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A Real-Time Video Tracking System
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Abstract—Object identification and tracking applications of pattern
recognition at video rates is a problem of wide interest, with previous
attempts limited to very simple threshold or correlation (restricted
window) methods. New high-speed algorithms together with fast
digital hardware have produced a system for missile and aircraft iden-
tification and tracking that possesses a degree of “intelligence” not
previously implemented in a real-time tracking system. Adaptive
statistical clustering and projection-based classification algorithms are
applied in real time to identify and track objects that change in ap-
pearance through complex and nonstationary background/foreground
situations. Fast estimation and prediction algorithms combine linear
and quadratic estimators to provide speed and sensitivity. Weights are
determined to provide a measure of confidence in the data and result-
ing decisions. Strategies based on maximizing the probability of main-
taining track are developed. This paper emphasizes the theoretical
aspects of the system and discusses the techniques used to achieve real-
time implementation.

Index Terms—Image processing, intensity histograms, object iden-
“tification, optical tracking, projections, tracking system, video data
compression, video processing, video tracking.

INTRODUCTION

MAGE PROCESSING methods constrained to operate on
Isequential images at a high repetition rate are few. Pattern
recognition techniques are generally quite complex, requiring
a great deal of computation to yield an acceptable classifica-
tion. Many problems exist, however, where such a time-
consuming technique is unacceptable. Reasonably complex
operations can be performed on wide-band data in real time,
yielding solutions to difficult problems in object identification
and tracking.

The requirement to replace film as a recording medium to
obtain a real-time location of an object in the field-of-view
(FOV) of a long focal length theodolite gave rise to the de-
velopment of the real-time videotheodolite (RTV). U.S. Army
White Sands Missile Range began the development of the RTV
in 1974, and the system is being deployed at this time. Design
philosophy called for a system capable of discriminatory judg-
ment in identifying the object to be tracked with 60 indepen-
dent observations/s, capable of locating the center of mass of
the object projection on the image plane within about 2 per-
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cent of the FOV in rapidly changing background/foreground
situations (therefore adaptive), able to generate a predicted
observation angle for the next observation, and required to
output the angular displacements of the object within the
FOV within 20 ms after the observation was made. The sys-
tem would be required to acquire objects entering the FOV
that had been prespecified by shape description. In the RTV
these requirements have been met, resulting in a real-time ap-
plication of pattern recognition/image processing technology.

The RTV is made up of many subsystems, some of which
are generally not of interest to the intended audience of this
paper. These subsystems (see Fig. 1) are as follows:

1) main optics;
2) optical mount;
3) interface optics and imaging subsystem;
4) control processor;
5) tracker processor;
6) projection processor;
7) video processor;
8) input/output (I/O) processor;
9) test subsystem;
10) archival storage subsystem;
11) communications interface.

The main optics is a high quality cinetheodolite used for ob-
taining extremely accurate (rms error =~ 3 arc-seconds) angular
data on the position of an object in the FOV. It is positioned
by the optical mount which responds to azimuthal and eleva-
tion drive commands, either manually or from an external
source. The interface optics and imaging subsystem provides
a capability to increase or decrease the imaged object size on
the face of the silicon target vidicon through a 10:1 range,
provides electronic rotation to establish a desired object
orientation, performs an autofocus function, and uses a gated
image intensifier to amplify the image and “freeze” the mo-
tion in the FOV. The camera output is statistically decom-
posed into background, foreground, target, and plume re-
gions by the video processor, with this operation carried on
at video rates for up to the full frame. The projection pro-
cessor then analyzes the structure of the target regions to
verify that the object selected as “target” meets the stored
(adaptive) description of the object being tracked. The tracker
processor determines a position in the FOV and a measured
orientation of the target, and decides what level of confidence
it has in the data and decision. The control processor then
generates commands to orient the mount, control the inter-
face optics, and provide real-time data output. An I/O pro-
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Fig. 1. RTV trackmg system.

cessor allows the algorithms in the system to be changed, in-
terfaces with a human operator for tests and operation, and
provides data to and accepts data from the archival storage
subsystem where the live video is combined with status and
position data on a video tape. The ftest subsystem performs
standard maintenance checks on the system. The communica-
tions interface provides the necessary interaction with the ex-
ternal world for outputing or receiving data.

The video processor, projection processor, tracker processor,
and control processor are four microprogrammable bit-slice
microprocessors [1], which utilize Texas Instruments’ (TIs”)
new 748481 Schottky processor, and are used to perform
the real-time tracking function.

The four tracking processors, in turn, separate the target
image from the background, locate and describe the target
image shape, establish an intelligent tracking strategy, and
generate the camera pointing signals to form a fully auto-
matic tracking system.

Various reports and papers discuss several of the develop-
mental steps and historical aspects of this project [2]-[7].
In this paper the video, projection, tracker, and control
processors are discussed at some length.

VIDEO PROCESSOR

The video processor receives the digitized video, statistically
analyzes the target and background intensity distributions,
and decides whether a given pixel is background or target
[8]. A real-time adaptive statistical clustering algorithm is
used to separate the target image from the background scene
at standard video rates. The scene in the FOV of the TV
camera is digitized to form an n X m matrix representation

P=(pj)n,m

of the pixel intensities p;;. As the TV camera scans the scene,
the video signal is digitized at m equally spaced points across
each horizontal scan. During each video field, there are n
horizontal scans which generate an n X m discrete matrix
representation at 60 fields/s. A resolution of m =512 pixels
per standard TV line results in a pixel rate of 96 ns per pixel.
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eight bits (256 gray levels), counted into one of six 256-level
histogram memories, and then converted by a decision mem-
ory to a 2-bit code indicating its classification (target, plume,
or background). There are many features that can be func-
tionally derived from relationships between pixels, e.g., tex-
ture, edge, and linearity measures. Throughout the following
discussion of the clustering algorithm, pixel intensity is used
to describe the pixel features chosen.

The basic assumption of the clustering algorithm is that
the target image has some video intensities not contained
in the immediate background. A tracking window is placed
about the target image, as shown in Fig. 2, to sample the
background intensities immediately adjacent to the target
image. The background sample should be taken relatively
close to the target image, and it must be of sufficient size to
accurately characterize the background intensity distribution
in the vicinity of the target. The tracking window also serves
as a spatial bandpass filter by restricting the target search re-
gion to the immediate vicinity of the target. Although one
tracking window is satisfactory for tracking missile targets
with plumes, two windows are used to provide additional
reliability and flexibility for independently tracking a target
and plume, or two targets. Having two independent windows
allows each to be optimally configured and provides reliable
tracking when either window can track.

The tracking window frame is partitioned into a background
region (BR) and a plume region (PR). The region inside the
frame is called the target region (TR) as shown in Fig. 2.
During each field, the feature histograms are accumulated
for the three regions of each tracking window.

The feature histogram of a region R is an integer-value, in-
teger argument function AR (x). The domain of AR (x) is
[0,d], where d corresponds to the dynamic range of the
analog-to-digital converter, and the range of A% (x) is [0, 7],
where r is the number of pixels contained in the region R;
thus, there are r + 1 possible values of A% (x). Since the do-
main A% (x) is a subset of the integers, it is convenient to
define 1B (x) as a one-dimensional array of integers

h(0),h(1),h(2), -, h(d).

Letting x; denote the ith element in the domain of x (e.g.,
X35 =24), and x(j) denote the jth sample in the region R
(taken in any order), 2% (x) may be generated by the sum

hR ()= 3 63, x(7)

j=1

where 6 is the Kronecker delta function

iy
ol =g

A more straightforward definition which corresponds to the
actual method used to obtain A% (x) uses Iverson’s notation
[21] to express AR (x) as a one-dimensional vector of d + 1
integers which are set to zero prior to processing the region
R as

i#j
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Fig. 2. Tracking window.

As each pixel in the region is processed, one (and only one)
element of H is incremented as

hlx (D] < hlx(7)] + 1.

When the entire region has been scanned, # contains the dis-
tributions of pixels over intensity and is referred to as the
feature histogram of the region R.

It follows from the above definition that h satisfies the
identity

d
=3 hR(x;) or r=+/h.
i=o

Since & is also nonnegative and finite, it can be made to sat-
isfy the requirements of a probability assignment function
by the normalization

h<h++/h.

Hereafter, all feature histograms are assumed to be normalized
and are used as relative-frequency estimates of the probability
of occurrence of the pixel values x in the region over which
the histogram is defined.

For the ith field, these feature histograms are accumulated
for the background, plume, and target regions and written

hER(x): SRR () =1
R S rfRx) =1
hR@): S RN @)=1

after they are normalized to the probability interval [0, 1].
These normalized histograms provide an estimate of the
probability of feature x occurring in the background, plume,
and target regions on a field-by-field basis. The histograms
are accumulated at video rates using high-speed LSI mem-
ories to realize a multiplexed array of counters, one for each
feature x.

The next problem in the formulation of a real-time cluster-
ing algorithm is to utilize the sampled histograms on a field-
by-field basis to obtain learned estimates of the probability
density functions for background, plume, and target points.
Knowing the relative sizes of the background in PR, the back-
ground in TR, and the plume in TR, allows the computation
of estimates for the probability density function for back-
ground, plume, and target features. This gives rise to a type
of nonparametric classification similar to mode estimation
as discussed by Andrews [9], but with an implementation
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Letting

number of background points in PR

total number of points in PR

_ number of background points in TR
total number of points in TR

number of plume points in TR

L total number of points in TR

and assuming that 1) the BR contains only background points,
2) the PR contains background and plume points, and 3) the
TR contains background, plume, and target points, one has

hPR (x) = b (x)

hR(x) = ahf(x) + (1 - @) i (x)

iR () = BhP () + vh{ () + (1 - B~ 7) bf (x).

By assuming there are one or more features x where AP (x)
is much larger than i} (x), one has

PR (x) &

hBR (x) hBR (X)
where eg =1 - a) K (x) << hB(x). Now for all features x
where h; (x) = 0, one has the solution a = ; PR (x)/h BR(x) For

all features x where if(x) >0, the inequality kfR(e)/hPR(x) >«
is valid. Consequently, a good estimate for a is given by

a=min {AFR()/hPR ()}

and this estimate will be exact if there exists one or more fea-
tures where #PR(x) # 0 and hf(x) = 0. Having an estimate of
o and #B(x) allows the calculation of AF (x).

In a similar manner, estimates of § and vy are obtained,

hTR(x)
hBR( )
h{R ()

=min-—p%——_—-
L 1)

B= mm

Having field-by-field estimates of the background, plume,
and target density functions (k¥(x), hf(x), hf(x)), a linear
recursive estimator and predictor [10] is utilized to establish
learned estimates of the density functions. Letting H(ilj)
represent the learned estimate of a density function for the
ith field using the sampled density functions ;(x) up to the
jth field, we have the linear estimator

H@l)=w-H(@li- 1)+ (1 - w)h(x)
and linear predictor
HG+11i)=2H@i)-HG-1li- 1).

The above equations provide a linear recursive method for
compiling learned density functions. The weighting factor
can be used to vary the learning rate. When w = 0, the learn-
ing effect is disabled and the measured histograms are used
by the predictor. As w increases toward one, the learning
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reduced effect. A small w should be used when the back-
ground is rapidly changing; however, when the background is
relatively stationary, w can be increased to obtain a more
stable estimate of the density functions.

The predictor provides several important features for the
tracking problem. First, the predictor provides a better esti-
mate of the density functions in a rapidly changing scene
which may be caused by background change or sunglare prob-
lems. Secondly, the predictor allows the camera to have an
automatic gain control to improve the target separation from
the background.

With the learned density functions for the background,
plume, and target features (HZ(x), HF (x), H¥(x)), a Bayesian
classifier [11] can be used to decide whether a given feature
x is a background, plume, or target point. Assuming equal
a priori probabilities and equal misclassification costs, the
classification rule decides that a given pixel feature x is a
background pixel if

HP()>H{(x) and HP()>H] (x),
a target pixel if

HI()>HP () and H[()>H{ (x),
or a plume pixel if

HP(x)>HE(x) and HF(x)>H](x).

The results of this decision rule are stored in a high-speed
classification memory during the vertical retrace period.
With the pixel classification stored in the classification mem-
ory, the real-time pixel classification is performed by simply
letting the pixel intensity address the classification memory
location containing the desired classification. This process
can be performed at a very rapid rate with high-speed bipolar
memories.

PROJECTION PROCESSOR

The video processor described above separates the target
image from the background and generates a binary picture,
where target presence is represented by a “1” and target
absence by a “0.” The target location, orientation, and
structure are characterized by the pattern of 1 entries in the
binary picture matrix, and the target activity is character-
ized by a sequence of picture matrices. In the projection
processor, these matrices are analyzed field-by-field at 60
fields/s using projection-based classification algorithms to
extract the structural and activity parameters needed to
identify and track the target.

The targets are structurally described and located by using
the theory of projections. A projection in the x-y plane of a
picture function f(x,y) along a certain direction w onto a
straight line z perpendicular to w is defined by

Pu@= [ 166,) aw

as shown in Fig. 3. In general, a projection integrates the in-
tens1ty levels of a plcture along parallel hnes through the pat-

111 a1
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Fig. 3. Projections.

digitized patterns, the projection gives the number of object
points along parallel lines; hence, it is a distribution of the
target points for a given view angle.

It has been shown that for sufficiently large numbers of
projections a multigray level digitized pattern can be uniquely
reconstructed [12]. This means that structural features of a
pattern are contained in the projections. The binary input
simplifies the construction of projections and eliminates in-
terference of structural information by intensity variation
within the target pattern; consequently, fewer projections
are required to extract the structural information. In fact,
any convex, symmetric binary pattern can be reconstructed
by only two orthogonal projections, proving that the projec-
tions do contain structural information.

Much research in the projection area has been devoted to
the reconstruction of binary and multigray level pictures
from a set of projections, each with a different view angle.
In the real-time tracking problem, the horizontal and vertical
projections can be rapidly generated with specialized hard-
ware circuits that can be operated at high frame rates. Al-
though the vertical and horizontal projections characterize
the target structure and locate the centroid of the target
image, they do not provide sufficient information to pre-
cisely determine the orientation of the target. Consequently,
the target is dissected into two equal areas and two orthogonal
projections are generated for each area.

To precisely determine the target position and orientation,
the target center-of-area points are computed for the top sec-
tion (X7, ¥T) and bottom section (X2, Y2) of the tracking
parallelogram using the projections. Having these points, the
target center-of-area (X,, Y.) and its orientation can be easily
computed (Fig. 4):

¥ =X0T+X‘cB
¢ 2
y _YI+vg
¢ 2
T _ yvB
YE
¢=tan"! X? X5

The top and bottom target center-of-area points are used,
rather than the target nose and tail points, since they are
much easier to locate, and more importantly, they are less
sensitive to noise perturbations.

L P . . o "1 . .o ~
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Fig. 4. Projection location technique.

a parametric model for structural analysis. Area quantiza-
tion offers the advantage of easy implementation and high
immunity to noise. This process transforms a projection
function P, (z) into k rectangles of equal area (Fig. 5), such
that

jZi“
Z;

Another important feature of the area quantization model
for a projection function of an object is that the ratio of line

1 Zk+1
P,(z)dz=— f P, (z)dz
kJg,

for i=1,2,---,k.

segments ;=Z;, -Z;andL =2, - Z,,
I
S,~=f for i=2,3,---,k-1

are object size invariant. Consequently, these parameters pro-
vide a measure of structure of the object which is independent
of size and location [13]. In general, these parameters change
continuously since the projections are one-dimensional repre-
sentations of a moving object. Some of the related problems
of these geometrical operations are discussed by Johnston and
Rosenfeld [14].

The structural parameter model has been implemented and
successfully used to recognize a class of basic patterns in a
noisy environment. The pattern class includes triangles,
crosses, circles, and rectangles with different rotation angles.
These patterns are chosen because a large class of more com-
plex target shapes can be approximated with them.

The architecture of the projection processor consists of a
projection accumulation module (PAM) for accumulating
the projections and a microprogrammable processor for
computmg the structural parameters The binary target

AN
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with the pixel classifier of the video processor. The projec-
tions are formed by the PAM as the data are received in real
time. In the vertical retrace interval, the projection processor
assumes addressing control of the PAM and computes the
structural parameters before the first active line of the next
field. This allows the projections to be accumulated in real
time, while the structural parameters are computed during
the vertical retrace interval.

TRACKER PROCESSOR

In the tracking problem, the input environment is restricted
to the image in the FOV of the tracking optics. From this in-
formation, the tracking processor extracts the important in-
puts, classifies the current tracking situation, and establishes
an appropriate tracking strategy to control the tracking optics
for achieving the goals of the tracking system.

The state concept can be used to classify the tracking situa-
tions in terms of state variables as in control theory, or it can
be interpreted as a state in a finite state automaton [15], [16].

Some of the advantages of the finite state automaton ap-
proach are as follows.

1) A finite state automaton can be easily implemented with
a look-up table in a fast LSI memory.

2) A finite state automaton significantly reduces the amount
of information to be processed.

3) The tracking algorithm can be easily adjusted to differ-
ent tracking problems by changing the parameters in the
look-up table.

4) The finite state automaton can be given many character-
istics displayed by human operators.

The purpose of the tracker processor is to establish an intel-
ligent tracking strategy for adverse tracking conditions. These
conditions often result in losing the target image within or out
of the FOV. When the target image is lost within the FOV,
the cause can normally be traced back to rapid changes in the
background scene, rapid changes in the target image due to
sun glare problems, or cloud formations that obstruct the
target image. When the target image is lost by moving out of
the camera’s FOV, the cause is normally the inability of the
tracking optics dynamics to follow a rapid motion of the
target image. It is important to recognize these situations
and to formulate an intelligent tracking strategy to continue
tracking while the target image is lost so that the target image
can be reacquired after the disturbance has passed.

To establish an mtelhgent trackmg strategy, the tracker pro-
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