enter> 

It is not necessary to delete or rename a .EXE file with the same filename as the .COM 
file before trying to execute the .COM file as long as both remain in the same directory, 
because MS-DOS's order of execution is .COM files first, then .EXE files, and finally .BAT 
files. However, the safest practice is to delete a .EXE file immediately after converting it to 
a .COM file in case the .COM file is later renamed or moved to a different directory. If a 
.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash 
the system. 

Patching the .COM program using DEBUG 

As discussed for .EXE files, a programmer who distributes software to users will probably 
want to send instructions on how to patch in error corrections. This approach to software 
updates lends itself even better to .COM files than it does to .EXE files. 

For example, because .COM files contain only the code image, they need not be renamed 
in order to read and write them using DEBUG. The user need only be instructed on how to 
load the .COM file into DEBUG, how to patch the program, and how to write the patched 
image back to disk. Calculating the addresses and patch values is even easier, because no 
header exists in the .COM file image to cause complications. With the preceding excep
tions, the details for patching .COM programs remain the same as previously outlined for 
.EXE programs. 

146 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 158/1582

Part B: Programming for MS-DOS 

PROC_A PROC FAR

PROC_A ENDP l

   
CALL PROC_A ;intersegment call
JMP PROC_A ;intersegment jump

or

EXTRN PROC_A:FAR

CALL PRoc_A ;intersegment call
JMP PROC_A ;intersegment jump

or

MOV AX,SEG SEG_A ;segment address
DD LABEL_A ;segment:offset pointer

Finally, .COM programs must not declare any segments with the STACK combine type. If

a program declares a segment with the STACK combine type, the linker will insert initial

SS and SP values into the .EXE file header, causing EXEZBIN to reject the .EXE file. A .COM

program does not have explicitly declared stacks, although it can reserve space in a non-

STACK combine type segment to which it can initialize the SP register after it receives

control. The absence of a stack segment will cause the linker to issue a harmless warning
message.

     
l When the program is assembled and linked into a .EXE file, it must be converted into a

binary file with a .COM extension by using the EXEZBIN utility as shown in the following

example for the file YOURPROG.EXE:

 C>EXE2BIN YOURPROG YOURPROG.COM <Enter>

  
‘ It is not necessary to delete or rename a .EXE file with the same filename as the .COM

, file before trying to execute the .COM file as long as both remain in the same directory,

1 because MS—DOS’s order of execution is .COM files first, then .EXE files, and finally .BAT

‘ l files. However, the safest practice is to delete a .EXE file immediately after converting it to

1 a .COM file in case the .COM file is later renamed or moved to a different directory. If a

.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash

the system. '

I ‘ l i 3 Patching the .COM program using DEBUG

1 As discussed for .EXE files, a programmer who distributes software to users will probably

‘ i 3 want to send instructions on how to patch in error corrections. This approach to software
, updates lends itself even better to .COM files than it does to .EXE files.

'- 1 ‘l i For example, because .COM files contain only the code image, they need not be renamed
1 ' 1 i in order to read and write them using DEBUG. The user need only be instructed on how to

‘ load the .COM file into DEBUG, how to patch the program, and how to write the patched
image back to disk. Calculating the addresses and patch values is even easier, because no

header exists in the .COM file image to cause complications. With the preceding excep-

tions, the details for patching .COM programs remain the same as previously outlined for
.EXE programs.

146 TheMS'DOSWC’W‘“ ‘ HUAWEI EX. 1010 - 158/1582

   
ill w



Article 4: Structure of an Application Program 

.COM summary 

To summarize, the .COM program and file structures are a simpler but more restricted 
approach to writing programs than the .EXE structure because the programmer has only a 
single memory model from which to choose (the .COM program segment model). Also, 
.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so 
the .COM program structure is well suited to small programs for which adding 512 bytes 
of header would probably at least double the file's size. 

Summary of Differences 

The following table summarizes the differe~ces between .COM and .EXE programs . 

Maximum size 

Entry point 
CS ~tentry 

IP at entry 

DS at entry 
ES at entry 
SS at entry 
SPat entry 

Stack at entry 

Stack size 

Subroutine calls 
Exit method 

Size of file 

.COM program 

65536 bytes minus 256 bytes 
for PSP and 2 bytes for stack 

PSP:0100H 
PSP 

OlOOH 

PSP 
PSP 
PSP 
FFFEH or top word in available 

memory, whichever is lower 
Zero word 

65536 bytes minus 256 bytes 
for PSP and size of executable 
code and data 

NEAR 
Interrupt 21H Function 4CH 

preferred; NEAR RET if 
MS-DOS versions l.x 

Exact size of program 

. EXE program 

No limit 

Defined by END statement 
Segment containing program's 

entry point 
Offset of entry point within its 

segment 
PSP 
PSP 
Segment with STACK attribute 
End of segment defined with 

STACK attribute 
Initialized or uninitialized, 

depending on source 
Defined in segment with 

STACK attribute 

NEAR or FAR 
Interrupt 21H Function 4CH 

preferred; indirect jump 
to PSP:OOOOH if MS-DOS 
versions l.x 

Size of program plus header (at 
least 512 extra bytes) 

Section Jl- Programming in the MS-DOS Environment 147 

-------· HUAWEI EX. 1010 - 159/1582

 
.COM summary

Article 4: Structure of an Application Program 

To summarize, the .COM program and file structures are a simpler but more restricted

approach to writing programs than the .EXE structure because the programmer has only a

single memory model from which to choose (the .COM program segment model). Also,

.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so

the .COM program structure is well suited to small programs for which adding 512 bytes

of header would probably at least double the file’s size.

Summary ofDifferences

The following table summarizes the differences between .COM and .EXE programs.

Maximum size

Entry point

CS at entry

IP at entry

DS at entry

ES at entry

SS at entry

SP at entry

Stack at entry

Stack size

Subroutine calls

Exit method

Size of file

.COM program

65536 bytes minus 256 bytes

for PSP and 2 bytes for stack
PSP20100H

PSP

0100H

PSP

PSP

PSP

FFFEH or top word in available

memory, whichever is lower
Zero word ‘

65556 bytes minus 256 bytes
for PSP and size of executable

code and data

NEAR

Interrupt 21H Function 4CH

preferred; NEAR RET if
MS—DOS versions 1.x

Exact size of program

.EXE program

No limit

Defined by END statement

Segment containing program’s

entry point

Offset of entry point within its
segment

PSP

PSP

Segment with STACK attribute

End of segment defined with
STACK attribute

Initialized or uninitialized,

depending on source

Defined in segment with
STACK attribute

NEAR or FAR

Interrupt 21H Function 4CH

preferred; indirect jump
to PSP:0000H if MS-DOS
versions 1.x

Size of program plus header (at

least 512 extra bytes)

Section 11: Programming in the MS-DOS Environment 147

HUAWEI EX. 1010 - 159/1582

N



Part B: Programming for MS-DOS 

Which format the programmer uses for an application usually depends on the program's 
intended size, but the decision can also be influenced by a program's need to address mul
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR
MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler) 
are designed as .EXE programs. The ultimate decision is, of course, the programmer's. 

Keith Burgoyne 

148 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 160/1582

Part B: Programming for MS—DOS 

Which format the programmer uses for an application usually depends on the program’s

intended size, but the decision can also be influenced by a program’s need to address mul-
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR-

MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler)

are designed as .EXE programs. The ultimate decision is, of course, the programmer’s.

Keith Burgoyne

   
  
l 148 TheMS‘DOSEmyC’WEd’” HUAWEI EX. 1010 - 160/1582

 



l 

I 

L
f. 

.. 

Article 5: Character Device Input and Output 

Article 5: 
Character Device Input and Output 

All functional computer systems are composed of a central processing unit (CPU), some 
memory, and peripheral devices that the CPU can use to store data or communicate with 
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard 
(for input), the display (for output), and one or more disk drives (for nonvolatile storage). 
Additional devices such as printers, modems, and pointing devices extend the function
ality of the computer or offer alternative methods of using the system. 

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or 
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com
munications ports. 

The distinction between block and character devices is not always readily apparent, but 
in general, block devices transfer information in chunks, or blocks, and character devices 
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by 
a drive letter assigned when the device's controlling software, the device driver, is loaded. 
A character device, on the other hand, is identified by a logical name (similar to a filename . 
and subject to many of the same restrictions) built into its device driver. See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-oos: Installable Device Drivers. 

Background Information 

Versions l.x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices 
with a fixed set of device drivers loaded during system initialization from the hidden file 
IO.SYS (or IBMBIO.COM with PC-DOS). These versions of MS-DOS offered application 
programs a high degree of input/output device independence by allowing character 
devices to be treated like files, but they did not provide an easy way to augment the built-in 
set of drivers if the user wished to add a third-party peripheral device to the system. 

With the release of MS-DOS version 2.0, the hardware flexibility of the system was tremen
dously enhanced. Versions 2.0 and later support ins'tallable device drivers that can reside in 
separate files on the disk and can be linked into the operating system simply by adding a 
DEVICE directive to the CONFIG.SYS file on the startup disk. See USER COMMANDS: 
CONFIG.SYS: DEVICE. A well-defined interface between installable drivers and the MS-DOS 
kernel allows such drivers to be written for most types of peripheral devices without the 
need for modification to the operating system itself. 

The CONFIG.SYS file can contain a number of different DEVICE commands to load sepa
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on. Each 
driver, in turn, is specialized for the hardware characteristics of the device it supports. 

Section ll- Programming in the MS-DOS Environment 149 

HUAWEI EX. 1010 - 161/1582

Article 5: Character Device Input and Output 

Article 5:

Character Device Input and Output

All functional computer systems are composed of a central processing unit (CPU), some

memory, and peripheral devices that the CPU can use to store data or communicate with

the outside world. In MS—DOS systems, the essential peripheral devices are the keyboard

(for input), the display (for output), and one or more disk drives (for nonvolatile storage).

Additional devices such as printers, modems, and pointing devices extend the function—

ality of the computer or offer alternative methods of using the system.

MS—DOS recognizes two types of devices: block devices, which are usually floppy—disk or

fixed-disk drives; and character devices, such as the keyboard, display, printer, and com—

munications ports.

 
The distinction between block and character devices is not always readily apparent, but

in general, block devices transfer information in chunks, or blocks, and character devices

move data one character (usually 1 byte) at a time. MS-DOS identifies each block: device by

a drive letter assigned when the device’s controlling software, the device driver, is loaded. -

A character device, on the other hand, is identified by a logical name (similar to a filename .

and subject to many of the same restrictions) built into its device driver. See PROGRAM-

MING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING Ms-Dos: Installable Device Drivers.

Background Information

Versions 1.x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices

with a fixed set of device drivers loaded during system initialization from the hidden file

IO.SYS (or IBMBIO.COM with PC-DOS). These versions of MS—DOS offered application

programs a high degree of input/output device independence by allowing character

devices to be treated like files, but they did not provide an easy way to augment the built—in

set of drivers if the user wished to add a third—party peripheral device to the system.

With the release of MS-DOS version 2.0, the hardware flexibility of the system was tremen-

dously enhanced. Versions 2.0 and later support installable device drivers that can reside in

separate files on the disk and can be linked into the operating system simply by adding a

DEVICE directive to the CONFIG.SYS file on the startup disk. See USER COMMANDS:
CONFIG.SYS: DEVICE. A well—defined interface between installable drivers and the MS-DOS

kernel allows such drivers to be written for most types of peripheral devices without the

need for modification to the operating system itself.

 
l

f. The CONFIGSYS file can contain a number of different DEVICE commands to load sepa-
f; rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on. Each
l driver, in turn, is specialized for the hardware characteristics of the device it supports.7

Section IL Programming in the MS—DOS Environment 149

HUAWEI EX. 1010 - 161/1582
 



Part B: Programming for MS-DOS 

When the system is turned on or restarted, the installable device drivers are added to the 
chain, or linked list, of default device drivers loaded from IO.SYS during MS-DOS initializa
tion. Thus, the need for the system's default set of device drivers to support a wide range of 
optional device types and features at an excessive cost of system memory is avoided. 

One important distinction between block and character devices is that MS-DOS always 
adds new block-device drivers to the tail of the driver chain but adds new character-device 
drivers to the head of the chain. Thus, because MS-DOS searches the chain sequentially 
and uses the first driver it finds that satisfies its search conditions, any existing character
device driver can be superseded by simply installing another driver with an identicallogi-
. cal device name. 

This article covers some of the details of working with MS-DOS character devices: display
ing text, keyboard input, and other basic character 1/0 functions; the definition and use of 
standard input and output; redirection of the default character devices; and the use of the 
IOCTL function (Interrupt 21H Function 44H) to communicate directly with a character
device driver. Much of the information presented in this article is applicable only to 
MS-DOS versions 2.0 and later . 

. Accessing Character Devices 

Application programs can use either of two basic techniques to access character devices in 
a portable manner under MS-DOS. First, a program can use the handle-type function calls 
that were added to MS-DOS in version 2.0. Alternatively, a program can use the so-called 
"traditional" character-device functions that were present in versions l.x and have been 
retained in the operating system for compatibility. Because the handle functions are more 
powerful and flexible, they are discussed first. 

A handle is a 16-bit number returned by the operating system whenever a file or device is 
opened or created by passing a name to MS-DOS Interrupt 21H Function 3CH (Create File 
with Handle), 3DH (Open File with Handle), 5AH (Create Temporary File),-or 5BH (Create 
New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH 
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the 
computer's memory and the file or device. 

During an open or create function call, MS-DOS searches the device-driver chain sequen
tially for a character device with the specified name (the extension is ignored) before 
searching the disk directory. Thus, a file with the same name as any character device in the 
driver chain-for example, the file NUL. TXT- cannot be created, nor can an existing file 
be accessed if a device in the chain has the same name. 

The second method for accessing character devices is through the traditional MS-DOS 
character input and output functions, Interrupt 21H Functions OlH through OCH. These 
functions are designed to communicate directly with the keyboard, display, printer, and 
serial port. Each of these devices has its own function or group of functions, so neither 

150 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 162/1582

Part B: Programming for MS—DOS

When the system is turned on or restarted, the installable device drivers are added to the

chain, or linked list, of default device drivers loaded from IO.SYS during MS-DOS initializa-

tion. Thus, the need for the system’s default set of device drivers to support a wide range of

optional device types and features at an excessive cost of system memory is avoided.

 
One important distinction between block and character devices is that MS-DOS always
adds new block—device drivers to the tail of the driver chain but adds new character-device

drivers to the head of the chain. Thus, because MS—DOS searches the chain sequentially

and uses the first driver it finds that satisfies its search conditions, any existing character-

device driver can be superseded by simply installing another driver with an identical logi—
cal device name.

 
This article covers some of the details of working with MS—DOS character devices: display-

ing text, keyboard input, and other basic character I/O functions; the definition and use of

standard input and output; redirection of the default character devices; and the use of the
IOCTL function (Interrupt 21H Function 44H) to communicate directly with a character-

device driver. Much of the information presented in this article is applicable only to
MS—DOS versions 2.0 and later.

 
Accessing Character Devices

  
Application programs Can use either of two basic techniques to access character devices in

a portable manner under MS-DOS. First, a program can use the handle—type function calls

that were added to MS-DOS in version 2.0. Alternatively, a program can use the so~called

“traditional” character-device functions that were present in versions 1.x and have been

retained in the operating system for compatibility. Because the handle functions are more
powerful and flexible, they are discussed first.

 
‘ E 1 E , A handle is a 16-bit number returned by the operating system whenever a file or device is

- i opened or created by passing a name to MS-DOS'Interrupt 21H Function SCH (Create File
j E E E with Handle), SDH (Open File with Handle), SAH (Create Temporary File),‘or SBH (Create

‘ E ‘ New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the

computer’s memory and the file or device. 
, , , During an open or create function call, MS—DOS searches the device-driver chain sequen~

i ,1 1 E tially for a character device with the specified name (the extension is ignored) before
‘ , ‘ searching the disk directory. Thus, a file with the same name as any character device in the

E E . , , E ~ driver chain—for example, the file NULTXT— cannot be created, nor can an existing file
‘ be accessed if a device in the chain has the same name.

 
E E ; Q E 1 The second method for accessing character devices is through the traditional MS-DOS

. ‘ , , character input and output functions, Interrupt 21H Functions 01H through OCH. These
= E ‘ ‘ . 3 functions are designed to communicate directly with the keyboard, display, printer, and

E , E ‘ serial port. Each of these devices has its own function or group of functions, so neither

HUAWEI EX. 1010 - 162/1582

 
E

E

E, l .E
E . 1 50 ‘ The MS—DOS EncyclopediaE
‘ ,



Article 5: Character Device Input and Output 

names nor handles need be used. However, in MS-DOS versions 2.0 and later, these func
tion calls are translated within MS-DOS to make use of the same routines that are used by 
the handle functions, so the traditional keyboard and display functions are affected by l/0 
redirection and piping. 

Use of either the traditional or the handle-based method for character device l/0 results 
in highly portable programs that can be used on any computer that runs MS-DOS. A third, 
less portable access method is to use the hardware-specific routines resident in the read
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral 
device's adapter directly, bypassing the system software altogether. Although these latter 
hardware-dependent methods cannot be recommended, they are admittedly sometimes 
necessary for performance reasons. 

The Basic MS-DOS Character Devices 

Every MS-DOS system supports at least the following set of logical character devices 
without the need for any additional installable drivers: 

Device 

CON 
PRN 
AUX 
CLOCK$ 
NUL 

Meaning 

Keyboard and display 
System list device, usually a parallel port 
Auxiliary device, usually a serial port 
System real-time clock 
"Bit-bucket" device 

These devices can be opened by name or they can be addressed through the "traditional" 
function calls; strings can be read from or written to the devices according to their capabili
ties on any MS-DOS system. Data written to the NUL device is discarded; reads from the 
NUL device always return an end-of-file condition. 

PC-DOS and compatible implementations of MS-DOS typically also support the following 
logical character-device names: 

Device 

COM1 
COM2 
LPTl 
LPT2 
LPT3 

Meaning 

First serial communications port 
Second serial communications port 
First parallel printer port 
Second parallel printer port 
Third parallel printer port 

Section lL Programming in the MS-DOS Environment 151 

HUAWEI EX. 1010 - 163/1582

Article 5-. Character Device Input and Output 

names nor handles need be used. However, in MS—DOS versions 2.0 and later, these func-

tion calls are translated within MS—DOS to make use of the same routines that are used by

the handle functions, so'the traditional keyboard and display functions are affected by 1/0

redirection and piping.

Use of either the traditional or the handle-based method for character device I/O results

in highly portable programs that can be used on any computer that runs MS—DOS. A third,

less portable access method is to use the hardware-specific routines resident in the read-

only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func—

tions), and a fourth, definitely nonportable approach is to manipulate the peripheral

device’s adapter directly, bypassing the system software altogether. Although these latter

hardware-dependent methods cannot be recommended, they are admittedly sometimes

necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS—DOS system supports at least the following set of logical» character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port

AUX Auxiliary device, usually a serial port

CLOCK$ System real-time clock
NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “traditional"

function calls; strings can be read from or written to the devices according to their capabili-

ties on any MS—DOS system. Data written to the NUL device is discarded; reads from the

NUL device always return an end-of—file condition.

PC-DOS and compatible implementations of MS—DOS typically also support the following

logical character—device names:

Device Meaning

COMl First serial communications port

COMZ Second serial communications port

LPT1 First parallel printer port

LPT2 Second parallel printer port

LPT3 Third parallel printer port

Section 11- Programming in the MS—DOS Environment 151

HUAWEI EX. 1010 - 163/1582

 
 



.It Part B: Programming for MS-DOS 

In such systems, PRN is an alias for LPTl and AUX is an alias for COMl. The MODE com
mand can be used to redirect an LPT device to another device. See USER COMMANDS: 
MODE. 

As previously mentioned, any of these default character-device drivers can be superseded 
by a user-installed device driver_.:_ for example, one that offers enhanced functionality or 
changes the device's apparent characteristics. One frequently used alternative character
device driver is ANSI.SYS, which replaces the standard MS-DOS CON device driver and 
allows ANSI escape sequences to be used to perform tasks such as clearing the screen, 
controlling the cursor position, and selecting character attributes. See USER COMMANDS: 
ANSI.SYS. 

The standard devices 

Under MS-DOS versions 2.0 and later, each program owns five previously opened handles 
for character devices (referred to as the standard devices) when it begins executing. These 
handles can be used for input and output operations without further preliminaries. The 
five standard devices and their associated handles are 

Standard Device Name Handle Default Assignment 

Standard input (stdin) 0 CON 
Standard output (stdout) 1 CON 
Standard error (stderr) 2 CON 
Standard auxiliary (stdaux) 3 AUX 
Standard printer (stdprn) 4 PRN 

The standard input and standard output handles are especially important because they are 
subject to I/0 redirection. Although these handles are associated by default with the CON 
device so that read and write operations are implemented using the keyboard and video 
display, the user can associate the handles with other character devices or with files by 
using redirection parameters in a program's command line: 

Redirection 

<file 
>file 
»file 
pl:p2 

Result 

Causes read operations from standard input to obtain data from file. 
Causes data written to standard output to be placed in file. 
Causes data written to standard output to be appended to file. 
Causes data written to standard output by program pi to appear as the 

standard input of program p2. 

This ability to redirect I/0 adds great flexibility and power to the system. For example, 
programs ordinarily controlled by keyboard entries can be run with "scripts" from files, 
the output of a program can be captured in a file or on a printer for later inspection, and 
general-purpose programs (filters) can be written that process text streams without regard 
to the text's origin or destination. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusTOMIZING Ms-oos: Writing MS-DOS Filters. 

152 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 164/1582

 

 
        

 

Part B: Programming for MS-DOS 

In such systems, PRN is an alias for LPT1 and AUX is an alias for COM1. The MODE com—

mand can be used to redirect an LPT device to another device. See USER COMMANDS:
MODE.

As previously mentioned, any of these default character-device drivers can be superseded
by a user-installed device driver— for example, one that offers enhanced functionality or

changes the device’s apparent characteristics. One frequently used alternative character—

device driver is ANSI.SYS, which replaces the standard MS—DOS CON device driver and

allows ANSI escape sequences to be used to perform tasks such as clearing the screen,

controlling the cursor position, and selecting character attributes. See USER COMMANDS:
ANSI.SYS.

The standard devices

Under MS—DOS versions 2.0 and later, each program owns five previously opened handles

for character devices (referred to as the standard devices) when it begins executing. These

handles can be used for input and output operations without further preliminaries. The
five standard devices and their associated handles are

Standard Device Name . Handle Default Assignment

Standard input (stdz'n) 0 CON

Standard output (stdout) 1 CON
Standard error (stderr) 2 CON

Standard auxiliary (stdaux) 3 AUX

Standard printer (stdprn) 4 PRN

The standard input and standard output handles are especially important because they are

subject to I/O redirection. Although these handles are associated by default with the CON

device so that read and write operations are implemented using the keyboard and video

display, the user can associate the handles with other character devices or with files by

using redirection parameters in a program’s command line: '

Redirection Result

< file Causes read operations from standard input to obtain data from file.

> file Causes data written to standard output to be placed in file.

>> file Causes data written to standard output to be appended to file.

p] l p2 Causes data written to standard output by programp] to appear as the

standard input of program p2.

This ability to redirect I/O adds great flexibility and power to the system. For example,

programs ordinarily controlled by keyboard entries can be run with “scripts” from files,

the output of a program can be captured in a file or on a printer for later inspection, and '

general-purpose programs (filters) can be written that process text streams without regard

to the text’s origin or destination. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:

CUSTOMIZING Ms-Dos: Writing MS-DOS Filters.

152 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 164/1582



I 
I 

Article 5: Character Device Input and Output 

Ordinarily, an application program is not aware that its input or output has been redi
rected, although a write operation to standard output will fail unexpectedly if standard 
output was redirected to a disk file and the disk is full. An application can check for the 
existence ofi/0 redirection with an IOCTL (Interrupt 21H Function 44H) call, but it can
not obtain any information about the destination of the redirected handle except whether 
it is associated with a character device or with a file. 

Raw versus cooked mode 
MS-DOS associates each handle for a character device with a mode that determines how 
I/0 requests directed to that handle are treated. When a handle is in raw mode, characters 
are passed between the application program and the device driver without any filtering or 
buffering by MS-DOS. When a handle is in cooked mode, MS-DOS buffers any data that is 
read from or written to the device and takes special actions when certain characters are 
detected. 

During cooked mode input, MS-DOS obtains characters from the device driver one at a 
time, checking each character for a Control-C. The characters are assembled into a string 
within an internal MS-DOS buffer. The input operation is terminated when a carriage 
return (ODH) or an end-of-file mark (lAH) is received or when the number of characters 
requested by the application have been accumulated. If the source is standard input, lone 
linefeed characters are translated to carriage-return/linefeed pairs. The string is then 
copied from the internal MS-DOS buffer to the application program's buffer, and control 
returns to the application program. 

During cooked mode output, MS-DOS transfers the characters in the application pro
gram's output buffer to the device driver one at a time, checking after each character for 
a Control-C pending at the keyboard. If the destination is standard output and standard 
output has not been redirected, tabs are expanded to spaces using eight-column tab stops. 
Output is terminated when the requested number of characters have been written or when 
an end-of-file mark (lAH) is encountered in the output string. 

In contrast, during raw mode input or output, data is transferred directly between the 
application program's buffer and the device driver. Special characters such as carriage 
return and the end-of-file mark are ignored, and the exact number of characters in the ap
plication program's request are always read or written. MS-DOS does not break the strings 
into single-character calls to the device driver and does not check the keyboard buffer for 
Control-C entries during the I/0 operation. Finally, characters read from standard input 
in raw mode are not echoed to standard output. 

As might be expected from the preceding description, raw mode input or output is usu
ally much faster than cooked mode input or output, because each character is not being 
individually processed by the MS-DOS kernel. Raw mode also allows programs to read 
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for 
example, Control-C, Control-P, and Control-S). (If BREAK is on, MS-DOS will still check for 
Control-C entries during other function calls, such as disk operations, and transfer control 

Section IL- Programming in the MS-DOS Environment 153 

HUAWEI EX. 1010 - 165/1582

Article 5: Character Device Input and Output

Ordinarily, an application program is not aware that its input or output has been redi-

rected, although a write operation to standard output will fail unexpectedly if standard

output was redirected to a disk file and the disk is full. An application can check for the

existence of I/O redirection with an IOCTL (Interrupt 21H Function 44H) call, but it can—

not obtain any information about the destination of the redirected handle except whether
it is associated with a character device or with a file.

Raw versus cooked mode

MS-DOS associates each handle for a character device with a mode that determines how

I/O requests directed to that handle are treated. When a handle is in raw mode, characters

are passed between the application program and the device driver without any filtering or

buffering by MS-DOS. When a handle is in cooked mode, MS—DOS buffers any data that is

read from or written to the device and takes special actions when certain characters are
detected.

During cooked mode input, MS-DOS obtains characters from the device driver one at a

time, checking each character for a Control—C. The characters are assembled into a string

within an internal MS—DOS buffer. The input operation is terminated when a carriage
return (ODH) or an end-of-file mark (lAH) is received or when the number of characters

requested by the application have been accumulated. If the source is standard input, lone

linefeed characters are translated to carriage-return/linefeed pairs. The string is then

copied from the internal MS—DOS buffer to the application program’s buffer, and control

returns to the application program.

During cooked mode output, MS—DOS transfers the characters in the application pro—

gram’s output buffer to the device driver one at a time, checking after each character for

a Control—C pending at the keyboard. If the destination is standard output and standard

output has not been redirected, tabs are expanded to spaces using eight-column tab stops.

Output is terminated when the requested number of characters have been written or when

an end—of-file mark (1AH) is encountered in the output string.

In contrast, during raw mode input or output, data is transferred directly between the

application program’s buffer and the device driver. Special characters such as carriage
return and the end—of-file mark are ignored, and the exact number of characters in the ap—

plication program’s request are always read or written. MS—DOS does not break the strings

into single-character calls to the device driver and does not check the keyboard buffer for

Control-C entries during the I/O operation. Finally, characters read from standard input

in raw mode are not echoed to standard output.

As might be expected from the preceding description, raw mode input or output is usu-

ally much faster than cooked mode input or output, because each Character is not being

individually processed by the MS-DOS kernel. Raw mode also allows programs to read

characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for

example, Control-C, Control—P, and Control—S). (If BREAK is on, MS-DOS will still check for

Control—C entries during other function calls, such as disk operations, and transfer control

Section II: Programming in the MS—DOS Environment 153

HUAWEI EX. 1010 - 165/1582

N

 



Part B: Programming for MS-DOS 

to the Control-C exception handler if a Control-C is detected.) A program can use the 
MS-DOS IOCTL Get and Set Device Data services (Interrupt 21H Function 44H Subfunc
tions OOH and OlH) to set the mode for a character-device handle. See IOCTL below. 

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was 
obtained from a previous open operation and affects only the 1/0 operations requested 
by the program that owns the handle. However, when a program uses IOCTL to select raw 
or cooked mode for one of the standard device handles, the selection has a global effect 
on the behavior of the system because those handles are never closed. Thus, some of the 
"traditional" keyboard input functions might behave in unexpected ways. Consequently, 
programs that change the mode on a standard device handle should save the handle's 
mode at entry and restore it before performing a final exit to MS-DOS, so that the opera
tion of COMMAND. COM and other applications will not be disturbed. Such programs 
should also incorporate custom critical error and Control-C exception handlers so that the 
programs cannot be terminated unexpectedly. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: CusTOMIZING Ms-oos: Exception Handlers. 

The keyboard 
Among the MS-DOS Interrupt 21H functions are two methods of checking for and receiv
ing input from the keyboard: the traditional method, which uses MS-DOS character input 
Functions OlH, 06H, 07H, 08H, OAH, OBH, and OCH (Table 5-1); and the handle method, 
which uses Function 3FH. Each of these methods has its own advantages and disadvan
tages. See SYSTEM CALLS. 

Table 5-1. Traditional MS-DOS Character Input Functions. 

Read Multiple Ctrl-C 
Function Name Characters Echo Check 

OlH Character Input with Echo No Yes Yes 
06H Direct Console 1/0 No No No 
07H Unfiltered Character Input 

Without Echo No No .No 
08H Character Input Without Echo No No Yes 
OAH Buffered Keyboard Input Yes Yes Yes 
OBH Check Keyboard Status No No Yes 
OCH Flush Buffer, Read Keyboard * * * 

•varies depending on function (from above) called in the AL register. 

The first four traditional keyboard input calls are really very similar. They all return a char
acter in the AL register; they differ mainly in whether they echo that character to the dis
play and whether they are sensitive to interruption by the user's entry of a Control-C. Both 
Functions 06H and OBH can be used to test keyboard status (that is, whether a key has 
been pressed and is waiting to be read by the program); Function OBH is simpler to use, 
but Function 06H is immune to Control-C entries. 

154 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 166/1582

     
           

 
 

Part B: Programming for MS—DOS 

to the Control-C exception handler if a Control-C is detected.) A program can use the

MS—DOS IOCTL Get and Set Device Data services (Interrupt 21H Function 44H Subfunc-
tions 00H and 01H) to set the mode for a character-device handle. See IOCTL below.

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was

obtained from a previous open operation and affects only the I/O operations requested

by the program that owns the handle. However, when a program uses IOCTL to select raw

or cooked mode for one of the standard device handles, the selection has a global effect

on the behavior of the system because those handles are never closed. Thus, some of the

“traditional” keyboard input functions might behave in unexpected ways. Consequently,

programs that change the mode on a standard device handle should save the handle’s

mode at entry and restore it before performing a final exit to MS-DOS, so that the opera-

tion of COMMANDCOM and other applications will not be disturbed. Such programs

should also incorporate custom critical error and Control—C exception handlers so that the

programs cannot be terminated unexpectedly. See PROGRAMMING IN THE MS—DOS

ENVIRONMENT: CUSTOMIZING Ms-Dos: Exception Handlers.

The keyboard

Among the MS—DOS Interrupt 21H functions are two methods of checking for and receiv-

ing input from the keyboard: the traditional method, which uses MS—DOS character input

Functions 01H, 06H, 07H, 08H, OAH, OBH, and OCH (Table 5—1); and the handle method,

which uses Function SFH. Each of these methods has its own advantages and disadvan—

tages. See SYSTEM CALLS.

Table 5-1. Traditional MS-DOS Character Input Functions.

Read Multiple Ctrl-C
Function Name Characters Echo Check

01H Character Input with Echo No Yes Yes

06H Direct Console ~I/O No _ No No

07H Unfiltered Character Input
Without Echo No No .No

08H Character Input Without Echo No - No Yes

OAH Buffered Keyboard Input Yes Yes Yes

OBH Check Keyboard Status No No Yes

OCH Flush Buffer, Read Keyboard ‘ * " *

‘Varies depending on function (from above) called in the AL register.

The first four traditional keyboard input calls are really very similar. They all return a char-

acter in the AL register; they differ mainly in whether they echo that character to the dis—

play and whether they are sensitive to interruption by the user’s entry of a Control-C. Both

Functions 06H and OBH can be used to test keyboard status (that is, whether a key has

been pressed and is waiting to be read by the program); Function OBH is simpler to use,
but Function 06H is immune to Control-C entries.

154 TheMS—DOSEncyclopedia
HUAWEI EX. 1010 - 166/1582



Article 5: Character Device Input and Output 

Function OAH is used to read a "buffered line" from the user, meaning that an entire line is 
accepted by MS-DOS before control returns to the program. The line is terminated when 
the user presses the Enter key or when the maximum number of characters (to 255) speci
fied by the program have been received. While entry of the line is in progress, the usual 
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and 
compatibles) are active; only the final, edited line is delivered to the requesting program. 

Function OCH allows a program to flush the type-ahead buffer before accepting input. 
This capability is important for occasions when a prompt must be displayed unexpectedly 
(such as when a critical error occurs) and the user could not have typed ahead a valid 
response. This function should also be used when the user is being prompted for a critical 
decision (such as whether to erase a file), to prevent a character that was previously 
pressed by accident from triggering an irrecoverable operation. Function OCH is unusual 
in that it is called with the number of one of the other keyboard input functions in register 
AL. After any pending input has been discarded, Function OCH simply transfers to the 
other specified input function; thus, its other parameters (if any) depend on the function 
that ultimately will be executed. 

The primary disadvantage of the traditional function calls is that they handle redirected 
input poorly. If standard input has been redirected to a file, no way exists for a program 
calling the traditional input functions to detect that the end of the file has been reached
the input function will simply wait forever, and the system will appear to hang. 

A program that wishes to use handle-based I/0 to get input from the keyboard must use 
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH. Ordinarily, the pro
gram can employ the predefined handle for standard input (0), which does not need to be 
opened and which allows the program's input to be redirected by the user to another file 
or device. If the program needs to circumvent redirection and ensure that its input is from 
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the 
handle obtained from that open operation instead of the standard input handle. 

A program using the handle functions to read the keyboard can control the echoing of 
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the 
IOCTL Get and Set Device Data services (default= cooked mode). To test the keyboard 
status, the program can either issue an IOCTL Check Input Status call (Interrupt 21H Func
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt 
21H Function OBH). 

The primary advantages of the handle method for keyboard input are its symmetry with 
file operations and its graceful handling of redirected input. The handle function also 
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard 
Input function allows a maximum of 255 characters to be read at a time. This considera
tion is important for programs that are frequently used with redirected input and output 
(such as filters), because reading and writing larger blocks of data from files results in 
more efficient operation. The only real disadvantage to the handle method is that it is 
limited to MS-DOS versions 2.0 and later (although this is no longer a significant 
restriction). 

Section II: Programming in the MS-DOS Environment 155 

HUAWEI EX. 1010 - 167/1582

 
 

 

Article 5: Character Device Input and Output 

Function OAH is used to read a “buffered line” from the user, meaning that an entire line is

accepted by MS-DOS before control returns to the program. The line is terminated when

the user presses the Enter key or when the maximum number of characters (to 255) speci-

fied by the program have been received. While entry of the line is in progress, the usual

editing keys (such as the left and right arrow keys and the function keys on IBM PCs and

compatibles) are active; only the final, edited line is delivered to the requesting program.

Function OCH allows a program to flush the type-ahead buffer before accepting input.

This capability is important for occasions when a prompt must be displayed unexpectedly

(such as when a critical error occurs) and the usercould not have typed ahead a valid

response. This function should also be used when the user is being prompted for a critical

decision (such as whether to erase a file), to prevent a character that was previously

pressed by accident from triggering an irrecoverable operation. Function OCH is unusual

in that it is called with the number of one of the other keyboard input functions in register

AL. After any pending input has been discarded, Function OCH simply transfers to the

other specified input function; thus, its other parameters (if any) depend on the function

that ultimately will be executed.

The primary disadvantage of the traditional function calls is that they handle redirected

input poorly. If standard input has been redirected to a file, no way exists for a program

calling the traditional input functions to detect that the end of the file has been reached—
the input function will simply wait forever, and the system will appear to hang.

A program that wishes to use handle—based 1/0 to get input from the keyboard must use

the MS-DOS Read File or Device service, Interrupt 21H Function SFH. Ordinarily, the pro-

gram can employ the predefined handle for standard input (0), which does not need to be

opened and which allows the program’s input to be redirected by the user to another file

or device. If the program needs to circumvent redirection and ensure that its input is from

the keyboard, it can open the CON device with Interrupt 21H Function SDH and use the

handle obtained from that open operation instead of the standard input handle.

A program using the handle functions to read the keyboard can control the echoing of

characters and sensitivity to Control-C entries by selecting raw or cooked mode with the

IOCTL Get and Set Device Data services (default = cooked mode). To test the keyboard

status, the program can either issue an IOCTL Check Input Status call (Interrupt 21H Func—

tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt
21H Function OBH).

The primary advantages of the handle method for keyboard input are its symmetry with

file operations and its graceful handling of redirected input. The handle function also

allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard

Input function allows a maximum of 255 characters to be read at a time. This considera-

tion is important for programs that are frequently used with redirected input and output

(such as filters), because reading and writing larger blocks of data from files results in

more efficient operation. The only real disadvantage to the handle method is that it is

limited to MS-DOS versions 2.0 and later (although this is no longer a significant
restriction).

Section 11: Programming in the MS—DOS Environment 155

HUAWEI EX.1010 - 167/1582



i 

,], :' 

Part B: Programming for MS-DOS 

Role ofthe ROM BIOS 

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard
ware interrupt (09H) that is serviced by a routine in the ROM BIOS. The ROM BIOS inter
rupt handler reads I/0 ports assigned to the keyboard controller and translates the key's 
scan code into an ASCII character code. The result of this translation depends on the cur
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control, 
or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address 
0000:0417H that gives the current status of each of these modifier keys.) 

After translation, both the scan code and the ASCII code are placed in the ROM BIOS's 
32-byte (16-character) keyboard input buffer. In the case of "extended" keys such as the 
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the 
information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed 
as a first-in/first-out queue. Because of the method used to determine when the buffer is 
empty, one position in the buffer is always wasted; the maximum number of characters 
that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are 
discarded and a warning beep is sounded. 

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that 
allows programs to test keyboard status, determine whether characters are waiting in the 
type-ahead buffer, and remove characters from the buffer. See Appendix 0: IBM PC BIOS 
Calls. Its use by application programs should ordinarily be avoided, however, to prevent 
introducing unnecessary hardware dependence. 

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the 
BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware
dependent work. Thus, calls to MS-DOS for keyboard input by an application program are 
subject to two layers of translation: The Interrupt 21H function call is converted by the 
MS-DOS kernel to calls to the CON driver, which in turn remaps the request onto a ROM 
BIOS call that obtains the character. 

Keyboard programming examples 
1 

Example: Use the ROM BIOS keyboard driver to read a character from the keyboard. The 
character is not echoed to the display. 

mov 
int 

ah,OOh 

16h 

subfunction OOH = read character 

; transfer to ROM BIOS 

; now AH = scan code, AL = character 

Example: Use the MS-DOS traditional keyboard input function to read a character from 
the keyboard. The character is not echoed to the display. The input can be interrupted 
with a Ctrl-C keystroke. 

mov ah,08h 

int 21h 

156 The MS-DOS Encyclopedia 

function 08H = character input 

without echo 
transfer to MS-DOS 

now AL = character 

HUAWEI EX. 1010 - 168/1582

Part B: Programming for MS—DOS 

Role ofthe ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard-

ware interrupt (09H) that is serviced by a routine in the ROM BIOS. The ROM BIOS inter-

rupt handler reads I/O ports assigned to the keyboard controller and translates the key’s

scan code into an ASCII character code. The result of this translation depends on the cur-
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control,

or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address

0000:0417H that gives the current status of each of these modifier keys.)

    
After translation, both the scan code and the ASCII code are placed in the ROM BIOS’s

32-byte (16-character) keyboard input buffer. In the case of “extended” keys such as the

function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the
information. The keyboard buffer is arranged as'a circular, or ring, buffer and is managed

as a first—in/first—out queue. Because of the method used to determine when the buffer is

empty, one position in the buffer is always wasted; the maximum number of characters

that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are

discarded and a warning beep is sounded.

The ROM BIOS provides an additional module, invoked‘by software Interrupt 16H, that

allows programs to test keyboard status, determine whether characters are waiting in the

type-ahead buffer, and remove characters from the buffer. See Appendix 0: IBM PC BIOS

Calls. Its use by application programs should ordinarily be avoided, however, to prevent

introducing unnecessary hardware dependence.

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the

BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-

dependent work. Thus, calls to MS-DOS for keyboard input by an application program are

subject to two layers of translation: The Interrupt 21H function call is converted by the
MS—DOS kernel to calls to the CON driver, which inturn remaps the request onto a ROM
BIOS call that obtains the character.

    
 l

l l l j , Keyboard programming examplest ‘ z . W ,

‘ Example: Use the ROM BIOS keyboard driver to read a character from the keyboard. The
character is not echoed tothe display.

mov ah,00h ; subfunction 00H = read character
int 16h ; transfer to ROM BIOS

; now AH = scan code, AL = character
 
 

Example: Use the MS—DOS traditional keyboard input function to read a character from

the keyboard. The character is not echoed to the display. The input can be interrupted

with a Ctrl—C keystroke.
ll
1.

3 mov ah,08h ; function 08H = character input
; 3 I without echo
‘ . int 21h ; transfer to MS-DOS

I- now AL = character

156 The MS—DOS Encyclopedia

., HUAWEI EX. 1010 - 168/1582

 



I 
i 

l
i 

'•-

Article 5: Character Device Input and Output 

Example: Use the MS-DOS traditional Buffered Keyboard Input function to read an entire 
line from the keyboard, specifying a maximum line length of 80 characters. All editing 
keys are active during entry, and the input is echoed to the display. 

kbuf db 
db 
db 

mov 
mov 
mov 
mov 
int 

80 
0 

80 dup (0) 

dx,seg kbuf 
ds,dx 
dx,offset kbuf 
ah,Oah 
21h 

maximum length of read 
actual length of read 
keyboard input goes here 

set DS:DX = address of 
keyboard input buffer 

function OAH = read buffered line 
transfer to MS-DOS 
terminated by a carriage return, 
and kbuf+1 = length of input, 
not including the carriage return 

Example: Use the MS-DOS handle-based Read File or Device function and the standard 
input handle to read an entire line from the keyboard, specifying a maximum line length 
of 80 characters. All editing keys are active during entry, and the input is echoed to the dis
play. (The input will not terminate on a carriage return as expected if standard input is in 
raw mode.) 

kbuf db 80 dup (0) 

mov dx,seg kbuf 
mov ds,dx 
mov dx,offset kbuf 
mov cx,80 
mov bx,O 
mov ah,3fh 
int 21h 
jc error 

The display 

buffer for keyboard input 

set DS:DX = address of 
keyboard input buffer 

CX = maximum length of input 
standard input handle = 0 
function 3FH = read file/device 
transfer to MS-DOS 
jump if function failed 
otherwise AX = actual 
length of keyboard input, 
including carriage-return and 
linefeed, and the data is 
in the buffer 'kbuf' 

The output half of the MS-DOS logical character device CON is the video display. On IBM 
PCs and compatibles, the video display is an "option" of sorts that comes in several forms. 
IBM has introduced five video subsystems that support different types of displays: the 
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced 
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics 
Array (MCGA). Other, non-IBM-compatible video subsystems in common use include the 
Hercules Graphics Card and its variants that support downloadable fonts. 

Section II- Programming in the MS-DOS Environment 157 

HUAWEI EX. 1010 - 169/1582

Article 5: Character Device Input and Output 

Example: Use the MS—DOS traditional Buffered Keyboard Input function to read an entire

line from the keyboard, specifying a maximum line length of 80 characters. All editing

keys are active during entry, and the input is echoed to the display.

kbuf db 80 ; maximum length of read
db 0 ; actual length of read

db 80 dup (0) ; keyboard input goes here

mov dx,seg kbuf ; set DS:DX = address of
mov ds,dx . ; keyboard input buffer
mov dX,offset kbuf
mov ah,0ah ; function OAH = read buffered line
int 21h ; transfer to MS—DOS

; terminated by a carriage return,
; and kbuf+1 = length of input,
; not including the carriage return

Example; Use the MS—DOS handle—based Read File or Device function and the standard

input handle to read an entire line from the keyboard, specifying a maximum line length

of 80 characters. All editing keys are active during entry, and the input is echoed to the dis-

play. (The input will not terminate on a carriage return as expected if standard input is in
raw mode.)

kbuf db 80 dup (0) ; buffer for keyboard input

mov dx,seg kbuf ; set DS:DX = address of
mov ds,dx ; keyboard input buffer
mov dx,offset kbuf
mov cx,80 ; CX = maximum length of input
mov bx,0 : standard input handle = O
mov ah,3fh ; function 3FH = read file/device
int 21h ; transfer to MS—DOS

jc error ; jump if function failed
' ; otherwise AX = actual

; length of keyboard input,
; including carriage—return and
; linefeed, and the data is
; in the buffer 'kbuf‘

The display

The output half of the MS—DOS logical character device CON is the video display. On IBM

PCs and compatibles, the video display is an “option” of sorts that comes in several forms.

IBM has introduced five video subsystems that support different types of displays: the

Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced

Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics

Array (MCGA). Other, non-lBM-compatible video subsystems in common use include the

Hercules Graphics Card and its variants that support downloadable fonts.

Section 11- Programming in the MS—DOS Environment 1 57

HUAWEI EX. 1010 - 169/1582

 
""AN



Part B: Programming for MS-DOS 

Two portable techniques exist for writing text to the video display with MS-DOS function 
calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out
put), 06H (Direct Console I/0), and 09H (Display String). The handle method is supported 
by Function 40H (Write File or Device) and is available only in MS~DOS versions 2.0 and 
later. See SYSTEM CALLS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H. All these calls 
treat the display essentially as a "glass teletype" and do not support bit-mapped graphics. 

Traditional Functions 02H and 06H are similar. Both are called with the character to be 
displayed in the DL register; they differ in that Function 02H is sensitive to interruption by 
the user's entry of a Control-C, whereas Function 06H is immune to Control-C but cannot 
be used to output the character OFFH (ASCII rubout). Both calls check specifically for car
riage return (ODH), linefeed (OAH), and backspace (08H) characters and take the appro
priate action if these characters are detected. 

Because making individual calls to MS-DOS for each character to be displayed is inefficient 
and slow, the traditional Display String function (09H) is generally used in preference to 
Functions 02H and 06H. Function 09H is called with the address of a string that is termi
nated with a dollar-sign character ($); it displays the entire string in one operation, regard
less of its length. The string can contain embedded control characters such as carriage 
return and linefeed. 

· To use the handle method for screen display, programs must call the MS-DOS Write File 
or Device service, Interrupt 21H Function 40H. Ordinarily, a program should use the pre
defined handle for standard output (1) to send text to the screen, so that any redirection 
requested by the user on the program's command line will be honored. If the program 
needs to circumvent redirection and ensure that its output goes to the screen, it can either 
use the predefined handle for standard error (2) or explicitly open the CON device with 
Interrupt 21H Function 3DH and use the resulting handle for its write operations. 

The handle technique for displaying text has several advantages over the traditional 
calls. First, the length of the string to be displayed is passed as an explicit parameter, so 
the string need not contain a special terminating character and the $ character can be dis
played as part of the string. Second, the traditional calls are translated to handle calls 
inside MS-DOS, so the handle calls have less internal overhead and are generally faster. 
Finally, use of the handle Write File or Device function to display text is symdetric with 
the methods the program must use to access its files. In short, the traditional functions 
should be avoided unless the program must be capable of running under. MS-DOS ver
sions 1.x. 

Controlling the screen 

158 

One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen
control capabilities. The default CON driver has no built-in routines to support cursor 
placement, screen clearing, display mode selection, and so on. 

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the 
file ANSI.SYS. This driver contains most of the screen-control capabilities needed by text
oriented application programs. The driver is installed by adding a DEVICE directive to the 

The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 170/1582

Part B: Programming for MS-DOS 

Two portable techniques exist for writing text to the video display with MS-DOS function

calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out-

put), O6H (Direct Console I/O), and 09H (Display String). The handle method is supported

by Function 40H (Write File or Device) and is available only in MS-DOS versions 2.0 and

later. See SYSTEM CALLS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H. All these calls

treat the display essentially as a “glass teletype” and do not support bit-mapped graphics.

Traditional Functions 02H and 06H are similar. Both are called with the character to be

displayed in the DL register; they differ in that Function 02H is sensitive to interruption by

the user’s entry of a Control-C, Whereas Function 06H is immune to Control-C but cannot

be used to output the character OFFH (ASCII rubout). Both calls check specifically for car-

riage return (ODH), linefeed (OAH), and backspace (08H) characters and take the appro-

priate action if these characters are detected.

Because making individual calls to MS-DOS for each character to be displayed is inefficient

and slow, the traditional Display String function (09H) is generally used in preference to

Functions 02H and 06H. Function 09H is called with the address of a string that is termi-

nated with a dollar—sign character ($); it displays the entire string in one operation, regard—

less of its length. The string can contain embedded control characters such as carriage
return and linefeed.

 
' To use the handle method for screen display, programs must call the MS-DOS Write File

or Device service, Interrupt 21H Function 40H. Ordinarily, a program should use the pre—

defined handle for standard output (1) to send text to the screen, so that any redirection

requested by the user on the program’s command line will be honored. If the program

needs to circumvent redirection and ensure that its output goes to the screen, it can either

use the predefined handle for standard error (2) or explicitly open the CON device with

Interrupt 21H Function SDH and use the resulting handle for its write operations.

  
 

The handle technique for displaying text has several advantages over the traditional

‘ ’ calls. First, the length of the string to be displayed is passed as an explicit parameter, so

A 3 F 1 the string need not contain a special terminating character and the $ character can be dis—

l ‘ g ' played as part of the string. Second, the traditional calls are translated to handle calls

l . i l ‘ inside MS~DOS, so the handle calls have less internal overhead and are generally faster.
l , Finally, use of the handle Write File or Device function to display text is symrrletric with
l 3 l ‘ ' the methods the program must use to access its files. In short, the traditional functions
l

   
, i should be avoided unless the program must be capable of running under MS-DOS ver—

sions 1.x.

 
g ‘ , I Controlling the screen

‘ g 1 One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen—

; ‘ control capabilities. The default CON driver has no built-in routines to support cursor
, 1 ' placement, screen clearing, display mode selection, and so on.

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the

file ANSISYS. This driver contains most of the screen-control capabilities needed by text—

oriented application programs. The driver is installed by adding a DEVICE directive to the

158 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 170/1582

 



I 
I 
! 
I 
I 

! 

Article 5: Character Device Input and Output 

CONFIG.SYS file and restarting the system. When ANSI.SYS is active, a program can 
position the cursor, inquire about the current cursor position, select foreground and 
background colors, and clear the current line or the entire screen by sending an escape 
sequence consisting of the ASCII Esc character (lBH) followed by various function
specific parameters to the standard output device. See USER COMMANDS: ANSI.SYS. 

Programs that use the ANSI.SYS capabilities for screen control are portable to any MS-DOS 
implementation that contains the ANSI.SYS driver. Programs that seek improved perfor
mance by calling the ROM BIOS video driver or by assuming direct control of the hard
ware are necessarily less portable and usually require modification when new PC models 
or video subsystems are released. 

Role of the ROM BIOS 

The video subsystems in IBM PCs and compatibles use a hybrid of memory-mapped and 
port-addressed I/0. A range of the machine's memory addresses is typically reserved for a 
video refresh buffer that holds the character codes and attributes to be displayed on the 
screen; the cursor position, display mode, palettes, and similar global display char
acteristics are governed by writing control values to specific I/0 ports. 

The ROM BIOS of IBM PCs and compatibles contains a primitive driver for the MDA, CGA, 
EGA, VGA, and MCGA video subsystems. This driver supports the following functions: 

• Read or write characters with attributes at any screen position. 
• Query or set the cursor position. 
• Clear or scroll an arbitrary portion of the screen. 
• Select palette, background, foreground, and border colors. 
• Query or set the display mode ( 40-column text, SO-column text, all-points-addressable 

graphics, and so on). 
• Read or write a pixel at any screen coordinate. 

These functions are invoked by a program through software Interrupt lOH. See Appendix 
0: IBM PC BIOS Calls. In PC-DOS-compatible implementations of MS-DOS, the display 
portions of the MS-DOS CON and ANSI.SYS drivers use these ROM BIOS routines. Video 
subsystems that are not IBM compatible either must contain their own ROM BIOS or must 
be used with an installable device driver that captures Interrupt lOH and provides appro
priate support functions. 

Text-only application programs should avoid use of the ROM BIOS functions or direct 
access to the hardware whenever possible, to ensure maximum portability between 
MS-DOS systems. However, because the MS-DOS CON driver contains no support for bit
mapped graphics, graphically oriented applications usually must resort to direct control 
of the video adapter and its refresh buffer for speed and precision. 

Section II: Programming in the MS-DOS Environment 159 

HUAWEI EX. 1010 - 171/1582

Article 5: Character Device Input and Output 

CONFIGSYS file and restarting the system. When ANSI.SYS is active, a program can

position the cursor, inquire about the current cursor position, select foreground and

background colors, and clear the current line or the entire screen by sending an escape
sequence consisting of the ASCII Esc character (IBH) followed by various function-

specific parameters to the standard output device. See USER COMMANDS: ANSI.SYS.

Programs that use the ANSI.SYS capabilities for screen control are portable to any MS—DOS

implementation that contains the ANSI.SYS driver. Programs that seek improved perfor-

mance by calling the ROM BIOS video driver or by assuming direct control of the hard—

ware are necessarily less portable and usually require modification when new PC models

or video subsystems are released.

Role ofthe ROM BIOS

The video subsystems in IBM PCs and compatibles use a hybrid of memory—mapped and

port-addressed 1/0. A range of the machine’s memory addresses is typically reserved for a

video refresh buffer that holds the character codes and attributes to be displayed on the

screen; the cursor position, display mode, palettes, and similar global display char—

acteristics are governed by writing control values to specific I/O ports.

The ROM BIOS of IBM PCs and compatibles contains a primitive driver for the MDA, CGA,

EGA, VGA, and MCGA video subsystems. This driver supports the following functions:

0 Read or write characters with attributes at any screen position.

Query or set the cursor positidn.

Clear or scroll an arbitrary portion of the screen.

Select palette, background, foreground, and border colors.

Query or set the display mode (40—column text, 80-column text, all—points-addressable

graphics, and so on).

0 Read or write a pixel at any screen coordinate.

These functions are invoked by a program through software Interrupt 10H. See Appendix

0: IBM PC BIOS Calls. In PC-DOS-Compatible implementations of MS-DOS, the display

portions of the MS-DOS CON and ANSI.SYS drivers use these ROM BIOS routines. Video

subsystems that are not IBM compatible either must contain their own ROM BIOS or must

be used with an installable device driver that captures Interrupt 10H and provides appro—

priate support functions.

 
Text-only application programs should avoid use of the ROM BIOS functions or direct

,l access to the hardware whenever possible, to ensure maximum portability between

E MS-DOS systems. However, because the MS—DOS CON driver contains no support for bit-
mapped graphics, graphically oriented applications usually must resort to direct control

£ of the video adapter and its refresh buffer for speed and precision.
l
i

ll
ll

1

Section II.- Programming in the MS—DOS Environment 159

HUAWEI EX. 1010 - 171/1582
 

N



PartB:·Programming for MS-DOS 

Display programming examples 

Example: Use the ROM BIOS Interrupt lOH function to write an asterisk character to the 
display in text mode. (In graphics mode, BL must also be set to the desired foreground 
color.) 

mov ah,Oeh sub function OEH = write character 

in teletype mode 
mov al, '*' AL = character to display 
mov bh,O select display page 0 
int 10h transfer to ROM BIOS video driver 

Example: Use the MS-DOS traditional function to write an asterisk character to the dis
play. If the user's entry of a Control-C is detected during the output and standard output is 
in cooked mode, MS-DOS calls the Control-C exception handler whose address is found 
in the vector for Interrupt 23H. 

mov 

mov 

int 

ah,02h 
dl, I* I 

21h 

function 02H = display character 
DL = character to display 

transfer to MS-DOS 

Example: Use the MS-DOS traditional function to write a string to the display. The output 
is terminated by the $ character and can be interrupted when the user enters a Control-C if 
standard output is in cooked mode. 

msg db 'This is a test message','$' 

mov dx,seg msg DS:DX = address of text 

mov ds,dx to display 

mov dx,offset msg 

mov ah,09h function 09H = display string 
int 21h transfer to MS-DOS 

Example: Use the MS-DOS handle-based Write File or Device function and the predefined 
handle for standard output to write a string to the display. Output can be interrupted by the 
user's entry of a Control-C if standard output is in cooked mode. 

msg db 
msg_len equ 

mov 

mov 

'This is a test message' 

$-msg 

dx,seg msg 

ds,dx 

DS:DX = address of text 

to display 
mov dx,offset msg 

mov 

mov 

mov 
int 

cx,msg_len 

bx, 1 
ah,40h 

21h 

160 The MS-DOS Encyclopedia 

ex = length of text 

BX = handle for standard output 
function 40H = write file/device 

transfer to MS-DOS 

HUAWEI EX. 1010 - 172/1582

Parththrogramming for MS-DOS

Display programming examples    
in the vector for Interrupt 23H.

standard output is in cooked mode.

'This is a test message','$' msg db

mov dx,seg msg ; DS:DX = address of text
mov ds,dx ; to display
mov dX,offset msg
mov ah,09h ; function 09H = display string
int 21h ; transfer to MS—DOS

Example: Use the MS-DOS handle—based Write File or Device function

 
user’s entry of a Control-C if standard output is in cooked mode.

msg db
msg_len equ

'This is a test message'
$-msg

 
 

r w mov dx,seg msg ; DS:DX = address of text

'9 t‘ mov ds,dx ; to display
l :1 mov dx,offset msg .

E‘ } mov cx,msg_len ; CX = length of text
:.y 1 mov bx,1 ; BX = handle for standard output
j Q mov ah,40h ; function 40H = write file/device

j‘ “1 int 21h ; transfer to MS-DOS

'1‘?“
1;

160 7heAL$lX1$Ehcychyxwfia

   
 

 

Example: Use the ROM BIOS Interrupt 10H function to write an asterisk character to the
display in text mode. (In graphics mode, BL must also be set to the desired foreground
color.)

mov ah,0eh ; subfunction OEH = write character
; in teletype mode

mov al,'*' ; AL = character to display
mov bh,0 ; select display page 0
int 10h ; transfer to ROM BIOS video driver

Example: Use the MS—DOS traditional function to write an asterisk character to the dis-

play. If the user’s entry of a Control-C is detected during the output and standard output is

in cooked mode, MS—DOS calls the Control-C exception handler whose address is found

mov ah,02h ; function 02H = display character
mov dl,'*' ; DL = character to display
int 21h ; transfer to MS-DOS

Example: Use the MS—DOS traditional function to write a string to the display. The output

is terminated by the 35 character and can be interrupted when the user enters a Control—C if

 
‘.zdganwdkhéfifikkfiéfi.

and the predefined

handle for standard output to write a string to the display. Output can be interrupted by the

HUAWEI EX. 1010 - 172/1582



Article 5: Character Device Input and Output 

The serial communications ports 

Through version 3.2, MS-DOS has built-in support for two serial communications ports, 
identified as COMl and COM2, by means of three drivers named AUX, COMl, and COM2. 
(AUX is ordinarily an alias for COMl.) 

The traditional MS-DOS method of reading from and writing to the serial ports is through 
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS-DOS 
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux
iliary device. A program can use the predefined handle for the standard auxiliary device 
(3) with Functions 3FH and 40H, or it can explicitly open the COMl or COM2 devices with 
Interrupt 21H Function 3DH and use the handle obtained from that open operation to 
perform read and write operations. 

MS-DOS support for the serial communications port is inadequate in several respects for 
high-performance serial I/0 applications. First, MS-DOS provides no portable way to test 
for the existence or the status of a particular serial port in a system; if a program "opens" 
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the 
program may simply hang. Similarly, if the serial port exists but no character has been 
received and the program attempts to read a character, the program will hang until one is 
available; there is no traditional function call to check if a character is waiting as there is 
for the keyboard. 

MS-DOS also provides no portable method to initialize the communications adapter to a 
particular baud rate, word length, and parity. An application must resort to ROM BIOS 
calls, manipulate the hardware directly, or rely on the user to configure the port properly 
with the MODE command before running the application that uses it. The default settings 
for the serial port on PC-DOS-compatible systems are 2400 baud, no parity, 1 stop bit, and 
8 databits. See USER COMMANDS: MODE. 

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and 
compatibles, however, is that it is not interrupt driven. Accordingly, when baud rates above 
1200 are selected, characters can be lost during time-consuming operations performed by 
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk 
sector. Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial port 
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not 
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not 
usually improve matters. 

Because of all the problems just described, telecommunications application programs 
commonly take over complete control of the serial port and supply their own interrupt 
handler and internal buffering for character read and write operations. See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Interrupt-Driven 
Communications. 

Section II: Programming in the MS-DOS Environment 161 

HUAWEI EX. 1010 - 173/1582

Article 5: Character Device Input and Output 

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,

identified as COMl and COMZ, by means of three drivers named AUX, COMI, and COMZ.

(AUX is ordinarily an alias for COMl.)

The traditional MS-DOS method of reading from and writing to the serial ports is through

Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS—DOS
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func—

tions (Interrupt 21H Functions SFH and 40H) can be used to read from or write to the aux-

iliary device. A program can use the predefined handle for the standard auxiliary device

(3) with Functions 3FH and 40H, or it can explicitly open the COM] or COMZ devices with

Interrupt 21H Function SDH and use the handle obtained from that open operation to

perform read and write operations.

MS-DOS support for the serial communications port is inadequate in several respects for

high—performance serial I/O applications. First, MS-DOS provides no portable way to test

for the existence or the status of a particular serial port in a system; if a program “opens”

COMZ and writes data to it and the physical COMZ adapter is not present in the system, the

program may simply hang. Similarly, if the serial port exists but no character has been

received and the program attempts to read a character, the program will hang until one is

available; there is no traditional function call to check if a character is waiting as there is

for the keyboard.

MS—DOS also provides no portable method to initialize the communications adapter to a

particular baud rate, word length, and parity. An application must resort to ROM BIOS

calls, manipulate the hardware directly, or rely on the user to configure the port properly

with the MODE command before running the application that uses it. The default settings

for the serial port on PC—DOS—cornpatible systems are 2400 baud, no parity, 1 stop bit, and
8 databits. See USER COMMANDS: MODE.

A more serious problem with the default MS—DOS auxiliary device driver in IBM PCs and

compatibles, however, is that it is not interrupt driven. Accordingly, when baud rates above

1200 are selected, characters can be lost during time—consuming operations performed by

the drivers for other devices, such as clearing the screen or reading or writing a floppy—disk

sector. Because the MS—DOS AUX device driver typically relies on the ROM BIOS serial port

driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not

interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not

usually improve matters.

Because of all the problems just described, telecommunications application programs

commonly take over complete control of the serial port and supply their own interrupt

handler and internal buffering for character read and write operations. See PROGRAM-

MING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Interrupt-Driven
Communications.

Section 11: Programming in the MS-DOS Environment 161

HUAWEI EX. 1010 -173/1582

H

 



Part B: Programming for MS-DOS 

Serial port programming examples 

Example: Use the ROM BIOS serial port driver to write a string to COMl. 

msg db 
msg_len equ 

mov 

mov 

mov 
mov 

mov 
L1: mov 

mov 
int 

inc 
loop 

'This is a test message' 

$-msg 

bx,seg msg DS:BX address of message 
ds,bx 

bx,offset msg 
cx,msg_len ex = length of message 
dx,O DX = 0 for eOM1 
al, [bx) get next character into AL 
ah,01h sub function 01H = output 
14h transfer to ROM BIOS 
bx bu.mp pointer to output string 
L1 and loop until all chars. sent 

Example: Use the MS-DOS traditional function for auxiliary device output to write a string 
toCOMl. 

msg db 
msg_len equ 

mov 

mov 
mov 

mov 
L1: mov 

mov 

int 

inc 
loop 

'This is a test message' 
$-msg 

bx,seg msg set DS:BX 
ds,bx 
bx, offset msg 
cx,msg_len set ex = 
dl, [bx) get next 
ah,04h function 
21h transfer 

address of message 

length of message 

character into DL 

04H = auxiliary output 

to MS-DOS 
bx bump pointer to output string 
L1 and loop until all chars. sent 

Example: Use the MS-DOS handle-based Write File or Device function and the predefined 
handle for the standard auxiliary device to write a string to COMl. 

msg db 
msg_len equ 

mov· 

mov 

mov 
mov 
mov 

mov 

int 

jc 

'This is a test message' 

$-msg 

dx,seg msg 
ds,dx 

dx, offset msg 
cx,msg_len 

bx,3 
ah,40h 

21h 
error 

DS:DX address of message 

ex = length of message 

BX = handle for standard aux. 

function 40H = write file/device 
transfer to MS-DOS 

jump if write operation failed 

162 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 174/1582

    
l1il

  
 

  

Part B: Programming for MS-DOS 

Serial port programming examples

Example: Use the ROM BIOS serial port driver to write a string to COM1.

msg db 'This is a test message'
msg_len equ S—msg

mov bx,seg msg ; DS:BX = address of message
mov ds,bx

mov bx,offset msg _
mov cx,msg_len ; CX = length of message
mov dx,0 ; Dx = 0 for COM1

L1: mov al,[bx] ; get next character into AL
mov ah,01h ; subfunction 01H = output
int 14h ; transfer to ROM BIOS

inc bx ; bump pointer to output string
loop L1 ; and loop until all chars. sent

 

 
Example: Use the MS-DOS traditional function for auxiliary device output to write a string
to COM1.

msg db 'This is a test message'
msg_len equ $—msg

mov bx,seg msg ; set DS:BX = address of message
mov ds,bx
mov bx,offset msg

mov cx,msg_len ; set CX = length of message
L1: mov dl,[bx] ; get next character into DL

mov ah,04h ; function 04H = auxiliary output
int 21h ; transfer to MS—DOS

inc bx ; bump pointer to output string
loop L1 ; and loop until all chars. sent

Example: Use the MS—DOS handle-based Write File or Device function and the predefined

handle for the standard auxiliary device to write a string to COM1.

msg db 'This is a test message'
msg_len equ $—msg

mov; dx,seg msg ; DS:BX = address of message
mov ds,dx

mov dx,offset msg
mov cx,msg_len ; CX = length of message
mov bx,3 ; BX = handle for standard aux.
mov ah,40h ; function 40H = write file/devic
int 21h ; transfer to MS—DOS

jc error ; jump if write operation failed

162 ThefiflhDOSEnqupafia

e

HUAWEI EX. 1010 - 174/1582



Article 5: Character Device Input and Output 

The parallel port and printer 

Most MS-DOS implementations contain device drivers for four printer devices: LPTl, LPT2, 
LPT3, and PRN. PRN is ordinarily an alias for LPTl and refers to the first parallel output 
port in the system. To provide for list devices that do not have a parallel interface, the LPT 
devices can be individually redirected with the MODE command to one of the serial com
munications ports. See USER COMMANDS: MODE. 

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be 
accessed with either traditional or handle-based function calls. The traditional function 
call is Interrupt 21H Function OSH, which accepts a character in DL and sends it to the 
physical device currently assigned to logical device name LPTl. 

A program can perform handle-based output to the printer with Interrupt 21H Function 
40H (Write File or Device). The predefined handle for the standard printer ( 4) can be used 
to send strings to logical device LPTl. Alternatively, the program can issue an open oper
ation for a specific printer device with Interrupt 21H Function 3DH and use the handle 
obtained from that open operation with Function 40H. This latter method also allows 
more than one printer to be used at a time from the same program. 

Because the parallel ports are assumed to be output only, no traditional call exists for 
input from the parallel port. In addition, no portable method exists to test printer port 
status under MS-DOS; programs that wish to avoid sending a character to the printer 
adapter when it is not ready or not physically present in the system must test the adapter's 
status by making a call to the ROM BIOS printer driver (by means of software Interrupt 
17H; see Appendix 0: IBM PC BIOS Calls) or by accessing the hardware directly. 

Parallel port programming examples 

Example: Use the ROM BIOS printer driver to send a string to the first parallel printer port. 

msg db 
msg:._len equ 

'This is a test message' 
$-msg 

L1: 

mov bx, seg msg 
mov ds, bx 
mov bx,offset msg 
mov 
mov 
mov 
mov 
int 
inc 
loop 

cx,msg_len 
dx,O 
al, [bx] 
ah,OOh 
17h 
bx 
L1 

DS:BX = address of message 

ex = length of message 
DX = 0 for LPT1 
get next character into AL 
subfunction OOH = output 
transfer to ROM BIOS 
bump pointer to output string 
and loop until all chars. sent 

Section I1- Programming in the MS-DOS Environment 163 

HUAWEI EX. 1010 - 175/1582

Article 5: Character Device Input and Output 

The parallel port and printer

Most MS-DOS implementations contain device drivers for four printer devices: LPT1, LPTZ,

LPTS, and PRN. PRN is ordinarily an alias for LPT1 and refers to the first parallel output .

port in the system. To provide for list devices that do not have a parallel interface, the LPT
devices can be individually redirected with the MODE command to one of the serial com-

munications ports. See USER COMMANDS: MODE.

As with the keyboard, the display, and the serial port, MS—DOS allows the printer to be
accessed with either traditional or handle-based function calls. The traditional function

call is Interrupt 21H Function 05H, which accepts a character in DL and sends it to the

physical device currently assigned to logical device name LPT1.

A program can perform handle-based output to the printer with Interrupt 21H Function

40H (Write File or Device). The predefined handle for the standard printer (4) can be used

to send strings to logical device LPT1. Alternatively, the program can issue an open oper-

ation for a specific printer device with Interrupt 21H Function SDH and use the handle

obtained from that open operation with Function 40H. This latter method also allows

more than one printer to be used at a time from the same program.

Because the parallel ports are assumed to be output only, no traditional call exists for

input from the parallel port. In addition, no portable method exists to test printer port

status under MS-DOS; programs that wish to avoid sending a character to the printer

adapter when it is not ready or not physically present in the system must test the adapter’s

status by making a call to the ROM BIOS printer driver (by means of software Interrupt

17H; see Appendix 0: IBM PC BIOS Calls) or by accessing the hardware directly.

Parallel port programming examples

Example Use the ROM BIOS printer driver to send a string to the first parallel printer port.

msg db ‘This is a test message'
msgnlen equ $-msg

mov bx,seg msg ; DS:BX = address of message
mov ds,bx '
mov bx,offset msg
mov cx,msg_len ; CX = length of message
mov dx,0 ; DX = 0 for LPT1

Ll: mov al,[bx] ' ; get next character into AL
mov ah,00h ; subfunction 00H = output
int 17h ; transfer to ROM BIOS

inc bx ; bump pointer to output string
loop L1 ; and loop until all chars. sent

Section 11: Programming in the MS—DOS Environment 163

HUAWEI EX. 1010 - 175/1582

 



'! 

Part B: Programming for MS-DOS 

Example: Use the traditional MS-DOS function call to send a string to the first parallel 
printer port. 

msg db 
msg_len equ 

mov 
mov 

mov 
mov 

11: mov 

mov 

int 
inc 

loop 

'This is a test message' 

$-msg 

bx,seg msg DS:BX address of message 

ds,bx 
bx,offset msg 
cx,msg_len ex = length of message 

dl, [bx] get next character into D1 

ah,OSh function OSH = printer output 

21h transfer to MS-DOS 

bx bump pointer to output string 

11 ., and loop until all chars. sent 

Example: Use the handle-based MS-DOS Write File or Device call and the predefined 
handle for the standard printer to send a string to the system list device. 

msg db 
msg_len equ 

mov 
mov 

mov 
mov 

mov 

mov 

int 
jc 

IOCTL 

'This is a test message' 
$-msg 

dx,seg msg 

ds,dx 
dx,offset msg 
cx,msg_len 

bx,4 
ah,40h 

21h 
error 

DS:DX address of message 

ex = length of message 

BX = handle for standard printer 
function 40H = write file/device 

transfer to MS-DOS 
jump if write operation failed 

In versions 2.0 and later, MS-DOS has provided applications with the ability to communi
cate directly with device drivers through a set of subfunctions grouped under Interrupt 
21H Function 44H (IOCTL). See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The 
IOCTL subfunctions that are particularly applicable to the character I/0 needs of appli
cation programs are 

Sub function 

.OOH 
OlH 
02H 

164 The MS-DOS Encyclopedia 

Name 

Get Device Data 
Set Device Data 
Receive Control Data from Character Device 

(more) 

HUAWEI EX. 1010 - 176/1582

 
Part B: Programming for MS-DOS 

Example: Use the traditional MS-DOS function call to send a string to the first parallel 
  

printer port.

msg db 'This is a test message‘
msg_len equ $—msg

mov bx,seg msg ; DS:BX = address of message
mov ds,bx
mov bx,offset msg
mov cx,msg_len ; CX = length of message

L1: mov dl,[bx] ; get next character into DL
mov ah,05h ; function 05H = printer output
int 21h ; transfer to MS—DOS

inc bx ; bump pointer to output string
loop L1 J and loop until all chars. sent

Example: Use the handle-based MS-DOS Write File or Device call and the predefined
handle for the standard printer to send a string to the system list device.

msg db 'This is a test message'
msg_len equ $—msg

mov dx,seg msg ; DS:DX = address of message
mov ds,dx
mov dx,offset msg
mov cx,msg-len ; CX = length of message
mov bx,4 ; BX = handle for standard printer
mov ah,40h ; function 40H = write file/device
int 21h ; transfer to MS—DOS

jc error ; jump if write operation failed

IOCTL

In versions 2.0 and later, MS—DOS has provided applications with the ability to communi—

cate directly with device drivers through a set of subfunctions grouped under Interrupt
21H Function 44H (IOCTL). See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The

, , IOCTL subfunctions that are particularly applicable to the character I/O needs of appli-

: 1 cation programs are

  
j Subfunction Name13

_ l _OOH Get Device Data
I ' 01H Set Device Data

‘ 02H Receive Control Data from Character Device

ll
l
I

E ‘ i (more)i

l

164 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 176/1582

 



Sub function 

03H 
06H 
07H 
OAH 
OCH 

Article 5: Character Device Input and Output 

Name 

Send Control Data to Character Device 
Check Input Status 
Check Output Status 
Check if Handle is Remote (version 3.1 or later) 
Generic I/0 Control for Handles: Get/Set Output Iteration Count 

Various bits in the device information word returned by Subfunction OOH can be tested 
by an application to determine whether a specific handle is associated with a character 
device or a file and whether the driver for the device can process control strings passed by 
Subfunctions 02H and 03H. The device information word also allows the program to test 
whether a character device is the CLOCK$, standard input, standard output, or NUL device 
and whether the device is in raw or cooked mode. The program can then use Subfunction 
OlH to select raw mode or cooked mode for subsequent I/0 performed with the handle. 

Subfunctions 02H and 03H allow control strings to be passed between the device driver 
and an application; they do not usually result in any physical I/0 to the device. For exam
ple, a custom device driver might allow an application program to configure the serial port 
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi
larly, the custom driver might respond to Subfunction 02H by passing the application a 
series of bytes that defines the current configuration and status of the serial port. 

Subfunctions 06H and 07H can be used by application programs to test whether a device is 
ready to accept an output character or has a character ready for input. These subfunctions 
are particularly applicable to the serial communications ports and parallel printer ports 
because MS-DOS does not supply traditional function calls to test their status. 

Subfunction OAH can be used to determine whether the character device associated 
with a handle is local or remote- that is, attached to the computer the program is running 
on or attached to another computer on a local area network. A program should not or
dinarily attempt to distinguish between local and remote devices during normal input and 
output, but the information can be useful in attempts to recover from error conditions. 
This subfunction is available only if Microsoft Networks is running. 

Finally, Subfunction OCH allows a program to query or set the number of times a device 
driver tries to send output to the printer before assuming the device is not available. 

IOCTL programming examples 

Example: Use IOCTL Subfunction OOH to obtain the device information word for the stan
dard input handle and save it, and then use Subfunction OlH to place standard input into 
raw mode. 

info dw ? save device information word here 

(more) 

Section II- Programming in the MS-DOS Environment 165 

----------........ HUAWEI EX. 1010 - 177/1582

Article 5: Character Device Input and Output 

Subfunction , Name

03H Send Control Data to Character Device

06H Check Input Status

07H Check Output Status ,
OAH Check if Handle is Remote (version 3.1 or later)

OCH Generic I/O Control for Handles: Get/Set Output Iteration Count

Various bits in the device information word returned by Subfunction 00H can be tested

by an application to determine whether a specific handle is associated with a character

device or a file and whether the driver for the device can process control strings passed by

Subfunctions 02H and 03H. The device information word also allows the program to test

whether a character device is the CLOCK$, standard input, standard output, or NUL device

and whether the device is in raw or cooked mode. The program can then use Subfunction

01H to select raw mode or cooked mode for subsequent I/O performed with the handle.

Subfunctions 02H and 03H allow control strings to be passed between the device driver

and an application; they do not usually result in any physical I/O to the device. For exam—

ple, a custom device driver might allow an application program to configmre the serial port

by writing a specific set of control parameters to the driver with Subfunction 03H. Simi-

larly, the custom driver might respond to Subfunction 02H by passing the application a

series of bytes that defines the current configuration and status of the serial port.

Subfunctions 06H and 07H can be used by application programs to test whether a device is

ready to accept an output character or has a character ready for input. These subfunctions

are particularly applicable to the serial communications ports and parallel printer ports

because MS—DOS does not supply traditional function calls to test their status.

Subfunction OAH can be used to determine whether the character device associated

with a handle is local or remote ———that is, attached to the computer the program is running

on or attached to another computer on a local area network. A program should not or-

dinarily attempt to distinguish between local and remote devices during normal input and

output, but the information can be useful in attempts to recover from error conditions.

This subfunction is available only if Microsoft Networks is running.

Finally, Subfunction OCH allows a program to query or set the number of times a device

driver tries to send output to the printer before assuming the device is not available.

IOCTL programming examples

Example: Use IOCTL Subfunction 00H to obtain the device information word for the stan—

dard input handle and save it, and then use Subfunction 01H to place standard input into
raw mode.

info dw ? ; save device information word here

(more)

Section 11: Programming in the MS—DOS Environment 165

HUAWEI EX. 1010 - 177/1582

“N

 



fl 
I 

I 
I 

Part B: Programming for MS-DOS 

mov 

mov 

int 
mov 

or 
mov 
mov 

int 

ax,4400h 

bx,O 
21h 

info,dx 

dl,20h 

dh,O 
ax,4401h 

21h 

AH = function 44H, IOCTL 
AL = subfunction OOH, get device 

information word 

BX = handle for standard input 

transfer to MS-DOS 
save device information word 

(assumes DS = data segment) 

set raw mode bit 
and clear DH as MS-DOS requires 

AL = subfunction 01H, set device 

information word 
(BX still contains handle) 

transfer to MS-DOS 

Example: Use IOCTL Subfunction 06H to test whether a character fs ready for input on the 
first serial port. The function returns AL = OFFH if a character is ready and AL = OOH if not. 

mov ax,4406H 

mov bx,3 

int 21h 

or al,al 

jnz ready 

166 The MS-DOS Encyclopedia 

AH = function 44H, IOCTL 

AL = subfunction 06H, get 

input status 

BX = handle for standard aux 

transfer to MS-DOS 

test status of AUX driver 

jump if input character ready 

else no character is waiting 

jim Kyle 
Chip Rabinowitz 

HUAWEI EX. 1010 - 178/1582

      
   
 

    
 

  
 

 

Part B: Programming for MS-DOS 

166

mov ax,4400h

mov bx,0
int 21h

mov info,dx

or dl,20h
mov dh,0
mov ax,4401h

int 21h

Example: Use IOCTL Subfunction 06H to test Whether a character is ready for input on the
first serial port. The function returns AL = OFFH if a character is ready and AL = OOH if not.

mov ax,4406H

mov bx,3
int 21h

or a1,al
jnz ready

The MS—DOS Encyclopedia

I
I
I

r
1

AH = function 44H, IOCTL
AL 2 subfunction 00H, get device
information word

BX = handle for standard input
transfer to MS—DOS
save device information word

(assumes DS = data segment)
set raw mode bit

and clear DH as MS—DOS requires
AL = subfunction 01H, set device
information word

(BX still contains handle)
transfer to MS—DOS

' AH = function 44H, IOCTL
' AL = subfunction 06H, get

input status
BX handle for standard aux
transfer to MS—DOS
test status of AUX driver

jump if input character ready
else no character is waiting

ll

fim Kyle
Chip Rabinowitz

 
iIvv

HUAWEI EX. 1010 - 178/1582



' 

l 

Article 6: Interrupt~Driven Communications 

Article6 
Interrupt-Driven Communications 

In the earliest days of personal-computer communications, when speeds were no faster 
than 300 bits per second, primitive programs that moved characters to and from the 
remote system were adequate. The PC had time between characters to determine what it 
ought to do next and could spend that time keeping track of the status of the remote 
system. 

Modern data-transfer rates, however, are four to eight times faster and leave little or no 
time to spare between characters. At 1200 bits per second, as many as three characters can 
be lost in the time required to scroll the display up one line. At such speeds, a technique to 
permit characters to be received and simultaneously displayed becomes necessary. 

Mainfram~ systems have long made use of hardware interrupts to coordinate such 
activities. The processor goes about its normal activity; when a peripheral device needs 
attention, it sends an interrupt request to the processor. The processor interrupts its activ
ity, services the request, and then goes back to what it was doing. Because the response is 
driven by the request, this type of processing is known as interrupt-driven. It gives the 
effect of doing two things at the same time without requiring two separate processors. 

Successful telecommunication with PCs at modern data rates demands an interrupt-driven 
routine for data reception. This article discusses in detail the techniques for interrupt
driven communications and culminates in two sample program packages. 

The article begins by establishing the purpose of communications programs and then 
discusses the capability of the simple functions provided by MS-DOS to achieve this goal. 
To see what must be done to supplement MS-DOS functions, the hardware (both the 
modem and the serial port) is examined. This leads to a discussion of the method MS-DOS 
has provided since version 2.0 for solving the problems of special hardware interfacing: 
the installable device driver. 

With the background established, alternate paths to interrupt-driven communications are 
discussed- one following recommended MS-DOS techniques, the other following stan
dard industry practice- and programs are developed for each. 

Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM 
PC family. MS-DOS systems not totally compatible with this architecture may require sub
stantially different approaches at the detailed level, but the same general principles apply. 

Purpose of Communications Programs 

The primary purpose of any communications program is communicating- that is, trans
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for 

Section 11- Programming in the MS-DOS Environment 167 
HUAWEI EX. 1010 - 179/1582

Article 6: Interrupt—Driven Communications 

Article 6

Interrupt-Driven Communications

In the earliest days of personal-computer communications, when speeds were no faster

than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate. The PC had time between characters to determine what it

ought to do next and could spend that time keeping track of the status of the remote
system.

Modern data—transfer rates, however, are four to eight times faster and leave little or no

time to spare between characters. At 1200 bits per second, as many as three characters can

be lost in the time required to scroll the display up one line. At such speeds, a technique to

permit characters to be received and simultaneously displayed becomes necessary.

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs

attention, it sends an interrupt request to the processor. The processor interrupts its activ-

ity, services the request, and then goes back to what it was doing. Because the response is

driven by the request, this type of processing is known as interrupt—driven. It gives the

effect of doing two things at the same time without requiring two separate processors.

Successful telecommunication with PCs at modern data rates demands an interrupt-driven

routine for data reception. This article discusses in detail the techniques for interrupt-

driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS—DOS to achieve this goal.

To see what must be done to supplement MS—DOS functions, the hardware (both the

modern and the serial port) is examined. This leads to a discussion of the method MS-DOS

has provided since version 2.0 for solving the problems of special hardware interfacing:
the installable device driver.

With the background established, alternate paths to interrupt-driven communications are

discussed— one following recommended MS—DOS techniques, the other following stan—

dard industry practice —— and programs are developed for each.

 
Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM

PC family. MS-DOS systems not totally compatible with this architecture may require sub-

stantially different approaches at the detailed level, but the same general principles apply.

Purpose ofCommunications Programs

The primary purpose of any communications program is communicating ——that is, trans-

mitting information entered as keystrokes (or bytes read from a file) in a form suitable for

Section 11- Programming in the MS-DOS Environment 167

HUAWEI EX. 1010 - 179/1582 
 



Part B: Programming for MS-DOS 

transmission to a remote computer via phone lines and, conversely, converting informa
tion received from the remote computer into a display on the video screen (or data in a 
file). 

Some years ago, the most abstraCt form of all communications programs was dubbed a 
modem engine, by analogy to Babbage's analytical engine or the inference-engine model 
used in artificial-intelligence development. The functions of the modem engine are com
mon to all kinds of communications programs, from the simplest to the most complex, 
and can be described in a type of pseudo-C as follows: 

The Modern Engine Pseudocode 

DO { IF (input character is available) 
senct_it_to_rernote; 

IF (remote character is available) 
use_it_locally; 

UNTIL (tolct_to_stop); 

The essence of this modem-engine code is that the absence of an input character, or of a 
character from the remote computer, does not hang the loop in a wait state. Rather, the 
engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking. 

Of course, at times it is desirable to halt the continuous action of the modem engine. For 
example, when receiving a long message, it is nice to be able to pause and read the mes
sage before the lines scroll into oblivion. On the other hand, taking too long to study the 
screen means that incoming characters are lost. The answer is a technique called flow con
trol, in which a special control character is sent to shut down transmission and some other 
character is later sent to start it up again. 

Several conventions for flow control exist. One of the most widespread is known as 
XON/XOFF, from the old Teletype-33 keycap legends for the two control codes involved. 
In the original use, XOFF halted the paper tape reader and XON started it going again. In 
mid-1967, the General Electric Company began using these signals in its time-sharing com
puter services to control the flow of data, and the practice rapidly spread throughout the 
industry. 

The sample program named ENGINE, shown later in this article, is an almost literal imple
mentation of the modem-engine approach. This sample represents one extreme of sim
plicity in communications programs. The other sample program, CTERM.C, is much more 
complex, but the modem engine is still at its .heart. 

Using Simple MS~DOS Functions 

Because MS-DOS provides, among its standard service functions, the capability of sending 
output to or reading input from the device named AUX (which defaults to COM1, the first 

168 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 180/1582

Part B: Programming for MS-DOS 

transmission to a remote computer via phone lines and, conversely, converting informa-

tion received from the remote computer into a display on the video screen (or data in a
file).

Some years ago, the most abstraét form of all communications programs was dubbed a

modem engine, by analogy to Babbage’s analytical engine or the inference-engine model

used in artificial-intelligence development. The functions of the modern engine are com-

mon to all kinds of communications programs, from the simplest to the most complex,

and can be described in a type of pseudo-C as follows:

 
The Modem Engine Pseudocode

DO ( IF (input character is available)
send_it_to_remote;

IF (remote character is available)

use_it_locally;
) UNTIL (told_to_stop);

The essence of this modem-engine code is that the absence of aninput character, or of a

character from the remote computer, does not hang the loop in a wait state. Rather, the

engine continues to cycle: If it finds work to do, it' does it; if not, the engine keeps looking.

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message, it is nice to be able to pause and read the mes-

sage before the lines scroll into oblivion. On the other hand, taking too long to study the

screen means that incoming characters are lost. The answer is a technique called flow con—

trol, in which a special control character is sent to shut down transmission and some other

character is later sent to start it up again.

    
Several conventions for flow control exist. One of the most widespread is known as

XON/XOFF, from the old Teletype-33 keycap legends for the two control codes involved.

In the original use, XOFF halted the paper tape reader and XON started it going again. In
mid—1967, the General Electric Company began using these signals in its time-sharing com-

‘ , puter services to control the flow of data, and the practice rapidly spread throughout the
' ' ‘ i industry.

 

 
l l The sample program named ENGINE, shown later in this article, is an almost literal imple-

l i 1‘ ‘ " mentation of the modem-engine approach. This sample represents one extreme of sim-
‘ plicity in communications programs. The other sample program, CTERM.C, is much more

complex, but the modem engine is still at its .heart.

   
; ; Using Simple MS-DOS Functions

Because MS-DOS provides, among its standard service functions, the capability of sending

output to or reading input from the device named AUX (which defaults to COMI, the first 
1

1 1 . .
l W} 168 TheMS-Domcyclopedm I HUAWEI EX. 1010- 180/1582



Article 6: Interrupt-Driven Communications 

serial port on most machines), a first attempt at implementing the modem engine using 
MS-DOS functions might look something like the following incomplete fragment of 
Microsoft Macro Assembler (MASM) code: 

;Incomplete (and Unworkable) Implementation 

LOOP: MOV AH,OBh read keyboard, no echo 
INT 21h 
MOV DL,AL set up to send 
MOV AH,04h send to AUX device 
INT 21h 
MOV AH,03h read from AUX device 
INT 21h 
MOV DL,AL set up to send 
MOV AH,02h send to screen 
INT 21h 
JMP LOOP keep doing it 

The problem with this code is that it violates the keep-looking principle both at the key
board and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard 
character is available, so no data from the AUX port can be read until a key is pressed 
locally. Similarly, Function 03H waits for a character to become available from AUX, so no 
more keys can be recognized locally until the remote system sends a character. If nothing 
is received, the loop waits forever. 

To overcome the problem at the keyboard end, Function OBH can be used to determine if 
a key has been pressed before an attempt is made to read one, as shown in the following 
modification of the fragment: 

; Improved, (but Still Unworkable) Implementation 

LOOP: MOV AH,OBh test keyboard for char 
INT 21h 
OR AL,AL test for zero 
JZ RMT no char avail, skip 
MOV AH,OBh have char, read it in 
INT 21h 
MOV DL,AL set up to send 
MOV AH,04h send to AUX device 
INT 21h 

RMT: 
MOV AH,03h read from AUX device 
INT 21h 
MOV DL,AL set up to send 
MOV AH,02h send to screen 
INT 21h 
JMP LOOP keep doing it 

This code permits any input from AUX to be received without waiting for a local key to 
be pressed, but if AUX is slow about providing input, the program waits indefinitely before 
checking the keyboard again. Thus, the problem is only partially solved. 

Section IL· Programming in the MS-DOS Environment 169 

~ 

HUAWEI EX. 1010 - 181/1582

Article 6: Interrupt-Driven Communications 

serial port on most machines), a first attempt at implementing the modern engine using

MS-DOS functions might look something like the following incomplete fragment of
Microsoft Macro Assembler (MASM) code:

;Incomplete (and Unworkable) Implementation

LOOP: MOV AH,08h ; read keyboard, no echo
INT 21h

MOV DL,AL ; set up to send
MOV AH,O4h ; send to AUX device
INT 21h

MOV AH,03h ; read from AUX device
INT 21h

MOV DL,AL ; set up to send
MOV AH,02h ; send to screen
INT 21h

JMP LOOP ; keep doing it

The problem with this code is that it violates the keep-looking principle both at the key-

board and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard

character is available, so no data from the AUX port can be read until a key is pressed

locally. Similarly, Function 05H waits for a character to become available from AUX, so no.

more keys can be recognized locally until the remote system sends a character. If nothing

is received, the loop waits forever.

To..overcome the problem at the keyboard end, Function OBH Can be used to determine if

a key has been pressed before an attempt is made to read one, as shown in the following

modification of the fragment:

;Improved, (but Still Unworkable) Implementation

LOOP: MOV AH,0Bh ; test keyboard for char
INT 21h

OR AL,AL ; test for zero
JZ RMT ; no char avail, skip
MOV AH,08h ; have char, read it in
INT 21h

MOV DL,AL ; set up to send
MOV AH,04h ; send to AUX device
INT 21h

RMT-

MOV AH,03h ; read from AUX device
INT 21h

MOV DL,AL ; set up to send
MOV AH,02h ; send to screen
INT 21h

JMP LOOP ; keep doing it

This code permits any input from AUX to be received without waiting for a local key to

be pressed, but if AUX is slow about providing input, the program waits indefinitely before

Checking the keyboard again. Thus, the problem is only partially solved.

Section II: Programming in the MS-DOS Environment 169
HUAWEI EX. 1010 - 181/1582

 



Part B: Programming for MS-DOS 

MS-DOS, however, simply does not provide any direct method of making the required 
tests for AUX or, for that matter, any of the serial port devices. That is why communications 
programs must be treated differently from most other types of programs under MS-DOS 
and why such programs must be intimately involved with machine details despite all 
accepted principles of portable program design. 

The Hardware Involved 

Personal-computer communications require at least two distinct pieces of hardware (sepa
rate devices, even though they are often combined on a single board). These hardware 
items are the serial port, which converts data from the computer's internal bus into a bit 
stream for transmission over a single external line, and the modem, which converts the bit 
stream into a form suitable for telephone-line (or, sometimes, radio) transmission. 

The modem 
The modem (a word coined from MOdulator-DEModulator) is a device that converts a 
stream of bits, represented as sequential changes of voltage level, into audio frequency sig
nals suitable for transmission over voice-grade telephone circuits (modulation) and con
verts these signals back into a stream of bits that duplicates the original input (demodu
lation). 

Specific characteristics of the audio signals involved were established by AT&T when that 
company monopolized the modem industry, and those characteristics then evolved into 
de facto standards when the monopoly vanished. They take several forms, depending on 
the data rate in use; these forms are normally identified by the original Bell specification 
number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard). 

The data rate is measured in bits per second (bps), often mistermed baud or even "baud 
per second." A baud measures the number of signals per second; as with knot (nautical 
miles per hour), the time reference is built in. If one signal change marks one bit, as is true 
for the Bell103 standard, then baud and bps have equal values. However, they are not 
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200 
bps uses two tone streams, each operating at 600 baud, to transmit data at 1200 bits per 
second. 

For accuracy, this article uses bps, rather than baud, except where widespread industry 
misuse of baud has become standardized (as in "baud rate generator"). 

Originally, the modem itself was a box connected to the computer's serial port via a cable. 
Characteristics of this cable, its connectors, and its signals were standardized in the 1960s 
by the Electronic Industries Association (EIA), in Standard RS232C. Like the Bell standards 
for modems, RS232C has survived almost unchanged. Its characteristics are listed in 
Table 6-1. 

170 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 182/1582

Part B: Programming for MS-DOS 

MS—DOS, however, simply does not provide any direct method of making the required

tests for AUX or, for that matter, any ‘of the serial port devices. That is why communications

programs must be treated differently from most other types of programs under MS-DOS

and why such programs must beintimately involved with machine details despite all

accepted principles of portable program design.

  
. The Hardware Involved

Personal-computer communications require at least two distinct pieces of hardware (sepa-

rate devices, even though they are often combined on a single board). These hardware

items are the serial port, which converts data from the computer’s internal bus into a bit

stream for transmission over a single external line, and the modem, which converts the bit

stream into a form suitable for telephone—line (or, sometimes, radio) transmission. .

The modem

The modem (a word coined from MOdulator—DEModulator) is a device that converts a

stream of bits, represented as sequential changes of voltage level, into audio frequency sig-

nals suitable for transmission over voice-grade telephone circuits (modulation) and con—

verts these signals back into a stream of bits that duplicates the original input (demodu-
lation).

  
E! 3 l I: I‘: - Specific characteristics of the audio signals involved were established by AT&T when that
> g l 3 company monopolized the modem industry, and those characteristics then evolved into

I. ’1 : f ‘1 de facto standards when the monopoly vanished. They take several forms, depending on
»‘ 5 l l the data rate in use; these forms are normally identified by the original Bell specification

l . number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard).

 
The data rate is measured in bits per second (bps), often mistermed baud or even “baud

per second.” A baud measures the number of signals per second; as with knot (nautical

‘ miles per hour), the time reference is built in. If one signal change marks one bit, as is true
‘ for the Bell 103 standard, then baud and bps have equal values. However, they are not

1 1 equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200

‘ bps uses two tone streams, each operating at 600 baud, to transmit data at 1200 bits per
second.

 
For accuracy, this article uses bps, rather than baud, except where widespread industry

misuse of baud has become standardized (as in “baud rate generator”).

Originally, the modem itself was a box connected to the computer’s serial port via a cable.

1 ‘ Characteristics of this cable, its connectors, and its signals were standardized in the 19603

‘ l by the Electronic Industries Association (EIA), in Standard R8232C. Like the Bell standards

1 ; for modems, RSZSZC has survived almost unchanged. Its characteristics are listed in
,1 f Table 6-1. 
l

l .

i . 17° Them-DOSEW’OW“ HUAWEI EX. 1010 - 182/1582
l



Article 6: Interrupt-Driven Communications 

Table 6-1. RS232C Signals. 

DB25Pin 232 Name Description 

1 Safety Ground 
2 BA TXD Transmit Data 
3 BB RXD Receive Data 
4 CA RTS Request To Send 
5 CB CTS Clear To Send 
6 cc DSR Data Set Ready 
7 AB GND Signal Ground 
8 CF DCD Data Carrier Detected 

20 CD DTR Data Terminal Ready 
22 CE RI Ring Indicator 

With the increasing popularity of personal computers, internal modems that plug into the 
PC's motherboard and combine the modem and a serial port became available. 

The first such units were manufactured by Hayes Corporation, and like Bell and the EIA, 
they created a standard. Functionally, the internal modem is identical to the combination 
of a serial port, a connecting cable, and an external modem. 

The serial port 

Each serial port of a standard IBM PC connects the rest of the system to a type INS8250 
Universal Asynchronous Receiver Transmitter (DART) integrated circuit (I C) chip devel
oped by National Semiconductor Corporation. This chip, along with associated circuits in 
the port, 

1. Converts data supplied via the system data bus into a sequence of voltage levels on 
the single TXD output line that represent binary digits. 

2. Converts data received as a sequence of binary levels on the single RXD input line 
into bytes for the data bus. 

3. Controls the modem's actions through the DTR and RTS output lines. 
4. Provides status information to the processor; this information comes from the 

modem, via the DSR, DCD, CTS, and RI input lines, and from within the DART itself, 
which signals data available, data needed, or error detected. 

The word asynchronous in the name of the IC comes from the Bell specifications. When 
computer data is transmitted, each bit's relationship to its neighbors must be preserved; 
this can be done in either of two ways. The most obvious method is to keep the bit stream 
strictly synchronized with a clock signal of known frequency and count the cycles to iden
tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or 
sometimes bisync for binary synchronous. The second method, first used with mechanical 
teleprinters, marks the start of each bit group with a defined start bit and the end with one 
or more defined stop bits, and it defines a duration for each bit time. Detection of a start bit 

Section IL· Programming in the MS-DOS Environment 171 

------------.... HUAWEI EX. 1010 - 183/1582

Article 6: Interrupt-Driven Communications 

Table 6-1. R5232C Signals.

DB25 Pin 232 Name Description

1 Safety Ground
2 BA TXD Transmit Data

5 BB RXD Receive Data

4 CA RTS Request To Send
5 CB CTS Clear To Send

6 CC DSR Data Set Ready

7 AB GND Signal Ground
8 CF DCD Data Carrier Detected

20 CD DTR Data Terminal Ready

22 CE RI Ring Indicator

With the increasing pIOpularity of personal computers, internal modems that plug into the
PC’s motherboard and combine the modem and a serial port became available.

The first such units were manufactured by Hayes Corporation, and like Bell and the EIA,

they created a standard. Functionally, the internal modem is identical to the combination

of a serial port, a connecting cable, and an external modem.

The serial port

Each serial port of a standard IBM PC connects the rest of the system to a type INSSZSO

Universal Asynchronous Receiver Transmitter (UART) integrated circuit (IC) chip devel-

oped by National Semiconductor Corporation. This chip, along with associated circuits in

the port,

1. Converts data supplied via the system data bus into a sequence of voltage levels on

the single TXD output line that represent binary digits.

2. Converts data received as a sequence of binary levels on the single RXD input line

into bytes for the data bus.

3. Controls the modem’s actions through the DTR and RTS output lines.

4. Provides status information to the processor; this information comes from the

modem, via the DSR, DCD, CTS, and RI input lines, and from within the UART itself,

which signals data available, data needed, or error detected.

The word asynchronous in the name of the IC comes from the Bell specifications. When

computer data is transmitted, each bit’s relationship to its neighbors must be preserved;

this can be done in either of two ways. The most obvious method is to keep the bit stream

strictly synchronized with a clock signal of known frequency and count the cycles to iden-

tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or

sometimes bisync for binary synchronous. The second method, first used with mechanical

teleprinters, marks the start of each bit group with a defined start bit and the end with one

or more defined stop bits, and it defines a duration for each bit time. Detection of a start bit

Section II: Programming in the MS—DOS Environment 17 1

HUAWEI EX. 1010 - 183/1582

N

 



.I 

,, 
i( 
1:! 

~ 
.~ 
~ 
il 
~ 
~ 

~ 
~ 

· ti I I I" 

ll 

Part B: Programming for MS-DOS 

marks the beginning of a received group; the signal is then sampled at each bit time until 
the stop bit is encountered. This method is known as asynchronous (or just asynch) and is 
the one used by the standard IBM PC. 

The start bit is, by definition, exactly the same as that used to indicate binary zero, and the 
stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a 
one signal is called MARK, from terms used in the teleprinter industry. 

During transmission, the least significant bit of the data is sent first, after the start bit. A 
parity bit, if used, appears as the most significant bit in the data group, before the stop bit 
or bits; it cannot be distinguished from a databit except by its position. Once the first stop 
bit is sent, the line remains in MARK (sometimes called idling) condition until a new start 
bit indicates the beginning of another group. 

In most PC uses, the serial port transfers one 8-bit byte at a time, and the term word speci
fies a 16-bit quantity. In the UART world, however, a word is the unit of information sent by 
the chip in each chunk. The word length is part of the control information set into the chip 
during setup operations and can be 5, 6, 7, or 8 bits. This discussion follows UART conven
tions and refers to words, rather than to bytes. 

One special type of signal, not often used in PC-to-PC communications but sometimes 
necessary in communicating with mainframe systems, is a BREAK. The BREAK is an all
SPACE condition that extends for more than one word time, including the stop-bit time. 
(Many systems require the BREAK to last at least 150 milliseconds regardless of data rate.) 
Because it cannot be generated by any normal data character transmission, the BREAK is 
used to interrupt, or break into, normal operation. The IBM PC's 8250 UART can generate 
the BREAK signal, but its duration must be determined by a program, rather than by the 
chip. 

The 8250 UART architecture 

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits, 
and status circuits. Because these areas are closely related, some terms used in the follow
ing descriptions are, of necessity, forward references to subsequent paragraphs. 

The major parts of the receiver are a shift register and a data register called the Received 
Data Register. The shift register assembles sequentially received data into word-parallel 
form by shifting the level of the RXD line into its front end at each bit time and, at the same 
time, shifting previous bits over. When the shift register is full, all bits in it are moved over 
to the data register, the shift register is cleared to all zeros, and the bit in the status circuits 
that indicates data ready is set. If an error is detected during receipt of that word, other bits 
in the status circuits are also set. 

Similarly, the major parts of the transmitter are a holding register called the Transmit 
Holding Register and a shift register. Each word to be transmitted is transferred from the 

172 The MS-DOS Encyclopedia HUAWEI EX. 1010 - 184/1582

Part B: Programming for MS-DOS 

marks the beginning of a received group; the signal is then sampled at each bit time until

the stop bit is encountered. This method is known as asynchronous (or just asynch) and is

the one used by the standard IBM PC.

 
The start bit is, by definition, exactly the same as that used to indicate binary zero, and the

stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a

one signal is called MARK, from terms used in the teleprinter industry.

During transmission, the least significant bit of the data is sent first, after the start bit. A

parity bit, if used, appears as the most significant bit in the data group, before the stop bit

or bits; it cannot be distinguished from a databit except by its position. Once the first stop

bit is sent, the line remains in MARK (sometimes called idling) condition until a new start

bit indicates the beginning of another group. ‘

In most PC uses, the serial port transfers one 8-bit byte at a time, and the term word speci—

fies a 16-bit quantity. In the UART world, however, a word is the unit of information sent by

the chip in each chunk. The word length is part of the control information set into the chip

, during setup operations and can be 5, 6, 7, or 8 bits. This discussion follows UART conven-

, I tions and refers to words, rather than to bytes.

  
One special type of signal, not often used in PC—to-PC communications but sometimes

necessary in communicating with mainframe systems, is a BREAK. The BREAK is an all-

SPACE condition that extends for more than one word time, including the stop—bit time.

(Many systems require the BREAK to last at least 150 milliseconds regardless of data rate.)

., Because it cannot be generated by any normal data character transmission, the BREAK is
j l 1 used to interrupt, or break into, normal operation. The IBM PC’s 8250 UART can generate

the BREAK signal, but its duration must be determined by a program, rather than by the

chip.

The 8250 UART architecture

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits,

and status circuits. Because these areas are closely related, some terms used in the follow—

ing descriptions are, of necessity, forward references to subsequent paragraphs.

The major parts of the receiver are a shift register and a data register called the Received

Data Register. The shift register assembles sequentially received data into word-parallel

form by shifting the level of the RXD line into its front end at each bit time and, at the same

time, shifting previous bits over. When the shift register is full, all bits in it are moved over

to the data register, the shift register is cleared to all zeros, and the bit in the status circuits

that indicates data ready is set. If an error is detected during receipt of that word, other bits
in the statUs circuits are also set.

Similarly, the major parts of the transmitter are a holding register called the Transmit

Holding Register and a shift register. Each word to be transmitted is transferred from the ’4Wmm/‘Ififlfyfiflfiiin‘hwuAA“.-AAA..........., 
.1, 172 WMS'DOSEW’OW“ HUAWEI EX. 1010 - 184/1582

 
1l l



/ 

Article 6: Interrupt-Driven Communications 

data bus to the holding register. If the holding register is not empty when this is done, the 
previous contents are lost. The transmitter's shift register converts word-parallel data into 
bit -serial form for transmission by shifting the most significant bit out to the TXD line once 
each bit time, at the same time shifting lower bits over and shifting in an idling bit at the 
low end of the register. When the last data bit has been shifted out, any data in the holding 
register is moved to the shift register, the holding register is filled with idling bits in case 
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit 
Holding Register is empty is set to indicate that another word can be transferred. The 
parity bit, if any, and stop bits are added to the transmitted stream after the last databit 
of each word is shifted out. 

The control circuits establish three communications features: first, line control values, 
such as word length, whether or not (and how) parity is checked, and the number of stop 
bits; second, modem control values, such as the state of the DTR and RTS output lines; and 
third, the rate at which data is sent and received. These control values are established by 
two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers. They 
are the Line Control Register (LCR), the Modem Control Register (MCR), and the 16-bit 
BRG Divisor Latch, addressed as BaudO and Baudl. 

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro
grammable Baud Rate Generator (PBRG), a major part ofthe control circuits. The PBRG 
can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the 
IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported. 
How the LCR and the MCR establish their control values, how the PBRG is programmed, 
and how interrupts are enabled are discussed later. 

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status 
registers) the conditions in the receive and transmit circuits, any errors that are detected, 
and any change in state of the RS232C input lines from the modem. When any status regis
ter's content changes, an interrupt request, if enabled, is generated to notify the rest of the 
PC system. This approach lets the PC attend to other matters without having to continually 
monitor the status of the serial port, yet it assures immediate action when something does 
occur. 

The 8250 programming interface 

Not all the registers mentioned in the preceding section are accessible to programmers. 
The shift registers, for example, can be read from or written to only by the 8250's internal 
circuits. There are 10 registers available to the programmer, and they are accessed by only 
seven distinct addresses (shown in Table 6-2). The Received Data Register and the 
Transmit Holding Register share a single address (a read gets the received data; a write 
goes to the holding register). In addition, both this address and that of the Interrupt Enable 
Register (IER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register 
called the Divisor Latch Access Bit (DLAB) determines which register is addressed at any 
specific time. 

Section II: Programming in the MS-DOS Environment 173 
HUAWEI EX. 1010 - 185/1582

Article 6: Interrupt—Driven Communications 

data bus to the holding register. If the holding register is not empty when this is done, the

previous contents are lost. The transmitter’s shift register converts word—parallel data into

bit-serial form for transmission by shifting the most significant bit out to the TXD line once

each bit time, at the same time shifting lower bits over and shifting in an idling bit at the

low end of the register. When the last databit has been shifted out, any data in the holding

register is moved to the shift register, the holding register is filled with idling bits in case

no more data is forthcoming, and the bit in the status circuits that indicates the Transmit

Holding Register is empty is set to indicate that another word can be transferred. The

parity bit, if any, and stop bits are added to the transmitted stream after the last databit
of each word is shifted out.

The control circuits establish three communications features: first, line control values,

such as word length, whether or not (and how) parity is checked, and the number of stop

bits; second, modem control values, such as the state of the DTR and RTS output lines; and

third, the rate at which data is sent and received. These control values are established by

two 8—bit registers and one 16-bit register, which are addressed as four 8—bit registers. They

are the Line Control Register (LCR), the Modem Control Register (MCR), and the 16-bit

BRG Divisor Latch, addressed as BaudO and Baudl.

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro-

grammable Baud Rate Generator (PBRG), a major part of the control circuits. The PBRG

can provide any data speed from a few bits per second to 58400 bps; in the BIOS of the

IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported.

How the LCR and the MCR establish their control values, how the PBRG is programmed,

and how interrupts are enabled are discussed later.

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status

registers) the conditions in the receive and transmit circuits, any errors that are detected,

and any change in state of the RSZSZC input lines from the modem. When any status regis-

ter’s content changes, an interrupt request, if enabled, is generated to notify the rest of the

PC system. This approach lets the PC attend to other matters without having to continually

monitor the status of the serial port, yet it assures immediate action when something does
occur.

The 8250 programming interface

Not all the registers mentioned in the preceding section are accessible to programmers.

The shift registers, for example, can be read from or written to only by the 8250’s internal

circuits. There are 10 registers available to the programmer, and they are accessed by only

seven distinct addresses (shown in Table 6-2). The Received Data Register and the

Transmit Holding Register share a single address (a read gets the received data; a write

goes to the holding register). In addition, both this address and that of the Interrupt Enable

Register (IER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register

called the Divisor Latch Access Bit (DLAB) determines which register is addressed at any

specific time.

Section 1]: Programming in the MS—DOS Environment 175
HUAWEI EX. 1010 - 185/1582

 



Part B: Programming for MS-DOS 

In the IBM PC, the seven addresses used by the 8250 are selected by the low 3 bits 
port number (the higher bits select the specific port). Thus, each serial port occupies 
positions in the address space. However, only the lowest address used- the one in 
the low 3 bits are all 0-need be remembered in order to access all eight addresses. 

Because of this, any serial port in the PC is referred to by an address that, in .. ~._,_ ... ._."''~u' 
notation, ends with either 0 or 8: The COM1 port normally uses address 03F8H, and 
uses 02F8H. This lowest port address is usually called the base port address, and each 
addressable register is then referenced as an offset from this base value, as shown in 
Table6-2. 

Table 6-2. 8250 Port Offsets from Base Address. 

Offset Name 

If DLAB bit in LCR = 0: 
OOH DATA 

01H IER 

If DLAB bit in LCR = 1: 
OOH BaudO 
01H Baud1 

Not affected by DLAB bit: 
02H liD 
03H LCR 
04H MCR 
05H LSR 
06H ·'MSR 

The control circuits 

Description 

Received Data Register if 
read from, Transmit Holding 
Register if written to 

Interrupt Enable Register 

BRG Divisor Latch, low byte 
BRG Divisor Latch, high byte 

Interrupt Identifier Register 
Line Control Register 
Modem Control Register 
Line Status Register 
Modem Status Register 

The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG), 
the Line Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En
able Register (IER). 

The PBRG establishes the bit time used for both transmitting and receiving data by divid
ing an external clock signal. To select a desired bit rate, the appropriate divisor is loaded 
into the PBRG's 16-bit Divisor Latch by setting the Divisor Latch Access Bit (DLAB) in the 
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then 
writing the divisor into BaudO and Baudl. After the bit rate is selected, DLAB is changed 
back to 0, to permit normal operation of the DATA registers and the IER. 

17 4 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 186/1582

Part B: Programming for MS-DOS

 
 
 

 
 
 

 
 

 

In the IBM PC, the seven addresses used by the 8250 are selected by the low 3 bits of
port number (the higher bits select the specific port). Thus, each serial port OCCUpies 3
positions in the address space. However, only the lowest address used — the one in w
the low 5 bits are all 0-need be remembered in order to access all eight addresses

Because of this, any Serial port'in the PC is referred to by an address that, in hexadeci
notation, ends wlth either 0 or 8: The COM1 port normally uses address O3F8H, and C
uses 02F8H. This lowest port address is usually called the base port address, and each

addresgsable register is then referenced as an offset from this base value as shown inTable -2. ’

Table 6-2. 8250 Port Offsets from Base Address. 
   
 

Offset Name Description

If DLAB bit in LCR = 0:

00H DATA Received Data Register if
read from, Transmit Holding
Register if written to

01H IER , . Interrupt Enable Register

If DLAB bit in LCR = 1:

00H BaudO BRG Divisor Latch, low byte
01H Baudl BRG Divisor Latch, high byte

Not affected by DLAB bit:

02H IID Interrupt Identifier Register
03H LCR Line Control Register !

‘ ; 04H MCR Modern Control Register 1
; 05H LSR Line Status Register ‘

,3 l 06H ‘ MSR Modem Status Register
1 The control circuits i

 The contr01 CiTCUitS 0f the 8250 inCIUde the Programmable Baud Rate Generator (PBRG),

f; 1‘ the Line Control Register (LCR), the Modern Control Register (MCR), and the Interrupt En— ‘
l ‘ able Register (IER).

:The PBRG establishes the bit time used for both transmitting and receiving data by divid-
lng an external clocR signal. To select a desired bit rate, the appropriate divisor is loaded
”ft" the PBRG’S 1'64)” Divisor LatCh by Setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1 (WhiCh Changes the functions of addresses 0 and 1) and then

writing the diViSOT into BaudO and Baudl. After the bit rate is selected, DLAB is changed

back to 0, to permit normal operation of the DATA registers and the IER.

174 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 186/1582

 
 



Article 6: Interrupt-Driven Communications 

With the 1.8432 MHz external DART clock frequency used in standard IBM systems, 
divisor values (in decimal notation) for bit rates between 45.5 and 38400 bps are listed in 
Table 6-3. These speeds are established by a crystal contained in the serial port (or internal 
modem) and are totally unrelated to the speed of the processor's clock. 

Table 6-3. Bit Rate Divisor Table for 8250/IBM. 

BPS Divisor 

45.5 2532 
so 2304 
75 1536 

110 1047 
134.5 857 
150 768 
300 384 
600 192 

1200 96 
1800 64 
2000 58 
2400 48 
4800 24 
9600 12 

19200 6 
38400 3 

The remaining control circuits are the Line Control Register, the Modem Control Register, 
and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1, 
transmission of the BREAK signal, parity generation, the number of stop bits, and the word 
length sent and received, as shown in Table 6-4. 

Table 6-4. 8250 Line Control Register Bit Values. 

Bit Name Binary Meaning 

Address Control: 
7 DLAB Oxxxx:xxx Offset 0 refers to DATA; 

offset 1 refers to IER 
1xxxx:xxx Offsets 0 and 1 refer to 

BRG Divisor Latch 

BREAK Control: 
6 SETBRK xOxxxxxx Normal DART operation 

x1xxxxxx Send BREAK signal 

(more) 

Section !1- Programming in the MS-DOS Environment . 175 

HUAWEI EX. 1010 - 187/1582

 
Article 6: Interrupt—Driven Communications

With the 1.8432 MHz external UART clock frequency used in standard IBM systems,

divisor values (in decimal notation) for bit rates between 45.5 and 58400 bps are listed in

Table 6-5. These speeds are established by a crystal contained in the serial port (or internal

modem) and are totally unrelated to the speed of the processor’s clock.

Table 6-3. Bit Rate Divisor Table for 8250/IBM.

BPS I)hdsor

455 2532

50 2504

75 1536

110 1047

1345 857

150 768

300 384

600 192

1200 96
1800 64

2000 58
2400 48

4800 24

9600 12

19200 6

38400 3

The remaining control circuits are the Line Control Register, the Modem Control Register,

and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1,

transmission of the BREAK signal, parity generation, the number of stop bits, and the word
length sent and received, as shown in Table 6—4.

Table 6-4. 8250 Line Control Register Bit Values.

Bit . Name Binary Meaning

Address Control:

7 DLAB 0mm Offset 0 refers to DATA;
offset 1 refers to IER

110m Offsets 0 and 1 refer to

BRG Divisor Latch

BREAK Control:

6 SETBRK XOXXXX)Q( Normal UART operation

XDDCXXX‘X ‘ Send BREAK signal

(more)

Section II: Programming in the MS-DOS Environment ' 175

HUAWEI EX. 1010 - 187/1582



I' 
I' 

Part B: Programming for MS-DOS 

Table 6-4. Continued. 

Bit 

Parity Checking: 
5,4,3 

Stop Bits: 
2 

Word Length: 
1,0 

Name 

GENPAR 

XSTOP 

WD5 
WD6 
WD7 
WD8 

Binary 

xxxx:Oxxx 
xx001xxx 
xxOllxxx 
xx101xxx 
xxl11xxx 

xxxxxOxx 
xxxxx1xx 

xxxxxxOO 
xxxxxx01 
xxxxxx10 
xxxxxx11 

Meaning 

No parity bit 
Parity bit is ODD 
Parity bit is EVEN 
Parity bit is 1 
Parity bit is 0 

Only 1 stop bit 
2 stop bits 

(1.5 ifWL = 5) 

Word length = 5 
Word length = 6 
Word length = 7 
Word length = 8 

Two bits in the MCR (Table 6-5) control output lines DTR and RTS; two other MCR bits 
(OUTland OUT2) are left free by the DART to be assigned by the user; a fifth bit (TEST) 
puts the DART into a self-test mode of operation. The upper 3 bits have no effect on the 
UART. The MCR can be both read from and written to. 

Both of the user-assignable bits are defined in the IBM PC. OUTl is used by Hayes internal 
modems to cause a power-on reset of their circuits; OUT2 controls the passage of UART
generated interrupt request signals to the rest of the PC. Unless OUT2 is set to 1, interrupt 
signals from the DART cannot reach the rest of the PC, even though all other controls are 
properly set. This feature is documented, but obscurely, in the IBM Technical Reference 
manuals and the asynchronous-adapter schematic; it is easy to overlook when writing an 
interrupt-driven program for these machines. 

Table 6-5. 8250 Modem Control Register Bit Values. 

Name Binary Description 

TEST xxx1xxxx Turns on DART self-test configuration. 
OUT2 xxxx1xxx Controls 8250 interrupt signals (User2 Output). 
OUTl xxxxx1xx Resets Hayes 1200b internal modem (User1 Output). 
RTS xxxxxx1x Sets RTS output to RS232C connector. 
DTR xxxxxxx1 Sets DTR output to RS232C connector. 

176 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 188/1582

Part B: Programming for MS-DOS 

    
Table 6-4. Continued.

Bit Name Binary Meaning

Parity Checking:

5,4,3 GENPAR XXXXOXXX No parity bit

XXOOIXXX Parity bit is ODD

XX011m Parity bit is EVEN

XXIOlXXX Parity bit is 1

XXI 1 IXXX Parity bit is 0

Stop Bits:

2 XSTOP XXXXXOXX Only 1 stop bit

xxxxxlxx 2 stop bits
(1.5 if WL = 5)

1 Word Length:

1 l 1,0 WDS XXXXXXOO Word length = 5

2" ‘ WD6 xxxxxxOl Word length = 6
. l 1 ‘ WD7 XXXXXX10 Word length = 7

5 1 ‘ WDS mogul Word length = 8

Two bits in the MCR (Table 6-5) control output lines DTR and RTS; two other MCR bits

1 l i (OUTl and OUT2) are left free by the UART to be assigned by the user; a fifth bit (TEST)
l puts the UART into a self-test mode of operation. The upper 5 bits have no effect on the
3 ‘ . UART. The MCR can be both read from and written to.

 
Both of the user—assignable bits are defined in the IBM PC. OUTl is used by Hayes internal

modems to cause a power—on reset of their circuits; OUT2 controls the passage of UART-

generated interrupt request signals to the rest of the PC. Unless OUT2 is set to 1, interrupt .

‘. signals from the UART cannot reach the rest of the PC, even though all other controls are

l ? ‘ properly set. This feature is documented, but obscurely, in the IBM Technical Reference

1 manuals and the asynchronous-adapter schematic; it is easy to overlook when writing an

l l ; interrupt-driven program for these machines.

Table 6-5. 8250 Modem Control Register Bit Values.

Name Binary Description

TEST xxxlxxxx Turns on UART self-test configuration.

OUT2 xxxxlxxx Controls 8250 interrupt signals (UserZ Output).

OUTl mlxx Resets Hayes 1200b internal modem (Userl Output).

RTS mocxxxlx Sets RTS output to RSZSZC connector.

DTR mocxxxxl Sets DTR output to RSZSZC connector.

176 The MS—DOS Encyclopedia
HUAWEI EX. 1010 - 188/1582

 



Article 6: Interrupt-Driven Communications 

The 8250 can generate any or all of four classes of interrupts, each individually enabled or 
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6--6). 
Thus, setting the IER to OOH disables all the UART interrupts within the 8250 without 
regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com
mands. The IER can be both read from and written to. Only the low 4 bits have any effect 
on the UART. 

Table 6-6. 8250 Interrupt Enable Register Constants. 

Binary 

xxxx1xxx 
xxxxx1xx 
xxxxxx1x 
xxxxxxx1 

Action 

Enable Modem Status Interrupt. 
Enable Line Status Interrupt. 
Enable Transmit Register Interrupt. 
Enable Received Data Ready Interrupt. 

The status circuits 

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status 
Register (MSR), the Interrupt Identifier (liD) Register, and the interrupt-request generation 
system. 

The 8250 includes circuitry that detects a received BREAK signal and also detects three 
classes of data-reception errors. Separate bits in the LSR (Table 6-7) are set to indicate that 
a BREAK has been received and to indicate any of the following: a parity error (if lateral 
parity is in use), a framing error (incoming bit= 0 at stop-bit time), or an overrun error 
(word not yet read from receive buffer by the time the next word must be moved into it). 

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the 
Transmit Holding Register, and the Received Data Register; the most significant bit of the 
LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect. 

Table 6-7. 8250 Line Status Register Bit Values. 

Bit Binary Meaning 

7 Oxxx:xxxx Always zero 
6 x1xxxxxx Transmit Shift Register empty 
5 xx1xxxxx Transmit Holding Register empty 
4 xxx1xxxx BREAK received 
3 xxxx1xxx Framing error 
2 xxxxx1xx Parity error 
1 xxxxxx1x Overrun error 
0 xxxxxxx1 Received data ready 

Section IL- Programming in the MS-DOS Environment 177 

HUAWEI EX. 1010 - 189/1582

Article 6: Interrupt—Driven Communications 

The 8250 can generate any or all of four classes of interrupts, each individually enabled or

disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6—6).

Thus, setting the IER to 00H disables all the UART interrupts within the 8250 without

regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com-

mands. The IER can be both read from and written to. Only the low 4 bits have any effect
on the UART.

Table 6-6. 8250 Interrupt Enable Register Constants.

Binary Action

)QCXXIXXX Enable Modem Status Interrupt.

xxxrorlxx Enable Line Status Interrupt.
xxxxxxlx Enable Transmit Register Interrupt.

)DCXXXXXI Enable Received Data Ready Interrupt.

The status circuits

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status

Register (MSR), the Interrupt Identifier (IID) Register, and the- interrupt-request generation
system.

The 8250 includes circuitry that detects a received BREAK signal and also detects three

classes of data—reception errors. Separate bits in the LSR (Table 6—7) are set to indicate that

a BREAK has been received and to indicate any of the following: a parity error (if lateral

parity is in use), a framing error (incoming bit = 0 at stop-bit time), or an overrun error

(word not yet read from receive buffer by the time the next word must be moved into it).

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the

Transmit Holding Register, and the Received Data Register; the most significant bit of the

LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect.

Table 6-7. 8250 Line Status Register Bit Values.

Bit Binary Meaning

7 Oxxxxxxx Always zero

6 xlxxxxxx Transmit Shift Register empty

5 xxlxxxxx Transmit Holding Register empty ‘
4 XXXIXXXX BREAK received

3 XXXX1XXX Framing error

2 who: Parity error
1 Iocxxxxlx Overrun error

0 )OQCXXXXI Received data ready

Section II: Programming in the MS—DOS Environment 177

HUAWEI EX. 1010 - 189/1582

 
7N



I 
! I' I . 

Part B: Programming for MS-DOS 

CLRGS: 

MOV DX,03FDh clear LSR 

IN AL,DX 

MOV DX,03F8h clear RX reg 

IN AL,DX 

MOV DX,03FEh clear MSR 

IN AL,DX 

MOV DX,03FAh IID reg 
IN AL,DX 

IN AL,DX repeat to be sure 

TEST AL, 1 int pending? 
JZ CLRGS yes, repeat 

Note: This code does not completely set up the IBM serial port. Although it fully programs 
the 8250 itself, additional work remains to be done. The system interrupt vectors must be 
changed to provide linkage to the interrupt service routine (ISR) code, and the 8259 
Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt 
requests from the DART channels. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: CusTOMIZING Ms-nos: Hardware Interrupt Handlers. 

Device Drivers 

All versions of MS-DOS since 2.0 have permitted the installation of user-provided device 
drivers. From the standpoint of operating-system theory, using such drivers is the proper 
way to handle generic communications interfacing. The following paragraphs are intended 
as a refresher and to explain this article's departure from standard device-driver terminol
ogy. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: 
Installable Device Drivers. 

An installable device driver consists of (1) a driver header that links the driver to 
others in the chain maintained by MS-DOS, tells the system the characteristics of this spe
cific driver, provides pointers to the two major routines contained in the driver, and (for a 
character-device driver) identifies the driver by name; (2) any data and storage space the 
driver may require; and (3) the two major code routines. 

The code routines are called the Strategy routine and the Interrupt routine in normal 
device-driver descriptions. Neither has any connection with the hardware interrupts dealt 
with by the drivers presented in this article. Because of this, the term Request routine is 
used instead of Interrupt routine, so that hardware interrupt code can be called an 
interrupt service routine (ISR) with minimal chances for confusion. 

MS-DOS communicates with a device driver by reserving space for a command packet 
of as many as 22 bytes and by passing this packet's address to the driver with a call to the 
Strategy routine. All data transfer between MS-DOS and the driver, in both directions, 
occurs via this command packet and the Request routine. The operating system places a 
command code and, optionally, a byte count and a buffer address into the packet at the 
specified locations, then calls the Request routine. The driver performs the command 
and returns the status (and sometimes a byte count) in the packet. 

180 The MS-DOS Encyclopedia 
HUAWEI EX. 1010 - 190/1582

Part B: Programming for MS-DOS

    CLRGS:

MOV DX,O3FDh ; clear LSR
IN AL,DX
MOV DX,03F8h ; clear RX reg
IN AL,DX
MOV DX,O3FEh ‘ ; Clear MSR
IN AL,DX

MOV DX,03FAh ; IID reg
IN AL,DX

IN AL,DX ; repeat to be sure
TEST AL,1 ; int pending?
JZ CLRGS ; yes, repeat

Note: This code does not completely set up the IBM serial port. Although it fully programs

the 8250 itself, additional work remains to be done. The system interrupt vectors must be

changed to provide linkage to the interrupt service routine (ISR) code, and the 8259

Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt

requests from the UART channels. See PROGRAMMING IN THE MS—DOS ENVIRON—

MENT: CUSTOMIZING MS-DOS: Hardware Interrupt Handlers.

 
Device Drivers

All versions of MS-DOS since 2.0 have permitted the installation of user-provided device

drivers. From the standpoint of operating-system theory, using such drivers is the proper

I _ way to handle generic communications interfacing. The following paragraphs are intended

I ‘ I ‘ I as a refresher and to explain this article’s departure from standard device-driver terminol—
‘ 2 I; , ogy. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Cusromzmc MS-DOS:

I I Installable Device Drivers.

 

. I An installable device driver consists of (1) a driver header that links the driver to

‘ i I ‘ . - others in the chain maintained by MS-DOS, tells the system the characteristics of this spe-
1 cific driver, provides pointers to the two major routines contained in the driver, and (for a

. . character-device driver) identifies the driver by name; (2) any data and storage space the
‘1 ‘I ‘ ‘ . driver may require; and (3) the two major code routines.

  
The code routines are called the Strategy routine and the Interrupt routine in normal

~ I I ‘ device-driver descriptions. Neither has any connection with the hardware interrupts dealt

with by the drivers presented in this article. Because of this, the term Request routine is

I‘ used instead of Interrupt routine, so that hardware interrupt code can be called an
interrupt service routine (ISR) with minimal chances for confusion.

MS—DOS communicates with a device driver by reserving space for a command packet

. : of as many as 22 bytes and by passing this packet’s address to the driver with a call to the

I ‘ . ‘ Strategy routine. All data transfer between MS—DOS and the driver, in both directions,

I ‘ 3 occurs via this command packet and the Request routine. The operating system places a
I I ’ command code and, optionally, a byte count and a buffer address into the packet at the

2i I ' specified locations, then calls the Request routine. The driver performs the command
and returns the status (and sometimes a byte count) in the packet.

180 The MS—DOS Encyclopedia

I
I .

I ‘ HUAWEI EX. 1010 - 190/1582

 



L 

Article 6: Interrupt-Driven Communications 

Two Alternative Approaches 

Now that the factors involved in creating interrupt-driven communications programs have 
been discussed, they can be put together into practical program packages. Doing so brings 
out not only general principles but also minor details that make the difference between 
success and failure of program design in this hardware-dependent and time-critical area. 

The traditional way: Going it alone 

Because MS-DOS provides no generic functions suitable for communications use, virtually 
all popular communications programs provide and install their own port driver code, and 
then remove it before returning to MS-DOS, This approach entails the creation of a com
munications handler for each program and requires the "uninstallation" of the handler on · 
exit from the program that uses it. Despite the extra requirements, most communications 
programs use this method. 

The alternative: Creating a communications device driver 

Instead of providing temporary interface code that must be removed from the system 
before returning to the command level, an installable device driver can be built as a 
replacement for COMx so that every program can have all features. However, this 
approach is not compatible with existing terminal·programs because it has never been a 
part of MS-DOS. 

Comparison of the two methods 

The traditional approach has several advantages, the most obvious being that the driver 
code can be fully tailored to the needs of the program. Because only one program will 
ever use the driver, no general cases need be considered. 

However, if a user wants to keep communications capability available in a terminate-and
stay-resident (TSR) module for background use and also wants a different type of commu
nications program running in the foreground (not, of course, while the background task is 
using the port), the background program and the foreground job must each have its own 
separate driver code. And, because such code usually includes buffer areas, the duplicated 
drivers represent wasted resources. 

A single communications device driver that is installed when the system powers up and 
that remains active until shutdown avoids wasting resources by allowing both the back
ground and foreground tasks to share the driver code. Until such drivers are common, 
however, it is unlikely that commercial software will be able to make use of them. In addi
tion, such a driver must either provide totally general capabilities or it must include control 
interfaces so each user program can dynamically alter the driver to suit its needs. 

At this time, the use of a single driver is an interesting exercise rather than a practical 
application, although a possible exception is a dedicated system in which all software is 
either custom designed or specially modified. In such a system, the generalized driver 
can provide significant improvement in the efficiency of resource allocation. 

Section Il- Programming in the MS-DOS Environment 181 

HUAWEI EX. 1010 - 191/1582

Article 6: Interrupt-Driven Communications 

Two Alternative Approaches

Now that the factors involved in creating interrupt-driven communications programs have

been discussed, they can be put together into practical program packages. Doing so brings
out not only general principles but also minor details that make the difference between

success and failure of program design in this hardware—dependent and time-critical area.

The traditional way: Going it alone

Because MS—DOS provides no generic functions suitable for communications use, virtually

all popular communications programs provide and install their own port driver code, and

then remove it before returning to MS—DOS; This approach entails the creation of a com-

munications handler for each program and requires the “uninstallation” of the handler on ‘

exit from the program that uses it. Despite the extra requirements, most communications

programs use this method.

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system

before returning to the command level, an installable device driver can be built as a

replacement for COMx so that every program can have all features. However, this

approach is not compatible with existing terminal‘programs because it has never been a

part of MS—DOS.

Comparison of the two methods

The traditional approach has several advantages, the most obvious being that the driver

code can be fully tailored to the needs of the program. Because only one program will

ever use the driver, no general cases need be considered.

However, if a user wants to keep communications capability available in a terminate-and-

stay—resident (TSR) module for background use and also wants a different type of commu—

nications program running in the foreground (not, of course, while the background task is

using the port), the background program and the foreground job must each have its own

separate driver code. And, because such code usually includes buffer areas, the duplicated

drivers represent wasted resources.

A single communications device driver that is installed when the system powers up and

that remains active until shutdown avoids wasting resources by allowing both the back—

ground and foreground tasks to share the driver code. Until such drivers are common,

however, it is unlikely that commercial software will be able to make use of them. In addi-

tion, such a driver must either provide totally general capabilities or it must include control

interfaces so each user program can dynamically alter the driver to suit its needs.

At this time, the use of a single driver is an interesting exercise rather than a practical

application, although a possible exception is a dedicated system in which all software is

either custom designed or specially modified. In such a system, the generalized driver

can provide significant improvement in the efficiency of resource allocation.

Section II: Programming in the MS—DOS Environment 181

HUAWEI EX. 1010 - 191/1582

 
«a



I 
:1 

Part B: Programming for MS-DOS 

A Device-Driver Program Package 

Despite the limitations mentioned in the preceding section, the first of the two complete 
packages in this article uses the concept of a separate device driver. The driver handles all 
hardware-dependent interfacing and thus permits extreme simplicity in all other modules 
of the package. This approach is presented first because it is especially well suited for in
troducing the concepts of communications programs. However, the package is not merely 
a tutorial device: It includes some features that are not available in most commercial 
programs. 

The package itself consists of three separate programs. First is the device driver, which 
becomes a part of MS-DOS via the CONFIG.SYS file. Second is the modem engine, which 
is the actual terminal program. (A functionally similar component forms the heart of every 
communications program, whether it is written in assembly language or a high-level lan
guage and regardless of the machine or operating system in use.) Third is a separately exe
cuted support program that permits changing such driver characteristics as word length, 
parity, and baud rate. 

In most programs that use the traditional approach, the driver and the support program 
are combined with the modem engine in a single unit and the resulting mass of detail 
obscures the essential simplicity of each part. Here, the parts are presented as separate 
modules to emphasize that simplicity. 

The device driver: COMDVR.ASM 

The device driver is written to augment the default COMl and COM2 devices with other 
devices named ASYl and ASY2 that use the same physical hardware but are logically sepa
rate. The driver (COMDVR.ASM) is implemented in MASM and is shown in the listing in 
Figure 6-1. Although the driver is written basically as a skeleton, it is designed to permit 
extensive expansion and can be used as a general-purpose sample of device-driver 
source code. 

The code 

1 : Title COMDVR Driver for IBM COM Ports 
2 Jim Kyle, 1987 
3 Based on ideas from many sources ..... . 
4 : including Mike Higgins, CLM March 1985; 
5 : public-domain INTBIOS program from BBS's; 
6 : COMBIOS.COM from CIS Programmers' SIG; and 
7 ADVANCED MS-DOS by Ray Duncan. 
8 Subttl MS-DOS Driver Definitions 

9 : 

10 Comment* This comments out the Dbg macro .... . 

11 Dbg 
12 

Macro Ltr1,Ltr2,Ltr3 used only to debug driver .. . 
Local Xxx 

13 Push Es save all regs used 

Figure 6-1. COMDVR.ASM. 

182 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 192/1582

  
  

  
Part B: Programming for MS-DOS 

A Device-Driver Program Package

Despite the limitations mentioned in the preceding section, the first of the two complete

packages in this article uses the concept of a separate device driver. The driver handles all
hardware-dependent interfacing and thus permits extreme simplicity in all other modules

of the package. This approach is presented first because it is especially well suited for in—
troducing the concepts of communications programs. However, the package is not merely
a tutorial device: It includes some features that are not available in most commercial

programs.

The package itself consists of three separate programs. First is the device driver, which
becomes a part of MS—DOS via the CONFIGSYS file. Second is the modem engine, which
is the actual terminal program. (A functionally similar component forms the heart of every

communications program, whether it is written in assembly language or a high-level lan-

guage and regardless of the machine or operating system in use.) Third is a separately exe-
cuted support program that permits changing such driver characteristics as word length,

parity, and baud rate.

In most programs that use the traditional approach, the driver and the support program

are combined with the modem engine in a single unit and the resulting mass of detail
obscures the essential simplicity of each part. Here, the parts are presented as separate

modules to emphasize that simplicity.

The device driver: COMDVR.ASM

The device driver is written to augment the default COMl and COMZ devices with other

devices named ASYl and ASY2 that use the same physical hardware but are logically sepa—

rate. The driver (COMDVRASM) is implemented in MASM and is shown in the listing in

Figure 6-1. Although the driver is written basically as a skeleton, it is designed to permit
extensive expansion and can be used as a general-purpose sample of device-driver
source code.

The code

1 : Title COMDVR Driver for IBM COM Ports
2 : ; Jim Kyle, 1987
3 : ; Based on ideas from many sources ......
4 ; ; including Mike Higgins, CLM March 1985;
5 : ; public-domain INTBIOS program from BBS’s;
6 z ; COMBIOS.COM from 018 Programmers’ SIG; and
7 ; ; ADVANCED MS-DOS by Ray Duncan.
8 : Subttl MS—DOS Driver Definitions
9 - '

10 : Comment * This comments out the Dbg macro .....

11 : Dbg . Macro Ltr1,Ltr2,Ltr3 ; used only to debug driver...
12 : Local Xxx

13 2 Push Es ; save all regs used

Figure 6-1. COMDVR.145M. . (more)

182 The MS—DOSEncyclopedia
HUAWEI EX. 1010 - 192/1582



14 

15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
3"7 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 
51 

52 

53 

54 

55 
56 
57 
58 

59 
60 

61 

62 

63 

64 

Xxx: 

Push 

Push 

Les 

Mov 

Mov 

Stosw 

Mov 

Stosw 

Mov 

Stosw 

Cmp 

Jb 

X or 

Mov 

Pop 

Pop 

Pop 

Endm 

* 

DevChr Equ 

DevBlk Equ 

Device Equ 

DevNon Equ 

DevOTB Equ 

DevOCR Equ 

DevX32 Equ 

DevSpc Equ 

DevClk Equ 

DevNul Equ 

DevSto Equ 

DevSti Equ 

StsErr Equ 

StsBsy Equ 

StsDne Equ 

ErrWp Equ 

ErrUu Equ 

ErrDnr Equ 

ErrUc Equ 

ErrCrc Equ 

ErrBsl Equ 

ErrSl Equ 

ErrUm Equ 

ErrSnf Equ 

ErrPop Equ 

ErrWf Equ 

Article 6: Interrupt-Driven Communications 

Di 

Ax 

Di,Cs:Dbgptr 

Ax,Es:[di] 

Al,Ltr1 

get pointer to CRT 

move in letters 

Al, Ltr2 

Al,Ltr3 

Di,1600 

Xxx 

Di,Di 

top 10 lines only 

Word Ptr Cs:Dbgptr,Di 

Ax 

Di 

Es 

asterisk ends commented-out region 

Device Type Codes 

BOOOh 
OOOOh 
4000h 

2000h 

2000h 

OBOOh 
0040h 

0010h 

OOOBh 
0004h 

0002h 

0001h 

this is a character device 

this is a block (disk} device 

this device accepts IOCTL requests 

non-IBM disk driver (block only} 

MS-DOS 3.x out until busy supported (char} 

MS-DOS 3.x open/close/rm supported 

MS-DOS 3.2 functions supported 

accepts special interrupt 29H 

this is the CLOCK device 

this is the NUL device 

this is standard output 

this is standard input 

Error Status BITS 

8000h 

0200h 

0100h 

general error 

device busy 

request completed 

Error Reason values for lower-order bits 

0 

2 

3 
4 

5 

6 

7 

8 

9 

10 

write protect error 

unknown unit 

drive not ready 

unknown command 

cyclical redundancy check error 

bad drive request structure length 

seek error 

unknown media 

sector not found 

printer out of paper 

write fault 

\ 

Figure 6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 183 
HUAWEI EX. 1010 - 193/1582

Article 6: Interrupt-Driven CommunicationsWM

\

14 : Push Di
15 : Push Ax

16 : Les Di,Cs:Dbgptr ; get pointer to CRT
17 : Mov Ax,Es:[di]
18 : Mov Al,Ltr1 L move in letters
19 : Stosw '

20 : Mov Al,Ltr2
21 : Stosw
22 : Mov Al,Ltr3
23 : Stosw

24 : Cmp Di,1600 ; top 10 lines only
25 : Jb Xxx

26 : Xor Di,Di

27 : Xxx: Mov Word Ptr Cs:Dbgptr,Di
28 : Pop Ax

29 : Pop Di
30 : Pop Es
31 : Endm

32 : * ; asterisk ends commented-out region
33 : ;

34 : ; Device Type Codes
35 : DevChr Equ 8000h ; this is a character device
36 : DevBlk Equ OOOOh ; this is a block (disk) device
37 : DevIoc Equ 4000h ; this device accepts IOCTL requests
38 : DevNon Equ 2000h ; non-IBM disk driver (block only)
39 : DevOTB Equ 2000h ; MS—DOS 3.x out until busy supported (char)
4O : DevOCR Equ 0800h ; MS—DOS 3.x open/close/rm supported
41 : DevX32 Equ 0040h ; MS-DOS 3.2 functions supported
42 : DevSpc Equ 0010h ; accepts special interrupt 29H
43 : DevClk Equ 0008h ; this is the CLOCK device
44 : DevNul 'Equ 0004h ; this is the NUL device
45 : DevSto Equ 0002h ; this is standard output

46 : DevSti Equ 0001h ; this is standard input
47 : ;
48 : ; Error Status BITS

49 : StsErr Equ 8000b ; general error
50 : StsBsy Equ 0200h ; device busy
51 : StsDne Equ O100h ; request completed
52 : ;
53 : ; Error Reason values for lower—order bits

54 : Erer Equ 0 ; write protect error
55 : ErrUu Equ 1 ; unknown unit
56 : Eernr Equ 2 ; drive not ready
57 : ErrUc Equ 3 ; unknown command
58 : ErrCrc Equ 4 ; cyclical redundancy check error
59 : Errle Equ 5 ; bad drive request structure length
60 : ErrSl Equ 6 7 seek error
61 : ErrUm Equ 7 ; unknown media
62 : ErrSnf Equ 8 ; sector not found
63 : ErrPop Equ 9 ; printer out of paper
64 : Erer Equ 10 ; write fault

Figure 6-1. Continued. (more)

Section II: Programming in the MS—DOS Environment 183
HUAWEI EX. 1010 - 193/1582

 



I 
I 
I 
I 
I 
I 
I 
I 

,,1 

It 

I 

I , 1,

1 

!i 

II 

Part B: Programming for MS-DOS 

184 

65 

66 

67 
68 

69 

70 

71 

72 
73 

74 

75 

76 
77 
78 

79 
80 

81 

82 

83 

ErrRf 

ErrGf 

Pack 

Len 

Prtno 

Code 

stat 

Dosq 

Devq 

Media 

X fer 

Xseg 

Count 

Sector 

Pack 

Equ 

Equ 

11 

12 

read fault 

general failure 

Structure of an I/0 request packet header. 

Struc 

Db 

Db 

Db 

Ow 

Dd 

Dd 

Db 

Ow 

Ow 

ow 

Ow 

Ends 

? 

? 

? 

? 

? 

? 

? 

? 

length of record 

unit code 

command code 

return status 

(unused MS-DOS queue link pointer) 

(unused driver queue link pointer) 

media code on read/write 

xfer address offset 

xfer address segment 

transfer byte count 

starting sector value (block only) 

84 Subttl IBM-PC Hardware Driver Definitions 

85 page 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 
98 

99 
100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

PIC-.b 
PIC_e 

EOI 

RxBuf 

Baud1 

IntEn 

Intid 

Lctrl 

Mctrl 

Lstat 

Mstat 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Dlab Equ 

SetBrk Equ 

StkPar Equ 

EvnPar Equ 

GenPar Equ 

Xstop Equ 

Wd8 Equ 

Wd7· 

Wd6 

xsre 

xhre 

Equ 

Equ 

Equ 

Equ 

Figure 6-1. Continued. 

The MS-DOS Encyclopedia 

8259 data 

020h 

021h 

020h 

port for EOI 

port for Int enabling 

EOI control word 

8250 port offsets 

OF8h 

RxBuf+1 

RxBuf+1 

RxBuf+2 

RxBuf+3 

RxBuf+4 

RxBuf+5 

RxBuf+6 

base address 

baud divisor high byte 

interrupt enable register 

interrupt identification register 

line control register 

modem control register 

line status register 

modem status register 

8250 LCR constants 

10000000b 

01000000b 

00100000b 

00010000b 

00001000b 

00000100b 

00000011b 

00000010b 

00000001b 

divisor latch access bit 

send break control bit 

stick parity control bit 

even parity bit 

generate parity bit 

extra stop bit 

word length 8 

word length 

word length 

7 

6 

8250 LSR constants 

01000000b xmt SR empty 

00100000b ; xmt HR empty 

(more) 

HUAWEI EX. 1010 - 194/1582

     
  

Part B: Programming for MS-DOS 

184

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87
88
89
90
91
92
93
94
95
96

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

97_:

: Erer
: ErrGf

I
r
, 1

: Pack
: Len
: Prtno
. Code

Stat

: Dosq
: Devq
: Media
: Xfer

: Xseg
Count
Sector
Pack

Subttl

: page
86 -

PIC_b
PIC_e
E01

1

- RxBuf
Baud1
IntEn
IntId
Lctrl
Mctrl
Lstat

: Mstat

Dlab
SetBrk
StkPar
EvnPar
GenPar

Xstop
Wd8

' Wd7~
Wd6

;
xsre

xhre

Equ
Equ

11 ; read fault

12 ; general failure

Structure of an I/O request packet header.

Struc
Db
Db
Db
Dw
Dd
Dd
Db
Dw
Dw
Dw
Dw
Ends

,

; length of record
; unit code
; command code
; return status

; (unused MS-DOS queue link pointer)
; (unused driver queue link pointer)
; media code on read/write
; xfer address offset
; xfer address segment
; transfer byte count
; starting sector value (block only)

.a.0.0.0.0.0.g.0.9.q.0
IBM—PC Hardware Driver Definitions

Equ
Equ

Figure 6-1. Continued.

7hefl4$490$£hqwflqpedflz

8259 data ’
020h ; port for E01
021h ; port for Int enabling
020h ; EOI control word

8250 port offsets
OF8h ; base address
RxBuf+1 ; baud divisor high byte
RxBuf+1 ; interrupt enable register
RxBuf+2 ; interrupt identification register
RxBuf+3 ; line control register
RxBuf+4 ; modem control register
RxBuf+5 ; line status register
RxBuf+6 ; modem status register

8250 LCR constants

10000000b ; divisor latch access bit
01000000b ; send break control bit

00100000b ; stick parity control bit
00010000b ; even parity bit
00001000b ; generate parity bit
00000100b ; extra stop bit
00000011b ; word length = 8
00000010b ; word length = 7
00000001b ; word length = 6

8250 LSR constants

01000000b ; xmt SR empty
00100000b ; xmt HR empty

HUAWEI EX. 1010 - 194/1582

Ononfl



Article 6: Interrupt-Driven Communications 

BrkRcv Equ 00010000b break received 
FrmErr Equ 00001000b framing error 

ParErr Equ 00000100b parity error 

OveRun Equ 00000010b overrun error 

rdta Equ 00000001b received data ready 
AnyErr Equ BrkRcv+FrmErr+ParErr+OveRun 

8250 MCR constants 
LpBk Equ 00010000b UART out loops to in (test) 
Usr2 Equ 00001000b Gates 8250 interrupts 
Usr1 Equ 00000100b aux user1 output 
SetRTS Equ 00000010b sets RTS output 
SetDTR Equ 00000001b sets DTR output 

8250 MSR constants 

CDlvl Equ 1 OOOOOOOb carrier detect level 
Rilvl Equ 01000000b ring indicator level 
DSRlvl Equ 00100000b DSR level 
CTSlvl Equ 00010000b CTS level 
CDchg Equ 00001000b Carrier Detect change 
Richg Equ 00000100b Ring Indicator change 
DSRchg Equ 00000010b DSR change 
CTSchg Equ 00000001b CTS change 

8250 IER constants 
s_Int Equ 00001000b enable status interrupt 
E_Int Equ 00000100b enable error interrupt 
X_Int Equ 00000010b enable transmit interrupt 
!Lint Equ 00000001b enable receive interrupt 
Allint Equ 00001111b enable all interrupts 

116 

117 
118 

119 

120 

121 
122 

123 
124 

125 

126 
127 

128 
129 

1 30 
131 

132 

133 
134 

135 
136 
137 

138 
139 
140 

141 
142 

143 

144 
145 

146 
147 
148 

149 

150 
151 
152 

153 
154 

155 
156 
157 

158 

159 
1 60 

161 
162 

163 
164 

1 65 
166 

Subttl Definitions for THIS Driver 
page 

Linidl Equ 

LinXof Equ 
LinDSR Equ 

LinCTS Equ 

Badinp Equ 
LostDt Equ 

OffLin Equ 

Figure 6-J. Continued. 

Bit definitions for the output status byte 

( this driver only ) 
Offh if all bits off, xmitter is idle 

1 output is suspended by XOFF 

2 output is suspended until DSR comes on again 
4 output is suspended until CTS comes on again 

Bit definitions for the input status byte 

this driver only ) 

1 

2 

4 

input line errors have been detected 

receiver buffer overflowed, data lost 
device is off line now 

Bit definitions for the special characteristics words 
( this driver only ) 

InSpec controls how input from the UART is treated 

/ 

(more) 

Section II: Programming in the MS-DOS Environment 185 

HUAWEI EX. 1010 - 195/1582

Article 6.- Interrupt-Driven Communications 

116 : Brchv Equ 00010000b ; break received
117 : FrmErr Equ 00001000b ; framing error
118 : ParErr Equ 00000100b ; parity error
119 : OveRun Equ 00000010b ; overrun error
120 : rdta Equ 00000001b ; received data ready
121 : AnyErr Equ Brchv+FrmErr+ParErr+OveRun
122 : ; '
123 z ; 8250 MCR constants

124 : Lka Equ 00010000b ; UART out loops to in (test)
125 : Usr2 Egu 00001000b ; Gates 8250 interrupts
126 : Usr1 Equ 00000100b ; aux user1 output
127 : SetRTS Equ 00000010b ; sets RTS output
128 : SetDTR Equ 00000001b ; sets DTR output
129 z ;
130 : ; 8250 MSR constants

131 : CDlvl Equ 10000000b ; carrier detect level
132 : RIlvl Equ 01000000b ; ring indicator level
133 : DSRlvl Equ 00100000b ; DSR level
134 : CTSlvl Equ 00010000b ; CTS level
135 : CDchg Equ 00001000b ; Carrier Detect change
136 : RIchg Equ 00000100b ; Ring Indicator change
137 : DSRchg Equ 00000010b ; DSR change
138 : CTSchg Equ 00000001b ; CTS change
139 : ;
140 : ; 8250 IER constants

141 : slInt Equ 00001000b ; enable status interrupt
142 : E_Int Equ 00000100b ; enable error interrupt
143 : X_Int Equ 00000010b ; enable transmit interrupt
144 : RlInt Equ 00000001b ; enable receive interrupt
145 : Allint Equ 00001111b ; enable all interrupts
146 .
147 : subttl Definitions for THIS Driver

148 : page
149 : ;

150 : ; Bit definitions for the output status byte
151 : ; ( this driver only )
152 : LinIdl Equ Offh ; if all bits off, xmitter is idle
153 : LinXof Equ 1 ; output is suspended by XOFF
154 : LinDSR Equ 2 ; output is suspended until DSR comes on again
155 : LinCTS Equ 4 ; output is suspended until CTS comes on again
156 : ;

157 2 ; Bit definitions for the input status byte
158 : ; ( this driver only )
159 : BadInp Equ 1 ; input line errors have been detected
160 : LostDt Equ 2 ; receiver buffer overflowed, data lost
161 : offLin Equ 4 ; device is off line now
162 : ;

163 : ; Bit definitions for the special characteristics words
164 : ; ( this driver only )
165 3 I InSpec controls how input from the UART is treated
166 : ;

Figure 6—1. Continued. (more)

/

Section IL Programming in the MS—DOSEnvironment 185

HUAWEI EX. 1010 -195/1582

rV______-_--IIIlIIIIIIIIIIIIIIIIIIIIIII'IIIIII'

 



,Iii 

Part B: Programming for MS-DOS 

167 
168 
169 
170 
171 
172 
173 
174 
175 
176 

InEpc Equ 

OutDSR Equ 
OutCTS Equ 
OutXon Equ 
OutCdf Equ 
OutDrf Equ 

Unit Struc 
Port Dw 

0001h ; errors translate to codes with parity bit on 

OutSpec controls how output to the UART is treated 

0001h 
0002h 
0004h 
0010h 
0020h 

? 

DSR is used to throttle output data 
CTS is used to throttle output data 
XON/XOFF is used to throttle output data 
carrier detect is off-line signal 
DSR is off-line signal 

each unit has a structure defining its state: 
I/O port address 

177 
178 

179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
1 90 
191 
192 
1 93 
1 94 
195 

Vect Dw ? interrupt vector offset (NOT interrupt number!) 

1 96 

Isradr Dw 
OtStat Db 

InStat Db 

InSpec Dw 
OutSpec Dw 
Baud Dw 
Ifirst Dw 
Iavail Dw 
Ibuf Dw 
Ofirst Dw 
Oavail Dw 
Obuf Dw 
Unit Ends 

? offset to interrupt service routine 
Wd8 default LCR bit settings during INIT, 

output status bits after 
Usr2+SetRTS+SetDTR MCR bit settings during INIT, 

InEpc 
Outxon 
96 
0 

0 

? 

0 

0 

? 

input status bits after 
special mode bits for INPUT 
special mode bits for OUTPUT 
current baud rate divisor value (1200 b) 
offset of first character in input buffer 
offset of next available byte 
pointer to input buffer 
offset of first character in output buffer 
offset of next avail byte in output buffer 
pointer to output buffer 

1 97 
198 

Beginning of driver code and data 

199 Driver Segment 
200 Assume Cs:driver, ds:driver, es:driver 
201 Org 0 drivers start at 0 

202 

Async2: 

Dw 
Dw 
Dw 
Dw 
Db 

Async2,-1 
DevChr + Devioc 
Strtegy 
Request1 
'ASY1 

pointer to next device 
character device with IOCTL 
offset of Strategy routine 
offset of interrupt entry point 
device 1 name 

203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 

215 
216 
217 

Dw 
Dw 
Dw 
Dw 
Db 

-1,-1 

Devchr + Devioc 
Strtegy 
Request2 

pointer to next device: MS-DOS fills in 
character device with IOCTL 

'ASY2 

;dbgptr Dd ObOOOOOOOh 

offset of Strategy routine 
offset of interrupt entry point 2 
device 2 name 

Following is the storage area for the request packet pointer 

Figure 6-1. Continued. 

186 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 196/1582

 
  

 
 

Part B: Programming for MS-DOS—_____———————————————————————-——————————-——

186

167 InEpc Equ 0001b ; errors translate to codes with parity bit on
168 i

169 : ; OutSpec controls how output to the UART is treated
170 . ;

171 : OutDSR Equ 0001h _; DSR is used to throttle output data
172 : OutCTS Equ 0002h ; CTS is used to throttle output data
173 : Outhn Equ 0004h ; XON/XOFF is used to throttle output data
174 : Outhf Equ 0010h ; carrier detect is off—line signal
175 : OutDrf Equ 0020h ; DSR is off—line signal
176 : ;

177 : Unit Struc ; each unit has a structure defining its state:
178 : Port Dw ? ; I/O port address
179 ; Vect Dw ? ; interrupt vector offset (NOT interrupt numberH
180 : Isradr Dw ? ; offset to interrupt service routine
181 : OtStat Db Wd8 ; default LCR bit settings during INIT,
182 : ; output status bits after
183 InStat Db Usr2+SetRTS+SetDTR ; MCR bit settings during INIT,
184 : ; input status bits after
185 : InSpec Dw InEpc ; special mode bits for INPUT
186 : OutSpec Dw Outhn ; special mode bits for OUTPUT
187 ; Baud Dw 96 ; current baud rate divisor value (1200 b)
188 Ifirst Dw O ; offset of first character in input buffer
189 Iavail Dw 0 ; offset of next available byte

190 ; Ibuf Dwi ? ; pointer to input buffer '
191 ; Ofirst Dw O , offset of first character in output buffer
192 : Oavail Dw 0 ; offset of next avail byte in output buffer
193 ; Obuf Dw '? ; pointer to output buffer
1 94 : Unit Ends
195 :

196 : ; . 1
197 g ; Beginning of driver code and data

198 : ; '
199 ; Driver Segment
200 Assume Cs:driver, ds:driver, es:driver
201 : Org 0 ; drivers start at 0
202

203 Dw Async2,—1 ; pointer to next device
204 : Dw DevChr + DevIoc ; character device with IOCTL
205 ; Dw Strtegy ; offset of Strategy routine
206 Dw Request1 ; offset of interrupt entry point 1
207 ; Db 'ASY1 ' ; device 1 name
203 ; Async2:

209 Dw I —1,-1 ; pointer to next device: MS—DOS fills in
210 : Dw DevChr + DevIoc ; character device with IOCTL
211 : Dw Strtegy ; offset of Strategy routine
212 Dw Request2 ; offset of interrupt entry point 2
213 Db 'ASY2 ' ; device 2 name
214 :

215 ;dbgptr Dd ObOOOOOOOh
216 i

217 : ; Following is the storage area for the request packet pointer

Figure 6—1. Continued. (more)

TheMS'DOSEW’W'“ HUAWEI EX. 1010 - 196/1582



218 

219 

220 
221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

PackHd Dd 

Asy_baudt 

0 

baud rate 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

DW 

Dw 

Dw 

Dw 

Dw 

Dw 

Article 6: Interrupt-Driven Communications 

conversion table 

50,2304 ; first value is desired baud rate 

75,1536 second is divisor register value 

110, 1047 

134, 857 

150, 786 

300, 384 

600, 1 92 

1200, 96 

1800, 64 

2000, 58 

2400, 48 

3600, 32 

4800, 24 

7200, 16 

9600, 12 

238 table of structures 
239 ASY1 defaults to the COM1 port, INT OCH. vector, XON, 

240 no parity, 8 databits, 1 stop bit, and 1200 baud 

241 Asy_tab1 : 
Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf> 

242 

243 
244 ASY2 defaults to the COM2 port, INT OBH vector, XON, 

245 no parity, 8 databits, 1 stop bit, and 1200 baud 

246 Asy_tab2: 
247 <2f8h,2ch,asy2isr,,,,,,,,in2buf,,,out2buf> Unit 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

Bufsiz Equ 

Bufmsk 

In1buf Db 

Out1buf Db 

In2buf Db 

Out2buf Db 

Asy_funcs: 
Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Dw 

Bufsiz-1 ; mask for calculating offsets modulo bufsiz 
256 ; input buffer size 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Bufsiz DUP (?) 

Following is a table of offsets to all the driver functions 

I nit 0 initialize driver 

Mchek 1 media check (block only) 

BldBPB 2 build BPB (block only) 

I oct lin 3 IOCTL read 

Read 4 read 

Ndread 5 nondestructive read 

Rxstat 6 input status 

In flush 7 flush input buffer 

Write 8 write 

Write 9 write with verify 

Figure 6-1. Continued. (more) 

Section !l- Programming in the MS-DOS Environment 187 
HUAWEI EX. 1010 - 197/1582

 
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233 '
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 :
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

I

: PaCkHd Dd

; ASYZ defaults to the COM2 port, INT OBH vector,
; no parity, 8 databits, 1 stop bit, and 1200 baud
Asy_tab2:

Unit

Bufsiz Equ
Bufmsk =
In1buf Db
Out1buf Db
In2buf Db
Outhuf Db

I

. Asy_funcs:
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw

Figure 6-]. Continued.

Article 6: Interrupt-Driven Communications

7 first value is desired baud rate
; second is divisor register value

0

; baud rate conversion table
Asy_baudt Dw 50,2304

Dw 75,1536
Dw 110,1047
Dw 134, 857
Dw 150, 786
Dw 300, 384
Dw 600, 192
Dw 1200, 96
Dw 1800, 64
Dw 2000, 58
Dw 2400, 48
Dw 3600, 32
Dw 4800, 24
Dw 7200, 16
Dw 9600, 12

; table of structures

; ASY1 defaults to the COM1 port, INT OCH vector,
. ; no parity, 8 databits, 1 stop bit, and 1200 baud
; Asy_tab1:

Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf>

<2f8h,20h,asy2isr,,,,,,,,in2buf,,,out2buf>

256 ; input buffer size
Bufsiz—1 ; mask for calculating offsets modulo bufsiz
Bufsiz DUP (?)
Bufsiz DUP (?)
Bufsiz DUP (?)
Bufsiz DUP (?)

Following is a table

Init ;
Mchek ;
BldBPB ;
Ioctlin ;
Read :
Ndread ;
Rxstat ;
Inflush ;
Write ;
Write ;

mmqmmch-eo

of offsets to all the

initialize driver

XON,

XON,

driver functions

media check (block only)
build BPB (block only
IOCTL read
read

nondestructive read
input status
flush input buffer
write

write with verify

)

(more)

Section 11: Programming in the MS—DOS Environment 187
HUAWEI EX. 1010 - 197/1582



I! 

,·I I 

Part B: Programming for MS-DOS 

269 Dw Txstat 10 output status 
270 Dw Txflush 11 flush output buffer 
271 Dw Ioctlout 12 IOCTL write 
272 Following are not used in this driver ..... 
273 Dw Zexit 13 open (3.x only, not used) 
274 Dw Zexit 14 close (3.x only, not used) 
275 Dw Zexit 15 rem med (3 .x only, not used) 
276 Dw Zexit 1 6 out until bsy (3.x only, not used) 
277 Dw Zexit 17 
278 Dw Zexit 18 
279 Dw Zexit 1 9 generic IOCTL request ( 3. 2 only) 
280 Dw Zexit 20 
281 Dw Zexit 21 
282 Dw Zexit 22 
283 Dw Zexit 23 get logical drive map (3.2 only) 
284 Dw Zexit 24 set logical drive map (3.2 only) 
285 
286 
287 

Subttl Driver Code 
Page 

288 
289 The Strategy routine itself: 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
31 9 

Strtegy Proc 
dbg 

Mov 
Mov 
Ret 

Strtegy Endp 

Request1: 
Push 
Lea 
Jmp 

Request2: 
Push 
Lea 

Gen_request: 
dbg 
Pushf 
Cld 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Push 

Figure 6-1. Continued. 

188 The MS-DOS Encyclopedia 

Far 
'S', 'R', I I 

Word Ptr CS:PackHd,BX 
Word Ptr CS:PackHd+2,ES 

store the offset 
store the segment 

async1 has been requested 

Si save SI 
Si,Asy_tab1 get the device unit table address 

Short Gen-request 

Si 
Si ,Asy_tab2 

'R', 'R',' r 

Ax 
Bx 
Cx 
Dx 
Di 
Bp 
Ds 
Es 
Cs 

async2 has been requested 
save SI 
get unit table two's address 

save all regs 

set DS cs 

(more) 

HUAWEI EX. 1010 - 198/1582

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

I 2911 1 292

1 » 293
11

1

 
294
295
296

1 . 297

[:1 298* 299
300

' 301
302
303
304

. , 305
306

1'1 307
308
309
310
311
312
313
314
315
316
317
318
319

  
 
 

 

; Following are

Subttl

: Page

Strtegy
r

I

Part B: Programming for MS—DOSW

Dw
Dw
Dw

Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw
Dw

output status
flush output buffer
IOCTL write

open (3.x only, not used)
close (3.x only, not used)
rem med (3.x only, not used)
out until bsy (3.x only, not used)

generic IOCTL request (3.2 only)

get logical drive map (3.2 only)

sztat ; 1O
Txflush ; 11
Ioctlout ; 12
not used in this driver .....
Zexit ; 13
Zexit ; 14
Zexit ; 15
Zexit ; 16
Zexit ; 17
Zexit ; 18
Zexit ; 19
Zexit ; 20
Zexit ; 21
Zexit ; 22
Zexit ; 23
Zexit ; 24

Driver Code

The Strategy routine itself:

Proc

dbq
Mov
Mov
Ret

Endp

2 Request1:
Push
Lea

Jmp

2 RequestZ:
Push
Lea

I Gen_request:
dbg
Pushf
Cld
Push
Push
Push
Push
Push
Push
Push
Push
Push

Figure 6-]. Continued.

188 The MS~DOSEncyclopedia

Far

lslle'Il I
Word Ptr CS:PackHd,BX

set logical drive map (3.2 only)

; store the offset
Word Ptr CS:PackHd+2,ES ; store the segment

Si

Si,Asy_tab1

I
I

async1 has been requested
save SI

; get the device unit table address
Short Gen_request

Si

Si,Asy_tab2

IRIIIRVII l

Ax
Bx
Cx
Dx
Di

Ds
Es
Cs r

asyncZ has been requested
save SI

get unit table two's address

save all regs

set DS ll CS

Ononfl

HUAWEI EX. 1010 - 198/1582



Pop 
Les 
Lea 
Mev 
Cbw 
Add 
Add 
Jmp 

Ds 
Bx,PackHd 
Di,Asy_funcs 
Al,es:code[bx] 

Ax, Ax 
Di,ax 
[di] 

320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 

Exit from driver request 

354 

ExitP Proc 

Bsyexit: 

Mchek: 
BldBPB: 

Mev 
Jmp 

Zexit: Xor 
Exit: Les 

ExitP 

Or 
Mev 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Pop 
Popf 
Pop 
Ret 
Endp 

Far 

Ax,StsBsy 
Short Exit 

Ax,Ax 
Bx,PackHd 
Ax,StsDne 
Es:Stat[Bx],Ax 

Es 
Ds 
Bp 
Di 
Dx 
ex 
Bx 
Ax 

Si 

355 Subttl Driver Service Routines 

356 Page 
357 
358 Read data from device 

359 
360 Read: 

'R' I'd', I ' 

Cx,Es:Count[bx] 
Di,Es:Xfer[bx] 
Dx,Es:Xseg[bx] 

Bx 
Es 
Es,Dx 

Article 6: Interrupt-Driven Communications 

get packet pointer 
point DI to jump table 

command code 

double to word 

go do it 

get packet pointer 

set return status 
restore registers 

get requested nbr 
get target pointer 

save for count fixup 

361 
362 
363 
364 
365 
366 
367 
368 
369 
370 

dbg 
Mev 
Mev 
Mev 
Push 
Push 
Mev 
Test 
Je 
Add 

InStat[si],Badinp Or LostDt 

No_lerr 

Sp,4 

no error so far ... 

error, flush SP 

Figure 6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 189 

HUAWEI EX. 1010 - 199/1582



·li •I' I,,,·, 

i! 
" ,. 
; 

Part B: Programming for MS-DOS 

371 
372 
373 

And 
Mov 
Jmp 

InStat[si],Not ( Badinp Or LostDt ) 

374 
375 
376 
377 

378 
379 
380 
381 
382 
383 
384 
385 
386 

No_lerr: 

Call 
Or 
Jnz 
Stosb 
Loop 

Got_all: 
Pop 
Pop 
Sub 
Mov 
Jmp 

Ax,ErrRf 
Exit 

Get_in 

Ah,Ah 
Got_all 

No_lerr 

Es 
Bx 
Di,Es:Xfer[bx] 
Es:Count[bx],Di 
Zexit 

; error, report it 

go for one 

none to get now 

store it 
go for more 

calc number stored 
return as count 

387 Nondestructive read from device 

388 
389 Ndread: 

390 
391 
392 
393 
394 Ndget: 

395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
41 6 
417 
418 
419 
420 

Rxstat: 

Rxful: 

Inflush: 

Mov 
Cmp 
Jne 
Jmp 

Push 
Mov 
Mov 
Pop 
Mov 
Jmp 

Di,ifirst[si] 
Di,iavail[si] 
Ndget 
Bsyexit 

Bx 
Bx,ibuf[si] 
Al, [bx+di] 
Bx 
Es: media [bx], al 

Zexit 

Input status request 

Mov Di,ifirst[si] 
Cmp Di,iavail[si] 

Jne Rxful 
Jmp Bsyexit 

Jmp Zexit 

Input flush request 

Mov Ax,iavail[si] 
Mov Ifirst[si],ax 

Jmp Zexit 

Output data to device 

Figure 6-1. Continued. 

190 The MS-DOS Encyclopedia 

buffer empty 

return char 

buffer empty 

have data 

(more) 

HUAWEI EX. 1010 - 200/1582

       
Part B: Programming for MS—DOS

371 : And InStat[si],Not ( BadInp Or LostDt )
372 : Mov Ax,Erer ; error, report it
373 : Jmp Exit
374 : No_lerr:

375 : Call Get_in ‘ ; go for one
376 : Or Ah,Ah
377 : an Got_all ; none to get now
378 : ' Stosb ; store it
379 : Loop No_lerr ; go for more
380.: Got_all:
381 : Pop Es
382 : Pop Bx

383 2 Sub Di,Es:Xfer[bx] ; calc number stored
384 : MOV Es:Count[bx],Di ; return as count
385 : Jmp Zexit
386
387 : ; Nondestructive read from device
388 .
389 : Ndread:
390 : Mov Di,ifirst[si]

391 : Cmp Di,iavail[si]
392 : Jne nget
393 : Jmp Bsyexit ; buffer empty
394 : nget:
395 : Push Bx
396 : MOV Bx,ibuf[si]
397 : Mov Al,[bx+di]

398 5 Pop Bx
399 : Mov Es:media[bx],al ; return char
400 : Jmp Zexit
401

402 : ; Input status request
403 .
404 : Rxstat:
405 : Mov Di,ifirst[si]

' 406 : Cmp Di,iavail[si]
407 : Jne Rxful

408 2 Jmp Bsyexit ; buffer empty
409 : Rxful:

410 : Jmp Zexit ; have data
411 .

412 : ; Input flush request
413 .
414 : Inflush:
415 : Mov Ax,iavail[si]
416 : ' Mov Ifirst[si],ax
417 : Jmp Zexit
418 .

419 : ; Output data to device
420

Figure 6—], Continued. (more)

190 TheMS'DOSEmyC’0M’” HUAWEI EX. 1010 - zoo/1582

 



421 Write: 

422 

423 
424 
425 

426 
427 Wlup: 

428 

429 

430 

431 
432 

433 

434 

435 
436 

437 

438 

Wwait: 

dbg 

Mev 
Mev 

Mev 
Mev 

Mev 
Inc 

Call 

Cmp 

Jne 
Call 

Loop 

Jmp 

'W', 'r'' • ' 
cx,es:count[bx] 

Di,es:xfer[bx] 

Ax,es:xseg[bx] 

Es,ax 

Al,es: [di] 

Di 

Put_out 

Ah,O 

Wwait 
Start_output 

Wlup 

Zexit 

Article 6: Interrupt-Driven Communications 

get the byte 

put away 

wait for room! 

get it going 

439 Output status request 

440 
441 Txstat: 

442 

443 

444 
445 

446 
447 
448 Txroom: 

449 

Mev 

Dec 

And 
Cmp 

Jne 
Jmp 

Jmp 

Ax,ofirst[si] 

Ax 
Ax,bufmsk 
Ax,oavail[si] 

Txroom 
Bsyexit 

Zexit 

buffer full 

room exists 

450 

451 
IOCTL read request, return line parameters 

452 
453 I oct lin: 

454 
455 

456 

457 

458 
459 
460 

461 

462 
463 

464 

465 

Doiocin: 

Mev 
Mev 

Mev 

Mev 
Cmp 

Je 

MOV 

Jmp 

Mev 

MOV 

Mev 

466 Getport: 

467 

468 
469 
470 
471 

In 
Stos 

Inc 
Loop 

Cx,es:count[bx] 
Di,es:xfer[bx] 

Dx,es:xseg[bx] 

Es,dx 

Cx,10 
Doiocin 
Ax,errbsl 

Exit 

Dx,port[si] 

Dl,Lctrl 

Cx,4 

Al,dx 
Byte Ptr [DI] 

Dx 
Get port 

base port 
line status 
LCR, MCR, LSR, MSR 

Figure 6-1. Continued. (more) 

Section Jl- Programming in the MS-DOS Environment 191 

HUAWEI EX. 1010 - 201/1582



Part B: Programming for MS-DOS 

472 
473 
474 

475 

476 

477 
478 

479 

480 

481 
482 

483 
484 

485 
486 
487 

488 
489 

490 
491 

492 

Mov 

Stos 
Mov 

Stos 

Mov 
Mov 

Mov 

Mov 

Baudcin: 
Cmp 

Je 
A<;ld 
Loop 

Yesinb: 
Mov 

Mov 
Stos 

Jmp 

Flush 

493 Txflush: 
Mov 
Mov 

Jmp 

Ax,InSpec[si] spec 

word Ptr [DI] 

Ax,OutSpec[si] out 

Word Ptr [DI] 

Ax, bauci[si] baud 

Bx,di 
Di,offset Asy__baudt+2 

Cx,15 

[di],ax 

Yesinb 

Di,4 
Baudcin 

Ax,-2[di] 

Di,bX 
Word Ptr [DI] 

Zexit 

output buffer request 

Ax,oavail[si] 

Ofirst[si],ax 

Zexit 

in flags 

flags 

rate 

494 

495 
496 
497 

498 

499 

500 
501 

502 
503 

504 
505 

506 
507 

508 

509 
510 

511 
512 

513 
514 

515 

516 

517 
518 

519 

520 
521 

IOCTL request: change line parameters for this driver 

Ioctlout: 
Mov 

Mov 
Mov 
Mov 
Cmp 

Je 
Mov 

Jmp 

Doiocout: 
Mov 

Mov 
Mov 

Inc 

Or 
out 

Clc 

Jnc 
Inc 

Mov 

Or 

. 522 out 

Figure 6-1. Continued. 

192 The MS-DOS Encyclopedia 

cx,es:count[bx] 

Di,es:xfer[bx] 
Dx,es:xseg[bx] 

Es,dx 
cx,10 
Doiocout 
Ax,errbsl 

Exit 

ox,port[si] 

Dl,Lctrl 
Al, es: [di] 

Di 
Al,Dlab 

Dx,al 

$+2 

Dx 
Al,es: [di] 

Al,Usr2 

Dx,al 

base port 

line ctrl 

set baud 

mdm ctrl 

Int Gate 

HUAWEI EX. 1010 - 202/1582

Part B: Programming for MS-DOS

    
 

472 : Mov Ax,InSpec[si] ; spec in flags
473 : Stos Word Ptr [DI]
474 : Mov AX,OutSpec[si] ; out flags
475 : Stos Word Ptr [DI]
476 : Mov Ax,baud[si] ; baud rate
477 : Mov Bx,di
478 : Mov Di,offset Asy_baudt+2
479 : Mov Cx,15
480 : Baudcin:

481 : Cmp [di],ax
482 i Je Yesinb
483 : Add Di,4
484 : ~ Loop Baudcin
485 : Yesinb:

486 : Mov Ax,-2[di]
487 : Mov Di,bx
488 : Stos Word Ptr [DI]
489 : Jmp Zexit
49o '
491 2 ; Flush output buffer request
492 .
493 : Txflush:

494 2 Mov Ax,oavail[si]
495 : Mov Ofirst[si]}ax
496 : Jmp Zexit
497 '

498 : ; IOCTL request: change line parameters for this driver
499 .
500 : Ioctlout:

501 : Mov Cx,es:count[bx]
502 : Mov Di,es:xfer[bx]
503 : Mov Dx,es:xseg[bx]
504 : Mov Es,dx
505 : Cmp Cx,10

5 506 : Je Doiocout
K 507 : MOV Ax,errbsl

1 . 508 : Jmp Exit
1:: see

i ' 510 : Doiocout:511 2 Mov Dx,port[si] ; base port

1. 512 : Mov Dl,Lctrl ; line ctrl
E = 513 : Mov Al,es:[di]
105 514 : Inc Di
{1‘ 515 2 0r Al,Dlab ; set baud
;§§ 516 : - Out Dx,al
11‘ 517 : Clc

518 : Jnc $+2
519 : Inc Dx ; mdm ctrl

1 V‘ 520 : Mov Al,es:[di]
4‘ 521 : Or Al,Usr2 ; Int Gate

'522 : out Dx,al

‘ Figure 6—1. Continued. (m1

3 11
11

 
‘ i1 192 TheM5_Dosmydoped,-a HUAWEI EX. 1010 - 202/1582



Article 6: Interrupt-Driven Communications 

523 Add Iii,3 skip LSR,MSR 

524 Mov Ax,es: [di] 

525 Add Di,2 

526 Mov InSpec[si],ax 

527 Mov Ax,es: [di] 

528 Add Di,2 

529 Mov OutSpec[si],ax 

530 Mov Ax,es: [di] ; set baud 

531 Mov Bx,di 

532 Mov Di,offset Asy--.baudt 

533 Mov Cx,15 

534 Baudcout: 

535 Cmp [di] ,ax 

536 Je Yesoutb 

537 Add Di,4 

538 Loop Baudcout 

539 

540 Mov Dl,Lctrl line ctrl 

541 In Al,dx get LCR data 

542 And Al,not Dlab strip 

543 Clc 

544 Jnc $+2 

545 Out Dx,al put back 

546 Mev Ax,ErrUm "unknown media" 

547 Jmp Exit 

548 

549 Yesoutb: 

550 Mov Ax,2 [di] get divisor 

551 Mov Baud[si] ,ax save to report later 

552 Mev Dx,port[si] set divisor 

553 Out D~,a1 

554 Clc 

555 Jnc $+2 

556 Inc Dx 

557 Mev Al,ah 

558 Out Dx,al 

559 Clc 

560 Jnc $+2 

561 Mev Dl,Lctrl line ctrl 

562 In Al,dx get LCR data 

563 And Al,not Dlab strip 

564 Clc 

565 Jnc $+2 

566 Out Dx,al put back 

567 Jmp Zexit 

568 
569 Subttl Ring Buffer Routines 

570 Page 

571 

572 Put_out Proc Near puts AL. into output ring buffer 

573. Push Cx 

Figure6-1. Continued. (more) 

Section II: Programming in the MS-DOS Environment 193 

HUAWEI EX. 1010 - 203/1582

 
Article 6: Interrupt-Driven CommunicationsW

523
524
525
526
527
528
529

, 530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573,:

Add
Mov
Add
Mov
Mov
Add
Mov
Mov
Mov
Mov
Mov

Baudcout:

Cmp
Je
Add

Loop

Mov
In
And
Clc
Jnc
Out
Mov

Jmp

Yesoutb:
Mov
Mov
Mov
Out
Clc
Jnc
Inc
Mov
Out
Clc
Jnc
Mov
In
And
Clc
Jnc
Out

Jmp

Subttl

Page

Put_out Proc
Push

Figure 6-1. Continued.

Di,3
Ax,es:[di]
Di,2
InSpec[si],ax
Ax,es:[di]
Di,2
OutSpeclsi],ax
Ax,es:[di]
Bx,di
Di,offset Asy_baudt
Cx,15

[di],ax
Yesoutb

Di,4
Baudcout

Dl,Lctrl
Al,dx
Al,not Dlab

$+2
Dx,al
Ax,ErrUm
Exit

Ax,2[di]
Baud[si],ax

Dx,port[si]

Dg,al

$+2
DX

Al,ah
Dx,al

$+2
Dl,Lctrl
Al,dx
Al,not Dlab

$+2

Dx,al
Zexit

Ring Buffer Routines

Near ;
Cx

puts AL into output ring buffer

; skip LSR,MSR

; set baud

; line_ctrl
; get LCR data
; strip

; put back
; "unknown media"

; get divisor
; save to report later
; set divisor

; line ctrl
; get LCR data
; strip

; put back

 
Onony

 
193Section 11.- Programming in the MS-DOS Environment

  
HUAWEI EX. 1010 - 203/1582

  



Part B: Programming for MS-DOS 

574 Push Di 

575 Pushf 

576 Cli 

577 Mov Cx,oavail[si] put ptr 

578 Mov Di,cx 

579 Inc Cx bump 

580 And Cx,bufmsk 

581 Cmp Cx,ofirst[si] overflow? 

582 Je Poerr yes, don't 

583 Add Di,obuf[si] no 

584 Mov [di],al put in buffer 

585 Mov Oavail[si],cx 

586 dbg 1 P 1 
I 

1
0

1 
I ' ' 

587 Mov Ah,O 

588 Jmp Short Po ret 

589 Poerr:. 

590 Mov Ah, -1 

591 Poret: 
592 Popf 

593 Pop Di 

594 Pop Cx 

595 Ret 

596 Put_out Endp 

597 
598 Get_out Proc Near gets next character from output ring buffer 

599 Push Cx 

600 Push Di 

601 Pushf 

602 Cli 

603 Mov Di,ofirst[si] get ptr 

604 Cmp Di,oavail[si] put ptr 

605 Jne Ngoerr 

606 Mov Ah,-1 empty 

607 Jmp Short Go ret 

608 Ngoerr: 

609 dbg 'g' I 
1 0 1 

I ' ' 
610 Mov Cx,di 

611 Add Di,obuf[si] 

612 Mov Al, [di] get char 

613 Mov Ah,O 

614 Inc Cx bump ptr 

615 And Cx,bufmsk wrap 

616 Mov Ofirst[si],cx 

617 Goret: 
618 Popf 

619 Pop Di 

620 Pop Cx 

621 Ret 

622 Get_out Endp 

623 

624 Put_in Proc Near puts the char from AL into input ring buffer 

Figure 6-1. Continued. (more) 

194 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 204/1582



Article 6: Interrupt-Driven Communications 

625 Push ex 

626 Push Di 

627 Pushf 
628 eli 
629 Mov Di,iavail[si] 

630 Mov ex,di 

631 Inc ex 

632 And ex,bufmsk 

633 emp ex,ifirst[si] 

634 Jne Npierr 

635 Mov Ah,-1 

636 Jmp Short Piret 

637 Npierr: 
638 Add Di,ibuf[si] 

639 Mov [di],al 

640 Mov Iavail[si],cx 

641 dbg 1 P 1 
f I i' I I ' 

642 Mov Ah,O 

643 Piret: 
64'4 Popf 
645 Pop Di 

646 Pop ex 

647 Ret 
648 Put_in Endp 

649 
650 Get_in Proc Near gets one from input ring buffer into AL 

651 Push ex 

652 Push Di 

653 Pushf 

654 eli 

655 Mov Di,ifirst[si] 

656 emp Di,iavail[si] 

657 Je Gierr 

658 Mov ex,di 

659 Add Di,ibuf[si] 

660 Mov Al, [di] 

661 Mov Ah,O 

662 dbg 'g' I IiI I I ' 
663 Inc ex 

664 And ex,bufmsk 

665 Mov Ifirst[si],cx 

666 Jmp Short Giret 

667 Gierr: 

668 Mov Ah,-1 

669 Giret: 
670 Popf 

671 Pop Di 

672 Pop ex 

673 Ret 
674 Get_in Endp 
675 

Figure6-1. Continued. (more) 

Section 11- Programming in the MScDOS 

HUAWEI EX. 1010 - 205/1582

 
Article 6: Interrupt-Driven CommunicationsW

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

Npierr:

Piret:

Put_in

: Get_in

Gierr:

Giret:

: Get_in

Push
Push
Pushf
Cli
Mov
Mov
Inc
And

Cmp
Jne
Mov

Jmp

Add
Mov
Mov

Mov

Popf
Pop
Pop
Ret

Endp

Proc
Push
Push
Pushf
Cli
Mov

Cmp
Je
Mov
Add
Mov
Mov

dbg
Inc
And
Mov

Jmp

Mov

Popf
Pop
Pop
Rec

Endp

Figure 6—1. Continued.

Cx
Di

Di,iavail[si]
Cx,di
Cx

Cx,bufmsk
Cx,ifirst[si]
Npierr
Ah,—1
Short Piret

Di,ibuf[si]
[di],al
Iavail[si],cx
'p'l'i'l' I
Ah,0

Di
Cx

Near ; gets one firom input ring buffer into AL
Cx
Di

Di,ifirst[si]
Di,iavail[si]
Gierr

Cx,di
Di,ibuf[si]
Al,[di]
Ah,0
'g','i',' '
Cx

Cx,bufmsk
Ifirst[si],cx
Short Giret

Ah,-1

Di
Cx

Ononfl

 
HUAWEI EX. 1010 - 205/1582



Part B: Programming for MS-DOS 

676 Subttl Interrupt Dispatcher Routine 

677 Page 

678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 

Asy1isr: 
Sti 
Push 
Lea 
Jmp 

Asy2isr: 
Sti 
Push 
Lea 

Int_serve: 
Push 
Push 
Push 
Push 
Push 
Push 
Push 
Pop 

699 Int_exit: 

700 dbg 

701 
702 
703 
704 

Mov 
Mov 
In 
Cmp 

705 Je 
706 Jmp 
707 IntJnodem: 
708 dbg 

709 
710 
711 
712 
713 
714 
715 
71 6 
717 
718 
71 9 

720 
721 
722 
723 
724 
725 
726 

Msdsr: 

Dsroff: 

Mov 
In 
Test 
Jnz 
Test 

Jz 
Or 

Test 
Jnz 
Test 
Jz 
Or 

Test 

Jz 
Or 
Jmp 

Figure 6-1. Continued. 

196 The MS-DOS Encyclopedia 

Si 
si,asy_tab1 
Short Int_serve 

Si 
Si,asy_tab2 

Ax save all regs 

Bx 
ex 
Dx 
Di 
Ds 
Cs set DS cs 
Ds 

I I I I 1 X', ' ' 
Dx,Port[si) 
Dl,Intid 

base address 
check Int ID 

Al,Dx 
Al,OOh dispatch filter 

IntJnodem 
IntJno_no 

'M', 'S', I ' 
Dl,Mstat 
Al,dx 
Al,CDlvl ., 

read MSR content 
carrier present? 

Msdsr yes, test for DSR 
OutSpec[si],OutCdf ; no, is CD off line? 

Msdsr 
InStat[si],OffLin 

Al,DSRlvl 
Dsron 

; DSR present? 
; yes, handle it 

OutSpec[si],OutDSR 

Dsroff 
OtStat[si),LinDSR 

OutSpec[si) ,OutDrf 

Mscts 
InStat[si],OffLin 
Short Mscts 

no, is DSR throttle? 

yes, throttle down 

is DSR off line? 

yes, set flag 

(more) 

HUAWEI EX. 1010 - 206/1582

Part B: Programming for MS-DOS

676 : Subttl Interrupt Dispatcher Routine
677 : Page
678 .

679 : Asy1isr:
680 : Sti
681 : Push Si
682 : Lea Si,asy_tab1
683 : Jmp Short Int_serve
684 .

685 : Asy2isr:

686 2 Sti
687 : Push Si
688 : Lea Si,asy_tab2
689
690 : Int_serve:

691 : Push Ax ; save all regs
692 : Push Bx
693 : Push Cx
694 : Push Dx
695 : Push Di
696 2 Push Ds

697 : Push Cs ; set DS = CS
698 : Pop D5
699 : Int_exit:

700 : ; dbg 'I','x',' '
701 : Mov Dx,Port[si] ; base address
702 : Mov Dl,IntId ; check Int ID
703 : In Al,Dx

704 : Cmp Al,00h ; dispatch filter
705 2 Je Int_modem
706 : Jmp Int_mo_no

707 : Int_modem: I
708 z ; dbg 'M','S',' ' '
709 : Mov Dl,Mstat

710 : In Al,dx ; read MSR content
711 : Test Al,CDlVl .; carrier present?
712 : an Msdsr ; yes, test for DSR
713 : Test OutSpec[si],Outhf ; no, is CD off line?
714 2 J2 Msdsr
715 : Or InStat[si],OffLin
716 : Msdsr:

717 : Test Al,DSRlvl ; DSR present?
718 : an Dsron ; yes, handle it
719 : Test OutSpec[si],OutDSR ; no, is DSR throttle?
720 : J2 Dsroff

721 : Or OtStat[si],LinDSR ; yes, throttle down
722 : Dsroff:

723 : Test OutSpec[si],OutDrf ; is DSR off line?
724 : Jz Mscts

725 : Or InStat[si],OffLin ; yes, set flag
726 : Jmp Short Mscts

Figure 6—1. Continued. (more)

196 The MS—DOS Encyclopedia

 
HUAWEI EX. 1010 - 206/1582



727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 

Dsron: 

Mscts: 

Test 
Jz 
X or 
Call 

Test 
Jnz 
Test 
Jz 
Or 
Jmp 

739 Ctson: 
740 
741 
742 
743 

Test 
Jz 
X or 
Jmp 

744 Int__mo_no: 

745 
746 

Cmp 
Jne 

747 Int_txmit: 
748 
749 
750 
751 
752 

dbg 
Int_exit 1: 

Call 
Int_exit2: 

Jmp 
7 53 Int_tx_no: 
754 
755 

Cmp 
Jne 

756 Int_receive: 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 

Isq: 

dbg 
Mov 
In 
Test 
Jz 
Cmp 
Jne 
Or 
Jmp 

Cmp 
Jne 
Test 

Jz 
X or 
Jmp 

773 Int_rec_no: 
774 
775 

Cmp 
Jne 

776 Int_rxstat: 
777 dbg 

Figure6-1. Continued. 

Article 6: Int~rrupt-Driven Communications 

OtStat[si],LinDSR 
Mscts 
OtStat[si],LinDSR 
Start_output 

throttled for DSR? 

yes, clear it out 

Al,CTSlvl ; CTS present? 
Ctson ; yes, handle it 
OutSpec[si),OutCTS no, is·CTS throttle? 
Int_exit2 

OtStat[si],LinCTS 
Short Int_exit2 

OtStat[si],LinCTS 
Int_exit2 
OtStat[si),LinCTS 
Short Int_exit1 

Al,02h 
Int_tx_no 

'T', 'x',' ' 

Start_output 

Int_exit 

Al,04h 
Int_rec_no 

'R' 1 
1

X
1 

1
1 1 

yes, shut it down 

throttled for CTS? 

yes, clear it out 

try to send another 

Dx,port[si) 
Al,dx ; take char from 8250 
OutSpec[si] ,OutXon ; is XON/XOFF enabled? 
Stuff_in no 
Al, 'S' And 01FH ; yes, is this XOFF? 
Isq no, check for XON 
OtStat[si),LinXof; yes, disable output 
Int_exit2 don't store this one 

Al, 'Q' And 01FH is this XON? 
Stuff_in no, save it 
OtStat[si),LinXof ; yes, waiting? 
Int_exit2 no, ignore it 
OtStat(si),LinXof; yes, clear the XOFF bit 
Int_exit1 and try to resume xmit 

Al,06h 
Int_done 

'E', 'R', I ' 

Section /l- Programming in the MS-DOS Envlron1rlfirlf •. 

(more) 

HUAWEI EX. 1010 - 207/1582

 
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

Dsron:
Test
Jz
Xor
Call

Mscts:
Test
an
Test
Jz
Or

Jmp
Ctson:

Test
Jz
Xor

Jmp
Int_mo_no:

Cmp
Jne

Int_txmit:

; dbg
Int_exit1:

Call
Int_exit2:

Jmp
Int_tx_no:

Cmp
Jne

Int_receive:

; dbg
Mov
In
Test
Jz

Cmp
Jne
Or

Jmp
Isq:

Cmp
Jne
Test
Jz
Xor

Jmp
Int_rec_no:

Cmp
Jne

Int_rxstat:

; dbg

Figure 6—]. Continued.

 
Article 6: Interrupt—Driven Communications 

OtStat[si],LinDSR ; throttled for DSR?
Mscts

OtStat[si],LinDSR ; yes, clear it out
Start_output

Al,CTslvl ; CTS present?
Ctson ; yes, handle it
OutSpec[si],OutCTs - ; no, is CTS throttle?
Int_exit2

OtStat[si],LinCTS ; yes, shut it down
Short Int_exit2

OtStat[si],LinCTS ; throttled for CTS?
Int_exit2

0tStat[si],LinCTS ; yes, clear it out
short Int_exit1

Al,02h
Int_tx_no

'TIIIXII' l

Start_output ; try to send another

Int_exit

Al,04h
Int_rec_no

IRVIIXI’I v

Dx,port[si] .
Al,dx ; take char from 8250
OutSpec[si],Outhn ; is XON/XOFF enabled?
Stuff_in ; no

Al,'S' And 01FH ; yes, is this XOFF?
Isq ; no, check for XON
Otstat[si],LinXof ; yes, disable output
Int_exit2 ; don't store this one

A1,'Q' And 01FH ; is this XON?
Stuff_in ; no, save it
OtStat[si],LinXof ; yes, waiting?
Int_exit2 ; no, ignore it
OtStatEsi],LinXof ; yes, clear the XOFF bit
Int_exit1 ; and try to resume xmit

Al,06h
Int_done

'E',‘R'/' I

Section 11: Programming in the MS—DOSEnvironmeht v '

HUAWEI EX. 1010 - 207/1582

 



Part B: Programming for MS-DOS 

778 

779 
780 

781 
782 

783 
784 

785 

786 
787 
788 

789 

790 

Mov 

In 
Test 

Jz 
And 

Or 
Stuff_in: 

Call 

Cmp 
Je 

Or 
Int_exit3: 

Jmp 

791 Nocode: 

792 Or 

Jmp 793 
794 Int_done: 

795 Clc 

796 

797 

798 
799 

800 
801 

802 

803 
804 

805 
806 

807 

808 
809 

810 
811 

812 
813 

814 

815 
816 

817 

818 
819 

820 
821 

822 

823 
824 

825 

Jnc 
Mov 

Out 
Pop 

Pop 
Pop 

Pop 

Pop 
Pop 

Pop 
I ret 

Start_output 

Test 

Jnz 
Mov 

Mov 

In 

Test 

Jz 
Call 
Or 

Jnz 

Mov 

Out 
dbg 

Dont_start: 

ret 
Start_output 

Dl,Lstat 

Al,dx 
InSpec[si],InEpc ; return them as codes? 

no, just set error alarm Nocode 
Al,AnyErr 

Al,080h 

; yes, mask off all but error bits 

Put_in 

Ah,O 
Int_exit3 

put input char in buffer 

did it fit? 

yes, all OK 
InStat[si],LostDt ; no, set DataLost bit 

Int_exit 

InStat[si],Badinp 
Int_exit3 

$+2 
Al,EOI 
PIC-.b,Al 

Ds 
Di 

Dx 
ex 
Bx 

Ax 

Si 

Proc Near 

all done now 

restore regs 

OtStat[si],Linidl ; Blocked? 
Dont_start 

Dx,port[si] 

Dl,Lstat 

Al,Dx 
Al,xhre 
Dont_start 

Get_out 

Ah,Ah 
Dont_start 

Dl,RxBuf 
Dx,al 
I 5 I 1 1 0 1 1 I I 

Endp 

yes, no output 

no, check UART 

empty? 

no 
yes, anything waiting? 

no 
yes, send it out 

826 Subttl Initialization Request Routine 

827 Page 

828 

Figure 6-1. Continued. 

198 The MS-DOS Encyclopedia 

.,\ 
~1 

(more) 

HUAWEI EX. 1010 - 208/1582

 
Part B: Programming for MS—DOS 

778 : Mov Dl,Lstat
779 : In Al,dx
780 : Test InSpec[si],InEpc ; return them as codes?
781 : Jz Nocode ; no, just set error alarm
782 : And Al,AnyErr ; yes, mask off all but error bits
783 : Or Al,080h
784 : Stuff_in:

785 : Call Putiin ; put input char in buffer
786 : Cmp Ah,0 ' ; did it fit?
787 : Je Int-exit3 ; yes, all OK
788 : Or Instat[si],LostDt ; no, set DataLost bit
789 : Int_exit3:

790 : Jmp Int_exit

791 : Nocode:
792 : Or InStat[si],BadInp
793 : Jmp Int_exit3
794 : Int_done:
795 : Clc
796 : Jnc $+2

797 : Mov Al,EOI ; all done now
7 9 8 : Out P I C_b , A1
799 : Pop Ds ; restore regs
800 : Pop Di
801 : Pop BX
802 : Pop Cx
803 2 Pop Bx
804 : Pop Ax
805 : Pop Si
806 : Iret
807 .

808 : Start_output Proc Near
809 2 Test Otstat[si],LinIdl ; Blocked?
810 : an Dont_start ; yes, no output
811 : Mov Dx,port[si] ; no, check UART
812 : Mov Dl,Lstat
813 : In Al,DX
814 : Test Al,xhre ; empty?
815 : Jz Dont_start ; no

816 : Call Get_out ; yes, anything waiting?
817 : Or Ah,Ah
818 : an Dont_start ; no

819 : Mov Dl,RxBuf ; yes, send it out
820 : Out Dx,al

821 z ; dbg 's','o',' '
822 : Dont_start:
823 2 ret

824 : Start_output Endp
825 .

826 : Subttl Initialization Request Routine
827 : Page
828

Figure 6-1‘ Continued. (more) '

198 The MS-DOS Encyclopedia

 
HUAWEI EX. 1010 - 208/1582



Article 6: Interrupt-Driven Communications 

829 Init: Lea Di,$ release rest ... 
830 Mov Es:Xfer[bx],Di 
831 Mov Es:Xseg[bx],Cs 
832 
833 Mov Dx,Port[si] base port 
834 Mov Dl,Lctrl 
835 Mov Al,Dlab enable divisor 
836 Out Dx,Al 
837 Clc 
838 Jnc $+2 
839 Mov Dl,RxBuf 
840 Mov Ax,Baud[si] set baud 
841 Out Dx,Al 
842 Clc 
843 Jnc $+2 
844 Inc Dx 
845 Mov Al,Ah 
846 Out Dx,Al 
847 Clc 
848 Jnc $+2 
849 
850 Mov Dl,Lctrl set LCR 
851 Mov Al,OtStat[si] from table 
852 Out Dx,Al 
853 Mov OtStat[si],O clear status 
854 Clc 
855 Jnc $+2 
856 Mov Dl,IntEn IER 
857 Mov Al,Allint enable ints in 8250 858 Out Dx,Al 
859 Clc 
860 Jnc $+2 
861 Mov Dl,Mctrl set MCR 
862. Mov Al,InStat[si] from table 
863 Out Dx,Al 
864 Mov InStat[si],O clear status 0
S6S 
866 ClRgs: Mov Dl,Lstat clear LSR .. 867 In Al,Dx 
868 Mov Dl,RxBuf clear RX reg 
869 In Al,Dx 

.· 870 Mov Dl,Mstat clear MSR 
871 In Al,Dx 
872 Mov Dl,Intid IID reg ·. ,.,.873 

In Al,Dx 
~ 

: In Al,Dx 
Test Al, 1 int pending? 
Jz ClRgs yes, repeat 

Cli 

X or Ax,Ax set int vee 

Continued. 
(more) 

Section Il· Programming in the MS-DOS Environment 

HUAWEI EX. 1010 - 209/1582

 
829 Init: Lee
830 MOV
831 ' Mov
832

833 ' Mov
834 Mov
835 . Mov
836 ' Out
837 . Clc
838 - Jnc
839 Mov
840 . Mov
841 : Out
842 : Clc
843 ' Jnc
844 : Inc
845 . Mov
846 ‘ Out
847 . Clc
848 . Jnc
849 '

850 . Mov
851 ' Mov
852 . Out
853 . Mov
854 : Clc
855 ' Jnc
856 : Mov
857 : Mov
858 : Out
859,' Clc
860 . Jnc
861 ' Mov
862 Mov

4863 . Out
864 . Mov

”865 .

’866 ‘ Cles: Mov
.867 : In
868 . Mov

6869 : In.
VH870 : Mov
.871 : In
872 : Mov

%873 i In
‘874«:7 In
875 : . Test

3876 : Ji877 -

878 . Cli
79 : Xor

Figure 6-]. Continued.

Di,$

Es:Xfer[bx],Di
Es:Xseg[bx],Cs

Dx,Port[si]
Dl,Lctrl
Al,Dlab
Dx,Al

$+2
Dl,RXBuf

Ax,Baud[si]
Dx,Al

$+2
Dx a
Al,Ah
Dx,Al

$+2

D1,Lctrl

Al,OtStat[si]
DX,Al

OtStat[si],O

$+2
Dl,IntEn
Al,AllInt
Dx,Al

$+2
Dl,Mctrl

Al,InStat[si]
Dx,Al

Instat[si],0

Dl,Lstat
Al,Dx
Dl,RxBuf
Al,Dx
Dl,Mstat
Al,DX
Dl,IntId
Al,Dx
Al,Dx
Al,1

Cles

Ax,Ax

Section IL Programming in theMS-DOSEnvironment

n

~.

~.

~.

~.

\.
m

‘-

 

Article 6: Interrupt~Driven Communications

release rest..

base port

enable divisor

set baud

set LCR

from table

clear status

IER

 

enable ints in 8250

set MCR

from table

clear status

clear LSR

clear RX reg

clear MSR

IID re;

int pending?
yes, repeat

set int vec

 
HUAWEI EX. 1010 - 209/1582

 



I 
. j: 
. ' 
I: 
! ; 

Part B: Programming for MS-DOS 

880 Mov 
881 Mov 
882 Mov 
883 Stosw 
884 Mov 
885 

886 In 
887 And 
888 Clc 
889 Jnb 

890 Out 
891 Sti 
892 
893 Mov 
894 Out 
895 
896 dbg 
897 Jmp 
898 

899 Driver Ends 

900 End 

Figure 6-1. Continued. 

Es,Ax 
Di,Vect[si] 

Ax,IsrAdr[si] 

Es: [di],cs 

Al,PIC_e 

Al,OE7h 

$+2 
PIC_e,Al 

Al,EOI 

PIC-b,Al 

'D I, I If I I ' 
Zexit 

from table 

get 8259 

com1/2 mask 

now send EOI just in case 

driver installed 

The first part of the driver source code (after the necessary MASM housekeeping details 
in lines 1 through 8) is a commented-out macro definition (lines 10 through 32). This 
niacro is used only during debugging and is part of a debugging technique that requires 
no sophisticated hardware and no more complex debugging program than the venerable 
DEBUG.COM. (Debugging techniques are discussed after the presentation of the driver 
program itself.) 

Definitions 
The actual driver source program consists of three sets of EQU definitions (lines 34 
through 194), followed by the modular code and data areas (lines 197 through 900). The 
first set of definitions (lines 34 through 82) gives symbolic names to the permissible values 
for MS-DOS device-driver control bits and the device-driver structures. 

The second set of definitions (lines 84 through 145) assigns names to the ports and bit 
values that are associated with the IBM hardware-both the 8259 PIC and the 8250 DART. 
The third set of definitions (lines 147 through 194) assigns names to the control values and 
structures associated with this driver. 

The definition method used here is recommended for all drivers. To move this driver from 
the IBM architecture to some other hardware, the major change required to the program 
would be reassignment of the port addresses and bit values in lines 84 through 145. 

The control values and structures for this specific driver (defined in the third EQU set) 
provide the means by which the separate support program can modify the actions of each 
of the two logical drivers. They also permit the driver to return status information to both 

200 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 210/1582

Part B: Programming for MS-DOS 

880 : Mov Es,Ax
881 : Mov Di,Vect[si]
882 : Mov Ax,IsrAdr[si] ; from table
883 : Stosw

884 : Mov Es:[di],cs
885 : '
886 : In Al,PIC_e ; get 8259
887 : And Al,OE7h ; com1/2 mask
888 : Clc
889 : an $+2
890 : Out PIC_e,Al
891 2 Sti
892 z

893 : Mov Al,EOI ; now send EOI just in case

894 : Out PIC_.b,Al '
895 :'
896 : ; dbg 'D','I',' ' ; driver installed
897 : Jmp Zexit
898 :
899 : Driver Ends
900 : End

Figure 6-1. Continued.

The first part of the driver source code (after the necessary MASM housekeeping details

in lines 1 through 8) is a commented—out macro definition (lines 10 through 32). This

macro is used only during debugging and is part of a debugging technique that requires

no sophisticated hardware and no more complex debugging program than the venerable

DEBUG.COM. (Debugging techniques are discussed after the presentation of the driver

program itself.)

Definitions

The actual driver source program consists of three sets of EQU definitions (lines 34

through 194), followed by the modular code and data areas (lines 197 through 900). The

first set of definitions (lines 54 through 82) gives symbolic names to the permissible values

for MS—DOS device-driver control bits and the device—driver structures.

 
The second set of definitions (lines 84 through 145) assigns names to the ports and bit
values that are associated with the IBM hardware — both the 8259 PIC and the 8250 UART.

The third set of definitions (lines 147 through 194) assigns names to the control values and
structures associated with this driver.

 
, g I The definition method used here is recommended for all drivers. To move this driver from

‘ the IBM architecture to some other hardware, the major change required to the program
1 ‘ ‘ would be reassignment of the port addresses and bit values in lines 84 through 145.

 
The control values and structures for this specific driver (defined in the third EQU set)

provide the means by which the separate support program can modify the actions of each

of the two logical drivers. They also permit the driver to return status information to both 

200 The MS—DOS Encyclopedia
Ml HUAWEI EX. 1010-210/1582

 



Article 6: Interrupt-Driven Communications 

the support program and the using program as necessary. Only a few features are imple
mented, but adequate space for expansion is provided. The addition of a few more defini
tions in this area and one or two extra procedures in the code section would do all that is 
necessary to extend the driver's capabilities to such features as automatic expansion of 
tab characters, case conversion, and so forth, should they be desired. 

Headers and structure tables 
The driver code itself starts with a linked pair of device-driver header blocks, one for 
ASYJ (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following 
the headers, in lines 215 through 236, are a commented-out space reservation used by the 
debugging procedure (line 215), the pointer to the command packet (line 219), and the 
baud-rate conversion table (lines 221 through 236). 

The conversion table is followed by structure tables containing all data unique to ASYJ 
(lines 239 through 242) and ASY2 Clines 244 through 247). After the structure tables, 
buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer 
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a 
name (at line 249) so that it can be changed by editing a single line of the program. 

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be 
able to hold at least 2 seconds' worth of data (240 bytes at 1200 bps) to avoid data loss dur
ing writes to disk. Whatever size is chosen sho~ld be a power of 2 for simple pointer arith
metic and, if video display is intended, should not be less than 8 bytes, to prevent losing 
characters when the screen scrolls. 

If additional ports are desired, more headers can be added after line 213; corresponding 
structure tables for each driver, plus matching pairs of buffers, would also be necessary. 
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets 
of all request routines in the driver; its use is discussed below. 

Strategy and Request routines 
With all data taken care of, the program code begins at the Strategy routine (lines 289 
through 296), which is used by both ports. This code saves the command packet address 
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS. 

The Request routines (lines 298 through 567) are also shared by both ports, but the two 
drivers are distinguished by the address placed into the SI register. This address points to 
the structure table that is unique to each port and contains such data as the port's base 
address, the associated hardware interrupt vector, the interrupt service routine offset 
within the driver's segment, the base offsets of the input and output buffers for that port, 
two pointers for each of the buffers, and the input and output status conditions (including 
baud rate) for the port. The only difference between one port's driver and the other's is 
the data pointed to by SI; all Request routine code is shared by both ports. 

Each driver's Request routine has a unique entry point (at line 298 for ASYJ and at line 303 
for ASY2) that saves the original content of the SI register and then loads it with the ad
dress of the structure table for that driver. The routines then join as a common stream at 
line 307 ( Gen_ request). 

Section II: Programming tn the MS-DOS Environment 201 
HUAWEI EX. 1010 - 211/1582

 
Article 6: Interrupt-Driven Communications 

the support program and the using program as necessary. Only a few features are imple-

mented, but adequate space for expansion is provided. The addition of a few more defini-

tions in this area and one or two extra procedures in the code section would do all that is

necessary to extend the driver’s capabilities to such features as automatic expansion of

tab characters, case conversion, and so forth, should they be desired.

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for

ASY1 (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following

the headers, in lines 215 through 236, are a commented-out space reservation used by the

debugging procedure (line 215), the pointer to the command packet (line 219), and the

baud-rate conversion table (lines 221 through 236).

The conversion table is followed by structure tables containing all data unique to ASY1

(lines 239 through 242) and ASY2 (lines 244 through 247). After the structure tables,

buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer

are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a

name (at line 249) so that it can be changed by editing a single line of the program.

 

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be

' able to hold at least 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dur-
ing writes to disk. Whatever size is chosen should be a power of 2 for simple pointer arith—

metic and, if video display is intended, should not be less than 8 bytes, to prevent losing
characters when the screen scrolls.

If additional ports are desired, more headers can be added after line 213; corresponding

structure tables for each driver, plus matching pairs of buffers, would also be necessary.

The final part of this area is the dispatch table (lines 256 through 284), which listsoffsets
of all request routines in the driver; its use is discussed below.

Strategy and Request routines

With all data taken care of, the program code begins at the Strategy routine (lines 289

through 296), which is used by both ports. This code saves the command packet address

passed to it by MS-DOS for use by the Request routine and returns to MS—DOS.

The Request routines (lines 298 through 567) are also shared by both ports, but the two

drivers are distinguished by the address placed into the SI register. This address points to

the structure table that is unique to each port and contains such data as the port’s base

address, the associated hardware interrupt vector, the interrupt service routine offset

within the driver’s segment, the base offsets of the input and output buffers for that port,

two pointers for each of the buffers, and the input and output status conditions (including

_ baud rate) for the port. The only difference between one port’s driver and the other’s is
the data pointed to by SI; all Request routine code is shared by both ports.

Each driver’s Request routine has a unique entry point (at line 298 for ASY1 and at line 303

for ASY2) that saves the original content of the SI register and then loads it with the ad—

dress of the structure table for that driver. The routines then join as a common stream at

line 307 (Gen_ request).

Section 11: Programming in the MS-DOS Environment 201
HUAWEI EX. 1010 - 211/1582

 



J{! 

I 
I): 

Part B: Programming for MS-DOS 

This common code preserves all other registers used (lines 309 through 318), sets DS 
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-: 
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code 
to calculate an offsetinto a table of addresses Clines 324 through 326), and performs an in
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the 
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453, 
500, or 829). 

Although the device-driver specifications for MS-DOS version 3.2list command request 
codes ranging from 0 to 24, not all are used. Earlier versions of MS-DOS permitted only 0 
to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3.1) codes. In this driver, all24 codes are 
accounted for; those not implemented in this driver return a DONE and NO ERROR status 
to the caller. Because the Request routine i.s called only by MS-DOS itself, there is no check 
for invalid codes. Actually, because the header attribute bits are not set to specify that 
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273 
through 284) could be saved by omitting the entries. They are included only to show 
how nonexistent commands can be accommodated. 

Immediately following the dispatch indexed jump, at lines 329 through 353 within the 
same PROC declaration, is the common code used by all Request routines to store status 
information in the command packet, restore the registers, and return to the caller. The 
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an error 
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant 
code but also improve readability of the code by providing unique single labels for BUSY, 
NO ERROR, and ERROR return conditions. 

All of the Request routines, except for the /nit code at line 829, immediately follow the 
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such 
as read data in or write data out. The Read routine (lines 360 through 385) is typical: First, 
the requested byte count and user's buffer address are obtained from the command 
packet. Next, the pointer to the command packet is saved with a PUSH instruction, so that 
the ES and BX registers can be used for a pointer to the port's input buffer. 

Before the Get_ in routine that actually accesses the input buffer is called, the input status 
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the 
status flag, flush the saved pointers from the stack, and jump to the error-return exit from 
the driver. If no error exists, line 375 calls Get_ in to access the input buffer and lines 376 
and 377 determine whether a byte was obtained. If a byte is found, it is stored in the user's 
buffer by line 378, and line 379 loops back to get another byte until the requested count 
has been obtained or until no more bytes are available. In practice, the count is an upper 
limit and the loop is normally broken when data runs our. 

No matter how it happens, control eventually reaches the Got_ all routine and lines 381 
and 382, where the saved pointers to the command packet are restored from the stack. 
Lines 383 and 384 adjust the count value in the packet to reflect the actual n.umber of bytes 
obtained. Finally, line 385 jumps to the normal, no-error exit from the driver. 

202 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 212/1582



Article 6: Interrupt-Driven Communications 

Buffering 
Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively, 
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the 
end of the buffer, the pointer returns to the buffer's beginning. Two pointers are used here 
for each buffer, one to put data into it and one to get data out. The get pointer always 
points to the next byte to be read; the put pointer points to where the next byte will be 
written, just past the last byte written to the buffer. 

If both pointers point to the same byte, the buffer is empty; the next byte to be read has 
not yet been written. The full-buffer condition is more difficult to test for: The put pointer 
is incremented and compared with the get pointer; if they are equal, doing a write would 
force a false buffer-empty condition, so the buffer must be full. 4 
All buffer manipulation is done via four procedures (lines 569 through 674). Put_ out 
(lines 572 through 596)writes a byte to the driver's output buffer or returns a buffer-full 
indication by setting AH to OFFH. Get_ out Clines 598 through 622)gets a byte from the 
output buffer or returns OFFH in AH to indicate that no byte is available. Put_ in (lines 624 
through 648) and Get_ in Clines 650 through 674) do exactly the same as Put_ out and 
Get_ out; but for the input buffer. These procedures are used both by the Request routines 
and by the hardware interrupt service routine (ISR). 

Interrupt service routines 
The most complex part of this driver is the ISR (lines 676 through 806), which decides 
which of the four possible services for a port is to be performed and where. Like the 
Request routines, the ISR provides unique entry points for each port Cline 679 for ASYl and 
line 685 for ASY2); these entry points first preserve the SI register and then load it with the 
address of the port's structure table. With SI indicating where the actions are to be per
formed, the two entries then merge at line 690 into common code that first preserves all 
registers to be used by the ISR Clines 690 through 698) and then tests for each of the four 
possible types of service and performs each requested action. 

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because 
the resulting information is not used by this driver (although it could be used to prevent 
attempts to transmit while off line), these ISR options cari be removed so that only the 
Transmit and Receive interrupts are serviced. To do this, Alllnt (at line 145) should be 
changed from the OR of all four bits to include only the transmit and receive bits (03H, 
or OOOOOOllB). 

The transmit and receive portions of the ISR incorporate XON/XOFF flow control (for 
transmitted data only) by default. This control is done at the ISR level, rather than in the 
using program, to minimize the time required to respond to an incoming XOFF signal. 
Presence of the flow-control decisions adds complexity to what would otherwise be 
extremely simple actions. 

Flow control is enabled or disabled by setting the OutSpec word in the structure table 
with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Func
tion 44H). When flow control is enabled, any XOFF character (llH) that is received halts 
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input 

Section IL- Programming in the MS-DOS Environment 203 

HUAWEI EX. 1010 - 213/1582

Article 6: Interrupt-Driven Communications 

Buffering

' Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively,

such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here

for each buffer, one-to put data into it and one to get data out. The get pointer always
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has

not yet been written. The full—buffer condition is more difficult to test for: The put pointer

is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674). Put_ out

(lines 572 through 596)writes a byte to the driver’s output buffer or returns a buffer-full

indication by setting AH to OFFH. Get_out (lines 598 through 622)gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available. Put_ in (lines 624

through 648) and Get_ in (lines 650 through 674) do exactly the same as Put_out and

Get_out, but for the input buffer. These procedures are used both by the Request routines

and by the hardware interrupt service routine (ISR).

Interrupt service routines

The most complex part of this driver is the ISR (lines 676 through 806), which decides

which of the four possible services for a port is to be performed and where. Like the

Request routines, the ISR provides unique entry points for each port (line 679 for ASY1 and

line 685 for ASY2);_ these entry points first preserve the SI register and then load it with the
address of the port’s structure table. With SI indicating where the actions are to be per-

formed, the two entries then merge at line 690 into common code that first preserves all

registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action.

 
Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although ‘it could be used to prevent

. attempts to transmit while off line), these ISR options can be removed so that only the

, Transmit and Receive interrupts are serviced. To do this, Alllnt (at line 145) should be

changed from the OR of all four bits to include only the transmit and receive bits (03H,
' or 00000011B).

The transmit and receive portions of the ISR incorporate XON/XOFF flow Control (for

transmitted data only) by default. This controlis done at the ISR level, rather than in the
using program, tominimize the time required to respond to an incoming XOFF signal. -

Presence of the flow-control decisions adds complexity to what would otherwise be

extremely simple actions.

Flow control is enabled or disabled by setting the OutSpeC word in the structure table

with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Func-

tion 44H). When flow control is enabled, any XOFF character (11H) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section [1: Programming in the MS—DOS Environment 205

 
HUAWEI EX. 1010 - 213/1582



Part B: Programming for MS-DOS 

buffer to be sent on to any program, although all patterns other than XOFF and XON are 
passed through by the driver. When flow control is disabled, the driver passes all patterns 
in both directions. For binary file transfer, flow control must be disabled. 

The transmit action is simple: The code merely calls the Start_ output procedure at line 
750. Start_ output is described in detail below. 

The receive action is almost as simple as transmit, except for the flow-control testing. First, 
the ISR takes the received byte from the DART (lines 758 and 759) to avoid any chance of 
an overrun error. The ISR then tests the input specifier (at line 760) to determine whether 
flow control is in effect. If it is not,. processing jumps directly to line 784 to store the 
received byte in the input buffer with Put_ in (line 785). 

If flow control is active, however, the received byte is compared with the XOFF character 
(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored. If 
the byte is not XOFF, it is compared with XON (lines 766 through 768). If it is not XON 
either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled. 
Regardless, the XON byte itself is ignored. 

When control reaches Stuff_ in at line 784, Put_ in is called to store the received byte in 
the input buffer. If there is no room for it, a lost -databit is set in the input status flags (line 
788); otherwise, the receive routine is finished. 

If the interrupt was a line-status action, the LSR is read Clines 776 through 779). If the input 
specifier so directs, the content is converted to an IBM PC extended graphics character by 
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte .. 
Otherwise, the Line Status interrupt merely sets the generic Badlnp error bit in the input 
status flags, which can be read with the IOCTL Read function of the driver. 

When all ISR action is complete, lines 794 through 806 restore machine conditions to those 
existing at the time of the interrupt and return to the interrupted procedure. 

The Start_output routine 
Start_ output (lines 808 through 824) is a routine that, like the four buffer procedures, is 
used by both the Request routines and the ISR. Its purpose is to initiate transmission of a 
byte, provided that output is not blocked by flow control, the DART Transmit Holding 
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine 
uses the Get_ out buffer routine to access the buffer and determine whether a byte is avail
able. If all conditions are met, the byte is sent to the DART holding register by lines 819 
and820. 

The Initialization Request routine 
The Initialization Request routine Clines 829 through 897) is critical to successful operation 
of the driver. This routine is placed last in the package so that it can be discarded as soon · 
as it has served its purpose by installing the driver. It is essential to clear each register of 
the 8250 by reading its contents before enabling the interrupts and to loop through this 

204 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 214/1582



Article 6: Interrupt-Driven Communications 

action until the 8250 finally shows no requests pending. The strange Clc jnc $+ 2 
sequence that appears repeatedly in this routine is a time delay required by high-speed 
machines (6 MHz and up) so that the 8250 has time to settle before another access is 
attempted; the delay does no harm on slower machines. 

Using COMDVR 

The first step in using this device driver is assembling it with the Microsoft Macro Assem
bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert 
the .EXE file into a binary image file with the EXE2BIN utility. Finally, include the line 
DEVICE=COMDVR.SYS in the CONFIG.SYS file so that COMDVR will be installed when 
the system is restarted. 

Note: The number and colon at the beginning of each line in the program listings in this 
article are for reference only and should not be included in the source file. 

Figure 6-2 shows the sequence of actions required, assuming that EDLIN is used for 
modifying (or creating) the CONFIG.SYS file and that all commands are issued from the 
root directory of the boot drive. 

Creating the driver: 

C>MASM COMDVR; <Enter> 
C>LINK COMDVR; <Enter> 
C>EXE2BIN COMDVR.EXE COMDVR.SYS <Enter> 

Modifying CONFIG.SYS (Az =press Ctrl-Z): 

C>EDLIN CONFIG.SYS <Enter> 
*#I <Enter> 
*DEVICE=COMDVR.SYS <Enter> 
*AZ <Enter> 
*E <Enter> 

Figure 6-2. Assembling, linking, and installing COMDVR. 

Because the devices installed by COMDVR do not use the standard MS-DOS device names, 
no conflict occurs with any program that uses conventional port references. Such a pro
gram will not use the driver, and no problems should result if the program is well behaved 
and restores all interrupt vectors before returning to MS-DOS. 

Device-driver debugging techniques 

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more 
difficult than normal program checking because the debugging program, DEBUG.COM or 
DEBUG.EXE, itself uses MS-DOS functions to display output. When these functions are 
being checked, their use by DEBUG destroys the data being examined. And because 
MS-DOS always saves its return address in the same location, any call to a function from 
inside the operating system usually causes a system lockup that can be cured only by 
shutting the system down and powering up again. 

Section II: Programming in the MS-DOS Environment 205 

HUAWEI EX. 1010 - 215/1582

  
Article 6: Interrupt-Driven Communications 

action until the 8250 finally shows no requests pending. The strange Clcjnc 3+2
Sequence that appears repeatedly in this routine is a time delay required by high—speed
machines (6 MHz_ and up) so that the 8250 has time to settle before another access is
attempted; the delay does no harm on slower machines.

Using COMDVR

The first step in using this device driver is assembling it with the Microsoft Macro Assem-

bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert

the .EXE file into a binary image file with the EXEZBIN utility. Finally, include the line
DEVICE=C'OMDVR.SYS in the CONFIG.SYS file so that COMDVR Will be installed when

the system is restarted.

Note-l The number and colon at the beginning of each line in the program listings in this
article are for reference only and should not be included in the source file.

Figure 6—2 shows the sequence of actions required, assuming that EDLIN is used for
modifying (or creating) the CONFIG.SYS file and that all commands are issued from the
root directory of the boot drive.

Creating the driver:

C>MASM COMDVR; <En£er>
C>LINK COMDVR; <Enter>
C>EXE2BIN comovarxn COMDVR.SYS <Enter>

Modifying CONFIG.SYS (AZ = press Ctrl-Z):

C>EDLIN CONFIG.SYS <Enter>

*#I <Enter>
*DEVICE=COMDVR.SYS <Enter>
*‘Z <Enter>
*E <Enter>

Figure 6—2. Assembling, linking, and installing COMDVR.

Because the devices installed by COMDVR do not use the standard MS—DOS device names,
no conflict occurs with any program that uses conventional port references. Such a pro-

gram will not use the driver, and no problems should result if the program is well behaved

and restores all interrupt vectors before returning to MS-DOS.

Device-driver debugging techniques

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more

difficult than normal program checking because the debugging program, DEBUG.COM or

DEBUGEXE, itself uses MS-DOS functions to display output. When these functions are

being checked, their use by DEBUG destroys the data being examined. And because

MS-DOS always saves its return address in the same location, any call to a function from

inside the operating system usually causes a system lockup that can be cured only by

shutting the system down and powering up again. ’

Section 11: Programming in the MS—DOS Environment 205

HUAWEI EX. 1010 - 215/1582



Part B: Programming for MS-DOS 

One way to overcome this difficulty is to purchase costly debugging tools. An easier 
way is to bypass the problem: Instead of using MS-DOS functions to track program opera
tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of 
COMDVR.ASM). 

This macro is invoked with a three-character parameter string at each point in the pro
gram a progress report is desired. Each invocation has its own unique three-character 
string so that the sequence of actions can be read from the screen. When invoked, DBG 
expands into code that saves all registers and then writes the three-character string to 
video RAM. Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used: 
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer. 

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points 
to location BOOO:OOOOH; to use a CGA or EGA (in CGA mode), the location should be 
changed to B800:0000H. 

Most of the frequently used Request routines, such as Read and Write, have calls to DBG 
as their first lines (for example, lines 361 and 422). As shown, these calls are commented 
out, but for debugging, the source file should be edited so that all the calls and the macro 
itself are enabled. 

With DBG active, the top 10 lines of the display are overwritten with a continual sequence 
of reports, such as RR Tx, put directly into video RAM. Because MS-DOS functions are not 
used, rio interference with the driver itself can occur. 

Although this technique prevents normal use of the system during debugging, it greatly 
simplifies the problem of knowing what is happening in time-critical areas, such as hard
ware interrupt service. In addition, all invocations of DBG in the critical areas are in con
ditional code that is executed only when the driver is working as it should. 

Failure to display the pi message, for instance, indicates that the received-data hardware 
interrupt is not being serviced, and absence of go after an Ix report shows that data is not 
being sent out as it should. 

Of course, once debugging is complete, the calls to DBG should be deleted or commented 
out. Such calls are usually edited out of the source code before release. In this case, they 
remain to demonstrate the technique and, most particularly, to show placement of the calls 
to provide maximum information with minimal clutter on the screen. 

A simple modem engine 

The second part of this package is the modem engine itself (ENGINE.ASM), shown in the 
listing in Figure 6-3. The main loop of this program consists of only a dozen lines of code 
Clines 9 through 20). Of these, five (lines 9 through 13) are devoted to establishing initial 
contact between the program and the serial-port driver and two (lines 19 and 20) are for 
returning to command level at the program's end. 

Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro
gram as far as the main loop is concerned. Four of these lines are calls to subroutines that 

206 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 216/1582



Article 6: Interrupt-Driven Communications 

get and put data from and to the console and the serial port; the fifth is the JMP that closes 
the loop. This structure underscores the fact that a basic modem engine is simply a data
transfer loop. 

TITLE engine 

CODE SEGMENT PUBLIC 'CODE' 
2 
3 

4 
5 

6 
7 

8 
9 

ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE 

ORG 01 OOh 

10 

11 

START: mov 
mov 
int 

12 mov 

13 jc 
14 alltim: call 

15 

16 
17 

18 

19 

20 

21 
22 
23 

24 

25 

26 
27 

28 

29 

quit: 

call 

call 

call 

jmp 
mov 

int 

getmdm proc 
mov 

mov 

mov 

mov 

int 

jc 
mov 

30 ret 
31 getmdm endp 

32 

33 

34 

35 

36 
37 

38 
39 

40 

41 

42 

43 

44 
45 

46 

getkbd proc 
mov 

mov 

int 

inc 

jnz 
mov 

int 

crop 

je 
mov 

inc 

crop 

jne 

dx,offset devnm 

ax,3d02h 

21h 
handle, ax 

quit 

getmdm 

put crt 

getkbd 
putmdm 

all tim 

ah,4ch 

21h 

cx,256 
bx,handle 

dx,offset mbufr 

ax,3F00h 

21h 

quit 
mdlen,ax 

kblen,O 

ah, 11 

21h 
al 

nogk 

ah,7 

21h 

al,3 
quit 

kbufr,al 

kblen 

al,13 

nogk 

open named device (ASY1) 

save the handle 

main engine loop 

come here to quit 

get input from modem 

get input from keyboard 

first zero the count 

key pressed? 

no 
yes, get it 

was it Ctrl-C? 

yes, get out 

no, save it 

was it Enter? 

no 

Figure 6-3. ENGINE.ASM. (more) 

Section JL· Programming in the MS-DOS Environment 207 

HUAWEI EX. 1010 - 217/1582

V get and put data from and to the console and the serial port; the fifth is theJMP that closes
the loop. This structure underscores the fact that a basic modem engine is simply a data-
transfer loop.

1 : TITLE engine
2 :

3 : CODE SEGMENT PUBLIC 'CODE'
4 z

5 : ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
6 :

7 : ORG O100h
8 :

9 : START: mov dx,offset devnm ; open named device (ASY1)
10 mov ax,3d02h

11 int ' 21h
12 mov handle,ax ; save the handle
13 jc quit
14 ; alltim: call getmdm ; main engine loop‘
15 call putcrt
16 call getkbd
17 call putmdm
18 jmp alltim

19 : quit: mov ah,4ch ; come here to quit
20 int 21h
21 .

22 ; getmdm proc ; get input from modem
23 mov cx,256
24 mov bx,handle
25 mov dx,offset mbufr
26 mov ax,3FOOh
27 int 21h

28 jc quit
29 mov mdlen,ax
30 . ret

31 : getmdm endp
32 .

_33 ; getkbd proc I ; get input from keyboard
34 mov kblen,0 ; first zero the count
35 mov ah,11 ; key pressed?
36 int 21h
37 inc a].
38 jnz nogk ; no
39 mov ah,7 ; yes, get it
40 int 21h

41 cmp al,3 ; was it Ctrl-C?
42 je quit ; yes, get out

43 mov kbufr,al ; no, save it
44 inc kblen

45 cmp al,13 ; was it Enter?
46 jne nogk ; no

Figure 6—3. ENGINEASM. (more)

Section 11: Programming in the MS—DOS Environment 207

 
HUAWEI EX. 1010 - 217/1582



Part B: Programming for MS-DOS 

47 
48 
49 
50 

51 
52 

53 

54 
55 

56 
57 
58 
59 

60 

61 
62 

63 
64 

65 
66 
67 
68 

69 
70 
71 

72 

73 
74 
75 
76 
77 
78 
79 
80 

81 

82 

nogk: 
getkbd 

putmdm 

nopm: 
putmdm 

put crt 

nope: 

put crt 

devnm 

handle 
kblen 

mdlen 

mbufr 

kbufr 

CODE 

mov 

inc 

ret 
endp 

proc 
mov 

jcxz 

mov 
mov 

mov 

int 

jc 

ret 

endp 

proc 
mov 
jcxz 
mov 

mov 
mov 

int 
jc 

ret 

endp 

db 
dw 
dw 

clw 

db 

db 

ENDS 
END 

Figure 6-3. Continued. 

byte ptr kbufr+1,10 yes, add LF 

kblen 

cx,kblen 

nopm 
bx,handle 

dx,offset kbufr 
ax,4000h 

21h 

quit 

cx,mdlen 
nope 
bx, 1 

dx,offset mbufr 

ah,40h 

21h 
quit 

'ASY1 I ,0 

0 

0 

0 
256 dup (0) 

80 dup (0) 

START 

put output to modem 

put output to CRT 

miscellaneous data and buffers 

Because the details of timing and data conversion are handled by the driver code,· each 
of the four subroutines is- to show just how simple the whole process is-essentially a 
buffered interface to the MS-DOS Read File or Device or Write File or Device routine. 

For example, the getmdm procedure (lines 22 through 31) asks MS-DOS to read a max
imum of 256 bytes from the serial device and then stores the number actually read in a 
word named mdlen. The driver returns immediately, without waiting for data, so the nor
mal number of bytes returned is either 0 or 1. If screen scrolling causes the loop to be 
delayed, the count might be higher, but it should never exceed about a dozen characters. 

When called, the putcrt procedure Clines 63 through 72) checks the value in mdlen. If 
the value is zero, putcrt does nothing; otherwise, it asks MS-DOS to write that number of 
bytes from mbufr (where getmdm put them) to the display, and then it returns. 

208 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 218/1582



Article 6: Interrupt-Driven Communications 

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbujr, and posts a 
count in kblen; putmdm checks kblen and, if the count is not zero, sends the required 
number of bytes from kbufr to the serial device. 

Note that getkbd does not use the Read File or Device function, because that would wait 
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS 
functions that test keyboard status (OBH) and read a key without echo (07H). In addition, 
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in 
kbufr immediately behind Enter and kblen is set to 2. 

A Ctrl-C keystroke ends program operation; it is detected i.n getkbd Cline 41) and causes 
immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE 
uses only permanently resident routines, there is no need for any uninstallation before 
returning to the MS-DOS command prompt. 

ENGINE.ASM is written to be used as a .COM file. Assemble and link it the same as 
COMDVR.SYS (Figure 6-2) but use the extension COM instead of SYS; no change to 
CONFIG.SYS is needed. 

The driver-status utility: CDVUTL.C 

The driver-status utility program CDVUTL.C, presented in Figure 6-4, permits either of 
the two drivers (ASYl and ASY2) to be reconfigured after being installed, to suit different 
needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word 
length, parity, and number of stop bits can be changed; each change is made indepen
dently, with no effect on any of the other characteristics. Additionally, flow control can be 
switched between two types of hardware handshaking- the software XON/XOFF control 
or disabled-and error reporting can be switched between character-oriented and 
message-oriented operation. 

1 

2 

I* cdvutl.c - COMDVR Utility 

* Jim Kyle- 1987 

3 : * for use with COMDVR.SYS Device Driver. 

4 : *I 
5 

6 
7 

8 

9 : 

10 

#include 

#include 
#include 

#include 

<stdio.h> I* 
<conio.h> I* 
<stdlib.h> I* 
<dos.h> I* 

i/o definitions *I 
special console i/o *I 
mise definitions *I 
defines intdos () *I 

11 

12 

I* the following define the driver status bits 

13 #define HWINT Ox0800 

14 #define o_DTR Ox0200 

15 #define o_RTS Ox0100 

16 
17 #define mLPG Ox0010 
18 #define m_PE Ox0008 

Figure 6-4. CDVUTL.C 

I* 
I* 
I* 

I* 
I* 

MCR, 
MCR, 

MCR, 

LCR, 

LCR, 

first word, HW Ints gated 

first word, output DTR 

first word, output RTS 

first word, parity ON 

first word, parity EVEN 

*I 
*I 
*I 

*I 
*I 

(more) 

Section II: Programming in the MS-DOS Environment 209 

HUAWEI EX. 1010 - 219/1582

Article 6: Interrupt—Driven Communications 

Similarly, get/ebd gets keystrokes from the keyboard, stores them in Iebufr, and posts a
count in leblen; putmdm checks leblen and, if the count is not zero, sends the required
number of bytes from lebufr to the serial device.

Note that get/ebd does not use the Read File or Device function, because that would wait

for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS

functions that test keyboard status (OBH) and read a key without echo (07H). In addition,
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in

lebufr immediately behind Enter and leblen is set to 2.

A Ctrl-C keystroke ends program operation; it is detected in get/ebd (line 41) and causes

immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE

uses only permanently resident routines, there is no need for any uninstallation before

returning to the MS—DOS command prompt.

ENGINEASM is written to be used as a .COM file. Assemble and link it the same as

COMDVR.SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIG.SYS is needed.

The driver-status utility: CDVUTL.C

The driver-status utility program CDVUTL.C, preSented in Figure 6-4, permits either of
the two drivers (ASY1 andASY2) to be reconfigured after being installed, to suit different

needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word

length, parity, and number of stop bits can be changed; each change is made indepen-

dently, with no effect on any of the other characteristics. Additionally, flow control can be

switched between two types of hardware handshaking— the software XON/XOFF control

or disabled—and error reporting can be switched between character-oriented and

message—oriented operation.

1 : /* cdvutl.c — COMDVR Utility
2 * Jim Kyle — 1987
3 , * for use with COMDVR.SYS Device Driver
4 : */
5 :

6 : #include <stdio.h> /* i/o definitions */
7 : #include <conio.h> /* special console i/o */
8 : #include <stdlib.h> /* misc definitions */
9 : #include <dos.h> /* defines intdos() */

10 :

11 : /* the following define the driver status bits */
12 :

13 : #define HWINT 0x0800 /* MCR, first word, Hw Ints gated */
14 : #define o_DTR 0x0200 /* MCR, first word, output DTR */
15 : #define o_RTS 0x0100 /* MCR, first word, output RTS */
16 :

17 : #define m_PG 0x0010 /* LCR, first word, parity ON */
18 : #define m_PE 0x0008 /* LCR, first word, parity EVEN */

Figure 6-4. CDVUTL.C (more)

Section 11: Programming in the MS-DOS Environment 209

HUAWEI EX. 1010 - 219/1582



Part B: Programming for MS-DOS 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
37 

38 

39 

40 

41 

42 

43 

44 

45 

46 
47 

48 

49 

50 

51 

52 

53 
54 

55 

56 

57 

58 

59 

60 

61 
62 

63 

64 

65 

66 
67 

68 

69 

#define llL.XS Ox0004 I* LCR, first word, 2 stop bits 

#define m_WL Ox0003 I* LCR, first word, wordlen mask 

#define i_CD Ox8000 I* MSR, 2nd word, Carrier Detect 

#define i_RI Ox4000 I* MSR, 2nd word, Ring Indicator 

#define i_DSR Ox2000 I* MSR, 2nd word, Data Set Ready 

#define i_CTS Ox1000 I* MSR, 2nd word, Clear to Send 

#define l_SRE Ox0040 I* LSR, 2nd word, Xmtr SR Empty 

#define l_HRE Ox0020 I* LSR, 2nd word, Xmtr HR Empty 

#define l_BRK Ox0010 I* LSR, 2nd word, Break Received 

#define l_ER1 Ox0008 I* LSR, 2nd word, FrmErr 

#define l_ER2 Ox0004 I* LSR, 2nd word, ParErr 

#define l_ER3 Ox0002 I* LSR, 2nd word, OveRun 

#define l_RRF Ox0001 I* LSR, 2nd word, Rcvr DR Full 

I* now define CLS string for ANSI. SYS *I 
#define CLS "\033[2J" 

FILE * dvp; 

union REGS rvs; 

int iobf [ 5 ]; 

main {) 

cputs ( "\nCDVUTL - COMDVR Utility Version 1. 0 - 1987\n" ) ; 

disp {) ; I* do dispatch loop 

disp {) I* dispatcher; infinite 

( int c, 

u; 

u = 1; 
while ( 1 ) 

{ cputs ( "\r\n\tCommand (? for help): " ) ; 

switch { tolower ( c = getche {))) I* dispatch 

case '1' : I* select port 1 

fclose ( dvp ) ; 

dvp = fopen ( "ASY1", "rb+" ); 

u = 1; 
break; 

case '2' 

fclose 

I* select port 2 

dvp = fopen ( "ASY2", "rb+" ); 

u = 2; 

break; 

case 'b' 
if ( iobf [ 4 ] == 300 

iobf [ 4 l = 1200; 

I* set baud rate 

loop 

Figure 6-4. Continued. 

210 The MS-DOS Encyclopedia 

*I 
*I 

*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 

*I 

*I 

*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 220/1582



70 

71 
72 

73 
74 

75 

76 
77 

78 

79 

80 

81 

82 

83 
84 

85 

86 
87 

88 

89 
90 

91 

92 

93 
94 

95 

96 
97 

98 

99 

100 

101 
102 

103 
104 

105 

106 
107 

108 center 

109 center 

110 center 

111 center 

112 center 

113 center 

114 

115 

11 6 
117 

118 

119 

120 

Article 6: Interrupt-Driven Communications 

else 
if ( iobf [ 4 ) == 1200 

iobf [ 4 ) = 2400; 

else 
_if ( iobf [ 4 ) == 2400 

iobf [ 4 ) = 9600; 

else 
iobf [ 4 300; 

iocwr (); 

break; 

case 'e' 
iobf [ 0 
iocwr (); 

break; 

I* set parity even 

:= ( ITLPG + ITLPE ); 

case 'f' 
if ( iobf [ 3 J == 1 ) 

iobf [ 3 J = 2; 

else 
if ( iobf [ 3 ) 2 ) 

iobf [ 3 J = 4; 

else 
if ( iobf [ 3 ) == 4 ) 

iobf [ 3 ) = 0; 

else 
iobf [ 3 1; 

iocwr (); 

break; 

I* toggle flow control 

case 'i' 
iobf [ 0 

iocwr (); 

break; 

I* initialize MCRILCR to 8N1 

( HWINT + o_DTR + o_RTS + m_WL ); 

case '?' 
cputs ( CLS ) ; 

center (."COMMAND LIST \n" 

"1 select port 1 

"2 select port 2 

"B set BAUD rate 

"E set parity to EVEN 

"F toggle FLOW control 
"I INITIALIZE ints, etc. 

continue; 

case 'l' : 

iobf [ 0 

iocwr (); 

break; 

"- 1; 

I* 
I* 
) ; 

L 

N 

0 

R 

s 
Q 

I* 

this help list 

clear the display 

toggle word LENGTH .. 
set parity to NONE .. 
set parity to ODD - .. 
toggle error REPORTS" 

toggle STOP bits .. 
QUIT .. 

toggle word length 

*I 

*I 

*I 

*I 
*I 

) ; 

) ; 

) ; 

) ; 

) ; 

); 

*I 

Figure 6-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 211 

HUAWEI EX. 1010 - 221/1582

7O : else
’71: if(iobf[4]==1200)

72 : iobf [ 4 ] = 2400;
73 : else

74 : _if ( iobf [ 4 ] == 2400 )
75 : iobf [ 4 ] = 9600;
76 : else
77 : iobf [ 4 ] = 300;
78 : iocwr U;
79 : break;
80

81 : case 'e' : /* set parity even */
82: iobf[0]l=(m.PG+nLPE);
83 : iocwr 0;
84 : break;
85 .

86 : case 'f' : /* toggle flow control */
87: if(iobf[3]==1)
88 : iobf [ 3 ] = 2;
89 : else
90: if(iobf[3]==2)
91 : iobf [ 3 ] = 4;
92 : else
93: if(iobf[3]==4)

94: _iobf[3]=0;
95 : else
96 : iobf [ 3 ] = 1;
97 : iocwr U;
98 : break;
99 . .

100 : case 'i' : /* initialize MCR/LCR to 8N1 : */
101 : iobf [ 0 ] = ( HWINT + O_DTR + O_RTS + m_WL );
102 : iocwr U;
103 : break;
104 .

105 : case '?' : /* this help list */
106 : cputs ( CLS ); /* clear the display */
107 : center (."COMMAND LIST \n" );
108 : center ( "1 = select port 1 L = toggle word LENGTH " );
109 : center ( "2 = select port 2 N = set parity to NONE " );
110 : center ( "B = set BAUD rate 0 = set parity to ODD ‘ " );
111 : center ( "E = set parity to EVEN R = toggle error REPORTS" ),-
112 : center ( "F = toggle FLOW control S = toggle STOP bits " );
113 : center ( "I = INITIALIZE ints, etc. Q = QUIT " );
114 : continue;
115 .

116 : case '1' : /* toggle word length */
117: iobf[0]"=1;
118 : iocwr 0;
119 : break;
120

Figure 6—4. Continued. (more)

Section 11: Programming in the MS-DOS Environment 2 1 1

 
HUAWEI EX. 1010 - 221/1582



Part B: Programming for MS-DOS 

121 

122 

123 

124 

125 

case 'n' : 
iobf [ 0 
iocwr (); 

break; 

case 'o' 

iobf [ 0 
iobf [ 0 
iocwr (); 
break; 

case 'r' 

iobf [ 2 

iocwr (); 
break; 

case 's' 

iobf [ 0 
iocwr (); 
break; 

case 'q' 
fclose 

exit ( 0 

I* set parity off 
&=- ( mLPG + mLPE ); 

I* set parity odd 

:= ITLPG; 

&=- mLPE; 

I* toggle error reports 
A= 1; 

I* toggle stop bits 
A- llLXS; 

dvp ) ; 

) ; I* break the loop, get 

cputs ( CLS ) ; I* clear the display 
center ( "CURRENT COMDVR STATUS" ) ; 

out 

126 

12( 

128 
129 

130 
131 
132 

133 

134 

135 

136 
137 

138 

139 

140 
141 

142 

143 
144 

145 

146 
147 

148 
149 

report ( u, dvp ); I* report current status 

150 

151 
center ( s ) char * s; I* centers a string on CRT 

int i ; 
152 

153 
154 

155 

156 
157 

158 

for ( i 80- strlen ( s ); i > 0; i -= 2 ) 

159 

160 

161 
162 

163 
164 

165 

166 

167 

putch ' ' ) ; 
cputs ( s ) ; 

cputs ( "\r\n" ); 

iocwr () 

rvs X ax Ox4403; 
rvs X bx fileno 
rvs X ex 1 0; 
rvs X dx ( int ) 

intdos ( & rvs, & rvs 

168 char* onoff ( x ) int x 

( dvp ) ; 

iobf; 
); 

1 69 return ( x ? " ON" : " OFF" ) ; 

170 

171 

Figure 6-4. Continued. 

212 TheMS-DOSEncyclopedia 

I* IOCTL Write to COMDVR 

*I 

*I 

*I 

*I I 
*I 

*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 222/1582



Article 6: Interrupt-Driven Communications 

172 
'173 

174 

175 
176 

177 

178 

179 

180 
181 

182 

183 

184 
185 

186 

report ( unit ) int unit 

char temp [ 80 J; 
rvs X 

rvs X 

rvs X 

rvs X 

intdos .( 

sprintf 

cputs 

187 cputs 

188 cputs 

18.9 cputs 
190 cputs 

1 91 cputs 

192 cputs 

193 cputs 
194 

195 cputs 

1 96 cputs 
1 97 ·· cputs 

1 98 cputs 

1 99 cputs 

200 cputs 
201 cputs 

202 cputs 

203 cputs 

204 

205 

206 
207 

208 

209 

210 

211 

212 

213 

cputs 

cputs 
cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

ax Ox4402; 

bx fileno ( dvp ) ; 

.. ex 1 0; 

dx ( int ) iobf; 

& rvs, & rvs ) ; I* use IOCTL Read to get 

( temp, "\nDevice ASY%d\t%·d BPS, %d-c-%c\r\n\n", 

unit, iobf 4 ), I* baud rate 

5 + ( iobf 0 J & ITLWL ) ' I* word length 

( iobf [ 0 & ITLPG ? 

( iobf [ 0 & ITLPE ? 'E' : '0' ) : 'N' ) ' 
iobf [ 0 J & I1LXS ? '2' : '1' ) ) ; I* stop bits 

temp ) ; 

"Hardware Interrupts are" ); 

on off ( iobf [ 0 J & HWINT ) ) ; 
.. 
' Data Terminal Rdy" ) ; 

onoff ( iobf [ 0 J & o_j)TR ) ) ; 

.. Rqst To Send" ); 
' 

on off ( iobf [ 0 J & o_RTS ) ) ; 

".\r\n" ) ; 

11 Carrier Detect" ) ; 

onoff ( iobf [ 1 J & i_CD ) ) ; 

.. 
' Data Set Rdy" ) ; 

onoff ( iobf [ 1 J & L.DSR ) ) ; 

.. 
' 

Clear to Send" ) ; 

onoff ( iobf [ 1 J & i_CTS ) ) ; 

.. Ring Indicator" ) ; 
' 

on off ( iobf 

".\r\n" ); 

l_SRE & iobf 

LJlRE & iobf 

LJ3RK & iobf 

1.--ER 1 & iobf 

l.--ER2 & iobf 

l.--ER3 & iobf 

l_RRF & .iobf 

"\b\b.\r\n" 

[ 1 J 

) ; 

& i_RI ) ) ; 

? "Xmtr SR Empty, " : "" ) ; 

? "Xmtr HR Empty, " : "" ); 

? "Break Receiv-ed, " : "" ).; 

? ''Framing Error, '' : '''' ); 
? ''Parity Error, '' : '''' ); 
? ''Overrun Error, '' : '''' ); 
? "Rcvr DR Full, '' :·'''' ); 

214 cputs ( "Reception errors " ) ; 

215 if ( iobf [ 2 ) == 1 ) 
216 cputs ( "are encoded as graphics in buffer" ); 

217 else 
218 cputs ( "set failure flag" ); 

219 cputs ( ". \r\n" ) ; 

220 
221 cputs ("Outgoing Flow Control"); 

222 if ( iobf [ 3 ) & 4 ) 

data· *I 

*I 
*I 

*I 

Figure 6-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 213 

HUAWEI EX. 1010 - 223/1582

Article 6: Interrupt-Driven Communications—__‘___—_____—__—_~____'——————

172 2 report ( unit ) int unit ;
‘173 z ( char temp [ 80 ];
174 : rvs . x . ax = 0X4402:
175 : rvs x . bx = fileno ( dvp );
176 : rvs . x ..cx = 10;
177 : rvs . x . dx = ( int ) iobf;

178 : intdos .( & rvs, & rvs ); /* use IOCTL Read to get data' */

179 = sprintf ( temp, "\nDevice ASY%d\t%d BPS, %d—c—%c\r\n\n“,
180 2 unit, iobf [ 4 ], /* baud rate */
181 1 5 + ( iobf [ 0 ] & m_WL ), /* word length */
182: (iobf[0]&m_PG? _
183 z ( iobf [ 0 ] & m_PE ? 'E' : 'O' ) : 'N' )r
184 : ( iobf [ 0 ] & m_XS ? ‘2‘ : '1' )); /* stop bits */
185 : cputs ( temp );
186 .

187 2 cputs, "Hardware Interrupts are" );
onoff ( iobf [ 0 ] & HWINT ));
", Data Terminal Rdy" );
onoff ( iobf [ 0 ] & o_DTR ));

", Rqst To Send" I;
onoff ( iobf [ 0 ] & o_RTS ));

188 : cputs
189 : cputs
190 : cputs
191 : cputs
192 : cputs
193 : cputs ".\r\n" ); v
194

195 : cputs "Carrier Detect" );
onoff ( iobf [ 1 ] & i_CD ));
", Data Set Rdy" );
onoff ( iobf [ 1 ] & i_DSR ));

196 : cputs
197 : "cputs

198 : cputs AAAAAAAAA199 : cputs ", Clear to Send" );
200 : cputs onoff ( iobf [ 1 ] & i_CTS ));
201 : cputs ", Ring Indicator" );
202 : cputs onoff ( iobf [ 1 ] & i_RI ));
203 : cputs ".\r\n" );
204 : .

205 : cputs ( l_SRE & iobf [ 1 ] 9 "thr SR Empty, " : "" )i
206 : cputs ( l_HRE & iobf [ 1 ] 2 "thr HR Empty, " : "" );
207 : cputs ( l_BRK & iobf [ 1 ] 2 "Break ReceiVed, " : "" )4
208 : cputs ( liER1 & iobf [ 1 ] ? "Framing Error, " z "" );
209 : cputs ( i_ERZ & iobf [ 1 ] 2 "Parity Error, " : "" )i
210 : cputs ( l_ER3 & iobf [ 1 ] 2 "Overrun Error, " : "" );
211 : cputs ( l_RRF & iobf [ 1 ] ? "Rcvr DR Full, " :‘"" );
212 : cputs ( "\b\b.\r\n" ); 1
213

214 : cputs ( "Reception errors " );
215 : if ( iobf [ 2 ] == )

216 : ‘cputs ( "are encoded as graphics in buffer" );
217 z I else' 2
218 : cputs ( "set failure flag" );
219 : cputs ( ".\r\n" );
220 -

221 : cputs ( "Outgoing Flow Control " );
222 : if ( iobf [ 3 ] & 4 ) '

Figure 6-4. Continued. . i p (more)

Section II.- Programming in the MS-DOSEnvironment 25131

 
HUAWEI EX. 1010 - 223/1582



Part B: Programming for MS-DOS 

223 cputs ( "by XON and XOFF" ) ; 

224 else 
225 if ( iobf [ 3 ) & 2 ) 

226 cputs ( "by RTS and CTS" '); 
227 else 

228 if ( iobf [ 3 J & 1 ) 

229 cputs ( "by DTR and DSR" ) ; 

230 else 

231 cputs "disabled" ) ; 

232 cputs ( ".\r\n" ); 
233 
234 

235 !*end of cdvutl.c *I 

Figure 6-4. Continued. 

Although CDVUTL appears complicated, most of the complexity is concentrated in the 
routines that map driver bit settings into on-screen display text. Each such mapping 
requires several lines of source code to generate only a few words of the display report. 
Table 6-10 summarizes the functions found in this program. 

Table 6-10. CDVUTL Program Functions. 

Lines 

42-45 
47-150 

152-158 
160-166 
168-170 
172-233 

Name 

main() 
disp() 
center() 
iocwr() 
ono.ff() 
report() 

Description 

Conventional entry point. 
Main dispatching loop. 
Centers text on CRT. 
Writes control string to driver with IOCTL Write. 
Returns pointer to ON or OFF. 
Reads driver status and reports it on display. 

The long list of #define operations at the start of the listing (lines 11 through 33) helps. 
make the bitmapping comprehensible by assigning a symbolic name to each significant bit 
in the four UART registers. 

The main() procedure of CDVUTL displays a banner line and then calls the dispatcher 
· routine, disp(), to start operation. CDVUTL makes no use of either command-line parame
ters or the environment, so the usual argument declarations are omitted. 

Upon entry to disp(), the first action is to establish the default driver as ASYl by setting 
u = 1 and opening ASYl (line 50); the program then enters an apparent infinite loop 
(lines 51 through 149). 

With each repetition, the loop first prompts for a command (line 52) and then gets the 
next keystroke and uses it to control a huge switch() statement (lines 53 through 145). If 
no case matches the key pressed, the switch() statement does nothing; the program sim
ply displays a report of all current conditions at the selected driver Clines 146 through 148) 
and then closes the loop back to issue a new prompt and get another keystroke. 

214 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 224/1582



.Article 6: Interrupt-Driven Communications 

However, if the key pressed matches one of the cases in the switch() statement the corre
spo~ding command is executed. The digits 1 Cline 55) and 2 (line 61) select th~ driver to 
be affected. The ? key Cline 105) causes the list of valid command keys to be displayed. 
The q key (line 142) causes the program to terminate by calling exit( 0) and is the only 
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTL 
control string to modify corresponding attributes of the driver and then send the string to 
the driver by using the MS-DOS IOCTL Write function (Interrupt 21H Function 44H Sub
function 03H) via function iocwr() (lines 160 through 166). 

After the command is executed (except for the q command, which terminates operation 
of CDVUTL and returns to MS-DOS command level, and the ? command, which displays 
the command list), the report() function Clines 172 through 233) is called (at line 148) to 4 
display all of the driver's attributes, including those just changed. This function issues an 
IOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through 
178) to get new status information into the control string and then uses a sequence of bit 
filtering (lines 179 through 232) to translate the obtained status information into words for 
display. 

The special console I/0 routines provided in Microsoft C libraries have been used exten
sively in this routine. Other compilers may require changes in the names of such library 
routines as getch or dosint as well as in the names of #include files Clines 6 through 9). 

Each o{ the actual command sequences changes only a few bits in one of the 10 bytes of 
the command string and then writes the string to the driver. A full-featured communica
tions program might make several changes at one time-for example, switching from 
7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre
vent losing any bytes with values of llH or 13H while performing a binary file transfer with 
error-correcting protocol. In such a case, the program could make all required changes to 
the control string before issuing a single IOCTL Write to put them into effect. 

The Traditional Approach 

Because the necessary device driver has never been a part of MS-DOS, most communica
tions programs are written to provide and install their own port driver code and remove it 
before returning to MS-DOS. The second sample program package in this article illustrates 
this approach. Although the major part of the package is written in Microsoft C, three 
assembly-language modules are required to provide the hardware interrupt service rou
tines, the exception handler, and faster video display. They are discussed first. 

The hardware ISR module 

The first module is a handler to service UART interrupts. Code for this handler, including 
routines to install it at entry and remove it on exit, appears in CHl.ASM, shown in Figure 
6-5. 

Section II: Programming in the MS-DOS Environment 215 

HUAWEI EX. 1010 - 225/1582



Part B: Programming for MS-DOS 

1 

2 
TITLE CH1 .ASM 

3 CH1 .ASM -- support file for CTERM.C terminal emulator 
4 set up to work with COM2 
5 for use with Microsoft C and SMALL model only ... 
6 

7 

8 

9 

10 
11 

12 
13 
14 
15 
16 

_TEXT segment 
_TEXT ends 
_DATA segment 
_DATA ends 
CONST segment 
CONST ends 

'-BSS segment 
_BSS ends 

DGROUP GROUP 

byte public 'CODE' 

byte public 'DATA' 

byte public 'CONST' 

byte public 'BSS' 

CONST, _BSS, _DATA 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37. 

38 
39 
40 
41 
42 
43 
44 

assume cs:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

_TEXT segment 

public _i_ID,_rdmdm,_Send_Byte,_wrtmdm,_set_mdm,_u_m 

\ 45 
46 

47 
48 

49 
50 
51 

bport EQU 
getiv EQU 
putiv EQU 
imrmsk EQU 
oiv_o DW 
oiv_s DW 

bLpp DW 
bf_gp DW 
bf_bg DW 
bf_fi DW 

in_bf DB 

b_last EQU 

bcLdv DW 
DW 

DW 
DW 
DW 
DW 
DW 
DW 

_set_mdm proc 

PUSH 
MOV 
PUSH 

Figure 6-5. CHl.ASM 

216 The MS-DOS Encyclopedia 

02F8h 
350Bh 
250Bh 
00001000b 

0 
0 

in_bf 
in_bf 
in_bf 

b-last 

512 DUP (?) 

$ 

0417h 
0300h 
0180h 
OOCOh 
0060h 
0030h 
0018h 
OOOCh 

near 
BP 
BP,SP 
ES 

COM2 base address, use 03F8H for COM1 
COM2 vectors, use OCH for COM1 

COM2 mask, use 00000100b for COM1 
old int vector save space 

put pointer (last used) 
get pointer (next to use) 
start of buffer 
end of buffer 

input buffer 

address just past buffer end 

baud rate divisors (0=110 bps) 
code 1 150 bps 
code 2 300 bps 
code 3 600 bps 
code 4 1200 bps 
code 5 2400 bps 
code 6 4800 bps 
code 7 9600 bps 

replaces BIOS 'init' function 

establish stackframe pointer 
save registers 

(more) 

HUAWEI EX. 1010 - 226/1582



52 

53 
54 

55 

56 

57 
58 

59 
60 

61 
62 

63 

64 
65 

66 

67 
68 

69 
70 
71 

72 

73 
74 
75 
76 
77 
78 
79 
80 
81 

82 

PUSH 

MOV 
MOV 

MOV 

MO)l 
MOV 
MOV 

OUT 

MOV 
MOV 

ROL 

AND 

MOV 
ADD 

MOV 
MOV 

OUT 

MOV 

MOV 

OUT 

MOV 
AND 

MOV 

OUT 
MOV 

MOV 

OUT 

POP 
POP 

MOV 

POP 

83 RET 
84 _set_mdm endp 

85 

86 
87 
88 
89 
90 
91 

92 
93 
94 

95 

96 
97 
98 
99 

100 

101 

102 

_wrtmdm proc 

_sencL.Byte: 

PUSH 
MOV 

PUSH 

PUSH 

MOV 

MOV 

MOV 
MOV 

MOV 

OUT 
MOV 

MOV 

CALL 

JNZ 

MOV 

DS 

AX,CS 
DS,AX 
ES,AX 
AH, [BP+4] 

DX,BPORT+3 

AL,BOh 

DX,AL 
DL,AH 

CL,4 

DL,CL 
DX,00001110b 
DI,OFFSET bcL.dv 

DI,DX 
DX,BPORT+1 
AL, [DI+1] 

DX,AL 
DX,BPORT 

AL, [DI] 

DX,AL 

AL,AH 
AL,00011111b 

DX,BPORT+3 

DX,AL 
DX,BPORT+2 

AL, 1 

DX,AL 

DS 
ES 
SP,BP 

BP 

near 

BP 

BP,SP 

ES 

DS 
AX,CS 

DS,AX 

ES,AX 
DX,BPORT+4 

AL,OBh 

DX,AL 
DX,BPORT+6 

BH,30h 
w_tmr 

w_out 

DX,BPORT+5 

Article 6: Interrupt-Driven Communications 

point them to CODE segment 

get parameter passed by C 
point to Line Control Reg 

set DLAB bit (see text) 

shift param to BAUD field 

mask out all other bits 

make pointer to true divisor 

set to high byte first 

put high byte into UART 

then to low byte 

now use rest of parameter 

to set Line Control Reg 

Interrupt Enable Register 

Receive type only 

restore saved registers 

write char to modem 
name used by main program 

set up pointer and save regs 

establish DTR, RTS, and OUT2 

check for on line, CTS 

timed out 
check for UART ready 

Figure 6-5. Continued. (more) 

Section II: Programming in the MS-DOS Environment 217 

HUAWEI EX. 1010 - 227/1582

Article 6: Interrupt—Driven Communications

52 : PUSH DS .

53 : MOV AX,CS ; point them to CODE segment
54 : MOV DS,AX
55 : MOV ES,AX

56 : MOV AH,[BP+4] ; get parameter passed by C
57 : MOV DX,BPORT+3 ; point to Line Control Reg
58 : MOV AL,80h ; set DLAB bit (see text)
59 : OUT DX,AL

6O : MOV DL,AH ; shift param to BAUD field
61 : MOV CL,4
62 : ROL DL,CL

63 : AND DX,OOOO1110b ; mask out all other bits
64 : MOV DI,OFFSE‘.T dev

65 : ADD DI,DX ; make pointer to true divisor
66 : MOV DX,BPORT+1 ; set to high byte first
67 : MOV AL,[DI+1] '

68 : OUT DX,AL ; put high byte into UART
69 : MOV DX,BPORT ; then to low byte
70 : MOV AL, [DI]
71 : OUT DX,AL

72 z p MOV AL,AH ; now use rest of parameter
73 : AND AL,00011111b ; to set Line Control Reg
74 : MOV DX,BPORT+3 ,
75 : OUT DX,AL

76 : MOV DX,BPORT+2 ; Interrupt Enable Register
77 : MOV AL,1 ; Receive type only
78 : OUT DX,AL ’
79 : POP DS ; restore saved registers
80 : POP ES
81 : MOV SP,BP
82 : . POP BP
83 : RET

84 : _set_mdm endp
85

86 : _wrtmdm proc near ; write char to modem
87 2 _Send_Byte: ; name used by main program
88 : PUSH BP

89 : MOV BP,SP ; set up pointer and save regs
90 : PUSH ES
91 : PUSH DS
92 ‘. MOV AX,CS
93 2 MOV DS,AX
94 : MOV ES,AX

95 : MOV DX,BPORT+4 ; establish DTR, RTS, and OUTZ
96 : MOV AL,0Bh
97 2 OUT DX,AL

98 : MOV DX,BPORT+6 ; check for on line, CTS
99 : MOV BH, 30h

100 : CALL w_tmr

101 : JNZ w_out - ; timed out
102 : MOV DX,BPORT+5 ; check for UART ready

Figure 6-5, Continued. (more)

Section II.- Programming in the MS—DOS Environment 217

HUAWEI EX. 1010 - 227/1582



Part B: Programming for MS-DOS 

103 

104 

105 
106 

107 

108 
109 

110 

111 

112 

MOV 

CALL 

JNZ 
MOV 

MOV 

OUT 
w_out: POP 

POP 

MOV 

POP 
113 RET 

11 4 _wrtmdm endp 
115 
116 

117 

118 

119 

120 

121 
122 

123 
124 

125 

126 
127 

128 

129 

130 
131 
132 

133 
134 

135 
136 
137 

138 
139 

_rdmdm proc 

PUSH 

MOV 

PUSH 

PUSH 
MOV 

MOV 

MOV 
MOV 

MOV 

CMP 

JZ 
INC 

CMP 

JNZ 

MOV 
noend: MOV 

MOV 

INC 
nochr: POP 

POP 
MOV 

POP 
RET 

1 4 0 _rdmdm endp 
141 

142 

143 
144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

w_tmr proc 

MOV 
w_tm1: SUB 

w_tm2: IN 

MOV 

AND 

CMP 

JZ 

LOOP 

DEC 

JNZ 

OR 

Figure 6-5. Continued. 

218 The MS-DOS Encyclopedia 

BH,20h 
w_tmr 

w_out 

D:X:,BPORT 
AL, (BP+4] 

D:X:,AL 

DS 

ES 
SP,BP 

BP 

near 

BP 
BP,SP 

ES 

DS 
AX,CS 

DS,AX 

ES,AX 

AX,OFFFFh 
BX,bf_gp 

BX,bf_pp 

nochr 

BX 
BX,bf_fi 

noend 

BX, bL.bg 

AL, (BX] 
bf_gp,BX 

AH 

DS 
ES 

SP,BP 

BP 

near 

BL, 1 
cx,cx 
AL,DX 

AH,AL 

AL,BH 

AL,BH 
w_tm3 

w_tm2 

BL 
w_tm1 

BH,BH 

timed out 

send out to UART port 
get char passed from C 

restore saved regs 

reads byte from buffer 

set up ptr, save regs 

set for EOF flag 

use "get" ptr 
compare to "put" 
same, empty 

else char available 

at end of bfr? 

no 

yes, set to beg 
get the char 

update "get" ptr 
zero AH as flag 

restore regs 

wait timer, double loop 
set up inner loop 

check for requested response 
save what came in 

mask with desired bits 

then compare 

got it, return with ZF set 
else keep trying 

until double loop expires 

timed out, return NZ 

(more) 

HUAWEI EX. 1010 - 228/1582



154 w_tm3: RET 

155 w_tmr endp 

156 

Article 6: Interrupt-Driven Communications 

157 ; hardware interrupt service routine 

158 rts_m: CL+ 
159 

160 

161 
162 

163 

164 

165 

166 
167 

168 

169 
170 

171 

172 

173 

174 

175 

176 
177 

178 
179 

180 

181 

182 

183 
184 

185 

186 
187 

188 

189 

190 
191 

192 

193 

194 

195 

196 
197 

198 

199 

200 
201 

202 

203 

204 

PUSH 

PUSH 

PUSH 
PUSH 

PUSH 

PUSH 

POP 

MOV 

IN 
MOV 

INC 
CMP 

JNZ 

MOV 

nofix: MOV 
MOV 

MOV 

OUT 

POP 

POP 

POP 
POP 

POP 

IRET 

im1 : 

proc 
PUSH 

MOV 

PUSH 

PUSH 

MOV 
MOV 

MOV 

MOV 

MOV 

OUT 

MOV 

IN 

MOV 

TEST 

JNZ 

CMP 

JNZ 
MOV 

IN 

DS 

AX 
BX 

ex 
DX 

cs 
DS 
DX,BPORT 

AL,DX 
BX,bf_pp 

BX 
BX,bf_fi 

no fix 
BX,bL.bg 

[BX] ,AL 
bf_pp,BX 

AL,20h 

20h,AL 

DX 

ex 
BX 

AX 

DS 

near 
BP 
BP,SP 

ES 
DS 

AX,CS 

DS,AX 

ES,AX 
DX,BPORT+1 

AL,OFh 

DX,AL 

DX,BPORT+2 

AL,DX 

AH,AL 

AL, 1 

imS 

AH,O 

im2 
DX,BPORT+6 

AL,DX 

save all regs 

set DS same as CS 

grab the char from UART 

use "put" ptr 
step to next slot 

past end yet? 

no 
yes, set to begin 
put char in buffer 

update "put" ptr 

send EOI to 8259 chip 

restore regs 

install modem service 

save all regs used 

set DS,ES=CS 

Interrupt Enable Reg 

enable all ints now 

clear junk from UART 

read IID reg of UART 

save what came in 

anything pending? 

no, all clear now 

yes, Modem Status? 

no 
yes, read MSR to clear 

Figure 6-5. Continued. (more) 

Section IL· Programming in the MS-DOS Environment 219 

HUAWEI EX. 1010 - 229/1582

 
154

'155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

'174
'175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

w_tm3:
w_tmr

RET

endp

Article 6: Interrupt—Driven Communications

; hardware interrupt service routine
rts_m:

nofix:

_i_m

im1:

CLl
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
P0P
MOV
IN
MOV
INC
CMP
JNZ
MOV
MOV
MOV
MOV
OUT
POP
POP
P0P
POP
P0P
IRET

proc
PUSH
MOV

'PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
OUT

MOV
IN
MOV
TEST
JNZ
CMP
JNZ
MOV
IN

Figure 6-5. Continued.

DS
AX
BX
CX
DX
CS
DS

DX,BPORT
AL,DX
BX,bf_pp
BX

BX,bf_fi
nofix

BX,bf_bg
[BX],AL
bf_pp,BX
AL,20h
20h,AL
DX
CX
BX
AX
DS

near
BP

BP,SP
ES
DS

AX,CS
DS,AX
ES,AX
DX,BPORT+1
AL,OFh
DX,AL

DX,BPORT+2
AL,DX
AH,AL
AL,1
im5

AH,0
im2

DX,BPORT+6
AL,DX

save all regs

set Ds same as CS

grab the char from UART

use "put" ptr
step to next slot
past end yet?
no

yes, set to begin
put char in buffer
update “put" ptr
send EOI to 8259 chip

restore regs

install modem service

save all regs used

set Ds,ES=cs

Interrupt Enable Reg
enable all ints now

Clear junk from UART
read IID reg of UART
save what came in

anything pending?
no, all clear now

yes, Modem Status?
no

yes, read MSR to clear

Section II.- Programming in the MS-DOS Environment

HUAWEI EX. 1010 - 229/1582

(more)

219



Part B: Programming for MS-DOS 

205 
206 

207 
208 

209 

210 
211 

212 

213 

214 

215 
216 

217 

218 
219 

220 

221 

222 

223 

224 
225 

226 

227 
228 

229 

230 
231 

232 

233 

234 

235 

236 
237 

238 
239 

240 

241 

242 

243 

244 
245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

irn2: 

irn3: 

irn4: 

irn5: 

CMP 

JNZ 
CMP 
JNZ 
MOV 

IN 

CMP 

JNZ 
MOV 

IN 

JMP 

MOV 

MOV 

OUT 

MOV 
MOV 

OUT 
MOV 

INT 

MOV 

MOV 
MOV 

MOV 
INT 

IN 

AND 

OUT 
MOV 

OUT 

POP 

POP 

MOV 
POP 
RET 

endp 

proc 
PUSH 

MOV 

IN 
OR 

OUT 

PUSH 
PUSH 

MOV 

MOV 
MOV 

MOV 

MOV 

OUT 

Figure 6-5. Continued. 

220 The MS-DOS Encyclopedia 

AH,2 
irn3 
AH,4 

irn4 

DX,BPORT 
AL,DX 

AH,6 

irn1 

DX,BPORT+5 
AL,DX 

irn1 

DX,BPORT+4 

AL,OBh 

DX,AL 
AL, 1 

DX,BPORT+1 
DX,AL 

AX,GETIV 
21h 
oiv_o,BX 

oiv_s,ES 

DX,OFFSET rts_m 

AX,PUTIV 

21h 

AL,21h 
AL,NOT IMRMSK 

21h,AL 

AL,20h 

20h,AL 
DS 

ES 

SP,BP 

BP 

near 

BP 

BP,SP 

AL,21h 

AL,IMRMSK 

21h,AL 
ES 

DS 

AX,CS 

DS,AX 

ES,AX 

AL,O 

DX,BPORT+1 

DX,AL 

Transmit HR empty? 
no (no action needed) 
Received Data Ready? 
no 

yes, read it to clear 

Line Status? 
no, check for more 

yes, read LSR to clear 

then check for rnor.e 

set up working conditions 

DTR, RTS, OUT2 bits 

enable RCV interrupt only 

get old int vector 

save for restoring later 

set in new one 

now enable 8259 PIC 

then send out an EOI 

restore regs 

uninstall modern service 

save registers 

disable COM int in 8259 

set same as CS 

disable UART ints 

(more) 

HUAWEI EX. 1010 - 230/1582



Article 6: Interrupt-Driven Communications 

256 MOV DX,oiv_o ;·restore original vector 
257 MOV DS,oiv_s 

258 MOV AX,PUTIV 

259 INT 21h 
260 PO.P DS restore registers 

261 POP ES 
262 MOV SP,BP 

263 POP BP 

264 RET 

265 _u_m endp 

266 
267 _TEXT ends 
268 
269 END 

Figure6-5. Continued. 

The routines in CH1 are set up to work only with port COM2; to use them with COM1, the 
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to 
match the COM1 values. Also, as presented, this code is for use with the Microsoft C small 
memory model only; for use with other memory models, the C compiler manuals should 
be consulted for making the necessary changes. See also PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure of an Application Program. 

The parts of CH1 are listed in Table 6-11, as they occur in the listing. The leading under
score that is part of the name for each of the six functions is supplied by the C compiler; 
within the C program that calls the function, the underscore is omitted. 

Table 6-11. CHl Module Functions. 

lines 

1-26 
27-46 
48-84 

86-114 
87 

116-140 

142-155 

157-182 

184-240 
242-265 

Name 

_set_mdm 

_wrtmdm 
_Send_Byte 
_rdmdm 

w_tmr 

rts_m 

_i_m 

_u_m 

Description 

Administrative details. 
Data areas. 
Initializes UART as specified by parameter passed 

from C. 
Outputs character to UART. 
Entry point for use if flow control is added to system. 
Gets character from buffer where ISR put it, or signals 

that no character available. 
Wait timer; internal routine used to prevent infinite 

wait in case of problems. 
Hardware ISR; installed by _i_m and removed by 

_u_m. 
Installs ISR, saving old interrupt vector. 
Uninstalls ISR, restoring saved interrupt vector. 

Section IL- Programming in the MS-DOS Environment 221 

HUAWEI EX. 1010 - 231/1582

Article 6: Interrupt—Driven Communications

l

‘ 256 : MOV DX,oiv_o ;' restore original vector
E ' 257 : MOV DS,oiv__s

} 258 : MOV AX,PUTIV
g 259 : INT 21h

2 260 : PQP DS ; restore registers
‘261 : POP ES '
262 : MOV SP,BP
263 : POP BP
264 : RET

265 : _u_rn endp
266 :
267 2 _TEXT ends

1 268 :
l 269 : END

Figure 6-5. Continued.l

 
The routines in CH1 are set up to work only with port COMZ; to use them with COM1, the

three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to

match the COM1 values. Also, as presented, this code is for use with the Microsoft C small

memory model only; for use with other memory models, the C compiler manuals should

be consulted for making the necessary changes. See also PROGRAMMING IN THE

MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application Program.

The parts of CH1 are listed in Table 6—11, as they occur in the listing. The leading under-

score that is part of the name for each of the six functions is supplied by the C compiler;

within the C program that calls the function, the underscore is omitted.

Table 6-11. CH1 Module Functions.

Lines Name Description

1—26 , Administrative details.
27—46 Data areas. '

48—84 . _set_mdm Initializes UART as specified by parameter passed
from C.

86— 1 14 _wrtmdm Outputs character to UART. ‘

87 _Send__Byte Entry point for use if flow control is added to system.

1 16— 140 _rdmdm Gets character from buffer where ISR put it, or signals
that no character available.

142— 155 w__tmr Wait timer; internal routine used to prevent infinite

wait in case of problems.

157— 182 rts_m Hardware ISR; installed by _z‘__m and removed by
_u_m.

184—240 _ Lm Installs ISR, saving old interrupt vector.

242 —265 _u_m Uninstalls ISR, restoring saved interrupt vector.

Section II: Programming in the MS—DOS Environment 221

HUAWEI EX. 1010 - 231/1582



Part B: Programming for MS-DOS 

For simplest operation, the ISR used in this example (unlike the device driver) services 
only the received-data interrupt; the other three types of IRQ are disabled at the UART. 
Each time a byte is received by the UART, the ISR puts it into the buffer. The_ rdmdm 
code, when called by the C program, gets a byte from the buffer if one is available.If not, 
_rdmdm returns the C EOF code ( -1) to indicate that no byte can be obtained. 

To send a byte, the C program can call either _Send_Byte or _wrtmdm; in the package 
as shown, these are alternative names for the same routine. In the more complex program 
from which this package was adapted, _Send_Byte is called when flow control is desired 
and the flow-control routine calls_ wrtmdm. To implement flow control, line 87 should be 
deleted from CH1.ASM and a control function named Send_Byte() should be added to the 
main C program. Flow-control tests must occur in Send_Byte(); _wrtmdm performs the 
actual port interfacing. 

To set the modem baud rate, word length, and parity, _set_mdm is called from the C 
program, with a setup parameter passed as an argument. The format of this parameter is 
shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function OOH 
(Initialization). 

Table 6-12. set_mdm() Parameter Coding. 

Binary Meaning 

OOO:xxxxx Set to 110 bps 
001xxxxx Set to 150 bps 
010xxxxx Set to 300 bps 
Ollxxxxx Set to 600 bps 
100xxxxx Set to 1200 bps 
101xxxxx Set to 2400 bps 
110xxxxx Set to 4800 bps 
111xxxxx Set to 9600 bps 
xxxx:Oxxx No parity 
xxx01xxx ODD Parity 
xxxllxxx EVEN Parity 
xxxxx:Oxx 1 stop bit 
xxxxx1xx 2 stop bits (1.5 ifWL = 5) 
xxxxxxOO Word length = 5 
xxxxxx01 Word length = 6 
xxxxxx10 Word length = 7 
xxxxxx11 Word length = 8 

The CHl code provides a 512-byte ring buffer for incoming data; the buffer size should be 
adequate for reception at speeds up to 2400 bps without loss of data during scrolling. 

222 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 232/1582



Article 6: Interrupt-Driven Communications 

The exception-handler module 

For the ISR handler of CHl to be usable, an exception handler is needed to prevent return 
of control to MS-DOS before _u_m restores the ISR vector to its original value. If a pro
gram using this code returns to MS-DOS without calling_u_m, the system is virtually cer
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer 
in memory. 

A replacement exception handler (CHlA.ASM), including routines for installation, access, 
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with 
Microsoft C (again, the small memory model only). 

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING 
Ms-oos: Exception Handlers. 

1 

2 
TITLE CH1A.ASM 

3 CH1A.ASM -- support file for CTERM.C terminal emulator 

4 this set of routines replaces Ctrl-CICtrl-BREAK 
5 

6 

7 : 

8 

9 

10 

11 

12 

13 
14 

15 

16 

17 

_TEXT 

_TEXT 
_DATA 

_DATA 

CONST 

CONST 
_BSS 

_BSS 

usage: void set_int(), rst_int(); 

int broke(); I* boolean if BREAK 
for use with Microsoft C and SMALL model only ... 

segment byte public 'CODE' 

ends 
segment byte public 'DATA' 

ends 
segment byte public 'CONST' 

ends 

segment byte public 'BSS' 

ends 

18 DGROUP GROUP CONST, _BSS, _DATA 

*I 

19 

20 
ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

21 _DATA SEGMENT BYTE PUBLIC 'DATA' 
22 

23 
24 

OLDINT1B DD 

25 _DATA ENDS 
26 
27 _TEXT SEGMENT 

28 

0 ; storage for original INT 1BH vector 

29 
30 

PUBLIC _set_int,_rst_int,_broke 

31 myint1b: 
32 

33 
mov 

iret 

word ptr cs:brkflg,1Bh make it nonzero 

Figure 6-6. CHIA.ASM. (more) 

Section II: Programming in the MS-DOS Environment 223 

HUAWEI EX. 1010 - 233/1582

 

Article 6: Interrupt—Driven Communications 

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handler is needed to prevent return

of control to MS—DOS before _u_m restores the ISR vector to its original value. If a pro-
gram using this code returns to MS-DOS without calling_u_ m, the system is virtually cer-

tain to crash when line noise causes a received—data interrupt and the ISR code is no longer
in memory.

A replacement exception handler (CH1A.ASM), including routines for installation, access,

and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with

Microsoft C (again, the small memory model only). '

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart-
ing is necessary. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: CUSTOMIZING

MS-DOS: Exception Handlers.

\D
10
11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33

mummbwmd

22 .-

TITLE CH1A.ASM

; CH1A.ASM —— support file for CTERM.C terminal emulator
; this set of routines replaces Ctrl-C/Ctrl—BREAK
; usage: void set_int(), rst_int();
; int broke(); /* boolean if BREAK */

for use with Microsoft C and SMALL model only...

_TEXT segment byte public 'CODE'
_TEXT ends

_DATA segment byte public 'DATA'
_DATA ends

CONST segment byte public 'CONST'
CONST ends

_BSS segment byte public 'BSS'
_BSS ends

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

_DATA SEGMENT BYTE PUBLIC 'DATA'

OLDINT1B DD 0 ; storage for original INT 1BH vector

_DATA ENDS

_TEXT SEGMENT

PUBLIC _set_int,_rst_int,_broke

myint1b:
mov word ptr cs:brkflg,1Bh ; make it nonzero
iret

Figure 6-6. CH1A.ASM. (more)

Section 11.- Programming in the MS—DOS Environment 223

HUAWEI EX. 1010 - 233/1582



Part B: Programming for MS-DOS 

34 

35 
36 
37 

38 
39 
40 

41 

42 

43 

44 
45 

46 
47 

48 

49 

50 

51 

52 
53 
54 

55 
56 
57 

58 

59 
60 
61 

62 

63 

64 

65 
66 

67 

68 

69 
70 

71 

72 
73 

74 

75 
76 

77 

78 

79 

myint23: 

mov 

iret 

brkflg dw 

_broke proc 
xor 

xchg 

ret 
_broke endp 

word ptr cs:brkflg,23h make it nonzero 

0 

near 

ax, ax 
ax,cs:brkflg 

flag that BREAK occurred 

returns 0 if no break 

prepare to reset flag 
·return current flag value 

_set_int proc near 

_set_int 

mov ax,351bh ; get interrupt vector for 1BH 

int 21h ; (don't need to save for 23H) 
mov word ptr oldint1b,bx save offset in first word 

mov 

push 
mov 

mov 

lea 
mov 

int 
mov 

mov 

lea 
mov 

int 
pop 

ret 
endp 

word ptr oldint1b+2,es save segment in second word 

ds 
ax,cs 
ds,ax 
dx,myint1b 

ax,251bh 
21h 

ax,cs 

ds,ax 

dx,myint23 

ax,2523h 
21h 

ds 

save our data segment 
set DS to CS for now 

DS:DX points to new routine 
set interrupt vector 

set DS to CS for now 

DS:DX points to new routine 
set interrupt vector 

restore data segment 

_rst_int proc near 

push 

lds 
mov 

int 

pop 

ret 
_rst_int endp 

_TEXT ends 

END 

ds 
dx,oldint1b 

ax,251bh 
21h 

ds 

save our data segment 

DS:DX points to original 

set interrupt vector 

restore data segment 

Figure 6-6. Continued. 

The three functions in CHlA are _set_int, which saves the old vector value for Interrupt 
lBH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt 
23H (Control-CHandler Address) to internal ISR code; _rst_int, which restores the 

224 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 234/1582



Article 6: Interrupt-Driven Communications 

original value for the Interrupt lBH vector; and_broke, which returns the present value of 
an internal flag (and always clears the flag, just in case it had been set). The internal flag is 
set to a nonzero value in response to either of the revectored interrupts and is tested from 
the main C program via the _broke function. 

The video display module 

The final assembly-language module (CH2.ASM) used by the second package is shown 
in Figure 6-7. This module provides convenient screen clearing and cursor positioning via 
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou
tines that call its functions. In the original, more complex program (DT115.EXE, available 
from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod
ule provided windowing capability in addition to improved display speed. 

1 

2 
TITLE CH2.ASM 

3 CH2.ASM -- support file for CTERM.C terminal emulator 
4 for use with Microsoft C and SMALL model only ... 
5 

6 _TEXT segment byte public 'CODE' 
7 _TEXT ends 
8 _DATA segment byte public 'DATA' 
9 _DATA ends 

10 CONST segment byte public 'CONST' 
11 CONST ends 
12 -BSS segment byte public 'BSS' 
13 -BSS ends 
14 
15 

1 6 
17 

18 
19 

20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 
31 
32 
33 
34 
35 

DGROUP GROUP CONST, _BSS, _DATA 

assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP 

_TEXT segment 

public __ cls, __ color, __ deol, __ i_v, __ key, __ wrchr, __ wrpos 

atrib DB 
_colr DB 
v___bas DW 
v_ulc OW 
v_lrc DW 
v_col DW 

__ key proc 

PUSH 
MOV 
INT 
MOV 
JZ 
MOV 

0 

0 

0 

0 

184Fh 
0 

near 
BP 
AH, 1 
16h 
AX,OFFFFh 
keyOO 
AH,O 

attribute 
color 
video segment 
upper left corner cursor 
lower right corner cursor 
current col/row 

get keystroke 

check status via BIOS 

none ready, return EOF 
have one, read via BIOS 

Figure6-7. CH2.ASM. (more) 

Section II: Programming in the MS-DOS Environment 225 

HUAWEI EX. 1010 - 235/1582

Article 6: Interrupt-Driven Communications 

original value for the Interrupt 1BH vector; and_bro/ee, which returns the present value of
an internal flag (and always clears the flag, just in case it had been set). The internal flag is
set to a nonzero value in response to either of the revectored interrupts and is tested from

the main C program via the _brolee function.

The video display module

The final assembly—language module (CH2.ASM) used by the second package is shown

in Figure 6-7. This module provides convenient screen clearing and cursor positioning via
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-

tines that call its functions. In the original, more complex program (DT115.EXE, available

from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod—
ule provided windowing capability in addition to improved display speed.

1 1 TITLE CH2 . ASM
2 :

3 ; CH2.ASM -- support file for CTERM.C terminal emulator
4 : ; for use with Microsoft C and SMALL model only...
5

6 : _TEXT segment byte public 'CODE'
7 I _TEXT ends

8 : _DATA ‘ segment byte public 'DATA'
9 : _DATA ends

10 CONST segment byte public 'CONST'
11 CONST - ends

12 : _BSS segment byte public 'BSS'
13 : _Bss ends
14 .

15 : DGROUP GROUP CONST, _BSS, _DATA
16 assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP
17

18 : _TEXT segment
19

20 public __cls,__color,_;deol,__i_v,__key,__wrchr,__wrpos

21 . '
22 atrib DB 0 ; attribute
23 : _colr DB 0 ; color

24 v_bas DW 0 ; video segment
25 v_ulc DW 0 ; upper left corner cursor
26 v_lrc DW 184Fh ; lower right corner cursor
27 v_col DW 0 ; current col/row
28

29 : __key proc near ; get keystroke
30 : PUSH BP

31 : MOV AH,1 ; check status via BIOS
32 : INT 16h

33 : MOV AX, OFFFFh
34 : JZ keyOO ; none ready, return EOF
35 : MOV AH,O ; have one, read via BIOS

Figure 6-7. CH2.ASM. (more)

Section 11: Programming in the MS-DOS Environment 225

HUAWEI EX. 1010 - 235/1582



Part B: Programming for MS-DOS 

36 

37 

38 

39 
40 

41 
42 

43 

44 

45 
46 

47 

48 

49 

50 

51 

52 

53 
54 

55 
56 
57 

58 
59 

60 

61 
62 

63 

64 

65 

66 
67 
68 

69 
70 

71 

72 

73 
74 

75 

76 
77 

78 

79 

80 

81 
82 

83 
84 

85 

86 

INT 

keyOO: POP 
RET 

_key endp 

_wrchr proc 

PUSH 

MOV 

MOV 

CMP 
JNB 

CMP 

JNZ 
DEC 

MOV 

CMP 

JB 

JMP 

notbs: CMP 
JNZ 
MOV 

ADD 

AND 
MOV 

CMP 

JA 

JMP 

notht: CMP 

JNZ 

MOV 

INC 
CMP 

JBE 

CALL 
MOV 

noht1: MOV 

JMP 

notlf: CMP 

JNZ 
CALL 

JMP 

ck_cr: CMP 

JNZ 

MOV 

MOV 

JMP 

Figure 6-7. Continued. 

226 The MS-DOS Encyclopedia 

16h 

BP 

near 
BP 

BP,SP 

AL, [BP+4] ; get char passed by C 
AL,' I 

prchr ; printing char, go do it 

AL,S 

notbs 
BYTE PTR v_col process backspace 

AL,byte ptr v_col 

AL,byte ptr v_ulc 
nxt_c 

norml 

step to next column 

AL,9 

notht 
AL,byte ptr v_col 

AL,S 

AL,OFSh 
byte ptr v_col,AL 

AL,byte ptr v_lrc 
nxt_c 

SHORT 

AL, OAh 

notlf 

norml 

AL,byte ptr v_col+1 

AL 
AL,byte ptr v_lrc+1 

noht1 

scrol 
AL,byte ptr v_lrc+1 
byte ptr v_col+1,AL 

SHORT norml 

process HTAB 

process li~efeed 

AL,OCh 
ck_cr 
_cls 

SHORT 

process formfeed 

ignor 

AL,ODh 

ignor ignore all other CTL chars 

AL,byte ptr v_ulc ; process CR 
byte ptr v_col,AL 

SHORT norml 

(more) 

HUAWEI EX. 1010 - 236/1582



87 

88 
89 

90 
91 

92 

93 

94 

95 

96 
97 

98 

99 

100 

101 
102 

103 
104 

105 

106 
107 

108 

109 
110 

prchr: MOV. 

PUSH 

XOR 
MOV 

PUSH 
MOV 

PUSH 

CALL 
MOV 

nxt_c: INC 

MOV 

CMP 

JLE 

MOV 
PUSH 

CALL 
POP 

MOV 

PUSH 

CALL 
POP 

norml: CALL 

ignor: MOV 
POP 

111 RET 
112 _wrchr endp 

113 

114 

115 

116 

117 

118 

119 
120 

121 

122 

123 

124 

125 

126 
127 

128 

129 

130 
131 

132 

133 
134 

135 

136 
137 

proc 

PUSH 
MOV 

MOV 
MOV 

MOV 

POP 

RET 

endp 

_wrpos proc 

PUSH 

MOV 

MOV 
MOV 

MOV 

MOV 

MOV 

PUSH 
INT 

POP 
MOV 

MOV 

POP 

AH,_colr 

AX 

AH,AH 

Article 6: Interrupt-Driven Communications 

process printing char 

AL,byte ptr v_col+1 

AX 
AL,byte ptr v_col 

AX 

wrtvr 

SP,BP 
BYTE PTR v_col 

AL,byte ptr v_col 

AL,byte ptr v_lrc 

norml 

AL,ODh 
AX 
_wrchr 

AX 

AL, OAh 

AX 
_wrchr 

AX 
set_cur 

SP,BP 

BP 

near 

BP 
BP,SP 

AX,OBOOOh 
v__bas,AX 

SP,BP 

BP 

near 

BP 

BP,SP 
DH, [BP+4] 

DL, [BP+6] 
v_col,DX 

BH,atrib 

AH,2 

BP 

10h 

BP 
AX,v_col 

SP,BP 

BP 

advance to next column 

went off end, do CR/LF 

establish video base segment 

mono, B800 for CGA 
could be made automatic 

set cursor position 

row from C program 

col from C program 

cursor position 

attribute 

return cursor position 

Figure 6-7. Continued. (more) 

Section IL- Programming in the MS-DOS Environment 227 

HUAWEI EX. 1010 - 237/1582

  

 

87
88
89
9O
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

prchr:

nxt_c:

norml:

ignor:

__i_v

__wrpos

 

MOV-
PUSH
XOR
MOV
PUSH
MOV
PUSH
CALL
MOV
INC
MOV
CMP
JLE
MOV
PUSH
CALL
POP
MOV
PUSH
CALL
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP

Figure 6- 7. Continued.

AH,_colr
AX

AH,AH

Article 6: Interrupt—Driven Communications

; process printing char

AL,byte ptr v_col+1
AX

AL,byte pt: v_col
AX
wrtvr

SP,BP
BYTE PTR v_col ; advance to next column

AL,byte ptr v_col
AL,byte ptr v_lrc
norml

AL,0Dh
AX
__wrchr
AX

AL,0Ah
AX
__wrchr
AX

set_cur
SP,BP
BP

near
BP

BP,SP
AX,0BOOOh
v_bas,AX
SP,BP
BP

near
BP

BP,SP
DH,[BP+4]
DL,[BP+6]
v_col,DX
BH,atrib
AH,2
BP
10h
BP

AX,v_col
SP,BP
BP

; went off end, do CR/LF

; establish video base segment

mono, B800 for CGA
; could be made automatic

; set cursor position

; row from C program
; col from C program
; cursor position
; attribute

; return cursor position

Section I]: Programming in the MS—DOSEnvironment

HUAWEI EX. 1010 - 237/1582

__—%_——___—._————

(more)

227



Part B: Programming for MS-DOS 

138 RET 
139 _wrpos endp 
140 

141 set_cur proc near set cursor to v_col 
142 PUSH BP 
143 MOV BP,SP 
144 MOV DX,v_col use where v_col says 
145 MOV BH,atrib 
146 MOV AH,2 
147 PUSH BP 
148 INT 10h 
149 POP BP 
150 MOV AX,v_col 
151 MOV SP,BP 
152 POP BP 
153 RET 
154 set_cur endp 
155 
156 _color proc near _color(fg, bg) 

157 PUSH BP 
158 MOV BP,SP 
159 MOV AH, [BP+6] background from c 
160 MOV AL, [BP+4] foreground from c 
1 61 MOV CX,4 
162 SHL AH,CL 
1 63 AND AL,OFh 
164 OR AL,AH pack up into 1 byte 
165 MOV _colr,AL store for handler's use 
1 66 XOR AH,AH 
167 MOV SP,BP 
168 POP BP 
169 RET 
170 _color endp 
171 

172 scrol proc near scroll CRT up by one line 
173 PUSH BP 
174 MOV BP,SP 
175 MOV AL,1 count of lines to scroll 
176 MOV cx,v_ulc 

177 MOV DX,v_lrc 

178 MOV BH,_colr 

179 MOV AH,6 
180 PUSH BP 
181 INT 10h use BIOS 
182 POP BP 
183 MOV SP,BP 
184 POP BP 
185 RET 
186 scrol endp 
187 

188 _cls proc near clear CRT 

Figure 6-7. Continued. (more) 

228 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 238/1582



l 
I 

189 
190 

191 
1 92 

193 

194 

1 95 

1 96 
197 

1 98 

199 

200 
201 

202 

203 
204 

205 
206 
207 

208 

209 
210 

211 

212 
213 

214 

215 

216 
217 

218 

219 

220 

221 
222 

223 

224 

225 

226 

227 

228 

_cls 

PUSH 
MOV 

MOV 

MOV 
MOV 

MOV 

MOV 

MOV 

PUSH 

INT 

POP 
CALL 

MOV 

POP 
RET 

endp 

_deol proc 

PUSH 

MOV 

MOV 
MOV 

PUSH 
MOV 

XOR 

PUSH 
MOV 

deol1: 

deol2: 

CMP 

JA 

PUSH 
CALL 

POP 
INC 

JMP 

MOV 

MOV 

POP 

RET 

229 _deol endp 

230 

231 
232 

233 

234 

235 

236 

237 

238 

239 

wrtvr proc 

PUSH 
MOV 

MOV 
MOV 

MOV 

MOV 

MUL 

XOR 

BP 

BP,SP 

AL,O 
CX,v_ulc 

v_col,CX 
DX,v_lrc 

BH,_colr 

AH,6 

BP 

10h 

BP 
set_cur 

SP,BP 
BP 

near 
BP 

BP,SP 
AL, I I 

AH,_colr 

AX 

Article 6: Interrupt-Driven Communications 

flags CLS to BIOS 

set to HOME 

use BIOS scroll up 

cursor to HOME 

delete to end of line 

; set up blanks 

AL,byte ptr v_col+1 

AH,AH 

AX 
AL,byte ptr v_col 

AL,byte ptr v_lrc 

deol2 

AX 

wrtvr 
AX 

AL 

deol1 

AX,v_col 

SP,BP 

BP 

near 

BP 

BP,SP 

DL, [BP+4] 

DH, [BP+6] 

BX, [BP+8] 

AL,80 

DH 

DH,DH 

set up row value 

at RH edge 

current location 

write a blank 

next column 

do it again 

return cursor position 

write video RAM (col, row, char/atr) 

set up arg ptr 

column 
row 

char/atr 

calc offset 

Figure 6-7. Continued. (more) 

Section II: Programming in the MS-DOS Environment 229 

HUAWEI EX. 1010 - 239/1582

 
1

E

 

189
'190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

; __cls

: ._deol

deol1:

: deolZ:

; __deol

; wrtvr

PUSH
MOV
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
PUSH
MOV
XOR
PUSH
MOV

CMP
JA
PUSH
CALL
POP
INC
JMP

MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MUL
XOR

Figure 6—7. Continued.

BP

BP,SP
AL,O ; flags CLS to BIOS
CX,v_ulc
v_col,CX ; set to HOME
DX,v_lrc
BH,_colr
AH,6
BP

10h ; use BIOS scroll up
BP
set_cur ; cursor to HOME
SP,BP
BP

near ; delete to end of line
BP

BP,SP
AL,‘ '
AH,_colr ; set up blanks
AX

AL,byte ptr v_col+1
AH,AH ; set up row value
AX

AL,byte ptr v_col

AL,byte ptr v_lrc

 

deolZ ; at RH edge
AX ; current location
wrtvr ; write a blank
AX

AL ; next column

deol1 ; do it again

AX,v_col ; return cursor position
SP,BP
BP

near ; write video RAM (col, row, char/atr)
BP

BP,SP ; set up arg ptr
DL,[BP+4] ; column
DH,[BP+6] ; row
BX,[BP+8] ; char/atr
AL,80 ; calc offset
DH

DH,DH

(more)

Section 11: Programming in the MS-DOS Environment 229

HUAWEI EX. 1010 - 239/1582



Part B: Programming for MS-DOS 

240 ADD AX,DX 

241 ADD AX,AX adjust bytes to words 
242 PUSH ES save seg reg 
243 MOV DI,AX 

244 MOV AX,v_bas set up segment 
245 MOV ES,AX 
246 MOV AX,BX get the data 
247 STOSW put on screen 
248 POP ES restore regs 

249 MOV SP,BP 
250 POP BP 

251 RET 

252 wrtvr endp 

253 

254 _TEXT ends 

255 
256 END 

Figure6-7. Continued. 

The sample smarter terminal emulator: CTERM.C 

Given the interrupt handler (CHI), exception handler (CHlA), and video handler (CH2), a 
simple terminal emulation program (CTERM.C) can be presented. The major functions of 
the program are written in Microsoft C; the listing is shown in Figure 6-8. 

I* Terminal Emulator ( cterm. c) 

2 * Jim Kyle, 1987 

3 * 
4 

5 

6 
7 

8 

9 

* Uses files CH1, CH1A, and CH2 for MASM support ... 

10 

11 

12 
13 

14 

15 

1 6 
17 

18 

1 9 

20 
21 

22 

#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <dos.h> 

#include <string.h> 

#define BRK 'C 1 _I@ I 

#define ESC I (I_ I@ I 

#define XON 'Q'-'@' 

#define XOFF Is I_ I@ I 

#define True 1 
#define False 0 

#define Is-Function_Key(C) 

static char capbfr [ 4096 ]; 

23 static int wh, 

24 ws; 

Figure 6-8. CTERM.C. 

230 The MS-DOS Encyclopedia 

I* special console i/o 

I* mise definitions 

I* defines intdos () 

I* control characters 

(C) ESC 

I* capture buffer 

*I 
*I 
*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 240/1582



Article 6: Interrupt-Driven Communications 

25 
26 static int I, 
27 waitchr 0, 
28 vflag = False, 

29 capbp,, 

30 
31 

32 
33 
34 
35 

36 
37 
38 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

int 

capbc, 
Ch, 
Want_7-Bit = True, 
ESC_Seq_State = 0; 

_ex , 
_cy, 
_atr Ox07, 
_pag 0, 
oldtop 0, 
oldbot Ox184f; 

FILE * in_file = NULL; 
FILE * cap_file = NULL; 

#include "cterm.h" 

int Wants_To-Abort () 
{ return broke (); 

I* escape sequence state variable 

I* white on black 

I* start with keyboard input 

I* external declarations, etc. 

I* checks for interrupt of script 

50 void 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
68 
69 
70 
71 
72 

73 
74 
75 

main ( argc, argv ) int argc 
char* argv [); 

char * cp, 

I* main routine 

* addext (); 
if ( argc > 1 ) I* check for script filename 

in_file = fopen ( addext ( argv [ 1 ), ".SCR" ), "r" ); 
if ( argc > 2 ) I* check for capture filename 

cap_file = fopen ( addext ( argv [ 2 ), ".CAP" ), "w" ); 

set_int (); I* install· CH1 module 
Set_Vid (); I* get video setup 
cls (); I* clear the screen 
cputs ( "Terminal Emulator" ); I* tell who's working 
cputs ( "\r\n< ESC for local commands >\r\n\n" ); 
Want_7-Bit = True; 
ESC_Seq_State = 0; 

Init_Comm (); I* 
while ( 1 ) 

( if (( Ch = kb_file ()) > 0 
{ if ( Is_Function_Key ( Ch 

{ if ( docmd () < 0 ) 
break; 

else 
Send-Byte ( Ch & Ox7F ); 

set 

) ) 

up drivers, etc. 

I* main loop 

I* check local 

I* command 

I* else send it 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 
*I 
*I 
*I 

*I· 
*I 
*I 

*I 

*I 

Figure 6-8. Continued. (more) 

Section II: Programming in the MS-DOS Environment 231 

HUAWEI EX. 1010 - 241/1582

 

Article 6: Interrupt—Driven CommunicationsW

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4o
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

’ 75

; static int I,
waitchr = 0,
vflag = False,

capbp,‘
capbc,
Ch,
Want_7_Bit = True,
ESC_Seq_State = 0;

; int _cx ,
_cy,
_atr = 0x07,
_pag = 0,
oldtop = 0,
oldbot = 0x184f;

: FILE * in_file = NULL;
; FILE * cap_file = NULL;

: #include "cterm.h"

: int Wants_To_Abort ()
( return broke ();
)

: VOid

; main ( argc, argv ) int
char * argv []i

( char * cp,
* addext ();

if ( argc > 1 )
in_file = fopen ( addext

if ( argc > 2 )
cap_file = fopen ( addext

set_int ();
Set_Vid ();
cls ();

cputs ( "Terminal Emulator"

/* escape sequence state variable */

/* white on black */

/* start with keyboard input */

/* external declarations, etc. */

/* Checks for interrupt of script */

argc ; /* main routine */

/* check for script filename */
( argv [ 1 ], ".SCR" ), "r" );

/* check for capture filename */
( argv [ 2 ], ".CAP" ), "w" );

' /* install CH1 module */

/* get video setup */
/* clear the screen */

); /* tell who's working */
cputs ( "\r\n< ESC for local commands >\r\n\n" );
Want_7_Bit = True;

ESC_Seq_State = 0;
Init_Comm ();
while ( 1 )

( if (( Ch = kb_file ()) > 0 )

/* set up drivers,.etc. */‘
/* main loop */
/* check local */

{ if ( Is_Function_Key ( Ch ))
( if ( docmd () < 0 ) /* command */

break;
)

else

Send_Byte ( Ch & 0X7F ); /* else send it */

Figure 6-8. Continued. (more)

Section 11.- Programming in theMS-DOS Environment 231

HUAWEI EX. 1010 - 241/1582



Part B: Programming for MS-DOS 

if (( Ch = Read_Modem ()) >= 0 ) I* check remote 
{ if ( Want_7-Bit ) 

Ch &= Ox7F; I* trim off high bit 
switch ESC_Seq_State I* state machine 

case 0 I* no Esc sequence 
switch ( Ch 

case ESC I* Esc char received 
ESC_Seq_State 

break; 

default : 

1; 

if ( Ch == waitchr 

waitchr = 0; 
if ( Ch == 12 ) 

cls () ; 

else 

I* wait if required 

I* clear screen on FF 

*I 

*I 
*I 

*I 

*I 

*I 

76 

77 

78 
79 

80 

81 

82 

83 
84 

85 

86 
87 

88 

89 

90 
91 

92 

93 

94 
95 

96 
97 

98 
99 

if ( Ch ! = 127 ) I* ignore rubouts *I 

100 
101 
102 

103 

104 
105 

106 

107 

108 
109 

110 

111 
112 

113 

114 
115 

116 

117 
118 

119 

120 

121 

122 

123 

124 
125 

126 

Figure 6-8. Continued. 

{ putchx ( (char) Ch ); I* handle all others *I 
put-cap ( (char) Ch ) ; 

break; 

case 1 : I* ESC -- process any escape sequences here 
switch ( Ch ) 

case 'A' : I* VT52 up 
I* nothing but stubs here 

ESC_Seq_State 0; 
break; 

case 'B' I* VT52 down 

ESC_Seq_State 0; 
break; 

case 'C' I* VT52 left 

ESC_Seq_State 0; 
break; 

case 'D' I* VT52 right 

ESC_Seq_State 0; 
break; 

case 'E' I* VT52 Erase CRT 
cls () ; I* actually do this one 

*I 

*I 
*I 

*I 

*I 

*I 

*I 
*I 

232 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 242/1582



Article 6: Interrupt-Driven Communications 

ESC_Seq_State 

break; 

case 'H' 

0; 

locate 0, 0 ) ; 
ESC_Seq_State = 0; 

break; 

case 'j' 
deos (); 
ESC_Seq_State 

break; 

0; 

I* VT52 horne cursor 

I* VT52 Erase to EOS 

127 

128 
129 

130 

131 

132 

133 
134 

135 

136 
137 

138 

139 
140 

141 
142 

143 

144 

145 

146 
147 

148 

149 

150 

151 

152 

153 

154 
155 

156 

case ' [' I* ANSI.SYS -VT100 sequence 
ESC_Seq_State = 2; 

break; 

default : 
putchx (ESC); I* pass thru all others 

putchx ( (char) Ch ) ; 
ESC_Seq_State 0; 

break; 

case 2 : 
ESC_Seq_State 0; 

I* ANSI 3.64 decoder 

I* not implemented 

if (broke ()) I* check CH1A handlers 

{ cputs ( "\r\n***BREAK***\r\n" ) ; 

157 break; 

158 

159 
160 if { cap_file 

161 cap_flush (); 

1 62 Terrn_Comm () ; 

163 rst_int (); 

164 exit ( 0 ); 

165 

166 
1 67 docrnd () 

168 FILE* getfil (); 

169 
170 

171 

172 

int wp; 

wp = True; 
if ( ! in_file : : vflag ) 

cputs ( "\r\n\tCommand: " ); 

173 else 

174 

175 

176 

wp = False; 
Ch = toupper ( kbd_wait ()); 

if ( wp ) 

177 putchx ( (char) Ch ) ; 

I* end of main loop 

I* save any capture 

I* restore when done 

I* restore break handlers 

I* be nice to MS-DOS 

I* local command shell 

I* ask for command 

I* get response 

*I 

*I 

*I 

*I 

*I 
*I 

*I 

*I 
*I 

*I 
*I 
*I 

*I 

*I 

*I 

Figure 6-8. Continued. (more) 

Section II: Programming in the MS-DOS Environment 233 

HUAWEI EX. 1010 - 243/1582

    

Article 6: Interrupt-Driven CommunicationsW

127
”128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

'157
158
159
160

K 161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177

if ( wp )

ESC_Seq_State =
break;

putchx ( (char) Ch );

Figure 6-8. Continued.

case 'H'

locate ( 0, 0 );
ESC_Seq_State =-0;
break;

case 'j'
deos ();
ESC_Seq_State = 0;
break;

case '[' : /* ANSI.
ESC_Seq_State = 2;
break;

default

putchx ( ESC );
putchx ( (char) Ch );
ESC_Seq_State = 0;

}
break;

case 2

ESC_Seq_state = O;
)

)
if ( broke ())

( cputs ( "\r\n***BREAK***\r\n"
break;

)
1

if ( cap_file )
cap_flush ();

Term_Comm ();
rst_int ();
exit ( 0 );

docmd ()

{ FILE * getfil ();
int wp;
wp = True;
if ( ! in_file ii Vflag )

cputs ( "\r\n\tCommand: " );
else

wp = False;
Ch = toupper ( kbd_wait ());

/* VT52 home cursor */

/* VT52 Erase to EOS */

SYS — VT100 sequence */

/* pass thru all others */

/* ANSI 3.64 decoder */

/* not implemented */

/* check CH1A handlers */
)7

/* end of main loop */
/* save any capture */

/* restore when done */
/* restore break handlers */
/* be nice to MS-DOS */

/* local command shell */

/* ask for command */

/* get response - */

Ononfl

Section IL Programming in the MS—DOS Environment 253

HUAWEI EX. 1010 - 243/1582



.-· 

Part B: Programming for MS-DOS 

178 

179 

180 

181 
182 

183 

184 

185 

186 
187 
188 

189 

190 
191 

1 92 

193 
194 

195 

196 

197 

198 
199 
200 

201 
202 

203 

204 
205 

206 
207 

208 

209 

210 
211 

212 

213 
214 

215 

21 6 
217 

218 

219 

220 
221 

222 

223 

224 

225 

226 
227 

switch ( Ch 

case 'S' : 
if ( wp ) 

I* and act on it 

cputs ( "low speed\r\n" ) ; 

Set-Baud ( 300 ); 
break; 

case 'D' 
if ( wp ) 

cputs ( "elay ( 1-9 sec) : " ) ; 
Ch = kbd_wait (); 

if ( wp ) 
putchx ( (char) Ch ) ; 

Delay ( 1 000 * ( Ch - 1 0 1 
) ) ; 

if ( wp ) 

putchx ( 1 \n 1 
) ; 

break; 

case 'E' 
if ( wp ) 

cputs ( "ven Parity\r\n" ); 
Set_Farity ( 2 ); 

break; 

case 'F' 
if ( wp ) 

cputs ( "ast speed\r\n" ); 
Set_Baud ( 1200 ); 

break; 

case 'H' 
if ( wp ) 

{ cputs 
cputs 

cputs 

cputs 
cputs 

cputs 

cputs 

cputs 

cputs 
cputs 

cputs 

cputs 

break; 

case 'N' 
if ( wp 

"\r\n\tVALID COMMANDS:\r\n" ); 
"\tD delay 0-9 seconds.\r\n" ); 

"\tE 

"\tF 
"\tN 

"\tO 

"\tQ 
"\tR 

"\tS 
"\tU 

"\tV 

"\tW 

even parity.\r\n" ); 

(fast) 1200-baud.\r\n" ); 
no parity.\r\n" ); 

odd parity.\r\n" ); 

quit, return to DOS.\r\n" ); 

reset modem.\r\n" ); 

(slow) 300-baud.\r\n" ); 
use script file.\r\n" ); 

verify file input.\r\n" ); 

wait for char." ); 

Figure 6-8. Continued. 

234 The MS-DOS Encyclopedia 

*I 

(more) 

HUAWEI EX. 1010 - 244/1582



228 cputs ( "o Parity\r\n" ~; 

229 Set_Parity 1 ) ; 

230 break; 

231 
232 case '0' 

233 if ( wp ) 
234 cputs ( "dd Parity\r\n" ) ; 

235 Set_Parity ( 3 ); 

236 break; 

237 
238 case 'R' 

239 if ( wp ) 
240 cputs ( "ESET cornin Port\r\n" ) ; 

241 

242 

243 

In i t_Corrun () ; 

break; 

244 case 'Q' 

245 if ( wp ) 

246 

247 

248 

249 

cputs ( "-QUIT Corrunand\r\n" ); 

Ch = ( - 1 ) ; 

break; 

250 case 'U' 
251 if ( in_file && ! vflag 

252 putchx ( 'U' ) ; 

cputs ( "se file: " ); 

getfil (); 

cputs ( "File" ); 

Article 6: Interrupt-Driven Communications 

253 

254 

255 

256 cputs ( in_file ? "Open\r\n" "Bad\r\n" ) ; 

257 waitchr = 0; 

258 break; 

259 
260 case 'V' 

261 

262 

263 

264 

if ( wp ) 

{ cputs 

cputs 

"erify flag toggled" ); 

vflag ? "OFF\r\n" 

265 vflag = vflag ? False : True; 

266 break; 

267 
268 case 'W' 

269 if { wp 
270 cputs { "ait for: <" ) ; 
2T1 waitchr = kbcLwait (); 

272 if ( waitchr == ' ' ) 
273 

274 

275 

276 

277 

278 

waitchr = O; 
if ( wp ) 

{ if ( waitchr 

putchx ( (char) waitchr ); 

else 

cputs ( "no wait" ); 

"ON\r\n" ); 

Figure 6-8. Continued. (more) 

Section /1· Programming in the MS-DOS Environment 235 

HUAWEI EX. 1010 - 245/1582

\

228 : Cputs ( "o Parity\r\n" );
229 : Set_Parity ( 1 );
230 : break;
231 .

232 : case '01 .
233 : if ( wp )
234 : cputs ( "dd Parity\r\n" );
235 : Set_Parity ( 3 );
236 : break;
237 .
238 : case 'R'
239 : if ( wp )

24o : cputs ( "ESET Com'm Port\r\n" );
241 : “lit—Comm ();
242 : break;
243 .
244 : case 'Q'
245 : if ( wp )
246 : cputs ( " = QUIT Command\r\n" );
247 : Ch = ( - 1 );
248 : break;
249 . ’
250 : case 'U' .
251 : if ( in_file && ! Vflag )

252 : .; putchx ( 'U' );
253 : cputs ( "se file: " );
254 : getfil ();
255 : cputs ( "File " );
256 ; cputs ( in_file ? "Open\r\n" : "Bad\r\n" );
257 : waitchr = 0;
258 : break;
259 .
260 : case ‘V' .

261 : if ( Wp ) ‘
262 : ( cputs ( "erify flag toggled " );
263 : cputs ( vflag ? "OFF\r\n" : "ON\r\n" );
264 : )
265 : vflag = vflag ? False : True;
266 : break;
267 .
268 : case 'W'

269 : ' if ( wp )
270 : cputs ( "ait for: <" );
271 : waitchr = kbd_wait ();
272 : if ( waitchr == ' ' )
273 2 . waitchr = 0;
274 : if ( WP )
275 : ( if ( waitchr )
276 : putchx ( (char) waitchr );
277 : else

278 z . cputs ( "no wait" );

Figure 6-8. Continued. (more)

Section IL Programming in the MS-DOS Environment 255

HUAWEI EX. 1010 - 245/1582



Part B: Programming for MS-DOS 

279 
280 
281 
282 

cputs ( ">\r\n" ) ; 

break; 

283 default : 
284 if ( wp 
285 { cputs ( "Don't know " ) ; 
286 putchx ( (char) Ch ) ; 

287 cputs ( "\r\nUse 'H' command for Help. \r\n" ) ; 

288 
289 
290 

Ch = '?'; 

291 
292 
293 
294 

if ( wp ) 
{ cputs 

I* if window open .... 

while 

295 

"\r\n[any key]\r" ); 
Read-Keyboard () == EOF I* wait for response 

296 return Ch 
297 
298 
299 kbd__wai t () I* wait for input 
300 int c 

301 
302 

while ( ( c = kb_file ()) ( - 1 ) ) 

303 return c & 255; 

kb_file () I* input from kb or 
int 
if ( 

c 
in_file I* USING SCRIPT 

c = Wants_To_Abort () ; I* use first as flag 
if ( waitchr && ! c ) 

c = ( - 1 ) ; I* then for char 
else 

if ( c :: ( c = getc ( in_file )) == EOF :: c == 26 
fclose ( in_file ); 

else 

cputs ( "\r\nScript File Closed\r\n" ); 
in_file NULL; 
waitchr 
c = ( -

0; 
) ; 

file 

304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 

318 
319 
320 
321 
322 
323 

·324 

if ( c == '\n' 
c = ( - 1 ) ; 

if ( c == '\\' ) 
c = esc (); 

I* ignore LFs in file 

325 
326 
327 
328 
329 

if ( vflag && c != (- 1 )) 
{ putchx ' {' ) ; 

putchx 
putchx 

(char) c ) ; 
'}' ) ; 

Figure 6-8. Continued. 

236 The MS-DOS Encyclopedia 

I* process Esc sequence 

I* verify file char 

*I 

*I 

*I 

*I 

*I 
*I 

*I 

*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 246/1582



330 
331 

332 

333 
334 

335 

336 
337 

338 

339 
340 

341 

342 
343 
344 

345 

346 
347 

348 

349 

350 

351 

352 

353 
354 

355 

356 
357 

358 
359 

360 
361 

362 

363 

364 

365 : 

366 
367 

368 

369 

370 
371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

Article 6: Interrupt-Driven Communications 

else 
c = Read_Keyboard (); 

return (c); 

esc () 

{ int c 
c = getc ( in_file ) ; 

switch toupper 

case 'E' : 

c = ESC; 
break; 

case 'N' 
C ='I \n I i· 

break; 

case 'R' 
c = '\r'; 
break; 

case 'T' 
C = I \t I i 

break; 

case '"' : 

c ) ) 

c = getc ( in_file ) & 31; 

break; 

return ( c ) ; 

FILE * getfil () 
{ char fnm [ 20 ]; 

getnam ( fnm, 15 ); 

if ( ! ( strchr ( fnm, 

strcat ( fnm, ".SCR" ); 

)) ) 

I* USING CONSOLE 

I* if not using file 

I* script translator 

I* control chars in file 

I* get the name 

return ( in_file = fopen ( fnm, "r" )); 

void getnam ( b, s ) char * b; I* take input to buffer 

int s ; 
while ( s -- > 0 

if ( ( * b = (char) kbcLwait ()) != '\r' ) 

putchx ( * b ++ ); 
else 

break ; 

putchx ( '\n' ) ; 

*I 
*I 

*I 

*I 

*I 

*I 

Figure 6-8. Continued. (more) 

Section 11· Programming in the MS-DOS Environment 237 

HUAWEI EX. 1010 - 247/1582

 

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346 '
347
348
349 z
350
351
352
353
354
355
356
357
358
359

360'
361
362
363
364
365
366
367
368
369 :
370
371
372
373
374
375
376
377
378
379 .
380

1
else

0 = Read_Keyboard ();
return ( c );

: esc ()
( int c ;

c = getc ( in_file );
switch ( toupper ( C ))

(
case 'E'

c = ESC;
break;

case 'N'

c =-'\n';
break;

case 'R'

c = '\r';
break;

case 'T'

c = '\t';
break;

case 'A'

c = getc ( in_file ) & 31;
break;

)
return ( c );

: FILE * getfil ()
-_( char fnm [ 20

getnam ( fnm,
];
15 );

if ( I ( strchr ( fnm, '.' )))
strcat ( fnm, ".SCR" );

return ( in_file = fopen ( fnm, "r“ ));

: void getnam ( b,
int 5 ;

s ) char * b;

( while ( s -— > O)
.{ if (( * b = (char) kbd_wait ())

putchx ( * b ++ );
else

break ;
)

putchx ( '\n'

Figure 6-8. Continued.

);

Article 6: Interrupt-Driven Communications

/* USING CONSOLE */
/* if not using file */

/* script translator */

/* control chars in file */

/* get the mane */

/* take input to buffer */

'\rv )

(more)

Section IL Programming in theMS-DOS Environment 237

HUAWEI EX. 1010 - 247/1582



Part B: Programming for MS-DOS 

381 
382 
383 
384 
385 

* b 0; 

char * addext b, 
e ) char * b, 

386 * e; 
387 static char bfr [ 20 ]; 

388 if ( strchr ( b, '.' ) ) 
389 return (b); 
390 
391 
392 
393 
394 
395 
396 
397 

398 
399 

strcpy 
strcat 
return 

bfr, b ) ; 
bfr, e ) ; 
bfr ) ; 

void put_cap ( c ) char c ; 
( if ( cap_file && c != 13 

fputc ( c, cap_file ); 

void cap_flush () 
{ if ( cap_file ) 

{ fclose ( cap_file ); 
cap_file = NULL; 

I* add default EXTension 

I* strip out CRs 
I* use MS-DOS buffering 

I* end Capture mode 400 
401 
402 
403 
404 
405 

cputs ( "\r\nCapture file closed\r\n" ); 

406 
407 
408 
409 
410 

I* TIMER SUPPORT STUFF (IBMPCIMSDOS) *I 
static long timr; 

411 static union REGS rgv 
412 

413 long getmr () 
414 { long now 

415 rgv.x.ax Ox2c00; 
416 intdos ( & rgv, & rgv ); 
417 now= rgv.h.ch; 
418 now *= 60L; 
419 
420 
421 
422 
423 
424 
425 
426 

now += 
now *= 
now += 
now *= 
now += 

return 

rgv.h.cl; 
60L; 
rgv.h.dh; 
100L; 
rgv.h.dl; 
( 10L * now ) ; 

427 void Delay ( n ) int n ; 
428 { long wakeup ; 
429 wakeup = getmr () + ( long ) n; 
430 while ( getmr () < wakeup ) 
431 

Figure 6-8. Continued. 

238 The MS-DOS Encyclopedia 

I* timeout register 

I* msec since midnite 

I* hours 

I* to minutes 

I* plus min 

I* to seconds 

I* plus sec 

I* to 11100 

I* plus 11100 

I* msec value 

I* sleep for n rnsec 

I* wakeup time 

I* now sleep 

*I 

*I 
*I 

*I 

*I 

*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 248/1582



Article 6: Interrupt-Driven Communications 

432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 

void Start_Timer ( n ) int n 

timr = g~tmr () + ( long n * 
I* set timeout for n sec 

1000L; 

Timer_Expired () I* if timeout return 1 else return 0 
( return ( getmr () > timr ); 
} 

Set_Vid () 
{ _i_v (); 

444 return 0; 
445 
446 
447 
448 

void locate 
col; 

row, col ) int row , 

449 _cy = row % 25; 
450 _ex = col % 80; 
451 
452 
453 
454 
455 
456 
457 

_wrpos (row, col ); 

void deal () 
{ _deal (); 

4S8 void deos () 
459 deal (); 
460 
461 
462 
463 
464 
465 
466 

if ( _cy < 24 ) 

{ rgv.x.ax 
rgv.x.bx 
rgv.x.cx 

Ox0600; 
( _atr << 8 ) ; 
( _cy + 1 ) << 8; 

rgv.x.dx Ox184F; 
int86 ( Ox10, & rgv, & rgv ); 

467 locate ( _cy, _ex); 
468 
469 
470 
471 

472 
473 
474 
475 

void cls () 
{ _cls (); 

void cursor ( yn ) int yn ; 
rgv.x.cx = yn ? Ox0607 : Ox2607; 

476 rgv.x.ax = Ox0100; 
477 int86 ( Ox10, & rgv, & rgv ); 
478 
479 

480 void revvid ( yn ) int yn ; 
481 { if ( yn ) 
482 _atr =_color ( 8, 7 ); 

I* initialize video 

/* use ML from CH2.ASM 

/* use ML from CH2.ASM 

I* if not last, clear 

I* use ML 

I* ON/OFF 

I* black on white 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

Figure 6-8. Continued. (more) 

Section IL- Programming in the MS-DOS Environment 239 

HUAWEI EX. 1010 - 249/1582

 

432
433
434
435
436
437
438
439
440
441
442
443
444

445
446
447
448
449
450
451
452
453
454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

1 ( if

void Start_Timer ( n ) int n ;

Axticle 6: Interrupt-Driven CommunicationsW

/* set timeout for n sec

( timr = getmr () + ( long ) n * 1000L;
)

Timer_Expired ()
( return
}

Set_Vid U
(_i_v (1;

return 0;

void locate ( row, col )
col;

1 ~_cy = row % 25;
_CX
_W

void

rpos ( row,

deol ()
1 _deol U;
)

void

{ de
deos ()

010;.

col % 80;
col );

if ( _cy < 24 )
( rgv.x.ax

rgv.x.bx
rgv.x.cx

rgv.x.dx

0x0600;

/* if timeout return 1 else return 0

( getmr () > timr );

/* initialize video

int row ,

/* use ML from CH2.ASM

/* use ML from CH2.ASM

/* if not last, clear

( _atr << 8 );
( -cy +
0x184F;

int86 ( 0x10, & rg
)

locate ( _cy, _cx );

void

{ _c
cls ()

ls 1);

void cursor ( yn ) int y
v.x.cx = yn ? 0x0607(r9

rg
int86 ( 0X10,

v.x.ax = 0x0100;

& rgv, & rgv );

void revvid ( yn ) int y
(yn)

_atr = _color ( 8, 7

Figure 6-8. Continued.

1

VI

n i

n ,'

);

) << 8;

& rgv );

/* use ML

0x2607; /* ON/OFF

/* black on white

(more)

Section 11: Programming in the MS-DOS Environment 239

HUAWEI EX. 1010 - 249/1582



Part B: Programming for MS-DOS 

483 else 
484 
485 
486 
487 
488 

_atr _color ( 15, 0 ); 

putchx ( c ) char c 
{ if ( c == '\n' 

489 putch ( '\r' ); 
490 putch (c); 
491 return c ; 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 

ReacLKeyboard () 

int c ; 

if ( kbhit ()) 
return ( getch () ) ; 

return ( EOF ); 

I* MODEM SUPPORT 
503 static char mparm, 
504 wrk [ 80 ]; 
505 
506 
507 

508 

void Init_Comm () 

static int ft 0; 
if ( ft ++ == 0 

509 i_m (); 
510 
511 
512 
513 
514 

Set_Farity ( 1 ); 
Set_Baud ( 1200 ) ; 

#define B1200 Ox80 
515 #define B300 Ox40 
516 

Set_Baud ( n ) int n ; 

if ( n == 300 ) 

I* white on black 

I* put char to CRT 

I* get keyboard character 
returns -1 if none present 

I* no char at all 

*I 

I* initialize comm port stuff 
I* firstime flag 

I* 8,N, 1 

I* 1200 baud 

I* baudrate codes 

I* n is baud rate 517 

518 
519 
520 

mparm = ( mparm & Ox1F ) + B300; 
else 

521 if ( n == 1200 ) 
522 mparm = ( mparm & Ox1F ) + B1200; 
523 else 
524 
525 
526 

return 0; 
sprintf ( wrk, "Baud rate 
cputs ( wrk ) ; 

527 set_mdm ( mparm ); 
528 return n ; 
529 
530 
531 
532 

#define PAREVN Ox18 
#define PARODD 0x10 

533 #define PAROFF OxOO 

Figure 6-8. Continued. 

240 The MS-DOS Encyclopedia 

I* invalid speed 
%d\r\n", n ) ; 

I* MCR bits for commands 

*I 

*I 

*I 

*I 

*I 
*I 

*I 
*I 

*I 

*I 

*I 

*I 

(more) 

HUAWEI EX. 1010 - 250/1582



534 #define STOP2 Ox40 
535 #define WORDS Ox03 
536 #define WORD7 Ox02 
537 #define WORD6 Ox01 
53S 
539 
540 

Set_Parity ( n ) int n 

{ static int mmode; 
541 if ( n == 

mmode = ( WORDS 
else 

if ( n -- 2 
mmode = ( WORD7 

else 
if ( n -- 3 

mmode = ( WORD7 
else 

return 0; 

PAROFF ) ; 

PAREVN ) ; 

PARODD ) ; 

542 
543 
544 
545 

546 
547 
54S 
549 
550 
551 
552 

mparm = mparm & OxEO ) + mmode; 
sprintf ( wr~, "Parity is %s\r\n", 

553 

554 cputs ( wrk ); 
555 set_mdm ( mparm ); 
556 return n ; 
557 
55S 

559 Write_Modem ( c ) char c 
560 
561 
562 
563 

wrtmdm c ) ; 
return ( 1 ) ; 

564 Read-Modem () 
565 
566 
567 

return ( rdmdm ()); 

Article 6: Interrupt-Driven Communications 

I* n is parity code 

I* off *I 

I* on and even *I 

I* on and odd *I 

I* invalid code *I 

n == "OFF" : 

n == 2? "EVEN" : "ODD" ))); 

I* return 1 if ok, else 0 *I 

I* never any error *I 

I* from int bfr *I 

56S 
569 
570 

void Term_Comm () 
u_m (); 

I* uninstall comm port drivers *I 

571 

572 I* end of cterm.c *I 

Figure 6-8. Continued. 

CTERM features file-capture capabilities, a simple yet effective script language, and a 
number of stub (that is, incompletely implemented) actions, such as emulation of the VT52 
and vnoo series terminals, indicating various directions in which it can be developed. 

The names of a script file and a capture file can be passed to CTERM in the command line. 
If no filename extensions are included, the default for the script file is .SCR and that for the 
capture file is .CAP. If extensions are given, they override the default values. The capture 
feature can be invoked only if a filename is supplied in the command line, but a script file 
can be called at any time via the Esc command sequence, and one script file can call for 
another with the same feature. 

Section II: Programming in the MS-DOS Environment 241 

HUAWEI EX. 1010 - 251/1582

 

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556 :
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571
572

Article 6: Interrupt-Driven CommunicationsW

#define STOP2 0x40
#define WORDS 0x03
#define WORD7 0x02

: #define WORD6 0x01

( static int mmode;
if ( n == 1 )

mmode = ( WORDS : PAROFF ); , /* off
else

if ( n == 2 )
mmode = ( WORD7 : PAREVN ); /* on and even

else

if ( n == 3 )
mmode = ( wORD7 : PARODD ); /* on and odd

else

return 0; /* invalid code

mparm = ( mparm & OxEO ) + mmode;

sprintf ( wrh, "Parity is %s\r\n", ( n == 1 ? "OFF"
( n == 2 ? "EVEN"

cputs ( wrk );
set_mdm ( mparm );
return n ;

l

: Write_Modem ( c ) char c ; /* return 1 if
( wrtmdm ( c );

return ( 1 ); /* never any er
l

2 Read_Modem ()
( return ( rdmdm ()); /* from int bfr
l

: void Term_Comm () /* uninstall comm port
(u_m 1); '
)

/* end of cterm.c */

Figure 6-8. Continued.

: Set_Parity ( n ) int n ; /f n is parity code */

*/

"ODD" m,-

ok, else 0 */

ror */

*/

drivers . */

CTERM features file-capture capabilities, a simple yet effective script language, and a

number of stub (that is, incompletely implemented) actions, such as emulation of the V152

and VT100 series terminals, indicating various directions in which it can be developed.

The names of a script file and a capture file can be passed to CTERM in the command line.

If no filename extensions are included, the default for the script file is .SCR and that for the

capture file is .CAP. If extensions are given, they override the default values. The capture

feature can be invoked only if a filename is supplied in the command line, but a script file

can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section 11.- Programming in the MS-DOS Environment 241

HUAWEI EX. 1010 - 251/1582



Part B: Programming for MS-DOS 

The functions included in CTERM.C are listed and summarized in Table 6-13. 

Table 6-13. CTERM.C Functions. 

lines Name Description 

1-5 Program documentation. 
7-11 Include files. 
12-20 Definitions. 
22-43 Global data areas. 
45 External prototype declaration. 
47-49 Wants_ To_ Abort() Checks for Ctrl-Break or Ctrl-C being pressed. 
52-165 main() Main program loop; includes modem engine and 

sequential state machine to decode remote 
commands. 

167-297 docmd() Gets, interprets, and performs local (console or 
script) command. 

299-304 kbd_wait() Waits for input from console or script file. 
306-334 kb_file() Gets keystroke from console or script; returns EOF 

if no character available. 
336-362 esc() Translates script escape sequence. 
364-370 getfil() Gets name of script file and opens the file. 
372-382 getnam() Gets string from console or script into designated 

buffer. 
384-393 addext() Checks buffer for extension; adds one if none 

given. 
395-398 put_ cap() Writes character to capture file if capture in effect. 
400-406 cap_flush() Closes capture file and terminates capture mode if 

capture in effect. 
408-411 Timer data locations. 
413-425 getmt() Returns time since midnight, in milliseconds. 
427-432 Delay() Sleeps n milliseconds. 
434-436 Start_ Timet() Sets timer for n seconds. 
438-440 Timer_ Expired() Checks timer versus clock. 
442-445 Set_Vid() Initializes video data. 
447-452 locate() Positions cursor on display. 
454-456 deol() Deletes to end of line. 
458-468 deos() Deletes to end of screen. 
470-472 cls() Clears screen. 
474-478 cur sot() Turns cursor on or off. 
480-485 revvid() Toggles inverse/normal video display attributes. 
487-492 putchx() Writes char to display using putch() (Microsoft C 

library). 

(more) 

242 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 252/1582



Article 6: Interrupt-Driven Communications 

Table6-13. Continued. 

lines Name Description 

494-500 Read_Keyboard() Gets keystroke from keyboard. 
502-504 Modem data areas. 
506-512 Init_Comm() Installs ISR and so forth and initializes modem. 
514-515 Baud-rate definitions. 
517-529 Set_ Baud() Changes bps rate of UART. 
531-537 Parity, WL definitions. 
539-557 Set_ Parity() Establishes UART parity mode. 
559-562 Write_ Modem() Sends character to UART. 
564-566 Read_Modem() Gets character from ISR's buffer. 
568-570 Term_Comm() Uninstalls ISR and so forth and restores original 

vectors. 

·For communication with the console, CTERM uses the special Microsoft C library func
tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much 
of the code may require editing if used with other compilers. CTERM also uses the func
tion prototype file CTERM.H, listed in Figure 6-9, to optimize function calling within the 
program. 

I* CTERM.H - function prototypes for CTERM.C *I 
int Wants_To_Abort(void); 

void rnain(int ,char* *); 

int docrnd(void); 
int kbd_wait(void); 

int kb_file(void); 

int esc (void) ; 

FILE *getfil(void); 

void getnarn (char *, int ) ; · 

char *addext(char *,char*); 

void put_cap(char ); 
void cap_flush(void); 

long getrnr(void); 

void Delay(int ); 
void Start_Tirner(int ); 

int Timer-Expired (void); 

int Set_Vid(void); 

void locate(int ,int ); 
void deol(void); 

void deos(void); 

void cls (void) ; 

void cursor(int ); 

void revvid(int ); 

int putchx(char ); 

Figure 6-9. CTERM.H. (more) 

Section II: Programming in the MS-DOS Environment 243 

4 

HUAWEI EX. 1010 - 253/1582



Part B: Programming for MS-DOS 

int Read_Keyboard(void); 
void Init_Comm(void); 

int Set_Baud(int ) ; 
int Set_Parity(int ); 

int Write_Modem(char ); 
int Read_Modem(void); 

void Term_Comm(void); 

I* CH1 .ASM functions - modem interfacing *I 
void L..m (void) ; 
void set_mdm(int); 

void wrtmdm(int); 

void Send_Byte(int); 

int rdmdm(void); 
void u_m (void) ; 

I* CH1A.ASM functions - exception handlers *I 
void set_int (void) ; 
void rst_int (void) ; 

int broke (void) ; 

I* CH2.ASM functions - video interfacing •I 
void _i_v(void); 

int _wrpos(int, int); 
void _deol(void); 

void _cls(void); 

int _color(int, int); 

Figure 6-9. Continued. 

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56 
through 59) whether any filenames were passed in the command line; if they were, 
CTERM opens the corresponding files. Next, the program installs the exception handler 
Cline 60), initializes the video handler (line 61), clears the display (line 62), and announces 
its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and 
no parity (lines 65 through 67), and the program enters its main modem-engine loop 
(lines 68 through 159). 

This loop is functionally the same as that used in ENGINE, but it has been extended to 
detect an Esc from the keyboard as signalling the start of a local command sequence (lines 
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog
nize incoming escape sequences, such as the VT52 or VT100 codes. To specify a local com
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local 
command desired. After the local command has been selected, press any key (such as 
Enter or the spacebar) to continue. To get a listing of all the commands available, press 
Esc-H. 

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from 
either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used 
until EOF is reached or until the operator presses Ctrl-C to stop script-file input. Otherwise, 

244 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 254/1582



Article 6: Interrupt-Driven Communications 

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is 
echoed to the display (lines 325 through 329) if the V command has been given. 

To permit the Esc character itself to be placed in script files, the backslash (\) character 
serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in 
the input stream, the next character input is translated according to the following rules: 

Character 

E ore 
Norn 
Ror r 
Tort 
A 

Interpretation 

Translates to Esc. 
Translates to Linefeed. 
Translates to Enter (CR). 
Translates to Tab. 
Causes the next character input to be converted into a control character. 

Any other character, including another \ , is not translated at all. 

When the Esc character is detected from either the console or a script file, the docmd() 
function (lines 167 through 297) is called to prompt for and decode the next input charac
ter as a command and to perform appropriate actions. Valid command characters, and the 
actions they invoke, are as follows: 

Command 
Character 

D 

E 
F 
H 
N 
0 
Q 
R 
s 
u 
v 
w 

Action 

Delay 0-9 seconds, then proceed. Must be followed by a decimal 
digit that indicates how long to delay. 

Set EVEN parity. 
Set (fast) 1200 baud. 
Display list of valid commands. 
Set no parity. 
Set ODD parity. 
Quit; return to MS~DOS command prompt. 
Reset modem. 
Set (slow) 300 baud. 
Use script file (CTERM prompts for filename). 
Verify file input. Echoes each script-file byte. 
Wait for character; the next input character is the one that must be 

matched. 

Any other character input after an Esc and the resulting Command prompt generates the 
message Don't know X (where X stands for the actual input character) followed by the 
prompt Use 'H' command for Help. 

Section 11- Programming in the MS-DOS Environment 245 

HUAWEI EX. 1010 - 255/1582

Article 6: Interrupt-Driven Communications 

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given.

To permit the Esc character itself to be placed in script files, the backslash (\) character

serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in

the input stream, the next character input is translated according to the following rules:
 

Character Interpretation 

E or e Translates to Esc.

N or n Translates to Linefeed.

R or r‘ Translates to Enter (CR).
T or t Translates to Tab.

A Causes the next character input to be converted into a control character.

Any other character, including another \, is not translated at all.

When the Esc character is detected from either the console or a script file, the (106me

function (lines 167 through 297) is called to prompt for and decode the next input charac-

ter as a command and to perform appropriate actions. Valid command characters, and the

actions they invoke, are as follows:

Command
Character Action

D Delay 0—9 seconds, then proceed. Must be followed by a decimal

digit that indicates how long to delay.

E Set EVEN parity.
F Set (fast) 1200 baud.

H Display list of valid commands.

N Set no parity. '

0 Set ODD parity.

Q Quit; return to MS-_DOS command prompt.
R Reset modern.

S Set (slow) 300 baud.

U Use script file (CTERM prompts for filename).

V Verify file input. Echoes each script—file byte.

W Wait for character; the next input character is the one that must be
matched.

Any other character input after an Esc and the resulting Command prompt generates the

message Don’t lenowX (where X stands for the actual input character) followed by the

prompt Use ‘H’ commandforHelp.

Section 11- Programming in the MS—DOS Environment 245

HUAWEI EX. 1010 - 255/1582



Part B: Programming for MS-DOS 

If input is taken from a script and the V flag is off, docmd() performs its task quietly, with 
no output to the screen. If input is received from the console, however, the command let
ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu
tion of the local commands are accomplished much as in CDVUTL, by way of a large 
switch() statement (lines 178 through 290). 

Although the listed commands are only a subset of the features available in CDVUTL for 
the device-driver program, they are more than adequate for creating useful scripts. The 
predecessor of CTERM (DT115.EXE), which included the CompuServe B-Protocol file
transfer capability but had no additional commands, has been in use since early 1986 to 

handle automatic uploading and downloading of files from the CompuServe Information 
Service by means of script files. In conjunction with an auto-dialing modem, DT115.EXE 
handles the entire transaction, from login through logout, without human intervention. 

All the bits and pieces of CTERM are put together by assembling the three handlers 
with MASM, compiling CTERM with Microsoft C, and linking all four object modules into 
an executable file. Figure 6-10 shows the complete sequence and also the three ways of 
using the finished program. 

Compiling: 

C>MASM CH1; <Enter> 
C>MASM CH1A; <Enter> 
C>MASM CH2; <Enter> 
C>MSC CTERM; <Enter> 

Linking: 

C>LINK CTERM+CH1+CH1A+CH2; <Enter> 

Use: 
(no files) 

C>CTERM <Enter> 

or 
(script only) 

C>CTERM scriptfile <Enter> 

or 

C>CTERM scriptfile capturefile <Enter> 

Figure 6-10. Putting CTERM together and using it. 

246 The MS-DOS Encyclopedia 

jim Kyle 
Chip Rabinowitz 

HUAWEI EX. 1010 - 256/1582



Article 7: File and Record Management 

Article7 
File and Record Management 

The core of most application programs is the reading, processing, and writing of data 
stored on magnetic disks. This data is organized into files, which are identified by name; 
the files, in turn, can be organized by grouping them into directories. Operating systems 
provide application programs with services that allow them to manipulate these files and 
directories without regard to the hardware characteristics of the disk device. Thus, applica
tions can concern themselves solely with the form and content of the data, leaving the 
details of the data's location on the disk and of its retrieval to the operating system. 

The disk storage services provided by an operating system can be categorized into file 
functions and record functions. The file functions operate on entire files as named 
entities, whereas the record functions provide access to the data contained within files. 
(In some systems, an additional class of directory functions allows applications to deal 
with collections of files as well.) This article discusses the MS-DOS function calls that 
allow an application program to create, open, close, rename, and delete disk files; read 
data from and write data to disk files; and inspect or change the information (such as 
attributes and date and time stamps) associated with disk filenames in disk directories. 
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS: 
MS-DOS Storage Devices; PROGRAMMING FOR Ms-oos: Disk Directories and Volume Labels. 

Historical Perspective 

Current versions of MS-DOS provide two overlapping sets of file and record management 
services to support application programs: the handle functions and the file control block 
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM 
CALLS: INTERRUPT 21H. The reasons for this surprising duplication are strictly historical. 

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M, 
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft 
chose to maintain compatibility with CP/M to aid programmers in converting the many 
existing CP/M application programs to the 16-bit MS-DOS environment; consequently, 
MS-DOS versions l.x included a set of FCB functions that were a functional superset of 
those present in CP/M. As personal computers evolved, however, the FCB access method 
did not lend itself well to the demands of larger, faster disk drives. 

Accordingly, MS-DOS version 2.0 introduced the handle functions to provide a file and 
record access method similar to that found in UNIX/XENIX. These functions are easier to 
use and more flexible than their FCB counterparts and fully support a hierarchical (tree
like) directory structure. The handle functions also allow character devices, such as the 

Section II: Programming in the MS-DOS Environment 247 

HUAWEI EX. 1010 - 257/1582

 

Article 7: File and Record Management 

Article 7

File and Record Management

The core of most application programs is the reading, processing, and writing of data

stored on magnetic disks. This data is organized into files, which are identified by name;

the files, in turn, can be organized by grouping them into directories. Operating systems

provide application programs with services that allow them to manipulate these files and

directories without regard to the hardware characteristics of the disk device. Thus, applica-

tions can concern themselves solely with the form and content of the data, leaving the

details of the data’s location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file

functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files.

(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well.) This article discusses the MS—DOS function calls that

allow an application program to create, open, close, rename, and delete disk files; read

data from and write data to disk files; and inspect or change the information (such as

attributes and date and time stamps) associated with disk filenames in disk directories.

See also PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS—DOS Storage Devices; PROGRAMMING FOR MS-DOS: DiSk Directories and Volume Labels.

Historical Perspective

Current versions of MS—DOS provide two overlapping sets of file and record management

services to support application programs: the handle functions and the file control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM

CALLS: INTERRUPT 211-1. The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,

which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft

chose to maintain compatibility with CP/M to aid programmers in converting the many

existing CP/M application programs to the 16—bit MS—DOS environment; consequently,

MS—DOS versions 1.x included a set of FCB functions that were a functional superset of

those present in CP/M. As personal computers evolved, however, the FCB access method

did not lend itself well to the demands of larger, faster disk drives.

Accordingly, MS—DOS version 2.0 introduced the handle functions to provide a file and
record access method similar to that foUnd in UNIX/XENIX. These functions are easier to

use and more flexible than their FCB counterparts and fully support a hierarchical (tree-
like) directory structure. The handle functions also allow character devices, such as the

Section 11: Programming in the MS-DOS Environment 247

HUAWEI EX. 1010 - 257/1582



Part B: Programming for MS-DOS 

console or printer, to be treated for some purposes as though they were files. MS-DOS ver
sion 3.0 introduced additional handle functions, enhanced some of the existing handle 
functions for use in network environments, and provided improved error reporting for 
all functions. 

The handle functions, which offer far more capability and performance than the FCB 
functions, should be used for all new applications. Therefore, they are discussed first in 
this article. 

Table 7-1. Interrupt 21H Function Calls for File and Record Management. 

Operation 

Create file. 
Create new file. 
Create temporary file. 
Open file. 
Close file. 
Delete file. 
Rename file. 
Perform sequential read. 
Perform sequential write. 
Perform random record read. 
Perform random record write. 
Perform random block read. 
Perform random block write. 
Set disk transfer area address. 
Get disk transfer area address. 
Parse filename. 
Position read/write pointer. 
Set random record number. 
Get file size. 
Get/Set file attributes. 
Get/Set date and time stamp. 
Duplicate file handle. 
Redirect file handle. 

248 The MS-DOS Encyclopedia 

Handle 
Function 

3CH 
5BH 
5AH 
3DH 

·3EH 
41H 
56H 
3FH 
40H 
3FH 
40H 

42H 

42H 
43H 
57H 
45H 
46H 

FCB 
Function 

16H 

OFH 
lOH 
13H 
17H 
14H 
15H 
21H 
22H 
27H 
28H 
lAH 
2FH 
29H 

24H 
23H 

HUAWEI EX. 1010 - 258/1582



Article 7: File and Record Management 

Using the Handle Functions 

The initial link between an application program and the data stored on disk is the name of 
a disk file in the form 

drive:path\filename.ext 

where drive designates the disk on which the file resides, path specifies the directory 
on that disk in which the file is located, and filename.ext identifies the file itself. If drive 
and/or path is omitted, MS-DOS assumes the default disk drive and current directory. 
Examples of acceptable pathnames include 

C: \PAYROLL\ TAXES.DAT 
LETTERS\MEMO.TXT 
BUDGET.DAT 

Pathnames can be hard-coded into a program as part of its data. More commonly, how
ever, they are entered by the user at the keyboard, either as a command-line parameter or 
in response to a prompt from the program. If the pathname is provided as a command
line parameter, the application program must extract it from the other information in the 
command line: Therefore, to allow a program to distinguish between pathnames and 
other parameters when the two are combined in a command line, the other parameters, 
such as switches, usually begin with a slash(/) or dash ( -) character. 

All handle functions that use a pathname require the name to be in the form of an ASCIIZ 
stri~g-that is, the name must be terminated by a null (zero) byte. If the pathname is 
hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path
name is obtained from keyboard input or from a command-line parameter, the null byte 
must be appended by the program. See Opening an Existing File below. 

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS 
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters 
and, if the open or create operation is successful, returns a 16-bit handle, or identification 
code, for the file. The program uses this handle for subsequent operations on the file, such 
as record reads and writes. 

The total number of handles for simultaneously open files is limited in two ways. First, the 
per-process limit is 20 file handles. The process's first five handles are always assigned to 
the standard devices, which default to the CON, AUX, and PRN character devices:· 

Handle Service 

0 Standard input 
1 Standard output 
2 Standard error 
3 Standard auxiliary 
4 Standard list 

Default 

Keyboard (CON) 
Video display (CON) 
Video display (CON) 
First communications port (AUX) 
First parallel printer port (PRN) 

Section 11· Programming in the MS-DOS Environment 249 

HUAWEI EX. 1010 - 259/1582

 

Article 7: File and Record Management 

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:pat/A filenameext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filenameext identifies the file itself. If drive

and/or path is omitted, MS-DOS assumes the default disk drive and current directory.

Examples of acceptable pathnames include .

C: \PAYROLL\ TAXESDAT

LETTERS\MEMO.TXT

BUDGETDAT

Path'narnes can be hard-coded into a program as part of its data. More commonly, how—

ever, they are entered by the user at the keyboard, either as a command-line parameter or

in response to a prompt from the program. If the pathname is provided as a command-

line parameter, the application program must extract it from the other information in the

command line: Therefore, to allow a program to distinguish between pathnames and

other parameters when the two are combined in a command line, the other parameters,
such as switches, usually begin with a slash (/) 0r dash (-) character.

All handle functions that use a pathname require the name to be in the form of an ASCIIZ

' string— that is, the name must be terminated by a null (zero) byte. If the pathname is

hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path-

name is obtained from keyboard input or from a command—line parameter, the null byte

must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS

function with the ASCIIZ pathname. MS—DOS checks the pathname for invalid characters
and, if the open or create operation is successful, returns a 16-bit handle, or identification

code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

The total number of handles for simultaneously open files is limited in two ways. First, the
per—process limit is 20 file handles. The process’s first five handles are always assigned to

the standard devices, which default to the CON, AUX, and PRN character devices:-

Handle Service Default

0 Standard input Keyboard (CON)

1 Standard output Video display (CON)

2 Standard error Video display (CON)

3 Standard auxiliary First communications port (AUX)

4 Standard list First parallel printer port (PRN)

Section 11- Programinz'ng in the MS—DOSEnvironment 249

HUAWEII EX. 1010 - 259/1582



Part B: Programming for MS-DOS 

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however, 
when necessary, the 5 standard device handles can be redirected to other files and devices 
or closed and reused. ' 

In addition to the per-process limit of 20 file handles, there is a system-wide limit. 
MS-DOS maintains an internal table that keeps track of all the files and devices opened 
with file handles for all currently active processes. The table contains such information as 
the current file pointer for read and write operations and the time and date of the last write 
to the file. The size of this table, which is setwhen MS-DOS is initially loaded into memory, 
determines the system-wide limit on how many files and devices can be open simulta
neously. The default limit is 8 files and devices; thus, this system-wide limit usually 
overrides the per-process limit. 

To increase the size of MS-DOS's internal handle table, the statement FILES=nnn can be 
included in the CONFIG.SYS file. (CONFIG.SYS settings take effect the next time the sys
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2.x 
and 255 in versions 3.x. See USER COMMANDS: CONFIG.SYS: FILES. 

Error handling and the handle functions 

When a handle-based file function succeeds, MS-DOS returns to the calling program with 
the carry flag clear. If a handle function fails, MS-DOS sets the carry flag and returns an 
error code in the AX register. The program should check the carry flag after each opera
tion and take whatever action is appropriate when an error is encountered. Table 7-2lists 
the most frequently encountered error codes for file and record I/0 (exclusive of network 
operations). 

Table 7-2. Frequently Encountered Error Diagnostics for File and Record 
Management. 

Code 

02 
03 
04 
05 
06 
11 
12 
13 
15 
17 
18 

Error 

File not found 
Path not found 
Too many open files (no handles left) 
Access denied 
Invalid handle 
Invalid format 
Invalid access code 
Invalid data 
Invalid disk drive letter 
Not same device 
No more files 

The error codes used by MS-DOS in versions 3.0 and later are a superset of the MS-DOS 
version 2.0 error codes. See APPENDIX B: CRITICAL ERROR CoDEs; APPENDIX C: ExTENDED 
ERRoR CoDEs. Most MS-DOS version 3 error diagnostics relate to network operations, 
which provide the program with a greater chance for error than does a single-user system. 

250 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 260/1582



Article 7: File and Record Management 

Programs that are to run in a network environment need to anticipate network problems. 
For example, the server can go down while the program is using shared files. 

Under MS-DOS versions 3.x, a program can also use Interrupt 21H Function 59H (Get 
Extended Error Information) to obtain more details about the cause of an error after a 
failed handle function. The information returned by Function 59H includes the type of 
device that caused the error and a recommended recovery action. 

Warning: Many file and record I/0 operations discussed in this article can result in or be 
affected by a hardware (critical) error. Such errors can be intercepted by the program if it 
contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING 
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Handlers. 

Creating a file 

MS-DOS provides three Interrupt 21H handle functions for creating files: 

Function 

3CH 
5AH 
5BH 

Name 

Create File with Handle (versions 2.0 and later) 
Create Temporary File (versions 3.0 and later) 
Create New File (versions 3.0 and later) 

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX 
registers and the attribute to be assigned to the new file in the CX register. The; possible 
attribute values are 

Code Attribute 

OOH Normal file 
OlH Read-only file 
02H Hidden file 
04H System file 

Files with more tban one attribute can be created by combining the values listed above. 
For example, to create a file that has both the read-only and system attributes, the value 
05H is placed in the CX register. 

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for 
subsequent access to the new file and sets the file read/write pointer to the beginning of 
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code 
in AX. 

Function 3CH is the only file-creation function available under MS-DOS versions 2.x. It 
must be used with caution, however, because if a file with the specified name already 
exists, Function 3CH will open it and truncate it to zero length, eradicating the previous 
contents of the file. This complication can be avoided by testing for the previous existence 
of the file with an open operation before issuing the create call. 

Section /1- Programming in the MS-DOS Environment 251 

HUAWEI EX. 1010 - 261/1582

 
i Article 7: File and Record Management 

, Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files,

Under MS—DOS versions 3.x, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a

failed handle function. The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record I/O operations discussed in this article can result in or be

affected by a hardware (critical) error. Such errors can be intercepted by the program if it

contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING

IN THE MS—DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

SCH Create File with Handle (versions 2.0 and later)

SAH Create Temporary File (versions 5.0 and later)
SBH Create New File (versions 3.0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX

1 registers and the attribute to be assigned to the new file in the CX register. The possible
a ' attribute values are

Code Attribute

OOH Normal file

01H Read-only file
02H Hidden file

04H System file

Files with more than one attribute can be created by combining the values listed above.
i For example, to create a file that has both the read-only and system attributes, the value

05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for

subsequent access to the new file and sets the file read/write pointer to the beginning of

the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX.

Function 3GB is the only file-creation function available under MS-DOS versions 2.x. It

must be used with caution, however, because if a file with the specified name already

exists, Function SCH will open it and truncate it to zero length, eradicating the previous

contents of the file. This complication can be avoided by testing for the previous existence

of the file with an open operation before issuing the create call.

 
Section 11: Programming in the MS-DOS Environment 25 1

HUAWEI EX. 1010 - 261/1582



Part B: Programming for MS-DOS 

Under MS-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases 
because it will fail if a file with the same name already exists. In networking environments, 
this function can be used to implement semaphores, allowing the synchronization of pro
grams running in different network nodes. 

Function 5AH is used to create a temporary work file that is guaranteed to have a unique 
name. This capability is important in networking environments, where several copies of 
the same program, running in different nodes, may be accessing the same logical disk 
volume on a server. The function is passed the address of a buffer that can contain a drive 
and/or path specifying the location for the created file. MS-DOS generates a name for the 
created file that is a sequence of alphanumeric characters derived from the current time. 
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the 
file's handle in AX. The program must save the filename so that it can delete the file later, if 
necessary; the file created with Function 5AH is not destroyed when the program exits. 

Example: Create a file named MEMO. TXT in the \LETTERS directory on drive C using 
Function 3CH. Any existing file with the same name is truncated to zero length and 
opened. 

fname db 'C:\LETTERS\MEMO.TXT',O 

fhandle dw ? 

mov dx,seg fname DS:DX = address of 

mov ds,dx pathname for file 

mov dx,offset fname 

xor ex, ex ex = normal attribute 
mov ah,3ch Function 3CH = create 
int 21h transfer to MS-DOS 

jc error jump if create failed 
mov fhandle,ax else save file handle 

Example: Create a temporary file using Function 5AH and place it in the \TEMP directory 
on drive C. MS-DOS appends the filename it generates to the original path in the buffer 
named fname. The resulting file specification can be used later to delete the file. 

fname db 

db 

fhandle dw 

'C:\TEMP\' 
13 dup (0) 

252 The MS-DOS Encyclopedia 

generated ASCIIZ filename 
; is appended by MS-DOS 

(more) 

HUAWEI EX. 1010 - 262/1582



Article 7: File and Record Management 

mov dx,seg fname DS:DX = address of 
mov ds,dx path for temporary file 
mov dx,offset fname 
xor ex, ex ex = normal attribute 

mov a!),Sah Function SAH = create 

temporary file 

int 21h transfer to MS-DOS 

jc error jump if create failed 
mov fhandle,ax else save file handle 

Opening an existing file 

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file 
in the current or specified directory. When calling Function 3DH, the program supplies a 
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL 
register. This access code includes the read/write permissions, the file-sharing mode, and ... 
an inheritance flag. The bits of the access code are assigned as follows: 

Bit(s) 

0-2 
3 
4-6 
7 

Description 

Read/write permissions (versions 2.0 and later) 
Reserved 
File-sharing mode (versions 3.0 and later) 
Inheritance flag (versions 3.0 and later) 

The read/write permissions field of the access code specifies how the file will be used and 
can take the following values: 

Bits 0-2 Description 

000 Read permission desired 
001 Write permission desired 
010 Read and write permission desired 

For the open to succeed, the permissions field must be compatible with the file's attribute 
byte in the disk directory. For example, if the program attempts to open an existing file 
that has the read-only attribute when the permissions field of the access code byte is set to 
write or read/write, the open function will fail and an error code will be returned in AX. 

The sharing-mode field of the access code byte is important in a networking environment. 
It determines whether other programs will also be allowed to open the file and, if so, 
what operations they will be allowed to perform. Following are the possible values of the 
file-sharing mode field: 

Section !1- Programming in the MS-DOS Environment 253 

HUAWEI EX. 1010 - 263/1582

Article 7: File and Record Management——————-—————_—___—_______———

mov dx,seg fname ; DS:DX = address of
mov ds,dx ; path for temporary file
mov dx,offset fname
xor cx,cx ; CX = normal attribute
mov ah,5ah ; Function 5AH = Create

; temporary file
int 21h ; transfer to MS—DOS

jc error ; jump if create failed
mov fhandle,ax ; else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file

in the current or specified directory. When calling Function SDH, the program supplies a

pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL

register. This access code includesthegead/write permissions, the file-sharing mode, and
an inheritance flag. The bits of the access code are assigned as follows:

Bit(s) Description

0—2 Read/write permisSions (versions 2.0 and later)

3 V Reserved
4—6 File-sharing mode (versions 3.0 and later)

7 Inheritance flag (versions 5.0 and later)

The read/write permissions field of the access code specifies how the file will be used and

can take the following values:

Bits 0—2 Description

000 _ Read permission desired

001 Write permission desired

010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file’s attribute

byte in the disk directory. For example, if the program attempts to open an existing file

that has the read—only attribute when the permissions field of the access code byte is set to

write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-mode field of the access code byte is important in a networking environment.

It determines whether other programs will also be allowed to open the file and, if so,

what operations they will be allowed to perform. Following are the possible values of the

file—sharing mode field:

Section 11: Programming in the MS—DOS Environment 253

HUAWEI EX. 1010 - 263/1582



Part B: Programming for MS-DOS 

Bits 4-6 Description 

000 Compatibility mode. Other programs can open the file and perform read or 
write operations as long as no process specifies any sharing mode other than 
compatibility mode. 

001 Deny all. Other programs cannot open the file. 
010 Deny write. Other programs cannot open the file in compatibility mode or 

with write permission. 
011 Deny read. Other programs cannot open the file in compatibility mode or with 

read permission. 
100 Deny none. Other programs can open the file and perform both read and 

write operations but cannot open the file in compatibility mode. 

When file-sharing support is active (that is, SHARE.EXE has previously been loaded), 
the result of any open operation depends on both the contents of the permissions and file
sharing fields of the access code byte and the permissions and file-sharing requested by 
other processes that have already successfully opened the file. 

The inheritance bit of the access code byte controls whether a child process will inherit 
that file handle. If the inheritance bit is cleared, the child can use the inherited handle to 
access the file without performing its own open operation. Subsequent operations per
formed by the child process on inherited file handles also affect the file pointer associated 
with the parent's file handle. If the inheritance bit is set, the child process does not inherit 
the handle. 

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/ 
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry 
flag and returns an error code in AX. 

Example: Copy the first parameter from the program's command tail in the program 
segment prefix (PSP) into the array jname and append a null character to form an ASCIIZ 
filename. Attempt to open the file with compatibility sharing mode and read/write access. 
If the file does not already exist, create it and assign it a normal attribute. 

cmdtail equ 

fname db 

SOh 
64 dup (?) 

fhandle dw ? 

254 The MS-DOS Encyclopedia 

; PSP offset of command tail 

assume that DS already 

contains segment of PSP 

(more) 

HUAWEI EX. 1010 - 264/1582



label1: 

label2: 

label3: 

label4: 

mov 
mov 
mov 
mov 
cld 

lodsb 
or 
jz 

lodsb 
cmp 
jz 

cmp 
jz 
cmp 
jz 
stosb 
lodsb 
jmp 

xor 
stosb 

mov 
mov 
mov 
mov 
int 
jnc 

cmp 
jnz 

xor 
mov 
int 
jc 

mov 

Closing a file 

si,cmdtail 
di,seg fname 
es,di 
d,i,offset fname 

al,al 
error 

al,20h 
label1 

al,Odh 
label3 
al,20h 
label3 

label2 

al,al 

dx,seg fname 
ds,dx 
dx,offset fname 
ax,3d02h 
21h 
label4 

ax,2 
error 

ex, ex 
ah,3ch 
21h 
error 

fhandle,ax 

Article 7: File and Record Management 

prepare to copy filename ... 
DS:SI = command tail 
ES:DI = buffer to receive 
filename from command tail 

safety first! 

check length of command tail 

jump, command tail empty 

scan off leading spaces 
get next character 
is it a space? 
yes, skip it 

look for terminator 
quit if return found 

quit if space found 
else copy this character 
get next character 

store final NULL to 
create ASCIIZ string 

now open the file ... 
DS:DX = address of 
pathname for file 

Function 3DH = open r/w 
transfer to MS-DOS 
jump if file found 

error 2 = file not found 
jump if other error 
else make the file ... 
CX = normal attribute 
Function 3CH = create 
transfer to MS-DOS 
jump if create failed 

save handle for file 

Function 3EH (Close File) closes a file created or opened with a file handle function. The 
program must place the handle of the file to be closed in BX. If a write operation was per
formed on the file, MS-DOS updates the date, time, and size in the file's directory entry. 

Section 11- Programming in the MS-DOS Environment 255 

HUAWEI EX. 1010 - 265/1582

 

Article 7: File and Record Management-———————-——-——————_-———————___———-————

; prepare to copy filename...
mov si,cmdtail ; DS:SI = command tail
mov di,seg fname ; ES:DI = buffer to receive
mov es,di ; filename from command tail
mov di,offset fname
cld ; safety first!

lodsb ; check length of command tail
or al,al

jz error ; jump, command tail empty

labell: ; scan off leading spaces
lodsb ; get next character
cmp al,20h ; is it a space?
jz labell ; yes, skip it

labelZ:

cmp al,0dh ; look for terminator
jz label3 ; quit if return found
cmp al,20h
jz label3 ' ; quit if space found
stosb ; else copy this character
lodsb ; get next character
jmp labelZ '

labelB:

xor al,al ; store final NULL to
stosb ; create ASCIIZ string

; now open the file...
mov dx,seg fname ; DS:DX = address of
mov ds,dx ; pathname for file
mov dx,offset fname
mov ax,3d02h ; Function 3DH = open r/w
int 21h ; transfer to MS—DOS

jnc label4 ; jump if file found

cmp ax,2 ; error 2 = file not found
jnz error ; jump if other error

; else make the file...
xor cx,cx ; CX = normal attribute
mov ah,3ch ; Function SCH = create
int 21h ; transfer to MS—DOS

jc error ; jump if create failed

label4:

mov fhandle,ax ; save handle for file

Closing a file

Function SEH (Close File) closes a file created or opened with a file handle function. The

program must place the handle of the file to be closed in BX. If a write operation was per—

formed on the file, MS—DOS updates the date, time, and size in the file’s directory entry.

Section 11: Programming in the MS—DOS Environment 255

HUAWEI EX. 1010 - 265/1582



Part B: Programming for MS-DOS 

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk 
and causes the disk's file allocation table (FAT) to be updated if necessary. 

Good programming practice dictates that a program close files as soon as it finishes 
using them. This practice is particularly important when the file size has been changed, to 
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the 
user. A method of updating the FAT without closing the file is outlined below under 
Duplicating and Redirecting Handles. 

Reading and writing with handles 

Function 3FH (Read File or Device) enables a program to read data from a file or device 
that has been opened with a handle. Before calling Function 3FH, the program must set 
the DS:DX registers to point to the beginning of a data buffer large enough to hold the 
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX. 
The length requested can be a maximum of 65535 bytes. The program requesting the 
read operation is responsible for providing the data buffer. 

If the read operation succeeds, the data is read, beginning at the current position of the 
file read/write pointer, to the specified location in memory. MS-DOS then increments its 
internal read/write pointer for the file by the length of the data transferred and returns 
the length to the calling program in AX with the carry flag cleared. The only indication 
that the end of the file has been reached is that the length returned is less than the length 
requested. In contrast, when Function 3FH is used to read from a character device that is 
not in raw mode, the read will terminate at the requested length or at the receipt of a car
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PRoGRAMMING FORMs-nos: Character Device Input and Output. If the 
read operation fails, MS-DOS returns with the carry flag set and an error code in AX. 

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle 
previously obtained from an open or cre~te operation. Before calling Function 40H, the 
program must set DS:DX to point to the beginning of the buffer containing the source data, 
put the file handle in BX, and put the number of bytes to write in CX. The number of bytes 
to write can be a maximum of 65535. 

If the write operation is successful, MS-DOS puts the number of bytes written in AX and 
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets 
the carry flag and returns an error code in AX. 

Records smaller than one sector (512 bytes) are not written directly to disk. Instead, 
MS-DOS stores the record in an internal buffer and writes it to disk when the internal 
buffer is full, when the file is closed, or when a call to Interrupt 21H Function ODH (Disk 
Reset) is issued. 

Note: If the destination of the write operation is a disk file and the disk is full, the only 
indication to the calling program is that the length returned in AX is not the same as the 
length requested in CX. Disk full is not returned as an error with the carry flag set. 

A special use of the Write function is to truncate or extend a file. If Function 40H is called 
with a record length of zero in CX, the file size will be adjusted to the current location .of 
the file read/write pointer. 

256 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 266/1582



Article 7: File and Record Management 

Example: Open the file MYFILE.DAT, create the file MYFILE.BAK, copy the contents of 
the .DAT file into the .BAK file using 512-byte reads and writes, and then close both files. 

file1 

file2 

handle1 

handle2 

buff 

loop: 

db 'MYFILE.DAT',O 

db 'MYFILE.BAK',O 

dw ? 
dw ? 

db 512 dup (?) 

mov dx, seg file1 
mov ds, dx 

mov 

mov 

int 

jc 
mov 

mov 

mov 

mov 

int 

jc 
mov 

mov 
mov 

mov 

mov 

int 

jc 

or 

jz 

mov 

mov 

mov 

mov 

int 

jc 

cmp 

jne 

jmp 

dx, offset file1 

ax,3d00h 

21h 

error 
handle1,ax 

dx,offset file2 

cx,O 
ah,3ch 

21h 

error 
handle2,ax 

dx,offset buff 

cx,512 
bx,handle1 

ah,3fh 

21h 

error 
ax, ax 
done 

dx,offset buff 

ex, ax 
bx,handle2 

ah,40h 

21h 

error 

ax, ex 
error 

loop 

handle for MYFILE.DAT 
handle for MYFILE.BAK 

buffer for file I/O 

open MYFILE.DAT ... 

DS:DX = address of filename 

Function 3DH = open (read-only) 

transfer to MS-DOS 
jump if open failed 

save handle for file 

create MYFILE.BAK ... 

DS:DX = address of filename 

ex = normal attribute 
Function 3eH = create 

transfer to MS-DOS 

jump if create failed 
save handle for file 

read MYFILE.DAT 

DS:DX = buffer address 

ex = length to read 
BX = handle for MYFILE.DAT 

Function 3FH = read 

transfer to MS-DOS 

jump if read failed 

were any bytes read? 

no, end of file reached 

write MYFILE.BAK 

DS: DX = buffer address. 

ex = length to write 

BX = handle for MYFILE.BAK 

Function 40H = write 

transfer to MS-DOS 

jump if write failed 

was write complete? 

jump if disk full 

continue to end of file 

(more) 

Section II: Programming in the MS-DOS Environment 257 

HUAWEI EX. 1010 - 267/1582

Article 7: File and Record ManagementW

Example: Open the file MYFILEDAT, create the file MYFILE.BAK, Copy the contents of
the .DAT file into the .BAK file using BIZ-byte reads and writes, and then close both files,

file1 db 'MYFILE.DAT',0
file2 db 'MYFILE.BAK',0

handle1 dw ? ; handle for MYFILE.DAT
handle2 dw ? ; handle for MYFILE.BAK

buff db 512 dup (?) ; buffer for file I/O

; open MYFILE.DAT...
mov dx,seg file1 ; DS:DX = address of filename
mov ds,dx
mov dx,offset file1
mov ax,3d00h ; Function 3DH = open (read—only)
int 21h ; transfer to MS—DOS
jc error ; jump if open failed
mov handle1,ax ; save handle for file

; create MYFILE.BAK...
mov dx,offset file2 ; DS:DX = address of filename
mov cx,0 ; CX = normal attribute
mov ah,3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS

jc error ; jump if create failed

mov handle2,ax ; save handle for file

loop: ; read MYFILE.DAT
mov dx,offset buff ; DS:DX = buffer address

mov cx,512 ; CX = length to read
mov bx,handle1 ; BX = handle for MYFILE.DAT

mov ah,3fh ; Function 3FH = read
lint 21h ; transfer to MS-DOS
jc error ; jump if read failed
or ax,ax ; were any bytes read?
jz _done ; no, end of file reached

; write MYFILE.BAK
mov dx,offset buff ; DS:DX = buffer address
mov cx,ax ; CX = length to write
mov bx,handle2 ; BX = handle for MYFILE.BAK
mov ah,40h ; Function 40H = write
int 21h ; transfer to MS—DOS

jc error ; jump if write failed
cmp ax,cx ; was write complete?
jne - error ; jump if disk full
jmp loop ; continue to end of file

(more)

Section 11: Programming in the MS-DOS Environment 257

HUAWEI EX. 1010 - 267/1582



Part B: Programming for MS-DOS 

done: now close files ... 

mov bx,handle1 handle for MYFILE.DAT 

mov ah,3eh Function 3EH = close file 

int 21h transfer to MS-DOS 

jc error jump if close failed 

mov bx,handle2 handle for MYFILE.BAK 

mov ah,3eh Function 3EH = close file 

int 21h transfer to MS-DOS 

jc error jump if close failed 

Positioning the read/write pointer 

Function 42H (Move File Pointer) sets the position of the read/write pointer associated 
with a given handle. The function is called with a signed 32-bit offset in the CX and DX 
registers (the most significant half in CX), the file handle in BX, and the positioning mode 
inAL: 

Mode 

00 
01 
02 

Significance 

·Supplied offset is relative to beginning of file. 
Supplied offset is relative to current position of read/write pointer. 
Supplied offset is relative to end of file. 

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the 
file pointer relative to the beginning of the file in the DX and AX registers, with the most 
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error 
code in AX. 

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero 
and a positioning mode of 2. The function returns a value in DX:AX that represents the 
offset of the end-of-file position relative to the beginning of the file. 

Example: Assume that the file MYFILE.DAT was previously opened and its handle is 
saved in the variable fhandle. Position the file pointer 32768 bytes from the beginning of 
the file and then read 512 bytes of data starting at that file position. 

fhandle dw 

buff db 

? 

512 dup (?) 

258 The MS-DOS Encyclopedia 

handle from previous open 

; buffer for data from file 

(more) 

HUAWEI EX. 1010 - 268/1582



mov 

mov 
mov 

mov 

mov 

int 

jc 

mov 

mov 

mov 

mov 
int 

jc 

cmp 
jne 

cx,O 
dx,32768 

bx,fhandle 

al,O 

ah,42h 
21h 

error 

dx,offset buff 

cx,512 

bx,fhandle 
ah,3fh 

21h 

error 
ax,512 

error 

Article 7: File and Record Management 

position the file pointer ... 
ex high part of file offset 
DX low part of file offset 
BX handle for file 

AL positioning mode 

Function 42H = position 

transfer to MS-DOS 

jump if function cal.l failed 

now read 512 bytes from file 

DS:DX = address of buffer 
ex= length of 512 bytes 

BX = handle for file 

Function 3FH = read 

transfer to MS-DOS 

jump if read failed 
was 512 bytes read? 

jump if partial rec. or EOF 

Example: Assume that the file MYFILE.DAT was previously opened and its handle is saved 
in the variable jhandle. Find the size of the file in bytes by positioning the file pointer to 
zero bytes relative to the end of the file. The returned offset, which is relative to the begin
ning of the file, is the file's size. 

fhandle dw ? 

mov cx,O 

mov dx,O 

mov bx,fhandle 

mov al,2 

mov ah,42h 

int 21h 

jc error 

Other handle operations 

handle from previous open 

position the file pointer 

to the end of file ... 

ex high part of offset 

DX = low part of offset 
BX = handle for file 

AL = positioning mode 

Function 42H = position 

transfer to MS-DOS 

jump if function call failed 

if call succeeded, DX:AX · 

now contains the file ~ize 

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file, 
read or change a file's attributes, read or change a file's date and time stamp, and duplicate 
or redirect a file handle. The first three of these are "file-handle-like" because they use an 
ASCIIZ string to specify the file; however, they do not return a file handle. 

Section II: Programming in the MS-DOS Environment 259 

HUAWEI EX. 1010 - 269/1582

 

Article 7: File and Record ManagementW

; position the file pointer...
mov cx,0 ; CX = high part of file offset
mov dx,32768 ; DX = low part of file offset
mov bx,fhandle ; BX = handle for file

mov al,0 ; AL = positioning mode
mov ah,42h ; Function 42H = position
int 21h ; transfer to MS—DOS

jc error ; jump if function call failed

; now read 512 bytes from file
mov dx,offset buff ; DS:DX = address of buffer
mov cx,512 ; CX = length of 512 bytes
mov bx,fhandle ; BX = handle for file
mov ah,3fh ; Function 3FH = read
int 21h ; transfer to MS-DOS

jc error ; jump if read failed
cmp ax,512 ; was 512 bytes read?
jne error ' ; jump if partial rec. or EOF

Example: Assume that the file MYFILEDAT was previously opened and its handle is saved

in the variable flzomdle. Find the size of the file in bytes by positioning the file pointer to

zero bytes relative to the end of the file. The returned offset, which is relative to the begin-

ning of the file, is the file’s size.

fhandle dw ? ; handle from previous open

; position the file pointer
; to the end of file...

mov cx,0 ; CX = high part of offset
mov dx,0 ; DX = low part of offset
mov bx,fhandle ; BX = handle for file

mov a1,2 ; AL = positioning mode
mov ah,42h ; Function 42H = position
int ' 21h ,- transfer to MS-DOS
jc error ; jump if function call failed

; if call succeeded, DX:AX‘
; now contains the file Size

Other handle operations

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file,

read or change a file’s attributes, read or change a file’s date and time stamp, and duplicate
or redirect a file handle. The first three of these are “file-handle—like” because they use an

ASCIIZ string to specify the file; however, they do not return a file handle.

Section II.- Program'ming in the MS—DOS Environment 259

HUAWEI EX. 1010 - 269/1582



Part B: Programming for MS-DOS 

Renaming a file 

Function 56H (Rename File) renames an existing file and/or moves the file from one loca-. 
tion in the hierarchical file structure to another. The file to be renamed cannot be a hidden 
or system file or a subdirectory and must not be currently open by any process; attempting 
to rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its 
directory entry; it moves a file by removing its current directory entry and creating a new 
entry in the target directory that refers to the same file. The location of the file's actual 
data on the disk is not changed. 

Both the current and the new filenames must be ASCIIZ strings and can include a drive 
and path specification; wildcard characters ( • and ?) are not permitted in the filenames. 
The program calls Function 56H with the address of the current pathname in the DS:DX 
registers and the address of the new pathname in ES:DI. If the path elements of the two 
strings are not the same and both paths are valid, the file "moves" from the source direc
tory to the target directory. If the paths match but the filenames differ, MS-DOS simply 
modifies the directory entry to reflect the new filename. 

If the function succeeds, MS-DOS returns to the calling program with the carry flag clear. 
The function fails if the new filename is already in the target directory; in that case, 
MS-DOS sets the carry flag and returns an error code in AX. 

Example: Change the name of the file MYFILE.DAT to MYFILE.OLD. In the same opera
tion, move the file from the \WORK directory to the \BACKUP directory. 

file1 db 

file2 db 

mov 

mov 
mov 

mov 

mov 

mov 

int 

jc 

Deleting a file 

'\WORK\MYFILE.DAT',O 

'\BACKUP\MYFILE.OLD',O 

dx,seg file1 DS:DX = 

ds,dx 
es,dx 
dx,offset file1 
di,offset file2 ES:DI = 

ah,56h Function 

21h transfer 

error jump if 

old filename 

new filename 

56H = rename 

to MS-DOS 

rename failed 

Function 41H (Delete File) effectively deletes a file from a disk. Before calling the function, 
a program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be 
deleted. The supplied pathname cannot specify a subdirectory or a read-only file, and the 
file must not be currently open by any process. 

260 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 270/1582



Article 7: File and Record Management 

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its 
·directory entry with a special character (OE5H), making the entry subsequently unrecog
nizable. MS-DOS then updates the disk's FAT so that the clusters that previously belonged 
to the file are "free" and returns to the program with the carry flag clear. If the delete 
function fails, MS-DOS sets the carry flag and returns an error code in AX. 

The actual contents of the clusters assigned to the file are not changed by a delete opera
tion, so for security reasons sensitive information should be overwritten with spaces or 
some other constant character before the file is deleted with Function 41H. 

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C. 

fname db 

mov 
mov 
mov 
mov 
int 
jc 

'C:\WORK\MYFILE.DAT',O 

dx,seg fname 
ds,dx 
dx,offset fname 
ah,41h 
21h 
error 

DS:DX address of filename 

Function 41H = delete 
transfer to MS-DOS 
jump if delete failed 

Getting/setting file attributes 

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file. 
Before calling Function 43H, the program must set the DS:DX registers to point to the 
ASCIIZ pathname for the file. To read the attributes, the program must setAL to zero; to set 
the attributes, it must setAL to 1 and place an attribute code in CX. See Creating a File 
above. 

If the function is successful, MS-DOS reads or sets the attribute byte in the file's directory 
entry and returns with the carry flag clear and the file's attribute in CX. If the function 
fails, MS-DOS sets the carry flag and returns an error code in AX. 

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit 
4) of a file. It also should not be used on a file that is currently open by any process. 

Example: Change the attributes of the file MYFILE.DAT in the \BACKUP directory on 
drive C to read-only. This prevents the file from being accidentally deleted from the disk. 

fname db 

mov 
mov 

mov 
mov 
mov 

'C:\BACKUP\MYFILE.DAT',O 

dx,seg fname 

ds,dx 
dx,offset fname 

ex, 1 
al, 1 

DS:DX address of filename 

ex = attribute (read-only) 
AL = mode (0 = get, 1 = set) 

(more) 

Section II: Programming in the MS-DOS Environment 261 

HUAWEI EX. 1010 - 271/1582

 

Article 7: File and Record Management 

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its
directory entry with a special character (OESH), making the entry subsequently unrecog-
nizable. MS—DOS then updates the disk’s FAT so that the clusters that previously belonged
to the file are “free” and returns to the program with the carry flag clear. If the delete

function fails, MS—DOS sets the carry flag and returns an error code in AX.

' The actual contents of the clusters assigned to the file are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILEDAT, located in the \WORK directory on drive C.

fname db 'C:VNORK\MYFILE.DAT',O

mov dx,seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov ah,41h Function 41H = delete
int 21h ; transfer to MS—DOS

jc error jump if delete failed

Getting/setting file attributes

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file.

Before calling Function 43H, the program must set the DS:DX registers to point to the _

ASCIIZ pathname for the file. To read the attributes, the program must set AL to zero; to set

the attributes, it must set AL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOS reads or sets the attribute byte in the file’s directory

entry and returns with the carry flag clear and the file’s attribute in CX. If the function

fails, MS-DOS sets the carry flag and returns an error code in AX.

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit

4) of a file. It also should not be used on a file that is currently open by any process.

Example: Change the attributes of the file MYFILEDAT in the \BACKUP directory on

drive C to read-only. This prevents the file from being accidentally deleted from the disk.

fname db 'C:\BACKUP\MYFILE.DAT',O

mov . dx,seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov cx,1 ; CX = attribute (read—only)
mov 'al,1 ; AL = mode (0 = get, 1 = set)

(more)

Section 11.- Programming in the MS—DOS Environment 261

HUAWEI EX. 1010 - 271/1582



Part B: Programming for MS-DOS 

mov 

int 

jc 

ah,43h 

21h 

error 

Getting/setting file date and time 

Function 43H = get/set attr 

transfer to MS-DOS 

jump if set attrib. failed 

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp 
of an open file. To set the time and date to a particular value, the program must call Func
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob
tained from a previous open or create operation) in BX, and the value 1 in AL. To read the 
time and date, the function is called with AL containing 0 and the file handle in BX; the 
time is returned in the ex register and the date is returned in the DX register. As with 
other handle-oriented file functions, if the function succeeds, the carry flag is returned 
cleared; if the function fails, MS-DOS returns the carry flag set and an error code in AX. 

The formats used for the file time and date are the same as those used in disk directory 
entries and FCBs. See Structure of the File-Control Block below. 

The main uses of Function 57H are to force the time and date entry for a file to be updated 
when the file has not been changed and to circumvent MS-DOS's modification of a file 
date and time when the file has been changed. In the latter case, a program can use this 
function withAL = 0 to obtain the file's previous date and time stamp, modify the file, and 
then restore the original file date and time by re-calling the function with AL = 1 before 
closing the file. 

Duplicating and redirecting handles 

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when 
the file has been modified. Thus, until the file is closed, any new data added to the file can 
be lost if the system crashes or is turned off unexpectedly. The obvious defense against 
such loss is simply to close and reopen the file every time the file is changed. However, 
this is a relatively slow procedure and in a network environment can cause the program 
to lose control of the file to another process. 

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to 
duplicate the original handle of the file to be updated, can protect data added to a disk file 
before the file is closed. To use Function 45H, the program must put the handle to be 
duplicated in BX. If the operation is successful, MS-DOS clears the carry flag and returns 
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an 
error code in AX. 

If the function succeeds, the duplicate handle can simply be closed in the usual manner 
with Function 3EH. This forces the desired update of the disk directory and FAT. The orig
inal handle remains open and the program can continue to use it for file read and write 
operations. 

Note: While the second handle is open, moving the read/write pointer associated with 
either handle moves the pointer associated with the other. 

262 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 272/1582



Article 7: File and Record Management 

Example: Assume that the file MYFILE.DAT was previously opened and the handle for 
that file has been saved in the variable jhandle. Duplicate the handle and then close the 
duplicate to ensure that any data recently written to the file is saved on the disk and that 
the directory entry for the file is updated accordingly. 

fhandle dw 

mov 
mov 

int 

jc 

mov 

mov 
int 

jc 

mov 

bx,fhandle 
ah,45h 

21h 

error 

bx,ax 

ah,3eh 
21h 

error 
bx,fhandle 

; handle from previous open 

duplicate the handle ... 

BX = handle for file 

Function 45H = dup handle 
transfer to MS-DOS 

jump if function call failed 

now close the new handle ... 
BX = duplicated handle 

Function 3EH = close 

transfer to MS-DOS 

jump if close failed 

replace closed handle with active handle 

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate 
File Handle). Function 46H forces a handle to be a duplicate for another open handle- in 
other words, to refer to the same file or device at the same file read/write pointer location. 
The handle is then said to be redirected. 

The most common use of Function 46H is to change the meaning of the standard input 
and standard output handles before loading a child process with the EXEC function. In this 
manner, the input for the child program can be redirected to come from a file or its output 
can be redirected into a file, without any special knowledge on the part of the child pro
gram. In such cases, Function 45H is used to also create duplicates of the standard input 
and standard output handles before they are redirected, so that their original meanings can 
be restored after the child exits. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusTOMIZING Ms-nos: Writing MS-DOS Filters. 

Using the FCB Functions· 

A file control block is a data structure, located in the application program's memory space, 
that contains relevant information about an open disk file: the disk drive, the filename and 
extension, a pointer to a position within the file, and so on. Each open file must have its 
own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the 
application program. 

Section /1- Programming in the MS-DOS Environment 263 

HUAWEI EX. 1010 - 273/1582

 

Article 7: File and Record Management

Example: Assume that the file MYFILEDAT was previously opened and the handle for
that file has been saved in the variable flzandle. Duplicate the handle and then close the

duplicate to ensure that any data recently written to the file is saved on the disk and that

the directory entry for the file is updated accordingly. ' '

fhandle dw ? ; handle from previous open

; duplicate the handle...
mov bx,fhandle ; BX = handle for file
mov ah,45h ; Function 45H = dup handle

int 21h ; transfer to MS-DOS g
jc error ; jump if function call failed

:now close the new handle...

mov bx,ax ; BX = duplicated handle
mov ah,3eh ; Function 3EH = close
int 21h ; transfer to MS—DOS

jc error ; jump if close failed
mov bx,fhandle ; replaceclosedhandlewithactivehandle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate

File Handle). Function 46H forces a handle to be a duplicate for another open handle — in
other words, to refer to the same file or device at the same file read/write pointer location.
The handle is then said to be redirected.

The most common use of Function 46H is to change the meaning of the standard input

and standard output handles before loading a child process with the EXEC function. In this
manner, the input for the child program can be redirected to come from a file or its output

can be redirected into a file, without any special kndwledge on the part of the child pro-

gram. In such cases, Function 45H is used to also create duplicates of the standard input

and standard output handles before they are redirected, so that their original meanings can

be restored after the child exits. See PROGRAMMINGVIN THE MS—DOS ENVIRONMENT:

CUSTOMIZING Ms-Dos: Writing MS—DOS Filters.

Using the FCB Functions -

A file control block is a data structure, located in the application program’s memory space,

that contains relevant information about an open disk file: the disk drive, the filename and

extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the

application program.

Section 11: Programming in the MS-DOSEnvironment 263

HUAWEI EX. 1010 - 273/1582



Part B: Programming for MS-DOS 

MS-DOS moves data to and from a disk file associated with an FCB by means of a data 
buffer called the disk transfer area (DTA). The current address of the DTA is under the 
control of the application program, although each program has a 128-byte default DTA at 
offset 80H in its program segment prefix (PSP). See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PROGRAMMING FORMs-nos: Structure of an Application Program. 

Under early versions of MS-DOS, the only limit on the number of files that can be open 
simultaneously with FCBs is the amount of memory available to the application to hold the 
FCBs and their associated disk buffers. However, under MS-DOS versions 3.0 and later, 
when file-sharing support (SHARE.EXE) is loaded, MS-DOS places some restrictions on 
the use of FCBs to simplify the job of maintaining network connections for files. If the 
application attempts to open too many FCBs, MS-DOS simply closes the least recently used 
FCBs to keep the total number within a limit. 

The CONFIG.SYS file directive FCBS allows the user to control the allowed maximum 
number of FCBs and to specify a certain number of FCBs to be protected against automatic 
closure by the system. The default values are a maximum of four files open simultaneously 
using FCBs and zero FCBs protected from automatic closure by the system. See USER 
COMMANDS: CONFIG.SYS: FCBS. 

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed 
structure with no room to contain a path, the FCB file and record services do not support 
the hierarchical directory structure. Many FCB operations can be performed only on files 
in the current directory of a disk. For this reason, the use of FCB file and record operations 
should be avoided in new programs. 

Structure of the file control block 

Each FCB is a 37-byte array allocated from its own memory space by the application pro
gram that will use it. The FCB contains all the information needed to identify a disk file 
and access the data within it: drive identifier, filename, extension, file size, record size, 
various file pointers, and date and time stamps. The FCB structure is shown in Table 7-3. 

Table7-3. Structure of a Normal File Control Block. 

Offset Size 
Maintained by (bytes) (bytes) Description 

Program OOH 1 Drive identifier 
Program 01H 8 Filename 
Program 09H 3 File extension 
MS-DOS OCH 2 Current block number 
Program OEH 2 Record size (bytes) 
MS-DOS JOH 4 File size (bytes) 
MS-DOS 14H 2 Date stamp 
MS-DOS 16H 2 Timestamp 
MS-DOS 18H 8 Reserved 
MS-DOS 20H 1 Current record number 
Program 21H 4 Random record number 

264 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 274/1582



Article 7: File and Record Management 

Drive identifier: Initialized by the application to designate the drive on which the file to 
be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the 
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte 
during the open or create operation to reflect the actual drive used; that is, after an open 
or create operation, this drive will always contain a value of 1 or greater. 

Filename: Standard eight-character filename; initialized by the application; must be left 
justified and padded with blanks if the name has fewer than eight characters. A device 
name (for example, PRN) can be used; note that there is no colon after a device name. 

File extension: Three-character file extension; initialized by the application; must be left 
justified and padded with blanks if the extension has fewer than three characters. 

Current block number: Initialized to zero by MS-DOS when the file is opened. The block 
number and the record number together make up the record pointer during sequential file 
access. 

Record size: The size of a record (in bytes) as used by the program. MS-DOS sets this field 
to 128 when the file is opened or created; the program can modify the field afterward to 
any desired record size. If the record size is larger than 128 bytes, the default DTA in the 
PSP cannot be used because it will collide with the program's own code or data. 

File size: The size of the file in bytes. MS-DOS initializes this field from the file's directory 
entry when the file is opened. The first 2 bytes ofthis 4-byte field are the least significant 
bytes of the file size. 

Date stamp: The date of the last write operation on the file. MS-DOS initializes this field 
from the file's directory entry when the file is opened. This field uses the same format 
used by file handle Function 57H (Get/Set/Date/Time of File): 

Date Format 

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Content: 

Bits Contents 

0-4 Day of month Cl-31) 
5-8 Month (1-12) 
9-15 Year (relative to 1980) 

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field 
from the file's directory entry when the file is opened. This field uses the same format 
used by file handle Function 57H (Get/Set/Date/Time of File): 

Section II: Programming in the MS-DOS Environment 265 

HUAWEI EX. 1010 - 275/1582

Article 7: File and Record Management 

Drive identifier: Initialized by the application to designate the drive on which the file to

~be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the

application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a value of 1 or greater.

Filename: Standard eight-character filename; initialized by the application; must be left

justified and padded with blanks if the name has fewer than eight characters. A device .
name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-character file extension; initialized by the application; must be left

justified and padded with blanks if the extension has fewer than three characters.

Current bloc/e number.- Initialized to zero by MS-DOS when the file is opened. The block

number and the record number together make up the record pointer during sequential file
access.

Record size: The size of a record (in bytes) as used by the program. MS-DOS sets this field

to 128 when the file is opened or created; the program can modify the field afterward to

any desired record size. If the record size is larger than 128 bytes, the default DTA in the

PSP cannot be used because it will collide with the program’s own code or data.

File size: The size of the file in bytes. MS-DOS initializes this field from the file’s directory

entry when the file is opened. The first 2 bytes ofthis 4-byte field are the least significant

bytes of the file size.

Date stamp: The date of the last write operation on the file. MS—DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format

used by file handle Function 57H (Get/Set/Date/Time of File):

Date Format

fBit:15141312111098765432110

 Content:

Bits Contents

‘ 0—4 Day of month (1—51)
. 5—8 Month (1—12)

9— 15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field

from the file’s directory entry when the file is opened. This field uses the same format

used by file handle Function 57H (Get/Set/Date/Time of File):

Section 11: Programming in the MS—DOS Environment 265

HUAWEI EX. 1010 - 275/1582



Part B: Programming for MS-DOS 

Bit: 

Content: 

Bits 

0-4 
5-10 

11-15 

Time Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Contents 

Number of 2-second increments (0-29) 
Minutes (0-59) 
Hours (0-23) 

0 

Current record number: Together with the block number, constitutes the record pointer 
used during sequential read and write operations. MS-DOS does not initialize this field 
when a file is opened. The record number is limited to the range 0 through 127; thus, there 
are 128 records per block. The beginning of a file is record 0 of block 0. 

Random record pointer: A 4-byte field that identifies the record to be transferred by the 
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger, 
only the first 3 bytes of this field are used. MS-DOS updates this field after random block 
reads and writes (Functions 27H and 28H) but not after random record reads and writes 
(Functions 21H and 22H). 

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files 
with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex
tended FCB are simply prefixed to the normal FCBformat (Table 7-4). The first byte of 
an extended FCB always contains OFFH, which could never be a legal drive code and 
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5 
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes 
of the file being manipulated. The remainder of an extended FCB has exactly the same 
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func
tion call that accepts a normal FCB. 

Table 7-4. Structure of an Extended File Control Block. 

Offset Size 
Maintained by (bytes) (bytes) Description 

Program OOH 1 Extended FCB flag = OFFH 
MS-DOS 01H 5 Reserved 
Program 06H 1 File attribute byte 
Program 07H 1 Drive identifier 
Program 08H 8 Filename 

(more) 

266 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 276/1582

Part B: Programming for MS—DOS 

Time Format

Bit: 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 l 0

 Content:

Bits Contents

0—4 Number of 2-second increments (0—29)

5 — 10 Minutes (0— 59)

1 1 — 15 Hours (0—23)

Current record number: Together with the block number, constitutes the record pointer

used during sequential read and write operations. MS-DOS does not initialize this field

when a file is opened. The record number is limited to the range 0 through 127; thus, there

are 128 records per block. The beginning of a file is record 0 of block 0.

Random recordpointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,

only the first 3 bytes of this field are used. MS—DOS updates this field after random block _
reads and writes (Functions27H and 28H) but not after random record reads and writes

(Functions 21H and 22H).

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files

with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex—

tended FCB are simply prefixed to the normal FCB format (Table 7-4). The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and

therefore serves as a signal to MS—DOS that the extended format is being used. The next 5

bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes

of the file being manipulated. The remainder of an extended PCB has exactly the same

layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func—

tion call that accepts a normal FCB.

Table 7-4. Structure ofan Extended File Control Block.

Offset Size

Maintained by (bytes) (bytes) Description

Program 00H 1 Extended FCB flag = OFFH
MS-DOS 01H 5 Reserved

Program 06H 1 File attribute byte

Program 07H 1 Drive identifier ,

Program 08H 8 Filename

(more)

266 TheMS—DOSEncyclopedia

 
HUAWEI EX. 1010 - 276/1582



Article 7: File and Record Management 

Table 7-4. Continued. 

Offset Size 
Maintained by (bytes) (bytes) Description 

Program 10H 3 File extension 
MS-DOS 13H 2 Current block number 
Program 15H 2 Record size (bytes) 
MS-DOS 17H 4 File size (bytes) 
MS-DOS lBH 2 Date stamp 
MS-DOS 1DH 2 Timestamp 
MS-DOS 1FH s Reserved 
MS-DOS 27H 1 Current record number 
Program 2SH 4 Random record number 

Extended PCB flag: When OFFH is present in the first byte of an FCB, it is a signal to 
MS-DOS that an extended FCB ( 44 bytes) is being used instead of a normal FCB (37 bytes). 

File attribute byte: Must be initialized by the application when an extended FCB is used to 
open or create a file. The bits of this field have the following significance: 

Bit Meaning 

0 Read-only 
1 Hidden 
2 System 
3 Volume label 
4 Directory 
5 Archive 
6 Reserved 
7 Reserved 

FCB functions and the PSP 

The PSP contains several items that are of interest when using the FCB file and record 
operations: two FCBs called the default FCBs, the default DTA, and the command tail for 
the program. The following table shows the size and location of these elements: 

PSPOffset 
(bytes) Size (bytes) Description 

5CH 16 Default FCB #1 . 
6CH 20 Default FCB #2 
SOH 1 Length of command tail 
81H 127 Command-tail text 
SOH 128 Default disk transfer area (DTA) 

Section II: Programming in the MS-DOS Environment 267 

HUAWEI EX. 1010 - 277/1582

 
Article 7: File and Record Management 

Table 7-4. Continued.
 

 

Offset . Size

Maintained by (bytes) (bytes) Description

Program 10H 3 File extension

MS-DOS 13H 2 Current block number

Program 15H 2 Record size (bytes)

MS—DOS 17H 4 File size (bytes)

MS-DOS 1BH 2 Date stamp

MS-DOS 1DH 2 Time stamp
MS-DOS 1FH 8 Reserved

MS-DOS 27H 1 Current record number

Program 28H 4 Random record number

Extended FCBflag: When OFFH is present in the first byte of an FCB, it is a signal to

MS-DOS that an extended PCB (44 bytes) is being used instead of a normal FCB (57 bytes).

File attribute byte: Must be initializedby the application when an extended FCB is used to

open or create a file. The bits of this field have the following significance:

9?.1"
Meaning

Read-only
Hidden

System
Volume label

Directory
Archive

Reserved

Reserved

\IO\\JI>AU3NP—|O
FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record

operations: two FCBs called the default FCBs, the default DTA, and the command tail for

the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

SCH 16 Default FCB #1 '
6CH 20 Default FCB #2

80H 1 Length of command tail
81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section 11.- Programming in the MS—DOSEnvironment 267

HUAWEI EX. 1010 - 277/1582



Part B: Programming for MS-DOS 

When MS-DOS loads a program into memory for execution, it copies the command tail 
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H, 
and parses the first two parameters in the command tail into the default FCBs at PSP 
offsets 5CH and 6CH. (The command tail consists of the command line used to invoke the 
program minus the program name itself and any redirection or piping characters and their 
associated filenames or device names.) MS-DOS then sets the initial DTA address for the 
program to PSP:0080H. 

For several reasons, the default FCBs and the DTA are often moved to another location 
within the program's memory area. First, the default DTA allows processing of only very 
small records. In addition, the default FCBs overlap substantially, and the first byte of the 
default DTA and the last byte of the first FCB conflict. Finally, unless either the command 
tail or the DTA is moved beforehand, the first FCB-related file or record operation will 
destroy the command tail. 

Function lAH (Set DTA Address) is used to alter the DTA address. It is called with the 
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address 
remains the same until another call to Function lAH, regardless of other file and record 
management calls; it does not need to be reset before each read or write. 

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA 
address before changing it, so that the original address can be restored later. 

Parsing the filename 

Before a file can be opened or created with the PCB function calls, its drive, filename, and 
extension must be placed within the proper fields of the PCB. The filename can be coded 
into the program itself, or the program can obtain it from the command tail in the PSP or 
by prompting the user and reading it in with one of the several function calls for charac'ter 
device input. 

MS-DOS automatically parses the first two parameters in the program's command tail into 
the default FCBs at PSP:005CH and PSP:006CH. It does not, however, attempt to differenti
ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to 
the application program. If the filenames were preceded by any switches, the program 
itself has to extract the filenames directly from the command tail. The program is then 
responsible for determining which parameters are switches and which are filenames, as 
well as where each parameter begins and ends. 

After a filename has been located, Function 29H (Parse Filename) can be used to test it 
for invalid characters and separators and to insert its various components into the proper 
fields in an FCB. The filename must be a string in the standard form drivejilename.ext. 
Wildcard characters are permitted in the filename and/or extension; asterisk ( *) wildcards 
are expanded to question mark (?) wildcards. 

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI 
must point to the 37 -byte buffer that will become the PCB for the file, and AL must hold 
the parsing control code. See SYSTEM CALLS: INTERRUPT 21H: Function 29H. 

268 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 278/1582



Article 7: File and Record Management 

If a drive code is not included in the filename, MS-DOS inserts the drive number of the 
current drive into the FCB. Parsing stops at the first terminator character encountered in 
the filename. Terminators include the following: 

; , = + I " [ ) : < > : space tab 

If a colon character(:) is not in the proper position to delimit the disk drive identifier or if 
a period (.) is not in the proper position to delimit the extension, the character will also be 
treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly; 
however, ABC:DEF.DAY will be parsed as ABC. 

If an invalid drive is specified in the filename, Function 29H returns OFFH in AL; if the 
filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon 
return, indicating a valid, unambiguous filename .. 

'Note that this function simply parses the filename into the FCB. It does not initialize any 
other fields of the FCB (although it does zero the current block and record size fields), and 
it does not test whether the specified file actually exists. 

Error handling and FCB functions 

The FCB-related file and record functions do not return much in the way of error infor
mation when a function fails. Typically, an FCB function returns a zero in AL if the func
tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program 
is left to its own devices to determine the cause of the error. Under MS-DOS versions 3.x, 
however, a failed FCB function call can be followed by a call to Interrupt 21H Function 
59H (Get Extended Error Information). Function 59H will return the same descriptive 
codes for the error, including the error locus and a suggested recovery strategy, as would 
be returned for the counterpart handle-oriented file or record function. 

Creating a file 

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/ 
write operations. The function is called with DS:DX pointing to a valid, unopened FCB. 
MS-DOS searches the current directory for the specifed filename. If the filename is found, 
MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero
length file; if the filename is not found, MS-DOS creates a new file and opens it. Other 
fields of the FCB are filled in by MS-DOS as described below under Opening a File. 

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it 
returns OFFH in AL. This function will not ordinarily fail unless the file is being created in 
the root directory and the directory is full. 

Warning.:- To avoid loss of existing data, the FCB open function should be used to test for 
file existence before creating a file. 

Section II- Programming in the MS-DOS Environment 269 

HUAWEI EX. 1010 - 279/1582

 
If a drive code is not included in the filename, MS—DOS inserts the drive number of the
current drive into the FCB. Parsing stops at the first terminator character encountered in

the filename. Terminators include the following:

‘;,=+ /"[]l<>lspacetab

If a colon character (:) is not in the proper position to delimit the disk drive identifier or if

a period (J is not in the proper position to delimit the extension, the character will also be

treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC. '

If an invalid drive is specified in the filename, Function 29H returns OFFH in AL; if the

filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon

return, indicating a valid, unambiguous filename. _

‘Note that this function simply parses the filename into the FCB. It does not initialize any

other fields of the FCB (although it does zero the current block and record size fields), and

it does not test whether the specified file actually exists.

Error handling and FCB functions

f The FCB-related file and record functions do not return much in the way of error infor-
‘ mation when a function fails. Typically, an FCB function returns a zero in AL if the func-

tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program

is left to its own devices to determine the cause of the error. Under MS-DOS versions 5.x,

however, a failed FCB function call can be followed by a call to Interrupt 21H Function

‘ 59H (Get Extended Error Information). Function 59H will return the same descriptive

codes for the error, including the error locus and a suggested recovery strategy, as would

be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/

write operations. The function is called with DS:DX pointing to a valid, unopened FCB.
MS-DOS searches the current directory for the specifed filename. If the filename is found,

MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero-

length file; if the filename is not found, MS-DOS creates a new file and opens it. Other

fields of the FCB are filled in by MS—DOS as described below under Opening a File.

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it

returns OFFH in AL. This function will not ordinarily fail unless the file is being created in

the root directory and the directory is full.

Warning? To avoid loss of existing data, the FCB open function should be used to test for

file existence before creating a file. 
Section IL Programming in theMS-DOS Environment 269

HUAWEI EX. 1010 - 279/1582



Part B: Programming for MS-DOS 

Opening a file 

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain
ing the name of the file to be opened. If the specified file is found in the current directory, 
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns withAL set 
to OOH; if the file is not found, MS-DOS returns withAL set to OFFH, indicating an error. 

When the file is opened, MS-DOS 

• Sets the drive identifier (offset OOH) to the actual drive (01 = A, 02 = B, and so on). 
• Sets the current block number (offset OCH) to zero. 
• Sets the file size (offset 10H) to the value found in the directory entry for the file. 
• Sets the record size (offset OEH) to 128. 
• Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc

tory entry for the file. 

The program may need to adjust the FCB-change the record size and the random record 
pointer, for example- before proceeding with record operations. 

Example: Display a prompt and accept a filename from the user. Parse the filename into 
. an FCB, checking for an illegal drive identifier or the presence of wildcards. If a valid, 
unambiguous filename has been entered, attempt to open the file. Create the file if it does 
not already exist. 

kbuf db 

prompt db 

myfcb db 

mov 

mov 

mov 

mov 

mov 

int 

mov 

mov 

int 

mov 

mov 

mov 

int 

or 

jnz 

64, 0, 64 dup (0) 

Odh,Oah, 'Enter filename: $' 
37 dup (0) 

dx,seg prompt 
display the prompt ... 

DS:DX = prompt address 
ds,dx 

es,dx 
dx,offset 

ah,09h 
21h 

dx,offset 

ah,Oah 

21h 

si,offset 

di,offset 

ax,2900h 

21h 

al,al 

error 

prompt 

kbuf 

Function 09H = print string 

transfer to MS-DOS 

now input filename ... 

DS:DX = buffer address 

Function OAH = enter string 

transfer to MS-DOS 

parse filename into FCB ... 

kbuf+2 ; DS:SI = address of filename 

myfcb ES:DI = address of feb 

Function 29H = parse name 

transfer to MS-DOS 

jump if bad drive or 

wildcard characters in name 

270 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 280/1582



mov 
mov 

int 
or 

jz 

mov 

mov 

int 

or 

jnz 

proceed: 

Closing a file 

dx,offset myfcb 

ah,Ofh 
21h 

al,al 

proceed 

dx,offset myfcb 
ah,16h 

21h 
al,al 

error 

Article 7: File and Record Management 

try to open file ... 
DS:DX = FCB address 

Function OFH = open file 

transfer to MS-DOS 
check status 

jump if open successful 

else create file ... 

DS:DX = FCB address 
Function 16H =create 

transfer to MS-DOS 

did create succeed? 

jump if create failed 

file has been opened or 

created, and FCB is valid 

for read/write operations ... 

Function lOH (Close File with FCB) closes a file previously opened with an FCB. As usual, 
the function is called with DS:DX pointing to the FCB of the file to be closed. MS-DOS 
updates the directory, if necessary, to reflect any changes in the file's size and the date and 
time last written. 

If the operation succeeds, MS-DOS returns OOH in AL; if the operation fails, MS-DOS 
returns OFFH. 

Reading and writing files with FCBs 

MS-DOS offers a choice of three FCB access methods for data within files: sequential, 
random record, and random block. 

Sequential operations step through the file one record at a time. MS-DOS increments the 
current record and current block numbers after each file access so that they point to the 
beginning of the next record. This method is particularly useful for copying or listing files. 

Random record access allows the program to read or write a record from any location in 
the file, without sequentially reading all records up to that point in the file. The program 
must set the random record number field of the FCB appropriately before the read or write 
is requested. This method is useful in database applications, in which a program must 
manipulate fixed-length records. 

Random block operations combine the features of sequential and random record access 
methods. The program can set the record number to point to any record within a file, and 
MS-DOS updates the record number after a read or write operation. Thus, sequential 
operations can easily be initiated at any file location. Random block operations with a 
record length of 1 byte simulate file-handle access methods. 

All three methods require that the FCB for the file be open, that DS:DX point to the FCB, 
that the DTA be large enough for the specified record size, and that the DTA address be 
previously set with Function lAH if the default DTA in the program's PSP is not being 
used. 

Section 11- Programming in the MS-DOS Environment 271 

HUAWEI EX. 1010 - 281/1582

Article 7: File and Record ManagementW

, ; try to open file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,0fh ; Function OFH = open file
int 21h ; transfer to MS—DOS '

or ai,al ; check status
jz proceed ; jump if open successful

; else create file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,16h ; Function 16H = create
int 21h ; transfer to MS—DOS

or al,al ; did create succeed?
jnz error ; jump if create failed

proceed:
; file has been opened or
; created, and PCB is valid

. ; for read/write operations...

Closing a file

Function 10H (Close File with FCB) closes a file previously opened with an FCB. As usual,

the function is called with DS:DX pointing to the FCB of the file to be closed. MS-DOS

updates the directory, if necessary, to reflect any changes in the file’s size and the date and
time last written.

If the operation succeeds, MS—DOS returns 00H in AL; if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time. MS-DOS increments the

current record and current block numbers after each file access so that they point to the

beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in

the file, without sequentially reading all records up to that point in the file. The program

must set the random record number field of the FCB appropriately before the read or write

is requested. This method is useful in database. applications, in which a program must

manipulate fixed-length records.

Random block operations combine the features of sequential and random record access
methods. The program can set the record number to point to any record within a file, and

MS-DOS updates the record number after a read or write operation. Thus, sequential

operations can easily be initiated at any file location. Random block operations with a

record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,

that the DTA be large enough for the specified record size, and that the DTA address be

previously set with Function 1AH if the default DTA in the program’s PSP is not being

used.

Section 11- Programming in the MS—DOS Environment 27 1

HUAWEI EX. 1010 - 281/1582



Part B: Programming for MS-DOS 

MS-DOS reports the success or failure of any FCB-related read operation (sequential, 
random record, or random block) with one of four return codes in register AL: 

Code 

OOH 
OlH 
02H 
03H 

Meaning 

Successful read 
End of file reached; no data read into DTA 
Segment wrap (DTA too close to end of segment); no data read into DTA 
End of file reached; partial record read into DTA 

MS-DOS reports the success or failure of an FCB-related write operation as one of three 
return codes in register AL: 

Code 

OOH 
OlH 
02H 

Meaning 

Suc:cessful write 
Disk full; partial or no write 
Segment wrap (DTA too close to end of segment); write failed 

For FCB write operations, records smaller than one sector (512 bytes) are not written 
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data 
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter
rupt 21H Function ODH (Disk Reset) is issued. 

Sequential access: reading 

Function 14H (Sequential Read) reads records sequentially from the file to the current 
DTA address, which must point to an area at least as large as the record size specified in 
the file's FCB. After each read operation, MS-DOS updates the FCB block and record num
bers (offsets OCH and 20H) to point to the next record. 

Sequential access: writing 

Function 15H (Sequential Write) writes records sequentially from memory into the file. 
The length written is specified by the record size field (offset OEH) in the FCB; the memory 
address of the record to be written is determined by the current DTA address. After each 
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets 
OCH and 20H) to point to the next record. 

Random record access: reading 

Function 21H (Random Read) reads a specific record from a file. Before requesting the 
read operation, the program specifies the record to be transferred by setting the record 
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA 
address must also have been previously set with Function lAH to point to a buffer of 
adequate size if the default DTA is not large enough. 

272 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 282/1582



Article 7: File and Record Management 

After the read, MS-DOS sets the current block and current record number fields (offsets 
OeH and 20H) to point to the same record. Thus, the program is set up to change to 
sequential reads or writes. However, if the program wants to continue with random record 
access, it must continue to update the random record field of the FeB before each random 
record read or write operation. 

Random record access: writing 

Function 22H (Random Write) writes a specific record from memory to a file. Before 
issuing the function call, the program must ensure that the record size and random record 
pointer fields at FeB offsets OEH and 21H are set appropriately and that the current DTA 
address points to the buffer containing the data to be written. 

After the write, MS-DOS sets the current block and current record number fields (offsets 
oeH and 20H) to point to the same record. Thus, the program is set up to change to 
sequential reads or writes. If the program wants to continue with random record access, it 
must continue to update the random record field of the FeB before each random record 
read or write operation. 

Random block access: reading 

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing 
the read request, the program must specify the file location of the first record by setting 
the record size and random record number fields of the FeB (offsets OEH and 21H) and 
must put the number of records to be read in ex. The DTA address must have already been 
set with Function lAH to point to a buffer large enough to contain the group of records to 
be read if the default DTA was not large enough. The program can then issue the Function 
27H call with DS:DX p<Dinting to the FeB for the file. 

I 
After the random block read operation, MS-DOS resets the ~eB random record pointer 
(offset 21H) and the current block and current record number fields (offsets OeH and 20H) 
to point to the beginning of the next record not read and returns the number of records 
actually read in ex. 

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in ex, 
beginning with the byte position specified in the random record pointer. This simulates 
(to some extent) the handle type of read operation (Function 3FH). 

Random block access: writing 

Function 28H (Random Block Write) writes a block of consecutive records from memory 
to disk. The program specifies the file location of the first record to be written by setting 
the record size and random record pointer fields in the FeB (offsets OEH and 21H). If the 
default DTA is not being used, the program must also ensure that the current DTA address 
is set appropriately by a previous call to Function lAH. When Function 28H is called, 
DS:DX must point to the FeB for the file and ex must contain the number of records to 
be written. 

After the random block write operation, MS-DOS resets the FeB random record pointer 
(offset 21H) and the current block and current record number fields (offsets oeH and 20H) 
to point to the beginning of the next block of data and returns the number of records 
actually written in ex. 

Section 11- Programming in the MS-DOS Environment 273 

HUAWEI EX. 1010 - 283/1582

 

Article 7: File and Record Management_W

After the read, MS-DOS sets the current block and Current record number fields (offsets

OCH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record

access, it must continue to update the random record field of the FCB before each random
record read or write operation.

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before

issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA

address points to the buffer containing the data to be written.

After the write, MS-DOS sets the current block and current record number fields (offsets

OCH and 20H) to point to the same record. Thus, the program is set up to change to

sequential reads or writes. If the program wants to continue with random record access, it

must continue to update the random record field of the FCB before each random record

read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing

the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FCB (offsets OEH and 21H) and

must put the number of records to be read in CX. The DTA address must have already been

set with Function 1AH to point to a buffer large enough-to contain the group of records to

be read if the default DTA was not large enough. The program can then issue the Function

27H call with DS:DX pointing to the FCB for the file. l

After the random block read operation, MS—DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next record not read and returns the number of records

actually read in CX.

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in CX,

beginning with the byte position specified in the random record pointer. This simulates

(to some extent) the handle type of read operation (Function 3FH).

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory

to disk. The program specifies the file location of the first record to be written by setting

the record size and random record pointer fields in the FCB (offsets OEH and 21H). If the

default DTA is not being used, the program must also ensure that the current DTA address

is set appropriately by a previous call to Function 1AH. When Function 28H is called,

DS:DX must point to the FCB for the file and CX must contain the number of records to
be written.

After the random block write operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next block of data and returns the number of records
actually written in CX.

Section 11.- Programming in the MS—DOS Environment 275

HUAWEI EX. 1010 - 283/1582



Part B: Programming for MS-DOS 

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX, 
beginning with the byte position specified in the random record pointer. This simulates 
(to some extent) the handle type of write operation (Function 40H). 

Calling Function 28H with a record count of zero in register CX causes the file length to be 
extended or truncated to the current value in the FCB random record pointer field (offset 
21H) multiplied by the contents ofthe record size field (offset OEH). 

Example: Open the file MYFILE.DAT and create the file MYFILE.BAK on the current disk 
drive, copy the contents of the .DAT file into the .BAK file using 512-byte reads and writes, 
and then close both files. 

fcb1 

fcb2 

buff 

loop: 

db 0 
db 'MYFILE 

db 'DAT' 

db 25 dup (0) 

db 0 

db 'MYFILE 

db 'BAK' 

db 25 dup (0) 

db 512 dup (?) 

mov dx,seg fcb1 

mov ds, dx 
mov 

mov 

int 

or 

jnz 

mov 

mov 

int 

or 
jnz 

dx, offset fcb1 
ah,Ofh 

21h 
al,al 

error 

dx,offset fcb2 
ah,16h 

21h 

al,al 

error 

drive = default 

8 character filename 

3 character extension 
remainder of fcb1 

drive = default 

8 character filename 

3 character extension 

remainder of fcb2 

buffer for file I/O 

open MYFILE. DAT ... 

DS:DX = address of FCB 

Function OFH = open 

transfer to MS-DOS 
did open succeed? 

jump if open failed 

create MYFILE.BAK ... 

DS:DX = address of FCB 

Function 16H =create 
transfer to MS-DOS 

did create succeed? 

jump if create failed 

set record length to 512 
mov word ptr fcb1+0eh,512 

mov word ptr fcb2+0eh,512 

mov 

mov 

int 

mov 

mov 

int 
or 

jnz 

dx,offset buff 

ah,1ah 

21h 

dx, offset fcb1 

ah,14h 

21h 
al,al 

done 

set DTA to our buffer ... 

DS:DX =buffer address 
Function 1AH = set DTA 

transfer to MS-DOS 

read MYFILE.DAT 
DS:DX = FCB address 

Function 14H =seq. read 

transfer to MS-DOS 

was read successful? 

no, quit 

write MYFILE.BAK ... 

27 4 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 284/1582



Article 7: File and Record Management 

mov dx,offset fcb2 DS:DX = FCB address 
mov ah,15h Function 15H = seq. write 
int 21h transfer to MS-DOS 

or al,al was write successful? 

jnz e.rror jump if write failed 

jmp loop continue to end of file 

done: now close files ... 

mov dx,offset fcb1 DS:DX = FCB for MYFILE.DAT 

mov ah,10h Function 10H = close file 

int 21h transfer to MS-DOS 

or al,al did close succeed? 

jnz error jump if close failed 

mov dx,offset fcb2 DS:DX = FCB for MYFILE.BAK 

mov ah,10h Function 10H = close file 

int 21h transfer to MS-DOS 

or al,al did close succeed? 

jnz error jump if close failed 

Other FCB file operations 

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete 
a file. Unlike the other FCB functions and their handle counterparts, these two functions 
accept wildcard characters. An additional FCB function allows the size or existence of a 
file to be determined without actually opening the file. 

Renaming a file 

Function 17H (Rename File) renames a file (or files) in the current directory. The file to be 
renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro
gram must create a special FCB that contains the drive code at offset OOH, the old filename 
at offset OlH, and the new filename at offset llH. Both the current and the new filenames 
can contain the ? wildcard character. 

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS 
searches the current directory for the old filename. If it finds the old filename, MS-DOS 
then searches for the new filename and, if it finds no matching filename, changes the 
directory entry for the old filename to reflect the new filename. If the old filename field of 
the special FCB contains any wildcard characters, MS-DOS renames every matching file. 
Duplicate filenames are not permitted; the process will fail at the first duplicate name. 

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns 
OFFH. The error condition may indicate either that no files were renamed or that at least 
one file was renamed but the operation was then terminated because of a duplicate 
filename. 

Example: Rename all the files with the extension .ASM in the current directory of the 
default disk drive to have the extension .COD. 

Section 11· Programming in the MS-DOS Environment 275 

HUAWEI EX. 1010 - 285/1582

Article 7: File and Record ManagementW

- DS:DX =' FCB addressmov dx,offset fcb2
mov ah,15h ' Function 15H = seq. write
int 21h ' transfer to MS~DOS

or al,al ' was write successful?
jnz error ' jump if write failed
jmp loop ~ continue to end of file

done: - now close files...

mov dx,offset fcbl - DS:DX = FCB for MYFILE.DAT
mov ah,10h - Function 10H = close file
int 21h ' transfer to MS-DOS

or al,al - did close succeed?
jnz error - jump if close failed
mov dx,offset fcb2 - DS:DX = FCB for MYFILE.BAK
mov ah,10h - Function 10H = close file
int 21h - transfer to MS—DOS

or al,al ' did close succeed?

jnz error ' jump if close failed

Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete

a file. Unlike the other FCB functions and their handle counterparts, these two functions

accept wildcard characters. An additional FCB function allows the size or existence of a

file to be determined without actually opening the file.

Renaming a file

 Function 17H (Rename File) renames a file (or files) in the current directory. The file to be

renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro-

gram must create a special FCB that contains the drive code at offset 00H, the old filename

at offset 01H, and the new filename at offset 11H. Both the current and the new filenames

can contain the ?wildcard character.
I

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS

searches the current directory for the old filename. If it finds the old filename, MS-DOS

then searches for the new filename and, if it finds no matching filename, changes the

directory entry for the old filename to reflect the new filename. If the old filename field of

the special FCB contains any wildcard characters, MS—DOS renames every matching file.

Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns

OFFH. The error condition may indicate either that no files were renamed or that at least

one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Rename all the files with the extension .ASM in the current directory of the
default disk drive to have the extension .COD.

Section IL Programming in the MS—DOS Environment 275

HUAWEI EX. 1010 - 285/1582



Part B: Programming for MS-DOS 

renfcb db 0 default drive 

' db '????????' wildcard filename 

db 'ASM' old extension 

db 5 dup (0) reserved area 

db '????????' wildcard filename 

db 'COD' new extension 

db 15 dup (0) remainder of FCB 

mov dx,seg renfcb DS:DX = address of 

mov ds,dx "special" FCB 

mov dx,offset renfcb 

mov ah, 17h Function 17H = rename 
int 21h transfer to MS-DOS 

or al,al did function succeed? 

jnz error jump if rename failed 

Deleting a file 

Function 13H (Delete File) deletes a file from the current directory. The file should not be 
currently open by any process. If the file to be deleted has special attributes, such as read
only, the program must use an extended FCB to remove the file. Directories cannot be 
deleted with this function, even with an extended FCB. 

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the 
name of the file to be deleted. The filename can contain the ? wildcard character; if it does, 
MS-DOS deletes all files matching the specified name. If at least one file matches the FCB 
and is deleted, MS-DOS returns OOH in AL; if no matching filename is found, it returns 
OFFH. 

Note: This function, if it succeeds, does not return any information about which and 
how many files were deleted. When multiple files must be deleted, closer control can be 
exercised by using the Find File functions (Functions llH and 12H) to inspect candidate 
filenames. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR 
Ms-oos: Disk Directories and Volume Labels. The files can then be deleted individually. 

Example: Delete all the files in the current directory of the current disk drive that have 
the extension .BAK and whose filenames have A as the first character. 

delfcb db 0 default drive 

db 'A???????' wildcard filename 

db 'BAK' extension 

db 25 dup (0) remainder of FCB 

(more) 

276 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 286/1582



Article 7: File and Record Management 

mov dx,seg delfcb DS:DX = FCB address 

mov ds,dx 

mov dx,offset delfcb 
mov ah,13h Function 13H = delete 

int 21h transfer to MS-DOS 

or al,al did function succeed? 

jnz error jump if delete failed 

Finding file size and testing for existence 

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening 
it, but it may also be used instead of Function llH (Find First File) to simply test for the 
existence of a file. Before calling Function 23H, the program must parse the filename into 
an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the 
DS:DX registers to point to the FCB. 

When Function 23H returns, AL contains OOH if the file was found in the current directory 
of the specified drive and OFFH if the file was not found. 

If the file was found, the random record field at FCB offset 21H contains the number of 
records (rounded upward) in the target file, in terms of the value in the record size field 
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the 
random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To 
obtain the size of the file in bytes, the program must set the record size field to 1 before the 
call. This method is not any faster than simply opening the file, but it does avoid the over
head of closing the file afterward (which is necessary in a networking environment). 

Summary 

MS-DOS supports two distinct but overlapping sets of file and record management 
services. The handle-oriented functions operate in terms of null-terminated (ASCIIZ) 
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file 
is opened or created. The filenames can include a full path specifying the file's location in 
the hierarchical directory structure. The information associated with a file handle, such as 
the current read/write pointer for the file, the date and time of the last write to the file, and 
the file's read/write permissions, sharing mode, and attributes, is maintained in a table 
internal to MS-DOS. 

Section II: Programming in the MS-DOS Environment 277 

HUAWEI EX. 1010 - 287/1582

 

Article 7: File and Record ManagementW

mov dx,seg delfcb ; DS:DX = FCB address
mov ds,dx

mov, dx,offset delfcb
mov ah,13h ; Function 13H = delete
int 21h ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if delete failed

Finding file size and testing for existence

Function 25H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the

existence of a file. Before calling Function 23H, the program must parse the filename into

an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the

DS:DX registers to point to the FCB.

When Function 25H returns, AL contains OOH if the file was found in the current directory

of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of

records (rounded upward) in the target file, in terms of the value in the record size field

(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the

random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To

obtain the size of the file in bytes, the program must set the record size field to 1 before the

call. This method is not any faster than simply opening the file, but it does avoid the over-

head of closing the file afterward (which is necessary in a networking environment).

Summary

MS—DOS supports two distinct but overlapping sets of file and record management

services. The handle-oriented functions operate in terms of null—terminated (ASCIIZ)

filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file

is opened or created. The filenames can include a full path specifying the file’s location in

the hierarchical directory structure. The information associated with a file handle, such as

the current read/write pointer for the file, the date and time of the last write to the file, and

the file’s read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section [1: Programming in the MS-DOS Environment 277

HUAWEI EX. 1010 - 287/1582



Part B: Programming for MS-DOS 

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block, 
located in the application program's memory space, to specify the name and location of 
the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica
tion to hold other information about the file, such as the current read/write file pointer, 
while that file is in use. Because FCBs predate the hierarchical directory structure that was 
introduced in MS-DOS version 2.0 and do not have room to hold the path for a file, the FCB 
functions cannot be used to access files that are not in the current directory of the speci-
fied drive. · 

In addition to their lack of support for pathnames, the FCB functions have much poorer 
error reporting capabilities than handle functions and are nearly useless in networking 
environments because they do not support file sharing and locking. Consequently, it is 
strongly recommended that the handle-related file and record functions be used ex
clusively in all new applications. 

278 The MS-DOS Encyclopedia 

Robert Byers 
Code by Ray Duncan 

HUAWEI EX. 1010 - 288/1582



Article 8: Disk Directories and Volume Labels 

ArticleS 
Disk Directories and Volume Labels 

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The 
data structure used by MS-DOS for this purpose is the directory, a linear list of names in 
which each name is associated with a physical location on the disk. Directories are ac
cessed and updated implicitly whenever files are manipulated, but both directories and 
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt 
21H service functions. 

MS-DOS versions l.x support only one directory on each disk. Versions 2.0 and later, 
however, support multiple directories linked in a two-way, hierarchical tree structure 
(Figure 8-1), and the complete specification of the name of a file or directory thus must 
describe the location in the directory hierarchy in which the name appears. This specifica
tion, or path, is created by concatenating a disk drive specifier (for example, A: or C:), the 

C:\ (root directory) 

subdirectory ALPHA 
subdirectory BETA 
file Fll-El.COM 
file Fll-E2.COM 

I 
I 

C:\ALPHA 

subdirectory 
subdirectory 
subdirectory GAMMA 
subdirectory DELTA 
file Fll-E3.COM 

I 
I 

C:\ALPHA\GAMMA 

subdirectory 
subdirectory 
file FILE5.COM 

I 
C:\ALPHA \DELTA 

subdirectory 
subdirectory 

I 
C:\BETA 

subdirectory 
subdirectory 
subdirectory EPSILON 
file FILE4.COM 

I 
C:\BETA \EPSILON 

subdirectory 
subdirectory 
file FILEl.COM 

Figure 8-1. Typical hierarchical directory structure (MS-DOS versions 2.0 and later). 

Section II: Programming in the MS-DOS Environment 279 

HUAWEI EX. 1010 - 289/1582

 

Article 8: Disk Directories and Volume Labels 

Article 8} _
Disk Directories and Volume Labels

MS—DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS—DOS for this purpose is the directory, a linear list of names in

which each name is associated with a physical location on the disk. Directories are ac-

cessed and updated implicitly whenever files are manipulated, but both directories and

their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions.

MS—DOS versions 1.x support only one directory on each disk. Versions 2.0 and later,

however, support multiple directories linked in a two-way, hierarchical tree structure

(Figure 8-1), and the complete specification of the name of a file or directory thus must

describe the location in the directory hierarchy in which the name appears. This specifica—

tion, or path, is created by concatenating a disk drive specifier (for example, A: or C2), the

C:\ (root directory)
 

  
 

subdirectory ALPHA
subdirectory BETA
file FILE1.COM
file FILE2.COM

  
 

 

  

C:\ALPHA , C:\BETA

 
subdirectory .
subdirectory . .
subdirectory EPSILON
file FILE4.COM

subdirectory .
subdirectory . .
subdirectory GAMMA
subdirectory DELTA
file FILEB.COM

  

 
C:\ALPHA\GAMMA C:\ALPHA\DELTA C:\BETA\EPSILON

subdirectory . subdirectory . subdirectory -
subdirectory . . subdirectory . . subdirectory - 0
file FILE5.COM file FILEl .COM 

Figure 8-]. Typical hierarchical directory structure (MS-DOS versions 2.0 and later).

Section IL Programming in the MS—DOS Environment 279

HUAWEI EX. 1010 - 289/1582



Part B: Programming for MS-DOS 

names of the directories in hierarchical order starting with the root directory, and finally 
the name of the file or directory. For example, in Figure 8-1, the complete pathname for 
FILE5.COM is C: \ALPHA\ GAMMA \FILE5.COM. The two instances of FILEl.COM, in the 
root directory and in the directory EPSILON, are distinguished by their pathnames: 
C: \FILEl.COM in the first instance and C: \BETA \EPSILON\FILE1.COM in the second. 

Note: If no drive is specified, the current drive is assumed. Also, if the first name in the 
specification is not preceded by a backslash, the specification is assumed to be relative to 
the current directory. For example, if the current directory is C: \BETA\ EPSILON, the 
specification \FILEl.COM indicates the file FILEl.COM in the root directory and the 
specification FILEl.COM indicates the file FILE1.COM in the directory C: \BETA \EPSILON. 
See Figure 8-1. 

Although the casual user of MS-DOS need not be concerned with how this hierarchical 
directory structure is implemented, MS-DOS programmers should be familiar with the 
internal structure of directories and with the Interrupt 21H functions available for manip
ulating directory contents and maintaining the links between directories. This article 
provides that information. 

Logical Structure of MS-DOS Directories 

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con
tains a name and descriptive information. In MS-DOS versions l.x, each name must be a 
filename; in versions 2.0 and later, volume labels and directory names can also appear 
in directory entries. 

Directory searches 

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when 
MS-DOS searches a directory for a name, the search must proceed linearly from the first 
name in the directory. In MS-DOS versions l.x, a directory search continues until the spec
ified name is found or until every entry in the directory has been examined. In versions 2.0 
and later, the search continues until the specified name is found or until a null directory 
entry (that is, one whose first byte is zero) is encountered. This null entry indicates the 
logical end of the directory. 

Adding and deleting directory entries 

MS-DOS deletes a directory entry by marking it with OE5H in the first byte rather than by 
erasing it or excising it from the directory. New names are added to the directory by reus
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends 
the new entry to the list. 

280 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 290/1582



Article 8: Disk Directories and Volume Labels 

The current directory 

When more than one directory exists on a disk, MS-DOS keeps track of a default search 
directory known as the current directory. The current directory is the directory used for all 
implicit directory searches, such as those occasioned by a request to open a file, if no alter
native path is specified. At startup, MS-DOS makes the root directory the current directory, 
but any other directory can be designated later, either interactively by using the CHDIR 
command or from within an application by using Interrupt 21H Function 3BH (Change 
Current Directory). 

Directory Format 

The root directory is created by the MS-DOS FORMAT program. See USER COMMANDS: 
FORMAT. The FORMAT program places the root directory immediately after the disk's file 
allocation tables (FATs). FORMAT also determines the size of the root directory. The size 
depends on the capacity of the storage medium: FORMAT places larger root directories on 
high-capacity fixed disks and smaller root directories on floppy disks. In contrast, the size 
of subdirectories is limited only by the storage capacity of the disk because disk space for 
subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical 
location of the root directory can be derived from data in the BIOS parameter block (BPB) 
in the disk boot sector. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRuc
TURE OF Ms-nos: MS-DOS Storage Devices. 

Because space for the root directory is allocated only when the disk is formatted, the 
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated 
dynamically, can be added or deleted as needed. 

Directory entry format 

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte, 
date and time stamps, and information that describes the file's size and physical location 
on the disk (Figure 8-2). The fields are formatted as described in the following paragraphs. 

OBH OCH 16H 18H lAH lCH lFH 

Name (ReseJVed) Starting cluster File size 

Figure 8-2. Format of a directory entry. 

The name field (bytes 0-0AH) contains an 11-byte name unless the first byte of the field 
indicates that the directory entry is deleted or null. The name can be an 11-byte filename 
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name 

Section IL- Programming in the MS-DOS Environment 281 

HUAWEI EX. 1010 - 291/1582

 

Article 8: Disk Directories and Volume Labels 

The current directory

When more than one directory exiSts on a disk, MS-DOS keeps track of a default search

directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter—

native path is specified. At startup, MS—DOS makes the root directory the current directory,
but any other directory can be designated later, either interactively by using the CHDIR

command or from within an application by using Interrupt 21H Function SBH (Change
Current Directory). '

Directory Format

The root directory is created by the MS—DOS FORMAT program. See USER COMMANDS:

FORMAT. The FORMAT program places the root directory immediately after the disk’s file

allocation tables (FATS). FORMAT also determines the size of the root directory. The size

depends on the capacity of the storage medium: FORMAT places larger root directories on

high—capacity fixed disks and smaller root directories on floppy disks. In contrast, the size

of subdirectories is limited only by the storage capacity of the disk because disk space for

subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical

location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUC-

TURE OF Ms-Dos: MS-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated

dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,

date and time stamps, and information that describes the file’s size and physical location

on the disk (Figure 8—2). The fields are formatted as described in the following paragraphs.

16H 18H0 OBH OCH IAH lCH IFH

(Reserved) In“
Figure 8-2. Format ofa directory entry.

The name field (bytes O—OAH) contains an 11—byte name unless the first byte of the field

indicates that the directory entry is deleted or null. The name can be an 11-byte filename

(8—byte name followed by a 5-byte extension), an 11—byte subdirectory name (8—byte name

Byte

    

Section 1]: Programming in the MS—DOS Environment 281

HUAWEI EX. 1010 - 291/1582



Part B: Programming for MS-DOS 

followed by a 3-byte extension), or an 11-byte volume label. Names less than 8 bytes and 
extensions less than 3 bytes are padded to the right with blanks so that the extension al
ways appears in bytes 08-0AH of the name field. The first byte of the name field can con
tain certain reserved values that affect the way MS-DOS processes the directory entry: 

Value 

0 
5 

OE5H 

Meaning 

Null directory entry (logical end of directory in MS-DOS versions 2.0 and later) 
First character of name to be displayed as the character represented by OE5H 

(MS-DOS version 3.2) 
Deleted directory entry 

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries 
in the newly created directory. The name • (an ASCII period) is an alias for the name of 
the current directory; the name •• (two ASCII periods) is an alias for the directory's parent 
directory- that is, the directory in which the entry containing the name of the current 
directory is found. 

The attribute field (byte OBH) is an 8-bit field that describes the way MS-DOS processes 
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri
bute of that directory entry; more than one of the bits can be set at a time. 

Bit 7 6 5 4 3 2 0 

Figure 8-3. Format of the attribute field in a directory entry. 

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function 3DH 
(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The 
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory 
searches- that is, in directory searches that do not specifically request that hidden entries 
be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to 
a file used by the operating system. Like the hidden bit, the system bit excludes a directory 
entry from normal directory searches. The volume label bit (bit 3) is set to 1 to indicate that 
the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when 
the directory entry contains the name and location of another directory. This bit is always 
set for the directory entries that correspond to the current directory (.) and the parent 
directory ( •• ). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that 
has been written to. Simply opening and closing a file is not sufficient to update the 
archive bit in the file's directory entry. 

The time and date fields (bytes 16-17H and 18-19H) are initialized by MS-DOS when 
the directory entry is created. These fields are updated whenever a file is written to. The 
formats of these fields ar~ shown in Figures 8-4 and 8-5. 

282 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 292/1582

Part B: Programming for MS-DOS

followed by a S-byte extension), or an 11-byte volume label. Names less than 8 bytes and

extensions less than 3 bytes are padded to the right with blanks so that the extension al-

ways appears in bytes 08-0AH of the name field. The first byte of the name field can con—

tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS—DOS versions 2.0 and later)

5 First character of name to be displayed as the character represented by OESH
(MS—DOS version 3.2 ) '

OESH Deleted directory entry

When MS—DOS creates a subdirectory, it always includes two aliases as the first two entries

in the newly created directory. The name . (an ASCII period) is an alias for the name of

the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory—that is, the directory in which the entry containing the name of the current

directory is found.

The attribute field (byte OBI-I) is an 8-bit field that describes the way MS—DOS processes
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri—

bute of that directory entry; more than one of the bits can be set at a time.

Bit ’ 7 6 5 4 3 2 1' o

 
Figure 8-3. Format ofthe attributefield in a directory entry.

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function SDH

(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The

hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory

searches—that is, in directory searches that do not specifically request that hidden entries

be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to

a file used by the operating system. Like the hidden bit, the system bit excludes a directory

_ entry from normal directory searches. The volume label bit (bit 5) is set to 1 to indicate that

the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when

the directory entry contains the name and location of another directory. This bit is always

set for the directory entries that correspond to the current directory C.) and the parent

directory (..). The archive bit (bit 5) is set to 1 by MS—DOS functions that close a file that

has been written to. Simply opening and closing a file is not sufficient to update the

archive bit in the file’s directory entry. ‘

The time and date fields (bytes 16—17H and 18—19H) are initialized by MS-DOS when
the directory entry is created. These fields are updated whenever a file is written to. The

formats of these fields are shown in Figures 8—4 and 8-5. '

282 The MS—DOS Encyclopedia

 
HUAWEI EX. 1010 - 292/1582



Bit 15 10 

Hours (0-23) Minutes (0-59) 

4 

Article 8: Disk Directories and Volume Labels 

2-second 
increments (0-29) 

0 

Figure 8-4. Format of the time field in a directory entry. 

Bit 15 8 4 0 

Year (relative to 1980) Month (1-12) Day (1-31) 

Figure 8-5. Format of the date field in a directory entry. 

The starting cluster field (bytes 1A -lBH) indicates the disk location of the first cluster 
assigned to the file. This cluster number can be used as an entry point to the file allocation 
table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with 
the aid of the information in the disk's BPB.) 

For the . entry (the alias for the directory that contains the entry), the starting cluster field 
contains the starting cluster number of the directory itself. For the .. entry (the alias for the 
parent directory), the value in the starting cluster field refers to the parent directory unless 
the parent directory is the root directory, in which case the starting cluster number is zero. 

The file size field (bytes lC-lFH) is a 32-bit integer that indicates the file size in bytes. 

Volume Labels 

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed 
disk, or a reel of magnetic tape. In computer environments where many different volumes 
might be used, the operating system can uniquely identify each volume by initializing it 
with a volume label. 

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of 
directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc
tory entry, the name field contains an 11-byte string specifying a name for the disk volume. 
A volume label can appear only in the root directory of a disk, and only one volume label 
can be present on any given disk. 

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch 
to initialize a disk with a volume label. In versions 3.0 and later, the LABEL command can 
be used to create, update, or delete a volume label. Several commands can display a disk's 
volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS. 

Section Il· Programming in the MS-DOS Environment 283 

HUAWEI EX. 1010 - 293/1582

 

Article 8: Disk Directories and Volume Labels 

Bit 15 10 4 0

Hours (0-23) Minutes (0-59) mcrfggggngag

Figure 8—4. Format ofthe timefield in a directory entry.

Bit 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1 -3 1)

Figure 8-5. Format ofthe datefield in a directory entry.

The starting cluster field (bytes 1A—1BH) indicates the disk location of the first cluster

assigned to the file. This cluster number can be used as an entry point to the file allocation

- table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with
the aid of the information in the disk’s BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the

parent directory), the value in the starting clUster field refers to the parent directory unless

the parent directory is the root directory, in which case the starting cluster number is zero.

The file size field (bytes 1C—1FH) is a 32-bit integer that indicates the file size in bytes.

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed

disk, or a reel of magnetic tape. In computer environments Where many different volumes

might be used, the operating system can uniquely identify each volume by initializing it
with a volume label.

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of

' directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc-

tory entry, the name field contains an 11—byte string specifying a name for the disk volume.

A volume label can appear only in the root directory of a disk, and only one volume label

can be present on any given disk.

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch

to initialize a disk with a volume label. In versions 3.0 and later, the LABEL command can

be used to create, update, or delete a volume label. Several commands can display a disk’s

volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section II: Programming in the MS—DOS Environment 283

HUAWEI EX. 1010 - 293/1582



Part B: Programming for MS-DOS 

In MS-DOS versions 2.x, volume labels are simply a convenience for the user; no MS-DOS 
routine uses a volume label for any other purpose. In MS-DOS versions 3.x, however, the 
SHARE command examines a disk's volume label when it attempts to verify whether a 
disk volume has been inadvertently replaced in the midst of a file read or write operation. 
Removable disk volumes should therefore be assigned unique volume names if they are 
to contain shared files. 

Functional Support for MS-DOS Directories 

Several Interrupt 21H service routines can be useful to programmers who need to manipu
late directories and their contents (Table 8-1). The routines can be broadly grouped into 
two categories: those that use a modified file control block (FCB) to pass filenames to and 
from the Interrupt 21H service routines (Functions llH, 12H, 17H, and 23H) and those that 
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H, 
and 57H). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR 
Ms-nos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H. 

The functions that use an FCB require that the calling program reserve enough memory 
for an extended FCB before the Interrupt 21H function is called. The calling program ini
tializes the filename and extension fields of the FCB and passes the address of the FCB to 
the MS-DOS service routine in DS:DX. The functions that use pathnames expect all path
names to be in ASCIIZ format- that is, the last character of the name must be followed 
by a zero byte. 

Names in pathnames passed to Interrupt 21H functions can be separated by either a back
slash(\) or a forward slash(/). (The forward slash is the separator character used in path
names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS 
and C: \MSP\SOURCE\ROSE.PAS are equivalent when passed to an Interrupt 21H function. 
The forward slash can thus be used in a pathname in a program that must run on both MS
DOS and UNIX!XENIX. However, the MS-DOS comand processor (COMMAND. COM) 
recognizes only the backslash as a pathname separator character, so forward slashes can
not be used as separators in the command line. 

Table 8-1. MS-DOS Functions for Accessing Directories. 

Function 

Find First File 

Find Next File 

Call With 

AH= llH 
DS:DX = pointer to 

unopened FCB 
INT21H 

AH= 12H 
DS:DX = pointer to 

unopened FCB 
INT21H 

284 The MS-DOS Encyclopedia 

Returns 

AL = 0 (directory entry 
found) or OFFH (not found) 

DTA updated (if directory 
entry found) 

AL = 0 (directory entry 
found) or OFFH (not found) 

DTA updated (if directory 
entry found) 

Comment 

If default not satisfac
tory, DTA must be 
set before using 
this function. 

Use the same FCB 
for Function llH and 
Function 12H. 

(more) 

HUAWEI EX. 1010 - 294/1582



Article 8: Disk Directories and Volume Labels 

Table 8-1. Continued. 

Function Call With Returns Comment 

Rename File AH= 17H AL = 0 (file renamed) or 
DS:DX = pointer to OFFH (no directory entry 

modified FCB or duplicate filename) 
INT21H 

Get File Size AH=23H AL = 0 (directory entry 
DS:DX = pointer to found) or OFFH (not found) 

unopened FCB FCB updated with number 
INT21H of records in file 

Create Directory AH=39H Carry flag set (if error) 
DS:DX = pointer to AX = error code (if error) 

ASCIIZ pathname 
INT21H 

Remove Directory AH=3AH Carry flag set (if error) 
DS:DX = pointer to AX = error code (if error) 

ASCIIZ pathname 
INT21H 

Change Current AH=3BH Carry flag set (if error) 
Directory DS:DX = pointer to AX= error code (if error) 

ASCIIZ pathname 
INT21H 

Get/Set File AH=43H Carry flag set (if error) Cannot be used to 
Attributes AL = 0 (get attributes) AX= error code (if error) modify the volume 

1 (set attributes) ex = attribute field from label or subdirectory 
ex= attributes (if AL = 1) directory entry (if called bits. 
DS:DX = pointer to withAL= 0) 

ASCIIZ pathname 
INT21H 

Get Current AH=47H Carry flag set (if error) 
Directory DS:SI = pointer to AX = error code (if error) 

64-byte buffer Buffer updated with 
DL = drive number pathname of current 
INT21H directory 

Find First File AH=4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be 

ASCIIZ pathname DTAupdated set before using 
ex = file attributes to this function. 

match 
INT21H 

Find Next File AH=4FH Carry flag set (if error) 
INT21H AX= error code (if error) 

DTAupdated 
(more) 

Section II: Programming in the MS-DOS Environment 285 

HUAWEI EX. 1010 - 295/1582

 

Table 8-1. Continued.

Article 8: Disk Directories and Volume Labels 

 

 Function Call With Returns Comment

Rename File AH = 17H AL = 0 (file renamed) or

DS:DX = pointer to OFFH (no directory entry
modified FCB or duplicate filename)

INT 21H

Get File Size AH = 23H AL = 0 (directory entry
DS:DX = pointer to found) or OFFH (not found)

unopened FCB FCB updated with number
INT 21H of records in file

Create Directory AH = 39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT 21H

Remove Directory AH = BAH Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname ~
INT 2 1 H

Change Current AH = SBH Carry flag set (if error)
Directory DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT 21H

Get/Set File AH = 45H Carry flag set (if error) > Cannot be used to
Attributes AL = 0 (get attributes) AX = error code (if error) modify the volume

1 (set attributes) CX = attribute field from label or subdirectory
CX = attributes (if AL = 1) directory entry (if called bits.
DS:DX = pointer to with AL .= 0)

ASCIIZ pathname
INT 21H

Get Current AH = 47H Carry flag set (if error)
Directory DS:SI = pointer to AX = error code (if error)

64—byte buffer Buffer updated with
DL = drive number pathname of current
INT 21H directory

Find First File AH = 4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be

ASCIIZ pathname DTA updated set before using
CX = file attributes to this function.

match
INT 21H

Find Next File AH = 4FH Carry flag set (if error)
INT 21H AX = error code (if error)

DTA updated
(more)

Section 11: Programming in the MS-DOSEnvironment 285

HUAWEI EX. 1010 - 295/1582



Part B: Programming for MS-DOS 

Table 8-1. Continued. 

Function 

Rename File 

Get/Set Date/Time 
of File 

Call With 

AH= 56lf 
DS:DX = pointer to 

ASCIIZ pathname 
ES:DI = pointer to 

new ASCIIZ pathname 
INT21H 

AH= 57H 
AL = 0 (get date/time) 

1 (set date/time) 
BX=handle 
CX = time (if AL = 1) 
DX = date (if AL = 1) 

INT21H 

Searching a directory 

Returns 

Carry flag set (if error) 
AX= error code (if error) 

Carry flag set (if error) 
AX = error code (if error) 
ex = time (if AL = O) 
DX = date (if AL = 0) 

Comment 

Two pairs of Interrupt 21H functions are available for directory searches. Functions llH 
and 12H use FCBs to transfer filenames to MS-DOS; these functions are available in all ver
sions of MS-DOS, but they cannot be used with pathnames. Functions 4EH and 4FH sup
port pathnames, but these functions are unavailable in MS-DOS versions l.x. All four 
functions require the address of the disk transfer area (DTA) to be initialized appropriately 
before the function is invoked. When Function 12H or 4FH is used, the current DTA must 
be the same as the DTA for the preceding call to Function llH or 4EH. 

The Interrupt 21H directory search functions are designed to be used in pairs. The Find 
First File functions return the first matching directory entry in the current directory (Func
tion llH) or in the specified directory (Function 4EH). The Find Next File functions 
(Functions 12H and 4FH) can be called repeatedly after a successful call to the corre
sponding Find First File function. Each call to one of the Find Next File functions returns 
the next directory entry that matches the name originally specified to the Find First File 
function. A directory search can thus be summarized as follows: 

call "find first file" function 

while ( matching directory entry returned 

call "find next file" function 

Wildcard characters 

This search strategy is used because name specifications can include the wildcard charac
ters?, which matches any single character, and • (see below). When one or more wildcard 
characters appear in the name specified to one of the Find First File functions, only the 
nonwildcard characters in the name participate in the directory search. Thus, for example, 
the specification FOO? matches the filenames FOOl, F002, and so on; the specification 
FOO?????.??? matches F004.COM, FOOBAR.EXE, and FOONEWBAK, as well as FOOl and 
F002; the specification ????????.TXT matches all files whose extension is .TXT; the speci
fication????????.??? matches all files in the directory. 

286 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 296/1582



Article 8: Disk Directories and Volume Labels 

Function 4EH also recognizes the wildcard character *, which matches any remaining 
characters in a filename or extension. MS-DOS expands the * wildcard character inter
nally to question marks. Thus, for example, the specification FOO * is the same as 
FOO?????; the specification FOO *·*is the same as FOO?????.???; and, of course, the spec
ification*·* is the same as????????.???. 

Examining a directory entry 

All four Interrupt 21H directory search functions return the name, attribute, file size, time, 
and date fields for each directory entry found during a directory search. The current DTA 
is used to return this data, although the format is different for the two pairs of functions: 
Functions llH and 12H return a copy of the 32-byte directory entry- including the cluster 
number-in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does 
not include the starting cluster number. See SYSTEM CALLS: INTERRUPT 21H: Function 
4EH. 

The attribute field of a directory entry can be examined using Function 43H (Get/Set File 
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's 
time or date. However, unlike the other functions discussed here, Function 57H is in
tended only for files that are being actively used within an application- that is, Function 
57H can be called to examine the file's time or date stamp only after the file has been 
opened or created using an Interrupt 21H function that returns a handle (Function 3CH, 
3DH, 5AH, or 5BH). 

Modifying a directory entry 

Four Interrupt 21H functions can modify the contents of a directory entry. Function 17H 
(Rename File) can be used to change the name field in any directory entry, including hid
den or system files, subdirectories, and the volume label. Related Function 56H (Rename 
File) also changes the name field of a filename but cannot rename a volume label or a hid
den or system file. However, it can be used to move a directory entry from one directory to 
another. (This capability is restricted to filenames only; subdirectory entries cannot be 
moved with Function 56H.) 

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time ofFile) can be used 
to modify specific fields in a directory entry. Function 43H can mark a directory entry as a 
hidden or system file, although it cannot modify the volume label or subdirectory bits. 
Function 57H, as noted above, can be used only with a previously opened file; it provides 
a way to read or update a file's time and date stamps without writing to the file itself. 

Creating and deleting directories 

Function 39H (Create Directory) exists only to create directories- that is, directory 
entries with the subdirectory bit set to l; (Interrupt 21H functions that create files, such as 
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse 
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory. (The 
subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files 
from directories, such as Function 41H, cannot be used to delete subdirectories. 

Se.ction I1- Programming in the MS-DOS Environment 287 

HUAWEI EX. 1010 - 297/1582

 

Article 8: Disk Directories and Volume Labels 

Function 4EH also recognizes the wildcard character it, which matches any remaining
characters in a filename or extension. MS—DOS expands the . wildcard character inter-

nally to question marks. Thus, for example, the specification FOO * is the same as

FOO?????; the specification FOO H is the same as FOO?????.???; and, of course, the spec-
ification #.* is the same as ????????.???.

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,

and date fields for each directory entry found during a directory search. The current DTA

is used to return this data, although the format is different for the two pairs of functions:

Functions 11H and 12H return a copy of the 32—byte directory entry— including the cluster

number— in the DTA; Functions 4EH and 4FH return a 45-byte data structure that does

not include the starting cluster number. See SYSTEM CALLS: INTERRUPT 21H: Function
4EH.

The attribute field of a directory entry can be examined using Function 45H (Get/Set File
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file’s

time or date. However, unlike the other functions discussed here, Function 57H is in-

tended only for files that are being actively used within an application— that is, Function

57H can be called to examine the file’s time or date stamp only after the file has been

opened or created using an Interrupt 21H function that returns a handle (Function SCH,

3DH, SAH, or SBH).

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directOry entry. Function 17H

(Rename File) can be used to change the name field in any directory entry, including hid-

den or system files, subdirectories, and the volume label. Related Function 56H (Rename

File) also changes the name field of a filename but cannot rename a volume label or a hid-

den or system file. However, it can be used to move a directory entry from one directory to

another. (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H.)

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time of File) can be used

to modify specific fields in a directory entry. Function 43H can mark a directory entry as a

hidden or system file, although it cannot modify the volume label or subdirectory bits.

Function 57H, as noted above, can be used only with a previously opened file; it provides

a way to read or update a file’s time and date stamps without writing to the file itself.

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories— that is, directory

entries with the subdirectory bit set to 1; (Interrupt 21H functions that create files, such as

Function SCH, cannot assign the subdirectory attribute to a directory entry.) The converse

function, BAH (Remove Directory), deletes a subdirectory entry from a directory. (The

subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories.

Section IL Programming in the MS—DOS Environment 287

HUAWEI EX. 1010 - 297/1582



Part B: Programming for MS-DOS 

Specifying the current directory 

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the 
current directory in use by MS-DOS to a user-supplied buffer. The converse operation, in 
which a new current directory can be specified to MS-DOS, is performed by Function 3BH 
(Change Current Directory). 

Programming examples: Searching for files 

The subroutines in Figure 8-6 below illustrat,e Functions 4EH and 4FH, which use path 
specifications passed as ASCIIZ strings to search for files. Figure 8-7 applies these assem
bly-language subroutines in a simple C program that lists the attributes associated with 
each entry in the current directory. Note how the directory search is performed in the 
WHILE loop in Figure 8-7 by using a global wildcard file specification (•.•) and by repeat
edly executing FindNextFile() until no further matching filenames are found. (See Pro
gramming Example: Updating a Volume Label for examples of the FCB-related search 
functions, llH and 21H.) 

TITLE 'DIRS.ASM' 

Subroutines for DIRDUMP.C 

ARG1 
ARG2 

EQU 

EQU 

[bp + 4] 
[bp + 6] 

stack frame addressing for C arguments 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT 

void SetDTA( DTA ); 

char *DTA; 

;------------------------------------------------------------------------------

PUBLIC _setOTA 

_SetDTA PROC near 

push bp 
mov bp,sp 

mov dx,ARG1 OS:DX -> DTA 

mov ah, 1Ah AH = INT 21H function number 
int 21h pass OTA to MS-DOS 

Figure 8-6. Subroutines illustrating Interrupt 21H Functions 4EH and 4FH. 

288 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 298/1582



Article 8: Disk Directories and Volume Labels 

pop bp 
ret 

_SetDTA ENDP 

;------------------------------------------------------------------------------

int GetCurrentDir( *path); 
char *path; 

PUBLIC _GetCurrentDir 
_GetCurrentDir PROC near 

push bp 
mov bp,sp 
push si 

mov si,ARG1 
xor dl,dl 
mov ah,47h 
int 21h 
jc L01 

xor ax, ax 

L01: pop si 
pop bp 
ret 

_GetCurrentDir ENDP 

I* returns error code *I 
I* pointer to buffer to contain path *I 

DS:SI ->buffer 
DL = 0 (default drive number) 
AH = INT 21H function number 
call MS-DOS; AX = error code 
jump if error 

no error, return AX 0 

·------------------------------------------------------------------------------' 

int FindFirstFile( path, attribute ); I* returns·error code *I 
char *path; 
int attribute; 

·------------------------------------------------------------------------------' 

PUBLIC _FindFirstFile 
_FindFirstFile PROC near 

push bp 
mov bp,sp 

mov dx,ARG1 
mov cx,ARG2 
mov ah,4Eh 

int 21h 
jc L02 

FigureB-6. Continued. 

DS:DX -> path 

ex = attribute 
AH = INT 21H function number 
call MS-DOS; AX = error code 
jump if error 

(more) 

Section II: Programming in the MS-DOS Environment 289 

HUAWEI EX. 1010 - 299/1582

 
P0P
ret

; int GetCurrentDir( *path );
; V char *path;

Article 8: Disk Directories and Volume LabelsW

/* returns error code */

/* pointer to buffer to contain path */

PUBLIC
_GetCurrentDir PROC

push
mov

push

mov
xor
mov

int

jc

xor

L01: pop
P0P
ret

_GetCurrentDir ENDP

_GetCurrentDir
near

bp
bp,sp
si

si,ARG1
dl,dl
ah,47h
21h
L01

ax,ax

si

1313

; DS:SI —> buffer
0 (default drive number)
INT 2111 function number

MS-DOS; AX

; DL =
; AH =
; call

; jump

; no error,

if error
error code

return AX = 0

r

; char *path;
; int attribute;

; int FindFirstFile( path, attribute ); /* returns error code */

PUBLIC
_FindFirstFile PROC

push
mov

mov
mov
mov

int

jc

Figure 8-6. Continued.

_FindFirstFile
near

bp
bprsp

dX,ARG1
cx,ARG2
ah,4Eh

21h
L02

; DS:DX -> path
CX =

; AH =
; call

jump

n

M

attribute

INT 21H function number
MS—DOS;
if error

AX error code

(more)

Section 11: Programming in the MS-DOS Environment 289

HUAWEI EX. 1010 - 299/1582



Part B: Programming for MS-DOS 

L02: 

xor 

pop 

ret 

_FindFirstFile ENDP 

ax, ax no error, return AX 0 

bp 

;--------------------------------------------------------------~---------------

; int FindNextFile(); I* returns error code *I 

;------------------------------------------------------------------------------

PUBLIC _FindNextFile 

_FindNextFile PROC near 

push bp 

mov bp,sp 

mov ah,4Fh AH = INT 21H function number 
int 21h call MS-DOS; AX = error code 

jc L03 jump if error 

xor ax, ax if no error, set AX 0 

L03: pop bp 

ret 

_FindNextFile ENDP 

_TEXT ENDS 

_!lATA SEGMENT word public 'DATA' 

CurrentDir DB 64 dup(?) 

DTA DB 64 dup (?) 

_DATA ENDS 

END 

FigureB-6. Continued. 

290 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 300/1582



Article 8: Disk Directories and Volume Labels 

I* DIRDUMP.C *I 

#define AllAttributes Ox3F I* bits set for all attributes *I 

main() 

static char CurrentDir[64]; 
int ErrorCode; 
int FileCount = 0; 

struct 

char 
char 
int 
int 
long 
char 

reserved[21]; 
attrib; 

time; 
date; 
size; 
name[13]; 
DTA; 

I* display current directory name •I 

ErrorCode = GetCurrentDir( CurrentDir ) ; 
if( ErrorCode ) 

printf( "\nError %d: GetCurrentDir", ErrorCode ) ; 
exit ( 1 ) ; 

printf( "\nCurrent directory is \\%s", CurrentDir ) ; 

I* display files and attributes *I 

SetDTA ( &DTA ) ; I* pass DTA to MS-DOS *I 

ErrorCode = FindFirstFile( "*·*", AllAttributes ); 

while( !ErrorCode 

printf( "\n%12s ", DTA.name ) ; 
ShowAttributes( DTA.attrib ); 
++FileCount; 

ErrorCode = FindNextFile( ); 

I• display file count and exit *I 

printf( "\nCurrent directory contains %d files\n", FileCount ); 

return( 0 ); 

Figure 8-7. The complete DIRDUMP.C program. (more) 

Section Jl- Programming in the MS-DOS Environment 291 

HUAWEI EX. 1010 - 301/1582

        
Article 8: Disk Directories and Volume Labels__________________________________________________________________________________________

/* DIRDUMP .c */

#define AllAttributes 0x3F /* bits set for all attributes */

main()
(

static char CurrentDir[64];
int ErrorCode;
int FileCount = 0;

struct

(
char reserved[21];
char attrib;
int time;
int date;

long size;
char name[13];

) DTA;

/* display current directory name */

ErrorCode = GetCurrentDir( CurrentDir );
if( ErrorCode )
(

printf( "\nError %d: GetCurrentDir", ErrorCode );
exit( 1 );

printf( "\nCurrent directory is \\%s", CurrentDir );

/* display files and attributes */

SetDTA( &DTA ); /* pass DTA to MS-DOS */

ErrorCode = FindFirstFile( "*.*", AllAttributes );

while( !ErrorCode )
(

printf( "\n%125 —— ", DTA.name );
ShowAttributes( DTA.attrib );
++FileCount;

ErrorCode = FindNextFile( );

/* display file count and exit */

printf( “\nCurrent directory contains %d files\n", FileCount );
return( 0 );

)

Figure 8-7. The complete DIRDUMP.Cprogram. (more)

Section IL Programming in the MS—DOS Environment 291

HUAWEI EX. 1010 - 301/1582



Part B: Programming for MS-DOS 

ShowAttributes( a) 
int a; 

int i; 

int mask= 1; 

static char *AttribName[] 

}; 

11 read-only " 
"hidden ", 

"system ", 

"volume ", 

"subdirectory ", 

"archive " 

for( i=O; i<6; i++ 

if( a & mask 
printf( AttribName[i] }; 

mask= mask<< 1; 

Figure 8-7. Continued. 

I* test each attribute bit *I 

I* display a message if bit is set *I 

Programming example: Updating a volume label 

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions 
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to 
search for, rename, create, or delete a volume label in MS-DOS versions 2.0 and later. 

TITLE 'VOLS.ASM' 

C-callable routines for manipulating MS-DOS volume labels. 
Note: These routines modify the current DTA address. 

ARG1 

DGROUP 

_TEXT 

EQU [bp + 4] ; stack frame addressing 

GROUP -DATA 

SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP 

Figure 8-8. Subroutines for manipulating volume labels. 

292 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 302/1582



Article 8: Disk Directories and Volume Labels 

;-----------------------------------------------------------------------------

char *GetVolLabel(); I* returns pointer to volume label name *I 

;-------------------------------------------------------------------------

_Get Vol Label 

L01: 

L02: 

_GetVolLabel 

PUBLIC _GetVolLabel 
PROC 

push 
mov 
push 
push 

call 
mov 
mov 
int 
test 
jnz 

mov 
mov 
call 
mov 
jmp 

xor 

pop 

near 

bp 
bp,sp 
si 
di 

SetDTA ; pass DTA address to MS-DOS 
dx,offset DGROUP:ExtendedFCB 
ah,11h AH = INT 21H function number 
21h ; Search for First Entry 
al,al 
L01 

; label found so make a copy 
si,offset DGROUP:DTA + 8 
di,offset DGROUP:VolLabel 
CopyName 
ax,offset DGROUP:VolLabel 
short L02 

return the copy's address 

ax, ax no label, return 0 (null pointer) 

di 
pop si 
pop bp 
ret 

ENDP 

;-----------------------------------------------------------------------------

int RenameVolLabel( label ); 
char *label; 

I* returns error code *I 
I* pointer to new volume label name *I 

;-----------------------------------------------------------------------------

PUBLIC _RenameVolLabel 
_RenameVolLabel PROC near 

push bp 
mov bp,sp 
push si 
push di 

Figure8-8. Continued. (more) 

Section II: Programming in the MS-DOS Environment 293 

HUAWEI EX. 1010 - 303/1582

 
; char *GetVolLabel();

I ______________________

PUBLIC
_GetVolLabel PROC

push
mov

push
push

call
mov
mov

int
test

jnz

mov
mov

call
mov

jmp

L01: xor

L02: pop
Pop
Pop
ret

_GetVolLabel ENDP

; int RenameVolLabel( label );
; char *label;

PUBLIC
_RenameVolLabel PROC

push
mov

push
push

Figure 8—8. Continued.

Article 8: Disk Directories and Volume Labels

/* returns pointer to volume label name */

_GetVolLabel
near

bp
bplsp
si
di

SetDTA ; pass DTA address to MS-DOS
dx,offset DGROUPzExtendedFCB
ah,11h ; AH = INT 21H function number
21h ; Search for First Entry
al,al
L01

; label found so make a copy

si,offset DGROUPzDTA + 8 '
di,offset DGROUP:VolLabel
CopyName
ax,offset DGROUP:VolLabel ; return the copy's address
short L02

ax,ax ; no label, return 0 (null pointer)

di
si

10?

/* returns error code */

/* pointer to new volume label name */

_RenameVolLabel
near

bp
bp,sp
si
di

(more)

Section 11.- Programming in the MS—DOS Environment 293

HUAWEI EX. 1010 - 303/1582



Part B: Programming for MS-DOS 

mov 

mov 

call 

si,offset DGROUP:VolLabel ; DS:SI -> old volume name 
di,offset DGROUP:Name1 

CopyName ; copy old name to FCB 

mov si,ARG1 

mov di,offset DGROUP:Name2 

call 

mov 

mov 
int 

xor 

pop 

CopyName 

dx,offset 

ah,17h 

21h 
ah,ah 

di 

pop si 
pop bp 

ret 

; copy new name into FCB 

DGROUP:ExtendedFCB ; DS:DX -> FCB 

AH = INT 21H function number 
rename 
AX = OOH (success) or OFFH (failure) 

restore registers and return 

-RenameVolLabel ENDP 

;-----------------------------------------------------------------------------

int NewVolLabel( label ); 

char •label; 
I• returns error code •I 
I• pointer to new volume label name *I 

PUBLIC _NewVolLabel 

_NewVolLabel PROC 

push 
mov 

push 
push 

mov 
mov 

call 

mov 

mov 

int 
xor 

pop 

pop 

pop 

ret 

_NewVolLabel ENDP 

Figure 8-8. Continued. 

294 The MS-DOS Encyclopedia 

near 

bp 
bp,sp 

si 

di 

si,ARG1 
di,offset DGROUP:Name1 

CopyName ; copy new name to FCB 

dx,offset 

ah,16h 

21h 
ah,ah 

di 

si 

bp 

DGROUP:ExtendedFCB 

AH = INT 21H function number 

create directory entry 
AX = OOH (success) or OFFH (failure) 

restore registers and return 

(more) 

HUAWEI EX. 1010 - 304/1582



Article 8: Disk Directories and Volume Labels 

;-----------------------------------------------------------------------------

; int DeleteVolLabel(); I* returns error code *I 

;----------------7------------------------------------------------------------

PUBLIC -DeleteVolLabel 
_DeleteVolLabel PROC near 

push bp 
mov bp, sp 
push si 
push di 

mov 
mov 

si,offset DGROUP:VolLabel 
di,offset DGROUP:Name1 

call 

mov 
mov 
int 
xor 

pop 
pop 

CopyName ; copy current volume name to FCB 

dx,offset 
ah,13h 
21h 
ah,ah 

di 
si 

DGROUP:ExtendedFCB 

AH = INT 21H function number 
delete directory entry 
AX = OOH (success) or OFFH (failure) 

restore registers and return 

pop bp 
ret 

_DeleteVolLabel ENDP 

;-----------------------------------------------------------------------------

miscellaneous subroutines 

;-----------------------------------------------------------------------------

SetDTA 

SetDTA 

PROC 

push 
push 

mov 
mov 

int 

pop 

near 

ax 
dx 

dx,offset 
ah,1Ah 
21h 

dx 
pop ax 
ret 

ENDP 

preserve registers used 

DGROUP:DTA 
AH 

; DS:DX -> DTA 
INT 21H function number 

set DTA 

restore registers and return 

Figure 8-8. Continued. (more) 

Section IL Programming in the MS-DOS Environment 295 

HUAWEI EX. 1010 - 305/1582

 

Article 8: Disk Directories and Volume LabelsW

PUBLIC _DeleteVolLabel
_DeleteVolLabel PROC near

push bp
mov bp,sp
push si
push di

mov si,offset DGROUP:VolLabel
mov di,offset DGROUPzName1
call CopyName ; copy current volume name to FCB

mov dx,offset DGROUP:ExtendedFCB
mov ah,13h ; AH = INT 21H function number

int 21h ; delete directory entry
xor ah,ah ; AX = OCH (success) or OFFH (failure)

pop di ; restore registers and return
pop si
P0P bP
ret

_DeleteVolLabel ENDP

; _____________________________________________________________________________

; miscellaneous subroutines
;
; _____________________________________________________________________________

SetDTA PROC near

push ax ; preserve registers used
push dx

mov dx,offset DGROUPzDTA ; DS:DX —> DTA
mov ah,1Ah ; AH = INT 21H function number
int 21h ; set DTA

pop dx ; restore registers and return
pop ax
ret

SetDTA ENDP

Figure 8—8. Continued. (more)

Section IL Programming in the MS—DOS Environment 295

HUAWEI EX. 1010 - 305/1582



Part B: Programming for MS-DOS 

CopyName PROC near 

push ds 

pop es 

mov ex, 11 

L11: lodsb 

test al,al 

jz L12 

stosb 

loop L11 

L12: mov al, . . 
rep stosb 

ret 

CopyName ENDP 

_TEXT ENDS 

_DATA SEGMENT word public 

VolLabel DB 11 dup(O),O 

ExtendedFCB DB OFFh 

DB 5 dup(O) 

DB 1000b 

DB 0 

Name1 DB 11 dup('?') 

DB 5 dup (0) 

Name2 DB 11 dup(O) 

DB 9 dup(O) 

DTA DB 64 dup (0) 

_DATA ENDS 

END 

Figure 8-8. Continued. 

296 The MS-DOS Encyclopedia 

'DATA' 

Caller: SI -> ASCIIZ source 

DI -> destination 

ES = DGROUP 

length of name field 

copy new name into FCB 

.. until null character is reached 

pad new name with blanks 

must be OFFH for extended FCB 

(reserved) 
attribute byte (bit 3 1) 

default drive ID 
global wildcard name 

(unused) 
second name (for renaming entry) 

(unused) 

Richard Wilton 

HUAWEI EX. 1010 - 306/1582



Article 9: Memory Management 

Article9 
Memory Management 

Personal computers that are MS-DOS compatible can be outfitted with as many as three 
kinds 9f random-access memory (RAM): conventional memory, expanded memory, and 
extended memory. 

All MS-DOS machines have at least some conventional memory, but the presence of ex-
panded or extended memory depends on the installed hardware options and the model of 4 
microprocessor on which the computer is based. Each storage class has its own capabil-
ities, characteristics, and limitations. Each also has its own management techniques, which 
are the subject of this chapter. 

Conventional Memory 

Conventional memory is the term for the up to 1 MB of memory that is directly addressable 
by an lntel8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in 
real mode (8086-emulation mode). Physical addresses for references to conventional 
memory are generated by a 16-bit segment register, which acts as a base register and holds 
a paragraph address, combined with a 16-bit offset contained in an index register or in the 
instruction being executed. 

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy 
the bottom 640 KB or less of the conventional memory space. The memory space above 
the 640 KB mark is partitioned among ROM (read-only memory) chips on the system 
board that contain various primitive device handlers and test programs and among RAM 
and ROM chips on expansion boards that are used for input and output buffers and for ad
ditional device-dependent routines. 

The bottom 640 KB of memory administered by MS-DOS is divided into three zones 
(Figure 9-1): 

• The interrupt vector table 
• The operating system area 
• The transient program area 

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000-
003FFH); its address and length are hard-wired into the processor and cannot be changed. 
Each doubleword position in the table is called an interrupt vector and contains the seg
ment and offset of an interrupt handler routine for the associated hardware or software in
terrupt number. Interrupt handler routines are usually built into the operating system, 

Section Jl- Programming in the MS-DOS Environment 297 

HUAWEI EX. 1010 - 307/1582



Part B: Programming for MS-DOS 

.----R0_M_B_IO-S----, IOOOOOH (I MB) 

additional ROM code 
on expansion boards, 
memory-mapped I/0 

buffers 

Transient 
program area 

MS-DOSand 
its buffers, tables, 
and device drivers 

Interrupt vector table 

AOOOOH (640 KB) 

Boundary varies 

00400H (I KB) 

OOOOOH 

Figure 9-1. A diagram showing conventional memory in an IBM PC-compatible MS-DOS system. The bottom 
1024 bytes of memory are used for the interrupt vector table. The memory above the vector table, up to the 640 
KB boundary, is available for use by MS-DOS and the programs that run under its control. The top 384 KB are 
used for the ROM BIOS, other device-control and diagnostic routines, and memory-mapped input and output. 

but in special cases application programs can contain handler routines of their own. 
Vectors for interrupt numbers that are not used for software linkages or by some hardware 
device are usually initialized by the operating system to point to a simple interrupt return 
(IRET) instruction or to a routine that displays an error message. 

The operating-system area begins immediately above the interrupt vector table and 
holds the operating system proper, its tables and buffers, any additional installable device 
drivers specified in the CONFIG.SYS file, and the resident portion of the COMMAND. COM 
command interpreter. The amount of memory occupied by the operating-system area 
varies with the version of MS-DOS being used, the number of disk buffers, and the number 
and size of installed device drivers. 

The transient program area (TPA) is the remainder of RAM above the operating-system 
area, extending to the 640 KB limit or to the end of installed RAM (whichever is smaller). 
External MS-DOS commands (such as CHKDSK) and other programs are loaded into the 
TPA for execution. The transient portion of COMMAND. COM also runs in this area. 

The TPA is organized into a structure called the memory arena, which is divided into por
tions called arena entries (or memory blocks). These entries are allocated in paragraph 
(16-byte) multiples and can be as small as one paragraph or as large as the entire TPA. 
Each arena entry is preceded by a control structure called an arena entry header, which 
contains information indicating the size and status of the arena entry. 

298 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 308/1582



Article 9: Memory Management 

MS-DOS inspects the arena entry headers whenever a function requesting a memory
block allocation, modification, or release is issued; when a program is loaded and exe
cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to 
the calling process .. Ifthat process is COMMAND.COM, COMMAND.COM then displays 
the message Memory allocation error and halts the system. 

MS-DOS support for conventional memory management 

The MS-DOS kernel supports three memory-management functions, invoked with Inter
rupt 21H, that operate on the TPA: 

• Function 48H (Allocate Memory Block) 
• Function 49H (Free Memory Block) 
• Function 4AH (Resize Memory Block) 

These three functions (Table 9-1) can be called by application programs, by the command 
processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries 
as they are needed. See SYSTEM CALLS: INTERRUPT 21H: Functions 48H; 49H; 4AH. 

Table 9-1. MS-DOS Memory-Management Functions. 

Function Name 

Allocate Memory Block 

Free Memory Block 

Resize (Allocated) 
Memory Block 

Get/Set Allocation 
Strategy* 

• MS-DOS versions 3.x only. 

Cali With 

AH=48H 
BX = paragraphs needed 

AH=49H 
ES = segment of block to 

release 
AH=4AH 
BX = new size of block in 

paragraphs 
ES = segment of block to 

resize 
AH= 58H 
AL = OOH (get strategy) 

OlH (set strategy) 
If setting: 
BX = strategy: 

OOH = first fit 
OlH = best fit 
02H = last fit 

Returns 

AX = segment of allocated 
block 

If failed: 
BX = size of largest available 

block in paragraphs 
nothing 

If failed: 
BX = maximum size 

for block in paragraphs 

If getting: 
AX = strategy code 

Section IL- Programming in the MS-DOS Environment 299 

HUAWEI EX. 1010 - 309/1582

 

Article 9: Memory Management 

MS—DOS inspects the arena entry headers whenever a function requesting a memory-
block allocation, modification, or release is issued; when a program is loaded and exe—

cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi-
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to

the calling process. If that process is COMMANDCOM, COMMANDCOM then displays
the message Memory allocation error and halts the system.

MS-DOS support for conventional memory management

The MS-DOS kernel supports three memory-management functions, invoked with Inter~
rupt 21H, that operate on the TPA:

0 Function 48H (Allocate Memory Block)

0 Function 49H (Free Memory Block)

0 Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command

processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries

as they are needed. See SYSTEM CALLS: INTERRUPT 21H: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-Management Functions.

Function Name Call With Returns

Allocate Memory Block AH = 48H AX = segment of allocated

' BX = paragraphs needed block
If failed:

BX = size of largest available

block in paragraphs

Free Memory Block AH = 49H nothing

E8 = segment of block to
release

Resize (Allocated) AH = 4AH If failed:

Memory Block BX = new size of block in BX = maximum size

paragraphs - for block in paragraphs

ES = segment of block to
resize

Get/Set Allocation AH = 58H If getting:

Strategy* ' AL = OOH (get strategy) AX = strategy code

01H (set strategy)

If setting:

BX = strategy:
OOH = first fit

01H = best fit

02H = last fit
 

‘ MS-DOS versions 3.x only.

Section Il- Programming in the MS—DOS Environment 299

HUAWEI EX. 1010 - 309/1582



Part B: Programming for MS-DOS 

When the MS-DOS kernel receives a memory-allocation request, it inspects the chain of 
arena entry headers to find a free arena entry that can satisfy the request. The memory 
manager can use any of three allocation strategies: 

• First fit-the arena entry at the lowest address that is large enough to satisfy the 
request 

• Best fit-the smallest available arena entry that satisfies the request, regardless of its 
position 

• Last fit-the arena entry at the highest address that is large enough to satisfy the 
request 

If the arena entry selected is larger than the size needed to fulfill the request, the arena 
entry is divided and the program is given an arena entry exactly the size it requires. A new 
arena entry header is then created for the remaining portion of the original arena entry; it 
is marked "unowned" and can be used to satisfy subsequent allocation calls. 

Research on allocation strategies has demonstrated that the first -fit approach is most 
efficient, and this is the default strategy used by MS-DOS. However, in MS-DOS versions 
3.0 and later, an application program can select a different strategy for the memory man
ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS: 
INTERRUPT 21H: Function 58H. 

Using the me1n:or~-management functions 

When a program begins executing; it already owns two arena entries allocated on its 
behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). The first entry holds 
the program's environment and is just large enough to contain this information; the second 
entry (called the program block in this article) contains the program's PSP, code, data, and 
stack. 

The amount of memory MS-DOS allocates to the program block for a newly loaded tran
sient program depends on its type (.COM or .EXE). Under typical conditions, a .COM pro
gram is allocated all of the first arena entry that is large enough to hold the contents of its 
file, plus 256 bytes for the PSP and at least 2 bytes for the stack. Because the TP A is seldom 
fragmented into more than one arena entry before a program is loaded, a .COM program 
usually ends up owning all the memory in the system that does not belong to the operat
ing system itself-memory divided between a relatively small environment and a com
paratively immense program block. 

The amount of memory allocated to a .EXE program, on the other hand, is controlled 
by two fields called MINALLOC and MAXALLOC in the .EXE program file header. The 
MINALLOC field tells the MS-DOS loader how many paragraphs of memory, in addition to 
the memory required to hold the initialized code and the data present in the file, must be 
available for the program to execute at all. The MAXALLOC field contains the maximum 
number of excess paragraphs, if available, to allocate to the program. 

300 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 310/1582



Article 9: Memory Management 

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para
graphs, corresponding to 1MB. Consequently, a .EXE program is typically allocated all of 
available memory when it is loaded, as is a .COM file. Although it is possible to set the 
MAXALLOC field to other, smaller values with the linker's /CPARMAXALLOC switch or 
with the EXEMOD utility supplied with Microsoft language compilers, few programmers 
bother to do so. 

In short, when a program begins executing, it usually owns all of available memory
frequently much more memory than it needs. If the program wants to be well behaved in 
its use of memory and, possibly, load child programs as well, it should immediately release 
any extra memory. In assembly-language programs, the extra memory is released by call
ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program's 
PSP in the ES register and the number of paragraphs of memory to retain for the program's 
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as 
Microsoft C, excess memory is released by the run-time library's startup module. 

_TEXT segment para public 'CODE' 

org 1 DOh 

assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT 

main proc near 

mov sp,offset 

mov bx,offset 
mov cl,4 
shr bx,cl 
inc bx 
mov ah,4ah 
int 21h 
jc error 

main endp 

stk 

stk 

entry point from MS-DOS 
CS = DS = ES = SS = PSP 

first move our stack 
to a safe place ... 

now release extra memory ... 
calculate paragraphs to keep 
(divide offset of end of 
program by 16 and round up) 

Fxn 4AH = resize mem block 

transfer to MS-DOS 
jump if resize failed 

otherwise go on with work ... 

(more) 

Figure 9-2. An example of a . COM program releasing excess memory after it receives control from MS-DOS. 
Interrupt 21H Function 4AH is called with the segment address of the program~ PSP in register ES and the 
number of paragraphs of memory to retain in register BX. 

Section II: Programming in the MS-DOS Environment 301 

HUAWEI EX. 1010 - 311/1582

Article 9: Memory Management 

 

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para-
graphs, corresponding to 1 MB. Consequently, a .EXE program is typically allocated all of
available memory when it is loaded, as is a .COM file. Although it is possible to set the

MAXALLOC field to other, smaller values with the linker’s /CPARMAXALLOC switch or

with the EXEMOD utility supplied with Microsoft language compilers, few programmers
. bother to do so.

In short, when a program begins executing, it usually owns all of available memory—
frequently much more memory than it needs. If the program wants to be well behaved in

its use of memory and, possibly, load child programs as well, it should immediately release
any extra memory. In assembly—language programs, the extra memory is released by call-

ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program’s

PSP in the ES register and the number of paragraphs of memory to retain for the program’s

use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as

Microsoft C, excess memory is released by the run-time library’s startup module.

_TEXT segment para public 'CODE'

org 100h

assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT

main proc near ; entry point from MS-DOS
; CS = DS = E8 = SS = PSP

; first move our stack

mov sp,offset stk ; to a safe place...

; now release extra memory...
mov bx,offset stk ; calculate paragraphs to keep

mov cl,4 ; (divide offset of end of
shr va,cl ; program by 16 and round up)
inc bx

mov ah,4ah ; Fxn 4AH = resize mem block
int 21h ; transfer to MS-DOS

jc error ; jump if resize failed

; otherwise go on with work...

main endp

(more)

Figure 9-2. An example ofa .COMprogram releasing excess memory after it receives controlfrom MS-DOS.
Interrupt 21HFunction 4AH is called with the segment address oftheprogram ’5 PSP in registerES and the
number ofparagraphs ofmemory to retain in registerBX.

Section 11.- Programming in the MS-DOS Environment 50 1

HUAWEI EX. 1010 - 311/1582



Part B: Programming for MS-DOS 

stk 
dw 

equ 

_TEXT ends 

end 

64 dup (?) 

$ 

main 

Figure 9-2. Continued. 

_TEXT segment word public 'CODE' 

base of new stack area 

defines program entry point 

; executable code segment 

assume cs:_TEXT,ds:_DATA,ss:STACK 

main proc far 

mov ax,_DATA 
mov ds,ax 

mov ax,es 
mov bx,ss 
sub bx,ax 
add bx,stksize/16 
inc bx 
mov ah,4ah 
int 21h 
jc error 

main endp 

_TEXT ends 

_DATA segment word public 'DATA' 

_DATA ends 

entry point from MS-DOS 
CS _TEXT segment, 

DS ES = PSP 

set DS our data segment 

give back extra memory ... 
let AX = segment of PSP base 
and BX = segment of stack base 
reserve seg stack - seg psp 
plus paragraphs of stack 
round up 

Fxn 4AH = resize memory block 
transfer to MS-DOS 
jump if resize failed 

static & variable data 

(more) 

Figure 9-3. An example of a .EXE program releasing excess memory after it receives control from MS-DOS. 
This particular code sequence depends on the segment order shown. When a .EXE program is linked from 
many different object modules, other techniques may be needed to determine the amount of memory occupied 
by the program at run time. 

302 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 312/1582



Article 9: Memory Management 

STACK segment para stack 'STACK' 

db stksize dup (?) 

STACK ends 

end main defines program entry point 

Figure 9-3. Continued. 

Later, if the transient program needs additional memory for a buffer, table, or other work 
area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired 
number of paragraphs. If a sufficiently large block of memory is available, MS-DOS creates 4 
a new arena entry of the requested size and returns a pointer to its base in the form of a 
segment address in the AX register. If an arena entry of the requested size cannot be cre-
ated, MS-DOS returns an error code in the AX register and the size in paragraphs of the 
largest available block of memory in the BX register. The application program can inspect 
this value to determine whether it can continue in a degraded fashion with a smaller 
amount of memory. 

When a program finishes using an allocated arena entry, it should promptly call Interrupt 
21H Function 49H to release it. This allows MS-DOS to collect small blocks of freed mem
ory into contiguous arena entries and reduces the chance that future allocation requests by 
the same program will fail because of memory fragmentation. In any case, all arena entries 
owned by a program are released when the program terminates with Interrupt 20H or 
with Interrupt 21H Function OOH or 4CH. 

A program skeleton demonstrating the use of dynamic memory allocation services is 
shown in Figu~e 9~4. 

mov 
mov 
int 
jc 
mov 

mov 
mov 
int 
jc 
mov 

bx,800h 
ah,48h 
21h 
error 
bufseg,ax 

dx,offset file1 
ax,3d00h 
21h 
error 
handle1,ax 

800H paragraphs = 32 KB 
Fxn 48H = allocate block 
transfer to MS-DOS 
jump if allocation failed 
save segment of block 

open working file ... 
DS:DX = filename address 
Fxn 3DH = open, read only 

transfer to MS-DOS 
jump if open failed 
save handle for work file 

(more) 

Figure 9-4. A skeleton example of dynamic memory allocation. The program requests a 32 KB memory block, 
uses it to copy its working file to a backup file, and then releases the memory block. Note the use of ASSUME 
directives to force the assembler to generate proper segment overrides on references to variables containingfile 
handles. 

Section II: Programming in the MS-DOS Environment 303 

HUAWEI EX. 1010 - 313/1582



Part B: Programming for MS-DOS 

create backup file ... 
mov dx,offset file2 DS:DX = filename address 
mov cx,O ex = attribute (normal) 
mov ah,3ch Fxn 3CH = create file 
int 21h transfer to MS-DOS 

jc error jump if create failed 
mov handle2,ax save handle for backup file 

push ds set ES = our data segment 

pop es 

mov ds,bufseg set DS:DX allocated block 

xor dx,dx 

assume ds:NOTHING,es:_DATA ; tell assembler 

next.: read working file ... 

mov bx,handle1 handle for work file 
mov cx,8000h try to read 32 KB 
mov ah,3fh Fxn 3FH = read 
int 21h transfer to MS-DOS 
jc error jump if read failed 
or ax, ax was end of file reached? 
jz done yes, exit this loop 

now write backup file ... 
mov ex, ax set write length = read length 
mov bx,handle2 handle for backup file 
mov ah,40h Fxn 40H = write 
int 21h transfer to MS-DOS 
jc error jump if write failed 
cmp ax, ex was write complete? 
jne error no, disk must be full 
jmp next transfer anothe.r record 

done: push es restore DS data segment 
pop ds 

assume ds:_DATA,es:NOTHING tell assembler 

mov 
mov 

int 

jc 

mov 

. mov 
int 

jc 

es,bufseg 

ah,49h 

21h 

error 

bx,handle2 

ah,3eh 

21h 

error 

Figure 9-4. Continued. 

304 The MS-DOS Encyclopedia 

release allocated block ... 

segment base of block 

Fxn 49H = release block 
transfer to MS-DOS 

(should never fail) 

now close backup file ... 

handle for backup file 

Fxn 3EH = close 

transfer to MS-DOS 

jump if close failed 

(more) 

HUAWEI EX. 1010 - 314/1582



Article 9: Memory Management 

file1 db 'MYFILE.DAT',O name of working file 

file2 db 'MYFILE.BAK',O name of backup file 

handle1 dw ? handle for working file 
handle2 dw ? handle for backup file 

bufseg dw ? segment of allocated block 

Figure 9-4. Continued. 

Expanded Memory 

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint 
effort of Lotus Development Corporation and Intel Corporation and was announced at the 
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica
tions running on 8086/8088-based personal computers, or on 80286/80386-based com
puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing 
such programs with much larger amounts of fast random-access storage. The EMS version 
3.2, modified from 3.0 to add support for multitasking operating systems, was released 
shortly afterward as a joint effort of Lotus, Intel, and Microsoft. 

The EMS is a functional definition of a bank-switched memory subsystem; it consists of 
user-installable boards that plug into the IBM PC's expansion bus and a resident driver pro
gram called the Expanded Memory Manager (EMM) that is provided by the board manu
(acturer. As much as 8 MB of expanded memory can be installed in a single machine. 
Expanded memory is made available to application software in 16 KB pages, which are 
mapped by the EMM into a contiguous 64 KB area called the page frame somewhere 
above the conventional memory area used by MS-DOS {0-640 KB). An application pro
gram can thus access as many as four 16 KB expanded memory pages simultaneously. The 
location of the page frame is user configurable so that it will not conflict with other hard
ware options (Figure 9-5). 

The Expanded Memory Manager 

The Expanded Memory Manager provides a hardware-independent interface between 
application programs and the expanded memory board(s). The EMM is supplied by the. 
board manufacturer in the form of an installable character-device driver and is linked into 
MS-DOS by a DEVICE directive added to the CONFIG.SYS file on the system startup disk. 

Internally, the EMM is divided into two distinct components that can be referred to as the 
driver and the manager. The driver portion mimics some of the actions of a genuine in
stallable device driver, in that it includes Initialization and Output Status subfunctions and 
a valid device header. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZ
ING Ms-nos: Installable Device Drivers. 

Section IL- Programming in the MS-DOS Environment 305 

HUAWEI EX. 1010 - 315/1582

 

Article 9: Memory ManagementW

filel db 'MYFILE.DAT',0 ; name of working file
file2 db 'MYFILE.BAK',O ; name of backup file

handlel dw ? ; handle for working file
handleZ dw ? ; handle for backup file
bufseg dw ? ; segment of allocated block

Figure 9-4. Continued.

Expanded Memory

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint

effort of Lotus Development Corporation and Intel Corporation and was announced at the
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica-

tions running on 8086/8088-based personal computers, or on 80286/80386-based com—

puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing

such programs with much larger amounts of fast random-access storage. The EMS version

3.2, modified from 3.0 to add support for multitasking operating systems, was released

shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMS is a functional definition of a bank—switched memory subsystem; it consists of

user-installable boards that plug into the IBM PC’s expansion bus and a resident driver pro—

gram called the Expanded Memory Manager (EMM) that is provided by the board manu-

facturer. As much as 8 MB of expanded memory can be installed in a single machine.

Expanded memory is made available to application software in 16 KB pages, which are

mapped by the EMM into a contiguous 64 KB area called the page frame somewhere

above the conventional memory area used by MS—DOS (0—640 KB). An application pro-

gram can thus access as many as four 16 KB expanded memory pages simultaneously. The

location of the page frame is user configurable so that it will not conflict with other hard—

ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Manager provides a hardware-independent interface between

application programs and the expanded memory board(s). The EMM is supplied by the.
board manufacturer in the form of an installable character-device driver and is linked into

MS-DOS by a DEVICE directive added to the CONFIGSYS file on. the system startup disk.

Internally, the EMM is divided into two distinct components that can be referred to as the

driver and the manager. The driver portion mimics some of the actions of a genuine in—

stallable device driver, in that it includes Initialization and Output Status subfunctions and
a valid device header. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: CUSTOMIZ-

ING MS-DOS: Installable Device Drivers.

Section 11- Programming in the MS-DOS Environment 305,

HUAWEI EX. 1010 - 315/1582



Part B: Programming for MS-DOS 

1MB 

EMS page frame { 
(four 16 KB pages) 

640KB 

00400H 

0 

Conventional memory 

ROM BIOS etc. 

Transient program area 

MS-DOS 

Interrupt vector table 

Expanded memory 
8MB 

-:--, -

0 

Figure 9-5. A sketch of the relationship of expanded memory to conventional memory; 16 KB pages of 
expanded memory are mapped into a 64 KB area, called the page frame, above the 640 KB boundary. The 
location of the page frame can be configured by the user to eliminate conflicts with ROMs or 1/0 buffers on 
expansion boards. 

The second, and major, element of the EMM is the true interface between application soft
ware and the expanded memory hardware. Several classes of services provide 

• Status of the expanded memory subsystem 
• Allocation of expanded memory pages 
• Mapping of logical pages into physical memory 
• Deallocation of expanded memory pages 
• Support for multitasking operating systems 
• Diagnostic routines 

Application programs communicate with the EMM directly by means of a software inter
rupt (Interrupt 67H). The MS-DOS kernel does not take part in expanded memory 
manipulations and does not use expanded memory for its own purposes. 

306 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 316/1582



Article 9: Memory Management 

Checking for expanded memory 

Before it attempts to use expanded memory for storage, an application program must 
establish that the EMM is present and functional, and then it must use the manager portion 
of the EMM to check the status of the memory boards themselves. There are two methods 
a program can use to test for the existence of the EMM. 

The first method is to issue an Open File or Device request (Interrupt 21H Function 3DH) 
using the guaranteed device name of the EMM driver: EMMXXXXO. If the open operation 
succeeds, one of two conditions is indicated- either the driver is present or a file with the 
same name exists in the current directory of the default disk drive. To rule out the latter 
possibility, the application can issue IOCTL Get Device Information (Interrupt 21H Func- 4 
tion 44H Subfunction OOH) and Check Output Status (Interrupt 21H Function 44H Subfunc-
tion 07H) requests to determine whether the handle returned by the open operation is 
associated with a file or with a device. In either case, the handle that was obtained from 
the open function should then be closed (Interrupt 21H Function 3EH) so that it can be 
reused for another file or device. 

The second method of testing for the driver is to use the address that is found in the vector 
for Interrupt 67H to inspect the device header of the presumed EMM. (The contents of 
the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is 
present, the name field at offset OAH of the device header contains the string EMMXXXXO. 
This method is nearly foolproof, and it avoids the relatively high overhead of an MS-DOS 
open function. However, it is somewhat less well behaved because it involves inspection 
of memory that does not belong to the application. 

The two methods of testing for the existence of the EMM are illustrated in Figures 9-6 and 
9-7. 

attempt to "open" EMM ... 
mov dx,seg emm_name DS:DX = address of name 
mov ds,dx of EMM 
mov dx,offset emm_name 
mov ax,3d00h Fxn 3DH, Mode= OOH 

= open, read-only 
int 21 h transfer to MS-DOS 
jc error jump if open failed 

open succeeded, make sure 
it was not a file ... 

(more) 

Figure 9-6. Testing for the presence of the Expanded Memory Manager with the MS-DOS Open File or Device 
(interrupt 21H Function 3D H) and IOCTL (Interrupt 21H Function 44H) functions. 

Section /1· Programming in the MS-DOS Environment 307, 

HUAWEI EX. 1010 - 317/1582



Part B: Programming for MS-DOS 

mov bx,ax 

mov ax,4400h 

int 21h 

jc error 
and dx,80h 
jz error 

mov ax,4407h 

int 21h 

jc error 
or al,al 

jz error 

mov ah,3eh 
int 21h 

jc error 

e!T11lLname db 'EMMXXXXO',O 

Figure 9-6. Continued. 

e!T11lLint equ 

mov 

mov 

int 

67h 

al,elT11TLint 

ah,35h 

21h 

BX = handle from open 
Fxn 44H Subfxn DOH 

= IOCTL Get Device Information 
transfer to MS-DOS 
jump if IOCTL call failed 
Bit 7 = 1 if character device 
jump if it was a file 

EMM is present, make sure 

it is available ... 

(BX still contains handle) 

Fxn 44H Subfxn 07H 

= IOCTL Get Output Status 
transfer to MS-DOS 
jump if IOCTL call failed 
test device status 
if AL = 0 EMM is not available 

now close handle ... 
(BX still contains handle) 

Fxn 3EH = Close 
transfer to MS-DOS 
jump if close failed 

guaranteed device name for EMM 

EMM software interrupt 

first fetch contents of 

EMM interrupt vector ... 
AL = EMM int number 

Fxn 35H = get vector 

transfer to MS-DOS 

now ES:BX = handler address 

assume ES:OOOO points 

to base of the EMM ... 

(more) 

Figure 9-7. Testing for the presence of the Expanded Memory Manager by inspecting the name field in the 
device driver header. 

308 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 318/1582



Article 9: Memory Management 

mov di,10 ES:DI =address of name 
field in device header 

mov si,seg emm_name DS:SI =address of 
mov ds,si expec\ed EMM driver name 
mov si,offset emm_name 
mov cx,B length of name field 
cld 
repz cmpsb compare names ... 
jnz error jump if driver absent 

emm_name db 'EMMXXXXO' guaranteed device name for EMM 

Figure 9-7. Continued. 

Using expanded memory 

After establishing that the EMM is present, the application program can bypass MS-DOS 
and communicate with the EMM directly by means of software Interrupt 67H. The calling 
sequence is as follows: 

mov ah,function AH selects EMM function 

Load other registers with 
values specific to the 
requested service 

int 67h Transfer to EMM 

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the 
DX register is used to hold an expanded memory "handle." Some EMM functions also use 
other registers (chiefly ALand BX) to pass such information as logical and physical page 
numbers. Table 9-2 summarizes the services available from the EMM. 

Upon return from an EMM function call, the AH register contains zero if the function was 
successful; otherwise, AH contains an error code with the most significant bit set (Table 
9-3). Other values are typically returned in the ALand BX registers or in a user-specified 
buffer. 

Section II: Programming in the MS-DOS Environment 309 

HUAWEI EX. 1010 - 319/1582

 

Article 9: Memory Managementw

mov di,10 ; ES:DI = address of name
; field in device header

mov si,seg emm_name ; DS:SI = address of

mov ds,si ; expected EMM driver name
mov si,offset emm_name
mov cx,8 ; length of name field
cld

repz cmpsb ; compare names...
jnz error ; jump if driver absent

emm_name db 'EMMXXXXO' ; guaranteed device name for EMM

Figure 9- 7. Continued.

Using expanded memory

After establishing that the EMM is present, the application program can bypass MS-DOS

and communicate with the EMM directly by means of software Interrupt 67H. The calling
sequence is as follows:

mov ah,function ; AH selects EMM function

; Load other registers with
; values specific to the
; requested service

int 67h ; Transfer to EMM

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the

DX register is used to hold an expanded memory “handle.” Some EMM functions also use

other registers (chiefly AL and BX) to pass such information as logical and physical page

numbers. Table 9—2 summarizes the services available from the EMM.

Upon return from an EMM function call, the AH register contains zero if the function was

successful; otherwise, AH contains an error code with the most significant bit set (Table

9—5). Other values are typically returned in the AL and BX registers or in a user-specified
buffer.

Section 11: Programming in theMS-DOS Environment 309

HUAWEI EX. 1010 - 319/1582



U
J 

T
ab

le
 9

-2
. 

S
u

m
m

a
ry

 o
f t

h
e 

S
of

tw
ar

e 
In

te
rf

ac
e 

to
 A

p
p

li
ca

ti
on

 P
ro

gr
am

s 
P

ro
vi

d
ed

 b
y

 th
e 

E
M

M
. *

 
"0

 
.....

. 
., 

0 
::I

 

F
u

n
ct

io
n

 
C

al
l 

~
 

"0
 

N
am

e 
A

ct
io

n
 

W
it

h
 

R
et

ur
ns

 
C

om
m

en
ts

 
.... 

;;;l
 

a'6
 

"' 
.... 

~ 
G

et
 M

an
ag

er
 

T
es

t w
he

th
er

 th
e 

A
H

=
4

0
H

 
A

H
=

st
at

u
s 

T
hi

s 
ca

ll
 is

 u
se

d 
af

te
r 

th
e 

pr
og

ra
m

 h
as

 e
st

ab
li

sh
ed

, w
it

h 
3 

6 
S

ta
tu

s 
ex

pa
nd

ed
 m

em
or

y 
on

e 
of

 th
e 

te
ch

ni
qu

es
 p

re
se

nt
ed

 in
 F

ig
ur

es
 9

-6
 a

n
d

 9
-7

, 
i3 

0 
so

ft
w

ar
e 

an
d

 h
ar

dw
ar

e 
th

at
 th

e 
EM

M
 is

 p
re

se
nt

. 
Jg.

 

"' 
i5

' 
~ 

ar
e 

fu
nc

ti
on

al
. 

.... 

<!d
 

E::
 

Q
 

G
et

 P
ag

e 
O

bt
ai

n 
th

e 
se

gm
en

t 
A

H
=

4
1

H
 

A
H

=
st

at
u

s 
T

h
e 

pa
ge

 fr
am

e 
is

 d
iv

id
ed

 in
to

 fo
ur

 1
6 

K
B

 p
ag

es
 th

at
 a

re
 

6 
.g

 
0 

\%
.. 

F
ra

m
e 

S
eg

m
en

t 
ad

dr
es

s 
o

f t
h

e 
EM

M
 p

ag
e 

B
X

 =
 s

eg
m

en
t o

f p
ag

e 
us

ed
 to

 m
ap

 lo
gi

ca
l e

xp
an

de
d 

m
em

or
y 

pa
ge

s 
in

to
 th

e 
V

l 

~S
· 

fr
am

e.
 

fr
am

e,
 i

f A
H

 =
 O

O
H

 
ph

ys
ic

al
 m

em
or

y 
sp

ac
e 

of
 th

e 
80

86
/8

08
8 

pr
oc

es
so

r.
 

G
et

 E
xp

an
de

d 
O

bt
ai

n 
th

e 
nu

m
be

r 
A

H
=

4
2

H
 

A
H

=
st

at
u

s 
T

h
e 

ap
pl

ic
at

io
n 

n
ee

d
 n

ot
 h

av
e 

al
re

ad
y 

ac
qu

ir
ed

 a
n

 E
M

M
 

M
em

or
y 

P
ag

es
 

of
 lo

gi
ca

l e
xp

an
de

d 
B

X
 =

 u
na

ll
oc

at
ed

 E
M

M
 

ha
nd

le
 to

 u
se

 th
is

 fu
nc

ti
on

. 
m

em
or

y 
pa

ge
s 

pr
es

en
t 

pa
ge

s,
 if

 A
H

 =
 O

OH
 

in
 th

e 
sy

st
em

 a
n

d
 th

e 
O

X
 =

 to
ta

l E
M

M
 p

ag
es

 in
 

nu
m

be
r o

f p
ag

es
 th

at
 a

re
 

sy
st

em
 

no
t a

lr
ea

dy
 a

ll
oc

at
ed

. 

A
ll

oc
at

e 
O

bt
ai

n 
an

 E
M

M
 h

an
dl

e 
A

H
=

4
3

H
 

A
H

=
 s

ta
tu

s 
T

hi
s 

fu
nc

ti
on

 is
 e

qu
iv

al
en

t t
o 

a 
fi

le
-o

pe
n 

fu
nc

ti
on

 fo
r 

th
e 

E
xp

an
de

d 
an

d
 a

ll
oc

at
e 

lo
gi

ca
l 

B
X

 =
 lo

gi
ca

l p
ag

es
 

O
X

=
 h

an
dl

e,
 i
f A

H
 =

 
EM

M
. T

he
 h

an
dl

e 
re

tu
rn

ed
 is

 a
na

lo
go

us
 to

 a
 fi

le
 h

an
dl

e 
M

em
or

y 
pa

ge
s 

to
 b

e 
co

nt
ro

ll
ed

 b
y 

to
 a

ll
oc

at
e 

OO
H 

an
d

 o
w

ns
 a

 c
er

ta
in

 n
um

be
r 

o
f E

M
M

 p
ag

es
. T

h
e 

ha
nd

le
 

th
at

 h
an

dl
e.

 
m

us
t b

e 
us

ed
 w

it
h 

ev
er

y 
su

bs
eq

ue
nt

 re
qu

es
t t

o 
m

ap
 

m
em

or
y 

an
d 

m
us

t b
e 

re
le

as
ed

 b
y

 a
 c

lo
se

 o
pe

ra
ti

on
 w

h
en

 
th

e 
ap

pl
ic

at
io

n 
is

 f
in

is
he

d.
 

T
hi

s 
fu

nc
ti

on
 c

an
 fa

il 
be

ca
us

e 
ei

th
er

 th
e 

av
ai

la
bl

e 
EM

M
 

ha
nd

le
s 

or
 th

e 
EM

M
 p

ag
es

 h
av

e 
b

ee
n

 e
xh

au
st

ed
. 

F
un

ct
io

n 
42

H
 c

an
 b

e 
ca

ll
ed

 b
y 

th
e 

ap
pl

ic
at

io
n 

to
 

de
te

rm
in

e 
th

e 
ac

tu
al

 n
um

be
r o

f p
ag

es
 a

va
ila

bl
e.

 

M
ap

 M
em

or
y 

M
ap

 o
n

e 
o

f t
h

e 
lo

gi
ca

l 
A

H
=

4
4

H
 

A
H

=
 s

ta
tu

s 
T

h
e 

lo
gi

ca
l p

ag
e 

nu
m

be
r m

us
t b

e 
in

 th
e 

ra
ng

e 
0

-n
-1

, 

pa
ge

s 
o

f e
xp

an
de

d 
A

L 
=

 p
hy

si
ca

l p
ag

e 
w

he
re

 n
 i

s 
th

e 
nu

m
be

r o
f l

og
ic

al
 p

ag
es

 p
re

vi
ou

sl
y 

m
em

or
y 

as
si

gn
ed

 to
 a

 
(0

-3
) 

al
lo

ca
te

d 
to

 t
he

 E
M

M
 h

an
dl

e 
w

it
h 

F
un

ct
io

n 
43

H
. 

ha
nd

le
 o

nt
o 

on
e 

o
f t

h
e 

B
X

 =
 lo

gi
ca

l p
ag

e 
T

o 
ac

ce
ss

 t
h

e 
m

em
or

y 
af

te
r i

t h
as

 b
ee

n
 m

ap
pe

d 
to

 a
 

fo
ur

 p
hy

si
ca

l p
ag

es
 

(0
 ..

. n
-1

) 
w

it
hi

n 
th

e 
E

M
M

's 
pa

ge
 

O
X

=
 E

M
M

 h
an

dl
e 

ph
ys

ic
al

 p
ag

e,
 t

h
e 

ap
pl

ic
at

io
n 

al
so

 n
ee

ds
 th

e 
se

gm
en

t o
f 

fr
am

e.
 

th
e 

E
M

M
's 

pa
ge

 fr
am

e,
 w

hi
ch

 c
an

 b
e 

ob
ta

in
ed

 w
it

h 
F

un
ct

io
n 

41
H

. 

~
-
-
-

HUAWEI EX. 1010 - 320/1582



R
el

ea
se

 H
an

dl
e 

D
ea

ll
oc

at
e 

th
e 

lo
gi

ca
l 

A
H

=
4

5
H

 
A

H
=

st
at

u
s 

T
hi

s 
fu

nc
ti

on
 is

 t
he

 e
qu

iv
al

en
t o

f a
 c

lo
se

 o
pe

ra
ti

on
 o

n
 

an
d

 M
em

or
y 

pa
ge

s 
o

f e
xp

an
de

d 
D

X
 =

 E
M

M
 h

an
dl

e 
a 

fi
le

. 
It

 n
ot

if
ie

s 
th

e 
EM

M
 t

ha
t t

he
 a

pp
li

ca
ti

on
 w

il
l n

ot
 b

e 
m

em
or

y 
cu

rr
en

tl
y 

m
ak

in
g 

fu
rt

he
r 

us
e 

o
f t

he
 d

at
a 

it
 m

ay
 h

av
e 

st
or

ed
 w

it
hi

n 
as

si
gn

ed
 to

 a
 h

an
dl

e 
ex

pa
nd

ed
 m

em
or

y 
pa

ge
s.

 
an

d
 th

en
 re

le
as

e 
th

e 
ha

nd
le

 it
se

lf
 fo

r 
re

us
e.

 

G
et

E
M

M
 

R
et

ur
n 

th
e 

ve
rs

io
n 

A
H

=
4

6
H

 
A

H
=

st
at

u
s 

T
h

e 
re

tu
rn

ed
 v

al
ue

 is
 t

h
e 

ve
rs

io
n 

o
f t

h
e 

EM
M

 w
it

h 
w

hi
ch

 
V

er
si

on
 

nu
m

be
r 

o
f t

h
e 

EM
M

 
A

L 
=

 E
M

M
 v

er
si

on
, 

th
e 

dr
iv

er
 c

om
pl

ie
s.

 T
h

e 
ve

rs
io

n 
nu

m
be

r i
s 

en
co

de
d 

as
 

so
ft

w
ar

e.
 

if
A

H
=

O
O

H
 

B
C

D
, w

it
h 

th
e 

in
te

ge
r p

ar
t i

n 
th

e 
u

p
p

er
 4

 b
it

s 
an

d
 th

e 
fr

ac
ti

on
al

 p
ar

t i
n 

th
e 

lo
w

er
 4

 b
its

. 

Sa
ve

 M
ap

pi
ng

 
Sa

ve
 t

he
 c

on
te

nt
s 

o
f t

h
e 

A
H

=
4

7
H

 
A

H
 =

st
at

us
 

T
hi

s 
fu

nc
ti

on
 is

 d
es

ig
ne

d 
fo

r 
us

e 
b

y
 in

te
rr

up
t h

an
dl

er
s 

C
on

te
xt

 
ex

pa
nd

ed
 m

em
or

y 
pa

ge
-

D
X

 =
 E

M
M

 h
an

dl
e 

an
d

 re
si

de
nt

 d
ri

ve
rs

 o
r u

ti
li

ti
es

 th
at

 m
us

t a
cc

es
s 

ex
pa

nd
ed

 
m

ap
pi

ng
 re

gi
st

er
s 

o
n

 
m

em
or

y.
 T

h
e 

ha
nd

le
 s

up
pl

ie
d 

to
 t

he
 fu

nc
ti

on
 is

 th
e 

th
e 

ex
pa

nd
ed

 m
em

or
y 

ha
nd

le
 th

at
 w

as
 a

ss
ig

ne
d 

to
 t

h
e 

in
te

rr
up

t h
an

dl
er

 d
ur

in
g 

bo
ar

ds
, a

ss
oc

ia
ti

ng
 th

os
e 

it
s 

in
it

ia
li

za
ti

on
 s

eq
ue

nc
e,

 n
ot

 to
 th

e 
pr

og
ra

m
 th

at
 w

as
 

co
nt

en
ts

 w
it

h 
a 

sp
ec

if
ic

 
in

te
rr

up
te

d.
 

E
M

M
ha

nd
le

. 
~
 " 5· 

R
es

to
re

 
R

es
to

re
 t

h
e 

co
nt

en
ts

 
A

H
=

4
8

H
 

A
H

=
st

at
u

s 
U

se
 o

f t
hi

s 
fu

nc
ti

on
 m

us
t b

e 
ba

la
nc

ed
 b

y 
a 

pr
ev

io
us

 c
al

l 
;:!

 
M

ap
pi

ng
 

o
f a

ll
 e

xp
an

de
d 

m
em

or
y 

D
X

 =
 E

M
M

 h
an

dl
e 

to
 E

M
M

 F
un

ct
io

n 
47

H
. I

t a
ll

ow
s 

an
 in

te
rr

up
t h

an
dl

er
 o

r a
 

;; ~
 

C
on

te
xt

 
ha

rd
w

ar
e 

pa
ge

-m
ap

pi
ng

 
re

si
de

nt
 d

ri
ve

r t
ha

t u
se

d 
ex

pa
nd

ed
 m

em
or

y 
to

 r
es

to
re

 th
e 

.., 
re

gi
st

er
s 

to
 th

e 
va

lu
es

 
m

ap
pi

ng
 c

on
te

xt
 to

 it
s 

st
at

e 
at

 th
e 

po
in

t o
f i

nt
er

ru
pt

io
n.

 
~
 S! 

as
so

ci
at

ed
 w

it
h 

th
e 

gi
ve

n 
~
 

ha
nd

le
. 

~
 

~-
G

et
 N

um
be

r o
f 

R
et

ur
n 

th
e 

nu
m

be
r 

o
f 

A
H

=
4

B
H

 
A

H
=

st
at

u
s 

If
 th

e 
nu

m
be

r o
f h

an
dl

es
 r

et
ur

ne
d 

is
 z

er
o,

 n
on

e 
o

f t
he

 
;:;· So

 
E

M
M

H
an

dl
es

 
ac

ti
ve

 E
M

M
 h

an
dl

es
. 

B
X

 =
 n

um
be

r 
of

E
M

M
 

ex
pa

nd
ed

 m
em

or
y 

is
 i

n
 u

se
. T

h
e 

nu
m

be
r 

of
 ac

tiv
e 

EM
M

 
<I>

 
ha

nd
le

s,
 i

f A
H

 =
 

ha
nd

le
s 

ne
ve

r 
ex

ce
ed

s 
25

5.
 

~ 
OO

H 
~ 

6 
A

 s
in

gl
e 

pr
og

ra
m

 c
an

 m
ak

e 
se

ve
ra

l a
ll

oc
at

io
n 

re
qu

es
ts

 
r;·

 

~ 
an

d
 th

er
ef

or
e 

o
w

n
 s

ev
er

al
 E

M
M

 h
an

dl
es

. 
i'b

 
~
 

~ 
:s: 

<:
; 

G
et

 P
ag

es
 

R
et

ur
n 

th
e 

nu
m

be
r 

A
H

=
4

C
H

 
A

H
 =

st
at

us
 

T
h

e 
nu

m
be

r o
f p

ag
es

 r
et

ur
ne

d 
if

 th
e 

fu
nc

ti
on

 is
 s

uc
ce

ss
-

(1
) 

~-
8 

;:!
 

O
w

ne
d 

by
 

o
f l

og
ic

al
 e

xp
an

de
d 

D
X

 =
 E

M
M

 h
an

dl
e 

B
X

 =
 lo

gi
ca

l p
ag

es
, 

fu
l i

s 
al

w
ay

s 
in

 th
e 

ra
ng

e 
1-

51
2.

 A
n 

EM
M

 h
an

dl
e 

ne
ve

r 
... 

~ 
H

an
dl

e 
m

em
or

y 
pa

ge
s 

al
lo

ca
te

d 
if

A
H

=
O

O
H

 
ha

s 
ze

ro
 p

ag
es

 o
f m

em
or

y 
al

lo
ca

te
d 

to
 it

. 
'<

: 
<I>

 
:s: 

~
 

to
 a

 s
pe

ci
fi

c 
ha

nd
le

. 
"' ::l ~ 

\.
)J

 
• E

M
M

 F
un

ct
io

ns
 4

9H
 a

n
d

 4
A

H
 (

no
t l

is
te

d)
 w

er
e 

de
fi

ne
d 

in
 E

M
S 

ve
rs

io
n 

3.
0 

an
d

 a
re

 "
re

se
rv

ed
" 

in
 la

te
r E

M
S 

ve
rs

io
ns

. 
,~

 
,....

.. 
g 

,....
.. 

(m
or

e)
 

~
 

HUAWEI EX. 1010 - 321/1582



uo
 

.....
 

N
 ~
 

<I>
 ~ 6 ~ ~ ~
 

Q
. ~ I:>
. 

iS'
 

T
ab

le
 9

-2
. 

C
on

ti
nu

ed
. 

F
u

n
ct

io
n

 
N

am
e 

G
et

 P
ag

es
 fo

r 
A

ll 
H

an
dl

es
 

G
et

/S
et

 
P

ag
e 

M
ap

 

A
ct

io
n

 

R
et

ur
n 

an
 a

rr
ay

 th
at

. 
co

nt
ai

ns
 a

ll
 th

e 
ac

ti
ve

 
ha

nd
le

s 
an

d
 th

e 
nu

m
be

r 
o

f l
og

ic
al

 e
xp

an
de

d 
m

em
or

y 
pa

ge
s 

as
so

ci


at
ed

 w
it

h 
ea

ch
 h

an
dl

e.
 

Sa
ve

 o
r s

et
 th

e 
co

nt
en

ts
 

o
f t

h
e 

EM
M

 p
ag

e
m

ap
pi

ng
 re

gi
st

er
s 

o
n

 th
e 

ex
pa

nd
ed

 m
em

or
y 

bo
ar

ds
. 

C
al

l 
W

it
h

 

A
H

=
4

D
H

 
D

I 
=

 o
ff

se
t o

f a
rr

ay
 

to
 re

ce
iv

e 
·i

nf
or

m
at

io
n 

ES
 =

 a
rr

ay
 s

eg
m

en
t 

A
H

=
4

E
H

 
A

L 
=

 s
ub

fu
nc

ti
on

 
nu

m
be

r 
D

S:
SI

 =
 a

rr
ay

 
ho

ld
in

g 
m

ap
pi

ng
 

in
fo

rm
at

io
n 

(S
ub

fu
nc


ti

on
s 

01
H

,0
2H

) 
E

S:
D

I 
=

 a
rr

ay
 to

 
re

ce
iv

e 
in

fo
rm

a
ti

on
 (S

ub
fu

nc


ti
on

s 
O

O
H

, 0
2H

) 

R
e

tu
rn

s
 

A
H

=
st

at
u

s 
B

X
 =

 n
um

be
r o

f a
ct

iv
e 

E
M

M
ha

nd
le

s 

If
 A

H
 =

 O
O

H
, a

rr
ay

 is
 

fi
ll

ed
 i

n 
as

 d
es

cr
ib

ed
 in

 
co

m
m

en
ts

 c
ol

um
n 

A
H

=
st

at
u

s 
A

L 
=

 b
yt

es
 in

 p
ag

e
m

ap
pi

ng
 a

rr
ay

 
(S

ub
fu

nc
ti

on
 0

3H
) 

A
rr

ay
 p

oi
nt

ed
 to

 b
y

 
E

S:
D

I 
re

ce
iv

es
 m

ap
pi

ng
 

in
fo

rm
at

io
n 

fo
r S

ub


fu
nc

ti
on

s 
OO

H 
an

d
 0

2H
 

C
o

m
m

en
ts

 

T
h

e 
ar

ra
y 

is
 fi

ll
ed

 in
 w

it
h 

do
ub

le
w

or
d 

en
tr

ie
s.

 T
h

e 
fi

rs
t 

w
or

d 
o

f e
ac

h 
en

tr
y 

co
nt

ai
ns

 a
 h

an
dl

e;
 t

he
 s

ec
on

d 
w

or
d 

co
nt

ai
ns

 th
e 

nu
m

be
r o

f p
ag

es
 a

ss
oc

ia
te

d 
w

it
h 

th
at

 h
an

dl
e.

 
T

h
e 

va
lu

e 
re

tu
rn

ed
 in

 B
X

 g
iv

es
 th

e 
nu

m
be

r o
f v

al
id

 
do

ub
le

w
or

d 
en

tr
ie

s 
in

 th
e 

ar
ra

y.
 

B
ec

au
se

 2
55

 is
 t

he
 m

ax
im

um
 n

um
be

r o
f E

M
M

 h
an

dl
es

, 
th

e 
ar

ra
y 

n
ee

d
 n

ot
 b

e 
la

rg
er

 th
an

 1
02

0 
by

te
s.

 

S
ub

fu
nc

ti
on

s:
 

O
O

H
 =

 g
et

 m
ap

pi
ng

 re
gi

st
er

s 
in

to
 a

rr
ay

 
O

lH
 =

 s
et

 m
ap

pi
ng

 re
gi

st
er

s 
fr

om
 a

rr
ay

 
02

H
 =

 g
et

 a
n

d
 s

et
 m

ap
pi

ng
 re

gi
st

er
s 

in
 o

n
e 

op
er

at
io

n 
03

H
 =

 r
et

ur
n 

ne
ed

ed
 si

ze
 o

f p
ag

e-
m

ap
pi

ng
 a

rr
ay

 

T
hi

s 
fu

nc
ti

on
 w

as
 a

dd
ed

 in
 E

M
M

 v
er

si
on

 3
.2

 a
n

d
 is

 
de

si
gn

ed
 to

 s
up

po
rt

 m
ul

ti
ta

sk
in

g.
 I

t s
ho

ul
d 

no
t o

rd
in

ar
il

y 
b

e 
u

se
d

 b
y 

ap
pl

ic
at

io
n 

pr
og

ra
m

s.
 

T
h

e 
co

nt
en

t o
f t

h
e 

ar
ra

y 
is

 h
ar

dw
ar

e 
an

d
 E

M
M

 s
of

tw
ar

e 
de

pe
nd

en
t.

 I
n 

ad
di

ti
on

 to
 th

e 
co

nt
en

ts
 o

f t
h

e 
pa

ge


m
ap

pi
ng

 re
gi

st
er

s,
 i

t m
ay

 c
on

ta
in

 o
th

er
 in

fo
rm

at
io

n 
th

at
 

is
 n

ec
es

sa
ry

 to
 re

st
or

e 
th

e 
ex

pa
nd

ed
 m

em
or

y 
su

bs
ys

te
m

 
to

 it
s 

pr
ev

io
us

 s
ta

te
. 

~ ~ f Jg'
 

0'
 

.... ! 

HUAWEI EX. 1010 - 322/1582



Article 9: Memory Management 

Table 9-3. The Expanded Memory Manager (EMM) Error Codes. 

Error Code Significance 

OOH 
SOH 

81H 
82H 
83H 
84H 
85H 
86H 
87H 

88H 

89H 
8AH 

8BH 
8CH 
8DH 

8EH 

8FH 

Function was successful. 
Internal error in the EMM software. Possible causes include an error in the 

driver itself or damage to its memory image. 
Malfunction in the expanded memory hardware. 
EMMisbusy. 
Invalid expanded memory handle. 
Function requested by the application is not supported by the EMM. 
No more expanded memory handles available. 
Error in save or restore of mapping context. 
Allocation request specified more logical pages than are available in the 

system; no pages were allocated. 
Allocation request specified more logical pages than are currently avail

able in the system (the request does not exceed the physical pages that 
exist, but some are already allocated to other handles); no pages were 
allocated. 

Zero pages cannot be allocated. 
Logical page requested for mapping is outside the range of pages assigned 

to the handle. 
Illegal physical page number' in mapping request (not in the range 0-3). 
Save area for mapping contexts is full. 
Save of mapping context failed because save area already contains a con

text associated with the requested handle. 
Restore of mapping context failed because save area does not contain a 

context for the requested handle. 
Subfunction parameter not defined. 

An application program that uses expanded memory should regard that memory as a 
system resource, such as a file or a device, and use only the documented EMM services to 
allocate, access, and release expanded memory pages. Here is the general strategy that 
can be used by such a program: 

1. Establish the presence of the EMM by one of the two methods demonstrated in 
Figures 9-6 and 9-7. 

2. After the driver is known to be present, check its operational status with EMM 
Function 40H. 

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser
vices the application will request are available. 

4. Obtain the segment of the page frame used by the EMM with EMM Function 41H. 
5. Allocate the desired number of expanded memory pages with EMM Function 43H. If 

the allocation is successful, the EMM returns a handle in DX that is used by the appli
cation to refer to the expanded memory pages it owns. This step is exactly analogous 

Section II: Programming in the MS-DOS Environment 313 

HUAWEI EX. 1010 - 323/1582

Article 9: Memory Management 

Table 9—3. The Expanded Memory Manager (EMM) Error Codes.
 

Error Code Significance 

OOH Function was successful.

80H Internal error in the EMM software. Possible causes include an error in the

driver itself or damage to its memory image.

81H Malfunction in the expanded memory hardware.

82H EMM is busy.

83H Invalid expanded memory handle.

84H Function requested by the application is not supported by the EMM.

85H No more expanded memory handles available.

86H Error in save or restore of mapping context.

87H Allocation request specified more logical pages than are available in the

system; no pages were allocated.
88H Allocation request specified more logical pages than are currently avail-

able in the system (the request does not exceed the physical pages that

exist, but some are already allocated to other handles); no pages were
allocated.

89H Zero pages cannot be allocated.

8AH Logical page requested for mapping is outside the range of pages assigned
to the handle. .-

8BH Illegal physical page number‘ in mapping request (not in the range 0—3).

8CH Save area for mapping contexts is full. .

8DH Save of mapping context failed because save area already contains a con-

text associated with the requested handle.

8EH Restore of mapping context failed because save area does not contain a

context for the requested handle. '

8FH Subfunction parameter not defined.

An application program that uses expanded memory should regard that memory as a
system resource, such as a file or a device, and use only the documented EMM services to

allocate, access, and release expanded memory pages. Here is the general strategy that

can be used by such a program:

1. Establish the presence of the EMM by one of the two methods demonstrated in

Figures 9—6 and 9-7.

2. After the driver is known to be present, check its operational status with EMM
Function 40H.

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser-

vices the application will request are available.

4. Obtain the segment of the page frame used by the EMM with EMM Function 41H.

5. Allocate the desired number of expanded memory pages with EMM Function 43H. If

the allocation is successful, the EMM returns a handle in DX that is used by the appli-

cation to refer to the expanded memory pages it owns. This step is exactly analogous

Section 11: Programming in theMS-DOS Environment 513

HUAWEI EX. 1010 - 323/1582



Part B: Programming for MS-DOS 

to opening a file and using the handle obtained from the open function for subse
quent read/write operations on the file. 

6. If the requested number of pages is not available, query the EMM for the actual num
ber of pages available (EMM Function 42H) and determine whether the program can 
continue. 

7. After successfully allocating the number of expanded memory pages needed, use 
EMM Function 44H to map logical pages in and out of the physical page ,frame, to store 
and retrieve data in expanded memory. 

8. When finished using the expanded memory pages, release them by calling EMM 
Function 45H. Otherwise, the pages will not be available for use by other programs 
until the system is restarted. 

A program skeleton that illustrates this general approach to the use of expanded memory 
is shown in Figure 9c8. 

mov 
int 

ah,40h 
67h 

or ah,ah 
jnz 

mov 
int 

error 

ah,46h 
67h 

or ah, ah 
jnz 
cmp 
jb 

mov 
int 

exror 
al,30h 
error 

ah,41h 
67h 

or ah,ah 
jnz 
mov 

mov 
int 

error 
page_frame,bx 

ah,42h 
67h 

or ah,ah 
jnz 
mov 

mov 

error 
total_pages,dx 
avail_pages,bx 

or bx, bx 
jz error 

mov ah,43h 

test EMM status 

jump if bad status from EMM 

check EMM version 

jump if couldn't get version 
make sure at least ver. 3.0 
jump if wrong EMM version 

get page frame segment 

jump if failed to get frame 
save segment of page frame 

get no. of available pages 

jump if get pages error 
save total EMM pages 
save available EMM pages 

abort if no pages available 

try to allocate EMM pages 

(more) 

Figure 9-8. A program skeleton for the use of expanded memory. This code assumes that the presence of the 
Expanded Memory Manager has already been verified with one of the techniques shown in Figures 9-6 
and9-7. 

314 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 324/1582



Article 9: Memory Management 

mov bx,needed_pages 

int 67h if allocation is successful 
or ah,ah 
jnz 

· mov 

mov 

mov 

mov 
mov 

int 

error 

elllllLhandle,dx 

bx,log_page 
al,phys_page 

dx,elllllLhandle 

ah,44h 
67h 

or ah,ah 

jnz error 

mov dx,elllllLhandle 

mov ah,45h 

int 67h 

or ah,ah 
jnz error 

Figure 9-8. Continued. 

jump if allocation failed 

save handle for allocated pages 

now we are ready for other 

processing using EMM pages 

map in EMM memory page ... 

BX <- EMM logical page number 
AL <- EMM physical page (0-3) 

EMM handle for our pages 

Fxn 44H = map EMM page 

jump if mapping error 

program ready to terminate, 

give up allocated EMM pages ... 
handle for our pages 

EMM Fxn 45H = release pages 

jump if release failed 

An interrupt handler or resident driver that uses the EMM follows the same general 
procedure outlined in steps 1 through 8, with a few minor variations. It may need to 
acquire an EMM handle and allocate pages before the operating system is fully functional; 
in particular, the MS-DOS services Open File or Device (Interrupt 21H Function 3DH), 
IOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function 
35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod
ified version of the "get interrupt vector" technique to test for the existence of the EMM, 
fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter
rupt 21H Function 35H. 

A device driver or interrupt handler typically owns its expanded memory pages on a 
permanent basis (until the system is restarted) and never deallocates them. Such a pro
gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H) 
the EMM's page-mapping context (the EMM pages mapped into the page frame at the 
time the device driver or interrupt handl~r takes control of the system) so that use of the 
expanded memory by a foreground program will not be disturbed. 

Section II- Programming in the MS-DOS Environment 315 

HUAWEI EX. 1010 - 325/1582

 

Article 9: Memory ManagementW

mov bx,needed_pages
int 67h ; if allocation is successful
or ah,ah

jnz error ; jump if allocation failed

‘mov emm_handle,dx ; save handle for allocated pages

; now we are ready for other
; processing using EMM pages

; map in EMM memory page...
mov bx,log_page ; BX <- EMM logical page number
mov al,phys_page ; AL <— EMM physical page (0—3)
mov dx,emm_handle ; EMM handle for our pages
mov ah,44h ; Fxn 44H = map EMM page
int 67h

or ah,ah

jnz error ; jump if mapping error

; program ready to terminate,
; give up allocated EMM pages...

mov dx,emm_handle ; handle for our pages
mov ah,45h ; EMM Fxn 45H = release pages
int 67h

or ah,ah _
jnz error ; jump if release failed

Figure 9-8. Continued.

An interrupt handler or resident driver that uses the EMM follows the same general

procedure outlined in steps 1 through 8, with a few minor variations. It may need to

acquire an EMM handle and allocate pages before the operating system is fully functional;

in particular, the MS-DOS services Open File or Device (Interrupt 21H Function 3DH),

IOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function

35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod-

ified’version of the “get interrupt vector” technique to test for the existence of the EMM,

fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter-
rupt 21H Function 35H.

A device driver or interrupt handler typically owns its expanded memory pages on a

permanent basis (until the system is restarted) and never deallocates them. Such a pro-

gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H)

the EMM’s page-mapping context (the EMM pages mapped into the page frame at the

time the device driver or interrupt handler takes control of the system) so that use of the

expanded memory by a foreground program will not be disturbed.

Section 11.- Programming in the MS—DOS Environment 31 5

HUAWEI EX. 1010 - 325/1582



Part B: Programming for MS-DOS 

The EMM relies heavily on the good behavior of application software to avoid the corrup
tion of expanded memory. If several applications that use expanded memory are running 
under a multitasking manager, such as Microsoft Windows, and one or more of those appli
cations does not abide strictly by the EMM's conventions, the data stored in expanded 
memory can be corrupted. 

Extended Memory 

Extended memory is that storage at addresses above 1 MB (100000H) that can be accessed 
by an 80286 or 80386 microprocessor running in protected mode. IBM PC/ AT-compatible 
machines can (theoretically) have as much as 15MB of extended memory installed, in 
addition to the usual1 MB of conventional memory address space. Unlike expanded mem
ory, extended memory is linearly addressable: The address of each memory cell is fixed, 
so no special manager program is required. 

Protected-mode operating systems, such as Microsoft XENIX and MS OS/2, can use ex
tended memory for execution of programs. MS-DOS, on the other hand, runs in real mode 
on an 80286 or 80386, and programs running under its control cannot ordinarily execute 
from extended memory or even address that memory for storage of data. 

To provide some access to extended memory for real-mode programs, IBM PC/AT
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5) 
that allow the amount of extended memory present to be determined (Interrupt 15H Func
tion 88H) and that transfer blocks of data between conventional memory and extended 

Table 9-4. IBM PC/AT ROM BIOS Interrupt 15H Functions for 
Access to Extended Memory. 

Interrupt 15H Function 

Move Extended Memory Block 

Obtain Size of Extended 
Memory 

Call With 

AH=87H* 
ex= length (words) 
ES:SI =address of block 

move descriptor 
table 

AH=88H 

• Table 9-5 shows the descriptor table format used by Function 87H. 

316 The MS-DOS Encyclopedia 

Returns 

Carry flag = 0 if successful 
1 if error 

AH =status: 
OOHnoerror 
01H RAM parity error 
02H exception inter-

rupterror 
03H gate address line 

. 20 failed 
AX= kilobytes of memory 

installed above 1 MB 

HUAWEI EX. 1010 - 326/1582



Article 9: Memory Management 

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks 
(RAMdisks) and by other programs that wish to use extended memory for fast storage and 
retrieval of information that would otherwise have to be written to a slower physical disk 
drive. 

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS 
Interrupt 15H Function 87H (Move Extended Memory Block). 

·Bytes 

00-0FH 
10-11H 
12-14H 
15H 
16-17H 
18-19H 
1A-1CH 
1DH 
1E-1FH 
20-ZFH 

Contents 

Zero 
Segment length in bytes (2• CX -1 or greater) 
24-bit source address 
Access rights byte (93H) 
Zero 
Segment length in bytes (2 * CX -1 or greater) 
24-bit destination address 
Access rights byte (93H) 
Zero 
Zero 

Note: This data structure actually constitutes a global descriptor table (GDT) to be used 
by the CPU while it is running in protected mode; the zero bytes at offsets 0-0FH and 
20-2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-
bit address is a linear address in the range 000000-FFFFFFH (not a segment and offset), 
with the least significant byte first and the most significant byte last. 

Programmers should use these ROM BIOS routines with caution. Data stored in extended 
memory is volatile; it is lost if the machine is turned off. The transfer of data to or from 
extended memory involves a switch from real mode to protected mode and back again. 
This is a relatively slow process on 80286-based machines; in some cases it is only margin
ally faster than actually reading the data from a fixed disk. In addition, programs that use 
the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com
patibility Box of MS OS/2, nor are they reliable if used for communications or networking. 

Finally, a major deficit in these ROM BIOS funCtions is that they do not make any attempt 
to arbitrate between two or more programs or device drivers that are using extended 
memory for temporary storage. For example, if an application program and an installed 
RAMdisk driver attempt to put data in the same area of extended memory, no error is 
returned to either program, but the data belonging to one or both may be destroyed. 

Figure 9-9 demonstrates the use of the ROM BIOS routines to transfer a block of data from 
extended memory to conventional memory. 

Section 11- Programming in the MS-DOS Environment 317 

HUAWEI EX. 1010 - 327/1582

      
Article 9: Memory Management 

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks
‘(RAMdisks) and by other programs that wish to use extended memory for fast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS

Interrupt 15H Function 87H (Move Extended Memory Block).
 

' Bytes Contents 

OO—OFH Zero

10— 1 1H Segment length in bytes (2* CX— 1 or greater)
12— 14H 24-bit source address

15H Access rights byte (93H)

16— 17H Zero

18— 19H Segment length in bytes (2 * CX— 1 or greater)
1A- 1CH 24-bit destination address

1DH Access rights byte (95H)
1E— lFH Zero

20—2FH Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used

by the CPU while it is running in protected mode; the zero bytes at offsets O—OFH and

20—2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-

bit address is a linear address in the range OOOOOO—FFFFFFH (not a segment and offset),

with the least significant byte first and the most significant byte last.

Programmers should use these ROM BIOS routines with caution. Data stored in extended

memory is volatile; it is lost if the machine is turned off. The transfer of data to or from

extended memory involves a switch from real mode to protected mode and back again.

This is a relatively slow process on 80286—based machines; in some cases it is only margin—

ally faster than actually reading the data from a fixed disk. In addition, programs that use

the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com-

patibility Box of MS OS/Z, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOS functions is that they do not make any attempt

to arbitrate between two or more programs or device drivers that are using extended

memory for temporary storage. For example, if an application program and an installed

RAMdisk driver attempt to put data in the same area of extended memory, no error is

returned to either program, but the data belonging to one or both may be destroyed.

Figure 9—9 demonstrates the use of the ROM BIOS routines to transfer a block of data from

extended memory to conventional memory.

Section 11- Programming in the MS—DOSEnvironment 317

HUAWEI EX. 1010 - 327/1582



Part B: Programming for MS-DOS 

bmdt db 8 dup (0) 

db 8 dup (0) 

db 8 dup (0) 

db 8 dup (0) 

db 8 dup (0) 

db 8 dup (0) 

buff db SOh dup (0) 

mov dx,10h 
mov ax,O 
mov bx,seg buff 
mov ds,bx 
mov bx,offset buff 
mov cx,80h 
mov si, seg bmdt 

mov es,si 
mov si,offset bmdt 
call getblk 
or ah,ah 
jnz error 

getblk proc near 

mov es: [si+10h),cx 
mov es: [si+18h),cx 

block move descriptor table 
dummy descriptor 
GDT descriptor 
source segment descriptor 
destination segment descriptor 
BIOS es segment descriptor 

BIOS ss segment descriptor 

buffer to receive data 

DX:AX = source extended memory 
address 100000H (1 MB) 
DS:BX = destination conventional 
memory address 

ex = length to move (bytes) 
ES:SI = block move descriptor table 

get block from extended memory 
test status 
jump if block move failed 

transfer block from extended 
memory to real memory 
call with 
DX:AX extended memory address 
DS:BX destination buffer 

ex length (bytes) 

ES:SI block move descriptor table 

returns 
AH 0 if transfer OK 

store length in descriptors 

store access rights bytes 
mov byte ptr es: [si+15h),93h 
mov byte ptr es: [si+1dh),93h 

(more) 

Figure 9-9. Demonstration of a block move from extended memory to conventional memory using the ROM 
BIOS routine. The procedure getblk accepts a source address in extended memory, a destination address in 
conventional memory, a length in bytes, and the segment and offset of a block move descriptor table. The 
extended-memory address is a linear 32-bit address, of which only the lower 24 bits are significant; the 
conventional-memory address is a segment and offset. The getblk routine converts the destination segment 
and offset to a linear address, builds the appropriate fields in the block move descriptor table, invokes the ROM 
BIOS routine to perform the transfer, and returns the status in the AH register. 

318 TheMS-DOSEncyclopedia 

HUAWEI EX. 1010 - 328/1582

Part B: Programming for MS-DOS 

bmdt db
db
db
db
db
db

buff db

mov
mov
mov
mov
mov
mov
mov
mov
mov
call
or

jnz

getblk proc

mOV
mov

mov
mov

8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)

80h dup (0)

dx,10h
ax,0

bx,seg buff
ds,bx
bx,offset buff

V cx,80h
si,seg bmdt
es,si
si,offset bmdt
getblk
ah,ah
error

near

es:[si+10h],cx
es:[si+18h],cx

- block move descriptor table
dummy.descriptor
GDT descriptor
source segment descriptor
destination segment descriptor
BIOS CS segment descriptor

BIOS SS segment descriptor

buffer to receive data

DX:AX = source extended memory
address 100000H (1 MB)
DS:BX = destination conventional

- memory address

CX = length to move (bytes)
ES:SI = block move descriptor table

get block from extended memory
test status

jump if block move failed

- transfer block from extended

- memory to real memory
call with

DX:AX = extended memory address
DS:BX = destination buffer

CX = length (bytes)
ES:SI ; block move descriptor table
returns

AH = 0 if transfer 0K

store length in descriptors

store access rights bytes
byte ptr es:[si+15h],93h
byte ptr es:[si+1dh],93h

(more)

Figure 9-9. Demonstration ofa block movefrom extended memory to conventional memory using the ROM
BIOS routine. Theprocedure getblk accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset ofa block mot/e descriptor table. The
extended-memory address is a linear352-bit address, ofwhich only the lower 24 bits are significant; the
conventional-memory address is a segment and offset. The getblk routine converts the destination segment
and ofi‘set to a linear address, builds the appropriatefields in the block move descriptor table, invokes the ROM
BIOS routine toperform the transfer; and returns the status in theAH register.

318 The MS—DOS Encyclopedia

HUAWEI EX. 1010 - 328/1582

       



mov es: [ si+12h], a·x 
mov es: [si+14h],dl 

mov ax,ds 
mov dx·, 16 

mul dx 
add ax,bx 
adc dx,O 
mov es: [si+1ah],ax 
mov es: [si+1ch],dl 

shr cx,1 
mov ah, 87h 
int 15h 

ret 

Figure 9-9. Continued. 

Summary 

Article 9: Memory Management 

source (extended memory) address 

destination (conv memory) address 
segment* 16 

+ offset -> linear address 

convert length to words 
Fxn 87H = block move 
transfer to ROM BIOS 

back to caller 

Personal computers that run MS-DOS can support as many as three different types of fast, 
random-access memory (RAM). Each type has specific characteristics and requires differ
ent techniques for its management. 

Conventional memory is the term used for the 1 MB of linear address space that can be ac
cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run
ning in real mode. MS-DOS and the programs that execute under its control run in this 
address space. MS-DOS provides application programs with services to dynamically allo- · 
cate and release blocks of conventional memory. 

As much as 8 MB of expanded memory can be installed in a PC and used for electronic 
disks, disk caching, and storage of application program data. The memory is made avail
able in 16 KB pages and is administered by a driver program called the Expanded Memory 
Manager, which provides allocation, mapping, deallocation, and multitasking support. 

Extended memory refers to the memory at addresses above 1 MB that can be accessed by 
an 80286cbased or 80386-based microprocessor running in protected mode; it is not avail
able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended 
memory can be installed; however, the ROM BIOS services to access the memory are 
primitive and slow, and no manager is provided to arbitrate between multiple programs 
that attempt to use the same extended memory addresses for storage. 

Ray Duncan 

Section II: Programming in the MS-DOS Environment 319 

HUAWEI EX. 1010 - 329/1582

Article 9: Memory Managementw

; source (extended memory) address
mov es:[si+12h],ax
mov es:[si+14h],dl

; destination (conv memory) address
mov ax,ds ; segment * 16

mov dx}16
mul dx

add ax,bx ~ ; + offset —> linear address
adc dx,0
mov es:[si+1ah],ax
mov es:[si+1ch],dl

-shr cx,1 ; convert length to words

mov ah,87h ; Fxn 87H = block move
int 15h ‘; transfer to ROM BIOS

ret ; back to caller

Figure 9—9‘ Continued.

Summary

Personal computers that run MS-DOS can support as many as three different types of fast,

random-access memory (RAM). Each type has specific characteristics and requires differ-

ent techniques for its management.

Conventional memory is the term used for the 1 MB of linear address space that can be ac-

cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run-

ning in real mode. MS—DOS and the programs that execute under its control run in this

address space. MS—DOS provides application programs with services to dynamically allo— '

cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can be installed in a PC and used for electronic

disks, disk caching, and storage of application program data. The memory is made avail-

able in 16 KB pages and is administered by a' driver program called the Expanded Memory

Manager, which provides allocation, mapping, deallocation, and multitasking sUpport.

Extended memory refers to the memory at addresses above 1 MB that can be accessed by

an 802864based or 80386-based microprocessor running in protected mode; it is not avail—

able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended

memory can be installed; however, the ROM BIOS services to access the memory are

primitive and slow, and no manager is provided to arbitrate between multiple programs

that attempt to use the same extended memory addresses for storage.

Ray Duncan

/

Section 11: Programming in the MS—DOS Environment 319

HUAWEI EX. 1010 - 329/1582



HUAWEI EX. 1010 - 330/1582

 
HUAWEI EX. 1010 - 330/1582



Article 10: The MS-DOS EXEC Function 

Article tO 
The MS-DOS EXEC Function 

The MS-DOS system loader, which brings .COM or .EXE files from disk into memory and 
executes them, can be invoked by any program with the MS-DOS EXEC function (Inter
rupt 21H Function 4BH). The default MS-DOS command interpreter, COMMAND. COM, 
uses the EXEC function to load and run its external commands, such as CHKDSK, as well 
as other application programs. Many popular commercial programs, such as databases and 4 
word processors, use EXEC to load and run subsidiary programs (spelling checkers, for 
example) or to load and run a second copy of COMMAND. COM. This allows a user to run 
subsidiary programs or enter MS-DOS commands without losing his or her current 
working context. 

When EXEC is used by one program (called the parent) to load and run another (called 
the child), the parent can pass certain information to the child in the form of a set of strings 
called the environment, a command line, and two file control blocks. The child program 
also inherits the parent program's handles for the MS-DOS standard devices and for any 
other files or character devices the parent has opened (unless the open operation was per
foimed with the "noninheritance" option). Any operations performed by the child on 
inherited handles, such as seeks or file I/0, also affect the file pointers associated with the 
parent's handles. A child program can, in turn, load another program, and the cycle can be 
repeated until the system's memory area is exhausted. 

Because MS-DOS is not a multitasking operating system, a child program has complete 
control of the system until it has finished its work; the parent program is suspended. This 
type of processing is sometimes called synchronous execution. When the child termi
nates, the parent regains control and can use another system function call (Interrupt 21H 
Function 4DH) to obtain the child's return code and determine whether the program ter
minated normally, because of a critical hardware error, or because the user entered a 
Control-C. 

In addition to loading a child program, EXEC can also be used to load subprograms and 
overlays for application programs written in assembly language or in a high-level language 
that does not include an overlay manager in its run-time library. Such overlays typically 
cannot be run as self-contained programs; most require "helper" routines or data in the 
application's root segment. 

The EXEC function is available only with MS-DOS versions 2.0 and later. With MS-DOS 
versions l.x, a parent program can use Interrupt 21H Function 26H to create a program 
segment prefix for a child but must carry out the loading, relocation, and execution of the 
child's code and data itself, without any assistance from the operating system. 

Section II: Programming in the MS-DOS Environment 321 

HUAWEI EX. 1010 - 331/1582



Part B: Programming for MS-DOS 

How EXEC Works 

When the EXEC function receives a request to execute a program, it first attempts to locate 
and open the specified program file. If the file cannot be found, EXEC fails immediately 
and returns an error code to the caller. 

If the file exists, EXEC opens the file, determines its size, and inspects the first block of the 
file. If the first 2 bytes of the block are the ASCII characters MZ, the file is assumed to con
tain a .EXE load module, and the sizes of the program's code, data, and stack segments are 
obtained from the .EXE file header. Otherwise, the entire file is assumed to be an absolute 
load image (a .COM program). The actual filename extension (.COM or .EXE) is ignored 
in this determination. 

At this point, the amount of memory needed to load the program is known, so EXEC 
attempts to allocate two blocks of memory: one to hold the new program's environment 
and one to contain the program's code, data, and stack segments. Assuming that enough 
memory is available to hold the program itself, the amount actually allocated to the pro
gram varies with its type. Programs of the .COM type are usually given all the free mem
ory in the system (unless the memory area has previously become fragmented), whereas 
the amount assigned to a .EXE program is controlled by two fields in the file header, 
MINALLOC and MAXALLOC, that are set by the Microsoft Object Linker (LINK). See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: Structure 
of an Application Program; PRoGRAMMING ToOLs: The Microsoft Object Linker; PROGRAM
MING UTILITIES: LINK. 

EXEC then copies the environment from the parent into the memory allocated for child's 
environment, builds a program segment prefix (PSP) at the base of the child's program 
memory block, and copies into the child's PSP the command tail and the two default file 
control blocks passed by the parent. The previous contents of the terminate (Interrupt 
22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors are saved in the 
new PSP, and the terminate vector is updated so that control will return to the parent 
program when the child terminates or is aborted. 

The actual code and data portions of the child program are then read from the disk file 
into the program memory block above the newly constructed PSP. If the child is a .EXE 
program, a relocation table in the file header is used to fix up segment references within 
the program to reflect its actual load address. 

Finally, the EXEC function sets up the CPU registers and stack according to the program 
type and transfers control to the program. The entry point for a .COM file is always offset 
lOOH within the program memory block (the first byte following the PSP). The entry point 
for a .EXE file is specified in the file header and can be anywhere within the program. See 
also PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: 
Structure of an Application Program. 

When EXEC is used to load and execute an overlay rather than a child program, its opera
tion is much simpler than described above. For an overlay, EXEC does not attempt to allo
cate memory or build a PSP or environment. It simply loads the contents of the file at the 

322 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 332/1582



Article 10: The MS-DOS EXEC Function 

address specified by the calling program and performs any necessary relocations (if the 
· overlay file has a .EXE header), using a segment value that is also supplied by the caller. 
EXEC then returns to the program that invoked it, rather than transferring control to the 
code in the newly loaded file. The requesting program is responsible for calling the 
overlay at the appropriate location . 

. Using EXEC to Load a Program 

When one program loads and executes another, it must follow these steps: 

1. Ensure that enough free memory is available to hold the code, data, and stack of the 
child program. 

2. Set up the information to be passed to EXEC and the child program. 
3. Call the MS-DOS EXEC function to run the child program. 
4. Recover and examine the child program's termination and return codes. 

Making memory available 

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is 
loaded. (The infrequent exceptions to this rule occur when the transient program area 
is fragmented by the presence of resident data or programs or when a .EXE program is 
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.) 
Therefore, before a program can load another program, it must free any memory it does 
not need for its own code, data, and stack. 

The extra memory is released with a call to the MS-DOS Resize Memory Block function 
(Interrupt 21H Function 4AH). In this case, the segment address of the parent's PSP is 
passed in the ES register, and the BX register holds the number of paragraphs of memory 
the program must retain for its own use. If the prospective parent is a .COM program, it 
must be certain to move its stack to a safe area if it is reducing its memory allocation to less 
than 64 KB. 

Preparing parameters for EXEC 

When used to load and execute a program, the EXEC function must be supplied with two 
principal parameters: 

• The address of the child program's pathname 
• The address of a parameter block 

The parameter block, in turn, contains the addresses of information to be passed to the 
child program. 

The program name 

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ) 
file specification (no wildcard characters). If a path is not included, the current directory is 
searched for the program; if a dtive..specifier is not present, the default drive is used. 

Section II: Programming in the MS-DOS Environment 323 

HUAWEI EX. 1010 - 333/1582

 

Article 10: The MS—DOS EXEC Function 

address specified by the calling program and performs any necessary relocations (if the

' overlay file has a .EXE header), using a segment value that is also supplied by the caller.
EXEC then returns to the program that invoked it, rather than transferring control to the

code in the newly. loaded file. The requesting program is responsible for calling the
overlay at the appropriate location.

, Using EXEC to Load a Program

When one program loads and executes another, it must follow these steps:

1. Ensure that enough free memory is available to hold the code, data, and stack of the

child program.

2. Set up the information to be passed to EXEC and the child program.

3 Call the MS-DOS EXEC function to run the child program.

4. Recover and examine the child program’s termination and return codes.

Making memory available

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is

loaded. (The infrequent exceptions to this rule occur when the transient program area

is fragmented by the presence of resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.)

Therefore,before a program can load another program, it must free any memory it does
not need for its own code, data, and stack.

The extra memory is released with a call to the MS—DOS Resize Memory Block function

(Interrupt 21H Function 4AH). In this case, the segment address of the parent’s PSP is

passed in the ES register, and the BX register holds the number of paragraphs of memory

the program must retain for its own use. If the prospective parent is a .COM program, it

must be certain to move its stack to a safe area if it is reducing its memory allocation to less
than 64 KB.

Preparing parameters for EXEC

When used to load and execute a program, the EXEC function must be supplied with two

principal parameters:

0 The address of the child: program’s pathname

0 The address of a parameter block

The parameter block, in turn, contains the addresses of information to be passed to the

child program. I '

The program name

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program; if a drivespecifier is not present, the default drive is used.

Section 11.- Programming in the MS—DOS Environment 323

HUAWEI EX. 1010 - 333/1582



Part B: Programming for MS-DOS 

The parameter block 

The parameter block contains the addresses of four data items (Figure 10-1): 

• The environment block 
• The command tail 
• The two default file control blocks (FCBs) 

The position reserved in the parameter block for the pointer to an environment is only 
2 bytes and contains a segment address, because an environment is always paragraph 
aligned (its address is always evenly divisible by 16); a value of OOOOH indicates the parent 
program's environment should be inherited unchanged. The remaining three addresses 
are all doubleword addresses in the standard Intel format, with an offset value in the lower 
word and a segment value in the upper word. 

To Call 

AH 
AL 

DS:DX 
ES:BX 

Returns 

=4BH 
= OOH load and execute child process 

03H load overlay 
= segment: offset of ASCI!Z pathname for an executable program file 
= segment:offset of parameter block 

If function is successful: 
Carry flag is clear. 
Other registers are preserved if MS-DOS version 3.0 or later, destroyed if MS-DOS 
versions 2.x. 

If function is not successful: 
Carry flag is set. 

AX = error code 

Parameter Block Format 

Offset Contents 

If AL = OOH (load and execute program): 

OOH Segment pointer of the environment to be passed 
02H Offset of command-line tail for the new PSP 
04H Segment of command-line tail for the new PSP 
06H Offset of first file control.block, to be copied into new PSP at offset 5CH 
08H Segment of first file control block 
OAH Offset of second file control block, to be copied into new PSP at offset 6CH 
OCH Segment of second file control block 

If AL = 03H (load overlay): 

OOH Segment address where overlay is to be loaded 
02H Relocation factor to apply to loaded image 

Figure 10-1. Synopsis of calling conventions for the MS-DOS EXEC junction (Interrupt 21H Function 4BH), 
which can be used to load and execute child processes or overlays. 

324 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 334/1582



Article 10: The MS-DOS EXEC Function 

The environment 
An environment always begins on a paragraph boundary and is composed of a series of 
null-terminated (ASCIIZ) strings of the form: 

name=variable 

The end of the entire set of strings is indicated by an additional null byte. 

If the environment pointer in the parameter block supplied to an EXEC call contains zero, 
the child simply acquires a copy of the parent's environment. The parent can, however, 
provide a segment pointer to a different or expanded set of strings. In either case, under 
MS-DOS versions 3.0 and later, EXEC appends the child program's fully qualified path
name to its environment block. The maximum size of an environment is 32 KB, so very 
large amounts of information can be passed between programs by this mechanism. 

The original, or master, environment for the system is owned by the command processor 
that is loaded when the system is turned on or restarted (usually COMMAND. COM). 
Strings are placed in the system's master environment by COMMAND. COM as a result of 
PATH, SHELL, PROMPT, and SET commands, with default values always present for the 
first two. For example, if an MS-DOS version 3.2 system is started from drive C and a PATH 
command is not present in the AUTO EXEC. BAT file nor a SHELL command in the 
CONFIG.SYS file, the master environment will contain the two strings: 

PATH= 
COMSPEC=C:\COMMAND.COM 

These specifications are used by COMMAND. COM to search for executable "external" 
commands and to find its own executable file on the disk so that it can reload its transient 
portion when necessary. When the PROMPT string is present (as a result of a previous 
PROMPT or SET PROMPT command), COMMAND.COM uses it to tailor the prompt dis
played to the user. 

0 2 3 4 5 6 7 8 9 A B c D E F 0123456789ABCDEF 

0000 43 4F 4D 53 50 45 43 3D 43 3A SC 43 4F 4D 4D 41 COMSPEC=C:\COMMA 
0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=$p 
0020 24 SF 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d $t$h$h$h$ 
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 h$h$h $q$q$g.PAT 

0040 48 3D 43 3A SC 53 59 53 54 45 4D 3B 43 3A SC 41 H=C:\SYSTEM;C:\A 
0050 53 4D 3B 43 3A sc 57 53 3B 43 3A SC 45 54 48 45 SM;C:\WS;C:\ETHE 
0060 52 4E 45 54 3B 43 3A sc 46 4F 52 54 48 sc 50 43 RNET;C:\FORTH\PC 
0070 33 31 3B 00 00 01 00 43 3A SC 46 4F 52 54 48 sc 31; .... C:\FORTH\ 
0080 50 43 33 31 sc 46 4F 52 54 48 2E 43 4F 4D 00 PC31\FORTH.COM. 

Figure 10-2. Dump of a typical environment under MS-DOS version 3.2. This particular example contains 
the default COM SPEC parameter and two relatively complex PATH and PROMPT control strings that were set 
up by entries in the user's AUTOEXECfile. Note the two null bytes at offset 73H, which indicate the end of the 
environment. These bytes are followed by the pathname of the program that owns the environment. 

Section Il· Programming in the MS-DOS Environment 325 

HUAWEI EX. 1010 - 335/1582

 

Article 10: The MS—DOS EXEC Function 

The environment

An environment always begins on a paragraph boundary and is composed of a series of
null-terminated (ASCIIZ) strings of the form:

name=variable

The end of the entire set of strings is indicated by an additional null byte. \

If the environment pointer in the parameter block supplied to an EXEC call contains zero,

the child simply acquires a copy of the parent’s environment. The parent can, however,

provide a segment pointer to a different or expanded set of strings. In either case, under

MS-DOS versions 3.0 and later, EXEC appends the child program’s fully qualified path—

name to its environment block. The maximum size of an environment is 32 KB, so very

large amounts of information can be passed between programs by this mechanism.

The original, or master, environment for the system is owned by the command processor

that is loaded when the system is turned on or restarted (usually COMMANDCOM).

Strings are placed in the system’s master environment by COMMANDCOM as a result of

PATH, SHELL, PROMPT, and SET commands, with default values always present for the

first two. For example, if an MS—DOS version 5.2 system is started from drive C and a PATH

command is not present in the AUTOEXECBAT file nor a SHELL command in the

CONFIG.SYS file, the master environment will contain the two strings:

PATH=

COMSPEC=C2\ COMMANDCOM

These specifications are used by COMMANDCOM to search for executable “external”
commands and to find its own executable file on the disk so that it can reload its transient

portion when necessary. When the PROMPT string is present (as a result of a previous

PROMPT or SET PROMPT command), COMMANDCOM uses it to tailor the prompt dis-

played to the user.

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C:\COMMA

0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=$p
0020 24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d $t$h$h$h$

0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 h$h$h $q$q$g.PAr
0040 48 3D 43 3A 5C 53 59 53 54 45 4D 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C:VNS;C:\ETHE
0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31;....C:\FORTH\
0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 PC31\FORTH.COM.

Figure 10—2. Dump ofa typical environment underMS—DOS version 3.2. Thisparticular example contains
the default COMSPECparameterand two relatively complex PATHand PROMPTcontrolstrings that were set
up by entries in the user’s AUTOEXECfile. Note the two null bytes at aflset 73H, which indicate the end ofthe
environment. These bytes arefollowed by thepathname oftheprogram that owns the environment.

Section [1: Programming in the MS-DOS Environment 323

HUAWEI EX. 1010 - 335/1582



Part B: Programming for MS-DOS 

Other strings in the environment are used only for informational purposes by transient 
programs and do not affect the operation of the operating system proper. For example, 
the Microsoft C Compiler and the Microsoft Object Linker look in the environment for 
INCLUDE, LIB, and TMP strings that specify the location of include files, library files, and 
temporary working files. Figure 10-2 contains a hex dump of a typical environment block. 

The command tall 
The command tail to be passed to the child program takes the form of a byte indicating 
the length of the remainder of the command tail, followed by a string of ASCII characters 
terminated with an ASCII carriage return (ODH); the carriage return is not included in the 
length byte. The command tail can include switches, filenames, and other parameters that 
can be inspected by the child program and used to influence its operation. It is copied 
into the child program's PSP at offset SOH. 

When COMMAND. COM uses EXEC to run a program, it passes a command tail that 
includes everything the user typed in the command line except the name of the program 
and any redirection parameters. 1/0 redirection is processed within COMMAND. COM 
itself and is manifest in the behavior of the standard device handles that are inherited 
by the child program. Any other program that uses EXEC to run a child program must try 
to perform any necessary redirection on its own and must supply an appropriate com
mand tail so that the child program will behave as though it had been loaded by 
COMMAND. COM. 

The default file control blocks 
The two default FCBs pointed to by the EXEC parameter block are copied into the child 
program's PSP at offsets 5CH and 6CH. See also PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PRoGRAMMING FOR Ms-oos: File and Record Management. 

Few of the currently popular application programs use FCBs for·file and record 1/0 
because FCBs do not support the hierarchical directory structure. But some programs do 
inspect the default FCBs as a quick way to isolate the first two switches or other parame
ters from the command tail. Therefore, to make its own identity transparent to the child 
program, the parent should emulate the action of COMMAND. COM by parsing the first 
two parameters of the command tail into the default FCBs. This can be conveniently ac
complished with the MS-DOS function Parse Filename (Interrupt 21H Function 29H). 

If the child program does not require one or both of the default FCBs, the corresponding 
address in the parameter block can be initialized to point to two dummy FCBs in the appli
cation's memory space. These dummy FCBs should consist of 1 zero byte followed by 11 
bytes containing ASCII blank characters (20H). 

326 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 336/1582



Article 10: The MS-DOS EXEC Function 

Running the child program 

After the parent program has constructed the necessary parameters, it can invoke the 
EXEC function by issuing Interrupt 21H with the registers set as follows: 

AH 
AL 
DS:DX 
ES:BX 

=4BH 
= OOH (EXEC subfunction to load and execute program) 
= segment: offset of program pathname 
= segment: offset of parameter block 

Upon return from the software interrupt, the parent must test the carry flag to determine 
whether the child program did, in fact, run. If the carry flag is clear, the child program was 
successfully loaded and given control. If the carry flag is set, the EXEC function failed, and 
the error code returned in AX can be examined to determine why. The usual reasons are 

• The specified file could not be found. 
• The file was found, but not enough memory was free to load it. 

Other causes are uncommon and can be symptoms of more severe problems in the 
system as a whole (such as damage to disk files or to the memory image of MS-DOS). With 
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can 
be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error 
Information). 

In gener.al, supplying either an invalid address for an EXEC parameter block or invalid 
addresses within the parameter block itself does not cause a failure of the EXEC function, 
but may result in the child program behaving in unexpected ways. 

Special considerations 

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP 
can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently, 
before issuing the EXEC call, the parent must push onto the stack the contents of any regis
ters that it needs to preserve, and then it must save the stack segment and offset in a loca
tion that is addressable with the CS segment register. Upon return, the stack segment and 
offset can be loaded into SS:SP with code segment overrides, and then the other registers 
can be restored by popping them off the stack. With MS-DOS versions 3.0 and later, regis
ters are preserved across an EXEC call in the usual fashion. 

Note: The code segments of Windows applications that use this technique should be 
given the IMPURE attribute. 

In addition, a bug in MS-DOS version 2.0 and in PC-DOS versions 2.0 and 2.1 causes an 
arbitrary doubleword in the parent's stack segment to be destroyed during an EXEC call. 
When the parent is a .COM program and SS = PSP, the damaged location falls within the 
PSP and does no harm; however, in the case of a .EXE parent where DS = SS, the affected 
location may overlap the data segment aqd cause aberrant behavior or even a crash after 
the return from EXEC. This bug was fixed in MS-DOS versions 2.11 and later and in 
PC-DOS versions 3.0 and later. 

Section /1- Programming in the MS-DOS Environment 327 

HUAWEI EX. 1010 - 337/1582

 

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters, it can invoke the

EXEC function by issuing Interrupt 21H with the registers set as follows:

AH ' = 4BH .

AL = OCH (EXEC subfunction to load and execute program)

DS:DX = segmentoffset of program pathname

ES:BX = segmentzoffset of parameter block

Upon return from the software interrupt, the parent must test the carry flag to determine

whether the child program did, in fact, run. If the carry flag is clear, the child program was

successfully loaded and given control. If the carry flag is set, the EXEC function failed, and

the error code returned in AX can be examined to determine why. The usual reasons are

0 The specified file could not be found.

0 The file was found, but not enough memory was free to load it.

Other causes are uncommon and can be symptoms of more severe problems in the

system as a whole (such as damage to disk files or to the memory image of MS-DOS). With
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can

be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In general, supplying either an invalid address for an EXEC parameter block or invalid

addresses within the parameter block itself does not cause a failure of the EXEC function,

but may result in the child program behaving in unexpected ways. .

Special considerations

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP

can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently,

before issuing the EXEC call, the parent must push onto the stack the contents of any regis-

ters that it needs to preserve, and then it must save the stack segment and offset in a loca—

tion that is addressable with the CS segment register. Upon return, the stack segment and

offset can be loaded into SS:SP with code segment overrides, and then the other registers

can be restored by popping them off the stack. With MS-DOS versions 3.0 and later, regis-

ters are preserved across an EXEC call in the usual fashion.

Note: The code segments of Windows applications that use this technique should be

given the IMPURE attribute.

In addition, a bug in MS—DOS version 2.0 and in PC—DOS versions 2.0 and 2.1 causes an

arbitrary doubleword in the parent’s stack segment to be destroyed during an EXEC call.

When the parent is a .COM program and SS = PSP, the damaged location falls within the

PSP and does no harm; however, in the case of a .EXE parent where DS = 85, the affected

location may overlap the data segment and cause aberrant behavior or even a crash after
the return from EXEC. Thisbug was fixed in MS-DOS versions 2.11 and later and in
PC—DOS versions 3.0 and later.

Section 11- Programming in the MS—DOS Environment 327

HUAWEI EX. 1010 - 337/1582



Part B: Programming for MS-DOS 

Examining the child program's return codes 

If the EXEC function succeeds, the parent program can call Interrupt 21H Function 4DH 
(Get Return Code of Child Process) to learn whether the child executed normally to com
pletion and passed back a return code or was terminated by the operating system because 
of an external event. Function 4DH returns· 

AH = termination type: 
OOH Child terminated normally (that is, exited via Interrupt 20H or Interrupt 

21H Function OOH or Function 4CH). 
OlH Child was terminated by user's entry of a Ctrl-C. 
02H Child was terminated by critical error handler (either the user responded 

with A to the Abort, Retry, Ignore prompt from the system's default Inter
rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS 
with action code = 02H in register AL). 

03H Child terminated normally and stayed resident (that is, exited via Interrupt 
21H Function 31H or Interrupt 27H). 

AL = return code: 
Value passed by the child program in register AL when it terminated with Interrupt 
21H Function 4CH or 31H. 
OOH if the child terminated using Interrupt 20H, Interrupt 27H, or Interrupt 21H 
Function OOH. 

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse
quent call to Function 4DH, without an intervening EXEC call, does not necessarily return 
any useful information. Additionally, if Function 4DH is called without a preceding suc
cessful EXEC call, the returned values are meaningless. 

Using COMMAND.COM with EXEC 

An application program can "shell" to MS-DOS- that is, provide the user with an MS-DOS 
prompt without terminating- by using EXEC to load and execute a secondary copy of 
COMMAND. COM with an empty command tail. The application can obtain the location of 
the COMMAND. COM disk file by inspecting its own environment for the COMSPEC string. 
The user returns to the application from the secondary command processor by typing exit 
at the COMMAND.COM prompt. 

Batch-file interpretation is carried out by COMMAND. COM, and a batch (.BAT) file can
not be called using the EXEC function directly. Similarly, the sequential search for .COM, 
.EXE, and .BAT files in all the locations specified in the environment's PATH variable is a 
function of COMMAND. COM, rather than of EXEC. To execute a batch file or search the 
system path for a program, an application program can use EXEC to load and execute a 
secondary copy of COMMAND.COM to use as an intermediary. The application finds the 
location of COMMAND. COM as described in the preceding paragraph, but it passes a 
command tail in the form: 

!C program parameter1 parameter2 ... 

328 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 338/1582



I 

Article 10: The MS-DOS EXEC Function 

where program is the .EXE, .COM, or .BAT file to be executed. When program termi
nates, the secondary copy of COMMAND. COM exits and returns control to the parent. 

A parent and child example 

The source programs PARENT.ASM in Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate 
how one program uses EXEC to load another. 

name 

title 

parent 

'PARENT demonstrate EXEC call' 

PARENT.EXE --- demonstration of EXEC to run process 

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction OOH) 

to load and execute a child process named CHILD.EXE, 

then displays CHILD's return code. 

Ray Duncan, June 1987 

stdin equ 0 standard input 

stdout equ 1 standard output 

stderr equ 2 standard error 

stksize equ 128 size of stack 

cr equ Odh ASCII carriage return 

lf equ Oah ASCII line feed 

DGROUP group _DATA,_ENVIR,_STACK 

_TEXT segment byte public 'CODE' ; executable code segment 

assume cs:_TEXT,ds:-DATA,ss:_STACK 

stk_seg dw original ss contents 

stk_ptr dw ? original SP contents 

main proc far entry point from MS-DOS 

mov ax,-DATA set DS our data segment 

mov ds,ax 

now give back extra memory 
so child has somewhere to run ... 

Figure 10-3. PARENT.ASM, source code for PARENT.EXE. (more) 

Section II: Programming in the MS-DOS Environment 32Q 

HUAWEI EX. 1010 - 339/1582

Article 10: The MS-DOS EXEC Function ' 

where program is the .EXE, .COM, or .BAT file to be executed. When program termi—
nates, the secondary copy of COMMANDCOM exits and returns control to the parent.

A parent and child example

The source programs PARENTASM in Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate
how one program uses EXEC to load another.

name parent
title 'PARENT —-— demonstrate EXEC call'

. ;

l - PARENT.EXE ——— demonstration of EXEC to run process

; Uses MS—DOS EXEC (Int 21H Function 4BH Subfunction 00H)
; to load and execute a child process named CHILD.EXE,
; then displays CHILD’S return code.

; Ray Duncan, June 1987

stdin equ 0 ; standard input
stdout equ 1 ; standard output
stderr equ 2 ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return
. lf equ Oah ; ASCII linefeed

DGROUP group _DATA,_ENVIR,_STACK

 
_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw ? ; original SS contents
stk_ptr dw ? ; original SP contents

I main proc far ; entry point from Ms—DOS
mov ax,_DATA ; set DS = our data segment
mov ds,ax

; now give back extra memory
‘ ; so child has somewhere to run...

I Figure 10-3. PARENTASM, source codeforPARENTEXE. (more)

‘ Section 11: Programming in the MS-DOS Environment 329
HUAWEI EX. 1010 - 339/1582



Part B: Programming for MS-DOS 

mov ax,es 
mov bx,ss 
sub bx,ax 
add bx,stksize/16 
mov ah,4ah 
int 21h 
jc main1 

mov dx,offset DGROUP:msg1 
mov cx,msg1_len 
call pmsg 

push ds 
mov stk_seg,ss 
mov stk_ptr,sp 

mov ax,ds 
mov es,ax 
mov dx,:>ffset DGROUP:cname 
mov bx,offset DGROUP:pars 
mov ax,4b00h 
int 21h 

eli 
mov ss,stk_seg 
mov sp,stk_ptr 
sti 
pop ds 

jc main2 

mov ah,4dh 
int 21h 
xchg al,ah 
mov bx,offset DGROUP:msg4a 
call b2hex 
mov al,ah 
mov bx,offset DGROUP:msg4b 
call b2hex 
mov dx,offset DGROUP:msg4 
mov cx,msg4_len 
call pmsg 

mov ax,4c00h 
int 21h 

Figure 10-3. Continued. 

330 The MS-DOS Encyclopedia 

let AX = segment of PSP base 
and BX = segment of stack base 
reserve seg stack - seg psp 
plus paragraphs of stack 
fxn 4AH = modify memory block 

display parent message ... 
DS:DX = address of message 
ex = length of message 

save parent's data segment 
save parent's stack pointer 

now EXEC the child process ... 
set ES DS 

DS:DX = child pathname 
ES:BX = parameter block 
function 4BH subfunction OOH 
transfer to MS-DOS 

(for bug in some early 8088s) 
restore parent's stack pointer 

(for bug in some early 8088s) 
restore DS = our data segment 

jump if EXEC failed 

otherwise EXEC succeeded, 
convert and display child's 
termination and return codes ... 
fxn 4DH = get return code 
transfer to MS-DOS 
convert termination code 

get back return code 
and convert it 

DS:DX = address of message 
ex = length of message 
display it 

no error, terminate program 
with return code = 0 

(more) 

HUAWEI EX. 1010 - 340/1582



main1: mov 

call 
mov 

mov 

call 

jmp 

main2: mov 

call 

mov 

mov 

call 

main3: mov 

int 

main endp 

b2hex proc 

push 

shr 
shr 

shr 
shr 

call 
mov 

pop 

and 

call 
mov 

ret 

b2hex endp 

ascii proc 

add 
cmp 

jle 

add 

ascii2: ret 

ascii endp 

pmsg proc 

bx,offset DGROUP:msg2a 

b2hex 
dx,offset DGROUP:msg2 
cx,msg2_len 

pmsg 
main3 

bx,offset DGROUP:msg3a 

b2hex 

dx,offset DGROUP:msg3 
cx,msg3_len 

pmsg 

ax,4c01h 

21h 

near 

ax 
al, 1 

al, 1 

al, 1 
al, 1 

ascii 
[bx) ,al 

ax 
al,Ofh 

ascii 

[bx+1) ,al 

near 
al, '0' 
al, '9' 
ascii2 

al' 'A'-' 9 '-1 

near 

Article 10: The MS-DOS EXEC Function 

convert error code 

display message 'Memory 
resize failed ... ' 

convert error code 

display message 'EXEC 

call failed ... ' 

error, terminate program 

with return code = 1 

end of main procedure 

convert byte to hex ASCII 
call with AL binary value 

BX addr to store string 

become first ASCII character 

store it 

isolate lower 4 bits, which 

become the second ASCII character 

store it 

convert value 00-0FH in AL 
into a "hex ASCII" character 

jump if in range 00-09H, 

offset it to range OA-OFH, 

return ASCII char. in AL 

displays message on standard output 

call with DS:DX address, 
ex length 

Figure 10-3. Continued. (more) 

Section II: Programming in the MS-DOS Environment 331 

HUAWEI EX. 1010 - 341/1582

 

Article 10: The MS—DOS EXEC Function———a______——————___——__—————_______________________________________________________

main1:

main2:

main3:

main

b2hex

b2hex

ascii

asciiZ:
ascii

pmsg

mov

call
mov
mov
call

jmp

mov
call
mov
mov

call

mov

int

endp

proc

push
shr
shr
shr
shr
call
mov

P0P
and
call
mov
ret

endp

proc
add

cmp

jle
add

ret

endp

proc

bx,offset DGROUsznga
b2hex

dx,offset DGROUP:mng
cx,mng_len

Pmsg
main3

bx,offset DGROUP:msg3a
b2hex

dx,offset DGROUszsgB
cx,msgB_len
pmsg

ax,4c01h
21h

near

ax

al,1
al,1
al,1
al,1
ascii

[bx],al
ax

al,0fh
ascii

[bx+1],al

near

al,'0'
al,'9'
ascii2
al,'A'—'9'-1

near

Figure 10—3. Continued.

m

n

convert error code

display message 'Memory
resize failed...‘

convert error code

display message 'EXECcall failed...‘

error, terminate program
with return code = 1

end of main procedure

convert byte to hex ASCII
call with AL = binary value

BX = addr to store string

become first ASCII characterstore it

isolate lower 4 bits, which
become the second ASCII character
store it

convert value OO—OFH in AL
into a "hex ASCII" character

jump if in range 00~09H,
offset it to range OA—OFH,

return ASCII char. in AL

displays message on standard output
call with DS:DX = address,

CX = length

Ononfl

Section II: Programming in the MS—DOSEnvironment 331

HUAWEI EX. 1010 - 341/1582



Part B: Programming for MS-DOS 

mov 

mov 

int 

ret 

pmsg endp 

_TEXT ends 

_J)ATA segment 

en arne db 

pars dw 

dd 

dd 

dd 

tail db 
db 

fcb1 db 

db 
db 

fcb2 db 

db 

db 

msg1 db 
msg1_len equ 

msg2 db 
msg2a db 
msg2_len equ 

msg3 db 

msg3a db 

msg3_len equ 

msg4 db 
db 

msg4a db 
msg4b db 
msg4_len equ 

_J)ATA ends 

bx,stdout 

ah,40h 

21h 

para public 'DATA' 

'CHILD.EXE',O 

_ENVIR 

tail 
fcb1 

fcb2 

fcb1-tail-2 
'dummy command 

0 
11 dup (' ') 

25 dup (0) 

0 

11 dup (' ') 

25 dup (0) 

tail', cr 

BX = standard output handle 
function 40H = write file/device 

transfer to MS-DOS 
back to caller 

static & variable data segment 

pathname of child process 

segment of environment block 
long address, command tail 

long address, default FCB #1 

long address, default FCB #2 

command tail for child 

copied into default FCB #1 in 

child's program segment prefix 

copied into default FCB #2 in 

child's program segment prefix 

cr,lf, 'Parent executing! ',cr,lf 
$-msg1 

cr,lf, 'Memory resize failed, error code=' 
'xxh.',cr,lf 
$-msg2 

cr,lf, 'EXEC call failed, error code=' 
'xxh.',cr,lf 
$-msg3 

cr,lf, 'Parent regained control!' 

cr,lf, 'Child termination type=' 

'xxh, return code=' 

'xxh.',cr,lf 
$-msg4 

J:NVIR segment para public 'DATA' example environment block 

to be passed to child 

Figure 10-3. Continued. 

332 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 342/1582



db 
db 

'PATH=', 0 
'PROMPT=$p$_$n$g',O 

Article 10: The MS-DOS EXEC Function 

; basic PATH, PROMPT, 
; and COMSPEC strings 

db 'COMSPEC=C:\COMMANO.COM',O 

db 0 ; extra null terminates block 

_ENVIR ends 

_STACK segment para stack 'STACK' 

db stksize dup (?) 

_STACK ends 

end main 
Figure 10-3. Continued. 

name 
title 

child 
'CHILD process' 

defines program entry point 

CHILD.EXE --- a simple process loaded by PARENT.EXE 
to demonstrate the MS-DOS EXEC call, Subfunction DOH. 

Ray Duncan, June 1987 

stdin equ 0 

stdout equ 1 

stderr equ 2 

cr equ Odh 

lf equ Oah 

DGROUP group _DATA, STACK 

_TEXT segment byte public 'CODE' 

standard input 
standard output 
standard error 

ASCII carriage return 
ASCII linefeed 

; executable code segment 

assume cs:_TEXT,ds:-DATA,ss:STACK 

main proc far entry point from MS-DOS 

mov ax,-DATA set OS our data segment 

mov ds, ax 

; display child message ... 

Figure 10-4. CHIID.ASM, source code for CHIID.EXE. (more) 

Section II: Programming in the MS-DOS Environment 333 

HUAWEI EX. 1010 - 343/1582

 

Article 10: The MS-DOS EXEC Functionw

_ENVIR

_STACK

_STACK

db
db

db

ends

segment

db

ends

end

'PATH=',O

'PROMPT=$p$_$n$g',0
'COMSPEC=C:\COMMAND.COM',0
o ; extra null terminates block

basic PATH, PROMPT,
and COMSPEC strings

~¢

para stack 'STACK'

stksize dup (?)

main ; defines program entry point

Figure 10—3. Continued.

name child

title 'CHILD process'
;

; CHILD.EXE ——- a simple process loaded by PARENT.EXE
; to demonstrate the MS—DOS EXEC call, Subfunction OOH.

; Ray Duncan, June 1987

stdin equ 0 ; standard input
stdout equ 1 ; standard output
stderr equ 2 ; standard error

or equ Odh ; ASCII carriage return
lf equ Oah ; ASCII linefeed

DGROUP group _DATA,STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far ; entry point from MS—DOS

mov . ax,_DATA ; set DS = our data segment
mov ds,ax

; display child message ...

Figure 10—4. CHILDASM, source codefor CHILDEXE. (more)

Section II: Programming in the MS—DOS Environment 35$

HUAWEI EX. 1010 - 343/1582



Part B: Programming for MS-DOS 

mov dx,offset msg 

mov cx,msg_len 

mov bx, stdout 

mov ah,40h 

int 21h 

jc main2 

mov ax,4c00h 

int 21h 

ma.in2: mov ax,4c01h 

int 21h 

main endp 

_TEXT ends 

_DATA segment para public 'DATA' 

DS:DX = address of message 

ex length of message 
BX = standard output handle 
AH = fxn 40H, write file/device 

transfer to MS-DOS 
jump if any error 

no error, terminate child 
with return code = 0 

error, terminate child 
with return code = 1 

end of main procedure 

; static & variable data segment 

msg db cr,lf, 'Child executing! ',cr,lf 
msg_len equ $-msg 

_DATA ends 

STACK segment para stack 'STACK' 

dw 64 dup (?) 

STACK ends 

end main defines program entry point 

Figure 10-4. Continued. 

PARENT.ASM can be assembled and linked into the executable program PARENT.EXE 
with the following commands: 

C>MASM PARENT; <Enter> 

C>LINK PARENT; <Enter> 

Similarly, CHILD.ASM can be assembled and linked into the file CHILD.EXE as follows: 

C>MASM CHILD; <Enter> 

C>LINK CHILD; <Enter> 

When PARENT.EXE is executed with the command 

C>PARENT <Enter> 

334 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 344/1582



Article 10: The MS-DOS EXEC Function 

PARENT reduces the size of its main memory block with a call to Interrupt 21H Function 
4AH, to maximize the amount of free memory in the system, and then calls the EXEC func
tion to load and execute CHILD.EXE. 

CHILD.EXE runs exactly as though it had been loaded directly by COMMAND. COM. 
CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H 
Function 40H to display a message on standard output, and then terminates using Interrupt 
21H Function 4CH, passing a return code of zero. 

When PARENT.EXE regains control, it first checks the carry flag to determine whether 
the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and 
terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to 
COMMAND. COM to indicate an error. 

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE's termination 
type and return code, which it converts to ASCII and displays. PARENT then terminates 
using Interrupt 21H Function 4CH and passes a return code of zero to COMMAND. COM 
to indicate success. COMMAND. COM in turn receives control and displays a new user 
prompt. 

Using EXEC to Load Overlays 

Loading overlays with the EXEC function is much less complex than using EXEC to run 
another program. The main program, called the root segment, must carry out the follow
ing steps to load and execute an overlay: 

1. Make a memory block available to receive the overlay. 
2. Set up the overlay parameter block to be passed to the EXEC function. 
3. Call the EXEC function to load the overlay. 
4. Execute the code within the overlay by transferring to it with a far call. 

The overlay itself can be constructed as either a memory image (.COM) or a relocatable 
(.EXE) file and need not be the same type as the root program. In either case, the overlay 
should be designed so that the entry point (or a pointer to the entry point) is at the begin
ning of the module after it is loaded. This allows the root and overlay modules to be main
tained separately and avoids a need for the root to have "magical" knowledge of addresses 
within the overlay. 

To prevent users from inadvertently running an overlay directly from the command line, 
overlay files should be assigned an extension other than .COM or .EXE. The most conve
nient method relates overlays to their root segment by assigning them the same filename 
but an extension such as .OVL or .OVl, .OV2, and so on. 

Making memory available 
If EXEC is to load a child program successfully, the parent must release memory. In 
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the 

Section II: Programming in the MS-DOS Environment 335 

HUAWEI EX. 1010 - 345/1582

 

Article 10: The MS-DOS EXEC Functio 

PARENT reduces the size of its main memory block With a call to Interrupt 21H Function
'4AH, to maximize the amount of free memory in the system, and then calls the EXEC fume-
tion to load and execute CHILD.EXE.

CHILD.EXE runs exactly as though it had been loaded directly by COMMANDCOM.

CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H
' Function 40H to display a message on standard output, and then terminates using Interrupt \

21H Function 4CH, passing a return code of zero.

When PARENTEXE regains control, it first checks the carry flag to determine whether

the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and

terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to
COMMANDCOM to indicate an error.

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE’s termination

type and return code, which it converts to ASCII and displays. PARENT then terminates

using Interrupt 21H Function 4CH and passes a return code of zero to COMMANDCOM
to indicate success. COMMANDCOM in turn receives control and displays a new user

prompt.

Using EXEC to Load Overlays -

Loading overlays with the EXEC function is much less complex than using EXEC to run

another program. The main program, called the root segment, must carry out the follow-

ing steps to load and execute an overlay:

1 Make a memory block available to receive the overlay.

Set up the overlay parameter block to be passed to the EXEC function.2.

5. Call the EXEC function to load the overlay.

4. Execute the code within the overlay by transferring to it with a far call.

The overlay itself can be constructed as either a memory image (. COM) or a relocatable

(.EXE) file and need not be the same type as the root program. In either case, the overlay

should be designed so that the entry point (or a pointer to the entry point) is at the begin-

ning of the module after it is loaded. This allows the root and overlay modules to be main-

tained separately and avoids a need for the root to have “magical” knowledge of addresses

within the overlay.

To prevent users from inadvertently running an overlay directly from the command line,

overlay files should be assigned an extension other than .COM or .EXE. The most conve-

nient method relates overlays to their root segment by assigning them the same filename
but an extension such as .OVL or .OVl, .OV2, and so on.

Making memory available

If EXEC is to load a child program successfully, the parent must release memory. In
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the

Section 11.- Programming in the MS—DOS Environment 535

HUAWEI EX. 1010 - 345/1582



Part B: Programming for MS-DOS 

root segment is a .COM program and has not explicitly released extra memory, the root 
segment program need only ensure that the system contains enough memory to load the 
overlay and that the overlay load address does not conflict with its own code, data, or 
stack areas. 

If the root segment program was loaded from a .EXE file, no straightforward way exists 
for it to determine unequivocally how much memory it already owns. The simplest course 
is for the program to release all extra memory, as discussed earlier in the section on load
ing a child program, and then use the MS-DOS memory allocation function (Interrupt 21H 
Function 48H) to obtain a new block of memory that is large enough to hold the overlay. 

Preparing overlay parameters 

When it is used to load an overlay, the EXEC function requires two major parameters: 

• The address of the pathname for the overlay file 
• The address of an overlay parameter block 

As for a child program, the pathname for the overlay file must be an unambiguous ASCIIZ 
file specification (again, no wildcard characters), and it must include an explicit extension. 
As before, if a path and/or drive are not included in the pathname, the current directory 
and default drive are used. 

The overlay parameter block contains the segment address at which the overlay should be 
loaded and a fixup value to be applied to any relocatable items within the overlay file. If 
the overlay file is in .EXE format, the fixup value is typically the same as the load address; if 
the overlay is in memory-image (.COM) format, the fixup value should be zero. The EXEC 
function does not attempt to validate the load address or the fixup value or to ensure that 
the load address actually belongs to the calling program. 

Loading and executing the overlay 

After the root segment program has prepared the filename of the overlay file and the 
overlay parameter block, it can invoke the EXEC function to load the overlay by issuing an 
Interrupt 21H with the registers set as follows: 

AH 
AL 
DS:DX 
ES:BX 

=4BH 
= 03H (EXEC subfunction to load overlay) 
= segment:offset of overlay file pathname 
= segment: offset of overlay parameter block 

Upon return from Interrupt 21H, the root segment must test the carry flag to determine 
whether the overlay was loaded. If the carry flag is clear, the overlay file was located and 
brought into memory at the requested address. The overlay can then be entered by a far 
call and should exit back to the root segment with a far return. 

If the carry flag is set, the overlay file was not found or some other (probably severe) sys
tem problem was encountered, and the AX register contains an error code. With MS-DOS 

336 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 346/1582



Article 10: The MS-DOS EXEC Function 

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information 
about the EXEC failure. An invalid load address supplied in the overlay parameter block 
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting 
message Memory Allocation Error, System Halted when the root program terminates. 

An overlay example 

The source programs ROOT.ASM in Figure 10-5 and OVERLAY.ASM in Figure 10-6 demon
strate the use of EXEC to load a program overlay. The program ROOT.EXE is executable 
from the MS-DOS prompt; it represents the root segment of an application. OVERLAY is 
constructed as a .EXE file (although it is named OVERLAY.OVL because it cannot be run 
alone) and represents a subprogram that can be loaded by the root segment when and 
if it is needed. 

name root 

title 'ROOT demonstrate EXEC overlay' 

ROOT.EXE --- demonstration of EXEC for overlays 

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 03H) 

to load an overlay named OVERLAY.OVL, calls a routine 

within the OVERLAY, then recovers control and terminates. 

Ray Duncan, June 1987. 

stdin equ 0 

stdout equ 

stderr equ 2 

stksize equ 128 

cr equ Odh 

lf equ Oah 

DGROUP group _DATA,_STACK 

_TEXT segment byte public 'CODE' 

standard input 

standard output 

standard error 

size of stack 

ASCII carriage return 

ASCII linefeed 

; executable code segment 

assume cs:_TEXT,ds:_DATA,ss:_STACK 

stk_seg dw 

stk_ptr dw 
? 

? 

original SS contents 
original SP contents 

Figure 10-5. ROOT.ASM, source code for ROOT.EXE. . (more) 

Section II: Programming in the MS-DOS Environment 337 . 

HUAWEI EX. 1010 - 347/1582

Article 10: The MS—DOS EXEC Function 

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information
about the EXEC failure. An invalid load address supplied in the overlay parameter block
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting
message Memory Allocation Error; System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figire 10-5 and OVERLAY.ASM in Figure 10—6 demon-

strate the use of EXEC to load a program overlay. The program ROOT.EXE is executable

from the MS—DOS prompt; it represents the root segment of an application. OVERLAY is

constructed as a .EXE file (although'it is named OVERLAYOVL because it cannot be run

alone) and represents a subprogram that can be loaded by the root segment when and
if it is needed.

name root

title 'ROOT --- demonstrate EXEC overlay'

; ROOT.EXE -—— demonstration of EXEC for overlays

; Uses MS—DOS EXEC (Int 21H Function 4B8 Subfunction 03H)

; to load an overlay'named OVERLAY.OVL, calls a routine
; within the OVERLAY, then recovers control and terminates.

; Ray Duncan, June 1987-

stdin equ 0 ; standard input
stdout equ 1 ; standard output

stderr equ 2 _ ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return

if equ Oah ; ASCII linefeed

DGROUP group JATA, _STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw ? ; original SS contents
stk_ptr dw ? ; original SP contents

Figure 10—5. ROOTASM, source codeforROOTEXE. 4 (more)

Section 11: Programming in the MS—DOS Environment 337 ,

HUAWEI EX. 1010 - 347/1582



Part B: Programming for MS-DOS 

main proc far 

mov ax,_DATA 

mov ds,ax 

mov ax,es 
mov bx,ss 

sub bx,ax 
add bx,stksize/16 

mov ah,4ah 

int 21h 

jc main1 

mov dx,offset DGROUP:msg1 

mov cx,msg1_len 

call pmsg 

mov bx,1000h 

mov ah,48h 

int 21h 

jc main2 

mov pars,ax 

mov pars+2,ax 

mov word ptr entry+2,ax 

push ds 

mov stk_seg,ss 

mov stk_ptr,sp 

mov ax,ds 

mov es,ax 
mov dx,offset DGROUP:oname 

mov bx,offset DGROUP:pars 

mov ax,4b03h 

int 21h 

eli 

mov ss,stk_seg 

mov sp,stk_ptr 

sti 

pop ds 

jc main3 

Figure 10-5. Continued. 

338 The MS-DOS Encyclopedia 

entry point from MS-DOS 

set DS our data segment 

now give back extra memory 
AX = segment of PSP base 

BX = segment of stack base 

reserve seg stack - seg psp 

plus paragraphs of stack 

fxn 4AH = modify memory block 

transfer to MS-DOS 

jump if resize failed 

display message 'Root 

segment executing ... ' 
DS:DX = address of message 

ex = length of message 

allocate memory for overlay 
get 64 KB (4096 paragraphs) 

fxn 48H, allocate mem block 

transfer to MS-DOS 
jump if allocation failed 

set load address for overlay 

set relocation segment for overlay 

set segment of entry point 

save root's data segment 

save root's stack pointer 

now use EXEC to load overlay 

set ES = DS 

DS:DX = overlay pathname 

ES:BX =parameter block 

function 4BH, subfunction 03H 

transfer to MS-DOS 

(for bug in some early 8088s) 

restore root's stack pointer 

(for bug in some early 8088s) 

restore OS = our data segment 

jum~ if EXEC failed 

otherwise EXEC succeeded ... 

(more) 

HUAWEI EX. 1010 - 348/1582



main1: 

main2: 

main3: 

main4: 

main 

b2hex 

push 

call 
pop 

mov 

mov 

call 

mov 
int 

mov 

call 

mov 

mov 

call 
jmp 

mov 

call 

mov 
mov 

call 

jmp 

mov 
call 

mov 

mov 

call 

mov 

int 

endp 

proc 

IJUSh 
shr 

shr 

shr 

shr 

call 
mov 

pop 

ds 

dword ptr entry 

ds 

dx,offset DGROUP:msgS 
cx,msgS_len 

pmsg 

ax,4c00h 

21h 

bx,offset DGROUP:msg2a 

b2hex 

dx,offset DGROUP:msg2 
cx,msg2_len 

pmsg 

main4 

bx,offset DGROUP:msg3a 

b2hex 

dx,offset DGROUP:msg3 
cx,msg3_len 

pmsg 

main4 

bx,offset DGROUP:msg4a 

b2hex 
dx,offset DGROUP:msg4 
cx,msg4_len 

pmsg 

ax,4c01h 

21h 

near 

ax 

al, 1 

al, 1 

al, 1 

al, 1 

ascii 

[bx],al 

ax 

Article 10: The MS-DOS EXEC Function 

save our data segment 
now call the overlay 

restore our data segment 

display message that root 
segment regained control ... 

DS:DX = address of message 
ex = length of message 

display it 

no error, terminate program 

with return code = 0 

convert error code 

display message 'Memory 

resize failed ... ' 

convert error code 

display message 'Memory 

allocation failed ... ' 

convert error code 

display message 'EXEC 

call failed ... ' 

error, terminate program 

with return code. = 1 

end of main procedure 

convert byte to hex ASCII 

call with AL = binary value 

BX = addr to store string 

become first ASCII character 

store it 

Figure 10-5. Continued. (more) 

Section 11- Programming in the MS-DOS Environment 339 

HUAWEI EX. 1010 - 349/1582

main1:

main2:

main3:

main4:

main

b2hex

push
call

POP

mov
mov

call

mov

int

mov

call
mov
mov

call

jmp

mov
call
mov
mov
call

jmp

mov

call
mov
mov

call

mov

int

endp

proc

push
shr
shr
shr
shr
call
mov

P0P

ds

dword ptr entry
ds

dx,offset DGROUP:msgS
cx,msgS_len
pmsg

ax,4c00h
21h

bx,offset DGROUP:msg2a
b2hex

dx,offset DGROUP:mng
cx,msg2_len
pmsg
main4

bx,offset DGROUP:msg3a
b2hex .
dx,offset DGROUszsg3
cx,msg3_len
Pm59
main4

bx,offset DGROUP:msg4a
b2hex

dx,offset DGROUszsg4
cx,msg4_len
pmsg

ax,4c01h
21h

near

ax

al,1
al,1
al,1
al,1
ascii

[bx],al
ax

Figure 10-5, Continued.

Section 11.- Programming in the MS-DOS Environment

Article 10: The 'MS-DOS EXEC FunctionW

save our data segment
now call the overlay
restore our data segment

display message that root
segment regained control...
DS:DX = address of message
CX = length of message
display it

no error, terminate program
with return code = 0

convert error code

display message 'Memory
resize failed...‘

convert error code

display message 'Memory
allocation failed...‘

convert error code

display message 'EXEC
call failed...‘

error, terminate program
with return code = 1

end of main procedure

convert byte to hex ASCII
call with AL = binary value
BX = addr to store string

become first ASCII character
store it

HUAWEI EX. 1010 - 349/1582

Onony

339



Part B: Programming for MS-DOS 

and 
call 

mov 

ret 

b2hex endp 

ascii proc 

add 

cmp 

jle 
add 

ascii2: ret 
ascii endp 

pmsg proc 

mov 

mov 
int 

ret 

pmsg endp 

_TEXT ends 

_DATA segment 

on arne db 

pars dw 

dw 

entry dd 

msg1 db 
msg1_len equ 

msg2 db 

msg2a db 
msg2_len equ 

msg3 db 

msg3a db 
msg3_len equ 

al,Ofh 

ascii 
[bx+1],al 

near 
al, I 0 I 

al, '9' 
ascii2 
al, 'A'-'9'-1 

near 

bx,stdout 

ah,40h 

21h 

para public 'DATA' 

'OVERLAY.OVL',O 

0 

0 

0 

isolate lower 4 bits, which 

become the second ASCII character 

store it 

convert value 00-0FH in AL 

into a "hex ASCII" character 

jump if in range 00-09H, 

offset it to range OA-OFH, 

return ASCII char. in AL. 

displays message on standard output 

call with DS:DX address, 
ex length 

BX = standard output handle 

function 40H = write file/device 

transfer to MS-DOS 

back to caller 

static & variable da·ta segment 

pathname of overlay file 

load address (segment) for file 

relocation (segment) for file 

entry point for overlay 

cr,lf, 'Root segment executing! ',cr,lf 

$-msg1 

cr,lf, 'Memory resize failed, error code=' 

'xxh. ',cr,lf 
$-msg2 

cr,lf, 'Memory allocation failed, error code=' 

'xxh.',cr,lf 
$-msg3 

Figure 10-5. Continued. 

340 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 350/1582



Article 10: The MS-DOS EXEC Function 

msg4 
·msg4a 

db 

db 
msg4_len equ 

msg5 db 
msgS_len equ 

_DATA ends 

cr,lf, 'EXEC call failed, error code=' 
'xxh.',cr,lf 
$-msg4 

cr,lf, 'Root segment regained control! ',cr,lf 
$-msg5 

_STACK segment para stack 'STACK' 

db stksize dup (?) 

_STACK ends 

end main defines program entry point 

Figure 10-5. Continued. 

name 

title 

overlay 

'OVERLAY segment' 

OVERLAY.OVL ---a simple overlay segment 

loaded by ROOT.EXE to demonstrate use of 

the MS-DOS EXEC call Subfunction 03H. 

The overlay does not contain a STACK segment 

because it uses the ROOT segment's stack. 

Ray Duncan, June 1987 

stdin equ 0 standard 
stdout equ 1 standard 

stderr equ 2 standard 

input 

output 

error 

cr equ Odh ASCII carriage 
lf equ Oah ASCII line feed 

return 

_TEXT segment byte public 'CODE' executable code segment 

assume cs:_TEXT,ds:_DATA 

ovlay proc far entry point from root segment 

mov ax,_DATA set DS local data segment 
mov ds,ax 

Figure 10-6. OVERLAY.ASM, sourcecodeforOVERLAY.OVL. (more) 

Section 11· Programming in the MS-DOS Environment 341 

HUAWEI EX. 1010 - 351/1582

Article 10: The MS-DOS EXEC FunctionW

msg4 db cr,lf,'EXEC call failed, error code='
'msg4a db 'xxh.',cr,lf
msg4_1en equ $-msg4

msgS db cr,lf,'Root segment regained control!',cr,lf
msg5_len equ S—msg5

_DATA ends

_STACK segment para stack 'STACK'

db stksize dup (?)

_STACK ends

end main ; defines program entry point

Figure 10—5. Continued.

name overlay
title 'OVERLAY segment'

i

; OVERLAY.OVL ——— a simple overlay segment
, loaded by ROOT.EXE to demonstrate use of
; the MS—DOS EXEC call Subfunction 03H.

; The overlay does not contain a STACK segment
; because it uses the ROOT segment’s stack.

; Ray Duncan, June 1987

stdin equ O ; standard input
stdout equ' 1 ; standard output
stderr equ 2 ; standard error

or equ Odh ; ASCII carriage return
If equ Oah ; ASCII linefeed

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA
ovlay proc far ;

mov ax,_DATA ; set DS
mov ds,ax

Figure 10-6. OVERLAYASM, source codefor OVERLAY. OVZ.

entry point from root segment

local data segment

(more)

Section 11: Programming in the MS—DOS Environment 541

HUAWEI EX. 1010 - 351/1582



Part B: Programming for MS-DOS 

mov dx,offset msg 
mov cx,msg_len 

mov bx,stdout 
mov ah,40h 
int 21h 

ret 

ovlay endp 

_TEXT ends 

_])ATA segment para public 'DATA' 

display overlay message ... 
DS:DX = address of message 
ex = length of message 
BX = standard output handle 
AH = fxn 40H, write file/device 
transfer to MS-DOS 

return to root segment 

end of ovlay procedure 

; static & variable data segment 

msg db 
msg_len equ 

cr,lf, 'Overlay executing! ',cr,lf 
$-msg 

_J)ATA ends 

end 

Figure 10-6. Continued. 

ROOT.ASM can be assembled and linked into the executable program ROOT.EXE with the 
following commands: 

C>MASM ROOT; <Enter> 
C>LINK ROOT; <Enter> 

OVERLAY.ASM can be assembled and linked into the file OVERLAY.OVL by typing 

C>MAsM OVERLAY; <Enter> 
C>LINK OVERLAY,OVERLAY.OVL; <Enter> 

The Microsoft Object Linker will display the message 

Warning: no stack segment 

but this message can be ignored. 

When ROOT.EXE is executed with the command 

C>ROOT <Enter> 

it first shrinks its main memory block with a call to Interrupt 21H Function 4AH and then 
allocates a separate block for the overlay with Interrupt 21H Function 48H. Next, ROOT 
calls the EXEC function to load the file OVERLAY.OVL into the newly allocated memory 
block. If the EXEC function fails, ROOT displays an error message and terminates with 
Interrupt 21H Function 4CH, passing a nonzero return code to COMMAND. COM to indi
cate an error. If the EXEC function succeeds, ROOT saves the contents of its DS segment 
register and then enters the overlay through an indirect far call. 

342 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 352/1582



Article 10: The MS-DOS EXEC Function 

The overlay resets the DS segment register to point to its own data segment, displays a 
inessage using Interrupt 21H Function 40H, and then returns. Note that the main pro
cedure of the overlay is declared with the far attribute to force the assembler to generate 
the opcode for a far return. 

When ROOT regains control, it restores the DS segment register to point to its own data 
segment again and displays an additional message, also using Interrupt 21H Function 40H, 
to indicate that the overlay executed successfully. ROOT then terminates using Interrupt 
21H Function 4CH, passing a return code of zero to indicate success, and control returns 
to COMMAND. COM. 

Ray Duncan 

Section II: Programming in the MS-DOS Environment 343 

HUAWEI EX. 1010 - 353/1582



HUAWEI EX. 1010 - 354/1582



Parte 
Customizing MS-DOS 

HUAWEI EX. 1010 - 355/1582



HUAWEI EX. 1010 - 356/1582



Article 11: Terminate-and-Stay-Resident Utilities 

Article 11 
Terminate-and-Stay~Resident Utilities 

The MS-DOS Terminate and Stay Resident system calls (Interrupt 21H Function 31H and 
Interrupt 27H) allow the programmer to install executable code or program data in a 
reserved block of RAM, where it resides while other programs execute. Global data, inter
rupt handlers, and entire applications can be made RAM-resident in this way. Programs 
that use the MS-DOS terminate-and-stay-resident capability are commonly known as 
TSR programs or TSRs. 

This article describes how to install a TSR in RAM, how to communicate with the resident 
program, and how the resident program can interact with MS-DOS. The discussion pro
ceeds from a general description of the MS-DOS functions useful to TSR programmers to 
specific details about certain MS-DOS structural elements necessary to proper functioning 
of a TSR utility and concludes with two programming examples. 

Note: Microsoft cannot guarantee that the information in this article will be valid for fu
ture versions of MS-DOS. 

Structure of a Terminate-and-Stay-Resident Utility 

The executable code and data in TSRs can be separated into RAM-resident and transient 
portions (Figure 11-1). The RAM-resident portion of a TSR contains executable code and 
data for an application that performs some useful function on demand. The transient por
tion installs the TSR; that is, it initializes data and interrupt handlers contained in the RAM
resident portion of the program and executes an MS-DOS Terminate and Stay Resident 
function call that leaves the RAM-resident portion in memory and frees the memory used 
by the transient portion. The code in the transient portion of a TSR runs when the .EXE or 
.COM file containing the program is executed; the code in the RAM-resident portion runs 
only when it is explicitly invoked by a foreground program or by execution of a hardware 
or software interrupt. 

TSRs can be broadly classified as passive or active, depending on the method by which 
control is transferred to the RAM-resident program. A passive TSR executes only when 
another program explicitly transfers control to it, either through a software interrupt or by 
means of a long JMP or CALL. The calling program is not interrupted by the TSR, so the 
status of MS-DOS, the system BIOS, and the hardware is well defined when the TSR pro
gram starts to execute. 

In contrast, an active TSR is invoked by the occurrence of some event external to the 
currently running (foreground) program, such as a sequence of user keystrokes or a pre
defined hardware interrupt. Therefore, when it is invoked, an active TSR almost always 

Section II: Programming in the MS-DOS Environment 347 

HUAWEI EX. 1010 - 357/1582



Part C: Customizing MS-DOS 

Higher addresses 

Initialization code and data 
Transient portion 
(executed when .EXE file runs) 

Application code and data 

>- RAM-resident portion 

Monitor routines 

Lower addresses 
Program segment prefix 

Figure 11-1. Organization of a TSR program in memory. 

interrupts some other program and suspends its execution. To avoid disrupting the inter
rupted program, an active TSR must monitor the status of MS-DOS, the ROM BIOS, and 
the hardware and take control of the system only when it is safe to do so. 

Passive TSRs are generally simpler in their construction than active TSRs because a passive 
TSR runs in the context of the calling program; that is, when the TSR executes, it assumes 
that it can use the calling program's.program segment prefix (PSP), open files, current 
directory, and so on. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAM
MING FOR Ms-oos: Structure of an Application Program. It is the calling program's respon
sibility to ensure that the hardware and MS-DOS are in a stable state before it transfers 
control to a passive TSR. 

An active TSR, on the other hand, is invoked asynchronously; that is, the status of the 
hardware, MS-DOS, and the executing foreground program is indeterminate when the 
event that invokes the TSR occurs. Therefore, active TSRs require more complex code. The 
RAM-resident portion of an active TSR must contain modules that monitor the operating 
system to determine when control can safely be transferred to the application portion of 
the TSR. The monitor routines typically test the status of keyboard input, ROM BIOS inter
rupt processing, hardware interrupt processing, and MS-DOS function processing. The 
TSR activates the application (the part of the RAM-resident portion that performs the TSR's 
main task) only when it detects the appropriate keyboard input and determines that the 
application will not interfere with interrupt and MS-DOS function processing. 

Keyboard input 
An active TSR usually contains a RAM-resident module that examines keyboard input 
for a predetermined keystroke sequence called a "hot-key" sequence. A user executes the 
RAM-resident application by entering this hot-key sequence at the keyboard. 

The technique used in the TSR to monitor keyboard input depends on the keyboard 
hardware implementation. On computers in the IBM PC and PS/2 families, the keyboard 
coprocessor generates an Interrupt 09H for each keypress. Therefore, a TSR can monitor 
user keystrokes by installing an interrupt handler (interrupt service routine, or ISR) for 
Interrupt 09H. This handler can thus detect a specified hot-key sequence. 

348 The MS-DOS Encyclopedia 

' 
.I 
I 

HUAWEI EX. 1010 - 358/1582



Article 11: Terminate-and-Stay-Resident Utilities 

ROM BIOS interrupt processing 

The ROM BIOS routines in IBM PCs and PS/2s are not reentrant. An active TSR that calls 
the ROM BIOS must ensure that its code does not attempt to execute a ROM BIOS function 
that was already being executed by the foreground process when the TSR program took 
control of the system. 

The IBM ROM BIOS routines are invoked through software interrupts, so an active TSR 
can monitor the status of the; ROM BIOS by replacing the default interrupt handlers with 
custom interrupt handlers that intercept the appropriate BIOS interrupts. Each of these in
terrupt handlers can maintain a status flag, which it increments before transferring control 
to the corresponding ROM BIOS routine and decrements when the ROM BIOS routine has 
finished executing. Thus, the TSR monitor routines can test these flags to determine when 
non-reentrant BIOS routines are executing. 

Hardware interrupt processing 

The monitor routines of an active TSR, which may themselves be executed as the result of 4 
a hardware interrupt, should not activate-the application portion of the TSR if any other 
hardware interrupt is being processed. On IBM PCs, for example, hardware interrupts are 
processed in a prioritized sequence determined by an Intel 8259A Programmable Inter-
rupt Controller. The 8259A does not allow a hardware interrupt to execute if a previous 
interrupt with the same or higher priority is being serviced. All hardware interrupt 
handlers include code that signals the 8259A when interrupt processing is completed. 
(The programming interface to the 8259A is described in IBM's Technical Reference 
manuals and in Intel's technical literature.) 

If a TSR were to interrupt the execution of another hardware interrupt handler before the 
handler signaled the 8259A that it had completed its interrupt servicing, subsequent hard
ware interrupts could be inhibited indefinitely. Inhibition of high-priority hardware inter
rupts such as the timer tick (Interrupt OSH) or keyboard interrupt (Interrupt 09H) could 
cause a system crash. For this reason, an active TSR must monitor the status of all hardware 
interrupt processing by interrogating the 8259A to ensure that control is transferred to the 
RAM-resident application only when no other hardware interrupts are being serviced. 

MS-DOS function processing 

Unlike the IBM ROM BIOS routines, MS-DOS is reentrant to a limited extent. That is, there 
are certain times when MS-DOS's servicing of an Interrupt 21H function call invoked by a 
foreground process can be suspended so that the RAM-resident application can make an 
Interrupt 21H function call of its own. For this reason, an active TSR must monitor operat
ing system activity to determine when it is safe for the TSR application to make its calls 
toMS-DOS. 

Section II: Programming in the MS-DOS Environment 349 

HUAWEI EX. 1010 - 359/1582



Part C: Customizing MS-DOS 

MS-DOS Support for Terminate-and-Stay-Resident 
Programs 

Several MS-DOS system calls are useful for supporting terminate-and-stay-resident 
utilities. These are listed in Table 11-1. See SYSTEM CALLS. 

Table 11-1- MS-DOS Functions Useful in TSR Programs. 

Function Name 

Terminate and 
Stay Resident 

Terminate and 
Stay Resident 

Set Interrupt 
Vector 

Get Interrupt 
Vector 

Set PSP Address 

Get PSP Address 

Set-Extended 
Error Information 

Call With 

AH=31H 
AL = return code 
DX = size of resident program 

(in 16-byte paragraphs) 
INT21H 

CS= PSP 
DX = size of resident program 

(bytes) 
INT27H 

AH=25H 
AL = interrupt number 
DS:DX = address of interrupt 

handler 
INT21H 

AH=35H 
AL = interrupt number 
INT21H 

AH=50H 
BX = PSP segment 
INT21H 

AH=51H 
INT21H 

Returns 

Nothing 

Nothing 

Nothing 

ES:BX =address' of 
interrupt handler 

Nothing 

BX= PSP segment 

AX= 5DOAH Nothing 
DS:DX =address of 11-word data structure: 

word 0: register AX 
as returned by Function 59H 

word 1: register BX 
word 2: register ex 
word 3: register DX 
word 4: register SI 
word 5: register DI 
word 6: register DS 
word 7: register ES 
words 8-0AH: reserved; should be 0 

INT21H 

350 The MS-DOS Encyclopedia 

Comment 

Preferred over Interrupt 
27H with MS-DOS 
versions 2.x and later 

Provided for com
patibility with 
MS-DOS versions 1.x 

MS-DOS versions 3.1 
and later 

(more) 

HUAWEI EX. 1010 - 360/1582



Table 11-1. Continued. 

Function Name 

Get Extended 
Error Information 

Set Disk 
Transfer Area 
Address 

Get Disk 
Transfer Area 
Address 

Get InDOS Flag 
Address 

Call With 

-AH=59H 
BX=O 
INT21H 

AH= lAH 
DS:DX =address ofDTA 
INT21H 

AH=2FH 
INT21H 

AH=34H 
INT21H 

Terminate-and-stay-resident functions 

Article 11: Terminate-and-Stay-Resident Utilities 

Returns 

AX = extended error 
code 

BH = error class 
BL = suggested action 
CH = error locus 
Nothing 

ES:BX = address of 
currentDTA 

ES:BX = address of 
lnDOSflag 

Comment 

MS-DOS provides two mechanisms for terminating the execution of a program while leav
ing a portion of it resident in RAM. The preferred method is to execute Interrupt 21H Func
tion 31H. 

Interrupt 21H Function 31H 

When this Interrupt 21H function is called, the value in OX specifies the amount of RAM 
(in paragraphs) that is to remain allocated after the program terminates, starting at the 
program segment prefix (PSP). The function is similar to Function 4CH (Terminate 
Process with Return Code) in that it passes a return code in AL, but it differs in that open 
files are not automatically closed by Function 31H. 

Interrupt 27H 

When Interrupt 2m is executed, the value passed in OX specifies the number of bytes of 
memory required for the RAM-resident program. MS-OOS converts the value passed in OX 
from bytes to paragraphs, sets AL to zero, and jumps to the same code that would be exe
cuted for Interrupt 21H Function 31H. Interrupt 27H is less flexible than Interrupt 21H 
Function 31H because it limits the size of the program that can remain resident in RAM to 
64 KB, it requires that CS point to the base of the PSP, and it does not pass a return code. 
Later versions of MS-OOS support Interrupt 27H primarily for compatibility with versions 
l.x. 

TSRRAM management 

In addition to the RAM explicitly allocated to the TSR by means of the value in OX, the 
RAM allocated to the TSR's environment remains resident when the installation portion 
of the TSR program terminates. (The paragraph address of the environment is found at 

Section IL· Programming in the MS-DOS Environment 351 

HUAWEI EX. 1010 - 361/1582



Part C: Customizing MS-DOS 

offset 2CH in the TSR's PSP.) Moreover, if the installation portion of a TSR program has 
used Interrupt 21H Function 48H (Allocate Memory Block) to allocate additional RAM, this 
memory also remains allocated when the program terminates. If the RAM-resident pro
gram does not need this additional RAM, the installation portion of the TSR program 
should free it explicitly by using Interrupt 21H Function 49H (Free Memory Block) before 
executing Interrupt 21H Function 31H. 

Set and Get Interrupt Vector functions 

Two Interrupt 21H function calls are available to inspect or update the contents of a 
specified 8086-family interrupt vector. Function 25H (Set Interrupt Vector) updates the 
vector of the interrupt number specified in the AL register with the segment and offset 
values specified in DS:DX. Function 35H (Get Interrupt Vector) performs the inverse 
operation: It copies the current vector of the interrupt number specified in AL into the 
ES:BX register pair. 

Although it is possible to manipulate interrupt vectors directly, the use of Interrupt 21H 
Functions 25H and 35H is generally more convenient and allows for upward compatibility 
with future versions of MS-DOS. 

Set and Get PSP Address functions 

MS-DOS uses a program's PSP to keep track of certain data unique to the program, includ
ing command-line parameters and the segment address of the program's environment. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-oos: Structure 
of an Application Program. To access this information, MS-DOS maintains an internal vari
able that always contains the location of the PSP ass()ciated with the foreground process. 
When a RAM-resident application is activated, it should use Interrupt 21H Functions 50H 
(Set Program Segment Prefix Address) and 51H (Get Program Segment Prefix Address) to 
preserve the current contents of this variable and to update the variable with the location 
of its own PSP. Function 50H (Set Program Segment Prefix Address) updates an internal 
MS-DOS variable that locates the PSP currently' in use by the foreground process. Function 
51H (Get Program Segment Prefix Address) returns the contents of the internal MS-DOS 
variable to the caller. 

Set and Get Extended Error Information functions 

In MS-DOS versions 3.1 and later, the RAM-resident program should preserve the fore
ground process's extended error information so that, if the RAM-resident application 
encounters an MS-DOS error, the extended error information pertaining to the foreground 
process will still be available and can be restored. Interrupt 21H Functions 59H and 
5DOAH provide a mechanism for the RAM-resident program to save and restore this 
information during execution of a TSR application. 

Function 59H (Get Extended Error Information), which became available in version 3.0, 
returns detailed information on the most recently detected MS-DOS error. The inverse 
operation is performed by Function 5DOAH (Set Extended Error Information), which can 
be used only in MS-DOS versions 3.1 and later. This function copies extended error 
information to MS-DOS from a data structure defined in the calling program. 

352 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 362/1582



Article 11: Terminate-and-Stay-Resident Utilities 

Set and Get Disk Transfer Area Address functions 

·Several MS-DOS data transfer functions, notably Interrupt 21H Functions 21H, 22H, 27H, 
and 28H (the Random Read and Write functions) and Interrupt 21H Functions 14H and 15H 
(the Sequential Read and Write functions), require a program to specify a disk transfer area 
(DTA). By default, a program's DTA is located at offset SOH in its program segment prefix. 
If a RAM-resident application calls an MS-DOS function that uses a DTA, the TSR should 
save the DTA address belonging to the interrupted program by using Interrupt 21H Func
tion 2FH (Get Disk Transfer Area Address), supply its own DTA address to MS-DOS using 
Interrupt 21H Function lAH (Set Disk Transfer Area Address), and then, before terminat
ing, restore the interrupted program's DTA. 

The MS-DOS idle interrupt (Interrupt 28H) 

Several of the first 12 MS-DOS functions (01H through OCH) must wait for the occurrence 
of an expected event such as a user keypress. These functions contain an "idle loop" in 
which looping continues until the event occurs. To provide a mechanism for other system 
activity to take place while the idle loop is executing, these MS-DOS functions execute an 
Interrupt 28H from within the loop. 

The default MS-DOS handler for Interrupt 28H is only an IRET instruction. By supplying 
its own handler for Interrupt 28H, a TSR can perform some useful action at times when 
MS-DOS is otherwise idle. Specifically, a custom Interrupt 28H handler can be used to 
examine the current status of the system to determine whether or not it is safe to activate 
the RAM-resident application. 

Determining MS-DOS Status 

A TSR can infer the current status of MS-DOS from knowledge of its internal use of stacks 
and from a-pair of internal status flags. This status information is essential to the proper 
execution of an active TSR because a RAM-resident application can make calls to MS-DOS 
only when those calls will not disrupt an earlier call made by the foreground process. 

MS-DOS internal stacks 

MS-DOS versions 2. 0 and later may use any of three internal stacks: the I/0 stack 
(IOStack), the disk stack (DiskStack), and the auxiliary stack (AuxStack). In general, 
IOStack is used for Interrupt 21H Functions 01H through OCH and DiskStack is used for 
the remaining Interrupt 21H functions; AuxStack is normally used only when MS-DOS has 
detected a critical error and subsequently executed an Interrupt 24H. See PROGRAMMING 
IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Handlers. Specifically, 
MS-DOS's internal stack use depends on which MS-DOS function is being executed and 
on the value of the critical error flag. 

The critical error flag 
The critical error flag (ErrorMode) is a 1-byte flag that MS-DOS uses to indicate whether 
or not a critical error has occurred. During normal, errorless execution, the value of the 

Section IL· Programming in the MS-DOS Environment 353 

HUAWEI EX. 1010 - 363/1582



Part C: Customizing MS-DOS 

critical error flag is zero. Whenever MS-DOS detects a critical error, it sets this flag to a 
nonzero value before it executes Interrupt 24H. If an Interrupt 24H handler subsequently 
invokes an MS-DOS function by using Interrupt 21H, the nonzero value of the critical error 
flag tells MS-DOS to use its auxiliary stack for Interrupt 21H Functions OlH through OCH 
instead of using the 1/0 stack as it normally would. 

In other words, when control is transferred to MS-DOS through Interrupt 21H, the function 
. number and the critical error flag together determine MS-DOS stack use for the function. 
Figure 11-2 outlines the internal logic used on entry to an MS-DOS function to select which 
stack is to be used during processing of the function. As stated above, for Functions OlH 
through OCH, MS-DOS uses IOStack if the critical error flag is zero and AuxStack if the 
flag is nonzero. For function numbers greater than OCH, MS-DOS usually uses DiskStack, 
but Functions 50H, 51H, and 59H are important exceptions. Functions 50H and 51H use 
either IOStack (in versions 2.x) or the stack supplied by the calling program (in versions 
3.x). In version 3.0, Function 59H uses either IOStack or AuxStack, depending on the 
value of the critical error flag, but in versions 3.1 and later, Function 59H always uses 
AuxStack. 

MS-DOS versions 2.x 
if (FunctionNumber >= 01H and FunctionNumber <= OCH) 

or 
FunctionNumber = SOH 
or 
FunctionNumber S1H 

then if ErrorMode 0 
then use IOStack 
else use AuxStack 

else ErrorMode = 0 
use DiskStack 

MS-DOS version 3.0 
if FunctionNumber = SOH 

or 
FunctionNumber = S1H 
or 
FunctionNumber = 62H 

then use caller's stack 

else if (FunctionNumber >= 01H and FunctionNumber <= OCH) 
or 
Function Number = S9H 

then if ErrorMode = 0 
then use IOStack 
else use AuxStack 

else ErrorMode = 0 
use DiskStack 

Figure 11-2. Strategy for use of MS-DOS internal stacks. 

354 The MS-DOS Encyclopedia 

(more) 

-I 

HUAWEI EX. 1010 - 364/1582



., 

MS-DOS versions 3.1 and later 
if FunctionNurnber = 33H 

or 
FunctionNurnber = SOH 

or 

FunctionNurnber = 51H 

or 

FunctionNurnber = 62H 

then use caller's stack 

Article 11: Terminate-and-Stay-Resident Utilities 

else if (FunctionNurnber >= 01H and FunctionNurnber <= OCH) 

then if ErrorMode = 0 

then use IOStack 

else use AuxStack 

else if FunctionNurnber = 59H 

then use AuxStack 

else ErrorMode = 0 

use DiskStack 

Figure 11-2. Continued. 

This scheme makes Functions 01H through OCH reentrant in a limited sense, in that a 
substitute critical error (Interrupt 24H) handler invoked while the critical error flag 
is nonzero can still use these Interrupt 21H functions. In this situation, because the 
flag is nonzero, AuxStack is used for Functions OlH through OCH instead of IOStack. 
Thus, if IOStatk is in use when the critical error is detected, its contents are preserved 
during the handler's subsequent calls to these functions. 

The stack-selection logic differs slightly between MS-DOS versions 2 and 3. In versions 
3.x, a few functions- notably 50H and 51H-avoid using any of the MS-DOS stacks. 
These functions perform uncomplicated tasks that make minimal demands for stack 
space, so the calling program's stack is assumed to be adequate for them. 

The InDOS flag 

InDOS is a 1-byte flag that is incremented each time an Interrupt 21H function is invoked 
and decremented when the function terminates. The flag's value remains nonzero as long 
as code within MS-DOS is being executed. The value of InDOS does not indicate which 
internal stack MS-DOS is using. 

Whenever MS-DOS detects a critical error, it zeros InDOS before it executes Interrupt 24H. 
This action is taken to accommodate substitute Interrupt 24H handlers that do not return 
control to MS-DOS. If InDOS were not zeroed before such a handler gained control, its 
value would never be decremented and would therefore be incorrect during subsequent 
calls to MS-DOS. 

The address of the 1-byte InDOS flag can be obtained from MS-DOS by using Interrupt 
21H Function 34H (Return Address of InDOS Flag). In versions 3.1 and later, the 1-byte crit
ical error flag is located in the byte preceding InDOS, so, in effect, the address of both 

Section II: Programming in the MS-DOS Environment 355 

HUAWEI EX. 1010 - 365/1582



Part C: Customizing MS-DOS 

flags can be found using Function 34H. Unfortunately, there is no easy way to find the 
critical error flag in other versions. The recommended technique is to scan the MS-DOS 
segment, which is returned in the ES register by Function 34H, for one of the following 
sequences of instructions: 

test ss: [CriticalErrorFlag),OFFH ; (versions 3.1 and later) 
jne NearLabel 
push ss: [NearWord) 
int 28H 

or 

cmp ss: [CriticalErrorFlag),OO ; (versions earlier than 3.1) 

jne NearLabel 
int 28H 

When the TEST or CMP instruction has been identified, the offset of the critical error flag 
can be obtained from the instruction's operand field. 

The Multiplex Interrupt 

The MS-DOS multiplex interrupt (Interrupt 2FH) provides a general mechanism for a 
program to verify the presence of a TSR and communicate with it. A program communi
cates with a TSR by placing an identification value in AH and a function number in AL and 
issuing an Interrupt 2FH. The TSR's Interrupt 2FH handler compares the value in AH to its 
own predetermined ID value. If they match, the TSR's handler keeps control and performs 
the function specified in the AL register. If they do not match, the TSR's handler relin
quishes control to the previously installed Interrupt 2FH handler. (Multiplex ID values OOH 
through 7FH are reserved for use by MS-DOS; therefore, user multiplex numbers should be 
in the range 80H through OFFH.) 

The handler in the following example recognizes only one function, corresponding to 
AL = OOH. In this case, the handler returns the value OFFH in AL, signifying that the han
dler is indeed resident in RAM. Thus, a program can detect the presence of the handler by 
executing Interrupt 2FH with the handler's ID value in AH and OOH in AL. 

mov ah,MultiplexiD 
mov al,OOH 
int 2FH 
cmp al,OFFH 
je Alreadyinstalled 

To ensure that the identification byte is unique, its value should be determined at the 
time the TSR is installed. One way to do this is to pass the value to the TSR program as a 
command-line parameter when the TSR program is installed. Another approach is to place 
the identification value in an environment variable. In this way, the value can be found in 
the environment of both the TSR and any other program that calls Interrupt 2FH to verify 
the TSR's presence. 

356 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 366/1582



Article 11: Terminate-and-Stay-Resident Utilities 

In practice, the multiplex interrupt can also be used to pass information to and from a 
RAM-resident program in the CPU registers, thus providing a mechanism for a program to 
share control or status information with a TSR. 

TSR Programming Examples 

One effective way to become familiar with TSRs is to examine functional programs. 
Therefore, the subsequent pages present two examples: a simple passive TSR and a more 
complex active TSR. 

HELLO.ASM 

The "bare-bones" TSR in Figure 11-3 is a passive TSR. The RAM-resident application, which 
simply displays the message Hello, World, is invoked by executing a software interrupt. 
This example illustrates the fundamental interactions among a RAM-resident program, 
MS-DOS, and programs that execute after the installation of the RAM-resident utility. 

Name: hello 

Description:. This RAM-resident (terminate-and-stay-resident) utility 
displays the message "Hello, World" in response to a 
software interrupt. 

Comments: 

TSRint 
STDOUT 

RESIDENT_TEXT 

TSRAction 

Assemble and link to create HELLO.EXE. 

Execute HELLO.EXE to make resident. 

Execute INT 64h to display the message. 

EQU 
EQU 

64h 

SEGMENT byte public 'CODE' 
ASSUME cs:RESIDENT_TEXT,ds:RESIDENT_DATA 

PROC far 

sti enable interrupts 

push ds preserve registers 
push ax 
push bx 
push ex 
push dx 

Figure 11-3. HELLO.ASM, a passive TSR. (more) 

Section II: Programming in the MS-DOS Environment 357 

HUAWEI EX. 1010 - 367/1582



Part C: Customizing MS-DOS 

TSRAction 

RESIDENT_TEXT 

RESIDENT_DATA 

Message 

RESIDENT-DATA 

TRANSIENT_TEXT 

HelloTSR PROC 

Install this 

Terminate and 

mov 

mov 

mov 
mov 

mov 

dx,seg RESIDENT-DATA 

ds,dx 
dx,offset Message 

cx,16 
bx,STDOUT 

DS:DX -> message 

ex length 

BX = file handle 
mov ah,40h AH = INT 21H function 40H 

(Write File) 
int 21h display the message 

pop dx restore registers and exit 
pop ex 
pop bx 

pop ax 

pop ds 

iret 

ENDP 

ENDS 

SEGMENT word public 'DATA' 

DB ODh,OAh, 'Hello, World',ODh,OAh 

ENDS 

SEGMENT para public 'TCODE' 

ASSUME cs:TRANSIENT_TEXT,ss:TRANSIENT_STACK 

far 

TSR's 

mov 

mov 

mov 

mov 

mov 

int 

stay 

mov 

At entry: CS:IP -> SnapTSR 

SS:SP -> stack 
DS,ES -> PSP 

interrupt handler 

ax,seg RESIDENT_TEXT 

ds,ax 

dx,offset RESIDENT_TEXT:TSRAction 

al,TSRint 
ah,25h 

21h 

resident 

dx,cs DX = paragraph address of start of 
transient portion (end of resident 
portion) 

mov ax,es ES PSP segment 

sub dx,ax DX = size of resident portion 

Figure 11-3. Continued. 

358 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 368/1582



mov ax,3100h 

int 21h 

HelloTSR ?NDP 

TRANSIENT_TEXT ENDS 

Article 11: Terminate-and-Stay-Resident Utilities 

AH = INT 21H function number (TSR) 
AL = OOH (return code) 

TRANSIENT_STACK SEGMENT word stack 'TSTACK' 

DB SOh dup(?) 

TRANSIENT_STACK ENDS 

END HelloTSR 

Figure 11-3. Continued. 

The transient portion of the program (in the segments TRANSIENT_ TEXT and 
TRANSIENT_STACK) runs only when the file HELLO.EXE is executed. This installation 
code updates an interrupt vector to point to the resident application (the procedure 
TSRAction) and then calls Interrupt 21H Function 31H to terminate execution, leaving the 
segments RESIDENT_ TEXT and RESIDENT_DATA in RAM. 

The order in which the code and data segments appear in the listing is important. It 
ensures that when the program is executed as a .EXE file, the resident code and data are 
placed in memory at lower addresses than the transient code and data. Thus, when Inter
rupt 21H Function 31H is called, the memory occupied by the transient portion of the pro
gram is freed without disrupting the code and data in the resident portion. 

The RAM containing the resident portion of the utility is left intact by MS-bOS during 
subsequent execution of other programs. Thus, after the TSR has been installed, any pro
gram that issues the software interrupt recognized by the TSR (in this example, Interrupt 
64H) will transfer control to the routine TSRAction, which uses Interrupt 21H Function 
40H to display a simple message on standard output. 

Part of the reason this example is so short is that it performs no error checking A truly reli
able version of the program would check the version of MS-DOS in use, verify that the pro
gram was not already installed in memory, and chain to any previously installed interrupt 
handlers that use the same interrupt vector. (The next program, SNAP.ASM, illustrates 
these techniques.) However, the primary reason the program is small is that it makes the 
basic assumption that MS-DOS, the ROM BIOS, and the hardware interrupts are all stable 
at the time the resident utility is executed. 

SNAP.ASM 

The preceding assumption is a reliable one in the case of the passive TSR in Figure 11-3, 
which executes only when it is explicitly invoked by a software interrupt. However, the 
situation is much more complicated in the case of the active TSR in Figure 11-4. This 

Section IL- Programming in the MS-DOS Environment 359 

HUAWEI EX. 1010 - 369/1582



Part C: Customizing MS-DOS 

program is relatively long because it makes no assumptions about the stability of the 
operating environment. Instead, it monitors the status of MS-DOS, the ROM BIOS, and the 
hardware interrupts to decide when the RAM-resident application can safely execute. 

Name: snap 

Description: This RAM-resident (terminate-and-stay-resident) utility 

produces a video "snapshot" by copying the contents of the 
video regeneration buffer to a disk file. It may be used 

in SO-column alphanumeric video modes on IBM PCs and PS/2s. 

Comments: 

MultiplexiD 

TSRStackSize 

KB_FLAG 

KBins 

KBCaps 

KBNum 

KBScroll 

KBAlt 
KBCtl 

KBLeft 
KBRight 

SCEnter 

CR 

LF 

TRUE 
FALSE 

Assemble and link to create SNAP.EXE. 

Execute SNAP.EXE to make resident. 

Press Alt-Enter to dump current contents of video buffer 
to a disk file. 

EQU OCAh unique INT 2FH ID value 

EQU 1 OOh resident stack size in bytes 

EQU 17h offset of shift-key status flag 
ROM BIOS keyboard data area 

EQU SOh bit masks for KB-FLAG 
EQU 40h 

EQU 20h 

EQU 10h 

EQU s 
EQU 4 

EQU 2 
EQU 

EQU 1Ch 

EQU ODh 

EQU OAh 

EQU -1 

EQU 0 

PAGE 

in 

·------------------------------------------------------------------------------' 

; RAM-resident routines 

·------------------------------------------------------------------------------' 

RESIDENT_GROUP GROUP RESIDENT_TEXT,RESIDENT_DATA,RESIDENT_STACK 

Figure 11-4. SNAP.ASM, a video snapshot TSR. (more) 

360 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 370/1582



· Article 11: Terminate-and-Stay-Resident Utilities 

RESIDENT_TEXT SEGMENT byte public 'CODE' 

ASSUME cs:RESIDENT_GROUP,ds:RESIDENT_GROUP 

------------------------------------------------------------------------------
; System verification routines 

;------------------------------------------------------------------------------

VerifyDOSState PROC 

push 

push 
push 

lds 

mov 

lds 

mov 

xor 
crop 

rcl 

cmp 

pop 

pop 
pop 

ret 

VerifyDOSState ENDP 

VerifyintState PROC 

push 

near 

ds 
bx 

ax 

Returns: carry flag set if MS-DOS 
is busy 

preserve these registers 

bx,cs:ErrorModeAddr 

ah, [bx] ; AH ErrorMode flag 

bx, cs: InDOSAddr 

al, [bx] 

bx,bx 

bl,cs:IniSR28 

bl,01h 

bx,ax 

ax 

bx 

ds 

near 

ax 

AL InDOS flag 

BH = DOH, BL = OOH 

carry flag set if INT 28H handler 

is running 
BL = 01H if INT 28H handler is running 

carry flag zero if AH 

and AL <= BL 
restore registers 

DOH 

Returns: carry flag set if hardware 

or ROM BIOS unstable 

preserve AX 

Verify hardware interrupt status by interrogating Intel 8259A Programmable 

Interrupt Controller 

L10: 

mov 

out 
jmp 

in 

ax,00001011b 

20h,al 

short L10 

al,20h 

AH = 0 
AL = OCW3 for Intel 8259A (RR = 1, 

RIS = 1) 

request 8259A's in-service register 

wait a few cycles 

AL = hardware interrupts currently 

being serviced (bit = 1 if in-service) 

Figure 11-4. Continued. (more) 

Section IL- Programming in the MS-DOS Environment 361 

HUAWEI EX. 1010 - 371/1582



Part C: Customizing MS-DOS 

Verify status 

L11: 

VerifyintState 

VerifyTSRState 

L20: 

cmp 

jc 

of ROM 

xor 

cmp 

jc 

cmp 

jc 

cmp 

jc 

cmp 

pop 

ret 

ENDP 

PROC 

rol 

erne 

jc 

ror 

jc 

call 

jc 

call 

ret 

VerifyTSRState ENDP 

PAGE 

ah,al 

L11 

BIOS interrupt 

al,al 

al,cs:IniSR5 

L11 

al,cs:IniSR9 

L11 

al,cs:IniSR10 

L11 

al,cs:IniSR13 

ax 

near 

cs: HotFlag, 1 

L20 

cs :ActiveTSR, 1 

L20 

VerifyDOSState 

L20 

VerifyintState 

exit if any hardware interrupts still 

being serviced 

handlers 

; AL = OOH 

;~ exit if currently in INT 05H handler 

exit if currently in INT 09H handler 

exit if currently in INT 10H handler 

set carry flag if currently in 
INT 13H handler 

restore AX and return 

Returns: carry flag set if TSR 
inactive 

carry flag set if (HotFlag TRUE) 

carry flag set if (HotFlag FALSE) 
exit if no hot key 

carry flag set if (ActiveTSR TRUE) 

exit if already active 

exit if MS-DOS unstable 

set carry flag if hardware or BIOS 

unstable 

;------------------------------------------------------------------------------
; System monitor routines 

;------------------------------------------------------------------------------

ISRS PROC far INT 05H handler 
(ROM BIOS print screen) 

inc cs:IniSRS increment status flag 

Figure 11-4. Continued. (more) 

362 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 372/1582



\ 

ISRS 

ISR8 

L30: 

L31: 

ISR8 

ISR9 

pushf 

eli 

call 

dec 
iret 

ENDP 

PROC 

pushf 

eli 

call 

cmp 

jne 

inc 

sti 

call 

jc 

mov 

call 
mov 

dec 

iret 

ENDP 

PROC 

push 

push 

push 

push 

pop 

in 

pushf 

eli 

call 

.; 

cs:PreviSRS 

cs:IniSRS 

far 

cs:PreviSR8 

cs:IniSRS,O 
L31 

cs:IniSR8 

VerifyTSRState 

L30 

Article 11: Terminate-and-Stay-Resident Utilities 

chain to previous INT OSH handler 

decrement status flag 

INT 08H handler (timer tick, IRQO) 

chain to previous handler 

exit if already in this handler 

increment status flag· 

interrupts are ok 

jump if TSR is inactive 

byte ptr cs:ActiveTSR,TRUE 

TSRapp 

byte ptr cs:ActiveTSR,FALSE 

cs:IniSRS 

far 

ds 
ax 

bx 

cs 
ds 

al,60h 

ds:PreviSR9 

INT 09H handler 

(keyboard interrupt IRQ1) 

preserve these registers 

DS -> RESIDENT_GROUP 

AL = current scan code 

simulate an INT 

let previous handler execute 

Figure 11-4. Continued. (more) 

Section 11- Programming in the MS-DOS Environment 363 

HUAWEI EX. 1010 - 373/1582



Part C: Customizing MS-DOS 

mov 
or 
jnz 

inc 
sti 

ah,ds:IniSR9 
ah,ds:HotFlag 
143 

ds:IniSR9 

Check scan code sequence 

cmp 
je 

ds:HotSeq1en,O 
140 

mov bx,ds:Hotindex 

if already in this handler 
or currently processing hot key .. 

jump to exit 

increment status flag 
now interrupts are ok 

jump if no hot sequence to match 

cmp al, [bx+HotSequence] test scan code sequence 
jne 141 ; jump if no match 

inc bx 

cmp 
jb 

; Check shift-key state 

140: push 
mov 
mov 
mov 
pop 

and 
cmp 
jne 

bx,ds:HotSeq1en 
142 

ds 
ax,40h 
ds,ax 
al,ds: [KB_FLAG] 

ds 

al,ds:HotKBMask 
al,ds:HotKBFlag 
142 

Set flag when hot key is found 

jump if not last scan code to match 

DS -> ROM BIOS data area 
AH = ROM BIOS shift-key flags 

A1 = flags AND "don't care" mask 

jump if shift state does not match 

mov byte ptr ds:HotFlag,TRUE 

141: 

142: 

143: 

xor 

mov 
dec 

pop 

bx,bx 

ds:Hotlndex,bx 
ds:IniSR9 

bx 
pop ax 
pop ds 
iret 

ISR9 ENDP 

Figure 11-4. Continued. 

364 The MS-DOS Encyclopedia 

reinitialize index 

update index into sequence 
decrement status flag 

restore registers and exit 

(more) 

HUAWEI EX. 1010 - 374/1582



ISR10 

ISR10 

ISR13 

ISR13 

ISR1B 

ISR1B 

ISR23 

ISR23 

ISR24 

PROC 

inc 

pu.shf 
eli 
call 

dec 
iret 

ENDP 

PROC 

inc 

pushf 
eli 
call 

pushf 
dec 
popf 

sti 
ret 

ENDP 

PROC 

far 

cs:IniSR10 

cs:PreviSR10 

cs:IniSR10 

far 

cs:IniSR13 

cs:PreviSR13 

cs:IniSR13 

2 

far 

Article 11: Terminate-and-Stay-Resident Utilities 

INT 10H handler (ROM BIOS video I/0) 

increment status flag 

chain to previous INT 10H handler 

decrement status flag 

INT 13H handler 
(ROM BIOS fixed disk I/O) 
increment status flag 

chain to previous INT 13H handler 

preserve returned flags 
decrement status flag 
restore flags register 

enable interrupts 
simulate IRET without popping flags 

; INT 1BH trap (ROM BIOS Ctrl-Break) 

mov byte ptr cs:Trap1B,TRUE 
iret 

ENDP 

PROC far ; INT 23H trap (MS-DOS Ctrl-C) 

mov byte ptr cs:Trap23,TRUE 
iret 

ENDP 

PROC far ; INT 24H trap (MS-DOS critical error) 

mov byte ptr cs:Trap24,TRUE 

Figure 11-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 365 

HUAWEI EX. 1010 - 375/1582



Part C: Customizing MS-DOS 

xor al,al AL = OOH (MS-DOS 2.x): 

cmp cs:MajorVersion,2 ; ignore the error 

je LSO 

L50: 

ISR24 

ISR28 

L60: 

L61 : 

ISR28 

ISR2F 

mov 

iret 

ENDP 

PROC 

pushf 

eli 

call 

cmp 

jne 

inc 

call 

jc 

mov 

call 
mov 

dec 

iret 

ENDP 

PROC 

cmp 

je 

jmp 

Figure 11-4. Continued. 

366 The MS-DOS Encyclopedia 

al,3 

far 

cs:PreviSR28 

cs:IniSR28,0 

L61 

cs:IniSR28 

VerifyTSRState 

L60 

AL = 03H (MS-DOS 3.x): 
fail the MS-DOS call in which 

the critical error occurred 

INT 28H handler 
(MS-DOS idle interrupt) 

chain to previous INT 28H handler 

exit if already inside this handler 

increment status flag 

jump if TSR is inactive 

byte ptr cs:ActiveTSR,TRUE 

TSRapp 
byte ptr cs:ActiveTSR,FALSE 

cs:IniSR28 

far 

ah,MultiplexiD 

L70 

cs:PreviSR2F 

; decrement status flag 

INT 2FH handler 
(MS-DOS multiplex interrupt) 

Caller: AH = handler ID 
AL = function number 

Returns for function 0: AL = OFFH 

for all other functions: nothing 

jump if this handler is requested 

chain to previous INT 2FH handler 

(more) 

HUAWEI EX. 1010 - 376/1582



L70: test 
jnz 

al,al 

MultiplexiRET 

Function 0: get installed state 

mov al,OFFh 

MultiplexiRET: iret 

ISR2F ENDP 

PAGE 

Article 11: Terminate-and-Stay-Resident Utilities 

jump if reserved or undefined function 

AL = OFFH (this handler is installed) 

return from interrupt 

Auxint21--sets ErrorMode while executing INT 21H to force use of the 

AuxStack instead of the IOStack. 

Auxint21 PROC near Caller: registers for INT 21H 

Returns: registers from INT 21H 

push ds 

push bx 
lds bx,ErrorModeAddr 

inc byte ptr [bx] ErrorMode is now nonzero 

pop bx 

pop ds 

int 21h perform MS-DOS function 

push ds 

push bx 

lds bx,ErrorModeAddr 

dec byte ptr [bx] restore ErrorMode 

pop bx 

pop ds 

ret 

Auxint21 ENDP 

Int21v PROC near perform INT 21H or Auxint21, 

depending on MS-DOS version 

cmp DOSVersion,30Ah 

jb LBO jump if earlier than 3.1 

int 21h versions 3.1 and later 

ret 

Figure 11-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 367 

HUAWEI EX. 1010 - 377/1582



Part C: Customizing MS-DOS 

L80: 

Int21v 

call 

ret 

ENDP 

PAGE 

Auxint21 versions earlier than 3.1 

;------------------------------------------------------------------------------
; RAM-resident application 

;------------------------------------------------------------------------------

TSRapp PROC near 

; Set up a safe stack 

push ds save previous DS on previous stack 

push cs 

pop ds DS -> RESIDENT_GROUP 

mov PrevSP,sp save previous SS:SP 

mov PrevSS,ss 

mov ss,TSRSS SS:SP -> RESIDENT_STACK 

mov sp,TSRSP 

push es preserve remaining registers 

push ax 
push bx 
push ex 
push dx 
push si 
push di 
push bp 

cld clear direction flag 

Set break and critical error traps 

mov cx,NTrap 
mov si,offset RESIDENT_GROUP:StartTrapList 

L90: lodsb 

mov 

push 

mov 

int 

mov 
mov 

Figure 11-4. Continued. 

368 The MS-DOS Encyclopedia 

AL = interrupt number 

DS:SI -> byte past interrupt number 

byte ptr [si],FALSE ; zero the trap flag 

ax 
ah,35h 

21h 

[si+1],bx 
[si+3], es 

preserve AX 

INT 21H function 35H 

(get interrupt vector) 
ES:BX =previous interrupt vector 

save offset and segment 
.. of previous handler 

(more) 

HUAWEI EX. 1010 - 378/1582



Article 11: Terminate-and-Stay-Resident Utilities 

pop ax AL = interrupt number 
mov dx, [si+S] DS:DX -> this TSR' s trap 
mov ah, 2.5h INT 21H function 25H 
int 21h (set interrupt vector) 
aQ.d si,7 DS:SI -> next in list 

loop L90 

Disable MS-DOS break checking during disk I/0 

mov ax,3300h AH INT 21H function number 
AL OOH (request current break state) 

int 21h DL current break state 

mov PrevBreak,dl preserve current state 

xor dl,dl DL = OOH (disable disk I/O break 
checking) 

mov ax,3301h AL = 01H (set break state) 

int 21h 

Preserve previous extended error information 

cmp 
jb 

push 
xor 
mov 
call 

DOSVersion,30Ah 
L91 

ds 
bx,bx 
ah,59h 
Int21v 

mov cs:PrevExtErrDS,ds 

pop ds 
mov 
mov 

PrevExtErrAX,ax 
PrevExtErrBX,bx 

mov PrevExtErrCX,cx 
mov PrevExtErrDX,dx 
mov PrevExtErrSI,si 
mov PrevExtErrDI,di 
mov PrevExtErrES,es 

; Inform MS-DOS about current PSP 

L91: mov ah,51h 

call Int21v 

mov PrevPSP,bx 

mov bx,TSRPSP 

mov ah,50h 
call Int21v 

Figure 11-4. Continued. 

jump if MS-DOS version earlier 
than 3.1 
preserve DS 
BX = OOH (required for function 59H) 
INT 21H function 59H 
(get extended error info) 

preserve error information 
in data structure 

INT 21H function 51H (get PSP address) 

BX = foreground PSP 

preserve previous PSP 

BX = resident PSP 
INT 21H function SOH (set PSP address) 

(more) 

Section II: Programming in the MS-DOS Environment 369 

HUAWEI EX. 1010 - 379/1582



Part C: Customizing MS-DOS 

Inform MS-DOS about current DTA (not really necessary in this application 
because DTA is not used) 

mov 

int 

mov 
mov 

push 

mov 
mov 

mov 

int 
pop 

Open a file, write to 

mov 

int 

mov 

mov 

mov 
int 

jc 

push 

mov 

int 

pop 

cmp 
jne 

mov 
cmp 

jbe 

cmp 

jne 

mov 

L92: push 

mov 

xor 

mov 

mov 

Figure 11-4. Continued. 

370 The MS-DOS Encyclopedia 

ah,2Fh 

21h 

PrevDTAoffs,bx 

PrevDTAseg,es 

ds 

ds,TSRPSP 
dx,80h 

ah, 1Ah 

21h 

ds 

it, and close it 

ax,OE07h 

10h 

INT 21H function 2FH 
(get DTA address) into ES:BX 

preserve DS 

DS:DX -> default DTA at PSP:0080H 

INT 21H function 1AH 
(set DTA address) 

restore DS 

AH = INT 10H function number 
(write teletype) 

AL = 07H (bell character) 

emit a beep 

dx,offset RESIDENT_GROUP:SnapFile 

ah, 3Ch INT 21 H function 3CH 

(create file handle) 
cx,O 

21h 

L94 

file at tribute 

jump if file not opened 

push file handle ax 

ah,OFh 
10h 

INT 10H function OFH (get video status) 

AL video mode number 

bx 

ah,80 
L93 

dx,OB800h 

al,3 

L92 

al,7 

L93 

dx,OBOOOh 

ds 

ds,dx 

dx,dx 

cx,80*25*2 
ah,40h 

AH 

BX 
number of character columns 

file handle 

jump if not 80-column mode 

DX = color video buffer segment 

jump if color alphanumeric mode 

jump if not monochrome mode 

DX monochrome video buffer segment 

DS:DX -> start of video buffer 

ex = number of bytes to write 

INT 21H function 40H (write file) 

(more) 

HUAWEI EX. 1010 - 380/1582



Article 11: Terminate-and-Stay-Resident Utilities 

int 21h 

pop ds 

L93: mov ah,3Eh INT 21H function 3EH (close file) 
in:t 21h 

mov ax,OEO?h emit another beep 

int 10h 

; Restore previous DTA 

L94: push ds preserve OS 
lds dx,PrevDTA DS:DX -> previous DTA 
mov ah, 1Ah INT 21H function 1AH (set DTA address) 
int 21h 

pop ds 

Restore previous PSP 

mov bx,PrevPSP BX = previous PSP 
mov ah,SOh INT 21H function 

call Int21v (set PSP address) 

Restore previous extended error information 

mov ax,DOSVersion 

ax,30Ah 

SOH 

cmp 

jb 

cmp 
jae 

L95 jump if MS-DOS version earlier than 3.1 

ax,OAOOh 

L95 jump if MS OS/2-DOS 3.x box 

mov dx,offset RESIDENT_GROUP:PrevExtErrinfo 

mov ax, SDOAh 

int 21h (restore. extended error information) 

; Restore previous MS-DOS break checking 

L95: mov 

mov 

int 

dl,PrevBreak 

ax,3301h 

21h 

DL previous state 

Restore previous break and critical error traps 

L96: 

mov 

mov 

push 

lads 

lds 

mov 

int 
Figure 11-4. Continued. 

cx,NTrap 
si,offset RESIDENT_GROUP:StartTrapList 

ds ; preserve DS 

byte ptr cs: [si] ; AL = interrupt number 

dx, cs: [si+1] 

ah,25h 

21h 

ES:SI -> byte past interrupt number 

DS:DX -> previous handler 

INT 21H function 25H 

(set interrupt vector) 
(more) 

Section II: Programming in the MS-DOS Environment 371 

HUAWEI EX. 1010 - 381/1582



Part C: Customizing MS-DOS 

add 
loop 

pop 

Restore all registers 

pop 

pop 

pop 
pop 
pop 

pop 

pop 

pop 

mov 

mov 

pop 

Finally, reset status 

TSRapp 

RESIDENT_TEXT 

RESIDENT_DATA 

ErrorModeAddr 

InDOSAddr 

NISR 

StartiSRList 
IniSRS 

PreviSRS 

IniSR8 
PreviSR8 

IniSR9 

PreviSR9 

IniSR10 

mov 

ret 

ENDP 

ENDS 

SEGMENT 

DD 

DD 

DW 

DB 
DB 

DD 

DW 

DB 

DB 
DD 

DW 

DB 

DB 

DD 

DW 

DB 
DB 

Figure 11-4. Continued. 

3 72 The MS-DOS Encyclopedia 

si,7 DS:SI -> next in list 
L96 

ds restore DS 

bp 

di 
si 

dx 
ex 

bx 

ax 

es 

ss,PrevSS SS:SP -> previous stack 
sp,PrevSP 

ds restore previous DS 

flag and return 

byte ptr cs:HotFlag,FALSE 

word public 'DATA' 

? 

? 

address of MS-DOS ErrorMode flag 

address of MS-DOS InDOS flag 

(EndiSRList-StartiSRList)/8 ; number of installed ISRs 

05h 
FALSE 

INT number 

flag 

? address of previous handler 
offset RESIDENT_GROUP:ISRS 

08h 

FALSE 
? 

offset RESIDENT_GROUP:ISR8 

09h 
FALSE 

? 

offset RESIDENT_GROUP:ISR9 

1 Oh 

FALSE 

(more) 

HUAWEI EX. 1010 - 382/1582



PreviSR1 0 

IniSR13 
PreviSR13 

IniSR28 

PreviSR28 

IniSR2F 

PreviSR2F 

EndiSRList 

TSRPSP 

TSRSP 

TSRSS 
PrevPSP 

PrevSP 

PrevSS 

Hot Index 

HotSeqLen 

Hot Sequence 

EndHotSeq 

HotKBFlag 

HotKBMask 

HotFlag 

ActiveTSR 

DOSVersion 

MajorVersion 

DD 

DW 

DB 

DB 
DD 
DW 

DB 

DB 
DD 
DW 

DB 

DB 

DD 
ow 

LABEL 

DW 

DW 

DW 

DW 
DW 

DW 

DW 
ow 

DB 
LABEL 

DB 

DB 
DB 

DB 

LABEL 

DB 
DB 

Article 11: Terminate-and-Stay-Resident Utilities 

? 

offset RESIDENT_GROUP:ISR10 

13h 

FALSE 

? 

offset RESIDENT_GROUP:ISR13 

28h 

FALSE 

? 

offset RESIDENT_GROUP:ISR28 

2Fh 

FALSE 

? 

offset RESIDENT_GROUP:ISR2F 

BYTE 

? ; resident PSP 
TSRStackSize ; resident SS:SP 

seg RESIDENT-STACK 

? 

? 

? 

previous PSP 
; previous SS:SP 

0 ; index of next scan code in sequence 

EndHotSeq-HotSequence ; length of hot-key sequence 

SCEnter 

BYTE 

KBAlt 

; hot sequence of scan codes 

; hot value of ROM BIOS KB_FLAG 

{KBins OR KBCaps OR KBNum OR KBScroll) XOR OFFh 
FALSE 

FALSE 

WORD 

? 

? 

minor version number 

major version number 

; The following data is used by the TSR application: 

NT rap 

StartTrapList 

Trap1B 
PreviSR1B 

DW 

DB 

DB 

DD 

DW 

DB 

Figure 11-4. Continued. 

{EndTrapList-StartTrapList)/8 

1Bh 

FALSE 

? 

offset RESIDENT_GROUP:ISR1B 

23h 

number of traps 

(more) 

Section Il· Programming in the MS-DOS Environment 373 

HUAWEI EX. 1010 - 383/1582



Part C: Customizing MS-DOS 

Trap23 
PreviSR23 

Trap24 
PreviSR24 

EndTrapList 

PrevBreak 

PrevDTA 

DB 
DD 
ow 

DB 
DB 
DD 
DW 

LABEL 

DB 

LABEL 
PrevDTAoffs DW 
PrevDTAseg ow 

PrevExtErrinfo LABEL 
PrevExtErrAX DW 
PrevExtErrBX DW 
PrevExtErrCX DW 
PrevExtErrDX ow 
PrevExtErrSI DW 
PrevExtErrDI DW 
PrevExtErrDS ow 
PrevExtErrES DW 

DW 

SnapFile DB 

RESIDENT_DATA ENDS 

FALSE 
? 
offset 

24h 
FALSE 
? 
offset 

BYTE 

? 

DWORD 

?. 

BYTE 
? 

? 

? 

? 

? 

? 

RESIDENT_GROUP:ISR23 

RESIDENT_GROUP:ISR24 

previous break-checking flag 

previous DTA address 

previous extended error information 

3 dup(O) 

'\snap.img' output filename in root directory 

RESIDENT-STACK SEGMENT word stack 'STACK' 

DB TSRStackSize dup(?) 

RESIDENT-STACK ENDS 

PAGE 

;------------------------------------------------------------------------------

; Transient installation routines 

;------------------------------------------------------------------------------

TRANSIENT_TEXT SEGMENT para public 'TCODE' 
ASSUME cs:TRANSIENT_TEXT,ds:RESIDENT_DATA,ss:RESIDENT_STACK 

InstallSnapTSR PROC 

Figure 11-4. Continued. 

374 TheMS-DOSEncyclopedia 

far At entry: CS:IP -> InstallSnapTSR 
SS:SP -> stack 
DS,ES -> PSP 

(more) 

HUAWEI EX. 1010 - 384/1582



Article 11: Terminate-and-Stay-Resident Utilities 
.; 

Save PSP segment 

mov ax,seg RESIDENT_DATA 

mov ds,ax DS -> RESIDENT_DATA 

mov TSRPSP,es save PSP segment 

Check the MS-DOS version 

call GetDOSVersion AH major version number 
A1 minor version number 

Verify that this TSR is not already installed 

1100: 

Before executing INT 2FH in MS-DOS versions 2.x, test whether INT 2FH 
vector is in use. If so, abort if PRINT.COM is using it. 

(Thus, in MS-DOS 2.x, if both this program and PRINT.COM are used, 

this program should be made resident before PRINT.COM.) 

crop 
ja 

mov 

int 

mov 
or 

jnz 

push 

mov 

mov 

mov 

mov 

int 
pop 

jmp 

mov 

int 

crop 

je 

ah,2 

1101 

ax,352Fh 

21h 

ax,es 
ax,bx 

1100 

ds 
ax,252Fh 

jump,if version 3.0 or later 

AH =· INT 21 H function number 

A1 = interrupt number 

ES:BX = INT 2FH vector 

jump if current INT 2FH vector .. 
.. is nonzero 

; AH = INT 21H function number 

; A1 = interrupt number 
dx,seg RESIDENT_GROUP 

ds,dx 
dx,offset RESIDENT_GROUP:MultiplexiRET 

21h 

ds 
short 1103 

ax,OFFOOh 

2Fh 

ah,OFFh 

1101 

point INT 2FH vector to IRET 

jump to install this TSR 

look for PRINT.COM: 
if resident, AH = print queue length; 

otherwise, AH is unchanged 

if PRINT.COM is not resident 

use multiplex interrupt 

mov al, 1 

call FatalError abort if PRINT.COM already installed 

Figure 11-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 375 

HUAWEI EX. 1010 - 385/1582



Part C: Customizing MS-DOS 

L1 01: mov 

xor 

int 

test 

jz 

cmp 
jne 

mov 

call 

L102: mov 

call 

ah,MultiplexiD 

al,al 
2Fh 

al,al 
L103 

al,OFFh 

L102 

al,2 
FatalError 

al,3 

FatalError 

AH = multiplex interrupt ID value 

AL = OOH 
multiplex interrupt 

jump if ok to install 

jump if not already installed 

already installed 

; can't install 

; Get addresses of InDOS and ErrorMode flags 

L103: call GetDOSFlags 

; Install this TSR's interrupt handlers 

push 

mov 

mov 

L104: lodsb 

push 

mov 

int 

mov 

mov 

pop 

push 

mov 

mov 
mov 

mov 

int 
pop 

add 

loop 

Free the environment 

pop 
push 

mov 

Figure 11-4. Continued. 

376 The MS-DOS Encyclopedia 

es preserve PSP segment 

cx,NISR 

si,offset StartiSRList 

ax 

ah,35h 
21h 

[si+1],bx 

[si+3],es 

ax 

ds 
dx, [si+S] 

AL = interrupt number 

DS:SI -> byte past interrupt number 
preserve AX 

INT 21H function 35H 

ES:BX = previous interrupt vector 
save offset and segment 

of previous handler 

AL = interrupt number 

preserve DS 

bx,seg RESIDENT_GROUP 

ds,bx 

ah,25h 

21h 

ds 

si,7 
L104 

es 

es 

es,es: [2Ch] 

DS:DX ->this TSR's handler 

INT 21H function 25H 

(set interrupt vector) 
restore DS 

DS:SI -> next in list 

ES = PSP segment 
preserve PSP segment 

ES = segment of environment 

(more) 

HUAWEI EX. 1010 - 386/1582



rnov ah,49h 

int 21h 

Terminate and stay resident 

pop ax 
rnov dx,cs 

sub dx,ax 

rnov ax,3100h 

int 21h 

InstallSnapTSR ENDP 

GetDOSVersion PROC near 

ASSUME ds:RESIDENT_DATA 

rnov ah,30h 

int 21h 
crop al,2 

jb L11 0 

xchg ah,al 

rnov DOSVersion,ax 

ret 

L110: rnov al,OOh 
call FatalError 

GetDOSVersion ENDP 
GetDOSFlags PROC near 

ASSUME ds:RESIDENT_DATA 

Get InDOS address from MS-DOS 

push es 

rnov 

int 

ah,34h 

21h 

Article 11: Terminate-and-Stay-Resident Utilities 

INT 21H function 49H 

(free memory block) 

AX = PSP segment 

DX = paragraph address of start of 
transient portion (end of resident 
portion) 

DX size of resident portion 

AH 

AL 

INT 21H function number 

OOH (return code) 

Caller: DS 
ES 

Returns: AH 

seg RESIDENT_DATA 

PSP 

major version 

AL minor version 

INT 21H function 30H: 
(get MS-DOS version) 

jump if versions 1 .x 

AH = major version 

AL = minor version 
save with major version in 
high-order byte 

abort if versions 1 .x 

Caller: 

Returns: 

Destroys: 

DS = seg RESIDENT_DATA 

InDOSAddr -> InDOS 
ErrorModeAddr -> ErrorMode 

AX,BX,CX,DI 

INT 21H function number 

ES:BX -> InDOS 

Figure 11-4. Continued. (more) 

Section II: Programming in the MS-DOS Environment 377 

HUAWEI EX. 1010 - 387/1582



Part C: Customizing MS-DOS 

mov word ptr InDOSAddr,bx 
mov word ptr InDOSAddr+2,es 

Determine ErrorMode address 

L120: 

L121: 

L122: 

mov 

mov 
cmp 
jb 

cmp 
jae 

dec 
mov 
jmp 

mov 
xor 

mov 

repne 
jne 

word ptr ErrorModeAddr+2,es assume ErrorMode is 
in the same segment 
as InDOS 

ax,DOSVersion 
ax,30Ah 
L120 

ax,OAOOh 
L120 

bx 

jump if MS-DOS version earlier 
than 3.1 

or MS OS/2-DOS 3.x box 

in MS-DOS 3.1 and later, ErrorMode 
word ptr ErrorModeAddr,bx 
short L125 

; is just before InDOS 

cx,OFFFFh 
di,di 

scan MS-DOS segment for ErrorMode 

ex = maximum number of bytes to scan 
ES:DI -> start of MS-DOS segment 

ax,word ptr cs:LF2 AX= opcode for INT 28H 

scasb scan for first byte of fragment 
L126 jump if not found 

cmp 
jne 

ah,es: [di] 
L122 

inspect second byte of opcode 
jump if not !NT 28H 

L123: 

L124: 

L125: 

mov 
cmp 
jne 

mov 
jmp 

mov 
cmp 
jne 

mov 

mov 

pop 
ret 

Figure 11-4. Continued. 

378 The MS-DOS Encyclopedia 

ax,word ptr cs:LF1 + 
ax,es: [di] [LF1-LF2] 
L123 

ax, es: [di] [ (LF1-LF2) +2] 
short L 124 

ax,word ptr cs:LF3 + 
ax,es: [di] [LF3-LF4] 
L121 

ax, es: [di] [ (LF3-LF4) +2] 

word ptr ErrorModeAddr,ax 

es 

AX = opcode for CMP 

jump if opcode not CMP 

AX = offset of ErrorMode 
in DOS segment 

AX opcode for TEST 

jump if opcode not TEST 

AX offset of ErrorMode 

(more) 

HUAWEI EX. 1010 - 388/1582



Article 11: Terminate-and-Stay-Resident Utilities 

; Come here if address of ErrorMode not found 

L126: mov 
call 

al,04h 
FatalError 

; Code fragments for scanning for ErrorMode flag 

LFnear 
LFbyte 
LFword 

LF1: 

LF2: 

LF3: 

LF4: 

GetDOSFlags 

FatalError 

LABEL near 
LABEL byte 
LABEL . word 

cmp ss:LFbyte,O 
jne LFnear 
int 

test 
jne 
push 
int 

ENDP 

PROC 

28h 

ss:LFbyte,OFFh 
LFnear 
ss:LFword 

28h 

near 

dummy labels for addressing 

MS-DOS versions earlier than 3.1 
CMP ErrorMode,O 

MS-DOS versions 3.1 and later 
TEST ErrorMode,OFFH 

Caller: AL 
ES 

message number 
PSP 

ASSUME ds:TRANSIENT_DATA 

push ax ; save message number on stack 

mov bx,seg TRANSIENT-DATA 
mov ds,bx 

Display the requested message 

mov bx,offset MessageTable 
xor ah,ah AX = message number 
shl ax,1 AX= offset into MessageTable 

add 
mov 
mov 

int 

pop 
or 

jz 

bx,ax 
dx, [bx] 
ah,09h 
21h 

ax 
al,al 

L130 

Terminate (MS-DOS 2.x and later) 

mov 
int 

ah,4Ch 
21h 

DS:BX -> address of message 
DS:DX -> message 
INT 21H function 09H (display string) 

display error message 

AL message number 

jump if message number is zero 
(MS-DOS versions 1 .x) 

INT 21H function 4CH 
(terminate process with return code) 

Figure 11~4. Continued. (more) 

Section 11- Programming in the MS-DOS Environment 379 

HUAWEI EX. 1010 - 389/1582



Part C: Customizing MS-DOS 

; Terminate (MS-DOS 1.x) 

L130 PROC far 

push es push PSP:ODODH 

xor ax, ax 
push ax 

ret far return (jump to PSP:DDDOH) 

L13D ENDP 

FatalError ENDP 

TRANSIENT_TEXT ENDS 

PAGE 

Transient data segment 

TRANSIENT-DATA SEGMENT word. public 'DATA' 

MessageTable DW 

DW 

DW 

DW 
DW 

MessageD DB 
Message1 DB 
Message2 DB 
Message3 DB 

Message4 DB 

TRANSIENT_DATA ENDS 

MessageD 

Message1 

Message2 
Message3 
Message4 

MS-DOS version error 
PRINT.COM found in MS-DOS 2.x 

already installed 

can't install 

can't find flag 

CR,LF, 'TSR requires. MS-DOS 2.0 or later version',CR,LF, '$' 

CR,LF, 'Can' 't install TSR: PRINT.COM active',CR,LF, '$' 

CR,LF, 'This TSR is already installed',CR,LF, '$' 

CR,LF, 'Can' 't install this TSR',CR,LF, '$' 

CR,LF, 'Unable to locate MS-DOS ErrorMode flag',CR,LF, '$' 

END InstallSnapTSR 

Figure 11-4. Continued. 

When installed, the SNAP program monitors keyboard input until the user types the 
hot-key sequence Alt-Enter. When the hot-key sequence is detected, the monitoring rou
tine waits until the operating environment is stable and then activates the RAM-resident 
application, which dumps the current contents ofthe computer's video buffer into the file 
SNAP.IMG. Figure 11-5 is a block diagram of the RAM-resident and transient components 
of this TSR. 

380 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 390/1582



Higher addresses 
Transient data 

lnstal/SnapTSR 
Initialization code and data 

RAM-resident stack 

RAM-resident data 

TSRapp 
RAM-resident application 

ISR2F 
INT 2FH (multiplex interrupt) handler 

ISR28 
INT 28H (DOS idle interrupt) handler 

ISR24 
INT 24H (critical error) handler 

ISR23 
INT, 23H (Control-C) handler 

ISRIB 
INT lBH (Control-Break) handler 

ISR13 
INT 13H (BIOS fixed-disk 1/0) handler 

ISRJO 
INT lOH (BIOS video 1/0) handler . 

ISR9 
INT 09H (keyboard interrupt) handler 

ISRB 
INT 08H (timer interrupt) handler 

ISR5 

Lower addresses 
INT 05H (BIOS print screen) handler 

Article 11: Terminate-and-Stay-Resident Utilities 

T 'RANSIENT _DATA segment 

T 'RANSIENT _TEXT segment 

SIDENT_STACK segment 

SIDENT_DATA segment 

RE 

RE 

~ RESIDENT _TEXT segment 

Figure 11-5. Block structure of the TSR program SNAP.EXE when loaded into memory. (Compare with 
Figure 11-1.) 

Installing the program 

When SNAP.EXE is run, only the code in the transient portion of the program is executed. 
The transient code performs several operations before it finally executes Interrupt 21H 
Function 31H (Terminate and Stay Resident). First it determines which MS-DOS version is 
in use. Then it executes the multiplex interrupt (Interrupt 2FH) to discover whether the 
resident portion has already been installed. If an MS-DOS version earlier than 2.0 is in use 
or if the resident portion has already been installed, the program aborts with an error 
message. 

Otherwise, installation continues. The addresses of the InDOS and critical error flags are 
saved in the resident data segment. The interrupt service routines in the RAM-resident por
tion of the program are installed by updating all relevant interrupt vectors. The transient 
code then frees the RAM occupied by the program's environment, because the resident 

Section II: Programming in the MS-DOS Environment 381 

HUAWEI EX. 1010 - 391/1582



Part C: Customizing MS-DOS 

portion of this program never uses the information contained there. Finally, the transient 
portion of the program, which includes the TRANSIENT_ TEXT and TRANS!ENT_DATA 
segments, is discarded and the program is terminated using Interrupt 21H Function 31H. 

Detecting a hot key 

The SNAP program detects the hot-key sequence (Alt-Enter) by monitoring each keypress. 
On IBM PCs and PS/2s, each keystroke generates a hardware interrupt on IRQl (Interrupt 
09H). The TSR's Interrupt 09H handler compares the keyboard scan code corresponding to 
each keypress with a predefined sequence. The TSR's handler also inspects the shift-key 
status flags maintained by the ROM BIOS Interrupt 09H handler. When the predetermined 
sequence of keypresses is detected at the same time as the proper shift keys are pressed, 
the handler sets a global status flag (HotFlag). 

Note how the TSR's handler transfers control to the previous Interrupt 09H ISR before it 
performs its own work. If the TSR's Interrupt 09H handler did not chain to the previous 
handler(s), essential system processing of keystrokes (particularly in the ROM BIOS 
Interrupt 09H handler) might not be performed. 

Activating the application 

The TSR monitors the status of HotFlag by regularly testing its value within a timer-tick 
handler. On IBM PCs and PS/2s, the timer-tick interrupt occurs on IRQO (Interrupt 08H) 
roughly 18.2 times per second. This hardware interrupt occurs regardless of what else the 
system is doing, so an Interrupt 08H ISR a convenient place to check whether HotFlag has 
been set. 

As in the case of the Interrupt 09H handler, the TSR's Interrupt 08H handler passes control 
to previous Interrupt 08H handlers before it proceeds with its own work. This procedure is 
particularly important with Interrupt 08H because the ROM BIOS Interrupt 08H handler, 
which maintains the system's time-of-day clock and resets the system's Intel8259A Pro
grammable Interrupt Controller, must execute before the next timer tick can occur. The 
TSR's handler therefore defers its own work until control has returned after previous 
Interrupt 08H handlers have executed. 

The only function of the TSR's Interrupt 08H handler is to attempt to transfer control to the 
RAM-resident application. The routine VerifyTSRState performs this task. It first examines 
the contents of HotFlag to determine whether a hot-key sequence has been detected. If 
so, it examines the state of the MS-DOS InDOS and critical error flags, the current status of 
hardware interrupts, and the current status of any non-reentrant ROM BiOS routines that 
might be executing. 

If HotFlag is nonzero, the InDOS and critical error flags are both zero, no hardware inter
rupts are currently being serviced, and no non-reentrant ROM BIOS code has been inter
rupted, the Interrupt 08H handler activates the RAM-resident utility. Otherwise, nothing 
happens until the next timer tick, when the handler executes again. 

While HotFlag is nonzero, the Interrupt 08H handler continues to monitor system status 
until MS-DOS, the ROM BIOS, and the hardware interrupts are all ina stable state. Often 

382 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 392/1582



Article 11: Terminate-and-Stay-Resident Utilities 

•. --

the system status is stable at the time the hot-key sequence is detected, so the RAM-
. resident application runs immediately. Sometimes, however, system activities such as 
prolonged disk reads or writes can preclude the activation of the RAM-resident utility for 
several seconds after the hot-key sequence has been detected. The handler could be 
designed to detect this situation (for example, by decrementing HotF!ag on each timer 
tick) and return an error status or display a message to the user. 

A more serious difficulty arises when the MS-DOS default command processor 
(COMMAND. COM) is waiting for keyboard input. In this situation, Interrupt 21H Function 
OlH (Character Input with Echo) is executing, so InDOS is nonzero and the Interrupt 08H 
handler can never detect a state in which it can activate the RAM-resident utility. This 
problem is solved by providing a custom handler for Interrupt 28H (the MS-DOS idle inter
rupt), which is executed by Interrupt 21H Function OlH each time it loops as it waits for a 
keypress. The only difference between the Interrupt 28H handler and the Interrupt 08H 
handler is that the Interrupt 28H handler can activate the RAM-resident application when 
the value of InDOS is 1, which is reasonable because InDOS must have been incremented 
when Interrupt 21H Function OlH started to execute. 

The interrupt service routines for ROM BIOS Interrupts 05H, 10H, and 13H do nothing 
more than increment and decrement flags that indicate whether these interrupts are being 
processed by ROM BIOS routines. These flags are inspected by the TSR's Interrupt 08H 
and 28H handlers. 

Executing the RAM-resident application 

When the RAM-resident application is first activated, it runs in the context of the program 
that was interrupted; that is, the contents of the registers, the video display mode, the cur
rent PSP, and the current DTA all belong to the interrupted program. The resident applica
tion is responsible for preserving the registers and updating MS-DOS with its PSP and DTA 
values. 

The RAM-resident application preserves the previous contents of the CPU registers on 
its own stack to avoid overflowing the interrupted program's stack. It then installs its own 
handlers for Control-Break (Interrupt lBH), Control-C (Interrupt 23H), and critical error 
(Interrupt 24H). (Otherwise, the interrupted program's handlers would take control if the 
user pressed Ctrl-Break or Ctrl-C or if an MS-DOS critical error occurred.) These handlers 
perform no action other than setting flags that can be inspected later by the RAM-resident 
application, which could then take appropriate action. 

The application uses Interrupt 21H Functions 50H and 51H to update MS-DOS with the 
address of its PSP. If the application is running under MS-DOS versions 2.x, the critical 
error flag is set before Functions 50H and 51H are executed so that Au:x:Stack is used for 
the call instead of IOStack, to avoid corrupting IOStack in the event that InDOS is 1. 

The application preserves the current extended error information with a call to Interrupt 
21H Function 59H. Otherwise, the RAM-resident application might be activated immedi
ately after a critical error occurred in the interrupted program but before the interrupted 

Section II: Programming in the MS-DOS Environment 383 

HUAWEI EX. 1010 - 393/1582



Part C: Customizing MS-DOS 

program had executed Function 59H and, if a critical error occurred in the TSR applica
tion, the interrupted program's extended error information would inadvertently be 
destroyed. 

This example also shows how to update the MS-DOS default DTA using Interrupt 21H 
Functions lAH and 2FH, although in this case this step is not necessary because the DTA 
is never used within the application. In practice, the DTA should be updated only if the 
RAM-resident application includes calls to Interrupt 21H functions that use a DTA 
(Functions llH, 12H, 14H, 15H, 21H, 22H, 27H,·28H, 4EH,and 4FH). 

After the resident interrupt handlers are installed and the PSP, DTA, and extended error 
information have been set up, the RAM-resident application can safely execute any Inter
rupt 21H function calls except those that use IOStack (Functions OlH through OCH). These 
functions cannot be used within a RAM-resident application even if the application sets 
the critical error flag to force the use of the auxiliary stack, because they also use other 
non-reentrant data structures such as input/output buffers. Thus, a RAM-resident utility 
must rely either on user-written console input/output functions or, as in the example, on 
ROM BIOS functions. 

The application terminates by returning the interrupted program's extended error infor
mation, DTA, and PSP to MS-DOS, restoring the previous Interrupt lBH, 23H, and 24H 
handlers, and restoring the previous CPU registers and stack. 

Richard Wilton 

384 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 394/1582



Article12 
Exception Handlers 

Article 12: Exception Handlers 

Exceptions are system events directly related to the execution of an application program; 
they ordinarily cause the operating system to abort the program. Exceptions are thus dif
ferent from errors, which are minor unexpected events (such as failure to find a file on 
disk) that the program can be expected to handle appropriately. Likewise, they differ from 
external hardware interrupts, which are triggered by events (such as a character arriving at 
the serial port) that are not directly related to the program's execution. 

The computer hardware assists MS-DOS in the detection of some exceptions, such as an 
attempt to divide by zero, by generating an internal hardware interrupt. Exceptions related 
to peripheral devices, such as an attempt to read from a disk drive that is not ready or does 
not exist, are called critical errors. Instead of causing a hardware interrupt, these excep- 4 
tions are typically reported to the operating system by device drivers. MS-DOS also sup-
ports a third type of exception, which is triggered by the entry of a Control-C or Control-
Break at the keyboard and allows the user to signal that the current program should be 
terminated immediately. 

MS-DOS contains built-in handlers for each type of exception and so guarantees a 
minimum level of system stability that requires no effort on the part of the application 
programmer. For some applications, however, these default handlers are inadequate. For 
example, if a communications program that controls the serial port directly with custom 
interrupt handlers is terminated by the operating system without being given a chance to 
turn off serial-port interrupts, the next character that arrives on the serial line will trigger 
an interrupt for which a handler is no longer present in memory. The result will be a sys
tem crash. Accordingly, MS-DOS allows application programs to install custom exception 
handlers so that they can shut down operations in an oi:derly way when an exception 
occurs. 

This article examines the default exception handlers provided by MS-DOS and discusses 
methods programmers can use to replace those routines with handlers that are more 
closely matched to specific application requirements. 

Overview 

Two major exception handlers of importance to application programmers are supported 
under all versions of MS-DOS. The first, the Control-C exception handler, terminates the 
program and is invoked when the user enters a Ctrl-C or Ctrl-Break keystroke; the address 

Section IL- Programming in the MS-DOS Environment 385 

HUAWEI EX. 1010 - 395/1582



Part C: Customizing MS-DOS 

of this handler is found in the vector for Interrupt 23H. The second, the critical error 
exception handler, is invoked if MS-DOS detects a critical error while servicing an 1/0 
request. (A critical error is a hardware error that makes normal completion of the request 
impossible.) This exception handler displays the familiar Abort, Retry, Ignore prompt; 
its address is saved in the vector for Interrupt 24H. 

When a program begins executing, the addresses in the Interrupt 23H and 24H vectors 
usually point to the system's default Control-C and critical error handlers. If the program is 
a child process, however, the vectors might point to exception handlers that belong to the 
parent process, if the immediate parent is not COMMAND. COM. In any case, the applica
tion program can install its own custom handler for Control-C or critical error exceptions 
simply by changing the address in the vector for Interrupt 23H or Interrupt 24H so that the 
vector points to the application's own routine. When the program performs a final exit by 
means of Interrupt 21H Function OOH (Terminate Process), Function 31H (Terminate and 
Stay Resident), Function 4CH (Terminate Process with Return Code), Interrupt 20H (Ter
minate Process), or Interrupt 27H (Terminate and Stay Resident), MS-DOS restores the pre
vious contents of the Interrupt 23H and 24H vectors. 

Note that Interrupts 23H and 24H never occur as externally generated hardware interrupts 
in an MS-DOS system. The vectors for these interrupts are used simply as storage areas for 
the addresses of the exception handlers. 

MS-DOS also contains default handlers for the Control-Break event detected by the ROM 
BIOS in IBM PCs and compatible computers and for some of the Intel microprocessor ex
ceptions that generate actual hardware interrupts. These exception handlers are not re
placed by application programs as often as the Control-C and critical error handlers. The 
interrupt vectors that contain the addresses of these handlers are not restored by MS-DOS 
when a program exits. 

The address of the Control-Break handler is saved in the vector for Interrupt lBH and is 
invoked by the ROM BIOS whenever the Ctrl-Break key combination is detected. The 
default MS-DOS handler normally flushes the keyboard input buffer and substitutes 
Control-C for Control-Break, and the Control-Cis later handled by the Control-C exception 
handler. The default handlers for exceptions that generate hardware interrupts either abort 
the current program (as happens with Divide by Zero) or bring the entire system to a halt 
(as for a memory parity error). 

The Control-C Handler 

The vector for Interrupt 23H points to code that is executed whenever MS-DOS detects a 
Control-C character in the keyboard input buffer. When the character is detected, MS-DOS 
executes a software Interrupt 23H. 

In response to Interrupt 23H, the default Control-C exception handler aborts the current 
process. Files that were opened with handles are closed (FCB-based files are not), but no 

386 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 396/1582



Article 12: Exception Handlers 

. other cleanup is performed. Thus, unsaved data can be left in buffers, some files might 
not be processed, and critical addresses, such as the vectors for custom interrupt handlers, 
might be left pointing into free RAM. If more complete control over process termination is 
wanted, the application should replace the default Control-C handler with custom code. 
See Customizing Control-C Handling below. 

The Control-Break exception handler, pointed to by the vector for Interrupt lBH, is closely 
related to the Control-C exception handler in MS-DOS systems on the IBM PC and close 
compatibles but is called by the ROM BIOS keyboard driver on detection of the Ctrl-Break 
keystroke combination. Because the Control-Break exception is generated by the ROM 
BIOS, it is present only on IBM PC-compatible machines and is not a standard feature of 
MS-DOS. The default ROM BIOS handler for Control-Break is a simple interrupt return
in other words, no action is taken to handle the keystroke itself, other than converting the 
Ctrl-Break scan code to an extended character and passing it through to MS-DOS as normal 
keyboard input. 

To account for as many hardware configurations as possible, MS-DOS redirects the ROM 
BIOS Control-Break interrupt vector to its own Control-Break handler during system 
initialization. The MS-DOS Control-Break handler sets an internal flag that causes the 
Ctrl-Break keystroke to be interpreted as a Ctrl-C keystroke and thus causes Interrupt 23H 
to occur. 

Customizing Control-C handling 

The exception handlers most often neglected by application programmers- and most 
often responsible for major program failures- are the default exception handlers invoked 
by the Ctrl-C and Ctrl-Break keystrokes. Although the user must be able to recover from a 
runaway condition (the reason for Ctrl-C capability in the first place), any exit from a com
plex program must also be orderly, with file buffers flushed to disk, directories and in
dexes updated, and so on. The default Control-C and Control-Break handlers do not 
provide for such an orderly exit. 

The simplest and most direct way to deal with Ctrl-C and Ctrl-Break keystrokes is to install 
new exception handlers that do nothing more than an IRET and thus take MS-DOS out of 
the processing loop entirely. This move is not as drastic as it sounds: It allows an applica
tion to check for and handle the Ctrl-C and Ctrl-Break keystrokes at its convenience when 
they arrive through the normal keyboard input functions and prevents MS-DOS from 
terminating the program unexpectedly. 

The following example sets the Interrupt 23H and Interrupt lBH vectors to point to an 
IRET instruction. When the user presses Ctrl-C or Ctrl-Break, the keystroke combination 
is placed into the keyboard buffer like any other keystroke. When it detects the Ctrl-C or 
Ctrl-Break keystroke, the executing program should exit properly (if that is the desired 
action) after an appropriate shutdown procedure. 

To install the new exception handlers, the following procedure (set_int) should be called 
while the main program is initializing: 

Section IL- Programming in the MS-DOS Environment 387 

HUAWEI EX. 1010 - 397/1582



Part C: Customizing MS-DOS 

_DATA segment para public 'DATA' 
oldint1b dd 0 original INT 1BH vector 
oldint23 dd 
.....DATA ends 

0 ; original INT 23H vector 

_TEXT segment byte public 'CODE' 
assume cs:_TEXT,ds:......DATA,es:NOTHING 

myint1b: handler for Ctrl-Break 

myint23: ; handler for Ctrl-C 

iret 

set_int proc near 

mov ax,351bh ; get current contents of 
int 21h ; Int 1BH vector and save 
mov word ptr oldint1b,bx 
mov word ptr oldint1b+2,es 

mov ax,3523h ; get current contents of 
int 21h ; Int 23H vector and save 
mov word ptr oldint23,bx 
mov word ptr oldint23+2,es 

push ds save our data segment 
push cs let DS point to our 
pop ds code segment 
mov dx,offset myint1b 

mov ax,251bh set interrupt vector 1BH 
int 21h to point to new handler 
mov dx,offset myint23 
mov ax,2523h set interrupt vector 23H 
int 21h to point to new handler 
pop ds restore our data segment 
ret back to caller 

set_int endp 
_TEXT ends 

it 

it 

The application can use the following routine to restore the original contents of the vectors 
pointing to the Control-C and Control-Break exception handlers before making a final exit 
back to MS-DOS. Note that, although MS-DOS restores the Interrupt 23H vector to its pre
vious contents, the application must restore the Interrupt lBH vector itself. 

rest_int proc 
push 

near 

ds ; save our data segment 
mov dx,word ptr oldint23 
mov ds,word ptr oldint23+2 

mov ax,2523h restore original contents 
int 21h of Int 23H vector 
pop 
push 
mov 
mov 
mov 
int 
pop 
ret 

rest_int endp 

ds 
ds 
dx,word 
ds,word 
ax,251Bh 
21h 

ds 

388 The MS-DOS Encyclopedia 

restore our data segment 
then save it again 

ptr oldint1B 
ptr oldint1B+2 

restore original contents 
of Int 1BH vector 

get back our data segment 
return to caller 

HUAWEI EX. 1010 - 398/1582



Article 12: Exception Handlers 

The preceding example simply prevents MS-DOS from terminating an application when a 
Ctrl-C or Ctrl-Break keystroke is detected. Program termination is still often the ultimate 
goal, but after a more orderly shutdown than is provided by the MS-DOS default Control-C 
handler. The following exception handler allows the program to exit more gracefully: 

myint1b: 
iret 

myint23: 

call safe_shut_down 

Control-Break exception handler 
do nothing 
Control-C exception handler 
release interrupt vectors, 
close files, etc. 

jmp program_exit_point 

Note that because the Control-Break handler is invoked by the ROM BIOS keyboard driver 
and MS-DOS is not reentrant, MS-DOS services (such as closing files and terminating with 
return code) cannot be invoked during processing of a Control-Break exception. In con
trast, any MS-DOS Interrupt 21H function call can be used during the processing of a 
Control-C exception. Thus, the Control-Break handler in the preceding example does 
nothing, whereas the Control-C handler performs orderly shutdown of the application. 

Most often, however, neither a handler that does nothing nor a handler that shuts down 
and terminates is sufficient for processing a Ctrl-C (or Ctrl-Break) keystroke. Rather than 
simply prevent Control-C processing, software developers usually prefer to have a Ctrl-C 
keystroke signal some important action without terminating the program. Using methods 
similar to those above, the programmer can replace Interrupts lBH and 23H with a routine 
like the following: 

myint1b: 
myint23: 

call 
iret 

; Control-Break exception handler 
; Control-C exception handler 

control_c_happened 

Notes on processing Control-C 

The preceding examples assume the programmer wants to treat Control-C and Control
Break the same way, but this is not always desirable. Control-C and Control-Break are not 
the same, and the difference between the two should be kept in mind: The Control-Break 
handler is invoked by a keyboard-input interrupt and can be called at any time; the 
Control-C handler is called only at "safe" points during the processing of MS-DOS Interrupt 
21H functions. Also, even though MS-DOS restores the Interrupt 23H vector on exit from a 
program, the application must restore the previous contents of the Interrupt lBH vector 
before exiting. If this interrupt vector is not restored, the next Ctrl-Break keystroke will 
cause the machine to attempt to execute an undetermined piece of code or data and will 
probably crash the system. 

Although it is generally desirable to take control of the Control-C and Control-Break inter
rupts, control should be retained only as long as necessary. For example, a RAM-resident 
pop-up application should take over Control-C and Control-Break handling only when it is 
activated, and it should restore the previous contents of the Interrupt lBH and Interrupt 
23H vectors before it returns control to the foreground process. 

Section II: Programming in the MS-DOS Environment 389 

HUAWEI EX. 1010 - 399/1582



Part C: Customizing MS-DOS 

The Critical Error Handler 

When MS-DOS detects a critical error- an error that prevents successful completion of 
an 1/0 operation- it calls the exception handler whose address is stored in the vector for 
Interrupt 24H. Information about the operation in progress and the nature of the error is 
passed to the exception handler in the CPU registers. In addition, the contents of all the 
registers at the point of the original MS-DOS call are pushed onto the stack for inspection 
by the exception handler. 

The action of MS-DOS's default critical error handler is to present a message such as 

Error type error action device 

Abort, Retry, Ignore? 

This message signals a hardware error from which MS-DOS cannot recover without user 
intervention. For example, if the user enters the command 

C>DIR A: <Enter> 

but drive A either does not contain a disk or the disk drive door is open, the MS-DOS criti
cal error handler displays the message 

Not ready error reading drive A 
Abort, Retry, Ignore? 

I (Ignore) simply tells MS-DOS to forget that an error occurred and continue on its way. 
(Of course, if the error occurred during the writing of a file to disk, the file is generally 
corrupted; if the error occurred during reading, the data might be incorrect.) 

R (Retry) gives the application a second chance to access the device. The critical error 
handler returns information to MS-DOS that says, in effect, "Try again; maybe it will work 
this time." Sometimes, the attempt succeeds (as when the user closes an open drive door), 
but more often the same or another critical error occurs. 

A (Abort) is the problem child of Interrupt 24H. If the user responds with A, the applica
tion is terminated immediately. The directory structure is not updated for open files, 
interrupt vectors are left pointing to inappropriate locations, and so on. In many cases, re
starting the system is the only safe thing to do at this point. 

Note: Beginning with version 3.3, an F (Fail) option appears in the message displayed by 
MS-DOS's default critical error handler. When Fail is selected, the current MS-DOS func
tion is terminated and an error condition is returned to the calling program. For example, 
if a program calls Interrupt 21H Function 3DH to open a file on drive A but the drive door 
is open, choosing F in response to the error message causes the function call to return 
with the carry flag set, indicating that an error occurred but processing continues. 

390 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 400/1582



Article 12: Exception Handlers 

Like the Control-C exception handler, the default critical error exception handler can and 
·should be replaced by an application program when complete control of the system is 
desired. The program installs its own handler simply by placing the address of the new 
handler in the vector for Interrupt 24H; MS-DOS restores the previous contents of the Inter
rupt 24H vector when the program terminates. 

Unlike the Control-C handler, however, the critical error handler must be kept within 
carefully defined limits to preserve the stability of the operating system. Programmers 
must rigidly adhere to the structure described in the following pages for passing informa
tion to and from an Interrupt 24H handler. 

Flags 

cs 

lP 

ES 

DS 

BP 

Dl 

SI 

DX 

ex 

BX 

AX 

Flags 

cs 

lP 

1-..., 

Flags and CS:IP pushed on stack 
by original Interrupt 21H call 

+-- SP on entry to Interrupt 21H handler !\ 

1-<' 

Registers at point of 
original Interrupt 21H call 

Return address from 
Interrupt 24H handler 

I _..I +-- SP on entry to Interrupt 24H handler 

Figure 12-1. The stack contents at entry to a critical error exception handler. 

Section II: Programming in the MS-DOS Environment 391 

HUAWEI EX. 1010 - 401/1582



Part C: Customizing MS-DOS 

Mechanics of critical error handling 

MS-DOS critical error handling has two components: the exception handler, whose ad
dress is saved in the Interrupt 24H vector and which can be replaced by an application 
program; and an internal routine inside MS-DOS. The internal routine sets up the informa
tion to be passed to the exception handler on the stack and in registers and, in turn, calls 
the exception handler itself. The internal routine also responds to the values returned by 
the critical error handler when that handler executes an IRET to return to the MS-DOS 
kernel. 

Before calling the exception handler, MS-DOS arranges the stack (Figure 12-1 on the pre
ceding page) so the handler can inspect the location of the error and register contents at 
the point in the original MS-DOS function call that led to the critical error. 

When the critical error handler is called by the internal routine, four registers may contain 
important information: AX, Dl, BP, and SI. (With MS-DOS versions 1.x, only the AX and DI 
registers contain significant information.) The information passed to the handler in the 
registers differs somewhat, depending on whether a character device or a block device is 
causing the error. 

Block-device (disk-based) errors 

If the critical error handler is entered in response to a block-device (disk-based) error, 
registers BP:SI contain the segment:offset of the device driver header for the device caus
ing the error and bit 7 (the high-order bit) of the AH register is zero. The remaining bits of 
the AH register contain the following information (bits 3 through 5 apply only to MS-DOS 
versions 3.1 and later): 

Bit Value Meaning 

0 0 Read operation 
1 Write operation 

1-2 Indicate the affected disk area: 
00 MS-DOS 
01 File allocation table 
10 Root directory 
11 Files area 

3 0 Fail response not allowed 
1 Fail response allowed 

4 0 Retry response not allowed 
1 Retry response allowed 

5 0 Ignore response not allowed 
1 Ignore response allowed 

6 0 Undefined 

The AL register contains the designation of the drive where the error occurred; for exam
ple, AL = OOH (drive A), AL = OlH (drive B), and so on. 

392 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 402/1582



Article 12: Exception Handlers 

The lower half of the DI register contains the following error codes (the upper half of this 
register is undefined): 

Error Code 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
OCH 
OFH 

Meaning 

Write-protected disk 
Unknown unit 
Drive not ready 
Invalid command 
Data error (CRC) 
Length of request structure invalid 
Seek error 
Non-MS-DOS disk 
Sector not found 
Printer out of paper 
Write fault 
Read fault 
General failure 
Invalid disk change (version 3.0 or later) 

Note: With versions 1.x, the only valid error codes are OOH, 02H, 04H, 06H, 08H, OAH, 
andOCH. 

Before calling the critical error handler for a disk-based error, MS-DOS tries from one to 
five times to perform the requested read or write operation, depending on the type of 
operation. Critical disk errors result only from Interrupt 21H operations, not from failed 
sector-read and sector-write operations attempted with Interrupts 25H and 26H. 

Character-device errors 

If the critical error handler is called from the MS-DOS kernel with bit 7 of the AH register 
set to 1, either an error occurred on a character device or the memory image of the file allo
cation table is bad (a rare occurrence). Again, registers BP:SI contain the segment and 
offset of the device driver header for the device causing the critical error. The exception 
handler can inspect bit 15 of the device attribute word at offset 04H in the device header to 
confirm that the error was caused by a character device- this bit is 0 for block devices 
and 1 for character devices. See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusTOMIZING Ms-oos: Installable Device Drivers. 

If the error was caused by a character device, the lower half of the DI register contains 
error codes as described above and the contents of the AL register are undefined. The 
exception handler can inspect the other fields of the device header to obtain the logical 
name of the character device; to determine whether that device is the standard input, 
standard output, or both; and so on. 

Critical error processing 

The critical error exception handler is entered from MS-DOS with interrupts disabled. 
Because an MS-DOS system call is already in progress and MS-DOS is not reentrant, the 

Section II: Programming in the MS-DOS Environment 393 

HUAWEI EX. 1010 - 403/1582



Part C: Customizing MS-DOS 

handler cannot request any MS-DOS system services other than Interrupt 21H Functions 
01 through OCH (character 1/0 functions), Interrupt 21H Function 30H (Get MS-DOS Version 
Number), and Interrupt 21H Function 59H (Get Extended Error Information). These func
tions use a special stack so that they can be called during error processing. 

In general, the critical error handler must preserve all but the AL register. It must not 
change the contents of the device header pointed to by BP:SI. The handler must return to 
the MS-DOS kernel with an IRET, passing an action code in register AL as follows: 

Value in AL Meaning 

OOH Ignore 
01H Retry 
02H Terminate process 
03H Fail current system call 

These values correspond to the options presented by the MS-DOS default critical error 
handler. The default handler prompts the user for input, places the appropriate return 
information in the AL register, and immediately issues an IRET instruction. 

Note: Although the Fail option is displayed by the MS-DOS default critical error handler 
in versions 3.3 and later, the Fail option inside the handler was added in version 3.1. 

With MS-DOS versions 3.1 and later, if the handler returns an action code in AL that is not 
allowed for the error in question (bits 3 through 5 of the AH register at the point of call), 
MS-DOS reacts according to the following rules: 

If Ignore is specified by AL == OOH but is not allowed because bit 5 of AH == 0, the response . 
defaults to Fail (AL == 03H). 

If Retry is specified by AL == 01H but is not allowed because bit 4 of AH = 0, the response 
defaults to Fail (AL == 03H). 

If Fail is specified by AL == 03H but is not allowed because bit 3 of AH == 0, the response 
defaults to Abort. 

Custom critical error handlers 

Each time it receives control, COMMAND. COM restores the Interrupt 24H vector to point 
to the system's default critical error handler and displays a prompt to the user. Conse
quently, a single custom handler cannot terminate and stay resident to provide critical 
error handling services for subsequent application programs. Each program that needs 
better critical error handling than MS-DOS provides must contain its own critical error 
handler. 

Figure 12-2 contains a simple critical error handler, INT24.ASM, written in assembly lan
guage. In the form shown, INT24.ASM is no more than a functional replacement for the 
MS-DOS default critical error handler, but it can be used as the basis for more sophisticated 
handlers that can be incorporated into application programs. 

394 The MS-DOS Encyclopedia 

/ 

HUAWEI EX. 1010 - 404/1582



I 

Article 12: Exception Handlers 

INT24.ASM contains three routines: 

Routine Action 

get24 Saves the previous contents of the Interrupt 24H critical error handler vec
tor and stores the address of the new critical error handler into the vector. 

res24 

int24. 

Restores the address of the previous critical error handler, which was 
saved by a call to get24, into the Interrupt 24 vector. 

Replaces the MS-DOS critical error handler. 

A program wishing to substitute the new critical error handler for the system's default han
dler should call the get24 routine during its initialization sequence. If the program wishes 
to revert to the system's default handler during execution, it can accomplish this with a call 
to the res24 routine. Otherwise, a call to res24 (and the presence of the routine itself in 
the program) is not necessary, because MS-DOS automatically restores the Interrupt 24H 
vector to its previous value when the program exits, from information 
stored in the program segment prefix (PSP). 

The replacement critical error handler, int24, is simple. First it saves all registers; then it 
displays a message that a critical error has occurred and prompts the user to enter a key 
selecting one of the four possible options: Abort, Retry, Ignore, or Fail. If an illegal key is 
entered, the prompt is displayed again; otherwise, the action code corresponding to the 
key is extracted from a table and placed in the AL register, the other registers are restored, 
and control is returned to the MS-DOS kernel with an IRET instruction. 

Note that the handle read and write functions (Interrupt 21H Functions 3FH and 40H), 
which would normally be preferred for interaction with the display and keyboard, cannot 
be used in a critical error handler. 

cr 
lf 

name int24 
title INT24 Critical Error Handler 

INT24.ASM - Replacement critical error handler 
by Ray Duncan, September 1 987 

equ 
equ 

Odh 
Oah 

ASCII carriage return 
ASCII linefeed 

DGROUP group _DATA 

_DATA segment word public 'DATA' 

save24 dd 0 ; previous contents of Int 24H 
; critical error handler vector 

Figure 12-2. INT24.ASM, a replacement Interrupt 24H handler. (more) 

Section II: Programming in the MS-DOS Environment 395 

HUAWEI EX. 1010 - 405/1582



Part C: Customizing MS-DOS 

prompt db 

db 

; prompt message used by 
; critical error handler 

cr,lf, 'Critical Error Occurred: ' 
'Abort, Retry, Ignore, Fail? $' 

keys db 'aArRiifF' 

$-keys keys_len equ 

codes db 2,2,1,1,0,0,3,3 

_DATA ends 

_TEXT segment word public 'CODE' 

assume cs:_TEXT,ds:DGROUP 

public get24 

get24 proc near 

push ds 

push es 

mov ax,3524h 
int 21h 

mov word ptr save24,bx 

possible user response keys 
(both cases of each allowed) 

codes returned to MS-DOS kernel 

for corresponding response keys 

set Int 24H vector to point 

to new critical error handler 

save segment registers 

get address of previous 
INT 24H handler and save it 

mov word ptr save24+2,es 

push cs 
pop ds 
mov dx,offset 

mov ax,2524h 

int 21h 

pop es 
pop ds 
ret 

get24 endp 

public res24 

res24 proc near 

push ds 

Figure 12-2. Continued. 

396 The MS-DOS Encyclopedia 

; set DS:DX to point to 
; new INT 24H handler 

_TEXT:int24 

then call MS-DOS to 

set the INT 24H vector 

restore segment registers 

and return to caller 

restore original contents 

of Int 24H vector 

save our data segment 

(more) 

HUAWEI EX. 1010 - 406/1582



Article 12: Exception Handlers 
.; 

lds dx,save24 put address of old handler 

mov ax,2524h back into INT 24H vector 

int 21h 

pop ds restore data segment 

ret and return to caller 

res24 endp 

This is the replacement critical error handler. It 
prompts the user for Abort, Retry, Ignore, or Fail and 
returns the appropriate code to the MS-DOS kernel. 

int24 

int24a: 

proc far 

push bx 
push ex 
push dx 
push si 
push di 
push bp 
push ds 
push es 

mov ax,DGROUP 

mov ds,ax 

mov es,ax 
mov dx,offset prompt 

mov ah,09h 

int 21h 

mov ah,01h 
int 21h 

mov di,offset keys 

mov cx,keys_len 

cld 
repne scasb 
jnz int24a 

mov al, [di+keys_len-1] 

entered from MS-DOS kernel 

save registers 

display prompt for user 
using function 09H (print string 

terminated by $ character) 

get user's response 
function 01H = read one character 

look up code for response key 

prompt again if bad response 

set AL = action code for MS-DOS 
according to key that was entered: 
0 = ignore, 1 = retry, 2 = abort, 3 

pop es ; restore registers 

pop ds 
pop bp 
pop di 

pop si 

fail 

Figure 12-2. Continued. (more) 

Section II: Programming in the MS-DOS Environment 397 

HUAWEI EX. 1010 - 407/1582



Part C: Customizing MS-DOS 

pop dx 

pop ex 

pop bx 
iret exit critical error handler 

int24 endp 

~TEXT ends 

end 

Figure 12-2. Continued. 

Hardware-generated Exception Interrupts· 

Intel reserved the vectors for Interrupts OOH through 1FH (Table 12-1) for exceptions 
generated by the execution of various machine instructions. Handling of these chip
dependent internal interrupts can vary from one make of MS-DOS machine to another; 
some such differences are mentioned in the discussion. 

Table 12-1. Intel Reserved Exception Interrupts. 

Interrupt 
Number 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 
10H 
ll-1FH 

Definition 

Divide by Zero 
Single-Step 
Nonmaskable Interrupt (NMI) 
Breakpoint Trap 
Overflow Trap 
BOUND Range Exceeded* 
Invalid Opcode * 
Coprocessor not Available t 
Double-Fault Exception t 
Coprocessor Segment Overrun t 
Invalid Task State Segment (TSS) t 
Segment not Presentt 
Stack Exception t 
General Protection Exception t 
Page Fault* 
(Reserved) 
Coprocessor Errort 
(Reserved) 

• The 80186, 80286, and 80386 microprocessors only. 
tThe 80286 and 80386 microprocessors only. 
*The 80386 microprocessor only. 

398 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 408/1582



Article 12: Exception Handlers 

Note: A number of these reserved exception interrupts generally do not occur in MS-DOS 
because they are generated only when the 80286 or 80386 microprocessor is operating in 
protected mode. The following discussions do not cover these interrupts. 

Divide by Zero (Interrupt OOH) 

An Interrupt OOH occurs whenever a DIV or IDIV operation fails to terminate within a 
reasonable period of time. The interrupt is triggered by a mathematical anomaly: Division 

. by zero is inherently undefined. To handle such situations, Intel built special processing 
into the DIVand IDlY instructions to ensure that the condition does not. cause the pro
cessor to lock up. Although the assumption underlying Interrupt OOH is an attempt to 
divide by zero (a condition that will never terminate), the interrupt can also be triggered 
by other error conditions, such as a quotient that is too large to fit in the designated register 
(AX orAL). 

The ROM BJOS handler for Interrupt OOH in the IBM PC and close compatibles is a simple 
IRET instruction. During the MS-DOS startup process, however, MS-DOS modifies the in
terrupt vector to point to its own handler- a routine that issues the warning message 
Divide by Zero and aborts the current application. This abort procedure can leave the 
computer and operating system in an extremely unstable state. If the default handler is 
used, the system should be restarted immediately and an attempt should be made to find 
and eliminate the cause of the error. A better approach, however, is to provide a replace
ment handler that treats Interrupt OOH much as MS-DOS treats Interrupt 24H. 

Single-Step (Interrupt OlH) 

If the trap flag (bit 8 of the microprocessor's 16-bit flags register) is set, Interrupt OlH 
occurs at the end of every instruction executed by the processor. By default, Interrupt OlH 
points to a simple IRET instruction, so the net effect is as if nothing happened. However, 
debugging programs, which are the only applications that use this interrupt, modify the 
interrupt vector to point to their own handlers. The interrupt can then be used to allow a 
debugger to single-step through the machine instructions of the program being debugged, 
as DEBUG does with its T (Trace) command. 

Nonmaskable Interrupt, or NMI (Interrupt 02H) 

In the hardware architecture of IBM PCs and close compatibles, Interrupt 02H is invoked 
whenever a memory parity error is detected. MS-DOS provides no handler, because this 
error, as a hardware-related problem, is in the domain of the ROM BIOS. 

In response to the Interrupt 02H, the default ROM BIOS handler displays a message and 
locks the machine, on the assumption that bad memory prevents reliable system opera
tion. Many programmers, however, prefer to include code that permits orderly shutdown 
of the system. Replacing the ROM BIOS parity trap routine can be dangerous, though, 
because a parity error detected in memory means the contents of RAM are no longer reli
able- even the memory locations containing the NMI handler itself might be defective. 

Section IL- Programming in the MS-DOS Environment 399 

HUAWEI EX. 1010 - 409/1582



Part C: Customizing MS-DOS 

Breakpoint Trap (Interrupt 03H) 

Interrupt 03H, which is used in conjunction with Interrupt 01H for debugging, is invoked 
by a special1-byte opcode (OCCH). During a debugging session, a debugger modifies the 
vector for Interrupt 03H to point to its own handler and then replaces 1 byte of program 
opcode with the OCCH opcode at any location where a breakpoint is needed. 

When a breakpoint is reached, the OCCH opcode triggers Interrupt 03H and the debugger 
regains control. The debugger then restores the original opcode in the program being 
debugged and issues a prompt so that the user can display or alter the contents of memory 
or registers. The use oflnterrupt 03H is illustrated by DEBUG and SYMDEB's breakpoint 
capabilities. 

Overflow Trap (Interrupt 04H) 

If the overflow bit (bit 11) in the microprocessor's flags register is set, Interrupt 04H occurs 
when the INTO (Interrupt on Overflow) instruction is executed. The overflow bit can be 
set during prior execution of any arithmetic instruction (such as MUL or IMUL) that can 
produce an overflow error. 

The ROM BIOS of the IBM PC and close compatibles initializes the Interrupt 04H vector to 
point to an IRET, so this interrupt becomes invisible to the user if it is executed. MS-DOS 
does not have its own handler for Interrupt 04H. However, because the Intel microproces
sors also include JO (Jump if Overflow) and JNO (Jump if No Overflow) instructions, 
applications rarely need the INTO instruction and, hence, seldom have to provide their 
own Interrupt 04H handlers. 

BOUND Range Exceeded (Interrupt 05H) 

Interrupt 05H is generated on 80186, 80286, and 80386 microprocessors if a BOUND 
instruction is executed to test the value of an array index and the index falls outside the 
limits specified by the instruction's operand. The exception handler is expected to alter 
the index so that it is correct-when the handler performs an interrupt return (IRET), the 
CPU reexecutes the BOUND instruction that caused the interrupt. 

On IBM PC/AT-compatible machines, the ROM BIOS assignment of the PrtSc (print screen) 
routine to Interrupt 05H is in conflict with the CPU's use of Interrupt 05H for BOUND 
exceptions. 

Invalid opcode (Interrupt 06H) 

Interrupt 06H is generated by the 80186, 80286, and 80386 microprocessors if the current 
instruction is not a valid opcode-for example, if the machine tries to execute a data 
statement. 

On IBM PC/ATs, Interrupt 06H simply points to an IRET instruction. The ROM BIOS rou
tines of some IBM PC/AT-compatibles, however, provide an interrupt handler that reports 
an unexpected software Interrupt 06H and asks if the user wants to continue. A Y re
sponse causes the interrupt handler to skip over the invalid opcode. Unfortunately, 
because the succeeding opcode is often invalid as well, the user may have the feeling of 
being trapped in a loop. 

400 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 410/1582



Article 12: Exception Handlers 

Extended Error Information 

Under MS-DOS versions l.x, the operating system provided limited information about 
errors that occurred during calls to the Interrupt 21H system functions. For example, if a 
program called Function OFH to open a file, there were only two possible results: On 
return, the AL register either contained OOH for a successful open or OFFH for failure. No 
further detail was available from the operating system. Although some of these early sys
tem calls (such as the read and write functions) returned somewhat more information, 
the l.x versions of MS-DOS were essentially limited to success/failure return codes. 

Beginning with version 2.0 and the introduction of the handle concept, additional error 
information became available. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
PRoGRAMMING FORMs-nos: File and Record Management. For example, if a program 
attempts to open a file with Interrupt 21H Function 3DH (Open File with Handle), it can 
check the status of the carry flag on return to detect whether an error occurred. If the 
carry flag is not set, the call was successful and the AX register contains the file handle. 
If the carry flag is set, the AX register contains one of the following possible error codes: 

Error Code 

01H 
02H 
03H 
04H 
05H 
OCH 

Meaning 

Invalid function code 
File not found 
Path not found 
Too many open files (no more handles available) 
Access denied · 
Invalid access code 

In some circumstances, however, even these error codes do not provide enough infor
mation. Therefore, beginning with version 3.0, MS-DOS made extended error information 
available through Interrupt 21H Function 59H (Get Extended Error Information). This 
function can be called after any other Interrupt 21H function fails, or it can be called from a 
critical error handler. The extended error codes, briefly described below, maintain com
patibility with the MS-DOS versions 2.x error returns and are grouped as follows: 

Error Code Error Group 

OOH No error encountered. 
01-12H MS-DOS versions 2.x and 3.x Interrupt 21H errors. These error codes are 

identical to those returned in the AX register by Functions 38H through 
57H if the carry flag is set on return from the function call. 

13-1FH MS-DOS versions 2.x and 3.x Interrupt 24H errors. These error codes are 
13H (19) greater than the codes passed to a critical error handler in the 
lower half of the DI register; that is, if the critical error handler receives 
error code 04H (CRC error), Interrupt 21H Function 59H returns 17H. 

20-58H Extended error codes, many related to networking and file sharing, for 
MS-DOS versions 3.0 and later. 

Section II: Programming in the MS-DOS Environment 401 

HUAWEI EX. 1010 - 411/1582



Part C: Customizing MS-DOS 

Note: The contents of the CPU registers (except CS:IP and SS:SP) are destroyed by a call 
to Function 59H. Also, as mentioned earlier, this function is available only with MS-DOS 
versions 3.x, even though it maintains compatibility with error returns in versions 2.x. 

On return, Function 59H provides the extended error code in the AX register, the error 
class (type) in the BH register, a code for the suggested corrective action in the BL register, 
and the locus of the error in the CH register. These values are defined in the following 
paragraphs. With MS-DOS or PC-DOS versions 3.x, if an error 22H (invalid disk change) 
occurs and if the capability is supported by the system's block-device drivers, ES:DI points 
to an ASCIIZ volume label that designates the disk to be inserted in the drive before the 
operation is retried. 

Error Code (AX register). This value is defined as follows: 

Value in AX Meaning 

Interrupt 21H errors (MS-DOS versions 2.0 and later): 
OlH Invalid function number 
02H File not found 
03H Path not found 
04H Too many open files (no handles available) 
05H Access denied 
06H Invalid handle 
07H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 
lOH 
llH 
12H 

Memory control blocks destroyed 
Insufficient memory 
Invalid memory-block address 
Invalid environment 
Invalid format 
Invalid access code 
Invalid data 
Reserved 
Invalid disk drive specified 
Attempt to remove the current directory 
Not same device 
No more files 

Interrupt 24H errors (MS-DOS versions 2.0 and later): 
13H Attempt to write on write-protected disk 
14H Unknown unit 
15H 
16H 
17H 
18H 
19H 

Drive not ready 
Invalid command 
Data error based on cyclic redundancy check (CRC) 
Length of request structure invalid 
Seek error 

402 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 412/1582



Article 12: Exception Handlers 

Value in AX Meaning 

Interrupt 24H errors (continued) 

lAH Unknown media type (non-MS-DOS disk) 
lBH Sector not found 
1 CH Printer out of paper 
lOH Write fault 
lEH Read fault 
lFH General failure 

MS-DOS versions 3.x extended errors: 
20H Sharing violation 
21H Lock violation 
22H Invalid disk change 
23H FCB unavailable 
24H Sharing buffer exceeded 
25H-31H Reserved 
32H Network request not supported 
33H Remote computer not listening 
34H Duplicate name on network 
35H Network name not found 
36H Network busy 
37H Device no longer exists on network 
38H Net BIOS command limit exceeded 
39H Error in network adapter hardware 
3AH Incorrect response from network 
3BH Unexpected network error 
3CH Incompatible remote adapter 
3DH Print queue full 
3EH Queue not full 
3FH Not enough room for print file 
40H Network name deleted 
41H Access denied 
42H Incorrect network device type 
43H Network name not found 
44H Network name limit exceeded 
45H Net BIOS session limit exceeded 
46H Temporary pause 
47H Network request not accepted 
48H Print or disk redirection paused 
49H -4FH Reserved 
50H File already exists 
51H Reserved 

(more) 

Section /1· Programming in the MS-DOS Environment 403 

I 
HUAWEI EX. 1010 - 413/1582



Part C: Customizing MS-DOS 

Value in AX Meaning 

MS-DOS versions 3.x extended errors (continued) 

52H Cannot make directory 
53H Failure on Interrupt 24H 
54H Out of structures 
55H Already assigned 
56H Invalid password 
57H Invalid parameter 
58H Network write fault 

Locus ( CH register). This value provides information on the location of the error: 

Value inCH 

OlH 
02H 
03H 
04H 
05H 

Meaning 

Location unknown 
Block device; generally caused by a disk error 
Network 
Serial device; generally caused by a timeout from a character device 
Memory; caused by an error in RAM 

Error Class (BH register). This value gives the general category of the error: 

ValueinBH 

OlH 
02H 

03H 
04H 

05H 

06H 

07H 

08H 
09H 

OAH 

Meaning 

Out of resource; out of storage space or 1/0 channels. 
Temporary situation; expected to clear, as in a file or record lock- gener

ally occurs only in a network environment. 
Authorization; a problem with permission to access the requested device. 
Internal error in system software; generally reflects a system software bug 

rather than an application or system failure. 
Hardware failure; a serious hardware-related problem not the fault of the 

user program. 
System failure; a serious failure of the system software, not directly the 

fault of the application-generally occurs if configuration files are 
missing or incorrect. 

Application-program error; generally caused by inconsistent function 
requests from the user program. 

File or item not found. 
File or item of invalid format or type detected, or an otherwise unsuitable 

or invalid item requested. 
File or item interlocked by the system. 

(more) 

404 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 414/1582



Article 12: Exception Handlers 

Value in BH Meaning 

OBH Media failure; generally occurs with a bad disk in a drive, a bad spot on the 
disk, or the like. 

OCH Aiready exists; generally occurs when application tries to declare a 
machine name or device that already exists. 

ODH Unknown. 

Suggested Action (BL register). One of the most useful returns from Function 59H, this 
value suggests a corrective action to try: 

Value in BL Meaning 

OlH 

02H 
03H 

04H 

05H 

06H 
07H 

Retry a few times before prompting the user to choose Ignore for the 
program to continue or Abort to terminate. 

Pause for a few seconds between retries and then prompt user as above. 
Ask user to reenter the input. In most cases, this solution applies when an 

incorrect drive specifier or filename was entered. Of course, if the value 
was hard-coded into the program, the user should not be prompted for 
input. 

Clean up as well as possible, then abort the application. This solution 
applies when the error is destructive enough that the application cannot 
safely proceed, but the system is healthy enough to try an orderly shut
down of the application. 

Exit from the application as soon as possible, without trying to close files 
and clean up. This means something is seriously wrong with either the 
application or the system. 

Ignore; error is informational. 
Prompt user to perform some action, such as changing floppy disks in a 

drive and then retry. 

Function 59H and older system calls 
The Interrupt 21H functions- primarily the FCB-related file and record calls- that return 
OFFH in the AL register to indicate that an error has occurred but provide no further infor
mation about the type of error include 

Function 

OFH 
lOH 
llH 
12H 

Name 

Open File with FCB 
Close File with FCB 
Find First File 
Find Next File 

(more) 

Section II: Programming in the MS-DOS Environment 405 

HUAWEI EX. 1010 - 415/1582



Part C: Customizing MS-DOS 

Function Name 

13H 
16H 
17H 
23H 

Delete File 
Create File with FCB 
Rename File 
Get File Size 

These function calls now exist only to maintain compatibility with MS-DOS versions l.x. 
The preferred choices are the handle-style calls available in MS-DOS versions 2.0 and later, 
which offer full path support and much better error reporting. See also SYSTEM CALLS. 

If the older calls must be used, the program can use Function 59H to obtain more detailed 
information under MS-DOS version 3.0 or later. For example: 

myfcb db 0 drive = default 
db 'MYFILE filename, 8 chars 
db 'DAT' extension, 3 chars 
db 25 dup (0) remainder of FCB 

mov dx,seg myfcb DS:DX FCB 
mov ds,dx 
mov dx,offset myfcb 
mov ah,Ofh function OFH =Open FCB 

int 21 h transfer to MS-DOS 
or al, al test status 
jz success jump, open succeeded 

open failed, get 
extended error info 

mov 
mov 
int 
or 
jz 

cmp 
jz 
cmp 
jz 
cmp 
jz 

bx,O 
ah,59h 
21h 
ax, ax 
success 

bl,01h 
retry 
bl,04h 
cleanup 
bl,OSh 
panic 

BX = OOH for ver. 2.x-3.x 
function 59H = Get Info 
transfer to MS-DOS 
really an error? 
no error, jump 

test recommended actions 

if BL 01H retry operation 

if BL 04H clean up and exit 

if BL OSH exit immediately 

Function 59H and newer system calls 

The function calls listed below were added in MS-DOS versions 2.0 and later. These calls 
return with the carry flag set if an error occurs; in addition, the AX register contains an 
error value corresponding to error codes OlH through 12H of the extended error return 
codes: 

406 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 416/1582



Article 12: Exception Handlers 

Function Name 

MS-DOS versions 2.0 and later: 
38H Get/Set Current Country 
39H Create Directory 
3AH Remove Directory 
3BH Change Current Directory 
3CH Create File with Handle 
3DH Open File with Handle 
3EH Close File 
3FH Read File or Device 
40H Write File or Device 
41H Delete File 
42H Move File Pointer 
43H Get/Set File Attributes 
44H IOCTL (I/O Control for Devices) 
45H Duplicate File Handle 
46H Force Duplicate File Handle 
47H Get Current Directory 
48H Allocate Memory Block 
49H Free Memory Block 
4AH Resize Memory Block 
4BH Load and Execute Program (EXEC) 
4EH Find First File 
4FH Find Next File 
56H Rename File 
57H Get/Set Date/Time of File 

MS-DOS versions 3.0 and later: 
58H Get/Set Allocation Strategy 
5AH Create Temporary File 
5BH Create New File 
5CH Lock/Unlock File Region 

MS-DOS versions 3.1 and later: 
5EH Network Machine Name/Printer Setup 
5FH Get/Make Assign List Entry 

Although these newer functions have much better error reporting than the older FCB 
functions, Function 59H is still useful. Regardless of the version of MS-DOS that is running, 
the error code returned in the AX register from an Interrupt 21H function call is always in 
the range 0-12H. If a program is running under MS-DOS versions 3.x and wants to obtain 
one or more of the more specific error codes in the range 20-58H, the program must 

Section /1- Programming in the MS-DOS Environment 407 

HUAWEI EX. 1010 - 417/1582



Part C: Customizing MS-DOS 

follow the failed Interrupt 21H call with a subsequent call to Interrupt 21H Function 59H. 
The program can then use the code returned by Function 59H in the BL register as a guide 
to the action to take in response to the error. For example: 

myfile db 

mov 
mov 

mov 

mov 

int 

jnc 

mov 

mov 

int 
or 

jz 

cmp 

jz 

'MYFILE.DAT',O ; ASCIIZ filename 

dx,seg myfile 

ds,dx 
dx,offset my file 
ax,3d02h 

21h 

success 

bx,O 
ah,59h 

21h 
ax, ax 
success 

bl,01h 

retry 

DS:DX = ASCIIZ filename 

open, read/write 
transfer to MS-DOS 

jump, open succeeded 

open failed, get 

extended error info 
BX = OOH for ver. 2.x-3.x 

function 59H = Get Info 

transfer to MS-DOS 

really an error? 
no error, jump 

test recommended actions 

if BL = 01H retry operation 

If the standard critical error handler is replaced with a customized critical handler, 
Function 59H can also be used to obtain more detailed information about an error inside 
the handler before either returning control to the application or aborting. The value in the 
BL register should be used to determine the appropriate action to take or the message to 
display to the user. 

408 The MS-DOS Encyclopedia 

jim Kyle 
Chip Rabinowitz 

HUAWEI EX. 1010 - 418/1582



Article 13: Hardware Interrupt Handlers 

Article13 
Hardware Interrupt Handlers 

Unlike software interrupts, which are service requests initiated by a program, hardware 
interrupts occur in response to electrical signals received from a peripheral device such as 
a serial port or a disk controller, or they are generated internally by the microprocessor 
itself. Hardware interrupts, whether external or internal to the microprocessor, are given 
prioritized servicing by the Intel CPU architecture. 

The 8086 family of microprocessors (which includes the 8088, 8086, 80186, 80286, 
and 80386) reserves the first 1024 bytes of memory (addresses OOOO:OOOOH through 
0000:03FFH) for a table of 256 interrupt vectors, each a 4-byte far pointer to a specific 
interrupt service routine (ISR) that is carried out when the corresponding interrupt is pro-

4 
cessed. The design of the 8086 family requires certain of these interrupt vectors to be used 
for specific functions (Table 13-1). Although Intel actually reserves the first 32 interrupts, 
IBM, in the original PC, redefined usage of Interrupts 05H to 1FH. Most, but not all, of 
these reserved vectors are used by software, rather than hardware, interrupts; the 
redefined IBM uses are listed in Table 13-2. 

Table 13-1. Intel Reserved Exception Interrupts. 

Interrupt 
Number 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 

Definition 

Divide by zero 
Single step 
Nonmaskable interrupt (NMI) 
Breakpoint trap 
Overflow trap 
BOUND range exceeded* 
Invalid opcode * 
Coprocessor not availablet 
Double-fault exception t 
Coprocessor segment overrun t 
Invalid task state segment (TSS)t 
Segment not presentt 
Stack exception t 
General protection exception t 
Page fault* 

(more) 

Section II: Programming in the MS-DOS Environment 409 

HUAWEI EX. 1010 - 419/1582



Part C: Customizing MS-DOS 

Table 13-1. Continued. 

Interrupt 
Number 

OFH 
lOH 

Definition 

(Reserved) 
Coprocessor errort 

• The 80186, 80286, and 80386 microprocessors only. · · 
tThe 80286 and 80386 microprocessors only. 
:!:The 80386 microprocessor only. 

Table 13-2. IBM Interrupt Usage. 

Interrupt 
Number Definition 

05H Print screen 
06H Unused 
07H Unused 
08H Hardware IRQO (timer~tick) * 
09H Hardware IRQl (keyboard) 
OAH Hardware IRQ2 (reserved) t 
OBH Hardware IRQ3 (COM2) 
OCH Hardware IRQ4 (COMl) 
ODH Hardware IRQ5 (fixed disk) 
OEH Hardware IRQ6 (floppy disk) 
OFH Hardware IRQ7 (printer) 
lOH Video service 
llH Equipment information 
12H Memory size 
13H Disk 1/0 service 
14H Serial-port service 
15H Cassette/ network service 
16H Keyboard service 
17H Printer service 
18H ROM BASIC 
19H Restart system 
lAH Get/Set time/ date 
lBH Control-Break (user defined) 
lCH Timer tick (user defined) 
lDH Video parameter pointer 
lEH Disk parameter pointer 
lFH Graphics character table 

• IRQ = Interrupt request line. 
t See Table 13-4. 

410 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 420/1582



Article 13: Hardware Interrupt Handlers 

Nestled in the middle of Table 13-2 are the eight hardware interrupt vectors (08-0FH) IBM 
· implemented in the original PC design. These eight vectors provide the maskable inter
rupts for the IBM PC-family and close compatibles. Additional IRQ lines built into the IBM 
PC/AT are discussed under The IRQ Levels below. 

The conflicting uses of the interrupts listed in Tables 13-1 and 13-2 have created com
patibility problems as the 8086 family of microprocessors has developed. For complete 
compatibility with IBM equipment, the IBM usage must be followed even when it conflicts 
with the chip design. For example, a BOUND error occurs if an array index exceeds the 
specified upper and lower limits (bounds) of the array, causing an Interrupt 05H to be 
generated. But the 80286 processor used in all AT-class computers will, if a BOUND error 
occurs, send the contents of the display to the printer, because IBM uses Interrupt 05H for 
the Print Screen function. 

Hardware Interrupt Categories 

The 8086 family of microprocessors can handle three types of hardware interrupts. First 
are the internal, microprocessor-generated exception interrupts (Table 13-1). Second is the 
nonmaskable interrupt, or NMI (Interrupt 02H), which is generated when the NMI line 
(pin: 17 on the 8088 and 8086, pin 59 on the 80286, pin B8 on the 80386) goes high (active). 
In the IBM PC family (except the PCjr and the Convertible), the nonmaskable interrupt is 
designated for memory parity errors. Third are the maskable interrupts, which are usually 
generated by external devices. 

Maskable interrupts are routed to the main processor through a chip called the 8259A 
Programmable Interrupt Controller (PIC). When it receives an interrupt request, the PIC 
signals the microprocessor that an interrupt needs service by driving the interrupt request 
(INTR) line of the main processor to high voltage level. This article focuses on the mask
able interrupts and the 8259A because it is through the PIC that external 1/0 devices (disk 
drives, serial communication ports, and so forth) gain access to the interrupt system. 

Interrupt priorities in the 8086 family 

The Intel microprocessors have a built-in priority system for handling interrupts that 
occur simultaneously. Priority goes to the internal instruction exception interrupts, such as 
Divide by Zero and Invalid Opcode, because priority is determined by the interrupt num
ber: Interrupt OOH takes priority over all others, whereas the last possible interrupt, OFFH, 
would, if present, never be allowed to break in while another interrupt was being serviced. 
However, if interrupt service is enabled (the microprocessor's interrupt flag is set), any 
hardware interrupt takes priority over any software interrupt (INT instruction). 

The priority sequencing by interrupt number must not be confused with the priority 
resolution performed by hardware external to the microprocessor. The numeric priority 
discussed here applies only to interrupts generated within the 8086 family of microproces
sor chips and is totally independent of system interrupt priorities established for compo
nents external to the microprocessor itself. 

Section II: Programming in the MS-DOS Environment 411 

HUAWEI EX. 1010 - 421/1582



Part C: Customizing MS-DOS 

Interrupt service routines 

For the most part, programmers need not write hardware-specific program routines to 
service the hardware interrupts. The IBM PC BIOS routines, together with MS-DOS ser
vices, are usually sufficient. In some cases, however, MS-DOS and the ROM BIOS do not 
provide enough assistance to ensure adequate performance of a program. Most notable in 
this category is communications software, for which programmers usually must access the 
8259A and the 8250 Universal Asynchronous Receiver and Transmitter (UART) directly.· 
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: 
Interrupt -Driven Communications. 

Characteristics of Maskable Interrupts 

Two major characteristics distinguish maskable interrupts from all other events that can 
occur in the system: They are totally unpredictable, and they are highly volatile. In gener
al, a hardware interrupt occurs when a peripheral device requires the full attention of the 
system and data will be irretrievably lost unless the system responds rapidly. 

All things are relative, however, and this is especially true of the speed required to service 
an interrupt request. For example, assume that two interrupt requests occur at essentially 
the same time. One is from a serial communications port receiving data at 300 bps; the 
other is from a serial port receiving data at 9600 bps. Data from the first serial port will not 
change for at least 30 milliseconds, but the second serial port must be serviced within one 
millisecond to avoid data loss. 

Unpredictability 

Because maskable interrupts generally originate in response to external physical events, 
such as the receipt of a byte of data over a communications line, the exact time at which 
such an interrupt will occur cannot be predicted. Even the timer interrupt request, which 
by default occurs approximately 18.2 times per second, cannot be predicted by any pro
gram that happens to be executing when the interrupt request occurs. 

Because of this unpredictability, the system must, if it allows any interrupts to be recog
nized, be prepared to service all maskable interrupt requests. Conversely, if interrupts can
not be serviced, they must all be disabled. The 8086 family of microprocessors provides 
the Set Interrupt Flag (STI) instruction to enable maskable interrupt response and the 
Clear Interrupt Flag (CLI) instruction to disable it. The interrupt flag is also cleared auto
matically when a hardware interrupt response begins; the interrupt handler should ex
ecute STI as quickly as possible to allow higher priority interrupts to be serviced. 

Volatility 

As noted earlier, a maskable interrupt request must normally be serviced immediately to 
prevent loss of data, but the concept of immediacy is relative to the data transfer rate of the 
device requesting the interrupt. The rule is that the ~urrently available unit of data must be 
processed (at least to the point of being stored in a buffer) before the next such item can 

412 TheMS-DOSEncyclopedia 

HUAWEI EX. 1010 - 422/1582



Article 13: Hardware Interrupt Handlers 

arrive. Except for such devices as disk drives, which always require immediate response, 
interrupts for devices that receive data are normally much more critical than interrupts 
for devices that transmit data. 

The problems imposed by data volatility during hardware interrupt service are solved by 
establishing service priorities for interrupts generated outside the microprocessor chip it
self. Devices with the slowest transfer rates are assigned lower interrupt service priorities, 
and the most time-critical devices are assigned the highest priority of interrupt service. 

Handling Maskable Interrupts 

The microprocessor handles all interrupts (maskable, nonmaskable, and software) by 
pushing the contents of the flags register onto the stack, disabling the interrupt flag, and 
pushing the current contents of the CS:IP registers onto the stack. 

The microprocessor then takes the interrupt number from the data bus, multiplies it by 4 4 
(the size of each vector in bytes), and uses the result as an offset into the interrupt vector 
table located in the bottom 1 KB (segment OOOOH) of system RAM. The 4-byte address 
at that location is then used as the new CS:IP value (Figure 13-1). 

Push flags 

PushCS:IP 

Get address of ISR 
from table; 

place in CS:IP 

Process interrupt 

IRET 

Restore CS:IP, flags 

Figure 13-1. General interrupt sequence. 

Section 11- Programming in the MS-DOS Environment 413 

HUAWEI EX. 1010 - 423/1582



Part C: Customizing MS-DOS 

External devices are assigned dedicated interrupt request lines (IRQs) associated with the 
8259A. See The IRQ Levels below. When a device requires attention, it sends a signal to 
the PIC via its IRQ line. The PIC, which functions as an "executive secretary" for the exter
nal devices, operates as shown in Figure 13-2. It evaluates the service request and, if appro
priate, causes the microprocessor's INTR line to go high. The microprocessor then checks 
whether interrupts are enabled (whether the interrupt flag is set). If they are, the flags are 
pushed onto the stack, the interrupt flag is disabled, and CS:IP is pushed onto the stack. 

DEVICE 

Signals request 

8259A 

Place INT num
ber on data bus 

MICROPROCESSOR 

~ 
I Acknowledge I 

<( INTA INT 

Figure 13-2. Maskable interrupt service. 

414 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 424/1582



Article 13: Hardware Interrupt Handlers 

The microprocessor acknowledges the interrupt request by signaling the 8259A via the 
interrupt acknowledge (INTA) line. The 8259A then places the interrupt number on the 
data bus. The microprocessor gets the interrupt number from the data bus and services 
the interrupt. Before issuing the IRET instruction, the interrupt service routine must issue 
an end-of-interrupt. (EO I) sequence to the 8259A so that other interrupts can be processed. 
This is done by sending 20H to port 20H. (The similarity of numbers is pure coincidence.) 
The EOI sequence is covered in greater detail elsewhere. See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Interrupt-Driven Communications. 

The 8259A Programmable Interrupt Controller 

The 8259A (Figure 13-3) has a number of internal components, many of them under soft
ware control. Only the default settings for the IBM PC family are covered here. 

Three registers influence the servicing of maskable interrupts: the interrupt request regis
ter (IRR), the in-service register (ISR), and the interrupt mask register (IMR). 

The IRR is used to keep track of the devices requesting attention. When a device causes 
its IRQ line to go high to signal the 8259A that it needs service, a bit is set in the IRR that 
corresponds to the interrupt level of the device. 

The ISR specifies which interrupt levels are currently being serviced; an ISR bit is set when 
an interrupt has been acknowledged by the CPU (via INTA) and the interrupt number has 
been placed on the data bus. The ISR bit associated with a particular IRQ remains set until 
an EOI sequence is received. 

The IMR is a read/write register (at port 21H) that masks (disables) specific interrupts. 
When a bit is set in this register, the corresponding IRQ line is masked and no servicing for 
it is performed until the bit is cleared. Thus, a particular IRQ can be disabled while all 
others continue to be serviced. 

The fourth major block in Figure 13-3, labeled Priority resolver, is a complex logical circuit 
that forms the heart of the 8259A. This component combines the statuses of the IMR, the 
ISR, and the IRR to determine which, if any, pending interrupt request should be serviced 
and then causes the microprocessor's INTR line to go high. The priority resolver can be 
programmed in a number of modes, although only the mode used in the IBM PC and close 
compatibles is described here. 

Section ll- Programming in the MS-DOS Environment 415 

HUAWEI EX. 1010 - 425/1582



Part C: Customizing MS-DOS 

DATA BUS 

CONTROL BUS 

lNTA 

Control logic 

INTERNAL BUS 

In-service ~ 
register (ISR) 

Priority resolver 

Interrupt mask register 
(IMR) 

lNT 

2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~IRQO 

+--+-IRQl 
I 

+--:TIRQ2 
Interrupt request ~ IRQ3 

I 
register (IRR) ~ IRQ4 

~IRQ5 
I IRQ6 ~ 

~IRQ? 

Figure 13-3. Block diagram of the 8259A Programmable Interrupt Controller. 

The IRQ levels 

When two or more unserviced hardware interrupts are pending, the 8259A determines 
which should be serviced first. The standard mode of operation for the PIC is the fully 
nested mode, in which IRQ lines are prioritized in a fixed sequence. Only IRQ lines with 
higher priority than the one currently being serviced are permitted to generate new 
interrupts. 

416 The MS-DOS Encyclopedia 

IRQ 
lines 

HUAWEI EX. 1010 - 426/1582



i) 

1
··-·---.. ---
t 
I 
l 

'':": 

Article 13: Hardware Interrupt Handlers 

The highest priority is IRQO, and the lowest is IRQ7. Thus, if an Interrupt 09H (signaled 
by IRQ1) is being serviced, only an Interrupt 08H (signaled by IRQO) can break in. All 
other interrupt requests are delayed until the Interrupt 09H service routine is completed 
and has issued an EOI sequence. 

Eight-level designs 

The IBM PC, PCjr, and PC/XT (and port-compatible computers) have eight IRQ lines to 
the PIC chip-IRQO through IRQ7. These lines are-mapped into interrupt vectors for 
Interrupts 08H through OFH (that is, 8 + IRQ level). These eight IRQ lines and their associ
ated interrupts are listed in Table 13-3. 

Table 13-3. Eight-Level Interrupt Map. 

ffiQLine Interrupt Description 

IRQO 08H Timer tick, 18.2 times per second 
IRQ1 09H Keyboard service required 
IRQ2 OAH 1/0 channel (unused on IBM PC/XT) 
IRQ3 OBH COM1 service required 
IRQ4 OCH COM2 service required 
IRQ5 ODH Fixed-disk service required 
IRQ6 OEH Floppy-disk s~rvice required 
IRQ7 OFH Data request from parallel printer* 

• This request cannot be reliably generated by older versions of the IBM Monochrome/Printer Adapter and 
compatibles. Printer drivers that depend on this signal foFoperation with these cards are subject to failure. 

Sixteen-level designs 

In the IBM PC/AT, 8 more IRQ levels have been added by using a second 8259A PIC (the 
"slave") and a cascade effect, which gives 16 priority levels. 

The cascade effect is accomplished by connecting the INT line of the slave to the IRQ2 line 
of the first, or "master," 8259A instead of to the microprocessor. When a device connected 
to one of the slave's IRQ lines makes an interrupt request, the INT line of the slave goes 
high and causes the IRQ2 line of the master 8259A to go high, which, in turn, causes the 
INT line of the master to go high and thus interrupts the microprocessor. 

The microprocessor, ignorant of the second 8259A's presence, simply generates an inter
rupt acknowledge signal on receipt of the interrupt from the master 8259A. This signal ini
tializes both 8259As and also causes the master to turn control over to the slave. The slave 
then completes the interrupt request. 

On the IBM PC/AT, the eight additional IRQ lines are mapped to Interrupts 70H through 
77H (Table 13-4). Because the eight additional lines are effectively connected to the master 

Section 11· Programming in the MS-DOS Environment 417 

HUAWEI EX. 1010 - 427/1582



Part C: Customizing MS-DOS 

8259A's IRQ2line, they take priority over the master's IRQ3 through IRQ7 events. The 
cascade effect is graphically represented in Figure 13-4. 

Table 13-4. Sixteen-Level Interrupt Map. 

mQllne Interrupt Description 

IRQO 08H Timer tick, 18.2 times per second 
IRQ1 09H Keyboard service required 
IRQ2 OAH INT from slave 8259A: 
IRQ8 70H Real-time clock service 
IRQ9 71H Software redirected to IRQ2 
IRQ10 72H Reserved 
IRQ11 73H Reserved 
IRQ12 74H Reserved 
IRQ13 75H Numeric coprocessor 
IRQ14 76H Fixed-disk controller 
IRQ15 77H Reserved 
IRQ3 OBH COM2 service required 
IRQ4 OCH COMl service required 
IRQ5 ODH Data request from LPT2 
IRQ6 OEH Floppy-disk service required 
IRQ7 OFH Data request from LPT1 

DATA BUS 

CONTROL BUS 

INT 

Slave 8259A Master 8259A 

IRQ2 

Figure 13-4. A graphic representation of the cascade effect for IRQ priorities. 

418 TheMS-DOSEncyclopedia 

HUAWEI EX. 1010 - 428/1582



Article 13: Hardware Interrupt Handlers 

Note: During the INTA sequence, the corresponding bit in the ISR register of both 8259As 
is set, so two EO Is must be issued to complete the interrupt service- one for the slave and 
one for the master. 

Programming for the Hardware Interrupts 

Any program that modifies an interrupt vector must restore the vector to its original condi
tion before returning control to MS-DOS (or to its parent process). Any program that totally 
replaces an existing hardware interrupt handler with one of its own must perform all the 
handshaking and terminating actions of the original- re-enable interrupt service, signal 
EOI to the interrupt controller, and so forth. Failure to follow these rules has led to many 
hours of programmer frustration. See also PROGRAMMING IN THE MS-DOS ENVIRON
MENT: CusTOMIZING MS-Dos: Exception Handlers. 

When an existing interrupt handler is completely replaced with a new, customized rou- 4 
tine, the existing vector must be saved so it can be restored later. Although it is possible to 
modify the 4-byte vector by directly addressing the vector table in low RAM (and many 
published programs have followed this practice), any program that does so runs the risk 
of causing system failure when the program is used with multitasking or multiuser en
hancements or with future versions of MS-DOS. The only technique that can be recom-
mended for either obtaining the existing vector values or changing them is to use the 
MS-DOS functions provided for this purpose: Interrupt 21H Functions 25H (Set Interrupt 
Vector) and 35H (Get Interrupt Vector). 

After the existing vector has been saved, it can be replaced with a far pointer to the 
replacement routine. The new routine must end with an IRET instruction. It should also 
take care to preserve all microprocessor registers and conditions at entry and restore 
them before returning. 

A sample replacement handler 
Suppose a program performs many mathematical calculations of random values. To 
prevent abnormal termination of the program by the default MS-DOS Interrupt OOH han
dler when a DIV or IDIV instruction is attempted and the divisor is zero, a programmer 
might want to replace the Interrupt OOH (Divide by Zero) routine with one that informs the 
user of what has happened and then continues operation without abnormal termination. 
The .COM program DIVZERO.ASM (Figure 13-5) does just that. (Another example is in
cluded in the article on interrupt-driven communications. See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: Interrupt-Driven Communications.) 

Section II: Programming in the MS-DOS Environment 419 

HUAWEI EX. 1010 - 429/1582



Part C: Customizing MS-DOS 

name 
title 

divzero 

'DIVZERO - Interrupt OOH Handler' 

DIVZERO.ASM: Demonstration Interrupt OOH Handler 

To assemble, link, and convert to COM file: 

cr 
lf 

eos 

_TEXT 

entry: 

intmsg 

divmsg 

par1 

par2 

par3 

par4 

oldintO 

intflag 

oldip 

C>MASM DIVZERO; <Enter> 

C>LINK DIVZERO; <Enter> 
C>EXE2BIN DIVZERO.EXE DIVZERO.COM. <Enter> 

C>DEL DIVZERO.EXE <Enter> 

equ Odh ASCII carriage return 
equ Oah ASCII line feed 
equ '$' end of string marker 

segment word public 'CODE' 

assume cs:_TEXT,ds:-TEXT,es:-TEXT,ss:-TEXT 

org 100h 

jmp start ; skip over data area 

db 'Divide by Zero Occurred! ',cr,lf,eos 

db 'Dividing ' message used by demo 
db 'OOOOh' dividend goes here 
db ' by ' 
db '00h' divisor goes here 
db ' equals ' 
db '00h' quotient here 

db ' remainder ' 
db 'OOh' and remainder here 
db cr,lf,eos 

dd ? save old Int OOH vector 

db 0 nonzero if divide by 

zero interrupt occurred 

dw 0 save old IP value 

The routine 'intO' is the actual divide by zero 

interrupt handler. It gains control whenever a 

divide by zero or overflow occurs. Its action 

is to set a flag and then increment the instruction 

pointer saved on the stack so that the failing 

(more) 

Figure 13-5. The Divide by Zero replacement handler, DIVZERO.ASM. This code is specific to 80286 and 
80386 microprocessors. (See Appendix M· 8086/8088 Software Compatibility Issues.) 

420 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 430/1582



~ .. 

Article 13: Hardware Interrupt Handlers 

divide will not be reexecuted after the IRET. 

In this particular case we can call MS-DOS to 
display a message during interrupt handling 

because the application triggers the interrupt 

intentionally. Thus, it is known that MS-DOS or 

other interrupt handlers are not in control 

at the point of interrupt. 

intO: pop cs:oldip capture instruction pointer 

push ax 
push bx 

push ex 
push dx 

push di 

push si 
push ds 
push es 

push cs set DS cs 
pop ds 

mov ah,09h ; print error message 

mov dx,offset _TEXT:intmsg 

int 21h 

add oldip,2 bypass instruction causing 

divide by zero error 

mov intflag, 1 set divide by 0 flag 

pop es restore all registers 

pop ds 
pop si 
pop di 
pop dx 
pop ex 
pop bx 

pop ax 

push cs:oldip restore instruction pointer 

iret return from interrupt 

The code beginning at 'start' is the application 

program. It alters the vector for Interrupt OOH to 

point to the new handler, carries out some divide 

Figure 13-5. Continued. 

Section II: Programming in the MS-DOS Environment 

(more) 

421 

HUAWEI EX. 1010 - 431/1582



Part C: Customizing MS-DOS 

operations (including one that will trigger an 

interrupt) for demonstration purposes, restores 
the original contents of the Interrupt OOH vector, 

and then terminates. 

start: mov 
int 

ax,3500h 

21h 

get current contents 

of Int OOH vector 

save segment:offset 
of previous Int OOH handler 

mov word ptr oldintO,bx 
mov word ptr oldint0+2,es 

mov 

mov 

int 

mov 
mov 

call 

mov 

mov 

call 

mov 

mov 

call 

mov 

mov 

call 

lds 

mov 

int 

mov 

int 

dx,offset intO 

ax,2500h 

21h 

ax,20h 

bx, 1 
divide 

ax,1234h 

bx,Seh 
divide 

ax,5678h 

bx,7fh 

divide 

ax, 20h 

bx,O 

divide 

dx,oldintO 

ax,2500h 

21h 

ax,4c00h 

21h 

install new handler ... 

DS:DX = handler address 

call MS-DOS to set 

Int OOH vector 

now our handler is active, 

carry out some test divides. 

test divide 

divide by 1 

test divide 

divide by SEH 

test divide 
divide by 127 

test divide 
divide by 0 
(triggers interrupt) 

demonstration complete, 

restore old handler 

DS:DX = handler address 

call MS-DOS to set 

Int OOH vector 

final exit to MS-DOS 

with return code = 0 

The routine 'divide' carries out a trial division, 

displaying the arguments and the results. It is 

Figure 13-5. Continued. 

422 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 432/1582



Article 13: Hardware Interrupt Handlers 

called with AX dividend and BL divisor. 

divide proc 

push 

push 

mov 

call 

mov 

mov 

call 

pop 

near 

ax 

bx 

di,offset par1 

wtoa 

ax,bx 
di,offset par2 

btoa 

bx 

pop ax 

div 

cmp 
jne 

push 

mov 

call 

pop 

xchg 
mov 

call 

mov 

bl 

intflag, 0 
nodiv 

ax 
di,offset par3 

btoa 

ax 

ah,al 

di,offset par4 

btoa 

ah,09h 

mov dx,offset divmsg 

int 21h 

nodiv: mov 
ret 

divide endp 

wtoa proc 

push 

mov 

call 

add 

intflag, 0 

near 

ax 

al,ah 

btoa 

di,2 

save arguments 

convert dividend to 

ASCII for display 

convert divisor to 

ASCII for display 

restore arguments 

perform the division 

divide by zero detected? 

yes, skip display 

no, convert quotient to 

ASCII for display 

convert remainder to 

ASCII for display 

show arguments, results 

clear divide by a· flag 

and return to caller 

convert word to hex ASCII 

call with AX = binary value 

DI = addr for string 

returns AX, CX, DI destroyed 

save original value 

convert upper byte 

increment output address 

Figure 13-5. Continued. (more) 

Section II: Programming in the MS-DOS Environment 423 

HUAWEI EX. 1010 - 433/1582



Part C: Customizing MS-DOS 

pop ax 

call 

ret 

wtoa endp 

btoa proc 

rnov 

rnov 

shr 

call 

rnov 

rnov 

and 

call 

rnov 

ret 

btoa endp 

ascii proc 

add 

crnp 

jle 

add 

ascii2: ret 

ascii endp 

_TEXT ends 

end 

btoa 

near 

ah,al 

cx,4 

al,cl 

ascii 

[di],al 

al,ah 

al,Ofh 

ascii 
[di+1],al 

near 

al, I 0 I 

al, '9' 
ascii2 

al, 'A'-'9'-1 

entry 

Figure 13-5. Continued. 

Supplementary handlers 

convert lower byte 

return to caller 

convert byte to hex ASCII 

call with AL binary value 

DI addr to store 

returns AX, ex destroyed 

save lower nibble 

shift right 4 positions 

to get upper nibble 

convert 4 bits to ASCII 

store in output string 

get back lower nibble 

blank out upper one 

convert 4 bits to ASCII 

store in output string 

back to caller 

convert AL bits 0-3 to 

ASCII {0 ... 9,A ... F) 

and return digit in AL 

"fudge factor" for A-F 

return to caller 

string 

In many cases, a custom interrupt handler augments, rather than replaces, the existing 
routine. The added routine might process some data before passing the data to the exist
ing routine, or it might do the processing afterward. These cases require slightly different 
coding for the handler. 

If the added routine is to process data before the existing handler does, the routine need 
only jump to the original handler after completing its processing. This jump can be done 

424 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 434/1582



Article 13: Hardware Interrupt Handlers 

indirectly, with the same pointer used to save the original content of the vector for restor
ation at exit. For example, a replacement Interrupt 08H handler that merely increments an 
internal flag at each timer tick can look something like the following: 

myflag dw 

oldintB dd 

myintB: 

mov 

int 

mov 
mov 

mov 

mov 

mov 
mov 

int 

inc 

jmp 

? 

? 

ax,3508h 

21h 
word ptr oldintB,bx 

word ptr oldint8+2,es 
dx,seg myintB 

ds,dx 

dx,offset myintB 

ax,2508h 

21h 

cs:myflag 

dword ptr cs: [oldint8] 

variable to be incremented 

on each timer-tick interrupt 

contains address of previous 
timer-tick interrupt handler 

get the previous contents 
of the Interrupt OBH vector ... 

AH = 35H {Get Interrupt Vector) 

AL = Interrupt number {08H) 

save the address of 
the previous Int OBH Handler 

put address of the new 
interrupt handler into DS:DX 

and call MS-DOS to set vector 

AH 25H {Set Interrupt Vector) 

AL = Interrupt number {08H) 

this is the new handler 
for Interrupt OBH 

increment variable on each 
timer-tick interrupt 

then chain to the 

previous interrupt handler 

The added handler must preserve all registers and machine conditions, except those 
machine conditions it will modify, such as the value of myflag in the example (and the 
flags register, which is saved by the interrupt action), and it must restore those registers 
and conditions before performing the jump to the original handler. 

A more complex situation arises when a replacement handler does some processing after 
the original routine executes, especially if the replacement handler is not reentrant. To 
allow for this processing, the replacement handler must prevent nested interrupts, so that 
even if the old handler (which is chained to the replacement handler by a CALL instruc
tion) issues an EOI, the replacement handler will not be interrupted during postprocess
ing. For example, instead of using the preceding Interrupt 08H example routine, the 
programmer could use the following code to implement myflag as a semaphore and 
use the XCHG instruction to test it: 

Section II: Programming in the MS-DOS Environment 425 

HUAWEI EX. 1010 - 435/1582



Part C: Customizing MS-DOS 

myint8: 

mov 

xchg 

push 

pushf 

call 

pop 

or 

jnz 

mov 

myint8x: 

iret 

ax,1 
cs:myflag,ax 

ax 

dword ptr cs:oldint8 

ax 
ax, ax 

myint8x 

cs:myflag,O 

this is the new handler 

for Interrupt 08H 

test and set interrupt

handling-in-progress semaphore 

save the semaphore 

simulate interrupt, allowing 

; ·'the previous handler for the 

Interrupt 08H vector to run 

get the semaphore back 

is our interrupt handler 

already running? 

yes, skip this one 

now perform our interrupt 

processing here ... 

clear the interrupt-handling

in-progress flag 

; return from interrupt 

Note that an interrupt handler of this type must simulate the original call to the interrupt 
routine by first doing a PUSHF, followed by a far CALL via the saved pointer to execute the 
original handler routine. The flags register pushed onto the stack is restored by the IRET 
of the original handler. Upon return from the original code, the new routine can preserve 
the machine state and do its own processing, finally returning to the caller by means 
of its own IRET. 

The flags inside the new routine need not be preserved, as they are automatically restored 
by the IRET instruction. Because of the nature of interrupt servicing, the service routine 
should not depend on any information in the flags register, nor can it return any informa
tion in the flags register. Note also that the previous handler (invoked by the indirect 
CALL) will almost certainly have dismissed the interrupt by sending an EOI to the 8259A 
PIC. Thus, the machine state is not the same as in the first myint8 example. 

To remove the new vector and restore the original, the program simply replaces the new 
vector (in the vector table) with the saved copy. If the substituted routine is part of an 
application program, the original vector must be restored for every possible method of 
exiting from the program (including Control-Break, Control-C, and critical-error Abort 
exits). Failure to observe this requirement invariably results in system failure. Even though 
the system failure might be delayed for some timl after the exit from the offending pro
gram, when some subsequent program overlays the interrupt handler code the crash 
will be imminent. 

426 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 436/1582



Article 13: Hardware Interrupt Handlers 

Summary 
Hardware interrupt handler routines, although not strictly a part of MS-DOS, form an 
integral part of many MS-DOS programs and are tightly constrained by MS-DOS require
ments. Routines of this type play important roles in the functioning of the IBM personal 
computers, and, with proper design and programming, significantly enhance product 
reliability and performance. In some instances, no other practical method exists for 
meeting performance requirements. 

jim Kyle 
Chip Rabinowitz 

Section JL- Programming in the MS-DOS Environment 427 

HUAWEI EX. 1010 - 437/1582



HUAWEI EX. 1010 - 438/1582



Article 14: Writing MS-DOS Filters 

Article14 
Writing MS-DOS Filters 

A filter is, essentially, a program that operates on a stream of characters. The source and 
destination of the character stream can be files, another program, or almost any character 
device. The transformation applied by the filter to the character stream can range from an 
operation as simple as substituting a character set to an operation as elaborate as gener
ating splines from sets of coordinates. 

The standard MS-DOS package includes three simple filters: SORT, which alphabetically 
sorts text on a line-by-line basis; FIND, which searches a text stream to match a specified 
string; and MORE, which displays text one screenful at a time. This article describes how 
filters work and how new ones can be constructed. See also USER COMM.i\.NDS: FIND; 
MORE; SORT. 

System Support for Filters 

The operation of a filter program relies on two features that appeared in MS-DOS version 
2.0: standard devices and redirectable 1/0. 

The standard devices are represented by five handles that are originally established when 
the system is initialized. Each process inherits these handles from its immediate parent. 
Thus, the standard device handles are already opened when a process acquires control of 
the system,· and the process can use the handles with Interrupt 21H Functions 3FH and 
40H for read and write operations without further preliminaries. The default assignments 
of the standard device handles are 

Handle Name Default Device 

0 stdin (standard input) CON 
1 stdout (standard output) CON 
2 stderr (standard error) CON 
3 stdaux (standard auxiliary) AUX 
4 stdlst (standard list) PRN 

The CON device is assigned by default to the system's keyboard and video display. AUX 
is assigned by default to COMl (the first physical serial port), and PRN is assigned by 
default to LPTl (the first physical parallel printer port); in some systems these assign
ments can be altered with the MODE command. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PRoGRAMMING FOR Ms-Dos: Character Device Input and Output; USER 
COMMANDS: MODE; CTTY. 

Section II: Programming in the MS-DOS Environment 429 

HUAWEI EX. 1010 - 439/1582



Part C: Customizing MS-DOS 

When a program is executed by entering its name at the system (COMMAND. COM) 
prompt, the user can redirect either or both of the standard input and standard output han
dles from their default device (CON) to another file, a character device, or a process. This 
redirection is accomplished by including one of the special characters<,>,>>, or: in the 
command line, in the following form: 

Redirection 

<file 

I 
<device 

>device 

>file 

»file 

p1:p2 

Result 

Contents of the specified file are used instead of the keyboard as the pro
gram's standard input. 

Program takes its standard input from the named device instead of from 
the keyboard. 

Program sends its standard output to the named device instead of to the 
video display. 

Program sends its standard output to the specified file instead of to the 
video display. 

Program appends its standard output to the current contents of the speci
fied file instead of to the video display. 

Standard output of program pl is routed to become the standard input of 
program p2 (output of pl is said to be piped to p2). 

For example, the command 

C>SORT < MYFILE.TXT > PRN <Enter> 

causes the SORT filter to read its input from the file MYFILE.TXT, sort the lines alpha
betically, and write resulting text to the character device PRN (the logical name for the 
system's list device). 

The redirection requested by the <, >, > >, or : characters takes place at the level of 
COMMAND. COM and is invisible to the program it affects. Such redirection can also be 
put into effect by another process. See Using a Filter as a Child Process below. 

Note that if a program "goes around" MS-DOS to perform its input and output, either by 
calling ROM BIOS functions or by manipulating the keyboard or video controller directly, 
redirection commands placed in the program's command line do not have the expected 
effect. 

How Filters Work 

By convention, a filter program reads its text from standard input arid writes the results of 
its operations to standard output. When the end of the input stream is reached, the filter 
simply terminates, optionally writing an end-of-file mark (lAH) to the output stream. As a 
result, filters are both flexible and simple. · 

Filter programs are flexible because they do not know, and do not care, about the source 
of the data they process or the destination of their output. Any redirection that the user 

430 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 440/1582



Article 14: Writing MS-DOS Filters 

specifies in the command line is invisible to the filter. Thus, any character device that has 
a logical name within the system (CON, AUX, COM1, COM2, PRN, LPT1, LPT2, LPT3, and 
so on), any file on any block device (local or network) known to the system, or any other 
program can supply a filter's input or accept its output. If necessary, several functionally 
simple filters can be concatenated with pipes to perform very complex operations. 

Although flexible, filters are also simple because they rely on their parent process to 
supply standard input and standard output handles that have already been appropriately 
redirected. The parent is responsible for opening or creating any necessary files, checking 
the validity of logical character device names, and loading and executing the preceding or 
following process in a pipe. The filter need only concern itself with the transformation it 
will apply to the data; it can leave the 1/0 details to the operating system and to its parent. 

Building a Filter . 

Creating a new filter for MS-DOS is a straightforward process. In its simplest form, a filter 4 
need only use the handle-oriented read (Interrupt 21H Function 3FH) and write (Interrupt 
21H Function 40H) functions to get characters or lines from standard input and send them 
to standard output, performing any desired alterations on the text stream on a character
by-character or line-by-line basis. 

Figures 14-1 through 14-4 contain template character-oriented and line-oriented filters 
in both assembly language and C. The C version of the character filter runs much faster 
than the assembly-language version, because the C run-time library provides hidden 
blocking and deblocking (buffering) of character reads and writes; the assembly-language 
program actually makes two calls to MS-DOS for each character processed. (Of course, if 
buffering is added to the assembly-language version it will be both faster and smaller than 
the C filter.) The C and assembly-language versions of the line-oriented filter run at 
roughly the same speed. 

name protoc 

title 'PROTOC.ASM --- template character filter' 

PROTOC.ASM: a template for a character-oriented filter. 

Ray Duncan, June 1987 

stdin equ 0 .standard input 

stdout equ 1 standard output 

stderr equ 2 standard error 

cr equ Odh ASCII carriage return 

lf equ Oah ASCII line feed 

Figure 14-1. Assembly-language template for a character-oriented filter (file PROTOC. ASM). (more) 

Section II: Programming in the MS-DOS Environment 431 

HUAWEI EX. 1010 - 441/1582



Part C: Customizing MS-DOS 

DGROUP group _DATA, STACK 'automatic data group' 

_TEXT segment byte public 'CODE' 

main 

main1: 

assume cs:_TEXT,ds:DGROUP,ss:STACK 

proc far entry point from MS-DOS 

mov ax,DGROUP set DS - our data segment 
rnov ds, ax 

mov 
mov 
mov 
mov 
int 
jc 
cmp 
jne 

call 

; read a character from standard input 
dx,offset DGROUP:char ; address to place character 
ex, 1 length to read = 1 
bx, stdin handle for standard input 
ah,3fh function 3FH =read from file or device 
21 h transfer to MS-DOS 
main3 
ax, 1 
main2 

translt 

error, terminate 
any character read? 
end of file, terminate program 

translate character if necessary 

now write character to standard output 
mov dx,offset DGROUP:char ; address of character 
mov ex, 1 length to write = 1 
mov bx,stdout handle for standard output 
mov ah,40h function 40H =write to file or device 
int 21 h transfer to MS-DOS 
jc 
cmp 
jne 
jmp 

main3 
ax, 1 

main3 
main1 

error, terminate 
was character written? 
disk full, terminate program 
go process another character 

main2: mov 
int 

ax,4c00h 
21h 

end of file reached, terminate 
program with return code = 0 

main3: mov 
int 

main endp 

ax,4c01h 
21h 

error or disk full, terminate 
program with return code = 1 

end of main procedure 

Perform any necessary translation on character from input, 
stored in 'char'. Template action: leave character unchanged. 

translt proc near 

ret template action: do nothing 

translt endp 

Figure 14-1. Continued. 

432 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 442/1582



I 

.I 
r 
l 

Article 14: Writing MS-DOS Filters 

_TEXT ends 

_DATA segment word public 'DATA' 

char db 0 ; temporary storage for input character 

_DATA ends 

STACK segment para stack 'STACK' 

dw 64 dup (?) 

STACK ends 

end main defines program entry point 

Figure 14-1. Continued. 

I* 
PROTOC.C: a template for a character-oriented filter. 

Ray Duncan, June 1987 

*I 

#include <stdio.h> 

main(argc,argv) 

int argc; 
char *argv []; 

char ch; 

while I* read a character *I (ch=getchar()) !=EOF 

ch=translate(ch); 

putchar (ch); 
I* translate it if necessary 

I* write the character *I 

exit(O); I* terminate at end of file 

I* 
Perform any necessary translation on character from 

input file. Template action just returns same character. 

int translate(ch) 

char ch; 
return (ch); 

Figure 14-2. C template for a character-oriented filter (file PROTOC.C). 

*I 

*I 

Section II: Programming in the MS-DOS Environment 433 

HUAWEI EX. 1010 - 443/1582



Part C: Customizing MS-DOS 

name 
title 

protol 

'PROTOL. ASM template line filter' 

PROTOL.ASM: a template for a line-oriented filter. 

Ray Duncan, June 1987 

stdin 

stdout 

stderr 

cr 

lf 

DGROUP 

_TEXT 

main 

main1: 

equ 0 standard input 

equ 1 standard output 
equ 2 standard error 

equ Odh ASCII carriage return 
equ Oah ASCII line feed 

group _DATA, STACK 'automatic data group' 

segment byte public 'CODE' 

assume cs:_TEXT,ds:DGROUP,es:DGROUP,ss:STACK 

proc far entry point from MS-DOS 

mov ax,DGROUP set DS ES our data segment 
mov ds, ax 
mov es, ax 

mov 

mov 
mov 

mov 

int 

jc 
or 

jz 

call 

or 

jz 

; read a line from standard input 

dx,offset DGROUP:input ; address to place data 
cx,256 max length to read= 256 

bx,stdin 
ah,3fh 

21h 

main3 

ax, ax 
main2 

translt 
ax, ax 
main1 

handle for standard input 

function 3FH = read from file or device 

transfer to MS-DOS 

if error, terminate 

any characters read? 

end of file, terminate program 

translate line if necessary 

anything to output after translation? 
no, get next line 

now write line to standard output 

mov dx,offset DGROUP:output ; address of data 
mov 

mov 

mov 

int 

jc 

ex, ax 
bx,stdout 

ah,40h 

21h 

main3 

length to write 

handle for standard output 

function 40H = write to file or device 

transfer to MS-DOS 

if error, terminate 

Figure 14-3. Assembly-language template for a line-oriented filter (file PROTOL.ASM). 

434 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 444/1582



Article 14: Writing MS-DOS Filters 

cmp ax, ex was entire line written? 

jne main3 disk full, terminate program 
jmp main1 go process another line 

main2: mov ax,4c00h end of file rea.ched, terminate 

int 21h program with return code = 0 

main3: mov ax,4c01h error or disk full, terminate 

int 21h program with return code 

main endp end of main procedure 

Perform any necessary translation on line stored in 

'input' buffer, leaving result in 'output' buffer. 

Call with: AX length of data in 'input' buffer. 

Return: AX= length to write to standard output. 

Action of template routine is just to copy the line. 

translt proc near 

= 1 

mov 

mov 

; just copy line from input to output 

si,offset DGROUP:input 

di,offset DGROUP:output 

mov cx,ax 
rep movsb 

ret return length in AX unchanged 

translt endp 

_TEXT ends 

_DATA segment word public 'DATA' 

input db 256 dup (?) storage for input line 

output db 256 dup (?) storage for output line 

_DATA ends 

STACK segment para stack 'STACK' 

dw 64 dup (?) 

STACK ends 

end main defines program entry point 

Figure 14-3. Continued. 

Section II: Programming in the MS-DOS Environment. 435 

HUAWEI EX. 1010 - 445/1582



Part C: Customizing MS-DOS 

I* 
PROTOL.C: a template for a line-oriented filter. 

Ray Duncan, June 1987. 

*I 

#include <stdio.h> 

static char input[256]; 

static char output[256]; 

main(argc,argv) 
int argc; 

char *argv[]; 

while( gets(input) !=NULL) 

I* buffer for input line *I 
I* buffer for output line *I 

I* get a line from input stream *I 
I* perform any necessary translation 

and possibly write result *I 
if (translate()) puts(output); 

*I 

exit (0); I* terminate at end of file *I 

Perform any necessary translation on input line, leaving 

the resulting text in output buffer. Value of function 

is 'true' if output buffer should be written to standard output 

by main routine, 'false' if nothing should be written. 

translate() 

{ strcpy{output,input); 

return(1); 
I* template action is copy input *I 
I* line and return true flag *I 

Figure 14-4. C template for a line-oriented filter (file PROTOL.C). 

Each of the four template filters can be assembled or compiled, linked, and run exactly as 
they are shown in Figures 14-1 through 14-4. Of course, in this form they function like an 
incredibly slow COPY command. 

To obtain a filter that does something useful, a routine that performs some modification 
of the text stream that is flowing by must be inserted between the reads and writes. For 
example, Figures 14-5 and 14-6 contain the assembly-language and C source code for a 
character-oriented filter named LC. This program converts all uppercase input characters 
(A-Z) to lowercase (a-z) output, leaving other characters unchanged. The only difference 
between LC and the template character filter is the translation subroutine that operates 
on the text stream. 

436 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 446/1582



name 

title 

Article 14: Writing MS-DOS Filters 

lc 
'LC.ASM --- lowercase filter' 

LC.ASM: a simple character-oriented filter to translate 
all uppercase {A-Z) to lowercase {a-z). 

Ray Duncan, June 1987 

stdin 
stdout 
stderr 

cr 
lf 

DGROUP 

_TEXT 

main 

main1: 

equ 0 standard input 
equ 1 standard output 

equ 2 standard error 

equ Odh ASCII carriage return 

equ Oah ASCII linefeed 

group _DATA, STACK 'automatic data group' 

segment byte public 'CODE' 

assume cs:_TEXT,ds:DGROUP,ss:STACK 

proc 

mov 
mov 

mov 
mov 
mov 
mov 
int 
jc 
cmp 
jne 

call 

far 

ax,DGROUP 
ds,ax 

entry point from MS-DOS 

set DS our data segment 

; read a character from standard input 
dx,offset DGROUP:char ; address to place character 
ex, 1 length to read = 1 
bx,stdin handle for standard input 
ah,3fh function 3FH =·read from file or device 
21h transfer to MS-DOS 
main3 
ax, 1 
main2 

translt 

error, terminate· 
any character read? 
end of file, terminate program 

translate character if necessary 

now write character to standard output 
mov dx,offset DGROUP:char ; address of character 
mov ex, 1 length to write = 1 
mov bx,stdout handle for standard output 
mov ah,40h function 40H =write to file or device 
int 21h transfer to MS-DOS 
jc 
cmp 
jne 
jmp 

main3 
ax, 1 

main3 
main1 

error, terminate 
was character written? 
disk full, terminate program 
go process another character 

Figure 14-5. Assembly-language source code for the LC filter (file LC. ASM). (more) 

Section II: Programming in the MS-DOS Environment 437 

HUAWEI EX. 1010 - 447/1582



Part C: Customizing MS-DOS 

main2: mov ax,4c00h end of file reached, terminate 
int 21h program with return code = 0 

main3: mov ax,4c01h error or disk full, terminate 
int 21h program with return code = 1 

main endp end of main procedure 

Translate uppercase {A-Z) characters t6"corresponding 

characters {a-z). Leave other characters unchanged. lowercase 

translt 

transx: 

translt 

_TEXT 

_DATA 

char 

_DATA 

STACK 

STACK 

proc 

crop 

jb 
crop 

ja 
add 

ret 

endp 

ends 

near 

byte ptr char, 'A' 
transx 

byte ptr char, 'Z' 

transx 

byte ptr char, 'a'-'A' 

segment word public 'DATA' 

db 0 ; temporary storage for input character 

ends 

segment para stack 'STACK' 

dw 64 dup (?) 

ends 

end main defines program entry point 

Figure 14-5. Continued. 

I* 
LC: a simple character-oriented filter to translate 

all uppercase {A-Z) to lowercase {a-z) characters. 

Usage: LC [< source] [> destination] 

Figure 14-6. C source code for the LC filter (file LC.C). 

438 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 448/1582



Article 14: Writing MS-DOS Filters 

Ray Duncan, June 1987 

*I 

#include <stdio.n> 

main(argc,argv) 

int argc; 

char *argv[]; 

char ch; 

while 

I* read a character *I 
(ch=getchar() ) != EOF ) 

ch=translate(ch); 

putchar(ch); 

exit (0); 

I* 

I* perform any necessary 

character translation *I 
I* then write character *I 

I* terminate at end of file *I 

Translate characters A-Z to lowercase equivalents 

*I 

int translate(ch) 

char ch; 
if (ch >= 'A' && ch <= 'Z') ch += 'a'-'A'; 

return (ch); 

Figure 14-6. Continued. 

As another example, Figure 14-7 contains the C source code for a line-oriented filter called 
FIND. This simple filter is invoked with a command line in the form 

FIND "pattern" < source > destination 

FIND searches the input stream for lines containing the pattern specified in the command 
line. The line number and text of any line containing a match is sent to standard output, 
with any tabs expanded to eight-column tab stops. 

I* 
FIND.C Searches text stream for a string. 

Usage: FIND "pattern" [< source] [> destination] 

by Ray Duncan, June 1987 

*I 

#include <stdio.h> 

Figure 14-7. C source code for a new FIND filter (file FIND.C). (more) 

Section /l- Programming in the MS-DOS Environment 439 

HUAWEI EX. 1010 - 449/1582



Part C: Customizing MS-DOS 

#define TAB 

#define BLANK 

'\x09' 

'\x20' 

#define TAB_WIDTH 8 

static char input[256]; 
static char output[256]; 

static char pattern[256]; 

main(argc,argv) 

int argc; 

char *argv[]; 
int line=O; 

I* ASCII tab character (AI) *I 
I* ASCII space character *I 

I* columns per tab stop *I 

I* buffer for line from input *I 
I* buffer for line to output *I 
I* buffer for search pattern *I 

I* initialize line variable *I 

if argc < 2 ) I* was search pattern supplied? *I 
puts("find: missing pattern."); 

exit(1); I* abort if not *I 

strcpy(pattern,argv[1]); I* save copy of string to find 

strupr(pattern); I* fold it to uppercase *I 
while ( 
( 

gets(input) != NULL I* read a line from input *I 
line++; I* count lines *I 
strcpy(output,input); I* save copy of input string *I 
strupr(input); I* fold input to uppercase *I 

I* if line contains pattern *I 
if( strstr(input,pattern) ) 

*I 

I* write it to standard output *I 
writeline(line,output); 

exit(O); I* terminate at end of file *I 

I* 
WRITELINE: Write line number and text to standard output, 

expanding any tab characters to stops defined by TAB_WIDTH. 

*I 

writeline(line,p) 

int line; 

char *p; 
int i=O; I* index to original line text •I 
int col=O; 

printf("\n%4d: ",line); 
while( p[i] !=NULL ) 

I* actual output column counter *I 
I* write line number *I 
I* while end of line not reached *I 

if(p[i]==TAB) I* if current char tab, expand it 

{ do putchar (BLANK) ; 
while ((++col % TAB_WIDTH) ! = 0); 

else I• otherwise just send character *I 

Figure 14-7. Continued. 

440 The MS-DOS Encyclopedia 

putchar(p[i]); 

col++; I* count columns *I 

*I 

(more) 

HUAWEI EX. 1010 - 450/1582



Article 14: Writing MS-DOS Filters 

i++; I* advance through output line */ 

Figure 14-7. Continued. 

This sample FIND filter differs from the FIND filter supplied by Microsoft with MS-DOS in 
several respects. It is not case sensitive, so the pattern "foobar" will match "FOOBAR", 
"FooBar", and so forth. Second, this filter supports no switches; these are left as an ex
ercise for the reader. Third, unlike the Microsoft version of FIND, this program always 
reads from standard input; it is not able to open its own files. 

Using a Filter as a Child Process 

Instead of incorporating all the code necessary to do the job itself, an application program 
can load and execute a filter as a child process to carry out a specific task. Before the child ~ 
filter is loaded, the parent must arrange for the standard input and standard output handles 
that will be inherited by the child to be attached to the files or character devices that will 
supply the filter's input and receive its output. This redirection is accomplished with the 
following steps using Interrupt 21H functions: 

1. The parent process uses Function 45H (Duplicate File Handle) to create duplicates of 
its standard input and standard output handles and then saves the duplicates. 

2. The parent opens (with Function 3DH) or creates (with Function 3CH) the files or 
devices that the child process will use for input and output. 

3. The parent uses Function 46H (Force Duplicate File Handle) to force its own standard 
device handles to track the new file or device handles acquired in step 2. 

4. The parent uses Function 4BOOH (Load and Execute Program [EXEC]) to load and 
execute the child process. The child inherits the redirected standard input and stan
dard output handles and uses them to do its work. The parent regains control after 
the child filter terminates. 

5. The parent uses the duplicate handles created in step 1, together with Function 46H 
(Force Duplicate File Handle), to restore its own standard input and standard output 
handles to their original meanings. 

6. The parent closes (with Function 3EH) the duplicate handles created in step 1, 
because they are no longer needed. 

It might seem as though the parent process could just as easily close its own standard input 
and standard output (handles 0 and 1), open the input and output files needed by the child, 
load and execute the child, close the files upon regaining control, and then reopen the 
CON device twice. Because the open operation always assigns the first free handle, this 
approach would have the desired effect as far as the child process is concerned. However, 
it would throw away any redirection that had been established for the parent process by its 
parent. Thus, the need to preserve any preexisting redirection of the parent's standard 

Section II: Programming in the MS-DOS Environment 441 

HUAWEI EX. 1010 - 451/1582



Part C: Customizing MS-DOS 

input and standard output, along with the desire to preserve the parent's usual output 
channel for informational messages right up to the actual point of the EXEC call, is the 
reason for the elaborate procedure outlined above in steps 1 through 6. 

The program ~XECSORT.ASM in Figure 14-8 demonstrates this redirection of input and 
output for a filter run as a child process. The parent, which is called EXECSORT, saves 
duplicates of its current standard input and standard output handles and then redirects 
those handles respectively to the files MYFILE.DAT (which it opens) and MYFILE.SRT 
(which it creates). EXECSORT then uses Interrupt 21H Function 4BH (EXEC) to run the 
SORT.EXE filter that is supplied with MS-DOS (this file must be in the current drive and 
directory for the demonstration to work correctly). 

name 
title 

.sall 

execsort 

'EXECSORT --- demonstrate EXEC of filter' 

EXECSORT.ASM --- demonstration of use of EXEC to run the SORT 

filter as a child process, redirecting its input and output. 

This program requires the files SORT.EXE and MYFILE.DAT in 

the current drive and directory. 

Ray Duncan, June 1987 

Figure 14-8. Assembly-language source code demonstrating use of a filter as a child process. This code redi
rects the standard input and standard output handles to files, invokes the EXEC junction (Interrupt 21H Func
tion 4BH) to run the SORT.EXE program, and then restores the original meaning of the standard input and 
standard output handles (file EXECSORT.ASM). 

442 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 452/1582



_TEXT 

stk_seg 

stk_ptr 

main 

Article 14: Writing MS-DOS Filters 

segment byte public 'CODE' ; executable code segment 

assume cs:_TEXT,ds:DGROUP,ss:_STACK 

dw 

dw 

proc 

mov 

mov 

mov 

mov 

sub 

add 

mov 
int 

jerr 

mov 

mov 

int 
jerr 

mov 

mov 

mov 

int 
jerr 

mov 

mov 

mov 

int 

jerr 

mov 

mov 

int 

jerr 

mov 

? 

far 

ax,DGROUP 

ds,ax 

ax,es 
bx,ss 
bx,ax 
bx,stksize/16 

ah,4ah 

21h 

main1 

bx,stdin 

ah,45h 

21h 
main1 

oldin,ax 

dx,offset DGROUP:infile 

ax,3d00h 

21h 
main1 

bx,ax 

cx,stdin 

ah,46h 

21h 

main1 

bx, stdout 

ah,45h 

21h 

main1 

oldout,ax 

original ss contents 

original SP contents 

entry point from MS-DOS 

set DS our data segment 

now give back extra memory so 
child SORT has somewhere to run ... 

let AX = segment of PSP base 

and BX = segment of stack base 

reserve seg stack - seg psp 

plus paragraphs of stack 
fxn 4AH = modify memory block 

transfer to MS-DOS 
jump if resize block failed 

prepare stdin and stdout 
handles for child SORT process 

dup the handle for stdin 

transfer to MS-DOS 

jump if dup failed 

save dup'd handle 

now open the input file 

mode = read-only 

transfer· to MS-DOS 

jump if open·failed 

force stdin handle to 

track the input file handle 

transfer to MS-DOS 

jump if force dup failed 

dup the handle for stdout 

transfer to MS-DOS 

jump if dup failed 

save dup'd handle 

mov dx,offset dGROUP:outfile ; now create the output file 

Figure 14-8. Continued. (more) 

Section /1· Programming in the MS-DOS Environment 443 

HUAWEI EX. 1010 - 453/1582



Part C: Customizing MS-DOS 

mov cx,O 
mov ah~3ch 
int 21h 
jerr main1 

mov bx,ax 
mov cx,stdout 
mov ah,46h 
int 21h 
jerr main1 

push ds 
mov stLseg, ss 

mov stk_ptr,sp 

mov ax,ds 
mov es,ax 
mov dx,offset 

mov bx,offset 

mov ax, 4b00h 
int 21h 

eli 
mov ss,stk_seg 

mov· sp,stk_ptr 

sti 

pop ds 

jerr main1 

mov bx,oldin 
mov cx,stdin 
mov ah,46h 

int 21h 
jerr main1 

mov bx,oldout 
mov cx,stdout 

mov ah,46h 

int 21h 

jerr main1 

mov bx,oldin 

mov ah,3eh 

int 21h 

Figure 14-8. Continued. 

444 The MS-DOS Encyclopedia 

OGROUP:cname 

OGROUP:pars 

normal attribute 

transfer to MS-OOS 

jump if create failed 

force stdout handle to 

track the output file handle 

transfer to MS-OOS 

·jump if force dup failed 

now EXEC the child SORT, 

which will inherit redirected 

stdin and stdout handles 

save EXECSORT's data segment 

save EXECSORT's stack pointer 

set ES = OS 

OS:OX = child pathname 

EX:BX = parameter block 
function·4BH, subfunction OOH 

transfer to MS-OOS 

(for bug in some early 8088s) 

restore execsort's stack pointer 

(for bug in some early 8088s) 

restore OS = our data segment 

jump if EXEC failed 

restore original meaning of 

standard input handle for 
this process 

jump if force dup failed 

restore original meaning 

of standard output handle 
for this process 

jump if force dup failed 

close dup'd handle of 

original stdin 

transfer to MS-OOS 

(more) 

HUAWEI EX. 1010 - 454/1582



jerr 

mov 

mov 

int 
jerr 

mov 

mov 

mov 
mov 

int 
jerr 

mov 

int 

main1: mov 

int 

main endp 

_TEXT ends 

~DATA segment 

infile db 

outfile db 

oldin dw 

oldout dw 

cname db 

pars dw 

dd 

dd 

dd 

tail db 

msg1 db 
msg1_len equ 

_DATA ends 

main1 

bx,oldout 

ah,3eh 
21h 

main1 

dx,offset DGROUP:msg1 
cx,msg1_len 

bx,stdout 

ah,40h 

21h 
main1 

ax,4c00h 

21h 

ax,4c01h 

21h 

para public 'DATA' 

'MYFILE.DAT', 0 
'MYFILE.SRT', 0 

? 

? 

'SORT.EXE',O 

0 

tail 
-1 

-1 

O,cr 

Article 14: Writing MS-DOS Filters 

jump if close failed 

close dup'd handle of 
original stdout 

transfer to MS-DOS 
jump if close failed 

display success message 
address of message 

message length 

handle for standard output 

fxn 40H = write file or device 

transfer to MS-DOS 

no error, terminate program 

with return code = 0 

error, terminate program 

with return code = 1 

end of main procedure 

static & variable data segment 

input file for SORT filter 

output file for SORT filter 

dup of old stdin handle 

dup of old stdout handle 

pathname of child SORT process 

segment of environment block 

(0 =inherit parent's) 

long address, command tail 

long address, default FCB #1 

(-1 = none supplied) 

long address, default FCB #2 

(-1 = none supplied) 

empty command tail for child 

cr,lf, 'SORT was executed as child. ',cr,lf 

$-msg1 

Figure 14-8. Continued. (more) 

Section II· Programming in the MS-DOS Environment 445 

HUAWEI EX. 1010 - 455/1582



Part C: Customizing MS-DOS 

_STACK segment para stack 'STACK' 

db stksize dup (?) 

_STACK ends 

end main defines program entry point 

Figure 14-8. Continued. 

The MS-DOS SORT program reads the file MYFILE.DAT via its standard input handle, sorts 
the file alphabetically, and writes the sorted data to MYFILE.SRT via its standard output 
handle. When SORT terminates, MS-DOS closes SORT's inherited handles for standard in
put and standard output, which forces an update of the directory entries for the associated 
files. The program EXECSORT then resumes execution, restores its own standard input 
and standard output handles (which are still open) to their original meanings, displays a 
success message on standard output, and exits to MS-DOS. 

Ray Duncan 

446 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 456/1582



Article 15: Installable Device Drivers 

Article15 
Installable Device Drivers 

The software that runs on modern computer systems is, by convention, organized into 
layers with varied degrees of independence from the underlying computer hardware. The 
purpose of this layering is threefold: 

• To minimize the impact on programs of differences between hardware devices or 
changes in the hardware. 

• To allow the code for common operations to be centralized and optimized. 
• To ease the task of moving programs and their data from one machine to another. 

The top and most hardware-independent layer is usually the transient, or application, 
program, which performs a specific job and deals with data in terms of files and records 4 
within those files .. Such programs are called transient because they are brought into RAM 
for execution when needed and are discarded from memory when their job is finished. 
Examples of such programs are Microsoft Word, various programming tools such as the 
Microsoft Macro Assembler (MASM) and the Microsoft Object Linker (LINK), and even 
some of the standard MS-DOS utility programs such as CHKDSK and FORMAT. 

The middle layer is the operating-system kernel, which manages the allocation of system 
resources such as memory and disk storage, provides a battery of services to application 
programs, and implements disk directories and the other housekeeping details of disk 
storage. The MS-DOS kernel is brought into memory from the file MSDOS.SYS (or 
IBMDOS.COM with PC-DOS) when the system is turned on orrestarted and remains fixed 
in memory until the system is turned off. The system's default command processor, 
COMMAND. COM, and system manager programs such as Microsoft Windows bridge the 
categories of application program and operating system: Parts of them remain resident in 
memory at all times, but they rely on the MS-DOS kernel for services such as file 1/0. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF Ms-oos: Components 
ofMS-DOS. 

The modules in the lowest layer are called device drivers. These drivers are the com
ponents of the operating system that manage the controller, or adapter, of a peripheral 
device- a piece of hardware that the computer uses for such purposes as storage or com
municating with the outside world. Thus, device drivers are responsible for transferring 
data between a peripheral device and the computer's RAM memory, where other pro
grams can work on it. Drivers shield the operating-system kernel from the need to deal 
with hardware 1/0 port addresses, operating characteristics, and the peculiarities of a par
ticular peripheral device, just as the kernel, in turn, shields application programs from 
the details of file management. 

Section II: Programming in the MS-DOS Environment 447 

HUAWEI EX. 1010 - 457/1582



Part C: Customizing MS-DOS 

In MS-DOS versions l.x, device drivers were integrated into the operating system and 
could be extended or replaced only by patching the files that contained the operating sys
tem itself. Because every third-party peripheral manufacturer evolved a different method 
of modifying these files to get its product to work, conflicts between products from differ
ent manufacturers were frequent and expansion of a PC with new disk drives and other 
devices (especially fixed disks) was often a chancy proposition. 

In MS-DOS versions 2.0 and later, there is a clean separation between device drivers and 
the MS-DOS kernel. Device drivers have a straightforward structure and are interfaced to 
the kernel through a simple and clearly defined scheme that consists of far calls, function 
codes, and data packets. Given adequate information about the hardware, a programmer 
can write a new device driver that follows this structure and interface for almost any con
ceivable peripheral device; such a driver can subsequently be installed and used without 
any changes to the underlying operating system. 

This article explains the anatomy, operation, and creation of drivers for MS-DOS versions 
2.0 and later. Device drivers for versions l.x are not discussed further here. 

Resident and Installable Drivers 

Every MS-DOS system contains built-in device drivers for the console (keyboard and video 
display), the serial port, the parallel printer port, the real-time clock, and at least one disk 
storage device (the system boot device). These drivers, known as the resident drivers, are 
loaded as a set from the file IO.SYS (or IBMBIO.COM with PC-DOS) when the system is 
turned on or restarted. 

Drivers for additional peripheral devices occupy individual files on the disk. These drivers, 
called installable drivers, are loaded and linked into the system during its initialization as 
a result of DEVICE directives in the CONFIG.SYS file. See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: STRUCTURE oF Ms-oos: Components of MS-DOS. Examples of 
such drivers are the ANSI.SYS and RAMDISK.SYS files included with MS-DOS version 3.2. 
In all other respects, installable drivers have the same structure and relationship to the 
MS-DOS kernel as the resident drivers. All drivers in the system are chained together so 
that MS-DOS can rapidly search the entire set to find a specifiC block or character device 
when an 1/0 operation is requested. 

Device drivers as a whole are categorized into two groups: block-device drivers and 
character-device drivers. A driver's membership in one of these two groups determines 
how the associated device is viewed by MS-DOS and what functions the driver itself must 
support. 

Character-device drivers 

Character-device drivers control peripheral devices, such as a terminal or a printer, that 
perform input and output one character (or byte) at a time. Each character-device driver 

448 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 458/1582



Article 15: Installable Device Drivers 

ordinarily supports a single hardware unit. The device has a one-character to eight
character logical name that can be used by an application program to "open" the device 
for input or output as though it were a file. The logical name is strictly a means of identify
ing the driver to MS-DOS and has no physical equivalent on the device (unlike a volume 
label for block devices). 

The three resident character-device drivers for the console, serial port, and printer carry 
the logical device names CON, AUX, and PRN, respectively. These three drivers receive 
special treatment by MS-DOS that allows application programs to address the associated 
devices in three different ways: 

• They can be opened by name for input and output (like any other character device). 
• They are supported by special-purpose MS-DOS function calls (Interrupt 21H Func

tions 01-0CH). 
• They are assigned to default handles (standard input, standard output, standard error, 

standard auxiliary, and standard list) that need not be opened to be used. 

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FORMs-nos: 
Character Device Input and Output. 

Other character devices can be supported by simply installing additional character-device 
drivers. The only significant restrictibn on the total number of devices that can be sup
ported, other than the memory required to hold" the drivers, is that each driver must have a 
unique logical name. When MS-DOSreceives an open request for a character device, it 
searches the chain of device drivers in order from the last driver loaded to the first. Thus, if 
more than one driver uses the same logical name, the last driver to be loaded supersedes 
any others and receives all I/0 requests addressed to that logical name. This behavior can 
be used to advantage in some situations. For example, it allows the more powerful 
ANSI.SYS display driver to supersede the system's default console driver, which does not 
support cursor positioning and character attributes. 

The MS-DOS kernel's buffering and filtering of the characters that pass between it and 
a character-device driver are affected by whether MS-DOS regards the device to be in 
cooked mode or raw mode. During cooked mode input, MS-DOS requests characters one 
at a time from the driver and places them in its own internal buffer, echoing each character 
to the screen (if the input device is the keyboard) and checking each character for a 
Control-C (03H) or a Return (ODH). When either the number of characters requested' by 
the application program has been received or a Return is detected, the input is terminated 
and the data is copied from MS-DOS's internal buffer into the requesting program's buffer. 
When a Control-C is detected, MS-DOS aborts the input operation and transfers to the rou
tine whose address is stored in the Interrupt 23H (Control-CHandler Address) vector. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-nos: Exception Han
dlers. Similarly, during output in cooked mode, MS-DOS checks between each character 
for a Control-C pending at the keyboard and aborts the output operation if one is detected. 

Section II: Programming in the MS-DOS Environment 449 

HUAWEI EX. 1010 - 459/1582



Part C: Customizing MS-DOS 

In raw mode, the exact number of bytes requested by the application program is read or 
written, without regard to any control characters such as Return or Control-C. MS-DOS 
passes the entire 1/0 request to the driver in a single operation, instead of breaking the 
request into single-character reads or writes, and the characters are transferred directly to 
or from the requesting program's buffer. 

The mode for a specific device can be queried by an application program with the IOCTL 
Get Device Data function (Interrupt 21H Function 44H Subfunction OOH); the mode can be 
selected with the Set Device Data function: (Interrupt 21H Function 44H Subfunction 01H). 
See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The driver itself is not usually aware 
of its mode and the mode does not affect its operation. 

Block-Device Drivers 

Block-device drivers control peripheral devices that transfer data in chunks rather than 1 
byte at a time. Block devices are usually randomly addressable devices such as floppy- or 
fixed-disk drives, but they can also be sequential devices such as magnetic-tape drives. A 
block driver can support more than one physical unit and can also map two or more logical 
units onto a single physical unit, as with a partitioned fixed disk. 

MS-DOS assigns single-letter drive identifiers (A, B, and so forth) to block devices, instead 
of logical names. The first letter assigned to a block -device driver is determined solely by 
the driver's position in the chain of all drivers- that is, by the number of units supported 
by the block drivers loaded before it; the total number of letters assigned to the driver is . 
determined by the number of logical drive units the driver supports. 

MS-DOS does not associate a mode (cooked or raw) with block-device drivers. A block
device driver always reads or writes exactly the number of sectors requested (barring hard
ware or addressing errors) and never filters or otherwise manipulates the contents of the 
blocks being transferred. 

Structure of an MS-DOS Device Driver 

A device driver has three major components (Figure 15-1): 

• The device header 
• The Strategy routine (Strat) 
• The Interrupt routine (/ntr) 

The device header 

The device header (Figure 15-2) always lies at the beginning of the driver. It contains a link 
to the next driver in the chain, a word (16 bits) of device attribute flags, offsets to the exe
cutable Strategy and Interrupt routines for the device, and the logical device name if it is a 
character device such as PRN or COM1 or the number of logical units if it is a block device. 

450 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 460/1582



' 
,-1'-.... i 

I Initialization 

Media Check 

BuildBPB 

IOCTL Read and Write 

Status 

Read 

Write, WriteNerify 
Interrupt routine Output Until Busy 

Flush Buffers 

Device Open 

Device Close 

Check if Removable 

Generic IOCTL 

Get/Set Logical Device 

Strategy routine 

Device-driver header 

Figure 15-1. General structure of an MS-DOS instal/able device driver. 

Offset 
OOH 

02H 

04H 

06H 

08H 

OAH 

12H 

Link to next driver, offset 

Link to next driver, segment 

Device attribute word 

Offset, Strategy entry point 

· Offset, Interrupt entry point 

Logical name (8 bytes) if character device 
or 

Number of units (1 byte) followed by 
7 bytes of reserved· space if block device 

Article 15: Installable Device Drivers 

Figure 15-2. Device header. The offsets to the Strat and Intr routines are offsets from the same segment used to 
point to the device header. 

The device attribute flags word (Table 15-1) defines whether a driver controls a character 
or a block device, which of the optional subfunctions added in MS-DOS versions 3.0 and 
3.2 are supported by the driver, and, in the case of block drivers, whether the driver sup
ports IBM-compatible disk media. The least significant 4 bits of the device attribute flags 
word control whether MS-DOS should use the driver as the standard input, standard out
put, clock, or NUL device; each of these 4 bits should be set on only one driver in the 
system at a time. 

Section IL- Programming in the MS-DOS Environment 451 

HUAWEI EX. 1010 - 461/1582



Part C: Customizing MS-DOS 

Table 15-1. Device Attribute Word in Device Header. 

Bit Setting 

15 * 1 if character device, 0 if block device 
14* 1 ifiOCTL Read and Write supported 
13 * 1 if non-IBM format (block device) 

1 if Output Until Busy supported (character device) 
12 0 (reserved) _.. 
11 * 1 if Open/Close/Removable Media supported (versions 3.0 and later) 
10 0 (reserved) 
9 0 (reserved) 
8 0 (reserved) 
7 0 (reserved) 
6* 1 if Generic IOCTL and Get/Set Logical Drive supported (version 3.2) 
5 0 (reserved) 
4 1 if special fast output function for CON device supported 
3 1 if current CLOCK device 
2 1 if current NUL device 
1 · 1 if current standard output (stdout) 
0 1 if current standard input (stdin) 

• Only bits 6, 11, and 13-15 have significance on block devices; the remainder should be zero. 

The information in the device header is ordinarily used only by the MS-DOS kernel and 
is not available to application programs. However, the IOCTL subfunctions Get and Set 
Device Data (Interrupt 21H Function 44H Subfunctions OOH and 01H) can be used to in
spect or modify some of the bits in the device attribute flags word. Note that there is not a 
one-to-one correspondence between the bits defined for those functions and the bits in 
the device header. For example, in the device information word used by the IOCTL sub
functions, bit 7 indicates a block or character device; in the device attribute word of the 
device header, bit 15 indicates a block or character device. 

The Strategy routine (Strat) 

MS-DOS calls the driver's Strategy routine as the first step of any operation, passing it the 
segment and offset of a data structure called a request header in registers ES:BX. The Strat
egy routine saves this pointer for subsequent processing by the Interrupt routine and 
returns to MS-DOS .. 

A request header is essentially a small buffer used for private communication between 
MS-DOS and the device driver. Both MS-DOS and the device driver read and write infor
mation in the request header. 

The first 13 bytes of a request header are the same for all device-driver functions and are 
therefore referred to as the static portion of the header. The number and contents of the 
subsequent bytes vary according to the type of operation being requested by the MS-DOS 

452 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 462/1582



Article 15: Installable Device Drivers 

kernel (Figure 15-3). The request header's most important component is the command 
code passed in its third byte; this code selects a driver function such as Read or Write. 
Other information passed to the driver in the request header includes unit numbers, 
transfer addresses, and sector or byte counts. 

OOH 
OIH 

02H 

03H 

05H 

ODH 

OEH 

IOH 

12H 

14H 

Request header length 

Block-device unit number 

Command code (driver subfunction) 

Returned status 

Reserved 

Media ID byte 

Offset of data to be transferred 

Segment of data to be transferred 

Byte/sector count 

Starting sector number 

Static portion 
of request header 

Variable portion 
of request header 

Figure 15-3. A typical driver request header. The bytes following the static portion are the format used for 
driver Read, Write, Write with Verify, IOCTL Read, and IOCTL Write operations. 

The Interrupt routine (lntr) 

The last and most complex part of a device driver is the Interrupt routine, which is called 
by MS-DOS immediately after the call to the Strategy routine. The bulk of the Interrupt 
routine is a collection of functions or subroutines, sometimes called command-code rou
tines, that carry out each of the various operations the MS-DOS kernel requires a driver to 
support. 

When the Interrupt routine receives control from MS-DOS, it saves any affected registers, 
examines the request header whose address was previously passed in the call to the Strat
egy routine, determines which command-code routine is needed, and branches to the 
appropriate function. When the operation is completed, the Interrupt routine stores the 
status (Table 15-2), error (Table 15-3), and any other applicable information into there
quest header, restores the previous contents of the affected registers, and returns to the 
MS-DOS kernel. 

Section II: Programming in the MS-DOS Environment 453 

HUAWEI EX. 1010 - 463/1582



Part C: Customizing MS-DOS 

Table 15-2. The Request Header Status Word. 

Bits 

15 
12-14 
9 
8 
0-7 

Meaning 

Error 
Reserved 
Busy 
Done 
Error code if bit 15 = 1 

Table 15-3. Device-Driver Error Codes.* 

Code Meaning 

OOH Write-protect violation 
01H Unknown unit 
02H Drive not ready 
03H Unknown command 
04H CRCerror 
05H Bad drive request structure length 
06H Seek error 
07H Unknown media 
08H Sector not found 
09H Printer out of paper 
OAH Write fault 
OBH Read fault 
OCH General failure 
ODH Reserved 
OEH Reserved 
OFH Invalid disk change (versions 3.x) 

• Returned in bits 0-7 of the request header status word. 

The Interrupt routine's name is misleading in that it is never entered asynchronously as a 
hardware interrupt. The division of function between the Strategy and Interrupt routines is 
present for symmetry with UNIX/XENIX and MS OS/2 drivers but is essentially meaning
less in single-tasking MS-DOS because there is never more than one I/0 request in 
progress at a time. 

The command-code functions 

A total of twenty command codes are defined for MS-DOS device drivers. The command 
codes and the names of their associated Interrupt routines are shown in the following list: 

454 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 464/1582



.i 
r 

l 
Code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Routine 

Init (initialization) 
Media Check (block devices only) 
Build BIOS Parameter Block (block devices only) 
IOCTLRead 
Read (Input) 
Nondestructive Read (character devices only) 
Input Status (character devices only) 
Flush Input Buffers (character devices only) 
Write (Output) 
Write with Verify 
Output Status (character devices only) 
Flush Output Buffers (character devices only) 
IOCTL Write 

13 * Device Open 
14 * Device Close 
15* Removable Media (block devices only) 
16* Output Until Busy (character devices only) 
19t Generic IOCTL Request 
23t Get Logical Device (block devices only) 
24 t Set Logical Device (block devices only) 

• MS-DOS versions 3.0 and later 
t MS-DOS version 3.2 

Article 15: Installable Device Drivers 

Functions 0 through 12 must be supported by a driver's Interrupt section under all versions 
of MS-DOS. Drivers tailored for versions 3.0 and 3.1 can optionally support an additional4 
functions defined under those versions of the operating system and drivers designed for 
version 3.2 can support 3 more, for a total of 20. MS-DOS inspects the bits in the device at~ 
tribute word of the device header to determine which of the optional version 3.x functions 
a driver supports, if any. 

As noted in the list above, some of the functions are relevant only for character drivers, 
some only for block drivers, and some for both. In any case, there must be an executable 
routine present for each function, even if the routine does nothing but set the done flag in 
the status word of the request header. The general requirements for each function routine 
are described below. 

The Init function 
The Init (initialization) function (command code 0) for a driver is called only once, when 
the driver is loaded (Figure 15-4). Init is responsible for checking that the hardware device 
controlled by the driver is present and functional, performing any necessary hardware in
itialization (such as a reset on a printer or a seek to the home track on a disk device), and 
capturing any interrupt vectors that the driver will need later. 

Section II: Programming in the MS-DOS Environment 455 

HUAWEI EX. 1010 - 465/1582



Part C: Customizing MS-DOS 

The Init function is passed a pointer in the request header to the text of the DEVICE line 
in CONFIG .SYS that caused the driver to be loaded,....- specifically, the address of the next 
byte after the equal sign ( = ). The line is read-only and is terminated by a linefeed or 
carriage-return character; it can be scanned by the driver for switches or other parameters 
that might influence the driver's operation. (Alphabetic characters in the line are folded to 
uppercase.) With versions 3.0 and later, block drivers are also passed the drive number 
that will be assigned to their first unit (0 =A, 1 = B, and so on). 

OOH 

OlH 

02H 

03H 

OSH 

ODH 

OEH 

lOH 

12H 

14H 

16H 

Driver called with 

Request header length 

Command code 

Reserved 

Offset of CONFIG.SYS 
line loading drivert 

Segment of CONFIG.SYS 
line loading driver t 

First unit number *t 

* Block-device drivers only 
t Points to the character after DEVICE= 
t MS-DOS 3.0 and later only 

OOH 
OIH 

02H 

03H 

OSH 

ODH 

OEH 

lOH 

12H 

14H 

16H 

Figure 15-4. biitialization request header(command code 0). 

Driver returns 

Status 

Reserved 

Units supported* 

Offset of free memory 
above driver 

Segment of free memory 
above driver 

Offset of 
BPB pointer array* 

Segment of 
BPB pointer array* 

When it returns to the kernel, the Init function must set the done flag in the status word 
of the request header and return the address of the start of free memory after the driver 
(sometimes called the break address). This address tells the kernel where it can build cer
tain control structures of its own associated with the driver and then load the next driver. 
The Init routine of a block-device driver must also return the number of logical units 
supported by the driver and the address of a BPB pointer array. 

The number of units returned by a block driver is used to assign device identifiers. For 
example, if at the time the driver is loaded there are already drivers present for four block 
devices (drive codes 0-3, corresponding to drive identifiers A through D) and the driver 
being initialized supports four units, it will be assigned the drive numbers 4 through 7 

456 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 466/1582



Article 15: Installable Device Drivers 

(corresponding to the drive names E through H). (Although there is also a field in the 
device header for the number of units, it is not inspected by MS-DOS; rather, it is set by 
MS-DOS from the information returned by the Init function.) 

The BPB pointer array is an array of word offsets to BIOS parameter blocks. See The Build 
BIOS Parameter Block Function below; PROGRAMMING IN THE MS-DOS ENVIRON
MENT: STRUCTURE OF Ms-oos: MS-DOS Storage Devices. The array must contain one entry 
for each unit defined by the driver, although all entries can point to the same BPB to con
serve memory. During the operating-system boot sequence, MS-DOS scans all the BPBs 
defined by all the units in all the resident block-device drivers to determine the largest 
sector size that exists on any device in the system; this information is used to set MS-DOS's 
cache buffer size. Thus, the sector size in the BPB of any installable block driver must be 
no larger than the largest sector size used by the resident block drivers. 

If the Init routine finds that its hardware device is missing or defective, it can bypass the 
installation of the driver completely by returning the following values in the request 
header: 

Item Value 

Number of units 0 
Address of free memory Segment and offset of the driver's own device header 

A character-device driver must also clear bit 15 of the device attribute word in the device 
header so that MS-DOS will load the next driver in the same location as the one that just 
terminated itself. 

The operating-system services that can be invoked by the Init routine are very limited. 
Only MS-DOS Interrupt 21H Functions 01-0CH (various character input and output ser
vices), 25H (Set Interrupt Vector), 30H (Get MS-DOS Version Number), and 35H (Get Inter
rupt Vector) can be called by the Init code. These functions assist the driver in configuring 
itself for the version of the host operating system it is to run under, capturing vectors for 
hardware interrupts, and displaying informational or error messages. 

The amount of RAM required by a device driver can be reduced by positioning the Init 
routine at the end of the driver and returning that routine's starting address as the location 
of the first free memory. 

The Media Check function 
The Media Check function (command code 1) is used orily in block-device drivers. It is 
called by the MS-DOS kernel when there is a pending drive access call other than a simple 
file read or write (for example, a file open, close, rename, or delete), passing the media ID 
byte (Figure 15-5) for the disk that MS-DOS assumes is in the drive: 

Section II: Programming in the MS-DOS Environment 457 

HUAWEI EX. 1010 - 467/1582



Part C: Customizing MS-DOS 

Description 

OF9H 
OFCH 
OFDH 
OFEH 
OFFH 
OF9H 
OFOH 
OF8H 

Medium 

5.25-inch double-sided, 15 sectors 
5.25-inch single-sided, 9 sectors 
5.25-inch double-sided, 9 sectors 
5.25-inch single-sided, 8 sectors 
5.25-inch double-sided, 8 sectors 
3.5-inch double-sided, 9 sectors 
3.5-inch double-sided, 18 sectors 
Fixed disk 

The function returns a code indicating whether the medium has been changed since the 
last transfer: 

Code 

-1 
0 
1 

OOH 

OlH 

02H 

03H 

05H 

ODH 

OEH 

OFH 

llH 

Meaning 

Medium changed 
Don't know if medium changed 
Medium not changed 

Driver called with 

Request header length 

Unit number 

Command code 

Reserved 

Media ID byte 

* MS-DOS 3.0 and later only 

OOH 

OIH 
02H 

03H 

05H 

ODH 

OEH 

OFH 

llH 

Figure 15-5. Media Check request header(command code 1). 

458 The MS-DOS Encyclopedia 

Driver returns 

Status 

Reserved 

Media change code 

Offset of volume label 
(if error OFH)* 

Segment of volume label 
(if error OFH)* 

HUAWEI EX. 1010 - 468/1582



Article 15: Installable Device Drivers 

If the Media Check routine asserts that the disk has not been changed, MS-DOS bypasses 
rereading the FAT and proceeds with the disk access. If the returned code indicates that 
the disk has been changed, MS-DOS invalidates all buffers associated with the drive, 
including buffers containing data waiting to be written (this data is simply lost), performs 
a Build BPB call, and then reads the disk's FAT and directory. 

The action taken by MS-DOS when Don't know is returned depends on the state of its 
internal buffers. If data that needs to be written out is present in the buffers associated with 
the drive, MS-DOS assumes that no disk change has occurred. If the buffers are empty or 
have all been previously flushed to the disk, MS-DOS assumes that the disk was changed 
and proceeds as described above for the Medium changed return code. 

If bit 11 of the device attribute word is set (that is, the driver supports the optional Open/ 
Close/Removable Media functions), the host system is MS-DOS version 3.0 or later, and 
the function returns the Medium changed code ( -1), the function must also return the 
segment and offset of the ASCIIZ volume label for the previous disk in the drive. (If 
the driver does not have the volume label, it can return a pointer to the ASCIIZ string 
NO NAME) If MS-DOS determines that the disk was changed with unwritten data still 
present in the buffers, it issues a critical error OFH (Invalid Disk Change). Application 
programs can trap this critical error and prompt the user to replace the original disk. 

In character-device drivers, the Media Change function should simply set the done flag in 
the status word of the request header and return. 

The Build BIOS Parameter Block function 
The Build BPB function (command code 2) is supported only on block devices. MS-DOS 
calls this function when the Medium changed code has been returned by the Media 
Check routine or when the Don't know code has been returned and there are no dirty 
buffers (buffers that have not yet been written to disk). Thus, a call to this function indi
cates that the disk has been legally changed. 

The Build BPB call receives a pointer to a one-sector b4ffer in the request header (Figure 
15-6). If the non-IBM-format bit (bit 13) in the device attribute word in the device header is 
zero, the buffer contains the first sector of the disk's FAT, with the media ID byte in the first 
byte of the buffer. In this case, the contents of the buffer should not be modified by the 
driver. However, if the non-IBM-format bit is set,. the buffer can be used by the driver as 
scratch space. 

The Build BPB function must return the segment and offset of a BIOS parameter block 
(Table 15-4) for the disk format indicated by the media ID byte and set the done flag in the 
status word of the request header. The information in the BPB is used by the kernel to 
interpret the disk structure and is also used by the driver itself to translate logical sector 
addresses into physical track, sector, and head addresses. If bit 11 of the device attribute 
word is set (that is, the driver supports the optional Open/Close/Removable Media func
tions) and the host system is MS-DOS version 3.0 or later, this routine should also read the 
volume label from the disk and save it. 

Section II: Programming in the MS-DOS Environment 459 

HUAWEI EX. 1010 - 469/1582



Part C: Customizing MS-DOS 

OOH 
OIH 

02H 

03H 

OSH 

ODH 
OEH 

IOH 

12H 

14H 

) 

Driver called with 

Request header length 

Unit number 

Command code 

Reserved 

Media ID byte 

Offset of FAT buffer 
or scratch area 

Segment of FAT buffer 
or scratch area 

OOH 
OlH 

02H 
03H 

OSH 

ODH 
OEH 

lOH 

12H 

14H 

Figure 15-6. Build BPB request header (command code 2). 

Table 15-4. Format of a BIOS Parameter Block (BPB). 

Bytes Contents 

Bytes per sector 
Sectors per allocation unit (must be power of 2) 
Number of reserved sectors (starting at sector 0) 
Number of file allocation tables (FATs) 
Maximum number of root-directory entries 
Total number of sectors in medium 
Media ID byte 
Number of sectors occupied by a single FAT 
Sectors per track (versions 3.0 and later) 
Number of heads (versions 3.0 and later) 

Driver returns 

Status 

Reserved 

Offset of BIOS 
parameter block 

Segment of BIOS 
parameter block 

00-0lH 
02H 
03-04H 
05H 
o6-07H 
08-09H 
OAH 
OB-OCH 
OD-OEH 
OF-lOH 
11-12H 
13-14H 
15-18H 

Number of hidden sectors (versions 3.0 and later) 
High-order word of number of hidden sectors (version 3.2) 
If bytes 8-9 are zero, total number of sectors in medium (version 3.2) 

In character-device drivers, the Build BPB function should simply set the done flag in the 
status word of the request header and return. 

460 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 470/1582



Article 15: Installable Device Drivers 

The Read, Write, and Write with Verify functions 
The Read (Input) function (command code 4) transfers data from the device into a speci
fied memory buffer. The Write (Output) function (command code 8) transfers data from a 
specified memory buffer to the device. The Write with Verify function (command code 9) 
works like the Write function but, if feasible, also performs a read-after-write verification 
that the data was transferred correctly. The MS-DOS kernel calls the Write with Verify 
function, instead of the Write function, whenever the system's global verify flag has 
been turned on with the VERIFY command or with Interrupt 21H Function 2EH (Set 
Verify Flag). 

All three of these driver functions are called by the MS-DOS kernel with the address and 
length of the buffer for the data to be transferred. In the case of block -device drivers, the 
kernel also passes the drive unit code, the starting logical sector number, and the media 
ID byte for the disk (Figure 15-7). 

OOH 
OlH 
02H 

03H 

05H 

ODH 

OEH 

lOH 

12H 

14H 

16H 

ISH 

Driver called with 

Request header length 

Unit number* 

Command code 

Reserved 

Media ID byte* 

Offset of data 

Segment of data 

Bytes/sectors requested 

Starting sector number* 

* Block-device drivers only 

OOH 

OlH 

02H 

03H 

05H 

ODH 

OEH 

IOH 

12H 

14H 

16H 

ISH 

t MS-DOS 3.0 and later, command codes 4, S, and 9 only 

Driver returns 

Status 

Reserved 

Bytes/sectors transferred 

Offset of volume label 
(if error OFH)* t 

Segment of volume label 
(if error OFH)* t 

Figure 15-7. The request header for IOCTL Read (command code 3), Read (command code 4), Write (com
mand code 8), Write with Verify (command code 9), IOCTL Write (command code 12), and Output Until 
Busy (command code 16). 

Section II: Programming in the MS-DOS Environment 461 

HUAWEI EX. 1010 - 471/1582



Part C: Customizing MS-DOS 

The Read and Write functions must perform the requested 1/0, first translating each logical 
sector number for a block device into a physical track, head, and sector with the aid of the 
BIOS parameter block. Then the functions must return the number of bytes or sectors 
actually transferred in the appropriate field of the request header and also set the done 
flag in the request header status word. If an error is encountered during an operation, the 
functions must set the done flag, the error flag, and the error type in the status word and 
also report the number of bytes or sectors successfully transferred before the error; it is not 
sufficient to simply report the error. 

Under MS-DOS versions 3.0 and later, the Read and Write functions can optionally use the 
reference count of open files maintained by the driver's Device Open and Device Close 
functions, together with the media ID byte, to determine whether the medium has been 
illegally changed. If the medium was changed with files open, the driver can return the 
error code OFH and the segment and offset of the volume label for the correct disk so that 
the user can be prompted to replace the disk. 

The Nondestructive Read function 
The Nondestructive Read function (command code 5) is supported only on character 
devices. It allows MS-DOS to look ahead in the character stream by one character and is 

· used to check for Control-C characters pending at the keyboard. 

The function is called by the kernel with no parameters other than the command code 
itself (Figure 15-8). It must set the done bit in the status word of the request header and 
also set the busy bit in the status word to reflect whether the device's input buffer is empty 
(busy bit = 1) or contains at least one character (busy bit = 0). If the latter, the function must 
also return the next character that would be obtained by a kernel call to the Read function, 
without removing that character from the buffer (hence the term nondestructive). 

In block-device drivers, the Nondestructive Read function should simply set the done flag 
in the status word of the request header and return. 

Driver called with Driver returns 
OOH 

Request header length 
OOH 

OlH OlH 

02H 
Command code 

02H 

03H 03H 
Status 

05H 05H 

Reserved Reserved 

ODH ODH Character 

Figure 15-8. The Nondestructive Read request header. 

462 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 472/1582



Article 15: Installable Device Drivers 

The Input Status and Output Status functions 
The Input Status and Output Status functions (command codes 6 and 10) are defined only 
for character devices. They are called with no parameters in the request header other than 
the command code itself and return their results in the busy bit of the request header 
status word (Figure 15-9). These functions constitute the driver-level support for the ser
vices the MS-DOS kernel provides to application programs by means of Interrupt 21H 
Function 44H Subfunctions 06H and 07H (Check Input Status and Check Output Status). 

MS-DOS calls the Input Status function to determine whether there are characters waiting 
in a type-ahead buffer. The function sets the done bit in the status word of the request 
header and sets the busy bit to 0 if at least one characteJ.\is already ih the input buffer or to 
1 if no characters are in the buffer and a read request would wait on a character from the 
physical device. If the character device does not have a type-ahead buffer, the Input Status 
routine should always return the busy bit set to 0 so that MS-DOS will not wait for some
thing to arrive in the buffer before calling the Read function. 

Driver called with Driver returns 
OOH 

Request header length 
OOH 

OlH OIH 

02H 
Command code 

02H 
03H 03H 

Status 

05H 05H 

Reserved Reserved 

ODH ODH 

Figure 15-9. The request header for Input Status (command code 6), Plush Input Buffers (command code 7), 
Output Status (command code 10), and Flush Output Buffers (command code 11). 

MS-DOS uses the Output Status function to determine whether a write operation is 
already in progress for the device. The function must set the done bit and the busy bit (0 
if the device is idle and a write request would start immediately; 1 if a write is already in 
progress and a new write request would be delayed) in the status word of the request 
header. 

In block-device drivers, the Input Status and Output Status functions should simply set the 
done flag in the status word of the request header and return. 

The Flush Input Buffer and Flush Output Buffer functions 
The Flush Input Buffer and Flush Output Buffer functions (command codes 7 and 11) are 
defined only for character devices. They simply terminate any read (for Flush Input) or 
write (for Flush Output) operations that are in progress and empty the associated buffer. 
The Flush Input Buffer function is used by MS-DOS to discard characters waiting in the 
type-ahead queue. This driver action corresponds to the MS-DOS service provided to 
application programs by means of Interrupt 21H Function OCH (Flush Buffer, Read 
Keyboard). 

Section II: Programming in the MS-DOS Environment 463 

4 

HUAWEI EX. 1010 - 473/1582



Part C: Customizing M5-DOS 

These functions are called with no parameters in the request header other than the 
command code itself (see Figure 15-9) and return only the status word. 

In block-device drivers, the Flush Buffer functions have no meaning. They should simply 
set the done flag in the status word of the request header and return. 

The IOCTL Read and IOCTL Write functions 
The IOCTL (1/0 Control) Read and IOCTL Write functions (command codes 3 and 12) 
allow control information to be passed directly between a device driver and an application 
program. The IOCTL Read and Write driver functions are called by the MS-DOS kernel 
only if the IOCTL flag (bit 14) is set in the device attribute word of the device header. 

The. MS-DOS kernel passes the address and length of the buffer that contains or will 
receive the IOCTL information (see Figure 15-7). The driver must return the actual count 
of bytes transferred and set the done flag in the request header status word. Any error 
code returned by the driver is ignored by the kernel. 

IOCTL Read and IOCTL Write operations are typically used to configure a driver or device 
or to report driver or device status and do not usually result in the transfer of data to or 
from the physical device. These functions constitute the driver support for the services 
provided to application programs by the MS-DOS kernel through Interrupt 21H Function 
44H Subfunctions 02H, 03H, 04H, and 05H (Receive Control Data from Character Device, 
Send Control Data to Character Device, Receive Control Data from Block Device, and Send 
Control Data to Block Device). 

The Device Open and Device Close functions 
The Device Open and Device Close functions (command codes 13 and 14) are supported 
only in MS-DOS versions 3.0 and later and are called only if the open/close/removable 
media flag (bit 11) is set in the device attribute word of the device header. The Device 
Open and Device Close functions have no parameters in the request header other than the 
unit code for block devices and return nothing except the done flag and, if applicable, the 
error flag and number in the request header status word (Figure 15-10). 

Driver called with Driver returns 
OOH 

Request header length 
OOH 

OlH 
Unit number* 

OlH 

02H 
Command code 

02H 
03H 03H 

Status 

OSH OSH 

Reserved Reserved 

ODH ODH 
* Block-device drivers only 

Figure 15-10. The request header for Device Open (command code 13), Device Close (command code 14), and 
Removable Media (command code 15). 

464 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 474/1582



Article 15: Installable Device Drivers 

Each Interrupt 21H request by an application to open or create a file or to open a character 
device for input or output results in a Device Open call by the kernel to the corresponding 
device driver. Similarly, each Interrupt 21H call by an application to close a file or device 
results in a Device Close call by the kernel to the appropriate device driver. These Device 
Open and Device Close calls are in addition to any directory read or write calls that may 
be necessary. · · 

On block devices, the Device Open and Device Close functions can be used to manage 
local buffering and to maintain a reference count of the number of open files on a device. 
Whenever this reference count is decremented to zero, all files on the disk have been 
closed and the driver should flush any internal buffers so that data is not lost, as the user 
may be about to change disks. The reference count can also be used together with the 
media ID byte by the Read and Write functions to determine whether the disk has been 
changed while files are still open. 

The reference count should be forced to zero when a Media Check call that returns the 
Medium changed code is followed by a Build BPB call, to provide for those programs 4 
that use FCBs to open files and then never close them. This problem does not arise with 
programs that use the handle functions for file management, because all handles are 
always closed automatically by MS-DOS on behalf of the program when it terminates. 
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR Ms-oos: File 
and Record Management. 

On character devices, the Device Open and Device Close functions can be used to send 
hardware-dependent initialization and post-I/O strings to the associated device (for exam
ple, a reset sequence or formfeed character to precede new output and a formfeed to fol
low it). Although these strings can be written directly by an application using ordinary 
write function calls, they can also be previously passed to the driver by application pro
grams with IOCTL Write calls (Interrupt 21H Function 44H Subfunction 05H), which in 
turn are translated by the MS-DOS kernel into driver command code 12 (IOCTL Write) 
requests. The latter method makes the driver responsible for sending the proper control 
strings to the device each time a Device Open or Device Close is executed, but this 
method can be used only with drivers specifically written to support it. 

The Removable Media function 
The Removable Media function (command code 15) is defined only for block devices. It 
is supported in MS-DOS versions 3.0 and later and is called by MS-DOS only if the open/ 
close/ removable media flag (bit 11) is set in the device attribute word of the device header. 
This function constitutes the driver-level support for the service provided to application 
programs by MS-DOS by means oflnterrupt 21H Function 44H Subfunction 08H (Check If 
Block Device Is Removable). 

The only parameter for the Removable Media function is the unit code (see Figure 15-10). 
The function sets the done bit in the request header status word and sets the busy bit to 1 if 
the disk is not removable or to 0 if the disk is removable. This information can be used by 
MS-DOS to optimize its accesses to the disk and to eliminate unnecessary FAT and direc
tory reads. 

Section II: Programming in the MS-DOS Environment 465 

HUAWEI EX. 1010 - 475/1582



Part C: Customizing MS-DOS 

In character-device drivers, the Removable Media function should simply set the done flag 
in the status word of the request header and return. 

The Output Until Busy function 
The Output Until Busy function (command code 16) is defined only for character devices 
under MS-DOS versions 3.0 and later and is called by the MS-DOS kernel only if the corre
sponding flag (bit 13) is set in the device attribute word of the device header. This function 
is an optional driver-optimization function included specifically for the benefit of back
ground print spoolers driving printers that have internal memory buffers. Such printers can 
accept data at a rapid rate until the buffer is full. 

The Output Until Busy function is called with the address and length of the data to be 
written to the device (see Figure 15-7). It transfers data continuously to the device until the 
device indicates that it is busy or until the data is exhausted. The function then must set the 
done flag in the request header status word and return the actual number of bytes trans
ferred in the appropriate field of the request header. 

For this function to return a count of bytes transferred that is less than the number of bytes 
requested is not an error. MS-DOS will adjust the address and length of the data passed in 
the next Output Until Busy function request so that all characters are sent. 

In block-device drivers, the Output Until Busy function should simply set the done flag in 
the status word of the request header and return. 

The Generic IOCTL function 
The Generic IOCTL function (command code 19) is defined under MS-DOS version 3.2 
and is called only if the 3.2-functions-supported flag (bit 6) is set in the device attribute 
word of the device header. This driver function corresponds to the MS-DOS generic IOCTL 
service supplied to application programs by means of Interrupt 21H Function 44H Sub
functions OCH (Generic I/0 Control for Handles) and ODH (Generic I/0 Control for Block 
Devices). 

In addition to the usual information in the static portion of the request header, the Generic 
IOCTL function is passed a category (major) code, a function (minor) code, the contents 
of the SI and DI registers at the point of the IOCTL call, and the segment and offset of a 
data buffer (Figure 15-11). This buffer in turn contains other information whose format 
depends on the major and minor IOCTL codes passed in the request header. The driver 
must interpret the major and minor codes in the request header and the contents of the ad
ditional buffer to determine which operation it will carry out and then set the done flag in 
the request header status word and return any other applicable information in the request 
header or the data buffer. 

Services that can be invoked by the Generic IOCTL function, if the driver supports them, 
include configuring the driver for nonstandard disk formats, reading and writing entire 
disk tracks of data, and formatting and verifying tracks. The Generic IOCTL function has 
been designed to be open-ended so that it can be used to easily extend the device driver 
definition in future versions of MS-DOS. 

466 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 476/1582



OOH 
OlH 

02H 

03H 

05H 

ODH 

OEH 

OFH 

llH 

13H 

15H 

Driver called with 

Request header length 

Unit number* 

Command code 

Reserved 

Category (major) code 

Function (minor) code 

SI register contents 

DI register contents 

Offset of generic 
IOCTL data packet 

Segment of generic 
IOCTL data packet 

* Block-device drivers only 

Figure 15-11. Generic IOCTL request header. 

Article 15: Installable Device Drivers 

Driver returns 
OOH 

OlH 

02H 

03H 

Status 
05H 

Reserved 

ODH 

OEH 

OFH 

llH 

13H 

15H 

The Get Logical Device and Set Logical Device functions 
The Get and Set Logical Device functions (command codes 23 and 24) are defined only for 
block devices under MS-DOS version 3.2 and are called only if the 3.2-functions-supported 
flag (bit 6) is set in the device attribute word of the device header. They correspond to the 
Get and Set Logical Drive Map services supplied by MS-DOS to application programs by 
means of Interrupt 21H Function 44H Subfunctions OEH and OFH. 

The Get and Set Logical Device functions are called with a drive unit number in the 
request header (Figure 15-12). Both functions return a status word for the operation in the 
request header; the Get Logical Device function also returns a unit number. 

The Get Logical Device function is called to determine whether more than one drive letter 
is assigned to the same physical device. It returns a code for the last drive letter used to ref
erence the device (1 = A, 2 = B, and so on); if only one drive letter is assigned to the device, 
the returned unit code should be 0. 

The Set Logical Device function is called to inform the driver of the next logical drive iden
tifier that will be used to reference the device. The unit code passed by the MS-DOS kernel 
in this case is zero based relative to the logieal drives supported by this particular driver. 
For example, if the driver supports two logical floppy-disk-drive units (A and B), only one 
physical disk drive exists in the system, and Set Logical Device is called with a unit number 
of 1, the driver is being informed that the next read or write request from the MS-DOS 
kernel will be directed to drive B. 

Section II: Programming in the MS-DOS Environment 467 

HUAWEI EX. 1010 - 477/1582



Part C: Customizing MS-DOS 

Driver called with Driver returns 
OOH OOH 
OlH 

Request header length 
OlH 

Unit number Last device referenced* 
02H 02H 
03H 

Command code 
03H 

Status 
05H 05H 

Reserved Reserved 

ODH ODH 
* Get Logical Device (Command code 23) only 

Figure 15-12. Get Logical Device and Set Logical Device request header. 

In character-device drivers, the Get Logical Device and Set Logical Device functions should 
simply set the done flag in the status word of the request header and return. 

The Processing of a Typical 1/0 Request 

An application program requests an 1/0 operation from MS-DOS by loading registers with 
the appropriate values and addresses and executing a software Interrupt 21H. MS-DOS 
inspects its internal tables, searches the chain of device headers if necessary, and deter
mines which device driver should receive the 1/0 request. 

MS-DOS then creates a request header data packet in a reserved area of memory. Disk 1/0 
requests are transformed from file and record information into logical sector requests by 
MS-DOS's interpretation of the disk directory and file allocation table. (MS-DOS locates 
these disk structures using the information returned by the driver from a previous Build 
BPB call and issues additional driver read requests, if necessary, to bring their sectors into 
memory.) 

After the request header is prepared, MS-DOS calls the device driver's Strategy entry point, 
passing the address of the request header in registers ES:BX. The Strategy routine saves the 
address of the request header and performs a far return to MS-DOS. 

MS-DOS then immediately calls the device driver's Interrupt entry point. The Interrupt 
routine saves all registers, retrieves the address of the request header that was saved by the 
Strategy routine, extracts the command code, and branches to the appropriate function to 
perform the operation requested by MS-DOS. When the requested function is complete, 
the Interrupt routine sets the done flag in the status word and places any other required 
information into the request header, restores all registers to their state at entry, and per
forms a far return. 

468 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 478/1582



I 
ctionJFH, 

e or Device 
Interrupt 21H Fun 

ReadFil 

I 
ategy, then 
e, passing 
command 

ead (Input) 

Calls to driver Str 
Interrupt routin 

request header with 
code4,R 

I 
s issued to 
requesting 

Device command 
adapter I/0 ports, 
read sector at phy sica! track, 

head, and sec tor number 

I 

Application program 

MS-DOS kernel 

Device driver 

Physical device 

Article 15: Installable Device Drivers 

I 
Read statu s returned 
in carry fla g and AX register 

J 
Status re 
kernel in r 

turned to MS-DOS 
equest header; 
din buffer data place 

indicated b y kernel 

I 
Data trans£ erred from 

memory device to 

J 
Figure 15-13. The processing of a typical I/0 request from an application program. 

MS-DOS translates the driver's returned status into the appropriate carry flag status, 
register values, and (possibly) error code for the MS-DOS Interrupt 21H function that was 
requested and returns control to the application program. Figure 15-13 sketches this entire 
flow of control and data. 

Note that a single Interrupt 21H function request by an application program can result in 
many operation requests by MS-DOS to the device driver. For example, if the application 
invokes Interrupt 21H Function 3DH (Open File with Handle) to open a file, MS-DOS may 
have to issue multiple sector read requests to the driver while searching the directory for 
the filename. Similady, an application program's request to write a string to the screen in 
cooked mode with Interrupt 21H Function 40H (Write File or Device) will result in a write 
request to the driver for each character in the string, because MS-DOS filters the characters 
and polls the keyboard for a pending Control-C between each character output. 

Writing Device Drivers 

Device drivers are traditionally coded in assembly language, both because of the rigid 
structural requirements and because of the need to keep driver execution speed high and 
memory overhead low. Although MS-DOS versions 3.0 and later are capable of loading 

Section II: Programming in the MS-DOS"Environment 469 

HUAWEI EX. 1010 - 479/1582



Part C: Customizing MS-DOS 

drivers in .EXE format, versions 2.x can load only pure memory-image device drivers that 
do not require relocation. Therefore, drivers are typically written as though they were 
.COM programs with an "origin" of zero and converted with EXE2BIN to .BIN or .SYS files 
so that they will be compatible with any version of MS-DOS (2.0 or later). See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FORMs-nos: Structure of an 
Application Program. 

The device header must be located at the beginning of the file (offset 0). Both words in the 
header's link field should be set to -1, thus allowing MS-DOS to fix up the link field when 
the driver is loaded during system initialization so that it points to the next driver in the 
chain. When a single file contains more than one driver, the offset portion of each header 
link field should point to the next header in that file, all using the same segment base of 
zero, and only the link field of the last header in the file should be set to -1, -1. 

The device attribute word must reflect the device-driver type (character or block) and the 
bits that indicate support for the various optional command codes must have appropriate 
values. The device header's offsets to the Strategy and Interrupt routines must be relative 
to the same segment base as the device header itself. If the driver is for a character device, 
the name field should be filled in properly with the device's logical name, which can be 
any legal eight -character uppercase filename padded with spaces and without a colon. 
Duplication of existing character-device names or existing disk-file names should be 
avoided (unless a resident character-device driver is being intentionally superseded). 

The Strategy and Interrupt routines for the device are called by MS-DOS by means of an 
intersegment call (CALL FAR) and must return to MS-DOS with a far return. Both routines 
must preserve all CPU registers and flags. The MS-DOS kernel's stack has room for 40 to 50 
bytes when the driver is called; if the driver makes heavy use of the stack, it should switch 
to an internal stack of adequate depth. 

The Strategy routine is, of course, very simple. It need only save the address of the request 
header that is passed to it in registers ES:BX and exit back to the kernel. 

The logic of the Interrupt routine is necessarily more complex. It must save the CPU reg
isters and flags, extract the command code from the request header whose address was 
previously saved by the Strategy routine, and dispatch the appropriate command-code 
function. When that function is finished, the Interrupt routine must ensure that the appro
priate status and other information is placed in the request header, restore the CPU regis
ters and flags, and return control to the kernel. 

Although the interface between the MS-DOS kernel and the command-code routines is 
fairly simple, it is also strict. The command-code functions must behave exactly as they are 
defined or the system will behave erratically. Even a very subtle discrepancy in the action 
of a driver function can have unexpectedly large global effects. For example, if a block 
driver Read function returns an error but does not return a correct value for the number of 
sectors successfully transferred, the MS-DOS kernel will be misled in its attempts to retry 
the read for only the failing sectors and disk data might be corrupted. 

470 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 480/1582



Article 15: Installable Device Drivers 

Example character driver: TEMPLATE 

Figure 15-14 contains the source code for a skeleton character-device driver called 
TEMPLATE.ASM. This driver does nothing except display a sign-on message when it is 
loaded, but it demonstrates all the essential driver components, including the device 
header, Strategy routine, and Interrupt routine. The command-code functions take no 
action other than to set the done flag in the request header status word. 

name template 
title 'TEMPLATE --- installable driver template' 

TEMPLATE.ASM: A program skeleton for an installable 

device driver (MS-DOS 2.0 or later) 

The driver command-code routines are stubs only and have 
no effect but to return a nonerror "Done" status. 

Ray Duncan, July 1987 

_TEXT segment byte public 'CODE' 

assume cs:_TEXT,ds:_TEXT,es:NOTHING 

org 0 

MaxCmd equ 24 

cr equ Odh 

lf equ Oah 

earn equ '$' 

Header: 

dd -1 

dw Oc840h 

dw Strat 

dw Intr 

db 'TEMPLATE' 

RHPtr dd ? 

maximum allowed command code 
12 for MS-DOS 2.x 
1 6 for MS-DOS 3. 0-3.1 

24 for MS-DOS 3.2-3.3 

ASCII carriage return 

ASCII line feed 

end-of-message signal 

device driver header 

link to next device driver 

device attribute word 

"Strategy" routine entry point 
"Interrupt" routine entry point 

logical device name 

pointer to request header, passed 

by MS-DOS kernel to Strategy routine 

Figure 15-14. TEMPLATE.ASM, the source file for the TEMPLATE.SYS driver. (more) 

Section JL- Programming in the MS-DOS Environment 471 

HUAWEI EX. 1010 - 481/1582



Part C: Customizing MS-DOS 

Dispatch: Interrupt routine command-code 

dispatch table 

dw I nit 0 initialize driver 

dw MediaChk 1 media check on block device 

dw BuildBPB ; 2 build BIOS parameter block 

dw IoctlRd 3 I/0 control read 

dw Read 4 read (input) from device 

dw NdRead 5 nondestructive read 

dw InpStat 6 return current input status 

dw InpFlush 7 flush device input buffers 

dw Write 8 write (output) to device 

dw WriteVfy 9 write with verify 

dw Out Stat 10 return current output status 

dw OutFlush 11 flush output buffers 

dw IoctlWt 12 I/0 control write 

dw DevOpen 13 device open (MS-DOS 3.0+) 

dw DevClose 14 device close (MS-DOS 3.0+) 

dw RernMedia 15 removable media (MS-DOS 3. 0+) 

dw OutBusy 1 6 output until busy (MS-DOS 3.0+) 

dw Error 17 not used 

dw Error 18 not used 

dw GeniOCTL 1 9 g,eneric IOCTL (MS-DOS 3. 2+) 

dw Error 20 not used 

dw Error 21 not used 

dw Error 22 not used 

dw GetLogDev 23 get logical device (MS-DOS 3.2+) 

dw SetLogDev 24 set logical device (MS-DOS 3.2+) 

Strat proc far device driver Strategy routine, 

called by MS-DOS kernel with 

ES:BX = address of request header 

save pointer to request header 

mov word ptr cs: [RHPtr],bx 

mov word ptr cs: [RHPtr+2],es 

ret ; back to MS-DOS kernel 

Strat endp 

Intr proc far 

push ax 

push bx 

push ex 

push dx 

push ds 

Figure 15-14. Continued. 

472 The MS-DOS Encyclopedia 

device driver Interrupt routine, 
called by MS-DOS kernel immediately 

after call to Strategy routine 

save general registers 

(more) 

HUAWEI EX. 1010 - 482/1582



push 

push 
push 

push 

push 

pop 

les 

mov 

xor 
cmp 

jle 

call 

jmp 

Intr1: shl 

call 

les 

Intr2: or 
mov 

pop 
pop 

pop 

pop 

pop 

pop 
pop 

pop 

pop 

ret 

es 

di 

si 
bp 

cs 

ds 

di, [RHPtr] 

bl,es: [di+2] 

bh,bh 
bx,MaxCmd 

Intr1 

Error 

Intr2 

Article 15: Installable Device Drivers 

make local data addressable 

by setting DS = CS 

let ES:DI = request header 

get BX command code 

make sure it's valid 

jump, function code is ok 

set error bit, "Unknown Command" code 

bx,1 ; form index to dispatch table 

; and branch to command-code routine 
word ptr [bx+Dispatch] 

di, [RHPtr] 

ax,0100h 
es: [di+3], ax 

bp 

si 
di 

es 
ds 

dx 

ex 
bx 

ax 

ES:DI = address of request header 

merge Done bit into status and 

store status into request header 

restore general registers 

return to MS-DOS kernel 

Command-code routines are called by the Interrupt routine 

via the dispatch table with ES:DI pointing to the request 

header. Each routine should return AX = OOH if function was 

completed successfully or AX = 8000H + error code if 
function failed. 

MediaChk proc near function 1 Media Check 

xor ax,ax 
ret 

MediaChk endp 

Figure 15-14. Continued. (more) 

Section II: Programming in the MS-DOS Environment 473 

HUAWEI EX. 1010 - 483/1582



Part C: Customizing MS-DOS 

BuildBPB proc near function 2 Build BPB 

xor ax, ax 

ret 

BuildBPB endp 

IoctlRd proc near function 3 I/O Control Read 

xor ax, ax 

ret 

IoctlRd endp 

Read proc near function 4 Read (Input) 

xor ax, ax 

ret 

Read endp 

NdRead proc near function 5 Nondestructive Read 

xor ax, ax 

ret 

NdRead endp 

InpStat proc near function 6 Input Status 

xor ax, ax 

ret 

InpStat endp 

InpFlush proc near function 7 Flush Input Buffers 

xor ax, ax 

ret 

InpFlush endp 

Figure 15-14. Continued. (more) 

474 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 484/1582



Article 15: Installable Device Drivers 

Write proc near function 8 Write (Output) 

xor ax, ax 
ret 

Write endp 

WriteVfy proc near function 9 Write with Verify 

xor ax, ax 
ret 

WriteVfy endp 

OutStat proc near function 10 Output Status 

xor ax, ax 

ret 

Out Stat endp 

OutFlush proc near function 11 Flush Output Buffers 

xor ax, ax 
ret 

OutFlush endp 

IoctlWt proc near function 12 I/O Control Write 

xor ax, ax 

ret 

IoctlWt endp 

DevOpen proc near function 13 Device Open 

xor ax, ax 

ret 

DevOpen endp 

Figure 15-14. Continued. (more) 

Section IL- Programming in the MS-DOS Environment 475 

HUAWEI EX. 1010 - 485/1582



Part C: Customizing MS-DOS 

DevClose proc near function 14 Device Close 

xor ax, ax 
ret 

DevClose endp 

RemMedia proc near function 15 Removable Media 

xor ax, ax 

ret 

RemMedia endp 

OutBusy proc near function 1 6 Output Until Busy 

xor ax, ax 

ret 

OutBusy endp 

GeniOCTL proc near function 19 Generic IOCTL 

xor ax, ax 
ret 

GeniOCTL endp 

GetLogDev proc near function 23 Get Logical Device 

xor ax, ax 

ret 

GetLogDev endp 

SetLogDev proc near function 24 Set Logical Device 

xor ax, ax 

ret 

SetLogDev endp 
Figure 15-14. Continued. 

(more) 

476 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 486/1582



Error proc 

mov 
ret 

near 

ax,8003h 

Error endp 

I nit proc near 

push es 
push di 

mov ah,9 
mov dx,offset Ident 
int 21h 

pop di 
pop es 

Article 15: Installable Device Drivers 

bad command code in request header 

error bit + "Unknown Command" code 

function 0 = initialize driver 

save address of request header 

display driver sign-on message 

restore request header address 

; set address of free memory 
; above driver (break address) 

mov word ptr es: [di+14],offset Init 
mov word ptr es: [di+16],cs 

xor 
ret 

Init endp 

I dent 

ax, ax ; return status 

cr,lf,lf db 
db 'TEMPLATE Example Device Driver' 

db cr,lf,eom 

Intr endp 

_TEXT ends 

end 

Figure 15-14. Continued. 

TEMPLATE.ASM can be assembled, linked, and converted into a loadable driver with the 
following commands: 

C>MASM TEMPLATE; <Enter> 

C>LINK TEMPLATE; <Enter> 
C>EXE2BIN TEMPLATE.EXE TEMPLATE.SYS <Enter> 

The Microsoft Object Linker (LINK) will display the warning message No Stack Segment; 
this message can be ignored. The driver can then be installed by adding the line 

DEVICE=TEMPLATE.SYS 

Section II: Programming in the MS-DOS Environment 477 

HUAWEI EX. 1010 - 487/1582



Part C: Customizing MS-DOS 

to the CONFIG.SYS file and restarting the system. The fact that the TEMPLATE.SYS 
driver also has the logical character-device name TEMPLATE allows the demonstration of 
an interesting MS-DOS effect: After the driver is installed, the file that contains it can no 
longer be copied, renamed, or deleted. The reason for this limitation is that MS-DOS 
always searches its list of character-device names first when an open request is issued, 
before it inspects the disk directory. The only way to erase the TEMPLATE.SYS file is to 
modify the CONFIG.SYS file to remove the associated DEVICE statement and then restart 
the system. 

For a complete example of a character-device driver for interrupt-driven serial communica
tions, See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PRoGRAMMING FOR MS-oos: 
Interrupt-Driven Communications. 

Example block driver: TINYDISK 

Figure 15-15 contains the source code for a simple 64 KB virtual disk (RAMdisk) called 
TINYDISK.ASM. This code provides a working example of a simple block-device driver. 
When its Initialization routine is called by the kernel, TINYDISK allocates itself 64 KB of 
RAM and maps a disk structure onto the RAM in the form of a boot sector containing a 
valid BPB, a FAT, a root directory, and a files area. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: STRUCTURE OF Ms-oos: MS-DOS Storage Devices. 

name tinydisk 
title TINYDISK example block-device driver 

TINYDISK.ASM ~-- 64 KB RAMdisk 

Ray Duncan, July 1987 
Example of a simple installable block-device driver. 

_TEXT segment public 'CODE' 

assume cs:_TEXT,ds:_TEXT,es:-TEXT 

org 0 

MaxCmd equ 12 max driver command code 
(no MS-DOS 3.x functions) 

cr equ Odh ASCII carriage return 
lf equ Oah ASCII line feed 
blank equ 020h ASCII space code 
eom equ '$' end-of-message signal 

Secsize equ 512 bytes/sector, IBM-compatible media 

Figure 15-15. TINYDJSK.ASM, the source file for the TINYDISK.SYS driver. (more) 

478 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 488/1582



Header dd 
dw 

dw 
dw 

db 
db 

RHPtr dd 

Secseg dw 

Xfrsec dw 

Xfrcnt dw 

Xfrreq dw 

Xfraddr dd 

Array dw 

Bootrec equ 

jmp 

nop 

db 

BPB dw 

db 
dw 

db 

dw 

dw 

db 

dw 

-1 

0 
Strat 

Intr 

7 dup (0) 

? 

0 

0 

0 

0 

BPB 

$ 

$ 

'MS 2. 0' 

Secsize 

1 

32 

128 

Of8h 

Article 15: Installable Device Drivers 

device-driver header 

link to next driver in chain 
device attribute word 

"Strategy" routine .entry point 

"Interrupt" routine entry point 
number of units, this device 

reserved area (block-device drivers) 

segment:offset of request header 

segment base of sector storage 

current sector for transfer 

sectors successfully transferred 

number of sectors requested 

working address for transfer 

array of pointers to BPB 

for each supported unit 

phony JMP at start of 

boot sector; this field 

must be 3 bytes 

OEM identity field 

BIOS Parameter Block (BPB) 

OOH - bytes per sector 
02H - sectors per cluster 

03H - reserved sectors 

OSH - number of FATs 

06H - root directory entries 

08H - sectors = 64 KB/secsize 
OAH - media descriptor 

OBH - sectors per FAT 

Bootrec_len equ $-Bootrec 

Strat proc far RAMdisk strategy routine 

save address of request header 

mov word ptr cs:RHPtr,bx 
mov word ptr cs: [RHPtr+2),es 

ret ; back to MS-DOS kernel 

Strat endp 

Figure 15-15. Continued. (more) 

Section 11- Programming in the MS-DOS Environment 479 

HUAWEI EX. 1010 - 489/1582



Part C: Customizing MS-DOS 

Intr proc far 

push ax 
push bx 
push ex 
push dx 
push ds 
push es 
push di 
push si 
push bp 

mov 
mov 

les 

mov 

ax,cs 
ds,ax 

di, (RHPtr] 

bl,es: (di+2] 
xor bh,bh 

cmp 
jle 
mov 
jmp 

bx,MaxCmd 
Intr1 
ax,8003h 
Intr3 

RAMdisk interrupt routine 

save general registers 

make local data addressable 

ES:DI = request header 

get command code 

make sure it's valid 
jump, function code is ok 
set Error bit and 
"Unknown Command" error code 

Intr1 : shl bx,1 form index to dispatch table and 

call 

les 

Intr3: or 
mov 

Intr4: pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
ret 

Intr endp 

branch to command-code routine 
word ptr (bx+Dispatch] 

di, (RHPtr] 

ax,0100h 
es: (di+3],ax 

bp 
si 
di 

es 
ds 
dx 
ex 
bx 
ax 

should return AX = status 

restore ES:DI = request header 

merge Done bit into status and store 
status into request header 

restore general registers 

return to MS-DOS kernel 

Figure 15-15. Continued. 

480 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 490/1582



Article 15: Installable Device Drivers 

Dispatch: 

dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 

I nit 

MediaChk 
BuildBPB 
Dummy 
Read 
Dummy 
Dummy 
Dummy 
Write 
Write 
Dummy 
Dummy 
Dummy 

MediaChk proc near 

command-code dispatch table 
all command-code routines are 
entered with ES:DI pointing 
to request header and return 
the operation status in AX 

0 initialize driver 
media check on block device 

2 build BIOS parameter block 
3 I/0 control read 

5 

6 

7 

8 

9 
10 
11 
12 

read (input) from device 
nondestructive read 
return current input status 
flush device input buffers 
write (output) to device 
write with verify 
return current output status 
flush output buffers 
I/O control write 

command code 1 = Media Check 

return "not changed" code 
mov byte ptr es: [di+Oeh],1 

xor 
ret 

MediaChk endp 

ax, ax 

BuildBPB proc near 

; and success status 

command code 2 = Build BPB 

put BPB address in request header 
mov word ptr es: [di+12h],offset BPB 
mov word ptr es: [di+14h],cs 

xor 
ret 

BuildBPB endp 

Read proc 

call 

Read1: mov 
cmp 
je 
mov 
call 

ax, ax 

near 

Setup 

ax,Xfrcnt 
ax,Xfrreq 
Read2 
ax,Xfrsec 
Mapsec 

Figure 15-15. Continued. 

; return success status 

command code 4 = Read (Input) 

set up transfer variables 

done with all sectors yet? 

jump if transfer completed 
get next sector number 
and map it 

(more) 

Section IL· Programming in the MS-DOS Environment 481 

HUAWEI EX. 1010 - 491/1582



Part C: Customizing MS-DOS 

Read2: 

Read 

Write 

Write1: 

Write2: 

mov 
mov 

les 
mov 

mov 

cld 

rep 

push 

pop 

inc 

add 
inc 
jmp 

xor 

les 
mov 

mov 

ret 

endp 

proc 

call 

mov 

cmp 

je 

mov 

call 

lds 
mov 

cld 

ax,es 
si,di 
di,Xfraddr 

ds,ax 
cx,Secsize 

movsb 

cs 
ds 
Xfrsec 

ES:DI =requester's buffer 
DS:SI = RAMdisk address 

transfer logical sector from 
RAMdisk to requestor 

restore local addressing 

advance -sector number 

advance transfer address 
word ptr Xfraddr,Secsize 

Xfrcnt 

Read1 

ax, ax 
di,RHPtr 

bx,Xfrcnt 
es: [di+12h],bx 

near 

Setup 

ax,Xfrcnt 
ax,Xfrreq 

Write2 

ax,Xfrsec 

Mapsec 
si,Xfraddr 

cx,Secsize 

; count sectors transferred 

all sectors transferred 

return success status 

put actual transfer count 
into request header 

command code 8 

command code 9 
Write (Output) 

Write with Verify 

set up transfer variables 

done with all sectors yet? 

jump if transfer completed 

get next sector number 
and map it 

transfer logical sector from 

requester to RAMdisk 
rep movsb 

push 

pop 
inc 

add 

inc 
jmp 

xor 

les 

cs 
ds 

Xfrsec 

restore local addressing 

advance sector number 

advance transfer address 
word ptr Xfraddr,Secsize 

Xfrcnt 

Write1 

ax, ax 
di,RHPtr 

; count sectors transferred 

all sectors transferred 

return success status 

put actual transfer count 

Figure 15-15. Continued. 

482 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 492/1582



r 
I 
' ' 

Write 

Dummy 

Dummy 

mov 

mov 

ret 

endp 

proc 

xor 
ret 

endp 

Article 15: Installable Device Drivers 

bx,Xfrcnt into request header 
es: [di+12h] ,bx 

near called for unsupported functions 

ax, ax return success flag for all 

Mapsec proc near map sector number to memory address 
call with AX logical sector no. 

mov 

mul 

add 

di,Secsize/16 

di 

ax,Secseg 

rnov es, ax 

xor 

ret 

di,di 

return ES:DI memory address 

paragraphs per sector 

* logical sector number 
+ segment base of sector storage 

now ES:DI points to sector 

Mapsec endp 

Setup 

Setup 

proc 

push 

push 

mov 

mov 

mov 

near 

es 

di 

ax,es: [di+14h] 

Xfrsec,ax 
ax,es: [di+12h] 

mov Xfrreq,ax 

set up for read or write 

call ES:DI = request header 

extracts address, start, count 

save request header address 

starting sector number 

sectors requested 

les di,es: [di+Oeh] ; requester's buffer address 

mov word ptr Xfraddr,di 

mov word ptr Xfraddr+2,es 

mov 

pop 

Xfrcnt,O 

di 

pop es 

ret 

endp 

initialize sectors transferred count 

; restore request header address 

Figure 15-15. Continued. (more) 

Section JL- Programming in the MS-DOS Environment 483 

HUAWEI EX. 1010 - 493/1582



Part C: Customizing MS-DOS 

I nit 

I nit 

Format 

proc near command code 0 
on entry ES:DI 

Initialize driver 
request header 

mov 

add 
ax,cs 
ax,Driver_len 
Secseg,ax 
ax,1000h 

calculate segment base for sector 
storage and save it 

mov 
add add 1000H paras (64 KB) and 
mov es: [di+10h],ax set address of free memory 
mov word ptr es: [di+Oeh],O 

call Format format the RAMdisk 

call Signon display driver identification 

les di,cs:RHPtr restore ES:DI = request header 
set logical units = 1 

mov byte ptr es: [di+Odh],1 
; set address of BPB array 

mov word ptr es: [di+12h],offset Array 
mov word ptr es: [di+14h],cs 

xor 
ret 

endp 

proc 

mov 
xor 
mov 
xor 
cld 
rep 

mov 

call 
mov 
mov 

ax, ax ; return success status 

near format the RAMdisk area 

es,Secseg first .zero out RAMdisk 
di,di 
cx,8000h 32 K words 64 KB 
ax, ax 

stosw 

ax,O get address of logical 
Mapsec sector zero 

si,offset Bootrec 
cx,Bootrec_len 

rep movsb and copy boot record to 

mov ax, word ptr BPB+3 

call Mapsec get address of 1st FAT 
mov al,byte ptr BPB+Oah 
mov es:[di],al ; put media ID byte into 
mov word ptr es: [di+1],-1 

mov ax,word ptr BPB+3 

add ax, word ptr BPB+Obh 

it 

sector 

it 

call Mapsec ; get address of 1st directory sector 

Figure 15-15. Continued. 

484 The MS-DOS Encyclopedia 

(more) 

HUAWEI EX. 1010 - 494/1582



Article 15: Installable Device Drivers 

mov si,offset Volname 
mov cx,Volname_len 

rep movsb 

ret 

Format endp 

Signon proc near 

les di,RHPtr 
mov al,es: [di+22] 

add al, 'A' 
mov drive,al 

mov ah,30h 
int 21h 

cmp al,2 

ja Signon1 
mov Ident1,eom 

Signon1: 

mov ah,09H 
mov dx,offset I dent 
int 21h 

ret 

Signon endp 

I dent db cr,lf,lf 
db 'TINYDISK 64 KB 

db cr,lf 

; 

copy volume label to it 

done with formatting 

driver identification message 

let ES:DI = request header 

get drive code from header, 

convert it to ASCII, and 

store into sign-on message 

get MS-DOS version 

jump if version 3.0 or later 
version 2.x, don't print drive 

print sign-on message 
Function 09H = print string 

DS:DX = address of message 

transfer to MS-DOS 

back to caller 

driver sign-on message 
RAMdisk' 

Ident1 db 'RAMdisk will be drive ' 
Drive db 'X: I 

db cr,lf,eom 

Vol name db 'DOSREF_DISK' volume label for RAMdisk 
db 08h attribute byte 
db 1 0 dup (0) reserved area 
dw 0 time = 00:00 
dw Of01h date = August 1, 1987 
db 6 dup (0) reserved area 

Volname_len equ $-volname 

Driver_len dw (($-header)/16)+1 driver size in paragraphs 

_TEXT ends 

end 

Figure 15-15. Continued. 

Section 11· Programming in the MS-DOS Environment 485 

HUAWEI EX. 1010 - 495/1582



Part C: Customizing MS-DOS 

Subsequent driver Read and Write calls by the kernel to TINYDISK function as though they 
were transferring sectors to and from a physical storage device but actually only copy data 
from one area in memory to another. A programmer can learn a great deal about the oper
ation of block-device drivers and MS-DOS's relationship to those drivers (such as the order 
and frequency of Media Change, Build BPB, Read, Write, and Write With Verify calls) by 
inserting software probes into TINYDISK at appropriate locations and monitoring its 
behavior. 

TINYDISK.ASM can be assembled, linked, and converted into a loadable driver with the 
following commands: 

C>MASM TINYDISK; <Enter> 
C>LINK TINYDISK; <Enter> 
C>EXE2BIN TINYDISK.EXE TINYDISK.SYS <Enter> 

The linker will display the warning message No Stack Segment; this message can be 
ignored; The driver can then be installed by adding the line 

DEVICE=TINYDISK.SYS 

to the CONFIG.SYS file and restarting the system. When it is loaded, TINYDISK displays a 
sign-on message and the drive letter that it was assigned if it is running under MS-DOS ver
sion 3.0 or later. (If the host system is MS-DOS version 2.x, this information is not provided 
to the driver.) Files can then be copied to the RAMdisk as though it were a small but 
extremely fast disk drive. 

Ray Duncan 

486 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 496/1582



PartD 
Directions of MS-DOS 

HUAWEI EX. 1010 - 497/1582



HUAWEI EX. 1010 - 498/1582



Article 16: Writing Applications for Upward Compatibility 

Article16 
Writing Applications for 
Upward Compatibility 

One of the major concerns of the designers of Microsoft OS/2 was that it be backwardly 
compatible- that is, that programs written to run under MS-DOS versions 2 and 3 be able 
to run on MS OS/2. A major concern for present application programmers is that their pro
grams run not only on current versions of MS-DOS (and MS OS/2) but also on future ver
sions of MS-DOS. Ensuring such upward compatibility involves both hardware issues and 
operating-system issues. 

Hardware Issues 

A basic requirement for ensuring upward compatibility is hardware-independent code. If 
you bypass system services and directly program the hardware- such as the system inter
rupt controller, the system clock, and the enhanced graphics adapter (EGA) registers
your application will not run on future versions of MS-DOS. 

Protected mode compatibility 

The 80286 and the 80386 microprocessors can operate in two incompatible modes: real 
mode and protected mode. When either chip is operating in real mode, it is perceived by 
the operating system and programs as a fast 8088 chip. Applications written for the 8086 
and 8088 run the same on the 80286 and the 80386-only faster. They cannot, however, 
take advantage of 80286 and 80386 features unless they can run in protected mode. 

Following the guidelines below will minimize the work necessary to convert a real mode 
program to protected mode and will also allow a program to use a special subset of the 
MS OS/2 Applications Program Interface (API)-Family API. A binary program (.EXE) 
that uses the family API can run in either protected mode or real mode under MS OS/2 and 
subsequent systems, but it can run only in real mode under MS-DOS version 3. 

Family API 

The Family API requires that the application use a subset of the MS OS/2 Dynamic Link 
System API. Special tools link the application with a special library that implements the 
subset MS OS/2 system services in the MS-DOS version 3 environment. Many of these ser
vices are implemented by calling the appropriate Interrupt 21H subfunction; some are 

· implemented in the special library itself. 

Section /1· Programming in the MS-DOS Environment 489 

HUAWEI EX. 1010 - 499/1582



Part D: Directions of MS-DOS 

When a Family API application is loaded under MS OS/2 protected mode, MS OS/2 ignores 
the special library code and loads only the application itself. MS OS/2 then provides the 
requested services in the normal fashion. However, MS-DOS version 3loads the entire 
package- the application and the special library-because the Family API .EXE file is 
constructed to look like an MS-DOS 3 .EXE file. 

Linear vs segmented memory 

The protected mode and the real mode of the 80286 and the 80386 are compatible except 
in the area of segmentation. The 8086 has been described as a segmented machine, but it 
is actually a linear memory machine with offset registers. When a memory address is gen
erated, the value in one of the "segment" registers is multiplied by 16 and added as a 
displact;ment to the offset value supplied by the instruction's addressing mode. No length 
information is associated with each "segment"; the "segment" register supplies only a 
20-bit addressing offset. Programs routinely use this by computing a 20-bit address and 
then decomposing it into a 16-bit "segment" value and a 16-bit displacement value so that 
the address can be referenced. 

The protected mode of the 80286 and the 80386, however, is truly segmented. A value 
placed in a segment register selects an entry from a descriptor table; that entry contains 
the addressing offset, a segment length, and permission bits. On the 8086, the so-called 
segment component of an address is multiplied by 16 and added to the offset component, 
producing a 20-bit physical address. Thus, if you take an address in the segment: offset 
form, add 4 to the segment value, and subtract 64 (that is, 4 * 16) from the offset value, the 
new address references exactly the same location as the old address. On the 80286 and 
the 80386 in protected mode, however, segment values, called segment selectors, have no 
direct correspondence to physical addresses. In other words, in 8086 mode, the two 
address forms 

100016:034516 

and 

100416:030516 

reference the same memory location, but in protected mode these two forms reference 
totally different locations. 

Creating segment values 

This architectural difference gives rise to the most common cause of incompatibility- the 
program performs addressing arithmetic to compute "segment" values. Any program that 
uses the 20-bit addressing scheme to create or to compute a value to be loaded in a seg
ment register cannot be converted to run in protected mode. To be protected mode com
patible, a program must treat the 8086's so-called segments as true segments. 

To create a program that does this, write according to the following guidelines: 

1. Do not generate any segment values. Use only the segment values supplied by 
MS-DOS calls and those placed in the segment registers when MS-DOS loaded your 
program. The exception is "huge objects"-memory objects larger than 64 KB. In 

490 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 500/1582



__________________ Ar_t..::..ic..::..le:.._l::..:6..::..: W'i..::_:::ri::..:tin~g Applications for Upward Compatibility 

this case, MS OS/2 provides a base segment number and a "segment offset value." 
The returned segment number selects the first 64 KB of the object and the segment 
number, plus the segment offset value address the second 64 KB of the object. Like
wise, the returned segment value plus N *(segment offset value) selects theN+ 1 
64 KB piece of the huge object. Write real mode code in this same fashion, using 
4096 as the segment offset value. When you convert your program, you can substitute 
the value provided by MS OS/2. 

2. Do not address beyond the allocated length of a segment. 
3. Do not use segment registers as scratch registers by placing general data in them. 

Place only valid segment values, supplied by MS-DOS, in a segment register. The one 
exception is that you can place a zero value in a segment register, perhaps to indicate 
"no address." You can place the zero in the segment register, but you cannot reference 
memory using that register; you can only load/store or push/pop it. 

4. Do not use CS: overrides on instructions that store into memory. It is impossible to 
store into a code segment in protected mode. 

CPU speed 

Because various microprocessors and machine configurations execute at different speeds, 
a program should not contain timing loops that depend on CPU speed. Specifically, a pro
gram should not establish CPU speed during initialization and then use that value for tim-
ing loops because the preemptive scheduling of MS OS/2 and future operating systems 4 
can "take away" the CPU at any time for arbitrary and unpredictable lengths of time. (In 
any case, time should not be wasted in a timing loop when other processes could be using 
system resources.) 

Program timing 

BIOS 

Programs must measure the passage of time carefully. They can use the system clock-tick 
interrupt while directly interfacing with the user, but no clock ticks will be seen by real 
mode programs when the user switches the screen interface to another program. 

It is recommended that applications use the time-of-day system interface to determine 
elapsed time. To facilitate conversion to MS OS/2 protected mode, programs should encap
sulate time-of-day or elapsed-time functions into subroutines. 

Avoid BIOS interrupt interfaces except for Interrupt lOH (the screen display functions) 
and Interrupt 16H (the keyboard functions). Interrupt lOH functions are contained in the 
MS OS/2 VIO package, and l!lterrupt 16H functions are in the MS OS/2 KBD package. 
Other BIOS interrupts provide functions that are available under MS OS/2 only in con
siderably modified forms. 

Special operations 

Uncommon, or special, operations and instructions can produce varied results, depending 
on the microprocessor. For example, when a "divide by 0" trap is taken on an 8086, the 
stack frame points to the instruction after the fault; when such action is taken on the 80286 
and 80386, the return address points to the instruction that caused the fault. The effect of 

Section Jl- Programming in the MS-DOS Environment 491 

HUAWEI EX. 1010 - 501/1582



Part D: Directions of MS-DOS 

pushing the SP register is different between the 80286 and the 80386 as well. See Appen
dix M: 8086/8088 Software Compatibility Issues. Write your program to avoid these 
problem areas. 

Operating-System Issues 

Basic to.writing programs that will run on future operating systems is writing code that is 
not version specific. Incorporating special version-specific features in a program will vir
tually ensure that the program will be incompatible with future versions of MS-DOS and 
MSOS/2. 

Following the guidelines below will not necessarily ensure your program's compatibility, 
but it will facilitate converting the program or using the Family API to produce a dual
mode binary program. 

Filenames 

MS-DOS versions 2 and 3 silently truncate a filename that is longer than eight characters 
or an extension that is longer than three characters. MS-DOS generates no error message 
when performing this task. In real mode, MS OS/2 also silently truncates a filename or ex
tension that exceeds the maximum length; in protected mode, however, it does not. 
Therefore, a real mode application program needs to perform this truncating function. 
The program should check the length of the filenames that it generates or that it obtains 
from a user and refuse names that are longer than the eight-character maximum. This pre
vents improperly formatted names from becoming embedded in data and control files- a 
situation that could cause a protected mode version of the application to fail when it pre
sents that invalid name to the operating system. 

When you convert your program to protected mode API, remove the length-checking 
code; MS OS/2 will check the length and return an error code as appropriate. Future file 
systems will support longer filenames, so it's important that protected mode programs sim
ply present filenames to the operating system, which is then responsible for judging their 
validity. 

Other MS-DOS version 2 and 3 elements have fixed lengths, including the current directory 
path. To be upwardly compatible, your program should accept whatever length is provided 
by the user or returned from a system call and rely on MS OS/2 to return an error message 
if a length is inappropriate. The exception is filename length in real mode non-Family API 
programs: These programs should enforce the eight-character maximum because MS-DOS 
versions 2 and 3 fail to do so. 

File truncation 

Files are truncated by means of a zero-length write under MS-DOS versions 2 and 3; under 
MS OS/2 in protected mode, files are truncated with a special API. File truncation opera
tions should be encapsulated in a special routine to facilitate conversion to MS 0~/2 pro
tected mode or the Family API. 

492 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 502/1582



Article 16: Writing Applications for Upward Compatibility 

File searches 

MS-DOS versions 2 and 3 never close file-system searches (Find First File/Find Next File). 
The returned search contains the information necessary for MS-DOS to continue the 
search later, and if the search is never continued, no harm is done. 

MS OS/2, however, retains the necessary search continuation information in an internal 
structure of limited size. For this reason, your program should not depend on more than 
about 10 simultaneous searches and it should be able to close searches when it is done. If 
your program needs to perform more than about 10 searches simultaneously, it should be 
able to close a search, restart it later, and advance to the place where the program left off, 
rather than depending on MS OS/2 to continue the search. 

MS OS/2 further provides a Find Close function that releases the internal search infor
mation. Protected mode programs should use this call at the end of every search se
quence. Because MS-DOS versions 2 and 3 have no such call, your program should call a 
dummy procedure by this name at the appropriate locations. Then you can convert your 
program to the protected mode API or to the Family API without reexamining your 
algorithms. 

Note: Receiving a "No more files" return code from a search does not implicitly close the 
search; all search closes must be explicit. 

The Family API allows only a single search at a time. To circumvent this restriction, code 
two different Find Next File routines in your program- one forMS OS/2 protected mode 
and one for MS-DOS real mode- and use the Family API function that determines the 
program's current environment to select the routine to execute. 

MS-DOS calls 

A program that uses only the Interrupt 21H functions listed below is guaranteed to work 
in the Compatibility Box of MS OS/2 and will be relatively easy to modify forMS OS/2 
protected mode. 

Function Name 

ODH Disk Reset 
OEH Select Disk 
19H Get Current Disk 
1AH Set DTA Address 
25H Set Interrupt Vector 
2AH Get Date 
2BH Set Date 
2CH Get Time 
2EH Set/Reset Verify Flag 
2FH Get DTA Address 

(more) 

Section II: Programming in the MS-DOS Environment 493 

HUAWEI EX. 1010 - 503/1582



Part D: Directions of MS-DOS 

FCBs 

Function 

30H 
33H 
35H 
36H 
38H 
39H 
3AH 
3BH 
3CH 
3DH 
3EH 
3FH 
40H 
41H 
42H 
43H 
44H 
45H 
46H 
47H 
48H 
49H 
4AH 
4BH 
4CH 
4DH 
4EH 
4FH 
54H 
56H 
57H 
59H 
5AH 
5BH 
5CH 

Name 

Get MS-DOS Version Number 
Get/Set Control-C Check Flag 
Get Interrupt Vector 
Get Disk Free Space 
Get/Set Current Country 
Create Directory 
Remove Directory 
Change Current Directory 
Create File with Handle 
Open File with Handle 
Close File 
Read File or Device 
Write File or Device 
Delete File 
Move File Pointer 
Get/Set File Attributes 
IOCTL (all subfunctions) 
Duplicate File Handle 
Force Duplicate File Handle 
Get Current Directory 
Allocate Memory Block 
Free Memory Block 
Resize Memory Block 
Load and Execute Program (EXEC) 
Terminate Process with Return Code 
Get Return Code of Child Process 
Find First File 
Find Next File 
Get Verify Flag 
Rename File 
Get/Set Date/Time of File 
Get Extended Error Information 
Create Temporary File 
Create New File 
Lock/Unlock File Region 

FCBs are not supported in MS OS/2 protected mode. Use handle-based calls instead. 

494 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 504/1582



Article 16: Writing Applications for Upward Compatibility 

Interrupt calls 

MS-DOS versions 2 and 3 use an interrupt-based interface; MS OS/2 protected mode uses 
a procedure-call interface. Write your code to accommodate this difference by encap
sulating the interrupt -based interfaces into individual subroutines that can then easily be 
modified to use the MS OS/2 procedure-call interface. 

System call register usage 

The MS OS/2 procedure-call interface preserves all registers except AX and FLAGS. Write 
your program to assume that the contents of AX and the contents of any register modified 
by MS-DOS version 2 and 3 interrupt interfaces are destroyed at each system call, regard
less of the success or failure of that call. 

Flush/Commit calls 

Seeks 

Your program should issue Flush/Commit calls where necessary- for example, after 
writing out the user's work file- but no more than necessary. Because MS OS/2 is multi
tasking, the floppy disk that contains the files to be flushed may not be in the drive. In 
such a case, MS OS/2 prompts the user to insert the proper floppy disk. As a result, too 
frequent flushes could generate a great many Insert disk messages and degrade the 
system's usability. 

Seeks to negative offsets and to devices also create compatibility issues. 

To negative offsets 

Your program should not attempt to seek to a negative file location. A negative seek offset 
is permissible as long as the sum of the seek offset and the current file position is positive. 
MS-DOS versions 2 and 3 allow seeking to a negative offset as long as you do not attempt to 
read or write the file at that offset. MS OS/2 and subsequent systems return an error code 
for negative net offsets. 

On devices 

Your program should not issue seeks to devices (such as AUX, COM, and so on). Doing so 
produces an error under MS OS/2. 

Error codes 

Because future releases of the operating system may return new error codes to system 
calls, you should write code that is open-ended about error codes- that is, write your pro
gram to deal with error codes beyond those currently defined. You can generally do this 
by including special handling for any codes that require special treatment, such as "File not 
found," and by taking a generic course of action for all other errors. The MS OS/2 pro
tected mode API and the Family API have an interface that contains a message describing 
the error; this message can be displayed to the user. The interface also returns error 
classification information and a recommended action. 

Section II: Programming in the MS-DOS Environment 495 

HUAWEI EX. 1010 - 505/1582



Part D: Directions of MS-DOS 

Multitasking concerns 

Multitasking is a feature of MS OS/2 and will be a feature of all future versions of MS-DOS. 
The following guidelines apply to all programs, even to those written for MS-DOS version 
3, because they may run in compatibility mode under MS OS/2. 

Disabling interrupts 

Do not disable interrupts, typically with the CLI instruction. The consequences of doing so 
depend on the environment. 

In real mode programs under MS OS/2, disabling interrupts works normally but has a 
negative impact on the system's ability to maintain proper system throughput. Communi
cations programs or networking applications might lose data. In a future version of real 
modeMS OS/2-80386, the operating system will disregard attempts to disable interrupts. 

Protected mode programs under MS OS/2 can disable interrupts only in special Ring 2 
segments. Disabling interrupts for longer than 100 microseconds might cause communica
tions programs or networking applications to lose data or break connection. A future 
80386-specific version of MS OS/2 will ignore attempts to disable interrupts in protected 
mode programs. 

Measuring system resources 

Do not attempt to measure system resources by exhausting them, and do not assume that 
because a resource is available at one time it will be available later. Remember: System 
resources are being shared with other programs. 

For example, it is common for an MS-DOS version 3 application to request 1 MB of mem
ory. The system cannot fulfill this request, so it returns the largest amount of memory 
available. The application then requests that amount of memory. Typically, applications do 
not even check for an error code from the second request. They routinely request all avail
able memory because their creators knew that no other application could be in the system 
at the same time. This practice will work in real mode MS OS/2, although it is inefficient 
because MS OS/2 must allocate memory to a program that has no effective use for it. How
ever, this practice will not work under MS OS/2 protected mode or under the Family API. 

Another typical resource-exha,ustion technique is opening files until an open is refused 
and then closing unneeded file handles. All applications, even those that run only in an 
MS OS/2 real mode environment, must use only the resources they need and not waste 
system resources; in a multitasking environment, other programs in the system usually 
need those resources. 

Sharing rules 

Because multiple programs can run under MS OS/2 simultaneously and because the 
system can be networked, conflicts can occur when two programs try to access the same 
file. MS OS/2 handles this situation with special file-sharing support. Although programs 

496 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 506/1582



Article 16: Writing Applications for Upward Compatibility 

ignorant of file-sharing rules can run in real mode, you s~1ould explicitly specify file
sharing rules in your program. This will reduce the number of file-access conflicts the user 
will encounter. 

Miscellaneous guidelines 

Do not use undocumented features of MS-DOS or undocumented fields such as those in 
the Find First File buffer. Also, do not modify or store your own values in such areas. 

Maintain at least 2048 free bytes on the stack at all times. Future releases of MS-DOS may 
require extra stack space at system call and at interrupt time. 

Print using conventional handle writes to the LPT device(s). For example: 

fd = open ("LPT1 "); 
write(fd, data, datalen); 

Do not use Interrupt 17H (the IBM ROM BIOS printer services), writes to the stdprn han
dle (handle 3), or special-purpose Interrupt 21H functions such as 05H (Printer Output). 
These methods are not supported under MS OS/2 protected mode or in the Family API. 

Do not use the MS-DOS standard handles stdaux and stdprn (handles 3 and 4); these 
handles are not supported in MS OS/2 protected mode. Use only stdin (handle 0), stdout 
(handle 1), and stderr (handle 2). Do use these latter handles where appropriate and avoid 
opening the CON device directly. Avoid Interrupt 21H Functions 03H (Auxiliary Input) and 
04H (Auxiliary Output), which are polling operations on stdaux. 

Summary 

A tenet of MS OS/2 design was flexibility: Each component was constructed in anticipa
tion of massive changes in a future release and with an eye toward existing versions of 
MS-DOS. Writing applications that are upwardly and backwardly compatible in such an 
environment is essential- and challenging. Following the guidelines in this article will 
ensure that your programs function appropriately in the MS-DOS/OS/2 operating
system family. 

Gordon Letwin 

Section 11· Programming in the MS-DOS Environment 497 

HUAWEI EX. 1010 - 507/1582



HUAWEI EX. 1010 - 508/1582



Article17 
Windows 

Article 17: Windows 

Microsoft Windows is an operating environment that runs under MS-DOS versions 2.0 
and later. The current version of Windows, version 2.0, requires either a fixed disk or tvvo 
double-sided floppy-disk drives, at least 320 KB of memory, and a video display board 
and monitor capable of graphics and a screen resolution of at least 640 (horizontal) by 200 
(vertical) pixels. A fixed disk and 640 KB of memory provide the best environment for run
ning Windows; a mouse or other pointing device is optional but recommended. 

For the user, Windows provides a multitasking, graphics-based windowing environment 
for running programs. In this environment, users can easily switch among several pro
grams and transfer data between them. Because programs speciaily designed to run under 
Windows usually have a consistent user interface, the time spent learning a new program 
is greatly diminished. Furthermore, the user can carry out command functions using only 
the keyboard; only the mouse, or some combination of the two. In some cases, Windows 
(and Windows applications) provides several different ways to execute the same 
command. 

For the program developer, Windows provides a wealth of high-level routines that make 
it easy to incorporate menus, scroll bars, and dialog boxes (which contain controls, such as 
push buttons and list boxes) into programs. Windows' graphics interface is device inde- · 
pendent, so programs developed for Windows work with every video display adapter and 
printer that has a Windows driver (usually supplied by the hardware manufacturer). Win
dows also includes features that facilitate the translation of programs into foreign lan
guages for international markets. 

When Windows is running, it shares responsibility for managing system resources with 
MS-DOS. Thus, programs that run under Windows continue to use MS-DOS function calls 
for all file input and output and for executing other programs, but they do not use MS-DOS 
for display or printer output, keyboard or mouse input, or memory management. Instead, 
they use functions provided by Windows. 

Program Categories 

Programs that run under Windows can be divided into three categories: 

1. Programs specially designed for the Windows environment. Examples of such pro
grams include Clock and Calculator, which come with Windows. Microsoft Excel is 
also specially designed for Windows. Other programs of this type (such as Aldus's 
Pagemaker) are available from software vendors other than Microsoft. Programs in 
this category cannot run under MS-DOS without Windows. 

2. Programs designed to run under MS-DOS but that can usually be run in a window 
along with programs designed specially for Windows. These programs do not require 

Section II: Programming in the MS-DOS Environment 499 

HUAWEI EX. 1010 - 509/1582



Part D: Directions of MS-DOS 

large amounts of memory, do not write directly to the display, do not use graphics, 
and do not alter the operation of the keyboard interrupt. They cannot use the mouse, 
the Windows application-program interface (such as rp.enus and dialog boxes), or 
the graphics services that Windows provides. MS-DOS utilities, such as EDLIN and 
CHKDSK, are examples of programs in this category. 

3. Programs designed to run under MS-DOS but that require large amounts of memory, 
write directly to the display, use graphics, or alter the operation of the keyboard inter
rupt. When Windows runs such a progr~m, it must suspend operation of all other 
programs running in Windows and allow the program to use the full screen. In some 
cases, Windows cannot switch back to its normal display until the program termi
nates. Microsoft Word and Lotus 1-2-3 are examples of programs in this category. 

The programs in categories 2 and 3 are sometimes called standard applications. To run 
one of these programs in Windows, the user must create a PIF file (Program Information 
File) that describes how much memory the program requires and how it uses the com
puter's hardware. 

Although the ability to run existing MS-DOS programs under Windows benefits the user, 
the primary purpose of Windows is to provide an environment for specially designed pro
grams that take full advantage of the Windows interface. This discussion therefore concen
trates almost exclusively on programs written for the Windows 2.0 environment. 

The Windows Display 

Figure 17-1 shows a typical Windows display running several programs that are included 
with the retail version of Windows 2.0. 

The display is organized as a desktop, with each program occupying one or more rect
angular windows that, unlike the tiled (juxtaposed) windows typical of earlier versions, 
can be overlapped. Only one program is active at any time- usually the program that is 
currently receiving keyboard input. Windows displays the currently active program on top 
of (overlying) the others. Programs such as CLOCK and TERMINAL that are not active 
continue to run normally, but do not receive keyboard input. 

The user can make another program active by pressing and releasing (clicking) the mouse 
button when the mouse cursor is positioned in the new program's window or by pressing 
either the Alt-Tab or Alt-Esc key combination. Windows then brings the new active pro
gram to the top. 

Most Windows programs allow their windows to be moved to another part of the display 
or to be resized to occupy smaller or larger areas. Most of these programs can also be max
imized to fill the entire screen or minimized- generally as a small icon displayed at the 
hottom of the screen- to occupy a small amount of display space. 

500 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 510/1582



iCountry=1 
iDate=O 
iCun·ency=O 
iDigits=2 
iTime=D 
ilzero=O 
s1159=AI1 
s2359=PI1 
sCurrency=$ 
slhousand= ~ 
sDecimal=. 
sDate=
sTime=: 
slist=, 
dialog= yes 

[ports] 
; To output to a file make an entry in t 
; filename .PRN followed by an equal sign 
; The filename will appear in the Contro 
; any printer may then be connected to t 
; be done to this file. 

Figure 17-1. A typical Windows display. 

Parts of the window 

Article 17: Windows 

Figure 17-2 shows the Windows NOTEPAD program, with the different parts of the win
dow identified. NOTEPAD is a small ASCII text editor limited to files of 16 KB. The various 
parts of the NOTEPAD window (similar to all Windows programs) are described in this 
section. 

Title bar (or caption bar). The title bar identifies the program and, if applicable, the data 
file currently loaded into the program. For example, the NOTEPAD window shown in 
Figure 17-2 on the next page has the file WIN.INI loaded into memory. Windows uses dif
ferent title-bar colors to distinguish the active window from inactive windows. The user 
can move a window to another part of the display by pressing the mouse button when the 
mouse pointer is positioned anywhere on the title bar and dragging (moving) the mouse 
while the button is pressed. 

System-menu icon. When the user clicks a system-menu icon with the mouse (or presses 
Alt-Spacebar), Windows displays a system menu like that shown in Figure 17-3. (Most Win
dows programs have identical system menus.) The user selects a menu item in one of 
several ways: clicking on the item; moving the highlight bar to the item with the cursor
movement keys and then pressing Enter; or pressing the letter that is underlined in the 
menu item (for example, n for Mi!J:imize). 

The keyboard combinations (Alt plus function key) at the right of the system menu are 
keyboard accelerators. Using a keyboard accelerator, the user can select system-menu 
options without first displaying the system menu. 

Section 11· Programming in the MS-DOS Environment 501 

HUAWEI EX. 1010 - 511/1582



Part D: Directions of MS-DOS 

System-menu 

1 
iCount~y=1 
iDate=O 
iCu~~ency=O 
iDigits=2 
iTime=O 
ilze~o=O 
s1159=AM 
s2359=PM 
sCur.,.ency=$ 
slhousand;;, 
sDecimal=. 
sDate=
sTime=: 
slist=, 
dialog=yes 

[po~ts] 

Title bar Minimize 

; To output to a file rnake an entry in this section of the form 
; filename.PRtl followed by an equal sign. 
; The filenaiTie will appear in the Control Panel Connections dialog and 
; any printer may theri be connected to this file and all printing will 
; be done to this file. 

Icons 

Maximize 
icon 

Client 
area 

Scroll 
bars 

Figure 17-2. The Windows NOTEPAD program, with different parts of the display labeled. 

The six options on the standard system menu are 

• Restore: Return the window to its previous position and size after it has been 
minimized or maximized. 

• Move: Allow the window to be moved with the cursor-movement keys. 
• Size: Allow the window to be resized with the cursor-movement keys. 
• Minimize: Display the window in its iconic form. 
• Maximize: Allow the window to occupy the full screen. 
• Close: End the program. 

Windows displays an option on the system menu in grayed text to indicate that the option 
is not currently valid. In the system menu shown in Figure 17-3, for example, the Restore 
option is grayed because the window is not in a minimized or maximized form. 

Minimize Alt+F9 
Maximize Alt+F1 0 

.Close Alt•F4 

Figure 17-3. A system menu, displayed either when the user clicks the system-menu icon (top left corner) or 
presses Aft-Spacebar. 

502 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 512/1582



Article 17: Windows 

·~Restore icon 

Figure 17-4. The restore icon, which replaces the maximize icon when a window is expanded to fill 
the entire screen. 

Minimize icon. When the user clicks on the minimize icon with the mouse, Windows 
displays the program in its iconic form. 

Maximize icon. Clicking on the maximize icon expands the window to fill the full screen. 
Windows then replaces the maximize icon with a restore icon (shown in Figure 17-4). 
Clicking on the restore icon restores the window to its previous size and position. 

Programs that use a window of a fixed size (such as the CALC.EXE calculator program 
included with Windows) do not have a maximize icon. 

Menu bar. The menu bar, sometimes called the program's main or top-level menu, dis
plays keywords for several sets of commands that differ from program to program. 

When the user clicks on a main-menu item with the mouse or presses the Alt key and the 
underlined letter in the menu text, Windows displays a pop-up menu for that itbm. The 
pop-up menu for NOTEPAD's keyword File is shown in Figure 17-5. Items are selected 
from a pop-up menu in the same way they are selected from the system menu. 

A Windows program can display options on the menu in grayed text to indicate that they 
are not currently valid. The program can also display checkmarks to the left of pop-up 
menu items to indicate which of several options have been selected by the user. 

In addition, items on a pop-up menu can be followed by an ellipsis ( ... ) to indicate that 
selecting the item invokes a dialog box that prompts the user for additional information
more than can be provided by the menu. 

Client area. The client area of the window fs where the program displays data. In the case 
of the NOTEPAD program shown in Figure 17-2, the client area displays the file currently 
being edited. A program's handling of keyboard and mouse input within the client area 
depends on the type of work it does. 

Scroll bars. Programs that cannot display all the data in a file within the client area of the 
window often have a horizontal scroll bar across the bottom and a vertical scroll bar down 
the right edge. Both types of scroll bars have a small, boxed arrow at each end to indicate 
the direction in which to scroll. In the NOTEPAD window in Figure 17-2, for example, 
clicking on the up arrow of the vertical scroll bar moves the data within the window down 

£ile Edit .S.earch .. 
fipen ••• 
.S.aue 
Saue .O.s ••• 
l'.r:int 

Exit 
About Notepad ••• 

Figure 17-5. The NOTEPAD program's pop-up file menu. 

Section II: Programming in the MS-DOS Environment 503 

HUAWEI EX. 1010 - 513/1582



Part D: Directions of MS-DOS 

one line. Clicking on the shaded part of the vertical scroll bar above the thumb (the box 
near the middle) moves the data within the client area of the window down one screen; 
clicking below the thumb moves the data up one screen. The user can also drag the thumb 
with the mouse to move to a relative position within the file. 

Windows programs often include a keyboard interface (generally relying on the cursor
movement keys) to duplicate the mouse-based scroll-bar commands. 

Window border. The window border is a thick frame surrounding the entire window. It is 
segmented into eight sections that represent the four sides and four corners of the window. 
The user can change the size of a window by dragging the window border with the 
mouse. Dragging a corner section moves two adjacent sides of the border. 

When a program is maximized to fill the full screen, Windows does not draw the window 
border. Programs that use a window of a fixed size do not have a window border either. 

Dialog boxes 
When a pop-up menu is not adequate for all the command options a program requires, the 
program can display a dialog box. A dialog box is a pop-up window that contains various 
controls in the form of push buttons, check boxes, radio buttons, list boxes, and text and 
edit fields. Programmers can also design their own controls for use in dialog boxes. A user 
fills in a dialog box and then clicks on a button, such as OK, or presses Enter to indicate 
that the information can be processed by the program. 

Most Windows programs use a dialog box to open an existing data file and load it into the 
program. The program displays the dialog box when the user selects the Open option on 
the File pop-up menu. The sample dialog box shown in Figure 17-6 is from the NOTEPAD 
program. 

The list box displays a list of all valid disk drives, the subdirectories of the current direc
tory, and all the filenames in the current directory, including the filename extension used 
by the program. (NOTEPAD uses the extension .TXT for its data files.) The user can scroll 
through this list box and change the current drive or subdirectory or select a filename with 
the keyboard or the mouse. The user can also perform these actions by typing the name 
directly intO the edit field. 

Open File Hame: 

IICIIED 

Eiles in C:\WIH2 

LETTER. TXT ... 
READ11E. TXT 
TODD. TXT 
UPDATE. TXT 
[-A-1 -[-8-1 
[-C-1 ... 

-
[ llpen -;--

""" -1 Cancel "] --
-

~ 
,_ 

Edit 
field 

Push 
buttons 

List box 

Figure 17-6. A dialog box from the NOTEPAD program, with parts labeled. 

504 The MS-DOS Encyclopedia 

HUAWEI EX. 1010 - 514/1582



l 
I 

Check 
boxes 

Terroinal Settings 

Text size ® large 0 Sroall 

lines in Buffer: @I] 
T.t:anslation: ~1111!1!~~~~~-ffl 

OK 

Figure 17-7. A dialog box from the TERMINAL program, with parts labeled. 

Article 17: Windows 

Clicking the Open button (or pressing Enter) indicates to NOTEPAD that a file has been 
selected or that a new drive or subdirectory has been chosen (in this case, the program 
displays the files on the new drive or subdirectory). Clicking the Cancel button (or press
ing Esc) tells NOTEPAD to close the dialog box without loading a new file. 

Figure 17-7 shows a different dialog box-this one from the Windows TERMINAL com
munications program. The check boxes turn options on (indicated by an X) and off. The 
circular radio buttons allow the user to select from a set of mutually exclusive options. 

Another, simple form of a dialog box is called a message box. This box displays one or 4 
more lines of text, an optional icon such as an exclamation point or an asterisk, and one 
or more buttons containing the words OK, Yes, No, or Cancel. Programs sometimes use 
message boxes for warnings or error messages. 

The MS-DOS Executive 

Within Windows, the MS-DOS Executive program (shown in Figure 17-8) serves much the 
same function as the COMMAND. COM program in the MS-DOS environment. 

The top of the MS-DOS Executive client area displays all valid disk drives. The current 
disk drive is highlighted. Below or to the right of the disk drives is a display of the full path 
of the current directory. Below this is an alphabetic listing of all subdirectories in the cur
rent directory, followed by an alphabetic listing of all files in the current directory. Sub
directory names are displayed in boldface to distinguish them from filenames. 

The user can change the current drive by clicking on the disk drive with the mouse or by 
pressing Ctrl and the key corresponding to the disk drive letter. 

To change to one of the parent directories, the user double-clicks (clicks the mouse button 
twice in succession) on the part of the text string corresponding to the directory name. 
Pressing the Backspace key moves up one directory level toward the root directory. The 
user can also change the current directory to a child subdirectory by double-clicking on 
the subdirectory name in the list or by pressing the Enter key when the cursor highlight is 
on the subdirectory name. In addition, the menu also contains an option for changing the 
current directory. 

Section II: Programming in the MS-DOS Environment 505 

HUAWEI EX. 1010 - 515/1582



Part D: Directions of MS-DOS 

Eile l!iew Special 
AI IBI ID lol JEJ JFJ JGJ I 
C :AT DRJUE C \WINDOWS 

1Roli!M'f3 KERNEL.EXE WIN. IN! 
CALENDAR.EXE MODERN.FON WIN200.BIN 
CLIPBRD .EXE MSDOS .EXE WIN200.0Ul 
CLOCK.EXE MSDOSD.EXE WINDATA.BIN 
CONTROL.EXE NOTEPAD .EXE WINOLDAP .loJOD 
CDURA .FDN PAINT.EXE WR ITE.EXE 
COURB .FON REUERSJ.EXE 
COURC .FON ROI1AN.FDN 
COURD .FON SCRIPT .FON 
COURE .FON SPOOLER .EXE 
DDE.EXE TERMINALEXE 
EGA.FON TMSRA.FON 
EI1AIL TRM HISRB. FON 
GDI.EXE TMSRC .FON 
HELUA .FON HISRD .FON 
HELUB .FON TMSRE .FON 
HELUC.FON WJN.CNF 
HELUD .FON WJN.COI1 
~~~~-~---~~-~~--

' ~

Figure 17-8. The MS-DOS Executive.

The user can run a program by double-clicking on the program filename, by pressing the
Enter key when the highlight is on the program name, or by selecting it from a menu.

Other menu options allow the user to display the file and subdirectory lists in a variety
of ways. A long format includes the same information displayed by the MS-DOS DIR com
mand, or the user can choose to display a select group of files. Menu options also enable
the user to specify whether the files should be listed in alphabetic order by filename, by
filename extension, or by date or size.

The remaining options on the MS-DOS Executive menu allow the user to run programs;
copy, rename, and delete files; format a floppy disk; change a volume name; make a
system disk; create a subdirectory; and print a text fil~.

Other Windows Programs

Windows 2.0 also includes a number of application and utility programs. The application
programs are CALC (a calculator), CALENDAR, CARDFILE (a database arranged as a
series of index cards), CLOCK, NOTEPAD, PAINT (a drawing and painting program),
REVERS! (a game), TERMINAL, and WRITE (a word processor).

The utility programs include

CLIPBRD. This program displays the current contents of the Clipboard, which is a storage
facility that allows users to transfer data from one program to another.

506 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 516/1582

Article 17: Windows

CONTROL. The Control Panel utility allows the user to add or delete font files and printer
drivers and to change the following: current printer, printer output port, communications
parameters, date and time, cursor blink rate, screen colors, border width, mouse double
click time and options, and country-specific information, such as time and date formats.
The Control Panel stores much of this information in the file named WIN.INI (Windows
Initialization), so the information is available to other Windows programs.

PIFEDIT. The PIF editor allows the user to create or modify the PIFs that contain infor
mation about standard applications that have not been specially designed to run under
Windows. This information allows Windows to adjust the environment in which the
program runs.

SPOOLER. Windows uses the print-spooler utility to print files without suspending the
operation of other programs. Most printer-directed output from Windows programs goes
to the print spooler, which then prints the files while other programs run. SPOOLER
enables the user to change the priority of print jobs or to cancel them.

The Structure of Windows

When programs run under MS-DOS, they make requests of the operating system through
MS-DOS software interrupts (such as Interrupt 21H), through BIOS software interrupts, or
by directly accessing the machine hardware.

When programs run under Windows, they use MS-DOS function calls only for file input
and output and (more rarely) for executing other programs. Windows programs do not use
MS-DOS function calls for memory management, keyboard input, display or printer out
put, or RS232 communications. Nor do Windows programs use BIOS routines or direct
access to the hardware.

Instead, Windows provides application programs with ;1ccess to more than 450 functions
that allow programs to create and manipulate windows on the display; use menus, dialog
boxes, and scroll bars; display text and graphics within the client area of a window; use
the printer and RS232 communications port; and allocate memory.

The Windows modules

The functions provided by Windows are largely handled by three main modules named
KERNEL, GDI, and USER. The KERNEL module is responsible for scheduling and multi
tasking, and it provides functions for memory management and some file I/0. The GDI
module provides Windows' Graphics Device Interface functions, and the USER module
does everything else.

The USER and GDI modules, in turn, call functions in various driver modules that are also
included with Windows. Drivers control the display, printer, keyboard, mouse, sound,
RS232 port, and timer. In most cases, these driver modules access ,the hardware of the com
puter directly. Windows includes different driver files for various hardware configurations.
Hardware manufacturers can also develop Windows drivers specifically for their products.

Section Il- Programming in the MS-DOS Environment 507

HUAWEI EX. 1010 - 517/1582

Part D: Directions of MS-DOS

A block diagram showing the relationships of an application program, the KERNEL, USER,
and GDI modules, and the driver modules is shown in Figure 17-9. The figure shows each
of these modules as a separate file-KERNEL, USER, and GDI have the extension .EXE;
the driver files have the extension .DRV. Some program developers install Windows with
these modules in separate files, as in Figure 17-9, but most users install Windows by
running the SETUP program included with Windows.

SETUP combines most of these modules into two larger files called WIN200.BIN and
WIN200.0VL. Printer drivers are a little different from the other driver files, however,
because the Windows SETUP program does not include them in WIN200.BIN and
WIN200.0VL. The name of the driver file identifies the printer. For example, IBMGRX.DRV
is a printer driver file for the IBM Personal Computer Graphics Printer.

Windows
application
program

GDI.EXE

USER.EXE

KERNEL.EXE

c___n_rs_P_L_A_Y_._n_R_v_--...J~ Display

....__Prin_·_t_er_dri_·v_er __ __,~ Printer

KEYBOARD.DRV ~ Keyboard

c___M_o_u_s_E_._n_R_v __ _j~ Mouse

....__s_o_UND __ ._n_R_v __ __,~ Sound hardware

....__c_o_MM __ .n_R_v __ __,~ RS-2~2 hardware

..__s_Y_s_T_E_M_.n_R_v_---'~ Timer hardware

MS-DOS file I/0

Memory management

Figure 17-9. A simplified block diagram showing the relationships of an application program, Windows
modules (GDI, USER, and KERNEL), driver modules, and system hardware.

508 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 518/1582

\

Article 17: Windows

The diagram in Figure 17-9 is somewhat simplified. In reality, a Windows application
program can also make direct calls to the KEYBOARD.DRV and SOUND.DRV modules,
and USER.EXE calls the DISPLAY.DRV and printer driver modules directly. The GDI.EXE
module and driver modules can also call routines in KERNEL.EXE, and drivers sometimes
call routines in SYSTEM.DRV.

Also, Figure 17-9 omits the various font files provided with Windows, the WIN.INI file
that contains Windows initialization information and user preferences, and the files
WINOLDAP.MOD and WINOLDAP.GRB, which Windows uses to run standard MS-DOS
applications.

Libraries and programs

The USER.EXE, GDI.EXE, and KERNEL.EXE files, all driver files with the extension .DRV,
and all font files with the extension .FON are called Windows libraries or, sometimes,
dynamic link libraries to distinguish them from Windows programs. Programs and
libraries both use a file format called the New Executable format.

From the user's perspective, a Windows program and a Windows library are very differ
ent. The user cannot run a Windows library directly: Windows loads a part of a library into
memory only when a program needs to use a function that the library provides.

The user can also run multiple instances of the same Windows program. Windows uses
the same code segments for the different instances but creates a unique data segment for
each. Windows never runs multiple instances of a Windows library.

From the programmer's perspective, a Windows program is a task that creates and
manages windows on the display. Libraries are modules that assist the task. A programmer
can write additional library modules, which one or more programs can use. For the devel
oper, one important distinction between programs and libraries is that a Windows library
does not have its own stack; instead, the library uses the stack of the program that calls
the routine in the library.

The New Executable format used for both programs arid libraries gives Windows much
more information about the module than is provided by the current MS-DOS .EXE format.
In particular, the module contains information that allows Windows to make links be
tween program modules and library modules when a program is run.

When a module (such as a library) contains functions that can be called from another
module (such as a program), the functions are said to be exported from the module that
contains them. Each exported function in a module is identified either by a name (gener
ally the name of the function) or by an ordinal (positive) number. A list of all exported
functions in a module is included in the New Executable format header section of the
module.

Conversely, when a module (such as a program) contains code that calls a function in
another module (such as a library), the function is said to be imported to the module that
makes the call. This call appears in the .EXE file as an unresolved reference to an external
function. The New Executable format identifies the module and the function name or
ordinal number that the call references.

Section II: Programming in the MS-DOS Environment 509

HUAWEI EX. 1010 - 519/1582

Part D: Directions of MS-DOS

When Windows loads a program or a library into memory, it must resolve all calls the
module makes to functions in other modules. Windows does this by inserting the ad
dresses of the functions into the code-a process called dynamic linking.

For example, many Windows programs use the function TextOut to display text in the
client area. In the code segment of the program's .EXE file, a call to TextOut appears as an
unresolved far (intersegment) call. The code segment's relocation table shows that this call
is to an imported function in the GDI module identified by the ordinal number 33. The
header section of the GDI module lists TextOut as an exported function with the ordinal
number 33. When Windows loads the program, it resolves all references to TextOut by
inserting the address of the function into the program's code segment in each place
where TextOut is called.

Although Windows programs reference many functions that are exported from the stan
dard Windows libraries, Windows programs also often include at least one exported func
tion, called a window function. While the program is running, Windows calls this function
to pass messages to the program's window. See The Structure of a Windows Program
below.

Memory Management

Windows' memory management is based on the segmented-memory architecture of
the Intel 8086 family of microprocessors. The memory space controlled by Windows is
divided into segments of various lengths. Windows uses separate segments for nearly
everything kept in memory- such as the code and data segments of programs and
libraries- and for resources, such as fonts and bitmaps.

Windows programs and libraries contain one or more code segments, which are usually
both movable and discardable. Windows can move a code segment in memory in order to
consolidate free memory space. It can also discard a code segment from memory and later
reload the code segment from the program's or library's .EXE file when it is needed again.
This capability is called demand loading.

Windows programs usually contain only one data segment; Windows libraries are limited
to one data segment. In most cases, Windows can move data segments in memory. How
ever, it cannot usually discard data segments, because they can contain data that changes
after the program begins executing. When a user runs multiple copies of a program, the
different instances share the same code segments but have separate data segments.

The use of movable and discardable segments allows Windows to run several large
programs in a memory space that might be inadequate for even one of the programs if the
entire program were kept in memory, as is typical under MS-DOS without Windows. The
ability of Windows to use memory in this way is called memory overcommitment.

The moving and discarding of code segments requires Windows to make special provi
sions so that intersegment calls continue to reference the correct address when a code

510 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 520/1582

Article 17: Windows

segment is moved. These provisions are another part of dynamic linking. When Windows
resolves a far call from one code segment to a function in another code segment that is
movable and discardable, the call actually references a fixed area of memory. This fixed
area of memory contains a small section of code called a thunk. If the code segment con
taining the function is currently in memory, the thunk simply jumps to the function. If the
code segment with the function is not currently in memory, the thunk calls a loader that
loads the segment into memory. This process is called dynamic loading. When Windows
moves or discards a code segment, it must alter the thunks appropriately.

Windows and Windows programs generally reference data structures stored in Windows'
memory space by using 16-bit unsigned integers known as handles. The data structure that
a handle references can be movable and discardable, so when Windows or the Windows
program needs to access the data directly, it must lock the handle to cause the data to
become fixed in memory. The function that locks the segment returns a pointer to the
program.

During the time the handle is locked, Windows cannot move or discard the data. The data
can then be referenced directly with the pointer. When Windows (or the Windows pro
gram) finishes using the data, it unlocks the segment so that it can be moved (or in some
cases discarded) to free up memory space if necessary.

Programmers can choose to allocate nonmovable data segments, but the practice is not
recommended, because Windows cannot relocate the segments to make room for seg
ments required by other programs.

The Structure of a Windows Program

During development, a Windows program includes several components that are combined
later into a single executable file with the extension .EXE for execution under Windows.
Although the Windows executable file has the same .EXE filename extension as MS-DOS
executable files, the format is different. Among other things, the New Executable format
includes Windows-specific information required for dynamic linking and the discarding
and reloading of the program's code segments.

Programmers generally use C, Pascal, or assembly language to create applications specially
designed to run under Windows. Also required are several header files and development
tools, which are included in the Microsoft Windows Software Development Kit.

The Microsoft Windows Software Development Kit

The Windows Software Development Kit contains reference material, a special linker
(LINK4), the Windows Resource Compiler (RC), special versions of the SYMDEB and
Code View debuggers, header files, and several programs that aid development and testing.
These programs include

• DIALOG: Used for creating dialog boxes.
• ICONEDIT: Used for creating a program's icon, customized cursors, and bitmap

images.

Section 11· Programming in the MS-DOS Environment 511

HUAWEI EX. 1010 - 521/1582

Part D: Directions of MS-DOS

• FONT EDIT: Used for creating customized fonts derived from an existing font file
with the extension .FNT.

• HEAPWALK: Used for displaying the organization of code and data segments in
Windows' memory space and for testing programs under low memory conditions.

• SHAKER: Used for randomly allocating memory to force segment movement and
discarding. SHAKER tests a program's response to movement in memory and is useful
for exposing program bugs involving pointers to unlocked segments.

The Windows Software Development Kit als·o provides several include and header files
that contain declarations of all Windows functions, definitions of many macro identifiers
that the programmer can use, and structure definitions. Import libraries included in the
kit allow LINK4 to resolve calls to Windows functions and to prepare the program's .EXE
file for dynamic linking.

Work with the Windows Software Development Kit requires one of the following com
pilers or assemblers:

• Microsoft C Compiler version 4.0 or later
• Microsoft Pascal Compiler version 3.31 or later
• Microsoft Macro Assembler version 4.0 or later

Other software manufacturers also provide compilers that are suitable for compiling
Windows programs.

Components of a Windows program

The discussion in this section is illustrated by a program called SAMPLE, which displays
the word Windows in its client area. In response to a menu selection, the program

Figure 17-10. A display produced by the example program SAMPLE.

512 The MS-DOS Encyclopedia

HUAWEI EX. 1010 - 522/1582

IT Article 17: Windows

displays this text in any of the three vector fonts- Script, Modern, and Roman- that are
included with Windows. Sometimes also called stroke or graphics fonts, these vector fonts
are defined by a series of line segments, rather than by the pixel patterns that make up the
more common raster fonts. The SAMPLE program picks a font size that fits the client area.

Figure 17-10 shows several instances of this program running under Windows.

Five separate files go into the making of this program:

1. Source-code file: This is the main part of the program, generally written in C, Pascal,
or assembly language. The SAMPLE program was written in C, which is the most
popular language for Windows programs because of its flexibility in using pointers
and structures. The SAMPLE.C source-code file is shown in Figure 17-11.

I* SAMPLE.C -- Demonstration Windows Program *I

#include <windows.h>
#include "sample.h"

long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

int PASCAL WinMain (hinstance, hPrevinstance, lpszCmdLin~, nCmdShow)
HANDLE hinstance, hPrevinstance
LPSTR
int

lpszCmdLine
nCmdShow

WNDCLASS
HWND

wndclass
hWnd ;

MSG msg ;
static char szAppName [] = "Sample" ;

1*---------------------------*1
I* Register the Window Class *I
1*---------------------------*1

if (!hPrevinstance)

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hinstance
wndclass.hicon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

CS_HREDRAW CS_VREDRAW

WndProc
0 ;
0 ;
hinstance
NULL ;
LoadCursor (NULL, IDC-ARROW)
GetStockObject (WHITE_BRUSH)

szAppName
szAppName

RegisterClass (&wndclass) ;

Figure 17-11. The SAMPLE.C source code. (more)

Section II: Programming in the MS-DOS Environment 513

HUAWEI EX. 1010 - 523/1582

Part D: Directions of MS-DOS

hWnd

1*----------------------------------*1
I* Create the window and display it *I
1*----------------------------------*1

CreateWindow (szAppName, "Demonstration Windows Program",
WS_OVERLAPPEDWINDOW,

(int) CW_USEDEFAULT, 0,

(int) CW_USEDEFAULT, 0,
NULL, NULL, hinstance, NULL)

ShowWindow (hWnd, nCmdShow)

UpdateWindow (hWnd) ;

l*--*1
I* Stay in message loop until a WM_QUIT message *I
l*--*1

while (GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;
)

return msg.wParam ;

long FAR PASCAL WndProc (hWnd, iMessage, wParam, lParam)

HWND hWnd ;
unsigned

WORD

LONG

iMessage
wParam

lParam
{

PAINTSTRUCT

HFONT

ps ;

hFont

hMenu HMENU

static short xClient, yClient, nCurrentFont = IDM_SCRIPT ;
static BYTE cFamily [] { FF_SCRIPT, FF_MODERN, FF_ROMAN

static char *szFace (] = { ''Script'', ''Modern'', ''Roman"

switch (iMessage)

l*---*1
I* WM_COMMAND message: Change checkmarked font *I
l*---*1

case WM_COMMAND:

hMenu = GetMenu (hWnd)

CheckMenuitem (hMenu, nCurrentFont, MF_UNCHECKED)
nCurrentFont = wParam

CheckMenuitem (hMenu, nCurrentFont, MF_CHECKED)

InvalidateRect (hWnd, NULL, TRUE) ;

break

Figure 17-11. Continued.

514 The MS-DOS Encyclopedia

(more)

HUAWEI EX. 1010 - 524/1582

Article 17: Windows

l•--•1
I* WM_SIZE message: Save dimensions of window *I

l•--•1

cas!= WM_SIZE:

xClient

yClient

break ;

LOWORD (lParam)
HIWORD (lParam)

l•---•1
I* WM_PAINT message: Display "Windows" in Script •I

l•---•1

case WM_PAINT:

BeginPaint (hWnd, &ps) ;

hFont = CreateFont (yClient, xClient I 8,
0, 0, 400, 0, 0, 0, OEM_CHARSET,
OUT_STROKE_FRECIS, OUT_STROKE_PRECIS,

DRAFT_QUALITY, (BYTE) VARIABLE_FITCH

cFamily [nCurrentFont- IDM-SCRIPT],
szFace [nCurrentFont- IDM-SCRIPT])

hFont = SelectObject (ps.hdc, hFont)
TextOut (ps.hdc, 0, 0, "Windows", 7)

DeleteObject (SelectObject (ps.hdc, hFont))

EndPaint (hWnd, &ps) ;

break ;

1•---------------------------------------•1
I* WM_DESTROY message: Post Quit message •I
1•---------------------------------------•1

case WM_DESTROY:

PostQuitMessage (0)

break ;

1•---------------------------------------•1
I* Other messages: Do default processing *I

1•---------------------------------------•1

default:
return DefWindowProc (hWnd, iMessage, wParam, lParam)

return OL

Figure 17-11. Continued.

Section II: Programming in the MS-DOS Environment 515

HUAWEI EX. 1010 - 525/1582

