(12) United States Patent

Jin et al.
(10) Patent No.:
(45) Date of Patent:

US 7,916,781 B2
Mar. 29, 2011
(54) SERIAL CONCATENATION OF

INTERLEAVED CONVOLUTIONAL CODES FORMING TURBO-LIKE CODES

Inventors: Hui Jin, Glen Gardner, NJ (US); Aamod Khandekar, Pasadena, CA (US);
Robert J. McEliece, Pasadena, CA (US)
Assignee:
California Institute of Technology
Pasadena, CA (US)
(*) Notice:
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 424 days.
(21) Appl. No.: 12/165,606
(22) Filed:

Jun. 30, 2008

Prior Publication Data

US 2008/0294964 A1 Nov. 27, 2008

Related U.S. Application Data

(63) Continuation of application No. 11/542,950, filed on Oct. 3, 2006, now Pat. No. 7,421,032, which is a continuation of application No. 09/861,102, filed on May 18, 2001, now Pat. No. 7,116,710, which is a continuation-in-part of application No. 09/922,852, filed on Aug. 18, 2000, now Pat. No. 7,089,477.
(60) Provisional application No. 60/205,095, filed on May 18, 2000.
(51) Int. Cl.

H04B 1/66
(2006.01)
(52)
U.S. Cl.

375/240; 375/285; 375/296; 714/801; 714/804
Field of Classification Search \qquad 375/240, 375/240.24, 254, 285, 295, 296, 260; 714/755, $714 / 758,800,801,804,805$ See application file for complete search history.
(56)

References Cited
U.S. PATENT DOCUMENTS

5,181,207 A *	1/1993	Chapman	714/755
5,392,299 A	2/1995	Rhines et al.	
5,530,707 A	6/1996	Lin	
5,751,739 A	5/1998	Seshadri et al.	
5,802,115 A	9/1998	Meyer	
5,881,093 A	3/1999	Wang et al.	
6,014,411 A	1/2000	Wang	
6,023,783 A	2/2000	Divsalar et al.	
6,031,874 A	2/2000	Chennakeshu et al.	
6,032,284 A	2/2000	Bliss	
6,044,116 A	3/2000	Wang	
6,094,739 A	7/2000	Miller et al.	
6,195,396 B1 *	2/2001	Fang et al.	375/261
6,396,423 B1	5/2002	Laumen et al.	
$6,437,714 \mathrm{~B} 1$	8/2002	Kim et al.	
6,732,328 B1*	5/2004	McEwen et al	714/795
6,859,906 B2	2/2005	Hammons et al.	
7.089,477 B1	8/2006	Divsalar et a	

(Continued)

OTHER PUBLICATIONS

Benedetto, S., et al., "A Soft-Input Soft-Output APP Module for Iterative Decoding of Concatenated Codes," IEEE Communications Letters, 1(1):22-24, Jan. 1997.

(Continued)

Primary Examiner - Dac V Ha
(74) Attorney, Agent, or Firm - Perkins Coie LLP

(57)

ABSTRACT

A serial concatenated coder includes an outer coder and an inner coder. The outer coder irregularly repeats bits in a data block according to a degree profile and scrambles the repeated bits. The scrambled and repeated bits are input to an inner coder, which has a rate substantially close to one.

22 Claims, 5 Drawing Sheets

US 7,916,781 B2

U.S. PATENT DOCUMENTS
 2001/0025358 A1 9/2001 Eidson et al.
 OTHER PUBLICATIONS

Benedetto, S., et al., "A Soft-Input Soft-Output Maximum A Posteriori (MAP) Module to Decode Parallel and Serial Concatenated Codes," The Telecommunications and Data Acquisition Progress Report (TDA PR 42-127), pp. 1-20, Nov. 1996.
Benedetto, S., et al., "Bandwidth efficient parallel concatenated coding schemes," Electronics Letters, 31(24):2067-2069, Nov. 1995.
Benedetto, S., et al., "Design of Serially Concatenated Interleaved Codes," ICC 97, vol. 2, pp. 710-714, Jun. 1997.
Benedetto, S., et al., "Parallel Concatenated Trellis Coded Modulation," ICC 96, vol. 2, pp. 974-978, Jun. 1996.
Benedetto, S., et al., "Serial Concatenated Trellis Coded Modulation with Iterative Decoding," Proceedings 1997 IEEE International Symposium on Information Theory (ISIT), Ulm, Germany, p. 8, Jun. 29-Jul. 4, 1997.
Benedetto, S., et al., "Serial Concatenation of Interleaved Codes: Performace Analysis, Design, and Iterative Decoding," The Telecommunications and Data Acquisition Progress Report (TDA PR 42126), pp. 1-26, Aug. 1996.
Benedetto, S., et al., "Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding," Proceedings 1997 IEEE International Symposium on Information Theory (ISIT), Ulm, Germany, p. 106, Jun. 29-Jul. 4, 1997.
Benedetto, S., et al., "Soft-Output Decoding Algorithms in Iterative Decoding of Turbo Codes," The Telecommunications and Data Acquisition Progress Report (TDA PR 42-124), pp. 63-87, Feb. 1996. Berrou, C., et al., "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes," ICC 93, vol. 2, pp. 1064-1070, May 1993.

Digital Video Broadcasting (DVB)-User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2), ETSI TR 102376 V1.1.1 Technical Report, pp. 1-104 (p. 64), Feb. 2005.

Divsalar, D., et al., "Coding Theorems for 'Turbo-Like' Codes," Proceedings of the $36^{\text {th }}$ Annual Allerton Conference on Communication, Control, and Computing, Monticello, Illinois, pp. 201-210, Sep. 1998.

Divsalar, D., et al., "Effective free distance of turbo codes," Electronics Letters, 32(5):445-446, Feb. 1996.
Divsalar, D., et al., "Hybrid Concatenated Codes and Iterative Decod-
ing," Proceedings 1997 IEEE International Symposium on Information Theory (ISIT), Ulm, Germany, p. 10, Jun. 29-Jul. 4, 1997.
Divsalar, D., et al., "Low-Rate Turbo Codes for Deep-Space Communications," Proceedings 1995 IEEE International Symposium on Information Theory (ISIT), Whistler, BC, Canada, p. 35, Sep. 1995. Divsalar, D., et al., "Multiple Turbo Codes for Deep-Space Communications," The Telecommunications and Data Acquisition Progress Report (TDA PR 42-121), pp. 66-77, May 1995.
Divsalar, D., et al., "Multiple Turbo Codes," MILCOM '95, vol. 1, pp. 279-285, Nov. 1995.
Divsalar, D., et al., "On the Design of Turbo Codes," The Telecommunications and Data Acquisition Progress Report (TDA PR 42-123), pp. 99-121, Nov. 1995.
Divsalar, D., et al., "Serial Turbo Trellis Coded Modulation with Rate-1 Inner Code," Proceedings 2000 IEEE International Symposium on Information Theory (ISIT), Sorrento, Italy, pp. 194, Jun. 2000.

Divsalar, D., et al., "Turbo Codes for PCS Applications," IEEE ICC '95, Seattle, WA, USA, vol. 1, pp. 54-59, Jun. 1995.
Jin, H., et al., "Irregular Repeat-Accumulate Codes," 2nd International Symposium on Turbo Codes, Brest, France, 25 pages, Sep. 2000.

Jin, H., et al., "Irregular Repeat—Accumulate Codes," $2^{\text {nd }}$ International Symposium on Turbo Codes \& Related Topics, Brest, France, p. 1-8, Sep. 2000.
Richardson, T.J., et al., "Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes," IEEE Transactions on Information Theory, 47(2):619-637, Feb. 2001.
Richardson, T.J., et al., "Efficient Encoding of Low-Density ParityCheck Codes," IEEE Transactions on Information Theory, 47(2):638-656, Feb. 2001.
Wiberg, N., et al., "Codes and Iterative Decoding on General Graphs," Proceedings 1995 IEEE International Symposium on Information Theory (ISIT), Whistler, BC, Canada, p. 468, Sep. 1995.
Aji, S.M., et al., "The Generalized Distributive Law," IEEE Transactions on Information Theory, 46(2):325-343, Mar. 2000.
Tanner, R.M., "A Recursive Approach to Low Complexity Codes," IEEE Transactions on Information Theory, 27(5):533-547, Sep. 1981.

* cited by examiner
100

FIG. 1
(Prior Art)

FIG. 4

Variable Node
Fraction of nodes degree i

FIG. 3

FIG. 5A

FIG. 5B

FIG. 6

SERIAL CONCATENATION OF INTERLEAVED CONVOLUTIONAL CODES FORMING TURBO-LIKE CODES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/542,950, filed Oct. 3, 2006 now U.S. Pat. No. 7,421, 032, which is a continuation of U.S. application Ser. No. 09/861,102, filed May 18, 2001, now U.S. Pat. No. 7,116,710, which claims the priority of U.S. Provisional Application Ser. No. 60/205,095, filed May 18, 2000, and is a continuation-in-part of U.S. application Ser. No. 09/922,852, filed Aug. 18, 2000, now U.S. Pat. No. 7,089,477. The disclosure of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

GOVERNMENT LICENSE RIGHTS

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No. CCR-9804793 awarded by the National Science Foundation.

BACKGROUND

Properties of a channel affect the amount of data that can be handled by the channel. The so-called "Shannon limit" defines the theoretical limit of the amount of data that a channel can carry.

Different techniques have been used to increase the data rate that can be handled by a channel. "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes," by Berrou et al. ICC, pp 1064-1070, (1993), described a new "turbo code" technique that has revolutionized the field of error correcting codes. Turbo codes have sufficient randomness to allow reliable communication over the channel at a high data rate near capacity. However, they still retain sufficient structure to allow practical encoding and decoding algorithms. Still, the technique for encoding and decoding turbo codes can be relatively complex.

A standard turbo coder $\mathbf{1 0 0}$ is shown in FIG. 1. A block of k information bits is input directly to a first coder 102. A k bit interleaver $\mathbf{1 0 6}$ also receives the k bits and interleaves them prior to applying them to a second coder 104. The second coder produces an output that has more bits than its input, that is, $i t$ is a coder with rate that is less than 1 . The coders $\mathbf{1 0 2 , 1 0 4}$ are typically recursive convolutional coders.

Three different items are sent over the channel 150: the original k bits, first encoded bits 110 , and second encoded bits 112. At the decoding end, two decoders are used: a first constituent decoder 160 and a second constituent decoder 162. Each receives both the original k bits, and one of the encoded portions 110, 112. Each decoder sends likelihood estimates of the decoded bits to the other decoders. The estimates are used to decode the uncoded information bits as corrupted by the noisy channel.

SUMMARY

A coding system according to an embodiment is configured to receive a portion of a signal to be encoded, for example, a data block including a fixed number of bits. The coding system includes an outer coder, which repeats and scrambles bits in the data block. The data block is apportioned
into two or more sub-blocks, and bits in different sub-blocks are repeated a different number of times according to a selected degree profile. The outer coder may include a repeater with a variable rate and an interleaver. Alternatively, the outer coder may be a low-density generator matrix (LDGM) coder.

The repeated and scrambled bits are input to an inner coder that has a rate substantially close to one. The inner coder may include one or more accumulators that perform recursive modulo two addition operations on the input bit stream.

The encoded data output from the inner coder may be transmitted on a channel and decoded in linear time at a destination using iterative decoding techniques. The decoding techniques may be based on a Tanner graph representation of the code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a prior "turbo code" system.

FIG. $\mathbf{2}$ is a schematic diagram of a coder according to an embodiment.

FIG. 3 is a Tanner graph for an irregular repeat and accumulate (IRA) coder.
FIG. 4 is a schematic diagram of an IRA coder according to an embodiment.
FIG. 5A illustrates a message from a variable node to a check node on the Tanner graph of FIG. 3.

FIG. 5B illustrates a message from a check node to a variable node on the Tanner graph of FIG. 3.
FIG. 6 is a schematic diagram of a coder according to an alternate embodiment.

FIG. 7 is a schematic diagram of a coder according to another alternate embodiment.

DETAILED DESCRIPTION

FIG. 2 illustrates a coder $\mathbf{2 0 0}$ according to an embodiment. The coder $\mathbf{2 0 0}$ may include an outer coder 202, an interleaver 204, and inner coder 206. The coder may be used to format blocks of data for transmission, introducing redundancy into the stream of data to protect the data from loss due to transmission errors. The encoded data may then be decoded at a destination in linear time at rates that may approach the channel capacity.

The outer coder 202 receives the uncoded data. The data may be partitioned into blocks of fixed size, say k bits. The outer coder may be an (n, k) binary linear block coder, where $\mathrm{n}>\mathrm{k}$. The coder accepts as input a block u of k data bits and produces an output block v of n data bits. The mathematical relationship between u and v is $v=T_{0} u$, where T_{0} is an $n \times k$ matrix, and the rate of the coder is k / n.

The rate of the coder may be irregular, that is, the value of T_{0} is not constant, and may differ for sub-blocks of bits in the data block. In an embodiment, the outer coder 202 is a repeater that repeats the k bits in a block a number of times q to produce a block with n bits, where $\mathrm{n}=\mathrm{qk}$. Since the repeater has an irregular output, different bits in the block may be repeated a different number of times. For example, a fraction of the bits in the block may be repeated two times, a fraction of bits may be repeated three times, and the remainder of bits may be repeated four times. These fractions define a degree sequence, or degree profile, of the code.

The inner coder 206 may be a linear rate- 1 coder, which means that the n -bit output block x can be written as $\mathrm{x}=\mathrm{T}_{I} \mathrm{w}$, where T_{I} is a nonsingular $\mathrm{n} \times \mathrm{n}$ matrix. The inner coder 210 can
have a rate that is close to 1 , e.g., within 50%, more preferably 10% and perhaps even more preferably within 1% of 1 .

In an embodiment, the inner coder 206 is an accumulator, which produces outputs that are the modulo two (mod-2) partial sums of its inputs. The accumulator may be a truncated rate-1 recursive convolutional coder with the transfer function $1 /(1+\mathrm{D})$. Such an accumulator may be considered ablock coder whose input block $\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right.$] and output block $\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right]$ are related by the formula
$y_{1}=x_{1}$
$y_{2}=x_{1} \odot x_{2}$
$y_{3}=x_{1} \oplus x_{2} \oplus x_{3}$

$$
y_{n}=x_{1} \oplus x_{2} \oplus x_{3} \oplus \ldots \oplus x_{n}
$$

where " \oplus " denotes mod- 2 , or exclusive-OR (XOR), addition. An advantage of this system is that only mod-2 addition is necessary for the accumulator. The accumulator may be embodied using only XOR gates, which may simplify the design.

The bits output from the outer coder 202 are scrambled before they are input to the inner coder 206. This scrambling may be performed by the interleaver 204, which performs a pseudo-random permutation of an input block v, yielding an output block w having the same length as v.

The serial concatenation of the interleaved irregular repeat code and the accumulate code produces an irregular repeat and accumulate (IRA) code. An IRA code is a linear code, and as such, may be represented as a set of parity checks. The set of parity checks may be represented in a bipartite graph, called the Tanner graph, of the code. FIG. 3 shows a Tanner graph $\mathbf{3 0 0}$ of an IRA code with parameters ($\mathrm{f}_{1}, \ldots, \mathrm{f}_{j} ;$ a), where $\mathrm{f}_{i} \geqq 0, \Sigma_{i} \mathrm{f}_{i}=1$ and "a" is a positive integer. The Tanner graph includes two kinds of nodes: variable nodes (open circles) and check nodes (filled circles). There are k variable nodes $\mathbf{3 0 2}$ on the left, called information nodes. There are r variable nodes $\mathbf{3 0 6}$ on the right, called parity nodes. There are $\mathrm{r}=\left(\mathrm{k} \sum_{i} \mathrm{if}_{i}\right) / \mathrm{a}$ check nodes 304 connected between the information nodes and the parity nodes. Each information node 302 is connected to a number of check nodes 304 . The fraction of information nodes connected to exactly i check nodes is f_{i}. For example, in the Tanner graph 300, each of the f_{2} information nodes are connected to two check nodes, corresponding to a repeat of $q=2$, and each of the f_{3} information nodes are connected to three check nodes, corresponding to $\mathrm{q}=3$.

Each check node 304 is connected to exactly "a" information nodes 302. In FIG. 3, a=3. These connections can be made in many ways, as indicated by the arbitrary permutation of the ra edges joining information nodes $\mathbf{3 0 2}$ and check nodes 304 in permutation block $\mathbf{3 1 0}$. These connections correspond to the scrambling performed by the interleaver 204.

In an alternate embodiment, the outer coder 202 may be a low-density generator matrix (LDGM) coder that performs an irregular repeat of the k bits in the block, as shown in FIG. 4. As the name implies, an LDGM code has a sparse (lowdensity) generator matrix. The IRA code produced by the coder $\mathbf{4 0 0}$ is a serial concatenation of the LDGM code and the

The rate of the systematic IRA code given by the

$$
\begin{aligned}
& L(x)=\int_{0}^{x} \lambda(t) d t / \int_{0}^{1} \lambda(t) d t \\
& \text { Rate }=\left(1+\frac{\sum_{j} \rho_{j} / j}{\sum_{j} \lambda_{j} / j}\right)^{-1}
\end{aligned}
$$

degree distribution is given by

"Belief propagation" on the Tanner Graph realization may be used to decode IRA codes. Roughly speaking, the belief propagation decoding technique allows the messages passed on an edge to represent posterior densities on the bit associated with the variable node. A probability density on a bit is a pair of non-negative real numbers $p(0), p(1)$ satisfying $p(0)+$ $p(1)=1$, where $p(0)$ denotes the probability of the bit being 0 , $p(1)$ the probability of it being 1 . Such a pair can be represented by its \log likelihood ratio, $m=\log (p(0) / p(1))$. The outgoing message from a variable node u to a check node v represents information about u , and a message from a check node u to a variable node v represents information about u, as shown in FIGS. 5A and 5B, respectively.

The outgoing message from a node u to a node v depends on the incoming messages from all neighbors w of u except v. If u is a variable message node, this outgoing message is

$$
m(u \rightarrow v)=\sum_{w \neq v} m(w \rightarrow u)+m_{0}(u)
$$

where $m_{0}(u)$ is the log-likelihood message associated with u. If u is a check node, the corresponding formula is

$$
\tanh \frac{m(u \rightarrow v)}{2}=\prod_{w \neq v} \tanh \frac{m(w \rightarrow u)}{2}
$$

Before decoding, the messages $\mathrm{m}(\mathrm{w} \rightarrow \mathrm{u})$ and $\mathrm{m}(\mathrm{u} \rightarrow \mathrm{v})$ are initialized to be zero, and $m_{0}(u)$ is initialized to be the loglikelihood ratio based on the channel received information. If the channel is memoryless, i.e., each channel output only relies on its input, and y is the output of the channel code bit u, then $m_{0}(u)=\log (p(u=0 \mid y) / p(u=1 \mid y))$. After this initialization, the decoding process may run in a fully parallel and local manner. In each iteration, every variable/check node receives messages from its neighbors, and sends back updated messages. Decoding is terminated after a fixed number of iterations or detecting that all the constraints are satisfied. Upon termination, the decoder outputs a decoded sequence based on the messages

$$
m(u)=\sum w_{m}(w \rightarrow u)
$$

Thus, on various channels, iterative decoding only differs in the initial messages $m_{0}(u)$. For example, consider three memoryless channel models: a binary erasure channel (BEC); a binary symmetric channel (BSC); and an additive white Gaussian noise (AGWN) channel.

In the BEC, there are two inputs and three outputs. When 0 is transmitted, the receiver can receive either 0 or an erasure E.

An erasure E output means that the receiver does not know how to demodulate the output. Similarly, when 1 is transmitted, the receiver can receive either 1 or E . Thus, for the BEC, $\mathrm{y} \in\{0, \mathrm{E}, 1\}$, and

$$
m_{0}(u)=\left\{\begin{array}{ccc}
+\infty & \text { if } & y=0 \\
0 & \text { if } & y=E \\
-\infty & \text { if } & y=1
\end{array}\right.
$$

In the BSC, there are two possible inputs $(0,1)$ and two possible outputs $(0,1)$. The BSC is characterized by a set of conditional probabilities relating all possible outputs to possible inputs. Thus, for the $\operatorname{BSC} y \in\{0,1\}$,

$$
m_{0}(u)=\left\{\begin{array}{ccc}
\log \frac{1-p}{p} & \text { if } & y=0 \\
-\log \frac{1-p}{p} & \text { if } & y=1
\end{array}\right.
$$

In the AWGN, the discrete-time input symbols X take their values in a finite alphabet while channel output symbols Y can take any values along the real line. There is assumed to be no distortion or other effects other than the addition of white Gaussian noise. In an AWGN with a Binary Phase Shift Keying (BPSK) signaling which maps 0 to the symbol with amplitude $\sqrt{E s}$ and 1 to the symbol with amplitude $-\sqrt{E s}$, output $y \in R$, then

$$
m_{0}(u)=4 y \sqrt{E_{s}} / N_{0}
$$

where $\mathrm{N}_{\mathrm{o}} / 2$ is the noise power spectral density.
The selection of a degree profile for use in a particular transmission channel is a design parameter, which may be affected by various attributes of the channel. The criteria for selecting a particular degree profile may include, for example, the type of channel and the data rate on the channel. For example, Table 1 shows degree profiles that have been found to produce good results for an AWGN channel model.

TABLE 1

45
TABLE 1

a	2	3	4
$\lambda 2$	0.139025	0.078194	0.054485
23	0.2221555	0.128085	0.104315
$\lambda 5$		0.160813	
$\lambda 6$	0.638820	0.036178	0.126755
$\lambda 10$			0.229816
$\lambda 11$			0.016484
$\lambda 12$		0.108828	
$\lambda 13$		0.487902	
$\lambda 14$			
$\lambda 16$			
$\lambda 27$			0.450302
$\lambda 28$			0.017842
Rate	0.333364	0.333223	0.333218
oGA	1.1840	1.2415	1.2615
σ^{*}	1.1981	1.2607	1.2780
$(\mathrm{Eb} / \mathrm{N} 0) *(\mathrm{~dB})$	0.190	-0.250	-0.371
S.L. (dB)	-0.4953	-0.4958	-0.4958

Table 1 shows degree profiles yielding codes of rate approximately $1 / 3$ for the AWGN channel and with $a=2,3,4$. For each sequence, the Gaussian approximation noise threshold, the actual sum-product decoding threshold and the corresponding energy per bit $\left(\mathrm{E}_{6}\right)$-noise power $\left(\mathrm{N}_{0}\right)$ ratio in dB are given. Also listed is the Shannon limit (S.L.).

As the parameter "a" is increased, the performance improves. For example, for $\mathrm{a}=4$, the best code found has an iterative decoding threshold of $\mathrm{E}_{b} / \mathrm{N}_{\mathrm{o}}=-0.371 \mathrm{~dB}$, which is only 0.12 dB above the Shannon limit.

The accumulator component of the coder may be replaced by a "double accumulator" 600 as shown in FIG. 6. The double accumulator can be viewed as a truncated rate 1 convolutional coder with transfer function $1 /\left(1+\mathrm{D}+\mathrm{D}^{2}\right)$.

Alternatively, a pair of accumulators may be the added, as shown in FIG. 7. There are three component codes: the "outer" code 700, the "middle" code 702, and the "inner" code 704. The outer code is an irregular repetition code, and the middle and inner codes are both accumulators.

IRA codes may be implemented in a variety of channels, including memoryless channels, such as the BEC, BSC, and AWGN, as well as channels having non-binary input, nonsymmetric and fading channels, and/or channels with memory.

A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

What is claimed is:

1. A method of encoding a signal, comprising:
receiving a block of data in the signal to be encoded, the block of data including information bits;
performing a first encoding operation on at least some of the information bits, the first encoding operation being a linear transform operation that generates L transformed bits; and
performing a second encoding operation using the L transformed bits as an input, the second encoding operation including an accumulation operation in which the L transformed bits generated by the first encoding operation are accumulated, said second encoding operation producing at least a portion of a codeword, wherein L is two or more.
2. The method of claim 1 , further comprising:
outputting the codeword, wherein the codeword comprises parity bits.
3. The method of claim 2, wherein outputting the codeword comprises:
outputting the parity bits; and
outputting at least some of the information bits.
4. The method of claim 3 , wherein outputting the codeword comprises:
outputting the parity bits following the information bits.
5. The method of claim 2, wherein performing the first encoding operation comprises transforming the at least some of the information bits via a low density generator matrix transformation.
6. The method of claim 5 , wherein generating each of the L transformed bits comprises mod-2 or exclusive-OR summing of bits in a subset of the information bits.
7. The method of claim 6 , wherein each of the subsets of the information bits includes a same number of the information bits.
8. The method of claim 6, wherein at least two of the information bits appear in three subsets of the information bits.
9. The method of claim 6, wherein the information bits appear in a variable number of subsets.
10. The method of claim 2, wherein performing the second encoding operation comprises using a first of the parity bits in the accumulation operation to produce a second of the parity bits.
11. The method of claim $\mathbf{1 0}$, wherein outputting the codeword comprises outputting the second of the parity bits immediately following the first of the parity bits.
12. The method of claim 2 , wherein performing the second encoding operation comprises performing one of a mod-2 addition and an exclusive-OR operation.
13. A method of encoding a signal, comprising:
receiving a block of data in the signal to be encoded, the block of data including information bits; and
performing an encoding operation using the information bits as an input, the encoding operation including an accumulation of mod-2 or exclusive-OR sums of bits in subsets of the information bits, the encoding operation generating at least a portion of a codeword,
wherein the information bits appear in a variable number of subsets.
14. The method of claim 13, further comprising:
outputting the codeword, wherein the codeword comprises parity bits.
15. The method of claim 14 , wherein outputting the codeword comprises:
outputting the parity bits; and
outputting at least some of the information bits.
16. The method of claim 15 , wherein the parity bits follow the information bits in the codeword.
17. The method of claim $\mathbf{1 3}$, wherein each of the subsets of the information bits includes a constant number of the information bits.
18. The method of claim 13, wherein performing the encoding operation further comprises:
performing one of the mod-2 addition and the exclusiveOR summing of the bits in the subsets.
19. A method of encoding a signal, comprising:
receiving a block of data in the signal to be encoded, the block of data including information bits; and
performing an encoding operation using the information bits as an input, the encoding operation including an accumulation of mod-2 or exclusive-OR sums of bits in subsets of the information bits, the encoding operation generating at least a portion of a codeword, wherein at least two of the information bits appear in three subsets of the information bits.
20. A method of encoding a signal, comprising:
receiving a block of data in the signal to be encoded, the block of data including information bits; and
performing an encoding operation using the information bits as an input, the encoding operation including an accumulation of mod-2 or exclusive-OR sums of bits in subsets of the information bits, the encoding operation generating at least a portion of a codeword, wherein performing the encoding operation comprises:
mod-2 or exclusive-OR adding a first subset of information bits in the collection to yield a first sum;
mod-2 or exclusive-OR adding a second subset of information bits in the collection and the first sum to yield a second sum.
21. A method comprising:
receiving a collection of information bits;
mod-2 or exclusive-OR adding a first subset of information bits in the collection to yield a first parity bit;
mod-2 or exclusive-OR adding a second subset of information bits in the collection and the first parity bit to yield a second parity bit; and
outputting a codeword that includes the first parity bit and the second parity bit.
22. The method of claim 21, wherein:
the method further comprises mod-2 or exclusive-OR adding additional subsets of information bits in the collection and parity bits to yield additional parity bits; and
the information bits in the collection appear in a variable number of subsets.
