Exhibit 2152

Low Cost, Ultracompact ±2 g Dual-Axis Accelerometer

ADXL311

FEATURES

Low cost
High resolution
Dual-axis accelerometer on a single IC chip
5 mm × 5 mm × 2 mm CLCC package
Low power < 400 μA (typ)
X-axis and Y-axis aligned to within 0.1° (typ)
BW adjustment with a single capacitor
Single-supply operation
High shock survival

APPLICATIONS

Tilt and motion sensing in cost-sensitive applications
Smart handheld devices
Computer security
Input devices
Pedometers and activity monitors
Game controllers
Toys and entertainment products

GENERAL DESCRIPTION

The ADXL311 is a low cost, low power, complete dual-axis accelerometer with signal conditioned voltage outputs, all on a single monolithic IC. The ADXL311 is built using the same proven iMEMS® process used in over 100 million Analog Devices accelerometers shipped to date, with demonstrated 1 FIT reliability (1 failure per 1 billion device operating hours).

The ADXL311 will measure acceleration with a full-scale range of ± 2 g. The ADXL311 can measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., gravity). The outputs are analog voltages proportional to acceleration.

The typical noise floor is 300 $\mu g/\sqrt{Hz}$ allowing signals below 2 mg (0.1° of inclination) to be resolved in tilt sensing applications using narrow bandwidths (10 Hz).

The user selects the bandwidth of the accelerometer using capacitors C_X and C_Y at the X_{FILT} and Y_{FILT} pins. Bandwidths of 1 Hz to 2 kHz may be selected to suit the application.

The ADXL311 is available in a 5 mm \times 5 mm \times 2 mm 8-terminal hermetic CLCC package

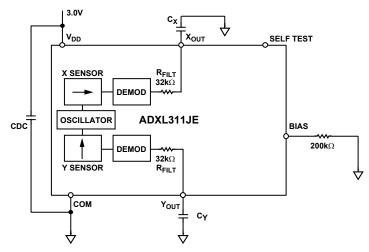


Figure 1. Functional Block Diagram

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use.

ADXL311

TABLE OF CONTENTS

Specifications	. 3
Absolute Maximum Ratings	. 4
Typical Performance Characteristics	. 5
Theory of Operation	. 7
Applications	. 7
Design Trade-Offs for Selecting Filter Characteristics: The Noise/BW Trade-Off	
Using the ADXL311 as a Dual-Axis Tilt Sensor	. 8

Pin Configuration and Functional Descriptions	9
Outline Dimensions	10
Ordering Guide	10

REVISION HISTORY

Revision 0: Initial Version

SPECIFICATIONS

Table 1. $T_A = 25$ °C, $V_{DD} = 3$ V, $R_{BIAS} = 125$ k Ω , Acceleration = 0 g, unless otherwise noted.)

Parameter	Conditions	Min	Тур	Max	Units
SENSOR INPUT	Each Axis				
Measurement Range			±2		g
Nonlinearity	Best Fit Straight Line		0.2		% of FS
Aligment Error ¹			±1		Degrees
Aligment Error	X Sensor to Y Sensor		0.01		Degrees
Cross Axis Sensitivity ²			±2		%
SENSITIVITY	Each Axis				
Sensitivity at XFILT, YFILT	$V_{DD} = 3 V$	140	167	195	mV/g
Sensitivity Change due to Temperature ³	Delta from 25°C		-0.025		%/°C
ZERO g BIAS LEVEL	Each Axis				
0 g Voltage X _{FILT} , Y _{FILT}	$V_{DD} = 3 V$	1.2	1.5	1.8	V
0 g Offset vs. Temperature	Delta from 25°C		2.0		m <i>g/</i> °C
NOISE PERFORMANCE					
Noise Density	@25°C		300		μ <i>g</i> /√Hz RMS
FREQUENCY RESPONSE					
3 dB Bandwidth	At Pins X _{FILT} , Y _{FILT}		6		kHz
Sensor Resonant Frequency			10		kHz
FILTER					
R _{FILT} Tolerance	32 kΩ Nominal		±15		%
Minimum Capacitance	At Pins X _{FILT} , Y _{FILT}	1000			pF
SELF TEST					
X _{FILT} , Y _{FILT}	Self Test 0 to 1		45		mV
POWER SUPPLY					
Operating Voltage Range		2.7		5.25	V
Quiescent Supply Current			0.4	1.0	mA
Turn-On Time			160 × C _{FILT} + 0.3		ms
TEMPERATURE RANGE					
Operating Range		0		70	°C

Alignment error is specified as the angle between the true and indicated axis of sensitivity (Figure 1).
 Cross axis sensitivity is the algebraic sum of the alignment and the inherent sensitivity errors.
 Defined as the output change from ambient to maximum temperature or ambient to minimum temperature.

ADXL311

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating		
Acceleration (Any Axis, Unpowered)	3,500 <i>g</i> , 0.5 ms		
Acceleration (Any Axis, Powered, $V_{DD} = 3 \text{ V}$)	3,500 <i>g</i> , 0.5 ms		
V_{DD}	-0.3 V to +0.6 V		
Output Short-Circuit Duration, (Any Pin to Commom)	Indefinite		
Operating Temperature Range	-55°C to +125°C		
Storage Temperature	−65°C to +150°C		

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Package Characteristics

Package Type	θ _{JA}	θις	Device Weight
8-Lead CLCC	120°C/W	TBD°C/W	<1.0 gram

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

