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I. Introduction

The search for synergy has followed many tortuous

paths during the past 100 years, and especially during

the last 50 years. Claims of synergism for the efiects,

both therapeutic and toxic, of combinations of chemicals

are ubiquitous in the broad field of Biomedicine. Over

20,000 articles in the biomedical literature from 1981 to

1987 included “synergism” as a key word (Green and

Lawrence, 1988). 'I‘ravelera on the search for synergy

have included scientists from the disciplines of Pharma-

cology, Toxicology, Statistics, Mathematics, Epidemiol-

ogy, Entomology, Weed Science, and others. Travelers

have independently found the same trails, paths have

crossed. hitter fights have ensued, and alliances have

been made. The challenge of assessing the nature and

intensity of agent interaction is universal and is espe-

cially critical in the chemotherapy of both infectious
diseases and cancer. In the mature field of anticancer

chemotherapy, with minor exceptions, combination che-

motherapy is required to care all drug-sensitive cancers

(DeVita, 1989). For the nascent field of Antiviral Che-

motherapy, combination chemotherapy is of great re-

search interest because of its great clinical potential

(Schinazi, 1991). Our review should aid investigators in

understanding the various rival approaches to the as-

sessment ofdrug interaction and assist them in choosing

appropriate approaches.

We will make no attempt to offer advice on the use of

a discovery of synergy. The interpretation of the impact

of both qualitative and quantitative measures of agent

interaction is dependent upon the field of application. At

the very least, an agent combination that displays mod-

erate to extreme synergy can be labeled as interesting

and deserving of further study. (Inventors may use proof

of synergy as support for the characteristic of “unohvi-

ousness,” which will assist them in receiving a patent for
a combination device or formulation with the United

States Patent Ofiice.)

There have been many previous reviews of this con-

troversial subject of agent interaction assessment.

These critiques are summarized in the next section.

However, our review is unique in several ways. First,

our bias is toward the use of response surface concen-

tration-efiect models to aid in the design ofexperiments,

to use for fitting data and estimating parameters, and to

help in the results with graphs. In fact, be-

cause a major strength ofresponse surface approaches is

that they can help to explain the similarities and difi'er-

ences among other approaches, the entire review is from

‘ Supported by grants from the National Cancer Institute,
CA46732, CA16-056 and RR107-I2.

1'Abbreviations: 3-D, three-dimensional; 2-D, two-dimensional;
Eq., equation; vs., versus; see table 2 for mathematicslfstatistical
abbreviations. '

To whom correspondence should be addressed: Dr. William R.
Green, Department of Biomathematics, Roswell Park Cancer Insti-
tute, Bufialo, NY 14263
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:1 response surface perspective. [Response surface meth-

odology is composed of a group of statistical techniques,

including techniques for experimental design, statistical

analyses, empirical model building, and model use (Box

and Draper, 1987). A response surface is a mathematical

equation, or the graph of the equation, that relates a

dependent variable, such as drug effect, to inputs such

as drug concentrations] Second, two common data sets,

one with continuous responses and one with discrete

successffsilure responses, are used to compare 13 spe-

cific rival approaches for continuous data, and three

rival approaches for binary success/failure data, respec-

tively. Third, many detailed criticisms of many ap-

proaches are included in our review; these criticisms

have not appeared elsewhere.

Itshouldbenotedthatthegoalofthisreviewisto

underscore the similarities, diflhrences, strengths. and

weaknesses of many approaches, but not to provide a

complete recipe for the application of each approach.
Readers who need the minute details of the various

approaches should refer to the original articles. A good

compendium of recipes for many of the approaches in-

cluded in this review is the fourth chapter of a book by

Cslabrese (1991). It should also be noted that many of
the approaches were originally written as guidelines,

not detailed algorithms. Therefore, our specific imple-

mentations of several of the methods may have difi'er-

ences from the approaches actually intended by the orig-
inal authors.

There is no uniform sgreement on the definitions of

agent interaction terms. Sources for extensive discus-

sions ofrival nomenclature include the following: Baren-
baum (1989); Calabrese (1991); Copenhaver et al.

(1987); Finney (1952, 1971); Geasner (1988); Hewlett

and Plackett (1979); Loewe (1953); Kodell and Pounds

(1985; 1991); Valeriote and Lin (1975); Unkelbach and

Wolf (1984); and Wampler et al. (1992). It is our view

thatmanyofthenamingschernesareunnecessarily

complex. We will use a simple scheme that was the

consensus of sin scientists who debated concepts and

terminology for agent interaction at the Fifth Interna-
tional Conferencc on the Combined Effects of Environ-

mental Factors in San-iselka, Finnish Lapland, Septem-

ber 6 to 10, 1992 (Greco et al., 1992). The six scientists,

from the fields of Pharmacology, Toxicology and Biome-

try, comprised a good representative sample of advo-
cates of diametrically opposing views on many issues.

Table 1 lists the consensus terminology for the joint

action of two agents, the major part of the so-called

Saarisellra agreement. The foundation for this set of

terms includes two empirical models for “no interaction‘

for the situation in which each agent is effective alone.

(Even though the term “interaction” has a mechanistic

connotation when applied to agent combinations. it will

be used throughout this article in a purely empirical
sense. Also, the less-mechanistic term, “combined-
action” will he often substituted for "interaction" when

Alkermes, Ex. 1045
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TABLE 1

Consensus terminology for two-agent combined-action concepts

Both agents eflictive
individually; Eq. 5 is
the reference model

Both agents sflective
individually; Eq. 11 or 14is the reference model

Bliss synergism

Neither agent
efiective individually

Only one agent
afiective

Combination efiect. greater than coalism
predicted

Combination efiect equal to
prediction from reference model

Combination effect less than

Loewe synergism synergism

Loewe sdditivity Bliss independence inertism inertism

Loewe antagonism Bliss antagonism antagonism
predicted

feasible.) The mathematical details of these two models

are described in Section III, and the debate over which of

these is the best null reference model is the subject of

Section IV. The first model is that of Loewe sdditivity

(Loewe and Muiscbnek, 1926), which is based on the

idea that, by definition, an agent cannot interact with

itself. In other words, in the sham experiment in which

an agent is combined with itself, the result will be Loewe

additivity. The second model is Bliss independence

(Bliss, 1939), which is based on the idea of probabilistic

independence; i.e., two agents act in such a manner that

neither one interferes with the other, but each contrib-
utes to a common result. The cases in which the ob-

served effects are more or less than predicted by Loewe

additivity or Bliss independence are Loewe synergism,

Loewe antagonism, Bliss synergism, and Bliss antago-

nism. respectively. The use of the names Loewe and

Bliss as adiectives emphasizes the historical origin of

the specific models and deemphasizes the mechanistic

connotation of the terms additivity and independence.

Both Loewe aclditivity and Bliss independence are in-

cluded as reference models, because each has some log-

ical basis, and especially because each has its own cote-

rie of staunch advocates who have successfully defended

their preferred model against repeated vicious attacks

(see Section IV). As shown in table 1, when only one

agent in a pair is effective alone, inertism is used for “no

interaction,’ synergism (without a leading adjective) for

an increased elfect caused by the second agent, and

antagonism for the opposite case. Alternate common

terms for the latter two cases are potentiation and inhi-

bition. When neither drug is effective alone, an ineffec-

tive combination is a case of inertism, whereas an effec-
tive combination is termed coalism.

For the cases in which more than two agents are

present in a combination, it may not always be fruitful to

assign special names to the higher order interactions. It

may be better to just quantitatively describe the results

ofa three-agent or more complex interaction than to pin

a label on the combined-action. However, in some fields,

such as Environmental Toxicology, it may be useful to

assign a descriptive name to a complex mixture ofchem-

icals at specific concentrations. Then, six of the above-

mentioned terms have clear, useful extensions to higher

order interactions: Loewe additivity, Loewe synergism,

3of55

Loewe antagonism, Bliss independence, Bliss syner-

gism, and Bliss antagonism. Note also that all ten terms

are defined so that as the concentration or intensity of

the agentls) increases, the pharmacological efi'ect mono-

tonically increases. This is wby the lower right-hand cell

of table 1 is missing; a pharmacological efiect less than
zero is not defined. However, because in the field of

chemotherapy it is common for increased concentrations

of drugs to decrease the survival or growth of infectious

agents or of tumor cells, most of the concentration-efi'ect

(dose-response) equations and curves in this review will

assume a monotonically decreasing observed effect (re-

sponse), such as virus titer. The dependent response

variable will be labeled as effect, % effect, % survival, or

% control in most graphs and will decrease with increas-

ing drug concentration. In contrast, ID,‘ values such as

ID25 will refer to the concentration of drug resulting in
X92: of phsrmamlogical efi'ect (e.g., 25% inhibition, leav-

ing 75% of control survival). The above definitions and
conventions will become clearer in later sections with

the introduction of defining mathematical equations.

The emphasis of this review will be on approaches to

assess combinations of agents that yield an unexpect-

edly enhanced pharmacological eifect. Loewe additivity

and Bliss independence will be used as references to give

meaning to claims of Loewe synergism and Bliss syner-

gism, respectively. Loewe antagonism will be only

briefly discussed, as will synergism, antagonism, and
coalism. Most concentration-elfect models and curves in

this review will be monotonic. Therapeutic synergy in in

vivo and in clinical systems, which involves a mixture of

efficacy and toxicity, and which often involves nonmono-

tonic concentration-effect curves for each agent individ-

ually and for the combination, will not be discussed.

The preceding discussion referred to global properties

of agent combinations; i.e., it was implied that a partic-

ular type of named interaction, such as Loewe syner-

gism, appropriately described the entire 3-Dl concentra-
tion-eifect surface. Some agent combinations may

demonstrate different types of interaction at dilferent

local regions of the concentration-effect surface. When

this occurs, the interaction terms in table 1 can be used

to describe well defined regions. However, it is impor-
tant to dilferentiate true mosaics of different interaction

types from random statistical variation andfor artifacts

Alkermes, Ex. 1045
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caused by faulty data analysis methods. Unfortunately,

rigorous methods to identify true mosaics are not yet
available.

II. Review of Reviews

We have divided reviews on the subject of synergy into
three classes: (a) whole books, some of which include

new methodology, and some of which do not; (b) book

chapters and journal articles entirely dedicated to re-

view; and (c) book chapters and articles with noteworthy
introductions and discussions of combined-action assess-

ment, but which also include new specific methodology

development or data analyses. Books include: Brtmden

et al. (1988); Calabrese (1991); Carter et al. (1983); Chou

and Rideout (1991); National Research Council (1988);

Pooh (1993); and Vollmar and Unkelbach (1985). Book

chapters and articles dedicated to a review of the field

include: Berenbaum (1977, 1981, 1988, 1989); Copen-

haver et al. (1987); Fiuney (1952, 1971); Gessner (1988);

Hewlett and Plackett (1979); Jackson (1991); Kodell and

Pounds (1991); Lam et al. (1991); Loewe (1953, 1957);

Rideout and Chou (1991); and Unkelbach and Wolf

(1984). Book chapters and articles that include signifi-

cant reviews of various approaches, but which also in-

clude either new methodology development andfor anal-

yses ofnew data include: Chou and Talalay (1983, 1984);

Gennings et al. (1990); Green (1989); Greco and Dembin-

ski (1992); Hall and Duncan (1988); Kodell and Pounds

(1985); Prichard and Shipman (1990); Siihnel (1990);

Syracuse and Green (1986); Tallarida (1992); and

Machado and Robinson (1994).

Although not exhaustive, this list includes a compre-
hensive, redundant account of the interaction assess-
ment literature. This list includes critical and non-

critical reviews of history, philosophy, semantics,

approaches advocated by statisticians, and approaches
advocated by pharmacologists. Most of the reviews are

biased toward the respective authors’ point of view, and
many of the reviews harshly criticize the work of rival

groups. Our review is no exception. A subset of these

reviews, which along with our own, will provide a com-

prehensive, but not overly redundant view of the field

include: chapters 1 to 4 of Calabrese (1991), which pro-

vide a relatively noncritical recipe-like description of
concepts, terminology, and assessment approaches, in-

cluding many disagreements with our review; chapters 1

to 2 of Chou and Rideout (1991), which also provide a

contrasting view to our review on many issues; Copen-

haver et al. (1987), which accents the approaches devel-

oped by statisticians: Berenbaum (1981, 1988, 1989),

which critically review the approaches developed by

pharmacologists; Gessner (1988), which examines ap-

proaches developed both by statisticians and pharmacol-

ogists; and Kodell and Pounds (1991), which may be the

best source for a rigorous comparison of rival concepts
and nomenclature.
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III. General Overview of Methods from a

Response Surface Perspective

Figure 1 is a schematic diagram of a general approach

to the assessment of the nature and intensity of drug

interactions. This scheme includes all of the approaches
examined in later sections. This is because, in essence,

figure 1 describes the scientific method. A formal statis-

tical response surface way of thinking underlies all of
this section. With such an orientation, the similarities

and differences among rival approaches for the assess-

ment of drug interactions, both mathematically rigorous

ones and not-so-rigorous ones, can be readily explained.
Step 1 is to choose a good concentration-efi‘ect (dose-

response) structural model for each agent when applied
individually. A common choices is the Hill model (Hill,

1910), which is also known as the logistic model (Wand

and Parker, 1971; Waud et al., 1978). The Sigmoid-

Emax model (Holford and Sheiner, 1981), is equivalent

to a nonlinear form of the median-eifect model (Chou

and Talalay, 1981, 1984). However, the equivalence of

the median-efiect and Hill models is disputed by Chou

(1991). The Hill model is shown in figure 2 and as Eq. 1
for an inhibitory drug. Symbol definitions are listed in
tal:Ile2.

E (“Yfill}-‘Ej
IC

E= 5°

hflfidlnn.
III:-aulssplilllhniillflh
wmphxfillfl.
fijhfltifll.

FIG. 1. Schematic diagram of a general approach to the assess-
ment of the nature and intensity of agent interactions, which in-
cludes all specific approaches.
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D {Drug Concentration!

FIG. 2. Graph ofthe Hill (1910) model, which is also referred to as
the Bigmoid-Ema: model (e.g.. Holford and Sheiner, 1981], and
which is also a nonlinear form of the median-effect equation {Chou
and Talalay, 1984).

In Eq. 1, E is the measured effect (response), such as the

virustiterremaini.nginaculturevesselafterd.rugex-

posure; D is concentration of drug; Ema.-r is the full

range ofresponse that can be aifected by the drug; Dm or

ICE, is the median effective dose (or concentration) of

drug (or H350, ED“, L050, etc.); and m is a slope param-
eter. When In has a negative sign, the curve falls with

increasing drug concentration; when m is positive, the

curve rises with increasing drug concentration. The con-

centration-effect curve in figure 2 can be thought of as

an ideal curve formed by data with no discernible vari-

ation, or as the true curve known only to God or to

Mother Nature, or as the average curve formed by an

infinite number of data points at each of an infinite

number of evenly spaced concentrations. Equations 2 to

4 are additional candidate structural models for single

agents.

D In

E°°" 10,,

1., 1'"
IO“,

D on

(ECO?! —
1+ D M

10,,

E‘-' +B

1

m..(§)
E = Econ exp(a.D) = Econ exp 10so

[4]

In Eqs. 2 and 3, the parameter Econ is the control effect

(or response when no inhibitory drug is applied). When

there is no B (background response observed at infinite

drug concentration), than Econ is equivalent to Enter, as

in Eq. 2. However, when there is a finite B, then Econ =
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Emox + B. Eq. 4 is the exponential concentration-efl'ect

model, which can also be parameterized with an ICE.

Because real experiments rarely generate data that

fall on the ideal curve, Step 2 in figure 1 is to choose an

appropriate data variation model. Model candidates in-
elude the normal distribution for continuous data, such

as found in growth assays in which the absorbance of a

dye bound to cells is the measured signal; the binomial

distribution (Larson, 1982) for proportions of failures or

successes, such as in acute toxicology experiments; and

the Poisson distribution for low numbers of counts, such

as in clonogenic assays. A composite model is formed

from one structural model plus one data variation model

and eventually used for fitting to real experimental

data. This concept, called generalized nonlinear model-

ing (McCu1lagh and Nelder, 1989) is illustrated in figure
3, with the Hill model as the structural model, and the

normal, binomial, and Poisson distributions (respective-

ly from lefi to right) as the random models. (Note that

only one random component is usually assumed for a

particular data set. Graphs of three random components

are pictured in figure 3 to illustrate the universal nature

of the approach. The lower equation in the figure is a
variant of the Hill model, and the upper one is for the

binomial distribution. These equations will be described
in detail in Section VI.)

In Step 3, most approaches can be categorized into one

of two main strategies. In Step 3a, a structural model is

derived for joint action of two or more agents with the

assumption of “no interaction” {Loewe additivity, Bliss

independence, or another null reference model). Then,

after the experiment is designed and conducted, data

from the combination of agents is compared with predic-

tions of joint action from a null reference combined-

action model. This comparison can be made with formal

statistical rejections ofnull hypotheses, or by less formal

methods. In contrast, in Step 3b, a structural model is

derived for joint action that includes interaction terms.

Then, alter the experiment is designed and conducted,
the full combined-action model is fit to all of the data at

once, and interaction parameters are estimated. Both

the left-hand and right-hand strategies end in a set of

guidelines for making conclusions.

Examples of approaches that use the left-hand strat-

egy include: the classical isobologram approach (Loewe

and Muischnek, 1926); the fractional product method of

Webb (1963); the method ofValeriote and Lin (1975); the

method of Drewinlto (1976); the method of Steel and

Peckhani (1979); the method of Gessner (1974); the

methods of Berenbaum (1977, 1935); the median-efiect

method (Chou and Tslslay, 1981, 1934); the method of

Prichard and Shipman (1990); and the method of Laska

et al. (1994). Examples of approaches that use the right-

hand strategy include the universal response surface

approach (Green et al., 1990; Grace and Lawrence, 1988;

Greco, 1989; Greco and Tu.ng, 1991; Syracuse and Greco,

1986); the response surface approaches of Carter’s group

Alkermes, Ex. 1045
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TABLE 2

Mathematical {statistical symbol definitions

Definition

Measuredefi'ect(orresponse}.inthisreview.nsuallyamessumofsurfival
Transformed response variable. continuous or discrete
A particular value of Y
Probability that the function in parenthesis is true
Mean orezpectedvnlueofatransfonnedresponse
Number ofsuccessesinabinomialtriel

Number of attempts in a binomial trial
Concentration (or does) of drug, drug 1, drug 2
Inhibitor concentrations for an inhibitor, inhibitor 1, inhibitor 2
Control efi‘e-ct (or response)
MaximI.n:I1eiTect(response).isequaltoficonforaninhihitorydrugintheabaanceofa

background. B
Background efiect (response) observed at infinite concentration for an '
Fraction of effect afiected

'hitory drug

Fraction of efiect unaflected

F‘ract:l'on enzyme velocity inhibited

-moo. Icon ICI0.1o 10»:
drug 2

DUI, Dru‘. Dnbg ml:

Concentration (or dose) ofdrug resulting in 50% inhibition ofE'ma.r, ofdrug 1, of

Median eflective dose (or concentration) of drug. of drug 1. of drug 2, of a combination
ofdnzgs1and2inaconstsntratio(equivalentto!C,,,)

mm Dav -mm {Dian D1,. mxa. 33:. D112 Concentration {or dose) ofdrugrssultinginxiv inhibition ofEmax,ofdrug1. ofdrug
2,oracom.hix_1ationofdrugs1and2inaconstantratio

X 1: inhibition

mo ml: mm mm SIopeps:raJ:netar,fordrug1,i'ordrug2.foracombinationofdrugs1and2ina
constantrafio

cc Syneruism-antagonism interaction parameter
a, 5
P01: P01» bpll bl’!
‘fl

[Hon B]: 32- 31:
CI Combination index of Chou and Tslalsy (1934)
R Ratio of D, to D,

or on 1 2 5 so

the concentration iplfllfl scale)

Fla. 3. General scheme for the dissection ofa generalized nonlin-
ear model into random and s'trnctu.rsl components for a concentra-
tion-eflect curve for a single drug.

(Carter et ai.. 1983, 1986, 1988; Gennings st 111., 1990);

the response surface approach of Weinstein et. a1. (1990);

the generalized linear model approach of Lam at al.

(1991): and the response surface approach of Machado

6of55

Empirical parameters for exponential concentration-afiect model
Interaction parameters of model 29

Interaction parameter of model 30
Enrpiri'‘cal parameters for probit and logistic’' models
Interaction index of Berenbauln (197?)

and Robinson (1994). The method proposed by Siihnel

(1990) has elements ofboth the lefi:-hand and right-hand

strategies.

Although most, and possibly all, approaches for as-

sessing agent combinations may fall under the scheme

presented in figure 1, the different approaches differ

from each other in many respects. The approaches de-

veloped by pharmacologists usually stress structural

models, e.g., the median-effect approach (Chou and Ta-

lalay, 1984). whereas the approaches developed by stat-

ususlly stress data variation models, e.g., the

approaches of Finney based on probit analysis (Finney,

1952). There are differences in the definitions of key

terms, especially that of “synergisrn.” Some approaches

only yield a qualitative conclusion (e.g., Loewe syner-

gism, Loewe antagonism, or Loewe additivity), such as

the classical isohologram approach. whereas others also

provide a quantitative measure of the intensity of the

interaction, such as the universal response surface ap-

proach. There are differences in the degree ofmathemat-

ical and statistical rigor, i.e., some approaches are per-

formed entirely by hand (e.g., the classical isohologram

approach}, whereas others require a computer (e.g., uni-

versal response surface approach). Some approaches use

Alkermes, Ex. 1045
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parametric models (e.g., Greco et al., 1990), whereas

others emphasize nonparametric models (e.g., Siihnel,

1990; Kelly and Rice, 1990). The suggested designs for

experiments differ widely among the dilferent ap-
proaches. It is therefore not surprising that it is possible

to generate widely differing conclusions on the nature of

a specific agent interaction when applying different
methods to the some data set. This will be illustrated

dramatically in Sections V and VI.

We are highly biased in our view that the right-hand

strategy in figure 1 for assessing agent interactions is

superior to the left-hand strategy when used for the

cases in which an appropriate response surface model

can be found to adequately model the biological system

of interest. However, for preliminary data analyses for

all systems, for the final data analyses of complex sys-
tems, and for cases in which the data is meager, the

left-hand approaches are often very useful.

The derivation oi'Eq. 5, the flagship equation for two-

agent combined-action developed by our group, is pro-

vided in detail in Greco at al. (1990). Although we do not

put forward Eq. 5 as the model of two-agent combined-

action, it is a model of two-agent combined-action that

has proved to be very useful for both practical applica-

tions (Greco et al., 1990; Greco and Dembinski, 1992;

Gaumont et al., 1992; Guimaras at al., 1994) and meth-

odology development (Syracuse and Greco, 1986; Greco

and Lawrence, 1988; Greco, 1989; Greco and Tang, 1991:

Khinkis and Greco, 1993; Khinkis and Greco, 1994;

Greco at al., 1994). Eq. 5 will be used throughout this

review to illustrate concepts of combined-action and to

assist in the comparison of rival data analysis ap-

proaches. Eq. 5 was derived with an adaptation of an

approach suggested by Berenbaum (1985), with the as-

sumption of Eq. 2 as the appropriate model for each

agent alone. The interaction parameter is or.

Eq. 5 allows the slopes ofthe concentration-effect curves

forthetwod.rugstoheunequal.Itisthiskeyfeature

that distinguishes Eq. 5 from many other response sur-

face models used by others to describe agent interactions

(e.g., Carter at al., 1988). (This point is expanded in

Section VI. 13.2.). Because Eq. 5 is in unclosed form (the

dependent variable, E, cannot be isolated on the left-

hand side of the equation), a one-dimensional bisection

root finder (a computer numerical procedure explained,
e.g., by Thisted, 1938) is used to calculate E for simula-

tions. Eq. 5 was not derived from biological theory,
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rather it is an empirical equation that often matches the

shape of real data (e.g., Gaumont et al., 1992; Greco et

a1., 1990; Greco and Dembinslri, 1992; Greco and Law-

rence, 1983). However, as shown below, it is consistent

with Eq. 6, the equation for Loewe additivity (Loewe and

Muischnek, 1926), which is the basis ofmany interaction

assessment approaches.

[6]

For an inhibitory drug, Eq. 6 refers to a particular X%

(percent inhibition level), e.g., 58% inhibition. ID)“,
ID“ are the concentrations of drugs to result in X96
inhihition for each respective drug alone, and D1, D2 are

concentrations ofeach drug in the mixture that yield X96

inhibition. When the right-hand side of Eq. 6 [equal to

the Interaction index, I, of Berenbaum (1977) or to the

combination index, CI, for the mutually exclusive case of

Chou and Talalay (1984)) is less than 1, than Loewe

synergism is indicated, and when the right-hand side is

greater than 1, Loewe antagonism is indicated. When

Eq. 2 is an appropriate concentration-eflect model for

each drug alone, then Eq. 7, which is a rearrangement of

Eq. 2 [similar to a rearrangement of the median-effect

equation from Chou and Talalay (1984)), relates the ID,‘

value for any X96 inhibition to the observed response

level, E, and the parameters, Econ, I059, and m.

E llrn

Econ - E

Note that the right-hand expression of Eq. 7 is the some
as the denominators of the first two right-hand terms of

Eq. 5. Therefore, the first two right-hand terms ofEqs. 5

and 6 are equivalent. It follows that Eq. 8 defines I [or CI
for the mutually exclusive case of Chou and Talalay

(1934)] for two-drug combinations whose individual

components have concentration-effect curves that follow

[7]ID; = ICm(

Therefore, based upon the interaction index, I—when or
is positive, Loewe synergism is indicated, when or is

negative, Loewe antagonism is indicated, and when cr is

0, Loewe additivity is indicated. The magnitude of or

indicates the intensity ofthe interaction. Thus, although

Eq. 5 is not the model for Loewe synergism (or Loewe

antagonism), it is a model for Loewe synergism (or
Loewe antagonism) that is consistent with the more

general Loewe additivity model, Eq. 6.

Alkermes, Ex. 1045
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We now use the concept that Eq. 5 generates a Loewe

synergistic response surface at all effect levels, and we

present several 3-D and 2-D graphical representations of
Eq. 5 to help to show the similarities and differences

among the various approaches to the assessment of

Loewe synergism.

Figure 4 shows the relationship between a 3-D re-

sponse surface of Loewe synergism, the construction of
isobols, and the calculation of interaction indices. The

3-D surface was simulated with Eq. 5, our flagship

model for agent interaction for the case in which the

individual d.rugs follow the Hill model, Eq. 2, with un-

equal slope parameters. The interaction parameter, or,

was made equal to 5 to demonstrate strong synergism.

The other parameters used and additional technical de-

tails are listed in the figure legend. Note the scooped out

nature ofthe Loewe synergistic surface in contrast to the

three Loewe additivity bars at 75%, 50%, and 25% of

control. A complete Loewe additivity surface ((1 = 0)

would consist of straight lines running across the sur-

face parallel to these bars at every effect level. To show

the 3-D origin of 2-D isobols, the surface is cut and

separated at the 25%, 50%, and 75% efiect levels and
rotated so that the viewer sees the surface from the top.

The isobols in panel (D) are not symmetric because ofthe

different slope parameters for drug 1 (m = -1) and drug

2 (m. = -2). However, as seen in panel (E), normalizing

the drug mncentrations by the respective IDX values

(from Eq. 7) makes the isobols symmetric. In addition,
the normalization reverses the order of the isobols and

makes the Loewe additivity lines lie on top of each other

for all efi'ect levels. Panel (E) shows the geometrical
relationships among normalized isobols. interaction (or

combination) indices, and response surface equations.

One specific CI calculation is given for one specific point

on the 25% pharmacological effect (75% control) isobol.
The calculated CI is 0.68, indicating Loewe synergism.

Vertical lines, made up of three different line patterns,

run through the two data points. The three segments of

each line correspond to the three right-hand parts of the

response surface model, Eq. 5.

The geometrical relationships between interaction

models and isobols are further examined in figure 5.

339

direction between the isobol and the Loewe additivity

diagonal are equal to the interaction term divided by /2.

In panel (13), panel (A) is redrawn with the curves re-
moved, with many horizontal, vertical and diagonal

lines drawn, and with vertices labeled. These reference

lines and ubiquitous 45° triangles all aid in the inter-

pretation of the geometry of the 25% isobol (75% con-

trol). In panel (B), the length of each thick line repre-

sents the magnitude of the interaction term. This is a

general result and will be true for a large class ofspecific

equations that follow the general interaction equation,

Eq. 9.

D2 D1+ +1Dx.2 f(_ mx,1

D
1 2mm. _,Dm.a.p) [91

Eq. 9 is a general form that is independent of the specific
concentration-effect models for each drug (that may be

different for each drug). Also. the interaction term may

be any function of the normalized concentrations, may

include any number of interaction parameters, as, and

may include any number of additional parameters, p.

Additional specific response surface interaction models,

including ones from Weinstein et al. (1990) and

Machado and Robinson (1994). which are consistent

with Eq. 9, are described in Section V.L.

Figure 6 shows the geometrical relationships for 50%

effect isobols for Eq. 5, with various values of as listed in

the figure legend. When n is positive, the isobols are to

the left of the Loewe additivity diagonal (as = 0), line E;

larger or values increase the bowing of the isobols, indi-

cating more intense Loewe synergism. When n is nega-

tive, the isobols are to the right of the Loewe additivity

diagonal; as or increases in absolute value, the isobols

become more bowed, indicating more intense Loewe an-

tagonism. The degree of bowing of the isobols can be

quantitated as the ratio of the line segments, 3 = onfom

(Hewlett, 1969) or by the sum of op + oq (Elion et al.,

1954). The interaction parameter, a, is related to these

geometrical measures (Green et al., 1990). Eq. 10 was

derived by Greco et al. (1990) and shows the relationship

between or and S for the 50% effect isobols of Eq. 5.

Note in panel A that lines at a 45° angle in the northeast or = 4(S2 - S) [10]

FIG. 4. Illustration ofths relationship between a 3-D response surface cfLcswe synergism, the construction ofisobols. and the calculation
ofconibinatlon (interaction) indices. (A) A hypothetical 3-D solid shaded graph ofmeasured effect (response, survival, or some other endpoint)
expressed as a percent of control efl'ect vs. the concentrations of drug 1 and drug 2. This graph was simulated with Eq. 5, with parameters:
Econ = 100, {Can = 1, IO,“ = 1, m1 = -1. m; = -2, or = 5. The horizontal lines connecting the edges ofthe surface at 75%. 50%, and 26%
ofcontrol are part ofa Loews additivity surface (Eq. 5, n = 0). (B) The surface is cut and separated at the 75%, 50%. and 25% ofoontrol levels,
and the sections are pulled apart to accent the inward curved shape of the surface. (C) The sectioned surface is being rotated so that the
viewer will be able to see the surface fimn the top. (D) A view of the surface from the top; a set of 2-D isobols at 75%, 50%, and 25% of control,
along with their corresponding Loewe additivity lines. (E) An isobolograin in which the isobols at 75% and 25% ofcontrol each have their drug
concsnlrations normalized by their respective lDxvalues. This makes all of the isobols symmetrical, makes all of the Loews additivity lines
coincide, and reverses the order of the isobols. Two vertical lines, each running the full length of the Y-axis, and each comprised of three
sepnents ofdiflerent line patterns, one for the 25% isobol (75% ofcontrol} and one for the 75% isobol (25% ofcontrol) show the correspondence
between the inohol diagram and Eq. 5. Each of the three segments corresponds to one ofthe three right-hand expressions ofEq. 5. In addition,
the correspondence of the combination (or interaction) index, CI, and the isobols and Eq. 5 is illustrated.
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FIG. 5. Diagram to show the general correspondence between the geometry of interaction isohols and the algebraic expressions of
interaction mathematical models. (A) An elaboration of Figure 4, Psnel(E), which shows the correspondence between the lengths of line
segments in the normalised isobologram and the value ofthe three rightrhnnd expressions in Eq. 5 at 75% ofcontrol. Note that the interaction
term thatcontsins a, isthevertical distancebetweenthe curvedisobol and (B}Panel(A)is redrawn. lrutonlyforthe 25%
isobol (75% of maize!) (with the curve removed), and many horizontal, vertical, and diagonal lines drawn and vertices labeled. The length
ofeechthicklinsissqusltothevslueofthe interaction term.1hisissgenenlconespondence,andwfllhetrusformsnyspedficmodeh
that follow the general form of Eq. 9.

FIG. 8. Examples of isohols for the 50% effect level, simulated
from equation 5. for a range ofa values. Forcurves A through H. or
was 100, 2, 1, 0.5. O, -0.5. -0.75, and-0.99. Curves A through D
represent varying degrees of Loewe synergism; curves F through I-I
represent varying degrees of Loewe antagonism, and curve E is the
straight line oflsoewe additivity. ‘Ilia point 11 is the center ofthe
straight Loewe sdditivity line, and points m are the centers of
theotherieobols. Pointspsndqsretlisshscisssandordinste ofthe
pointn1.Thedegreeofhowingoftheisobolscsnbequsntitstedas
the ratio of the line segments, 3 = omfon (Hewlett, 1969) or by the
sumofop + cq(El.ionetel., 1954).

Figure 7 shows the relationship between the some 3-D

response surface described in figure 5 and the concept of

the CI vs. fa plot (mutually exclusive case) of the medi-

an-efiect approach (Chou and Talalay, 1984). Although
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the exact calculations for the CI vs. fa plot suggested by

Chou and Tala1ay(1984) will be disputed in Section V.G,

we believe that the general idea has great merit. Essen-

tially, the 3-D surface is out lengthwise along a fixed

ratio ofD1:D, (for example, a ratio of 1:1 in fig. 7). Then,
both the Loewe synergistic ray and the predicted Loewe

additivity ray are drawn on a 2-D concentration-efihct

graph, both rays are normalized by the ID; values along

their whole lengths, and then the normalized graph is

rotated counterclockwise by 90°. The details are pro-

vided in the figure legend.

Figure 8 is another graphical sequence, using the

same simulated 3-D surface as shown in figures 4, 5, and

7, created to illustrate the concept ofthe CI vs. f1 plot. In

panel (A), the Loewe synergistic surface is deleted ex-

cept for one vertical, infinitely thin slice for the fixed

ratio of D1:D3 of 1:1. The length of the short horizontal

line segments at various effect levels drawn from the

curve to the hackplanes arethe values ofD1 sndl), used

to construct the Loewe synergistic surface. Panels (B)
and (0) show the unnormalized and normalized set of

isobols, respectively. The solid points in these panels are

the same ones as in figure 7. The sum ofone vertical and

one horizontal line from each point in Panel C is equal to

the CI at that effect level. Details are provided in the

figure legend.

Thus, in essence, the isobologi-an: approach consists of

making horizontal slices through a 3-D surface, and the

median-effect approach (mutually exclusive case) can-
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Fro. '7. Illustration ofthe relationship between a 3-D response surface of Loewe synergim and the CI vs. fix plot of the median-efl'ect
approach (Chou and Tslalsy. 198-4).(A) The same hypothetical 3-D solid shaded graph shown in figure 4 is shown here. A curve is drawn on
the eurfaoefor e fixedratio ofD1'.D, of1:1, and a corresponding Loewe additivity curve, tothe right ofthe solid surface, is drawn for the same
fixed ratio of 13,13, (or = 0). (B) The solid surface is cut and separated at the fixed ratio of D,-_:D, to accent the shape of the curved Loewe
synergistic surfam (the Loewe sdditivity curve was removed for clarity). (C) A 2-D plot of the Loewe synergistic and additive curves at the

same fixed ratio ofD1:D,‘, with D, + D, as the X-axis. The solid points in Panels (C) through (E) correspond to ‘X: Control levels of 99. 95.
90, 75. 50, 25, 10. 5, and 1. (D) The drug concentrations have been normalized by their respective IDxs. and theX-axis is new the sum of the
normalised concentrations. (E) Because the normalized sum is the same as the combination index. CI, for the mutually exclusive model. Eq.
B(ChouandTal.slay. 1984l.andt.he‘!:cor1h-olisthesarne as 100 [1-fol (wherefaisthefraction ofefiect afl'ec'ted),theC'Ive.faplotcsn be

EH
r.-M.

ehtsinedhyrotatin¢thegrephinPanelDcounterclocl:wiseby90“.

sists of making vertical slices through the some 3-D

surface. Both approaches and their variants then in-

clude examination of the shape of the slices, with or

without date transformations, andfor making some cal-

culations to summarize the shape of the slices, usually

with comparison to a Loewe additivity reference.

The difference between a Loewe synergistic surface

and s Loewe additivity reference surface can also be
examined in 3-D. The difierence can be calculated in the

horizontal or vertical directions, and plotted, with or
without additional transformations. The use of difi'er-

ence surfaces to examine combined-actions has been

introduced by Prichard and Shipman (1990) and Siihnel
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(19926). The 3-D CI plot in figure 9 was calculated with

Eq. 8 for the same simulated Loewe synergistic surface

(or = 5) shown in the previous figures. Note that C‘!

starts at 1 for each drug alone, and decreases toward

zero for combinations as either drug concentration in-

creases toward infinity. Thus, for Loewe synergistic

drug combinations that follow Eq. 5, there is more in-

tense interaction, as quantified by C1 (or I), at higher

drug concentrations. In contrast, fig-ure 10 [panels (A)

and (C)] shows the results of plotting the vertical difi‘cr-

ence between the Loewe synergistic (or = 5) and additiv-

ity surface. Panel (A) shows the Loewe synergistic sur-

face with a fishnet and the Loewe additivity surface as a

Alkermes, Ex. 1045
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FIG. 8. An additional illustration of the relationship between a 3-D response surface of Loewe synergism and the combination index, Cf.
(A) For the same hypothetical surface shown in Figs. 4. 5, and 7, the concentration-etfect curves for drug 1 and drug 2 alone are shown along
the back walls of the figure, together with the Loewe synergistic middle curve for a fixed ratio M011), of 1:1. Line segments from the joint
drug curve to the back walla represent the values oi'D1 andD, usedtoumatnict the curve atfi: Control \raluescf99,95, 90, 75, 50,25, 10,
and 6. (B) A View of the isobols for the surface from the top. The numbers next to the isobols indicate the ‘-1: Control. The solid dots along the
northeast-pointing diagonal indicate the points corresponding to the timed ratio ofD,-.D, of 1:1 at the indicated levels of ‘Ir Control. Although
not included in Panel (3), the line segments in Panel Awould be horizontal and vertical lines from the dots to the axes. (C) The [Drug 1] and
[Drug 2] axes are normalised by the respective ID, values. The addition of the lengths of a horizontal plus a vertical line segment for each
solid dot equals the CI for the respective % Control level. These points correspond to the respective points in figure 7.

FIG. 9. A 3-D fishnet plot of the CI calculated from Eq. 8 for the
Loewe synergistic concentration-effect surface described in Figs. 4. 5.
7, and 8.

solid sheet on top of the fishnet. Note that the difference

between the two surfaces, shown in panel (C), has a peak

near D1 = D, = 1. Thus, when looking at vertical differ-

ences, the largest synergism is not at infinite drug con-

centrations, hut rather at achievable drug concentra-

tions near (but not exactly at) the IC5.,’s of each drug.

This critical diflerence in the two ways of forming dif-

ferences between Loewe synergistic and Loewe additive

surfaces, i.e., either in the horizontal or vertical direc-

tion, has profound implications for experimental design,
as discussed in Section VIII.
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In figure 10, panels (B) and (D) were constructed in an

analogous manner to panels (A) and (C), except that the

null reference model was that for Bliss independence,

not for Loewe additivity. The general form of the Bliss

independence effects equation is Eq. 11, and a specific

form, which assumes that Eq. 2 is appropriate for each

drug individually, is Eq. 12.

fun =fit1fu2

Econ D1 m D2 M‘
1950.1 1950.2

In Eq. 11, ful, fuz, and film are the fractions of possible

response for drug 1, drug 2, and the combination (e.g., ‘ii:

survival, %contro1) unafiected (Chou and Talalay, 1984).

For Eqs. 2, 5, and 12, fu = EIECOII. Eq. 12 was used to

generate the upper solid surface in panel B. Note that

the difference plot in panel (D) has a central peak, but

the peak is higher than the analogous one for the Loewe

additivity reference in panel (C).

Which is a more appropriate reference, Loewe addi-

tivity (generally represented by Eq. 6) or Bliss indepen-

dence (generally represented hy Eq. 11}? Some of the

approaches for interaction assessment examined in Sec-

tion V use the Loewe additivity reference and others use

the Bliss independence reference. This controversy is
examined in detail in Section IV.

Our preferred paradigm of interaction assessment is

most closely akin to the philosophical principles ex-

pressed by Berenhaum (1981, 1985, 1988, 1989), but

[11]

E = [12]
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FIG. 10. {A} 3-D fishnet Loews synergistic surface simulated with Eq. 5. with parameters: Econ = 100. l'Cm_, = 1, IO,” = 1, rs, = -1, m, =
-2, o = 5, the same as in Figs. 4, 5, and 7 through 9. The solid surface on the top ofthe fishnet is a Loewe additivity surface simulated with
thesamevsluss forthefirstfive parameters.hutwithtt = 0. (H}The 3-D fishnethoewe synergisticsurfaceisthe ssmsones.sin'Panel (A),
but the solid top surface was simulated fiom the Bliss independence model, Eq. 12, with parameters: Econ = 100. IC,o‘, = 1.IC,,,,_, = 1, m, =
-1, m, =- -2. C. A 3-D solid shaded graph of the difierence between the Loewe additivity and Loewe synergistic surfaces in Panel (A). The
contour lines are at five-unit intervals. (D) A 3-D solid shaded graph of the difference between the Bliss independence and Loewe synergistic
surfaces in Panel (B).

with several msior d.ifferences. The elements of the par-

adigm include: (o) combined-action assessment is most

appropriate for complex systems in which a complete

correct description of the mechanisms by which the

agents cause their single and joint efiecta does not exist.

Ifsuch a description does exist. then mathematical mod-

els based upon a mechanistic understanding ofthe con-

centration-efihct relationships should be applied to data,

not general combined-action mathematical models; (b)

the degree of departure from “no interaction” of the

concentration-efi'ect surface for an agent combination is

a quantitative measure of the ignorance of the investi-

gator, i.e., if the system were well understood by the

investigator, and this understanding were incorporated
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into the “no interaction” model, then the experimental

results would be as predicted (e.g., Loewe additiv-

ity)-—no more, no less; (c) the Loewe additiv-it-y equation,

Eq. 6, the Bliss independence equation, Eq. 11 or 14, or

response surface interaction models adapted directly

from them, should be used in an step to evaluate

departures from the no interaction reference, without

regard to mechanistic interpretation; (d) a later useful

step in interaction assessment may involve the interpre-
tation of Loewe synergism, Loewe additivity, Loewe an-

tagonism, Bliss synergism, Bliss independence, Bliss an-

tagonism, synergism. inertism, antagonism, or coalism

via mechanistic arguments. For relatively simple sys-

tems, such as individual enzymes or receptors or small
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networks of enzymes and receptors, it may be useful to

establish the relationship between empirical interaction

models and mechanistic biochemical models. However,

except for very well understood simple systems, it is

unlikely that the results of a combined-action analysis

will unambiguously lead to a correct mechanistic expla-

nation of an observed agent interaction; (2) the main

uses of general combined-action analyses are:

(1) to summarize a large amount of data with a joint

concentration-effect surface, with relatively few param-

eters, for a combination of agents.

(2) to facilitate good predictions ofjoint effects in re-

gions in which no real data was collected (interpolation

and judicious extrapolation).

(3) to empirically find and characterize agent combi-
nations with intense interactions, in order to use or to

avoid the combinations for specific practical purposes.

(4) to quantitatively characterize a system, so that the

effect of changes in some other factor can be quantified.

(5) to provide a lead to a mechanistic explanation of

joint action.

W. Debate Over the Best Reference Model for

Combined-action

Because synergism (and antagonism) are commonly

defined as a greater (or lesser) pharmacological effect for

a two-drug combination than what would be predicted

for “no interaction” from the knowledge of the efibcts of

each drug individually, their definitions critically de-

pend upon the reference model for “no interaction.” It is

our view that there are only two reference models that

deserve extensive consideration. The first, and our pref-

erence, is Loewe additivity, which is defined by Eq. 6. A

specific model for Loewe additivity that assumes the Hill

equation, Eq. 2, for the concentration-eifect model for

each drug individually, is Eq. 13.

Note that Eq. 13 is equivalent to Eq. 5 with the third

right-hand term, the interaction expression, dropped.

Also note that Eq. 13 is merely the Loewe additivity
model, Eq. 6, with the substitution of the definition of

lDxfortheHilln1odel,Eq. 'l',forbothdrugs.'I‘hisderiva-
lion for a specific Loewe additivity model follows the guide-

lines of Benenbaum (1985), and the examples of Hewlett

(1969) and Siihnel (l992c). The additivity reference con-

cept was first mentioned by lhei (1913) and was first

defined formally by Loewe and Muischnek (1926). The

Loewe additivity reference is the diagonal Northwest-

Southesstlineinisobologramsoffigur-es4,5,6,and8and

is a key part of the classical isobologram approach (Loewe
and Muischnek, 1926; Elion at al., 1954; Gessner, 19'l'4).
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The simplest intuitive explanation of the concept of

Loewe additivity is the following sham experiment: an

aliquot ofa solution of drug 1 from a tube is poured into

a second tube and then diluted with an appropriate

solvent. When these two preparations are falsely labeled

as different agents and their combination is examined,

the result will be Loewe additivity. [Gennings et al.

(1990) experimentally illustrated and verified this con-

cept hy examining the loss of lighting reflex of mice
treated with the combination of sodium hexobarbital

with itself.] Thus, by definition, one agent is noninter-

active with itself. Advocates of the Loewe additivity ref-

erence for no interaction use this sham study ofone drug
with itselfas a litmus test to invalidate other reference

models (e.g., Berenbaum, 1981). From this logic, Loewe

additivity implies that each of two drugs act similarly,

presumably at the same site of action, difleiing only in

potency. However, Eq. 6 is less restrictive than this

narrow interpretation. The constraint of Eq. 6 can be

obeyed for two drugs with different concentration-effect

slopes, (e.g., Eq. 13) that presumably would not act at

the same site. In fact, each of the two drugs in a combi-
nation could follow diiferent concentration-efliect func-

tions snd still obey Loewe additivity, Eq. 6. This flexi-

bility is considered a weakness, with no theoretical

justification, by opponents of the Loewe additivity refer-

ence [Green et al., (1992)). They contend that the rare

observation of Loewe additivity in real complex experi-

mental systems is only fortuitous and does not lead one

to any mechanistic conclusion.

The strongest advocate of approaches based upon the

Loewe additivity reference has -been Berenbaum (1977,

1978, 1981, 1985, 1988, 1989). Of the approaches eval-

uated in our review, the following use the Loewe addi-

tivity reference: isobologram by hand; interaction index

of Berenbaum (1977); median-effect method of Chou

and Ta1alay(1984): mutually exclusive model method of

Berenhaum (1985); bivariate spline fitting (Siihnel,

1990); parametric response surface approaches of Greco

et al. (1990) and Weinstein et al. (1990); approach of

Gessner (1974); parametric response surface approach of

Greco and Lawrence (1988); and the use of the multiva-

riate linear logistic model (Carter et al., 1983, 1986,

1988; Brunden et al., 1988). The concepts of similarjoint

action (Bliss, 1939), simple similar action (Plackett and

Hewlett, 1952), and concentration (dose) addition (Shel-

ton and Weber, 1981) are all consistent with Loewe

additivity, as defined by Eq. 6. However, as discussed

above, Loewe additivity also includes cases not consis-

tent with these more restrictive concepts.

In our view, the most convincing argument in favor of

the use of the Loewe additivity model, Eq. 6, as a uni-

versal reference to define “synergism” and “antago-

nism,” is that it can best survive criticism. With the

possible exception ofBliss independence, all of the other

candidate reference models can be fatally wounded from

well aimed attacks; whereas, the Loewe additivity
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model, although not completely unscathed, is still stand-

ing after the smoke of battle clears. The Loewe additiv-

ity reference model, by definition, yields the intuitive

correct evaluation of the sham combination of one drug

with itself to be Loewe additivity (or as preferred by

Berenbaum, 1981, “no interaction”). The Loewe additiv-

ity reference model is, in fact, merely a reasonable as-

sumption. The interpretation ofan assessment of Loewe

additivity, Loewe synergism, or Loewe antagonism is, in

general, free of mechanistic restrictions and implica-

tions. [In principle, the mathematical models and pa-

rameters of specific biological systems can be mapped to

empirical combined-action models and parameters to

facilitate a mechanistic interpretation of a combined-

action analysis, but work on such mappings is in its

infancy (e.g., Bravo et al., 1992; Jackson, 1993).] From a

response surface perspective, the Loewe additivity

model, Eq. 6, can be adapted to yield many useful em-

pirical models of combined-action, such as Eq. 5.

In our view, the only other major contender for a

universal reference of noninteraction (worthy of the sil-

ver medal) is Bliss independence, Eq. 11, or its equiva-

lents. Eq. 12 is a specific Bliss independence model that

assumes that the Hill model, Eq. 2, is an appropriate

concentration-effect model for each drug individually.

Bliss independence implies that two agents do not phys-

ically or chemically or biologically cooperate; i.e., each

agent acts independently of the other. Berenbaum

(1981) describes an interesting hypothetical experiment

that provides an intuitive feel for independently acting

agents. His thought experiment involves randomly

throwing either bushels of nails or pebbles or both at a

collection of eggs. None of the causal units, nails or

pebbles, cooperate with each other in the cracking of an

egg, an all—or-none phenomenon. But rather, each causal

unit has a certain probability (difierent for nails or peb-

bles) of hitting an egg, and the cumulative damage is

merely the result of correctly combining probabilities.

The Bliss independence reference model has an intu-
itive, theoretical basis: the concept of noninteraction; it

has a simple general formula, Eq. 11. Testing of the

model usually requires frugal experimental designs, and

many specific approaches for interaction assessment in-

corporate it. These approaches include: the fractional

product method of Webb (1963); the method ofValerlote
and Lin (1975); the method ofD1-ewinlto at al. (1976); the

method of Steel and Peckham (1979), Mode I; and the

method of Prichard and Shipman (1990). Synonyms for
Bliss independence include: independent effects, inde-

pendent joint action (Bliss, 1939); independent action
(Plackett and Hewlett,.1952); response (efiect) addition

(Shelton and Weber, 1981); effect summation (Gessner,

1988); and effect multiplication (Berenhaum, 1981).

[Note: if Eq. 11 is recast in terms of the fraction of

possible effect, with subscripts referring to specific con-

centrations of agent 1, agent 2, and the corresponding

combination of agents 1 and 2, then Eq. 14 is the result.
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This equation is analogous to the common formula for

the combination of probabilities (e.g., Larson, 1982).]

fin = fax ‘l’ ffls ‘ f11/5'12 [141

Gessner (1974; 1988) offered a philosophical argument

against the Bliss independence model: he questioned

whether, given the high degree of integration ofa living

organism, the action of an agent on one receptor type,

target organ, or system can ever be envisaged as not

altering to some degree the responsiveness ofother recep-

tors, organs, or systems to :1 simultaneously present sec-

ond agent. Certainly, complex systems with extensive

positive and negative feedback pathways at all levels of

biological organization are ubiquitous and are the chief

targets of drug therapy (Jackson, 1992). Most examples

oftheoretical systems that follow the Bliss independence

model are relatively simple, such as single enzymes (e.g.,

Webb, 1963) and simple biochemical pathways (e.g.,
Jackson, 1991}.

Gessner (1988) also mentioned that he had never seen

a published isobologram for the 50% efiect level for

quantal data in which an isobol reasonably followed the

Bliss independence model throughout the whole curve.

In contrast, Poch and coworkers have reported several

examples ofBliss independence (e.g., P6ch,1990; Piich et

al., 1990a, b, c; Piich, 1991; Pfich, 1993). An objective

survey would be necessary to estimate the frequency of

occurrence of exact Bliss independence for combinations

of agents in real experimental work. However, just as

with Loewe additivity, it is also our impression that pure

Bliss independence in complex systems is a rare occur-
rence.

The most convincing arguments against the Bliss in-

dependence model as a universal reference model for

noninteraction use the pair of concentration-efi'ect

curves in figure 11 (Greco, 1989). [Similar figures and

arguments were previously published by Grindey et al.

(1975) and Berenbaum (1977, 1981)]. Figure 11 includes

individual simulated data points and simulated concen-

tration-eifect curves for two different hypothetical inhib-

itory drugs. Suppose that 0.5 an ofdrug 1 results in 95%

none: :1.’-I2 cocoa as

Lo.1(,u.u, In-can :o.1t,uII. bonus}

FIG. 11. Hypothetical concentration-efl‘ect curves for two drugs to
demonstrate a logical inconsistency for approaches to assess drug
synergism based upon the assumption of Bliss independence, Eq. 11
or Eq. 14, as the ‘no interaction’ reference model.
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survival of cells in a typical growth inhibition experi-

ment, likewise for drug 2. From Eq. 11, one would pre-

dict that the noninteractive response for 0.5 p.M of drug

1 plus 0.5 ;.:.M of drug 2 would be about 90% survival.

Therefore, if one found that this drug combination elic-

ited, let's say, 40% survival of cells, one would conclude

strong, undeniable Bliss synergism. However, note in

figure 11 that either 1 pm ofdrug 1 alone or 1 pan of drug

2 alone brings the survival of cells down to 30%. There-

fore, a total of 1 are of the hypothetical combined drug

preparation el.icits less of a cell kill than 1 p.M of either

drug alone, yet one would conclude strong Bliss syner-

gism under methods based upon the Bliss independence

reference assumption, Eq. 11.

Figure 11 can also be used to illustrate the paradox of

the sham combination of one drug with itself. Let's say
that a drug preparation is divided into two tubes, and
then each tube is treated as if it contained a diiferent

drug. The two concentration-effect curves in figure 11,

which are in fact identical, would result. Using the same

logic as used in the beginning of the previous paragraph,
one would conclude that the drug is Bliss synergistic
with itself. This absurd conclusion is inconsistent with

the intuitive definitions of“synergism,” “additivity,” and

“antagonism” used by many researchers.

It is our view that these two aspects ofthe same basic

criticism illustrated by figure 11 are persuasive enough

to relegate Bliss independence to second place for the

optimal routine reference for defining “synergism” and

“antagonism.” However, proponents of the Bliss inde-

pendence reference have several counterarguments: (a)

when concentration-effect curves are steep, such as in

figure 11, the joint elfects of a Bliss synergistic combi-

nation may be disappointingly small relative to the ef-

fects of each drug individually, but this result is neither

paradoxical nor absurd; (b) a drug with a steep concen-

tration-efiect curve is Bliss synergistic with itself (this is

a fundamental tenet of Biology); (c) the sham combina-

tion of a drug with itself is a silly experiment, and the

so-called paradox is, at worst, a minor exception to a

generally useful concept; (0!) ifit is known that two drugs

in a combination act at the same biochemical site, a

relatively rare situation, then their actions cannot be

independent, and one shouldn’t use the Bliss indepen-

dence reference. Figure 11 is merely an illustration of

the extreme case of this situation, in which the two dose

response curves are identical.

Our rejoinders to these counterarguments include: (a)

the search for synergy will often involve agents, drugs,

and preparations with multiple, complex, possibly un-

known mechanisms of action, and therefore, guidelines

for the assessment of interaction must not depend upon

knowledge of mechanisms of action; (I!) a general con-

cept must encompass rare cases; (c) the first argument

illustrated by figure 11 did not require that the two

drugs be the same or that they have similar sites of

action, but only that they have steep concentration-
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efi'ect curves; (d) a reference model that can result in the

countefintuitive result, that a synergistic combination is

less effective than its components applied individually,
is not useful. ‘

As pointed out by Berenbaum (1981), the fundamental

explanation underlying both forms of the above paradox
involves the functional form of the individual concentra-

tion-effect curves. Only when each individual concentra-

tion-elfect curve follows Eq. 4, that for exponential de-

cline with dose, will there be no paradox: Loewe
additivity will be concluded from the sham combination

of one drug with itself. Eq. 15 would be the resulting

equation for no interaction of two drugs, from combining

either Eq. 4 and Eq. 6 (Loewe additivity) or Eq. 4 and Eq.

11 (Bliss independence). Concentration-effect curves

steeper than the exponential model will lead to the

above paradox; whereas, concentration-effect curves less

steep than the exponential model will lead to an opposite

paradox. (Note: the data points and curves in figure 11

were simulated with Eq. 2 with Econ = 100, I050 = 0.86
am, and m = -5.6, resulting in relatively steep curves.)

E = Econ exp(a.D1)exp{hD3) = Econ exp(aD, + M33) [15]

However, we disagree with Berenbaum’s inference

from the above logic that the Bliss independence model,

Eq. 11, is appropriate for describing the joint action of a

combination only when each of the component drugs

have exponential concentration-efi'ect curves, Eq. 4. Be-
renbaum (1981) argues that in order for molecules of

drug 1 to act independently from molecules ofdrug 2, all

molecules of drug 1 must act independently of all other
molecules of drug 1, resulting in an exponential concen-

tration-elfect curve for drug 1; all molecules of drug 2

must act independently of all other molecules of drug 2,

resulting in an exponential concentration-effect curve

for drug 2. This argument can be refuted by a specific

counterexample from Jackson (1991). Jackson (1991)

modeled a hypothetical biochemical pathway consisting

of: a substrate, A, being converted to substrate B by

enzyme 1; substrate B being converted to substrate C by

enzyme 2, and to substrate D by enzyme 3; a competitive
inhibitor of enzyme 1; and a competitive inhibitor of

enzyme 2. When the enzyme kinetic parameters are
adjusted to give a high sink capacity (the ratio of the

sum of the maximal velocities of enzymes 2 and 3 di-

vided by the maximal velocity of enzyme 1), exact Bliss

independence of the effects of the two inhibitors can be
achieved. The individual concentration-effect curves for

the two inhibitors followed the Hill model, Eq. 2, and

thus were nonexponential, yet the specific Bliss indepen-
dence model, Eq. 12, fit the data perfectly over a wide

range of inhibitor concentrations (Bravo et al., 1992). In

addition, Pooh (1991) provides several specific examples
of Bliss independence found with real laboratory data, in
which the individual concentration-elfect curves follow

the Hill model, Eq. 2 or 3. Thus, this specific argument
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ofBerenbaun1 against the independent efiects model is

questionable.

Although we prefer Loewe additivity to Bliss indepen-

dence as a universal reference for the lack of “syner-

gism” or “antagonism,” we must concede that the Bliss

independence camp has successfully resisted total de-

feat. It is clear that adherents of Loewe additivity and

Bliss independence have heard all of the most compel-

ling arguments for and against each model and cannot

be persuaded to switch allegiances. Thus, the debate can

progress no fiuther, and we join in the recommendation

that both models be accepted as legitimate empirical
reference standards for “no interaction.” It must be em-

phasized, however, that neither model is well suited for

unambiguously indicating mechanistic explanations for

the joint action of agents in complex systems, such as

whole cells, single organisms, or populations of organ-
isms. In order for researchers to make mechanistic con-

clusions for a specific experimental system, the corre-

spondence between empirical concepts—such as Loewe

synergism or Bliss antagonism—and theoretical mecha-
nisms must be derived. This is a rich source for future

research initiatives.

The shapes of isobols for Loewe additivity and Bliss

independence will, in general, be very diiferent. Figure
12 shows a set of isobols at the 50% effect level for the

specific Bliss independence model, Eq. 12, which incor-
porates the Hill model, Eq. 2, for the individual concen-

tration-effect curves. The shape of the isobols is deter-

mined only by the two slope parameters, In, and "32:
these are listed in figure 12 next to each respective

ieobol. [Note: Similar figures and observations are pro-

vided by Gessner (1983) and Piich et al. (1990c)]. When

the slope parameters are the sa.me for the two drugs, the

isobols are symmetrical; when they are different, the

0 50 fl.‘l'§

Dfmam

FIG. 12. Normalized isobols at the 50% efiect level, for the Bliss
independence model. Eq. 12, for various values of mi and m,, which
arasetnexttoaachcorrsspondingc-urve.Asinglem indicatesthat
m, = in, = m.'I'hethickdi.apnalli.neisthe1ineofl'.newe additivity.
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isobols have an S shape and may cross the Loewe addi-

tivity diagonal. Slope parameters that are large in mag-

nitude result in Loewe antagonism; whereas, slope pa-

rameters that are small in magnitude result in Loewe

synergism. It may be usefiul to superimpose the pre-

dicted Bliss independence model on both 2-D and 3-D

representations of two-drug combination concentration-

efl'ec‘t surfaces. Ifthe superimposed Bliss independence
curves lie close to the data, then it may be useful to infer,

after making necessary assumptions, that the two drugs

may, in some sense, act independently.
Four other candidates for a universal reference for no

interaction will be briefly described and critiqued below.

The first is Eq. 16, that for effect addition, and the

second is almost the same, Eq. 17, that for fractional

effect addition. [Note: Some authors call Eq. 11 and 14
the eifect addition model (e.g., Shelton and Weber,
1981).]

E12 = E1 "9' E2

file = ffli + ffls [17]

According to Eq. 16, if the effect for a particular concen-

tration of drug 1 was 20 units and that for a particular

dose of drug 2 was 30 units, then the no interaction

prediction would be 50 units. As pointed out by Beren-

baum (1981), this intuitive definition of no interaction

may underlie the claims of synergism and antagonism

for which authors provide no explicit definitions. Eq. 16

is not easily applied to the common case in which the

drugs have some maximum possible elfect, because ifE1

and E2 are both reasonably large, 60 and 70, let’s say,
and close to the maximum possible effect, 100, let's say,

then E1, would be 130, greater than the maximum pos-
sible etfect, resulting in an inconsistency. For one re-

stricted situation, when each of the individual con-

centrstion-effect curves are linear and increasing,

Berenbaum (1981) showed that Eq. 16 is consistent with

the Loewe additivity model, Eq. 6.

A somewhat more credible variation of effect addition,

Eq. 16, is fractional effect addition, Eq. 17. According to

Eq. 17, if the fraction of possible effect affected for drug

1 is 0.20 and the fraction aflected for drug 2 is 0.30, then

the no interaction prediction would be 0.50. Eq. 17 is

also easily eliminated as a candidate for a universal
standard by considering an example in which the frac-

tional efiects are both large, let's say, fo, = 0.60 and

fa._, = 0.70. Because fan has an upper limit of 1.0, the

sum of fa; + fflg, which equals 1.30, leads to an incon-

sistency. In addition, paradoxes regarding synergy, sim-

ilar to those described above for the Bliss independence

reference model, can be contrived using figure 11. How-

ever, Eq. 17 is valid or approximately valid under sev-
eral restricted situations. The first is the case in which

fa, and M are both very small. Then Eq. 17 will approx-
imate Eq. 14, that for Bliss independence, because the

product term will be very small (Ptich, 1991). The second
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is independent effects for quantal responses, in which

the susceptibilities of the individual organisms to the

two drugs are completely negatively correlated (any or-

ganism that is alfected by drug 1 will not be affected by

drug 2, and vice versa) (Placlrett and Hewlett, 1948).

The third is the joint effects of two inhibitors in a met-

abolic network in which two converging reactions that

lead to a single product are both inhibited (Jackaon,

1991). Note that these latter two examples of restricted

conditions both impose upper limits upon the magni-

tudes of fa, and fog; their sum never exceeds 1.0.
Another candidate for a universal reference for no

interaction is the mutually nonexclusive model of Chou

and Talalay (1984). Eq. 18. An alternate form is Eq. 19,

which is equivalent to Eq. 5, our model for drug inter-

action,w'itl1m = m1 = mgando: = 1.Asemphasizedby
Chou and Talalay (1984), their mutually nonexclusive

model is equivalent to the Bliss independence model

only under restricted conditions; specifically, when the

median-efl’ect model (equivalent to Eq. 1 or Eq. 2) ade-

quately describes the individual concentration-effect

curves for both drugs and m1 = m2 = -1 for monotoni-

cally decreasing curves [or m, = m2 = 1 for monotoni-

cally increasing curves, as preferred by Chou and Tale-

lay (1984)]. They further conclude that the Bliss

independence model is inadequate under conditions in

which Ian] at 1. However, it-is our view that it is the
mutually nonexclusive model that is suspect. Only an

abbreviated general derivation ofthis model, for the case

of multiple mutually nonexclusive inhibitors of a single

enzyme, is provided in Chou and Talalay (1981). A spe-

cific derivation, for the case of two mutually nonexclu-

sive noncompetitive inhihitors, is provided in Appendix

A. An equation equivalent to Eq. 12, not to Chou and

Ta.lalay's mutually nonexclusive model, is the result.

Because their model is of questionable validity, we feel

that it is not appropriate as a universal reference. An

extensive discussion of the median-effect approach to
the assessment ofdrug interaction is provided in Section
V.G.

we <e>“+<2>"“ + (’“"°*)”""fi-'12 fun fl-I2 fuifilz

D, + 13,1), "=
105.,,2 Ic,.,_,1c,.,_,

1), 13,1), "'+ +T
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A final candidate for a universal reference for no in-

teraction is the Mode II additivity model of Steel and

Peckham (1979). A compact way to express the model is

+

[19]
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Eq. 20. An equivalent form is provided by Kodell and
Pounds (1991).

[20]D2 = IDEX-fn(D;)l.2

Eq. 20 can be used to construct an isobol forD2 versus D1

for a particular X% inhibition. To do this, D1 is varied,
and the fraction aifected (% inhibition) for the particular

D1 is calculated and subtracted from the target X%.

Then, the D2 needed to achieve this resulting difierence

X96 is determined. Interestingly, this reference model

will give the correct answer of no interaction for a sham

combination of drug 1 with itself; the isobol will be a

straight diagonal NW-SE line, such as in figure 6. How-

ever, Eq. 20 is not equivalent to the Loewe additivity

model, Eq. 6. Thiswillbeahownanddiscussedindetail
in Section V.F. A fatal flaw of the Mode II reference

model is that it has a polarity; i.e., for two different

drugs, different isobols will be drawn, depending upon

the arbitrary assignment of drug 1 and drug 2 (Baren-

banm, 1931).

The issue of the preferred reference model for no in-

teraction has been recently debated in the antiviral lit-

erature by Siihnel (1990; 1992a) and Prichard and Ship-

man (1990; 1992). We endorse Siihnel’s advocacy of the

Loewe additivity model, Eq. 6 over Prichard and Ship-

man’a advocacy of Bliss independence, Eq. 11 or Eq. 14.

However, this is mainly because of personal preference

and because our specific response surface models incor-

porate Loewe additivity. We do not endorse Siihnel

(1990, 1992a) and Berenbaurn’s (1981) main argument

that the Bliss independence model is only valid for the
case in which each individual concentration-efl'act curve

follows an exponential concentration-elfact curve.

Rather, we feel that the paradoxes illustrated with fig-

ure 11 are sufficient to place Bliss independence in sec-

ond place for the competition for a universal null refer-
ence model.

In summary, we advocate the use of the Loewe addi-

tivity model, Eq. 6, as the best choice for a universal

standard reference for defining “synergism” and “antag-
onism.” Adaptations of Eq. 6 can be used to derive con-

centration-efi‘ect response surface functions, such as Eq.

5, containing interaction parameters, such as or. To the

best of our knowledge, response surface models for agent

interaction that incorporate Bliss independence have

not been developed. However, some ideas ofAshford and

Smith (1964) and Ashford (1981), which have been re-

cently reviewed by Unkelbach (1992), have the potential

to lead to the development of such models.

V. Comparison of Rival Approaches for

Continuous Response Date

There are many published methods for assessing drug

interactions. We have carefully chosen 13 of them for

continuous response data to compare in a head-to-head

competition. (Section VI includes a comparison of three
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rival approaches for discrete success/failure data.) Some

methods consist of general guidelines, whereas others

include very specific recipes. This set of 13 methods was

chosen because, as a group, they have a high frequency

of use, have a high relative impact on biomedicine, have

many similarities and dilferences, provide a good sum-
mary of the practical history of drug interactions, in-

clude good examples ofthe pleasures, pitfalls, controver-

sies and paradoxes inherent in the field, and point
toward the future of interaction assessment. Notewor-

thy additional approaches not extensively evaluated in
this review include the ones by Pdch (1990h), Kodell and

Pounds (1985), Tallarida et al. (1989), Kelly and Rice

(1990), and Leslie et al. (1994). The 13 rival approaches

will be compared in two ways: (:1) Theoretical aspects,

both positive and negative, of each approach will be

listed and discussed. Although a large number of these

comments will be summarized from previous work of

other reviews, there will be many new comments. Sev-
eral of the theoretical comments will refer back to Sec-

tions I to N. (b) An abbreviated recipe for the applica-

tion of each approach to a common data set, for an

inhibitory drug, will be described. For a complete recipe

ofeach approach, the reader is encouraged to consult the

original references. Each approach will then be applied

to a common data set. Pitfalls, problems, and results will

be listed and compared.

The common data set consists of the 38 data points in

columns 2 to 4 of table 3, simulated with the approach

described completely in footnote a of the table. Briefly,

thisdatasetwas simulated withEq. 5asthe structural

model, with diflierent slope parameters for the two drugs

(m,_ = -1, "I2 = -2) and with a small amount of synergism
(a = 0.5). The data contains normally distributed ran-

dom relative errors; tha coefficient of variation is 10%. A

simulated Monte Carlo data set was used, as opposed to

a real data set, because: (11) the “true” answer is known,

so there is an absolute reference for making comparisons

' between rival approaches; and (b) specific characteris-
tics can be imbedded in the data set to illustrate specific

diflerences among rival approaches. To the best of our

lrnowledge, this approach to making comparisons among

rival methods to assess agent interaction has not been

used by groups other than ours (Syracuse and Greco,

1936; Green, 1989).

A. Isobologram by Head

The graphical isobologram approach, performed by

hand, with the aid of pencil, ruler, graph paper, and

possibly French curve, has its origins in the work of
Fraser (1870-1871; 1872), Loewe (Loewe and Muischnek,

1926; Loewe, 1928, 1953, 1957), and Elion, Singer, and

Hitchjngs (1954). It is a general approach and has many

interpretations and variants. Our interpretation is de-

scribed here. The first step is to plot the measured data,

such as those found in columns 2 to 4 of table 3, as

concentration-effect curves, such as in figure 13. Two
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separate graphs are drawn, usually by hand with a

French curve or a straight edge, one for drug 1 and the

other for drug 2. Each graph has a family of concentra-

tion-efiect curves, one curve for each level of the other

drug. The IC“, (or Dm, mm, Eflw, L050, etc.) values are

then determined, by eye, for each curve on both graphs.

From Figure 13, six ICW values can be determined,
three from the lefi panel and three from the right panel.

(An IC5o value cannot be determined for six of the con-
centration-effect curves, because for each of them, the

measured response at the first drug concentration is

already below 50% ofthe maximum measured response.)

From the left panel, the ICM values for drug 1 are

recorded along with the level of drug 2 used to generate

the respective concentration-effect curves. Then, these

I050 values for drug 1 are divided by the IC,,,, value for

drug 1 in the absence ofdrug 2, and the levels ofdrug 2

are divided by the ICE“ for drug 2 alone. The resulting

data points, (D1:'Dm1, D,/Dm,), are the solid points on
the left isobologram of figure 14. The analogous proce-

dure is performed on the concentration-effect curves of

the right panel of figure 13, resulting in the open points

in the left panel of figure 14. In the isobolograms of

figure 14, each data point is labeled (21-1) to correspond to
the curve in figure 13 from which it was derived. Occa-

sionally, smooth curves are drawn through points on an

isobologram, possibly with a French curve; occasionally,

straight lines are drawn connecting the points, and oc-

casionally, no curve is drawn at all. In figure 14, curve W

is not a curve drawn by hand, but rather is the theoret-

ically correct iaobol simulated with Eq. 21 (an isobol

model that assumes that Eq. 5 is appropriate for the

entire concentration-eflbct surface), for the 50% level

and for o = 0.5. As erplainedin Section III and shown in

figures 4, 5, 6, and 8, the diagonal NW-SE line isthe line

of Loewe additivity; points below the line indicate Loewe

synergism and points above the line indicate Loewe an-

tagonism.

D2

rc,,‘, =
1 +

.rc,,_, X

o:D1 roe -

In principle, any constant efiect level can be used for

an isobologram analysis, notjust the 50% level. Because

most of the concentration-e£l‘ect curves fiom figure 13

did not yield a Dm value, ICED (D30) values were also

determined. The right panel of figure 14 is the isobolo-

gram analysis of the D5,, values.
If one only used the Do: isohologram from figure 14,

one would conclude that the experiment should be re-

peated. Ifone also used the D50 isobolograrn from figure

14, one would conclude that the interaction between

drug 1 and drug 2 is Loewe synergistic.
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TABLE 3

.Dcn‘.naet, withaoontinuouamsponse variable, uaedforoamponbon of:-ivat dataanalysisapproaches, nndtkereaultsfibmfourappmaehar
Pradkfledfict .

D3“ D D Measured fmmB'.|.i.ss Ecmgumml {mm CcnclI.IsInn' from Dnrwmko"s
Wm ‘ ’ efect’ independence “dun

number moduli‘

Predicted efiect Berenbaumh Conclusion fium
fro Loewe interaction Iaewe edditivity

comparisoni V “'1 1‘ mm’ 3"“""‘ model] index. to wmpafiaon“

99.2
99.2
99.2
94.6
77.4
47.9
19.6
4.00

81.7
54.9
48.4
32.2
16.1
74.3

0 2 61.1
410.6

0.9 18.2
0.55 3.94
3.8 58.3
0.6 48.2

*6.9 33.6
2.9 16.5
0.69 3.85

11.1 43.5
4.1 36.5

-0.6 26.7
1.66 14.4
1.22 3.72
1.9 29.2
1.3 25.1
3.2 19.4
1.71 11.6
0.74 3.4?
2.3 15.0
1.14 13.4

- 1.04 11.1
0.14 7.66
0.307 2.93

but:

I-|

5:23 It!

"alto

HIMppall-DI-uppain!-Qpalltéb-IOOOGOGDGII3-OHDOODD
oneone3S3333ggggzaaggmummmnmnmuggguMoooooooc

‘onto

1
2
3
4
5
6
1'
B
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
33

HIIQII-ICJCDUIIOI-I
BSYN=3 BSYN=3 rnea.n=2.59
BANT=22 SUB:-21 S.D.=5.1 I.-ANT=-1

lN'I‘=1 S.E.=1.02

"‘ The ‘Measured Efl"ecta" were generated by: (a} calculating ideal data with Eq. 5 with parameters, Econ = 100, I05” = 10. I0”; '-= 1,
m, = -1, m: = -2, a = 0.5; (b) generating normally distributed random numbers with a mean oft} and a variance ofl (Boxand Mollei-.1968);
(c) calculating relative errors by the equation, error = [(normal random number}/10] X [ideal efiect]; (ct) adding the errors to the ideal effects
to generate simulated data with relative error (a eoeflieient of variation of 10%).

1' Each measured efl‘ect Erom column 4 was divided by the average ofthe control efiecta (107) to yield a fraction ofcontrol eflect, then the
frs.cI:ion.a] eifects for the appropriate I), and D, were multiplied. then this product was multiplied by the average of control efieets to yield
the entries in column 6.

1 For the fractional product approach to the assessment. ofdrug interaction (Webb. 1963), when the entry in column 4, the measured efiect,
is yeaterthan the entry in column 5,the predicted efiect, then Bliss antagonism (RANT) (less inhibition than predicted} is recorded; when
the column 4 try is less than the column 5 entry (more inhibition than predicted), then Bliss synergism (BSYN) is recorded.

§ The Valeriote and Lin (1975) system diifers from the Webb approach by filrther cub-dividing the Bliss antagonism into 3 categories.
subedditivity (SUB). interference (INT), and antagonism (ANT). Details are in the text.

|| Columnflisthediflerence betweencolumnaaiand 5. Fromthemesn and standarderroroftl1erneanforthiadifl‘erenoeeoore(Drewinl;.o

et s.l., 1976) one would conclude significant antagonism (P < 0.06}. See the text for details.
1 'I‘hepredic1:ionsinoolInnn9arebasedont.hebeatfitofEq. 13 tothedatapointstbr whichdrug 1 anddrng2 were notaimultaneoualypresent,

i.e..t.hedataincolumns2-4,r1:rws1-13,andththesimnlafioaofltq. 13with'thsse5heatfitparam.eteJ'sfol'allufthe3Bdata.pointa.
# Berenbaunfs interaction index (I) is calculated from Eq. 22, with the.[Dxs for drug 1 and drug 2 calculated Enom Eq. 7 with the parameter

values fromthebestfit ofEq. 13tothefi.rat13 data points.
““' When I > 1, than Loewe antagonism (LANT) is concluded; when I -C 1, then Loewe synergism {LSY'N) is concluded.
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Fits. 13. Hand-drawn (with the aid of a French cI.'u've) concentra-
tion-efiect curves for the data in columns 2 through 4 from table 3.
The I05, and IO.“ values for each curve are indicated by short
horizontal lines intersecting the curves.

OH 91. Oil 1| 0.. I ' . 0.! El 0-.»

spin.‘ mo.‘

FIG. 14. Iaobolograms made from IC“, values (left panel) and I0”
values (right. panel). Line x in each panel is the Loewe additivity line.
The data pointain each panel are labeled with a lowercase letter that
corresponds to the appropriatacarvefrom figure 13. The solid points
were derived from the lefi panel of figure 13, and the open points
fromthalightpanel.CurvesWineachps.neloi‘figure 1-larethe
theoretically correct iaobols and were simulated from Eq- 21 with

ps.rameters:Ewn. = 100, I0,“ = 1D.ICm_, = 1, m, = -1, in, = -2, Cl =
0.5.

The advantages of the isobologram by hand method
include:

(a) the null reference model for no interaction is the

Loewe additivity model, Eq. 6, which was given support

in Section IV and is our preferred universal standard.

(b) the approach is simple, flble, and to many users,
intuitive.

(c) equipment to run the approach is inexpensive, and

expert statistical advice andfor the learning of some

modern statistical ideas are unnecessary.

(d) the approach is famous and widely accepted.
(2) variants of the basic method exist that add more

statistical rigor (e.g., Gessner, 19'?-4; Gennings et a1.,

1990) and that provide quantitative measures of inter-
action intensity (e.g., Hewlett, 1969; Elion et al., 1954;

Pbch, 1980).

(f) many newer, more rigorous methods have the ba-

sic isobologram approach as their underlying basis (e.g.,

the method of Berenbaurn (1985), the nonparametric

bivariate spline fitting approach of Siihnel (1990), and
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the parametric response surface approach of Greco et al.
(1990).

The disadvantages ofthe isobologram by hand method
include:

(ct) the method lacks many of the good characteristics

of objective statistical procedures. It lacks the theoreti-

cal framework to allow inferences with a specified de-

gree of certainty to be made from an experiment to the

true situation. It lacks the option of objectively weight-

ing more precise measurements greater than less pre-
cise ones.

(15) the basic isobologram method lacks a summary

measure of the intensity of interaction.

(c) for the isobologram method, each concentration-

effect curve should have data that encompasses the ICE;

level. When this is not the case, such as with curves d-f,

j-1 in figure 13, for the 50% effect level, the data for those

curves is wasted. If enough data is wasted, then the

experiment may have to be renm.

(d) in general, the basic isobologrsm method requires

a relatively large amount of data. When data is expen-

sive, combination experiments may become prohibitive.

(e) graphs of a measured dependent variable vs. an

experimentally fixed independent variable, often fruit-

fully assumed to be recorded without error, are appeal-

ing, because they represent directly the actual experi-

ment. Fitted curves can be superimposed upon actual

observed data points to provide a good indication of the

goodness of fit of the data by the curves. Isobolograms

are not such graphs; no observed data points appear on
them. Both the X- and Y-variables in isobolograms are

subject to tenor of a complex, unknown distribution.

( f) the scatter of points in an isobologram may lead

the researcher to a false conclusion of Loewe synergism

in some regions and Loewe antagonism in other regions
of the concentration-efiect surface. Such a conclusion

might be reached with the isobologram in the left panel

of figure 14.

(g) it may take a relatively long time to plot by hand

the required curves and to perform the required calcu-
lations.

(h) difierent data analysts are likely to plot the data

diflbrently and thus arrive at different answers.

B. Fractional Product Method of Webb (1963)

This method is a very simple one. Eq. 11, that for Bliss

independence, is used to construct a set of predicted

fractional responses, firm, as the product of the individ-

ual iiractional eflhcts, ful and fag, for specific concentra-

tion combinations. Then, optionally, the results can be

re-expressed as responses on the original response scale

by multiplying each fun by the control response, as was
done to calculate the entries for column 5 of table 3 for

the analysis of the 33-point common data set. For an

inhibitory drug, when the predicted response exceeds

the measured response, Bliss synergism is claimed;

when the measured response exceeds the predicted re-
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sponse, Bliss antagonism is claimed. Column 6 of table 3
lists the conclusions for each of the 25 combination

points. There were 22 claims of Bliss antagonism and 3

claims ofBliss synergism. The overall conclusion is mod-

erate Bliss antagonism, seemingly diiferent from the

conclusion of Loewe synergism from the isobologram

analysis.

The advantages of the fractional product method in-
clude:

(:1) it is the simplest of all methods; it is very intuitive.

Calculations can be performed with pencil and paper;

thus, equipment and personnel to run the method are

inexpensive. The approach is famous and widely ac-

ceptad.

(b) experimental designs can be very frugal; in princi-

ple, one can perform the experiment at single drug 1 and

drug 2 concentrations, and thus one minimally needs

only four data points to apply the method: (0, 0); (D1, 0);

(or and (D1: D2)‘
(c) variants ofthe fractional product method exist that

add some statistics] rigor; e.g., the method of Steel and

Peclrham (1979) and the method of Prichard and Ship-
man (1990).

The disadvantages include:
(C!) the no interaction null reference model for the

fractional product method is the Bliss independence

model, Eq. 11, which in our view, is slightly inferior to
the Loewe additivity model, Eq. 6.

(b) the fractional product method is inconsistent with

the isobologram method. It is possible to arrive at the

opposite conclusion from that found with the isoholo-

gram method, as illustrated by the respective analyses
of our common data set.

(c) there is no objective quantitative summary mea-

sure of the intensity of synergism or antagonism. It is
not obvious how to combine results from several sets of

measurements.

(d) a frugal design may give a misleading result if the

pattern of interaction is different at diflierent regions of
the concentration-effect surface.

C. Method of Valeriote and Lin (1975)

This method is very similar to the fractional product

method of Webb (1963). A predicted response is calcu-

lated from the Bliss independence null reference model;

e.g., column 5 in table 3. Then, just as with Webb's
method, the observed and predicted responses are com-

pared. However, Valeriote and Lin (1975) further sub-
divide the less-than-additive region into subadditive,

interference, and antagonism subregions. For an inhib-

itory drug, an interaction for a combination point is

called (a) subadditive, if the surviving fraction is be-

tween predicted additivity and the surviving fraction for
the more active drug, (13) interference, if the surviving
fraction for the combination is between the observed

surviving fractions of the two individual drugs, and (c)
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antagonism, ifthe surviving fraction for the combination

is more than for the least potent drug.

The results from the application of the Valeriote and

Lin (1975) approach to the common data set are: 3 com-

bination points showed Bliss synergism, 21 points

showed subadditivity, and 1 point showed interference.

The conclusion is subadditivity.

The advantages and disadvantages of the Valeriote

and Lin (19'?5) method are essentially the same as ofthe

fractional product method of Webb (1963). The extra

subdivision of the less—than—additive region into three

regions may have merit.

D. Method of Drewinka et at. (1976)

This approach is also similar to the fractional product

method ofWebb (1963). The predicted surviving fraction

is calculated from the Bliss independence model and

listed as in column 5 of table 3. Then, the predicted

surviving fraction is subtracted from the measured sur-

viving fraction for the combination points, and the dif-

ference scores are listed, such as in column 8 of table 3.
The scores are then used as data for a Student’a t-test for

the hypothesis that the true mean is equal to zero. For

the 25 combination points for the common data set, the

mean Drewinko score was 2.59, with a standard error of

1.02. There was significant Bliss antagonism, P < 0.05.

The advantages and disadvantages of the method of

Drewinko et al. (1976) are essentially the same as those

of the last two approaches. A difference is that this

method offers a summary measure of the intensity of

interaction, with an associated statistical indication of

the uncertainty in the measure. A disadvantage of the
mean. Drewinko score is that it is not the statistical

expectation of any specific true parameter. In other

words, the mean Drewinko score will very much depend

upon which regions of the concentration-efi'ect surface

are sampled. A statistic, such as the mean Drewinko
score, that depends heavily upon the design of the ex-

periment is not ideal.

E. Interaction Index Calculation ofBerenbaum (1977)

This method is the algebraic analog ofthe isobologram

by hand method. The general formula for the interaction

index, I, is Eq. 22, in which D1 and D2 are concentrations

of drug 1 and drug 2 in the combination, and IDx_,,
IDX3, are the predicted inhibitory concentrations ofeach
drug individually to give the observed effect of the com-

bination. The specific method of estimating ID,” and
ID“ is left to the researcher but is often done by hand
with pencil, graph paper, and possibly, French curve.

D1 D2

I = mm + mm [221

We applied the interaction index method to the common

data set by first fitting the first 13 data points with Eq.

13, that for Loewe additivity for two inhibitory drugs
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that both individually follow Eq. 2. The first 13 data

points include the control points plus the drug 1 alone

and drug 2 alone points. The data were lit with nonlin-

ear regression, weighted by the reciprocal of the square
of the predicted eifect. (This weighting factor is appro-

priate for continuum data that have errors that are

normally distributed and proportional to the true re-

sponse. This error structure is common in biological

systems and was used to generate the common data set,

as described in the legend of table 3.) The 5 parameter

estimates were: Econ = 99.2 1 5.2; ICE” = 9.52 1 1.7;

ICE” = 0.966 1 0.094;m1 = -0.989 1 0.11; 7112 = -1.93
1 0.13. Then, using Eq. 8, the specific form of Eq. 22 for

drugs that follow Eq. 2. and these 5 parameter esti-

mates, the interaction indices were calculated for the 25

combination points and listed in the tenth column of

table 3. When I > 1, Loewe antagonism is claimed; when

I<1,Loewesynergismisclaimed.Theresultsofthis

analysis are listed in column 11 oftable 3. There were 21

cases ofLoewe synergism and 4 cases ofLoewe antago-

nism. The overall conclusion is Loewe synergism, in

agreement with the isobologram by hand method, but in

apparent disagreement with the fi'actional product

method ofWebb (1963), the method ofValeriote and Lin

(1975), and the method of Drewinko et al. (1976).

The advantages and disadvantages of the interaction
index method of Berenbaum (1977) are similar to the

isobologrsm by hand method. The key advantages in--
clude:

(o) the null reference model is the Loewe additivity

model, Eq. 6.
(b) if the individual concentration-efi'ect curves for

both drugs can be well characterized, then all of the
combination data can be used. This eliminates some of

the potential waste of data of the isobologram by hand
method. Also, in principle, the experimental designs can

be parsimonious.

The key disadvantages include:

(a) it is not obvious how to derive a good summary

measure of the intensity of interaction. If one merely

calculates a mean for all of the Is and then performs a

Student's t-test with the null hypothesis that the true

interactiunindexisequslto Lthenthesemecriticisms

directed against the mean Drewinko score would apply
here.

(5) the analysis results are not as visually informative

as with the isobologram by hand method.

F. Method ofSteel and Peckham (1979)

This approach has many similarities to the isobolo-

gram by hand approach but also several fimdamental

differences. In addition to the original reference, the

approach is described well by Strefier and Mtiller (1984)
and by Calabrese (1991). A variant of the original ap-

proach developed by Dean and Williams (1979) has been

used extensively by Teicher and coworkers (s.g., Teicher

et al. 1991). First, reference curves for the Bliss inde-

23 of 55

353

pendence modal, Eq. 11 (called Mode I additivity) and for

Mode II additivity, Eq. 20, are constructed for a partic-

ular efiect level. An alternative equation for Mode II is

provided by Kodell and Pounds (1991). although it is
more common to describe the Mode 11 calculation with a

diagram (e.g., Steel and Peclrham, 1979; Streffer and
Miiller, 1984). Mode I and Mode 11 isobols for the 20%

survival level are shown for the analysis of the common

data set in figure 15. All calculations and graphs were

made with pencil, graph paper, and French curve. How-

ever, automated curve fitting computer programs for the

approach have been developed (Teicher at al., 1985). The

data points are the ID” values estimated from families

of log-linear concentration-effect curves (not shown), not

from the linear-log curves in figure 12. The positions of

the 1203,, points in figure 15 dilfer a little from the posi-

tions in figure 14 because of the differences in how the
concentration-efi'ect curves were drawn. Note that there

are two Mode 11 isobols. Especially note that the Mode II
isobols are not the same as the “classical” isobol simu-

lated from the Loewe additivity model, Eq. 6. This is in
direct contradiction to claims that the Mode II model

and Loewe additivity are the same (Teicher et 13]., 1991).
[This contradiction is the result of Steel and Peclrham's

(1979) misinterpretation of the first paper on iaobolo-

grams in English by Loewe (1953). Unfortunately, this

key paper, Loewe (1953), was written with a cryptic

mathematical notation and is difficult to interpret. It is

a dramatic contrast to his lucid original paper on the

subject, Loewe and Muischnelr (1926), written in Ger-
man.] The area between the Mode I and Mode II isobols

is called the “envelope of additivity.”

Because most of the 11330 points fall between the bor-

ders of the envelope of additivity, using either Mode 11

isobol for the upper boundary, the conclusion for the

common data set would be additivity.

-- Jlllstmiaguiflronnzl

FIG. 15. lsobologram from the Method of Steel and Peckhsm
(1979) for the 20% survival level (ION). Note that the isobol for the
ModeIsIsumption,eachofthetwoisobolsforthal\\!odeIIaasump-
tion, and the isohol for the classical Loewe additivity assumption are
alldiiferent. Thedata pointssr-eIL‘,..Itakenfi-ounlog-linasrplotsof
fiasurvivsl vs. drug concentration. The letters next to the points
correspond to the legend of the linear-log survival plots in figure 13.
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The advantages of the method of Steel and Peckham
(1979) include:

(o) a region, the envelope of additivity, is provided to

facilitate judgments about departures from no interac-

tion, rather than a line. The envelope of additivity pro-

vides a standard, with a reasonable theoretical justifi-

cation, to aid in the decision ofwhether a departure from

additivity is great enough to warrant further consider-
ation.

(b) the automated variant of the approach [Teicher et

al., .1985) provides a degree of objectivity and some sta-

tistical rigor.

(c) the approach is widely accepted.

The disadvantages of the method include:
(a) neither of the two no interaction null reference

models, that for Mode I or that for Mode I], are the

preferred Loewe additivity model. The Mode H reference

model is not part of other common approaches; in addi-

tion, it results in two predictions.

(b) the envelope of additivity does not take into ac-

count the precision of the data; it is not larger for data

with more experimental error. It is not a statistical
interval.

(c) the method lacks a summary measure of the inten-

sity of interaction.
(d) the method is insensitive to small but real and

potentially important interactions. It lacks good statis-

tical power. This was seen for the analysis of the com-
mon data set.

G. Median-eflizct Method of Chou and Tololay (1984)

Of all of the methods examined in this paper, the

median-effect approach received the most thorough re-

view. This is because, of all of the methods to assess

agent interaction introduced since 1970, the method of

Chou and Talalay (1984) has been the most influential

and controversial. Probably the key element of the ap-

proach that has led to its widespread use is the avail-

ability of an implementation in inexpensive microcom-

puter software (Chou and Chou, 1987). Chou (1991a]
lists 79 recent publications that applied the median-

effect approach to real laboratory data; 39 centered on

anticancer agents, 25 centered on antiviral agents, and

15 centered on other miscellaneous agents. Our own

literature survey located 3 application papers in 1985, 5

in 1986, 13 in 1987, 16 in 1988, 28 in 1989, 31 in 1990,

and 11 in an incomplete survey of 1991 for a total of 107.
It is clear that the approach has many advocates and

that its use has continued to grow. The article, Chou and

Talalay (1984), may become one of the most oiten-refer-

enced scientific papers in the history of biomedicine.

The median-effect approach is the culmination of a

long series of very technical papers centered on describ-

ing a wide variety of complex enzyme kinetic mecha-

nisms with a general framework (see Chou, 1991s for a

summary). Many useful concepts and equations were

introduced by this series of papers, including several
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used by our group in the development of our own re-

sponse surface approach for assessing agent combina-

tions (Greco et al., 1990). In fact, our original motivation

in developing our approach was merely to add small

improvements to the median-effect method. For in-

stance, our first goal was to show (via Monte-Carlo sim-

ulation) that using weighted nonlinear regression to lit a

nonlinear form of the median-effect equation, Eq. 1, to

single drug data was superior to using unweighted lin-

ear regression to fit a linearized form of the median-

etfect model, Eq. 23, to single drug data (Syracuse and

Green, 1986). Even though the weighted nonlinear re-

gression approach was consistently more precise and

less biased than the unweighted linear regression ap-

proach, for the estimation of both Do: and m, the difl'er-

ences were usually not striking, and the simpler method

performed very well for most cases. However, as we

examined the method of Chou and Talalay (1984) more

closely, we found several disturbing problems, which

will be described below. In addition, our own approach

developed along very diiferent lines, most notably with

the incorporation of some ideas of Berenbaum (1985).

Today, our approach for assessing agent interaction

(Green et al., 1990) bears only a faint resemblance to the
median-efiect method.

The analysis of the common data set by the approach

of Chou and Talalay (1984) is shown in figure 16. Only a

-L0-Q5 O 0.5 l.0 L5 Z0 Z5 10

In-s[Dl

1.0

Pin. 16. Median-efibct (upper panel) and C! vs. fa plot flower
panel) for the analysis of data from table 3, columns 2 through 4, for
drug 1 alone (points 4 through 8). drug 2 alone (points 9 through 13)
and for the combination at a fixed ratio ofD1:D, of10:1(points 14, 20,
26. 32, and 38) The solid square data points in the lower panel
represent the five combination points and were calculated as de-
scribed in the text.
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brief description of the approach is included here; there

have been many detailed recipes of the approach previ-

ously published (e.g., Chou and Talalay, 1984; Chou and
Chou, 1987; Chou, 1991b; Calabresi, 1991). The easiest

way to apply the approach to a data set is to use the

software program by Chou and Chou (1987), which is

available for both the Apple II and IBM-compatible per-

sonal computers. Eq. 23 is fit to data from drug 1 alone,
drug2 alone,andthecomhinati.onofdrug 1 anddrug2

in a fixed ratio. [Eq. 23 is a linearized form of Eq. 24,

essentially equivalent to the Hill equation, Eq. 2, and

was derived by Chou and Talalay (1981).]

loslfu“ - 1] = loslfa" - 1]“

= m1og(D) — mlog(Dm]

*E_(_1L)'"fu_ Dm

An average control efl'ect was fir-st calculated (the aver-

age ofthe 3131 = D, = 0 points, 106, 99.2, and 115 from
column 4 of table 3) to be 107. Then, each fu value was

calculated by dividing the measured effect in column 4

by 107. For drug 1 alone, points 4 to 8 were used, for

drug 2 alone, points 9 to 13 were used, and for the

combination at a fixed ratio of 10:1, points 14, 20, 26, 32,

and 33 were used. (In principle, more sets of points from
other fixed ratios from the data set. in table 2 could have

been used for the analysis; however, it is very common to

apply the approach to a single fixed ratio.) Additional

calculations were performed on the 15 data points to

construct the transformed y-values of log[fu“—1] and
the transformed ::-values of log(D). Unweighted linear

regression was applied separately to the three sets of

five points each, and the slopes and y-intercepts were

estimated, m and -mlog(Dm), respectively. The trans-

formed data and fitted curves are in the upper panel of

figure 16. The De: values were calculated from the y-

intercepts and slopes. The six estimated parameters

were: for drug 1, Din, = 7.40, m1 = 0.845; for drug 2,

Drag = 0.631, m, = 1.37; for drug 1 + 2 in a fixed ratio,

Dmm = -4.48 and mm = 1.77. [Note that the signs of the

ma have been made positive to correspond to the stan-

dard implementation of the approach of Chou and Tale-

lay (1984); this is the opposite of the convention usually

used by our group.] According to Chou and Talalay

(1984), ifm, = "12 = mm, then the two drugs are claimed

to be mutually exclusive; ifml = 1712 at mm, then the two

drugs are claimed to be mutually nonexclusive; if ml at

"I2, the mutual exclusivity of the drugs is unclear. Chou

and Talalay (1984) do not explicitly state how the equiv-

alencies of mi, N12, and mm should be determined. How-
ever, we will make the conclusion that 0.845, 1.37, and

1.77 are sufliciently different from each other that the

mutual exclusivity is unclear for the common data set.

[24]
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In the lower panel of figure 16 are the CI vs. fa plots

for both the mutually exclusive and mutually nonexclu-

sive assumptions. These plots were generated by insert-
ing the six estimated parameters from the median effect

plots into Eq. 25 for the mutually exclusive case and into

Eq. 26 for the mutually nonexclusive case (Chou and

Chou, 1987; Chou, 1991b). and calculating CI for the

range offs from 0.01 to 0.99. (Here, R is the ratio of

concentrations ofD,:D2). The area above the CI = 1 line

represents antagonism; below, synergism. The five data

points in the lower panel represent the live combination

points that have been transformed with Eq. 27 and

directly plotted, without relying on the estimation of

Drum and mm. This addendum to the approach. sug-

gested mainly for nonconstant combination ratios

(Chou, 1991s), is also applicable to fixed combination

ratios, as shown by our example. To the best of our

knowledge, it is not yet available in the commercial

sofizware (as of August, 1992). This is essentially the

same approach as described in Section V.E., the calcu-
lation of Berenhaum's (1977) interaction index.

0‘.

1'fl1

Overall, the conclusion is strong antagonism at low fas,

slight synergism at fir > 0.8, with the assumption of

mutual nonexclusivity; strong Loewe antagonism at low

fas, slight Loewe synergism at fa > 0.8, with the as-

sumption of mutual exclusivity. Note that the extreme

antagonism occurs to the left of the combination data

points. If one would just examine the five combination

points calculated with Eq. 27, then one might conclude

Loewe additivity; or slight Loewe antagonism at low foe

and slight Loewe synergism at high fire.

The advantages and good features of the median-

effect approach of Chou and Talalay (1984) include:
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(o) the fimdamental equations for the approach were

derived from basic mass action enzyme kinetics, and

thus, the estimable parameters have the potential to be

biologically meaningful. However, the approach has

most often been applied to much more complex systems,

such as biochemical networks, viruses, bacterial cells,

mammalian cells, intact mammals, or populations of

mammals. Therefore, the biochemical origin of the me-

dian-effect approach, a relatively simple system of mul-

tiple inhibitors of a single enzyme, will usually not fa-

cilitate mechanistic insights into the more complex

systems to which the approach is applied. The mecha-

nistic models of the approach are used essentially in an

empirical manner.

(b) many useful equations, combined-action concepts,

and specific applications of the approach have been pub-

lished that have inspired others to create newer ap-

proaches (e.g., Green et al. 1990).

(c) part of the method involves the fitting of models to
data with an objective, well accepted statistical ap-

proach, namely linear regression.

(of) the experimental design requires fewer data points

than a typical design to be analyzed by the isobologram

technique and other methods. However, the common

sparse design with one fixed ratio of DIID3 may miss

some interesting regions of the full 3-D concentration-

effect surface (Prichard and Shipman, 1990).

(e) the mutually exclusive model is consistent with the

Loewe additivity null reference model.

(f) for many analyses of real data, when artifacts

inherent in the approach do not make a major contribu-

tion, the overall general conclusions will be consistent

with more rigorous methods. However, conversely, when

artifacts do make a rnaior contribution, the final conclu-

sions will not be consistent with more rigorous methods.

For example, in an informal survey of 37 application

papers that used the Chou and Talalay (1934) approach,
we re-analyzed 136 data sets with the parametric model

fitting approach, using Eq. 5, described in Section V.L.1.

For only 38 of the 136 data sets (28%) was there close

agreement in the final conclusions for the two ap-

proaches.

(g) the method is available in microcomputer software

for the popular Apple H (Apple Computer Inc., Cuper-

tins, CA) and IBM PC (IBM Corporation, Boca Raton,

FL) (and compatible) microcomputers. This last advan-

tage is the most crucial: for any sophisticated data anal-

ysis technique to be used routinely by biomedical scien-

tists, especially by those with little mathematical and
statistical training, the method must be readily avail-

able in the form of inexpensive, user-friendly software.

The disadvantages of the method of Chou and Talalay
(1984) include:

(o) the mutually nonexclusive model was not ade

quately derived. Appendix A includes an extensive dis-

cussion of this point, provides a derivation from basic

enzyme kinetic arguments for Eq. 12, a model that can

26 of 55

GRECO ET AL.

also be derived directly from the concept of Bliss inde-

pendence, and provides support for Eq. 12 being a more

appropriate model for mutual nonexclusivity for two

inhibitors against a single enzyme, than Chou and Ta-

lalay’s model 13 (or an alternate form, Eq. 19). It must

be noted that, as shown in Appendix A, the mutually

nonexclusive model of Chou and Talalay (1984) for two

inhibitors of a single enzyme can be derived from en-

zyme kinetic arguments by making some additional as-

sumptions. However, it is unlikely that an equation de-

rived from a set of unusual assumptions, for a rare

experimental system, would have general utility for

modeling concentration-effect phenomena from a wide

spectrum ofcomplex agent interaction systems. Another

implication of this discussion is the weakness of Chou

and Tala.lay’s (1984) argument that the fractional prod-

uct method of Webb (1963) is not valid for higher order

systems with sigmoidal concentration-effect curves

( I ml > 1). In fact, from a theoretical basis, any approach

based upon Loewe additivity or Bliss independence is

“valid” for most types of concentration-efi'ect fimctions

over a wide range of parameter values.

(b) as shown in Appendix B, Nonlinear Nature of the

Median Effect Plot for Mutual Nonexclusivity section,

the median-effect plot for mutually nonexclusive inhib-

itors is not linear; this leads to inaccuracies in the esti-

mation of Dar: 1, and especially of mm via linear regres-

sion, and then to artifacts in the CI vs. fa plot, including

large antagonism at low foe. Interestingly, this nonlin-

earity in the median-effect plot for their mutually non-

exclusive model was first shown by Chen and Talalay

(1981) in their figure 2 (not shown here).

(c) the CI formula for the mutually nonexclusive case

is not correct. This is shown in Appendix B, Incorrect

Combination Index Calculations for the Mutually Non-
exclusive Case section. This also leads to artifacts in the

CI vs. fa plot.

(d) even for the mutually exclusive case, one effect of

Loewe synergism or Loewe antagonism is to make the

median-effect plot nonlinear, leading to artifacts in the

C! vs. fa plot. This is shown in Appendix B, Nonlinear

Nature of the Median Effect Plot for Mutual Exclusivity
with Interaction section.

(2) The median-effect equations for both the mutually

exclusive and nonexclusive cases were originally derived

by Chou and Talalay (1931) with the assumption that

m1 = mg. When ml at "I2, which is usuallythe case, both

models are only approximately valid. The approximation
becomes worse as the difference between the me be-

comes larger. This problem and several others are illus-

trated in figure 17. Eight simulations were conducted

using Eq. 5 as a model (not the model) for Loewe syner-

gism or Loewe antagonism, using the values for ml, H12

and on listed in the meets of the figure. The simulated

data were plotted in panel A after the median-effect

transformation. The C! vs. fa plots were simulated di-

rectly with Eq. 8, thus avoiding many of the calculation
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B
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FIG. 1?. Median-efiect plate (A) and 01' vs. fa plots (3) for data simulated with Eq. 5, with parameters: Econ = 100, IC,,,_, = 10, IC"_, =
1 a.ndm,.m,,uaslistedintheinaetboxesinoach panel. Clwsscalculatedfromliq. 8.Notstbatthemedian-eflhctplotisastrsigbt line
only forthecassinwhichm, = masnda = 0.Thua,bothm, at m, andu 4' Dwillresiiltinaclirvsdmedian-efl'ect plot.Alsonote thatthe
shape of the Cl’ vs. fa plots are influanmd by both the slope parameters and the interaction parameter.

artifacts discussed in points (bl through (d) of this sec-

tion. Note that the median-effect plot is a straight line

only for the case a., in which m, = "12 = -1, and at = 0.

Thus, either in, at mg, or a at 0, or both conditions will

result in a. curved median-effect plot. Note that large

differences in slope parameters (e.g., curve e., m, = -1,

m, = -5, or = 0) seem to have a more profound effect on

the curvature than does a high ct value (e.g., curve c.,

m, = -1, m, = -1, at = 20). Because only pure Loewe

additivity, pure Loewe synergism, or pure Loewe antag-

onism were simulated, none of the CI vs. fa plots cross

the CI = 1 line. Note that all of the plots, for both Loewe

synergism and Loewe antagonism, start at CI = 1(fa =

0). This implies that all reported G1’ vs. fa plots that

show large antagonism in the region near fa = 0, contain

calculation artifacts. Indeed, the CI =1 at fa =0 point

should be the anchor for all G1’ vs. fiz plots, no matter

what kind of combined-action is present. Also note that

CI vs. fir curves 1‘). and c. (m, = m, = -1) curve downward

near fa =1, whereas, curvesf. and g. (In, = -1, m2 = -5)
curve upward near fa = 1. Finally, note that increasing

degrees of Loewe synergism, for the same set of slope

parameters, order the curves from bottom to top for the

median-eifect plot, but from top to bottom for the CI vs.

fa plot. It is clear that in the vast majority of cases, the
median-eifect lineariaation of combination data at a

fixed ratio will result in a true nonlinear curve. The

nonlinesrity may be small, and data variation may mask

the nonlinearity, but the fitting of a median-eflect

straight line to such data will almost always be, at best,

only approximately correct.

( f) the method of Chou and Talalay (1984) lacks many

aspects of modern statistical approaches. First, the fit-
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ting of the median-efiect line to data with linear regres-

sion does not have the option of weighting. However,

proper weighting only ofiers a slight improvement to the

unweighted linear regression {Syracuse and Greco,

1986}. Second, the only goodness of fit statistics ofiered

are Pearson correlation coeflicients, r, for each separate

unweighted linear regression of the transformed data

for each median-effect plot. It would be useful to have

some overall goodness of fit statistic for the fit of the

overall model simultaneously to all of the data. There is

no uncertainty measure provided with the estimates of

ml, "12, and mm to aid in melting the decision between
mutual exclusivity vs. mutual nonexclusivity. Most im-

portantly, there is no uncertainty measure associated

with the final result, the C! vs. fa plot. Objective deci-

sions negarding the occurrence of moderate degrees of

Loewe synergism or Loewe antagonism are therefore

diflicult. However, newer variants of the approach in-

clude more extensive statistical procedures, such as con-
fidence intervals for the combination index (Belen'l:ii

and Schinazi, 1994).

(3) the relationship between the CI vs. fa plot. the

original raw data, and the original concentration-effect

curves is somewhat hard to The experimenter

may “lose touch” with his data. However, a good under-

standing of the relationship between the CI vs. fa plot
and the 3-D concentration-efibct surface for a two drug

combination, figure 7, may assist in this visualization.

(h) the Chou and Talalay (1984) approach first in-

volves a decision on mutual exclusivity vs. mutual non-

exclusivity, and then a decision on synergism, additivity,

or antagonism, for a total of six dilferent cases. There is

a conceptual dificulty in differentiating between mutual
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exclusivity with synergism and mutual nonexclusivity

with synergism, additivity, and especially with antago-

nism. The regions overlap. This can be seen in isohols of

figure 6, in which curve E represents pure mutual ex-

clusivity (o: = 0), curve C represents pure mutual non-

exclusivity (or = 1), and curve D (oz = 0.5) would be an

example of Loewe synergism with reference to the mu-

tually exclusive model and of Loewe antagonism with

reference to the mutually nonexclusive model. In line

with this reasoning, the figure legend of figure 2 from

Chou and Talalay (1981) states that the curve for mu-

tual nonexclusivity “clearly shows synergistic efiects at

high concentrations. . . . ” In fact, one can see that the

nonlinear form of the mutually nonexclusive model, Eq.

19, is the same as our flagship model for Loewe syner-

gism,Eq.5,withm = m.1=m,,ando:= 1.
(1') the available software (Chou and Chou, 1987) that

implements the approach is relatively unsophisticated.

Future changes in the computer software should include

improvements in graphics, datafile editing, saving and

retrieving, and the prevention of the program from

‘bombing’ under certain conditions.

(j ) if the concentration-effect curve for either agent in
a combination does not follow the Hill model, Eq. 1 (or

the equivalent median-eflect model, Eq. 24), then the

Chou and Talalay (1934) approach is not valid.

(it) there are three practical decisions that users of the

Chou and Talalsy (1984) approach must make that crit-

ically affect the final results: (1) what to do with data

points in which % survival equals or exceeds 100%, or

equals or is less than 0%; such data will lead to compu-
tational difliclzlties; (2) how to decide whether a specific

two-agent interaction is mutually exclusive or mutually

nonexclusive, especially when ml at "12; and (3) how to

conclude synergism, additivity, or antagonism from the

CI vs. fa plot. There is a wide variety of different tactics

used by different groups to make these three critical
decisions. Therefore, the objectivity of the approach is

lessened. For example, for decision (1), some groups

either censor any extreme points (fa 2 1, fa S 0) or

change any fa 2 1 to a usable fa such as 0.96 (e.g.,
Schinazi et al., 1986), whereas, most groups do not spec-

ify their procedure (e.g., Hartshorn et al., 1986). For
decision (2), as recommended by Chou and Talalay

(1984), some assume mutual exclusivity when the medi-

an-effect plots for both single drugs and the combination

are parallel (e.g., Koshida et al., 1989), assume mutual

nonexclusivity when the slope parameters for the single

drugs are similar but the slope for the combination is

much diiferent (e.g., Nocentini et al., 1990), and report

both exclusivities when the median-effect plots for both

single drugs are not parallel (e.g., Eriksson and Schi-
nazi, 1989). However, some groups report the mutual

exclusivity results, because they feel that the mutually

nonexclusive results would not be much diflhrent (e.g.,

Vogt et al., 1987; Kuehler et al., 1990). Some report
mutual exclusivity, because it corresponds to the classi-
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cal isobologram approach (e.g., Johnson et al., 1992);

some groups assume mutual nonexclusivity, because it

yields a more conservative estimate of CI (e.g., Vathsala

et al., 1990). Some assume mutual nonexclusivity, be-

cause the two agents are known to act at diflerent sites

(e.g., Jackson, 1992), and some assume some exclusivity,

but don't state which one or why (e.g., Richmau et al.,

1991). For decision (3), some groups stress the CI at high

foe, such as 0.50, 0.75, 0.90 and 0.95 (e.g., Kong et al.,

1991). Some show the whole G1’ vs. fa plot, from 0.01 to

0.99 and describe many of the nuances of the curve,

including the point at which the CI = 1 line is crossed

(e.g., Wadler et al., 1990). Some report an average CI for

the 50% effect point from several replicate experiments,

along with a standard deviation (e.g., Kata et al., 1990).

Some use several other additional approaches to analyze

the data, such as the isobologram approach, or the

method of Steel and Peckham (1979) and then report a

consensus (e.g., Nocentini et al., 1990). There are no firm

guidelines for assessing the importance of small consis-

tent differences between the CI vs. fa plot and the CI =

1 line. For example, in Chou and Chou (1987), the G1’ vs.

fa plot on page 42 follows a path slightly above the CI =

1 line, with a conclusion of additivity; whereas, the

C’! vs. fa plot on page 61 follows a path slightly below the

CI = 1 line, with a conclusion of strong synergism.

H. Method of Berenbaum (1985)

In one sense, the method of Berenbaum (1985) is

merely a graphical version of the interaction index ap-

proach of Berenbaum (1977). However, interpreted dif-

ferently, the method of Berenbaum (1985) is the basis of
all modern nonparametric and parametric response sur-

face approaches to be described in Sections V.K. and

VL. The approach consists offitting concentration-effect

models to data for each agent alone, deriving a model for

Loewe additivity consistent with these single agent mod-

els, simulating the Loewe additivity model, superimpos-

ing this simulated Loewe additivity surface upon the

raw data points, and then deciding whether points are

above or below the surface, which will indicate Loewe

synergism or Loewe antagonism, depending upon
whether the 3-D concentration-e)‘.‘fect surface rises or

falls with increasing agent concentrations. The derived

Loewe additivity models can accommodate different

slope parameters for each agent when each agent's con-

centration-effect curve follows a Hill model, Eq. 2, 3. The

Loewe additivity models can even accommodate differ-
ent functional forms for the concentration-effect curve

for each agent. Unfortunately, these models are ofieu in

unclosed form. A formal parametric model for Loewe

additivity is useful, but optional: Berenbaum (1985)

shows an example offitting complex single agent data by

hand. Siihnel (1992c) has derived and listed many para-

metric Loewe additivity models and emphasizes the use

of 3-D interaction plots, such as figure 9, and 3-D differ-

ence surfaces such as in figure 10. The functional form of
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the derived Loewe additivity response surfaces, e.g.. Eq.

13, can easily be extended to include interaction terms,

leading to a full combined-action model, such as Eq. 5. In

fact, the guidelines from Berenbaum (1985) for deriving

general Loewe additivity models led us directly to the

derivation of Eq. 5, which was first published in Syra-

cuse and Greco (1986). Interestingly, essentially the

same logic for deriving Loewe additivity and combined-

action models was part of a review paper by Hewlett

(1969), who provides examples of combined-action mod-

els from Finney (1952), Plackett and Hewlett (1952),

Landahl (1953), and Plackett and Hewlett (1967). How-

ever, Berenbaunfs (1985) hallmark paper is much

clearer and was published at a time when the necessary

computer hardware and sofliware were suficiently avail-

able to enable the routine application of his paradigm

and logical variants to real data.

We applied the method of Berenbaum (1985) to the

common data set by first fitting the first 13 data points

359

incolumns2to4oftable3withEq. 13,thatforLoewe

additivity for two inhibitory drugs that both individually

follow Eq. 2, just as described for the interaction index

approach of Berenhaum (1977) in Section V.E. The first

13 data points include the control points plus the drug 1

alone and drug 2 alone points. Just as in Section V.E.,

data were fit with nonlinear regression, weighted by

the reciprocal of the square of the predicted effect. The

five parameter estimates were:Econ = 99.2 I 5.2:1'Cm_1
= 9.52 : 1.7;Ic,,,,_, = 0.966 2 0.094; m, = -0.989 : 0.11;
“'12 = -1.93 1 0.13. Then, instead of calculating an in-

teraction index using Eq. 8, the fitted curve is shown in

figure 1801), along with the raw data. For the 25 com-

bination points, a solid point (above the surface) indi-

cates Loewe antagonism, and an open point indicates

Loewe synergism. The results are identical (as they

must be) to the results from the interaction index ap-

proach of Berenbaum (197?) shown in columns 9 to 11 of

table 3. There were 21 cases of Loewe synergism and 4

FIG. 18. Analyses ofdats from table 3, columns 2 through 4. {A} Approach interpreted from Bersnbaum (1985). Data for drug 1 alone and
drug 2 alone were fit by a Loewe addifivity model, Eq. 13. with nonlinear regression as explained in the text. The 3-D fishnet is the heat {it
Loews lddifivity s1.I.rfs.ce.’I'hs 901133-point data sotisplottod on thesamegraph, withverficallinssindicataingths distancsbetweenthe data
points and the surface. Solid points are above the surface, and open points are below. For the 26 combination points, a solid point indicates
Loewuantlsoniam, andan openpoint, lnawesynergism. Thereisanexactcorrospondcncebetwsen th.i.s3—Dgrsphandwlumn.s9th.rough
11 of table 3. (3) Graphics] Bliss independence comparison. The best fit parameters from the lit of the Loews addilzivity model, Eq. 13. were
estimated as for panel (A). but these parameters were used with the Bliss independence model, Eq. 12 to simulate the 3-D surface. The full
38-point data set is again plotted on the same graph. There are 11 points above the surface (Bliss antagonism), and 14 points below the
surface (Bliss synergism}.
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cases of Loewe antagonism. The overall conclusion is

Loewe synergism.

The key advantages include:

(a) the null reference model is the Loewe additivity
model, Eq. 6.

(b) if the individual concentration-effect curves for

both drugs can be well characterized, then all of the
combination data can be used.

(c) the experimental designs can be parsimonious.

(d) the single agent data are fit with a logical response
surface model, possibly with modern curve fitting tech-

niques.

(c) it is not necessary to derive or use some arbitrary

combined-action model for fitting the combination data.

Mosaics of regions of Loewe synergism and Loewe an-

tagonism are thus easily accommodated-

(f) the approach led to the creation and use of full

combined-action models (e.g., Green et al., 1990).

(g) the approach can be used to characterize very

complex mixtures of three or more agents. If one is

chiefly interested in the assessment of combined-action

at a specific combination of doses of the agents and not
in characterizing the whole response surface, then ex-

perimental designs can be very frugal.

The key disadvantages include:

(a) just as with the interaction index calculation ap-

proach (Berenbaum, 1977), it is not obvious how to de-

rive a good summary measure of the intensity of inter-

action, with an accompanying measure of uncertainty.

However, Gennings (1995) recently proposed some ex-
tensions to Berenbaum’s (1985) method that include

some excellent statistical summary measures of depar-

tures frorn Loewe additivity.

(b) the derivation and application of complex Loewe

additivity models may require considerable mathemati-

cal, statistical, and computing resources.

I. Bliss 1'I939) Independence Response

Surface Approach

We did not find this specific method in the literature,

but it is included because it is a logical cross between the

Webb (1963) and Berenbaum (1985) approaches. This

approach is a graphical version of the fractional product

method of Webb (1963) and is similar, but not identical,

to the method ofPrichard and Shipman (1990) described

in Section VJ. The results are shown in figure 18(B),

which was made in the same way as described in Section

V.H. for the Berenbaum (1985) approach, except that the

Bliss independence model, Eq. 12, was used to simulate

the 3-D surface. There are 11 points above the surface

(Bliss antagonism) and 14 points below the surface

(Bliss synergism). The overall conclusion would be Bliss

independence. Interestingly, the results differ from

those previously found with the fractional product ap-

proach (Webb, 1963) (column 6 oftable 2; 4 cases ofBliss
synergism and 21 cases of Bliss antagonism). This dif-

ference is caused by the use of fitted individual concen-
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traticn-effect curves for making the Bliss independence

predictions for the surface approach, vs. the raw data for

the individual drugs for making the Bliss independence

predictions for the fractional product method.

This approach shares advantages ((3) through (c) ofthe

Berenbaum (1985) approach. It is possible that full com-

bined-action models can be derived and applied, as sug-

gested by Unkelbach (1992).

The key disadvantages include:

(a) the basis ofthe approach is Bliss independence, not

our Loewe additivity preference.

(b) it is not obvious how to derive a good summary

measure of the intensity of interaction, with an accom-

panying measure of uncertainty. However, variants of

the recently proposed extensions by Gennings (1995) to

Berenbaunfs (1985) approach may solve this problem.

(c) the derivation and application of complex Bliss

independence models may require considerable mathe-

matical, statistical, and computing resources.

J. Method ofPn'chord and Shipman (1990)

This approach (e.g., Prichard et al., 1990) is a graph-

ical, 3-D version of the fractional product method of

Webb (1963). Figure 19 shows the result of the analysis

of the common data set, columns 2 through 4 of table 3.

A checkerboard (factorial) experimental design, like that

provided by the common data set, is necessary for the

optimal use ofthe approach. We used the Macsynergy II

program {Prichard et al., 1992), which is a set of Mi-

croSofl: Excel (Microsoft Corporation, Redmond, WA)

spreadsheets and macros, kindly provided by M. Pri-
chard, which was run with Excel to perform the neces-

sary calculations. We used the Tecplot graphics package

(Amtec Engineering, Inc., 1988) to prepare figures 19
and 20.

First, the % inhibition for every data point is calcu-

lated (10096 — column 3 oftable 3 divided by the average

control, 106.7). (Note that 107 was the average control

value used to generate columns 5 and B in table 3.) The

points, connected with straight lines, are plotted on a

3-D graph in figure 19(A). The predictions, based upon

Bliss independence, are calculated on a point-by-point

basis, just as with the Webb (1963) approach and are

plotted in figure 19(B). Figure 19(0) is the diiference plot
of the % inhibition above predicted. These difierences

are equivalent to the Drewinko et al. (1976) Scores in

column 8 of table 3, alter reversing the signs, and divid-

ing the Drewinko Scores by the average control. There

are 22 combination points below the zero plane, repre-

seating Bliss antagonism, and 3 points above the zero

plane, representing Bliss synergism. These 3 data points

are the same ones that showed Bliss synergism in table

3, data points 21, 26, and 36. The Bliss synergy difi'er-

ences were added up to yield a summary measure, 7.19,

and the Bliss antagonism differences were added up to

yield a Bliss antagonism summary measure, --65.27.
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FIG. 19. Method ofPrichard and Shipman (1990) applied to the data fi-om table 3. columns 2 through 4. (A) Raw data. 36 data points (the
3 control points were averaged into 1 point), expressed as ‘binhihition. connected by straight lines. in a 3-D plot. (3) combination points are
predicted directly from the raw data for drug 1 alone and drug 2 alone, with Eq. 11. that for Bliss independence, expressed as ‘liinhibition,
and connactedwiths|:rai.ghtlines,i.n a3-Dplct. (C}ThesetofpointsErompa.nel{B)aresuhtl'actedfremthesetofpoin1:afi'om panel {A)and
shown in a 3-D plot. Sections of the diiference surface above 0 indicate Bliss synergism, below 0, Bliss antagonism. Both Bliss synergism and

FIG. 20. An alternate approach provided by Prichard at al. (1992) that integrates the Loewe additivity reference concept of Berenhaum
(1986), applied to the data frum table 3, columns 2 through 4. (A) Same as panel (A). filllle 19. (B) Predicted Loewe additivity surface
anal¢uoustopsnel(B)offi.gure 19.(C)Di.fl‘erences'urfacean.alogou.stopanel(Cloffigure 19.Mostly,Loewesynergiamisseen.'flias.lgerithm
used by Prichard at al. (1992) does not make Loewe additivity predictions for points along the outer edge, and thus the predicted and
diflhrenoesurfscesappeartobesmsllerthanthoseoffigure 19.

Although we were able to successfully apply the

Prichard and Shipman (1990) method to our common

data set, the ideal data set for this approach will contain

replicates. Replicates allow the calculation of point—by-

point 96%, 99%, and 99.9% confidence intervals for the

experimental data. If the lower confidence limit for a

point is greater than the predicted Bliss independence,

the observed Bliss synergy is considered to be signifi-

cant. Similarly, if the upper confidence limit for a point
is less than the predicted Bliss independence, the ob-

served Bliss antagonism is considered to be significant.

The significant Bliss synergism and antagonism differ-

ences are totaled separately for additional summary
measures. The overall conclusion for the results of the

analysis of our common data set is Bliss antagonism.

However, as stated above, replicates are needed in order

to make firm conclusions with this approach.

The main advantages of the approach are:

(c) the approach emphasizes the 3-D nature of com-

bined-action concentration-effect surfaces; it is very vi-

sually oriented.
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(5) the software, MacSyne1-gy II, is inexpensive and

straightforward to use, provided that one already is

proficient with Excel (or possibly some other spread-

sheet sofiwarel and a suitable graphics package.

(a) the approach is very flexible and does not require a

parametric model for either the single agent concentra-

tion-efi"ect curves or for combined-action. The approach

is, essentially, a very simple nonparametric multivari-

ate curve fitting procedure. The approach can easily

accommodate mosaics of interspersed regions of Bliss

synergism and Elise antagonism.

(d) there are some summary and uncertainty mea-

sures associated with claims of Bliss synergism and

Elisa antagonism.

(2) mathematical, statistical, and computing complex-

ities associated with the fitting of full combined-action

response surface models are avoided.

(f) when compared with all of the simpler approaches

examined in this review, Sections V. A-V. G, the method

of Prichard and Shipman (1990) stands out as having
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the best combination of automation, accessibility, intu-

itivaness, and visualization.

The disadvantages include:

(o) Bliss independence is the main no interaction ref-

erence model. However, a new feature added to MacSyn-

ergy II, but not necessarily recommended by Prichard et

al. (1992), is the ability to use Loewe additivity as the

null reference model. The results of the analysis of the

common data set are displayed in figure 20. Note that

the algorithm used by Prichard et al. (1992) does not

make Loewe additivity predictions for points along the

outer edge, and thus the predicted and difference sur-

faces appear to be smaller than those of figure 19. The

conclusion for the analysis in figure 20 is Loewe syner-
gram.

(bl the ideal experimental design, a full checkerboard

of drug dilutions with replicates, may be prohibitive for

many applications. However, for many in vitro studies of

antiviral or anticancer agents, experimental systems

use 96-well culture plates, which facilitates the require-

ment of a large experimental design.
(c) similar methods described in Sections V.H. and

17.1., in which the data for drug 1 alone and drug 2 alone

are fit by specific parametric models, but in which the

combination points are not fit by specific combined-

action models, may offer a cost-efi‘ective advantage over

the Prichard and Sbipman (1990) approach.

(:1) the approach is essentially, an exploratory ap-

proach. It may be ideal as a front-end for further para-

metric 3-D response surface approaches for most data

sets, or possibly a reasonable final method for very com-

plex data sets with numerous regions of true Bliss syn-

ergism and Bliss antagonism. However, it might be of
interest to test whether some of the mosaics of Bliss

synergism and Bliss antagonism disappear after substi-

tuting Loewe additivity for Bliss independence as the no

interaction null reference model. Data sets generated

with a full replicated checkerboard design likely contain

much more useful information than can be revealed by a

simple exploratory approach. It would be cost-effective

to further analyze such data sets with powerful multi-

variate parametric response surface approaches, such as
described in Section V.L.

The paper that introduced the method ofPrichsrd and

Shipman (1990) also provided an extensive review of

other older rival approaches. There were many confus-

ing arguments included in this review, and because it

may have had a large impact on workers in the antiviral
chemotherapy field, and many of their arguments are at

odds with our own views, some of Prichard and Ship-

man's (1990) assertions will be disputed:

(a) they claim that Chou and Talalay’s (1984) mutu-

ally exclusive model is not equivalent to the Loewe ad-

ditivity model. As shown in discussions of figures '3' and
8, and elsewhere in our review, they are indeed equiva-

lent. Prichard and Shipman's (1990) assertion was based

upon the unreasonable assumption oflinear single agent
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concentration-effect curves, rather than sigmoidal

curves following the Hill equation, Eq. 1.

(b) they claim that Loewe additivity is equivalent to

fractional effect addition, Eq. 17, and to Steel and Peck-
ham's (1979) Mode H model. All three models are difi'er-

ent, as discussed in Section IV ofour review. The cryptic

paper of Loewe (1953) may be responsible for this con-
fusion.

(c) they imply that Chou and Ta1alay‘s (1934) mutu-

ally nonexclusive model is, in general, equivalent to

Bliss independence (Webb's 1963 model). This was

shown not to be true in Appendix A and not to be true

originally by Chen and Talalay (1984). Prichard and

Shipman (1990) only examine the case of a first order

system, an exceptional case in which the models are

equivalent, as first demonstrated by Chou and Talalay
(1984).

(cl) Prichard and Shipman (1992) assert that the

methods proposed by Siibnel (1990) and Greco et al.

(1990) are not quantitative and that the method of

Prichard and Shipman (1990) is ‘uniquely suited as it is

the only one that quantitates statistically significant

interactions.” As we hope we demonstrated in our re-

view, their conclusion is overstated.

K. Nonparametric Response Surfhce Approaches

There are many response surface approaches avail-

able that do not require an a priori assumption of a

specific functional form containing estimable parame-

ters. The method of Prichard and Shipman (1990) is a

particularly simple nonparametric technique, which

connects data points with straight lines. More sophisti-

cated nonparametric approaches that have been applied
to concentration-effect data include: kernel estimation

(Staniswalis, 1989), spline-based procedures for mono-

tone curve smoothing {Kelly and Rice, 1990), and a more

traditional spline-based procedure introduced by Siihnel

(1990) and later applied by Baunigart et al. (1991).

Laslra et al. (1994) published an approach to detect

Loewe synergism or Loewe antgonism, which uses some

geometrical principles derived from Loewe additivity re-
sponse surfaces, but which does not require assumptions

regarding the specific fimctional form of the individual

dose-response curves or the combined—action surface.

Thus, the approach uses a nonparametric structural
model. The random model used to describe data varia-

tion can be either parametric or nonparametric. A min-

imum of only three design points are needed to apply

this method; it should he classified as an hypothesis-

testing rather a response surface approach.

Only the traditional spline-based response surface ap-

proach will be reviewed here.

1. Bivariate spline fitting {Siihne£, 1.990). Essentially,

Siihnel (1990) proposed to fit data from combination

experiments with bivariate splines, without and with

smoothing, and then to display the resulting 3-D surface
and contours at various levels of the surface. Bivariate
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splines are sets of piecewise polynomials running in two

dimensions that flexibly follow the points of a surface.
The raw data from the common data set is shown in

figure 21(A.) with a bivariate spline (Harder and Des-
maris, 1972; Meinguet, 1979), with no smoothing, fit to

the data with the procedure, G3GR.ID from the SAS

statistical package (SAS Institute, 1987). Figure 21(B)
shows contours drawn from the raw data at 10% effect

intervals (from 90% to 0% Control, from left to right),

using the SAS procedure, GCONTOUR, using an algo-

rithm from Snyder (1978). Siihnel emphasizes that the

shape ofthe contours can be interpreted directly without

the need of fitting a parametric function to the data. A

straight diagonal NW-SE isobol would be consistent

with Loewe additivity. Because the isobols in figure

21(B) are mostly slightly bowed downward, the conclu-

sion is slight Loewe synergism. The approach is a more
sophisticated version of the Prichard and Shipman

(1990) approach, but with the null reference model being

Loewe additivity, not Bliss independence. The Siihnel

(1990) approach shares many of the advantages and

disadvantages of the Prichard and Shipman (1990) ap-

proach.

The main advantages include:

(a) Loewe additivity is the null reference model.

(b) the approach is very flexible and does not require a

parametric model for either the single agent concentra-

tion-effect curves, or for combined-action. Mosaics of

interspersed regions of varying degrees of both Loewe

synergism and Bliss antagonism are easily accommo-
dated. Silhnel (1992a, 1992b) considers this character-

istic so important that he has questioned the routine use

of 3-D combined-action models, such as Eq. 5, which

include only a single interaction parameter.

The disadvantages include:

(a) like many nonparametric response surface ap-

proaches, the required experimental design must in-

clude a large number of regularly dispersed points.

(b) the approach is essentially only an exploratory

approach.

(cl no summary measures of interaction intensity or

conclusion uncertainty are provided.

(at) the approach is more complex to implement and to

use than the Prichard and Shipman (1990) approach.

(e)thepotentialuserisrequiredtcfindhisownsoft-

ware implementation of the approach.

FIG. 21. Analysis ofdats from table 3, columns 2 through éby a nonparametric approach interpreted from Si1h.I:Iel(1990). (A) The surface
is a lit of the data with a hivariate spline {Harder and Des-mania. 1972; Meinguet. 19'l'9}. no smoothing, with the procedure, GBGRID. from
SAS (SAKS Institute. 1931'). All 38 data points. whether they fall above or below the surface. are shown as solid circles. (B) Contours drawn
from the raw data at 10% street intervals (from 90% to 0%Cen1:ro1, from left to right}, using the SAS procedure. GCONTOUR, using an
algorithm from Snydsr(197B). The general shape ofthe contours is in the direction cflaoewe synergism.
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L. Parametric Response Surface Approaches

In many senses, parametric response surface ap-

proaches are the most complex and difiicult to apply to

the problem of the joint action of agents. They may

require the scientist-user to be facile with terminology

and concepts that were not part of his formal education,

may require the consultative advice of a statistician or

other quantitative professional, and will require com-

puting facilities and expertise. However, in a broader

sense, these approaches may be the simplest of all ofthe

methods discussed so far. In general, to apply the ap-

proaches, (a) logical models are lit to data with auto-

mated computer programs, (bl parameter estimates.

other statistics, and graphs (3-D and 2-D) are generated

and interpreted, (cl conclusions are made.

1. Motiels of Green et ai. (1990). Eq. 5 and close vari-

ants have been successfully applied to laboratory data

from several studies (e.g., Greco et al., 1990; Gaumont

et al., 1992; Green and Demhinski, 1992; Green and

Rustum, 1992; Guimsries et al., 1994). Eq. 5 was fit to

the common data set with nonlinear regression,

weighted by the reciprocal of the square of the predicted

efiect. [Metzler (1931) provides a good description of

nonlinear regression intended for biomedical scientists]

The Nash (1979) version of the Marquardt (1963) algo-

rithm for nonlinear regression was coded by our group in

Microsofi FORTRAN, and run on MSDOS-compatible

microcomputers.

The six beat-fit parameter estimates (: standard

error) were: Econ = 95.1 i 4.5;IC5g_1 = 11.1 i 1.3;
ICm_2 = 1.07 : 0.068;m1 = -1.05 1 0.078; "12 = -2.04 i
0.080; at = 0.519 : 0.11. The 95% confidence intervals

for each parameter can be calculated by multiplying

each standard error by the appropriate value of the

Student's t-teat distribution and then adding and sub-

tracting this value from the parameter estimate. The

appropriate value of the tg_5 distribution for two-sided

95% confidence intervals and 32 degrees of freedom (38

data points, 6 parameters) is 2.04. The 95% confidence

intervals were: Econ, 86.0 to 104; ICm_1, 8.40 to 13.9;

I05”, 0.934 to 1.21; ml, -1.21 to -0.892; 3732, -2.20 to
-1.88; CI, 0.300 to 0.738. None of the 95% confidence

intervals encompass zero; all of the parameters were

well estimated. This is a positive indication of the model

fitting the data well.
The raw data and best fit 3-D curve are shown in

figure 22(A). A 2-D representation of the same concen-
tration-effect surface is shown in the isobologram of

figure 23, which was formed by the intersection of the

surface with planes at 10, 50, 90, and 99% inhibition.

Figure 24 includes concentration-efi'ect curves (logarith-

mic concentration scales) for drug 1 at different drug 2

concentrations (left panel) and for drug 2 at difierent

drug 1 concentrations (right panel). The curves are sim-

ulations of Eq. 5 with the best-fit estimated parameters.
The curves are intersections of the surface shown in
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FIG. 22. 3-D concentration-efl‘ect surfaces estimated from the

bestfit of four dilfsrent models, with weighted nonlinesrregression
asdeacrihedinthcteIt,tothedatafromtahle3,columns2through
-tfiothfittedandrawdataareerpreaaedaaapercentageofthe
estimated Econparaxnetar. Solid points are abovethe surface; open
points fallbelow the surface. (A) Eq. 5; (B) Eq. 28; (C) Eq. 29; (D)
Eq.29.

figure 22(A) with vertical planes at the concentrations of

drug2anddrug1listedinthefig'ure.Thesecu.rves,

along with the actual data points, provide a visual anal-

ysis of the goodness of fit. Note the differences between

the set of best-fit simulated curves in figure 24 and the

analogous hand-drawn curves in figure 13. Figure 25
shows concentration-effect curves simulated with the

best-fit parameters for drug 1, drug 2, a 10:1 mixture of

drug1todrug2,ands.10:1mixturewiththeassump-

tion of Loewe additivity (L! = 0). This 2-D representation

of the full 3-D surface in figure 22(A) provides a visual

assessment of the magnitude of the shift of the concen-

tration-efi'ect curves, because of Loewe synergism, for

fixed ratio mixtures. The I059 value for the 10:1 mixture

of the Loewe synergistic combination was 1.015-fold

(5.45f5.37) lower than the expected value for the Loewe
additive combination. This is close to the ratio of 1.012-

fold (5.00:“4.94) for ideal data containing no error. It is

apparent that an or value of 0.5 leads to only subtle shifts
in mixture concentration-effect curves. Because the or

estimate is positive and the 95% confidence interval,
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FIG. 23. Families of2-Disobols forthebest fit ofEq. Btothe data
from table 3, columns 2 through 4. The set ofcontours is a 2-D
representation of the 3-D response surface in figure 22, panel (A).
Note that the X- and Y-exes are the concentrations of each drug
transformed by division by the appropriate value of the dose (or
concentration) of drug that inhibits survival by K1: {D1}. The num-
bars on the isohols indicate the % inhibitory level.

—..._.____O I 5 IO 20
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FIG. 24. Families of 2-D concentration-efihct curves for the best

fitofliiq. 5to'thsdatafronI.tabls3,eolumns2through4.Thisis
another 2-D representation of the 3-D response surface in figure 22,
panel (A). Note that drug concentrations are on logarithmic scales.

0.300 to 0.738, does not encompass zero, a claim of small

but significant synergism is made.

As was stated previously several times in this paper,

E9. 5, our flagship model, is a model for combined-
action, not the model. Eq. 5 has a questionable property:

for negative values of the interaction parameter, as, the

3-D concentration-elfect surface has a saddle point and

rises back to Econ at simultaneous high concentrations

of both agents. This is illustrated in figure 26, a simu-

lation ofEq. 5 with on = -1 (Loewe antagonism). Like the

lit of second order polynomial models to data sets that

show slight curvature, the fit of Eq. 5 to experimental

data demonstrating Loewe antagonism may be valid for

only a restricted region. The fit of Eq. 5 with negative (I
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FIG. 25. Predicted 2-D concentration-eflect curves for drug 1
alone, drug 2 alone, andthe combination ofdrug 1 and 2 in s fixed
10:1rstioforthebeatfitofEq. Stothefiilldatasetfromtsblefi,
columns 2 through 4. The predicted Loewe additivity curve for the
same combination at a fixed ratio of 10:1, simulated by setting a = 0,
is also shown. The X-axis is the sum of concentrations of drug 1 and
drug 2 (logarithmic scale). The raw data points are the same ones
shown in figure 16.

estimates to experimental data has been shown to be

satisfactory (e.g., Greco and Dembinski, 1992). However,

we have systematically searched for a logical model that

would not rise up at mixtures of high agent concentra-
tions.

Such an experimental model is Eq. 28, whose general

form was first suggested by Finney (1952) and later

included in a list of plausible interaction models by

Hewlett (1969). (Eq. 28 rises back toward Econ only at

very high agent concentrations and large negative :1

values.) Eq. 28 is a specific example ofthe general Loewe

combined-action model, Eq. 9. Eq. 28 differs from Eq. 5

by having all of the right-hand expression, except for a,
raised to the ‘/2 power. For simulations of Eq. 28, the

extent of bowing will be the same for isobols at difierent

effect levels determined from plots of D,lIDx_2 vs. D1!

IDx_,. This is in contrast to the greater bowing of isobols
at higher levels of inhibition for Eq. 5, as seen in figures

4(E}, 5(A), 8(C), and 23.

D1 Dg

1 = —"““}“"fl»T: + "“—T—v»s

IC5o_1( ) IC5o_g( )Econ — E [28]

DID2 1/3

E )(Um:+1fmaJ)
+ Cl _

1050,10,,,2(Ejcon_ E
Eq. 28 was fit to the common data set in the same way

as described for Eq. 5. Figure 22(3) shows the best-fit

3-D surface and the raw data points. The six estimated

parameters were: Econ = 88.9 1' 5.5; IC50‘1= 15.6 .+. 2.2;
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mo. 26. Simulation of Eq. 5, with Econ = mo. Ic,,,,_, = 10,
ICE; = 1, m, = -1, mg = -2, on = -1. an example of Loewe antago-
nisru.

= i H11 = .134 i “I2 = '2.28 I
0.13; a = 0.643 1 0.18. As seen in Figure 22(3) and in

other 2-D plots not shown, the goodness of fit was ade-

quate. Because or was positive and its 95% confidence

interval did not encompass zero (0.270 to 1.02), Loewe

synergism is claimed. [Note however, that for some neg-
ative values ofa (from -1.414 to 0), the isobols simulated

with Eq. 28 lie outside the limits ofthe graph ofD2/IDX3
vs. D1fIDx_1 shown in figure 5(A); i.e., they lie outside the
unit square; This inadequacy of the general form of this

modelwasfirstpointedoutbyMs.chadoa.ndRobinson

(1994) and further explored by Khinltis and Green (1994).]

2. Models of Weinstein et al. (19.90). Eq. 29 was intro-

duced by Weinstein et al. (1990) and Bunow and Wein-

stein (1990); a reparameterization has been used more

recently (Kageyama et al. (1992). Eq. 29 is called the

robust potentiation model. Loewe additivity is its null

reference model. P01, P02, are the concentrations of

agents 1, 2 required to increase the apparent potency of

the other drug by a factor of2. The parameters, bpi. bpg,

govern the slope of the potentiative effect of agents 1 and

2, respectively. Loewe synergism, but not Loewe antag-

onism, can be modeled with Eq. 29, because a negative

PC parameter cannot be used with a corresponding non-

integrul bp parameter. Eq. 29 and several other models

are integrated into the software package COMBO,

which runs in the MLAB (Civilized Software Inc, 1991)

environment on MSDOS-compatible microcomputers.

We fit Eq. 29 to data with nonlinear regression with our

FORTRAN program as described for Eqs. 5 and 28, with

weights equal to the reciprocal of the square of the

predicted response; we did not implement the interest-

ing weighting scheme described by Bunow and Wein-

stein (1990), a Gaussian kernel windowing technique

based on estimated responses.

We were unsuccessful in fitting the full nine-parame

ter model. Eq. 29 to the common data set. There was not
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enough information in the data set to allow the estima-

tion of four separate interaction parameters, PCI, P02,

bp 1, and bpg. However we were successful in fitting two
clifierent reduced seven-parameter models to the com-

mon data set. Figure 22(C) shows the lit of Eq. 29, with
the expression containing PC, and bpi eliminated, and

figure 22(D) shows the fit of Eq. 29, with the expression

containing P02 and bpz eliminated. The need to use only

one of the two pairs of interaction parameters was also

reported by Weinstein et a1. (1990). The estimated param-

etersforthebestfit shown infigure 22(C)were:Econ =

95.3 1 4.8;ICw_1 = 11.01 1.4;IC5o3= 1.02 1 0.084;m1 =
-1.13 1 0.077; "12 = -1.94 1 0.10;PC2 = 1.65 1 0.31; bpg =

1.55 1 0.21. The estimated parameters for the best fit

shown in figure 22(D) were: Econ = 98.9 1 4.5; ICE“ =
9.49 1 1.2; IC5a_2 = 0.947 1 0.059; m, = -1.00 1 0.064;
m3 = -1.92 1 0.066; PC1 = 44.8 1 5.0; bp, = 1.18 1 0.16.

Because the fit was good for both reduced models, the

interaction parameters, PC1, P0,, were both positive, and

their 95% confidence intervals did not encompass zero, the

conclusion is Loewe synergism.

»z<~e)‘"*> »2<~<e“)
1= +

E 1 E 5"“

[elm Econ - E 105” Eco — E

There are many other parametric response surface mod-

els that could be applied to the common data set.

Hewlett (1969) provides a general framework for deriv-

ing many specific, potentially useful, multivariate con-
centration-eflect co1nbined—act.ion models. More re-

cently, Machado and Robinson (1994) have reviewed this

set of combined-action models, plus the general forms of

Eqs. 5, 29, and an original model, Eq. 30. Eq. 30 has a

single interaction parameter, which is called 11. Unfor-

tunately, like Eq.2B, Eq. 30 has the disadvantage of

having isobols lie outside the unit square of the graph of

Dz/ID,” vs. D1./IDx_1 for values of 11 from -on to -0.333 and
from 1 to 09 (Khinlris and Green, 1994).

[29]
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The response surface approaches have the following

advantages:

(:1) they provide a quantitative measure of the inten-

sity of interaction, along with a measure of its uncer-

tainty.
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(b) they reduce the full data set lirom an experiment to

a smaller set of parameters, along with uncertainty es-
timates.

(cl they facilitate prediction of the response under new
conditions.

(d) they are appropriate for complex situations, such

as three-, four-, and five-drug combinations.

(e) they aid in experimental design, including the de-

sign of complex experiments. Also, they tend to he tol-

erant of a wide spectrum of designs.

( f) they have the potential to explain, in intimate

detail, all ofthe characteristics of a complex system, and

thereby facilitate a deep understanding of the system.

(g) they are objective (relatively), rigorous, and con-

sistent with modern statistical theory. In addition to the

brief statistical summary provided for the fits of Eq. 5, 28,

and 29 to the common data set, there are other use-

ful statistical diagnostics available, including overall good-

ness offit statistics, confidence envelopes around the fitted

surface, and residual (fimctions of the diiference between

the actual and fitted data) analyses (e.g., McCu]lagh and

Nelder 1989; Saber and Wild, 1989; Bates and Watts, 1988;

Carter et al., 1986; Machado and Robinson, 1994).

(h) parametric 3-D concentration-efi'ect models may be

used as the pharmacodynamic component of composite

pharmacokinetic-pharmacodynamic models, to be used

for the clinical study of the disposition and effect of drug
combinations.

(:3) finally, as described in Section III, response surface

approaches are useful in explaining the similarities and

difibrences among other rival approaches to the assess-
ment of combined-action.

The four panels of figure 22 look very similar. From

the statistics provided for the fit of Eqs. 5, 28 and 29 to
the common data set, it would be difllcult to choose the

best structural model. To a great extent, the exact form

of combined-action models is arbitrary, and consider-

ations other than the goodness of fit of a model to a

specific data set, must be used to decide upon a modeling
framework. These criteria include:

(a) a model should allow the “slope” for each agent’s
individual concentration-efl'ect curve to be different; this

is allowed by Eqs. 5, 28, 29, 30.

(6) it is desirable to allow each agent’s individual
concentration-efl'ect curve to have a different functional

form; however, the need for such a model seldom arises.

(c) the model should be one from a hierarchical set,

which allows expansion and reduction of models by inclu-

sion and deletion ofexpnessions and parameters, in a log-

ical, hierarchical manner. For example, a model might be

expandedtoaccommodatemorethantwoagenta,orto

describe simultaneous Loewe synergism and Ioewe antag-

onism in difiirrent regions of the concentration-effect sur-

face,andreducedtodesc:ibeansgentthatincreasesthe

pharmacological eifect of a second agent, but which has no

efibct by itself (synergism, see table 1).
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(d) the simulation of the model should present no

unsolvable numerical problems. For example, Eqs. 5,

28 -30 all require appropriate one-dimensional root find-
ers (e.g., Thisted, 1988), but these are easily pro-

grammed. and have been found to be reliable.

(e) if normalized isobols [e.g., fig. 8(0)] for typical data

increase in bowing at higher levels of inhibition, then
this characteristic should be intrinsic to the model.

( f) a model should have the fewest parameters possi-

ble to adequately describe combined-action data.

(g) it is desirable for the parameters to have some geo-

metrical meaning; i.e., upon hearing of the values of a

model’s parameters, an experienced researcher should be

able to mentally picture 2-D and 3-D concentration-efi'ect

curves. ThiswouldbetrueforEqs. 5and28tl:|rough30.
(h) it is desirable for the model to follow the correct

course, even in regions for which there is no data. In

other words, cautious extrapolation should be possible.

(i) the modeling paradigm should allow the combining
of a 3-D concentratzion-effect structural model, such as

Eqs. 5 and 28 through 30, with an appropriate random

model, for fitting data with modern statistical ap-

proaches, such as maximum likelihood estimation.

(j) in general, the structural model should closely

follow the overall average data, without following ran-
dom fluctuations.

(la) the iaobols for the model should lie within the unit

square ofthe graph ofD2/LDx_2 vs. D1r'IDx_1 for all values
of the interaction parametezfs). This last criteria is not
met by Eqs. 28 and 30.

A critical area of future research will be the deriva-

tion, collection, and comparison of rival multivariate

parametric concentration-efiect combined-action mod-

els. A comprehensive critical comparison of rival models

(e.g., Eqs. 5 and 28 through 30) is beyond the scope of

this review. Machado and Robinson (1994) present one

of the first such critical reviews; our group is also cur-

rently working in this area (Khinlcis and Greco, 1994).

Although the field of response surface modeling ofagent

interactions has old roots (e.g., Finney, 1952), only in

recent years has the availability of computer hardware

and software made it into a practical, universally impor-

tant discipline.

The disadvantages of fitting 3-D parametric concen-
tration-effect models to data include:

(a) there are an infinite number of plausible paramet-

ric models; it may be diflicult to choose among rival

models. Diflerent rival models may lead to difienent

conclusions. The parametric modeling paradigm is still

evolving; an analysis ofdata with a current model might

be proven to be suboptimal at a later time.

(b) the proper fitting of these models to data requires

statistical and computing expertise and adequate com-

puter hardware and software. However, the acquisition

of these skills and tools is increasing among laboratory

scientists, and, in our view, is very cost-effective. In

addition, as an alternate solution, both initial and long-
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term collaborations between laboratory and quantita-

tive scientists can be very Loewe synergistic.

(c) the links between empirical models of combined-

action, such as Eqs. 5 and 28 through 30, and theoretical

mechanistic models of molecular, biochemical, and phys-

iological systems have not been systematically made. In

other words, after one makes a rigorous claim of, let's

say, Loewe synergism, it is in no way obvious what this

implies regarding the mechanistic interaction of two

agents. Some work has been done in this field (e.g.,

Werhheiser et al., 1973; Jackson, 1980, 1984, 1991,

1992, 1993; Bravo et al., 1992). However, this critical

research area is in its infancy.

V1. Comparison of Rival Approaches for Discrete
Succesallhilure Data

This section will discuss approaches to the assessment

of the combined-action of agents, in which the measured

or observed response is binary (quantal); i.e., it is suc-

cess or failure, yes or no, dead or alive, on or off, 0 or 1.

The data is ofien grouped by treatment and is expressed

as a proportion of successes; e.g., five successes of eight

trials, or 0.625. Most of the material in this section is

from Green (1989). A random model that describes the

statistical variation in success/failure data is the Ber-

noulli distribution, and one that describes the variation

in proportion data is the binomial distribution (Larson,

1982). Figure 3 showed a concentration-effect structural

curve with binomial variation about one point on the

curve. A formula for the binomial model is Eq. 31, in

which n is the number of attempts in a binomial trial, la

is the number of sues, Y is the proportion of suc-

cesses (Y = kinky is a pa.rt:icular value ofY(y = 0, Us,

Wu, . . . , 1). p.isthemeanorexpectedvalueofY.P(Y=

y) is the probability that the general Y variable will

equal the particular value y, and ( ) is the combination of

1: things taken ny at a time. [Note: Eq. 31 is diiferent

from but equivalent to the more common form of the

binomial distribution equation (e.g., Larson, 1982) not

shown here. We reparameterized the more common form

into Eq. 31 to facilitate the combining of structural with

random models.] Because the overall mean or expected

value of Y is merely the value of the structural model,
structural models for suocessffailure concentration-

efi'ect phenomena can be generated by simply substitut-

ing it for E in any of the structural concentration-effect

models previously described in this paper for continuous

data. For example, the Hill model can be expressed as

Eq. 32, and our flagship combined-action model can be

expressed as Eq. 33. Note that the Econ parameter has

been constrained to be the constant, 1, in Eqs. 32 and 33.

In order to make a composite structural-random model

for data fitting, the structural expression for p. is in-

serted into the binomial model, Eq. 31, either directly or
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indirectly with a numerical procedure.

R

3, ml - .u)""v>P(Y=y)=(
l'|'l

Rival approaches for the assessment of combined-action

when the response is quantal (proportions of success!

fai1ure)wi1lbecompm-edinamannersimilartothe

comparison in Section V of rival approaches for com-

bined-action when the response is a continuous mea-

sure. A simulated data set for a pair of inhibitory drugs,

listed in table 4, was generated by first calculating

p. with Eq. 33 with parameters, IC,,,_, = 10, I059; = 1,
m1 = -1, m2 = -2, £1 = 1; and then entering p., along with

a into a binomial random number generator fiom the

Ststgraphics Software Package (STSC Inc., 1988). This

datasetwi1lbea.nalyzedwiththreedifl"erentap-

preaches, the approach of Gessner (1974), the fitting of

the parametric response surface model, Eq. 33 [Greco

and Lawrence, 1988) to the full data set, and the fitting

of the multivariate linear logistic model (Cox, 1970), Eq.

34, to the full data set (e.g., Carter et al., 1983, 1938;

Brandon et al., 1983).

= elplflo 1' 311): ‘i’ Bans 1‘ 5129192)
F 1 1' explfio 1‘ B131 '1’ Babe "' 3125192)

Many of the methods for analyzing continuous com-

bined-action data, described in Section V, could be used,

and have been previously used, for analyzing proportion

data. If one merely calculates the proportions of survi-
vors from table 4 as decimal numbers and then treats

these numbers as continuous data, then methods E.1

through E.11 could be directly applied without any ad-

ditional complications. However, the variation pattern

{probability distribution) of proportion data is funda-

mentally diflerent from that for typical continuous bio-

logical data. For proportion data, usually the numbers of

survivors and the total numbers of organisms undergo-
ing a treatment is known without error. The variation in

responses is usually caused by the fundamental nature

of discrete binary responses; the variation is usually

wider in the 1115,, range of the concentration-efi‘ect curve

[34]
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TABLE 4

Data set, with a binary (proportion) response variable, used fbr
comparison of rival data analysis approaches

Number of Total number of
survivors‘ organisms

100 100
97 100
96 100
96 100
72 100
59 100
57 100
32 I00
13 100
13 100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

. 100
10 100
30 100
50 100

100 10 100

‘The number ofsurvivors in column 3 was generated by (u)
calculating p. with Eq. 33 with parameters. IC,,,,_, = 10, l'C',,-_._, = 1,
In, =- -1,m, = -2,.-.u= 1;the.nentaozingp.,alongwithn(thetotal
number of organisms, equal to 100) into a binomial random number
generator from the Statgrsphi Software Package (STSC Inc...
1986).

0:
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"883

and smaller near the two ends of the curve. Proportions
above 1 and below 0 do not exist. In contrast, continuous

biological data often follow bell-shaped normal distribu-
tions, with larger variances associated with larger mea-

surements (proportional error, constant coefficient of
variation). Individual measurements (% control) both

above 1005- and below 0% often occur. Proportions will

tend to become normally distributed as it becomes large,

and as the true proportion tends away from the ends of

the range, 0 and 1. Methods, E.1 through E.11, which

ignore the true random component of the data, will only

be, at best, approximately correct for binary data. How-

ever, they can provide very useful preliminary explor-

atory procedures. Nonetheless, only approaches that

fully exploit the binary nature of the data will be com-

pared in this section.

Much of the early work on the problem of combined-

action of agents was focused on biological systems with

quanta! responses {e.g., Bliss, 1939; Finney, 1952, 1971;

Hewlett and Plackett, 1959, 1979; Hewlett, 1969; Pluck-
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ett and Hewlett, 1948, 1952, 1967). (It seems that sys-

tems with quantal responses were of more interest to

statisticians, whereas systems with continuous re-

sponses have been of more interest to pharmacologists.)

Specific approaches and models of these pioneers in the
field of combined-action assessment will not be reviewed

in this paper. However, many of their concepts, ap-

proaches and models form the basis of the three ap-

proaches that will be compared.

A. Approach of Geasner (1974)

Our interpretation of the method of Gessner (1974)

first consists of fitting appropriate single agent models

to the data for agent 1 alone, agent 2 alone, and fixed

ratios of D1:D2. Gessncr (1974) recommends the probit
model (e.g., Finney, 1952), Eq. 35, for this purpose; how-

ever, we also explored the use of the univariate linear

logistic model with ]n(D) as the input, Eq. 36, and the

univariate linear logistic model with D as the input, Eq.

37. Note that Eq. 32 and 36 are different parsmeterisa-

tions of the some fundamental model, in which 60 =

-m.ln(Dm) and 91 = at. These three models were fit to the

data fordrug 1 alone, dmg2 alone, and the 10:1 mixture
from table 4, with maximum likelihood estimation via

nonlinear least squares (Jennrich and Moore, 1975),

with the software package, PCNONLIN (Statistical

Consultants, Inc., 1986), on an MSDOS-compatible mi-

crocomputer. The best fit of Eq. 32, and the equivalent

model, Eq. 36, to the three sets of data points from the

common 30-point data set, is shown in figure 27(A). The

best fits ofEqs. 35 and 37 are shown in figures 27(3) and

27(0), respectively. The fits look good for Eqs. 32, 36,
and 35, but not for Eq. 37. The parameter estimates 1
standard errors for the fits of these four models were:

(for Eq. 32, drug 1, Dm = 10.7 1 0.99, m = -0.982 :

0.060; drug 2, Dm = 0.895 t 0.056, m = -1.99 t 0.14;

drug 1+2,Dm = 4.36 1- 0.30, m ="-1.59 1 0.10). (For Eq.

36, drug 1, B0 = 2.33 I 0.16, 6, = -0.982 : 0.060; drug
2, ,6,;. = -0.220 t 0.13, B, = -1.99 i 0.14; drug 1+2, B0 =

2.34 : 0.19, B, = -1.59 1 0.10). (For Eq. 35, drug 1, By, =

6.36 1- 0.084. :31 = -1.32 1 0.072; drug 2, flo = 4.90 *_t

0.072, ,8, = -2.72 : 0.17; drug 1+2, B0 = 6.35 t 0.10,

,6, = -2.12 1 0.12). (For Eq. 37, drug 1, 5,, = 1.61 t 0.10,

,8, = -0.057? 1 0.0043; drug 2, [30 = 2.55 : 0.14, 31 =

-1.67 t 0.13; drug 1+2, B0 = 2.52 1' 0.16, .91 = -0.403 I
0.032). None of the 95% confidence intervals for any of

the parameters for any of the models encompassed zero.

PI'0bit(u-l = flu + 3110833) [35]

_ 8113030 + B11n(D))
“ * 1 + expose + B1ln(D))

= 33'-Plflo + BID)
1 + 8113030 4' B113)

The second stage ofthe method of Gessner (1974) is to

plot the estimated Dm (m,,,) values, along with their

[36]

1-‘ [37]
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FIG. 27. Fitted curves of various models to the simulated data
from table 4. See details in the text.

95% confidence intervals, for drug 1 alone, drug 2 alone,

and for the mixture, on isobolograms. Figure 28 shows

the isobologrems for the fits of Eqs. 32, 35 and 36, which

all coincide, and figure 29 shows the isohologram for the

fit of Eq. 37. The dashed lines connecting the ends of the

95% confidence intervals for the ID5o’s of drug 1 alone

and drug 2 alone define a Loewe additivity region. Be-
cause the 95% confidence interval for the 10:1 mixture of

dung 1+2 intersects the Loewe additivity region, a con-

clusion of Loewe additivity is made. In contrast, the

isobologram replot for the fit of Eq. 37, figure 29, indi-

cates Loewe synergism. Interestingly, the poor fit of Eq.

37 to the data resulted in poor estimates of the ID59's for
each drug alone, and this lead to the “correct” claim of

Loewe synergism. The overall conclusion for the method

of Gessner (1974), based upon the fits of Eqs. 32, 35 or

36, and the isohologram replot in figure 28, is Loewe

additivity.
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FIG. 28. Further iaobolographic analysis of data from figure 2?,
panels (A), (B), using an interpretation of the approach of Gessner
(1974).
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FIG. 29. Further iaobolographic analysis of data from figure 27,
panel (C), using an interpretation ofthe approach ofGeaaner (1974).

4 B

It is also clear that the linear logistic model without

the logarithmic transformation of the dose, Eq. 37, does

not seem to have the ideal shape for typical concentra-

tion-effect data. It seems to miss points near 100% sur-

vival, and misses points for concentration-effect curves

with relatively shallow slopes (around on = -1).

‘The advantages of the method of Gessner (1974) in-
clude:

(a) the underlying null reference model is Loewe ad-

ditivity.

(b) the approach takes into account in an appropriate

manner, the binomial variation of proportion data.

(c) the approach allows the slopes of the individual
concentration—ef‘Fect curves to be different.
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(d) the derivation and application of complex full com-

bined-action models are not necessary.

(:2 the isobologram replot is visual and intuitive.

(f) uncertainty measures, the 95% confidence inter-

vals about the Iflms, are included in the analysis.

(g) the approach can accommodate interspersed re-
gions of Loewe synergism and antagonism.

(h) the general concepts of estimating ID5Os, along

with 95% confidence intervals, and making a replot

isobologram, are very general, and could be applied to
continuous data.

(1') the approach is relatively easy to implement with
standard software.

(j) the approach is an excellent Eront-end for more

advanced model-fitting approaches and may provide the

best final analysis for complex situations in which the

degree of Loewe synergism and Loewe antagonism var-
ies across the 3-D concentration—efi"ect surface.

The disadvantages include:

(a) the additivity region bounded by the dashed lines

connecting the ends of the 95% confidence intervals of

the individual agent ID,,¢,e was not created with a rigor-
ous statistical derivation. The additivity region will tend

to be too wide, too conselvative, resulting in rejection of

true Loewe synergism and Loewe antagonism too often.

More realistic confidence bounds, based upon modern
statistical theory, have been derived by Cartefs group

(Carter et a1., 1936, 1988; Gennings et al., 1990).

(b) it is likely that the fitting of data for a fixed ratio of

D1203 by concentration-effect models appropriate for
single agents, such as Eqs. 32, 35, or 36, will result in

biases, similar to the problems described for fitting the

median-effect model to fixed ratio data, described in

Appendix B, and in figure 17. We predict that the misfits
will become more severe as the difference in slope pa-

rameters increases and as the intensity of interaction

increases, as shown for the median-effect model, in fig-

ure 17. However, we predict, as indicated for the medi-

an-efi’ect model in Appendix B, that the problems will

tend to be minor if one focuses mainly on the ID5,,s.

(c) maximum use is not made of the data, as compared

with approaches centered on the fitting of full combined-
action concentration-effect surfaces to all of the data

simultaneously.

(:1) summary measures of the intensity of interaction,

along with uncertainty measures, are not provided.
An additional criticism-—with which we take issue—

leveled at the method of Gessner (1974) is that the

approach does not adjust the 95% Loewe additivity re-

gion to take into account the problem ofmaking multiple

comparisons of mgofl from several separate fixed ratio
concentration-effect curves (Carter at al., 1983). Carter's

group argues: ‘The procedure described suffers from the

same problem associated with making multiple [Stu-

dent's] t-tests to compare the means of a number of

treatment groups. In such cases, the probability of in-

correctly rejecting the null hypothesis of equality of
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treatment means is inflated. Here, the null hypothesis is

one of additivity. Hence, the probability of incorrectly

rejecting additivity and thereby concluding synergism is
inflated.”

We respond to this criticism by pointing out that,

when applying Gessnefs (19'i'4) approach to datasets

with several fixed ratios of .D,:D2, the pattern of [D50
confidence intervals is taken into account; albeit. in an

ad hoc manner, when making a conclusion. Each [D50

confidence interval is not meant to be interpreted in

isolation. For example, if there were 10 different fixed

ratios for our common data set, and if their ID“ confi-

dence intervals were plotted in figure 29, and if a ran-

dom assortment of significant Loewe synergism and

Loewe antagonism were demonstrated, one would con-

clude either that the combined-action was very complex

or that some errors were made in conducting the exper-

iment. The experiment would probably be repeated. If

only I of 10 fixed ratios showed significant Loewe syn-

ergism, with no apparent trend in the I'D“, estimates,

then the Loewe synergism would be considered sugges-

tive at best, possibly a random artifact, and, if possible,

the experiment would be repeated with larger sample

sizes, especially in the region of suspected Loewe syner-
gism. However, with the more probable result of consis-

tent patterns of Loewe synergism or Loewe antagonism,

(e.g., Gessner, 1933), the clusters of Loewe synergistic

andfor Loewe antagonistic ID“, intervals will reinforce

each other, leading to a more conservative, not to a

more liberal, conclusion. The use of improperly inflated

P-values, and conversely, improperly deflated 95% con-

fidence intervals, caused by the making ofmultiple sta-

tistical comparisons, is certainly an important general

problem in biostatistics (Miller, 1931). However, the

problem is not relevant to the application of Gessner’s

approach when rationally applied to agent combination
data.

B. Parametric Response Surface Approaches

Just as for continuous data, full 3-D combined-action

concentration-effect models can be fit to proportion data,

to assess the nature and intensity of agent interaction.
The use of two different structural models will be dem-

onstrated: our flagship combined-action model, Eq. 33,

and the multivariate linear logistic model, Eq. 34. In

principle, the general form of Eq. 28, Eq. 29 (Weinstein

et al., 1990}, Eq. 30 (Machado and Robinson, 1994), and

any of the models reviewed by Hewlett (1969) could also

be tried, but these are not included in this part of the
review.

1. Model of Grace and Lawrence (1988). Eq. 33 was fit
to the full common data set in table 4 with maximum

likelihood estimation in the same manner as described
in Section WA. The best fit surface is shown as three

curves in figure 27(E). The fitted surface hugs the raw

data, with a random distribution of points about the
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surface. The parameter estimates : standard errors

were:Dm1 = 11.2 1‘ 0.99, m1 = -0.995 t 0.052, Data =

0.906 t 0.056, m2 = -2.05 1 0.14, c: = 0.903 : 0.46. The
95% confidence interval for a was from 0.001 to 1.80.

Therefore, Loewe synergism is claimed.

2. Multivariate linear logistic model. The use of the

multivariate linear logistic model (Cox, 1970) is very

popular in the analysis of clinical trial data and in Epi-

demiology, in cases in which the response variable is

binary (Hosmer and Lemeshow, 1989). It is the most

popular response surface model that has been routinely

applied to quantal combined-action data (e.g., Carter et

al., 1983, 1988; Brunden et al., 1988). Eq. 34, the mul-

tivariate linear logistic model for two agents, includes

one interaction parameter, 513. When B12 is positive,

Loewe synergism is indicated; when B12 is negative,

Loewe antagonism is indicated, and when an is zero,

Loewe additivity is indicated. Eq. 34 was lit to the com-
mon data set in table 4 with the maximum likelihood

approach described in Section VLA. The fitted surface is

shown in figure 2'?(D). The parameter estimates were:

30 = 2.03 : 0.071, B1 = -0.0713 1- 0.0043, B2 = -1.54 :

0.11, 312 = -0.083’? t 0.025. Because the 95% confidence
interval for B13 is from -0.133 to -0.0347, Loewe antag-

onism might be concluded. However, the best fit of Eq.

34 to the data, shown in figure 27(D), does not look very

good. First, the surface misses the points near 100%

survival. Second, because the linear logistic model con-

strains agent 1 alone, agent 2 alone, and the 10:1 mix-

ture all to have the same dose-efiect slope (on a logarith-

mic dose scale), the data points are not randomly

scattered about the curves; the surface systematically
misses most of the data. These two characteristics make

the multivariate linear logistic model suboptimal for

assessing the combined-action of agents in many sys-
team.

This second problem with the use of the linear logistic

model, the constraining oi‘ the slopes of the concentra-

tion-effect curves, may have profound implications for

the use of the multiple linear logistic model in other

fields. Therefore, a cleaner, simpler example ofthe prob-

lem, illustrated in figure 30, is presented here. The four

curves, a, b, c and d for both panels, A and B, were

simulated with the simple linear logistic model, Eq. 37.

For curve a, 30 = 1.5, B1 = -2.0; for curve b, 6,, = 3.0,

B1 = -2.0; for curve c, B0 = 1.5, B, = -0.1; for curve d,

B0 = 3.0, B, = —0.1.InpanelA,nisplotted againstagent
dose on a common logarithmic scale; whereas, in panel

B, the logit of p. is plotted against agent dose on a linear

scale. For each of these curves, 45 points, indicated by

symbols, were simulated, and then the points connected

via the spline option in SigmaPlot 2.0 (Jandel Scientific,
1994). The combined data for curves b and c (:1 = 90)

were assumed to represent the proportion of organisms

remaining after treatment with agent 1 and agent 2,

respectively. A sample size of 1000 was assumed for each
of the 90 treatment groups. No binomial variation was
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Dose

FIG. 30. Problems with use of logistic function for representing
dose-response phenomena.

introduced. This set of data was then fit with Eq. 38, a

multiple linear logistic model with three estimable pa-

rameters, BO, 31, and 33, but no 1313 interaction param-

eter, with the LR program in BMDP (Dixon et al., 1990).

This model assumes a common Bo term, a 131 term for

agent 1, and a 3.; term for agent 2. The best fit estimates

(1 standard error) were: filo = 1.93 1 0.013; ,6, = -1.36 i

0.016; and B, = -0.122 1 0.0015. These parameter esti-

mates were then used to simulate curves as and f in both

panels (A) and (B).

* 9113090 4' 191131 + 3292)
"“1+exp(Bo+a.D.+s..Do

Note that in panel (A), the two members of each curve

pair, a and c, b and d, ands andfshare the same shape:

they are parallel; they have the same dose-effect slope

(on a logarithmic dose scale). For example, at every

effect level (except p. = 1 and ,1 = 0), the dose for curve

c is 20-fold higher than the corresponding dose on curve

a (the ratio oftheirIDms). This is caused by the same filo

term for each respective pair. The lateral separation of

the curves for each pair is because of diiferent 3, terms.

Because the [D50 is equal to 439/31, it is clear that a
larger 5,, term will shift the concentration-efi'ect curve to

[38]
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the right, and a larger-in-magnitude B1 term will shift

the curve to the left. Note that in panel B, that curve

pairs :1 and b, and c and d consist of parallel lines. This

is caused by the same B1 terms for each respective pair.
There are common y-intercepts for curve pairs :1 and c, b

and cl, and e and f; in panel B, but this cannot be visually

detected on the scale with which the graph is drawn.

When Eq. 38 is fit to the combined data from curves 6
and c, there are only three parameters available to rep-

resent the information that was originally contained in

four parameters, so compromises were necessary. Note

that the estimated Bo for the combined data, 1.93, is a

compromise between the B0 terms for the individual

concentration-effect curves, 1.5 and 3.0. Also note that

the concentration-eifect slopes in panel (A) for curves 2

and fappear to be the same, but these curves are d.ifi'er-

ent from those of a and c, and of b and d. The estimated

3, term for curve f, -0.122, is somewhat diiferent from
the B1 term of curve c, -0.1; the estimated B2 term for

curve e, -1.36, is somewhat diiferent from the B1 term of

curve I), -2.0. The 1D5oB for curves 9 and f, 1.42 and 15.8,

respectively, are close to those of curves, b and c, 1.5 and

15, respectively. Curves e and f seem to attempt to

closely follow the data from curves In and c, but fail,

because the information contained in four parameters

cannot be expressed completely by three parameters.

The advantages and disadvantages of fitting 3-D com-

bined-action concentration-efl'ect surfaces to proportion

data are essentially the same as listed for continuous

data. However, as seen with the experience of the mul-

tivariate linear logistic model, one must be very careful

about choosing an appropriate combined-action model.

VII. Overall Conclusions on Rival Approaches

Tables 5 and 6 summarise the characteristics ofthe 13

rival approaches for assessing combined-action for con-
tinuous data, and the three rival approaches for assess-

ing combined-action for quantal data, respectively. In

addition, they also provide a condensed summary of the

conclusions of each analysis. For the originators of the

13 approaches for continuous data, there is about an

equal division between those who have Loewe additivity
as their null reference model and those that have Bliss

independence as their null reference model. Only the
method of Steel and Peckham (1979) and the method of

Chou and Talalay (1934) use additional models, Eq. 20

and Eq. 13, respectively, as integral null reference mod-

els for their approaches.

With today's universal accessibility to powerful, inex-

pensive computers with useful software, there is no good
reason for an analysis of combined-action data to lack a

graphical component. All of the methods that require

graphics and advanced statistical procedures have ei-

ther already been implemented into stand-alone soft-

ware packages or are “easily” implemented with stan-

dard general statistical and graphical software.
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At first glance, the conclusions of the authors of the

13 different approaches seem to be quite varied. How-

ever, the common continuous data set was simulated

with Eq. 5 to contain a small degree of Loewe syner-

gism (true or = 0.5), which corresponds in most regions
of the 3-D concentration-effect surface to a small de-

gree of Bliss antagonism. Methods 1, 2, 4, 5, B, and 10

through 12b yielded conclusions consistent with their

respective “no interaction" reference models. This was

also true for method 3, the method of Valeriote and

Lin (1975), which further divides Bliss antagonism

into three subcategories, including “subadditivity.” In

addition, because the true combined-action was be-

tween Loewe additivity and Bliss independence, ideal

data would fall into the additivity envelope of method

6, that of Steel and Peckham (1979), and thus the

conclusion of "additivity" for this approach is also

consistent. The Bliss independence surface approach

failed to detect the small amount of Bliss antagonism.

Of the 13 different approaches, only the method of

Chou and Talalay (1984) gave a conclusion opposite to

the one expected, based on its respective null refer-
ence mode1(s). This is because of artifacts inherent in

the calculation of the CI vs. fr plot.

The three approaches to the analysis of combined-

action for quantal data listed in table 6 all share Loewe

additivity as the null reference model. The method of

Gessner (1974) is somewhat conservative and just

missed the correct conclusion of a small degree of Loewe

synergism. Not surprisingly, our flagship model that

was used in the simulation of the common proportion

data set, table 4, fit the data well, but just barely de-

tected the small degree of synergism (true or = 1), just
above the noise level ofthe data. The multivariate linear

logistic model arrived at the wrong conclusion, because
it could not mold itself well to the data.

VIII. Experimental Design

The main decisions that must be made regarding ex-

perimental design are: (a) where to choose the concen-

trations, (b) numbers of replicates, and (c) numbers of

experiments. These seemingly simple questions have

spawned many full careers for statisticians, who have

delved deeply into them to reveal their inherent com-

plexity. The adoption of a response surface paradigm for

the assessment of combined-action of agents facilitates

the understanding of formal statistical experimental de-

sign. First, the experimenter must decide whether he is

in an exploratory or a confirmatory mode. Screening

experiments (exploratory mode) should first include, for

each agent individually, agent concentrations that span

the anticipated response region. Logaritlimic spacing of
the concentrations over a thousand-fold to a million-fold

range is probably necessary, depending upon the previ-
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TABLE 6

Comparison ofconclusions from the application to the some simulated data set (representative example ofdata from pure small synergism
with binomial variation, Table 4), ofthree rival approaches fizar assessing the nature and intensity ofagent combined-action

Approach
Short

long umclusion mnduim

1. Method of (Gessner, 1974}

2a. Parametric response surface
approach (Green and Lawrence, 1988)

2b. Parametric response surface

approach, multivariate logistic model
(e.g.. Carter at al, 1938)

Loewe addifivity is claimed,
but with a hint of small

Loewe synergism.
Small, borderline significant

Loewe synergism {P < 0.05).
a = 0.903 1- 0.46

S1gn.I.fi'' cant Loewe antagonism
(P < 0.05).

LADD

LSYN

LANT

' The abbreviations used throughout Table 6 are the same as used in Table 5.

ous knowledge of the researcher about the concen-

tration-efi‘ect behavior of the compound. After the indi-

vidual agent concentration-effect curves are well char-

acterized, a combination experiment should be

conducted that repeats the single agent data points and

which includes a set of combination points. Either a full

factorial (checkerboard) design as suggested by Prichard

and Shipman (1990). or a single ray (fixed-ratio) design,

or a multiple ray design, all with logarithmically spaced

concentrations, might be appropriate. If a complex 3-I)

concentration-effect surface is anticipated, then the en-

tire interesting region of agent 1 and agent 2 concentra-

tions should be sampled, either with a checkerboard or

multiple my design. However, if a well behaved 3-D

concentration-efl'ec'|: surface is anticipated, and the spe-

cific comhination being studied is only one of many can-

didates being screened, then a single ray may be sulfi-

cient. Composite designs consisting of a checkerboard

and some rays might also be used. Of course, if the

intended data analysis approach is firmly tied to a par-

ticular design, then that design will have to be used.

After the researcher has completed the analysis of the

first mixture experiment in exploratory mode, heishe

may want to switch to confirmatory mode. The repeat of

the combination experiment may use the same design as

in the exploratory experiment, but probably the knowl-

edge gained from the first run will help to refine the

design for the second run. If a complex 3-D concentra-

tion-eflect surface was found in the exploratory experi-

ment, then agent concentrations in the interesting re

gions of the surface should be accented in the

confirmatory experiment. Increasing the numbers of

replicates probably also will be necessary. If a simple

3-D concentration-efi‘ect surface was found in the explor-
atory experiment, i.e., one with pure Loewe synergism or

Loewe antagonism, then a design that facilitates the

estimation of parameters with the smallest variance

might be appropriate. A single ray or a D-optimal design

(Box and Lucas,'1959; Atkinson and Hunter, 1968; Sil-

vey, 1980; Fedomv, 1972; Greco and Tung, 1991) might

be indicated with many replicates.
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There are many lettered-optimality criteria for exper-

imental design. Atkinson and Donev (1992) present a

recent comprehensive review. The D-optimality crite-

rion has become popular for biological applications (e.g.,

Bezeau and Endrenyi, 1986; Greco et al., 1994). Reasons

for its popularity include: (o) ease of application; (b)
intuitiveness of its theoretical basis (For models nonlin-

ear in the parameters, D-optimality minimizes the lin-

ear approximation of the volume of the joint confidence

region of the parameters); (c) transformation of model

parameters does not alter designs (Fedorov, 1972).

Interestingly, the number of design points in a D-

optimal design is generally equal to the number of esti-

mable psrsmeters (Atkinson and Hunter, 1968). For

example, if one assumes that Eq. 5, which contains 6

parameters, will adequately describe the 3-D combined-

action concentration-efi'ect curve. then a D-optimal de-

sign will include only six design points, with or without

replicates. A description of our algorithms for calculat-

ing D-optimal designs for agent combination studies is

included in Greco and Tong (1991) and Greco et al.
(1993).

The D-optimal designs may, at first, seem to be very

strange and potentially noninformative. For example,
for the continuous common data set listed in table 2,

which contains proportional error, the approximate D-

optimal design based upon the ideal parameters (Econ =

100, l'C5,,_1 = 10, IC,,,,_2 = 1, m1 = -1, “'12 = -2, CI! = 0.5)
is (point 1, D, = 0, D2 = 0; point 2.1), = 1,000, D2 = 0;

point 3,1), = 95, D, = 0; point 4,D, -- 0, D, = 1000;

point 5,1), = 0,1}, = 3.08, point 6, D1 = 36.4,D2 = 8.73).

This D-optimal design is only approximate because the

assumption of pure proportional error (constant coeffi-

cient ofvsriation) will drive many of the design points to
unrealistic infinite concentrations (Bezeau and Endre-

nyi, 1986). We have reduced unrealistically large con-

centrations to 1000. Even with this adjustment, the

D-optimal design still seems to be uninformative. (By

visually plotting the six D-optimal design points in fig-

ure 25, the reader will note that one point is at the very
top ofthe concentration-efibct surface and that the other
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five are at the bottom! None of the points lie in the

middle region of the surface.) However, we have con-

ducted Monte-Carlo simulations to verify that this type

of D-optimal design results in the smallest variance for

the six model parameters when compared with factorial

and my designs (Greco et al., 1994). We have also shown

that the variance of the parameter estimates is approx-

imately proportional to the reciprocal of the number of

replicates. This type of frugal experimental design may

have great potential for animal and human experiments,

in which the experimental units are very dear.

The point at which the Loewe additivity model and the

combined-action model are furthest apart in the vertical

direction may be an important design point; this point

may offer the maximum potential for discriminating

between the two models (Mannervick, 1982). From fig-

ure lO(C), it was shown for our flagship model, with

parameters (Econ = 100,IC5o_, = 1,IC5o_2 = 1, or, = -1,
m, = -2, on = 5), that the largest vertical di.fi'erence was

near the point, (IC5,,_,, ICML2). In contrast, figure 9 indi-
cates that the largest horizontal difference between

Loewe additivity and our combined-action model is at

infinite concentrations of both agents. This implies that

a pair of very large concentrations may be useful. These

two design points, based upon maximum model difl‘er-

ences, may be added to other designs discussed above.

Formal statistical experimental design often includes

an interesting paradox: in order to design an experiment

well, you have to know the final answer well. However,

if you knew the final answer well, then you would not

have to conduct the experiment. This paradox is solved

with sequential experimentation; each experiment in a

sequence provides better information for the planning of

the subsequent experiment.

IX. General Proposed Paradigm

Readers of this review may not be particularly happy

at this point. They may have become enlightened on the

subject of combined-action alter following the discussion
of the difllerent 3-D and 2-D representations of this phe-

nomena. They may have carefully read the descriptions

of the application of 13 rival approaches for assessing

combined-action for continuous data, and of 3 rival ap-

proaches for quantal data. They may have digested and

evaluated the long list of advantages and disadvantages

of each approach. They may now have a greater appre-

ciation of the similarities and differences among the

rival approaches reviewed in this paper. Finally, they

may have developed an understanding ofthe fundamen-

tal importance of mathematical models in the descrip-

tion and evaluation of complex systems. However, it is

probably not at all clear how to actually proceed with the

practical analysis of a data set from an experiment of
combined-action.

We recommend the following general approach. Be-

fore the combined-action experiment is conducted. the
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concentration-effect curves for the individual agents
should be characterized well. Data for a combination

experiment can then be generated from either a factorial

design, from a fixed-ratio (ray) design, from a D-optimal

design, from a model discrimination design, or some
combination ofthe four. The numbers and distribution of

different rows and columns in the factorial design, the

numbers and distributions of rays in the fixed-ratio de-

sign, and the numbers of replicates, will depend upon

the importance of the anticipated result, the cost of each

experimental unit, and the degree of ignorance of the

shape of the full 3-D concentration-efi'ect surface.

The overall best initial data analysis, which will work

with almost any conceivable, reasonable design, should

include a combination of approaches V.H., the method of

Berenbaum (1985), and V.I., the Bliss independence re-

sponse surface approach. First, a logical Loewe additiv-

ity model should be fit, with an appropriate curve-fitting

technique, to the data for agent 1 alone and agent 2

alone. Nonlinear regression should be used to fit models

to continuous data, and maximum likelihood procedures

used to fit models to quantal data. The 3-D Loewe addi-

tivity predicted surface should be shown in 3-D. Then

sprinkle the raw data points on the same graph, and

note the position of the points relative to the surface,

such as was done in figure 18{A). Then construct the

Bliss independence surface and sprinkle the raw data

points, such as was done -in figure 18(B). Combining

Loewe additivity and Bliss independence surfaces on the

same 3-D graph may be useful. Also, various 2-D repre-

sentations ofthe 3-D surfaces, such as isobolograms, and

families of 2-D concentration-efl'ect curves, with accom-

panying data points, may be useful. A confidence enve-

lope, adapted from suggestions of Carter et al. (1936,

1988), around the two surfaces might be used to discrim-

inate between true departures fiom the null reference

models and random variation. Note that our suggested

approach has the flavor of the ‘additivity envelope”

method of Steel and Peclrham (1979), but the correct

model for Loewe additivity is used to define one of the

boundaries, instead of Eq. 20. Only in rare cases will it

be diflicult to find appropriate concentration-eifect mod-
els to lit the concentration-efi'ect data for the individual

agents.

After this initial analysis, a decision should be made

whether to derive and fit a full appropriate combined-

action concentration-efi'ect model to all of the experi-

mental data simultaneously or to accept the initial anal-

ysis as the final answer. In many cases, it will be fruitful

to complete this last step. The final summary statistics

should include uncertainty measures around the final

parameter estimates, confidence envelopes around the

fitted surface, overall goodness of fit statistics, residual

analyses, and sets of 3-D and 2-D graphs. These sets of

graphs may include the 3-D combined-action concentra-

tion-eifect surface along with the raw data, such as

figure 22, 3-D difference plots such as figure 10. 3-D
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combination index plots such as figure 9, 2-D isobolo-

grams such as figure 23, 2-D families of concentration-

efiect curves, such as figures 24 and 25, plus any other

informative graphical representations. Physical 3-D
models of combined-action concentration-effect surfaces

made with LEGO bricks (LEGO Systems Inc., Enfield,

CT) (Grace, 1991) or other materials can accent impor-
tant results.

To the best of our knowledge, a software package

dedicated exclusively to this whole composite approach

does not as yet exist. However, many general nonlinear

regression packages, which allow the coding of a one-

dimensional root finder for dealing with models in un-

closed form, and with accompanying graphics capabili-

ties, could be used to implement this approach. Such

packages available for microcomputers include: PC-
NONLIN (Statistical Consultants Inc, 1986), SAS (SAS

Institute Inc., 1987), MLAB (Civilized Software, Inc.,

1991), GAUSS (Aptech Systems Inc., 1991), and JMSL

(IMSL, 1989). There are many more packages available

for UNIX workstations, minicomputers, and mainframe

computers with adequate capabilities to implement this

full approach. Our group is currently developing an im-
plementation of the full approach, which has been de-

signed to work under the Microsoft Windows operating
system.

Several critical areas for future research and develop-
ment in the field of the assessment of combined-action

were pointed out in this review article:

(a) the relationship between empirical models of com-
bined-action, and mechanistic theoretical models of bio-

chemical and physiological systems should be explored.
(b) a library of combined-action models should be de-

rived, collected, evaluated, and critically compared.

(c) flia impact ofusing diflerent experimental designs,

especially D-optimal designs, should be evaluated, both

from theoretical and practical perspectives.

(cl) user-friendly, inexpensive computer software

should be developed to facilitate the paradigm of exper-

imental design and data analysis approaches described
above.

X. Appendix A. Derivation of a Model for Two

Mutually Nonexcluaiva Nonnompetitive

Inhibitors for a Second Order System

A. Motivation

The _concepts of Bliss independence and mutual non-
exclusivity, at first glance, seem to be the same. Equiv-

alent general forms for the classical Bliss independence

model are Eqs. 11 and 14, in which fltl, film, andfuu are

the fractions of possible response for drug 1, drug 2, and
the combination (e.g., ‘X: survival, %control) unaffected

(Chou and Talalay, 1981, 1984}, and fol, fog, andfan are
the fractions of possible response affected (e.g., ‘:6 dead,
% inhibition) [fa(= 1 - 151)]. For the common case in

which each drug individually follows the Hill concentra-
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tion-effect model, Eq. 2, (equivalent to the median-efl'ect

equation of Chou and Talalay, Eq. 24) the appropriate

specific Bliss independence model would be Eq. 12 ( ft: =
EfEcon).

film = filifflz

fiiu = fa: ‘l’ fa: ‘ f31ff12

E D“
CORE

1 1) M
+ E

*3. 2. ’"
1s" lhn

D1 Hit D2 HI:

E°°"(1c,,_,) (10,,3)

However, the mutually nonexclusive model of Chen and

Talalay (1981, 1984), Eq. 18, is not equivalent to the

Bliss independence model, except under the restrictive

condition that the slope parameter, In, is equal to 1 {or to

-1 by our convention ofmonotonically decreasing concen-

tration-effect curves). Eq. 19 is a specific nonlinear form

of Eq. 18. (Note that Eq. 19 is equivalent to our flagship

interaction model, Eq. 5, with m1 = mg = m, and or = 1.)

Chou and Talalay (1984) stressed this diflerence be-

tween the Bliss independence model and their mutually
nonexclusive model and concluded that the Bliss inde-

pendence model is not appropriate for higher order sys-
tems (rn > 1).

atW +as (’“"’““)”"‘film {"341 file f“'lfi‘3

[11]

[14]

E = [12]

E (D1 +007%

ICEQU1

1+ D‘ +
1050.1

D: + D11), ”‘
IC5o_2 IC59‘1Ic5o'2

D, + n,n, '” [19]
ICE]; IC5o_1IC5o_g

We certainly agree-that Eqs. 12 and 19 are not equiva-
lent. It should be noted that the derivation of the mutu-

ally nonexclusive model (Chou and Talelay, 1981] was
for multiple mutually nonexclusive reversible inhibitors

of a single enzyme, in which the slope parameter, In, is

the integral number of binding sites on the enzyme for
each inhibitor, yet the application of the model has been

mainly to much more complex systems, such as cell
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cultures and batches of whole organisms, in which the

nonintegral slope parameter, in, is related to the width
of the tolerance distribution of the sensitivities of the

cells or organisms to the agent. It might be argued that

the difference between Eqs. 12 and 19 is caused by their

difierences in However, we will show below that

the primary reason that Bliss independence and mutu-

ally nonexclusivity are not equivalent is that the mutu-

ally nonexclusive model of Chou and Talalay (1981) was

not properly derived.

B. Elements of the Derivation of the Matuoily

Nonexclusive Model fbr Higher Order Systems from

Chou and Tolstoy (1981)

To keep confusion to a minimum, we will usefi and ii)

for the fractional inhibition and fractional velocity, re-

spectively, which are slightly different from the variable

symbols included in Chou and Talalay f 1981). Also, in-

stead of using Chou and Tala1ay‘s exact general equa-

tions for any number of enzyme inhibitors, we will list

specific equations for sets of two inhibitors. We will

designate Chou and TalaIay’s equations with a CT pre-

fix. and use the equation number from Chou and Talalay
(1981).

The key suspicious step in the derivation of the mu-

tually nonexclusive model, Eq. CT22, appears on page

211 of Chou and Talalay (1981). It is stated:

Let us assume that m molecules of each of two mutu-

aity nonexclusive inhibitors bind to one molecule of en-

zyme. By analogy to Eqn (GT1 7) and addition ofthe term

for nonenclasivity [Eqn(CT21)] we obtain:

fiilflm _ Hm fig Um + [filfiz
Um

no _fU1 +572 mail

It is our view that merely stating, “by analogy to

Eqn(CT17) and addition of the term for nonexclasivity
[EQN(CT21)], we obtain?’ does not constitute a convinc-

ing derivation. Eq. CT17, or the equivalent, Eq. CT18,

that for a mutually exclusive system was derived by

combining Eq. CT11, the general equation for mutual

exclusivity for multiple inhibitors in a first order system

with Eq. CT12, the general median-effect or Hill equa-
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tion for inhibition of higher order kinetic systems by a

single inhibitor.

& b I1 I2@=&, __ ._
fU12 fvl I-U2 150,1 1-50,2

E = iii“fl’ Ian

E11
fill?

[CT11]

[CT12l

1-2 m_ —+?

«loosIm [CT17]

which can be rewritten:

1

Even for the derivation of Eq. CT17, that for mutual

exclusivity, it is not entirely apparent to us how to
properly combine Eqs. CT11 and CT12. However, via

two other derivations not provided here, one based on

enzyme kinetics and another based on the ideas of Be-

renbaum (1985) and provided in Appendix A of Greco et

al. (1990), we verified that Eq. CT17, that for mutual

exclusivity, is correct.

Thus, the derivation of the mutually nonexclusive

model for two enzyme inhibitors provided by Chou and

Talalay (1981) is weak, incomplete, and suspicious. In

order to settle the matter, we provide below a complete
derivation for the case of two mutually nonexclusive,

noncompetitive inhibitors of a single enzyme. We use the

same restrictive assumption used by Chou and Talalsy

(1981) and also used in the derivation by Hill (1910)

that, for each inhibitor, which has two identical binding
sites on the enzyme, both of the two inhibitor molecules

bind to the enzyme in one step. It should be emphasized
that our goal is not to derive an alternate model for

mutual nonexclusivity to be used by the biomedical com-

munity but rather to show that the Chou and Talalay

model was not derived correctly. We therefore provide

this one counterexample, for two mutually nonexclusive,
noncompetitive inhibitors, to refute the general model

for mutual nonexclusivity of Chou and Talalay (1981).

C. Assumptions of the Derivation of the Model for

Mutual Nonexclasivity fiir Two Noncompetitive Higher
Order inhibitors

1. The enzyme (E) has one active site where one sub-

strate molecule (S) may bind.

2. In addition to the active site for the substrate, there

are two binding sites for inhibitor 1 and two other bind-

ing sites for inhibitor 2. Any occupation of an inhibitor

site will prevent the substrate from being converted to

product.
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3. Both inhibitor 1 and 2 are noncompetitive witli the

substrate; 2 molecules of 1 plus two molecules of

inhibitor 2 may simultaneously bind to the enzyme,

whetherthesubstrstehss occupiedthe active siteornot.

4. The affinity of inhibitor 1 for the enzyme, and the

afinity of inhibitor 2 for the enzyme, is unaifected by

occupation of the active site by the substrate; thus, we

have classical or pure noncompetitive inhibition.

5. The binding of 1, I1, to its binding sites

does not influence the binding of inhibitor 2, I2, to its

binding sites, and vice versa.

6. When I, binds, two molecules bind at once; the same

for I3. [This is the critical controversial Hill assumption,

which was also made by Chou and Talalay (1981) in the

derivation of the median efiect equation for a single

inhibiton] In other words, the concentrations of enzyme

species, E, ES, El’1I,, EIJ2, EI,I1I,I._,, ESI,I1, ESL_.I,,

ES!1!II212: efi-st’; but EI1! E1-21 E811! E312» EIIIR! EI1I2I2v

EI1I1I2, Eslrfg, ESIIIJ2, E81111}; are negligible and
be assumed to not exist.

D. Derivation

1. The general rules for deriving enzyme kinetic rate

equations from Segel (1975) are weed.

2. The enzyme velocity (0) rate equation is written in

termsoftherateconstantfortheformat:ionofproduct(}z,,)
and the enzyme-substrate complex concentration ([ES]):

1: = k,,[Es] [A1]

3. The left side of the velocity equation is divided by

the concentration of total enzyme, [E,], and the right

side is divided by the equivalent sum of the concentra-

tions of all non-negligible enzyme species: (Note: The

denominators of Equations A2, A3 and A‘? are too wide

to tit easily into an equation in one column of a journal

page. Therefore, each denominator has been defined by

the terms, DENOMA2, DENOMA3, DENOMA7, respec-

tively):

DENQMA2 = [E] + [ES] + [EI1I1]+ [E1912] +[EI1I1I2I,_]

+ [ESIJ1] + ESIQIZ] + [ESI1I1I2l2]

Lil [,2]
[EJ DENOMAZ

4. Concentrations of each species are expressed in

terms of [E]. The term for any given complex is composed
ofa numerator and a denominator. The numerator is the

product of the concentrations of all ligands in the com-

plex. The denominator is the product of all dissociation

constants between the complex and free enzyme, E.
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Also, let the maximum enzyme velocity, Vmax = k, [E,].

S + tl“ tfltlltlDENO.MA3=1+ E

+ %l tl+ l%l[%J+ Li ltllrtl

U _ S!Ks
Vmax “ DENOMA3

[A3]

5. For a noncompetitive inhibitor. I5,-, = Ki (Chou,

1974). Therefore, all Kis are replaced with I503. In addi-

tion, Eq. A3 is simplified to Eq. A4.

Vmo:c[S/Ks]r‘[1 + SI'Ks]

6. The fractional velocity, fiz, is equal to the ratio ofthe

inhibited velocity, Eq. A4, divided by the uninhibited

velocity, equal to [Vmax S1f[Ks + S]. Aflzer this operation

and some simplification, Eq. A5 is the result.

Eq. A5 can be written in an equivalent form, Eq. A8.

1 1

1+ 1‘ 2
150.1

fv = [A6]
I 2

1+ —’
I53;

7. Note that Eq. A5 is not equivalent to the mutually

nonexclusive model of Chou and Talslay (1931) for the

case of second order inhibitors (in = 2). Rather, Eq. A5

and its equivalent, Eq. A6 is exactly equivalent to the

Bliss independence model, Eq. 11, for two second order

inhibitors. Thus, a complete specific derivation for the

case of two mutually nonexclusive, second order. non-

competitive enzyme inhibitors, which follows the gen-

era] but incomplete derivation provided by Chou and

Talalay (1981), yields an equation inconsistent with

their final model, Eq. CT22, but consistent with the

Bliss independence model, Eq. 11.

E. Possible Rationalization of the Mutually

None.-cclusioe Model of Chou and Tatalay (1981)

1. The expansion of the mutually nonexclusive model

of Chou and Talslay (1981), Eq. CT22, for the case of

Alkermes, Ex. 1045



50 of 55 Alkermes, Ex. 1045

m = 2, yields Eq. A7.

I 2

DENOMA7= 1 + l—‘ +
I, 2 1, 3 1, 2

rm E * E E
I I I "' I I I 3

+2; J +2; i +2 ; i
I5o.1 [no.2 Iso.1 I503 Iso.1 150.2

1

f" *% W1

2. The diflerence between this expansion of the mutu-

ally nonexclusive model of Chou and Talalay (1981), Eq.

A7, and the mutually nonexclusive model derived above,

Eq. A5, which is equivalent to Bliss independence, is the

additional three right-hand terms in the denominator.

These three terms imply the existence of six additional

enzyme species—2 EIII2, 2 EI1I._J,, 2 EI1I,l’,, 2 ESI,I,, 2

ES.l',I-‘J3, and 2 ESl',I1I2—that we initially assumed

were negligible and did not exist. This stems from the

key Hill assumption that when and if an inhibitor binds,

either I, or J2, two molecules of that inhibitor bind at

once. Possibly, one might be willing to get rid of this

assumption, and replace it with a less restrictive as-

sumption such as:

E11, E12, ESL, ESI, are all negligible, but enzyme

forms that contain at least two inhibitor molecules, pos-

sibly a mixture of the two inhibitors, including E1112,

EI1I2I,, EIIIII3, ESI,I2, ES.I1I3I2, and ESIIIII3, are not

negligible.

If so, then the mutually nonexclusive model of Chou

and Talsley (1981) would have a firmer theoretical ba-

sis. However, it is unlikely that an equation derived

from a set ofvery unusual assumptions, for the rare case

oftwo mutually nonexclusive higher order inhibitors ofa

single enzyme, would have general utility for modeling

concentration-effect phenomena from a wide spectrum of

complex agent interaction systems.

XI. Appendix B: Problems with the Use of the
Median Efle-ct Plot and Combination Index

Calculations to Assess Drug Interactions

Both the inherent nonlinear nature of the median

efl'ect plot and the incorrect calculation of the combina-

tion index (CD, for the case of mutual nonexclusivity,
contribute to incorrect artifactuai conclusions concern-

ing synergism and antagonism, when applying the

method of Chou and Talalay (1984) to real laboratory

data. In addition, the median effect plot for drug combi-

nation data for mutually exclusive drugs showing syn-

ergism or antagonism will also be nonlinear. The extent,

origins, and impact of these problems are illustrated by

the simulation shown in figures B1, B2, B3, in table B1,

and the following narrative.
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FIG. B1. Uppe:rpane1:DetapointsploI:ted£mmtahleBL'I'hadala
poiniaandfhecurvesconnectingtliepointawaxeairnulateduaingilq.
B1,thstfiJrmutuslnonenlu.sivity,with.Dm,= 10,Dm,=1,m= 1,
andR= 10.ThaY-a:isisE}Ema::orfii;theX-axisisthesomofdrug
1anddmg2ooncentra1im:sonalogsrithmicsce1e.l.awex'panel:1he
threamedisn-eflhctlineaweremadehyseparstelyfiflingeadiofthe
tlneemhsei'anfdatawithunweifi:tedlinsarregression.Thecurved,
daahedlinaiaflmmedian-efEsctcu1'vefz'ortheoomlinafionofdrug1+
2simulatedEromEq.B1.'Ihemetengulsrha:ainead1pans1represeut
equivalentrangesaffructionalefieI:t.Thaarruwsanthesideoftl1e

hoxssindicatethedirectionofdecreasinxfalinueasingfiz).

FIG. B3. Mutually exclusive C! vs. fa plots for the dais: fium table
B1andfigureBLCurveAwasge:neratsdinthsexaetwvsuggutedhy
ChouandTalalay(1984}andinclud.edinthscommerciallyavuilslJle
prugram(Choua.ndChou.19B7);i.e.,byesfi.matingDm,,m,,Dm,,m,,
Dmmmggwithunweightedlinearregrnssicnasinthelowarpltnalof
figIn'oB1,andthsnplugp'ngtheaevaluaaintoEq.25tomlculateCHfor
arangeaffnvaluea.CurveBwaapnaratedbycalculatingDm,,and
m,,withEqs.B2thrmzghB4,fi'omtheariginsl(sa:neasecIimated)
va1uss,Dm,=1lJ,Dm,=1.m1=m,.=1,andthenpluggingthass
valuasin1nEq.26.'I11ehuxrepresentsarangeoffi'actionalefl‘eci3
equivalenttothabuxssinfigureB1,withtl:usarrowaofthahuxindi-
mfingthedirelnionofdeueasingfiuliieopendaiapointsmprmuitthe
eightcombinationpointmeschcslculatadwiflithefllfiormulafortlie
mutuallyexcluaivs sssumpIiun£ortherawdstaitself.E‘q.27.

A. Nonlinear Nature of the Median Efiect Plat for

Mutual Nonexclusivity

The median effect plot for mutually nonexclusive

drugs is inherently nonlinear. This was shown originally

by Chou and Talalay (1981) in figure 2 of their paper.

Therefore, the estimation of Do-:12 and mm via simple

linear regression can never be correct. The data points in
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FiG.B2.MutusllynonencluaiveC1w.fixplotaforthedatafi-om
tableB1a.ndfigureB1.CurveAwIageneratedinthee:actway
su@stedbyChm1andTa]alay(19B4)andincludedinthecommercislly
available progra.In(C1Icu and Chou. 1987): i..e., by eatimat.ingDm1. ml,
Dm,,m,,Dmu,muwithunweightedlinearregresaiunasinthelawer
pene1offigureBl,andthenpluggin¢thesevaluasinteEq.26to
calculateCIforanngec:i'fh_valusa.(.H:rveBwasgenentedbycalcu-
latin¢Dmnandm,,withEqaB2thmughB4.frnmtl1ecrig'na1(sams
asesti.mated)vnluas..Dm,=-10,.Dm,-= 1.m,==m,==1,andthen
plug5ngtheeevalunintcEq.28.Cu.nreC,Cl'= Lwssgeneratedby
u1culatingDm,_,andm,,withEqs.B2th!oughB4,butthenusingEq.
B6fi:rthaCI:aluflation.’l1:obo:repIeeantsarangeuf£rsctions1efiects
equivIlentinl:hebo:esinfig\n'eB1,withthearmwscfthebo1indi-
caiingtlaadiredionafdaueaaingfifllheopendatapointsrepreeentthe
aightcombinaii¢a1poinIa,eed1calculatcdwiththeCIfo11nulaforthe
mutaaallyemluaive esIInnptionfortherawdataitse].f,Eq.2‘7.

figure B1 and table B1 were simulated by using Eq. B1,

that for mutual nonexclusivity, and using Dml = 1!),

Din, = 1, m = 1, and R = 10. (Here. R is the ratio of

concentrations ofD,:D2). The data consists of 24 simu-

lated data points, 8 for drug 1 alone, 8 for drug 2 alone,

' and B for the combination ofdrug 1+2 in a 10:1 constant

ratio. Four significant figures were retained through all

calculations to eliminate any appreciable errors in the

0,1),

+ DNIIDHIQ
[B1]

In the upper panel of figure B1, the three concentration-

elfect curves were simulated directly with Eq. B1. The

data points in figure B1 correspond to the 24 simulated

points in table 131. In the lower panel, the three median

elfect straight lines were made by separately fitting each

of the three sets of data with unweighted linear regres-

sion. The curved, dashed line is the nonlinear median

effect curve for the combination of drug 1+2 simulated

from Eq. -B1. The rectangular boxes in each panel rep-

resent equivalent ranges of efiect. The arrows on the

sides ofthe boxes indicate the direction of decreasing fa

(from fa = 0.091 to 0.017). The parameters estimated

from the three linear regression-lines were: Dml = 10.0,

' "I1 = l..00,Dn‘l.2 = 1.00, 1712 = 1.00, DUI}; = 4.04,. In-12 =

1.24. The correct Drum calculated from Eq. B2 was 4.56.
The correct mu calculated from Eqs. B3 and B4, which

are fa-dependent, increased from 1.04 at fa = 0.01 to

1.4-9 at ii: = 0.99. (The derivations of Eqs. B2 through
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Begfortherestrictedcaseofml = mg = m,sr-enot

included here but can be requested from W. R. Green.)

Note the vertical dashed line in figure Bl, which shows

the alignment of the true Drum value. Also note the

small displacement of the estimated Drum value from

the true Dmu. It is the approximation of the varying

mm by a constant mm estimated from the median effect

linear regression, which is responsible for most of the
mismatch between the true median effect nonlinear

curve and the approximate straight line. (Note: The

numerators of Equations B2 and B4 are too wide to fit

easily into an equation in one column of a journal page.
Therefore, each numerator has been defined by the

terms NUMB2 and NUBIBJ, respectively):

RDM2 + Dru;
NUMB2 = -T

(1 + R)Dm1Dm2

snm,+nm, 2 4::

+ J (1 +R)Dm,Dm, + (1 +R)’nm,r.-m,
NUMB2

2R

1 + s)5pm,nm,

[B2]

[RDr.-13 + Dm1]Z + HZ’

Dm1Dm2

NUMB4 _ R.Dm, + Dm,
— DHIIDHI2

43 fihs ”'RDHI2 + Dml+ -——-1 +

Dmrflms 1 ' fanDm1Dm,

Z _ NUMB4
‘ R

— 2
DNIIDM2

[B4]

Figure B2 is a mutually nnnexcluaive CI vs. fa plot for

the dataintable B1sndfignreB1. CurveAinfigure B2

was calculated as suggested by Chou and Tslalay (1984).

fromthe three stra.ightmedianefi'ectlinesinfigureB1,

using the formula, Eq. 26, incorporated into the commer-

cial software package, Dose-Efiect Analysis with Micro-

computers (Chou and Chou, 1987). The interested

reader should be able to reproduce this curve by plug-

ging the 24 data points listed in table B1 into the com-

mercial software package. Like many real examples

from the literature, the standard C! vs. fa plot, curve A,

crosses the additivity. CI = 1 line. The conclusion from
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TJIBLE B1

Simulated data for mutual nomncciasicity examination‘

0. in n: lam-' — 11

0.9524 0.04762 - 1.301
0.9091 0.09091 - 1.000
0.3333 0.1667 -0.698!)
0.6667 0.3333 —0.3011
0.5882 0.4118 -0.1548
0.5000 0.5000 0.0000
0.3333 0.6667 0.3011
0.1667 0.8333 0.6989
0.9524 0.04762 - 1.301

0.9091 0.09091 - 1.000
0.8333 0.1607 -0.998!)
0.6667 0.3333 -0.3011
0.5832 0.4118 -0.15-I-B
0.5000 0.5000 0.0000
0.3333 0.0637 0.3011
0.1667 0.3333 0.6939
0.9070 0.0930 -0.9891
0.8264 0.1730 - 0.6776
0.6944 0.3056 -0.3565
0.4444 0.5556 0.09699
0.3460 0.6540 0.2765
0.2500 0.7500 0.-1771
0.1111 0.5389 0.9031
0.02778 0.9722 1.544

“' The data was simulated using Eq. B1, that for mutual nonex-
clu.livity,wi'l‘.hDm, = I0,.Dm; = 1,17: = 1, and]? = 10.Thiai.san
ideal data set with no random errors added; any inezactness is

caused by roundolf errors in the fourth significant figure.

fllgl-1

5|

_DOGOGDOO

33*‘

Curve A is appreciable antagonism at low fractional

elfects and appreciable synergism at high fractional ef-

fects. However, the data in table B1 was simulated for

pure, unadulterated, mutual nonexclusivity! The final

01' vs. fa plot should be a straight, horizontal line at CI =

1! Note the large box on the left-hand side offigure B2.

This is the same box as was shown in figure B1, upper

and lower panel, for a range of concentration-efl'ect, ex-

cept that its height has been magnified in the C! vs. fa

plot. Thus, the difference between the true nonlinear
median effect curve, and the approximate median effect

straight line, has been magnified in the CI vs. fa plot.

Curve B in figure B2 was generated with Eq. B5, but

with the correct values for Drum and mm as calculated
from Eqs. B2 through B4. Curve B is closer to the target,

CI = 1 line, but there remains a problem.
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B. Incorrect Combination Index Calculations for the

Mutually Nonexclusive Case

Eq. 26, that suggested by Chou and Talalay (1984)

and incorporated into the commercial software (Chou

and Chou, 1987), is slightly wrong. This is shown by the

dilference between curve B in figure B2 and the CI = 1

line. By using a rational trial-and-error strategy, we

discovered the correct form of the CI vs. fa equation for

the mutually nonexclusive case for the restricted case of

m = m, = mg, Eq. B5 (Syracuse and Green, 1986). An

equivalent form of Eq. B5 has also been recently pub-

lished by Lam et al. (1991). When Eq. B5 is used with

the correct values ofDm12 and mu, curve 0 results, the

C. Nonlinear Nature of the Median. Efl"ect Plot for

Mutual Emlusivity with Interaction

Because of the many problems inherent with assum-

ing a mutually nonexclusive model, one might prefer to

assume a mutually exclusive model for all experimental

data, including cases in which a median efi'ect analysis

shows that m, = "'12 at mm. Combination plots gener-

ated with Eq. 25, that for mutual exclusivity (Chou and

Talalay, 1984), are presented in figure B3.

Curve A is the CI calculated exactly as suggested by

Chou and Talalay (1984), and is the result that one

would find using the commercial software (Chou and

Chou, 1987) with the data in table B1. To generate curve

A, Eq. 25 was used with the six parameter estimates

derived from the three median effect lines of figure B1.

As with the mutually nonexclusive assumption, the mu-

tually exclusive assumption still shows sn initial incor-

rect antagonism because of the incorrect linear extrap-

olation of the inherently nonlinear median effect curve

for the drug combination. Curve B was also generated

with Eq. 25, but with the correct values for Dmla (=
4.56) and ml; (1.04 to 1.49). Curve B does portray the

correct situation; i.e., synergism along the entire range
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of fa (with reference to the mutually exclusive model).

However, because the method of Chou and Talalay
(1984) does not include a reliable method to estimate

Drum and mm from the inherently nonlinear median

effect plot for drug combinations, a useful CI vs. fa plot.

such as curve B, is not readily generated.

The eight open points in figure B3 (and in figure B2) are

the eight combination data points from table B1, directly

plotted without the estimation of Drum and mm. In-
stead, the raw data were plugged into Eq. 27, which

depends only on the individual drug parameters, Dml,
ml, Drug, and N12, to calculate CI. This approach has

been discussed (Chou, 199111), but to the heat of our

knowledge, is not as yet available in the commercial

software (as of January, 1994).

D D

CI= ‘ 1+ 3 ,3, [27]
D 1'0 fa

ml '13 Drug 1 _fa
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